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ABSTRACT

We consider the one-step prediction problem for discrete-time
linear systems in correlated plant and observation noises, and non-
Gaussian initial conditions. Explicit representations are obtained
for the MMSE and LMSE (or Kalman) estimates of the state given
past observations. These formulae are obtained with the help of the
Girsanov transformation for Gaussian white noise sequences, and
display explicitly the dependence of the guantities of interest on
the initial distribution. Applications of these results can be found
in {5] and [6}.

I. INTRODUCTION

We consider the one-step prediction problem associated with
the stochastic discrete-time linear dynamical system

Xxo+1 =A.X,°+W,°“
Xg=¢
Yo = HiX) + Vi,

1=0,1,... (1.1)

defined on some probability triple (2, F, P} which carries the IR"-
valued plant process {X,, t = 0,1,...} and the IR*-valued ob-
servation process {Y;, ¢ = 0,1,...}. Here, forall t = 0,1,..,
the matrices A; and H, are of dimension n x n and n x &, re-
spectively. Throughout we make the following assumptions (A.1)-
(A.3), where
(A.1): The process {(Wg,,,Vi5,), t = 0,1,...} is a zero-mean
Gaussian White Noise (GWN) sequence with covariance
structure {T'y4y, t =0,1,...} given by

o Wes ) _ (B I
= oo (V) = (3 30)
t=0,1,... (1.2)

(A.2): Forall? =0,1,..., the covariance matrix L}, is positive
definite; and

(A.3): The initial condition £ has distribution F with finite first
and second moments p and A, respectively, and is inde-
pendent of the process {(Wg,;,V%41), t=0,1,...}. Noa
priori assumptions, save those on the first two moments,
are enforced on F.

The (one-step) prediction problem associated with (1.1),is de-

fined as the problem of computing, for each t = 0,1,..., the
conditional distribution of the state X{,; given the observations
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{Yo....,Ys} or, equivalently, of evaluating the conditional expec-
tation

Ele(XPy ) Yo, V) (1.3)

for all bounded Borel mappings ¢ : IR® — C, with C denoting set
of the complex numbers. In this paper, we solve the prediction
problem (1.3) associated with (1.1)-(1.2).

When the plant and observation noises are uncorrelated, and
the observation noise sequence {V;, t = 0,1,...} is standard (i.e.,
LYy =0and By, = I, forallt = 0,1,.. ), the prediction problem
posed above is the discrete-time counterpart of the situation inves-
tigated in [4]. In Section 11, we briefly outline in the discrete-time
set-up the basic ingredients of the arguments developed in [4]. We
then show in Section 111 how to modifv these ideas in order to solve
the prediction problem in the case of correlated noise. We shall dis-
cover that the structure of the solution of the prediction problem
with correlated noise is essentially the same as that for uncorre-
lated noise. Indeed, the only difference is in the propagation of a
collection finite-dimensional sufficient statistics; the mapping from
these statistics to the filter is the same as in [4]. In Section IV, we
present, without proof, representations for the MMSE and LLSE
estimates of X7, on the basis of {Yoh .. Y1} fort =0,1,....
These representations are derived by using Theorem 1.

A word on the notation: For any positive integers n and m,
we denote the space of n x m real matrices by Mnxm and the cone
of n x n symmetric positive-definite matrices by Qn. As in [4], for
every T in @z, let Xg and By denote generic IR"-valued random
variables (RV’s) such that (X3, Bg) is a IR?-valued zero-mean
Gaussian RV with covariance matrix I. For every bounded Borel
mapping ¢ : IR® — C, we define the mappings 7¢ : JR* x IR" x
Q2n — Cand U 1 IR X IR® X Qn X Mpxn X Q2n — C by

T¢[z, L) = £[¢(z + X;;)exp[b‘B;;]] (14)

and
Udlz,b;A, ¥, E) := £[7¢[z + WE, &, T]exp(b'e - %E'Af]] (1.5)

with the understanding that £ denotes integration with respect to
the Gaussian distribution of the RV (Xg, Bg).

Throughout, I, denote the unit matrix in Mpxn, and let On
denote the zero element in Myuxp, ie., the n x n matrix whose
elements are all zero. Elements of IR™ are always interpreted as
column vectors; transposition is denoted by ’.

Let (-, ) be the state transition matrix associated with {A,,
t=0,1,...},ie,

)= 1,

(s 4 1t) = ArB(s,10), t=0,1,... (1.6)

s=tt+1,...
and let ¥(-,-) be the state transition matrix given by

Y(t,t) =1,

W(s 4+ 1,0) = [A, = TV (T0)  H¥(s, 0. s=tt+],

t=0,1,... (17

and Systems, Johns Hopkins University, March 22-2:



II. THE FILTERING PROBLEM

I1.1. The main results

We define the Q,-valued scquence (P, t = 0,),...} by the
recursions

Py = APAL+ T,
— [APH+ DEAMH P+ B0 ) AP H] + S22
Po = 0n
t=0,1,... (21)
and, for convenience, we introduce the Q;-valued sequence {J,, { =
0,1,...}, where

Jo = WP + Sy, t=01,... (22)

The two deterministic sequences {Q,, t =0,1,.. } and {Ry, t =
0,1,...}) in Muyn and Qn, respectively, are now defined recursively
by

Qi1 = AQe ~ [APH, + T¢I H(Qu + ¥(2,0))
+ E(EY )T H (1, 0)

t=0,1,... (23)
and

Resr = Ro— (Qu+ ¥(1,0) HIIT H(Qu + ¥(t,0))

+ W'(t,0)H{H:¥(t,0)

Ry = O,.
t=0,1,... (24)
From these sequences, we form the Qj,-valued sequence {E;, t =
0,1,...) by setting

n=(4 %)

We also generate the JR™-valued processes {X,,t = 0,1,...} and
{B:,t = 0,1,...} via the recursive relations

t=0,1,... (25)

X4 = [A: - [APH, +£:“:I]J(-IHI]Xl
+{APH + EZ)TY,
Xo=0

t=0,1,... (26)

and

Beyr = Bo = (Qu+ W(1,0) HIJT H, R,
+(Qi + ¥(t,0) HIJ Y,
By =0.

t=0,1,... (27)

Finally, define an auxiliary deterministic Q,-valued sequence {M,,
t=0,1,...} by )
My = M+ W(1,0) H{(ZV, )~  H,¥%(t,0
El ol+ (. 0) H{(Z341)~ " He¥(t,0) £=0,1,... (28)
0=0.

The solution to the prediction problem associated with (1.1)
can now be given. Define the filtration {),, {'=0,1,...} of F as
the one generated by the observations {V;, t =0,1,...}, i,

Yi:=o{Yo, N1,.... "1} t=0,1,... (29)

Moreover, let I denote the constant mapping JR® — IR:z — 1.

Theorem 1. For any bounded Borel mapping ¢ : IR® — IR and
anyt =0,1,..., the relationshsp

UplXisr, Boypr; Miys (141,05, 5,44)
UB[R 41, By Mg W (t+1,0),Z0 1)

El$(Xe )W) = (2.10)

holds true P-a.s.

Note that ¥(.,.) = &(.,-) when T}, = O, and T}, = I,
for t = 0,1,..., in which case (2.10) reduces to the discrete-time
analog of the results of [4]. We readily see that the structure of the
predictor in the general situation is not markedly different from
what would have been obtained in the uncorrelated case. The
noise correlation is encoded in the unicersal sufficient statistics {4]
that parametrize the predictor, but does not affect the form of the
statistics bearing functionals.

11.2. The discrete-time Girsanov transformation

The proof of these results hinges crucially on a discrete-time
version of the Girsanov change of measure transformation {1}, which
is summarized here for easy reference. Let {F;, t = 0,1,...} be a
filtration of ¥, and let {U4,, t = 0,1,...} be an IR"-valued zero-
mean (F,, P) GWN sequence with correlation structure A¢yy =
E[U(+1U:+1] fort = 0, ..., i.C., for allt = 0,1,..., the RV U|+1
is Fi41-measurable and

0l l Y
Elexp[it'Us1)|F) = exp[—io A8 t=0,1,... (211)

for every 8 in IR". For any IR".valued F;-adapted sequence {xq,
t =0,1,...}, we define the sequences {U;4,, ¢t = 0,1,...) and
{L:, t=0,1,...} taking values in IR" and IR, respectively, by

U1 3= Uigr = A X t=0,1,... (2.12)

and

'
1
Liyy = HEXP [X'.U.n - _X:An-HX:] t=12,...(213)
=0 2
with Lo := 1.
Fix a non-negative integer T, and define 2 measure Pry, on
(@, F) by

Pryi(4) :=/AL1-+|dP, Ain F. (2.14)

1t is easy to see that
(a) The measure Pr., is a probability measure which agrees
with P on Fy, and which is mutually absolutely continu-
ous with P; in fact, its Radon-Nikodym derivative is given

by
d
’Z,“ = Lrys; (2.15)

(b) The sequence {0141, t = 0,1,...,T) is a zero-mean
(}.lvFT‘H) GWN process with E1'+|[U|+|U,’+,] = A1
fort = 0,1,...,T (where £r,, is the expectation oper-
ator associated with Pr,;); and

{c) The process {L;},t = 0,1,...,T + 1} is an (F, Pry1)-
martingale.

An alternate expression for (2.13) is simply

]
1
Ligy = ‘II‘OCXP [X:UJ-H + ;X:AH-IXJ] . t=12,. --(2'16)



I1.3. The methodology for the uncorrelated case

As noted earlier, the solution to the filtering problem associ-
ated with the uncorrelated case can be found in [4] for the continu-
-ous-time version of (1.1) We briefly review the arguments of [4)
in the discrete-time framework of this paper. Throughout the re-
mainder of this section, we assume EiYy = O, and L}, = I, for
t =0,1,..., and fix a positive integer . A careful inspection of
the solution of [4] reveals thal it is articulated around the following
two facts (B.1) and (B.2)}, where

(B.1): A decomposition of the RV's {X?, t = 0,1,.

form

..} of the

X=X, + 2 1=0,1,... (217)

with {X, t =0,1,...}) representing the effecis of the plant
notse process {W‘“, t=0,1,...} and $Z,, t = 0,1,...}
representing the effects of the initial condition €.

The most natural such decomposition is described by the recursions

Xip1 = ANy + WP
VAL 1=0,1,... (2.18)

.\‘0 =0
and
Zisy = A2
t=0,1,... (219
Zo=€ (2.19)

in which case Z, = ®(t,0)f for t = 0,1,....
decomposition of the form (2.17) we obtain

However, for any

= HXe + Vi t=0,1,... (2.20)

where

Vigr = Vi + HiZy. t=0,1,... (2.21)

IF{{Ws 1, Vesr), t =0,1,..., T} were a GWN sequence under
P, the prediction problem associated with (2.18)-(2.21) would fall
within the purview of Kalman filtering. With this in mind, we
now use the Girsanov transformation to find a new measure under
which to carry out the calculations.

(B.2): A probability measure P on (Q, F), which is mutually abd-
solulely continuous with P and which agrees with P on
o{€), such that under P, {(W2,,Vit1), t=0,1,...,T}
is ¢ GWN sequence independent of the RV §.

This probability measure P is defined by the Radon-Nikodym deri-

vative

T
— = exp [ Z[H 2V - %E[H.Z,]'[H.Z.]] . (2.22)

In view of this last relation, we define the IR-valued RV’s {Ly, t =
1,...} by

Ligr:=exp [—5' D [H@(s,00V

l—0

- 'E Z[”}o(‘ 0)]'[”,@(3 0)]{]

=0

t=01,... (223)

with-Lg = 1, and observe that dP/dP = Lr,,. We may use
this probability measure P to solve our original filtering problem
through the well-known relationship 3, Sec. 27.4)

E(8(X 301 ) L7}, 1)

E[L;'}..l o P—a.s. (2.24)

El$(X 1)) =

which holds for each bounded Borel mapping ¢ : IR” — C and
t=0,1,...,7. Here E denotes the expectation operator associated

with P.

We recall that {L]!, t=0,1,...,T+1} is an (¥, P)-martin-
gale by virtue of the Girsanov transformation. Thus, fixing ¢ and
t=0,1,...,T, we see from the law of iterated conditioning that

Elexen S v etel]
= B[B(s0, )55 T v ole)]
= E[¢(X2 LTV v ofe)] (2.25)

since X7, is clearly Fi4i-measurable and Yy C Fiyy.
To pursue the discussion, we introduce the IR"-valued RV’s

{Bi, t =0,1,...} and the Q,-valued sequence {M, t = 0,1,...}
by setting
t
Biyy =Y (s,0)HV, 1 t=0,1,... (2.26)
=0
and
t
Mgy =) ®(s,0YH H,%(s,0) t=0,1,... (227
+=0
with Bp = 0 and Mp = O,. From (2.21), (2.26) and (2.27), we

observe that

1,
L =exp [5'3..,, - 55 M.“c] t=0,1,... (2.28)

and readily conclude from (2.25) that

Elpxe) 55 |p v ele)] = exp [——s Mms]

E[¢(x.,, + &t +1,0)6) exp (€' Bear) ]y. v U{E}J.
1=0,1,... (2.29)

By property (B.2), we see from (2.18)-(2.20) that under P, the
RV's {X(41,Bi41} and {Yo,Y1,...,Y:} are jointly Gaussian (and
independent of the o-field o{€}). Motivated by standard facts for
Gaussian RV’s {7, Sec. 2.7, we thus define the MMSE sequences
(XH-I! t= 0,1,...] and {B""ll t= 0,1,...} by

Xipr = E[ X |W] and By = B[Bia |V,
t=0,1,... (230)
with corresponding errors

Xepr:= Xeg1 = Xeqs and By = Bx+x - By
t=0,1,... (231)
As in [4], standard arguments [7, Sec. 2.7] imply that the RV’s
{ X1, Besr) are Pqndependent of Vi, whence also P-independent
of the o-field Y V o{£) since the RV's {X;4;, B4y} and
{Yo.Y1,....Y:} are P-independent of the o-field o{¢}. Moreover,
under P, the IR™valued RV (X'“, By41) is a zero-mean Gaussian
RV with covariance matrix Iy, given by

XY (X2 (P Quar
B = E[(Bl:l (Bm ) ] - .(th Rm)
. t=0,1,... (232)



Clearly, the matrices Py, Qesy and Riyy are elements of Q,,
Mwn and Q,, respectively, wilth the interpretation that

Pul = E[Xl-&lx:.“]v QI-H = E[X|+1é;+,],
and Ry = E[BaBiy). (2.33)

The RV’a X4y + O(t + 1,0)¢, B4y and £ are all Y, v o{€)-
measurable, and from the remarks made earlier, we conclude {2,
Prop. 6.1.15] through (2.29) that

- o 24P 1, ,
E[é(/\wl)(—!—l—,].‘/( \ U{f)] = exp [—55 M E+¢€ Bv+1] .

T [Xior + D0+ 1,0, & Tip]
t=0,1,... (2.34)

where the mapping 7¢ is defined by (1.4).

From (2.34), we now readily obtain by the law of iterated
conditioning that

E[¢(X,°+,)j—;|y.]
= E[exp [—%f'Mu-nf +£'B.+1} -

T6 [ Ki1 + 01+ 1,0)6,6 ] [W1]
= US [Xia1, Besri Migr, ®(1 +1,0), Epq)
t=01,.. (235

where the mapping U¢ is defined by (1.5). We have used the
fact that the RV's {X,41B:141) are Y;-measurable and therefore
P-independent of o{€}. The reader will readily check that sub-
stitution of (2.35) (with arbitrary ¢ and with ¢ = ) results in
(2.10) since ¥(-,-) = ®(-,-) under the assumptions I}y, = O, and
Ef41 =1nfort =0,1,..., made here. | |

III. THE CORRELATED CASE

We now show how the arguments outlined in the preceding
section for the uncorrelated case need to be modified so as to handle
the correlated case as well. Let T be a fixed non-negative integer,
and consider a decomposition of {X?, t = 0,1,...) of the form
(2.17), and define {Viyy, t = 0,1,...} by (2.21). If Z¥y, = O,
for t = 0,1,..., we would arrive at the probability measure P
characterized by property (B.2) as follows: Define the filtration
{T., t= 0,1,...} by

Fin=Fova{Vyy,, s=0,1,...,1} t=0,1,...(3.1)
with Fo := (£, W?,,, = 10,1,...}, and observe that the sequence
{V%1, 1=0,1,...} is an (¥, P) zero-mean GWN sequence. The
Girsanov transformation implies that P as defined in (2.22) enjoys
property (B.2). However,if L) # Oq for ¢ = 0,1,.. ., then the se-
quence {V;%,, t =0,1,...} is nol necessarily an (¥, P) zero-mean
GWN sequence because now the sequence {V%,, t=0,1,...} may
not be independent of Fo, in which case P given by (2.22) need not
enjoy property (B.2).

We may overcome this difficulty when the plant and observa-
tion noise sequences have an arbitrary covariance structure by per-
forming a Girsanov transformation on the joint IR***.valued se-
quence {(Wy,,V%1), t=0,1,...}. With this in mind, we change
the definition (3.1) to read instead

Feet f=foV0(W:+l,V,._“. l=0,l,...‘) t=0,1... (3.2)

with Fo := o¢{€}. We now define the IR"t*.valued sequence
{(Wes1,Vigs), £ =0,1,...} by

(7)) 57
Viss Vi LS M &l

where {p}*, t = 0,1,...}) and {¢}, t = 0,1,...} are F;-adapted
sequences taking values in IR™ and IR!, reapectively, which we yet
have to specify. Reviewing the Girsanov transformation, we see
that for any two such sequences {p}, t = 0,1,...} and {p¥, t =
0,1,...} if we define {{Wy41,Viq1), t =0,1,...} by (3.3), we can
find a probability measure P on (2, F) satisfying (B.3) where
(B.3): The probability measure P 1s mutually absolutely contin.
uous with P and agrees with P on Fo. Furthermore,
{Wer1, Viga), t = 6,1,...,T} is a zero-mean (Fi, P)
GWN sequence with the same covamance strucfure un.
der P as the covariance structure under P of the orginal
noise sequence {(W2,,,Vi%,), t=10,1,...,T).
Now if we impose the constraints (2.21), the sequences {©},
t=0,1,...} and {9}, t = 0,1,...}) in (3.3) must necessarily have
the form

=0 and ) = —(Z7,)7 SV 0 + HiZY)
t=0,1,... (34)
for some unspecified F;-adapted sequence {p, { = 0,1,...} taking
values in JR". Injecting (3.4) into (3.3), we obtain

Wigr = Wi + E80 (00 ) T HiZ S, — S0 (E0) T e

t=0,1,... (35)
and the appropriate probability measure P given by the Girsanov
theorem and satisfying (B.3) is then defined by

aP _

dP ~
T

exp [ S [ = BT Vi) - 2L Vi)
=0

T

l wv - vw 4 -

43 [Pt - B ) Bl + L) L |
=0

(36)

in order to complete the specification of the decomposition
(2.17) and of the probability measure (3.6), we must specify {X,,
t=01..} {2, t=0,1,..1} and {, t = 0,1,...}. To that
end we rewrite the evolution of {X?, ¢t = 0,1,...} in terms of
{Xe, t =0,1,...}, {Z,, t =0,1,...} and {Wy4,, t = 0,1,...}.
Since we wish to use the properties of P, it is more natural to
write this evolution in terms of {Wi4,, t = 0,1,...} rather than in
terms of {W¢,,, 1 =0,1,...}, and this leads to

Xig1 + Zegr = Xy
= AX] + Wiy,
= A Xs+ 2¢) + Wen - ‘.“;’.(E;’N)“H.Z.
+[Z0 - TEELD TSR e
= A Xy +[A - :’;1(2:“)-‘”']2' + Wi
+ (B8 - B (EL) T B
‘ " 1=0,1,... (3.7)
This suggests a separation of the dynamics in the form
Xesr = AcXe + Wit + (28, - SIS T o = 7

Xo =
o=¢ t=0,1,... (3.8)



and
2 = [A - I (EV0) VM2 4w
Zo=€-¢

where ¢ and {r,, t =0,1,...} are JR"-valued RV’s yet to be spec-
ified. We shall simply assume that

t=0,1,.. (39)

v =0, =0 and (=0, t=0,1,... (3.10)

At this point, a summary of the relevant quantities is in order
under the constraints (3.10).

s The effect of the initial condition

Zyp1 = A - TEL (S0 HIZ

t=0,1,... (31
Zo =€, (3.11)

which may also be written as 2, = ¥(1,0)§ fort =0,1,....

¢ The noise processes

(WHl) (Wt‘-il) (Er«#l E}"l'x) ( 0 )
Viss Vi & Tia -S4 HZ,
= (W&, + DY (Sh) " HeZ, ) _

Vi + 12,
t=0,1,... (3.12)

¢ The auxiliary system
X1 = AXo + Wi
Xo=0
Y= H X+ Vi

t=0,1,... (3.13)

¢ The change of measure
exp[ ZZ HIUE Ve,
1 ' -
+-2-ZZ,H:(E','+,) ’H,Z,]. (3.14)
=0

The properties of our decomposition and change of measure are
summarized in

Proposition 1. Let the filtration {F;, t = 0,1,...} be given by
(3.2). If the sequences {X,, t =0,1,...}, {Z,, t =0,1,...}) and
{{(Wes1,Viga)y 1 = 0,1,...} are dcﬁncd by (3.11)-(3. ]3) and if
the probability measure P is defined by (5.14), ‘then P and P are
mulually absolutely continuous and agree on Fo, and the process
{{(Wi41,Vis1), t = 0,1,...,T} is a zero-mean (F¢, P) GWN se-
quence with covariance structure structure {Ig41, t =0,1,...,T}
under P.

Motivated by the form of (3.14), we define the IR-vahied se-
quence {L;, t=0,1,...} by

t .
Luy = exp= 30 ZLH(EL0)" Vo
+=0
Zz’y'(s A
--0

t=0,1,...(3.15)

with Ly = 1, and observe that dP/dP = Ly;,. The Girsanov
transformation now implies that {L]}, t = 0,1,...,T + 1} is an

'

‘finite horizon ¢ = 0,1,...,

(#1, P)-martingale, and by the same arguments as the ones leading
to (2.25) we conclude that

Elwxen)SE vy ole)] = Eleixz,,) L:“ly.w ol
t=0,1,... (3.16)
Since
Ll = exp[ZZ’H:(E"H)’ Ve, - -):Z'H (=) ‘H.z,].
1=0,1,...(3.17)
we see from (2.21) that

’ ] i
L7} =exp [e By - 3¢ M.“f} t=0,1,... (3.18)

where

1
Buyy =) W(s,0Y Hi(E4,,) Vi

+=0

1=0,1,... (3.19)
and

Mip :-Z% OY H(E341) " H,¥(5,0) t=0,1,... (320)

=0

with Bg = 0 and My = O,. We may verify that the definition of
{M:,t =0,1,...} of (3.20) is equivalent to that of (2.8).

As before, we define the sequences of conditional means { X4,
t=0,1,...} and {Bi41, t = 0,1,...} by (2.30), with corresponding
errors {X;41, t =0,1,...} and {By41, t = 0,1,...} given by (2.31).
The RV's X(41, B41, and {Yy,...,Y:} may all be represented as
linear combinations of {{Wy41, Viga), t =0,1,...,T}, and are thus
jointly Gaussian and independent of o {£} under P. As argued in
the uncorrelated case, under P, the IR?"-valued RV (X141, Bis1)
is a zero-mean Gaussien RV with covariance matrix I;4, which is
is P-independent of the o-field Yy V o{€}. Hence standard results
on conditional expectations {2, Prop. 6.1.15] validates the following
chain of equalities

BI#(X201)expl Bur = 36 Men€|% v o{6)]
= E[#(Xesr + Rogr + ¥(t +1,006). '
exp(¢/Beys + €' Biyy — -l-f'Mmf]Iyt vo{t}]

= CXP[—"C Mn+1f]£[¢(xt+x + z) explb' Beya}] =X eyt P(041,0)¢

4=By41

= exP[-EE'Mt+lE]1¢[X_t+l + ¥(t +1,0)€,6 Le4) (3.21)

where ;41 has the decomposition (2.32)-(2.33). Removing the
conditioning upon o{£}, we find

EIg(X2,1) 35104 = BIT¢{Zurs + ¥(t+1,006,€: B

expl€’ Bry1 - %E'Mu-xf]lyu]
=US[Re1, Bisr; Mgy, W(1 + 1,0); Doy}
(3.22)
since (X141, B141) is Vi-measurable and therefore P-independent
of o{£).
At this point, we have solved the prediction problem over the
T. Indeed we readily obtain (2.10) by



injecting (3.22) (for arbitrary ¢ and for ¢ = 0} into(2.24). The only
remaining problem is to caleulate {(X,, B8,), t = 0,1,...,T + 1}
and {E,4y, t = 0,1,. .. T+ 1}. We combine (3.13) and (3.19) to
rewrite the dynamics of {(X¢, Bi}, t =0,1,..., T+i}and {V;, t =
0,1,....T} by

(Fe)= (4 ()

() <>“‘(’°" vt ()
Xo) _ (0

Be) ~ \O

, Xy Win
Y, =(H 0)(Bl>+(0 h)(VHl).
1=0,1,... (3.23)

By applying the Kalman filtering equations to this system (un-
der P), after appropriate identification, we easily arrive at the
equations (2.1)-(2.7) satisfied by the sequence of JR*"-valued RV’s
{(X:,By), t =0,1,...,T + 1} and the Ma,x2n-valued sequence
{€, t =0,1,...,T + 1}. The calculations are tedious, and the
details are left to the interested reader {5}.

The final step now consists in extending these results from the
finite horizon t = 0,1,...,T to the infinite horizon t = 0,1,....
To that end, note the following: The dynamics of the sequences
{(XBy), t =0,1,...., T+ 1} and {E, t = 0,1,...,T + 1} are
independent of T. Moreover, although the transformed measure P
used in the derivation depends a prniorion T, the definitions of the
mappings T¢ and ¢ are independent of T. These remarks are
sufficient to yield Theorem 1 from the finite-horizon results of this
section. [ ]

Following on the comments made at the end of the proof, we
could have displayed explicitly the dependence of the transformed
measure P on the parameter T, say through the notation Br,,.
Although Pry, = Pr on the o-field Fr for all T = 0,1,..., and
the probability measure Pr,; is mutually absolutely continuous
with respect to P, it is not true in general [5] that the projective
system {Pr, T =0,1,...} has a limit P which is absolutely con-
tinuous with respect to P on the o-field v Fr, i.e., there does not
exist necessarily a probability measure P on VyFr such that Pis
absolutely continuous with respect to P, and Py = P on the o-field
Frfor al T = 0,1,.... Although this could a priori complicate
matters for the infinite-horizon situation, we shall not concern our-
selves with this difficulty in what follows. Indeed, in the remainder
of this paper, only statements for finite ¢ will be made and the no-
tation P (and E£) will be used throughout with the understanding
that P = Pry; for some ¢ < T. As should be clear from earlier
comments, the exact choice of T is irrelevant.

IV. REPRESENTATIONS FOR THE MMSE AND LLSE
FILTERS

Using Theorem 1, we may develop formulae for the MMSE
and LLSE estimates of X}, , on the basis of {Yp, Y),...,Y,} for any
t =0,1,.... In the interest of brevity, we shall omit the proofs.
The reader is referred to [8] for a full exposition.

In addition to assumptions (A.1) to (A.3), we shall need an
additional assumption (A.4), where

(A.4): The covariance matrix A is positive-definite.

We shall also find it convenient to introduce the auxiliary quanti-
ties {Q;, t =0,1,...} and {Ry, t =0,1,...} in Muxs and Qn,
respectively, given by

Qi=Qi+¥(1,0) and R :=M,-R. t=0,1,..(41)

Algebraic manipulation then reveals that these quantities propa-
gale according to

Qisy = (A~ [APH]+ 1)U By Q;

0,1, 4.2
Qa = In‘ ( )
and .
Riyy = R+ QU HIT Q) mor. . (43)
Ry = On.
The dynamics (2.7) then also simplifies into
Biyr = B = QUHJT H X+ QU H IS, 01, . (14)

Bo=0.

We then have:
Theorem 2. Forallt =0,1,...

frn zexp[z’B,“ - %z’R,'Hz] dF(z)

T 30 [#'Buss — 4Ry 2] dF ()

(4.5)
P-a.s., and if we denote by XX, the LLSE estimate of Xy, on
the basis of (Yo, V1,..., Y1}, then

E[X{¥] = Xip1 + Q144

X=X+ QR+ 87" B +a70] (46)

P-a.s. forallt=0,1,....

Outline of Proof. Apply Theorem 1 to find the conditional charac-
teristic function; i.e., let o(z) := exp[if’z]. We then differentiate
the resulting expression with respect to 8 to arrive at (4.5). Since
the LLSE or Kalman filter depends solely on the first and second
moments, and since the MMSE and LLSE filters coincide if £ has
a Gaussian distribution, we arrive at (4.6) by replacing F in (4.5)
by a Gaussian distribution with mean y and covariance A. This
representation for the LLSE filter is notable in that it explicitly
displays the effects of the mean y and covariance A of the initial
condition §; the only dependence of the filtering formulae on u and
A is through the affine mapping z — [Ry,, + A=)}z + A~ 14].
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