
ABSTRACT

Title of dissertation: A STUDY OF TWO-LEVEL SYSTEM
DEFECTS IN DIELECTRIC FILMS
USING SUPERCONDUCING RESONATORS

Moe Khalil, Doctor of Philosophy, 2013

Directed by: Dr. Kevin D. Osborn
Laboratory for Physical Sciences

Professor Frederick C. Wellstood
Department of Physics

In this dissertation I describe measurements of dielectric loss at microwave

frequencies due to two level systems (TLS) using superconducting resonators. Most

measurements were performed in a dilution refrigerator at temperatures between 30

and 200 mK and all resonators discussed were fabricated with thin-film supercon-

ducting aluminum.

I derive the transmission through a non-ideal (mismatched) resonant circuit

and find that in general the resonance line-shape is asymmetric. I describe an anal-

ysis method for extracting the internal quality factor (Qi), the diameter correction

method (DCM), and compare it to a commonly used phenomenological method,

the ϕ rotation method (ϕRM). I analytically find that the ϕRM deterministically

overestimates Qi when the asymmetry of the resonance line-shape is high.

Four coplanar resonator geometries were studied, with frequencies spanning

5-7 GHz. They were all superconducting aluminum fabricated on sapphire and



silicon substrates. These include a quasi-lumped element resonator, a coplanar strip

transmission line resonator, and two hybrid designs that contain both a coplanar

strip and a quasi-lumped element. Measured Qi’s were as high as 2× 105 for single

photon excitations and there was no systematic variation in loss between quasi-

lumped and coplanar strip resonance modes.

I also measured the microwave loss tangent of several atomic layer deposition

(ALD) grown dielectrics and obtained secondary ion mass spectrometry (SIMS)

measurements of the same films. I found that hydrogen defect concentrations were

correlated with low temperature microwave loss. In amorphous films that showed

excess hydrogen defects on the surface, two independent TLS distributions were

required to fit the loss tangent, one for the surface and one for the bulk. In crystalline

dielectrics where hydrogen contamination was uniform throughout the bulk, a single

bulk TLS distribution was sufficient.

Finally, I measured the TLS loss in 250 nm thick HD-PECVD deposited silicon

nitride (SiNx) while sweeping an independent applied bias electric field across the

capacitor. With a strong microwave field and an increasing bias rate, the loss tangent

changed from a low value, where saturation occurs on resonance near the steady

state, to a larger value approximately equal to the linear-response loss tangent,

where saturation appears to be avoided. This increase was explained with a new

theory in which TLSs can experience Landau-Zener transitions as they’re swept,

where the maximum excitation probability is 1/2 at resonance. Data is found to

scale if plotted as a function of the dimensionless sweep rate. The functional form

of this loss tangent agrees well with the theory, and is predicted to hold for any



amorphous dielectric. By fitting the measured loss tangent as a function of bias

sweep rate to the theory, I was able to extract an average TLS dipole moment of

7.9 D and a TLS spectral spatial density of P0 = 4.9× 1043J−1m−3.
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Chapter 1

Introduction

1.1 Quantum computing

1.1.1 Background

Quantum computing is a profound and potentially groundbreaking result of

quantum mechanics. Since the genesis of the idea in 1982 [1] by Richard Feynman,

physicists, engineers, and computer scientists have worked towards achieving this

ambitious goal. This pursuit has led to new devices, new concepts, and a better and

perhaps more intuitive understanding of some parts of quantum mechanics.

In 1982 [1] Feynman noted that there appear to be fundamental difficulties in

simulating quantum mechanical systems with classical computers. This realization

led him to the idea of a quantum computer for the purpose of simulating such

systems. This is a very open ended and arguably the most rewarding ends for a

quantum computer, with the potential to affect many fields of science. For example

protein folding is ultimately a quantum mechanical process, the understanding of

which could revolutionize medicine [2]. In addition, a quantum computer with an

effective quantum simulator would have the potential to solve much of the problems

facing quantum computing today and could make the design and construction of

a quantum computer much simpler–it seems the universe is not without a sense of

1



irony.

The Church-Turing thesis [3, 4] states that any algorithmic process can be

simulated efficiently, meaning in polynomial time, with a probabilistic Turing ma-

chine. In other words one cannot write an algorithm that solves a problem more

efficiently than a probabilistic Turing machine. In 1985 David Deutsch [5] showed

that a quantum computer was not limited by the Church-Turing thesis and could

efficiently solve a problem that has no efficient solution by a probabilistic Turing

machine. In 1992 David Deutsch along with Richard Jozsa demonstrated an exam-

ple of this with the Deutsch-Josza algorithm [6] which solved a proposed problem

where one is attempting to determine the nature of a black box function. The idea

is that you are given a function that acts on an n-bit number and is known to either

be constant, meaning that it returns 1 (or 0) for all possible inputs, or balanced,

meaning that it returns 0 for exactly half of all inputs and 1 for the other half.

You are tasked with querying an oracle that evaluates the function until you de-

termine whether the function is constant or balanced. In the worst, case a classical

computer will require 2n−1 + 1 queries to solve the problem but the Deutsch-Josza

algorithm on a quantum computer can solve the problem with a single query by

using a superposition of all 2n possible inputs.

In 1994 Peter Shor discovered a quantum algorithm (Shor’s algorithm) [7]

that can factor numbers exponentially faster than classical algorithms. This again

utilizes the principle of superposition to evaluate a function for what is classically

multiple inputs. This is considered by many to be the most practical use for a

quantum computer since modern RSA encryption is based on the inability to factor
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sufficiently large numbers in polynomial time. Then in 1995 Lov Grover proposed a

quantum algorithm that can search an unsorted list with a quadratic speedup over

classical algorithms. [8] While this did not give as dramatic a speedup as Shor’s

algorithm, the myriad of potential uses have many excited about its prospects.

While the number of distinct quantum algorithms has been thus far limited, it

is the opinion of many, myself included, that this is not a fundamental limit on

quantum algorithms but rather an indication of the unintuitive nature of quantum

computing and the relative novelty of the field. There is little doubt in my mind

that given enough time, we will discover quantum algorithms that will revolutionize

many aspects of life.

Another potential technique that could be used on a quantum computer is

quantum annealing or adiabatic quantum computing. [9] Quantum annealing could

be applied to the classically intractable problem of function optimization. While

often finding a local minimum is relatively easy, there is no known classically efficient

technique for finding a global minimum. Quantum annealing could effectively allow

the solution to tunnel into its global minimum. Qualitatively this could be done by

encoding a function into a potential that’s turned on adiabatically. If the system is

initialized in its ground state, it will remain there adiabatically as the potential is

turned on.

The power of quantum computing comes from two fundamental properties of

quantum mechanics. The first, which has already been mentioned, is the principal

of quantum superposition. From linearity, a quantum mechanical system with two

states can in general exist in a quantum superposition of both states. Thus a qubit
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unlike a classical bit can exists in a superposition of both the 0 state and the 1 state

with some complex amplitude. The second unique property of quantum mechanics

necessary for quantum computing is entanglement. Entanglement is a nonlocal

property that allows the state of two quantum systems to be strongly correlated in

a way that is not possible in classical mechanics.

1.1.2 Superconducting qubits

In principal any two-level-quantum-system, or more generally any quantum

system where two levels can be isolated, can act as a qubit. The first realization

of a qubit in a logic gate was in 1995 with a trapped beryllium ion, [10] where the

internal energy levels of the atom were used as the qubit. In the late 1990’s some

attempted to utilize NMR technology to use nuclear magnetic spins as qubits [11]

but this was met with limited success. The problem with these early techniques

is that of scalability. Coupling to an atom can be difficult and the infrastructure

required in scaling up to many qubits and eventually a quantum computer is not

trivial.

At first sight, one might instead consider using a harmonic oscillator that has

been cooled down to its quantum mechanical ground state and use single photon

excitations to exchange quantum information. Superconducting LC microwave res-

onators are easy to build and can be cooled below their resonant frequency with

existing dilution refrigerator technology. However, a harmonic oscillator has equally

spaced energy levels and as a result an external drive field can’t isolate individ-
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ual energy levels. What we need is not a quantum spring (harmonic) but rather a

quantum pendulum (anharmonic). This can be achieved with a Josephson junction

[12], a thin insulating layer separating two superconducting metals which allows

Cooper pairs to tunnel across. A Josephson junction is ideally lossless and gives

superconducting circuits the non-linearity needed to isolate two energy levels. The

first superconducting qubit was realized in 1999 [13] with a Cooper pair box, where

the quantum states used for the qubit are zero/one excess Cooper pairs on a super-

conducting island.

The advantage of superconducting qubits is that it is easier to couple to them

and for them to couple to each other. The disadvantage is that it is easier for the

universe to couple to them as well, and in so doing decohere their quantum state.

Figure 1.1(a) shows a simulation of a qubit’s excited state probability while the

qubit is being driven at the transition frequency. It is oscillating between the ground

and the excited state due to absorption and stimulated emission of the microwave

photons from the input drive. These are called Rabi oscillations after Isidor Isaac

Rabi who first measured them in nuclear magnetic spins [14]. Figure 1.1(b) shows

what happens when the drive is stopped. Rather than remaining in its current state

the qubit decays into its grounds state exponentially with characteristic time T1.

This decay to the ground state as well as the decay in the Rabi oscillations is caused

by coupling of the qubit to other degrees of freedom.

It is a major goal of research on superconducting quantum computing to in-

crease these qubit lifetimes. Figure 1.2(a) [15] shows a loss tangent measurement

of a linear superconducting resonator as a function of the microwave voltage across
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Figure 1.1: (a) Simulated Rabi oscillations for a qubit with T1 = 300ns
and a T2 = 200ns. (b) The drive is turned off at t=500 ns at which point
the qubit decays into its ground state with the spontaneous emission time
constant T1
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the capacitor for different dielectric materials. The functional form of the loss will

be discussed in Chapter 2 but for now we note that silicon nitride has more than an

order of magnitude less dielectric loss than silicon dioxide. Figure 1.2(b) (from Ref.

[15]) shows Rabi oscillations for superconducting phase qubits where silicon nitride

and silicon dioxide were used as wiring dielectrics; the qubits where silicon nitride

was used clearly show longer coherence times. This result is evidence that coher-

ence times in these superconducting qubits were limited by material losses. This

work also shows that one can probe these losses not only with qubits which can be

complicated to fabricate and measure, but also with simple linear resonators which

are by comparison much easier to deal with. Thus understanding and improving

dielectric loss in superconducting microwave resonators is a pathway to improving

the performance of superconducting qubits.

1.1.3 Superconducting qubit readout

In addition to being useful in diagnosing sources of loss and decoherence,

superconducting linear resonators are also useful in reading out qubits. This idea

was the genesis of circuit cavity quantum electrodynamics in 2004 by the Schoelkopf

group at Yale [16]. They demonstrated that by coupling a qubit to a linear resonator,

the state of the qubit creates a dispersive shift in the resonance frequency of the

resonator. Thus by measuring the resonance frequency of the linear resonator the

state of the qubit can be determined.

When coupling a linear resonator to a qubit, the loss of the resonator can
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(a) 

(b) 

Figure 1.2: From Ref. [15] (a) Superconducting resonator loss tangent
measurement for silicon nitride and silicon dioxide. Silicon nitride shows
significantly lower loss (b) Rabi oscillations of phase qubit where the
same silicon nitride and silicon dioxide are used as wiring dielectrics.
Qubit made with the lower loss silicon nitride show longer coherence
times indicating that qubit lifetimes are likely limited by dielectric loss.
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limit the lifetime of the qubit. This was observed recently when the Yale group and

eventually much of the community started using 3 dimensional cavities to measure

their qubits [17]. The electromagnetic fields inside the 3-D cavities mostly reside in

empty space. With little lossy dielectric, they exhibit much lower internal loss than

planar LC resonators. Due to this improvement in the loss of the linear resonator,

state of the art decay times were observed [17]. This presents another clear example

where improvement in fabrication and understanding of linear resonators led to

breakthroughs for non-linear superconducting qubits.

1.2 Microwave kinetic inductance detectors

While superconducting quantum computing is our underlying motivation for

studying superconducting resonator loss, improved telescopes to better view the

cosmos is no less romantic a pursuit. Superconducting microwave resonators are

now used in some large array infrared telescopes; the resonators are in the form of

microwave kinetic inductance detectors (MKIDs) that act as far-infrared photon de-

tectors. [18] While visible light telescopes can give us beautiful pictures, seeing the

universe in the far-infrared gives us information about “cold” objects such as plan-

ets, events inside interstellar gases and dust clouds where visible light is scattered,

and distant galaxies with a high red shift. MKIDs are sensitive to far-infrared pho-

tons because an absorbed photon will break Cooper pairs and increase the kinetic

inductance of the resonator. This decreases the resonance frequency and quality

factor which can then be detected using standard microwave measurements. By
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understanding and reducing loss in superconducting resonators, we can potentially

improve the sensitivity of MKIDs.

1.3 Other superconducting resonator applications

Superconducting resonators have several other applications that I have not

mentioned. Niobium superconducting resonators have been used in particle accel-

erators [19] for years and have thus aided in understanding our universe at a more

fundamental level. High-temperature superconducting microwave resonators have

also been used for telecommunication purposes [20]. Superconducting resonators

have recently even been used to read out nanomechanical resonators [21]. These

applications as well as the yet unknown potential applications make the study of

superconducting resonators, and the dielectric films that often cause their loss, an

important one.

1.4 Overview of thesis

In this thesis, I discuss my research on thin-film superconducting resonators.

My goal was to understand and improve their loss, usually by understanding the

dielectric films that limit their loss. In Chapter 2, I discuss the two-level system

model that has been used to explain dielectric loss and acoustic loss in amorphous

films. In Chapter 3, I describe the experimental apparatus and details of the mea-

surements performed as well as intricacies in the analysis of these measurements. In

Chapter 4, I discuss the design and fabrication of four coplanar resonators on sap-
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phire and silicon wafers. In Chapter 5, I discuss my results from the measurement

of these four resonators. In Chapter 6, I discuss Atomic Layer Deposition (ALD)

and its potential for growing thin dielectric films useful for superconducting quan-

tum computing. In Chapter 6, I also propose using coplanar resonators as a test

bed for ALD grown dielectrics. In Chapter 7, I describe measurements of several

ALD grown dielectric films with coplanar resonators and analysis of their loss. In

Chapter 8, I discuss a new experiment designed to electrically bias the defects in

dielectric films in superconducting resonators. In Chapter 9, I discuss measurements

of this experiment and analyze the results. Finally, in Chapter 10, I conclude with

a summary of key results obtained and a discussion of possible future research.
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Chapter 2

Two-level systems and dissipation

2.1 Background for undriven Two-level systems

In the early 1970’s measurements of specific heat and thermal conductivity of

different amorphous solids taken between 70 mK and 1 K [22] highlighted that there

was a fundamental lack of understanding of low temperature thermal properties of

amorphous solids. With this motivation, in 1972 Phillips [23] and Anderson [24]

independently developed the standard tunneling two-level system (TLS) model to

explain the experimental results. In this model each defect atoms can tunnel between

two distinct local minima in a two-well potential. Needless to say this assumption

of two wells is made to simplify the math and is in general not exactly true.

The microscopic identity of actual TLSs in real samples is typically unknown,

but they can be modeled as ions hopping between two local minima (see Fig. 2.1(a))

i.e. by a particle of mass m in a double well potential (see Fig. 2.1(b)). For simplic-

ity we assume that these are identical harmonic wells, with minima separated by

distance d and shifted in energy by an asymmetry energy ∆. Since we are consid-

ering low-temperature properties, we restrict ourselves to the ground states of the

two wells and solve the Schrodinger equation Hψ = Eψ. We assume the state ψ

obeys the ansatz ψ = aψl + bψr, where ψl and ψr are the normalized ground state

wave functions for the left and right wells respectively, and the coefficients a and b
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Figure 2.1: (a) Spatial representation of a TLS as a charged defect hop-
ping between two positions a distance d apart that make angle η with
respect to the applied electric field. (b) Spectral representation (poten-
tial energy description) of a TLS as a particle in a double well potential
with asymmetry energy ∆, tunneling rate ∆0, and barrier height V ,
where (V >> ∆,∆0).

13



are assumed to be real. Multiplying Schrodinger’s equation by ψ∗ and solving for

the energy eigenvalues we have

E =

∫
ψ∗Hψd3x∫
ψ∗ψd3x

=
a2Hll + b2Hrr + 2abHlr

a2 + b2 + 2abS
, (2.1)

where Hll and Hrr are the eigenvalues of the left and right well states, Hlr =∫
ψ∗
lHψrd

3x is the exchange energy between the two states, and S =
∫
ψ∗
l ψrd

3x

is the overlap between them. We know that the true wave function ψ in the ground

state will minimize E . Thus the true eigenvalue is always smaller than or equal to

the one calculated from the ansatz. Therefore we minimize E with respect to the

coefficients a and b by solving for ∂E/∂a = 0 and ∂E/∂b = 0, resulting in

a

b
=
Hlr − ES
Hll − E

, (2.2)

and

a

b
=

E −Hrr

Hlr − ES
. (2.3)

From Eqs. 2.2 and 2.3 we then obtain:

(Hll − E)(Hrr − E)− (Hlr − ES)2 ≈ E2 + (Hll −Hrr)E +HllHrr −H2
lr = 0, (2.4)

where we’ve assumed that the overlap between the left and right wavefunctions is

small and have neglected the term ES in the second step. Choosing the average of the

left and right ground states to be the zero energy gives Hrr,ll = ~Ω/2±∆/2, where

Ω is the harmonic frequency of the left and right wells (defined by the curvature of

the wells). Solving for the energy eigenvalues then gives

E± =
1

2
(~Ω±

√
∆2 + 4H2

lr). (2.5)
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The energy splitting between the two states is then

E = E+ − E− =
√
∆2 + 4H2

lr =
√

∆2 +∆2
0, (2.6)

where we have defined ∆0 = 2Hlr for the exchange energy; ∆0/~ is the tunneling

rate. Thus the Hamiltonian in the left right basis is simply

H0 =
1

2

 ∆ −∆0

−∆0 −∆

 , (2.7)

and diagonalizing it into the eigenbasis gives

H0 =
1

2

 E 0

0 −E

 . (2.8)

It can be shown using the WKB approximation that the tunneling energy is ∆0 ≈

~Ωe−λ, where λ ≈
√
2mV d2/2~ [25]. Assuming a uniform distribution of barrier

heights V it is easily shown that one expects uniform distribution in log ∆0. That

along with the assumption of a uniform distribution of ∆ gives the standard distri-

bution for the TLS barrier height and asymmetry

d2N

d∆d∆0

=
P0

∆0

, (2.9)

where P0 is the TLS spectral and spatial density found to be of order 1044 J−1m−3

[25] for most amorphous dielectrics.

2.2 Two-level system loss

Charge TLS defects can couple to electric fields or strain fields. In this dis-

cussion we’ll focus on electric field perturbation of TLSs but the results can be

generalized to include strain fields.
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An applied electric field E⃗ alters ∆ and ∆0 of a TLS via a perturbation

Hamiltonian

HS =
1

2

 δ∆ −δ∆0

−δ∆0 −δ∆

 . (2.10)

Thus the total Hamiltonian in the left right basis is H = H0 + HS. Here we will

make the assumption that the change in asymmetry δ∆ is much bigger than the

change in tunneling rate δ∆0. This is plausible because the electric field wavelength

is in general much longer than the TLS length scales and thus we don’t expect

the barrier height and the separation of the wells to be affected by the application

of a field, but we do expect the field to effect the EM environment of the TLSs,

thus shifting their asymmetry energy, ∆. For small perturbations, we expect the

asymmetry energy shift δ∆ to vary linearly with the applied field,

δ∆ = 2p⃗ · E⃗, (2.11)

where p⃗ is the dipole moment of the TLS and E⃗ is the applied electric field. Trans-

forming the perturbation Hamiltonian into the eigenbasis of H0 gives [26]

HS =
1

E

 ∆ ∆0

∆0 −∆

 (p⃗ · E⃗). (2.12)

We note that this Hamiltonian for a TLS in an electric field is analogous to that of

a spin 1/2 system in a magnetic field [27, 28],

HM = HM
0 +HM

S = −~γB⃗ · S⃗ = −~γ(B⃗0 · S⃗)− ~γ(B⃗′ · S⃗), (2.13)

where γ is the gyromagnetic ratio, B⃗0 is a static magnetic field representing the

unperturbed Hamiltonian, B⃗′ is an oscillating magnetic field representing the per-
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turbation Hamiltonian, and S⃗ = σ⃗/2, where σ⃗ represents the Pauli matrices:

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 . (2.14)

The two systems are identical once the following substitutions are made

−~γB⃗0 = (0, 0, E) and − ~γB⃗′ =

(
2
∆0

E
p⃗ · E⃗, 0, 2∆

E
p⃗ · E⃗

)
. (2.15)

Without relaxation processes (infinite spin lifetimes), the dynamics of a free spin in

a magnetic field are simply represented by

d

dt
S⃗(t) = γS⃗ × B⃗, (2.16)

where S⃗(t) is the spin operator.

In 1946 Felix Bloch derived the Bloch equations describing a spin 1/2 system

with relaxation in the context of nuclear magnetic resonance (NMR) [29]

d

dt
⟨Sx(t)⟩ = γ (⟨Sy(t)⟩Bz(t)− ⟨Sz(t)⟩By(t))− ⟨Sx(t)⟩

T2

d

dt
⟨Sy(t)⟩ = γ (⟨Sz(t)⟩Bx(t)− ⟨Sx(t)⟩Bz(t))− ⟨Sy(t)⟩

T2

d

dt
⟨Sz(t)⟩ = γ (⟨Sx(t)⟩By(t)− ⟨Sy(t)⟩Bx(t))− ⟨Sz(t)⟩−S0

z [Bz(t)]
T1

, (2.17)

where T1 and T2 are the longitudinal and transverse relaxation times, respectively,

and S0
z [Bz(t)] is the equilibrium population difference between the two levels with

field Bz(t),

S0
z [Bz(t)] =

1

2
tanh

(
~γBz(t)

2kT

)
. (2.18)

The Bloch equations are for an ensemble of spins, so ⟨S⃗(t)⟩ represents the average

spin of the system. Thus to solve for the behavior of a TLS in an electric field, we

need only solve the analogous Bloch equations for a spin in a magnetic field.
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In the Bloch equations, the relaxation times, added in an ad hoc manner, are

essential in understanding the loss in our system so let’s briefly discuss their role.

First, the longitudinal relaxation time T1 is simply the characteristic timescale for

a TLS to fall from the excited state to the ground state. It can be defined by the

rate at which an ensemble of TLSs approaches their equilibrium state

dSz

dt
= −Sz − S0

z

T1
, (2.19)

where one can substitute polarization P for spin S when considering a TLS instead

of a magnetic spin. It can be shown [27] that for an ensemble of TLSs

1

T1
=

(
∆0

E

)2
1

T1,min

, (2.20)

where T1,min is a characteristic of the material. This inverse relationship between T1

and the tunneling energy ∆0 can be understood qualitatively. For lower tunneling

rates, transitions between the two states are of course less common, naturally leading

to a higher state lifetime T1.

The transverse relaxation time T2 is more subtle. Quantitatively it’s the rate

of decay of the off-diagonal terms of the TLS density matrix in the master equation

(discussed in more detail in Chapter 8), or it’s the rate at which a pure state ap-

proaches a mixed state. One can also think of it as the loss of quantum coherence,

which includes both loss of phase information and loss of energy; this is why T2 is

also called the coherence time. Loss of phase information occurs on a time scale Tϕ,

the dephasing time. Thus T2 incorporates T1 relaxation as well as dephasing,

1

T2
=

1

2T1
+

1

Tϕ
. (2.21)
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The correspondence between TLS behavior and the Bloch equations was rec-

ognized and used to solve the acoustic loss problem of a TLS in a strain field [28].

A year later this result was generalized to solve the electric loss problem [30]

tan (δ) =
πP0|p⃗|2

3ϵ

tanh (~ω/2kBT )√
1 + Ω2

R0τ
2

, (2.22)

where f = ω/2π is the measurement frequency, τ is a characteristic TLS lifetime

that depends on the decoherence limit, and ΩR0 is the characteristic Rabi frequency

of the TLS ensemble,

ΩR0 =
p⃗ · E⃗
~

. (2.23)

Note that τ =
√
T1,minT2/3 for constant coherence time T2 and that the Rabi

frequency for an individual TLS is

ΩR =
p⃗ · E⃗
~

∆0

E
. (2.24)

To simplify the expression for the loss tangent we define the intrinsic loss

tangent of a material

tan δ0 =
πP0|p⃗|2

3ϵ
, (2.25)

and the characteristic field

Ec =
~

|p⃗|τ
. (2.26)

Thus the Eq. 2.22 becomes

tan (δ) = tan(δ0)
tanh (~ω/2kBT )√

1 + (|E⃗|/Ec)2
. (2.27)

A qualitative way to understand the functional form of the TLS loss is to

think of the TLSs as a bath that absorbs and reemits photons through absorption
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and stimulated emission. For low excitation fields |E⃗| ≪ Ec the TLS bath is in

its ground state and thus is able to absorb whatever energy is available to it, thus

there’s a constant loss tangent, tan δ0 tanh (~ω/2kBT ), with no field dependence. In

contrast when the field increases such that the Rabi frequency of the TLSs is faster

than the decay rate, the TLSs become more and more likely to be in the excited

state, and are just as likely to reemit a photon through stimulated emission as they

are to absorb a photon. This leads to a reduction in loss tangent as ∼ 1/|E⃗| for

high fields |E⃗| ≫ Ec.

2.3 Loss in a qubit

Individual TLSs were first noticed as splittings in the spectrum of phase qubits

[31] (see Fig. 2.2) and were initially believed to be TLSs causing critical current

noise in the junction, but a year later were understood as TLSs coupling to the

electric field of the qubit [15, 32]. I helped take a related resonator measurement of

individual TLS with a device called a Josephson Junction Defect Spectrometer [33].

By solving for the Hamiltonian of a TLS in the junction dielectric of a phase qubit

[15], it can be shown that the splitting size is given by

S = Smax cos η cos θ, (2.28)

where η is the angle between the TLS dipole and the field in the junction, θ =

arctan∆/∆0, and Smax is the maximum splitting size given by

Smax = 2
|p⃗|
x

√
E
2C

, (2.29)
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Figure 2.2: Splitting in the spectrum of phase qubit from Ref. [31] due
to coupling to TLSs in the junction. The dotted lines mark the location
of prominent splittings on the current bias axis.
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where C is the capacitance of the qubit and x is the thickness of the junction. If we

assume a surface density of TLSs for the junction, σ, as was done in Ref. [15] and

the same uniform distribution of asymmetry energies ∆ and logarithmic distribution

of tunneling rates ∆0 we arrive at this expression for the TLS density of states

d2N

dEdθ
=

σA

cos θ
, (2.30)

where A is the junction area and we’ve changed the distribution variables from ∆

and ∆0 to E and θ. It can be shown that switching from θ to S and averaging over

η yields the density

d2N

dEdS
= σA

√
1− S2/S2

max

S
, (2.31)

for S < Smax and 0 otherwise [15].

Assuming that the qubit couples to a continuum of many TLSs, which is

reasonable for large area junctions, we calculate the decay rate of the qubit from

Fermi’s golden rule

Γ1 =
2π

~

∫ Smax

0

d2N

dEdS
(S/2)2dS (2.32)

= (π/6)σAS2
max/~ (2.33)

=
π(σ/x)|p⃗|2

3ϵ

E

~
(2.34)

where we’ve substituted in Eq. 2.31 for the density of states and used the qubit-TLS

interaction Hamiltonian,

Hint = i(S/2)(|1⟩|g⟩⟨0|⟨e| − |0⟩|e⟩⟨1|⟨g|) (2.35)

where, |g⟩ and |e⟩ are the ground and excited states of the TLS and |0⟩ and |1⟩ are

the ground and excited states of the qubit.
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By comparing the qubit decay rate in Eq. 2.34 to the intrinsic loss tangent

from TLSs in Eq. 2.25 it can be seen that the qubit decay rate is proportional to

the low field limit of the dielectric loss tangent. Thus we need to minimize dielectric

loss to optimize qubit lifetimes.

2.4 TLS micromechanism

TLSs have been germane to the study of low temperature properties of amor-

phous solids for over 40 years, however rarely has a TLS micromechanism been

identified. One problem is that TLSs are so ubiquitous in low temperature solids

that their effect can be due to many different types of structures. The amorphous

nature of the materials inevitably creates variations in the environment, presenting a

vast parameter space with which to form TLS defects, making the task of identifying

such a defect very difficult.

Despite the difficulties there have been some successes in using density func-

tional theory to identify potential TLS candidates. Holder et al. [34] found that in

amorphous aluminum oxide (AlOx), hydrogen impurities are likely to fill aluminum

cation vacancies and create an OH−1 rotors that can act as tunneling TLSs. Such

defects were originally proposed by Phillips [26] as a leading TLS candidate. Some

experiments have correlated low temperature TLS dielectric loss with room temper-

ature defect spectroscopy of the material. Paik et al. [35] found that nitrogen rich

silicon nitride (SiNx) films had a relatively high density of N-H bonds which were

correlated with low temperature loss.
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TLSs can also be found in crystals, and because crystals are relatively sim-

ple systems, it has been possible to identify the defects responsible for them. For

example, it’s been shown that lithium ion (Li+) defects can replace potassium ions

(K+) in potassium chloride (KCl) and form tunneling TLSs [25]. It’s also been found

through thermal conductivity measurements that doping sodium fluoride (NaF) with

hydroxide (OH−) ions can create TLSs, suggesting an OH rotor defect model. Com-

pared to crystalline systems, it seems likely that amorphous systems will tend to

have many more types of TLSs. Thus a good starting point for research into loss in

amorphous dielectrics is to find the leading TLS contributors to loss.
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Chapter 3

Experimental setup and measurement technique

3.1 Dilution refrigerator setup

All measurements in this thesis were performed in a dilution refrigerator. A

dilution refrigerator uses a mixture of He-3 and He-4 to reach millikelvin tempera-

tures. The specific type of refrigerator I used was an Oxford Instrument Kelvinox

model 400 dilution refrigerator which has a cooling power of 400 µW at 100 mK

(see Fig. 3.1(a)). I typically reached a base temperature of about 30 mK, although

there were instances when either vacuum leaks or insufficient heat sinking produced

a higher base temperature.

For all of my measurements only two microwave lines were required (in mea-

surements discussed in Chapters 8 and 9 an additional dc bias line was required).

A schematic of the wiring setup in the refrigerator is shown in Fig. 3.1(b). Stainless

steel UT85 coax cables (0.085” outer diameter) were used for the input lines for ther-

mal isolation and copper nickel UT85 coax cables were used for the output lines for

thermal isolation and reduced attenuation of the measurement signal. In addition

to the attenuation in the lines themselves, 20 dB Midwest Microwave attenuators

were used at the 1.5 K stage and the mixing chamber (base temperature) to elimi-

nate thermal noise from higher temperatures. The output line had two PAMTECH

circulators (CTH1409KS) terminated by 50 Ω at the mixing chamber and one at the
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Figure 3.1: (a) Photograph of the inner vacuum chamber of the dilution
refrigerator with the sample box mounted at the bottom. (b) Schematic
of microwave wiring in the refrigerator.

1.5 K stage for microwave isolation between the sample and the amplifiers. Each

provides 18 dB of isolation in the 4-8 GHz range. After the circulators there was a

low noise, cryogenic HEMT amplifier, purchased from the Weinreb group in Caltech

[36], in the 4 K helium bath followed by two additional room temperature amplifiers

(see Fig. 3.1(b)).

3.2 Signal calibration

As shown in Fig. 3.1(b), an Agilent N5242A PNA-X network analyzer was

used to perform device spectroscopy. Here I’ll discuss the calibration of the system
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to convert from the applied network analyzer voltage to the voltage at the sample.

This calibration is critical because as discussed in Chapter 2 TLS dielectric loss is

power-dependent. Since stainless steel has little change in electrical conductivity

with temperature, I performed the calibration of the input microwave lines at room

temperature and assumed this was accurate at low temperatures.

First, to determine the attenuation of the input lines at room temperature, I

used the network analyzer to measure the throughput S21 from the network analyzer

to the input connection at the bottom of the mixing chamber where the device will

be mounted. This was done for three input powers (see Fig. 3.2(a)). Three relatively

high powers were used (-20, -10, and 0 dBm) to minimize the required averaging for

sufficient signal to noise. I fit the three measurements of S21 to a line on a semi log

plot (see Fig. 3.2(a)). I then averaged the slopes, and plotted the intercepts as a

function of the input power (see Fig. 3.2(b)). The slope in Fig. 3.2(b) should ideally

be unity but I fit to the slope in order to capture any nonlinearities in the system; the

slope obtained was 0.981. The average slope with frequency from Fig. 3.2(a) (-3.53

dBm/GHz) was then combined with the slope with input power from Fig. 3.2(b) to

obtain a calibration function for the power at the mixing chamber as a function of

the frequency and the input power,

Pdevice = −3.53(dBm/GHz)× freq(GHz) + 0.981× PNA − 57.04 dBm. (3.1)

Note that since the slopes with frequency from Fig. 3.2(a) are generally very close

and the slope with power from Fig. 3.2(b) is generally close to 1, in principle a single

power could be used to calibrate the lines. Three was chosen somewhat arbitrarily
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Figure 3.2: (a) Throughput calibration measurements of input mi-
crowave lines performed at room temperature with -20 (green), -10
(blue), and 0 (red) dBm at the Network analyzer. (b) Plot of the inter-
cepts from the fits in (a).
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to check and marginally improve the calibration.

From the 50 Ω characteristic impedance of the input lines and the input power

at the device Pdevice we can calculate the input RMS voltage at the device

Vdevice,RMS =
√
Pdevice × 50Ω. (3.2)

This input voltage will be used later to calculate the voltage across the resonators.

The setup has two sets of input and output lines and I’ve shown here the calibration

for only one. The calibration for the other input line is performed in an identical

manner. The calibration equation for the other line analogous to Eq. 3.1 is

Pdevice = −3.51(dBm/GHz)× freq(GHz) + 1.02× PNA − 58.03 dBm. (3.3)

3.3 Resonance derivation

I measure a resonator’s loss by coupling it to a coplanar waveguide (CPW)

transmission line and measure the waveguide’s throughput S21 ≡ Vout/Vin. I next

present a derivation of S21 that is similar to the one originally derived for this project

by Kevin Osborn. The throughput can be modeled by the circuit schematic shown

in Fig. 3.3, where the resonator, composed of the inductor L and the capacitor Ĉ,

is coupled to a CPW. Both inductive and capacitive coupling is included through

M and CC respectively, and Ĉ is complex to account for dielectric losses. Vin and

Vout are the input and output voltage amplitudes, and V is the voltage across the

capacitor Ĉ. For this model, I assume the transmission lines are perfectly coupled

with the characteristic impedance Z0 and L1 is small (L1 << CCZ
2
0).
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Figure 3.3: a schematic of the resonator measurement setup with both
inductive and capacitive coupling.

Figure 3.3 can be redrawn as Fig. 3.4(a) and assuming low loss
(
Im
{
Ĉ
}
<< Re

{
Ĉ
})

,

the complex capacitance can be split into a capacitor and a resistor as in Fig. 3.4(b),

where C = Re
{
Ĉ
}
and

R =
1

ωIm
{
Ĉ
} . (3.4)

To solve for the transmission through the CPW I write the following Kirchhoff’s

equations for the circuit in Fig. 3.4(b),

2Vin − Vout = I1(Z0 + iωL1)− iωMIL

V − Vout =
I2

iωCC

Vout = (I1 + I2)Z0

V = iωLIL − iωMI1

V = −I2 + IL

iωĈ
. (3.5)

Solving these equations we find an expression for the transmission S21 as a function
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Figure 3.4: (a) Equivalent circuit to that shown in Fig. 3.3. (b) Equiv-
alent circuit to (a) where Ĉ has been separated into its real (C) and
imaginary (1/ωR) parts.
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NI ĈL CT RT V 

Figure 3.5: Norton equivalent circuit for resonator measurement where
V is the voltage across the capacitor.

of the voltage across the capacitor:

S21 =
Vout
Vin

= 1 +
V

2Vin

(
M

L
+ Z0iωCC

)
, (3.6)

where some approximations have been used (ωC << 1/Z0, {ωL1, ωM
2/L} << Z0).

Using Eqs. 3.5 again, this time to eliminate Vout we get the following independent

equation:

−V
(

1

iωL
+iωĈ+

iωCC

iωCCZ0 + 1
+

1

2Z0

(
M

L
− iωCCZ0

1 + iωCCZ0

)2)
=
Vin
Z0

(
M

L
− iωCCZ0

1 + iωCCZ0

)
.

(3.7)

To proceed, we note that Eq. 3.7 is of the form

IN = V

(
1

iωL
+ iωĈ +GN

)
, (3.8)

where GN and IN are the Norton equivalent conductance and current respectively.

The circuit in Fig. 3.4 thus has the Norton equivalent circuit shown in Fig. 3.5.

From Eq. (3.7) we see that

IN = −Vin
Z0

(
M

L
− iωCCZ0

1 + iωCCZ0

)
, (3.9)

and

GN =
iωCC

iωCCZ0 + 1
+

1

2Z0

(
M

L
− iωCCZ0

1 + iωCCZ0

)2

. (3.10)
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Since the real part of GN loads the resonator measurement and the imaginary

part shifts the resonance frequency, it is useful to separate GN into its real (con-

ductive) and imaginary (susceptive) components. We can now define Re{GN} ≡

1/RT , Im{GN} ≡ ωCT , R
−1
eff ≡ R−1 + R−1

T , Q ≡ Reffω0(C + CT ), and ω0 =

1/
√
L(C + CT ). Expanding Eq. 3.10 around the small values M/L and ωCCZ0 and

keeping only the lowest order non-vanishing terms we find

CT = CC , (3.11)

and

R−1
T =

1

2Z0

((
M

L

)2

+ ω2C2
CZ

2
0

)
. (3.12)

Equation (3.6) can then be rewritten as

S21 = 1− Reff/RT

1 + 2iQω−ω0

ω0

, (3.13)

where we’ve assumed that ω ≈ ω0. Next it is convenient to define the external

quality factor Qe = RTω0(C + CT ), which effectively gives the resonator’s coupling

loss, allowing us to rewrite Eq. 3.13 as

S21 = 1− Q/Qe

1 + 2iQω−ω0

ω0

. (3.14)

Equation 3.14 has the functional form of a Lorentzian with three free param-

eters (Q, Qe, and ω0) and can now in principle be used to fit transmission measure-

ments to extract the resonance frequency as well as the total and external quality

factors. Note that what we’re generally most interested in is the loss tangent of the

resonator tan δ = Im
{
Ĉ
}
/Re

{
Ĉ
}
. We can now use Eq. 3.4 to define the internal
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quality factor Qi = RωC = 1/ tan δ such that

1

Qi

=
1

Q
− 1

Qe

. (3.15)

This relationship allows us to use extracted values of Q and Qe to determine Qi and

thus the loss tangent of the resonator.

Note that the internal quality factor Qi of the resonator is modeled here as

the loss tangent of the dielectric, but in principle the loss can come from any inter-

nal loss mechanism in the device. When multiple loss mechanisms are active they

add reciprocally as the internal and external quality factors do. For example if a

resonator exhibited resistive loss (Qres), radioactive loss (Qrad), and dielectric loss

(Qtan δ), the total internal quality factor would be

1

Qi

=
1

Qrad

+
1

Qres

+
1

Qtan δ

. (3.16)

3.4 Determining the voltage across the resonator

In section 3.2 I discussed how I calibrated the microwave input lines to know

what voltage I’m applying at the CPW. In section 3.3 I derived the output transmis-

sion through the CPW as a function of the resonator parameters. Here I combine

these two results in order to calculate the voltage V across the resonator as a func-

tion of the resonator parameters. From Eq. 3.8 we can write the following expression

for the voltage across the resonator,

V =
IN

1
iωL

+ iωĈ +GN

. (3.17)
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The denominator can be split into its real and imaginary components using iωĈ =

iωC + R−1 and GN = iωCT + R−1
T . On resonance, the imaginary components of

the denominator cancel leaving only real components, thus the voltage on resonance

can be rewritten as

V (ω = ω0) =
IN

R−1 +R−1
T

= INReff . (3.18)

Substituting Eq. 3.9 in for IN , Eq. 3.18 becomes

V (ω = ω0) = −VinReff

Z0

(
M

L
− iωCCZ0

1 + iωCCZ0

)
, (3.19)

and recognizing that we’re interested in the RMS voltage across the resonator on

resonance, we can rewrite Eq. 3.19 as

VRMS(ω = ω0) =
Reff

Z0

∣∣∣∣ML − iωCCZ0

1 + iωCCZ0

∣∣∣∣Vin,RMS. (3.20)

Then using Eq. 4.5, this can be rewritten as

VRMS =
Reff

Z0

√
2Z0

RT

Vin,RMS. (3.21)

Finally using the definitions of Q and Qe, we find the voltage on resonance is

VRMS(ω = ω0) =

√
2

Z0ω0CQe

QVin,RMS, (3.22)

where we’ve assumed CC << C.

We now have an expression for the voltage across the resonator in terms of ex-

tracted parameters (Q, Qe, and ω0) from throughput measurement fits to Eq. 3.14,

the calibrated input voltage Vin,RMS of the device from Eq. 3.2, and known design

parameters of the resonator and the circuit (Z0 and C). Note that a lumped el-

ement resonator was assumed for this derivation, and Chapter 4 contains further
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analysis for the situation where the resonator length is comparable to the resonance

wavelength.

3.5 Asymmetric resonance line shapes

In section 3.3 we derived the Lorentzian line shape for a matched transmission

line coupled to a resonator. However, as Fig. 3.6 shows non-ideal experimental

setups can lead to asymmetry in the resonance line shape [37, 27, 35, 38, 39, 40, 41],

corresponding to, as will be shown later in this section, a rotation of the resonance

circle. This complicates the analysis and the interpretation of internal and external

quality factors (Qi and Qe). Several methods for extracting the Qi of a resonator

have been used for different experimental setups [42, 43, 44, 45, 40]. However, these

methods either require a single port reflective measurement [43, 44] (incompatible

with most qubit measurements), full two-port characterization [42, 45] (typically

unavailable for millikelvin measurements), or identifying and fitting to a second

coupled mode [40] (a special case). The most widely used technique for analyzing

millikelvin resonator measurements, prior to our publication of this work, the ϕ

rotation method (ϕRM), simply adds an empirical rotation of the resonance circle

before extracting the quality factor [35, 27, 38].

In this section I show how asymmetry in the resonance line shape can arise

from coupling the resonator to mismatched input and output transmission lines as

well as non-negligible transmission line series inductance (L1), mutual inductance

(M) or coupling capacitance (CC). Based on this understanding of the origin of
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Figure 3.6: Resonance line shape of a coplanar superconducting alu-
minum QLL-CPS resonator taken at 30 mK (see Chapter 4). The line
shape is clearly asymmetric and does not fit to Eq. 3.14.
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the asymmetry, I’ll derive the Diameter Correction Method (DCM) and use it to

extract Qi. I’ll compare this to the conventional analysis method, the ϕ rotation

method (ϕRM) [35, 27, 38], and show that there is a one-to-one mapping between the

two methods but that the ϕRM systematically overestimates Qi by an analytically

quantifiable amount. Note, I do not address fitting techniques here but interested

readers can find a comprehensive quantitative comparison of fitting techniques in

Ref. [46].

3.5.1 Analysis of asymmetric resonance lineshape

Here I derive an expression for the resonance line shape of a resonator cou-

pled to a transmission line. In contrast to section 3.3, here I assume mismatched

transmission lines and non-negligible coupling components (see Fig. 3.7). Solving

Kirchhoff’s equations for this circuit yields a more general form of Eq. 3.6

S21 = (1 + ϵ̂)

(
1 +

V

2Vin

(
M

L
+ Z ′

iniωCC

))
, (3.23)

where 1 + ϵ̂ ≡ 2/(1 + (iωCC + /Zout)Z
′
in), Z

′
in ≡ Zin + iωL1 − iωM2

L
, and |ϵ̂| << 1.

Solving Kirchhoff’s equations and eliminating Vout, we get the independent equation:

−V
(

1

iωL
+iωĈ + iωCC

iωCCZout+1
+

(
M
L
− iωCCZout

1+iωCCZout

)2

Z′
out+Zin+iω

(
L1−M2

L

)
)

= 2Vin

(
M
L
− iωCCZout

1+iωCCZout

Z′
out+Zin+iω

(
L1−M2

L

)
)
, (3.24)

where Z ′
out ≡ Zout/(1 + iωCCZout). Again we note that Eq. (3.24) is of the form

V
(
1/(iωL) + iωĈ +GN

)
= IN , where

IN = −2Vin

(
M
L
− iωCCZout

1+iωCCZout

Z ′
out + Zin + iω

(
L1 − M2

L

)) , (3.25)
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Figure 3.7: (a) Schematic of resonator measurement setup with inductive
and capacitive coupling and mismatched input and output transmission
lines. (b) equivalent circuit to (a), where Ĉ has been separated into its
capacitive part (C) and its resistive parts (1/ωR). (c) Norton equiva-
lent circuit for resonator measurement where V is the voltage across the
capacitor.
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and,

GN =
iωCC

iωCCZout + 1
+

(
M
L
− iωCCZout

1+iωCCZout

)2
Z ′

out + Zin + iω
(
L1 − M2

L

) . (3.26)

Since the real part of GN loads the resonator measurement and the imaginary part

shifts the resonance frequency, it is useful to separate GN into its real (conductive)

and imaginary (susceptive) components. We can now make the same definitions as

in section 3.3:

Re{GN} ≡ 1/RT , (3.27)

Im{GN} ≡ ωCT , (3.28)

R−1
eff ≡ R−1 +R−1

T , (3.29)

Q ≡ Reffω0(C + CT ), (3.30)

ω0 = 1/
√
L(C + CT ), (3.31)

Qi ≡ Rω0C =
Re{Ĉ}
Im{Ĉ}

=
1

tan δ
, (3.32)

and we add the definition

G′ ≡ − IN
2Vin

(
M

L
+ Z ′

iniωCC

)
. (3.33)

Then, Eq. (3.23) can be rewritten as

S21 = 1− G′Reff

1 + 2iQω−ω0

ω0

, (3.34)

where I’ve dropped the 1 + ϵ̂ multiplicative factor because it can be accounted for

by assuming an arbitrary attenuation and phase shift. Note that a fundamental dif-

ference between section 3.3’s derivation of Eq. 3.13 and this more general derivation
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of Eq. 3.34 is that here if higher order terms in the small parameters (M/L) and

ωCCZout are kept, G′ ̸= R−1
T . Proceeding, I now rewrite Eq. (3.34) as

S21 = 1−
(
GD +R−1

T

)
Reff

1 + 2iQω−ω0

ω0

, (3.35)

where I’ve defined

GD ≡ G′ −R−1
T . (3.36)

Expanding to third-order in M/L we find:

GD = iωCC
M

L

(
Zin − Zout

Zin + Zout

)
+

i

(Zin + Zout)
2

(
(ωCC)

2 Z2
out

(
L1 − CCZ

2
in

)
−
(
M

L

)2 (
L1 − CCZ

2
out

))
,

(3.37)

and note that GD is purely imaginary.

At this point in the analysis it is useful to generalize the definition of the

external quality factor

Q̂−1
e ≡ R−1

T +GD

ω0 (C + CT )
, (3.38)

and recognize that sinceGD is purely imaginary, combining Eqs. 3.38, 3.35, 3.29, 3.30,

and 3.32 gives

Q−1
i = Q−1 −Re

{
Q̂−1

e

}
, (3.39)

where I’ve assumed CT ≪ C. We can now rewrite Eq. 3.35 as

S21 = 1− QQ̂−1
e

1 + 2iQω−ω0

ω0

, (3.40)

which adds another free parameter to the ideal throughput transmission of Eq. 3.14.

This parameter accounts for asymmetry in the line shape. Note that the prefactor
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1 + ϵ̂ has been dropped from Eq. 3.40 because it only adds a constant phase and

contributes a constant multiplicative factor to the amplitude which is convoluted

with the amplification and attenuation of the signal.

I emphasize here that GD is the term that creates the asymmetry in the line

shape or equivalently a rotation of the resonance circle around the off resonance

point. If GD were zero then Q̂−1
e would be real, reducing Eq. (3.40) to a symmetric

Lorentzian line shape (Eq. 3.14). Equation (3.40) can also be written as

S21 = 1−
Q
∣∣∣Q̂−1

e

∣∣∣ eiϕ
1 + 2iQω−ω0

ω0

, (3.41)

where Q̂−1
e is represented in terms of its magnitude and phase ϕ. Another equivalent

representation is

S21 = 1−
Q
Qe

(
1 + 2iQ δω

ω0

)
1 + 2iQω−ω0

ω0

, (3.42)

where we’ve defined

1

Qe

≡ Re
{
Q̂−1

e

}
, (3.43)

and δω is the difference between the resonance frequency and the new rotated in-

phase point on the resonance circle, ω1 (see Fig. 3.8). The form of Eq. (3.42) can

be understood by noting that S21 is real when ω = δω + ω0.

Here I stress that Eqs. (3.40-3.42) are equivalent representations of the asym-

metric line shape, each highlighting a different interpretation of the asymmetry.

In Eq. (3.40) the asymmetry is quantified by Im
{
Q̂−1

e

}
and one can think of the

asymmetry as coming from a complex loading of the resonator. In Eq. (3.41) the

asymmetry is quantified by ϕ, where ϕ is the rotation angle of the resonance circle

around the off-resonance point (see Fig. 3.8). And finally in Eq. (3.42) the asym-
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Figure 3.8: (a) Simulated transmission through mismatched coupling
lines (Zin = 24.5Ω, Zout = 84.5Ω) plotted as Im{S21} vs. Re{S21}
with a fit to a circle. The asymmetry is represented as a rotation of
the resonance circle by the angle ϕ away from the real (in-phase) axis
or equivalently as δω = ω1 − ω0, the frequency shift of the in-phase
point on the resonance circle. (b) Shows the simulated transmission with
asymmetry removed using both analysis techniques. The ϕRM (△) only
rotates the circle to the real axis while the DCM (�) both rotates the
circle and removes the factor of 1/ cos(ϕ) increase to the diameter. The
DCM shows that the invariant quantity is not, as the ϕRM assumes,
the diameter of the circle (equal to Q/|Q̂e| and Q/Qe before and after
the DCM transformation respectively) but rather the length of the real
axis segment intersecting the circle (shown in bold and equal to Q/Qe),

where 1/Qe ≡ Re
{
1/Q̂e

}
.
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metry is quantified by δω, where δω = ω1 −ω0 is the frequency shift of the in-phase

point on the resonance circle from ω0 to ω1 (see Fig. 3.8). Since the three rep-

resentations are equivalent, there exists a one-to-one mapping between the three

notations:

ϕ = arctan

(
Im{Q̂−1

e }
Re{Q̂−1

e }

)
= arctan

(
2Q

δω

ω0

)
. (3.44)

One method the, ϕ rotation method (ϕRM), has been used in the literature

[35, 27, 38] to extract internal quality factors accounts for the asymmetry by simply

adding an empirical ϕ rotation. Unfortunately this method incorrectly substitutes∣∣∣Q̂−1
e

∣∣∣ for Q−1
e and defines

1

Qi, ϕRM

=
1

Q
−
∣∣∣∣ 1Q̂e

∣∣∣∣ . (3.45)

In effect the ϕRM accounts for the asymmetric line shape phenomenologically by

adding the rotation, ϕ, without accounting for its origin and its impact on the

interpretation of Qi. It corresponds to rotating the resonance circle back an angle

ϕ in the complex S21 plane, thereby putting ω0 on the in-phase axis. The rotation

of the ϕRM can best be seen by examining the difference between Fig. 3.8(a) and

Fig. 3.8(b)(△).

The problem with the ϕRM is that simply rotating the resonance circle by

angle ϕ does not take into account the fact that the asymmetry has also caused the

circle to grow by a factor of 1/ cos(ϕ), assuming the circle has been normalized to

full transmission off resonance (S21(ω << ω0) = S21(ω >> ω0) = 1). I have shown

here that instead of Eq. 3.45 one has

1

Qi, DCM

=
1

Q
− 1

Qe

. (3.46)
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I call this the Diameter Correction Method (DCM) because in addition to rotating

the circle by the asymmetry angle ϕ it also corrects the diameter by accounting

for the complex Qe. This can be seen by examining the transformation between

Fig. 3.8(a) and Fig. 3.8(b)(�).

Another interpretation of the DCM is that the quantity that remains constant

in the asymmetry transformation is not the diameter of the resonance circle, as

the ϕRM assumes, but rather the distance between the in-phase axis intercepts,

shown in bold in Fig. 3.8. That invariant length is the diameter of the circle for

a symmetric resonance and becomes a chord of the circle as asymmetry is added,

but remains equal to Q/Qe, while the diameter grows as Q/|Q̂e|. The analytical

discrepancy between the two methods can be determined by subtracting Eq. (3.46)

from Eq. (3.45),

1

Qi, DCM

− 1

Qi, ϕRM

=

∣∣∣∣ 1Q̂e

∣∣∣∣ (cos(ϕ)− 1) . (3.47)

From Eq. (3.47) we see that the error in the ϕRM diverges for high asymmetry

angle, ϕ ≈ ±π, and for low Qe (high coupling). Note that for ϕ = 0, Q̂−1
e is real

and Eq. (3.46) reduces to Eq. (3.45) and therefore Eq. (3.47) goes to zero.

3.5.2 Analysis of S21 Simulations and Data

To test the ϕRM and the DCM, I simulated the transmission through reso-

nant circuits using the numerical linear solver, Microwave Office. Simulations were

run varying a range of parameters: Qi, impedance mismatches, strength of both

inductive and capacitive coupling and inductance L1. The resonator capacitance
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and inductance were held at 0.3 pF and 2.5 nH, respectively, producing a resonance

frequency that ranged from 5.717-5.802 GHz (resonance frequency varies with cou-

pling capacitance). The simulated S21 data was then fit and analyzed using both

methods. Figure 3.9 shows an example of a Microwave Office schematic from such a

simulation. Microwave Office doesn’t allow for variation of the port impedance (set

to 50 Ω), so to vary Zin and Zout I used the built in coax transmission line element

and calculated the effective input and output impedances by using the well-known

equation for impedance of a loaded transmission line [47]

Z = ZC
ZL + iZ0 tan βl

Z0 + iZL tan βl
, (3.48)

where Z is the effective input impedance, ZL is the load impedance, ZC is the

characteristic transmission line impedance, l is the length of the transmission line,

and β = 2π/λ is the wavenumber. For an electrical length (βl) of 90◦, the tangent

term in Eq. 3.48 dominates, and the equation reduces to Z = Z2
C/ZL. The input and

output impedances for the example shown in Fig. 3.9 are Zin = (30 Ω)2/(50 Ω) =

18 Ω and Zout = (70 Ω)2/(50 Ω) = 98 Ω.

I typically modeled asymmetry by varying Zin/Zout. Asymmetry can also be

created by increasing L1. However, L1 values in the nanohenries are required to

create significant asymmetry, which is far too large to be physical in my setup.

The impedance mismatches used are sometimes large, but after this work was pub-

lished [41] a related study found that these large effective impedance mismatches

are consistent with wire bonds made to the coplanar waveguides on the chip [48].

Figure 3.10 shows results from simulations and fits with the same simulated
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Figure 3.9: Schematic from the numerical linear solver Microwave Office
showing a typical simulated resonance circuit.

quality factor, Qi = 105 and a range of Zin/Zout values. The coupling line mismatch

creates a clear asymmetry in the line shape which I quantified by extracting the

asymmetry angle ϕ (see Fig. 3.10). In addition to the value of ϕ extracted from the

fit, I also analytically determined the expected asymmetry using

ϕ = arctan

(
Im{GD}
R−1

T

)
, (3.49)

which can be obtained from Eqs. 3.26, 3.27, and 3.37.

Two internal quality factors were extracted from these fits, one using the ϕRM

and the other using the DCM. Figure 3.11 shows both extracted quality factors as

well as the fit extracted asymmetry angle ϕ, plotted against the predicted ϕ from

Eq. (3.49). Examination of Fig. 3.11 reveals that the DCM is more accurate than the

ϕRM for large asymmetry ϕ, and that the two methods agree for small asymmetry.

I also compared both analysis techniques when asymmetry is held constant but

Qi is varied, which I will show later in this chapter corresponds to some experimen-
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Figure 3.10: Plot of simulated S21 vs. freq f fit to symmetric and asym-
metric resonance line shapes. Here the asymmetry was created using
mismatched coupling lines (Zin and Zout). Asymmetry angles ϕ are ex-
tracted from the fits.
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Figure 3.11: (a) Qi extracted from fits to circuit simulations using ϕRM
(•) and DCM (�) analysis techniques, as a function of predicted asym-
metry angle ϕpred. calculated using Eq. (3.49). The dashed line indicates
actual simulation Qi. At low asymmetry the two methods agree. As
asymmetry is increased, the ϕRM extracted Qi deviates from the actual
Qi. (b) The fit extracted asymmetry angle, ϕsim. (�), as a function of
predicted asymmetry angle, ϕpred.. The solid line is the ϕpred. = ϕsim.

line. Good agreement of that line with the results (�) indicates that this
method is accurate at predicting the asymmetry.
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tal data sets. Figure 3.12 shows Qi extracted using both analysis techniques plotted

as a function of the actual (simulation set) Qi for simulations with low and high

asymmetry. For low asymmetry (matched ports) both analysis techniques yield the

correct Qi within the expected first-order error (CC/C). However, for high asym-

metry (mismatched ports), the ϕRM yields quality factors that are systematically

too high. In addition, for sufficiently high Qis, the ϕRM yields negative Qis (this

is why the asymmetric data analyzed by the ϕRM appears to stop at large Qi in

Fig. 3.12).

The occurrence of these unphysical, negative, Qis in the ϕRM can be under-

stood by examining the circle plots in Fig. 3.8. As discussed earlier when there is a

large asymmetry, in addition to being rotated, the resonance circle grows by a factor

of 1/ cos(ϕ) (assuming full transmission off resonance). Since the ϕRM only rotates

the circle back, it does not account for the increase in size, shown in Fig. 3.8(b).

So if Q ≈ Qe (Qi >> Qe), the circle diameter is larger than 1, almost crossing

the y-axis. Rotating the circle using the ϕRM causes the circle to cross the y-axis

and this yields a negative Qi. In Fig. 3.8(b) the ϕRM analyzed simulation almost

crosses the origin. This corresponds to the Qi = 8× 105 simulation in Fig. 3.12; it

is an example of a simulation data set with a Qi and asymmetry not large enough

to create a negative Qi but still large enough to create a considerable discrepancy

between Qi, ϕRM and Qi, DCM .

To further evaluate both methods, I also analyzed the asymmetric data shown

in Fig. 3.6. Figure 3.13 shows the fit used for that resonance line shape. In Fig. 3.14 I

show theQi extracted using both techniques and the asymmetry angle ϕ. Figure 3.14
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Figure 3.12: (a) Qi extracted with both analysis techniques (ϕRM and
DCM) as a function of the actual Qi from two sets of simulations. The
first set of simulations had high asymmetry (mismatched ports: Zin =
24.5Ω, Zout = 84.5Ω) and the second had low asymmetry (matched ports:
Zin = Zout = 50Ω). Solid line is actual Qi equal to extracted Qi line and
dashed line indicates the coupling (Qe). Both analysis techniques work
well with low asymmetry but only the DCM works with high asymmetry
at large Qi. At low simulation internal quality factors (Qi = 105) the
DCM extracted internal quality factors (Qi = 1.002×105) with less than
1% deviation from the actual value in both low and high asymmetry
simulations and at high simulation internal quality factors (Qi = 4 ×
106) the DCM extracted internal quality factors (Qi = 3.85× 106) with
less than 4% deviation from the actual value for both low and high
asymmetry simulations. The deviation at high internal quality factors
is limited numerically by the fit and is not a limit of the method. (b)
The fit extracted asymmetry angle ϕsim. for both low (♢) and high (�)
asymmetry simulations plotted against the actual simulation Qi.
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Figure 3.13: The resonance line shape from Fig. 3.6 fit with the derived
asymmetric resonance line shape (Eq. 3.40).

is similar to the high asymmetry simulations shown in Fig. 3.12. As expected from

Eq. (3.37), the asymmetry ϕ is independent of Qi for both the real device measure-

ments and the simulated data. Note also the last two data points for the ϕRM in

Fig. 3.14 are negative (and off the plot) in the same manner that the last points in

the simulated data of Fig. 3.12 are negative.

Another way to test the analysis techniques is by varying Qe while keeping

Qi constant. In Fig. 3.15 I show the results form a set of simulations where I

increased Qe by lowering the capacitive coupling. As expected, for low asymmetry

(matched ports) both analysis techniques do a good job of extracting Qi = 105.

However, for high asymmetry (mismatched ports) the ϕRM overestimates Qi by a

decreasing amount as Qe/Qi increases. Interestingly, in the ϕRM, as Qe increases,
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Figure 3.14: Extracted results from the same resonator that produced
the data shown in Fig. 3.6 and Fig. 3.13. (a) Qi, extracted using two
analysis techniques, ϕRM (N) and DCM (�), as a function of voltage
across the resonator, VRMS. As with simulated results in Fig. 3.12, the
ϕRM systematically extracts higher Qis or unphysical negative Qis. The
dashed line indicates the fit extracted external quality factor Qe. (b) The
fit extracted asymmetry angle ϕexp. (�) plotted against VRMS. Again
similar to the simulated results in Fig. 3.12, ϕexp. is independent of Qi,
which is varying with VRMS.

53



10
4

10
5

−0.6

−0.4

−0.2

0

0.2

Qe

φ
s
i
m

.
(r

a
d
ia

n
s)

 

 

matched

mismatched

80

100

120

140

160

180

200

Q
i
(i

n
th

o
u
sa

n
d
s)

 

 
matched (DCM)
matched (φRM)
mismatched (DCM)
mismatched (φRM)

(a)

(b)

Figure 3.15: (a) Qi extracted using DCM and ϕRM techniques from two
sets of simulations plotted as a function of Qe. One set has high asym-
metry (mismatched ports: Zin = 24.5 Ω, Zout = 84.5 Ω) and one has low
asymmetry (matched ports: Zin = Zout = 50Ω). Qe is varied by varying
the coupling capacitance (1-10 fF), with a constant mutual inductance
(5 pH). The dashed line indicates the actual Qi of the simulations. With
increasing Qe the inaccuracy of the ϕRM is diluted due to the decreasing
weight of Qe in the analysis. (b) Plot of extracted asymmetry angles vs.
Qe for the two simulations with low (♢) and high (�) asymmetry.
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the extracted Qi approaches the real value, although the asymmetry ϕ is increasing.

This is because as Qe increases the ϕRM is less sensitive to the asymmetry. This

behavior is captured in Eq. (3.47), which shows that as Qe increases, the difference

between the two analysis methods vanishes. In fact for Qe >> Qi, the asymmetry

becomes completely irrelevant and the two techniques converge.

3.6 Conclusion

In summary, in this chapter I first described the dilution refrigerator I used

for cooling samples to 30 mK. I next discussed the input microwave lines and how I

calibrated the voltage at the sample and the voltage across the resonance capacitor,

based on the resonance line shape. Some resonance line shapes were found to be

asymmetric so I derived an analytical resonance line shape based on circuit parame-

ters and found that for non-ideal conditions the line shape is asymmetric. Based on

this analysis I (with the help of my advisor Kevin Osborn) developed a technique

(DCM) for extracting accurate values for internal quality factors Qi from asymmet-

ric resonator measurements using only transmission data. By analyzing simulated

resonator measurements, I found that the DCM was superior at extracting accurate

internal quality factors in contrast to the conventional ϕRM technique found in the

literature. I found that in the limit where the asymmetry is low, the two methods

agreed, but when the asymmetry is high, particularly when Qi >> Qe, the DCM

accurately determines Qi while the ϕRM systematically overestimates it. I also

found that sufficiently high asymmetry and coupling, the ϕRM gives an unphysical
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negative Qi. Finally, I showed that the two methods can produce different results

on real data taken on a coplanar superconducting aluminum resonator with high

asymmetry.
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Chapter 4

Coplanar resonators

4.1 Resonator Design

4.1.1 Design Procedure

In this section I discuss how I designed, simulated and fabricated thin-film

coplanar aluminum resonators on sapphire and silicon substrates. All resonators

were designed based on simulations done with Microwave Office. Microwave Office

is a finite element numerical E&M solver that accepts material parameters (e.g.

conductivity, dielectric constant, loss tangent, ...) and boundary conditions on the

enclosing box. Figure 9.2(a) shows a typical view of a resonator design (details of

the design to be discussed later in this section) in Microwave Office. The metal

(green in Fig. 9.2(a)) is modeled as a perfect conductor and the dielectric constant

of the substrate is set to 10.7 since it’s been found that this closely approximates

the effective dielectric constant of the sapphire wafers we use.

As seen in Fig. 9.2(a), two ports are used to measure throughput of the copla-

nar waveguide (CPW) transmission line. Figure 9.2(b) shows the simulated through-

put S21 of the resonant circuit of Fig. 9.2(a). From fits to S21, I can extract the

design value for Qe, the coupling of the CPW to the resonator. Another method

to determine Qe for a design is to set the loss in the resonator and just record the
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Figure 4.1: (a) Microwave Office layout of coplanar resonator. Green
is prefect conductor and white is dielectric. Line width is 5 µm. (b)
Microwave Office simulation of transmission from port 1 to port 2 (S21) as
a function of frequency. On resonance the CPW couples to the resonator
and lower transmission is observed.
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minimum throughput transmission (on resonance). By setting the loss you know

the Qi which allows you to determine Qe since on resonance Eq. 3.14 reduces to

S21 = 1− Q
Qe

and solving for Qe gives

Qe = Qi

(
S21

1− S21

)
. (4.1)

Perhaps the most useful thing about using Microwave Office to design res-

onators is that it allows for precise tuning of the resonance frequencies. Using a

sapphire dielectric constant of 10.7, I found the Microwave Office estimation of the

resonance frequency of coplanar resonators is off by less than 1% from the measured

resonance frequency values.

Once the resonator designs were determined, the next step was to transfer all

of the resonator designs onto one layout in the design software, Cadence. Since I

use a notch type measurement that only affects the transmission of the CPW near

resonance, I could multiplex several resonators (in this case 4) on a single CPW.

4.1.2 Designing and simulating resonators to analyze geometry de-

pendence

Coplanar resonators have been ubiquitous in superconducting quantum com-

puting, but most previous research has focused on quasi-one-dimensional cavity

resonators, such as 1/2-wavelength or 1/4 wavelength CPW transmission line res-

onators [16, 49, 50]. Lumped element devices (where dimensions are much shorter

than a wavelength) are less popular but have been used as part of qubits [51, 52],

and in Josephson junction resonators [53, 33]. The interest in coupling quasi-lumped
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element resonators to qubits is that the lack harmonic modes in lumped element res-

onators reduces loss from the Purcell effect [54]. When coupling to a qubit, it’s also

been found that the symmetry of the qubit must be considered, since the type of

coupling may affect coherence [55].

With this in mind I designed four resonators with frequencies between 5 and

7 GHz. The resonators had both quasi-lumped and quasi-one-dimensional cavity

(transmission line) elements, in order to study the transmission between the two

regimes. All the resonators were designed with a symmetric shape to induce induc-

tive, rather than capacitive, coupling.

Figure 4.2 shows optical images of the four resonators. Device QL is a quasi-

lumped element resonator, composed of a meandering quasi-lumped inductor (QLL)

and a quasi-lumped interdigital capacitor (IDC) (see Fig. 4.2(a)) with an inductance

and a capacitance of approximately 2 nH and 0.3 pF respectively. Device CPS is

a 4.5 mm long shorted λ/4 coplanar strip (CPS) resonator, shown in Fig. 4.2(b).

Unlike in the QL resonator the electric field in the CPS resonator is distributed

along the entire length of the resonator rather than being confined to an IDC. The

other two resonators have both a lumped and distributed element (see Fig. 4.2(c,

d)). The four resonators were embedded in the ground plane of the same 50 Ω CPW

and were inductively coupled to the waveguide (see Fig. 4.3).

To understand the behavior of the resonators when they are driven, note that

the point connecting the two nominally symmetric halves of each resonator is a

current anti-node and a voltage node, and the sides of each resonator far from the

coplanar waveguide are voltage anti-nodes. The fundamental resonance frequency
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Figure 4.2: Optical images of four resonators (green is aluminum metal
and black is sapphire substrate). (a) Quasi-lumped resonator (QL) at
5.46 GHz. (b) Coplanar strip resonator (CPS) at 6.44 GHz. (c) Quasi-
lumped inductor with a CPS resonator (QLL-CPS) at 5.76 GHz. (d)
Quasi-lumped capacitor with a coplanar strip resonator (QLC-CPS) at
6.01 GHz.
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Figure 4.3: (a) Schematic drawing of an arbitrary resonator inductively
coupled to a coplanar waveguide. (b-e) Schematic drawing of each of the
four types of resonators: (b) QL, (c) CPS, (d) QLL-CPS, and (e) QLC-
CPS. (f) Circuit schematic of capacitive coupling to a resonator. Due
to the symmetry of these resonators C1 = C2, C3 = C4, C5 = C6, and
C7 = C8, capacitive coupling cannot excite an antisymmetric resonance
and only inductive coupling remains.
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is voltage antisymmetric in all four resonators. The effective capacitive coupling

between the CPW and the resonators for this mode is weak, due to the design and

layout of the structures.

The fact that the capacitive coupling is weak can be understood from the

nearly symmetric shape of these structures, which implies the capacitances to either

side of the resonators are approximately equal. Since the lowest frequency mode is

antisymmetric, we expect only inductive coupling between the resonators and the

CPW. As another example, Fig. 4.3(f) shows a circuit schematic, where a capacitive

network couples voltage V to a resonator. With a symmetric design, C1 = C2,

C3 = C4, C5 = C6, and C7 = C8, the voltage V cannot excite antisymmetric modes.

In order to confirm that the QL resonator showed lumped element behavior, I

used Microwave Office to simulate the current amplitude (see Fig. 4.4(a)) and electric

field amplitude (see Fig. 4.4(b)) on resonance. As can clearly be seen in Fig. 4.4, the

simulations show nearly uniform current amplitude in the meandering inductor and

nearly uniform electric field amplitude in the IDC, while the meandering inductor

shows nearly no electric field and the IDC shows nearly no current. This is indicative

of quasi-lumped behavior in this device with the meandering inductor giving nearly

no capacitance and the IDC giving nearly no inductance.

Since the CPS resonator is effectively a one-dimensional cavity, we should

expect to see higher order modes at each harmonic of the resonator. However, if the

QL resonator is truly lumped, we wouldn’t expect to see any higher order modes.

To test this, I used Microwave Office to simulate the spectrum of the CPS and the

QL resonators from 2 to 40 GHz (see Fig. 4.5). As shown in Fig. 4.5(a), the CPS
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Figure 4.4: (a) Current simulation for the QL resonator on resonance.
As expected, most of the current is in the inductor. (b) Electric field
simulation for the QL resonator on resonance. As expected, most of the
E-field is in the IDC.
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device shows a higher order mode at each harmonic while the QL device doesn’t

show any higher order modes until over 30 GHz, indicating that the device behaves

like a lumped element resonator for a large bandwidth.

4.2 Fabrication

I fabricated all of the resonators with 100 nm thick aluminum films (both sput-

tered and evaporated) on either c-plane sapphire wafers [56] or <1-0-0> undoped 20

kΩ-cm silicon wafers [57]. The aluminum was patterned with positive photoresist

and wet etched in an acidic solution.

For the sputtered aluminum the procedure was to first transfer the 3” wafer

into the CMS-18 Kurt J. Lesker sputtering chamber and pump to a pressure of

2 × 10−8 torr with a CTI Cryo Torr 8 cryo-pump. I then used a 3 cm argon ion

beam source at 300 V beam voltage with 0.3 mT of argon gas to ion mill the surface

of the wafer for 30 seconds. This both cleaned the surface and roughened it on an

atomic scale to allow for better adhesion of the aluminum. Next I sputtered 100

nm of aluminum with 400 W DC power from a 3” diameter target. The rate of

deposition was 4.8 nm/min and was calibrated with a profilometer measurement. I

then used a programmable spinner at 3000 RPM for 60 seconds to spin OIR 906-10

photoresist [58] on the aluminum. Next I baked the wafer on a 90 ◦C hot plate for

60 seconds and then exposed it to the device pattern on a mask in the stepper for

0.3 seconds (exposure time depends on UV power output which can vary). With a

3” wafer and a sample size of 6.35 × 6.35 mm, the stepper independently exposed 88
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Figure 4.5: (a) Microwave Office simulation for CPS resonator. Higher
order harmonics are present every quarter wavelength, as expected for
a transmission line resonator. (b) Microwave Office simulation for QL
resonator. No higher order modes are present close to the first mode,
indicating a quasi-lumped element resonator. The second mode occurs
at about 33 GHz.
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samples. After exposing the resist, I baked the wafer at 120 ◦C for 60 seconds. Next

I developed the exposed photoresist with OPD-4262 developer [58] for 40 seconds.

After rinsing with di water, I etched the now exposed aluminum in an aluminum etch

solution (Aluminum Etch 80-15-3-2) composed mainly of phosphoric acid. Finally

the photoresist was cleaned off with acetone, methanol, and isopropanol.

For the evaporated aluminum I used an e-beam evaporator (CHA Mark 40)

and didn’t ion mill the wafer before deposition because there was no ion source

in the system. After the deposition the procedure was identical to the sputtered

aluminum samples.

4.2.1 Dicing

After the aluminum was patterned and the photoresist was removed, I used

the spinner to coat the wafer with a layer of FSC-M resist to protect the resonators

while dicing the wafer. I then applied tape to the back of the wafer to insure that

the samples stay in place after the wafer was diced. After performing a calibration

cut on a test wafer (hairline alignment), I mounted the wafer in the dicing saw.

After aligning the dicing saw with the pattern on the wafer, I began dicing the

wafer first in one direction and then in the other producing 88 6.35 mm × 6.35 mm

samples. I used a Disco-DAD 321 dicing saw with a coarse grit resinoid diamond

blade (type CX-010-325-080-4) with a rotation speed of 22,000 RPM. The cutting

speed for sapphire wafers was 0.75 mm/s and for silicon wafers was 2.0 mm/s. I set

the blade height to 0.2 mm to insure that the blade cut through the wafer but not
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Figure 4.6: Photograph of a sample mounted on a PC board attached
to a Cu sample box.

all the way through the tape.

Once the wafer was diced I went back into the clean room to find a good sample

(without scratches). I used the microscope to first find a few good candidates. I

then cleaned them by first spraying with acetone, then letting them sit in acetone for

10 minutes, and finally rinsing them with methanol and isopropanol. After cleaning

I examined the samples in the microscope to confirm that they were indeed clean

and selected the best one to mount in the sample box.

4.2.2 Packaging and wire-bonding

The sample chip was mounted to a PC board with GE varnish and the PC

board was attached to a copper box. Figure 4.6 shows a photograph of the sample

box with a sample mounted in it and Fig. 3.1(a) shows the sample box mounted

to the dilution refrigerator. The PC board had wire bond pads that lined up with

the CPW launchers of the samples. I connected these pads to the samples’ CPW

launchers using a West-Bond 7476E-79 wire bonder and aluminum wire.
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Transmission through the sample box was tested at room temperatures to

ensure that it has no resonance box modes for our group’s frequencies of interest

(4-8 GHz). The sample box seal is a copper metal-metal seal screwed tight with

2-56 brass screws.

4.3 Solving for resonance voltage waveform

I this section, I discuss solving for the resonance frequency of the four resonator

types and in so doing solving for the voltage waveform of the devices on resonance.

This allows me extract the voltage across each device despite not being able to use

the lumped element approximation Eq. 3.22.

4.3.1 QL resonator

In this part, I solve for the resonance of the QL resonator. This is actually

just a specific case of the circuit solved in Chapter 3. Since this device only has

inductive coupling, I can model the measurement setup with Fig. 4.7(a), where

I’ve assumed balanced impedances for simplicity and put the loss in series with the

LC circuit rather than in parallel because it simplifies the calculation when only

inductive coupling is considered.

The input impedance of the resonant circuit is given by

Zin = R + iωL− i

ωC
. (4.2)

Resonance occurs when the impedance |Zin| is minimized, when the inductive and
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Figure 4.7: (a) Circuit schematic for a QL resonator measurement. A
series RLC resonance circuit is assumed because it simplifies the system
when only inductive coupling is present. (b) Thevenin equivalent circuit
for measurement schematic shown in (a).
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capacitive impedances cancel we have

ω0 =
1√
LC

. (4.3)

Assuming the system is driven close to resonance (|ω − ω0|/ω0 << 1), the input

impedance can be rewritten as

Zin ≃ R + 2iL∆, (4.4)

where ∆ = ω − ω0 is the detuning.

Similar to the derivation shown in Chapter 3, by solving Kirchhoff’s equations

for the circuit in Fig. 4.7(a), it can be shown that it’s equivalent to the Thevenin

equivalent circuit in Fig. 4.7(b), where

RT =
(ω0M)2

2Z0

(4.5)

and

VT =
2iωMVin

2Z0

, (4.6)

depend on the coupling and we’ve made the approximation that 2Z0 >> ωL1. Since

we know that the impedances of the inductor and the capacitor in Fig. 4.7(b) will

cancel on resonance, the current through the circuit on resonance will be simply

Ires =
VT
Reff

, (4.7)

where we’ve defined

Reff = R +RT . (4.8)

Solving the circuit in Fig. 4.7(a) for Vout, as done in Chapter 3, gives

Vout
Vin

=
R

Reff

1 + 2i∆L/R

1 + 2i∆L/Reff

. (4.9)
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The quality factors can now be defined in the usual way

Q ≡ 1

ω0ReffC
, (4.10)

Qi ≡
1

ω0RC
, (4.11)

and

Qe ≡
1

ω0RTC
, (4.12)

This allows us to rewrite Eq. 4.9 as

S21 =
Vout
Vin

= 1− Q/Qe

1 + 2Qi∆/ω0

. (4.13)

From Eqs. 4.6 and 4.7 we can calculate the voltage across the capacitor,

VC =
Ires
iωC

=
MVin

Z0CReff

. (4.14)

Writing this in terms of the quality factors recovers Eq. 3.22,

VC =

√
2

Z0ω0CQe

QVin. (4.15)

This is of course to be expected because the QL resonator is simply a lumped element

resonator with only inductive coupling (a specific case of the problem we solved in

Chapter 3).

4.3.2 CPS resonator

To illustrate the parallels between the QL resonator and the CPS resonator

I have redrawn the measurement schematic for the CPS resonator in Fig. 4.8(a).

Here ZCPS represents the input impedance of the CPS as the series RLC circuit did
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Figure 4.8: (a) Measurement schematic for CPS resonator. (b) Thevenin
equivalent circuit for the CPS resonator.
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in Fig. 4.7(a). To solve for the voltage across the CPS resonator, we first examine

the geometry of the resonance mode. Figure 4.9 shows a representation of the CPS

resonator enclosed in a ground plane. Because of the symmetry of the layout, we

can assume that the capacitances of either finger to the ground plane are equal i.e.

C11 = C22.

This problem would be easier to solve if we could turn the resonator into a

simple transmission line with a single voltage electrode and ground. This is achieved

by recognizing that the resonance will excite the odd (antisymmetric) mode of the

CPS, which allows us to assume that the middle of the CPS is grounded. To turn

this circuit into a simple transmission line we just need to find the total capacitance

of one line to ground. That’s simply equal to

C = C11 + 2C12, (4.16)

where the factor of 2 in front of the C12 comes from the fact that the capacitance

between one of the lines and the effective ground plane in the middle is twice the

capacitance C12 between the two lines. Equation 4.16 can be rewritten as

C ′ = C ′
11 + 2C ′

12, (4.17)

where the primes indicate per unit length, thus C ′ = C/l. And the effective char-

acteristic impedance of this transmission line is

ZC =
1

vC ′ , (4.18)

where v is the speed of light on the substrate

v =
c

√
ϵre
, (4.19)
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Figure 4.9: (a) Drawing of the CPS resonator inside a ground plane that
emphasizes the symmetry of the layout. Note that due to the symmetry,
an odd electric mode can be assumed to be grounded down the middle
of the resonator. (b) A transformed transmission line resonator created
by taking the capacitances between one of the fingers of the CPS to
ground, where a ground plane (actually a ground line) is assumed down
the middle of the resonator in (a).
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and ϵre is the effective ϵr for a coplanar geometry

ϵre =
ϵr + 1

2
, (4.20)

assuming the substrate has a relative permittivity ϵr and the vacuum above has a

relative permittivity 1. With the dimensions of the CPS (CPS separation s = 15 µm,

CPS-ground separation s2 = 10 µm, conductor width w = 5 µm, substrate height

h = 430 µm) I used Ref. [59] to calculate the characteristic odd mode impedance of

the device ZC = 62 Ω.

The next step is to calculate the input impedance of the CPS transmission

line and solve for the resonance. The input impedance Zin of a transmission line

open at the end with attenuation constant α and wavenumber β = 2π/λ is [47]:

Zin = ZC coth[(α+ iβ)l] = ZC
cot βl + iαl

αl cot βl + i

= ZC
(αl cot2 βl + αl) + ((αl)2 cot βl − cot βl)i

1 + (αl)2 cot βl
. (4.21)

To find the resonance we set the imaginary part of the input impedance to zero

giving cot βl = 0. This essentially means that on resonance the length l of the

transmission line is λ/4 (i.e. l = λ/4 = (2π/β0)/4 ∴ β0l = π/2). Assuming we’re

close to resonance (cot βl << 1) and have low attenuation (αl << 1) Eq. 4.21

becomes

Zin ≈ ZC(αl − i cot βl). (4.22)

It is more convenient in the experiment to work with frequency than with

wavenumber. Using the substitutions ω = vβ and ∆ = ω − ω0 we have

βl =
ωl

v
=
ω0l

v
+

∆l

v
=
π

2
+

∆

v

π

2β0
=
π

2
+
π

2

∆

ω0

, (4.23)
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thus

cot βl = cot(
π

2
(1 +

∆

ω0

)) ≈ −π
2

∆

ω0

, (4.24)

where I have expanded the cot term to first order in ∆/ω0. Now combining Eq. 4.22

and Eq. 4.24 gives

Zin = ZC(αl +
π

2

∆

ω0

i). (4.25)

Now we can see that the input impedance for the CPS, Eq. 4.25, is of the same form

as the series RLC input impedance, Eq. 4.4, with the substitutions

R̃ = ZCαl, (4.26)

L̃ =
π

4

ZC

ω0

, (4.27)

and

C̃ =
4

πZCω0

. (4.28)

We can now use the input impedance transformation to create the Thevenin

equivalent schematic for the CPS geometry (see Fig. 4.8(b)), and as was the case for

the QL resonator RT and VT are given by Eq. 4.5 and Eq. 4.6 respectively since they

only depend on the coupling. Again we set the imaginary part of the impedance to

zero to calculate the current on resonance and find

I0 =
ω0MVin

Z0R̃eff

, (4.29)

where R̃eff ≡ R̃ + RT . I’ve defined the maximum current as I0 here because it’s

the current maximum amplitude on the transmission line (at the current anti-node).

The maximum voltage amplitude is then:

V0 = ZCI0 = Zc
ωMVin

Z0R̃eff

=

√
8ZC

πZ0Qe

QVin, (4.30)
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where Q and Qe have been defined the same way as they were in the QL case (with

C̃ and R̃eff substituted in for C and Reff ). Note however that V0 in Eq. 4.30 is the

voltage amplitude on the transformed transmission lines, which is just one of our

CPS fingers to ground. To get the actual voltage from one finger of the CPS to the

other we have to double V0 i.e. VCPS = 2V0.

4.3.3 Quasi-lumped C-CPS resonator

The case of the CPS terminated by an IDC capacitor is slightly more com-

plicated than the previous two cases but the approach used for the CPS can still

be used here. Again we can think of the resonator as having an input impedance

that’s coupled to the CPW. Figure 4.10(a) shows a representation of the resonator

enclosed in a ground plane. Again recognizing that we’re exciting the odd mode

we can assume that the middle of the resonator is grounded and recalculate the

capacitances from one of the fingers to ground (see Fig. 4.10(b)). Since the CPS has

the same geometry we know from the last section that ZC = 62 Ω and from Ref.

[59] we use the dimensions of the IDC (5 µm separation and width, 22 fingers, and

320 µm finger length) to its capacitance CIDC = 0.30pF .

Next we find the input impedance of a 62 Ω transmission line of length l

(l = 1.6 mm for this device) terminated by a 2CIDC load. It can be shown that the

input impedance is given by

ZCPS,IDC = ZC

αl((ZC + tanβl
2ωCIDC

)2 + (ZC tan βl − 1
2ωCIDC

)2)

(ZC + tanβl
2ωCIDC

)2

+ZC

(ZC + tanβl
2ωCIDC

)(ZC tan βl − 1
2ωCIDC

)i

(ZC + tanβl
2ωCIDC

)2
. (4.31)
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Figure 4.10: (a) Drawing of QLC-CPS resonator inside a ground plane.
Note that due to the symmetry, an odd electric mode can be assumed to
be grounded down the middle of the resonator. (b) Transformed resonant
circuit created by taking the capacitances between one of the fingers of
the QLC-CPS resonator to ground, where a ground plane (actually a
ground line) is assumed down the middle of the resonator in (a).
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To solve for the resonance condition, we make the imaginary part vanish

ZC tan β0l −
1

2ω0CIDC

= 0. (4.32)

Using the substitution β = ω/v and expanding around ω0, it can be shown that the

input impedance of the resonator close to resonance is

ZCPS,IDC ≃ ZC

αl((ZC + tanβl
2ω0CIDC

)2 + (ZC tan βl − 1
2ω0CIDC

)2)

(ZC + tanβl
2ω0CIDC

)2

+ZC

(1 + tan2(ω0l
v
)ZC l

v
) + 1

2CIDCω2

ZC +
tan(

ω0l
v

)

2ω0C

∆i. (4.33)

Examination of Eq. 4.33 reveals that the input impedance for this resonator can

again be put in the same form as a series RLC resonator (Eq. 4.4) with the substi-

tutions

L̃ = ZC

(1 + tan2(ω0l
v
)ZC l

v
) + 1

2CIDCω2

2(ZC +
tan(

ω0l
v

)

2ω0C
)

, (4.34)

and

C̃ =
1

ω2
0L̃
, (4.35)

where ω0 can be solved numerically from Eq. 4.32. These transformations allow

us to model this resonator as another Thevenin equivalent circuit. Solving for the

current amplitude on resonance we find

I0 =
ω0MVin

Z0R̃eff

i, (4.36)

where once again Q = 1/(ω0C̃R̃eff ).

Note that this case is slightly more complicated than a simple transmission

line so to solve for the voltage across the capacitor on resonance we first write the

voltage waveform as generally as possible

V (z) = V+e
iβz + V−e

−iβz, (4.37)
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where z is distance along the CPS, the boundary value V (0) = 0 is known and we’re

attempting to solve for V (l) = V ∗
C , where V

∗
C is the voltage across the capacitor in

this transformed transmission line resonator system. From our boundary condition

we know that V− = −V+, so V (l) becomes

V (l) = V+(e
iβl − e−iβl) = 2iV+ sin βl = V0 sin βl = V ∗

C , (4.38)

where we have defined the voltage amplitude as V0 = 2iV+. Recognizing that we

can solve for the voltage amplitude from the current amplitude (V0 = ZCI0) we now

find an expression for the voltage waveform of the resonator

V (z) = V0 sin βz =
ZCω0MVin
Z0Reff

i sin
(ω0

v
z
)
=

(
2C̃ω0

Z0Qe

)
ZCQVin sin

(ω0

v
z
)
. (4.39)

To solve for the voltage across the capacitor on resonance, we again recognize that

this was a transformed system on one of the fingers to ground thus solving for the

voltage across the actual capacitor requires a factor of two giving,

VC = 2V ∗
C = 2V (l) = 2

(
2C̃ω0

Z0Qe

)
ZCQVin sin

(ω0

v
l
)
. (4.40)

4.3.4 Quasi-lumped L- CPS resonator

Finally we examine the case of the QLL-CPS resonator. Figure 4.11(a) shows

a representation of the QLL-CPS resonator enclosed in a ground plane. For this

device l = 3.355 mm and L = 2.9 nH, obtained from the capacitance and the

resonance frequency of the QL device. Again, because we’re exciting an odd mode

we can assume the middle of the resonator is grounded and solve a transformed

device of one half of the resonator relative to ground (see Fig. 4.11(b)).
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Figure 4.11: (a) Schematic picture of QLL-CPS resonator inside a ground
plane. Note that due to the symmetry, an odd electric mode can be
assumed to be grounded down the middle of the resonator. (b) Trans-
formed resonant circuit created by cutting the QLL-CPS resonator down
the middle and taking the capacitances between one of the fingers to
ground, where a ground plane (actually a ground line) is assumed down
the middle of the resonator in (a).
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Solving for the input impedance of this resonator, we find

ZL,CPS =
iωL

2
+ ZC coth((α + iβ)l) = ZCαl(cot

2 βl + 1) +

(
ωL

2
− ZC cot βl

)
i.

(4.41)

For the resonance condition, the imaginary part vanishes

ω0L

2
− ZC cot β0l = 0. (4.42)

Solving for the resonance frequency and expanding around it, we find the input

impedance on resonance

ZL,CPS =

(
L

2
+ ZC

(
1 + cot2

(ω0

v
l
)) l

v

)
∆, (4.43)

and again note that it is of the same form as the series RLC input impedance

(Eq. 4.4) with the substitutions

L̃ =
1

2

(
L

2
+

(
1 + cot2

(
ω0l

v

))
lZC

v

)
, (4.44)

and

C̃ =
1

ω2
0L̃
. (4.45)

As in the previous geometries, this transformation allows us to model the

resonator as a Thevenin equivalent circuit and solve for the current amplitude on

resonance

IL =
ω0MVin

Z0R̃eff

i, (4.46)

where I have defined the current amplitude through the inductor as IL. As with the

previous case, we can write the general form of the voltage waveform on the CPS

V (z) = V+e
−iβz + V−e

iβz. (4.47)
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Here the boundary condition is

V (0) = VL =
iω0LIL

2
= −ω

2
0LMVin

2Z0R̃eff

. (4.48)

From the transmission line characteristic impedance, we can also write the current

waveform

I(z) =
V (z)

ZC

=
1

ZC

(V+e
−iβz + (V+ − VL)e

iβz) (4.49)

Since the transmission line is open at the end z = l, we also know that the current

at the end is zero, i.e.

I(l) =
1

ZC

(V+e
−iβl + (V+ − VL)e

iβl) = 0. (4.50)

Solving for V+ gives

V+ =
VL

e−2iβl + 1
. (4.51)

And from Eq. 4.47 we then obtain the voltage at the ends of the transmission line

V (l) =
VLe

−iβl

e−2iβl + 1
+

VLe
iβl

e2iβl + 1
=

VL
cos βl

=

(
C̃ω3

0

2Z0Qe

)
LQVin

cos
(
ω0

v
l
) . (4.52)

And as in the previous cases, this is the voltage of one of the fingers to ground and

it should be doubled to calculate the voltage between the two fingers.
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Chapter 5

Coplanar resonator measurements

5.1 Coplanar resonator loss

As discussed in Chapter 2, the loss tangent of a material that is limited by a

standard distribution of TLS defects can be described by

tan δ = tan δ0
tanh (~ω/2kBT )√

1 + (E/Ec)2
, (5.1)

where tan δ0 is the low-power intrinsic loss tangent, dependent on the frequency

distribution and density of the TLSs, EC is the critical field dependent on the T1

and T2 of the TLSs, and E is the applied electric field at the location of the TLSs.

In general, the electric field and the loss tangent in a resonator my not be uniform.

I that case, the inverse of the internal quality factor of the resonator can be written

as a weighted distribution of the loss tangent:

1

Qi

=

∫
LossyMaterial

tan δϵ(r⃗)(E⃗(r⃗))2d3r∫
All
ϵ(r⃗)(E⃗(r⃗))2d3r

. (5.2)

Therefore, in the case of a coplanar resonator, one must consider the electric field

distribution for the entire resonator when interpreting the internal quality factor.

5.1.1 Sputtered aluminum resonators on sapphire

I measured coplanar resonators fabricated from several aluminum films, most

of which were sputtered films on a sapphire substrate. Here I present measurements
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Figure 5.1: The inverse internal quality factor 1/Qi vs. RMS microwave
voltage for the four resonators with different geometries from sample sp1.

of resonators from three such chips: two are different chips from the same sputtered

film on the same wafer (sp1 and sp1-B) and one is a chip from a different sputtered

film with nominally the same film and device parameters (sp2). Figure 5.1 shows

a comparison of the 1/Qi for the four coplanar devices, measured on one chip with

a single CPW, as a function of the rms excitation voltage. Figure 5.1 indicates

that the CPS resonator has a lower loss (higher Qi) than the other three devices.

However, Fig. 5.2 shows that measurements to those on nominally identical devices

(sputtered using the same technique and components on the same type of wafer
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Figure 5.2: plot of the internal loss 1/Qi vs. microwave voltage VRMS,
comparing previous measurements from sp1 (×) to measurements of
nominally identical resonators from sample sp2 (+), using the same de-
vice color code as before (QL: red, CPS: blue, QLC-CPS: green, QLL-
CPS: magenta).

with nominally the same processing) gives quite different results. In Fig. 5.2 the ×

symbols represent measurements from chip sample sp1 as shown in Fig. 5.1, and the

+ symbols represent the measurements from sp2. Despite being nominally identical,

the second set of devices from sp2 have a different distribution of losses with three

devices clumped together and the QLL-CPS device showing a distinctly higher loss.

The discrepancy between the two sets of measurements in Fig. 5.2 implies that

there is at least one uncontrolled factor that is affecting the loss. To check if this
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Figure 5.3: Comparing plots of the internal loss 1/Qi vs. microwave
voltage VRMS for the CPS (blue) and the QLL-CPS (magenta) resonators
from samples sp1 and sp1-B from two different chips from the same film

discrepancy occurs between different samples from the exact same film, I cooled

down another chip sp1-B from the same sputtered film as sp1. Figure 5.3 shows

two sets of measurements for the CPS and QLL-CPS resonators. As can clearly

be seen in Fig. 5.3, the differences between the different resonator geometries are

reproducible from sample to sample within the same film. This behavior suggests

that significant variations in the resonator qualities are coming from uncontrolled

variations in the fabrication process.
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5.1.2 Coplanar resonator loss analysis

Taken as a whole, these results suggest that there is little device to device vari-

ation due to geometry and no significant loss-based advantages or disadvantages to

particular geometry types. However, since the quasi-lumped element resonator does

not have harmonic cavity modes, it may still provide an advantage when measuring

the lifetime of a coupled qubit.

Another significant characteristic of the data is that the power dependence of

the loss is very weak, nowhere near the ∼ 1/V dependence predicted by TLS theory

in Eq. 9.1. Also, the measured power dependence of 1/Qi seems to vary from device

to device in the range from ∼ 1/V 0.1 to ∼ 1/V 0.2, as reported in [39].

Note Eq. 9.1 gives the expected loss tangent and the measurement is only of

the device quality factors. It’s been found that the loss in these coplanar devices

scales with the surfaces [60]. A possible explanation for the weak power dependence

is that the loss is occurring at the surface. To model the effects of surface loss, I

assumed that the loss is coming from either the native oxide on the aluminum (blue

and green in Fig. 5.4), the substrate surface (red in Fig. 5.4), or the substrate metal

interface (black in Fig. 5.4). I then used the finite element E&M simulator COMSOL

to calculate the electric field at those surfaces as a function of the voltage across

the device. Assuming a surface thickness of 5 nm, and an intrinsic loss tangent of

10−3, I used Eq. 7.3 for each surface to find the effective internal loss as a function

of the voltage. As Fig. 5.4(b) shows, no matter what lossy surface was assumed,

1/Qi never decreases slower than 1/V for more than a decade in voltage. One way
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Figure 5.4: (a) Cross sectional diagram of CPS resonator. (b) Calculated
1/Qi for the CPS geometry from simulated fields as a function of the
voltage across the resonator assuming the loss is dominated by different
possible surfaces (5 nm thicknesses), color coded from (a). Magenta
represents the addition of loss from the substrate vacuum interface (red)
and the top of electrode surface (blue).
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to lower the power dependence was to pathologically consider just the loss from the

substrate vacuum interface (red) and the top of electrode surface (blue). But as the

magenta curve in Fig. 5.4 shows even that only lowered the power dependence to

1/V 0.2 for less than a decade in voltage. From these simulations it would appear

that surface loss is not sufficient to explain the shallow power dependence observed

in the coplanar resonators.

5.1.3 Evaporated aluminum resonators on sapphire

As mentioned earlier, I also tested the four resonator geometries using devices

made from evaporated aluminum films. Figure 5.5 shows a comparison between

the evaporated film ev1 measurements (◦) and the sputtered film measurements

sp1 (+) (devices color coded as in the previous figures). We see from Fig. 5.5 that

the evaporated film tends to have a slightly higher loss than the sputtered film. A

possible explanation for this is that the evaporated film is rougher and therefore has

more lossy surface area. AFM measurements were performed on the two films (see

Fig. 5.6) which confirmed that the evaporated film is in fact rougher with 20-40 nm

features compared to the sputtered film’s 5-10 nm features. Assuming approximately

a factor of 4 increased amplitude and density (in both surface dimensions) of ‘bumps’

in the evaporated film would mean more than a factor of 3 increase in the total

surface area. This of course is not the whole story because surface area topography

also affects the electric field, but it’s certainly a plausible explanation.
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Figure 5.5: plot of the internal loss 1/Qi vs. microwave voltage VRMS,
comparing previous measurements from sputtered sample sp1 (+) to
evaporated sample ev1 (◦), using the same device color code as before
(QL: red, CPS: blue, QLC-CPS: green, QLL-CPS: magenta).
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Figure 5.6: (a) AFM measurement of evaporated Al film showing 20-
40 nm sized features. (a) AFM measurement of the sputtered Al film
showing 5-10 nm sized features.

93



10
−6

10
−4

10
−2

10
−6

10
−5

V
RMS

 (V)

1/
Q

i

 

 

Figure 5.7: plot of the internal loss 1/Qi vs. microwave voltage VRMS,
comparing previous measurements from sputtered sample on sapphire
sp1 (+) to a sputtered sample on a silicon substrate that was cleaned
with HF sp3-Si (◦). The same device color code is used as before (QL:
red, CPS: blue, QLC-CPS: green, QLL-CPS: magenta).

5.1.4 Sputtered aluminum resonators on silicon

I also measured sputtered aluminum films on undoped high resistivity silicon

wafers sp3-Si. In Fig. 5.7, I compare results from these devices ◦ to results from sp1 +

(devices color coded as in the previous figures). The measurements on silicon wafers

showed lower loss which is likely due to a cleaner silicon surface as compared to the

sapphire surface; I used an HF treatment of the silicon wafers prior to deposition

(see Chapter 4).
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Figure 5.8: Inverse external quality factors 1/Qi (coupling to CPW) vs.
RMS microwave voltage for devices from the two sputtered films sp1
and sp2, using the same device color code as before (QL: red, CPS: blue,
QLC-CPS: green, QLL-CPS: magenta).

5.2 External quality factor

Another parameter that I monitored during resonator measurements is the

external quality factor Qe. As discussed in Chapter 3, the Qe is a measure of the

coupling of the CPW to the resonator and can be simulated with Microwave Office.

Figure 5.8 shows the measured values of 1/Qe for samples sp1 and sp2 along with the

four simulated values for the parameter. As Shown in Fig. 5.8, the simulations don’t

predict the accurate values for Qe to better than within a factor of two. Also the
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Figure 5.9: Inverse external quality factors 1/Qi (coupling to CPW) vs.
RMS microwave voltage for devices from the sputtered sample sp1 (+)
and the evaporated sample ev1 (◦), using the same device color code as
before (QL: red, CPS: blue, QLC-CPS: green, QLL-CPS: magenta).

difference between the measurements and simulations is not systematic. For exam-

ple, for the two QL resonators, the measurement of sp1 shows higher coupling than

the simulated value and sp2 shows lower. When comparing the Qe’s for the evap-

orated and sputtered films (see Fig. 5.9) similar deviations are observed, although

the predictions appear closer for the evaporated film. It’s possible, that while these

devices are in nominally identical packaging, small uncontrollable deviations in the

packaging can play a large role on the coupling.
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5.3 Discussion of likely loss mechanisms

As discussed earlier, a likely loss contributor is the surface native oxide and

other surface contaminants. As shown in Fig. 5.4 and discussed in more detail

in Ref. [61], the electric field distribution is such that the dominant loss arises

from the metal-substrate interface and the substrate-vacuum interface. It’s also

been found through electric field simulations that the corner at the metal-substrate-

vacuum interface is a significant contributor to loss [61]. So a small undercut of the

substrate at the corner of the metal would likely go a long way to reducing the loss

[62]. Even more evidence for substrate surface limited loss is an experiment where

the measured loss in a coplanar resonator was reduced with an 850 oC O2 anneal of

the sapphire substrate before deposition [63].

Barends et al. [64] have found that if the devices aren’t properly shielded,

stray infrared light can generate quasiparticles that break up Cooper pairs in the

superconductor and cause a power independent loss. It’s likely that this at least

partially limits these measurements because in other measurements of these de-

vices, performed by S. Gladchenko, a steeper power dependence was found when

sample box shielding was improved and SiC stycast mixture (see Ref. [64]) was

used. However, the microwave line connectors were also changed in that sample

box design, so it’s possible that other factors caused the change in saturation power

dependence.

Thus far I have only discussed electric loss in the capacitor. But it is also

possible that these resonators are limited by inductive loss [65]. It’s been shown in
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Figure 5.10: Replotted measurements from Fig. 5.5 again with sputtered
sample sp1 (+) and evaporated sample ev1 (◦) and identical device color
code (QL: red, CPS: blue, QLC-CPS: green, QLL-CPS: magenta).

SQUIDs that inductance noise is consistent with surface magnetic spin interactions

[66], likely through RKKY interactions [67]. It’s plausible that such surface spins

are causing inductive loss in these coplanar devices which is convoluted with the

capacitive loss resulting in the measured Qi. Although such magnetic losses would

likely still be small in this regime because a comprehensive study of scaling of a

quai-lumped resonator based on the QL resonator discussed here found scaling of

measured Qi with the spacing of the IDC fingers and not with the geometry of the

meandering inductor [68].
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Recently Faoro et al. [69] motivated by our results along with others in the

community proposed a model where interactions between TLSs confined to res-

onator surfaces can lead to a shallower loss saturation with electric field. In this

model they assumed coherent TLSs with relaxation times longer than their Rabi fre-

quency (saturation time), which they called TLSs, and relatively incoherent TLSs

with relaxation times shorter than their Rabi frequency, which they called fluctua-

tors. In their model when a long lived TLS interacts with a short lived fluctuator,

its frequency drifts moving it in and out of the resonator’s bandwidth. So if a TLS

is on resonance and is excited by the resonator, it may shift its frequency through

interaction with a fluctuator and dissipate the photon outside the resonator’s band-

width. Thus a photon that could have been returned back to the resonator through

stimulated emission has been lost to the system and through this mechanism ex-

cess loss can be observed. Faoro et al. found that such interactions can lead to a

logarithmic TLS loss saturations. In Fig. 5.10 I’ve replotted the measurements of

films sp1 and ev1 from Fig. 5.5 on a semi-log plot. While certainly not conclusive,

a logarithmic saturation seems plausible. Note that somewhat coincidently a very

similar TLS loss mechanism will be addressed in Chapters 8 and 9.

5.4 Conclusion

In conclusion I measured four types of coplanar devices and they showed sim-

ilar loss with no clear geometry dependence. This suggests that the four resonator

designs are equally appropriate for quantum computing circuits, and there does not
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seem to be a large advantage for one type of resonator design over another if only

considering the fundamental mode. However, since the quasi-lumped element res-

onator does not have harmonic cavity modes, it may still provide an advantage when

measuring the lifetime of a coupled qubit.

I also found that the power dependence of the loss in these resonators is not

consistent with a conventional surface distribution of identical TLSs. These mea-

surements, along with other measurements in the quantum computing community

indicate that the low power loss tangent is limited by TLS material losses, but that

the shallow power dependence may be associated with quasiparticles caused by in-

frared light absorption. I also observed that evaporated films tended to have higher

loss, likely because they were rougher with more native oxide, and that films on HF

cleaned high-resistivity silicon substrates showed lower loss, most likely because the

silicon surface was cleaner. Finally, I observed variations in the Qe from simulation

predicted values in an unsystematic seemingly random manner.
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Chapter 6

Atomic layer deposition

6.1 Atomic layer deposition and its use in trilayer junctions and ca-

pacitors

Atomic layer deposition (ALD) is a film deposition technique which alternates

the use of two or more gaseous chemical precursors to create a self-limiting layer-

by-layer deposition process. Figure 6.1 shows a summary of a generic ALD process.

In addition to the self-limiting nature of the process, it also provides atomic level

thickness control (see Fig. 6.2) with superb conformality (see Fig. 6.3).

The level of control that ALD provides makes it a potentially attractive choice

for Josephson junction preparation. If metal deposition can also be integrated into

the ALD chamber, it can allow for in situ trilayer fabrication and the potential

to produce almost defect-free junctions and capacitors. As with conventional tri-

layer deposition techniques, the advantage of in situ ALD tilayer fabrication is that

the deposition of the metal/insulator/metal layers can be done without breaking

vacuum, reducing film contamination.

Despite its potential ALD is not without its drawbacks. Incomplete reactions

can implant impurities from precursors into the film. Suitable precursors are often

limited and for certain materials, research groups have to make their own precursors.
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Figure 6.1: ALD cycles exposure and purge of two precursors to grow
thin films with monolayer control. In this generic example ML4 and
H2O are cycled to grow MO2 [70].
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Figure 6.2: A plot of thickness of an ALD grown ZrO2 as a function of
the number of precursor cycles. This shows the level of thickness control
that ALD provides [71].
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Figure 6.3: ALDMIM nanocapacitor grown on anodized aluminum oxide
(AAO) nanopores highlighting the conformality of ALD growth. MIM
structure has a thickness of TiN 5.6 nm, AlOx 6.6 nm, TiN 12.6 nm [70].

And finally, unlike the relatively rapid process of the more common CVD growth,

ALD growth tends to have a very low deposition rate.

6.2 Microwave resonator fabrication on ALD materials and field sim-

ulations of coplanar geometry

Perhaps the most direct method for measuring the loss of an ALD dielectric

at microwave frequencies is to fabricate it into a parallel-plate capacitor as part of

a microwave resonator and measure the resonator’s Qi, as described in Chapter 3.

Since all of the electric energy would be in the ALD dielectric, and that is by far

the limiting source of loss, 1/Qi would be equal to the loss tangent of the material.

If not all of the electric energy is in the ALD dielectric, then one needs to find

the filling factor. The filling factor is just the fractional energy stored in a particular
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part of a resonator,

F =

∫
LossyMaterial

ϵ(r⃗)(E⃗(r⃗))2d3r∫
All
ϵ(r⃗)(E⃗(r⃗))2d3r

, (6.1)

Assuming the resonator’s quality is limited entirely by the ALD material’s loss

tangent, the loss tangent of the ALD material can be calculated from the measured

Qi with

tan δ =
1

FQi

. (6.2)

For a parallel-plate capacitor F = 1, but the loss tangent can be calculated even

if F ̸= 1 as long as it’s known. If the electric field distribution is known, Eq. 7.10

can be calculated and Eq. 6.2 can be used to find the loss tangent of the material

after Qi is measured. This method allowed me to measure the loss tangent of ALD

films using simple fabrication techniques that did not require being able to build a

parallel-plate capacitor.

In particular, I fabricated coplanar resonators discussed in Chapters 4 and 5

atop ALD dielectrics. I simulated the field distribution of the resonators with the

finite element simulator COMSOL and by knowing the thickness of the predeposited

ALD dielectric, I was able to calculate Eq. 7.10 for each deposited dielectric.

Figure 6.4 shows a COMSOL simulation of the cross-section of a CPS resonator

on top of a thin dielectric film on a substrate. Fig. 6.4(a) shows the electric field in

the vacuum and dielectric induced by the CPS fingers and Fig. 6.4(b) shows the

electric energy density from said field. In this simulation a difference of 2 mV was

placed on the two conductors and the electric field distribution was exported. To

find the filling factor I numerically integrated the electric energy stored in the top
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Figure 6.4: (a) Simulated electric field distribution for 100 nm thick CPS
resonator (with 2 mV across the CPS electrodes) on 90 nm of ALD grown
AlOx atop a sapphire wafer. (b) Electric energy density distribution of
(a).
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ALD dielectric, 90 nm thick in this case, as a percentage of the total electric energy

of the resonator and assumed that the lossy dielectric was entirely responsible for the

resonator’s Qi. There were added complications on the analysis due to the voltage

gradient on the resonator, the field dependence of the loss tangent, and as it turns

out the non-uniform loss of the ALD material, but these subtleties will be discussed

when the data is presented in Chapter 7.
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Chapter 7

ALD grown dielectric measurements

In this chapter I summarize my measurements on ALD dielectric films and

discuss the implications for future quantum computing studies. As discussed in

Chapter 6, the low temperature loss measurements were performed by fabricating

coplanar resonators (discussed in Chapters 4 and 5) on top of the ALD dielectrics

and measuring their Qi. In this chapter, I will also discuss the OH defect model,

show secondary ion mass spectrometry (SIMS) measurements of ALD dielectrics

and discuss their implications.

7.1 Deuterated AlOx ALD films

7.1.1 OH defect model

As discussed in Chapter 2, perhaps the most commonly considered TLS mi-

cromechanism in oxides is the OH rotor. As early as 1987, Phillips proposed that

OH− groups could act as TLS defects [26]. It has recently been shown using den-

sity functional theory that within particularly O-rich AlOx, hydrogen is likely to fill

cation vacancies and form a significant density of microwave frequency TLSs [34].

Hydrogen is particularly difficult to remove from ALD AlOx films because it

exists in both the aluminum precursor, trimethylaluminum (TMA), and the oxygen

precursor, water. It was not known which precursor contributed most of the hydro-
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gen, nor whether OH− was really dominating the loss. It was with this in mind that

we attempted to substitute deuterium for hydrogen by using deuterated water as a

precursor [72]. As calculated by Holder et al. [34], the increased mass of deuterium

would result in a substantially reduced tunneling rate ∆0 . Naturally this could

move TLS defects into a much lower frequency range and improve the loss tangent

of AlOx at microwave frequencies.

7.1.2 SIMS measurements of AlOx films

Two 55 nm thick AlOx films were grown by Alexander Kozen in the Rubloff

group at the University of Maryland, one with regular water as the oxygen precur-

sor and the other with 100% deuterated water. To confirm that we were actually

substituting deuterium for hydrogen when we were using deuterated water, we had

SIMS measurements performed on them [73]. Figures 7.1(a,c) show SIMS results for

a non-deuterated film and Figs. 7.1(b,d) show SIMS results for a deuterated film.

In Figs. 7.1(a,b), the concentration of hydrogen, deuterium, and carbon are shown

as a function of depth in the film (0 is the top and 55 nm is the interface with

the sapphire wafer), while in Figs. 7.1(c,d) the integrated concentrations of each

impurity are shown. The first feature of note is that using deuterated water does in

fact reduce the amount of excess hydrogen and increase the amount of deuterium

in the bulk. However, there also appears to be a substantial amount of hydrogen

surface contamination at the sapphire-AlOx interface that doesn’t depend on the

precursor used. Comparing Fig. 7.1(c) to Fig. 7.1(d), we see that the deuterated
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film has a total of 4× 1022 H atoms/cm2 while the non-deuterated film has a total

of 1023 Hatoms/cm2, there is still about a factor of 2 difference between the amount

of total hydrogen in the two films. If OH− defects are a dominant loss contributor

we may then expect to see a difference in the loss tangent of the two films. Note

that the carbon impurities found in these films come from the aluminum precursor

TMA and will be discussed later in the chapter.

7.1.3 Resonator measurements

As mentioned earlier, I used the coplanar resonators discussed in Chapters

4 and 5 to measure the loss of the ALD grown dielectrics. Figure 7.2(a) shows

results from the inverse internal quality factor measurement as a function of the

RMS microwave voltage across the devices, taken at 80 mK, for two resonators

(CPS and QLC-CPS) fabricated on 55 nm of ALD grown AlOx. Sample dut1 was

grown with deuterated water as the oxygen precursor and sample hyd1 was grown

with non-deuterated water as the oxygen precursor. All other grown parameters

were identical (growth was performed at 250 oC).

The first thing we notice in Fig. 7.2(a) is that qualitatively this behavior is

clearly due to TLS loss, with an intrinsic voltage-independent-loss at low-voltages

and a decrease in loss at higher-voltages due to TLS saturation. Next note that there

doesn’t seem to be a difference in low-voltage Qi for the same device types between

the two films hyd1 and dut1. The non-deuterated film (red symbols) seems to have

a higher background loss at high voltages, but that may be due to the measurement
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Figure 7.1: (a) SIMS analysis for carbon (black), hydrogen (red), and
deuterium (blue) impurities of ALD grown AlOx. (b) SIMS analysis for
carbon, hydrogen, and deuterium impurities of ALD grown AlOx with
deuterated water precursor. (c) Integration of impurities in (a) through
the 55 nm film. (d) Integration of impurities in (b) through the 55 nm
film. Sapphire-ALD interface is at d=55 nm. The vertical dashed lines
indicate the film depth. Dashed lines aren’t aligned with the defect peaks
because of limitations in the SIMS depth resolution.
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setup rather than the TLS defects. The difference between the films is at such a

high quality factor that it’s likely similar to the discrepancies observed between the

coplanar device on bare sapphire in Chapter 5. This result suggests that either the

TLSs causing the loss are not hydrogen based or perhaps that there’s another factor

that compensates for the decreased hydrogen in the deuterated film.

One possibility is that the deuterium substitution worked but that because of

their lower tunneling rates and because the TLS distribution is inversely proportional

to tunneling rates ∼ 1/∆0, the deuterium based TLSs ended up having a higher

density. To understand this consider an example of a distribution of TLSs with

tunneling rates from 100 to 1000 (in arbitrary units). If their tunneling rate is

reduced by a factor of 10 then they would be squeezed into having tunneling rates

from 10 to 100, thus increasing their density by a factor of 10 as well. So if the

distribution of TLSs is sufficiently broad, it can have a negligible effect on the loss.

Note that if the TLS well frequency is proportional to the inverse of the square

root of the defect mass as one would expect (ω2 ∝ 1/m), we would still expect the

deuterated TLS to have a factor of
√
2 less loss, since of course deuterium has twice

the mass of hydrogen, but such a difference in loss wasn’t resolved.

We also note that the CPS resonators show a lower inverse Qi than the QLC-

CPS resonators. This is because of the electric energy filling factor,

F =

∫
LossyMaterial

ϵ(r⃗)(E(r⃗))2d3r∫
All
ϵ(r⃗)(E(r⃗))2d3r

, (7.1)

for the lossy ALD grown film is higher for the IDC than it is for the CPS. Simply put,

the IDC teeth are closer together than the CPS electrodes are, so more electric energy
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is stored in the 55 nm directly below the resonator, where the ALD film is. The

filling factors for the two devices can be numerically calculated using the COMSOL

simulations mentioned in Chapter 6. I found that the IDC filling factor for the 55

nm ALD film is FIDC,55nm = 0.052, while the CPS filling factor is FCPS,55nm = 0.031.

As seen in Fig. 7.2(b) when the 1/Qi measurements for the four resonators are scaled

for the different filling factors they lie on top of each other. This is consistent with

loss coming uniformly from the ALD film.

7.2 Varying ALD oxides

7.2.1 CPS Qi measurements and field simulations

To better understand TLSs in amorphous and crystalline ALD oxides, I next

measured three different ALD-grown films: crystalline BeO (known to be crystalline

from XRD measurements [74]), amorphous AlOx [75], and amorphous LaAlOx[76].

The BeO film from the Banerjee group at UT Austin [74] and was grown at 200 oC

with the beryllium precursor, dimethyl beryllium Be(CH3)2, and the oxygen pre-

cursor, water. The AlOx [75] and LaAlOx [76] films from the Gordon group at Har-

vard were grown at 300 oC with the aluminum precursor TMA and the lanthanum

precursor tris(N,N’-diisopropylacetamidinato)lanthanum (La(iPrAMD)3). The BeO

film was grown on high-resistivity silicon and the amorphous films were grown on

sapphire. The crystalline BeO film is of particular interest because crystalline ma-

terials tend not to show TLS loss. Bulk single crystal Al2O3 (sapphire) as discussed

in Chapter 5, has a low, TLS free, loss tangent, which suggests that either the
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Figure 7.2: (a) Inverse Qi measurement of CPS (∗) and QLC-CPS (◦)
resonators on a 55 nm ALD grown AlOx film grown with deuterated
(blue) and conventional (red) water. (b) Measurements from (a) divided
by the filling factor of the ALD film for the two resonator geometries.
At low voltage, this corresponds to the intrinsic voltage-independent loss
tangent of the film. Deuterated and undeuterated films show the same
level of loss. Data plotted for devices: hyd1-CPS (∗ in red), dut1-CPS
(∗ in blue), hyd1-QLC-CPS (◦ in red), dut1-QLL-CPS (◦ in blue).
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amorphous nature or impurities in the films create additional loss. Also, the high

thermal conductivity at low temperature [77] and the low loss tangent near room

temperature [78] of crystalline BeO suggests that it [74] may have low loss useful

for superconducting devices.

Figure 7.3 shows a plot of the inverse Qi of the CPS resonators on the three

different films taken at 35 mK as a function of the voltage across the CPS elec-

trodes. Immediately we notice that even the crystalline BeO film shows behavior

that is clearly consistent with TLS loss. However as discussed earlier, the inverse

Qi only corresponds to the loss tangent when the filling factor of the dielectric is

1, as in a parallel-plate capacitor. Here we must use COMSOL to simulate the

field distribution of the CPS geometry using the known permittivity of the oxides

(ϵr,BeO = 6.7, ϵr,AlOx = 8, ϵr,LaAlOx = 16) and the film thicknesses (78 nm of BeO,

90 nm of AlOx, and 97 nm of LaAlOx). For example, Fig. 7.4 shows a COMSOL

simulation of the electric field and electric energy distribution for a cross section of

the CPS geometry with 2 mV across the electrodes atop a 90 nm ALD AlOx film

grown on a sapphire wafer. As one would expect, the electric field is symmetric

about the vacuum substrate interface, but electric energy of course scales with the

permittivity of the substrate. Another factor to consider is that the LaAlOx film

was also etched by the Aluminum Etch acid used to pattern the aluminum, com-

pletely etching away the LaAlOx film that was not covered by Al, creating trenches

in the LaAlOx. After this was realized, I adjusted the COMSOL field simulations

to account for this (see Fig. 7.5).
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Figure 7.3: InverseQi of coplanar strip resonators on three different ALD
grown film types. Data plotted for devices: BeO-CPS, AlOx-Harv-CPS,
and LaAlOx-Harv-CPS.

116



0 10 20 -20 -10 

x (µm) 
0 10 20 -20 -10 

y
 (

µ
m

) 

0 

2 

4 

-4 

-2 

y
 (

µ
m

) 

0 

2 

4 

-4 

-2 

10-8 

10-10 

10-12 

10-14 

J/m3 

10-6 

10-4 

10 

1 

V/m 

102 

103 

(a) 

(b) 

Figure 7.4: (a) COMSOL simulation of electric field distribution for 100
nm thick CPS resonator (with 2 mV across the CPS electrodes) on 90 nm
of ALD grown AlOx atop a sapphire wafer. (b) Electric energy density
distribution of (a).
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Figure 7.5: (a) COMSOL simulation of electric field distribution for 100
nm thick CPS resonator (with 2 mV across the CPS electrodes) on 97 nm
of ALD grown LaAlOx atop a sapphire wafer. The LaAlOx is only under
the electrodes because elsewhere it was etched away by the aluminum
etchant. (b) Electric energy density distribution of (a).

118



7.2.2 SIMS analysis for ALD dielectrics

Since hydrogen was still the most likely culprit for TLS loss in our ALD films,

SIMS measurements were performed on these films to determine the hydrogen im-

purity concentration. The carbon concentration for the BeO film and the hydrogen

concentration for all three film types is plotted as a function of film depth in Fig. 7.6.

Examination of the figure shows that there is an 8 times greater concentration in

the bulk of the crystalline BeO film than in the amorphous AlOx or LaAlOx films.

In the BeO films the hydrogen is almost uniformly distributed throughout the bulk

of the film (although some H diffuses into the Si substrate). In contrast, the amor-

phous AlOx or LaAlOx films have a large peak in hydrogen concentration at the

surface. This distribution of hydrogen strongly suggests that BeO has incorporated

hydrogen during growth with its precursors (dimethyl beryllium and water), while

the other oxides have mostly incorporated hydrogen from ambient exposure rather

than growth. Figure 7.6 also indicates that there is a high concentration of C impu-

rities in the c− BeO film, but unlike the hydrogen, it is concentrated on the surface

as the impurities in the amorphous films are.

7.2.3 Fitting to CPS Qi measurements using TLS loss model

Next I discuss fitting the inverse Qi measurements of the CPS devices using

the COMSOL simulated field distributions, SIMS hydrogen impurity measurements,

and the TLS loss tangent model,

tan δ(r⃗, E) =
tan δ0 tanh(~ω/2kBT )√

1 + (E(r⃗)/Ec)2
. (7.2)
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Figure 7.6: Hydrogen impurity concentration measured by SIMS for
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of carbon impurities. Vertical dotted lines indicate film thicknesses.
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To do this I started by taking the COMSOL simulated field distribution for the CPS

geometry and used the assumption that the field throughout the cross section would

scale linearly with the voltage across the electrodes. Knowing the field throughout

the resonator geometry I then assumed a tan δ and an Ec for the ALD dielectric and

that the rest of the volume was lossless . Numerically integrating over the volume

for every voltage data point in Fig. 7.3, I could then find:

1

Qi(V )
=

∫
Lossyfilm

tan δ(r⃗, E)ϵfilm(E(r⃗, V ))2d3r∫
All
ϵ(r⃗)(E(r⃗))2d3r

, (7.3)

remembering of course to also integrate over the entire length of the CPS (z) with

Vcps(z) = V0 sin(
π

2

z

lcps
), (7.4)

where lcps = 4.8 mm.

Figure 7.7 shows the inverse Qi data from Fig. 7.3 with loss tangent fits. Not

surprisingly when considering the impurity distribution in Fig. 7.6, for the two amor-

phous films, a single bulk loss term representing the film thickness was insufficient

to fit Qi and an independent surface-loss mechanism was added. I assumed the

thickness of the lossy material at the surface was 5 nm. The fit parameters for the

curves in Fig. 7.7 are shown in Table 7.1. As expected from the SIMS measurements

in Fig. 7.6, I found that the dominant loss occurs in the bulk of the crystalline BeO

film and the surface of the amorphous AlOx or LaAlOx films. A relatively small

background loss term was also included in the fit and labeled as the floor in Ta-

ble 7.1. This power-independent background loss is similar to that discussed earlier

and present in coplanar resonator measurements on bare substrate.
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Figure 7.7: Data points same 1/Qi data plotted in Fig. 7.3 solid curves
are fits to the TLS loss expression (Eq. 7.2) for the CPS resonator (6.4
GHz) geometry with the fit parameters from Table 7.1. Measurements
were taken at 34 mK.
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Table 7.1: Fit parameters for the curves in Fig. 7.7. The bold values correspond

to the dominant loss terms of the films, in the surface of the amorphous films and

the bulk of the crystalline film. All films were fit assuming a bulk loss value, a floor

limited by extrinsic effects, and amorphous AlOx or LaAlOx films were fit with an

additional 5 nm thickness of lossy material at the top surface. Films were measured

at 34 mK with 6.4 GHz CPS resonator.

Fit parameters BeO AlOx LaAlOx

tan δ0,surface(×10−3) - 13.0 4.5

Ec,surface(V/m) - 0.75 0.55

tan δ0,bulk(×10−3) 6.2 0.70 1.1

Ec,bulk(V/m) 0.70 5.9 60

tan δ0,f loor(×10−6) 32 4.0 0.68

thickness (nm) 78 90 97

The results from these fits also indicate that despite the high carbon impurity

concentration shown in Fig. 7.6, carbon impurities are unlikely to be the cause of

TLS loss in the film. This is because unlike the hydrogen impurities in the film, the

carbon impurities are concentrated at the surface and so would have resulted in a

measureable surface loss term as the amorphous films did.

The BeO loss measurements indicate that TLS defects are not limited to amor-

phous materials and can in fact have an even greater effect in crystalline materials.

This reduces the parameter space available in searching for a TLS micromechanism,

perhaps simplifying the task of modeling and identifying it.
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7.3 Surface Loss effects in ALD grown AlOx

To verify that the AlOx loss tangent was dominated by surface defects, I

measured two films that were nominally identical in every way except for their

thicknesses. Figure 7.8 shows the inverse Qi measurement of the resonators on two

films with 48 and 90 nm thicknesses measured at 34 mK. The idea is that if the

TLS were uniformly distributed in the dielectric, then the Qi of the resonator would

differ by a factor of 1.7, scaling linearly with the electric energy stored in the film

thickness. Instead, the quality factor of the resonators matches to within 15% at the

low-voltage limit, consistent with loss that is primarily at the surface. I note that

the development of in situ deposition of dielectrics within MIM trilayer structures

would greatly reduce such surface loss [72].

7.4 Hydrogen vs Carbon TLS analysis

One of the most common impurities in ALD films is carbon due to incomplete

reaction of the organometallic precursors. In the case of AlOx the precursor is

trimethylaluminum. I therefore had SIMS measurements performed for both carbon

and hydrogen impurities in AlOx films grown in separate ALD chambers in separate

labs, but with the same precursors. Figure 7.9 shows the integration of hydrogen and

carbon impurities over the thickness of the films. The Lab 1 film from the Rubloff

group at the University of Maryland has a much higher (40 times greater) carbon

defect concentration than that of Lab 2 from the Gordon group at Harvard. We

also measured CPS resonators on these films and found them to have very similar
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greater carbon concentration. Since the two films have similar loss but
very different carbon concentrations, C-based TLSs can be eliminated
as a candidate for TLS loss in this regime.
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Qi’s, indicating that carbon plays a negligible role in the TLS loss. From Fig. 7.9

we see that hydrogen is a much more viable TLS candidate.

To quantitatively analyze H and C impurities as TLS candidates we assume

that the loss tangent for each type of impurity tangent,

tan δ0,x(r⃗) = KxCx(r⃗), (7.5)

is proportional to the impurity concentration Cx(r⃗) of species x, where Kx is a

TLS-loss proportionality constant. Assuming defect x limits the resonator’s loss,

the low-voltage-amplitude internal quality factor of the film is then

1

Qi(V → 0)
= Kx⟨Cx⟩FfilmWx, (7.6)

where ⟨Cx⟩ is the average impurity concentration

⟨Cx⟩ =
∫
film

d3rCx(r⃗)∫
film

d3r
, (7.7)

Ffilm is the geometric filling factor,

Ffilm =

∫
film

d3rϵ(r⃗)|E(r⃗)|2∫
all
d3rϵ(r⃗)|E(r⃗)|2

, (7.8)

and Wx is impurity weighting coefficient,

Wx =

∫
film

d3rϵ(r⃗)|E(r⃗)|2Cx(r⃗)

⟨Cx⟩
∫
film

d3rϵ(r⃗)|E(r⃗)|2
. (7.9)

Note that Ffilm = 1 for a device with a single dielectric and Wx = 1 for a uniform

impurity distribution. WH,C can be calculated from the SIMS measurements shown

in Fig. 7.9 and Ffilm can be calculated by numerically integrating the energy density

of the COMSOL field simulations for the ALD film. Note that instead of defining the
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Figure 7.10: Numerically integrated filling factor for each nm depth slice
of a 90 nm film of AlOx under the CPS resonator geometry as a function
of the film depth.

filling factor over the entire film depth, it can instead be defined over any arbitrary

thickness of the film, so with that in mind I define

F (h) ≡
∫ ∫

dxdy
∫ h

0
dhϵ(r⃗)|E(r⃗)|2∫

all
d3rϵ(r⃗)|E(r⃗)|2

, (7.10)

where h = 0 is defined as the surface of the film and hf is the film thickness, such

that F (hf ) = Ffilm. In Fig. 7.10 I’ve plotted the filling factor depth derivative as a

function of the depth below the CPS resonator with 1 nm resolution, as calculated

by a numerical integration from the COMSOL field simulations.

In Fig. 7.11 I’ve plotted 1/(QiFWH⟨CH⟩) and 1/(QiFWC⟨CC⟩) for the two

films as a function of the microwave voltage using the measured values of Qi (at 80
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mK) and CH/CC , as well as the simulated field distributions forWH/WC and F. If we

assume hydrogen impurities are the dominant cause of TLS-loss, at low field values,

I’ve found that the two films from different labs have KH = 3× 10−24 cm3 to within

50%. However, as made clear by Fig. 7.11, if we instead assume carbon impurities

are the dominant cause of TLS-loss, the two films would produce drastically different

values for KH , differing by more than a factor of 30, indicating that carbon is not

the dominant source of TLS loss in this experiment. This provides evidence that

oxide films can be optimized for low temperature devices by lowering their hydrogen

concentration.

7.5 Conclusion

In conclusion, I measured the loss of several ALD grown dielectric oxide films

at millikelvin temperatures using the coplanar superconducting resonators discussed

in chapter 4. By using deuterated water to grow AlOx films, we reduced the amount

of hydrogen in the film but were not able to correlate that reduction in hydrogen

concentration with a change in low temperature microwave loss, possibly because

deuterium also causes TLS loss.

In addition, I found that the TLS loss of the crystalline film, BeO, was higher

than that of the amorphous films, AlOx and LaAlOx, despite the fact that BeO is

crystalline and has been shown to have low-loss at room temperature with high ther-

mal conductivity at low temperatures. Using SIMS measurements I correlated the

low temperature loss with excess hydrogen defects on the surface of the amorphous
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films and in the bulk of the crystalline film. The BeO film had a uniform bulk loss

tangent with no excess surface loss consistent with its uniform H impurity concen-

tration and inconsistent with its excess surface C impurity concentration, excluding

C as a TLS candidate in BeO. In AlOx and LaAlOx films, the bulk loss tangent was

found to be similar, but the surface loss dominated indicating that the loss tangent

was limited by surface impurities, likely hydrogen. A thickness study of AlOx films

confirmed that the majority of the loss was on the surface. By testing AlOx with

different carbon concentrations, I found that carbon has a negligible effect on TLS

loss. I conclude that various low temperature oxides can be optimized via rapid

room temperature measurements of hydrogen.
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Chapter 8

Biased resonator

8.1 Biasing TLSs

Once a linear resonator is fabricated, its resonance frequency is determined

and is a physical characteristic of the device. In contrast, a Josephson junction

acting as a tunable nonlinear inductor allows for tuning of the resonance frequency,

such as in the Josephson Junction Defect Spectrometer, but for linear resonators,

this cannot be done. However, it is possible is to tune the TLSs that are couple

to the resonator, moving them in and out of the resonator’s bandwidth. In this

chapter, I discuss such an experiment.

As discussed in Chapter 2, the TLS asymmetry energy, ∆, couples to an

applied electric field E⃗Bias through the TLS’s dipole p according to

∆ = ∆E=0 + 2E⃗Bias · p⃗. (8.1)

Since an applied field’s effect on the tunneling rate, ∆0, can generally be neglected

we can write the TLS’s energy as

E =

√
∆2

0 + |∆old + 2E⃗Bias · p⃗|2. (8.2)

One implication of Eq. 8.2 is that if we applied an additional bias field to the

dielectric, independent of the microwave probe field, we could bias TLSs out of the

resonator’s bandwidth so they can no longer couple to the resonator, and limit its
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loss. However, we also know from Chapter 2 that the standard distribution of TLSs

is white in ∆:

d2N =
P0

∆0

d∆d∆0. (8.3)

Thus on average the same number of TLSs would be biased into the resonator’s

bandwidth as were biased out resulting in a similar TLS loss tangent within statis-

tical fluctuations. If a bias field could be applied with a sufficiently high amplitude,

such an experiment could act as a check on the limits of the uniformity of the ∆

distribution. Similarly, if the distribution is sufficiently narrow, we could polarize

most of the TLSs out of the resonator’s bandwidth and significantly lower the loss.

8.2 Previous bias measurements

Experiments have previously tried to measure the response of a glassy dielectric

in the low-frequency regime (~ω ≪ kBT ) after it was driven out of equilibrium.

It was found that after the application of either a static electric field or strain

field, there was a sudden increase in the permittivity of glassy dielectrics, followed

by a subsequent slow logarithmic relaxation back to the equilibrium permittivity

[79, 80, 81]. It was also found that there was a persistent change in permittivity

at a previously applied bias field value [79]. This memory effect was explained by

TLS-TLS interactions causing a pseudogap which decreased the density of TLSs at

energies bellow 20 GHz [82, 83]. The sudden increase in permittivity was attributed

to the biasing of TLSs by the dc field and closing of the pseudogap, thus increasing

the density of low-frequency TLSs, while the subsequent relaxation was explained
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by the reforming of the gap via long-range TLS-TLS interactions. This led to a

better understanding of TLSs and amorphous dielectrics in general. More recently

the biasing of individual TLSs with strain has been observed in Josephson junctions

[84].

8.3 Swept bias

After performing the experiments described in the next chapter, Professor A.

Burin derived the theory I discuss next to explain the data [85].

As mentioned earlier, if the TLS distribution is completely white in the asym-

metry energy, then a change in the bias field would have no effect on the resonator’s

loss because on average the same number of TLSs would remain in the resonator.

However, even without a change in the TLS density, if a swept bias field is used, a

change in the measured loss tangent of a material should be expected. Qualitatively

this is because if the TLSs are biased fast enough, they can take energy away from

the resonator not only through their own relaxation but also through the bias.

To understand this quantitatively, we first define the energy of a TLS that is

being swept through the resonator’s frequency,

E(t) = ~ω0 + ~ν(t− t0) (8.4)

where ν is the energy bias rate of the TLS and t0 is the time when the TLS passes

the resonator’s frequency ω0. Expanding Eq. 8.2 around small shifts in ∆ (because

we’re only interested in TLSs close to resonance) gives the energy bias rate

ν = 2

√
1−

(
∆2

0

~ω

)2
p

~
dEbias

dt
cos θ = ν0

√
1−

(
∆2

0

~ω

)2

cos θ (8.5)
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where θ is the angle between the dipole moment and the field and ν0 is the ensemble

TLS energy bias rate

ν0 = 2
p

~
dEbias

dt
. (8.6)

Note that ν has dimensions of frequency squared or more intuitively frequency per

second because it’s effectively the velocity at which the TLS’s energy is biased.

Schrodinger’s equation for a TLS in a resonant field with states ψ = (c1, c2)

can be written as

dc1
dt

= −iE(t)c1/2− iΩR cos(ωt)c2,

dc2
dt

= iE(t)c2/2− iΩR cos(ωt)c1, (8.7)

where, ΩR is the Rabi frequency of the TLS

ΩR =
pEac

~
cos θ

∆0

E
= ΩR0 cos θ

∆0

E
, (8.8)

ΩR0 is the ensemble TLS Rabi frequency, and c1 (c2) is the amplitude of being in

the ground (excited) state of the TLS. If we make a transformation into a new basis

(a1, a2) = (c1e
iωt, c2e

iωt), Eq. 8.7 becomes

da1
dt

= −i (E(t)− ~ω)
a1
2

− i
ΩR

2
a2 − i

ΩR

2
a2e

2iωt,

da2
dt

= i (E(t)− ~ω)
a2
2

− i
ΩR

2
a1 − i

ΩR

2
a1e

2iωt. (8.9)

Using the rotating wave approximation, we can neglect the last term because it’s

oscillating much faster than the rest of the expression. Thus Eq. 8.9 becomes

da1
dt

= −iν(t− t0)

2
a1 − i

ΩR

2
a2,

da2
dt

= i
ν(t− t0)

2
a2 − i

ΩR

2
a1, (8.10)
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where I’ve also substituted in Eq. 8.4.

Here we can recognize that Eq. 8.10 is identical to the equation for a Landau-

Zener transition of a two-level quantum system (see Fig. 8.1) [86, 87]. We know from

the Landau-Zener problem that if at t = −∞, only the ground state is populated

|a1|2 = 1, |a2|2 = 0 then long after the TLS crossing, t = ∞, we have

|a1|2 = exp(−πΩ
2
R

2ν
),

|a2|2 = 1− exp(−πΩ
2
R

2ν
). (8.11)

Thus for fast bias (ν ≫ Ω2
R) the TLS crosses the resonance while staying it its

ground state (green to blue in Fig. 8.1) and for slow bias the TLS transitions into

its excited state (green to red in Fig. 8.1), following the bottom path in Fig. 8.1.

Using Eq. 8.11 for the probability of making a Landau-Zener transition we

can derive an expression for the bias rate induced loss. We first define the tunneling

rate as ∆0 = x~ω, allowing us to write the Rabi frequency as ΩR = xpEac cos(θ)/~

and the bias rate as ν = 2pĖbias cos(θ)
√
1− x2, where θ is the angle between the

dipole moment and the external field. We know from the Landau-Zener formula

that the probability of a TLS excitation is Pex = 1 − e−γ, where γ = πΩ2
R/(2ν) is

the dimensionless Landau-Zener parameter from Eq. 8.11. So the energy lost from

the bias integrated over the entire volume of the dielectric is

dE = ~ω
∫
d3r

∫
dNPex, (8.12)

where the ~ω comes from the fact that that’s the amount of energy lost every time

a TLS is excited when crossing the resonance bandwidth and the integral over dN
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Figure 8.1: TLS-resonator energy spectrum as the TLS is biased across
the resonance frequency of the resonator. If biased quickly it is likely
to stay in the ground state not coupling to the resonator (green to blue
TLS). If biased slowly enough it’s likely to couple to the resonator and be
pumped up to its excited state, taking a photon away from the resonator,
thus |n⟩ → |n− 1⟩ (green to red TLS).
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is only preformed over the TLSs that cross the resonance frequency. Expanding the

integral over the TLSs in Eq. 8.12, we have

dE = ~ωP0V

∫ 1

0

d cos(θ)

∫ ∫
(1− e−γ)

d∆d∆0

∆0

, (8.13)

where we are integrating over dipole angles θ in addition to the asymmetry energies

∆ and tunneling rates ∆0, and the d3r integral over volume (V) has been performed.

Next it is convenient to convert the integral of ∆ into an integral over TLS energy

E =
√
∆2 +∆2

0 in order to more easily set a limit on the TLSs crossing the resonance,

dE = ~ωP0V

∫ 1

0

d cos(θ)

∫ ~ω

0

d∆0

∫ ~ω+~νdt

~ω−~νdt
dE (1− e−γ)E

∆0

√
E2 −∆2

0

, (8.14)

where the bias is assumed to be on for a time period dt only TLSs with energies

~νdt away from the resonance frequency will cross it. The integral over E can be

evaluated as a Dirac delta function at ~ω with magnitude 2~νdt

dE = ~ωP0V

∫ 1

0

d cos(θ)

∫ ~ω

0

2~νdt(1− e−γ)
~ωd∆0

∆0

√
(~ω)2 −∆2

0

. (8.15)

Next substituting x~ω in for ∆0 we have

dE

dt
= 2~2ωP0V

∫ 1

0

d cos(θ)

∫ 1

0

ν(1− e−γ)
dx

x
√
1− x2

. (8.16)

Expressing the bias rate ν = 2pĖbias cos(θ)
√
1− x2 in terms of the dimensionless

Landau-Zener parameter γ gives

dE

dt
= 2~2ωP0V

∫ 1

0

d cos(θ)

∫ 1

0

πΩ2
R

2γ
(1− e−γ)

dx

x
√
1− x2

= πωE2
acP0p

2V

∫ 1

0

d cos(θ) cos2(θ)

∫ 1

0

(1− e−γ)

γ

xdx√
1− x2

. (8.17)
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Next using the definition of loss tangent (or quality factor) I can define the

loss tangent in terms of dE/dt

tan δ =
Power loss rate

ω(Energy stored in resonator)
=

dE/dt

ωϵE2
acV

. (8.18)

Combining Eq. 8.17 and Eq. 8.18 gives

tan δ =
πP0p

2

ϵ

∫ 1

0

d cos(θ) cos2(θ)

∫ 1

0

(1− e−γ)

γ

xdx√
1− x2

. (8.19)

Here we recognize from previous discussions of TLS loss that Eq. 8.19 can be rewrit-

ten as

tan δ = 3 tan δ0

∫ 1

0

d cos(θ) cos2(θ)

∫ 1

0

(1− e−γ)

γ

xdx√
1− x2

, (8.20)

where tan δ0 = πP0p
2/(3ϵ) is the intrinsic TLS loss without electric field or thermal

saturation. Here it’s useful to also remind ourselves of the electric field saturated

TLS loss tangent

tan (δ) = tan δ0
tanh (~ω/2kBT )√

1 + (Eac/Ec)2
. (8.21)

In the limit of fast bias (ν ≫ Ω2
R) we can use the approximation e−γ ≃ 1− γ

which simplifies Eq. 8.20 and makes its evaluation trivial

tan δ = 3 tan δ0

∫ 1

0

d cos(θ) cos2(θ)

∫ 1

0

xdx√
1− x2

= tan δ0, (8.22)

thus reducing the loss tangent to its intrinsic low Eac value as given by Eq. 9.1.

This is obviously not a coincidence. A qualitative way to understand this is that in

this limit, almost all of the TLSs passing through resonance remain in their ground

state so the resonator effectively sees a bath of ground state TLSs ready to absorb

a photon as in the low ac field limit. A slightly more comprehensive explanation
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for this phenomena is that as the bias rate increases, proportionally more TLSs

are being swept through the Landau-Zener region in each unit of time. Since the

TLSs are in the ground state they are all capable of absorbing power. However, the

higher the bias rate, the faster a given TLS will cross through the Landau-Zener

transition region, and the smaller the probability of the TLS absorbing energy from

the resonator and being left in its excited state. These two effects conspire to yield

the intrinsic low ac field loss tangent.

We note here that we’ve neglected TLS relaxation for this derivation (T1 =

T2 = ∞). So the loss calculated thus far comes entirely from energy lost to the

system through the bias and does not include the possibility that an excited TLS

can lose energy and be available to absorb more from the resonator. This assumption

will of course fail for sufficiently fast TLS relaxation. The crossover occurs when a

TLS is likely to decohere during the time it takes it to pass through the resonance

i.e. for ν ∼ ΩR/τ , where τ ≈
√
T1,minT2 is a characteristic TLS lifetime. Thus for

sufficiently slow biases, TLS relaxation dominates and the loss tangent reduces to

the steady state value given by Eq. 9.1.

In the regime where the bias is sufficiently fast ν ≫ ΩR/τ such that the loss

limited by the bias rate, Eq. 8.20 can be evaluated numerically. The numerical

solution is plotted in Fig. 8.2 as a function of the dimensionless bias rate

ξ =
2ν0
πΩ2

R0

. (8.23)

As discussed earlier the blue curve in Fig. 8.2 is only applicable at high bias

rates and will fail at lower bias rates where the loss is limited by TLS relaxation.
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Figure 8.2: Plot of tan δ/ tan δ0 as a function of the dimensionless bias
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2
R0) found by evaluating Eq. 8.20 numerically.
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The crossover at low bias sweep rate is dependent on the Rabi frequency and the

TLS lifetime ν0 ∼ ΩR0/τ . Thus given a Rabi frequency and a TLS lifetime, we can

calculate the characteristic dimensionless bias rate ξc = 1/(ΩR0τ) below which TLS

relaxations dominate and the blue curve in Fig. 8.2 is no longer applicable.

8.4 Monte Carlo simulations

One way to address the behavior of a random distribution of TLSs coupled to

a cavity is through a Monte Carlo simulation. It involves choosing a set of TLSs

with the right distribution, turning on a field similar that which exists in the cavity

and calculating the coupling of the TLSs to the field. Some advantages of this

approach are that it allows me to include T1 and T2 effects, and examine statistical

fluctuations resulting from using a finite number of TLSs.

8.4.1 Theory for Monte Carlo simulations

As discussed in Chapter 2, the Hamiltonian of a single TLS in an electric field

can be split into the Hamiltonian of the TLS in its eigenbasis

H0 =
1

2

 E 0

0 −E

 , (8.24)

and the perturbation Hamiltonian due to interaction with the applied electric field

HS =
1

E

 ∆ ∆0

∆0 −∆

 (p⃗ · E⃗). (8.25)
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The total Hamiltonian is then

H = H0 +HS. (8.26)

We know from the Heisenberg equation of motion that

i~ρ̇ = [H, ρ], (8.27)

where ρ is the TLS density matrix. By combining Eqs. 8.24-8.27 for a single TLS

we can write the set of equations

i~ρ̇00 = (ρ01 − ρ10)
∆0

E
p⃗ · E⃗

i~ρ̇01 = ρ00
∆0

E
p⃗ · E⃗ + ρ01

(
E + 2

∆

E
p⃗ · E⃗

)
− ρ11

∆0

E
p⃗ · E⃗

i~ρ̇10 = −ρ00
∆0

E
p⃗ · E⃗ − ρ10

(
E + 2

∆

E
p⃗ · E⃗

)
+ ρ11

∆0

E
p⃗ · E⃗

i~ρ̇11 = (ρ10 − ρ01)
∆0

E
p⃗ · E⃗ (8.28)

for the TLS density matrix.

Note that Eq. 8.28 does not include dissipation. We add dissipation and

decoherence to the equations of the density matrix in an ad hoc manner [88] and

arrive at

i~ρ̇00 = (ρ01 − ρ10)
∆0

E
p⃗ · E⃗ + i~

ρ11
T1

i~ρ̇01 = ρ00
∆0

E
p⃗ · E⃗ + ρ01

(
E + 2

∆

E
p⃗ · E⃗

)
− ρ11

∆0

E
p⃗ · E⃗ − i~

ρ01
T2

i~ρ̇10 = −ρ00
∆0

E
p⃗ · E⃗ − ρ10

(
E + 2

∆

E
p⃗ · E⃗

)
+ ρ11

∆0

E
p⃗ · E⃗ − i~

ρ10
T2

i~ρ̇11 = (ρ10 − ρ01)
∆0

E
p⃗ · E⃗ − i~

ρ11
T1
. (8.29)
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Equation 8.29 can be rewritten as a matrix equation

˙ρ00

˙ρ01

˙ρ10

˙ρ11


= M



ρ00

ρ01

ρ10

ρ11


, (8.30)

where

M =
1

i~



0 ∆0

E p⃗ · E⃗ −∆0

E p⃗ · E⃗
i~
T1

∆0

E p⃗ · E⃗ E + 2∆
E p⃗ · E⃗ − i~

T2
0 −∆0

E p⃗ · E⃗

−∆0

E p⃗ · E⃗ 0 −
(
E + 2∆

E p⃗ · E⃗ − i~
T2

)
∆0

E p⃗ · E⃗

0 −∆0

E p⃗ · E⃗
∆0

E p⃗ · E⃗ − i~
T1


.

(8.31)

To solve Eq. 8.30 we use the ansatz

ρ00(t)

ρ01(t)

ρ10(t)

ρ11(t)


= etM



C1

C2

C3

C4


, (8.32)

where we know that M is in general time dependent (M = M(t)) since it’s a

function of the applied field and we have the initial conditions

ρ00(0)

ρ01(0)

ρ10(0)

ρ11(0)


=



1

0

0

0


. (8.33)
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To solve for ρ(t) we can take short iterative time steps where we assume M(t) is a

constant. This is effectively an induction proof, we know ρ(0), so let’s assume we

know ρ(t0) and try to calculate ρ(t0 +∆t), thus proving that we can solve for ρ(t)

iteratively. First we know the solution around t = t0 to be

ρ00(t)

ρ01(t)

ρ10(t)

ρ11(t)


= etM(t0)



C1(t0)

C2(t0)

C3(t0)

C4(t0)


, (8.34)

since we’re assuming M(t) and by extension C(t) are constant over small time steps.

We can now calculate the constant matrix C(t0) from our initial conditions

ρ00(t0)

ρ01(t0)

ρ10(t0)

ρ11(t0)


= et0M(t0)



C1(t0)

C2(t0)

C3(t0)

C4(t0)


∴



C1(t0)

C2(t0)

C3(t0)

C4(t0)


=
[
et0M(t0)

]−1



ρ00(t0)

ρ01(t0)

ρ10(t0)

ρ11(t0)


,

(8.35)

and with Eq. 8.36 calculate ρ(t0 +∆t)

ρ00(t0 +∆t)

ρ01(t0 +∆t)

ρ10(t0 +∆t)

ρ11(t0 +∆t)


= e(t0+∆t)M(t0)



C1(t0)

C2(t0)

C3(t0)

C4(t0)


. (8.36)

By using this method we can choose a Monte Carlo distribution of TLSs and

an arbitrary electric field bias to shift the asymmetry energies ∆ and propagate

the density matrix for each of the TLSs in time. What we are interested in is to
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Figure 8.3: A cartoon illustrating how the TLS energy UTLS is affected
by the microwave drive PBias, the bias, and the TLS relaxation PT1

calculate the loss to the microwave field caused by the TLSs. Figure 8.3 illustrates

that the TLS energy is effected by: the microwave field excitations, the bias field

biasing TLSs, and T1 relaxation. Writing this as a conservation of energy equation

gives

dU

dt
= PMW + PBias − PT1 . (8.37)

Since we’re interested in the loss to the microwave field we simply solve for the

microwave field

PMW =
∑
TLS

~ωTLS ρ̇11 −
∑
TLS

~ωTLS
ρ11
T1
. (8.38)

where we’ve evaluated the TLS energy as dU/dt =
∑

TLS ~ωTLS ρ̇11+
∑

TLS ~ω̇TLSρ11,

the bias caused energy change as PBias =
∑

TLS ~ω̇TLSρ11, and the T1 relaxation

caused energy change as PT1 =
∑

TLS ~ωTLSρ11/T1.
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We can now assume that the total energy in the system is

U = Volume× ϵ× |E⃗|2, (8.39)

making the loss tangent of the system

tan δ =
PMW

ωcU
, (8.40)

where ωc is the resonance frequency and is the frequency of the applied ac field in

the simulation.

Note that if we break up the sums in Eq. 8.38 when solving Eq. 8.40 we can

get the loss tangent contribution from each individual TLS. Also note that I have

not quantized the resonator for this result. Rather I’ve treated it as a classical

externally applied field. This is an approximation that ignores some details of the

behavior of the solution and treating the Jaynes-Cummings Hamiltonian is required

to solve the full quantum mechanical problem.

8.4.2 Monte Carlo steady state-results

In this section I discuss the results from the Monte Carlo simulation when no

bias is turned on and show that we can reproduce the well-known steady-state loss

tangent response. Figure 8.4 shows the TLS distribution used to evaluate the loss.

A T1,min of 10 ns was assumed for this simulation with the T1 distribution described

in Chapter 2

1

T1
=

(
∆0

E

)2
1

T1,min

. (8.41)

I assumed that there was no pure dephasing and set T2 = 2T1. Iterative steps of

∆t = 0.1 ns were used to solve for the density matrix. All TLSs were assumed
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Figure 8.4: The Monte Carlo TLS distribution used for the simulation.
The black curve represents the resonance frequency of the cavity. The
limits set on the TLS distribution were 0.01 GHz < ETLS/h < 15 GHz
and 0 < arctan(∆/∆0) < 9π/20.
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to have the same dipole moment p = 1 D and the TLS density used was P0 =

1.28 × 1042J−1m−3, calculated from the number of TLSs (8000), the distribution

bandwidth (14.99 GHz), and the maximum angle used for the TLS distribution

(arctan(∆0/∆)max = 9π/20)

NTLS =

∫
d3r

∫
P0d∆d∆0

∆0

= V P0

∫ 9π/20

0

dθ

cos θ

∫
BW

dE

= V × P0 ×BW × 2.54 ∴ P0 = NTLS/(V ×BW × 2.54). (8.42)

I also set the volume to V = 100 nm× 50 µm× 50 µm and the resonance frequency

to f = 5 GHz. Figure 8.4 shows and example of a distribution of 8000 TLSs and

the black curve represents the resonance frequency used.

The loss tangent was calculated using Eq. 8.40 after 100 ns of propagation,

averaged for 100 time steps (10 ns). Figure 8.5 shows the loss tangent calculated

for these conditions with several Eac drive fields. The dashed line is a 1/E reference

slope, the vertical black line at 2.2×103 V/m represents the expected characteristic

saturation field with these parameters calculated from Ec = ~/(
√
T1,minT2p) and

the horizontal black line at 8 × 10−8 represents the expected intrinsic loss tangent

from the parameters calculated by P0p
2/(3ϵ). The value for Ec matches well with

the simulated loss tangent, reaffirming the integrity of the simulation and the as-

sumptions used. Figure 8.5 shows a variation of about a factor of two between the

simulated intrinsic loss and the analytically calculated value (horizontal line) but

statistical fluctuations in the simulation are on that scale.

Next I look at the transients of the loss tangent to see how the steady state

loss in Fig. 8.5 is reached, both at low ac fields for the intrinsic loss (see Fig. 8.6(a))
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Figure 8.5: Calculated loss tangent vs. applied electric field from the
Monte Carlo TLS simulation with Eq. 8.40 averaged for the last 100
time steps (10 ns) of the simulation. The dashed line is a 1/E reference
slope. The simulation reproduces the expected TLS loss with a field
independent low field loss and an onset of ∼ 1/E loss tangent behavior.
The steepening to a 1/E2 response comes from hitting limits to the
TLS distribution in the simulation. The vertical black line at 2.2 ×
103 V/m represents the expected characteristic saturation field Ec =
~/(
√
T1,minT2p) and the horizontal black line at 8× 10−8 represents the

expected intrinsic loss tangent P0p
2/(3ϵ). The deviation between the

simulated intrinsic loss tangent and the horizontal black line is due to
statistical fluctuations in the number of TLSs near resonance in the
simulation.
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and at high ac fields (see Fig. 8.6(b)). As seen in Fig. 8.6, the loss starts at around

the same value for both high and low ac field drives. This happens because initially

all the TLSs are in their ground state and will absorb photons proportional to

the drive field energy. For low drive (Fig. 8.6(a)) the TLSs aren’t excited very

much and the loss response stays around the same with roughly 10% fluctuations

in tan δ. In contrast for high drive (Fig. 8.6(b)) the TLSs are saturated and their

loss contribution decreases after sufficient time (determined by their Rabi frequency

and relaxation time).

8.4.3 A closer look at the response of the TLS distribution

Figure 8.7 shows the TLS excitation response as ac drive is increased. In this

figure, each point represents a TLS with its color scale representing its excitation

probability (blue being ground state and red being excited state). For each sim-

ulation the same TLS distribution is used but with a different electric field drive.

Figure 8.7(d) with the highest electric field drive shows that this method also sim-

ulates two and three photon processes (10 and 15 GHz). Figure 8.7(d) also shows

that at these relatively large ac fields the simulation starts being limited by the TLS

distribution used. This is why at high fields in Fig. 8.5 the loss response changes

from what is expected for a broad distribution of, ∼ 1/E, to the expected response

from a single TLS, ∼ 1/E2.

The loss tangent contribution of individual TLSs with 105 V/m ac field drive

is plotted in Fig. 8.8. As can be seen in Fig. 8.8 the loss contribution of TLSs is
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Figure 8.6: (a) Simulated loss as a function of time with an ac drive
field of 103 V/m, near the intrinsic loss low field limit. Initially the loss
is higher because all the TLSs are in their ground state. (b) Simulated
loss as a function of time with an ac drive field of 105 V/m, above the
TLS saturation knee in Fig. 8.5. Initially the loss is high because all the
TLSs are in their ground state but, after a short period determined by
the ac drive field, the TLSs are saturated and the loss decreases to the
value found in Fig. 8.5 at ERMS = 105 V/m.
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Figure 8.7: The TLS distribution excited state probability (ρ) after equi-
librium was reached with a 5 GHz drive field of 103 V/m (a) 104 V/m
(b) 105 V/m (c) 106 V/m (d). As the drive field was increased the TLSs
on resonance (as well as at higher modes of the resonance) began to
saturate. As shown by Fig. 8.5, at higher fields the simulation became
less accurate and (d) strongly suggests that this is due to the limits in
the TLS distribution used.
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Figure 8.8: Loss contribution from each TLS after equilibrium was
reached with 105 V/m ac field drive.

higher for TLSs with higher tunneling rates. This is both because it’s easier to drive

transitions with higher tunneling rates (as indicated by the ∆0/E terms in Eq. 8.29)

and because TLSs with higher tunneling rates have shorter lifetimes (Eq. 8.41).

8.4.4 Individual TLS response

To gain a better understanding of the TLS loss I examined the loss contribution

for individual planted TLSs in the simulation as a function of ac field drive. I chose

nine TLSs at 4, 5, and 6 GHz with arctan(∆/∆0) = π/6, π/4, π/3 (see Fig. 8.9
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inset). The loss from each of the TLSs as a function of the applied ac field is plotted

in Fig. 8.9. As expected 4 and 6 GHz TLSs (dotted and solid lines respectively)

contribute much lower loss than the resonant 5 GHz TLSs (dashed lines). And also

as expected, as the tunneling rate to TLS energy ratio ∆0/E is decreased (red to

green to blue in Fig. 8.9) the TLS loss contribution decreases. As can be seen from

the field dependence in Fig. 8.9, an individual TLS’s loss response goes as 1/E2.

It’s the sum of an ensemble of TLSs that gives the 1/E response.

Figure 8.10 shows a plot of the excited state probability ρ11 for TLS number

2 in Fig. 8.9 with increasing ac drive field. For low applied fields the TLS ρ11

increases to a steady state value (see Fig. 8.10(a,b)). For sufficiently high fields the

TLS begins to show Rabi oscillations (see Fig. 8.10(c,d)).

8.4.5 Monte Carlo simulation with a bias field

Once convinced of the Monte Carlo’s integrity in simulating individual TLS

loss I returned to the distribution of 8000 TLSs from Fig. 8.4 and turned on a bias

field sweep that varied the asymmetry of each TLS by 2p⃗ · E⃗Bias. I simulated the

TLS response for 200 ns and, as shown in Fig. 8.11(a), with the bias field increasing

from 0 to 500 kV/m between 75 and 125 ns resulting in ĖBias = 1013 V/m/s. For

this bias ramp Fig. 8.11(b) shows the corresponding loss response at 104 V/m ac

field drive and Fig. 8.11(c) shows the response at 105 V/m. As predicted by the

theory discussed in section 8.3, the loss tangent increased when the bias is swept.

In Fig. 8.11(b), with the lower ac field drive, the loss increases to close to the same
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value it started with (t=0). In Fig. 8.11(c) when the ac field is relatively high and

therefore the TLS Rabi frequency is high, there’s only a small increase in the loss

tangent response during the sweep.

In Fig. 8.12 I increased the field ramp sweep rate by a factor of 10 resulting in

ĖBias = 1014 V/m/s. Here again Fig. 8.12(b) shows an increase in loss to close to

the initial (t=0) loss value, but because of the increased bias rate Fig. 8.12(c) shows

a much greater increase in the loss.

8.4.6 Monte Carlo simulation of TLS dynamics and adiabatic rapid

passage

In this section I examine the excited state probability response of a single TLS

in a swept bias field. As discussed in section 8.3, a TLS crossing the resonance

frequency of the cavity can experience a Landau-Zener transition. If the bias is

sufficiently fast, as in Fig. 8.13(a) where ĖBias = 9.88× 1014 V/m/s, then the TLS

is likely to stay in the ground state, as shown in Fig. 8.13(b). But if the bias is

sufficiently slow, as in Fig. 8.14(a) where ĖBias = 1.32 × 1013 V/m/s, then the

TLS experiences adiabatic rapid passage and is likely to be excited as shown in

Fig. 8.14(b). The insets in Fig. 8.13 and Fig. 8.14 show the TLS before and after

it was biased. In both simulations the Rabi frequency for the TLS is higher after

the bias and that’s because as shown by the insets the TLS is further detuned

from the resonance frequency after the bias. The lifetime used for this TLS was

T1 = T2/2 = 83 ns and the ac drive was 105 V/m.
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Figure 8.14: (a) Bias field vs. time for a slow sweep (1.32×1013 V/m/s)
of a single TLS. (b) Simulation of excited state probability ρ11 vs. time
for the bias in (a). Because the bias was slow compared to the Rabi
frequency, The TLS underwent adiabatic rapid passage and was pumped
to the excited state with a high probability. Inset shows asymmetry ∆
vs. tunneling ∆0 for the TLS as the start and end of the sweep and the
black curve represents the resonance frequency.
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8.5 Conclusion

In conclusion, I’ve discussed biasing TLSs with a field while probing and ex-

citing them with an independent microwave (ac) field. It can be shown analytically

that a TLS biased across the resonance frequency can experience a Landau-Zener

transition. One consequence of this is that if the bias is sufficiently fast the loss

tangent response of the TLSs at high ac fields approaches the unsaturated linear

response at low ac fields [85]. I’ve also demonstrated a method for simulating the

TLS loss response both with and without a swept bias field. Using this method I

simulated the steady state TLS loss response, including the onset of TLS saturation

as the ac field is increased. By simulating the system with a swept bias field, I also

showed the predicted loss increases as the bias sweep rate increases. I also simulated

the behavior of a TLS at two bias sweep rates and showed that for the fast bias

sweep rate a TLS is likely to stay in the ground state as it crosses the resonance

frequency while for a slower bias sweep rate the TLS experienced adiabatic rapid

passage and is likely to be excited by the resonator.
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Chapter 9

Biased resonator results

In this chapter I discuss the experimental setup I used for measuring the effects

of a swept bias on a resonator and I compare the results from the experiment to the

theory discussed in Chapter 8.

9.1 Biased resonators

9.1.1 The resonator

For these experiments I designed (most of the design was done with my advi-

sor Kevin Osborn who suggested this experiment) and fabricated a resonator with

capacitors that can be biased independently from the microwave (ac) resonant field.

Figure 9.1(a) shows an optical image of a devices that is nominally identical to the

one measured (from the same wafer) and Fig. 9.1(b) shows a schematic of the res-

onator design. The resonator was composed of a meandering inductor and four 250

nm thick amorphous SiNx-dielectric parallel-plate capacitors. As shown by Fig. 9.1,

the resonator capacitance was broken up into four nominally equivalent capacitors

with capacitance C = 1.8 pF in a bridge design, such that the equivalent resonator

capacitance was C. One side of the capacitance bridge was grounded and the other

was connected to a bias line with an applied bias voltage Vbias creating a bias of

Vbias/2 across each capacitor. As with previously discussed resonators, the reso-
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Figure 9.1: (a) Optical image of the thin-film superconducting alu-
minum resonator (nominally identical to devices bias1-4.7GHz-A and
bias1-4.7GHz-B) comprised of a meandering inductor and four equal
amorphous SiNx parallel-plate capacitors. C1 and C3 are connected to
the ground plane while C2 and C4 are connected to a bias plate. The res-
onator is inductively coupled to a CPWwhich is probed at microwave fre-
quencies. (b) Circuit schematic of the resonator highlighting the bridge
nature of the capacitors and their bias.

nance is driven through coupling to a CPW transmission line, creating a notch

filter. As will be shown in the next section, the bias line is not coupled to the

fundamental microwave resonance so as not to limit the resonance quality factor.

The reason the coupling to the bias line is so weak on resonance is because at the

location on the bias plate where the bias line is connects there is very little voltage

and current from the fundamental microwave resonance mode.

9.1.2 Resonator simulations

Figure 9.2(a) shows the resonator design used for the Microwave Office sim-

ulation. A third port was added to simulate the bias line. As in the experiment,
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the bias line was separated from the ground plane by 250 nm of SiNx dielectric. As

shown by the transmission simulations in Fig. 9.2(b), port 3 (bias port) has less

than -40 dB coupling to port 1 even on resonance. This corresponds to limiting the

internal quality factor of the device to about Qi < 2 × 106, much higher than the

expected quality of the dielectric used (SiNx), indicating that port 3 can be assumed

to be isolated from the resonant circuit and will not affect its quality factor.

9.1.3 Resonator fab

Fabrication of this multi-layer resonator is more complicated than the fabri-

cation of the coplanar resonators discussed in Chapter 4. For the bottom layer–

comprised of the meandering inductor, the bottom plate of the capacitors and the

ground plane–aluminum was sputtered, patterned and etched in exactly the same

way that was discussed for the coplanar resonators in chapter 4. Next 250 nm of

SiNx was deposited with an Oxford high density plasma enhanced chemical vapor

deposition (HD-PECVD) system. Nitrogen (N2) and silane (SiH4) precursor gasses

were used with flow rates of 11 sccm and 10 sccm, respectively. The depositions rate

was calibrated by first depositing SiH4 on a silicon wafer and then measuring the

thickness with an n&k diffraction measurement system [89]. Next I spun the same

OIR 906-10 photoresist [58] that was used for the bottom layer in the same man-

ner. The photoresist was patterned with a stepper and developed with OPD-4262

developer [58] again using the same technique discussed for the bottom aluminum

layer in chapter 4. Next I exposed the bottom aluminum layer by etching vias in

166



ܵଶଵ ܵଷଵ 

݂ (GHz) 

Tr
a

n
sm

is
si

o
n

 

૜૛૙ ࢓ࣆ
 

Figure 9.2: (a) Layout of 4-capacitor bridge resonator used for Microwave
Office simulations. (b) Simulated transmission from port 1 to ports 2
(magenta) and 3 (blue). The coupling between ports 1 and 3 is very low
at the resonant frequency (less than -40 dB) thus the bias line will not
limit the resonator’s loss.
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the SiNx were etched using a sulfur hexafluoride (SF6) reactive ion etching (RIE)

process. After cleaning the photoresist, in the same manner discussed earlier, the

wafer was again put in the sputtering chamber where it was ion milled with argon

at 800 V beam voltage for 60 seconds in order to ensure that the native oxide on the

bottom aluminum layer was entirely etched for good electrical contact. Next, the

top aluminum layer (200 nm) was sputtered, patterned, and etched leaving only the

top plates of the capacitors, the vias connecting the capacitors to the inductor, and

the bias line connecting to the bias plate. Finally the excess Si3N4 was patterned

and etched away (using the same RIE process) everywhere except where it was re-

quired to support a top aluminum layer (the capacitors and the bias line). Once the

fabrication process was complete the wafer was diced (in the same manner discussed

for the coplanar devices in Chapter 4) and mounted in a copper box similar to that

shown in Fig. 4.6. The devices was wire bonded to in the same manner discussed

in Chapter 4 with the simple addition of also wire bonding to the bias line.

9.2 Dependence on loss on a static (DC) bias voltage

The first measurement I made on these devices was to bias the resonator with

a static (DC) electric field and see if the TLS loss was affected. Figure 9.3 shows

measurements of the loss tangent taken at 30 mK for device bias1-4.7GHz-A. The

presence of a DC bias field did not have a significant effect on the TLS loss even

with a bias field of 200 V/m, corresponding to a shift of 2.0 THz for the asymmetry

energy (∆/h) of a TLS assuming a 1 Debye dipole moment aligned with the field.
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Figure 9.3: Loss tangent measurements of resonator bias1-4.7GHz-A at
30 mK as a function of the microwave excitation field taken with various
DC bias fields. The DC bias fields showed no substantial effect on the
loss.

For higher biases the SiNx broke down, and thus I can only conclude that the TLS

asymmetry energy distribution is flat in the 0-2 THz range.

As mentioned in Chapter 8, even if a systematic shift in loss tangent as a

function of bias field is not measured, the measurement of random shifts in loss

tangent due to the discrete nature of the TLSs is still possible. Figure 9.4 shows

measurements where such texture in both loss (Fig. 9.4(b)) and dielectric constant

(Fig. 9.4(c)) is resolved by varying the bias field (Fig. 9.4(a)). As shown in Fig. 9.4
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when a bias field is applied, the shifts in loss and dielectric constant (capacitance)

are random, as expected. It was somewhat surprising however to see the loss and

permittivity systematically return to the same value when the bias is turned off. This

suggests that the TLSs are not rearranging themselves in some irreversible, glassy

manner when the bias field changes. Note that these measurements were taken over a

period of several hours which seems like a relatively long timescale for the stability of

atomic systems. We can also use the scale of these TLS induced loss tangent jumps

to estimate the number of TLSs in the resonator’s bandwidth. The loss tangent

jumps are on the scale of about ∆ tan δ/ tan δ ∼ 0.02, and since the loss tangent

scales with the number of TLS in the resonator, we can say 1/
√
N ∼ 0.02. Thus

the number of TLSs in the bandwidth of the resonator is approximately N ∼ 2500,

which for the capacitor volume of V = 4 × 80 µm × 80 µm × 250 nm, a resonator

bandwidth of about 1 MHz, and a TLS linewidth of about 1 MHz corresponds to a

TLS spectral spatial density of about P0 ∼ 1043, which as I will show later in this

chapter comparable to another measurement I preform in this system.

9.3 Loss with swept bias

9.3.1 Pulsed bias effect

As discussed in the previous section, the changes in TLS loss due to a DC

bias were typically only a few percent. I next discuss results from measurements

of the loss tangent response with a rapidly swept bias field. Figure 9.5(a) shows

a bias pulse of 40 MV/m with a rise and fall time of 8.5 ms. The color scale in
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Figure 9.4: (a) Three bias field pulses applied sequentially. (b) The
corresponding fractional change in loss tangent from the value at zero
bias field in device bias1-4.7GHz-B. The shifts are due to the random
and discrete nature of the TLSs. (c) Similar (but smaller) random shifts
are also observed in the capacitance, also caused by small changes in the
TLS distribution.
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Fig. 9.5(b) shows the transmission through the CPW of device bias1-6.5GHz-A at

the resonance frequency. Before the bias ramp start up (step up) the resonance line

shape is constant, but once the bias step occurs, the resonance line shape becomes

wider and shallower indicating a decrease in the quality factor. After some time at

the constant bias field of 40 MV/m, the resonance line shape returned to its original

value. When the bias ramp down occurred, the resonator responded again in the

same manner, with a lower quality factor that eventually returns back to its original

value.

Each of the time slices in Fig. 9.5(b) were fit to a resonance line shape and

the extracted loss tangents are plotted in Fig. 9.5(c). Examination of Fig. 9.5(c)

makes it clear that the loss jumps to the same value at both the step up and down

of the bias field and returns to this same value once the bias field stabilizes. As

discussed in Chapter 8, this behavior is caused by TLSs being swept through the

resonance frequency and taking energy from the microwaves not only by relaxing but

also by moving outside the resonator’s bandwidth. It is also worth remarking that

these effects were observed experimentally before the phenomenon was explained

theoretically, and it was this peculiar behavior which motivated the theoretical effort.

9.3.2 Biased and steady state losses

Based on the model discussed in chapter 8 [85], for a sufficiently fast bias

rate, the loss tangent can be expected to increase to its intrinsic unsaturated value.

Figure 9.6(a) shows the steady state loss tangent measurements for the resonator at
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Figure 9.5: (a) Bias electric field pulse applied with a rise and fall time
of 8.5 ms resulting in a maximum bias rate of ĖBias = 4.7 GV/m/s. (b)
Transmission of CPW showing the resonance line shape as the bias is
applied. Both at the rise and fall of the pulse the resonance line shape
becomes shallower and broader indicating an increase in the loss. (c)
Each time slice in (b) is fit to a resonance line shape and the extracted
loss tangent is plotted. The loss tangent initially increases as the bias
field is swept up or down and then relaxes back to its steady state value.
This measurement was performed on device bias1-6.5GHz-A.
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33 and 200 mK as a function of the magnitude of the ac resonant field. Figure 9.6(b)

shows the loss tangent response at those same temperatures while exciting with

a single ac drive field as the bias is ramped (see inset). Comparing Fig. 9.6(a)

to Fig. 9.6(b), we see that the loss tangent does in fact increase to the intrinsic

unsaturated value at both temperatures.

In Fig. 9.6(c) the intrinsic loss tangent at low ac field with no bias (black

triangles) is compared to the maximum loss tangent jump height with a ramped

bias field (blue circles). The loss for a ramped bias field show an approximately

5% greater loss than the linear-response loss tangent at the lowest temperatures.

Assuming this non-equilibrium loss should exactly equal the linear response loss, it

is possible that the small systematic difference may be due to slow TLS interactions,

which move TLSs towards the global ground state that creates a slightly different loss

tangent [83]. The solid curve in Fig. 9.6(c) is a fit to tan δ0 tanh(~ω/2kBT ), which

describes the thermal saturation of the loss tangent in the conventional theory. I

find good agreement with this fit.

9.4 Varying bias rate

As discussed in chapter 8, the loss tangent is dependent on the bias ramp rate

and the Rabi frequency (ac field amplitude). At low bias ramp rates we expect to

be in the steady state limit, resulting in a loss tangent that is dependent on the ac

field amplitude according to the conventional tunneling model:

tan (δ) = tan δ0
tanh (~ω/2kBT )√

1 + (Eac/Ec)2
. (9.1)
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Figure 9.6: (a) Steady-state loss tangent, measured in device bias1-
4.7GHz-B as a function of the microwave field at temperatures of 33
(blue) and 200 (red) mK. (b) Corresponding time-dependent loss tan-
gent measured (main panel) with an electric field bias that sweeps up
(down) at 0.53 s (1.78 s) (inset). (c) Comparison of steady state intrin-
sic unsaturated loss tangent (blue circles) to the maximum loss tangent
reached with a swept bias (black triangles) as a function of tempera-
ture. The solid curve shows a fit of the conventional theory of thermally
saturated TLS, tan δ0 tanh(~ω/2kBT ), to the steady state data.
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At high bias rates, as seen in Fig. 9.6, the model in Chapter 8 predicts a loss tangent

equal to the intrinsic unsaturated value for the material. In between, the same model

predicts a loss tangent that is dependent on the dimensionless bias rate

ξ =
2ν0
πΩ2

R0

, (9.2)

where, as discussed in chapter 8,

ν0 = 2
p

~
dEbias

dt
, (9.3)

and

ΩR0 =
pEac

~
. (9.4)

Here I’ll discuss measurements of loss tangent as a function of the bias rate and

show that I get a good fit to the model discussed in Chapter 8 and in Ref. [85].

9.4.1 Methods for varying bias rate

To vary the bias rate, I used a voltage supply with a constant rise time and

varied the amplitude of the bias. I used a Stanford Research Systems SIM928

Isolated Voltage Source with a characteristic rise/fall time of 8.5 ms. I varied the bias

pulse amplitude (see Fig. 9.7(a)) which resulted in varying loss tangent responses

(see Fig. 9.7(b)). Figure 9.7(c) shows the resulting plot of loss tangent as a function

of bias rate bound by taking the maximum loss tangent jump height from each

pulse and plotting it against the maximum bias rate. The maximum bias rate was

calculated by dividing the pulse amplitude by the characteristic rise and fall time

of the pulse.
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Figure 9.7: (a) Various bias pulse amplitudes with the same rise and fall
time of 8.5 ms resulting in various bias sweep rates. (b) Loss tangent
as response for the various bias pulses. (c) Plotting the maximum loss
tangents reached from (b) against the corresponding maximum bias rate
from (a).
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Another technique used see how the loss tangent depends on the bias rate is

to add a low pass filter to the voltage supply, slowing the characteristic rise and fall

time of the voltage bias to 50 ms (see Fig. 9.8(a)). The resulting response of the

loss tangent (see Fig. 9.8(b)) can be monitored as the time derivative of the voltage

bias changes in time. Thus in Fig. 9.8(c) I plotted the loss tangents from Fig. 9.8(b)

against the color coded instantaneous bias field time derivative (bias rates) from

Fig. 9.8(a). With this technique I was able to get the entire loss tangent vs. bias

rate S-curve with a single pulse.

Figure 9.9 shows my results for device bias1-4.7GHz-B from both techniques

showing that they produce the same loss vs. bias rate S-curve. When plotting the

instantaneous loss tangent against the instantaneous bias rate I used both the step

up (blue) and the step down (red). The dashed curve in Fig. 9.9 is the numerical

evaluation of Eq. 8.18 which was also plotted in Fig. 8.2. In Fig. 8.2 the loss

tangent is plotted as a function of the dimensionless bias rate

ξ =
2ν0
πΩ2

R0

=
4~ĖBias

pE2
ac

, (9.5)

were the ac field across the resonator on resonance, Eac, is known. However, the

dipole moment p of the TLSs is unknown. The dashed curve in Fig. 9.9 is a fit of

the model to the data by using the dipole moment as a free parameter. Using this

method I extracted a dipole moment of 7.9 ± 0.5 Debye. It is noteworthy that this

technique allows for determination of the TLS dipole moment.

Examining the dashed curve in Fig. 9.9, we see however that the fit only

catches the top of the S-curve. This is because, as discussed in chapter 8, when
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Figure 9.8: (a) Applied bias pulse with a rise and fall time of 50 ms.
(b) Loss tangent response to the applied bias. (c) The instantaneous
loss tangent response from (b) as a function of the instantaneous time
derivative of the applied bias from (b) (the bias rate).
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deriving Eq. 8.18 we neglected TLS decoherence (T1 = T2 = ∞) and assumed all of

the loss comes from the Landau-Zener process produced by biasing the TLSs. Thus

it is not surprising that the calculation fails when the bias is so slow that the loss

due to TLS decoherence cannot be ignored (ν ∼ ΩR/
√
T1,minT2).

The solid curve in Fig. 9.9 is a fit to the data using a Monte Carlo averaged

solution of the TLS density matrix similar to that discussed in Chapter 8. Note

that this Monte Carlo simulation was performed with code written by Professor

Alex Burin from Tulane University and is more streamlined than the Monte Carlo

simulations I created and discussed in Chapter 8 (i.e. only TLSs near resonance

were considered). The solution assumed a T1 limited T2 (T2 = 2T1) and that there

was a loss tangent background of tan δfloor = 1.8× 10−5, as found from steady-state

saturation measurements. From this fit we extract the same average TLS dipole

moment of p = 7.9 Debye, and a TLS relaxation time of T1 = 3.0 µs. This value of

p is comparable to that found for TLSs in an amorphous Al2O3 Josephson junction

tunneling barrier [15] and OH in alkali halides [90]. However, unlike previous mea-

surements our ramped bias technique does not require fabrication of a Josephson

junction and allows for TLS dipole measurements in any insulating film thickness.

From the dipole moment and the intrinsic loss tangent, I can calculate a value of

P0 = 4.9 × 1043J−1m−3 for the TLS spectral spatial population density using the

relation tan δ0 = p2P0/(3ϵ).
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Figure 9.9: Loss tangent as a function of bias rate in device bias1-
4.7GHz-B taken with different techniques. The blue (red) symbols show
the loss tangent during the 50 ms rise (fall) time step up (down) of a
bias pulse. The black symbols show data taken by varying the bias step
amplitude and using the maximum loss tangent measured. The dashed
curve is a fit based on the theory discussed in chapter 8 which assumes
TLSs with infinite relaxation times experience a Landau-Zener transi-
tion as they’re biased through the resonator’s bandwidth. It therefore
fails at low bias rates where the loss becomes limited by TLS relaxation
instead of the bias. The solid curve is a fit using a Monte Carlo averaged
solution of the TLS density matrix (see section 9.4.1).
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9.4.2 Fitting S curve for different microwave (ac) powers and extract-

ing the TLS dipole moment

The next measurement I made on device bias1-4.7GHz-B was a bias field

measurement with different ac drive strengths (see Fig. 9.10). Note that while the

amplitude of the input ac field is constant for any given curve, as the loss tangent

varies it also changes the ac field across the capacitors; the low sweep rate (steady-

state) ac field is given for each curve in Fig. 3A. The ac field for the middle curve

(blue) varies from Eac = 4.55 V/m at the highest bias rate to Eac = 15.52 V/m at

the lowest bias rate (the steady-state regime). To calculate Eac for a given bias, I

first measure the quality factor of the resonator, as discussed earlier, and then use

Eq. 3.22 along with the microwave line calibrations. As expected, the different ac

field measurements approach the same intrinsic loss tangent limit for fast bias rates

and they saturate at different steady state loss tangents, based on their ac field

drive.

A qualitative way to understand the shifts in bias rate between the different ac

field curves in Fig. 9.10 is that the ac field is proportional to the Rabi frequency of

the TLSs and, as discussed earlier, the Rabi frequency is what you need to compare

the bias rate to decide if the bias was fast enough for the TLS to Landau-Zener

transition and remain in the ground state. The key quantity is the dimensionless

bias rate ξ = 2ν0/(πΩ
2
R0).

In Fig. 9.11(a) the solid curves are fits of the data from Fig. 9.10 for different

ac fields to the same Monte Carlo solution discussed earlier (see section 9.4.1).
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Figure 9.10: Loss tangent vs. bias field ramp rate in device bias1-
4.7GHz-B for three different input ac fields.

The fits show excellent agreement especially considering that a single value for the

dipole moment was assumed. The curves in Fig. 9.11(a) are rescaled in Fig. 9.11(b)

by plotting them against the dimensionless bias rate ξ, using the extracted dipole

moment p = 7.9 D. I find a good collapse to a single curve at high bias rates where

the loss is limited by the bias rate (ν > ΩR/
√
T1,minT2), but the curves don’t collapse

at low bias rates since there the loss is limited by TLS relaxations which the model

neglected.

Figure 9.12 shows another version of the data from Fig. 9.11. Here I also

rescaled y-axis by subtracting the zero bias rate steady-state loss tangent value

(tan δss) for each of the three sets of ac field amplitudes to account for the varying

steady-state losses. This procedure is ad hoc and not predicted by theory, but is
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Figure 9.11: (a) The loss tangents from Fig. 9.10 normalized by the
intrinsic zero field loss. The solid curves are fits from a Monte Carlo
averaged solution of the TLS density matrix where the same dipole mo-
ment was assumed (p = 7.9 D) for all three fits (i.e. no additional free
parameters). (b) The bias rate from (a) rescaling by the dimensionless
bias rate ξ. The three curves converge at high bias rates where the loss
is limited by the bias rate and not by TLS relaxation.
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done to emphasize the agreement in the scaling. From Fig. 9.12 it’s even clearer

that rescaling by the dimensionless bias rate ξ collapses the data onto one curve.

9.5 S curves at 100 mK

All of the swept bias rate measurements discussed thus far in this chapter have

been taken at 33 mK on device bias1-4.7GHz-B. In Fig. 9.13 I show similar measure-

ments on the same device taken at 100 mK. Figure 9.13(b) shows the corresponding

plot of the loss vs. dimensionless bias rate ξ. Again, we see good collapse onto one

curve at high ramp rates but poor collapse as they approach the steady state regime

where the loss is limited by TLS relaxation. The solid curve in Figure 9.13(b) shows

a fit to the numerical evaluation of Eq. 8.18 discussed in chapter 8 and plotted in

Fig. 8.2. The three horizontal lines indicate the known loss tangent values of the

three data sets measured in the steady state regime. These fits yield a TLS dipole

moment of p = 8.0 Debye, close to that extracted from the 33 mK data.

9.6 Conclusion

In conclusion, with help from my advisor Kevin Osborn, I designed, fabricated,

and measured a parallel-plate thin-film microwave (ac) resonator which due to its

bridge design allowed for electric field biasing of the capacitors independent of the ac

field drive. This biased the asymmetry energy ∆ of the TLSs in the SiNx dielectric,

shifting their energies in and out of the resonator’s bandwidth. Consistent with a

flat distribution of the TLS asymmetry energies, only small random changes of a
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Figure 9.12: (a) Plot of the quantity y = (tan δ−tan δss)/(tan δ0−tan δss)
vs. bias rate. This is rescaling Fig. 9.12 by subtracting the zero bias rate
steady-state loss tangent value (tan δss), effectively pinning the data to
zero at low bias rates. (b) Data from (a) with x-axis rescaled by the
dimensionless bias rate ξ. The rescaling collapses the three curves on
top of each other.
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Figure 9.13: (a) Normalized loss tangent as a function of the bias rate
sweep rate for three different input ac fields taken at 100 mK. (b) Rescal-
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few percent were observed in the TLS loss tangent.

In contrast, when the bias was swept, an increase in loss tangent was observed.

For a sufficiently fast bias rate the loss approached the intrinsic unsaturated loss

tangent of the material, consistent with the theory discussed in Chapter 8. This be-

havior was seen for temperatures spanning 30 to 200 mK. The loss tangent increased

with the bias rate, from its low bias steady state limit to its high bias intrinsic loss

tangent value. The variation of loss tangent with bias rate was fit to a calculation

based on the TLSs making Landau-Zener transitions as they crossed the resonance

field. This model did not capture the loss caused by TLS relaxation, so a Monte

Carlo simulation of the TLS density matrix was used to fit the data for the full bias

rate range. This analysis allowed me to deconvolute the TLS dipole moment p from

the TLS spectral density P0 which cannot be done in the corresponding steady-state

measurement.
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Chapter 10

Conclusion

10.1 Summary of key results

10.1.1 Diameter correction method for extracting Qi

In chapter 3 I analyzed the transmission through a non-ideal resonant circuit

and it was found that the empirically measured resonance line shape asymmetry

can be modeled analytically. I also found that the conventional method used for

extracting Qi from an asymmetric resonance line shape (ϕRM) systematically over-

estimated Qi and proposed a novel method (DCM) for correctly extracting Qi from

an asymmetric resonance line shape.

10.1.2 ALD dielectric results

In chapter 7 I discussed my measurements of loss in several ALD grown di-

electrics by fabricating and measuring coplanar aluminum resonators on top of the

ALD grown films. By comparing low temperature microwave measurements to room

temperature SIMS measurements of the dielectrics, I was able to correlate excess

hydrogen impurities to low temperature microwave loss. I also found that the amor-

phous dielectrics (AlOx and LaAlOx) showed excess surface hydrogen impurities and

this was associated with greater surface loss than bulk loss. While the crystalline
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dielectric (BeO) showed excess carbon impurities at the surface it had a uniform

hydrogen impurity concentration and the data could be explained by a single bulk

loss tangent. This suggested that hydrogen impurities were the source of TLS loss

in BeO film.

I also described measurements in which I compared two ALD grown AlOx

films deposited in different labs with nominally the same precursors. The films

showed drastically different quantities of carbon impurities but similar hydrogen

impurity levels. The two films had similar loss, consistent with hydrogen based

TLSs. By comparing low temperature microwave loss measurements on AlOx to

SIMS impurity analysis of the films, I found a low field loss tangent (intrinsic loss

tangent) per hydrogen concentration of KH = 3× 10−24 cm3.

10.1.3 Biased resonator results

In Chapter 9, I described my work on electric field biased resonators. I fab-

ricated and measured a biased bridge superconducting resonator designed to bias

TLSs in the SiNx parallel-plate capacitors in and out of the resonator’s bandwidth.

By applying several DC biases, I was able to observe small (a few percent) repro-

ducible fluctuations in the TLS distribution but due to the wideband white distri-

bution of TLS asymmetry energies ∆ the loss did not vary monotonically with the

bias.

In contrast, if I swept the bias sufficiently rapidly I observed an increase in loss

tangent due to the biasing of unsaturated (ground state) TLSs into the resonator’s
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bandwidth and the biasing of excited TLSs out of the resonator’s bandwidth. When

measuring with a high (saturating) microwave field, I found that a sufficiently high

bias rate increased the loss tangent to the unsaturated intrinsic loss tangent of the

material. This result motivated work on a theory in which TLSs undergo Landau-

Zener transitions as they are biased across the resonator’s bandwidth. Using this

model I fit my bias rate loss tangent data and was able to extract an average dipole

moment of p = 7.9 Debye and a spectral spatial density of P0 = 4.9× 1043 J−1m−3

for the TLSs in an amorphous film of Si3N4.

10.2 Future work

10.2.1 Trilayer resonator fabrication

In chapter 7, I showed that in some cases dielectric loss can be limited by

surface impurities that are likely introduced when the surface is exposed to the

ambient atmosphere during processing. This suggests that the loss can be reduced by

adopting trilayer fabrication techniques where the dielectric is grown in situ with the

metal on top of it. Such an approach would be especially useful after optimizing the

dielectric growth to minimize impurities introduced during the growth process, as

discussed in chapter 7. Trilayer processes can also be useful for junction fabrication.

For example such trilayer fabrication has recently been developed to improve phase

qubits [91] and is currently being developed by B. Sarabi in Kevin Osborn’s group.

191



10.2.2 Biasing TLSs in coplanar resonator

As I discussed in Chapters 8 and 9, the ability to bias TLSs in a resonator

can reveal much about their properties and their energy distribution. A possible

extension of the bias experiments is to attempt TLS biasing for coplanar resonators

with interdigital capacitors as discussed in chapters 4 and 5. A similar capacitor

bridge design can be used but with IDCs instead of parallel-plate capacitors. This

will allow for biasing of TLSs in resonators fabricated on low-loss wafers which can

lead to a better understanding of loss mechanisms in such geometries. Work along

these lines is now being pursued by K. Voigt et al. [92].

10.2.3 Lasing and loss reduction with biased resonator

While not discussed in Chapters 8 and 9, one implication of the swept bias

analysis is that the TLSs biased across a resonator’s bandwidth can undergo pop-

ulation inversion, and in principle this might allow which can theoretically be used

for lasing. Attempts at measuring this phenomenon in the same device used for this

thesis are already underway by Y. Rosen in Kevin Osborn’s group.

A possible technique for taking advantage of TLS biasing to achieve is to fab-

ricate a resonator with multiple modes that share the same parallel-plate capacitors.

This would allow TLSs to be excited in one resonance mode and then biased into

another resonance mode where they can be measured through lasing. A variation

on this would be to have three modes in total: Two side modes excited with high

microwave power to excite TLSs, and a middle mode for the TLSs to emit into by
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stimulated emission (lase). The reason for two side modes is to allow TLSs with a

dipole in one direction to be excited by one side mode and TLSs with a dipole in

the other direction to be excited by the other side mode.

If this device with multiple modes is used, in addition to lasing, it can also be

used to reduce the loss tangent of a material at low microwave fields. The idea is

to continually saturate TLSs by applying power at the side modes and then biasing

them into the central mode which is being probed with single photon energies in the

unsaturated regime.

10.3 Concluding remarks

This field has progressed so much in the brief six years that I have been for-

tunate to observe it. If you had asked me six years ago what I thought the first

quantum computer (as determined by a reasonable person) would look like, I would

have said a bunch of atoms with lasers everywhere. Today I believe it will be a su-

perconducting circuit at the bottom of a dilution refrigerator. Part of that of course

was my naivety at the time, but much of it is to the credit of the accomplishments of

the superconducting quantum computing community in such a short time period. If

we continue the two pronged approach of improving device performance empirically

while not forgetting to hone a better understanding of decoherence mechanisms, I

have little doubt that a quantum computer is achievable within my lifetime. Actu-

ally I think (also hope) my lifetime is a very conservative estimate, but it seems like

an appropriate timescale to reference.
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