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Abstract

This paper provides an analysis of R-trees and a variation (R*-trees) that avoids over-
lapping rectangles in intermediate nodes of the tree. The main contributions of the paper
are the following. First, we show how the the transformation of objects to higher dimen-
sions (first proposed by Hinrichs and Nievergelt [HINRS83]) can be effectively used as a
tool for the analysis of R~ and R*— trees. Second, in this paper we provide the first
known analysis of R-trees. Although formulas are given for objects in one dimension
(line segments), they can be easily generalized for objects of higher dimensions as well.
Finally, we derive formulas for R*—trees and compare the two methods analytically. The
results we obtained show that R*-trees require less than half the disk accesses required
by a corresponding R~tree when searching files of real life sizes. R*—trees are clearly
superior in cases where there are few long segments and a lot of small ones.
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1. Introduction

It has been recognized in the past that existing Database Management Systems (DBMSs) do
not handle multi-dimensional data efficiently. Multi-dimensional data arise in applications such
as cartography, Computer-Aided Design (CAD), computer vision, robotics and computer graph-
ics. Since database management systems can be used to store one-dimensional data, like integer
or real numbers and strings, considerable interest has been developed in using DBMSs to store
multi- dimensional data as well. In that sense the DBMS can be the single means for storing
and accessing any kind of information required by applications more complex than traditional
business applications. However, the underlying structures, data models and query languages are
not sufficient for the manipulation of more complex data. The problem of extending current
data models and languages has been considered by various people in the past
[CHANS1,STON83,GUTT84b,ROUS85]. In this paper we focus on the problem of deriving

efficient data access methods for multi~dimensional objects.

The main operations that have been addressed by other researchers in the past can be sum-

marized as follows:
Point Queries: Given a certain point in the space, find all objects that contain it
Region Queries: Given a region (user window), find all objects that intersect it.

Of course these operations can be augmented with additional constraints on simple one-
dimensional (scalar) data. In addition, operations like insertions, deletions and modifications of

objects should be supported in 2 dynamic environment.

Samet in [SAMES84] provides a good survey for various access methods that can be used for
the efficient storage and retrieval of complex data. We review these structures here without
going into details; the interested reader is referred to [SAMES84]. Most of the structures that
have been proposed are hierarchical ones with the exception of the Grid File [NIEV84] and
EXCELL [TAMMS82] which are bucket methods based on extendible hashing. Methods based on
hierarchical decomposition are very attractive because they are recursive in nature and use the
divide and conquer paradigm to organize multi-dimensional data. That is, going down a
hierarchical structure one focuses on more and more interesting subsets of the data which in turn

results to efficient execution times [SAMES4]. In the single dimension case we have seen such a



successful structure in the form of B-Trees IBAYET2). The most common case of multi
dimensional data that has been studied in the past is points. k-d Trees [BENT75!, Quad-Trees
[FINK74,SAMES4] and k-D-B-Trees [ROBIS81] are hierarchical structures for storing point data.
Some of these structures are very inefficient for secondary storage though. The k~D-B-Tree is a
direct extension of B-Trees in k-dimensional spaces and is taking paged secondary memory

under consideration.

Considering region data (polygons), some variations of quad trees have been suggested in
the past [KEDE81,SAMES83|. However, none of them can be naturally extended to work in
secondary storage based systems. Another interesting approach has been suggested by Orenstein
[ORENS6] whereby k—dimensional objects are transformed to line segments, using the “z-
transform". This transformation induces the very same ordering that a quad-tree uses to scan
pixels in a 2-dimensional space. These line segments are then stored in relations and are pro-
cessed using the so—called “spatial join*. This way minimal changes are required in database

systems to support spatial operations.

The most promising method suggested up to this point has been Guttman’s R-Trees
[GUTTS84a). R-trees are a natural extension of B-trees for multi-dimensional objects that are
either points or regions. However, if R~Trees are built using the dynamic insertion algorithms,
the structures may contain excessive space overlap and “dead-space* in the nodes that result in
bad performance. A packing technique proposed in [ROUSS8S5] alleviates this problem for rela-
tively static databases. For update intensive spatial databases with highly overlapping data
objects R* ~Trees [STONS6] partition the space into subspaces that do not necessarily cover the
spatial object. This partitioning of the space avoids the overlap problem and the benefit offsets
by far the small increase of the height of the tree. Gunther [GUNTS86] also suggests a similar

scheme for general polygon data.

The purpose of this paper is to analyze R-Trees and R*-trees. In the next section we
describe the original R-tree scheme and the extended R —trees. Section 3 then presents a formal
analysis of the searching performance of both structures followed by section 4 where the analyti-
cal results observed for various database sizes and distributions are shown. Finally, we conclude
in Section 5 by summarizing our contributions and giving hints for future research in the area of

multi-dimensional data indexing structures.



2. R-Trees and R*-Trees

2.1. R-trees

As mentioned above R-trees [GUTT84a] where proposed as a natural extension of B-trees
[BAYE72| in higher than one dimensions. They combine the good features of both the B-trees
and quadtrees. However, contrary to quadtrees, they remain balanced and still have the flexibil-
ity of dynamically adjustable windows that deal with "dead-space" on the pictures. A second
important feature that distinguishes R-trees from quadtrees is the fact that, at the leaf level, the
former store full and non-atomic spatial objects whereas the latter may indiscriminately decom-
pose the data objects into lower level pictorial primitives such as quadrants, line segments or
pixels. This feature provides a natural and high level object oriented search. Similar search
in quadtrees requires an elaborate reconstruction process of the spatial data objects from. the low
level primitives found on the leaves. Furthermore, because the storage organization of R-trees is
similar to that of B-trees, they are better in dealing with paging [GUTT84a], an issue not well

researched in quadtrees.

R-trees have been proposed as an advanced indexing technique for direct spatial search
that can deal with non-atomic spatial objects. They can, however, be used as a representation

medium like quadtrees. The full potential of R-trees has not been yet conceptualized.

The decomposition used in R-trees is dynamic, driven by the spatial data objects. There-
fore, if a region of an n--dimensional space includes dead-space, no entry in the R-tree is made.
Leaf nodes of the R~tree contain entries of the form

(I, object-identifier)
where object-identifier is a pointer to a data object and /is an n-dimensional minimal rectangle
(called MBR) which bounds its constitugnt data objects. The possibly non-atomic spatial
objects stored at the leaf level are considered atomic, as far as the search is concerned, and, in
the same R-tree, they are not further decomposed into their pictorial primitives, i.e. into qua-

drants, line segments, or pixels.

Non-leaf R-tree nodes contain entries of the form
(I, child-pointer)

where child-pointer is a pointer to a successor node in the next level of the R-tree, and [is a



minimal rectangle which bounds all the entries in the descendent node. The term branching fac-
tor (also called fan-ou!) can be used to specify the maximum number of entries that a node can
have; each node of an R-tree with branching factor four, for example, points to a maximum of
four descendents (among non-leaf nodes) or four objects (among the leaves). To illustrate the
way an R-tree is defined on some space, Figure (1a) shows a collection of rectangles and Figure

(1b) the corresponding tree built for a branching factor of 4.

In considering the performance of R-tree searching, the concepts of coverage and overlap

[ROUSS5] are important. Coverage is defined as the total area of all the MBR’s of all leaf R~
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Figure 1b: The Corresponding R-tree
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tree nodes, and overlap is defined as the total area contamed within two or more leat MBR s
Obviously, efficient R-tree scarching demands that both overlap and coverage be minimized,
glthough overlap seems to be the more critical of the two issues. For a search window falling in
the area of /N overlapping leaves, in the worst case, /N paths from the root to each of the over-
lapping leaves have to be followed slowing down the search from 2 to h N, where & is the height
of the tree. Clearly, since it is very hard to control the overlap during the dynamic splits of R-
trees, efficient search degrades and it may even degenerate the search from logarithmic to linear.

Minimal coverage reduces the amount of dead space covered by the leaves.

It has been shown, that zero overlap and coverage is only achievable for data points that
are known in advance and, that using a packing technique for R-trees, search is dramatically
improved [ROUS85|. In the same paper it is shown that zero overlap is not attainable for region

data objects.

2.2. R*-Trees

In this paper we use a variation of R-trees called R*-trees [STONS86] which avoids overlap
at the expense of space which indirectly increases the height of the tree. The main difference
here is that rectangles can be split into smaller sub-rectangles in order to avoid overlap among
minimal bounding rectangles. That is, in some cases, in which a given rectangle covering a spa-
tial object at the leaf level overlaps with another rectangle, we decompose it into a collection of
non-overlapping sub-rectangles whose union makes up the original rectangle. All the pointers of
the sub-rectangles point to the same object. These sub-rectangles can be judiciously chosen so
that no bounding rectangle at any level need be enlarged. The same sub-splitting is propagated

up to the non-leaf nodes, thus overlap is forced to stay zero.

R*—trees can be thought as an extension of K-D-B-trees to cover non-zero area objects
(i.e. not only points but rectangles as well). Hence, for any object within a given search window,
a single path has to be investigated despite the fact that there may be several paths leading to
the same object. The additional cost incurs in terms of the increased height of the tree. Intui-
tively, for non—pathological split cases, the increased number of sub-rectangles for two overlap-
ping rectangles at a node may cause a split of it and this adds one more level to the height of the

tree. However, for each such increase to the height, the corresponding search on a regular R-tree



for any object in the overlapping arca muy require h additional page accesses, where h is the
height of the tree.

Given the above brief description of the two data structures, we proceed in the next section

to analyze their search performance.

3. Analysis

In this section we analyze the performance of both R*— and R- trees. In the first part we
introduce the methodology used through out this section and then continue in the other two sub-
sections with the analysis of the two data structures. The analysis examines the performance of

both structures for point queries. In section 5 we comment on the performance of region queries.

3.1. Methodology — Assumptions

The proofs of the forthcoming analyses can be derived more easily if we consider boxes as
points in a 4-dimensional space (HINR83]. For a box aligned with the axes, four coordinates are
enough to uniquely determine it (the x and y coordinates of the lower-left and upper-right
corners).

Since 4-d spaces are impossible to be illustrated, in this paper we examine line segments
(1-d objects) instead of boxes (2-d objects), and we transform the segments into points in a 2-d
space. Each segment is uniquely deiermined by (2,44, Zonq), the coordinates of its start and end
points. Obtaining formulas and results for line segments is a first step to the analysis of 2-d

boxes, or even rectangles of higher dimensionality.

In the case of line segments, the “screen® collapses to a line segment, which, by convention,

starts at O and ends at 1. Figure 3.1a-b shows some line segments and their 2-d representation.
Some important observations, with respect to the transformed space:
(1) There are no points below the diagonal, since z,0y < Zong-

(2) Line segments of equal size, like B and C, are represented by points that lie on a line paral-
lel to the diagonal (dashed line in Figure 3.1b). Zero-size segments (i.e. points), like F, are

represented by points on the diagonal.
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Figure 3.1: Some line segments (a) and their 2-d representation (b).

Line segments not entirely within the screen, such as A are allowed. In the analysis we con-

sider their remainder after clipping (solid part of A in Figure 3.1a).

Points outside the shaded area in Figure 3.1b are of no interest, because the corresponding

segments do not intersect with the screen.

The segments covering a given point z, of the screen are transformed to points in a shaded

area as shown in Figure 3.2.

The shaded area in Figure 3.3 corresponds to all the segments intersecting with the segment
(z1, z3).

The shaded area in Figure 3.4 corresponds to all the segments covered completely by the
segment S(x;, z,).

To make the analysis tractable, we assume that

the line segments of a given size are uniformly distributed

they need not be totally within the screen. The starting points of these segments divide the
interval (—o, 1) to N+1 equal subintervals, where /N is the number of segments and o their

size.
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Figure 3.2: The shaded area corresponds to segments containing the point z,.
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Figure 3.3: The shaded area corresponds to segments
intersecting with the segment (z,, z,).

: Tatart
0 =z, z, 1"

Figure 3.4: The shaded area corresponds to segments
covered completely by the segment S{z;, z,).

Figure 3.5a and 3.5b illustrates a set of N=5 segments of size ¢=.25, that are uniformly
distributed. The reason for considering the clipped-off "leftovers" of some of the segments is to

maintain a constant overlap for all the points on the screen.

Definition: For a given point, let Overlap O, be the number of segments that contain it.

Table 1 indicates the parameters common to all the forthcoming analyses.

- 10 -
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{a) N=>5 segments of size ¢==25, uniformly distributed on the screen
(b) The 2-d transformations of the segments of Figure 3.5a

Parameter Deseription
C the capacity of the data pages (= data records per page)
f the fanout of the internal nodes of the tree: f sons per node.
h the height of an R-tree (the root considered at level 1).
h, the height of an R* —tree

Table 1: Problem Parameters

3.2. Analysis of Rt —trees

We examine two cases: In the former, referred to by one—size case, we consider /N segments
of size o, uniformly distributed as described before. In the latter, two—size case, we consider
two sets of segments, set 1 with N, segments of size 0, and set 2 with N, segments of size 0,.

The segments of each set are uniformly distributed.
An important Lemma first:

Lemma: Given N segments of size o, uniformly distributed on the screen, a line segment (query

segment) of size q intersects with intsect(N,0,q) segments, where

—11 -



intsecl(N,0,q) = %(1\"—{- 1) (1)

Proof: Consider Figure 3.6. Projecting the line AB on the horizontal axis, we have the line
ADB’, of size 1+0. The query rcgion (shaded area) intersects the line AB on a segment CD,
whose projection C’D”’ is of size 0+¢. The fraction of the intersected segments (= circles on
line CD, or circles on line C’D’) is length(CD) / length(AB) == (0 +¢q) / (1+0) Since the line AB
is divided into N+ 1 equal intervals by the circles, the line CD will contain on the average
TELN+1)

circles, which is exactly the number of segments that the query segment g will intersect. Notice
that the formula does not depend on the position of the query segment on the screen, exactly
because the of the way we have defined the uniform distribution of the /N segments. For ¢=0,

that is, the query segment is a point, we have the formula for the overlap:

Corrolary: Given N segments with size o, uniformly distributed on the screen, the overlap is

constant, and given by-the formula:

B
.
o
A c’ D’ B’

Figure 3.8: N segments of size ¢ (represented as circles),
uniformly distributed on the screen.

- 12 —



O(N,0) = —l-j-r’-o—(f\m) (2)

From (1) and (2) we have

intsect(N,0,q) = O, (N,0)+ g(N+1-0,(N,0)) (1)
For example, consider the case of N=>5 and 0=0.5. Then the segments are shown in Figure 3.7,
for an overlap of {0.5 / (1+0.5)] * (5+1) = 2: Every point on the screen is covered by 2 seg-

ments.

3.2.1. R*¥—trees, One—Size Case

Assume that we have N segments of size o, uniformly distributed on the screen, as
explained before. Let h, be the height of the resulting R*-tree, which is assumed to be full,
that is, every data page contains C entries, each internal node has f sons. The total number of
data pages will be jh* dividing the screen into f'* intervals. Due to the uniformity assu}rlption,
each interval will be of size l/fh*. Each page corresponds to one such interval. The segments
that intersect such an interval-will be entered in the corresponding page. Since each page is full,

we should have

C=intsect{N,o,

R
)

or
C=0+ ; (N+1-0)
or
1. N+1-0
l [ t 1 | J |
-.25 0 0.5 1 1.25

Figure 3.7: 5 segments of size 0.5 each; overlap: 2
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where O is the overlap O = O,(N,0) of the given set of segiients. The total number of disk
accesses r* da for a point query is the height incremented by one, to account for the retrieval of

the data page. The root of the tree is assumed to be on the disk. Thus:

N+1-0
*da=1+log ;———
r*da=1+log; 0 (3a)

or, since N>»1 and N>O,

rtda = 1+log, (3b)

N
C-0

The intuitive explanation is that the capacity of every data page is "reduced" by O, because it
has to accommodate the remainders of O segments from each right neighbor (while this very

page forces O entries into its left neighbor).

3.2.2. R*-trees, Two-Size Case

Here we assume two sets of segments, set 1 with IV, segments of size g, and set 2 with N,
segments of size 0,. The segments of each set are uniformly distributed on the screen. Using

the same arguments as before, we have that

C=intsect(Nl,al,l/fh*)+intsect(N2,U2,1/jh+)

or
; C——Ov,l—O,,'2= ?1:'(N1+ l—Ov'l+ N2+ 1—00,2)
or
h —l N1+N2+2-—O,,’1—Ou'2
+= 8 020,,-0,;
or
~ N
he N losrg o,

where

Nl + N2 == N

0,1 = O(N,,0,) the overlap due to set 1 segments

~ 14 —



Q= Oy(N,,0,) the overlap due to set 2 seginents

v,2
O, = O, + O,, the total overlap.

Thus, finally we have:

rtda ~ 1+log;

N
c—0, (4)

Important observations:
(1) Eq. (4) holds for any number of sets of segments (not just two)

(2) The result depends only on the total number of segments and the total overlap; not on the

characteristics of each set of segments.

3.3. Analysis of R—-trees

In the same way as above we do the analysis of R-trees. Both one-size and two-size cases

are analyzed.

3.3.1. R-trees, One-Size Case

First we consider the case of one-size segments. The tree is assumed to be full. Thus, the
segments are grouped in N/ C pages, in groups of size C. Each page is characterized by the
“minimum enclosing segment", that covers all the segments in this page. This segment
corresponds to a point in the transformed space; for example, in Figure 3.8, “A* is the minimum

enclosing segment for the segments A;, Ay, A3 and A,.
These segments will be referred to by “fathers of level 1*. It can be proven [SELLS6] that
they are of equal size 0 7444,y

(14+0)
(o4 =

Jather,1 (N+ 1)
and that they are uniformly distributed.

(C-1)+0 (5)

Data pages are grouped in N/(C/) groups, each group containing f data pages (and there-
fore Cf segments), to form the lowest level of internal nodes of the R-tree ("fathers of level 2*).

In general, "fathers of level " have size

- 15 -
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Figure 3.8: lllustration of fathers of level 1 (C=4).

140 i
O father,i = m[Cf' ’—1]+ﬂ (8)
and are uniformly distributed, in the sense described before. The root of the R-tree corresponds

to a father of level h+1
The overlap O, r51r,i for fathers of level ¢ is the number of fathers of level ¢ containing a

point on the screen. Since the number Ny, ; of i-level fathers is

N
N atheri &= .
Jather, Cfl—l (7)

their overlap O, tqeper i i3, from the corollary (Eq. (2))

O father,i

Ou,j'athcr,l' = 1+of¢ther,l' (Nfathcr,i+ 1) (8)
which becomes
O,~1
Ov,father,:' = 1+ Cf,'_l (9)

To find the number of disk accesses rda in answering a point query, we have to add all the
fathers of any level, that cover the query point. That is
he1

rda = z Ov,fathcr,i (10)

=1

where h is the height of the (full) R-tree:

- 16 —



h = log/g (11)

Then, (11) and (9) give

. Ou_l f 1

(12) assumes that h is an integer. If not, we can either use linear interpolation, or replace the
sum of Eq. (11) with an integral from 1=0.5 to i=h+1.5. The difference in the two approxima-

tions is small (less than 29).

3.3.2. R-trees, Two-Size Case

As with the R*-trees, we consider IV, segments of size oy and NN, segments of size 0,.
Each set is uniformly distributed on thé s—}een mf\ﬁ‘ot the tightest) packing of segments
in data pages is by storing C; =f N,/N and q"z—Nz/N consecutive segments of set 1 and set 2
respectively in each data page, W/from \k:ft to rlght (N = N, + N;). C;and C, will be
referred to by effective capacities for set 1 and set 2 respectively. Figure 3.9 illustrates the
grouping of segments into pages, for C} = 3, Cy = 2, N} == 6, N, = 4.

Notice that each set has N/ C fathers of level 1, with sizes

140,
Oy father) = N+ 1

(C—1)+0,

140,
a2,fa¢her,l = N2+l

(Co—1)+0,
according to (5). It can be shown [SELL86] that every father of larger size covers completely the
corresponding father of smaller size. In Figure 3.9, B, covers A, and B, covers A;. The set

whose level 1 fathers are larger is called the dominating set. Notice that it is possible to have

set 1 as dominating set, even though o, < 7,.

As before, fathers of level 1 are uniformly distributed. In fact, if the subscript dom stands

for the dominating set, the R—-tree will behave exactly the same as if
~ we had Ny, segments of size & 4o,

- che fanout was f as before

~17 —



Figure 3.9: Illustration of the grouping for R~trees.
Cl=3,02=2,N1=6,N2=4.

— the data page capacity was Cy,,

That is, the only effect of the dominated set is that it occupies a fraction 1—Ny,m/ N of the data
pages reducing their effective capacity to Cyom for elements of the dominating set. Thus, the

final formula for disk accesses is derived from Eq. (12)

Ou dom_l [ 1 l
= . l
rda h+ 1+ Cdcm f“‘l fh+ 1 (13)
where
h=1 1 1 i
/ I'c Ic,
and

1 if al,]ather,l >02,/ather,l
dom = 2 otherwise

Notice that Eq. (13) holds for more than two sets of segments; the only thing that mattess is

~ 18 -



which set will be the dominating set.

4. Analytical Results

Based on the formulas extracted in the previous section, we obtained some results that indi-

cate how R-trees compare to R*-trees. The following values were assumed

P = The size of a page = 1,024 bytes
S = The size of a rectangle = 16 bytes
p == The size of a pointer = 4 bytes

Given these numbers we can derive the fan-out f and capacity C of non-leaf and leaf pages

respectively. We assume that the first 24 bytes of a page are taken for the header. Clearly

P

[=¢= |ty

= 30

Finally, the number of data tuples NV was assumed to take values between 100 and 1,000,000.

The analytical results shown in this section fall under two categories. First, we show the
number of disk accesses required to search an R-tree or R* -tree in case of a point query. Since
in general this figure depends on more than one parameters, we choose to fix all but one and
display in a chart the number of disk accesses versus the only left parameter. Second, we show
in a combined chart the performance gain as it changes with the various parameters. We define

performance gain as

(Disk accesses for R—tree)—(Disk accesses for Rt —tree)
- 100
(Disk accesses for R—tree)

Perf. Gain =

4.1, The One-Size Case

Figures 4.1a and 4.1b show the number of disk accesses required to process a point query in
an R-tree and the corresponding R* -tree for a file of N segments with O overlap. 4.1a gives the
disk accesses as a function of O in the case where N=100,000. 4.1b gives the same values as a
function of NV in the case where O=40. As expected the R-tree has always worse performance
than the R*—tree because of the excessive searching required. In both cases the number of disk
accesses increases with the number of segments since the height of the tree increases. Finally,
increasing overlap also accounts for increased number of pages searched; in R-trees this is due to

multiple paths that have to be followed till the leaves have been reached, while in the R* -tree it

— 19 -
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Figure 4.1: Disk Accesses for Cne-Size Segments
(a) As a function of O; N=100,000 (b) As a function of N; O=40

is due to increasing number of sub-segments that have to be created because of splits. Notice
that the difference in disk accesses is not very significant. This is true because of the assumption
that all segments have same size. In this case the R~tree does not incur a lot of overlapping seg-
ments that would cause searching multiple paths in the tree. The two—size case results that fol-

low later show the effect that lengthy segments have on the performance.

The next set of figures, Figures 4.2a-b, illustrate how the performance gain varies with the
overlap and number of segments for different values for the total number of segments and over-
lap respectively. Again as expected, the gain in performance decreases as the total number of
segments increases since the R*—tree will create a lot of sub-segments trying to keep all inter-
mediate node segments non-overlapping. However, the figures show that improvements up to

30% can be achieved.

4.2, The Two-Size Case

Figure 4.3a-b shows the disk accesses required for searching an R—-tree and a corresponding
R*-tree used to index 100,000 segments with total overlap of 40. The first figure (4.3a) shows

disk accesses required as a function of the small segment overlap in the case were the large
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Figure 4.2: Performance Gain for One-Size Segments
(a) As a function of O; N=100-1,000,000 (b) As a function of N; O=2-45

segments account for 10% of the total number of segments (/Ny==10,000). These figures show

clearly the problem that the R-tree has in handling few, lengthy segments. In such situations,

an R-tree may require more than twice the page accesses required by an R*-tree. Notice also
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Figure 4.3: Disk Accesses for Two-Size Segments
(a) As a function of O;; N,=10,000 (b) As a function of Ny; O,=5
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that the performance of the R* -tree is "immune® to changes in the distribution of the segment

sizes. The number of disk accesses depends only on the total number of segments and the total

overlap observed.

In the final set of figures, Figures 4.4a-b, we illustrate again the performance gain as a
function of the number of large segments (IN,) and the overlap observed among the small seg-
ments (O;). The advantage of R*-trees of R~trees is shown clearly in these figures. Improve-
ments up to 70% can be achieved. That means that the R-tree will require in some cases more
than twice the page accesses required using an R*—tree. Of course, when the number of large
segments approaches the total number of segments, R* -trees will lose since many lengthy seg-
ments cause a lot of splits to sub-segments. However, typical distributions do not have this

characteristic. On the contrary, lengthy segments are few compared with small ones (e.g. in 2

VLSI design).

In general our results are very encouraging. Especially when one considers more than two classes
of objects (three-size, four-size, etc) the gain in performance increases substantially. We are

currently working on the experimental verification of these results [SELL86].
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Figure 4.4: Performance Gain for Two-Size Segments
(a) As a function of O,; Ny=10,000-100,000 (b) As a function of Ny; O;=5-45
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5. Contributions

(1)

(3)

(4)

The contributions of this work can be summarized as follows:

A variation to R-trees, R*-trees that was originally proposed in [STONS86] is compared to
the original proposal by Guttman. Such a comparison is very useful since it gives us a good

understanding of how R-trees work and why they suffer under various object distributions.

The introduction and effective use of the transformation to higher dimension as a tool for
the analysis of R~ and R*- trees. This transformation is especially useful for line-
segments, ie., 1-dimensional boxes on a l1-dimensional screen, because the transformed
space is the plane and it can be easily drawn. Thus, simple proofs of the performance
results can be derived. The formulas for the line-segments case will be the stepping stones

for the analysis of boxes of higher dimensionality.

In this paper we provide the first known analysis of R-trees. Our formulas for the two-size
case can be easily generalized to handle any number of sizes: one of the sizes will “dom-
inate* the rest and the formulas can be readily applied. The uniformity assumption that
the model is based on is admittedly strong. This does not reduce its theoretical and practi-
cal value: It corresponds to the best—case results we should expect from an R-tree. More-
over, if the distribution in a given situation is uniform except for minor perturbations, the

derived formulas will give good estimates for the expected performance.

Finally, using exactly the same assumptions, we derived formulas for the proposed R*-
trees.and compared the two methods analytically. The results of the comparison agree
completely with the intuition: The R-trees suffer in the case of few, long segments, which
force a lot of "forking" during the search. The R*-trees handle these cases easily, because

they split these long segments into smaller ones.

Although our analysis has concentrated on point queries, similar results have been obtained

for region queries. Due to space limitations they are not presented in this paper (they will

appear in [SELLS6]).

Our current and future work in the arca focuses in two major tasks. First, we are currently

working in extending the analysis to the case of arbitrary dimensions. This will allow us to

examine objects in two dimensional spaces which are found in many applications. Moreover, we
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try to nmodel the problem under different assumptions than the uniform size one used in this

study. Our.results will appear in a companion paper [SELL86]. Second, we have initiated an

experimentation effort that will allow us to verify our analytical results. Guttman’s code for R-

trees is available; we are in the process of modifying it to come up with code for R* —trees and

we expect to obtain experimental results soon.
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