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Abstract
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Department of Mechanical Engineering
and
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The main objectives of this research are to develop a control-oriented'dynamic
model for geared servomechanisms with backlash and friction and to establish sys-
tematic methodologies of designing a feedforward plus feedback controller to achieve
high precision.

First, the dynamic model for the purpose of real-time control is developed for a
spur gear system with backlash and friction. The complicated variation of the meshing
stiffness as a function of contact point along the line of action is studied. Then the mean
value of the meshing stiffness is used as the stiffness constant in the proposed model.
Without sliding friction, two simulations, free vibration and constant load operation,
are performed to illustrate the effects of backlash on gear dynamics. Comparisons
are also given of the simulation results with those of Yang and Sun’s model. Then
the average friction torque instead of the instantaneous friction torque is proposed
for the model to simplify the complexity of the system. Another two simulations
are performed to illustrate the effects of backlash and friction on gear dynamics. In

addition, the effect of adding a damper on the driving shaft is also studied.




Secondly, since the model for a geared servomechanism with backlash and friction
is one example of nonsmooth dynamic systems, the traditional methods of examining
existence and uniqueness properties and checking stability condition for such geared
system are no longer valid. In this dissertation, Filippov’s solution concept and his
theorems are used to examine the existence and uniqueness properties for the proposed
dynamic model. Furthermore, based on the extended stability theorems proposed by
Shevitz and Paden, a general methodology is developed for the analysis of the stability
conditions of the equilibrium points for piece-wise continuous systems. The developed
dynamic model is also examined using the above strategy.

Finally, conventional control methods for a geared servomechanism usually do
not take backlash and friction into account. As a result, accurate position control can
not be achieved. In this dissertation, a new open-loop optimization-based controller
is developed to achieve accurate position tracking of a geared servomechanism. Path
generation, selection of appropriate control input function, and optimization tech-
niques for the design of such a controller are discussed. A systematic method of
finding appropriate state feedback gains to reduce the effects of possible load distur-
bance and model errors is also proposed. Numerical simulation results indicate that

the improvement is quite satisfactory.
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Nomenclature

A point of intersection between the line of action and the base circle of gear 1
B point of intersection between the line of action and the base circle of gear 2
C point of intersection between the line of action and the addendum circle of gear 2
CF =ED=p,, region of double-tooth contact
D point of intersection between the line of action and the addendum circle of gear 1
E Young’s modulus of elasticity
F, normal contact force
I; axial moment of inertia of gear j about its axis of rotation
M point of contact along line of action
N gear ratio (=ry/ry)
N, number of teeth on gear j
0; center of gear j
P pitch point
R’ n dimensional Euclidean space
S closure of S
{1} x>0
SGN(-) set-valued sign function SGN(x) = ¢ [-1,1] ifx=0
{-1} ifx<0
a; average friction moment arm for gear j, i.e. a;uF,= friction torque
b backlash
c damping coefficient in a gear mesh
Cj damping coefficient for the bearing used to support gear j
cl closure



lim

Pb

rbj

rdj

sgn(-)

SUpE

L

ty;

lim

damping factor used in Yang and Sun’s model
coefficient of restitution
face width
f restricted to U
radial distance measured from the dedendum circle to the addendum circle of gear j
radial distance measured from the dedendum circle to the base circle of gear j
radial distance measured from the dedendum circle to the meshing point of gear j
mesh stiffness constant
spring constant of the jth tooth on gear i
length of AB
limit superior
base pitch, the distance between the involute gear teeth curves along a common normal in
a plane of rotation
radius of the addendum circle on gear j
radius of the base circle on gear j
radius of the dedendum circle on gear j
radius of the pitch circle of gear j
1 ifx>0
sign function sgn(x)=< 0 ifx=0
-1 ifx<O0
the least upper bound or supremum of a given set E
tooth thickness of gear j measured along the addendum circle
tooth thickness of gear j measured along the base circle
tooth thickness at the pitch circle

limit inferior




S

BOA
ACB

the distance measured from point A to the mesh point
the distance measured from point B to the mesh point
deflection due to bending caused by F,, sin ¢
deflection due to bending caused by F, cos ¢
deflection due to the flexibility of gear tooth foundation
Hertzian deflection due to the compression between gear teeth
deflection due to shear
pressure angle = 20 degree
coefficient of friction
Poisson’s ratio
angular velocity of gear j
desired trajectory of gear 2
angular displacement of gear j
friction torque exerted on gear j
rotation angle of gear j measured from O;C
rotation angle of the jth tooth on gear i measured from O;A
angular displacement of gear j
torque applied on gear 1
external load applied on gear 2
time derivative of ()
second time derivative of ()
gradient of f
generalized gradient of f
A is a subset of B
A is a subset of B



ANB
AUB
x€A

{x € X|P(x)}
¥l

intersection of A and B

union of A and B

X is an element of A

x is an element of X which satisfies P(x)

norm of v






Chapter 1

Introduction

1.1 Geared Servomechanism

Gear trains are commonly used in robot manipulators and other kinds of servomecha-
nisms to amplify actuator torque as well as transmit power from one shaft to another.
However, backlash between meshing gear teeth can cause impact, reduce system stabil-
ity, and generate noise and undesired vibrations. The uncertainty caused by backlash
will also decrease the repeatability and accuracy of geared servomechanisms. The-
oretically, backlash between meshing gear teeth should be zero. In practice, due to
manufacturing tolerances and installation errors, backlash can not be avoided. In
addition, due to the need for the prevention of jamming of gear teeth, appropriate
backlash becomes necessary. Therefore, backlash is usually minimized by using pre-
cision gears, spring-loaded anti-backlash gears, and precise mechanical adjustment.
Although these techniques can help reduce the backlash value, its production cost is

relatively high and achievable accuracy is limited.

Another major problem associated with geared servomechanisms is friction. Typi-



cal errors caused by friction on geared servomechanisms are steady-state and tracking
errors. As is known, friction is a force that opposes the motion of two surfaces sliding
or rolling against each other. It depends on surface material, characteristics of lubri-
cation, normal contact forces, and the dynamics of sliding or rolling motion. Since
friction is usually undesirable, unavoidable, and difficult to model, much work has
been done to reduce the level of friction by improving the design. In spite of all these

efforts, friction will always be present to some degree.

Recent growth in the application of geared servomechanisms has led to a demand
for increased precision, such as robots that perform assembly tasks or CNC machines
capable of precise machining. However, physical reality, such as backlash and friction
pose a big challenge to precise geared servomechanism control. Today, most control
methods implemented on geared servomechanisms, such as a PID controller, do not
consider the nonlinearity caused by backlash and friction. As a result, inaccuracy
and tracking errors cannot be avoided. To overcome these difficulties, accurate dy-
namic modeling and better control strategies for such servomechanisms are needed.
Therefore, the main goals of this dissertation are to establish a control-oriented gear

dynamic model and to find a good control strategy to achieve high precision.

1.2 Prior Work

The dynamics of spur gear systems have been investigated by numerous researchers
(Remmers, 1971; Tobe and Takatsu, 1973; Rebbechi and Crisp, 1981; Ozguven
and Houser, 1988; Comparin and Singh, 1989; Kahraman and Singh, 1990; Singh,
et al.,, 1989; Kahraman and Singh, 1991). A literature survey reveals that some

efforts have been made to understand the effects of gear backlash and/or clearance




on the dynamics of mechanical systems. Hunt and Crossley (1975), Herbert and
McWhannell (1977), and Lee and Wang (1983) contributed to the understanding of the
effects of impact and damping on the dynamics of intermittent motion mechanisms.
Goodman (1963) proposed a method of calculating the dynamic effects caused by
backlash in a mechanism. Dubowsky and Freudenstein (1971) created a rectilinear
dynamic model, called the "Impact Pair," for mechanical systems with clearance. By
extending Dubowsky and Freudenstein’s model, Azar and Crossley (1977) investigated
the dynamic behavior of a spur gear system with backlash, using both computer
simulations and experimental verification. Yang and Sun (1985) developed a circular
model for spur gear systems with backlash which is different from the rectilinear gear
model introduced by Azar and Crossley. They also proposed an analytic method to
estimate the stiffness constant and damping factor in two meshing gears. Later, Yang
and Lin (1987) further incorporated the bending elasticity effects and sliding fiction

into their previously developed circular model.

The above-mentioned studies on backlash have concentrated on the modeling of the
instantaneous impact phenomena of a simple gear pair. These models are too complex
for real-time control. Hence, one objective of this study to establish a simplified gear
model for real-time control. To build an accurate dynamic model, the parameters used
in the model need to be estimated accurately. Fortunately, the subject has been studied
extensively by many researchers (Timoshenko and Baud, 1926; Nakada and Utagawa,
1956; O’Donnel, 1960; Matsuz, et al., 1969; Elkholy, 1985; Tavakoli and Houser,
1986; Yang and Sun, 1985; Yang and Lin, 1987).

As for friction forces, Tribologists (Rabinowicz, 1951; Dahl, 1976; Bowden and
Tabor, 1982) have proposed several different models to explain the phenomena of

friction. However, it can be said from these researches that the resulting models are not




necessarily robust enough to accurately predict the behavior of a servomechanism in
all situations. Thus, application engineers have to adopt specialized friction model(s)
for each mechanism to obtain satisfactory friction compensation for a desired task.
For spur gear systems, Benedict and Kelley (1961), Martin (1978), etc. studied the
variation of sliding friction during a mesh cycle, yet with little consensus due to the
complexity of coexistence of sliding and rolling friction and the effects of lubricants.
Tuplin (1957), Anderson and Loewenthal (1982), and Martin (1981) studied the
gearing efficiency under different assumptions. According to the conclusions of
Anderson and Loewenthal, sliding friction accounts for most of the losses at low
speeds (i.e., pinion speed is less than 250 rpm), while rolling friction and journal

bearing losses become more significant at higher speeds.

As for the control strategies for geared systems with backlésh, they have been
investigated from several different viewpoints. Installing sensors on both motor and
load sides to help improve the accuracy is one approach. Using the "describing
function" method is another (Slotine and Li, 1991). Recently Tao and Kokotovic
(1993a; 1993b) proposed the use of adaptive control strategies. However, these
methods either have limited accuracy or are valid only for those systems that can be
decomposed into a linear system plus a backlash element. Other control strategies to
compensate for position errors caused by friction have also been proposed (Armstrong-
Helouvry, 1991; Haessig and Friedland, 1990; Leonard and Krishnaprasad, 1992).
However, these studies are primarily concerned with friction in journal bearings that,
at low speeds, may become less significant than the meshing friction between gear

teeth.

Ackermann and Muller (1986) considered the effects caused by both backlash

and friction in their controller design. They treated backlash as a separate nonlinear




element and considered only constant friction compensation. Later, Schafer and
Brandenburg (1991) proposed a complex control method for this problem by using a

split model and analyzed the stability condition by using the "describing function".

1.3 Objective and Overview

Since backlash and friction can not be avoided in a geared system, researchers have
tried various strategies to reduce their effects. Re-designing mechanisms is one ap-
proach. Chang (1991), for example, proposed a method of applying redundant drives
to keep backlash from ever occurring. Using advanced nonlinear control method is
another approach widely adopted by control engineers. In this dissertation, a feedfor-
ward control law is proposed to reduce the effects caused by backlash and friction. The
main idea of the feedforward control law is to anticipate the occurrence of backlash
and friction and compensate for their effects before they occur. Since feedforward
control law requires an accurate dynamic model, a control-oriented dynamic model is

developed.

As mentioned before, current studies on backlash have concentrated on modeling
the instantaneous impact phenomenon of a gear pair. However, such a model is
too complicated for use in real-time control. Meanwhile most researchers who have
studied the friction effect on geared servomechanisms (especially robot manipulators)
usually only considered friction in journal bearings. Bearing friction at low speeds
becomes insignificant compared with sliding friction between gear teeth. Though
Yang and Lin did consider sliding friction in their model, the friction was computed
dynamically. To implement their model in a controller, it would require very high

precision sensors to detect the meshing positions in real time. It is therefore impractical




for real-time control. Hence, we propose a simple and yet accurate dynamic model

for the control of geared servomechanisms with backlash and meshing friction.

In Chapter 2 of this dissertation, the dynamic model for a gear pair with backlash
and friction is developed and the effects of backlash and friction on the dynamic
responses are studied. The nonlinear damping model proposed by Yang and Lin is
not adopted here because the damping coefficient in their model was derived from
impact phenomenon. Such a damping coefficient requires on-line estimation that is
impractical for real-time control. In our model, the normal contact force between two
meshing gears will be modeled as the sum of a linear elastic force plus a linear damping
force. Asindicated before, to build an accurate gear model, the meshing stiffness needs
to be estimated correctly. In our model, all factors contributing to the meshing stiffness
such as the deflections from the Hertzian stress, bending moment, shear stress, and
foundation deflection are considered. Since the gear meshing frequency, N; X wy, is
normally very high and mechanical systems act like a low pass filter, high frequency
components can be neglected unless the system operates at very low speeds. For this
reason, the mean value of meshing stiffness will be used for the model. By using the
mean value of meshing stiffness, the meshing positions are no longer important and

subsequently high precision sensors are not needed.

When the sliding friction between gear teeth is also taken into consideration, the
dynamics becomes even more complicated. Due to the complexity of the model, an
average friction torque method is proposed. Using the average friction torque method

also eliminates the need for high precision sensors.

Nonsmooth dynamic systems can often be found in mechanical systems with
clearance, deadzone, or Coulomb friction. A gear model with backlash and friction

consideration is one example. In such nonlinear systems, the right-hand sides of

10




the differential equations are either discontinuous or piece-wise continuous. From a
mathematical point of view, any simulation or investigation of a model is meaningless
unless the basic properties, such as existence and uniqueness of the model have been
examined. These fundamental properties are essential for the dynamic model to be
useful and meaningful. In Chapter 3, we shall apply Filippov’s theorems (1960) to

examine the above properties.

Stability analysis is also an important topic in control engineering. Several re-
searchers have analyzed the stability problem associated with nonsmooth systems
(Kodama and Shirakawa, 1968; Schafer and Brandenburg, 1991). However, most of
them utilized the split linearized model and frequency domain analysis that is system
dependent. Filippov (1960) was among the first to study the stability conditions for
a general class of nonsmooth systems by considering Lyapunov functions. Shevitz
and Paden (1993) developed a nonsmooth version of Lyapunov stability theory and
of LaSalle’s invariance criterion. The theorems have been extended for nonsmooth
but Lipschitz continuous Lyapunov functions. Based on these recent developments,
a methodology for identifying an appropriate Lyapunov function for the analysis of
the stability conditions of piece-wise continuous systems is developed in Chapter 3.

Using this method, the stability of the gear model is also investigated.

In Chapter 4, a new open-loop optimization-based control strategy for geared
servomechanisms with backlash and friction is developed. This new controller is
expected to achieve high precision without the drawbacks of other control strategies.
We first estimate the required input functions by using a linearized dynamic model
and least square fitting. Then the control input functions are optimized to compensate
for the nonlinearity caused by backlash and friction. Theoretically, the optimization

process will reduce the effects caused by backlash and friction to a minimal level.

11




However, if load disturbances exist, a feedback compensation becomes necessary. In
Chapter 4, a systematic method of finding a state feedback law is also proposed. First,
the linearized model is used to estimate the feedback gains. Then, the results are used
as the starting points and surface plots around these points are made to achieve the
"best" feedback gains. Examples based on different path generation techniques are

studied to illustrate the strategy.

Finally, in Chapter 5 the author summarizes the main contribution of this disserta-

tion and suggests future studies.

1.4 Contributions

The following are the major contributions of this research:

1. Development of an improved dynamic model for controlling geared servomech-

anisms with backlash and friction.

2. A comparative study of the dynamic responses of various dynamic models for

geared servomechanisms.

3. Analysis of the existence, uniqueness and stability conditions of geared ser-

vomechanisms.

4. Development of a new feedforward and feedback control strategy for geared

servomechanisms.

12



Chapter 2

Modeling of A Spur Gear System with

Backlash and Friction

2.1 Introduction

Usually the backlash between meshing gear teeth can cause impact, generate noise,
and reduce system stability. The uncertainty caused by backlash will also decrease
the repeatability and accuracy of a geared servomechanism. In addition, friction will
cause steady state and tracking errors. With the increasing demand for high precision,
accurate dynamic modeling and control of geared servomechanisms have become very
important. Hence the effects of backlash and friction, two main nonlinearities, on the

dynamics of geared servomechanisms are studied in this Chapter.

A new model which accounts for both backlash and friction effects is proposed for
the dynamics of a spur gear system. This dynamic model is developed mainly for the
purpose of real-time control. The complicated variation of the meshing stiffness as a

function of contact point along the line of action is studied. Then the mean value is

13




used as the stiffness constant in the new model. The model also uses average friction
torque to replace the instantaneous friction torque to simplify the dynamic equations
of motion. Simulations, free oscillation and constant load operation, are performed
to illustrate the effects of backlash and friction on gear dynamics. Finally, the effect
of adding a damper on the driving shaft is also studied. This model is judged to be
more realistic than models used in the past for real-time control of electronmechanical

systems to reduce gear noise and to achieve high precision.

2.2 Dynamic System with Backlash

The basic structure of a single degree-of-freedom (DOF) gear pair is shown in Fig. 2.1.
The shafts of the two gears are assumed to be rigid and the only compliance considered
in this model is the compliance of gear teeth. The mesh compliance, which will be
examined later, consists of the effects of bending moment, shear stress, foundation
inclination, and Hertzian contact compression on a gear tooth. Backlash effects
between two meshing gears will be considered in this section. Backlash, which causes
discontinuous phenomena and impact effects on dynamics, brings one uncertainty to

the dynamic model of a single DOF system.

For convenience, some symbols and definitions will be made first. Backlash, b,
will be defined as the clearance measured along the line of action of a gear pair as
shown in Fig. 2.2. Note that this definition of backlash is a little different from the
definition found in some textbooks (Martin, 1982). But the difference is negligible.
We define 6, and &; to be positive in the clockwise direction, and 6, and &, to be positive
in the counterclockwise direction. The neutral position of a gear pair is defined as the

position where the centerline of a tooth in the drive gear 1 and the center of a tooth

14
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Base Circle 1
N

Base Circle 2

Gear 1

e
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Pitch Circle 2

9,

Gear 2

Figure 2.1: A gear pair in mesh
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space on the driven gear 2 are both coincident with the centerline of the two gear
centers. The approach portion is the part from the first point of contact to the pitch
point on the line of action and the recess portion is the part from the pitch point to
the last point of contact. Due to backlash, there are two kinds of contact: front-side
contact and back-side contact. Front-side contact occurs when the leading edge of
gear 1 meshes with the trailing edge of gear 2, and back-side contact occurs when the

trailing edge of gear 1 meshes with the leading edge of gear 2, as shown in Fig. 2.2.

6

Gear | (Driver)

‘“\

Front-side Base Circle 1

Contact

A Line of Action
... _Back-side
Contact

Base Circle 2

Gear 2 (Follower)

)

0,

Figure 2.2: Geometrical relation in meshing gear pair

The dynamics of such a system as shown in Fig. 2.2 can be divided into three cases
according to whether the two meshing gears are under front-side contact, separation,
or back-side contact. In what follows, we shall neglect the frictional forces at the point
of contact and at the journal bearings. In this model, the normal forces for meshing

gear will be modeled as a combination of linear elastic and damping forces.

16




Case(1): Front-side contact

When 10, — 0, > b, the leading edge of gear 1 contacts with the trailing edge

of gear 2 as shown in Fig. 2.2. The equations of motion can be written as

L0, = &-Fuy (2.1)
L, = &+Furp 2.2)

where
F, = kbp + cop (2.3)

denotes the normal contact force and where

oF

rp1bh — 16, — b (2.4)

oF 15101 — riabs (2.5)

denote the dynamic transmission error and the relative speed along the line of action,

respectively.
Case(2): Separation

When b > 7,0, —r,20, > —b, separation occurs and there is no force of interaction

between the two gears. Therefore the equations of motion are given by

1,6,

& (2.6)

L, & 2.7

Case(3): Back-side contact

When 1,0, — ri36, < —b, the trailing edge of gear 1 meshes with the leading edge

of gear 2. The equations of motion are given by

1,6,

§1+ Furpy (2.8

Lo,

& —Furp (2.9)

17



where

F,=kép + clp (2.10)

and where
(SB = rb292—rb101—b (211)
0 = rpby—ryb (2.12)

are the dynamic transmission error and the relative speed along the line of action,
respectively. The stiffness function, &, and the damping coefficient, ¢, will be discussed

in following sections.

2.3 Mesh Stiffness Estimation

Yang and Sun (1985) developed a rotary model for the dynamic analysis of a spur
gear system with backlash. They also proposed an analytic method to estimate the
mesh stiffness constant. The Yang and Sun’s model considered only the Hertzian
compression, which is a local effect. The effects of bending moment, shear stress, etc.
in a gear tooth were not considered. Later, Yang and Lin (1987) tried to add bending
deflection and axial compression to stiffness estimation. But they did not consider
the foundation deflection and their formulas are very difficult to calculate. In order
to overcome these drawbacks, the approach proposed by Nakada and Utagawa (1956)

will be used with some modifications.

A gear tooth is modeled as a very short cantilever beam with the consideration
of some other effects. The cantilever beam is modeled in two parts: the part inside
the base circle is modeled as a rectangular beam, and the part outside the base circle

is modeled as a trapezoidal beam, as shown in Fig. 2.3. In addition to the deflection

18



contributed by bending moment and shear stress, foundation deflection and Hertzian
contact also contribute to the total deflection. That is, the overall deflection is expressed

as

6t=6b+6.\'+6f+5h (213)

Addendum

Tooth

Dedendum
Circle

Figure 2.3: Gear tooth deflection model

Nakada and Utagawa considered only the bending caused by the tensile force,
F, cos ¢. In the improved model, bending caused by the compressive force, F, sin ¢,
will be also included. Also the Hertzian deflection derived by Yang and Sun will
be included. The various components of deflection for gear j are given as follows

(Nakada and Utagawa, 1956; Yang and Sun, 1985):

12F, cos ¢*hy, 6F, cos ¢*(w; — hy;)?
5bpj = ———Eftgj d (hf_] + h§1/3 - hcjhbj) + EﬁIB;J] J
x[wj—th(4—wj_th)—2ln——wj—hcj—3] (2.14)
Wj— hbj wj — hbj W — hbj
3F, cos ¢ sin @ _hy,i(hy; — 2h)(w; — k) ,
(Sn' = U\ JANT ] —hc'—h'2 2.1
i 7 S (hg— hy)'] 2.15)
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12F,, Ccos ¢2 wj — hbj

5, R .
ij Gftbj [hbj + (Wj bj) In Ww; — hcj] (2 16)
24F, cos ¢*h, ,
O = — zm i, (2.17)
_AF(1-1?) ,
6},] = T (2 18)

where w; denotes the height of the triangle shown in Fig. 2.3, and

Wi = hajtbj — hbjtaj

: 2.19
J lpj — 1y { )
Therefore the mesh stiffness of a tooth on gear j can be denoted as
F,
k== (2.20)
&y

2.3.1 Mesh Stiffness of a Meshing Gear Pair

Most gear pairs have double-tooth contact, which has an influence on the mesh stiffness
function. Hence, definitions for double-tooth contact will be reviewed. Let AB be the
line of action for gears 1 and 2 as shown in Fig. 2.4. Also let line AB be tangent to
the base circle of gear 1 at A and that of gear 2 at B and let / be equal to the length
of AB. There are four zones along the line of action AB due to the change of the
number of pairs of teeth in contact. As shown in Fig. 2.4, point C is the intersection
of the addendum circle of gear 2 with line AB, point P is the pitch point, point D is
the intersection of the addendum circle of gear 1 with line AB, E and F are two points
on AB such that DE=CF=p,. Sections EP and PF are the single-tooth contact zones
and sections CE and FD are the multi-tooth contact zones. The geometric relation

between these four zones are given by

AB = l=(rb1+rb2)tan¢
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Figure 2.4: Double-tooth front-side contact
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AC = 1-y/r5, -1},
AD = rgl_rlzﬂ
AE = AD-p,
AF = AC+p,

When two gears are meshing, the two meshing teeth act like two springs in
series. When there are two teeth pairs in contact, they act like two springs in parallel.

Therefore, the mesh stiffness during each mesh cycle can be written as
ky1ky N kiokao
kin+ka o ki + ko
K = (2.21)
ki1ky
WART S

, double — tooth contact

single — tooth contact

In what follows, the geometric relations among the parameters used in Eqgs. (2.14)

through (2.20) will be derived. From the gear tooth definitions, we have

hbj = rbj—rdj (222)

hy = ro—ry (2.23)

However, if the radius of dedendum circle is greater than that of the base circle, then

hy; and hy; will be computed as follows:

hy = 0 (2.24)

hj

Vaj — Vpj (225)

From the property of involute gears, as shown in Fig. 2.5, tooth thickness at a

general location can be written as (Steeds, 1948)

b = Tl 2 + 20y, — invy,)] (2.26)
14
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Figure 2.5: Tooth Thickness

where r, = (r,)/(c08 @), rrm = (rp)/(cOS ¢,) is the radius at meshing point M, inv is the
involute function such that inv ¢ = tan ¢ — ¢. Therefore the tooth thickness at the base

circle of gear j, t;;, is given by

ty = r,,j[% +2(tan ¢ — )] (2.27)
p;

Similarly, the tooth thickness along addendum circle of gear j, #,, is given by

ty = 1yl 2 + 2(inve — inv3)] (2.28)

Tpj
where f3; = cos™ (ry;/ r4).

Due to a property of involute gear teeth, the relation between the rotation angle
measured from 0,4, oy, and the operating pressure angle on gear teeth at point M,
®m, as shown in Fig. 2.6, is given by

oy = tan ¢y, (2.29)

Therefore referring to Fig. 2.6, v,, and h,; are given by

Im

T = 52 = 0512 + 2inveh — invis)] (2.30)
r

- 2ry,
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Ybj COS Y
COS O

— Ly + hy; (2.31)

hcj = Iy lg = _rbj+hbj

COS Y
cos(tan™! ayy)

[

Note that hg, hy;, t;; and 1,; are constants while &, and #,, are function of o

Figure 2.6: Tooth length and angle relations

Figure 2.7: Relations between angles, o1, @, ¢, and 9.

Since the first contact point C is decided by the addendum circle of the mating gear,
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there exists an offset angle, ¢, between O;A and O;C. The offset angle for gear 1, for
example, is equal to (AC)/(rp;) as shown in Fig. 2.7. Hence the relations between the
rotation angle of the first meshing gear teeth of gear 1, denoted as «;, and of gear 2,
denoted as a;;, are given by

AC

a1y = 191+— (232)
Tp1
-
oy = (I-anrs) (233)
Tp2

where 9, is the rotation angle measured from the line O,C to O\ M.

The corresponding rotation angles of the second meshing gear teeth, denoted as

oz and an,, are

ap =0 + Py (2.34)
Fp1

Qp = Qa1 — 142 (2.35)
Tp2

Egs. (2.34) and (2.35) are valid only when «;; is in approach section.

Substituting Eqgs. (2.32)-(2.35) into Eq. (2.31), A, can be calculated at every instant
of rotation. Substituting the values of hgj, hyj, hj, 1, tj, and t,,; into Eqgs. (2.14)—(2.18)
and the resulting values into Eq. (2.20), the mesh stiffness of a single tooth can be
found. Substituting the mesh stiffness of all the meshing teeth into Eq. (2.21), the
overall mesh stiffness can be evaluated. Note that a gear pair will make a complete
cycle of meshing when a pair of teeth starts their meshing at point C and ends at point

E

2.3.2 Example

Two gears are chosen to illustrate the principle. The gear parameters are taken from

Yang and Sun (1985). They are listed as follows: density for steel, p=7800 kg/m3;
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Young’s modulus, E; = E; = 2.068 x 10! N/m?; Poisson’s ratio, v; = vy = 0.3;
pitch radii for gears 1 and 2, r; = 0.02 m and r, = 0.08 m; pressure angle, ¢ =
20 deg; number of teeth, N; = 20 and N, = 80; face width, f = 0.01 m; backlash,
b = 0.00005 m, damping ratio, ¢ = 0.05. From the above data, the moments of inertia
of gears 1 and 2 are computed as I} = 1.5285 x 107> kg - m? and I, = 0.0039 kg - m?,
respectively. From the above data, it can be proven that the contact ratio is equal to

1.69129; i.e., this is a double-tooth contact pair.

First, all components of deflection at gears 1 and 2 produced by a unit load, IN, are

calculated and plotted as functions of ¥, as shown in Figs. 2.8 and 2.9, respectively.

4
3 L
~ Ot
q\E
[==]
S92
5 3
ds
14+ — abp
0 i " _ i —

005 01 015 02 025 03 Obn
O(rad)

Figure 2.8: Deflection of gear 1 vs. ¥,

It can be seen from Fig. 2.8 that when the contact point is near the base circle,
ie., ¥ < 0.1, the Hertzian compression and the other deflections are all very small.
But when the contact point is near the addendum circle, the defiection due to shear,
ds, and the deformation of tooth foundation, J;, become the dominant terms, while
the deflection caused by the negative bending moment, ,, is insignificant. Referring

to Fig. 2.9, we note that the deflections due to bending moment, shear stress, and
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0.05 0.1 0.15 0.2 0.25 0.3 dbn
Uy(rad)

Figure 2.9: Deflection of gear 2 vs. ¥

foundation deformation are all large when ¥, < 0.1, and the deflections decrease as
the contact point moves closer to the base circle. However, the deflections due to
Hertzian contact and negative bending moment are always very small. The difference
in the contribution of various components shown in Figs. 2.8 and 2.9 are caused by
the difference in the tooth lengths between gears 1 and 2. The resultant mesh stiffness
k for a single tooth on gears 1 and 2, and their combined mesh stiffness are shown
in Fig. 2.10. The combined stiffness is very close to a constant. The mesh stiffness
of the example gear pair with the consideration of double-tooth contact is shown in
Fig. 2.11. As can be seen from Fig. 2.11, the mesh stiffness decreases drastically as

the mesh changes from a two-tooth contact to a single-tooth contact.

Since it is not feasible to keep track of the variation of the mesh stiffness k in a
real-time control system, the mean value of k is proposed for control purpose. From
averaging analysis in control theory, we know the system with average parameters and
the original system will give very similar responses when the system is under high

operation speeds . And the frequency of mesh stiffness which is equal to the frequency
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Figure 2.10: Mesh stiffness vs. ¥,
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Figure 2.11: Mesh stiffness constant vs. 9,
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Mean C 8}

K | 1.3868 - 108 | 2.956 - 107 | 1.684 - 10’

Table 2.1: Mesh stiffness (N/m)

of the angular velocity of gear 1 multiplied by its gear tooth number can easily go very
high even under normal operation. The mean value and the magnitudes of the first
and second harmonics are shown in Table 2.1, where C; denotes the coefficient of the
first harmonics and C, denotes the coefficient of the second harmonics. We note that
the first harmonics and the second harmonics are one order-of-magnitude smaller than
the mean value. Using the mean value alone will introduce some error in the model.
However, the actual frequency of occurrence due to the first harmonics is equal to
the product of the number of teeth and the angular velocity in revolution per second
of the drive gear. This results in a relatively high frequency in comparison with the
bandwidth of a mechanical system and is judged to have little effect on the dynamics

of a geared servomechanism.

2.4 Damping constant

Dubowsky and Freudenstein (1971) first created a dynamic model, known as the
"Impact Pair," to describe the dynamics of mechanical systems with clearance. But
the conventional linear law they used for the normal contact force formula, cx + kx,
results in a non-zero damping force at the time of impact and unrealistic tensile force
at the time of separation due to non-zero relative velocity. Hence Azar and Crossley
(1977) proposed a nonlinear law for the normal contact force, (dx + k)x, to avoid this

problem. Based on Azar and Crossley’s approach, Yang and Sun (1985) developed a
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circular model for a spur gear system with backlash, They also proposed an analytic

method for estimating the damping factor of a gear tooth. The formula they used is

6(1-e) k
= — 2.36
[2e-1)2+3] V; (2:36)
where V; is the impact velocities, and e is the coefficient of restitution which can be
obtained from

e=1-0.022V03% (2.37)

This way, the damping factor, d, used by Yang and Sun, which depends on the
impact velocities, V;, needs to be determined at the instant of impact and is not practical
for a real-time control system. Also, the coefficient of restitution used for calculating
the damping factor is obtained from Goldsmith’s experiment of ball to ball impact
(1960). The deflection due to bending moment, shear force, etc. is not considered.
Its validity for impact between gear teeth may be questioned. Based on the above
reasoning, the approach proposed by Dubowsky and Freudenstein (1971), known as
the "Impact Pair," is adopted in our model. Although it may cause a small error, it
is simpler and has been shown to be more stable (Herbert and McWhannell, 1977).
Hence in the improved model, the linear law kd + ¢4 is used to calculate the contact
force. Also, the damping coefficient, c, is assumed to be time independent and can be
determined by experiments. Its relation with the damping ratio, ¢, is given by

Ly + L},

=2
c=2C/k L

(2.38)

2.5 Comparison with Yang and Sun’s Model

In this section, the difference between the model proposed by Yang and Sun and the

new model will be discussed. Yang and Sun considered only the meshing stiffness
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from the Hertzian contact. In this work, the stiffness constant k is an average value
taken from the combined effects of bending moment, shear stress, Hertzian contact,
foundation inclination and the multi-tooth contact. As a result, the value of k is several
times smaller than that used in the Yang and Sun’s model. Also, the algorithms
used by Yang and Sun in deriving the damping factor are questionable, since the
deflection contributed by Hertzian contact is insignificant in comparison with that due
to bending moment, shear force, etc. Assuming a damping ratio of ¢ = 0.05, and using
the gear data from previous calculations, the damping coefficient for the new model

is calculated from Eq. (2.38) as c=237.6651 N - s/m.

2.5.1 Simulation Software and Assumption

To compare the difference in dynamic behavior between the Yang and Sun’s model
and the improved model, two types of simulation were performed: free oscillation and
constant load operation. The stiffness and damping functions used in the Yang and
Sun’s model were derived from a single-tooth contact model. The stiffness function

used by Yang and Sun is
wEf

k=4(1-y2)

(2.39)

The damping function used by Yang and Sun is as described in Egs. (2.36) and (2.37).

The software used for the simulation is Simulink (MathWorks, Inc., 1992) and
the integration method chosen is the Runge-Kutta 5th order method with a fourth
order step-size control. This package provides the advantage of flexible integration
step-size which can reduce the computation time since the dynamic system under
study is a discontinuous and "stiff" system. From the output, it can be seen that the

response will blow up if the step-size is too large. Hence, the maximum step-size is
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set at 1 x 107 sec, the minimum step-size is set at 1 X 107% sec, and the integration
tolerance is set at 1 x 107, Further reduction of step size did not make any significant
difference in the simulation results. The step size is chosen to avoid the divergence
of solution caused by high frequency transients which result in rapid reduction in step

size (Padmanabhan, et al., 1992; Barlow, et al., 1992).

2.5.2 Free Oscillation

The initial velocities of gears 1 and 2 are chosen to be §; = 50 rad/s and 6, = 0 rad/s,
respectively, and the initial positions of both gears are set at their neutral positions
as defined in the previous section. The simulation results are shown in Figs. 2.12
through 2.16. Figures 2.12 through 2.15 show the angular displacements and angular
velocities of gears 1 and 2 wherein the solid line represents the response of the Yang
and Sun’s model and the dashed line is the response of our improved model. The two
gears bounce back and forth from front-side contact to rear-side contact which causes
the angular displacement to deviate from a straight line. The frequency of deviation
from a straight line is different for the two models since the stiffness constants and
damping functions used in the two models are different. But the basic trend is similar.
The deviation of the angular displacement of gear 2 from a straight line as shown in
Fig. 2.13 is much smaller than that of gear 1 due to the larger moment of inertia of gear
2 and the gear ratio. The average angular velocities of both gears are both positive, but
the instantaneous velocity of gear 1 sometimes becomes negative. There exist periods
of constant angular velocities for both gears 1 and 2, which correspond to the periods of
separations between the two gears. The relative displacements are shown in Fig. 2.16.
Since the damping factor used in the Yang and Sun’s model increases as a function

of time, the frequency of oscillation will also change as a function of time as can be
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seen in Fig. 2.16. Before 4 ms, the frequency calculated with the Yang and Sun’s
model is lower than, but after that it becomes higher than that of the improved model.
The successive impacts can be clearly seen from Fig. 2.16 as relative displacement,
§ = rp by — rizbs, becomes greater than 0.05 mm or less than -0.05 mm. Also due to
the greater stiffness constant used in the Yang and Sun’s model, the penetration, i.e.,

|5|-0.05 mm obtained from it is also smaller than that of the improved model.

0.07

— Yang and Sun’s Model
006 ______ Improved Model A

-0.01

0 0.002 0004 0006 0008 001 0012 0014 0016 0.018 0.02

t(s)

Figure 2.12: Angular displacement of gear 1 under free oscillation

2.5.3 Constant Load Operation

For this part of simulation, the initial velocities of gears 1 and 2 are again chosen to
be 01 = 50 rad/s and 6, = O rad/s, respectively, and the initial positions of both gears
are set at their neutral positions. A constant torque of £;=1 Nm is applied on gear 1
and an equal but opposite load of £,=-1 Nm is applied on gear 2. The results obtained
from the two models are shown in Figs. 2.17 through 2.21. Figures 2.17 through 2.20

show the angular displacements and angular velocities of gears 1 and 2. The relative
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Figure 2.13: Angular displacement of gear 2 under free oscillation
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Figure 2.14: Angular velocity of gear 1 under free oscillation
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Figure 2.15: Angular velocity of gear 2 under free oscillation
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Figure 2.16: Relative displacement under free oscillation
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displacements are shown in Fig. 2.21. The angular displacements obtained from both
models are almost identical. The angular velocities of gear 1 deviate from a straight
line because of the impacts between the two gears. Due to the higher stiffness constant
used in the Yang and Sun’s model, the amplitude of oscillations in angular velocity is
also smaller. From Fig. 2.21, we observe that the successive impacts initially occurs
on both sides of a gear tooth and then changes to one side contact because of the

constant load.

0.7

—— Yang and Sun’s Model
0.6

______ Improved Model

05|
0.4}

01
(rad) 0.3}
0.2}

0.1r

0

-0.1

0 0.002 0.004 0006 0008 001 0012 0014 0016 0018 002

t(s)

Figure 2.17: Angular displacement of gear 1 under constant load

2.6 Dynamic Model with Backlash and Friction Con-

sideration

When friction between gear teeth is also taken into consideration, the dynamics of a
gear pair becomes more complicated. There are two kinds of friction between gear

teeth: one is sliding friction, and the other is rolling friction. They arise from two types
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Figure 2.18: Angular displacement of gear 2 under constant load
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Figure 2.19: Angular velocity of gear 1 under constant load
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Figure 2.20: Angular velocity of gear 2 under constant load
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Figure 2.21: Relative displacement under constant load
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of relative motion, i.e., sliding and rolling motions of gear teeth with respect to each
other. Usually the magnitude of rolling friction is smaller than that of sliding friction
and is negligible when the gears are operated in low to medium speed range (Anderson
and Loewenthal, 1982). Therefore, in what follows, rolling friction will be neglected.
Yang and Lin considered the sliding friction in their model but they estimated the
friction dynamically by checking the sliding velocity. This would require very high
precision sensors and would make the system very difficult to analyze. It seems clear

that this approach is not good for real-time control.

For convenience of analysis, the law of gearing is assumed to be obeyed at all times.
Since friction depends on the sliding velocity, sliding friction will change its direction
when the sliding velocity reverses its direction. This means that a discontinuity occurs
when the mesh point moves past the pitch point, the first and the last contact points.
Discontinuity also occurs when the tooth contact changes from the front-side to the
back-side. Furthermore, when the direction of rotation reverses, the direction of sliding
velocity will also reverse. This also changes the corresponding dynamic equations.
Following the above reasoning, it can be concluded that with the consideration of
backlash and friction there will be nine different sets of dynamic equations for a
single-tooth-contact gear pair. If double-tooth contact is considered, then there will
be thirteen different sets of dynamic equations of motion. Double-tooth contact here
means that the contact ratio is greater than one and less than two and, sometimes
there are two pairs of teeth in mesh. In what follows, we will consider the case of

double-tooth contact only, since most gears are designed for double-tooth contact.

The basic structure and notations along the line of action are shown in Figs. 2.4
and 2.22. Thirteen possible cases of contact are enumerated in Fig. 2.23. The line

of action is divided into four zones. The first two zones are located in the approach
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Figure 2.22: Double-tooth back-side contact
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region and the remaining two zones are in the recess region.

It is assumed that when there are two pairs of teeth in contact, the two pairs of teeth
share the load equally. Note that a gear pair will make a complete cycle of meshing

when a pair of teeth starts meshing at point C and ends at point F.

_si : (1.1) Double-tooth
(A) Gl CW ) Front-side —I:: Approach '
G2 CCW Contact Recess (1.2) Single-tooth
"~ L+ (1.3) Single-tooth
@ Back-side Approach (2.1) Double-tooth
Contact | 2.2) Single-tooth

Recess
"~ L (23) single-tooth

Gl C.C.W___, (3 Front-side Approach (3-1) Double-tooth
(B) 3 i
G2 CWwW Contact Reces (3.2) Single-tooth
ess
L+ (3.3) Single-tooth

(4) Back-side Approach _[:(4-1) Double-tooth

Contact | (4.2) Single-tooth
Recess -, .

(4.3) Single-tooth

(C) G1.G2 (5) Separation

Figure 2.23: Thirteen cases of dynamic equations for a double-tooth-contact gear pair.

In what follows, a free-body diagram will be sketched for a few cases to illustrate
the forces of interaction. In all cases, the forces acting on gear 1 are shown in solid
lines while the reaction forces acting on gear 2 are not shown, in order to avoid
confusion. The dynamic equations of motion are then derived. We will consider the

frictional forces at the journal bearings as viscous friction.

2.6.1 Forward Reotations, w; > Oand wp, > 0

Case (1): Front-side Contact, ry10) — rpby > b

During the front-side contact, power is transmitted from gear 1 to gear 2. Gear 1
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Figure 2.24: Front-side contact, w; > 0, w, > 0
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serves as the driver and gear 2 serves as the follower.

Case (1.1): contact point occurs in zone one, CE, and zone four, DF, as shown in

Fig. 2.24(a)

There are two pairs of teeth in contact. The relative sliding velocity of gear 1
with respect to gear 2 points in the direction of 04A in zone CE, while it points in the

opposite direction in zone DFE. The equations of motion can be written as:

L6,

&1 = Fyry + 0.5uF,z) — 0.5uF (21 + pp) — 16, (2.40a)

Lo, &2+ Foryp —0.5uF (I -21) + 0.5uF,(I- 21 —pp) — 20, (2.40D)

Simplification of the above equation yields

Lo, = gl—Fnrbl_O'Sﬂanb—clél (2.41a)

L, = &+ Furiy—0.5uF,p,— 26, (2.41b)

The third term on the right-hand side of Eq. (2.41) represents the resultant friction

torque. It can be seen that friction torques are not functions of z; in this zone.
Case (1.2): contact point occurs in zone two, EP, as shown in Fig. 2.24(b)

This is a single-tooth contact case. The relative sliding velocity of gear 1 with

respect to gear 2 points in the direction of O;A. The equations of motion are given by

L6, = & —Fury + pFoz - 16 (2.42a)

L, &2+ Furyy — pF,(1-21) — €265 (2.42b)

Case (1.3): contact point occurs in zone three, PF, as shown in Fig. 2.24(c)

This is a single-tooth contact case. However, the relative sliding velocity of gear

1 with respect to gear 2 is now pointing in the direction of AQ;. The equations of
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motion are given by

1,0,

&1 = Furr — pFuz1 — €16y (2.43a)

Lb, = &+Furs+ pFul-21) -2 (2.43b)

Case (2): Back-side Contact, rp0, — b, < —b

For the back-side contact, power is transmitted from gear 2 to gear 1. This
phenomenon occurs in a deceleration phase during which a braking torque is applied
to gear 1. The line of action changes, and the two gear pairs work as if gear 2 is
the driver and gear 1 is the follower. The equations of motion can be obtained by

interchanging the indices 1 and 2 in Eqgs. (2.41) to (2.43).
Case (2.1): contact point occurs in zone one, DF, and zone four, EC, as shown in

Fig. 2.25(a)

Lby = & +Fyre—0.5uF,p, - ci6y (2.44a)

Lo, = &-Fyrpn- 0.50F py — €20, (2.44b)

Case (2.2): contact point occurs in zone two, FP, as shown in Fig. 2.25(b)

16, &1 + Furpy ~ pFo(l - 22) — 161 (2.45a)

Lb, = &—Furp + pFuzy— 026, (2.45b)

Case (2.3): contact point occurs in zone three, PE, as shown in Fig. 2.25(c)

1,6,

£1 + Furpy + uFo(l - 23) — c16; (2.462)

L, = &—Fury—pF,z— 20, (2.46b)
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Figure 2.25: Back-side contact, w; > 0, w, >0
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2.6.2 Backward Rotation, w; < 0and w, < 0

When w; < 0and w, < 0, the direction of friction torque shown in Figs. 2.24 and 2.25

will reverse.
Case (3): Front-side Contact, ry0, —ryf, > b

Case (3.1): contact point occurs in zone one, CE, and zone four, DF.

If, &1 = Furpy +0.5uF ,pp — 16 (2.47a)

Ly = &+Furn+0.5uF,py—cif (2.47b)

Case (3.2): contact point occurs in zone two, EP

L6, = & —Fury —uF,z —caiby (2.48a)

Lo, & + Fursg + pF (I - 21) — 026, (2.48b)

Case (3.3): contact point occurs in zone three, PF

L6, = & —Furp + pFaz—cib, (2.492)

Lb, = &+Furym—pF(l-21)—c26, (2.49b)

Case (4): Back-side Contact, rp 0 — ripby, < -b
Case (4.1): contact point occurs in zone one, DF, and zone four, EC

Lb, = & +F,ry +0.5uF,p, —c16; (2.50a)

Izéz = fz ~Forypp + OS/J,F,,pb - Czéz (250b)
Case (4.2): contact point occurs in zone two, FP

1,4,

&1+ Furpy + pFo(l—22) — €16 (2.51a)

LO, = &—Fyryp—uFyz; — 26, (2.51b)
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Case (4.3): contact point occurs in zone three, PE

LO, = & +Furp - pFu(l-22) — 16 (2.52a)

Lo,

& — Fursy + iF 25 — 20, (2.52b)

2.6.3 Gears 1 and 2 are decoupled

Case (5): Separation, b > ry 0y — ry0, > —b

When separation occurs, there is no contact force between the two mating gears.

The dynamic equations can be written as

L, = & -ci6; (2.53a)

L, = &-cb, (2.53b)

The last term c;6; in Egs. (2.40)—(2.53) represents friction torque caused by damp-
ing in the bearings. Alternatively, they can also represent torque created by dampers

attached to the shafts of the two gears.

2.7 Average Friction Torque

The third term on the right-hand side of Eqgs. (2.41)—(2.52) represents torque induced
by friction in the meshing gear teeth. The direction of friction torque is dependent on
the instantaneous sliding velocity, while the instantaneous sliding velocity is a function
of the contact point location and the instantaneous angular velocities of the meshing
gears. It can be seen that the calculation of friction torque needs additional sensory
information. Since our objective is to establish a simple dynamic model for real-time

control, the friction torque calculation in the dynamic model needs to be simplified.
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Since it is not feasible to monitor the instantaneous sliding velocity in real time, the
gear pair is assumed to follow the law of gearing, i.e., rjw; = row, whenever the gear
pair is in contact. It is impractical to expect that sensors can pick up high frequency
friction torque signals fast enough for the purpose of feedback control unless the gears
operate at very low speeds. Higher harmonic components of the friction torque will
have little effect on the system dynamics in such environment. Due to these facts, only
the DC component of the friction torque is important to control engineers. Hence, an
average value of friction torque will be adopted in the model. This eliminates the need
for high precision sensors and the effects of possible time lag in feedback control.
Using this concept, the position of the meshing point is no longer important. The
only factors which will influence friction torque are the sign of angular velocity of
gear 1 (or 2) and the active line of contact (i.e., whether it is under front-side contact
or back-side contact). As a result, the original thirteen cases of dynamic equations

reduce to five.

The dynamic equations for case 1, Egs. (2.41)—(2.43), reduce to

L6, = & - Furyy —aypF, — 16,

L0, = & + Fyryy — ayuuF, — 26y (2.54)

where a; gives the mean value of friction torque on gear j obtained in each case when
it is multiplied by uF),. The average friction torque can be obtained by integrating the

second to the last term of Egs. (2.41) through (2.43) from point C to E.

Similarly, the dynamic equations for case (2), Egs. (2.44)—(2.46), reduce to

L8, = & + Foryy — ayuFy, — c16,

L0, = & — Furyp — aopuFy — 265 (2.55)
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The dynamic equations for case (3), Eqgs. (2.47)-(2.49), reduce to

10, = & — Foryy —aiuFy, — 16,

L0, = & + Furyy — ayuF, — 26, (2.56)
And the dynamic equations for case (4), Egs. (2.50)-(2.52), reduce to

16) = & + Fyryy —ay uF, — c16,

L0, = & — Furyy — aypuFy — €26, (2.57)

2.8 Numerical Example

For the purpose of simulation, an aluminum bar with the dimensions of 0.3048m x
0.0508m x 0.0254m is assumed to be attached to gear 2. The two gears are assumed
to be made of steel. The specific dimensions and material properties are listed as
follows: density for steel, p;=7800 kg/m?>; density for aluminum, p,=2714 kg/m?;
Young’s modulus, E; = E;, = 2.068 x 10! N/m?; Poisson’s ratio, v, = v, = 0.3;
pitch radii for gears 1 and 2, r; = 0.0127 m and r, = 0.0508 m; pressure angle,
¢ = 20 deg; number of teeth, Ny = 16 and N, = 64; face width, f = 0.019 m;
backlash, b = 0.00005 m. From the above data, the moments of inertia of gears 1 and
2 are computed as I} = 4.7344 x 107 kg - m? and I, = 0.0012 kg - m?, respectively.
The moments of inertia of the aluminum bar about the central axis of gear 2 is
I; = 0.0165 kg - m*. A DC motor (Clifton Precision, Inc., 1987) with a peak torque
of 1.3418 N - m is assumed to drive gear 1. The axial moment of inertia of the motor
rotor is I,, = 1.1794 x 107 kg - m?. It can also be shown that the contact ratio is equal

to 1.64666, i.e., this is a double-tooth contact pair.
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The friction coefficient, y, is assumed to be 0.1. Since most geared servomech-
anisms operate in a not well-lubricated environment, the value of u given above is
judged to be reasonable (Sasaki, et al., 1962). The viscous friction torques for the
bearings on shafts 1 and 2 are very small and can be neglected. However, a high gear
ratio such as 60:1 commonly used in servomechanisms, can make the friction torque
on the drive shaft an important factor in the dynamic model. Therefore, a rotation

damper is intentionally added to illustrate the effect.

The damper consists of two concentric cylinders, forming a clearance annulus
which is filled with a high viscosity synthetic oil. The damper is designed with
the following dimensions: diameter d; = 0.05m, length I; = 0.03m, and clearance
¢g = 0.001m. The viscosity of oil is p; = 26.84 Pa - s. The damping coefficient is
estimated as

_2mrilap

ci=———=0091N-m-s (2.58)
Cd

The value of friction torque per unit sliding friction force, 7¢/(uF,), vs. the angle
of rotation of gear 1 for the case of front-side contact and w; > 0 is shown in Fig. 2.26.
The values of friction torque for the other cases can be found similarly. The mean
value, the first and second harmonics of friction torques acting on gears 1 and 2
are listed in Table 2.2, where H; denotes the first harmonics, H, denotes the second

harmonics, F denotes front-side contact, and B denotes back-side contact.

Table 2.2 shows that the mean values of friction torques acting on gears 1 and 2
are the same whether the two meshing gears are under front-side contact or back-side
contact. When the direction of rotation reverses, the corresponding sliding friction
also changes its direction. This causes the mean values of friction torques to change

sign but their magnitudes remain the same.
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Figure 2.26: The value of friction torque per unit friction force vs. the angle of rotation

of gear 1

0. 004

0. 002

fl

WUEFn

-0.002

-0.004

0.1

0.2

03

0.4
O (rad)

~

Mean H, H,
wy > 0| Case (1) | G; | 0.00104466 | 0.0025767 | 0.0022196
F G, | 0.004257 0.006396 | 0.007854
Case (2) | G1 | 0.00104466 | 0.0025767 | 0.0022196
wy >0 B G, | 0.004257 0.006396 | 0.007854
w; < 0 | Case (3) | G | -0.00104466 | 0.0025767 | 0.0022196
F G, | -0.004257 0.006396 | 0.007854
Case (4) | Gy | -0.00104466 | 0.0025767 | 0.0022196
wy <0 B G, | -0.004257 0.006396 | 0.007854
Table 2.2: Friction torque vs. sliding friction
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2.9 Simulation Results

To examine the influences of friction on the dynamics of geared systems, the following
three cases were investigated. Case (1) considers a dynamic model without friction
torque and damping losses. Case (2) considers a dynamic model using the average
friction torque in the meshing gear teeth as the only friction source. Case (3) considers
a dynamic model in which a damper is mounted on the drive shaft in addition to the
average friction torque. Two kinds of simulations were performed: free oscillation

and constant load operation.

In the figures, a dotted line represents the response of the model without friction
and viscous damping, i.e. case (1); a solid line represents the response of the model
with meshing teeth friction only, i.e. case (2); and a dashed line represents the response

of the model with a viscous damper mounted on the drive shaft, i.e. case (3).

The values of k and ¢ X are calculated by formulas in the previous section as
2.9467 x 108 N/m and 1.5117 x 10> N - s/m, respectively. The values of a; and a,

used in the simulations are taken from Table 2.2.

2.9.1 Free Oscillation

The initial velocities of gears 1 and 2 were chosentobe &, = 50 rad/sand 6, = 0 rad/s,
respectively, and the initial positions of both gears were set at their neutral positions.
The simulation results are shown in Figs. 2.27 through 2.31. Figures 2.27 through
2.30 show the angular displacements and angular velocities of gears 1 and 2 for the
three cases. The two gears bounce back and forth from front-side contact to back-

side contact which causes the angular displacement to deviate from a straight line

for case (1). The average angular velocities of both gears are both positive, but the
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Figure 2.27: Angular displacement of gear 1 under free oscillation
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Figure 2.28: Angular velocity of gear 1 under free oscillation
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Figure 2.29: Angular displacement of gear 2 under free oscillation
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Figure 2.30: Angular velocity of gear 2 under free oscillation
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Figure 2.31: Relative displacement under free oscillation

instantaneous velocity of gear 1 sometimes becomes negative. It can be seen from
Figs. 2.27 through 2.30 that case (2) results in smaller displacements and velocities
than that for case (1) due to higher energy dissipation. Fig. 2.30 also shows the periods
of different contact conditions. The relative displacements are shown in Fig. 2.31.
The frequency of bouncing for case (2) is a little smaller than that for case (1) since the
friction increases system damping and consequently decreases the damped frequency.
It is also observed that energy dissipation for case (3) is much more than that for cases
(1) and (2) due to the high damping coefficient of the damper. Its transient response
also dies out more quickly. After 0.02 seconds, the phenomenon of gear rattling
completely disappears and the gear pair stays on back-side contact due to the damper
mounted on the drive shaft. In our study, we found that if the damper is added to the
driven shaft, then the effect becomes less significant. we believe that this is due to the
large inertia of the driven gear and the 4:1 gear ratio which makes the instantaneous

angular velocity of the driven gear 2 much smaller than that of the drive gear 1 as can
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be seen from Figs. 2.27 through 2.30. Hence it is more effective to install a damper

on the drive shaft.

2.9.2 Constant Load Operation

The initial velocities of gears 1 and 2 are again chosen to be , = 50 rad/s and
0, = 0 rad|/s, respectively, and the initial positions of both gears are set at their neutral
positions. A constant torque of {;=1 N - m is applied on gear 1 and an equal but
opposite load of {&,=-1 N - m is applied on gear 2. The simulation results are shown
in Figs. 2.32 through 2.36. Figures 2.32 through 2.35 show the angular displacements
and velocities of gears 1 and 2 for the three cases. The angular velocities of gear 2
deviate from a straight line because of the impacts between the two gears. It can be
seen from Figs. 2.32 through2.35 that the responses for cases (1) and (2) models are
very similar since friction torque in the gear mesh is much smaller than the applied
actuator torques. The model for case (2) results in smaller angular displacements
and angular velocities than that for case (1). Figure 2.35 also shows the periods of
different contact conditions. Figure 2.36 shows the relative displacement. Due to
higher energy dissipation, the transient response for the model with a damper mounted
on the drive shaft dies out more quickly. Again the phenomenon of gear rattling is
much improved due to the effect of the damper. Gear rattling disappears completely
after 0.02 seconds. After 0.02 seconds, the angular velocities stay almost constant
because damping torque counteracts most of the applied torques. This drawback can

be solved by replacing the damper with a Lanchester damper.
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Figure 2.32: Angular displacement of gear 1 under constant load
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Figure 2.33: Angular velocity of gear 1 under constant load
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Figure 2.34: Angular displacement of gear 2 under constant load
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Figure 2.35: Angular velocity of gear 2 under constant load
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2.10 Summary

A new dynamic model which considers the effects of sliding friction and backlash in a
spur gear system for the purpose of precision control has been established. Equations
for evaluation of the mesh stiffness and the sliding friction were derived. The average
mesh stiffness constant and friction torque are used in the simplified model. Two
simulations were performed to illustrate the effects of backlash on the dynamics of
a typical gear pair. Both the Yang and Sun’s model and the new model were used
for the simulations. The influence of meshing friction, usually neglected by most
researchers, has also been discussed. Another two types of simulations have been
performed to illustrate the effects of backlash and friction on the dynamics of a typical
gear pair. It is concluded that this new model is simpler and more suitable for real time
control since it does not require the knowledge of the meshing point and consequently

a high precision sensor. Based on these insights and understandings from the above
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discussion, it is hoped that more accurate control of geared servomechanisms such as
machine tools can be achieved. It is also shown that a damper mounted on the drive

shaft can significantly reduce gear rattling during the transient response of a gearing

system.
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Chapter 3

Existence, Uniqueness, and Stability

Analysis

3.1 Introduction

The gear model with backlash and friction is an example of nonsmooth dynamic
systems. In such systems, the right-hand sides of the dynamic differential equations
are discontinuous or piece-wise continuous. Traditional methods can not examine the
basic properties of existence and uniqueness for nonsmooth systems. In this chapter,
we shall apply Filippov’s theorems (1960) to examine these properties for a spur gear

system with backlash and friction.

Stability analysis is also an important topic in control engineering. Based on
recent developments by Shevitz and Paden, a method for identifying an appropriate
Lyapunov function to analyze the stability conditions of piece-wise continuous systems
is developed in this chapter. The stability condition of a gear system with backlash

and friction is also studied using this method.
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3.2 Model Description of A Gear System with Backlash

and Friction

It can be seen that the dynamic model for a gear system with backlash is discontinuous
since the normal contact forces between two meshing gears depend on whether the
two gears are under front-side contact, separation, or back-side contact. In addition,
the friction torque depends on the direction of rotation which leads to another discon-
tinuous phenomenon. For simplicity, the equations of motion, Egs. (2.54) and (2.56),

for front-side contact can be written as follows.

L0, = & —Fury —c10, —ajuF,sgn®)) 3.1)

Lo, & + Foryp — 20y — ayuFosgn(fy) (3.2)

Similarly, the equations of motion, Egs. (2.55) and (2.57), for back-side contact

can be written as follows

1,6, &1 + Fory — 101 — ay uF,sgn(6)) (3.3)

Lo, & — Fpryy — 20y — ayuF,sgn(y) (3.4)

The above equations can be described in terms of the state variables as
z=f(x,t) =Gz + Hu(®) + f,(x) (3.5)

where f : R* x R —» R*,

X1 01
X2 01
z() = = (3.6)
X3 92
X4 92
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is the state vector,

0
u(f) = 2 3.7)
0
-62-
is the input vector,
01 00
0 —Cl/Il 00
G= (3.8)
00 01
00 0 —C2/12
and
00 00
0 1/, 0 0O
H = (3.9)
00 00
00 0 1/

are the coefficient matrices for the state variables and input functions, and

[ fi@), fze U
fi@), fwe U
fd@)=9 fix), fze U? (3.10)
fi@), fze U
| fi@), fze U’
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is the discontinuous function of the system, where

[ 0
fi) = [k(rp1x1 — rppx3 = B) + c(rp1x2 — rpoxa) (=11 + a1p) /1y
0
| [k(rsix1 = roax3 = b) + c(ruixy — rooxa))(rg + ) /1o
- 0
@) = [k(ro1x1 — repxs — b) + c(rp1x2 — ropxa) | (=rp1 — arp) /1y
0
| [k(rp1x1 = 103 = b) + c(rpixz = roXa))(ree — a2 ) [ 1o
- . -
i = |
0
0
[ 0
fia) = [k(rsoxs — rp1x1 = b) + c(rspxs — rpnx2)1(rer —arp)/1h
0
| [krsoxs = ronx = b) + c(rinXa = ronx) oy = a2 ) [ 12|
_ 0
@) = [k(roox3 — roux; = b) + c(rpaxa — rpnx2))(rsr + arp) /1
0
| [k(reaxs — ronxy = b) + c(ronxs — ronx2))(-rp + a2p) / 12
and
U' = {&|ryx—rnx >b, and x, < 0,x4 < 0}
U? = {x|ryx —rpxs >b, and x, > 0,x4 > 0}
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U3

{z | rox) — rioxs > =b, rpix; — ryxs < b}

Ut {z | rp1x1 — rpxs < -b, and x, > 0,x4 > 0}

U'5 {iB | Fp1X1 —rmxs < —b, and x; < 0, X4 < 0}

From the above definitions, it can be seen that U' U’ = 0, fori #].

3.3 Mathematical Preliminaries

3.3.1 Convex Sets and Set-valued Functions

For the convenience of readers, some basic properties of convex sets and set-valued
functions in n-dimensional space are briefly reviewed here (Kolmogorov and Fomin,
1970; Royden, 1988). A set M is said to be closed if it contains all its limit points.
M is said to be compact if it is closed and bounded in R", and convex if for any two
of its points a and b, all the points of a segment joining a and b also belong to M, i.e.,
givenanya € M andb € M, we have ca+(1-a)b € M forall o, 0 < a < 1. Given
a set M in a linear space L, there exist convex sets which contain M. Among them,
the smallest convex set is called the convex hull and is denoted by co M. Similarly,
the smallest convex closed set is called the convex closure, denoted as ¢o M. Such a
set co M (co M) always exists and is the intersection of all convex (convex closed)
sets containing M. For example, the convex hull of three non-collinear points is the

triangle with these three points as its vertices. If M is closed and bounded, then

co M=co M.

If for each point p of a set D C R™ there corresponds a nonempty closed set

F(p) C R", then F(p) is a set-valued function. Let F(M) denote the set-valued
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function on a set M, then

FM) = |J Fp) (3.11)

peEM
where ey F(p) denotes the union of the set-valued function F(p) for all p € M.
The norm of a set-valued function on a set M is defined as the supremum of the

norm of each set-valued function on a set M, i.e.,
[FMD|| = sup |]yl| (3.12)
YEF(M)
or

IF|l = sup |F @] (3.13)

A set-valued function F is bounded on a set M, if || F(M)|| < oo. That is, the values

of F for any points of M are contained in a ball of finite radius.

3.3.2 Lebesgue Measure and Lebesgue Integral

In keeping with the concept of length of an interval or area of a rectangle from
elementary geometry, the Lebesgue measure is usually used for the measure of a set.
Specifically, the Lebesgue measure of a countable set M is zero. One important
application of Lebesgue measure is the integration of set-valued functions. Generally
speaking, the concept of Riemann integral applies only to continuous functions and

not to functions which are discontinuous everywhere or are defined on an abstract set.

Let f be defined on the interval [g, b] of the x-axis. The Riemann integral of f
is obtained by dividing the interval [a, b] into many subintervals and summing the
areas under the function f for all the subintervals. Therefore, the Riemann integral is

basically the limit of the sum. However, such a limit will not exist for some functions
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which are not defined on an interval or are discontinuous. Based on the Lebesgue
measure, the Lebesgue integral can overcome these difficulties. This makes it possible

to extend the notion of integral to a very large class of functions.

3.3.3 Filippov’s Theorems

The gear model accounting for backlash and friction proposed above is a set of differ-
ential equations with piece-wise continuous right-hand sides. From a mathematical
point of view, such a dynamic model is meaningless unless its basic properties, such

as existence and uniqueness of a solution, have been established.

Theories for validating the above properties for smooth systems (including state-
space systems which are piece-wise continuous in time) can be found in most nonlinear
control textbooks such as Khalil (1992), etc. However, these theories cannot be
applied to nonsmooth dynamic systems. When the trajectory of a differential equation
approaches a discontinuity surface from one side or leaves a discontinuity surface
on the other side, a solution for the differential equation is well defined. But on
the discontinuity surfaces, the ordinary definition of a solution will not satisfy the
differential equation since the derivative is not well defined there. Therefore, it is
necessary to define a solution to cover all the possible cases, irrespective of the

position of trajectories.

In order to overcome this problem, Filippov (1960; 1988) developed a solution
concept, called the differential inclusion, for differential equations with discontinuous
right-hand sides. Based on the definition, he also derived some useful theorems to
examine the existence and uniqueness properties for such equations. The Filippov’s

concept is described below for the convenience of readers.
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Definition 3.3.1 (by Filippov): A continuous vector function x(t) is called a solution
to Eq. (3.5) on the interval [ty, t,], if for almost all t € [ty, t,],
&€ Kifliz,0=() ) @ fU(z,6)- N,z (3.14)
§>0 uN=0
where U (x,0) is a ball of radius § centered at x(t), |1 denotes Lebesgue measure,
Nun=0 denotes the intersection taken over all sets N of Lebesgue measure zero, ssq

denotes the intersection taken over all § > 0, and ¢0 is the convex closure of a set.

Condition 3.3.1 (Filippov’s ConditionB): f(x, t) in Eq. (3.5) must be defined almost
everywhere and be measurable in an open or closed region Q. Furthermore, for any
compact D C Q, there exists a summable function B(t) such that || f(z,1)|| < B(r)

almost everywhere in D.

All functions used here are defined almost everywhere and are Lebesgue measur-
able. This definition will allow solutions to exist in the region where the vector field
f itself is not defined, such as on the discontinuity surface. In other words, the set
K[f1l(z,?) is well defined as the vector field f except on the discontinuity surface

where K[f1(z, t) becomes the convex hull of all limit vector fields.

Theorem 3.3.1 (Filippov’s Theorem 4): If Eq. (3.5) satisfies Condition 3.3.1 and is
measurable in a domain G, then for any arbitrary initial conditions x(ty) = xy where

(z0,t0) € G, there exists locally a solution satisfying these initial conditions inside

G.

Theorem 3.3.2 (Filippov’s Theorem 5): If Eq. (3.5) satisfies Condition 3.3.1 in a
domain Q, then any solution x(t) is able to continue on (ty, t,), where either t; = +00

ort — t] where t; —t] > ¢ > 0, ¢ = 0. When t — t;, we have one of three
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alternatives: (1) ||z(?)|| = 00, (2)p — O (p is the distance from (z,t) to the boundary
of Q); (3) lim ||z(1)|| < oo, lim p > 0, lim (||x(®)|| + 1/p) = co. If the domain Q is
closed, then case (3) is impossible, lim,_,,I x(t) = d exists, and the point (d, t) lies on

the boundary of Q.

Theorem 3.3.3 (Filippov’s Theorem 14): Let the surface S which separates its
neighborhood in the x space into domains G~ and G* be twofold smooth ! and, f*
and f~ denote the limit values of f(x,t) when & approaches surface S from domains
G and G, respectively. Let f, and f, be the projections of the vectors f* and f~
onto the normal to the surface S directed from G~ to G*. Supposed Eq. (3.5) satisfies

Condition 3.3.1 and at least one of the inequalities
fi<0, or f,>0 ' (3.15)

is satisfied at each point of surface S, then in the domain G we have a unique solution

which is continuously dependent on initial conditions.

3.3.4 Generalized Gradient

In this section, some definitions and basic properties for the generalized gradients are
reviewed. Let f(x) : R" — R be a given function and let « be a point in R". The

function f(z) is said to satisfy the Lipschitz condition near x if there exists a constant

k > 0 such that

| f (@) - £ @) < K|z - ='|] (3.16)

for all vectors x, =’ in the set « + ¢b (i.e., within an e-neighborhood of ). We shall

say that f is locally Lipschitz near x if Eq. (3.16) is satisfied. For functions of real

IThe equation of the surface S can be solved and has continuous second derivatives.
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variables, the satisfaction of Lipschitz condition for f means that the graph of f will
not be "too steep." A function f satisfying the Lipschitz condition near a point = does
not need to be differentiable there, nor does it need to have directional derivatives in

the classical sense.

In the development of a nonsmooth Lyapunov function for a set of differential
equations with discontinuous right-hand sides, Clarke’s generalized gradient and gen-
eralized directional derivatives are useful and are briefly described below (Clarke,

1983):

Definition 3.3.2 Let f satisfy Lipschitz condition near x, and let v be any other vector
in X. The generalized directional derivative of f, evaluated at x in the direction v,

is defined as

Fo@iv) = limsup fly+2v)-f(y)

(3.17)
A0, YT A

where y is a vector in X and ) is a positive scalar.

The difference quotient in Eq. (3.17) is bounded above by k|v| which is derived
from the Lipschitz condition. Hence, f°(x; v) is a well-defined finite quantity and it

involves only the behavior of f near .

Definition 3.3.3 The function f is said to be regular at a point x, if for all v, the

usual one-sided directional derivative f'(x; v) exists and f'(x; v)=F°(x;v).

Smooth functions and functions composed of the point-wise maximum of a set of
smooth functions, e.g. max{fi,/}, are regular functions. Regular function is the basic

requirement for Lyapunov function candidates in the following chain rule.
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Definition 3.3.4 For a locally Lipschitz continuous function V : R" x R — R, the

generalized gradient of V is defined as
oV(x,t) = co{lim VV(x;, t) | (zi, 1;) — (x, 1), forall (x;, ;) & 2y} (3.18)
where 2y is the set of Lebesgue measure zero in which the gradient of V is not defined.
Remark: This Equation means that if one lets (x;,#;) be any sequence which

converges to (x, ¢) while avoiding 2y where V(x, 1) is not differentiable, then OV (x, 1)

is the convex hull of all limit points of VV(x;, 1;)

3.3.5 Extended Stability Theorem and LaSalle’s Theorem

The following theorems were extended by Shevitz and Paden (1993).

Theorem 3.3.4 (Chain Rule) Let x(f) be a Filippov solution to Eq. (3.5) on the
interval [ty, 1] and let V : R" x R — R be a locally Lipschitz and regular function.

Then V(z, t) is continuous, %V(m, t) exists almost everywhere, and
d ae
—V(z,t) €V 3.19
7 (x,1) € (3.19)

where a.e. denotes almost everywhere and

. K ,
= N ¢ 71, 5 (3.20)

Ecov, 1

where K[ f1(z, t) is defined by Eq. (3.14).

Theorem 3.3.5 (Stability) Let & = f(x,t) be essentially locally bounded and 0 &
KI£10,¢) in a region Q, where Q O {x € R" | ||z|| < r} x {t| 1t < t < o0}. Also,

let V: R" x R — R be a regular function satisfying

V(©0,£)=0 (3.21)
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and
0 < Villl2|l) < V(z,2) < Va(||)) for = #0 (3.22)

in Q where Vy,V, are strictly increasing and V,(0) = 0, V,(0) = 0. Then, 175 OinQ

implies (t) = 0 is a uniformly stable solution.

Remark: We say f is essentially bounded in @ if there exists a constant ¢ > 0

such that || f(x)|| < ¢ almost everywhere in Q.

Theorem 3.3.6 (LaSalle) Let §2 be a compact set such that every Filippov solution
to Eq. (3.5), with £(0) = z(ty) starting in 2, is unique and remains in §2 for all t > t,.
Let V : 2 — R be a time independent regular function such that v < 0 for all v G‘L/.
Define S = {x € 2|0 GV} Then every trajectory in §2 converges to the largest

invariant set, M, in the closure of S.

Theorem 3.3.7 If M is an invariant set in a smooth k-dimensional manifold S, then

T.SNK[flm)#0, forallme M (3.23)

where T,,S denotes the tangent space to S at m. This theorem is extrapolated from

the work of Aubin and Cellina (1984) by Shevitz and Paden.

3.4 Existence of a Solution

In this section, the existence of a solution for the gear system with backlash and

friction described earlier is verified. First, we check Condition 3.3.1 since it is a basic
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requirement for Filippov’s Theorems. Let Q = B(xq,r) X [a, b], where B(xy,r)
denotes a ball of radius r centered at xo and [a, b] is the closed interval in the time

domain, and let D be an arbitrary compact set in Q. Then, in D

[f@, 0l = [|fox+ fi@)+ Hu@)]
< lfoxll + || F a(@)l] + || Hu@)|
< Co+ Cy+ Cyllu(t)|] (3.24)
where ||.|| denotes the norm of a vector or a matrix, Co = supp ||foz||, Cs =

supy, || f4(x)||, and C,; = sup, ||H||. We can choose A = Cy + C; + Cgl|u(d)|] to
be integrable in D. Since the right-hand side of Eq. (3.5) is also measurable and
is defined almost everywhere with respect to Lebesgue measure, Eq. (3.5) satisfies

Condition 3.3.1.

From Theorem 3.3.1, we conclude that there exists locally a solution satisfying any
given initial condition & (#y) = xo. From Theorem 3.3.2, any solution x(#) of Eq. (3.5)
is able to continue on the interval (¢, #;), where #; = +00 or limy,,- @(f) = d exists and
the point (d, t;) lies on the boundary of ). Hence, the existence of a solution in the

Filippov’s sense is assured.

3.5 Uniqueness of a Solution

Figure 3.1 shows the discontinuity manifolds in the x, > 0 and x4 > 0 solution
space, where S and S’ are the two discontinuity manifolds for the geared system
with backlash and friction. The discontinuity manifold S is defined by {z : s(z) =
rpX1 —rpx3 —b = 0,x, > 0 and x4 > 0} while S’ is parallel to S and is defined by

{z : §'(@®) = rp1x1 — rpexs +b = 0,x, > 0 and x4, > 0}. The gradient pointing from U*
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Figure 3.1: Example of discontinuity manifolds: x, > 0 and x4, > 0
towards U? as shown in Fig. 3.1 is given by

Ip1

0
Vs(z) = (3.25)

—Tp2

0

When a point £* € U? is approaching a point & € S from U® towards U? with
time t being held constant, the limit value of f(x, t), denoted as f 3(:1:, 1), can be derived

from Eq. (3.5) as

X2
&O/L-cax/I
: * — p3 _
o L};’Ig*_)m F@*n=f(z,n= . (3.26)

i LW/ L - cxa /1 L aes
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Similarly, a point * € U? is approaching a point ¢ € S from U? towards U?>
with time t being held constant, the limit value of f(x,?) , denoted as f2(x, 1), can

derived from Eq. (3.5) as

X2

im  f@i) = o) = [£1() — c(rp1x2 — rpxa)rpn /1) — c1x2 /1 3.27)
T e, > X4

)+ — L - I
i [&(8) + c(rnxz — Poaxa)rsal [/ — caxa /I | ies

Let f> and f be the projections of f* and f* onto the normal to the surface S

directed from U? to U?. Then,

F2= fAx, Dimes - Vs = rpxs — ropy (3.28)

and
fa= @, Dizes - Vs =rpxy — ks (3.29)

Therefore, it is clear that if r,1x; — ryx4 # 0, we have either fﬁ > 0 and ffl >0,
or f2 < 0and f2 < 0. By Filippov’s Lemma 9, we know the solution has only one
point in common with S. If ry1x;, — roxs = 0, then fipes = fipes and f(a,?) is
not discontinuous on surface S. By Theorem 3.3.3, we conclude that Eq. (3.5) has a
unique solution in the sense of Filippov’s definition and that the solution is continuously
dependent on the given initial conditions. Similarly, the same conclusion can be drawn

for the cases when f(z, f) is in other domains.

3.6 A General Methodology for Stability Analysis

One of the topics not addressed by Shevitz and Paden is the selection of an appropriate

Lyapunov function for a nonsmooth system. Though this is still an unsolved question

75




like how to choose Lyapunov functions, in what follows we propose a method to
partiallyvsolve this problem. First, a Lyapunov function which is capable of examining
the stability of each continuous region should be selected. Then, the above Lyapunov
functions are combined into a piece-wise continuous Lyapunov function for the whole
region. This approach usually guarantees the locally Lipschitz condition and regular
property required by the extended stability theorem. By using the calculus for X
(Paden and Sastry, 1987), we can find a set of generalized derivatives for the above
piece-wise continuous Lyapunov function. Stability conditions can then be determined
by checking the property of all the elements in the generalized derivative set. If it
is found that the set can only assure stability instead of asymptotic stability, then the

extended LaSalle’s theorem may be used to identify the stability margin.

Based on the proposed general methodology, the stability condition of a gear
system with backlash and friction is analyzed as follows. In order to identify the
influence on stability margin by friction and backlash, the stability conditions of a
gear system with backlash only and of a gear system with friction only will be also

examined.

3.7 Stability Analysis of a Geared System with Backlash

To study the stability of equilibrium points for a geared system accounting for backlash
only, the input variables in Eq. (3.5) are set to zero and the friction terms are discarded.

For convenience, the following transformations of coordinates are made.

_><>
I
>
i
2t
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02 +b/rb2 =X3 +b/rb2

&
[

% 6, = x4 (3.30)

&
It

Then the new state equations at the equilibrium point between the front-side contact

and separation can be written as follows.

For front-side contact, ry %, —rppXs > 0, the right-hand-side of Eq. (3.5) reduces to

A

X2

[k(rp1x1 — rpks) — c(roids — rpXa)lre /I — 132 /1

f@) = (3.3

A

X4

[k(rp1X1 — reeXs) + c(rm®a — ria)lrn /L — ¢34/ 1

And for separation, 7, %; — rp¥; < 0, the right-hand-side of Eq. (3.5) reduces to

A

X2

—a1x%/

f@ = (3.32)

A

X4

—C234/12 |

We can write f(&) in a more compact form as

A

X2

(&) = —harn/l —ci%2 /I (3.33)

A

X4

| Pl oo/l — e/
where hal = 0, if rb15€1 - rb2563 < 0', and hal = k(rblfcl — rb2£3) + c(rb1562 - rbz)?4), if

rblfcl - rb25€3 > 0.

Consider a piece-wise continuous Lyapunov function consisting of two Lyapunov
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functions derived for the above two continuous regions as follows
L% + 1032, if rpfi—rpi; <0

V(&)= (3.34)

AL+ 1033 + Lk — reis)?, i rmdi—rmis >0

It can be shown that V(&) is locally Lipschitz and regular. Hence, the generalized

gradient of V(&) can be derived as

kryihg

1%,

ov(z) = (3.35)

—krpha

I 234

where ha2 = 0, if rblfcl - rb25c3 < 0; and haz = (r,,p‘cl - rb25€3), if rblfcl - rb25c3 Z 0. And

the tangent vector to the solution & is given by

A

X2

—Klhalre /I — c1%2/1)

Kifl@) (3.36)

A

X4

Klhalrez /I — ¢34/

where the calculus for computing K can be found from the work of Paden and Slotine

(1987).

Then from Theorem 3.3.4 we get

V.= N KA
Eecovd)
_ T ¢ -
kryihg X
c 1%, =Klhalrm /I - % /1)
—krzhg X4
b3y Klhalre /L — c234 /1
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= kR (rpids — rnis) — (rpds ~ rnka)Klhal - 135 — coii (3.37)

If ry1 X1 — rpXs > 0, then Eq. (3.37) reduces to
V= —c(rmds — rpda)* — c135 — cois (3.38)

which is negative semidefinite.

If rp1 %1 — ripXs = 0, then K[h, ] becomes the convex hull containing all the limit

values between 0 and c(ry; X3 — rp2%4) and Eq. (3.37) reduces to
VC ~Klhal(roids - rnka) — €133 — co3s (3.39)

which is also negative semidefinite.

If rp1 Xy — rppXs < 0, then Eq. (3.37) reduces to
V=12 - 0,2 (3.40)

which is again negative semidefinite.

Since all the elements of the set of the generalized derivatives of the Lyapunov

4

, 2V < 0, we conclude from Theorem 3.3.5

function are negative semidefinite, i.e.

that the system is stable.

Next, we will explore the stability margin. From Theorem 3.3.6, every solution

will approach the largest invariant set in the closure of S. That is
S =cl({(&) |0 €V}) (3.41)

It is obvious that if 0 is one of the elements of V for every X; ~ X4, then the only

possibility is X, = 0 and %4 = 0. That is,

5 =cl({(®) | %2 = 0,5 = 0}) (3.42)
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0
— 1
Therefore, the normal to S is equal to , and
0
1
1
— 0
T,,S = span
1
0

where span[v,] denotes the subspace spanned by v;.

From Theorem 3.3.7, we know that

T,SNK[flm)#0 forallme M

(3.43)

(3.44)

Since %, = X4 = 0, K[h,;] becomes the convex hull containing all the limit values

between 0 and k(rp1 X1 — rppX3) and the tangent vector to the solution & now is given by

Kifl@) c

0
~Klhalrsn /I
0

| Klhalre/L

(3.45)

Therefore, the largest invariant set is the solution to the following equation:

0
—Klhalre /11
0

] Klhalree /L
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It can be seen that the only possibility for making the above equations solvable,
i.e., the intersection set is not empty, is & = 0 and r %) — X3 < 0. Therefore, the

largest invariant set is contained in ry X — rpX; < Oand X, = %4 = 0.

Similarly, if we set

2 o= 6

% = 6

X = 0,-b/ry

3 = 6 (3.47)

to be new equilibrium points for the back-side contact and separation cases, the largest

invariant set can be found to be contained in ry X; — X3 > 0and X, = %4 = 0.

Combining the above results, the stable region for a gear system with backlash is
b > ryf —rpb, > -b, 6, =0, and §, = 0. A phase portrait example of the gear
system with backlash only is shown in Fig. 3.2. The gear parameters are the same as

in Chapter 2.

3.8 Stability Analysis of a Geared System with Friction

only

To study the stability of equilibrium points for a gear system accounting for sliding
friction only, the input variables and the backlash value in Eq. (3.5) are set to zero.

The origin becomes the equilibrium point. Let

X = 91 =X

X2 = Oi=x;

81



15

6,
(rad/s)

10 '
5 -
0 -

-5

- 1 1 1 L I

1% -4 2 0 2 4

-5

M5161-T 5265
(m) x 10

Figure 3.2: Phase Portrait with initial conditions 6,=0and #, =0

X3 = 02=X3

6, = x, (3.48)

£
Il

Then the right-hand-side of Eq. (3.5) for front-side contact can be written as

A

X2,

£(3) = Fo(—rp1 — a1psgn(G)) /1) — ci3a /1 (3.49)

A

X4

Fo(ryg — ayusgn(3s)) /I — caxa /1

where g; is the average friction moment arm from Table 2.2.

Consider a smooth Lyapunov function (there is no nonsmooth Lyapunov function
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in this case) as
. 1. , 1 ., 1 N .2
V(:B) = Ellxg + §I2xi + Ek(rblxl - rb2x3) (350)

Then, the generalized gradient of V(&) can be written as

kry1(ro1X — rppXs)

Lix
v =| (3.51)
—krpo(rp1 Xy — rppXs)

I 2.%4

And the tangent vector to the solution & is given by

A

X2

F,(=ry - SGNGL))/ I — c1X, /1
KLfI@) (—ro1 —apSGN () /1) - ¢132 /11 (3.52)

A

X4

Fo(rsy — ayppSGN(34)) [ I — c234 /1

Hence from Theorem 3.3.4 we get

Vo= N €K@

Ecovd)
_ ~T r -
k(rp1Xy — rppis)rp X
c 5%, Fu(=rp1 —aipSGN(G) /1 — c132 /1y
—k(rpiXy — rpoks3)re; X4
| Ly Il Fu(ryy — aappSGN(34)) [ I — ¢34 /1 ]
= —c(rp1fy — rppka)’ — €135 — 0275 — (a1 || + Az pu|34))F, (3.53)

which is negative semidefinite since a;, a, and F, are always positive.

Since all the elements of the set of the generalized derivatives of the Lyapunov

4

» 7V < 0, we conclude from Theorem 3.3.5

function are negative semidefinite, i.e.

that the system is stable. Next, we will explore the stability margin.
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Similar to the previous case, we can show that

and

Since X; = X4 = 0, the tangent vector to the solution & now becomes

Kifl@) c

5 =cl({(@) | 3 =0,% = 0})

T,.S = span

0

(k(rp1X1 — rppX3))(=rp1 — a1 pSGN (%)) /11
0

i (k(rp1 Xy — rep3))(re2 — a2 uSGN(R4)) /I

0

(k(rp1%1 = reeks))[=ren — a1, —ro1 + a1 /1

0

(k(rp1 Xy — repda))ree — azps, rop + azp] /I

where [a, b] denotes the closed interval.

Therefore, the largest invariant set is the solution to the following equation:

1
0
1
0

-

0

(k(rp1 %1 — rpis))[=ror — a1, —roy + a1 p1/1

0

(k(ro1 X1 — rpXs))ree — Gz s, oz + a2 1]/

|

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

From gear property, we know that rp; > ajpu and ry; > app. Therefore, it is

obvious that the only possibility of making the above equations solvable, i.e., the
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intersection set is not empty, is & = 0 and rp; X —rpX3 = 0. Hence, the largest invariant

set is contained in the set composed of 1%, = ripks, 6; = 0, and 6, = 0. We can also

show that the results are identical for back-side contact, i.e., ry %] — rppi; < 0.

3.9 Stability Analysis of a Geared System with Backlash

and Friction

To study the stability of equilibrium points for the geared system accounting for both

backlash and friction, the input variables in Eq. (3.5) are set to zero. For convenience,

the following transformations of coordinates are made.

52?1 = 01 =X
¥ = bi=x
X3 = 02+b/rb2=x3 +b/rb2

02 = X4

£
[

(3.59)

Then the new state equations at the equilibrium point between the front-side contact

and separation can be written as follows.

For the front-side contact, rp;1 %) —rpX3 > 0, the right-hand-side of Eq. (3.5) reduces

to

A

X2
(k(rp1X1 — rppXs)rpt + c(rpiis — rppXs))(=rp — a pusgn(xz))/ I — c1 32 /1

~

X4

(k(rpr X1 — rpXa)rpy + c(roiXn — rpia))(r — aapusgn(®s)) /L — coi4 /1
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And for separation, rp,%; — ripXs < 0, the right-hand-side of Eq. (3.5) reduces to

- -

A

X2

—c1% /1

f@) = (3.61)

A

X4

—62%4 / I 2 |

We can write f(&) in a more compact form as

A

X2

£(8) = hei(=re1 — aipsgn(2)) /1) — c13a /1 (3.62)

A

X4

her(ren — a2 psgn(ia)) /I — ca3a /I
where hcl = O, if r[,].%l - I‘b25€3 < 0; and hcl = k(rbly‘cl - rb25C3) + C(rbl.%g - rb25c4) = Fn, if
rpixy —rpxs > 0.

Consider a piece-wise continuous Lyapunov function consisting of two Lyapunov

functions derived for the above two continuous regions as follows

1h% + 3033, if rpi —rp% <0
V(&) = (3.63)
SIE + 103+ Jk(rody — rpis)?, if rpdi—rpis > 0

It can be shown that V(&) is locally Lipschitz and regular. Hence, the generalized

gradient of V(&) can be derived as

krpihe

L&
v@y=| "’ (3.64)
—kryher

Lk,
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where hcz = 0, if rb1561 - rb25€3 < 0; and hc2 = (rblfcl - rb2563), if rblfcl - rbz)?g > 0. And

the tangent vector to the solution & is given by

A

X2

Klh:1(=rp — SGNGZ ) /1 —c1x% /1
KLFI®) C [he1)(=rp1 — a1 pSGN(3)) /1) — 132 /1Ty (3.65)

~

X4

Klhal(rs: — aauSGN(R4)) [ I — 234/ I

Let £ € 0V(&), then from Theorem 3.3.4 we get

V= N &K@
Eecovd)
- - T — -
krpihe X2
c Iix, Klhel(=rp1 —aipSGN(3)) /1) — c132 /11
—kryhe X4
i L3y 11 Klhel(rs2 - a2tSGN(34)) [ I — €234 /1

kheo(ris — rinia) — (Tais — repka)Klhal — o135 — i3

—(a1 || + azpu| %4 YKt (3.66)
If rp1X1 — rpks > 0, then Eq. (3.66) reduces to
V= —c(rpndy — ripha) — 135 — 2% — (a1 i3 | + aops|24|)F, (3.67)

which is negative semidefinite since a;, a, and F, are always positive.

If ry X1 — ripis = 0, then K[h, ] becomes the convex hull containing all the limit

values between 0 and c(ry1 X, — rpX4) and Eq. (3.66) reduces to
V C —Klhal(roks = renka) — 135 — 0285 — (@ pal3a| + azp|24)KTha] (3.68)

which is negative semidefinite for the same reasons stated above.
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If rp1 %) — X3 < O, then Eq. (3.66) reduces to
V= 12 - 0,32 (3.69)

which is also negative semidefinite.

It can be seen all the elements in the set of the generalized derivatives of the
Lyapunov function are negative semidefinite, i.e., %V < 0. Hence, we conclude from

Theorem 3.3.5 that the system is stable. Next, we will explore the stability margin.

Similarly, we can find that

S=cl({(®)| % =0,3% =0}) (3.70)
and
1
_ 0
T,,S = span (3.71)
1
0

Since %, = X4 = 0, K[h,1] becomes the convex hull containing all the limit values

between O and k(ry1 X1 — rp2X3) and the tangent vector to the solution & now becomes

0
Klhal(=rp - SGN(xy))/1

KUFI@) c [he1](=re1 — a1uSGN(32)) /1) 372)
0

I Klhal(ry — a,puSGN(34)) [ I

0

_ Klhall-rp1 —a1p, —rpn + a1pl/Iy (3.73)

0

I Klhelree — azp, ron + azpl /L
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Therefore, the largest invariant set is the solution to the following equations:

0

Klhall-rp1 — a1, —rp + a1/

0

i Klheillrs: — axps, rog + ax 21/ 1

(3.74)

From gear property, we know that r,; > aju and ry; > apu. Therefore, it is

obvious that the only possibility of making the above equations solvable, i.e., the

intersection set is not empty, is o = 0 and ry%; — rpX; < 0. Hence, the largest

invariant set is contained in rp; %) —rpis < O0and X, = %4 = 0.

Similarly, if we set

6,

b,

92 —b/rbz

6,

(3.75)

to be new equilibrium points for the back-side contact and separation cases, the largest

invariant set can be found to be contained in rp %) — rpi; > 0and %, = x4 = 0.

Combining the above results, the stable region for a geared system with backlash

and friction is b > 10, —ripf > -b, 0, =0,and 6, = 0. A phase portrait example of

the gear system with both backlash and friction is shown in Fig. 3.3. From the results

of all analyses for stability, it can be found that the stability condition of the system is

mainly influenced by backlash since the stable region is mainly decided by backlash.
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Figure 3.3: Phase Portrait with initial conditions 6,=0and 6, =0

3.10 Conclusion

Based on Fillipov’s solution concept for discontinuous differential equations, we have
examined the existence and uniqueness properties for a geared system with backlash
and friction. It is found that there exists a unique solution which is continuously
dependent on the given initial conditions for such a system. A method to compose a
Lyapunov function for a nonsmooth system whose dynamic equations have piece-wise
continuous right hand sides is also proposed. This method is applied to the stability
analysis for the same geared system. From the stability analysis, it can be seen that

the main factor influencing the stability region is backlash.
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Chapter 4

A Feedforward and Feedback Control

Strategy

4.1 Introduction

Most control methods implemented on geared servomechanisms , such as a PID con-
troller, do not consider the nonsmooth nonlinearity caused by backlash and friction.
As a result, inaccuracy and tracking errors cannot be avoided. To overcome the prob-
lems caused by backlash, various control strategies have been investigated. However,
these methods have some limitations. Other control strategies to compensate for po-
sition errors caused by friction have also been proposed. These studies are primarily
concerned with friction in journal bearings that, at low speeds, may be less significant

than the meshing friction between gear teeth.

In this Chapter an open-loop optimization-based control strategy for geared ser-
vomechanisms is developed. Theoretically, the optimization process will reduce the

effects caused by backlash and friction to a minimal level. However, if load distur-
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bances exist, a feedback compensation becomes necessary. A systematic method of

finding a state feedback law is also proposed in this Chapter. Examples based on

different path generation techniques are studied to illustrate the strategy.

4.2 Control Methodology for Geared Servomechanisms

In this section, we outline a feedforward plus feedback control strategy for the control

of geared servomechanisms as follows.

L.

2.

Establish the dynamic model for a geared servomechanism.

Identify the desired path trajectory and via (intermediate) points for the

manipulator or machine tool.

. Transform the path trajectory from the tool space to the joint space and

choose an appropriate path generation technique such as a cubic spline to

connect the via points.

. Find an optimal open-loop input function for each segment of the path.
. Use H, theorems and surface plots to find the appropriate feedback gains.

. Use the optimal input functions for feedforward control and the feedback

gains for error corrections.

The details of this methodology and its application to a gear pair represented in

Chapter 2 are discussed in the following sections.
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4.3 Path Generation

Since we are mainly interested in the path tracking problem of a geared servomech-
anism, various methods of path generation will be briefly discussed. For robot ma-
nipulators, a sequence of via points between the initial and final positions are usually
chosen in order to include more details in a path description (Craig, 1989). Each of
these via points is converted into a set of joint angles by means of inverse kinemat-
ics. Then, a smooth function is chosen to connect these via points in the joint space.
Among those commonly used smooth functions, the cubic spline and the linear func-
tion with parabolic blends are the most popular. Cubic spline is a natural choice when
we require both position and velocity to be continuous at the via points. If a continuity
in acceleration is also considered, then a fifth degree polynomial is required. Another
natural choice of path shape is the linear interpolation. That is, we simply interpolate
the path trajectory linearly from one path point to another. However, this scheme
will cause the velocity to be discontinuous at each via point. Therefore, a parabolic
blend is added at each path point. During the blend portion, a constant acceleration
is used to change the velocity smoothly. This scheme guarantees the entire path to be

continuous not only in position but also in velocity.

As for CNC machines, similar approaches are used (Huang and Yang, 1992).
The most commonly used method for motion command generation of space curves is
called the "position contouring." This method connects every two consecutive precision
points with a straight line and then uses the linear interpolation technique to define
the intermediate positions. Circular interpolator and cubic spline interpolator are the

more advanced alternatives.

In what follows, the cubic spline technique will be employed for the generation of
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the optimal input functions.

4.4 Open-loop Optimization-based Control Strategy

In this section, an open-loop optimization-based control strategy will be presented. For
geared servomechanisms, it has be shown in Chapter 4 that corresponding to a given
input, there exists a unique output. Therefore, we should be able to find an optimal
input function, denoted as wu,, (1), such that the output trajectory, y(¢), will best match
a desired trajectory, y (), without feedback compensations. This means that tracking
errors can be minimized with an appropriate choice of input function. The advantage
of such an open-loop control strategy is that it avoids the difficulty of choosing an

accurate closed-loop controller, which may be a difficult task for nonlinear systems.

The proposed open-loop optimization-based control strategy can be summarized

as follows. The details will be explained later.

1. Linearize the dynamic model of a geared servomechanism by disregarding

the effects of backlash, Coulomb friction, and other nonlinearities.

2. Estimate the required input torque function for each motor based on the
above linearized model and the desired trajectories. The input torque

function may be piece-wise continuous.

3. Approximate each piece of the above estimated input torque function by
a polynomial using least square fitting and use it as the initial guess for

optimization purpose.

4. Optimize the input torque function by adjusting the coefficients of the

polynomials.
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It is well-known that a function f(x) that is continuous in an interval a < x < b can
be approximated by a polynomial to some degree of accuracy (Faux and Pratt, 1979).
In this study, we shall use a polynomial as the feedforward input function. The degree
of the polynomial depends on the desired trajectory and the coefficients of polynomial

will be optimized to minimize the tracking error.

To estimate the required input function, the dynamic model is linearized first. For
our gear model shown in Fig. 2.2, disregarding the backlash and Coulomb friction

terms, and using the kinematic relation §; = N6,, Eq. (3.5) reduces to
(12 +11N2)§2 = Nu-¢ *N292—C292 (41)

where u = N&; + &,.

Substituting 6, in Eq. (4.1) by the desired path trajectory, 8,, and re-arranging,

yields
u = (I + [LN*)8;/N + (c, + c;N?b, /N 4.2)

In general, 6,(f) may not necessarily be describable by an analytical function.
However, it can always be approximated by piece-wise polynomial functions. Hence,
corresponding to a desired path trajectory, ,, u can be computed piece-by-piece by
Eq. (4.2). Each computed wu is then fitted by a cubic spline as the initial guess to the
optimizer. Finally, the coefficients of each cubic spline are adjusted by an optimization
process to minimize the tracking error. The CONSOLE package (Fan, et al., 1990),

an optimization-based design tool, is used for carrying out this optimization.

The optimization procedure is illustrated in Fig. 4.1, where a cubic is assumed
as the input function u(f) for each section of §,. For each u, a dynamic simulation

is performed on the nonlinear system and the output is compared with the desired
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function. The error is then fed into the optimizer, CONSOLE. The CONSOLE
automatically adjusts the coefficients of the cubic spline until the error is minimized.
At present, the external load, £,(#), is assumed to be zero. This open-loop optimization-
based control strategy is, however, equally valid for the case when &,(¢) is a continuous

function of time.

U=a, £ +a, 2 Nonlinear
+a, t+a3 SyStem
New
4;3,d5,a 2 ¢ %
Error -
CONSOLE —
+
04

Exit if an optimal solution is found

Figure 4.1: Flow-diagram of the optimization process

Since the output trajectory for the above gear model and the minimization of
max |64 — 6,| are both time dependent, the optimization process is modeled as a min-
max problem. That is, the maximum absolute error between the desired trajectory
and output trajectory for a given task will be minimized (called functional objective in
CONSOLE). The system output, 65, is obtained from the simulation of the dynamic
equation, Eq. (3.5), using Simulink (MathWorks, Inc., 1992). An upper bound denoted
as 7, and a lower bound denoted as 7; for the input function u(¢) are also planted as
constraints in the optimization process to simulate the torque limits of a motor. The

optimization process for the input function u(f) can be summarized as follows.
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Minimize (max |0,-6,|)
ao PR a3
Subject to u-7, <0,and

-u+7<0

4.5 Case Study

We will study two cases in this section. The software used for simulation is Simulink
and the step size is set at 1 x 107 sec, and the integration tolerance is set at 1 x 1075,
The step size is fixed since CONSOLE can not handle flexible integration step size at
present. The initial velocities of gears 1 and 2 are set at §; = 0 rad/s and 6, = 0 rad/s,

respectively, and the initial positions of both gears are set at their neutral positions

The mean values of a; and a, in Egs. (3.1), (3.2), (3.3) and (3.4) are 0.001 and
0.0042, respectively, which are obtained from Chapter 2. The gear parameters are the
same as those presented in Chapter 2. From the given backlash value, we arrive at an

equivalent clearance angle for gear 2 as

NG, = 1b/ry; = £0.001049 radians (4.3)

4.51 Case(1)

To achieve accurate path tracking, many precision points may be chosen for interpo-
lation. This will inevitably increase the computation time of the optimization process.
In what follows, we will propose a method to overcome this difficulty. First, only
a few precision points are chosen for interpolation and for estimation of the input
torques. Then, an optimization process is carried out to minimize the error between

the system output and the desired path. This will ensure good tracking performance
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with reasonable computation time. A cosine curve as shown below is used as the

desired path to illustrate the strategy.

0; =0.3(1 -cos2nt)), t=0 to 1. 4.4

The above desired trajectory is approximated by a function comprising of eight

cubic splines as
»i(t) = boit® + by + byt + by, i=1,2,,...,8 4.5)

where i denotes the i — th segment and bj; denote the coefficients. The velocity and
acceleration of the approximate trajectory can be obtained from the first and the second
derivatives of Eq. (4.5) with respect to time. Cubic spline solving technique which
guarantees the continuity of the first and second derivatives is adopted from the work
by Mathews (1987). The cubic spline technique usually requires either the second
derivatives (called a natural cubic spline if the second derivatives are all set to zero) or
the first derivatives of the endpoints to be specified. The cosine curve is divided into
8 equal segments and each segment is approximated by a cubic spline with the first
derivatives of the endpoints set at zero. The coefficients bj; calculated for the cubic

splines are listed in Table 4.1.

Since a desired path can be very complicated, the approximate function, v, is
used instead of cosine curve to derive the estimated torque. Substituting Eq. (4.5) into

Eq. (4.2), we obtains
(Ui)est = (I + LN?)(6boit + by) /N + (ca + €.N?)(Bboit* + 2by;t + byy) /N (4.6)

The corresponding composite input function is specified as

u(t)y =&(r) = a(),t3 + 611,’12 +ayt+ay, i=1,2,...,8 4.7
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by; by by | by

i=1 | -4.87 | 6.23 0 0

i=2 | -11.75 | 441 | 1.33 | 0.09

i=3-11.75| O 1.88 | 0.30

i=4 | -4.87 |-441| 1.33 | 0.51

i=5| 487 |-623| 0 |0.60

i=6 | 11.75 | -4.41 | -1.33 | 0.51

i=7 | 11.75 0 |-1.88]0.30

i=8 | 4.87 | 441 | -1.33 | 0.09

Table 4.1: Coefficients of cubic spline in case (1)

The coefficients, a;;, are initially obtained by a least square fitting process that matches
Eq. (4.7) with Eq. (4.6). These coefficients are then adjusted during the optimization
process. This composite input function can perfectly fit the estimated torque curve
and the coefficients ay; are all zero due to the degree of the composite cubic spline, 1,

is only three.

Eight consecutive optimization processes in CONSOLE have been carried out.
After the first optimization process, the final position and velocity of the previous
optimization result are used as the initial conditions for the subsequent optimization
process. The errors in the final position and velocity accumulated in each optimization
process may ruin the whole optimization process. Therefore, two constraints on the
final position and velocity are added in each optimization process. These constraints
are actually the upper and lower bounds where the final position and velocity should
stay. The optimized coefficients of composite input function are listed in Table 4.2.

The simulation results are as shown in Figs. 4.2 through 4.5. Figures 4.2 through 4.3
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ao;i ai; az; as;
i=1| 0| -6.15 | 3.97 | 0.06
i=2 | 0 |-11.15} 2.45 | 046
i=3 | 0 | -10.24 | -0.36 | 0.58
i=4| 0 | -3.09 |-3.16 | 0.38
i=5| 0 | 5.62 |-3.96|-0.06
i=6| 0 | 11.01 | -2.43 | -0.46
i=7| 0 | 10.29 | 0.35 | -0.58
i=8| 0 | 356 | 3.10 | -0.38

Table 4.2: Optimized coefficients of composite input function in case (1)

show the optimized results are very satisfactory and maximum errors are less than the
clearance angle, 1 x 10~*radians, and the original error. The original tracking error is
obtained by using the estimated torque and is several times larger than the optimized
result. Since the estimated torque does not consider the effects caused by backlash and
friction, the larger tracking erorrs can not be avoided. The open-loop control strategy
was able to track the path accurately with very little overshoot and vibrations. The
dotted lines in Fig. 4.4 show the upper and lower bounds of the transmission error due
to backlash. As can be seen from Figs. 4.3 and 4.4, the tracking error is primarily
caused by backlash. Small jumps in applied torque as shown in Fig. 4.5 are due to the

piecewise approximation of the input function.

4.5.2 Case (2)

The desired trajectories of CNC machines or robot manipulators are sometimes just

described by a sequence of discrete points (x, y, z), where (X, y, z) denote the Cartesian
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Figure 4.3: Tracking errors, 8, - 6,, for case (1)
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Figure 4.5: Applied torque in case (1)
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coordinates of a tool path. Since such trajectories are not described in term of time and
are discrete, a transformation technique is needed. A parametric interpolator is usually
chosen for its simplicity and accuracy. Generally speaking, the main advantages of
this method are that a second-order continuity is obtained, it can cope with a vertical
tangent, and higher precision is assured (Faux and Pratt, 1979; Mathews, 1987; Bartels,
et al., 1987). The main idea of the parametric interpolator is to fit the discrete points
into a composite cubic spline in terms of the cutting path (chord length). The ith
segment of the composite cubic spline in a parametric form is given by (Chou and

Yang, 1991; Chou and Yang, 1992; Huang and Yang, 1992; Yang and Kong, 1994)

x(W) = agw® + byw? + cuw + dy;

Pi(w) yw) = ayw® + byw? + cw+d,; forw € [0, L]

Z(W) = agw® + byw? + ciw +dy

AW + Bw? + Ciw + D; (4.8)

where x(w), y(w) and z(w) denote the x, y, and z coordinates of a path point in space,
w denotes a parameter, and L; denotes the chord length of the ith segment. One main
advantage of the parametric interpolator is that it is parameterized by its chord length
and, therefore, it can guarantee that all the axes can move to the desired point at the

same time,

The next step is to establish a relation between the parameter w and the time t.
This can be accomplished by a double integration of the following formulas for each

segment

ag for acceleration part
W = 0  for constant feedrate part (4.9)

—ay for deceleration part
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where a, denotes the desired acceleration. With a given desired feedrate, denoted
as v4, we can compute all the time intervals for acceleration, constant feedrate, and
deceleration. Although Huang and Yang (1992) proposed a better way to make
the whole system more smooth, it requires much more computation time. Hence,
Eqgs. (4.8) and (4.9) are chosen for determining the time derivatives for each coordinate.
Since CNC machines are usually operated in constant speed (feedrate) environment,
most of the segments will be made into constant feedrate operation except for the first
and last segments. It should be noted that §,(¢) represented by Egs. (4.8) and (4.9) is

no longer an explicit function of time.

Similar to the previous case, torque computed from Eq. (4.2) is used for estimating
the initial coefficients of the input functions. Since the path trajectory is no longer
a direct function of time, the time derivatives of P;(w) is obtained by the chain rule.

That is, for the x coordinate, we have

ax &
= %8—’: (4.10)
and
O’x Ow., Ox O*w
= a2 tawoar 4.11)

It should be noted that %—‘,” and %2—;” are not always constant. Substituting Egs. (4.8)
through (4.11) into Eq. (4.2), we can compute the estimated torque for the x axis.

Similar formulas can be obtained for the other coordinates.

As an example, we will demonstrate the ability of tracing a circle on a plane
using the above technique. Since our model is a spur gear and not a rack-and-pinion
system (usually used in CNC machines), we assume that x = 60,,, y = 6,,, and the
circle has a radius of 0.1 radians. There are two motors, each drives one of the

axes through a gear pair as shown in Fig. 2.2. Tracing a circle with a radius of 0.1
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Ay by Ci dyi ay; byi Cyi dyi

i=1] 2542 | -151-096| O 361 |-491| -0.03 | 0.10

i= 483 | 432 | -0.74 { -0.07 | 1799 | -4.09| -0.72 | 0.07

i=3 | -648 | 543 |0.005|-0.10 | 16.82 | 0.04 | -1.03 0

i=4 | -17.18 | 394 | 0.72 |-007 | 7.11 | 391 | -0.72 |-0.07

i=5]-17.21 | 0.001 | 1.02 0 -7.01 | 5.54 | -0.0003 | -0.10

i=6 | -6.39 | -395 | 0.72 | 0.07 | -17.34 | 393 | 0.72 |-0.07

i= 451 | -541| 001 | 0.10 | -16 |-0.05| 1.02 0

=8 | 26.63 | -4.38 | -0.74 | 0.07 | -11.03 | -3.73 | 0.73 0.07

Table 4.3: Coefficients of cubic spline in case (2)

radians requires approximately a rotation of 1 circular pitch of gear 2. Recall that the
clearance angle caused by backlash is about + 0.001radians. Such a small circle is
intentionally chosen to demonstrate the influence of backlash under small movement.
For simplicity, we divide the circle into 8 segments, 7 /4 radians each, and the first
point starts at x=0 and y=0.1. Since a circle is a closed curve, no additional constraints
on the endpoints are needed for the cubic splines. The coefficients of the composite
cubic splines in Eq. (4.8) are listed in Table 4.3. The estimated torque for the x axis,
for example, can be obtained by substituting Eqgs. (4.8) through (4.11) into Eq. (4.2)
and can be written as

2
(ux)est = (12 + IlNz)[(GaxiW + 2bxt)(a_w)2 + (3axiW2 + beiw + Cxi)a_tv'] N
ot or

+cy + INH[Bayw? + 2byw + cxi)aa—”:] /N (4.12)

where & and 2¥ are determined by Eq. (4.9).

Setting a; = 60 rad/sec? and v, = 2 rad/sec, eight consecutive optimization
g g P
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Coi Cyi (&]] C3i Cyi Csj

i=1 | -6.88¢6 | 2.04e6 | -1.62e5 | 4.14e3 | -15.18 | 0.35

i= 0 -53.39 | -10.30 | 0.26
i= 0 49.19 | -12.15 | -0.23
i=4 0 131.84 | -5.75 | -0.62
i=5 0 137.55 | 4.26 -0.64
i=6 0 48.48 | 11.19 | -0.29

i=7 0 -3421 | 12.60 | 0.22

i=8 | -4.02¢7 | 4.97¢6 | -1.85e5 | 1.40e3 | 7.23 | 0.63

Table 4.4: Optimized coefficients of composite input function for the x axis in case

2

processes in CONSOLE have been carried out. The acceleration and deceleration
parts lead to a nonsmooth torque curve in the first and last segments. Fifth degree
polynomial, which produces much smaller tracking errors than a cubic, are therefore
utilized as the input functions for these two segments. For the constant speed segments,
only cubic input polynomials are sufficient. The composite input functions for the x

axis can be written as

coit® + cit® + et + 3 for constant feedrate part
u(t) = (4.13)
coit® + cpt* + cot® + c3t® + cyit + cs;  for variable feedrate part
where c;; are the coefficients to be adjusted during the optimization process, i denotes
the ith segment, and the unit of u,(7) is torque (Nm). The initial values of the coefficients,
cji, are obtained from a least square fitting with the torque function computed from

Eq. (4.12).

The optimized values of the coefficients of composite input function for the x axis,
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do;i dy; dy; ds; dy ds;

i=1 | 1.52e7 | -1.77e6 | 5.66e4 | -86.76 | -0.35 | 0.015

i=2 0 -137.85 | 5.88 0.62

i=3 -119.72 | -4.25 0.63

i=5 5321 | -12.25 | -0.23

0

i=4 0 -206.18 | -5.45 0.26
0
0

i=6 13225 | -5.68 | -0.62

i=7 0 82.76 3.99 -0.61

i=8 | -8.72e5 | 7.15e5 | -7.28e4 | 2.19¢3 | -6.08 | -0.28

Table 4.5: Optimized coefficients of composite input function for the y axis in case

)
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Figure 4.6: y vs. x
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Figure 4.7: Tracking error along the x-axis vs. time

Tracking error (8, -6 4 ) along the y-axis
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Figure 4.8: Tracking error along the y-axis vs. time
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Figure 4.9: Applied torques of x vs. time
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Figure 4.10: Applied torques of y vs. time
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Figure 4.11: Relative displacement of x-axis vs. time
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Figure 4.12: Relative displacement of y-axis vs. time
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cji, and those for the y axis, dj;, are listed in Tables 4.4 and 4.5, respectively. The
simulation results are shown in Figs. 4.6 through 4.12. Figure 4.6 shows the optimized
output and the desired circular path. The tracking errors between the optimized output
and the desired path for both x and y axes are shown in Figs. 4.7 and 4.8, respectively.
The required torques for the x and y axes as shown in Figs. 4.9 and 4.10 are nonsmooth
due to piece-wise approximation of the desired path. The relative displacements for
both axes are shown in Figs. 4.11 and 4.12. The effects caused by backlash can be
clearly seen from the switch of contact type. It can be seen that the undesired effects

caused by backlash and friction have been successfully compensated and reduced.

From several additional simulation results, we found that the proposed
optimization-based open-loop control technique will deteriorate when the required
motor torque approaches its peak torque region. In such case, a DC servo motor with

higher torque capacity is needed.

4.6 Feedback Compensation

Since load disturbances, u,, from the environment such as unmodeled friction, sensor
noise and model parameter errors are unavoidable, feedback compensation is nec-
essary. A block diagram with both an optimized open-loop control function and a
state feedback PD controller as shown in Fig. 4.13 is proposed. We may think of
the proposed control strategy as a feedforward plus feedback control. The optimal
feedforward input, u,, (%), is designed to provide the necessary control for following
a specified motion trajectory accounting for all the effects of known nonlinearities.
The feedback part further minimizes the tracking error due to unknown disturbances

or inaccurate system parameters.
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Figure 4.13: Complete closed-loop control system

Since a gear system with backlash and friction is highly nonlinear, it would be very
difficult to find an appropriate feedback gains directly. A different approach other than
analyzing such a nonlinear system is proposed here. First, the linearized gear model
is used to locate approximate feedback gains satisfying the H.,,, performance criterion
(Zhou, et al., 1992). Then, surface plots of the tracking error, max |y(f) — y,(?)|,
versus feedback gains around the approximate values and a sequence of constant load

disturbances are made to find the "best" feedback gains.

4.6.1 Approximate Feedback Gains

From the above discussion, we know that the optimal open-loop input, Uops(D), i
mainly supplied for trajectory tracking and the state feedback controller is used for
small corrective actions. It is possible to transform the original tracking problem as
shown in Fig. 4.13 into a regulation problem. That is, both u,,, and y, can be dropped
from the original system and the state feedback is used to reduce the effects of u,.
Thus, the problem has been transformed into that of finding a feedback controller such

that the output of the system will approach zero state as fast as possible with any load

112



disturbances.

Hence, some of the H, theorems that guarantee the attenuation of disturbances are
excellent tools for finding a controller for such regulation problem. However, since
these H,, theorems are developed for linear systems, they can only be used for locating
approximation feedback gains. Our previously linearized gear model, Eq. 4.2, can be

written as follows.
(L +LINDG, = N(ugy + ) + tgis — c1 % N6y — 26, 4.14)

where the control variable u(z) has been split into three terms, u,,, Uy, and uy;, where
ug, denotes the feedback control input, and u,;; denotes a load disturbance as shown in

Fig. 4.13.

The optimized input, u,,, satisfies
(L +IIND0; = Nugy—c1 x N0y —crf, (4.15)
Subtracting Eq. (4.15) from Eq. (4.14), yields
(I +IN®)é = Nug +ug—cy * N*e¢—cpé (4.16)

where e = 0, - 0,.

Rewriting Eq. (4.16) in a state-space form, we obtain

% 0 1 X1 0 0
= . + Up + Ugs (4.17)
- —(¢ /N ~ N 1
% 0 B || & LN v
xr = A+ Buuﬂ, + Bwud,-s (418)
X
zZ = C§:=[1 ()] (4.19)
X2
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X1 €
where & =

and z denotes the output of interest.
Xy e
From H, theorems (Zhou, et al., 1992; Stoorvogel, 1992; Boyd, et al., 1994), we
know the L,-induced gain from u; to z of the Egs. (4.17—4.19) should be

Ll

4.20)
[ eeais| 1270 ”udis”z

where the L, norm of a signal u is |

ull3 = [5° u(®)Tu(f)dt, and the supremum is taken

over all possible trajectories of the above Eqgs. (4.17—4.19), starting from x(0) = 0.

Here, our goal is to find a feedback control law u(t) = KX(¢) such that the L,-
induced gain from ug; to z of the above closed-loop system is less than 1. That means
even with the worst u,; the corresponding output will not be amplified and therefore
it assures the attenuation of the disturbances. This property can be guaranteed if there
exist Y and Q = QT > 0 such that

AQ+QA"+B,Y+Y'B"+B,BT QCT
cQ -1

<0 (4.21)

Moreover the state feedback controller can have a constant gain that is K = Y Q.
This system is not only necessarily quadratically stable but also implies a standard H.,
disturbance attenuation bound. Since the system is linear time invariant, this condition

is both necessary and sufficient.

Therefore, the problem of finding such a state feedback controller can be reduced to
searching for the matrices (Q and Y satisfying the above linear matrix inequality. The
searching for the matrices @ and Y can be solved by ordinary convex programming.
Here, LMI Lab (Gahinet and Nemirovskii, 1994) is chosen to solve the above equations

and the feedback gains for the example system are found to be

K=[k1 k2]=[3.9615 4.9454 4.22)
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4.6.2 Surface Plot

The feedback gains obtained in Eq. (4.22) are only good for a linear system. To further
help us understand the system properties, surface plots of max |y(f) - y,(?)| for the gear
model with the optimized input ,,, taken from case (1) versus some small changes in
feedback gains and a sequence of constant load disturbances are made. The constant
load disturbance ranges from O to -0.2 Nm and the gain is specified as K = k,V,
where k, is a scalar ranging from O to4 and V' =[0.8 1]. Theratioof V' =[0.8 1]is
obtained from the previously estimated feedback gains, k; : k,. Using these variables,
a 3-D surface plot of the tracking error, max |y(¢) — y4(?)|, can be drawn as shown in
Fig. 4.14. From this figure the best feedback gains can be chosen from this figure

according to the estimated worst load disturbance conditions.

0.1
0.08

0.06

0.04

Tracking error: maxly(t)—y (t)!

Figure 4.14: Surface plot with a non-colocated sensor
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4.6.3 Redundant Sensors

The above analysis is based on a non-colocated sensor, i.e., a sensor located at the
output shaft. The non-colocated sensor will cause oscillations due to the uncertainty
brought by backlash. A colocated sensor, i.e., sensor located on the motor shaft, will
not have this inherent disadvantage, but the flexibility and friction torque will lead
to a larger tracking error (Hollars and Cannon, 1985). Therefore, we can further
improve the above performance by using both non-colocated and co-located sensors.
The position and velocity feedback gains, K = [k; k4], can be obtained by using
the same linear model written in term of #,. After some calculations, we obtain
[ks k4] = [15.7663 20.9376]. By combining and averaging the feedback gains, we

set the feedback input uy, as
ug = 1/2 % [k1(02 — 0,) + k(02 — 0,) + k3(6) — NOy) + ka(6, — N6,)] (4.23)

Therefore, the gain is specified as K = k, V' where k, is a scalar ranging from O to
4and V =[0.8 1 3.19 4.23]. Theratioof V =[0.8 1 3.19 4.23] is obtained from
the estimated feedback gains k), k,, k3, and k4. By defining these variables, we can
draw a 3-D surface plot of the tracking error, max |y(f) — y4(#)|, as shown in Fig. 4.15.
It can be seen from this figure that the system performance is improved with both
colocated and non-colocated sensors. We note that the system performance is very

satisfactory for all k, > 2.

4.7 Conclusions

A new open-loop optimization-based control algorithm is proposed to achieve accurate

trajectory tracking of geared servomechanisms. Using the linearized dynamic model
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Tracking error: maxly(t)-y(t)!
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0.015

0.01
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(Nm) -0.15

Figure 4.15: Surface plot with colocated and non-colocated sensors
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of a geared servomechanism and the desired path, we first estimate the required input
function for each motor. Then the control input functions are optimized for minimal
tracking errors by running the CONSOLE off-line. Furthermore, a state feedback
controller is introduced to reduce the effects caused by load disturbances from the
environment and possible modeling errors. Due to the nonlinearity of a real system,
a linearized model is used for estimating approximation feedback gains satisfying the
H,, performance criterion. Then, surface plots around such points are made to identify
the "best" feedback gains. The simulation results using the new control strategy for
a gear system with backlash and friction are very satisfactory. The tracking error
has been reduced to a minimum. It can be concluded that the proposed new control
method should help us in achieving a better control for a robot manipulator or a CNC

machine.

118




Chapter 5

Conclusions

5.1 Review

In this dissertation, the research has concentrated on three aspects of geared servomech-
anisms: (1) control-oriented modeling of a gear pair with backlash and friction, (2)
uniqueness and stability analysis for nonsmooth systems and (3) controller design for

better trajectory tracking. The major results of this research are as follows:

e A control-oriented dynamic model for a gear pair with backlash and meshing
friction was established. In order to make this model suitable for real-time
control, the mean value of mesh stiffness was used to eliminate the needs for the
determination of meshing position first. Then, average friction torque method
was used to reduce the complexity of dynamic model for a gear pair with sliding
friction. Therefore, the proposed model is simpler and more suitable for real
time control than other dynamic models. By including backlash and meshing

friction in the dynamic model, a better understanding on the dynamic response
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of a geared servomechanism has also been achieved. The simplified method of
calculating friction torque and meshing stiffness also provides an easy way of
composing dynamic models considering backlash and friction for higher DOF
geared servomechanisms when the effects caused by backlash and friction can

not be neglected.

The basic existence and uniqueness properties for the previous proposed dy-
namic model of a gear pair with backlash and friction were examined based on
Fillipov’s solution concept for discontinuous differential equations. The inves-
tigation proves that the proposed model is a meaningful mathematical model.
The stability condition of the same dynamic model was analyzed by using the
proposed methodology of composing a Lyapunov function for a nonsmooth
system whose dynamic equations have piece-wise continuous right hand. From
the stability analysis, the main factor influencing the stability region is from

backlash.

A feedforward plus feedback controller for geared servomechanism was pro-
posed to achieve high precision. A new open-loop optimization-based control
algorithm based on the uniqueness properties was first proposed to achieve an
accurate trajectory tracking. Theoretically, the optimization process can reduce
the effects caused by backlash and friction to a minimal level. A systematic
way of designing state feedback controllers was then established. Such feedback
controllers are used against load disturbances from the environment and possible
modeling errors. Numerical simulation results indicate that the improvement
is quite satisfactory. It is anticipated that the proposed new control methods

should help us in designing a better controller for robot manipulators or CNC
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machines.

5.2 Future Work

To further explore the effects caused by backlash and friction, experimental verifica-
tions will be very helpful. Experimental programs that consider different backlash
values, gear pairs, friction (with different lubrication conditions), and operation con-

ditions would help determine the general effectiveness of the model and the controller.

The simplification of model parameter is based on the assumption that the system
does not operate in a extremely low speed range. This will cause errors due to the fact
that friction depends on the contact point, for example, when the system approaches the

final position. Different control strategies should be considered for such operations.

Although strategies of composing a dynamic model for multiple DOF geared
servomechanisms are not addressed in this dissertation, it is actually a very essential
issue. In a multi-DOF system, the inertias of the links become configuration dependent
and this makes the modeling problem much more complicated. The control strategy
presented in this dissertation will need some modifications and this is a subject of

future study.

Due to highly nonlinearity of the dynamic model for a gear system with backlash
and friction, the selection of optimization parameters is a difficult task. Here, new
initial condition, variation, and scaling selection will affect the optimization results.
New objective function, new constraint and new input function will change the con-
vergence direction and the execution time of whole optimization process, too. Further

study on choosing the above parameters is therefore important.
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