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Abstract

In this paper, perceptron neural networks are applied to the problem of discrimi-
nating between two classes of radar returns. The perceptron neural networks are used
as nonlinearities in two threshold sequential discriminators which act upon samples of

the radar return. The test statistic compared to the thresholds is of the form T,(Z) =

E?;IKH YZj,Zj41,- -y Zjrr—1) where Z;, i = 1,2,3,... are the radar samples and ~()

is the nonlinearity formed by the neural network. Numerical results are presented and

compared to existing discrimination schemes.
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NEURAL NETWORKS FOR SEQUENTIAL DISCRIMINATION

OF RADAR TARGETS

I. Introduction and Motivation

A problem often encountered in military radar applications is the binary classification
problem. That is, after detecting an object, the radar must classify it as a member of one
of two classes: target or decoy. We shall denote these two classes (or hypotheses) as H;
and Hy respectively.

The discriminator (i.e classification or automatic target recognition circuitry) obtains
a sequence of data, Z1,Z,...,Z,, denoted by the vector Z, from the radar returns of the
detected object. This sequence may be samples of the radar return envelope signal, the
in-phase and quadrature signals, the phase signal, or any other information carrying signal.
In any case, the data sequence is a random process and is described by the probability
density functions (pdfs) fi(z1,29,...,2,) where 7 = 0,1 represents hypothesis H;. More

specifically, we consider

H1 : {Z}?___l haspdf fl(Zl,ZQ,. . 7Zn) = fl(Z)
Hy : {Z}} haspdf fo(z1,22,...,2a) = fo(2)

(1)

where z represents the n-tuple (21,22,...,25). It is assumed that the data sequence is
stationary, and that the data sequence may be correlated and non-Gaussian.

For the discriminator to work properly, it must be designed so that the probability of it
making an error is small. Quick decisions are also desirable, so n should be relatively small.
If the probability density functions of the data were known, likelihood ratio functions could

be used for the test. A likelihood ratio test has the form

¢ f1(2) .
: 1
0, if Fo(Z) < n.

where 1 is a constant to be determined. Hypothesis H; is chosen by the discriminator

when d(Z) = ¢, 1 = 0, 1. Likelihood ratio tests are well known and optimal in the Bayes,
Neyman-Pearson, and minimax senses[1]; the choice of  depends upon which criterion the

designer chooses to optimize.



Typically, the n-dimensional probability density functions are not known or result in
a structure too complex to implement. If the lower order probability density functions (i.e.

with order < n) are known or can be estimated, discriminators with a test statistic of the

form
n—K+1
Tn(z) = Z g(Zj’Zj+1a'-'aZj+K—l) (3)
j=1
can be developed. The function g(z;,z2,...,2x) is a suitably chosen nonlinearity. The

test statistic can be used in both block and sequential tests. The fact that K < n implies
that a discriminator will have a simpler structure since it need only have a memory of
K samples as opposed to n. The nonlinearity g(zi,z2,...,2x), a function of only K
variables, will be simpler in general than a function of n variables when K < n. However,
since K < n, the test in general will be suboptimal to the n-dimensional likelihood ratio

test.

A block test could be implemented as

1, if Ta(Z) > n;
d(Z) = {o, if T,,EZ) < )

where 7 is a decision threshold.

A sequential test could proceed as follows: compare the test statistic T}, to two thresh-
olds a and b. If T, > b declare H; and terminate the test. If T,, < a declare Hy and
terminate the test. If @ < T, < b then obtain the next sample Z,41, compute Ty 41, and
repeat the test. Terminate the sequential test with a block test if a decision has not been
made by the maximum number of data samples N.

Memoryless tests (i.e. K = 1) have been studied by [2] and [3] for block and sequential
tests respectively. [2] and [3] employ central limit theorems for dependent observations
(especially for stationary mixing processes) to derive linear integral equations which they
solve for the optimal nonlinearity g(z). More recent work has been done for the one-step-
memory case where K = 2 (see [4]). [4] showed that probability density functions up to

degree 4 were needed to solve for the one-step-memory nonlinearity.
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Estimation of probability density functions above degree 2 becomes impractical due to
computer processing limitations, and knowledge of higher order pdfs is not likely. There-
fore, a different approach to designing a discriminator is presented in this paéer. Using
apriori data sequences from each hypothesis (i.e. field data), a perceptron neural net-
work is trained with a supervised learning algorithm to produce desirable outputs. This
perceptron neural network is then implemented in a structure to act as the nonlinearity
g(z1,72,...,2x) in equation (3). First, we shall review some basics of perceptron neural

networks.

II. Perceptron Neural Network Basics

For a thorough introduction to perceptron neural networks, refer to [5]. Perceptron
neural networks are interconnected layers of simple processing units called perceptrons. A
perceptron is specified by its weighting vector w = (wo,w1,...,wx—1)7, its offset value 6,

and its nonlinearity. Usually the nonlinearity is a sigmoid

1

f(y)=m:—y-

Q)

Note that we use the terms perceptron and node interchangeably. We also refer to the
offset value § as the node offset value.

The perceptron operates by taking the input vector

x = (29,21,...,2K-1)" and forming the dot product
K-1
Z Tiw; = XW_. (6)
1=0

From the dot product, an offset value 8 is subtracted to get the result y = xw? — 8; y is
then passed through the nonlinearity, and f(y) is output. The nonlinearity f(y) limits the
outputs to values between 0 and 1. Very large values of y will result in values of f(y) near
1. As y approaches —co, f(y) approaches 0.

If the sigmoid were replaced by a hard limiter,

i@ ={y BnZl )

otherwise,



the neural network would essentially separate the input space, R¥, by a hyperplane. Input
vectors lying on one side of the hyperplane would be output as a 0, while input vectors on
the other side of the hyperplane would be output as a 1. The hyperplane is determined by
the weights and node offset value of the perceptron. If the hard limiter were replaced by
the sigmoid, the decision region would become soft.

More complex decision regions can be formed by utilizing multiple hyperplanes. De-
cision regions can be formed by using a perceptron to form each hyperplane of a complex
region. The output of each perceptron can then be fed into an AND gate — or, better
yet, another perceptron with weights and an offset appropriately set to simulate an AND
function. This leads to the concept of multi-layer perceptron neural networks.

Multiple-layer perceptron neural networks take the outputs of the perceptrons on
a layer and use them as inputs to the next higher level of perceptrons (see Figure 1).
Networks of this type are usually called feed-forward neural networks. As demonstrated
in the above discussion, a single perceptron can only divide the decision space with a
hyperplane. But it has been shown that a two-layer perceptron neural network can form
any convex decision region [5]. A convex region is a region from which any two points can
be connected by a line which lies entirely within the region. A third layer of nodes can
allow the network to form any arbitrary decision region [5] (assuming enough nodes are
allocated to the correct layers).

To form a desired decision region, the weights and node offset values for each node
in each layer of a neural network must be specified. This would be a difficult task even
if the decision region were known. But, for many problems, the decision region is not
known because the statistical models of the data are not known. Training algorithms to
form appropriate decision regions exist for perceptron neural networks. These algorithms
typically present the training data to the network along with a desired response and the
network weight values and node offset values are adjusted to force the actual network
response towards the desired response. One such algorithm is the back-propagation al-
gorithm. The back-propagation algorithm is a gradient search method (searching over w
and 6), which minimizes the square error of the neural network outputs [6]. Note that the

back-propagation algorithm requires the nodes to have sigmoidal nonlinearities.
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III. The Discriminator
We start by defining the structure of our sequential discriminator. Our discriminator

utilizes a test statistic of the form

n—K+1
Ta(Z)= > 2, Zi41,---, Zirr—1). (8)

—1

A two threshold test is implemented, using the constants @ and b. So, upon obtaining a
new data sample, Z,, the discriminator computes the test statistic T,,. If T, reaches 5,
then the discriminator chooses H; and terminates the test. If T, drops to &, then the test
terminates and the discriminator chooses Hy. If T, lies between @ and b, then another
sample Z, 41 is obtained, T,41 is computed, and the entire test is repeated. This process
continues until either a decision is made, or the N-th sample is reached. Upon obtaining
the N-th sample, Tv is computed and a one-threshold test is performed. Obviously Tx_1
is initialized to a value in the interval (&, b).

We now restrict the class of nonlinearities of the form

¥(z1,22,...,7K) to have a range with maximum absolute value of r. That is, we require
|v(z1,22,...,2x)| < r for all possible values of
the K — tuple (z1,2,...,zK). (9)

This restriction leads to a suboptimal discriminator in general, but allows us to obtain a
solution.

Now assuming that r, 4, and b are all specified constants, the structure of our test
allows us to scale r, @, and b to get a test with a nonlinearity with a maximum absolute
value of 1. The newly scaled thresholds shall be denoted as @ and b. This rescaling of r to
1 allows us to utilize a perceptron neural network with a sigmoid nonlinearity on its nodes
in the following paragraphs.

To find the optimal nonlinearity within our class, we first consider the optimal paths
that the test statistic 7, can take under each hypothesis. By optimal path we mean

the path that T, should take to minimize the number of samples needed to cross the
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correct threshold under the appropriate hypothesis. Obviously the quickest path to reach
a threshold is when the discriminator takes a step of magnitude 1 in the appropriate
direction upon obtaining each new data sample. That is, for each new data sample, the test
statistic under H; is incremented by +1, while the test statistic under Hy is incremented
by —1. If the data sequence {Z}$2, is obtained by sampling some continuous process with
a uniform sampling period T, then the optimal path for T\, would lie on a straight line
with slope —}-—11: for H; and slope —% for Hy. Figure 2 depicts these paths. Thus, for an
ideal discriminator, (that is a discriminator which never makes mistakes and always uses

the minimum number of samples possible), the statistics of the nonlinearity should be
El{’Y(Zl)ZQ’ R ZK)] =1

Eo[v(21,Za,...,2k)] = —1
Vary[y(Z1, 2Za, ..., Zx)] =0
Varg[v(Z1,22,...,ZK)] =0 (10)

where E; and Var; denote expectation and variance respectively under hypothesis H;.
We cannot expect a real discriminator to achieve the statistics of the above equations.
However, we can choose the nonlinearity to minimize some performance measure, such
as a mean squared error criterion of v about its desired values. We show that the back-
propagation algorithm can be used to minimize a related mean squared error criterion.
We form a nonlinearity by constructing a perceptron neural network with A inputs
T1,%2,...,2x and two outputs which are functions of the inputs (and the weights/offsets
for each perceptron in the network), o*(z1, 22, ...,2k) and 0°(z1,z2,...,zk). To simplify
the notation, we denote the output nodes as o' and 0o°. During training, the desired values
of the output nodes are (10) for inputs from Hy and (01) for inputs from H;. Our notation

(z y) implies that o° = z and o! = y. The nonlinearity, y(z1, z2,..., %K), is formed by

z1,%2,...,2K) = o' (21,%2,...,7K) — 0°(z1,T2,...,TK),

or with simplified notation,

~v =o' —o°. (11)



We wish the nonlinearity to be such that v is close to values of 1 for inputs from H
and -1 for inputs from H,. We choose a performance measure which involves the mean

squared error of o' and o® about their desired values for each hypothesis:
S=FEs[(1=0"+(0—-0")2]+E [(0-0") +(1-0"?]. (12)

We would like the weight and node offset values of each perceptron in our neural network
to have values which minimize equation (12).
Recall that the back-propagation algorithm [6] is a gradient descent algorithm which

minimizes the performance measure
.1 . .
E=32.2 6= (13)
PoJ

where t{; is the desired output for node j associated with input pattern p, and o{; is the
actual value of the output node j associated with input pattern p. Suppose we have P
K-tuples from each hypothesis available for training the neural network. We also have

7 = 0,1 for the two output nodes o' and o°, respectively. We can rewrite (13) as
2P-1

P-1
E= .;. S {1 = 0" +(0-0")?} + % > {002 +(1 - 0"} (14)
p=0 p=P

where the first sum is over the Hy training patterns and the second sum is over the H,
training patterns. The problem of minimizing F is equivalent to minimizing E scaled by

a constant. Thus minimizing (14) is equivalent to minimizing
2P-1

P-1
2B = %;:jo{(l ~ P (00 P+ 5 P {0-Pra-aP) )

Now as P — oo we have

%E S By [(1=0®)? (0= 0] + B [(0— ) +(1-0")] =3, (16)
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which is our desired performance measure. Consequently, the back-propagation algorithm
is a reasonable algorithm to be utilized for our perceptron neural network nonlinearity.
Thus, using this nonlinearity we can form the test statistic of equation (8).

Figure 3 shows the implementation of our test. The incoming data samples are passed
through a tapped delay line. The K taps are the inputs to the perceptron neural network.
The difference of the outputs of the neural network is formed and added to the test statistic
T;. The notation subscripts j correspond to the values associated with the jth data sample.
The sample number j is compared to N. If j reaches N, then a one threshold test is
performed (in this figure the threshold is 0.) If j is less than NV, then a two threshold test
is performed.

IV. Training

The neural network used in our sequential discrimination scheme operates on K-tuples
(Zx-1+j,ZK—2+j,---,2Z}), which are formed
from the incoming data sequence {Z;}52, on which the discriminator must make a decision
of Hy or Hy. The neural network may have two or three layers of nodes, but it will always
have two output nodes on the output layer.

The neural network is trained using the back-propagation algorithm and the training
data set. The training data set consists of M sample paths (i.e sequences) of length N

1
m,}’

from each hypothesis. These training data are defined as ¢ where 7 = 0,1 denotes
the hypothesis (H; or Hy), m = 0,1,...,M — 1 denotes the sample path number, and
j = 0,1,...,N — 1 denotes the sample number. The desired responses for the neural
network are (1 0) for Ho and (0 1) for H;. Our notation (e b) implies that the output
node 0 outputs a and the output node 1 outputs b.

The training process proceeds as follows: The first K-tuple from the first sample path
from Hy, (C((,”O,Cg’l, - ,(g,K_l), is presented to the neural network inputs. The back-
propagation algorithm is performed using (1 0) as the desired output. Then the first
K-tuple from the first sample path from H;, (Céyo,gﬁ’l, ... ,Cg,K_l), is presented to the
neural network inputs. Back-propagation is performed with the desired response of (0 1).

Then the second K-tuple from the first Hy sample path, (¢§1,¢8 2,10, k), is presented

to the network for back-propagation. Then the second K-tuple from the first H; sample
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path, ((1,s,25- - -»Co i )» is presented to the network for back-propagation. When all the
K-tuples (of ordered adjacent samples) from the first sample path for Hy and H; have been
exhausted, the process is repeated for the remaining until they have all been exhausted.
Then the entire process is repeated until all sample paths have been presented to the

network L times.

V. Results

The sequential neural network discriminators of the previous sections are evaluated.
First, the training data is obtained by a computer simulation. After training, the discrim-
inator is evaluated, again by simulated data. For simplicity, we take only one envelope
sample per radar return pulse. Furthermore, we assume that the radar returns are cor-
related from pulse to pulse, and that the correlation structure modeled by a first order
Markov process. The marginal pdfs of the simulated samples may be either lognormal or
Rayleigh.

The Rayleigh processes are generated by underlying Gaussian processes (i.e. the in-
phase and quadrature components.) We denote the envelope observations as {Z;}52,. The

Rayleigh envelope process is generated by

Zi=1/X2+Y? i=12,3,... (17)

where {X;}2; and {Y;}32, are mutually independent Gaussian stationary first order
Markov processes. This implies that {Z;}$2, is also stationary and first order Markov.

The underlying Gaussians are generated by

Xi=pXio1+ V1~ p?V,

Yi=pYii+/1—p*W,, for:=23,.... (18)
with
Xi=oW;
Yi = oW1 (19)

where {V;}$2, and {W;}$2,, are mutually independent sequences of i.i.d. (independent

and identically distributed) zero mean/unit variance Gaussian random variables. o is the
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standard deviation of the underlying Gaussians, while p is the correlation coefficient for
adjacent samples.

The correlation coefficient p is related to the decorrelation time 7 in the following
manner: 7 is defined to be the time it takes for the correlation coefficient between the first
sample and another sample to decrease by a factor of e™?.

Our lognormal process is simulated by exponentiating an underlying Gaussian process:
Z; =exp(X,- —i—u), 1 =1,2,3,... (20)

where X; is generated in the same manner as equations (18) and (19). Unlike the Rayleigh
processes which have underlying Gaussians with zero mean, the underlying Gaussians for
the lognormal process may have a mean p.

Table 1 lists the discrimination cases tested with the sequential neural network dis-
criminator. For Case 1, the target’s samples are from a lognormal marginal density, while
the decoy’s samples are Rayleigh. The means of both hypotheses are matched; the pow-
ers of both hypotheses are also matched. The decorrelation times are 7; = 0.130290 and
7o = 0.013029, indicating that the decoy’s samples become uncorrelated ten times as fast
as the target’s samples do.

For Case 2, both hypotheses afe Rayleigh. However, a 3dB power difference exists in
favor of H;. The decorrelation times are identical to Case 1. Both hypotheses are again
Rayleigh for Case 3. However in Case 3, the marginal pdfs are identical for both pdfs
(matched means and powers). The decorrelation times remain unchanged from Case 1 and
Case 2.

Table 2 details the neural networks trained for each case. Net 1 was trained for Case
1. Net 2 was trained for Case 2, and Net 3 was trained for Case 3. All networks had two
layers. Each network also had K = 4 inputs, and Ny = 16 nodes on its first layer of nodes.
The nets were trained with training data (generated by computer simulation) as described
above. For each case, the training data consisted of M = 50 sample paths from each
hypothesis. Each path consisted of N = 1000 samples. The number of times each sample

path was presented to the network during training was L = 100. The gain constant in the

back-propagation algorithm (see [6]) was set to 0.001. The column labeled S in Table 2
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represents the performance measure defined by equation (12). After the training process
was completed, S was estimated by computing the average squared difference between the
desired net output and the actual outpﬁt when the training data was again presented to
the net. Recall, this measure is a mean squared error of the actual neural network output
about the desired response.

After training the neural networks, they were inserted into the discriminator structure
of Figure 3. The thresholds a and b were chosen by experimentation; a was set to —20 and
b was set to 20. The initial value of the test statistic was set to 0. Computer simulated data
were then fed to the discriminator simulations. 10,000 simulated sample paths from each
hypothesis for each case were presented to the discriminator for classification. Table 3 gives
the results for each case. Table 3 also gives the results of [3] for Case 1 and 2. Optimal
memoryless nonlinearities in [3] were derived from known probability density functions.
One could expect optimal memoryless nonlinearities derived from estimated pdfs (e.g.
estimated from the training data) to perform worse. [3] did not include results for Case
3; this was due to a limitation imposed by their performance measure, which became zero
when the marginal pdfs under both hypotheses were identical. The columns P; and Py
in Table 3 represent the measured probabilities of error under H; and Hy respectively.
The column labeled E[n| contains the average number of samples required for the test to

terminate.

VI. Conclusions

A scheme for utilizing perceptron neural networks in a discrimination scheme utilizing
the test statistic of equation (3) was presented. This test statistic can be readily utilized in
either a block or sequential tests. The neural network’s training phase eliminates the im-
practical task of estimating high-order pdfs when designing a discriminator; consequently
discriminators with memory (i.e. K > 1) are easily obtained.

Some results were presented for a sequential implementation. The discriminators using
neural networks for their nonlinearities significantly out-performed the optimal memory-

less discriminators of [3]. The discriminators constructed with neural networks made no

classification errors in 10,000 trials from each hypothesis! These discriminators also used

a significantly smaller expected number of samples to make their decisions than did the
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discriminators of [3] (refer to Table 3)! Furthermore, the neural networks were able to
converge to a nonlinearity for Case 3; [3] could not even consider Case 3 due to the fact

that the marginal pdfs under both hypotheses were identical.
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Case pdfs Power Ratio  Mean Ratio Decorrelation
Times
H; vs Hy H, vs Hy H, vs Hy T1,To
Case 1 Lognormal 0dB 0dB 0.130290,
vs Rayleigh 0.013029
Case 2 Rayleigh 3dB — 0.130290,
vs Rayleigh 0.013029
Case 3 Rayleigh 0dB — 0.130290,
vs Rayleigh 0.013029

Table 1: Description of the Discrimination Test Cases
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Table 1: Description of the Discrimination Test Cases

Case pdfs Power Ratio  Mean Ratio Decorrelation
Times
H1 VS Ho H] VS Ho H] VS Ho 71,70
Case 1 Lognormal 0dB 0dB 0.150290,
vs Rayleigh 0.013029
Case 2 Rayleigh 3dB — 0.130290,
vs Rayleigh 0.013029
Case 3 Rayleigh 0dB — 0.130290,
vs Rayleigh 0.013029




Table 2: Neural Networks for Each Case

Case Network K Ny S

Case 1 Net 1 4 16 3.259 x 108
Case 2 Net 2 4 16 4.075 x 10~
Case 3 Net 3 4 16 4.012 x 106




Table 3: Results for 10,000 Sample Paths from Each Hypotheses

Case Discriminator P Py E[n]
Case 1 Net 1 0 0 32
Case 1 Memoryless .010 0 572
Case 2 Net 2 0 0 55
Case 2 Memoryless .003 .002 2025
Case 3 Net 3 0 0 41




