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    Some aspects of velocity shear stabilization of magnetized plasma instabilities are 

considered. In the first part, steady externally forced flow shears are considered. In 

the second part, resonantly excited oscillating flow shears are considered. 

    The stabilizing effect of steady forced velocity shear on the ideal interchange 

instability is studied in linear and nonlinear regimes, with a 2D dissipative 

magnetohydrodynamic (MHD) code.  With increasing flow shear V’, the linearly 

unstable band in wavenumber-space shrinks so that the peak growth results for modes 

that correspond to intermediate wavenumbers. In the nonlinear turbulent state, the 

convection cells are roughly circular on the scale of the density gradient.   Unstable 

modes are almost completely stabilized, with the density profile reverting to laminar, 

when V’ is a few times the classic interchange growth rate. The simulations are 

compared with measurements of magnetic fluctuations from the Maryland 

Centrifugal Experiment.   The spectral data, taken in the plasma edge, are in general 



  

agreement with data obtained in higher viscosity simulations.   Finally, concomitant 

Kelvin-Helmholtz instabilities in the system are also examined.    

    Geodesic acoustic modes (GAMs) are axisymmetric electrostatic poloidal 

oscillations of plasma in tokamaks. It has been proposed to drive GAMs resonantly 

by external drivers, thus setting up velocity shears to suppress turbulence.  Here, we 

study enhanced damping of GAMs from (1) phase mixing of oscillations and (2) 

nonlinear detuning of the resonance.   It is well-known that phase mixing of Alfven 

waves propagating in inhomogeneous media results in enhanced damping.  The 

enhancement goes as the 1/3 power of the dissipation.   We study this phenomenon 

for GAMs in tokamaks with temperature profiles.   Our analysis is verified by 

numerical simulation.  In addition, the system of nonlinear GAM equations is shown 

to resemble the Duffing oscillator. Resonant amplification is shown to be suppressed 

nonlinearly. The results are applied to the proposed GAM excitation experiment on 

the DIII-D tokamak.  
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Chapter 1: Introduction and Overview 

 

1.1 Introduction 

    The stabilizing effect of velocity shear on MHD instabilities has been well 

established. Shear flow can suppress linearly growing instabilities, and can distort 

convective cells nonlinearly and suppress turbulence. It has been shown that shear 

flow can stabilize both ideal interchange instabilities and drift instabilities. 

Experimental observations of magnetized plasmas have also shown the stabilization 

effect of velocity shear. In general, the stabilization effect is significant when 'V γ> , 

where 'V  is the gradient in the shear flow, i.e., shear strength, and γ  is the growth 

rate of the instability in question. 

    This dissertation addresses topics related to the characteristics of turbulence in the 

presence of velocity shear and to the efficacy of velocity shear stabilization. The 

topics are motivated by two separate experimental situations, namely, the Maryland 

Centrifugal Experiment (MCX) at the University of Maryland, and an experiment 

proposed for the DIII-D tokamak by Hallatschek and McKee. As such, the 

dissertation is broadly divided into two parts, corresponding to the experimental 

situation. 

    In the first part, we study the effects of an externally forced shear flow on 

macroscopic interchange instabilities, motivated by the MCX. The MCX has shown 

significant stabilization of interchange modes due to flow shear. The experimental 
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setup resembles a magnetic mirror configuration, namely, a long solenoidal magnetic 

field with axisymmetric mirror end fields. The plasma is rotated azimuthally by a 

radially applied electric field [1]. Such a system is well-known to be unstable to 

interchange modes. However, the velocity shear in the azimuthal flow is thought to 

stabilize the ideal interchange mode in the system. Although the flow shear in MCX 

could be strong enough to provide significant stabilization, the stabilizing effect is not 

necessarily complete: there is residual turbulence, accounting for a significant part of 

particle and heat transport in the quasi-steady state.   This motivates us to conduct a 

broad study of the strength and characteristics of the residual turbulence in the 

presence of applied shear. In particular, we focus on the effect of increasing shear 

flow on the wavenumber spectrum of interchange modes, and its effect on the 

residual turbulence of partially stabilized interchange instabilities. We apply our 

findings by comparing our corresponding simulation results with the observed 

magnetic fluctuations in MCX [2,3].    In addition, the presence of velocity shear can 

itself lead to Kelvin-Helmholtz (KH) instabilities [4]. In our study, we also take into 

account the destabilizing tendencies of the KH instabilities. 

    In the second part of the dissertation, we study some feasibility aspects of setting 

up a time-varying velocity shear in tokamaks to achieve turbulence reduction. This 

work is motivated by a recently proposed experiment on the DIII-D tokamak. The 

idea is to resonantly excite Geodesic Acoustic Modes (GAMs) in the tokamak [5], so 

that the oscillating flow shear can stabilize turbulence. The GAM is an ideal MHD 

normal mode of tokamak plasma, constituting an axisymmetric poloidal oscillation of 

flux tubes with well-defined frequency. The frequency of GAM oscillations is known 
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to be ~
G s

c Rω , where 
s

c  is the sound speed of the plasma and R  is the major 

radius of the tokamak. GAMs have been experimentally observed in tokamaks [6-8]. 

The proposed experiment will resonantly excite GAMs with externally pulsed 

magnetic field coils [5]. To have a significant stabilizing effect, the strength of flow 

shear should be comparable to the growth rate of the instability, i.e., ' ~
m

V u x γ∆ > , 

where 
m

u  and x∆  are, respectively, the maximum amplitude of the poloidal flow at 

the resonating flux surfaces, and the spatial spread of the locally driven GAMs in the 

radial direction. This gives an estimation of the amplitude of poloidal oscillation 

required to stabilize the plasma instabilities. The power requirement for driving 

GAMs depends on the damping rate of the mode. In this dissertation, we study two 

particular aspects of the resonant driving that may impact power requirements; 

namely, we study the enhanced damping of GAMs from phase mixing between 

various magnetic surfaces, and we study the detuning of resonance from nonlinear 

effects.  The effect of phase mixing on waves in inhomogeneous media has been 

studied for Alfven waves by Heyvaerts and Priest [9]. We extend this idea to GAMs, 

since the radial temperature gradient in a tokamak also leads to a similar phase 

mixing effect for driven GAMs. We also show that nonlinear detuning of GAMs in 

tokamaks is highly similar to nonlinear detuning in the driven Duffing oscillator. We 

then consider the experimental parameters of the DIII-D tokamak as an example to 

evaluate the power dissipation by collisional and phase mixed damping, and compare 

our results with Hallatschek and McKee’s estimates [5]. We also compare the 

strength of nonlinear terms to the damping terms, for the experimental conditions. 
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1.2 Previous work 

    Theoretical analysis of the effects of flow shear on ideal interchange modes in 

ordinary fluids was first presented by Kuo (1963) [10]. The stabilization effect of 

flow shear in plasmas was first experimentally demonstrated by Taylor et al (1989) 

[11], who applied a radial electric field in the tokamak edge, which resulted in a 

poloidal rotation and a sharp transport barrier formed at the plasma edge. The edge 

electric field profiles inferred from the poloidal rotation were compared with that in 

the transport barriers for edge plasmas in JFT-2M tokamak [12]. The highly localized 

poloidal rotation profile in the edge plasma was also observed in the DIII-D tokamak 

[13].  The suppression effects of radial electric field on turbulence and on the 

transition to better confinement were examined theoretically by Shaing et al (1990) 

[14]. Linear theory also indicated that flow shear would stabilize drift 

microturbulence and resistive g-modes [15]. Flow shear was shown to suppress 

turbulence in tokamaks from distortion of convection cells [16], to stabilize the 

nonlinear Rayleigh-Taylor instability [17], and to stabilize drift microinstabilities in 

tokamaks [18]. The above results and other work have been summarized by Groebner 

(1993) [19] and Burell (1997) [20] in review papers. Numerical simulations have 

shown that flow shear can also stabilize kink and sausage modes in a Z pinch [21]. It 

was also shown analytically and numerically that flute interchanges in centrifugally 

confined plasmas can be stabilized with velocity shear [22]. 

    While resonant excitation of GAMs is a recent proposal, the existence of stable 

geodesic acoustic normal modes in tokamak plasmas has been well-known and shown 

analytically in both collisional [23,24] and collisionless [25-28] systems. The GAM 
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frequency was shown to be sonic, or ~
G

Tω , where ( )T T ψ=  is the temperature 

of plasma at the flux surface ψ . GAMs have also been identified experimentally in 

tokamaks [6-8]. Excitation of GAMs by resonant magnetic field coils and by resonant 

heating have been demonstrated numerically [29]. The effect of resonantly excited 

GAMs on resistive ballooning turbulence at the edge of a tokamak discharge was 

recently simulated by Hallatschek and McKee [5].  

 

1.3 Overview of the contents 

    An overview of the organization and contents of this dissertation is as follows. In 

the first part, we study the effects of externally forced flow shear on interchange 

modes. This is done in Chapter 2, where we present a detailed investigation of the 

effect of a forced velocity shear on interchange modes, in both linear and nonlinear 

regimes, using numerical simulations with a dissipative 2D MHD fluid code. A 

description of the equations used is given in Sec. 2.2. A summary of the results of 

linear theory is given in Sec. 2.3. We then focus on the effect of increasing flow shear 

on wavenumber spectra of linearly unstable modes (Sec. 2.4.2), the residual 

turbulence, and particle transport (Sec. 2.4.3). We compare the results of the 

nonlinear simulation and the residual turbulence with the spectra of magnetic 

fluctuations observed in the MCX (Sec. 2.4.3.5). We note that, since we are dealing 

with macroscopic instabilities, the spatial variation of flow shear should be taken into 

account. The latter can introduce Kelvin Helmholtz (KH) instabilities. Therefore, we 

give a derivation of a generalized version of the Rayleigh inflexion criterion for KH 
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instabilities in Sec. 2.5, and follow up with simulation results to show that a complete 

stabilization of interchange modes is possible only if the Rayleigh criterion is 

simultaneously satisfied.    

    In the second part, we consider aspects of resonantly driving a time varying 

velocity shear in magnetized plasma to stabilize turbulence. This work is presented in 

Chapter 3 to Chapter 6. The two main topics are to study the damping of GAMs from 

phase mixing, and to study the effects of nonlinearity on the GAM resonance.  We 

begin with an introduction to GAMs in Chapter 3, where we describe and derive the 

nonlinear equations for the GAMs. In Chapter 4, we focus on the linear GAM system, 

and study the effect of phase mixing on the power dissipation in the undriven and 

driven problems. For the undriven (homogeneous) problem, we solve the equation 

approximately by an expansion in the viscous dissipative coefficient, and we find that 

the modal decay is faster than exponential (in time), with the effective time constant 

1/3~ν − , where ν  is the viscosity coefficient.  For the driven problem, we present an 

asymptotic analysis of the system of equations, and verify the results with simulation. 

We show that the width of resonance is broader than that predicted without the phase 

mixing effect. The resonant peak is correspondingly smaller. Then in Chapter 5, we 

study the nonlinear GAM equations with a sinusoidal driving term. We expand the 

equations in order of the small driving amplitude for driving frequencies far and close 

to resonance. We then verify the results, in particular, the frequency spectra, with a 

nonlinear simulation. We find that the nonlinear terms can suppress the resonance in 

the sense that the magnification of the driver amplitude decreases when the driving 

amplitude increases, making it harder to get a greater output amplitude at steady state. 
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In Chapter 6, we evaluate the power requirements caused by collisional damping 

from magnetic pumping and dissipation by phase mixing in DIII- tokamak, at the 

edge and core, respectively. We find that the power requirements are favorable in 

both cases. We also estimate the effect of the nonlinear terms with the experimental 

parameters, and show that nonlinear effects are small compared with the dissipative 

terms. We then conclude the second part of dissertation in the same chapter.   

    Finally, we summarize the work in this dissertation in Chapter 7.   

    We include three supplementary examples in the Appendices related to the second 

part of the dissertation. In Appendix A, we outline a derivation of the solution of 

Alfven waves propagating in an inhomogeneous medium, along with the 

corresponding simulation results. This calculation is provided as a simple example 

which illustrates the enhanced dissipative effect caused by phase mixing. In Appendix 

B, we discuss how resonant driving of magnetosonic waves could be suppressed by 

nonlinearities in the system. An asymptotic analysis and a numerical simulation are 

described.  In Appendix C, we present a brief review of the Duffing equation as a 

reference and as comparison with the nonlinear GAM system. 
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Chapter 2: Residual Turbulence from Velocity Shear 
Stabilized Interchange instabilities 
 

 

2.1 Introduction 

    It is well established that velocity shear can stabilize electrostatic magnetized 

plasma instabilities. [19,20,30]  The shear in the flow distorts growing convective 

eddies of the unstable mode and, if the shearing rate, V’, exceeds the growth rate, the 

mode can be stabilized.   This stabilization has been shown for both the ideal 

interchange instability and drift-type instabilities. [14-16,30,31] The former mode has 

a robust growth rate and spans wavelengths from macroscopic to gyro-radius scale.   

Drift modes generally have robust growth rates at short, gyro-scale wavelengths.   

Considerable experimental data from magnetized flowing plasmas is consistent with 

velocity shear stabilization of turbulence.[19,20].
 
 

    In this chapter, we examine the effect of velocity shear on the macroscopic, broad 

bandwidth, ideal interchange instability, with particular attention to the effect of 

increasing velocity shear on the unstable wave number spectrum and to the effect of 

increasing shear on residual turbulence and transport.  We examine the spectra of 

both linear instabilities under velocity shear, and the wavenumber spectra for fully 

developed turbulence in an unstable system in the presence of applied velocity shear.  

We compare theoretical turbulent spectra with experimental results from the 
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Maryland Centrifugal Experiment [1], an experiment that studied the effect of 

velocity shear on ideal interchange modes.   

    For the macroscopic interchange mode at long wavelengths, the velocity shear 

cannot be considered as approximately constant across the mode width (as can be 

done for the short wavelength highly localized drift modes) since the broadly spread 

mode also samples varying velocity shear.   In other words, the curvature in the flow 

also needs to be taken into account. [32-34]   As is well known, flow curvature 

precipitates the Kelvin-Helmholtz instability.   Thus, in this chapter, we also study 

how the destabilizing influence of the KH instability on the interchange mode, from 

flow curvature, competes with the stabilizing influence of the flow shear. 

    In the rest of this section, we provide a brief description of previous work and a 

summary of results from this present chapter. Ideal interchange modes can be 

stabilized by transverse magnetic fields or magnetic shear [32].   Velocity shear 

provides added stabilization and, in fact, can stabilize ideal interchanges even in the 

absence of transverse magnetic stabilization.     The stabilization in the latter case is 

incremental in that there is residual turbulence for a given amount of velocity shear. 

[18] Here we focus on the character of this residual turbulence.  The effect of velocity 

shear on ideal interchange modes without magnetic stabilization was studied in the 

ordinary fluid case by Kuo [10].  Flute instability theory for strongly magnetized 

plasma in slab geometry has been studied analytically and numerically. [18,17]   

Velocity shear has been shown to stabilize ideal interchange sausage modes and kink 

modes in a Z pinch, with mode suppression increasing with the Mach number of the 

flow [21].   Velocity shear stabilization has also been extended to the case where the 
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effective gravitational force arises from centrifugal forces of plasma rotation; in 

particular, it has been shown numerically that centrifugally confined plasma in a 

mirror field system is stable to flutes, at supersonic rotation with shear in angular 

frequency. [22] The latter study was in agreement with the rotating mirror experiment 

MCX, which showed suppression of expected flute interchanges for rotation Mach 

numbers in the range 1.5 to 2.5. [1,35,36].  

   The present chapter investigates the linear and nonlinear spectra of interchange 

modes, given varying amounts of flow shear. It is important to note that, for an 

ordinary Rayleigh-Taylor equilibrium configuration with a cross-field shear flow, the 

linearized operator of the system is not of Sturm-Liouville form and, thus, the 

corresponding eigenmodes obtained are not guaranteed to form a complete set 

[15,18].  Therefore, in this chapter, linear growth wavenumber spectra are obtained 

by studying growing randomly seeded initial values.  Nonlinear wavenumber spectra 

are studied similarly in time-averaged mode.   

   In our study of linear spectra, we recover the well-known result that the linear 

growth rate in the absence of flow shear increases monotonically with the transverse 

wavenumber (in the ideal range of instability) [32].  As the ambient flow shear is 

increased, we find that this brings down the growth rate overall, but more effectively 

for modes of either short wavelengths or of long wavelengths, thus leaving the growth 

rates to peak at midrange wavenumbers which correspond to roughly circular 

convection cells in our simulations.   Spectra are similarly studied in the nonlinear 

regime, by time-averaging over the turbulence in the nonlinear phase of the 

simulation.   We find that the shape of the mode spectrum remains roughly the same 
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as in the linear regime; in particular, the wavelength of the dominant mode in the 

nonlinear averaged steady state is approximately the same as that of the mode with 

the maximum linear growth rate, for modest velocity shear. 

    The foregoing spectral analysis is done for high Reynolds number turbulence.   We 

also study the system for lower Reynolds numbers.   We find that increasing viscosity 

has a stronger stabilization effect on short wavelength modes, compared to the longer 

ones, which has the effect of shifting the peak of linear growth rates to low mode 

numbers, (
y

m  ~ 1 or 2), that is, to cells which are elongated in the y-direction.  

Experimental observation and analysis from MCX shows the presence of strong 

nonlinear interaction between the 0mφ =  and 2mφ =  interchange modes [2,3], where 

mφ  is the azimuthal mode number.  For MCX, 2mφ =  corresponds to highly 

elongated cells in the azimuthal direction.   Thus, this observation is consistent with 

our high viscosity simulations.  The MCX observations were made in the outer 

periphery of the plasma, where one may expect significant damping from neutrals.  

Thus, the viscous effect of plasma in MCX is important in edge interchange modes. 

    Because the system is not Sturm-Liouville in nature, velocity shear stabilization 

does not in general lead to sharp transitions between stable and unstable regions in 

parameter space.   In particular, the possibility of residual turbulence has to be 

addressed for a given shear.  Thus, in this chapter, we examine the behavior of the 

residual nonlinear fluctuations as a function of increasing V’ shear.   We measure the 

size of the residual turbulence and the corresponding degree of profile flattening, in 

quasi-steady state, for fixed V’ shear.  The numerical data shows that fluctuations are 

reduced as flow shear increases and the density profile is restored to laminar state as 
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the Mach number of the flow exceeds about 2, in agreement with previous work.   In 

addition, the degree of turbulence at different flow shears is evaluated quantitatively 

by comparing the total particle flux with particle transport from classical diffusion 

[32,37].  We find that the transport is dominated by turbulence at low shear but 

reduces to classical transport levels at sufficiently large shear. 

    In the next section, we first describe the MHD equations and the ordering used, and 

describe the equilibrium. In Sec. 2.3, we give a summary of linear Rayleigh-Taylor 

theory, and a derivation of the stability criterion for the KH instability with non-

constant density profile.   In Sec. 2.4.1, we describe the equilibrium and parameters 

for our 2D MHD simulations. The linear spectrum is obtained in Sec. 2.4.2, and 

nonlinear analysis, including fluctuation measurements, profile flattening, evaluation 

of turbulent flux, effect of viscosity on nonlinear spectrum, and comparison with the 

magnetic fluctuation measurements in MCX, is given in Sec. 2.4.3.  In Sec. 2.5, we 

discuss the KH instabilities and analyze the effect of Rayleigh criterion (with density 

profile) on an RT unstable configuration with flow shear, numerically. We conclude 

in Sec. 2.6. 

   

2.2 Equations: 

 

2.2.1 2D MHD Equations 

    We consider a strongly magnetized plasma in rectangular geometry with magnetic 

field ˆ( , )B B x y z=
�

, plasma density ( , )n x y , and transverse flow ( , )u x y⊥

�
 in the x-y 
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plane. The system is 2D, with axial symmetry / 0z∂ ∂ =  assumed. Isothermal 

conditions are assumed. A gravitational field ˆg gx= −
�

 is allowed. The axial flow, 
z

u , 

is assumed to be zero. The governing equations are:  

 ( )
n

nu S
t

⊥ ⊥

∂
+ ∇ ⋅ =

∂

�
, (2.1) 

2
2 ( )

8

z
o

u B
n u u nT ng nu F

t
ν

π
⊥

⊥ ⊥ ⊥ ⊥ ⊥

 ∂ 
+ ⋅∇ = −∇ + + + ∇ +  

∂   

�
�� � � �

, (2.2) 

 ( )
2

2

4

z
z z

B c
u B B

t

η

π
⊥ ⊥ ⊥

∂
+ ∇ ⋅ = ∇

∂

�
. (2.3) 

Here ν , η  are the viscosity and conductivity respectively, particle mass 1M = , S  is 

a particle source, and F
�

 is an  external force term which is used to introduce a flow 

shear in the system. We note that B⊥

�
 is not excited in this 2D system, if initially zero, 

as it only appears as a homogeneous term in Faraday’s Law, 

( ) ( )2 24
t
B B u uB c Bη π⊥ ⊥ ⊥ ⊥ ⊥∂ = ⋅∇ − ∇ ⋅ + ∇
� � � �� �

. Thus equations (2.1)-(2.3) form a closed 

set with variables { n ,
x

u ,
y

u ,
z

B }. 

    We also note that, although the introduction of F
�

 in (2.2) is phenomenological, 

there is correspondence with the experiments. For example, in the MCX experiment 

(which we will discuss in Sec. 2.4.3), the external electric field is perpendicular to the 

magnetic field, and the corresponding cross-field “leakage” current together with the 

magnetic field gives a j B×
��

 force which maintains the rotation and shear flow of the 

plasma.  
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2.2.2 Ordering and Reduced Equations 

    To simplify the analysis in the linear regime in the next section, it will be more 

convenient to have a reduced closed set from (2.1) - (2.3), with suitable orderings. 

Consider the ordering, 2~
x

ngL nT B<<  and 2 2| ( ) |~nu F Bν ⊥∇ << ∇
�

. Then, to 

lowest order, (2.2) implies 0
z

B⊥∇ = , and then (2.3) becomes:  

 t z

z

B
u

B
⊥ ⊥

∂
= ∇ ⋅

�
, (2.4) 

which implies 0u⊥ ⊥∇ ⋅ =
�

for strong 
z

B . From the latter, we define the stream 

function 

 ˆu z ϕ⊥ = ×∇
�

. (2.5) 

As a result, (2.1) - (2.3) are reduced to: 

 
n

u n S
t

⊥ ⊥

∂
+ ⋅∇ =

∂

�
, (2.6) 

 ˆ ˆ
du

z n z n g
dt

⊥
⊥ ⊥

 
⋅∇ × = ⋅∇ × 

 

�
�

. (2.7) 

Here (2.6) and (2.7) form a reduced closed set for { n , ϕ }. 

 

2.2.3 Equilibrium 

    In the full set, equations (2.1) - (2.3), suppose S  depends on x only. This creates 

equilibrium profiles with only x dependence to balance dissipation. For given ( )S x , 

with  ˆg gx= −
�

, the equilibrium profiles ( )n x , ( )
x

u x , ( )
z

B x  are determined. Also, an 
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external force ˆ( )F F x y=
�

 is imposed to create a cross field flow shear in equilibrium. 

Then, the steady state system is: 

 ( ) ' ( )
x

nu S x=  (2.8) 

 2( 8 ) ' 0
o z

nT B ngπ+ + =  (2.9) 

 ( ) '' ( ) 0
y

nu F xν + =  (2.10) 

 ( )
2

' ''
4

x z z

c
u B B

η

π
=

�
. (2.11) 

    Here, the viscous term ( ) ''
x

nuν  is dropped in (2.9), as, from (2.8), ~
x x

nu SL  is 

proportional to ν , and so the viscous term is proportional to 2ν , which can be 

neglected. We note that S  and 
x

u  are ( )O η  and ~ ( )F O ν . Thus, 
x

u , S , and F  are 

small. Furthermore, with hard wall boundary conditions, (2.11) can be integrated 

once without an integration constant. Since 
y

nu  is completely determined by ( )F x  in 

(2.10), the system { n , B , 
x

u } is driven to a 1D equilibrium { ( )n x , ( )B x , ( )
x

u x } by 

( )S x . This system is schematically shown in FIG. 2.1. 

 

FIG. 2.1. Schematic description of equilibrium.  
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2.3 Summary of linear analysis 

    In this section, we provide a summary of well known results from linear theory. 

Introduce a perturbation ( ) exp[ ( )]A a x i ky tω= −� �  to the system {(2.6), (2.7)}, where 

A  can be n , ϕ . The resulting eigenvalue equation is 

 ( )2 2( )[( ') ' ] ( ') ' '
y y y

ku n nk k nu gk n kuω ϕ ϕ ϕ ϕ ω− − + = −� � � � . (2.12) 

This normal mode equation includes both Kelvin Helmholtz and Rayleigh Taylor 

physics. 

 

2.3.1 Rayleigh-Taylor instability 

    Suppose ( ) 0F x = , thus 0
y

u = . In this case (2.12) becomes  

 2 2 2( ') ' 'n nk gk nϕ ϕ ϕ ω− =� � � . (2.13) 

    To model the solutions of this eigenvalue equation at long wavelength, i.e., 

' '/n nϕ ϕ <<� , consider a sharp boundary density profile:  

 1 0

1

0,
0

0,

o
n x

n n n
n x

<
= > >

≥
. (2.14) 

Then the solution is  

 | |k xceϕ −=� , (2.15) 

for some normalization constant c, with eigenfrequency [32]
 
 

 2

1 0 1 0( ) ( )gk n n n nω = − − + . (2.16) 

This is unstable for 1 0n n> , with the growth rate | |ω  proportional to k . 
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    For ' '/n nϕ ϕ >>� � , the short wavelength limit, consider the Taylor-expanded 

density profile at the location of maximum '/n n . 

 2 2' (1 )
n n

n n x L L= − , (2.17) 

with 
n

L  the density scale length, such that  | ' |
n

L ϕ ϕ>> � � . Then " ' 'n nϕ ϕ>>� �  under 

this ordering and (2.13) can be written as  

 
2

2

2 2 2
'' 1 0n n

n

g L g L x
k

L
ϕ ϕ

ω ω

 
− + − = 
 

� � . (2.18) 

 The eigenfunctions of (2.18) can be written in terms of Hermite polynomials: 

 
2 22

( ),ox x

l l o
e H x xϕ −=�  (2.19) 

with the corresponding eigenvalues [38]  

 
( ) ( )

2

2 2
, 0,1,...

1 2 1 ( 1 2) ( ) 1 2

for ,
1 (2 1)

n
l

n

n
n

n

g L
l

l l kL l

g L
kL l

l kL

ω
−

= =
 + + + + − +
 

−
≈ >>

+ +

 (2.20) 

where ( )
1/2

2 2 2(2 1) 4 (2 1) 2
o n

x l k L l k= + + − + , which is also the scale length of 

the eigenfunctions. The condition 
o n

x L<<  is required for consistency, which has the 

implication that only eigenfunctions with 
n

l kL<<  are allowed in the expression of 

o
x . From (2.20), for 1

n
kL >> , i.e., eigenmodes elongated in x direction, we have  

 2 /
n

g Lω ≈ − , (2.21) 

which is purely growing for density gradient in the opposite direction to gravity. The 

growth rate is almost independent of k . 
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2.3.2 Kelvin-Helmholtz instability, Rayleigh inflexion criterion 

    We now consider 0g = . Multiply both sides of (2.12) with *ϕ� , the conjugate of 

ϕ� , and integrate over x, assuming hard wall and either free slip or no slip boundary 

conditions at x = 0 and 
x

L , the length of the box along x. This results in 

 ( )
2 *

2 2 2

20 0

( ') ' | | ( )
| ' | | |

| |

x xL L
y y

y

k nu ku
n k dx dx

ku

ϕ ω
ϕ ϕ

ω

−
+ =

−∫ ∫
�

� � . (2.22) 

From (2.22),   

 

2

*

20

( ') ' | |
Im( ) 0

| |

xL
y

y

nu
k dx

ku

ϕ
ω

ω
=

−∫
�

. (2.23) 

Therefore, if  

 ( ') ' 0, 0
y x

nu x L≠ ≤ ≤ , (2.24) 

the frequency must be real and the system is stable. If a constant density profile is 

used, (2.24) becomes '' 0
y

u ≠  for 0
x

x L≤ ≤ , which is the well-known Rayleigh 

inflexion criterion [4,32]. Thus (2.24) is a generalized version of the latter for system 

with non-constant density profile.  

 

2.4 Rayleigh-Taylor instabilities with flow shear 

    In what follows, the effect of velocity shear on Rayleigh-Taylor unstable modes 

will be analyzed in detail by nonlinear numerical simulation. In general, sheared flow 

can stabilize RT modes, but an introduction of flow shear to the system may be KH 

unstable if (2.24) is not satisfied. Moreover, the condition is more complicated since 
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(2.24) involves the density profile and there is gravity in the system, and thus the KH 

and RT physics is coupled. 

 

2.4.1 Equilibrium profiles and examination of KH stability 

criterion 

    The 2D code used in our simulation was developed by Guzdar et al [39]. The 

equations used are  (2.1) - (2.3). The system is a 2D box with 0
x

x L≤ ≤ , 0
y

y L≤ ≤ . 

The length is normalized to 
x

L , and the speed is normalized to the Alfven speed 
A

v  

based on some initial reference 
o

B  and 
o

n . A resolution of 31 and 101 grid points in 

the x and y directions, respectively, is employed. A time step of 0.002 for each 

iteration is used. The boundary conditions at {0, }
x

x L=  are hard conducting wall for 

density and 
z

B  (symmetric), and no slip for 
x

u and 
y

u  (antisymmetric). For 

{0, }
y

y L= , the boundary conditions are periodic for all the variables. In all the 

simulations, the parameters used are 1
x

L = , 5
y

L =  (i.e., a box elongated in y 

direction),  1
A

v = , 0.3
o

T = ,  32 10
x

ν −= × , 42 10yν −= × , 32 10
x

η −= × , 42 10yη −= × . 

The gravity parameter 0.1g =  and points in negative x direction. The particle source 

is made up of two Gaussians, one positive and one negative peaked near both x 

boundaries, as follows: 

 
2 2( 0.1) ( 0.9)( ) ( )a x a x

x
S x b e eη − − − −= − + , (2.25) 
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where the parameters a and b are used to adjust the strength and width of the source 

(4 and 60, respectively, for our simulations). Notice that the spatial average of ( )S x is 

zero so that no net particles are introduced or removed from the system, and the 

source strength scales as the resistivity, that is to say the source strength depends on 

the resistive diffusion, which is weak. An initial magnetic field 

1 0.2 tanh[10( 0.5)]
z

B x= − −  and density 2 / (8 )
o z o

n n B Tπ= − are used, after which the 

system is allowed to come to resistive equilibrium given the sources. The relaxed 

profiles are shown in FIG. 2.2a-b. Notice that the constant 
o

n  can be used to adjust 

the minimum density in equilibrium, and also to vary the 2( / 8 )nT Bβ π=  value of the 

system; in FIG. 2.2a 1.5
o

n =  is used as an example.  

 

                                  FIG. 2.2a                                                                              FIG. 2.2b 
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                                          FIG. 2.2c  

FIG. 2.2a, b. The 1D equilibrium profiles. Note that the density gradient is opposite to gravity, thus 

unstable to RT instability. FIG. 2.2c.  Cross field flow shear profiles for different strengths 

characterized by coefficient A in (2.26).  

    A parabolic flow shear profile is produced by setting ( ) 2
x

F x Aν= , so that, from 

(2.10),  

 (1 )
y

nu Ax x= − . (2.26) 

Here A is the parameter which characterizes the strength of the shear (FIG. 2.2c).  

    From the Rayleigh inflexion theorem, a parabolic flow shear with constant density 

profile, and having '' 0
y

u ≠  everywhere along x is ideally KH stable. (There could 

exist a viscous KH, with a much smaller growth rate, of order 10
-3

, but this is not 

relevant here). However, it does not follow that the same profile could satisfy (2.24) 

for a system with density variation. Moreover, (2.24) is derived for the system 

without gravity; thus, for 0g ≠ , satisfying the condition (2.24) may not guarantee 

stability. Later, it will be seen that for large flow shear, even if 0g ≠ , (2.24) is still a 

good rule of thumb for a prediction of the stability of the system in the case that the 
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RT mode has been suppressed completely by velocity shear. For the parabolic profile 

(2.26), we calculate that 

 

2

2

2

min

( ') ' ( ) '' ( ) ' '/ ''/ ( '/ )

1
2 [ (1 2 ) ' (1 )( ' / '')]

1
2 (1 2 ) ' (1 )( ' / '')

y y y y y
nu nu nu n n nu n n nu n n

A x n x x n n n
n

A x n x x n n n
n

= − − +

 
= − + − − + − − 

 

 
≤ − + − − + − − 

 

. (2.27) 

   If the initial average density 
o

n  is increased, say from 1n  to 1n n+ ∆ , the minimum 

density at equilibrium minn  will also increase while 'n  doesn’t change much if n∆  is 

only a fraction of n  (see FIG. 2.3a). Thus it is possible to make ( ') '
y

nu  negative 

everywhere by increasing 
o

n , for all shear parameters A used herein (see FIG. 2.3b).  

 

                                        FIG. 2.3a                                                                FIG. 2.3b 

FIG. 2.3a. The density profile can be shifted vertically without largely altering 'n  by adjusting the 

initial average 
o

n . FIG. 2.3b. For a parabolic shear flow, the generalized Rayleigh criterion is not 

guaranteed to be satisfied; the criterion can be satisfied by “upward shifting” the whole density profile.  

    To stay away from KH instability and investigate the effect of flow shear on the 

RT only, 1.5
o

n =  is used in the rest of this main section of simulation and analysis, in 
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both linear and nonlinear regimes. Lower values of 
o

n , for when the KH criterion is 

marginal ( ~ 0.9
o

n  in FIG. 2.3b), will be investigated in Sec. 2.5. 

 

2.4.2 RT instability stabilized by velocity shear in the linear 

regime 

    We first investigate in detail the effect of velocity shear on the linear mode 

spectrum. For the 1D equilibrium shown in FIG. 2.2a-c, where 1.5
o

n = and the KH 

stability criterion is well satisfied, and for a fixed shear parameter A, a perturbation in 

density 610 cos(2 / 5)yn m yπ−=� , where 
y

m  is an integer, is added into the system at 

0t = . After some transients, the system is found to grow exponentially, until the 

amplitude of the perturbation is increased by ~10
4
 times, at which point it is seen to 

go nonlinear. The growth rate 
RT

γ  is measured in the linear regime, and plotted for a 

range of 
y

m , the harmonics along y, where 2 / 5
y y

k mπ= . ( )
RT y

mγ  is plotted for 

various shear parameters A and shown in FIG. 2.4. 
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FIG. 2.4. Rayleigh Taylor unstable growth rate in linear regime, as a function of  
y

k , for parabolic 

flow shear of various strength parameter A. 

    From FIG. 2.4, we first notice that when there is no shear ( 0A = ), the growth rate 

increases with 
y

m  but flattens out eventually. This is consistent with (2.16) and (2.20) 

in that the growth rate goes like k  for small k , but becomes independent of k  

when 1
x

kL >> . Secondly, we observed that an increase in flow shear lowers the 

growth rate for any one particular harmonic. For weak shear ( 0 1A≤ ≤ ), higher 

harmonics are stabilized more effectively than their lower counterparts, i.e., modes of 

shorter wavelength along y are stabilized before longer ones as A increases.  As an 

explanation, we note that viscosity can suppress the growth rate (with or without flow 

shear) and the viscosity damping rate ~ k
2
ν, which is proportional to 2

ym . Thus the 

growth rate ( )
y

mγ  for A = 0 is expected to drop and the curve rolls off when my is 

high enough such that 2 ~ 'yk g n nν .  This corresponds to , ~ 28
y critical

m  in our case 
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(not shown in FIG. 2.4).  Modes with smaller growth rates are stabilized 

preferentially by flow shear first; thus, modes with 1
n

kL <<  or 2 ~ 'k g n nν  [40] 

will be preferentially stabilized compared with the modes between these extremes. 

We note that complete stabilization is attained for all k  for 3A ≥ . From the 

spectrum, for 1A ≥  the growth rates are seen to peak at about 6
y

m =  or 7 . This 

corresponds to ~ 15
y n

k L .  Also notice that the system is only linearly unstable in the 

region where 'n  is opposite to g
�

, i.e., from 0.2x =  to 0.8  in FIG. 2.2a. The 

approximate length scale of this unstable region is ~ 1.6
eff

L .   

 

2.4.3 RT instability with velocity shear in the nonlinear 

regime 

    We now explore the nonlinear regime. For a fixed shear parameter A, a random 

initial perturbation in density is added and the system is allowed to evolve with time 

until the nonlinear terms become important. The system reaches a turbulent steady 

state, as the turbulent transport, mitigated by viscosity and resistivity, enhances the 

particle flux needed to attain the average steady state, given the sources ( )S x . In 

general, a flow shear will suppress the RT turbulence. For example, consider a 

density profile along the x direction against gravity in FIG. 2.5a, which is perturbed in 

the presence of different shear profiles and the corresponding steady states are shown. 

(No shear in FIG. 2.5b, medium shear in FIG. 2.5c, strong shear in FIG. 2.5d.) While 

the profile is ruptured completely by turbulence when no shear is applied, it is 



 

 26 

 

maintained partially (with residual fluctuations) in case of medium shear, and 

complete stabilization is obtained at strong shear.  FIG 2.6a-d are other illustrations of 

the stabilization effect, showing the time evolution of the amplitude of every mode (in 

the y-direction) as a function of time, with A as parameter, i.e., time evolution of the 

Fourier spectrum in the y-direction (at mid-x line). In nonlinear steady state, the 

dominant mode is 6
y

m = , which is consistent with the linear spectrum shown in the 

previous section. Moreover, the amplitude decreases as A increases. For 4A =  (or 

above), the amplitudes decay (from the initial perturbation), RT modes are 

completely stabilized. In a later sub-section, we will also discuss how the nonlinear 

spectrum is affected by viscosity.      

 

                                       FIG. 2.5a                                          

 

                                         FIG. 2.5b 
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                                         FIG. 2.5c                                                       

 

                                             FIG. 2.5d  

FIG. 2.5a. Laminar density contour plots when the system is unperturbed. FIG. 2.5b. Turbulent steady 

state of the system without shear; density profile is inverted to a new quasi-stable equilibrium. FIG. 

2.5c, a medium strength shear partially restores the initial profile, with residual fluctuations. FIG. 2.5d, 

RT convection is completely suppressed by strong flow shear with laminar profile recovered. 

 

                                     FIG. 2.6a                                                                     FIG. 2.6b 
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                                     FIG. 2.6c                                                                     FIG. 2.6d 

FIG. 2.6a-d Time evolution of the spectra along the y-direction with shear strength A as parameter in 

the nonlinear regime. The random perturbation in density is added at 0t = . Note that the amplitudes 

at steady state decrease as A is increased from 2. For 4A =  (FIG. 2.6d), the system is completely 

stabilized and the perturbation decreases with time. Also, the nonlinear spectrum peaks at 6
y

m = , 

which is the same as that of the linear one.  

    The effect of flow shear on the instabilities, turbulence, and saturated states, can 

then be measured in terms of the fluctuation in density at saturation, and in the degree 

of flattening of profiles. Also comparisons can be made between turbulent steady 

state profiles and the laminar profiles, and between the turbulent particle flux and the 

corresponding (laminar) classical particle flux (when the system is one-dimensional), 

at various levels of shear A. We describe these below.  

2.4.3.1 Fluctuation and degree of profile flattening 

    When the system reaches the nonlinear regime and becomes steady on average 

(i.e., saturated), the time evolution of density at the centre of the simulation box is 

measured and its temporal fluctuation about the average characterized by a standard 

deviation. In addition, the slope of the density profile is averaged over all simulation 

space and time, which characterizes the degree of flattening of the profile caused by 

the RT disruption. The effect of flow shear on the density fluctuation and the level of 

flattening (quantitatively expressed as standard deviation over time and space, and, 
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time and space average of density gradient, respectively) are shown as functions of 

shear strength A in FIG. 2.7 and FIG. 2.8.   

 

FIG. 2.7. Density fluctuation (at 0.5x = ) for different shear strengths. 

 

FIG. 2.8. Density gradient averaged over all space for different shear strengths. 

 

From FIG. 2.7 and FIG. 2.8, when there is weak or no shear flow, the average density 

gradient is negative and the fluctuation is small. This is because the density profile 

has collapsed due to the strong RT instability and has reached a marginally stable 

equilibrium, with average slope the same sign as gravity; the small fluctuation is due 

to the source term ( )S x  and the relatively weak residual convection. At strong shear 

(A ~ 4 to 5), the average density slope reaches a maximum and levels off as the 
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system is completely stabilized. The fluctuation is nearly zero because of the 

complete stabilization, with the system reverting to laminar conditions consistent with 

( )S x  and 1-D classical transport (as depicted in FIG. 2.2a). For shear in between, A ~ 

1 to 3, the density profile is partially restored, and the fluctuation is large and attains 

its maximum, since it is in between two stable configurations (i.e., a new average 

stable equilibrium after RT disruption near ~ 0A and complete flow shear 

stabilization for 4A > ). 

2.4.3.2 Comparison with laminar flow 

    The time averaged density profiles in x in steady state for different flow shears are 

plotted and compared with the laminar profile and shown in FIG. 2.9. Here the 

profiles are averaged over 40 Alfven times. This clearly illustrates the restoration of 

the configuration when A is increased from 0 (complete inversion of the density 

gradient) to 5 (reverting to laminar density). 
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FIG. 2.9. Comparison of steady state density profiles with laminar density at various shear strengths A. 

2.4.3.3 Comparison between turbulence flux and classical particle flux 

    The degree of turbulent transport in steady state can be quantified by measuring the 

total particle flux across the line / 2
x

x L=  (i.e., the 1D “plane” in our 2D box), and 

compared with the corresponding theoretical classical flux of laminar flow as if there 

were no turbulence. 

    In turbulent steady state, the system is almost static, as if it were laminar. Thus, 

with the ordering /
t x x

u L∂ << , from (2.2) and (2.3), to lowest order, we have 

 2( 8 ) 0
o z

nT B ngπ⊥∇ + − ≈
�

, (2.28) 

 ( )
2

2

4
z z

c
u B B

η

π
⊥ ⊥ ⊥∇ ⋅ ≈ ∇
�

, (2.29) 
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which resemble (2.9), (2.10) and (2.11), except (2.28) and (2.29) are describing a 

quasi-steady state. Integrating (2.29) once, and since in our system u⊥

�
and 

z
B⊥∇  are 

zero at boundary, we find  

 
2

4
z z

c
u B B

η

π
⊥ ⊥≈ ∇
�

. (2.30) 

Eliminate 
z

B⊥∇  in (2.28) with the expression (2.30),  

 
2

, 2
[ ( ) ]

classical o

z

c
u u nT ng

B

η
⊥ ⊥ ⊥= ≈ ∇ − +
� � �

, (2.31) 

which is the classical diffusive transport. Here a subscript is used to distinguish the 

classical flow from the actual measured flow. Thus, the particle flux resulting from 

classical diffusion across / 2( 1/ 2)
x

x L= = in steady state is given by 

 ( ) 2 2

, , 1/20 01/2
( ' ) /

y yL L

classic x x classic o z
xx

nu dy n c n T ng B dyη
==

 Γ = ≈ − + ∫ ∫ . (2.32) 

On the other hand, the total flux in steady state is evaluated as 

 ( ),
0 1/2

yL

total x x
x

nu dy
=

Γ = ∫ . (2.33) 

    Both the classical flux and the total flux are measured in the simulation, using 

(2.32) and (2.33) respectively in the nonlinear steady state. The time averaged results 

are shown in FIG. 2.10. The source (2.25) is independent of time, introducing and 

removing particles at 1/ 2x >  and 1/ 2x <  respectively; thus the total flux is negative 

and nearly constant. At zero or weak shear (A <  1), the classical diffusion only 

accounts for ~ 1/3 of the total flux, while the rest must be due to the turbulence. As 

velocity shear increases, the classical flux increases and approaches the total flux, 

showing a relative reduction of turbulent transport. For large shear (A > 4), classical 
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flux is nearly the same as the total flux, thus completely accounting for particle 

transport as the turbulence is wholly suppressed.      

 

FIG. 2.10. Effect of flow shear on particle flux across the 1/ 2x =  axis. The transport is towards 

negative x direction. At strong shear, classical diffusion accounts for nearly all of the particle transport. 

2.4.3.4 Effects of cross field viscosity on stability  

    It is also worth noting that at a fixed flow shear, an increase of viscosity in the y-

direction imposes a stabilizing effect in both linear and nonlinear regimes. The linear 

growth rates for different 
y

ν  at A = 2, are shown in FIG. 2.11. The growth rates 

decrease as viscosity in the y-direction increases, and the suppression is stronger for 

shorter wavelength modes. While the long wavelength modes ( 1, 2m = ) which 

remain have smaller growth rates, the overall result is stabilizing. Correspondingly, in 

the nonlinear regime, the density fluctuation is smaller as viscosity is increased, and 

long wavelength convection dominates. 
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FIG. 2.11. Linear growth rates as a function of 
y

m , with 
y

ν , the viscosity in the y-direction, as a 

parameter. Shear strength is constant at 2A = .  Note the suppression of short wavelength modes 

when  
y

ν  is increased. 

    The level of turbulence, with increasing 
y

ν , is shown as contour plots of the 

density fluctuations. This, along with vector plots of the convection, are shown in 

FIG. 2.12 and FIG. 2.13 respectively, which compare low 
y

ν  and high 
y

ν  situations.  

    For small 
y

ν  ( 42 10−× ), the convection cells appear to be roughly circular. To see 

this, we note that from FIG. 2.2a that the density profile has a positive slope from 

~ 0.1x  to ~ 0.8x ; thus the scale size of the convection cell in the x-direction ~ 0.7, 

and 6 cells are observed in the nonlinear quasi-steady state, as seen in FIG. 2.12a and 

FIG. 2.13a. This results in a ratio of the scale in the x direction to that of the y 

direction ~ 4.2 : 5. A similar nonlinear steady state for zero 
y

ν  (which is not shown) 

shows 7 convection cells along the y direction, which gives the corresponding ratio of 

scale sizes ~4.9 :5. Thus, nonlinearly the preferred turbulent cell shape seems to be 
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circular on the 
n

L  scale. Notably, the convection is elongated in y at the lowest 

allowable mode as 
y

ν  increases. 

FIG. 2.12a 

       FIG. 2.12b 

 FIG. 2.12c 

FIG. 2.12. Nonlinear residual density fluctuations at A = 2 for a) 
42 10yν −= × , b) 

34 10yν −= × , c) 

36 10yν −= × . Notice the increase in wavelengths and the decrease in fluctuation levels, as the 

viscosity is increased.   

      FIG. 2.13a 
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  FIG. 2.13b 

 FIG. 2.13c 

FIG. 2.13. Nonlinear residual convection for A = 2 at a) 
42 10yν −= × , b) 

34 10yν −= × , c) 

36 10yν −= × . Notice the decrease in mode numbers (i.e., elongated convection cells) as the viscosity 

is increased.   

 

2.4.3.5 The MCX experiment  

    To conclude this section, it is interesting to compare the above results with 

magnetic fluctuation data from the Maryland Centrifugal eXperiment (MCX). 

     The MCX basically makes use of centrifugal force of rotating plasma to provide 

axial confinement. An accompanying flow shear provides stability to the interchange. 

The setup resembles a mirror machine in that the magnetic configuration is a long 

solenoid with axisymmetric mirror end fields. There is an axial conducting core 

which is insulated from the outer wall. A radial electric field is applied by biasing this 

inner core at high voltage with respect to the outer wall. This results in an E B×  drift 

causing the plasma to rotate azimuthally. Since the magnetic field is curved, there is a 

nonzero component of the radial centrifugal force which is parallel to the magnetic 
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field and points inward towards the equatorial plane. This balances the parallel 

pressure gradient so that the plasma is confined to the straight solenoid portion of the 

magnetic field. For large Mach number rotation, the conventional mirror loss cone is 

almost completely closed because of the favorable centrifugal potential. 

    At first glance, the MCX setup is unstable to flute-like interchange modes from 

magnetic curvature and centrifugal force, where both effects are in an interchange-

unfavorable direction relative to the density gradient, i.e., 0
eff

g n⋅∇ <
�

. As mentioned, 

velocity shear is expected to stabilize the flutes. Basic evidence of such suppression 

comes from the fact that the plasma is observed to be relatively quiescent for 

thousands of instability growth times [35,36]. More evidence is obtained from 

magnetic fluctuation data as analyzed, for example, by Choi et al [2] and Uzun-

Kaymak et al [3], as described below. 

    There are 16 magnetic probes arranged azimuthally with uniform spacing of π/8 

radians on the inner surface of the vacuum vessel, and halfway between the mirror 

throat and midplane. The probes are oriented to measure fluctuations in the axial 

magnetic field. The set of 16 probes gives the fluctuation 
z

B�  as a function of 

azimuthal angle φ, or mode number m in spectral analysis, with a resolution up to 

8m = . 

    Before introducing the results of magnetic fluctuation measurements in MCX, we 

give a brief description of the operation ranges and plasma parameters of the setup 

first. The experiment has T ~ 30eV, 6 1

, ~ 7.5 10th iv cms
−× , ~ 10

n
L cm , and radial range 

of the plasma 5 25cm r cm< <  (i.e. the size of plasma at radial direction is ~ 20a cm ), 

which give 2 5 1~ ~ 6.12 10g s nc rL sγ −× .   The B-field at midplane is 2kG and 
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14 3~ 10
i

n cm
− , so that 2~ 3.02 10β −× . The corresponding viscous damping rate 

2
1

2 2
~ ~ ~ 18

4
n n

c
s

L L

ν η β

π
−  . We then obtain the Reynolds number at the core of the 

plasma 4

2
Re ~ 3.4 10 1

g

n
L

γ

ν
= × >> . 

    The plasma in MCX is observed to rotate at a sonic Mach number between 2 and 3. 

The magnetic fluctuation data suggests that there are 2 “blobs” that appear to rotate at 

the local E B×  speed in the sheared flow. This corresponds to 2mϕ = , or in terms of 

wavenumber, ( ) ~ 1.33
n R

k Lϕ . Spectral analysis indicates that modes with shorter 

wavelengths ( 2mϕ > ) are of small amplitude. Theoretically, linear, shear free 

interchange modes with short wavelengths are more unstable than long wavelength 

ones [refer to Sec. 2.3.1, (2.16), (2.20)].  Therefore, shear free interchange theory 

cannot explain the spectrum of magnetic fluctuations in MCX. 

    However, the presence of shear flow in MCX would stabilize the shorter 

wavelengths, as we have shown. Consider our simulation for the RT instability in the 

linear regime in Sec. 2.4.2. A suppression of unstable modes with short wavelengths 

is observed in our simulation, as velocity shear increases (FIG. 2.4): while the linear 

growth rate[ ( )
RT y

mγ ] is relatively flat for 6
y

m >  for shear free conditions, the plots 

curve downwards as the parameter A increases. Moreover, the unstable region 

shrinks. As a result, unstable modes are at long wavelengths as flow shear is 

increased. This has the correct trend compared with the magnetic fluctuation 

spectrum in MCX.   
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    However, in our simulation in the presence of flow shear, the wavelengths 

observed in residual nonlinear fluctuations are still significantly too short to explain 

the experimental results in MCX in the region ~ 1
R

k Lϕ . In the simulation, the 

residual fluctuation, shown in FIG. 2.5c, is dominantly of 6
y

m = , corresponding to 

~ 12
y eff

k L . A spectral analysis has been performed of the steady state of the 

simulation and confirms that the same wavenumber is observed, as shown in FIG. 

2.14; here 2A =  is used, i.e., a parabolic shear profile with maximum slope 

2( / )
A x

v L  is chosen, or a slope of 3.7( / )
s x

c L  in our system (since 0.3β = ).  

    

FIG. 2.14. Spectral analysis of the residual fluctuations of the y-flow in the y direction at A =2 and low 

viscosity, which is corresponding to FIG. 2.13a. 

    A possible explanation for the discrepancy is the effect of viscosity. In the MCX 

magnetic fluctuation measurements, the magnetic probes are located in the edge 

region of the plasma where the plasma is more viscous than in the inner region, 

because of a relatively higher fraction of neutrals. This increase in viscosity 

corresponds to a larger viscous term than the one used in our simulation for the 

results shown in FIG. 2.4, FIG. 2.5c, and FIG. 2.14. A larger viscosity would further 

suppress short wavelength RT modes. Such an effect is illustrated and shown in our 

simulation in the previous subsection (Sec. 2.4.3.4); there we found that an increase 
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of viscosity in the y direction further stabilizes the short wavelength modes in both 

linear (FIG. 2.11) and nonlinear (FIG. 2.12, FIG. 2.13) regimes. FIG. 2.15 shows the 

spectral analysis of the steady state at high viscosity (30 times larger than that in FIG. 

2.14) for 2A = , in which the dominant mode is 1
y

m = , or  ~ 2
y eff

k L . The 

wavelength is greater than that in the weakly viscous case, with better agreement with 

the results from the MCX (for which the effective ( ) ~ 1.33
n R

k Lϕ ).  

 

FIG. 2.15. Spectral analysis of the residual fluctuations of the y-flow in the y direction at A =2 and high 

viscosity, corresponding to FIG. 2.13c. 

    The viscous effect at the edge is likely related to charge exchange friction between 

ions and neutrals. Based on the higher value of dissipation used in the code (FIG. 

2.15), the equivalent damping rate due to charge exchange [38],  

 ,CX CX th i
N vν σ= , (2.34) 

is given by 
CX

ν (normalized to /
A

v a ), is about ( )
2 36 10

x n
L L

−× . Here, N  is the 

density of the neutrals, 15 2~ 4 10
CX

cmσ −×  is the charge exchange cross section, and 

~ 2
n x

L L  is the normalized density scale length along x in the simulation during 

turbulence. Together with the operation ranges of MCX given in our description 

previously, we can estimate /
i

N n , the fractional neutral density at the edge needed to 
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give this viscosity. We find this ratio to be 3/ ~ 1.1 10
i

N n
−× . This is reasonable given 

the edge conditions on MCX. Also, the corresponding Reynolds number at the edge is 

Re ~ 12 Re
edge core

<< .   

 

2.5 Kelvin-Helmholtz instabilities 

    In the following, the minimum density in equilibrium is adjusted (by changing 
o

n ) 

so that (2.24) is either barely satisfied or violated (FIG. 2.3a,b). Thus, we are allowing 

KH instabilities. A linear analysis of stability is performed by perturbing the density 

with 6~ 10n
−

�  for the harmonic 5
y

m = . Viscosities 210
x

ν −=  and  42 10yν −= ×  are 

used. The corresponding growth rates are measured as a function of 
o

n  and shear 

strength A, and shown in contours in FIG. 2.16.  

 

FIG. 2.16. Contour plot of linear growth rate as a function of 
o

n  and A, for 5
y

m = . The contours are 

labeled by the growth rates. 
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    As seen, a flow shear does not necessarily stabilize the system. Complete 

stabilization with increasing shear is only possible in the region where (2.24) is 

satisfied, i.e., above the “KH criterion boundary” in FIG. 2.16 (this includes the 

regime where the RT effect is analyzed in Sec 2.4). In the region below the boundary, 

a strong shear in fact destabilizes the system. Consider moving along a horizontal line 

for 0.8
o

n =  where the criterion is violated; the growth rate decreases initially and 

reaches a minimum at A ~ 1, as the RT effect is partially stabilized by flow shear. 

However, it rises again for any further increase in shear flow, as the KH effect 

becomes significant and the system is destabilized. Another remarkable feature is the 

dramatic drop in growth rate at the criterion boundary for fixed A as 
o

n  increases. 

First consider the vertical line A = 0, i.e., no shear. The growth rate decreases slowly 

when 
o

n  increases, which is explained by the RT growth rate prediction (2.20) where 

'/n n  is decreasing. Then compare with the vertical line A = 5: a sharp drop in growth 

rate is observed as the criterion boundary is crossed (indicated by the contour 

density). The origin of the effect is the KH, since the RT instability is completely 

stabilized. To illustrate this, the corresponding growth rates in a system without 

gravity at A = 5 are measured for comparison and plotted in FIG. 2.17, which shows a 

similar stabilization behavior in the vicinity of the KH criterion boundary. The system 

is highly unstable when (2.24) is not satisfied as the shear is strong, but is stabilized 

once the zeros of ( ') ' 0
y

nu =  are removed. (The two curves are not coincident as the 

equilibrium profiles with and without gravity are slightly different). 
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FIG. 2.17. Linear growth rates for strong flow shear in the vicinity of the KH criterion boundary with 

and without gravity. 

 

2.6 Summary of Chapter 2 

    In summary, we have conducted an in depth study of the effect of flow shear on 

macroscopic ideal interchange modes in magnetized plasmas, using a 2D dissipative 

MHD code, in both linear and nonlinear regimes. By simulating the system as an 

externally forced initial value problem, we have shown that in the linear regimes, a 

cross-field velocity shear V’ suppresses growth rates over a broad spectrum of 

wavenumbers. The suppression is more effective for modes with either very short or 

very long wavelengths, leaving the unstable region in the k⊥  spectrum to condense 

and peak at 6
y

m = , as V’ increases. This is in contrast with the shear-free spectrum, 

which gives kγ ⊥∼  at long wavelengths and asymptotes to a constant in the short 

wavelength limit (ignoring viscous damping).    We obtain a similar spectrum by 

simulating the nonlinear turbulent steady state, and the peaking wavenumber 

corresponds to roughly circular convection cells of size comparable to the density 
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profile scale length. A spatial Fourier transform of residual fluctuations at different 

shear strengths is taken: again, we show that the spectrum peaks at 6
y

m = . Further, 

we measure the average density fluctuation level in steady turbulence, and the 

flattening of the density profile in turbulent steady state, and find that both decrease 

as V’ increases. Complete stabilization is possible when V’ is greater than a few times 

the classic interchange growth rate, wherein we observe that the original (RT 

unstable) density profile is recovered and the density and flow profiles revert to 

laminar. In addition, we measure the turbulent particle flux in turbulent steady state 

and compare this with the classical diffusive transport. We show that the latter 

eventually dominates and accounts for all the transport as V’ increases, again showing 

complete stabilization in the strong shear limit. We compare our simulation results 

with magnetic fluctuation measurements from MCX, which studied interchange 

modes in the presence of flow shear. By comparing with the experimental spectral 

data, we show that the experimental results agree with our simulation results if done 

at higher viscosity. We confirm that this level of viscosity is consistent with the 

Reynolds numbers at the edge of the plasma in MCX. Both the simulation and the 

data are consistent with elongated convection cells in the nonlinear regime.     Finally, 

we investigate the effects of Kelvin-Helmholtz on the system, which must be present 

in any flow shear system, and show from our simulation that we can stabilize an RT 

unstable configuration with flow shear only when the generalized Rayleigh Inflexion 

criterion is satisfied.  This restriction still allows a broad parameter space in which the 

RT mode is effectively suppressed.  
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Chapter 3: Geodesic acoustic modes 

 

3.1 Introduction 

    The geodesic acoustic mode (GAM) is well-known as an MHD normal mode in 

tokamaks. The GAM is an axisymmetric poloidal oscillation of a toroidally confined 

magnetized plasma (see FIG. 3.1). When a flux tube is displaced poloidally to regions 

of different magnetic fields, the flux tube gets compressed (decompressed) because of 

flux freezing. Then, because of pressure changes, the centrifugal force from thermal 

motions and from the curvature of the toroidal field acts as a restoring force on the 

displaced flux tube. The result is a poloidal oscillation within a flux surface. The 

curvature of the magnetic field acts as an effective radially outward gravity on the 

flux tubes, so the system resembles a nonlinear pendulum. The frequency of GAM 

oscillations is found to be 2
G s

c Rω = , where 
s

c T M=  is the ion sound speed 

of the plasma, R  is the major radius of the tokamak, and T  and M  are plasma 

temperature and ion mass respectively. GAMs have been identified experimentally in 

tokamaks [6-8] as peaks in the broad frequency spectra of plasma turbulence. 

Theoretical work on GAM oscillations has been well developed, in both collisional 

fluid [23,24] and collisionless kinetic theory [25-28,41-43]. In this thesis, we will 

describe the physics of GAMs from the fluid approach.    
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FIG. 3.1. Schematic illustration of geodesic acoustic mode in tokamak. 

     As we have discussed earlier, flow shear can stabilize MHD instabilities. The 

related theory has been well established, and there is considerable experimental 

evidence. In general, the stabilization effect is significant when 'V γ> , where 'V  is 

the gradient of the shear flow, i.e., shear strength, and γ  is the growth rate of the 

instability.    Insofar as the GAM is an MHD normal mode of toroidal plasma 

characterized by poloidal oscillations of flux tubes, one may consider the possibility 

of establishing a time-dependent poloidal flow shear in tokamak by driving GAMs at 

resonance. This idea was raised by Hallatschek and McKee [5] recently and an 

experiment has been proposed.  The plan is to drive GAMs to resonance from 

external currents, which would create large amplitude oscillations of poloidal flow 

localized within the width of the resonating flux surfaces. The goal would be to 

establish a time varying flow shear with a maximum shear of ' ~
m

V u x∆ , where 
m

u  

and x∆  are the maximum amplitude of the poloidal flow of the resonating flux 

surfaces and the spatial spread of locally driven GAMs in the radial direction, 

respectively. To have a significant stabilizing effect, the strength of flow shear should 

be comparable to the growth rate of the instability. For example, for drift instabilities, 
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the criterion is roughly given by ' ~ ~
m drift i s n

V u x k c Lθγ ρ∆ > , where 
i

ρ  is the ion 

Larmor radius and 
n

L  is the density scale length in radial direction. This gives an 

estimation of the strength of flow shear. The power requirements for driving GAMs 

to the desired flow shear level would depend on the damping rate of the oscillation. 

     The theoretical and computational work in this part of the thesis is motivated by 

this proposed experiment. In particular, we examine (i) the effect of enhanced 

damping from phase mixing of GAMs, because of the differential oscillation 

frequencies in the radial direction; and (ii) the effect of resonant detuning by 

nonlinearities.  For (i), the effect of phase mixing on waves in an inhomogeneous 

medium has been studied for Alfven waves [9,44]. We will extend this idea to GAMs. 

We will show that the radial temperature gradient in a tokamak also leads to a similar 

phase mixing for driven GAM systems. For (ii), we study the effect of nonlinearity 

from the convective terms in the GAM equations, and we show that nonlinear 

detuning can occur in GAMs. This behavior is similar to that in the driven Duffing 

oscillator [45,46]. 

    In Sec. 3.2, we first describe the magnetohydrodynamic (MHD) equations and the 

ordering used to derive the reduced nonlinear equations for GAMs. In Chapter 4, we 

consider the linearized GAM equations with viscous damping, and show that phase 

mixing occurs in both undriven and driven problems. For the undriven problem (Sec. 

4.2), we solve the initial value problem in a multiple time scale expansion, with the 

viscosity ν  as the small parameter. We get an oscillatory solution with a slowly 

decaying amplitude for the poloidal flow. The amplitude decays as 3

0exp ( / )t t −  , 

where 1/3~
o

t ν − . For the driven problem (Sec. 4 3), we introduce a sinusoidal 
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momentum source with constant amplitude in the system, and look for a steady state 

solution. We first analyze the system asymptotically and then verify our analysis by a 

numerical simulation. We find that in the presence of phase mixing, the frequency 

spectrum for GAMs is relatively less peaked and the spatial spread of the mode is 

greater than that predicted by the typical Lorentzian distribution from a linear 

harmonic oscillator model.   

    In Chapter 5, we keep nonlinear terms in the GAM equations and introduce a 

sinusoidal momentum source. We then solve for the non-dissipative steady state 

solution by an expansion in small driving amplitudes, for driving frequencies close to 

and far from resonant frequency respectively. We verify the results, in particular, the 

frequency spectra, by a nonlinear simulation. We find that the nonlinear terms can 

suppress the resonance in the sense that the magnification of the driver amplitude 

decreases when the driving amplitude increases, making it harder to get a greater 

output amplitude in steady state.  In Chapter 6, we use plasma parameters from the 

DIII-D tokamak to estimate the power dissipation by classical collisions and by phase 

mixed damping, separately for the edge and the core of the tokamak. We find that the 

conditions suggest a cost effective experiment. We then compare our results to a 

similar estimation done by Hallatschek and McKee [5], who assume that the power is 

dissipated by plasma turbulence. We also evaluate the nonlinear Duffing-type effects, 

given the experimental parameters, and find that this effect is small compared with 

the damping terms.    We conclude in Sec. 6.4.  
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3.2 Equations 

    We consider the ideal magnetohydrodynamic equations:                    

 ( )|| 0
n

nu B nu B
t

⊥

∂
+ ∇ ⋅ + ⋅∇ =

∂

� � ��
, (3.1) 

 
u B

nM u u T n j
t c

∂ 
+ ⋅∇ = − ∇ + × 

∂ 

��
� � �� �

, (3.2) 

 0j∇ ⋅ =
� �

, (3.3) 

 
u

B
c

φ∇ = ×
�

� �
. (3.4) 

    Assume an axisymmetric magnetic field, i.e.,  

 ( )B Iψ ζ ψ ζ= ∇ ×∇ + ∇
� � � �

, (3.5) 

where ψ  is the poloidal flux function, ζ  is the toroidal angle, and the flux function 

( )I RBζψ = .  In the following, we will assume the magnetic field to be strong, and 

flux surfaces to be concentric and circular, with radial coordinate r and poloidal angle 

θ defined with respect to these circular surfaces. We will assume that parallel thermal 

conduction is large and thus T is approximately constant on each flux surface. The 

inverse aspect ratio is defined as r Rε = , where cos
o

R R r θ= + , and 
o

R  is the 

major radius of the geometric center of the flux surface. The parallel component of 

(3.2) gives 

 ( ) 2: ln 0
t s

u B Bu u c B n∂ ⋅ + ∇ + ⋅∇ =
� � � � �� � �

, (3.6) 

where 2

s
c T M= . A surface integral of the poloidal component of  (3.2) over a flux 

surface gives 

 ( ) ( )2| | 0
p

ds R B nM du dt T nψ∇ ⋅ + ∇ =∫
� � ��

, (3.7) 
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where pB ψ ζ= ∇ ×∇
� � �

. By expanding the closed set {(3.1), (3.4), (3.6), (3.7)} in 

orders of the inverse aspect ratio, a set of reduced equations can be obtained. This has 

been done in Hassam and Drake (1993) [24], with the ordering 

( )||~ ~ ~s s s tu c u c r cθ ε∂ . Here, we reproduce their system of equations and our 

calculations thereafter will be based on this reduced set of equations. 

    Let 0B
�

 be the cylindrical magnetic field and assume the safety factor 

( )
0

( )q r rB RBζ θ=  is of order 1. Within the assumptions of isothermality and low 

frequency motions (compared with the fast magnetosonic mode), the magnetic field is 

essentially static and assumed fixed, and the motion comprises E B×
� �

 flows within 

each flux surface (
E

u ), flows parallel to the magnetic field ( ||u ), and the associated 

density fluctuations ( 1n ) from compression of flux tubes from E B×
� �

 motion and from 

sound waves along the field. The resulting equations for { 1n , ||u ,
E

u } follow from 

(3.1), (3.6), (3.7) are given by 

 ( ) || ||2 sin 0
t E E

u r N u r uθ ε θ∂ + ∂ − + ∇ =   , (3.8) 

 ( ) 2

|| || 0
t E s

u r u c Nθ∂ + ∂ + ∇ =   , (3.9)  

 
22

sin
2

s
t E

c d
u N

r

ε θ
θ

π
∂ = − ∫� , (3.10) 

where 0

0

( )
( )

E

d rc
u r

B dr

φ
= , 1

|| ( )qR θ
−∇ = ∂ , 1 0N n n=  and 0 0 ( )n n r= . {(3.8), (3.9), 

(3.10)} is the closed set obtained in [24]. For our purposes, we further assume 

|| || /
E

u u R∇ << , in which case (3.8) becomes 
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 ( ) 2 sin 0
t E E

u r N u rθ ε θ∂ + ∂ − =   , (3.11)  

and (3.9) is not needed. Next, we multiply (3.11) by sinθ  and cosθ  respectively and 

integrate over the poloidal angle θ, and define new variables sin
2

s

d
N N

θ
θ

π
= ∫�  and 

cos
2

c

d
N N

θ
θ

π
= ∫� . From (3.11), we get 

 0E E
t s c

u u
N N

r R
∂ − − = , (3.12) 

 0E
t c s

u
N N

r
∂ + = , (3.13) 

 
22

s
t E s

c
u N

R
∂ = − , (3.14) 

where (3.10) has been rewritten to get (3.14). And for the ansatz to be true, the 

assumption || || /
E

u u R∇ <<  is substituted into (3.8) and (3.9), and we find the self 

consistency condition ~ s
t G

c

qR
ω∂ >> . We will see later that 2

G s
c Rω = , so the 

condition is 1q >> .  

    Our analysis and simulations in the following sections will be based on the closed 

set of nonlinear equations {(3.12), (3.13), (3.14)}, with variables {
E

u , 
s

N , 
c

N }. To 

see that {(3.12), (3.13), (3.14)} contains the physics of GAMs, consider small 

perturbation in the variables about a static equilibrium ( )
o

n r . Then, (3.12) becomes  

 0E
t s

u
N

R
∂ − = , (3.15) 
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and, (3.14) and (3.15) together give a harmonic oscillation of poloidal flow 
E

u  (and 

s
N ) with frequency 2

o s
c Rω = , the GAM frequency, as a normal mode of the 

system. 

    In the next chapter we will discuss the effect of phase mixing on GAMs in the 

linear regime, using the linearized version of the above equations. Then, we will 

discuss the effects of the nonlinear terms in the section following.    
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Chapter 4: Phase mixing of GAM oscillations  

 

4.1 Introduction 

    In this chapter, we allow a temperature gradient in the ψ∇
�

 direction, i.e., 

( )T T ψ= , a general feature in tokamaks. (As mentioned in Sec. 3.2, we will assume 

the system to be isothermal in the sense that the perturbation in temperature on a 

given flux surface is small compared with its counterparts in density and flow, i.e., 

1 0 ~
E s

T T n n u c<<� .) We note that the GAM frequency, which depends on the ion 

sound speed, now varies across flux surfaces, i.e., ( )
o o

rω ω= . It follows that, if the 

linearized system is perturbed with the same amplitude at each flux surface initially, 

and allowed to oscillate freely afterwards, phase differences will develop between any 

particular flux surface and its neighbouring ones. Thus, we expect rapid phase mixing 

will occur along the ψ∇
�

 direction, and the rate of phase mixing will depend on the 

strength of temperature gradient along ψ∇
�

. 

    It has been shown by Heyvaerts and Priest [9] that when Alfven waves propagate 

in a medium with a gradient in the Alfven speed perpendicular to the magnetic field 

and the polarization of the Alfven waves, phase mixing occurs due to the spatially 

varying character of the Alfven speed. Heyvaerts and Priest show that phase mixing 

greatly enhances the usual dissipation by viscosity and resistivity. In particular, for 

non-varying Alfven speed, Alfven waves damp at a rate proportional to resistivity η ; 

for spatially varying speed, the damping rate increases dramatically, as 1/3η . We give 
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a slightly different and simpler derivation of part of their results (for Alfven waves) in 

Appendix A, as an illustrative example of phase mixing.    In the following, we 

consider the linearized GAM equations with a viscous coupling along the radial 

direction. We will show that, similar to Alfven waves in inhomogeneous media, 

phase mixing in GAMs can also enhance the dissipative effect significantly. We also 

show that, in an undriven system, oscillations decay faster than the usual exponential 

factor. 

4.2 Initial value problem for linearized GAM equations 

    When viscous dissipation is present, (3.14) becomes  

 ( )
22 1s

t E s r r E

c
u N r u

R r
ν∂ = − + ∂ ∂ , (4.1) 

to lowest order in r Rε = , where ν is the coefficient of viscosity. The terms with θ∂  

and φ∂  do not appear in the viscous term as we have integrated the equation over a 

flux surface in (3.7). We rewrite (4.1) and (3.15) with the normalization 
2 ( )

E

s o

u
u

c r
=  

[ ( )
s o

c r  is the sound speed at a particular reference surface 
o

r r= ]:  

 ( )
( ) 1

( )

s
t o s r r

s o

c r
u N r u

c r r
ω ν∂ + = ∂ ∂ , (4.2)  

 
( )

0,
( )

s o
t s o

s

c r
N u

c r
ω∂ − =  (4.3) 

where the GAM frequency 2 ( )
o s

c r Rω = , as defined previously. 

     To simplify the problem, we make the ansatz that the GAMs will be localized 

about some flux surfaces, i.e. inside 1 2r r r< <  such that 2 1a r r<< −  and ~ 1r a , 
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where a  is the minor radius of the tokamak. Under these conditions, we can replace r 

and dr with r1 and dx respectively, i.e. regard ( , )u r t  as ( , )u x t  and ( ) ( )1 r rr r∂ ∂  as 

2

x
∂ , and we choose 0x =  to be corresponding to some reference point 1 2o

r r r< < . 

    Consider an initial value problem for {(4.2),(4.3)}, with ( , 0) 1u x t = = , 

( , 0) 0
s

N x t = = , with the boundary conditions ( , ) 0
x
u x t∂ =  and ( , ) 0

x s
N x t∂ =  at 

x → ±∞ . We assume '( ) 0
s

c x → ±∞ = , for the equilibrium temperature profile, 

where prime denotes d dx . We differentiate (4.2) with respect to t  and use (4.3) to 

eliminate 
s

N . Then, in simplified coordinates, (4.2) becomes  

 2 2

tt o x t
u u uω ν+ = ∂ . (4.4)  

We solve (4.4) with the ordering 2 2~
tt o x t

u u uω ν>> ∂ , i.e., with an expansion 

parameter 2 ( 0) 1
c o

L xδ ν ω = = <<  , where Lc is the scale length of the sound speed 

profile, and we also assumed ( 0) ~ 1
o o

xω ω = .   To lowest order, (4.4) gives rise to a 

GAM oscillation without damping, i.e., 0 cos
o

u tω= ,  and, from (4.3), 

[ ]0 ( 0) ( ) sins s s oN c x c x tω= = .    To first order, analogous to the derivation in 

Appendix A, we assume a solution of the form: 

 ( ) ( )0 exp , cos ,
o

u f x t t g x tν ω ν= +       , (4.5)  

where f  and g  are polynomials in t , i.e., an oscillatory part at the GAM frequency 

with an amplitude and phase that varies slowly with time. Substitute (4.5) into (4.4),  

the corresponding first order equation is  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2 2 2

2 sin , ; 2 cos , ;

'' ' sin , ; 2 ' '' cos , ; ,

o t tt tt o t

o o o o o o

f g x t f g x t

t x t t t x t

ω φ ν ω φ ν

ω ω ω φ ν ω ω ω φ ν

+ − −

= − + +
 (4.6) 
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where ( ), ; ( , )ox t t g x tφ ν ω ν= + . Then, by equating the coefficients of ( )sin , ;x tφ ν  

and ( )cos , ;x tφ ν  on both sides of (4.6) respectively, we can solve for ( ),f x t  and 

( ),g x t . We have: 

 ( )
2 3 2

0

' '
exp '' cos ,

6 4

o o
o o

o o

t t
u t g x t

νω ω ν
ω ω ν

ω ω

  
= − + + +     

  
, (4.7)  

and  

 ( )
2 2'

, ''
4

o
o

o

t
g x t

ω
ω

ω

 
= + 
 

. (4.8)  

We now inspect (4.7) to confirm the assumed ordering 2 2~
tt o x t

u u uω ν>> ∂ , and find 

the consistency condition ( )1 'o ot ω ω ν<< .  [ 0s
N  can be obtained by inserting 

(4.7) into (4.2).] This is self-consistent for large Reynolds numbers. 

    From (4.7), we see that the oscillations decay as ( )
3

exp ot t −
 

 wherever '
o

ω  is 

nonzero, i.e., where there is a profile in sound speed or temperature along r (i.e., x). 

The time constant 1/3 1/3 2/36 '
o o

t ν ω− −=  is defined by (4.7). This decay is significantly 

faster than a typical exponential decay, since 
o

t , is proportional to 1/3ν −  instead of 

1ν − .   

4.3 Steady state solution of linearized GAM equations with 

driving term 

    In this section, we study the driven GAM system. We investigate the steady state 

solution and the corresponding power spectrum. Consider a sinusoidal (in time) 

momentum source added to (4.2) as an inhomogeneous driving term:  
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 ( )
( ) 1

sin
( )

s
t o s r r o

s o

c r
u N r u d t

c r r
ω ν ω∂ + = ∂ ∂ + , (4.9) 

where ω is the driving frequency, and do and ω are constants. Correspondingly, (4.4) 

becomes  

 2 2 cos
tt o x t o

u u u d tω ν ω ω+ = ∂ + . (4.10) 

From an examination of (4.10), we expect there will exist a steady state solution such 

that the amplitude peaks around the flux surfaces with 0 ( )xω  close to the driving 

frequency ω , i.e., at resonance, and that the amplitude will drop as we move to off-

resonant surfaces.    

     Analogous to a driven harmonic oscillator, we look for a steady state solution of 

the form 

 ( ; ) cos ( ; )sin
p

u A x t B x tω ω ω ω= + , (4.11)  

so that the amplitude at steady state is 2 2( ; )a x A Bω∞ = + . Substituting (4.11) into 

(4.10), we get 

 ( )2 2

o xx o
A B dω ω νω ω− − = , (4.12) 

 ( )2 2 0
o xx

B Aω ω νω− + = . (4.13)  

First, we examine the off-resonant regions, where 2 2 2

o x
ω ω νω− >> ∂  in (4.12) and 

(4.13). In these regions, we find  

 
2 2

( ; ) , 0
( )

o

o

d
A x B

x

ω
ω

ω ω
≈ ≈

−
, (4.14)  

to lowest order. This is consistent with the fact that the oscillation is in phase with the 

driver for driving frequency well below the GAM frequency, and completely out of 
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phase when driven well above it. To estimate the lowest value of oω ω−  such that 

the above ordering and (4.14) are still valid, we substitute (4.14) into (4.13) to 

evaluate B to the next order, and then, from (4.12), require that 

( )2 2

0 1o xx
A Bω ω νω− >>  for consistency. This implies the condition  

 

( )

2 2

3
2 2

8 10 '
1 o o

o

νω ω ω

ω ω
>>

−
. (4.15)  

We interpret (4.15) in two ways. (i) If we fix a particular position xo and vary the 

driving frequency, the power spectrum at xo will peak around ~ ( )
o o

xω ω  with the 

width of the resonance bounded by 1/3 2/3~ '
o

ω ν ω∆ . In contrast, a driven harmonic 

oscillator damped by a friction term 
t

uγ  would give a resonance of width 1~ω γ −∆ ; 

dissipation due to phase mixing evidently yields a broader spectrum in terms of the 

dependence on the dissipation parameters. (ii) If we fix a particular driving frequency 

and consider the amplitude at steady state as a function of x, there is a corresponding 

spread. Suppose 
o

ω ω=  at 
o

x x= , i.e., there is a resonance around xo. We expand 

( )
o

xω  around xo, i.e., let 
o

s x x= − , '( ) ...
o o o

x sω ω ω= + + ; then, we find the 

resonance to occur in a layer of width 1/3 1/3~ '
o

s ν ω −∆ . 

    Having obtained the above asymptotic information, we now solve (4.10) 

numerically, as an initial value problem, and look at the solution at times 2

c
t L ν>> , 

when the solution has come to a steady state. We use Mathematica 6.0 and solve 

(4.10) in slab coordinates, where 0.5 0.5x− ≤ ≤ ( i.e., 1
x

L = ). A linear profile (in x) 

of the GAM frequency is used, namely ( ) 1.2
o

x xω = + . The initial conditions are 
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( , 0) 0u x t = = , ( , 0) 0
t
u x t∂ = = , and we use free slip boundary conditions at both 

ends. The profiles of the GAM frequency and the driving frequency are illustrated in 

FIG. 4.1. The oscillation in poloidal flow at steady state, for ( )2 4

0 ( 0) 10
x

x Lν ω −= = , 

0.1
o

d = , is illustrated in FIG. 4.2 as an example. 

 

FIG. 4.1. The profile of GAM frequency [ ( ) 1.2
o

x xω = + ] and the driving frequency ω along x, 

which will give a resonance around x = 0. 

 

FIG. 4.2. The steady state of (normalized) poloidal flow, will the GAM frequency and driver frequency 

profile indicated in FIG 4.1. Here ( )2 4

0 ( 0) 10
x

x Lν ω −= =  and 0.1
o

d = . Notice the resonance 

around x = 0 and the phase difference along x at any fixed time t.    

    To verify (i), we drive the system with varying frequency ω and measure the 

corresponding steady state amplitudes at x = 0 (for a fixed ν). We then obtain a power 
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spectrum about the origin with ν as parameter, and measure the full width at half 

maximum (FWHM). FIG. 4.3 shows the spectrum for ν = 10
-4

 as an example. We 

obtain power spectra at different dissipation strength ν, and measure the 

corresponding FWHMs. The result is shown in FIG. 4.4 as a logarithmic plot, which 

is a straight line of slope 0.34 0.02± , in agreement with the expected value 1 3  

predicted from the asymptotic analysis in (4.15). Moreover, a similar plot for the 

corresponding height of the resonant peak against ν is shown in FIG. 4.5: the 

measured slope is 0.334 0.002− ± . Note that a 1D driven harmonic oscillator would 

show a Lorentzian spectrum with height of the resonant peak 1~ν − . To study the 

effect of the GAM frequency gradient, we fix ν at 10
-4

, and use GAM frequency 

profiles ( ) 1.2
o

x mxω = + , where m models the inhomogeneity of the GAM frequency 

or sound speed. As above, we obtain power spectra for different values of m, and plot 

the corresponding widths (at resonance) against m (or '
o

ω ). The logarithmic plot is 

shown in FIG. 4.6, with a slope of 0.65 0.01± , in good agreement with the predicted 

value 2/3. This indicates a greater inhomogeneity can suppress the resonance by 

increasing the rate of the phase mixing along x.    

 

FIG. 4.3. Power spectrum measured at x = 0 with ν = 10
-4

, and ( 0)
o

xω ω ω∆ = − = . 
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FIG. 4.4. Logarithmic plot of the spectral width a resonance against the viscosity measured at x = 0, the 

slope is 0.34 0.02± .  

 

FIG. 4.5. Logarithmic plot of the amplitude at resonance against the viscosity measured at x = 0, which 

gives a slope of 0.334 0.002− ± .  

 

FIG. 4.6. Dependence of width of peak of the power spectrum on the slope of GAM frequency. 

Viscosity is fixed at ν = 10
-4

. The slope of the graph is 0.65 0.01± . 
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    Next, to verify (ii), we fix the driving frequency at ( 0)
o

xω ω= = , and plot the 

amplitude as a function of x, at steady state, with ν as parameter. We measure the 

(spatial) widths of the peak about x = 0 for different ν. The spatial dependence of the 

amplitude for ( )2 4

0 ( 0) 10
x

x Lν ω −= =  is shown in FIG. 4.7 as an example, and a 

logarithmic plot of the width versus ν (FIG 4.8) shows that the spatial width of 

resonance  ~ ν
α
, where the measured 0.336 0.001α = ± , in agreement with the 

prediction of α = 1/3. The dependence of the width of resonant flux surfaces on the 

slope of the profile is similarly investigated by fixing ν = 10
-4

, and measuring the 

(spatial) widths of amplitude in steady state for different values of '( 0)
o

xω = . The 

slope of the logarithmic plot is found to be 0.334 0.001− ±  (FIG. 4.9), in agreement 

with the prediction in (ii). 

 

FIG. 4.7. The amplitude of (normalized) poloidal flow as a function of space at ( 0)
o

xω ω= =  and ν 

= 10
-4

, 0.1
o

d =  
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FIG. 4.8. Logarithmic plot of spatial width of resonance [at ( 0)
o

xω ω= = ] against the viscosity, 

with a slope of 0.336 0.001± . 

 

FIG. 4.9. Dependence of width of peak of the steady state amplitude on the slope of GAM frequency. 

Viscosity is fixed at ν = 10
-4

, and ( 0)
o

xω ω= = . The slope of the graph is 0.334 0.001− ± . 

    The above results show that, in the presence of phase mixing, the dissipative 

effects in an inhomogeneous driven system are enhanced. The amplification attained 

in driving a GAM at resonance in an inhomogeneous medium is significantly lower 

than that in the 1D harmonic oscillator (or in homogeneous medium). It is also more 

difficult to get a sharp resonance (width of resonant peak ~ ν
1/3

 instead of ~ ν) , and it 

is relatively harder to localize the driven modes at a desired flux surface.   
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Chapter 5:  Nonlinear effects on resonantly driven 
GAMs 
 

 

5.1 Introduction 

 

    In this chapter, we retain the nonlinear terms in {(3.12), (3.13), (3.14)} and analyze 

their effect on GAMs. The nonlinear terms arise from the convective terms in the 

system. We do not include herein the viscous dissipative effect, as we have already 

dealt with this in the previous section. Our objective is to present a clear illustration 

of nonlinear effects. Under these conditions, the terms in our set of equations are free 

of spatial radial derivatives, so we can simply consider GAMs on one particular flux 

surface at r. We are interested in GAMs that are externally driven by a momentum 

source. Thus, we add a momentum source in (3.14): 

      

 
22

( )sE
s

cdu
N K t

dt R
= − + . (5.1)  

With the normalization 2
E s

u u c=  and ( )' 2
s

t c R t= , and defining 

( )* 2
( ') ' 2

2
s

s

R
K t K Rt c

c
= , the set {(3.12), (3.13), (5.1)} becomes 

 0
'

s
c

dN R
uN u

dt r
− − = , (5.2) 
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 0
'

c
s

dN R
uN

dt r
+ = , (5.3)  

 *( ')
'

s

du
N K t

dt
+ = . (5.4)  

 

In the next section of this chapter we will try to solve the system {(5.2),(5.3),(5.4)} 

by linear expansion, with the amplitude of driving terms as the small expansion 

parameter. We show that the expansion scheme breaks down at the vicinity of 

resonance and obtain the condition with asymptotic analysis. And then we solve the 

equation nonlinearly and we show that the nonlinearity has a suppression effect on 

the resonance. Lastly, we verify our results with a numerical simulation.    

5.2 Linear expansion of nonlinear GAM equations with small 

driver amplitude 

    If we consider the homogeneous problem, i.e., *( ') 0K t = , and examine {(5.2), 

(5.3), (5.4)} as an initial value problem, the nonlinear effects will be very small for 

small amplitude perturbations, and the problem can be approximated by the linearized 

equations. However, for the driven problem, ( ) sinoK t a tω=  (ao is a constant), the 

nonlinear terms become important when the driver frequency approaches the GAM 

frequency, even at small amplitudes. To illustrate this, we expand u , 
s

N , 
c

N  in (5.2), 

(5.3) and (5.4) in orders of ~ 1
o

a δ <<  according to: 

 

1 3 5

1 3 5

2 4 6

...

...

...

s s s s

c c c c

u u u u

N N N N

N N N N

= + + +


= + + +
 = + + +

. (5.5) 

To the order δ , we have the linear driven GAM equations and the solution is  
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*
1 2

*
1 2

cos '
1

sin ',
1

s

a
u t

a
N t

ω
ω

ω

ω
ω


= −


 =
 −

 (5.6)  

where 2

* 2
o s

a Ra c= . To the order 2δ , a nonlinear term drives 2c
N , 

 2
1 1 0

'

c
s

dN R
u N

dt r
+ = , (5.7)  

which gives 

 

( )

2
2*

2 2
2

cos 2 '
4 1

c o

aR
N t C

r
ω δ

ω

 
 = +
 − 

. (5.8)  

To determine the integration constant 2

o
Cδ , we eliminate u  in (5.2) by multiplying 

(5.2) with 
s

N  and substitute (5.3) into the resulting equation, which gives 

 ( )
22 2

s c
N N r R D+ + = , (5.9)  

where D is a constant. Taking (5.9) to lowest order, we get 2 2 2D r R= . Then 

considering (5.9) again to order 2δ  (the equations at order 1δ  are trivial), and using 

the expression in (5.6) for 1s
N , we get 

( )

2
2 *

2
24 1

o

a
Cδ

ω
= −

−
. To order 3δ , by 

differentiating (5.4) with respect to 't  and using (5.2) to eliminate 
'

s
dN

dt
 in the 

resulting equation, we see that 3u  is driven by the nonlinear term 1 2c
u N :  

 
2

3
3 1 22'

c

d u R
u u N

dt r
+ = − , (5.10)  

and the corresponding solution is  
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( )

( )

2 3

*
3 3 2 22

2 3 2

*
3 3 2 22

cos ' cos3 '

1 1 98 1

sin ' 3sin 3 '
.

1 1 98 1
s

aR t t
u

r

aR t t
N

r

ω ω ω

ω ωω

ω ω ω

ω ωω

    
= −    

− −   −


   
= −    − −   −

 (5.11) 

    Since the higher order terms are driven by nonlinear terms, nonlinearities are 

important as ω approaches unity. As 1ω → , we see that this gives 3 1u u∼ , indicating 

that the approximation breaks down. This happens for  

 

( )

2 3

* *

4 22 18 1

a aR

r

ω ω

ωω

 
 

−  −
∼ , (5.12)  

or equivalently,  

 

1/3
4 2

2 4
1 ~ o

s

R a

r c
ω ω

 
∆ = −  

 
. (5.13) 

Recall that for a driven harmonic oscillator without damping, the amplitude goes as 

1 ω∆  and can become infinite at resonance. If there is a small damping term 
t

uγ , 

the amplification at resonance will be finite and goes as 1 γ . Here, we have shown 

that the usual resonance is altered by nonlinearities beyond a critical smallness for 

ω∆ . To understand the behaviour of the nonlinear GAM near resonance, we notice 

first that for the homogeneous problem ( *( ') 0K t = ), if we eliminate 
s

N  and 
c

N  in 

{(5.2), (5.3), (5.4)}, u  satisfies the homogeneous Duffing equation [45,46]: 

 

22
3

2

1
0

' 2

d u R
u u

dt r

 
+ + = 

 
. (5.14)  

Therefore, we expect and will show that the solution to the driven problem is parallel 

to that of the driven Duffing equation. For illustrative purposes, we present the 
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derivation of the solution to the inhomogeneous Duffing equation (with sinusoidal 

driver, to lowest order in ω∆ ) in Appendix C for comparison. 

 

5.3 Analysis of the nonlinear GAM equations at resonance 

    We are interested in driving GAMs at resonance, where the nonlinear effects 

become important. Therefore, in (5.4) we consider a sinusoidal driving term of 

frequency close to resonance [46]:  

 ( ) ( )2

* * *( ') sin 1 ' sin 'K t a t a tω ω δ τ = + ∆ = + ∆     , (5.15) 

where 1ω ω∆ = −  and 2~ 1ω δ∆ << . Also, we introduce a slow time scale 2 'tτ δ= , 

and solve {(5.2), (5.3), (5.4)} with the orderings 1 1~ ~
s

u N δ , 2

2 ~
c

N δ , 3

* ~a δ , 

where we replace 'd dt  with 2

't τδ∂ + ∂  in this two time scale treatment.    To the 

order δ , the solution is  

 
1

1

( )sin ( ', ) ( ) cos ( ', )

( ) sin ( ', ) ( ) cos ( ', ),s

u A t B t

N B t A t

τ θ τ τ θ τ

τ θ τ τ θ τ

= +


= −
 (5.16)  

where ~ ~A B δ  and ( )2( ', ) 't tθ τ ω δ τ= + ∆ .    To the order 2δ , from (5.3) we get 

2c
N  

 [ ] [ ]
2 2

2

2 1sin 2 ( ', ) cos 2 ( ', )
2 4

c

R AB B A
N t t C

r
θ τ θ τ δ

 −
= + + 

 
. (5.17) 

Again, using (5.9) and the expression for 1s
N  in (5.16), we get ( )2 2 2

1 4C A Bδ = − + .    

To the order 3δ , the driving term appears; in this order, (5.2) and (5.4) become 

 2

' 3 3 1 1 2t s s c

R
N u N u N

r
τδ∂ − = − ∂ − , (5.18)  
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 ( )2 2

' * sin '
t s
u N u a tτδ ω δ τ ∂ + = − ∂ + + ∆  . (5.19)  

After combining (5.18) and (5.19), we have 

  

 

( )

( )

( ){

( )

( )[ ] }

2 2 2

' 3 3

2

2

2 2 2

2 2 2

2 2

*

2 sin ( ', ) 2 cos ( ', )

cos ( ', ) 2 sin ( ', )

4 8 sin ( ', )

4 8 cos ( ', )

sin ( ', ) cos ( ', ) 4

cos ( ', ).

t
u u B t B t

A t A t

R
AB A B A t

r

A B B B A t

A B A t B t

a t

τ

τ

δ θ τ ω δ θ τ

θ τ ω δ θ τ

θ τ

θ τ

θ τ θ τ

θ τ

∂ + = + ∆

− + ∆ 

   − − −    

 + − − 

− + +

+

 (5.20)  

[In (5.20) we have dropped terms with dependencies of sin 3 ( ', )tθ τ  and cos3 ( ', )tθ τ , 

stemming from 1 2c
u N  in (5.18), as they represent driven response at a frequency far 

off resonance compared with the resonant terms.]    If A(τ) and B(τ) were arbitrary, 3u  

from (5.20) would be a linear combination of sin ( ', )tθ τ  and cos ( ', )tθ τ , and the 

ordering would break down as ω approached 1, as in (5.5)-(5.14). Therefore, we seek 

A(τ) and B(τ) such that R.H.S. of (5.20) is identically zero, i.e., we remove the 

secularity. The corresponding conditions are  

 
( ) ( )

( ) ( )

22 2 2

22 2 2

*

2 2 8 0

2 2 8 .

B A R r A A B

A B R r B A B a

τ

τ

δ ω

δ ω

 + ∆ + + =


− + ∆ + + = −

 (5.21)  

This yields 0A = , 0Bτ = , and B  is found to satisfy 

 ( )
2 3

*16 8 0R r B B aω+ ∆ + = . (5.22) 

Define 
2

*

2
s

o

c
B B

a R
= and rewrite (5.22) as  
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 3

* *64 32 0B Bα ω+ ∆ + = , (5.23)  

where the parameter
2 4

2 4

o

s

a R

r c
α =  characterizes the strength of nonlinearity. It can then 

be seen from (5.23) that when α << 1, * ~ 1B ω∆ , which recovers the behavior of the 

undamped driven oscillator. Furthermore, we note that the normalized amplitude for 

*B  effectively represents the amplification of B . FIG. 5.1 shows a plot of *B  

versus ω∆  from (5.23) at 0.2α = . The resonant peak shifts to lower frequency (with 

respect to the natural GAM frequency), and the width of resonance is 

( )10/3 1/3 1/33 2 ~ 0.3
c

ω α α∆ = . Here 
c

ω∆  is the critical value of ω∆  which gives one 

real root and two repeated real roots for *B  in (5.23). Note that 1 cω∆  increases with 

the sharpness of resonance, as indicated in FIG. 5.1. Moreover, the maximum 

amplification is bounded by the height within this layer 7/3 1/3 1/3

*max 2 ~ 5B α α− −≤  

(outside 1/3~ 0.3ω α∆ , the ordering in this calculation does not apply, but the linear 

expansion (5.5)-(5.13) apply and * ~ 1/B ω∆ ). Also note that the width of the 

resonance is consistent with the prediction from linear expansion as given in (5.13).  
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FIG. 5.1. The amplitude of u as a function of driving frequency (around the natural GAM frequency) 

for nonlinear GAM equations (α = 0.2). Notice that the width of resonance is finite and the 

amplification is bounded even no dissipative terms are included in the equations.  

    Next, to verify the above analysis, we solve {(5.2), (5.3), (5.4)} numerically with 

Mathematica 6.0, as an initial value problem. In our simulation, we use a sinusoidal 

driving term ( ) ( )2

*( ') 2 sin 1 '
o s

K t Ra c tω= + ∆ , and a damping term uγ−  is added to 

the RHS of (5.4), so that the system can relax to steady state at ' 1tγ >> . We choose 

2
s

c Rγ <<  so that this damping term will have little effect on the steady state. 

Initially we set all variables to be zero. In the following, we set ( )0.002 2
s

c Rγ = , 

1
s

c = , 10R = , and the amplitudes of the solutions are all measured at 4' 7.5 10t = × . 

    To get a power spectrum similar to the one shown in FIG. 5.1, we fix a particular 

flux surface r and driver amplitude 
o

a , drive the system with frequency 1 ω+ ∆ , and 

then measure the amplitude of u  at steady state. We repeat this iteration with 

different ω∆  and plot the amplitude (normalized to give the amplification) versus 

driving frequency. FIG. 5.2 shows the power spectrum at 3r =  and 0.01
o

a = . The 

spectrum shows a sharp change in amplitude at 
c

ω ω∆ = ∆ : this is as predicted in FIG. 

5.1. Also, the maximum amplification maxAmp  is less than 12, in our simulation, 
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while linear theory would predict ~ / 500
o

Amp ω γ = , suggesting a strong 

suppression of resonance because of the nonlinearity.  

 

FIG. 5.2. The power spectrum of nonlinear GAM oscillator. Notice the sharp decrease in amplitude 

when ω∆  drops below 
c

ω∆ , a property inherited from Duffing oscillator. 

We are also interested to verify the dependencies of the resonant width cω∆  and 

maximum amplification maxAmp  on the nonlinear parameter α predicted by (5.23) 

(i.e., FIG. 5.1). To check this, we i) iterate the system and get power spectra for 

different flux surfaces at fixed ( 0.01)
o

a =  (we use 1
s

c = , independent of r), and plot 

cω∆  and maxAmp  as a function of r; and ii) similarly obtain the spectra for different 

o
a , at a fixed flux surface ( 3)r = , and plot cω∆  and maxAmp  against 

o
a . The results 

are shown in FIG. 5.3 – FIG. 5.6. From our calculation [(5.23) and FIG. 5.1], we 

predict 1/3~cω α∆ , 1/3

max ~Amp α − , where 2 2~
o

a rα − ; our simulation results shown 

in FIG. 5.3 – FIG. 5.6 indicate 
0.686 0.003 0.65 0.01

~c oa rω ± − ±∆  and 

0 .69 0.01 0.73 0 .01

m ax ~ oAm p a r
− ± ± , which are in good agreement with theory. 
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FIG. 5.3. Logarithmic plot of resonant width against flux surface r at ao = 0.01, the slope is 

0.65 0.01− ± . 

 

FIG. 5.4. Logarithmic plot of maximum amplification against flux surface r at ao = 0.01, with a slope 

of 0.73 0.01± . 

 

FIG. 5.5. Logarithmic plot of resonant width against driver amplitude at r = 3, the slope is 

0.686 0.003± . 
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FIG. 5.6. Logarithmic plot of maximum amplification against driver amplitude at r = 3, with a slope of 

0.69 0.01±  

From the theory of the 1D linear harmonic oscillator, the amplification is 
o

ω γ  and 

the spectral width at resonance ~ γ  (Lorentzian). Both are independent of the driving 

amplitude 
o

a . However, in the nonlinear GAM equations, even in the undamped case, 

the amplification is limited, and both the amplification and sharpness of resonance 

depend on 
o

a . The parameter α increase as 2

o
a ; thus increasing 

o
a  decreases the 

amplification and broadens the peak around resonance. This nonlinear detuning effect 

makes it relatively harder to drive GAMs in a tokamak. 
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Chapter 6:  Implications for experiments to drive 
GAMs in tokamaks 

 

6.1 Introduction 

     In this Chapter, we use tokamak parameters to assess the efficacy of resonantly 

driving GAMs. We evaluate the power requirement for resonanting GAMs by 

assuming the dissipation is from classical collisions and evaluating the enhanced 

damping from phase mixing in Sec. 6.2. Also, we evaluate the strength of the 

nonlinearities to investigate their significance in tokamaks. Hallatschek and McKee 

[5] have proposed the driven GAM experiment for DIII-D in Sec 6.3. Thus, we will 

take the DIII-D tokamak as an example, and we will consider both the outer edge 

region and the core region. In the former case we take the temperature 200T eV= , 

and we use 1T keV=  for the latter. The number density is typically 19 310n m
−= , 

major radius of the tokamak 1.5R m= , minor radius 0.5a m= , and toroidal field 

2B T= . Deuterium plasma is used. 

    Finally we will summarise our study of GAMs, i.e. the second part of this 

dissertation (Chapter 3 to Chapter 6), in Sec. 6.4  

6.2 Effect of phase mixing on damping rates and power 

requirements 

    GAMs could be excited in tokamaks experimentally by, for example, external time 

varying magnetic fields created by coils which drive an axisymmetric oscillation of 

flux tubes in the tokamak. The temperature and, so, the GAM frequency, decreases 
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radially outwards. As a result, the magnetic flux surfaces on which GAMs are to be 

excited can be chosen by the driver frequency ω  of the external field. 

    Consider that we excite GAMs at some flux surfaces at ~
o

r r , i.e. ( )
G o

rω ω= , 

with a corresponding radial spread x∆ . The power required is given by 

 2

max 2P muγ= , (6.1) 

where γ  is the damping rate, m  is the mass of the plasma within the resonantly 

driven magnetic surfaces, and maxu  is the amplitude of the (oscillatory) poloidal flow 

at resonance. Such an oscillation gives a time-varying velocity shear of amplitude  

max' ~V u x∆ . The idea is to excite GAMs to a large amplitude such that the 

associated shear flow is comparable to the growth rate of the plasma turbulence, so as 

to obtain a significant stabilization effect, i.e., max' ~
growth

V u x γ∆ > . We assume the 

growth rate of the instability to be suppressed to be of order the drift frequency, 

*~
growth i s n

k c Lθγ ω ρ= , which is expected to be the maximum of the instability 

growth rate. Here kθ  is the poloidal wavenumber of the drift mode, 
i

ρ  is the ion 

Larmor radius and 
n

L  is the radial scale length of the density profile. In the 

following, we assume ~ 1
i

kθ ρ , where maximum growth is expected, and ~
n

L a . 

This gives an estimate of the required poloidal flow, max ~
s

u c x a∆ . The spatial 

spread x∆  is related to the width of frequency spectrum as 

~ ' ~
G G

x a a Qγ ω γ ω∆ = , with the Q-factor 
G

Q ω γ= .  Substituting the above 

scalings into (6.1), and taking ( )2 22 2i im NM nM Ra x aπ= = ∆ , we get  

 ( )
42 2~ 4

G G
P nRa Tπ ω γ ω . (6.2) 
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For collisional damping, the damping rate is known to be ~
col ii

γ ν , the ion-ion 

collision frequency, which is proportional to 3/2T . This is the rate expected from 

magnetic pumping. On the other hand, the effective damping rate associated with 

phase mixing is given by ( )
1/3

2
1/3

2 2 2

2
~ ' ~ i

ph i ii G ii G
a

ρ
γ ρ ν ω ν ω

 
 
 

[from (4.7)]. We 

evaluate damping rates and the corresponding Q-factors, spatial spreads and power 

requirements [from (6.2)], for both the edge ( 200T eV= ) and the core ( 1T keV= ). 

We summarize our results in Table 6.1. 

Table 6.1. Estimated damping rates, Q-factors, spatial spreads and power requirements, by classical 

collision and phase mixing, at the edge and core of tokamak. 

T 200eV (edge) 1keV (core) 

 Collisional  ( )iiν  Phase mixing ( )ph
γ  Collisional  ( )iiν  Phase mixing ( )ph

γ  

( )1sγ −  1800 640 180 860 

Q 71 200 1600 330 

x∆ (cm) 0.71 0.24 0.031 0.15 

P (W) 25 0.36 0.0010 0.53 

 

    From Table 6.1, in the edge region, collisional damping is more important than that 

from phase mixing. The power requirement for the former is 25W, with a spatial 

spread of 0.71cm: these are very favorable conditions. For the core, damping by phase 

mixing is more important, as the power dissipation by collisional damping drops 

rapidly as temperature increases. We find that the power requirement for phase 

mixing is less than 1W with a spread less than 1cm, which is very favorable.    We 

note that the scaling of T is important in our estimation, since 5/3~ii ph Tν γ − , and 

dissipation from phase mixing dominates towards the core. Also, since 
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13/2~
collision

P T
−  and 1/6~phP T , dissipation by collision damping decreases strongly as 

temperature rises while that of phase mixing is relatively insensitive to temperature 

change. Therefore, if the power requirement is low in the edge, it may still be low in 

the core.   

    Similar estimates for power requirements for excitation of GAMs in the edge of the 

DIII-D tokamak were also done by Hallatschek and McKee. They found a power 

requirement of 700W. Instead of using ion-ion collision as the basis of damping, they 

assumed a Q-factor of 20 obtained from the turbulence simulation, for their estimates. 

Thus their Q-factor is about 1/3 of ours at the edge (based on 
ii

ν ). Their smaller Q-

factor is possibly due to turbulence broadening. They also used 2x cm∆ = , apparently 

estimated directly from the simulation. This gives them a higher estimate of power 

dissipation. Notice that a wider spatial spread x∆  implies a thicker transport barrier 

for the same flow shear, which leads to enhanced confinement. However, as 

discussed above, a large x∆  corresponds to a small Q-factor thus the resulting power 

dissipation [from (6.2)] is higher.       

    In our above calculations for phase mixing, we have used ~
n

L a , where a = 50cm. 

This estimate is applicable to the core plasma and also, generally, to edge plasma in 

L-mode. L-mode in tokamaks refers to shallow gradients at edge, whereas H-mode 

refers to much steeper gradients wherein 
n

L  and 
T

L can be of order 5cm. We have 

calculated x∆  and power P also for these steep gradient situations. We find that 

phase mixing dominates, with a required power of 17W. However, the corresponding 

~ 0.1x cm∆ , which is of order the Larmor radius 
i

ρ . At these short distances, the 

effect of finite Larmor radius on velocity shear stabilization should be examined. 
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6.3 Comparison of the effect of nonlinearities and the effect of 

damping 

    In Chapter 5, we show that the nonlinear convective terms in the nonlinear GAM 

equations can lower the amplification of resonantly driven GAMs as the driver 

amplitude 
o

a  increases. On the other hand, we know that in the linear model, the 

amplification is limited by the damping coefficient, with the amplification going as 

~
G

ω γ . To determine whether nonlinearities are more important, we investigate the 

nonlinear system {(5.2),(5.3),(5.4)} in Sec. 5.3 again, and add a damping term 

( )G uγ ω  on the L.H.S. of (5.4), and then compare the size of the dissipative term 

and the nonlinear terms in the equations. We assume 2~
G

γ ω δ  in the expansion 

(5.15)-(5.23); then the system can be solved in a similar manner as in Sec. 5.3. (We 

did not solve the nonlinear system with damping in Sec. 5.3, so as to illustrate the 

nonlinear effect clearly.) In the presence of the damping term, similar to the linear 

harmonic oscillator, the solution is not exactly in phase with the driving term, i.e. 

( )A τ  in the ansatz (5.16) is no longer zero, in fact, ( ) 3~ ~GA τ δ γ ω δ . In this case, 

it is more convenient to write sinA X ψ=  and cosB X ψ=  and solve for the 

amplitude ( ); ,X τ γ α  and the phase difference (from the driver term) ( ); ,ψ τ γ α  

respectively. Repeating the expansion (5.17)-(5.21) with the introduction of the 

damping term, we get 

 ( ) ( )
1/2

2 22

* * *64 32 32 0X Xα ω γ + ∆ + + =  
, (6.3) 



 

 80 

 

where  
2

*

2
s

o

c
X X

a R
=  and * G

γ γ ω= , and  

 

( )
*

2
2 2

* *

sin

2 32X

γ
ψ

ω α γ
=

∆ + +

. (6.4) 

Note that in the limit * 0γ → , the phase ψ  goes to zero and (6.3) reduces to (5.23). 

On the other hand, in the limit 0α → , (6.3) implies ( )
1/2

2 2

* *4X ω γ
−

≈ ∆ + , which is 

the Lorentzian spectrum for a linear harmonic oscillator. 

    We now use (6.3) to show that the nonlinear effect is self-consistently small 

compared with the dissipative effect. From (6.3), assume 2

* *32Xα γ�  and for 

0ω∆ =  (i.e., at resonance), * *~ 1X γ . Then the consistency condition needed to 

neglect nonlinearities is  

 3

*32α γ� . (6.5) 

Equation (6.5) can also be interpreted heuristically: we observe from FIG. 5.1 that the 

nonlinear effect limits the amplification to 1/3~ α − , and we know that in the harmonic 

oscillator the amplification at resonance is 
G

ω γ . Therefore, if the latter is more 

important, which makes the excitation more expensive, we will have 1/3

G
ω γ α −<< , 

which is equivalent to (6.5).  

    We recall 
4 2

2 4

o

s

R a

r c
α = , and use 2

o

P
a

m

γ
=  for the driver amplitude: then, in the edge 

region ( 200T eV= ), where classical collisional damping is more important, we find 

the ratio of nonlinear effects to damping effects to be 3

*: 32 1: 250α γ = . For the 

estimation by Hallatschek and McKee, which assumed a turbulence scenario with 
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20Q =  and 700P W= , the ratio is 1: 390 . In the core, ( ~ 1T keV ), where damping 

from phase mixing dominates, the ratio becomes 1: 640 . Therefore, we conclude, 

from the self-consistent check, that nonlinear effects are not important for the 

experimental parameters considered.  

 

6.4 Summary of Chapter 3 to Chapter 6 

    In this section, we give a summary of the second part of this dissertation from 

Chapter 3 to Chapter 6.  In summary, we have investigated two factors which may 

affect the efficacy of driving GAMs resonantly in tokamaks, namely the damping 

enhancement from phase mixing, and the detuning of resonance by nonlinearities. We 

began with describing the physics of GAMs from MHD equations and derive a closed 

set of nonlinear reduced equations as the basis of our analysis. We then linearize the 

reduced equations, and solve the homogeneous problem, to establish the damping 

factor ( )
3

exp ot t −
 

, with 1/3~
o

t ν −  and ν  the coefficient of viscosity. This decay is 

faster than exponential and is a characteristic factor for phase mixing damping, as 

also shown by Heyvaerts and Priest for Alfven waves. We also study the driven 

problem, by asymptotic analysis and simulation. From both approaches, we find a 

spatially localized steady state, with a spatial spread of 1/3 1/3~ '
o

s ν ω −∆ , and the peak 

of the resonant 1/3

max ~u ν . This is broader than that of a typical harmonic oscillator 

model, implying that phase mixed damping increases the challenge to drive GAMs in 

a tokamak.  
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    We then consider the driven nonlinear non-dissipative equations, by an asymptotic 

analysis and an expansion in small driving amplitudes in the vicinity of resonance. 

We find that the system is similar to the Duffing oscillator, with the parameter 

4 2

2 4

o

s

R a

r c
α =  characterizing the strength of nonlinearity, and we find that the peak and 

width of the resonance are 1/3~ α −  and 1/3~ α  respectively. This solution is consistent 

with our simulations. Thus, the resonance will be suppressed if nonlinearity is 

important. 

    Finally, we estimate the power requirement for resonating GAMs in a tokamak, 

using typical experimental parameters for the DIII-D tokamak. We compare our 

numbers with a similar estimation by Hallatschek and McKee, who assume turbulent 

scale sizes to estimate the spatial localization. We find that classical collisions 

dominate at the edge, and that the corresponding spatial spread of GAMs is 3 times 

smaller than Hallatschek’s estimates. In the core where the temperature is higher, we 

find phase mixing is more important. In both cases, however, the power requirement 

is small, thus advocating for the proposed experiment.  We also estimate the 

nonlinear Duffing type terms for the operating parameters of the experiment, and find 

that nonlinearities will not be important compared with the damping effects.       
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Chapter 7:  SUMMARY and CONCLUSION 

 

    In this dissertation we have considered some aspects of velocity shear stabilization 

of magnetized plasma instabilities. In the first part, steady externally forced flow 

shears are considered. In the second part, resonantly excited oscillating flow shears 

are considered.  

    In the first part of the dissertation, we perform 2D simulations to explore the 

stabilizing effect of flow shear on ideal interchange modes, in both linear and 

nonlinear regimes. We show that a cross-field velocity shear V’ suppresses growth 

rates over a broad spectrum of wavenumbers in linear regimes. The effect is more 

significant for modes with either very short or very long wavelengths, leaving the 

unstable region in the k⊥  spectrum to condense and peak at 6
y

m = , as V’ increases. 

This is in contrast with the shear-free spectrum, which gives kγ ⊥∼  at long 

wavelengths and asymptotes to a constant in the short wavelength limit (ignoring 

viscous damping).  We also find that the spectrum in the nonlinear turbulent steady 

state is similar to that of the linear spectra: the peaking wavenumber corresponds to 

roughly circular convection cells of size comparable to the density profile scale 

length. A spatial Fourier transform of residual fluctuations at different shear strengths 

indicates that the spectrum peaks at 6
y

m = . Moreover, both the average density 

fluctuation and the fractional flattening of the density profile in turbulent steady state 

decrease as V’ increases. Complete stabilization is shown to be possible when V’ is 

greater than a few times the classic interchange growth rate, wherein we observe that 

the original (RT unstable) density profile is recovered and the density and flow 
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profiles revert to laminar. In addition, we measure the particle flux in turbulent steady 

state and compare this with the classical diffusive transport. We show that the latter 

eventually dominates and accounts for all the transport as V’ increases, again showing 

complete stabilization in the strong shear limit. We compare our simulation results 

with magnetic fluctuation measurements from MCX. This experiment studied 

interchange modes in the presence of flow shear. We show that the experimental 

wavelengths measured agree with simulation results if done at higher viscosity. We 

confirm that this level of viscosity is consistent with the Reynolds numbers at the 

edge of the plasma in MCX, where the measurements are taken. Both the simulation 

and the data are consistent with elongated convection cells in the nonlinear regime.     

Finally, we investigate the effects of Kelvin-Helmholtz instabilities on the system; the 

latter instability must be present in any flow shear system. We show that we can 

stabilize an RT unstable configuration with flow shear only when the generalized 

Rayleigh Inflexion criterion is simultaneously satisfied.  This restriction still allows a 

broad parameter space in which the RT mode is effectively suppressed.  

    In the second part of the dissertation, we study some factors which may affect the 

driving of Geodesic Acoustic Modes (GAMs) at resonance to establish significant 

oscillating flow shear stabilization in tokamaks. These factors are (1) enhanced 

damping from phase mixing, and (2) the detuning of resonance by nonlinearities. We 

first investigate phase mixing in Chapter 4, and find that the damping of the mode is 

faster than exponential, with an effective time constant 1/3~
o

t ν − , where ν  is the 

coefficient of viscosity. We then study the driven problem in Sec 4.3, which 

resembles the situation of a proposed experiment to drive GAMs in tokamaks. We 
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find a spatially localized steady state, with a spatial spread of 1/3 1/3~ '
o

s ν ω −∆ , 

corresponding to a resonant peak of 1/3

max ~u ν , which is broader than the standard 

harmonic oscillator model. Thus phase mixed damping may broaden the resonance of 

GAMs in tokamak.   We next study nonlinear detuning of GAMs, by nonlinear 

perturbation theory, and find that the system is similar to the Duffing oscillator, with 

the parameter 
4 2

2 4

o

s

R a

r c
α =  characterizing the strength of the nonlinearity. We show 

that the peak and width of the resonance scale as 1/3~ α −  and 1/3~ α , respectively. We 

show that our analytic calculations are consistent with simulation. Thus, GAM 

resonance could be suppressed if the nonlinearity is important. Finally, we estimate 

the power requirements to resonate GAMs in a tokamak for experimental parameters 

in the DIII-D tokamak. We consider both the collisional and the phase mixing 

models, and compare with similar estimations done by Hallatschek and McKee which 

assumed turbulent broadenings. We find that classical collisions dominate at the edge, 

and the corresponding spatial spread of GAMs is ~1/3 of Hallatschek and McKee’s 

results. In the core of tokamak, where the temperature is higher, phase mixing is more 

important. In both cases, the power requirement is small and thus the proposed 

experiment is cost effective.  We also estimate the nonlinear Duffing terms in the 

operating range of the experiment and find that nonlinearities are not important 

compared with the damping effects.       
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Appendices 
 

A. Alfven waves propagating in an inhomogeneous, 

dissipative medium 

    In this Appendix, we review the phase mixing of Alfven waves. We consider 

Alfven waves propagating in an inhomogeneous medium, with the inhomogeneity 

perpendicular to the magnetic field and the polarization of the Alfven wave. This 

calculation was done by Heyvaerts and Priest [9]; here we give a slightly different 

derivation with assumptions that make the problem simpler but still serve our 

illustrative purpose. We show that the decay from viscous and resistive dissipation is 

faster than exponential, with the decay factor 3exp ( / )
o

t t −  , where the time constant 

1/3~
o

t ν − (or 1/3~ η − ), ν  and η  are coefficient of viscosity and resistivity of the 

plasma respectively. This is another example to illustrate the enhanced dissipative 

effect due to phase mixing in addition to GAMs in a tokamak, discussed in Sec. 4.2.    

We then verify the results by simulation in the second part of this appendix, for both 

the undriven and driven Alfven system. 

A.1 Equations 

      Consider a magnetized plasma with magnetic field 0
ˆ( )

z
B B x z=
�

 (rectangular 

coordinates). Assume 
z

B B⊥ <<
�

. The perpendicular components of the momentum 

equation and Faraday’s law are, respectively, 
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2

( )
8

o

u B
n u u nT n u

t
ν

π
⊥

⊥ ⊥ ⊥ ⊥ ⊥

 ∂ 
+ ⋅∇ = −∇ + + ∇ ⋅ ∇  

∂   

�
� � � �� � �

, (A.1) 

 ( ) ( )
2

2

4
t z z z

c
B u B u B B u B

η

π
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥∂ = ∇ × × − ∂ − + ∇
� � � � �� �

, (A.2) 

where ν is the coefficient of viscosity and η is the resistivity of the plasma, and we 

assume the system is isothermal and ion mass 1M = . 

     Consider a 1D equilibrium given by  

 2( 8 ) 0
x o z

nT B π∂ + = , (A.3) 

and u⊥

�
 and B⊥

�
 are zero at equilibrium. Now consider perturbations of u⊥

�
 and B⊥

�
 in 

the y direction, i.e., only consider Alfven wave of y-polarization. (A.1) and (A.2) 

become 

 ( ) ( )t y x x y o z ynu n u B Bν∂ − ∂ ∂ = ∂ �� � , (A.4) 

 2 2( / 4 )
t x y o z y

c B B uη π ∂ − ∂ = ∂ 
� � , (A.5)  

where ~ 1y A y zu B B <<�� v  and ( ) ( )
A z

B x n x=v .     For simplicity, we further 

assume 2 4cν η π= , so that we only have one parameter specifying dissipation. 

Then, define a new variable ( ) yw n x u=� � , and rewrite  (A.4) and (A.5) as 

 ( )( )2 2 2' 4 '' 2t x z yn n n n w Bν ∂ − ∂ + − = ∂
 

��
A

v , (A.6) 

 2[ ]t x y zB wν∂ − ∂ = ∂� �
A

v . (A.7)  

We make the ansatz that ( )2 2 2' 4 '' 2
x

w n n n n w∂ >> −� �  and drop the latter term in 

(A.6). We will check that the solution so obtained will be consistent with this 

approximation for 2
z

t kπ>>
A

v .  We then get a system of coupled wave equations: 
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2

2

[ ]
.

[ ]

t x z y

t x y z

w B

B w

ν

ν

∂ − ∂ = ∂ 


∂ − ∂ = ∂ 

��

� �

A

A

v

v
 (A.8) 

    We now solve (A.8) as an initial value problem with the ordering 

2 2~ 1
x t A

t Lν ε η∂ ∂ = <<
v

, where 2 /
A

t kπ=
Ao

v , L
v

 is the scale length of the 

Alfven speed profile along the x direction, and 
Ao

v  is the Alfven speed at some 

particular reference point 
o

x , and we assume ~ 1
A Ao

v v . We consider the initial 

condition of a sinusoidal wave with wave vector ˆk kz=
�

: 

 

0

1
exp( )

1y t

w
ikz

B
=

   
= −   
  

�

�
. (A.9) 

    To lowest order we get a wave solution travelling in the z direction without 

dissipation: 

 ( )0

0

1
exp ( )

1y

w
ik z t

B
+

   
= − −   
  

�

� A
v . (A.10) 

To first order, we assume the solution is of the form containing an oscillatory part 

given by (A.10), multiplied by an amplitude which is slowly varying with time 

because of dissipation,  

 ( )0

0

0

1
( )exp ( )

1y

w
a ik z t

B
τ

+

   
= − −   
  

�

� A
v , (A.11)  

where tτ ε= . Then, we replace 
t

∂  with 
t τε∂ + ∂  in (A.8). To first order in ε : 

 2 2 2 2

0 0( ' " )da d k ik aτ τ ν τ ν= − +
A A

v v ,  (A.12) 

which gives   

 2 2 3 2

0 ( ) exp ' 3 " 2a t k t i k tν ν = − + A A
v v . (A.13) 
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 We then have the travelling wave solution: 

 
2 2 3 2

0

0

1 ' "
exp exp ( )

1 3 2y

w k t i k t
ik z t

B

ν ν

±

      
= −      
      

�
∓ ∓

� ∓

A A

A

v v
v , (A.14)  

where the subscript + and - indicates travelling in the direction of +z and –z, 

respectively. 

    We need to check the consistency conditions for our expansion 2 ~
x t

ν ε∂ ∂ . 

From (A.14), 2

0 0t x
w wν∂ << ∂� �  is valid when  

 
1

'
t

kν
<< A

A

v

v
. (A.15)  

We then come back to check our earlier assumption ( )2 2 2' 4 '' 2
x

w n n n n w∂ >> −� � . 

From (A.14) again, to lowest order of ε , we have ( )2 2 2 2

0 0~ ' ''
x

w k t ik t w∂ − +� �
A A

v v . If 

( ) ( )
2 2

' ~ ' ~ "n n n n
A A

v v , the effect of the terms we neglected is small compared 

with dissipation when 2
z

t kπ>>
A

v . 

    From (A.14), we note that the decay rate of the Alfven wave in the presence of 

phase mixing is of the form ( )
3

exp ot t −
 

, which is faster than the usual exponential 

decay, with the time constant 1/3~
o

t ν − .    This has been shown by Heyvaerts and 

Priest, except they assumed a solution of constant frequency (in space) and found that 

the wave decays as ( )
3

exp z L −
 

, where z is the distance from the origin. 

    In a similar way, we can obtain standing Alfven wave solutions when z is confined 

in an interval from 0 to Lz instead of whole space. Consider the boundary conditions 
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( 0) ( 0) 0

( ) ( ) 0

z y

z z y z

w z B z

w z L B z L

= = ∂ = = 


= = ∂ = = 

��

��
. (A.16)  

By superimposing Alfven waves travelling in opposite directions in (A.14), we find 

the standing waves solutions 

 
( )

( )

2 2 3
0

0 1

sin 1 " 2 sin( )'
exp

3 cos 1 " 2 cos( )

l ll

y l l

k t t k zw k t

B k t t k z

νν

ν

 +       = −    − +      

�

�

A A AA

A A A

v v vv

v v v
, (A.17) 

 
( )

( )

2 2 3
0

0 2

cos 1 " 2 sin( )'
exp

3 sin 1 " 2 cos( )

l ll

y l l

k t t k zw k t

B k t t k z

νν

ν

 +       = −    +      

�

�

A A AA

A A A

v v vv

v v v
, (A.18)  

where 2
l z

k l Lπ= , and the same consistency condition (A.15) applies.  

 

A.2 Numerical simulations for undriven and driven standing 

Alfven waves 

     In this section, we use a 3D dissipative MHD code (developed by Guzdar et al 

[39]) to illustrate the enhanced dissipation in the presence of phase mixing for 

standing Alfven waves. Our simulations are based on (A.1) and (A.2) with the 

equilibrium given by (A.3). The size of the simulation box is 
x y z

L L L× × , with 

1
x y

L L= = , 5
z

L = , and the grid size is 401 7 31
x y z

N N N× × = × × . The viscous 

coefficients [normalized with ( 2)
x A x

L x L=v ] are 510x yν ν −= = , 310
z

ν −= , and the 

resistivities [normalized with ( 2)
x A x

L x L=v ] are 2 2 2 2 54 4 10x yc cη π η π −= = , 

2 2 34 10
z
cη π −= . We use an equilibrium density profile 

0.1
1 cos

x

x
n

L

π

π
= + , and 

10
o

T = , so that the magnetic field at equilibrium is given by (A.3). We use periodic 
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boundary conditions for all variables at both ends of the y and z direction, and free 

slip boundary conditions for density and magnetic field, fixed end boundary 

conditions for the flow, at both ends of the x direction. The equilibrium profiles of 

density and magnetic field are shown in FIG. A.1, and the corresponding profile in 

Alfven speed is shown is FIG. A.2. 

 

FIG. A.1. The density and magnetic field profile at equilibrium. 

 

FIG. A.2. The Alfven speed profile corresponds to the profiles in FIG. A.1.  

A.2.1 Initial value problem for undriven system 

    We are going to simulate standing Alfven waves along the z and polarized in the y 

direction, and investigate the decay. The initial conditions are ( 0) 0
y

nu t = =� , 
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( )( 0) ( 1 2) 0.01cos 2y o zB t B x z Lπ= = =� , i.e., 
z z

Lλ = . The time evolution of 
y

B  at 

the center of the box is shown in FIG. A.3, and the corresponding plot using uniform 

density profile (i.e., constant 
A

v ) is shown on the same graph for comparison. The 

figure indicates a rapid decay when the profile is nonuniform, while for the uniform 

profile, the time constant for dissipation ( )
1

2 2

1/ ~ 4 633
e z z A

c k tτ η π
−

= . 

 

FIG. A.3. Time evolution of Alfven wave at the center of the system showing dramatic decay when 

phase mixing occurs. The corresponding oscillation using a flat profile is shown for comparison.   

    Furthermore, we can measure the decay from the simulation quantitatively. 

Consider our equation set (A.8) without dissipation, i.e., 0ν = . We multiply the first 

and second one with w�  and yB�  respectively, and sum the two equations; we get  

 ( ) ( )2 21

2
t y z y

w B wB∂ + = ∂� �� �
A

v . (A.19) 

By averaging (A.19) along the z direction, the R.H.S. of  (A.19) vanishes and we 

define the quantity  

 2 21
( , ) ( , )

2
y y

z
E x t nu B x t= + �� , (A.20) 
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which is time independent for any particular x plane when the medium is non-

dissipative. Theoretically, from (A.17), ( , )E x t  decays as ( )
3

exp 2 ot t −
 

, where 

( )
1/3

2 23 '
o l

t kν=
A

v . Therefore, we evaluate log ( , )E x t  (at the mid-plane x = 1/2) 

from our simulation and make a plot of log ( 1/ 2, )E x t=  versus 3
t  is shown in FIG. 

A.4. The curve is a straight line with a negative slope for 140[ / ( 1/ 2)]
x A

t L x≤ =v , 

and levels off after that. The slope of the linear portion is 

( ) 5 31.20 0.01 10 [ / ( 1/ 2)]x AL x
− −− ± × =v , which is in good agreement with the 

theoretical value 5 31.09 10 [ / ( 1/ 2)]
x A

L x
− −× =v . The curve levels off as the 

consistency condition (A.15) breaks down. To illustrate this, we substitute the 

parameters used in our simulations into (A.15), and we get 

3270[ / ( 1/ 2)]
x A

t L x
−<< =v  for (A.17) to be valid, thus the fact that our simulations 

show that (A.17) is no longer valid in describing the solutions to the system for  

140[ / ( 1/ 2)]
x A

t L x> =v , is an expected result. 
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FIG. A.4. A plot of log ( , )E x t  versus 
3

t , which shows the decay goes at ( )
3

exp 2 ot t −
 

 before 

the consistency condition breaks down at ~ 140( / )
x A

t L v  and the curve levels off. The parameters 

used are 
510 [ ( 1/ 2)]

x x A
L xν −= =v , 1

o
B = , 2

z z
k Lπ= . 

A.2.2 Steady state solution for driven system 

    Next, we investigate the effect of phase mixing on Alfven wave driven by a 

momentum source. We add a momentum source to (A.4), which becomes: 

 ( ) ( ) sin cost y x x x y o z y o znu n u B B F k z tν ω∂ − ∂ ∂ = ∂ +�� � . (A.21) 

Here the driving amplitude 
o

F  is a constant, and we use 2
z z

k Lπ= , i.e., we try to 

drive a standing Alfven wave along the z direction. Other parameters and boundary 

conditions are the same as our simulation for the undriven problem. We start the 

simulations with zero initial conditions, and 510
o

F
−= , and let the system come to a 

steady state. The amplitudes of the Alfven wave, yB� , at the center of the simulation 

box, are measured as a function of driving frequency, and are plotted in FIG. A.5. The 

spectrum corresponding to flat density profile (and therefore flat Alfven speed 

profile) is also plotted in the same graph. 
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FIG. A.5, Power spectra measured at the center of the system for driven standing Alfven wave, with 

and without a profile in Alfven speed. Here ( 1/ 2)
o z A

k xω = =v  is the local resonant frequency at 

the center, and 
510 [ / ( 1/ 2)]

x x A
L xη −= =v ,  

310 [ / ( 1/ 2)]
z x A

L xη −= =v  and 
510

o
F

−=  are 

used. 

When the profile is flat, the height and width of the spectrum [full width at half 

maximum (FWHM)] are 33.1 10−×  and 35 10−×  respectively. While a simple 

harmonic oscillator model predicts the height ( )2 5~ ~ 6 10
o z z

F kη −×  and width 

3~ ~ 1.3 10
z z A
kη −×v , the simulation shows that in the case of flat profile the system 

behave as a driven harmonic oscillator. However, for the case where the profile is 

given by FIG. A.2, the height of the peak is only 42.5 10−× , and the spectrum has a 

wider spread with FWHM = 0.07. The amplification is smaller and the bandwidth is 

broadened, compared with the homogeneous case. From the theory of phase mixing, 

the effective damping rate can be roughly estimated as 

( )
1/3

2~ ' ~ 0.03( / )
eff x z A x A

k Lγ η v v , which gives 4~ 4 10o effF γ −×  and 
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2~ 2 10eff oγ ω −× . The deviation from the simulation result is mainly due to the fact 

that the profiles used are not linear; thus the damping rate will also depend on higher 

derivatives of the profile to a lesser extent.  
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B. Effects of nonlinearities on driving magnetosonic wave in 

uniform plasma 

    This section provides an illustration of the effects of nonlinearities in the excitation 

of a magnetosonic wave by a resonant momentum source. We first show by an 

expansion in small driving amplitude, that the system behaves similarly to that of 

linearized equations when the driving frequency is far off the resonant frequency, and 

that nonlinear terms enter when the system is gets close to resonance, causing the 

expansion to break down. Next, we investigate spectra in the vicinity of the resonance 

by simulation, and show that the resonance is suppressed in comparison with the 

linear system. 

B.1 Equations and expansion in small amplitudes 

    We start with MHD equations with ˆ
o o

B B z=
�

, i.e., in equilibrium, and we assume 

z
B B⊥ <<
�

. The density n  is also uniform, and the system is isothermal. The 

governing equations are continuity, momentum equation (in the perpendicular 

direction; we assume 1M = ) and Faraday’s law (in the direction of the magnetic 

field): 

 ( ) 0tn nu∂ + ∇ ⋅ =
� �

, (B.1) 

 
2

8
o

u B
n u u nT F

t π
⊥

⊥ ⊥ ⊥ ⊥

 ∂ 
+ ⋅∇ = −∇ + +  

∂   

�
� � �� �

, (B.2) 

 ( )t z z z
B u B B u⊥ ⊥ ⊥∂ = ∇ ⋅ −

� � �
. (B.3) 
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First, to simplify the problem, we consider the low β  limit, i.e., ( )24 1
o

nT Bπ << . In 

that a case, we only need to consider (B.2) and (B.3). We consider a 2D slab 

geometry, of size 
y z

L L× . A standing magnetosonic wave is driven in the y direction, 

with the momentum source ˆ sin cos
o

F yF ky tω=
�

, 
o

F  = constant. FIG. B.1 shows a 

schematic view of the system. Since 
x

u  and B⊥

�
 are unexcited and remain zero 

throughout, the y-components of (B.2) and (B.3) form a complete set with variables 

{
y

u ,
z

B }. 

 

FIG. B.1. Schematic view of driving standing magnetosonic wave in a 2D slab. 

    For clarity, we normalize 
y

u , 
z

B , y  and t  (and also 1ω− )  in (B.2) and (B.3) to 

A
v , 

o
B , 

y
L  and 

y A
L v  respectively, where 

4

o
A

B

nπ
=v , and we assume 1

y A
L =v  

in our normalization. Then we rewrite our equations as  

 ( )2 2 2 sin sin
t y y y z
u u B ky tε ω∂ + ∂ + = , (B.4) 

 ( ) 0
t z y y z
B u B∂ + ∂ = , (B.5) 
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where ( )2

o y A
F L nε = v . We see that the convection of flow and the magnetic energy 

terms account for the nonlinearities of the system. The y-flow 
y

u  and 
y z
B∂  are zeros 

at 0y =  and 
y

y L= .  

    We solve {(B.4),(B.5)} by a expansion in the driver amplitude ε : 

 

2

1 2

2

1 2

...

1 ...

y

z

u u u

B B B

ε ε

ε ε

 = + +


= + + +
. (B.6) 

To order ε , we have 

 
1 1

1 1

sin sin

0;

t y

t y

u B ky t

B u

ε ω∂ + ∂ =


∂ + ∂ =
 (B.7) 

the corresponding solution is  

 
1 2 2

1 2 2

sin cos

cos sin .

u ky t
k

k
B ky t

k

ω
ε ω

ω

ε ω
ω


= − −


 =
 −

 (B.8) 

To order 2ε , we have  

 
( )

( )

2 2

2 2 1 1

2 2 1 1

2

;

t y y

t y y

u B u B

B u u B

∂ + ∂ = −∂ +


∂ + ∂ = −∂
 (B.9) 

we note that the nonlinear terms in the system become the inhomogeneous term in the 

second (and higher) order equations. (B.9) gives a second order correction to (B.8):  

 

( )
( )

( )
( ) ( )

2 2

2

2 3
2 2

2 2 2

2 2

2 3 2 22 2

3
sin 2 sin 2

8

3 1
cos 2 cos 2 cos 2 .

88

kk
u ky t

k

k k
B ky t ky

kk

ωω
ε ω

ω

ω
ε ω ε

ωω

 +
 = −
 −


+
= − +

−−

 (B.10) 
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The second order corrections, i.e., the nonlinearities, become important, when 

2 1~u u , which implies 

 | 1|k kδ ω ε= − < . (B.11) 

Thus, the expansion breaks down when the driving frequency is close to the 

frequency of any one of the harmonics in which condition (B.11) holds. The 

amplitude of the oscillation of 
y

u (at any particular point other than the end points) is 

shown schematically in FIG. B.2. In the next subsection we will try to find the 

amplitude and width of the spectrum by simulation. 

 

FIG. B.2. The schematic diagram showing the breaking down of linear expansion as the driver 

frequency approaches the resonant frequency. 

 

B.2 Simulation of the system at resonance 

Next, we simulate the system {(B.4),(B.5)} in the vicinity of the resonance in order to 

investigate the behavior of the system in the nonlinear regime, as indicated by our 

schematic diagram FIG. B.2. Mathematica 6.0 is used. We add a viscous term 2

y yuν∂  
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and a resistive term 2

y zBη∂  on the R.H.S. of (B.4) and (B.5) respectively, so that the 

system can relax to the steady state even if the initial conditions are not the steady 

state solutions. The dissipative coefficients ν  and η  are chosen such that 

2 2~k kν η ω<< , thus having negligible effects on the steady state. We start from zero 

initial conditions, and k π=  for the driver term, i.e., we drive a half wavelength 

mode along the y direction. We use 310ν −=  and 310η −=  throughout the simulation. 

The system is allowed to reach steady state and the amplitude in 
y

u  is noted. For a 

fixed driver amplitude ε , we plot the amplitude of 
y

u  against the driver frequency 

(in δ ), and obtain a frequency spectrum. FIG. B.3 shows the spectra obtained at 

different driver amplitudes, ε , as parameter. From linear harmonic oscillator theory, 

the amplification is given by 2 2 ~ 300
o

k k kω ν ν= , and the peak of spectra would 

be ~ 300ε . However, FIG. B.3 shows that the amplification is significantly lower 

than the linear theory, and the spectra are not Lorentzian. The resonance is also 

broadened. 
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FIG. B.3. The spectra of driven magnetosonic wave at different driver amplitude ε . Note the 

flattening of the spectra at a neighborhood of the resonant frequency 
o

kω =  ( 0δ = ), as a result of 

the nonlinearities.   

    FIG. B.4 shows a logarithmic plot of the width (FWHM) versus driver amplitude. 

The slope of the graph is 0.496 0.004± , which is consistent with the asymptotic 

analysis (B.11). A similar logarithmic plot of the height of the peak versus driver 

amplitude (FIG. B.5) shows that the maximum amplitude at resonance is directly 

proportional to 0.506 0.001ε ± . This shows that in the presence of nonlinearities, driving 

magnetosonic waves is less effective compared with the prediction from the linear 

oscillator model; increasing the driver amplitude by a factor of f  can only increase 

the output amplitude by f . This suppression effect is independent of dissipation.   
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FIG. B.4. A logarithmic plot of spectral width versus driver amplitude ε . The slope of the straight line 

is 0.496 0.004± .  

 

FIG. B.5. A logarithmic plot of spectral height versus driver amplitude ε . The slope of the straight 

line is 0.506 0.001± .  
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C. The Duffing Equation 

    In this Appendix, we give a review of the solution of the Duffing equation with a 

sinusoidal driving term, in the vicinity of resonance [45,46]. [To be more accurate, 

we are solving a special case of the Duffing equation, which will be defined in (C.1) 

below.] This work has been done in many references; the purpose of this review is to 

give a comparison between the driven Duffing equation and the nonlinear GAM 

equations of Sec. 5.3. We have already shown [see Equation (5.14)] that the 

homogeneous GAM system is a special form of the homogeneous Duffing equation.  

    The Duffing Equation is given by 

 ( )2 21 ( )
o

x x x x f tγ ω β+ + + =�� � , (C.1)  

where ( )x x t=  and ( )x dx t dt=� . We can regard this equation as describing a 

harmonic oscillator driven by the forcing term ( )f t . 
o

ω  is the natural frequency, with 

a damping coefficient γ , and the nonlinearity is characterized by the parameter β . If 

x is length and t is time, then γ  and 
o

ω  have dimensions of time
-1

, β  has dimension 

of length
-2

, and f  has the dimension of acceleration. In this section, we consider only 

the special case 0γ = , i.e., no damping, for simplicity. This will serve our purpose, 

which is to compare our findings with the results of the nonlinear GAM equations in 

Sec 5.3.    Consider a driving term ( ) sin
o

f t a tω= , such that the driving frequency ω  

is close to 
o

ω , the resonant frequency. We then rewrite ( )f t  as  

[ ] ( )2( ) sin (1 ) sin
o o o o o

f t a t a tω ω ω ω δ ω τ = + ∆ = + ∆   with 1
o

ω ω ω∆ = − , and we 

introduce a slow time scale 2
tτ δ= . The orderings ~ 1x δ << , 3~

o
a δ , and 2~ω δ∆  
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are assumed. We will write 2

t
x x xτδ= +�  in a two time scale expansion.    To order 

δ , (C.1) becomes  

 2

1 1 0
tt o

x xω+ = , (C.2)  

which gives  

 [ ]1 ( )sin ( )ox A tτ ω φ τ= + , (C.3)  

with ~A δ .  To order 2δ , the system is trivial.  To order 3δ , we get 

 

( )
( ) ( )

( ) ( ) ( )

( )

2 2 3 2

3 3 1 1

2

2 3

2

2 sin

2 cos sin

4 3sin sin 3

sin .

tt o t o o o o

o o o

o o o

o o o

x x x x a t

A t A t

A t t

a t

τ

τ τ

ω ω β ω ω δ ω τ

δ ω ω φ φ ω φ

βω ω φ ω φ

ω ω δ ω τ

 + = − − + + ∆ 

= − + − +  

− + − +  

 + + ∆ 

 (C.4) 

 This gives 0Aτ = , ( )2

o
φ ω ω δ τ= ∆  and 

 ( )2 3 23 4 2 0
o o o

A A aβω ω ω− ∆ − = . (C.5)  

Rewriting (C.5) with the normalization ( )2

* o o
A a Aω= , we have  

 
2

3

* *4

3
2 1 0

4

o

o

a
A A

β
ω

ω
− ∆ − = . (C.6)  

Defining 
2

* 4

3

4

o

o

aβ
β

ω
=  as a dimensionless parameter characterizes the nonlinearity. 

(C.6) is of similar structure to (5.23), and FIG. C.1 shows a plot of *A  against ω∆  

from (C.6), for * 0.2β = . The width of the (detuned) resonance 5/3 1/3

*3 2ω β−∆ = ⋅ , 

and the amplification is bounded by 2/3 1/3

*2 β − . As β approaches zero, i.e., the 

nonlinear effect is very small, ω∆  is small and the amplification approaches infinity; 

thus the system reduces to the driven undamped linear harmonic oscillator. Increasing 
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the driving amplitude will increase the width and lower the amplification, which 

suppresses the resonance. Note the similarity between the driven nonlinear GAM 

system in Sec 5.3 and the driven Duffing equation.   On the other hand, unlike the 

nonlinear GAM, the peak at resonance for the Duffing oscillator shifts to higher 

frequency (for positive nonlinear parameter *β ) compared with the natural frequency, 

while the corresponding nonlinear parameter of former (α ) is always positive, the 

peak shifts to lower frequency. This can also be seen by noting the difference in the 

signs of the ω∆  terms between (5.23) and (C.6).  

 

FIG. C.1. A plot of amplification against driving frequency of the Duffing oscillator driven by a 

sinusoidal force, where * 0.2β = . Note that the peak of resonance shift to higher frequency 

(compared to the natural frequency), which is opposite to the nonlinear GAM system shown in FIG. 

5.1. 
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