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Biological experience and intuition suggest that self-replication is an inherently complex phe-
nomenon, and early cellular automata self-replication models developed by computer scientists and
mathematicians supported that view. However, since von Neumann’s original work in the 1950’s,
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and simpler systems. This thesis demonstrates for the first time that it is possible to create au-
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Chapter 1

Introduction

Cellular automata are computational systems where individual automata are connected in a grid like
manner and only local interactions are allowed among these automata [von Neumann, 1966; Codd,
1968; Toffoli & Margolus, 1987]. Cellular automata are inherently massively parallel systems. Self-
replicating systems are systems that direct their own replication by mechanisms mostly embodied
in themselves. Examples of self-replicating systems in nature are living systems. A self-replicating
structure in a cellular automata space is a pattern of active (non-quiescent) automata cells which
will replicate itself based on instruction codes embedded within itself.

John von Neumann first tried to capture the idea that the fundamental information processing
principles and algorithms involved in self-replication, although an essential property of living sys-
tems, were independent of the physical system which realized them [Burks, 1970; von Neumann,
1966]. He designed a computer-theoretic self-replicating machine embedded in a cellular automata
space to support this idea. This opened the door for computer scientists to study the phenomenon
of self-replication and other life-like behaviors from an information processing point of view, a field
that is referred to today as “artificial life” [Langton, 1989; Langton, 1991].

The study of self-replication using computational models is a different approach than the syn-
thetic way chemists use in their laboratories. Computer models permit arbitrarily large numbers of
simulations with precise control over the details and parameters of individual experiments. They
are open to detailed and repeated internal inspection of why certain emerging properties appear in
the simulations. More importantly, as von Neumann notes, they permit one to set aside the issue
of what specific chemical substances are involved in self-replication and focus on the functional
information processing properties that are present. The computational study of self-replication
can help to develop a better theoretical understanding of the fundamental information processing
mechanisms underlying self-replication. Such study may allow computer scientists to build systems
that are much more autonomous in future systems than we can build today. The choice of cellular
automata as the base model for studying self-replication is especially advantageous since cellular
automata have some nice properties. They are local, simple, scalable and can be easily mapped to
physical systems for hardware implementation.

Since von Neumann’s pioneering work, the study of self-replicating systems by others has led
to progressively smaller and simpler systems [Codd, 1968; Langton, 1984; Byl, 1989; Reggia et al.,
1993a]. The existence of these systems raises the question of whether contemporary techniques
developed by organic chemists studying autocatalytic systems [Orgel, 1992] or the many innova-
tive manufacturing techniques currently being developed in the field of nanotechnology [Schneiker,
1989; Drexler, 1989; Hopfield et al., 1988] could be used to realize self-replicating molecular struc-



tures patterned after the information processing occurring with those systems in cellular automata
space. As others have indicated, creation of such self-replicating devices may prove to be criti-
cal for atomic-scale manufacturing technology [Drexler, 1989]. In addition, the existence of such
simple self-replicating systems may provide theoretical support for those theories of the origins of
life that postulate a prebiotic stage involving simple, self-replicating molecules [Oré et al., 1990;
Ponnamperuma et al., 1992].

1.1 Specific goals, hypothesis and motivation

Although using computers to study self-replicating systems has long been believed to be promis-
ing, and some remarkable discoveries of self-replicating structures have been made with computer
models, the border between man-made machines and true artificial living systems is still wide. Even
though artificial self-replicating structures can direct their own replication, and therefore in some
sense achieve life-like behavior, they were designed and implemented by people. It is of interest to
be able to automatically generate self-replicating structures in a cellular automata space.

In addition, although self-replication phenomena in cellular automata spaces have attracted
great scientific interest and are worth studying by themselves, they have not actually made any
real contribution in solving problems. Therefore, it is also highly desirable to be able to see how
self-replicating structures may potentially solve problems at the same time they are doing their
self-replication.

This research attempts to address the following issues:

e whether it is possible to provide a general rule set for self-replication of arbitrary cellular
automata structures, in contrast to previous work where different self-replicating structures
generally required different, incompatible, cellular automata rule sets;

e whether it is possible for self-replicating phenomena to be made to occur spontaneously in a
cellular automata space, in contrast to previous work where the first self-replicating structure
always has to be introduced by a person before self-replication will start; and

e whether it is possible to make use of the self-replicating behaviors of cellular automata struc-
tures for useful computational work, in contrast to previous work, where self-replicating struc-
tures only do self-replication, but nothing more.

In the short summary below and in the following chapters, it can be seen that all of these
primary research issues have been addressed and answered in the affirmative.

1.2 Summary of accomplishments

A major contribution of this work is the discovery of a general purpose self-replicating rule
set, which supports self-replicating structures with different sizes and shapes. These variable size
structures replicate and grow in the cellular automata space at the same time. This is a signifi-
cant improvement over previous self-replication incarnations, in that each different self-replicating
structure needs its own supporting cellular automata rule set to function. Since previous rule sets
are generally incompatible with each other it is unlikely they could support different self-replicating
structures in a cellular automata space at the same time using any one of these rule sets. The new



general purpose self-replicating rule set not only supports different self-replicating structures at the
same time, it even allows structures to grow or evolve into others of increased size. This kind of
universality provides the foundation upon which to base the next major accomplishment.

With this general purpose self-replicating rule set, it is demonstrated in this research that
it is now possible to automatically create self-replicating structures rather than, as has been
done exclusively in the past, to design them manually. It is shown that self-replication can be an
emergent property arising from numerous concurrent but local interactions of basic components
in the cellular automata space. Starting from a spontaneously generated minimal self-replicating
structure, it is shown that larger and larger structures can grow out of the starting one, resulting
in a fast expanding, self-replicating colony with lots of variation beyond what the original minimal
structure might suggest.

Another main result in this research is the application of the self-replicating structures to
do something besides just replicate. It is shown that computations can be done as well as self-
replication by the self-replicating structures. Specifically, it is demonstrated that in addition to their
own replication, self-replicating structures can be made to direct their effort at solving a computer-
theoretical hard problem, the Satisfiability (SAT) problem. Self-replicating structures can be made
to carry “characteristic codes.” During the course of self-replication, their characteristic codes can
evolve and selection forces are based upon the fitness of these characteristic codes so that those
that survive at the end of the evolution process will be answers to the SAT problem.

All the discoveries above would not be possible without using a new general purpose cellular
automata simulator and an associated high level cellular automata programming language, Trend.
These software tools are also a major contribution of this work. The new simulator and language
provide easy backtracking of a cellular automata simulation in a graphical environment, special
language constructs to take advantage of the rotational symmetry of the cellular automata space, a
large bit depth in each cell, arbitrary neighborhood templates and data field divisions within cells.
These and lots of other features are not found in other past or currently available cellular automata
simulation systems.

1.3 Overview of dissertation

The rest of this dissertation is organized as follows. A short summary of previous related
work on cellular automata self-replicating systems is given in Chapter 2. This is followed by a
description of some preliminary work relevant to this research in Chapter 3. A general purpose
cellular automata simulation environment developed for this research is introduced in Chapter 4.
After that, a high level cellular automata programming language, Trend, also developed for this
research, is introduced in Chapter 5.

By using the new cellular automata simulation environment and the high level cellular automata
programming language Trend, an emergent self-replicating cellular automata rule set, which allows
self-replicating structures to spontaneously emerge and grow in cellular automata space, is presented
in Chapter 6. Following that, in Chapter 7, another major cellular automata rule set which supports
self-replicating structures capable of solving the Satisfiability (SAT) problem by letting them carry
characteristic code and go through a selection process in the cellular automata space, is introduced.
Finally, conclusions are drawn and some future research prospects are pointed out in Chapter 8.



Chapter 2

Previous Related Work

Brief summaries of previous related work are presented in this chapter, including the definition
of cellular automata, the idea of self-replicating structures in cellular automata space, and some
previously available software and hardware tools for cellular automata simulations. This brief
review chapter provides a general orientation about what is being studied and gives links to the
main goals of the research. It also reflects the contributions made in this work, which will become
apparent in the following chapters.

2.1 Cellular automata

A cellular automata model is an array of identical processing units called cells that are arranged
and interconnected throughout space in a regular manner. Each cell represents the same abstract
finite automaton (computer). Cellular automata can be one, two or multiple dimensional arrays,
but generally only one and two dimensional cellular automata are studied. One dimensional cel-
lular automata have been extensively studied in the past and generated lots of interesting results
[Wolfram, 1994; Wuensche & Lesser, 1992], but we are mainly concerned with two dimensional
cellular automata in this thesis since they are the basis for self-replication studies.

In two dimensional cellular automata models, space is divided into cells, each of which can be
in one of n possible states. These internal states are often represented by integers starting from 0
to n — 1, where 0 is usually used to designate the “quiescent” or “inactive” state. Non-zero values
are said to be “active” states. At any moment most cells are in the quiescent state while other cells
are in active states. During each instance of simulated time, each cell or component uses a set of
rules called the transition function to determine its next state as a function of its current state and
the state of its immediate neighbor cells. Which cells are considered to be immediate neighbors
varies from model to model. Two popular choices are the “von Neumann neighborhood” and the
“Moore neighborhood”, which are named after their inventors. In the von Neumann neighborhood
a cell has four immediate neighbors: north, east, south and west. Generally, a cell is also part of
its own neighborhood, so there are five neighbors in the von Neumann neighborhood. The Moore
neighborhood includes all neighbors in the von Neumann neighborhood, plus the four diagonal
neighbors: northeast, southeast, southwest and northwest, for a total of nine neighbors. The von
Neumann neighborhood and Moore neighborhood are given in Figure 2.1.

In cellular automata the state transitions of each cell are governed by the same set of rules
which collectively are called the transition function. For example, suppose each cell can be in one
of the two states, 0 and 1. Also suppose that the Moore neighborhood is used. Then one transition
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rule might be “If a cell is in the state 0, and of its eight neighbor cells exactly three are in state
1, then that cell should change to state 1 at the next instance of time, otherwise, it remains in
state 0.” Each single rule is simple and based solely on locally-available information. However,
experience has shown that the complete set of rules forming the transition function, through their
application by all cells in the model simultaneously and repetitively over time, can produce very
rich and at times striking behavior. For this reason, cellular automata are being increasingly used
as models in physics, chemistry, biology, and other scientific fields [Gerhardt et al., 1990; Preston
& Duff, 1984; Toffoli & Margolus, 1987; Wolfram, 1986].

The rule used as an example in the previous paragraph is actually part of the famous Game of
Life rule set developed by John Conway in the 70’s [Gardner, 1970]. The second rule in this rule
set is “If a cell is in the state 1, and of its eight neighbor cells more than three or less than two are
in state 1, then that cell should change to state 0 at the next instance of time, otherwise, it remains
in state 1.” The first rule is called the rule of birth, and the second rule is called the rule of death.
Literally, a new active cell will be born if there are exactly three active neighbors around it, and
an active cell will die due to overcrowding (over three active neighbors) or loneliness (less than two
active neighbors). The application of the Game of Life rule set on a sample cellular automata space
configuration is shown in Figure 2.2. Note that we follow the convention here and in the following
figures of showing quiescent cells in state 0 as being empty or blank. The grid lines between cells
will not be shown in the following figures to avoid cluttering. We can examine the content of each
cell before and after each transition to verify that the rules have been correctly followed. This figure
shows a staged diagonal transition of a pattern, called a “glider”, in the cellular automata space.
This pattern is not prescribed anywhere in the rule set. Instead, it is a phenomenon arising from
the collected behavior of each individual cell doing local interactions only. It is thus an emergent
property of the cellular automata space under the Game of Life rule set.

2.2 Self-replicating models in cellular automata

John von Neumann first conceived of using cellular automata to study the logical organization
of self-replicating structures or “machines” [von Neumann, 1966; Burks, 1970]. His and subsequent
related work has tried to obtain a deeper understanding of the fundamental information processing
principles and algorithms involved in self-replication, independent of how they might be physically
realized. A self-replicating structure in cellular automata space is represented as a contiguous
configuration of active cells, each of which represents a component of the “machine”. At each
instance of simulated time, each cell or component uses the same rules to determine its next state
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Figure 2.2: The Game of Life rule set. Successive application of the Game of Life rule set on an
initial cellular automata pattern called the glider. This glider pattern will gradually move toward
the lower right corner while each cell is plainly following the Game of Life rules.

as a function of its current state and the state of its immediate neighbor cells. Thus, any process
of larger scale self-replication captured in a model like this must be an emerging behavior arising
from the strictly local interactions that occur among cells. Based solely on these local interactions
a self-replicating structure goes through a sequence of steps to construct a duplicate copy of itself.

John von Neumann’s original self-replicating structure was a universal constructor-computer
embedded in a two-dimensional cellular automata space that consisted of 29-state cells. It was
literally a simulated digital computer that used a construction arm in a step-by-step fashion to
construct a copy of itself from instructions on a tape (see Figure 2.3). Subsequently, Codd showed
that if one assumes that the components or cell states meet certain symmetry requirements, von
Neumann’s configuration could be done in a simpler fashion using cells having only eight possible
states [Codd, 1968]. Other variations of von Neumann’s model have been studied to examine a
number of issues, and continue to generate theoretical consideration today. However, while these
structures self-replicate, they consist of at least tens of thousands of components or active cells,
and have thus not actually been fully simulated computationally because of their tremendous size
and complexity.

The complexity of these early cellular automata models seemed consistent with the remarkable
complexity of biological self-replicating systems: they appeared to suggest that self-replication is,
from an information processing perspective, an inherently complex phenomenon. However, more
recently a much simpler self-replicating structure based on 8-state cells, the sheathed loop, was
developed (see Figure 2.4a) [Langton, 1984]. The term “sheathed” here indicates that this struc-
ture is surrounded by a protective covering or sheath (X’s in Figure 2.4). To create a sheathed
loop the biologically-implausible requirement of universal computability used in earlier models was
abandoned. To avoid certain trivial cases, sheathed loops are required to have a readily-identifiable
stored instruction sequence that is used by the underlying transition function in two ways: as in-
structions that are interpreted to direct the construction of a replica, and as uninterpreted data
that is copied onto the replica [Langton, 1984]. Thus, sheathed loops are truly “information repli-
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Figure 2.3: von Neumann’s self-replicating machine. Schematic diagram of von Neumann’s self-
replicating cellular automata configuration (modified from an illustration in [Burks, 1970]). Note
that this figure is not drawn to scale; the actual configuration contains tens of thousands of cells,
and has not been fully simulated on a computer before.

cating systems” in the sense that this term is used by organic chemists [Orgel, 1992]. For example,
in Langton’s loop (Figure 2.4a) the instruction sequence “+ + + + + + L L” can be identified by
reading off the loop content in a clockwise manner starting with the first 4+’ at the branching cell.
This instruction sequence directs the loop to replicate another copy of itself in 151 iteration steps
in the cellular automata space.

The original sheathed loop was a modified version of a device called a periodic emitter that was
previously used as a storage element and timing device in a simplified version of von Neumann’s
original model [Codd, 1968]. It consists of 86 active cells as pictured in Figure 2.4a, and its
transition function has 219 rules based on the von Neumann, or 5-cell neighborhood. Subsequently,
two smaller self-replicating sheathed loops containing as few as 12 active cells in one case have been
described (Figure 2.4b) [Byl, 1989].

These previous self-replicating structures have a drawback that they are all man-made: people
designed them, in contrast to the fact that real self-replicating molecules are most likely naturally
emergent. The replication of these self-replicating structures must be started with an initial Adam
structure put in the cellular automata space by human experimenters, and the environment in
which they replicate, the cellular automata space, must be free of impurities. Any tiny bit of
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unwanted configuration in the cellular automata space can dramatically ruin the whole replication
process. Such a high vulnerability to noise is not observed in natural molecular replications.

A second drawback of these past self-replicating structures is that they have no useful compu-
tation ability. Although von Neumann’s and Codd’s self-replicating machines are capable of uni-
versal computation, they cannot be easily simulated on digital computers. Even if they could, their
method of computation in the cellular automata space is still based on the sequential Turing Ma-
chine architecture, and is not efficient enough to do any practical computation. The self-replicating
loop structures of Langton and others, although they can be simulated by computers, are incapable
of doing computations. They basically just replicate themselves without doing any other useful
work.

In this research, all the aforementioned drawbacks of self-replicating structures have been ad-
dressed. We will see, in Chapter 6, how self-replicating structures can be made to emerge in a
randomly initialized cellular automata space, to replicate with some resistance to noise, and to
gradually grow in size. We will also see, in Chapter 7, how self-replicating structures can be made
to carry characteristic code, to compute solutions of a hard problem while they are replicating, and
to do these computations in an efficient, parallel manner.

2.3 Software and hardware environments for cellular automata
research

John von Neumann studied and solved his 29 state universal computer-constructor problem
using an analytical approach, using only his own reasoning and testing a few cases by hand [Burks,
1970]. Usually, for the kind of research people have been doing with cellular automata, the following
steps are taken. The investigator defines an experimental transition function for a cellular space. He
or she then specifies an initial cellular automata configuration and then computes a finite fragment
of the resultant cellular automata space in an attempt to produce one of the desired phenomena.
This step is repeated until it succeeds or it appears not promising. In the latter case an alternate
definition of the transition function may be tried. If the step succeeds, the definition is augmented
further in an attempt to produce other desired phenomena, and this procedure repeats again.
Without the help of a computer, these steps are tedious and almost impossible to be followed by a
human.

Edgar Codd tried to reduce von Neumann’s 29 state machine to 8 states, using an “interactive
man-machine method” [Burks, 1970]. As von Neumann did, Codd chose as subgoals certain ele-



mentary phenomena such as signal passing and path extrusion, but Codd used a computer to assist
him. There are great advantages to such simulations. The computer can make routine calcula-
tions rapidly as well as accurately, and it can assume responsibility for storing and arranging large
amounts of data in a way that makes vital information immediately available to the user when he
needs it. With a computer to test each possible transition function by simulation, Codd could aim
directly at achieving the basic phenomena needed for his 8 state cellular automata machine. His
success was due in part to the assistance he received from the computer [Burks, 1970]. Starting
from Codd and other people in his time, the use of computers for cellular automata research has
been extensive and natural.

Codd’s computer was small in scale, having only 8K words of memory with 18 bits per word
and a memory access time of 5 microseconds. It was used with only four I/O devices: a paper tape
reader, paper tape puncher, online typewriter, and off-line printer. The cellular automata space
was printed on paper for visualization, and saved on tapes. Commands to control the simulation
were typed in using the typewriter [Codd, 1968]. Although his system was state-of-the-art in the
60’s, it is not very useful compared to today’s technology.

We need a cellular automata simulation system which can exploit the high speed computing
power available today, and which also incorporates the mainstream graphical user interface strategy
we all enjoy now. Although there were many public domain cellular automata specific simulation
systems which had been developed when the work described in this dissertation began, they were
usually designed for a specific model, such as the Game of Life rule set. There are very few general
purpose cellular automata simulators in existence. Often a researcher has to write his or her
own simulation program in order to carry out studies with a new cellular automata model. Two
of the most capable general purpose cellular automata simulation systems are briefly introduced
below. There are other cellular automata simulation programs which are documented online in the
Internet!.

The CAM-6 machine (abbreviated CAM in the following) is a cellular automata simulation
system involving both hardware and software components [Toffoli & Margolus, 1987]. It consists of
a module that plugs into a single slot of the IBM-PC or compatible models, and driving software
operating under PC-DOS. The control software for CAM is written in Forth, and runs on the
IBM-PC with 256K of memory. Forth is a semi-high level postfix programming language where
the operators are always after their operands in the program source code, which is sometimes hard
to read and understand. The Forth language adopted by CAM has been extended to contain a
variety of words and constructs useful for defining cellular automata rules and for constructing,
documenting, and running experiments. Source rule sets written in Forth are converted by the host
computer to an internal rule table stored in the CAM hardware before the simulation starts. The
simulation results can be visualized on a color monitor; each cell is represented by a colored dot.
The colormap for different cell states can be specified by the user to suit the requirements of each
experiment.

In CAM, up to four bit-planes are available for encoding the state of a cell; thus a cell can have
up to 16 states. However, there are some restrictions on the collective use of the four bit-planes;
the center cell can see only values of its own four bit planes at once. CAM has a limited set
of preselected neighborhoods; there is no general mechanism to allow definition of arbitrary new
neighborhoods. To avoid boundary problems, CAM space is wrapped at the edges to form a torus-

'http://alife.santafe.edu/alife/topics/cas/ca-faq/soft/soft.html as of 7/17/96.



like connected cellular automata space in all four directions. See the reference [Toffoli & Margolus,
1987] for more details about the CAM machine. The CAM machine is important because it is the
first general purpose cellular automata simulation system that is widely available, it is the first low
cost hardware accelerated simulator, it is the first simulator to introduce the concept of data fields
within cells, and it is also the first popular cellular automata simulator using a high level language
instead of a table to describe its rule sets. Although the capabilities of the CAM machine may seem
comparably outdated, it has inspired several new cellular automata simulator designs including the
one presented in this work, and is still being used by researchers around the world. However, most
people do not have access to this hardware and thus its usefulness is limited.

Cellular is a system designed to model physical systems [Eckart, 1995]. It consists of the
following separate program components: a programming language, Cellang, and associated com-
piler, cellc; a cellular automata simulator for execution, avcam; and a viewer for display output,
cellview. Compiled Cellang programs can be run using avcam with input provided separately in a
data file. The result of an execution can either be viewed on screen or output to a file. The output
can later be viewed using the cellview utility.

Cellular uses an imperative programming language Cellang to implicitly specify deterministic
cellular automata rules. Programs written in Cellang have two main components, a cell description
and a set of statements. The cell description determines how many dimensions there are, what
field(s) each cell contains, and the bit depth in each field. There are three kinds of statements in
Cellang: if, forall and assignment. The Cellular space is also folded at the boundary cells to
form a torus shape in the case of a 2-D space. This is a common practice among cellular automata
simulators. A predefined variable cell has a special meaning: it refers to the current cell under
consideration. Assignment to cell sets the next state value of the current cell. Neighbors can
be arbitrarily referenced using a relative indexing format such as [0, 1] for the east neighbor or
[-1,1] for the northwest neighbor. There are no named neighborhood positions in the language.
The Cellang language does not have language constructs to exploit the rotational symmetry of the
cellular automata space, nor does it have mechanisms to prevent nonisotropic cellular automata
rule set or rule conflicts. There are other interesting features of the Cellular system; additional
information of the system can be obtained online?.

Although the two simulation systems above are very capable in doing many general purpose
cellular automata simulations, they are still inadequate to the kind of work required in this research.
Specifically, we need a system which allows easy backtracking to a previous cellular automata space
configuration, a high level cellular automata programming language which can exploit the rotational
symmetry of the cellular automata space, a larger bit depth in each cell, etc. For these and other
reasons, a new general purpose cellular automata simulation system has been developed, along with
a new language for the definition of cellular automata transition functions. It is more powerful than
most, if not all, of the previously available cellular automata simulation systems.

We will come back to make some comparisons of the new system with the two simulators
mentioned above after the new system and its associated cellular automata programming language
have been introduced in Chapters 4 and 5. We will see in those comparisons that the new system has
some major advantages over the available ones, especially when doing simulations of the complex
cellular automata models we will meet in Chapters 6 and 7.

*http://www.cs.runet.edu/  dana/ca/cellular.html as of 7/17/96.
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Chapter 3

Preliminary Studies

This chapter provides a brief description of two preliminary studies relevant to my research. The
first section describes work in which I participated that our group! did on creating and studying
even simpler self-replicating loops [Reggia et al., 1993a; Reggia et al., 1993b]. The motivation for
this research was that creating self-replicating structures of minimal complexity is an important
prerequisite to studying their spontaneous emergence. I also did some random configuration exper-
iments with these self-replicating loops. The second section describes a pilot study I did to extend
the cellular automata framework to facilitate supporting movement and interaction between com-
posite structures [Chou et al., 1994]. Traditional cellular automata models are very inconvenient in
modeling chemical reactions when reactants represented by multiple cells in the cellular automata
space need to act and move together at once. The motivation for this research was to see if this
modelling limitation could be remedied by allowing multiple cells to be considered as a whole in
an extended cellular automata model.

3.1 Simplified self-replicating loops

In the work done here, it is essential for one interested in the spontaneous emergence of self-
replication in cellular automata space to have self-replicating structures as small and simple as
possible. The smaller and simpler the structure, the greater the chance of its self-assembly from
components which are not self-replicating in the cellular automata space. That is the motivation
underlying this first part of my preliminary studies.

After studying previous cellular automata models of self-replicating structures we hypothesized
that adjustments to the rules controlling the interactions between components should allow elimina-
tion of the sheath (see Chapter 2), and this in turn would make simpler and smaller self-replicating
structures possible. It was not obvious a priori, though, that complete removal of the sheath is
possible. The sheath was introduced by Codd and retained in developing sheathed loops because
it was believed to be essential for indicating growth direction and for discriminating right from
left in a strongly rotation-symmetric space (see [Codd, 1968, p.40] and [Byl, 1989, p.296]). In
fact, we discovered that having a sheath is not essential for these tasks. In the following it is
demonstrated that removing the sheath leads to smaller self-replicating structures that also have
simpler transition functions. For clarity, self-replicating structures are labeled in the following by
their type (SL = sheathed loop, UL = unsheathed loop) followed by the number of components,

n addition to myself, J. Reggia, S. Armentrout and Y. Peng worked on this problem.
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Figure 3.1: Initial configurations of some unsheathed loops. (a) UL48S8V. (b) UL32S8V. (c)
UL10S8V. (d) UL06S8V and UL06S6V (same initial configurations). (e) UL05S6V.

the rotational symmetry of the individual cell states (S=strong, W=weak), the number of possible
states a cell may be in, and the neighborhood (V=von Neumann, M=Moore). For example, the
sheathed loop in Figure 2.4a of Chapter 2 is labeled SL86S8V because it spans 86 active cells, has
strongly-symmetric cell states with each cell assuming one of 8 possible states, and its transition
function is based on the von Neumann neighborhood.

To understand how the sheath (surrounding covering of X’s) can be discarded, consider the
unsheathed version UL32S8V (shown in Figure 3.1b) of the original 86-component sheathed loop
(shown in Figure 2.4a). The cell states and transition rules of this unsheathed loop obey the same
symmetry requirements as those of the sheathed loop, and the signal sequence +-+-+-+-+-+-L-L-
directing self-replication is also the same (read off of the loop clockwise starting at the lower right
corner and omitting the “core” cells in state O). As illustrated in Figure 3.2, the instruction sequence
circulates counterclockwise around the loop, with a copy passing onto the construction arm. As
the elements of the instruction sequence reach the tip of the construction arm, they cause it to
extend and turn periodically until a new loop is formed. A growth cap of X’s at the tip of the
construction arm enables directional growth and right-left discrimination at the growth site (seen
in Figures 3.2b-d). It is this growth cap that makes elimination of the sheath possible. As shown in
Figure 3.2e, after 150 units of time the original structure (on the left, its construction arm having
moved to the top) has created a duplicate of itself (on the right).

The unsheathed loop UL32S8V in Figure 3.1b not only self-replicates but it also exhibits all
of the other behaviors of the sheathed loop: it and its descendants continue to replicate, and
when they run out of room for new replica, they retract their construction arm and erase their
coded information. After several generations a single unsheathed loop has formed an expanding
colony where actively replicating structures are found only around the periphery. Unsheathed
loop UL32S8V has the same number of cell states, neighborhood relationship, instruction sequence
length, rotational symmetry requirements, etc. as the original sheathed loop and it replicates in
the same amount of time. However, it has only 177 rules compared to 207 for the sheathed loop,
and is less than 40% of the size of the original sheathed loop (32 active cells vs. 86 active cells,
respectively). The rules forming the transition function for UL32S8V are given in [Reggia et al.,
1992]. An example of rules for another loop ULO6WS8V can be seen later in Figure 3.4.

Successful removal of the sheath makes it possible to create a whole family of self-replicating
unsheathed loops using 8-state cells. Examples are shown ordered in terms of progressively de-
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Figure 3.2: Successive states of unsheathed loop UL32S8V. (a) At t=3, the sequence of instruc-
tions has circulated 3 positions counterclockwise around the loop with a copy also entering the
construction arm; (b) at t = 6, the arrival of the first + state at the end of the construction
arm produces a growth cap of X’s; (c) the configuration at t==80; (d) the configuration at t=115;
and (e) at t=150, a duplicate of the initial loop has been formed and separated on the right; the
original loop is already beginning another cycle of self-directed replication.

creasing size in Figure 3.1a-d and are summarized in the first four rows of Table 3.1. Each of these
structures is implemented under exactly the same assumptions about number of cell states available
(8), rotational symmetry of cell states, neighborhood, isotropic and homogeneous cellular space,
etc., as sheathed loops. Given the initial states shown here, it is a straightforward but tedious and
time-consuming task to create the transition rules needed for replication of each of these structures
using software we developed for this purpose. The smallest unsheathed loop in this specific group
using 8-state cells, ULO6S8V in Figure 3.1d, is listed in row 4 of Table 3.1; it is more than an
order of magnitude smaller than the original sheathed loop. Consisting of only six components and
using the instruction sequence +L, it replicates in 14 units of time (column “Replication Time”
in Table 3.1). Replication time is defined as the number of iterations it takes for both the replica
to appear and for the original loop to revert to its initial state. This very small structure uses a
total of 174 rules (“Total Rules” in Table 3.1) of which only 83 are needed to produce replication
(“Replication Rules”); the remaining rules are used to detect and handle “collisions” between dif-
ferent growing loops in a colony, and to erase the construction arm and instruction sequence on
loops during the formation of a colony.

The smallest previously described structure that persistently self-replicates, designated SL12S6V
here, uses 6-state cells, has 12 components (Figure 2.4b of Chapter 2), and as indicated in Table 3.1,
requires 60 state change replication rules [Byl, 1989]. We have created unsheathed loops, designated
ULO06S6V and UL05S6V, using 6-state cells with half as many components and requiring only 46
or 35 state change replication rules, respectively (last two rows of Table 3.1). The initial state of
ULO06S6V is shown in Figure 3.1d and that of UL05S6V is shown in Figure 3.1e; the complete tran-
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State
State Change Reduced Reduced
Replication Total Replication Change Replication Total Replication

Label Ti me Rul es Rul es Rul es Rul es Rul es Rul es
uL48S8V 234 177 167 109 104 75 72
UL32S8V 150 177 166 109 104 74 71
UL10S8V 34 163 117 74 54 50 40
uL06S8V 14 174 83 91 49 66 32
uL48V8vV 234 142 98 80 52 68 42
UL32V8V 151 134 98 77 52 66 42
UL10V8vV 34 114 82 43 35 31 24
uLo6V8YV 10 101 58 44 31 33 20
SL86S8V 151 207 181 118 101 90 77
UxiovasyVv 44 173 103 70 36 57 25
SL12S6V 26 145 140 61 60 46 45
UL06S6V 18 115 83 64 46 30 30
UL05S6V 17 65 58 35 35 23 23

Table 3.1: Replication time and different measure on number of rules for each loop.

sition functions are given in [Reggia et al., 1992]. To our knowledge, UL05S6V is the smallest and
simplest self-replicating structure created under exactly the same assumptions as sheathed loops
[Langton, 1984; Byl, 1989].

Cellular automata models of self-replicating structures have always assumed that the underlying
two dimensional space is homogeneous (every cell is identical except for its state) and isotropic (the
four directions NESW are indistinguishable). However, there has been disagreement about the de-
sirable rotational symmetry requirements for individual cell states as represented in the transition
function. The earliest cellular automata models had transition functions satisfying weak rotational
symmetry: some cell states were directionally oriented [von Neumann, 1966]. These oriented cell
states were such that they permuted among one another consistently under successive 90° rota-
tions of the underlying two-dimensional coordinate system (rotational symmetry in these models
is described mathematically in [Codd, 1968, pp.15-16]). For example, the cell state designated |
in von Neumann’s work is oriented and thus permutes to different cell states —, |, and « un-
der successive 90° rotations; it represents one oriented component that can exist in four different
states or orientations. However, the simplified version of von Neumann’s self-replicating universal
constructor-computer [Codd, 1968] and the dramatically simpler sheathed loops [Langton, 1984;
Byl, 1989] are all based upon more stringent criteria called strong rotational symmetry. With strong
rotational symmetry all cell states are viewed as being unoriented or rotationally symmetric. The
transition functions for all unsheathed loops shown in Figure 3.1 also use this strong rotational
symmetry requirement (indicated by S in their labels). Their eight cell states are designated

O#L - xX +

where the period designates the quiescent state. All of these states are treated as being unoriented
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Figure 3.3: Unsheathed loops based on weak rotational symmetry. (a) UL48W8V (b) UL32W8V
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or rotationally symmetric by the transition function?.

The fact that the simplest self-replicating structures developed so far have all been based on
strong rotational symmetry raises the question of whether the use of unoriented cell states intrin-
sically leads to simpler algorithms for self-replication. Such a result would be surprising as the
components of self-replicating molecules generally have distinct orientations. To examine this issue
we developed a second family of self-replicating unsheathed loops, shown in Figure 3.3 whose initial
state and instruction sequence are similar to those already described in Figure 3.1. However, for
the structures in Figure 3.3 weak symmetry is assumed, and the last four of the eight possible cell
states

.0#L A>VL

are treated as oriented according to the permutation (.)(0)(#)(L)(A > V <). In other words, the cell
state A is considered to represent a single component that has an orientation and is thus permuted
to >, V and < by successive 90° rotations of the coordinate system, while the remaining four cell
states do not change. For example, in Figure 3.3b the states >, V, and < appear on the lower,
left and upper loop segments, respectively, to represent the instruction sequence <<<<<<LL.
While cells in such a model have 8 possible states and are thus comparable in this sense with the
above work on sheathed and unsheathed loops (Figures 2.4 and 3.1), they also can be viewed as
simpler in that they have only five distinct possible components. As can be seen in Table 3.1
(rows 5-8) where the presence of oriented cell states or weak symmetry is indicated by W in the
structure labels, relaxing the strong rotational symmetry requirement like this consistently led to
transition functions requiring fewer rules than the corresponding strong symmetry version; this is
true by any of the measures in Table 3.1. This decrease in complexity occurred in part because
the directionality of the oriented cell states intrinsically permits directional growth and right-left
discrimination, making even a growth cap unnecessary.

As noted earlier, the complete transition function includes a number of rules that are extraneous
to the actual self-replication process (e.g., instruction sequence erasure) and many rules which

2Care should be taken not to confuse the rotational symmetry of a cell state as interpreted by the transition
function with the rotational symmetry of the character used to represent that state. Here the character L is not
rotationally symmetric, for example, but the cell state it represents is treated as such.
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Rules for replication for ULO6W8V:

..... -> . el => N ...NO0 -> < ...> ->0 Lo -3
R L.V -> ..0 -> . ...00 -> . oL ->
...LL -> . o8 -> 0 L.>>0-> . <<, -> # ..0O0->.
..000 -> 7 Ol > R R .. L>0 -> . LLHYVL o>
R . <vv< -> | .<L.L ->. O AL ->L
NOOO -> . > ..L->L > Q0L ->L >0 L -> L v.OL ->.
<.... ->K< <...# ->. <..LO->1L O..>->> 0..0->0
0.>0->«< O.L. ->0 O"r>0-> < O0<0O ->v o< ->v
0Q0>->> oa. ->0 OL.O->0 O00>->v ovOv -> >
Qo0 ->0 o -0 0> ->-> oL.O->0 AL.O->0
L..Ov - >0 L.>0->0 1<>.0->0 L<v.O->0 LO*.O->0
LO>.. - >0 L#H.Ov ->0 #.<L. -> 0O

Rules after reduction for ULO6WS8V:

L. > >N ...MNO0 -> < ...> ->0 H, -> 0 L.<< -> #
..000 -> 7 NO-> . > L->1L v.O_ ->. <...# -> .
<..L_->1L 0<0 ->v O <O ->v O _.>->> O > ->«<
o ->v oo -> > oo -> > L ->0 # -> 0

Figure 3.4: Cellular automata rule compression. Top: rules for replication of ULO6W8V. Bottom:
reduced rules for the same loop, ULO6WS8V.

simply specify that a cell state should not change. The state change rules alone are completely
adequate to encode the replication process. For this reason, we believe that the number of state
change rules used for one replication is the most meaningful measure of complexity of transition
functions supporting self-replication. As shown in the sixth column of Table 3.1, this measure
indicates that, from an information processing perspective, algorithms for self-directed replication
can be relatively simple compared to what has been recognized in the past, especially when oriented
components are present.

The simplicity of unsheathed loop transition functions when oriented components are used is
even more striking if one permits the use of unrestricted placeholder positions in encoding their
rules. I implemented a search program which takes as input a set of rules representing a transition
function, such as those forming the top part of Figure 3.4, and produces as output a smaller set
of reduced rules containing “don’t care” or “wildcard” positions (bottom part of Figure 3.4). This
program systematically combines the original rules, replacing multiple rules when possible with a
single rule containing positions where any cell state is permissible (designated by the underline
character ‘_’). Introduction of such wildcard positions is done carefully so that the new reduced
rules do not contradict any of the original rules, including those that do not change a cell’s state.
The size of the reduced rule sets that result from applying this program to the complete original set
of rules and to only the replication rules of each of the cellular automata models described above
is shown in the rightmost two columns of Table 3.1. For example, with ULO6WS8V the single new
rule

L__—20

that means “state L always changes to state O” replaces seven original replication rules, while the
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single rule
>_.L — L

indicating that L follows > around a loop replaces three original replication rules. With ULO6W8V
this procedure reduces the set of rules needed for one replication from 58 to 20. Thus, by capturing
regularities in rules through wildcard positions, it is possible to encode the replication process for
unsheathed loop ULO6WS8V in only 20 rules (Figure 3.4, bottom part).

This work done on simplifying loops is very useful with regard to my research. It not only gave
me hints on how the basic building blocks can be constructed, but also on where to start searching
for emerging self-replicating structures. Also, the experience of designing software which facilitates
cellular automata modeling was quite helpful.

The self-replicating loops introduced in this section were constructed by giving both a dedi-
cated cellular automata rule set and a well organized initial configuration. Each dedicated cellular
automata rule set for a loop is incompatible with one another. Intuitively, the cellular automata
rule set should be fixed and should not be changed during the course of self-replication. On the
other hand, if the end goal is to discover emergent self-replicating structures, then the initial
configuration should be allowed to vary and be randomly determined. This means that the cellular
automata rule set to support emergent self-replication should be much more universal than those
described above in order to encompass all possible situations in the cellular automata space. It
should specify a correct next state value for any cell in the cellular space and with any possible
current neighborhood configuration. In addition, the cellular automata rule set should be shared
among different loops which are growing at the same time in the same cellular automata space.

If one closely examines the self-replicating loops described above it becomes evident that there
are difficulties in using them directly for emergent self-replication research. The self-replicating
loops we have now are all very fragile: if the initial configuration is wrong by even one cell, or if
a single unwanted disturbance in the form of a nonquiescent cell adjacent to a loop occurs during
the replication process, then the result can be unpredictable and can end in total destruction of
the replicating process.

To examine this issue, some preliminary experiments were done where various disturbances were
applied to self-replicating loops. These disturbances can basically be classified into two types. In
one type a self-replicating loop was made incomplete (e.g., some part of it removed) either initially
or during its replication. In the second type the self-replicating loop was not changed but some
extra active cells were put into its periphery.

Figure 3.5 shows two examples of the first type of disturbance. In Figure 3.5a the tip L of
UL10WS8YV as indicated is removed; the result is a configuration as shown which will cycle through
some simple patterns but can never grow beyond its current size. In Figure 3.5b an O of UL32W8V
is removed as indicated; the result is a fixed pattern of O’s as shown.

Figure 3.6 shows two examples of the second type of disturbance. In Figure 3.6a # state is added
in the periphery of UL32W8V. The result is a growing static area of O’s which will finally take
up the whole cellular automata space. In Figure 3.6b, O is added to the periphery of ULIOWS8V.
Interestingly enough, this will not disturb the loop; instead, it will inhibit the growth of the loop.
The loop will constantly send out signals through its arm but these signals will all be killed by the
added O so the loop is no longer self-replicating.

In most cases examined in this fashion the self-replicating loop structure starts to deteriorate
once a disturbance is introduced, and it does not take long for the whole cellular space to run
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Figure 3.5: Two examples of removing an active cell from a self-replicating loop and the results.
The removed active cells are indicated by arrows. (a) UL10W8V with its tip L removed during
self-replication. (b) UL32W8V with one of the O’s removed initially.

into an unpromising status such that no self-replication can proceed. Since random, unexpected
configurations are assumed in my research, this shows that to design a robust general purpose rule
set that allows a structure to survive at random environment configurations is hard. We will see
how such a rule set is constructed in the following chapters.

3.2 An extended cellular automata model with binding and move
ment supports

The second direction I took during my preliminary studies was the introduction of movement
and binding into basic cellular automata models. Most past work on computational models of
self-replicating structures has been done with cellular automata. While such models have produced
interesting results, they have been limited in terms of their biological plausibility. For example,
most previous cellular automata models of self-replicating structures do not allow movement of these
structures. As a first step to address this issue, I designed and implemented a software environment
which permits composite structures spanning multiple cells to randomly translate and rotate. This
system is described in detail elsewhere [Chou et al., 1994]. The ideas involved were examined in
the context of simulating a specific chemical reaction, a self-replicating deoxyhexanucleotide, C-
C-G-C-G-G, which is referred to here as molecule T. This specific reaction was selected as a case
study because: (1) it is the first report of autocatalytic replication of an oligonucleotide; (2) it has
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Figure 3.6: Two examples of adding active cells to the periphery of a self-replicating loop and
the results. (a) a # is added close to UL32W8YV; (b) an O is added close to ULIOW8V.
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Compound Symbol
d(MeOC-C-Gp) A
d(HO-C-G-Gyy-Ph-Cl) B
d(MeO-C-C-G-C-G-Gp-Ph-Cl) T
d(MeO-C-C-G-C(=N-Ry)-NH-R,) A*
R;-N=C=N-R, CDI

*Me is methyl, Ph is phenyG is cytosineG is guanine,
R, is GHsandR, is GGHg-N(CHy),o

Table 3.2: Initial chemical species modeled for deoxyhexanucleotide reactions.

been more thoroughly studied from a kinetic point of view than other related systems; and (3) it
is significant to prebiotic chemistry [von Kiedrowski, 1986].

The chemical species involved in the autocatalytic reaction that I used to demonstrate my
approach are listed in Table 3.2. The right hand column specifies a symbol representing the two
trideoxynucleotides (A, B) that can react to form the hexadeoxynucleotide (T). Graphically, these
reactions can be represented as in Table 3.3 and Table 3.4. The labels associated with the arrows
represent the probability of the reaction taking place as explained later in this section.

There are four simple molecules in the simulation: A, B, T, and A* (top row of Figure 3.7).
They are treated as basic, or indivisible units in the simulation. Composite molecules are formed
by bonding between these simple molecules. The bonding of simple molecules to form composite
molecules is indicated by the reverse color of the icons. For example, the reverse color of composite
molecules in the middle row of Figure 3.7 indicates that they are a single, bound structure rather
than separate molecules that happen to be adjacent to each other, as shown in the last row. Since
some molecules occupy multiple cells, we assign an anchor point, where all references of positions
are made. The anchor point for each single cell molecule is simply its cell. The anchor points for
multi-cell molecules are drawn in Figure 3.7. The anchor points for multi-cell molecules are always
at their lower-left corner when they are sitting upright as shown in the figure.

The actual reaction occurs in a three dimensional space, but for simplicity a two dimensional
space is used as has generally been done with cellular automata in the past. This two dimensional
space is divided into a grid of cells. Each molecule is located at some particular cell position(s),
with some molecules (e.g., T, A*T) occupying multiple cells. In displaying what is occurring during
a simulation, simple small icons similar to those shown in Table 3.3 and 3.4 are used to represent
molecules. Each icon in a cell indicates that a molecule of that type is in the indicated spatial
location with the indicated orientation; for simplicity it is assumed that only one molecule can
occupy a cell at a time. Each movement of a molecule must be discrete in a cell-to-cell manner.
The simulation can be viewed on the screen, as depicted in Figure 3.8. The simulated world is
much like that of a cellular automata model except for the following differences:

e Each cell in the cellular automata is a state machine in itself, but the cell used here is just a
spatial position that a molecule can occupy.

e It’s possible to have a molecule which occupies more than one cell and acts as a whole. But

19



1. Initial chemical species: T

2. Monomer A. One of its side@( ) can interact by hydrogen bonding with thg
corresponding portionly ) of the template (T) leading to a reversible associagon of
the complex TA:

) SplitAT

+ il >
bindAT -
3. Monomer B. Its active siddl{ ) can interact by hydrogen bonding with the
corresponding portionl§ ) of the templae (T) leading to a reversible associatipn of
the complex TB.

_ splitBT [5]
T bindBT
4. Monomer B can also associate reversibly with the complex TA.
litB_AT
— = [i][g]
PndBAT
5. Complex TAB can also be formed by the reaction:
splitA_ BT
=5 < = ~ 8
PindABT

6. Monomer A reacts irreversibly with 1-(3-dimethylaminopropyl)-3-
ethylcarbodiimide (CDI) leading to A's activation:

. CDI activeACDI . |

7. Complex TA can also react irreversibly with 1-(3-dimethylaminopropyl)-3-
ethylcarbodiimide (CDI) leading to its activation:

| Al
. CDI activeATCDI -

Table 3.3: Deoxyhexanucleotide reactions modeled, part one.
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8. The hydrolysis of CDI (irreversible reaction) decreases the rate of formatio

h of

the hexadeoxynucleotide. Its consumption from the reaction mixture is the linjiting

factor that causes the autocatalytic replication to end.
hydrolysisCDI
C2H5-N=C=N-C3Hg-N(CH3)2 + HQO ———— CoH5-N=C(-OH)-NH-C3Hg-N(CH3)2

9. A* behaves the same as A in terms of association with the template:

A ) splitAST
- -
bindAST
B splitB_AST 5
+ il >
bindBAST -
] splitAS_BT
—5| < e ~ A
10. Complex TA*B reacts irreversibly leading to the formation of a new complex,
TT: [&] j0iNASBT R
11. Complex TT dissociates reversibly forming two single- stranded template$:
T bindTT

12. Monomer A* and complex TA* undergo deactivation by hydrolysis:

" hydrolysisAS
+ H20 > + product

hydrolysisAST
' + product

13. Another route to the synthesis to the template is the non-directed templat
reaction of A* with B:

+ —>j0inBAS + product

14. A side reaction producing a pyrophosphate is:

1%

+ _JoinAAS _ + product

Table 3.4: Deoxyhexanucleotide reactions modeled, part two.
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composite
molecule
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non-composite
examples

AandT A"andT BandT

Figure 3.7: Sample deoxyhexanucleotide reaction molecules. Top row: simple molecules. Middle
row: composite molecules treated as single structures as indicated by reverse coloring. Bottom
row: adjacent molecules that are not bonded together and treated as independent entities. Anchor
points for multi-cell molecules are indicated by arrow marks.

in cellular automata, there is no concept of “multiple cells as one”.

One drawback of traditional cellular automata models is their lack of an aggregate operator:
each cell acts individually according to local rules and in general a composite pattern/structure
spanning multiple cells cannot act as a whole3. There is also no concept of bond formation between
structures occupying adjacent cells. These limitations pose an immediate problem when repre-

3It is possible to simulate movement of composite structures in cellular automata models such as the gliders in
the Game of Life [Gardner, 1970], but this movement often involves cyclic structural transformations and is not
applicable to simulating chemical reactions.

File Simulation Show

Figure 3.8: Sample simulated
deoxyhexanucleotide world configuration. Each
icon denotes a molecule of some kind. The
figure also shows the control menu and scroll
bars of the program.
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Figure 3.9: Data structures used by the deoxyhexanucleotide simulator. The computational
space is represented by a two-dimensional pointer array of cells. If there is a molecule occupying a
cell position, the cell will contain a pointer to the appropriate molecular data structure allocated
somewhere in memory.

senting molecular structures with cellular automata. Although it is easy and straightforward to
represent each simple molecule in an individual cell, it is very hard to represent composite molecules
that span multiple cells and still move as a whole. For example, suppose that a nucleotide is repre-
sented as a sequence of 10 units spanning 10 cells. If one wants to represent rotation or translation
of such a multi-cell structure as a unit, how is one end of the molecule to know the direction
that the other end is moving given that only local operations between adjacent cells can occur?
While one can imagine possible solutions to this problem within the basic cellular automata frame-
work, they are not realistic in the chemical sense. An alternative approach that I adopted was to
try to implement phenomena that involve operations on a multicellular structure considered as a
unit (movement, binding, etc.). This was done by making changes and extensions to the cellular
automata framework itself while preserving the local nature of the computations involved.

To represent the simulated space computationally, I declared a two dimensional array of pointers
to molecular data structures. Each molecular data structure has the following information for the
molecule occupying a cell: x, y coordinates, type of molecule, and orientation (Figure 3.9). The
benefits of this data structure are that memory storage for molecular information must be allocated
only for molecules which exist, and molecules can be moved very easily by changing the pointer
values in each cell without explicitly moving the data structure in memory.

Before a simulation is started, molecules must be put into the array representing the simulated
space. The initialization procedure will put as many molecules of each kind as defined by the user
into the space, each with a random position and orientation. It does this by first picking a random
position and orientation for each molecule. If that position has already been occupied by other
molecules, it will then search from there sequentially until it finds an empty space for that molecule.
The goal of the initialization procedure is to distribute the initial molecules fairly evenly.

The simulation algorithm (Figure 3.10) works by examining at each iteration all cells in the
space trying to find if there are any molecules there. The order of examining cells is determined
randomly for each iteration (called epoch), so there will not be any bias toward any direction of the
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simulated space. For each molecule found, the procedure in Figure 3.10 does the following:

1. See if the molecule there will change its identity. Possible changes are dissociation (split into
two molecules), hydrolysis (deactivation of the molecule), and condensation (dehydration
reaction of A*BT to form TT). If one of these does occur, the molecule has changed its
identity; the procedure would then proceed to examine the next cell.

2. If no identity change occurs, the procedure then determines a random new orientation for the
molecule. If the cells for the new orientation have not been occupied by other molecules, the
rotation is made successfully*. But if the cells in the new location are already occupied by
other molecules, a check for potential chemical reactions is made. If a reaction does occur, the
molecule changes its identity, and the procedure proceeds to examine the next cell. Otherwise,
the rotation cannot be made and the molecule must stay with its old orientation.

3. If no reaction has occurred, the procedure now determines a random new position for the
molecule. If the cells for the new position have not been occupied by other molecules, the
translation is made successfully. Otherwise, the procedure determines whether a chemical
reaction occurs. If a reaction does occur, the molecule changes its identity, and the procedure
proceeds to examine the next cell. If no reaction occur, the translation cannot be made and
the molecule must stay in its old position.

Molecules rotate and translate constantly. In my implementation, a random number generator
determines the new orientation and position of molecules. In those cases where rotation and
translation do not result in collisions between molecules, the new molecular orientation and position
are simply updated as described later. If the new position has been occupied by other molecules, a
check for reactions is made. If two molecules collide but do not react, they will remain in position
with the old orientation. As noted earlier, simply being in cells adjacent to each other with the
appropriate orientation does not represent a collision and does not result in a reaction. Collisions
occur only if one molecule tries to move into the other during random rotations and translations.

While it is relatively easy to describe the actions the program takes, the actual coding is
quite complex since there are so many different molecules, each with potentially different sizes and
geometric shapes. Every new cell that a molecule tries to occupy must be checked to determine if
it can be safely used, and all of this must be done for four different orientations for each molecule.

Molecules in each cell can take on one of four possible orientations: UP, RIGHT, DOWN, LEFT.
It is necessary to maintain these orientations since chemical reactions between molecules will occur
only in some specific mutual positions and orientations. The other important data is the anchor
point for each molecule. This is especially important for multi-cell molecules, where rotations and
translations are related to their anchor point. The orientation and anchor point data are stored in
the molecular data structure related to each molecule (recall Figure 3.9). Each cell in the pointer
array occupied by the same molecule will contain a pointer to the same molecular data structure in
memory. But only the anchor position and orientation of that molecule are stored in the molecular
data structure. When dealing with the translation or rotation of multi-cell molecules, the correct
pointers from cells to molecular data structures must be maintained at all times. The anchor point
and orientation of each molecule are heavily referenced to determine the correct pointer updates.
When a molecule undergoes a translation, the following things must be done:

“Note that single cell molecules can always be successfully rotated.
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for each cell in the spatial array do
if there is a nolecule there then
if it changes its identity then
continue with the next cel
endi f
determ ne a random new orientation for it
if this new orientation has been occupi ed then
if this collision causes a reaction then
do the reaction and continue with the next cel

el se
stay with old orientation
endi f
el se
rotate the nol ecul e accordingly
endi f

determ ne a random new position for it
if this new position has been occupied then
if this collision causes a reaction then
do the reaction and continue with the next cel

el se
stay in old position
endi f
el se
transl ate the nol ecul e accordi ngly
endi f
endi f
enddo

Figure 3.10: An algorithmic description of the deoxyhexanucleotide simulation procedure.

e store the new anchor point coordinates in the data structure of the molecule;
e erase all pointers in cells corresponding to the old position of the molecule; and

e store the new pointers to the molecular data structure in cells corresponding to the new
position of the molecule.

When a molecule rotates, the following things need to be done. Note that rotation is done using
the anchor point as the center; the anchor point cannot change during rotation.

e store the new orientation into the molecular data structure;
e for multi-cell molecules, erase pointers in cells corresponding to the old orientation; and
e for multi-cell molecule, store pointers in cells corresponding to the new orientation.

The rotation and translation of molecules can only occur one step at a time. A step is a change
to an adjacent orientation or position. For example, rotating from orientation RIGHT to DOWN
or UP, and moving from coordinates (22,22) to (23,23) or (21,22), etc., are considered to be one
step. Rotating from orientation UP to DOWN or moving from coordinates (22,22) to (24,22) are
two steps.
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JOINASBT  joinAA bindABT activeACDI
bindASBT  bindAT activeATCDI jOINBAS
bindBAST  bindBAT bindBT bindTAS
bindTT hydrolysisAS hydrolysisAST hydrolysisCDI
SplitAST splitAS_BT SplitAT splitA_BT
splitBT splitB_AST splitB_AT splitTT

Table 3.5: Deoxyhexanucleotide reaction parameters.

Almost all actions during the simulation are determined by random numbers: new orientations,
new positions, changes of identity, reactions, etc. There are various parameters which govern
the decision making about the change and reaction of molecules (see Table 3.3 and 3.4). These
parameters are loosely related to chemical reaction kinetic constants. To make the decision making
process as efficient as possible, an integer is used to represent the probability about a particular
reaction. Each time a decision needs to be made, a random number generator is called to produce
an integer. If this random integer is greater than the stored parameter integer, the corresponding
decision is “no”; otherwise, the decision is “yes”. For example, to determine if two molecules will
react, first the program checks if they collide with each other and have the prerequisite positions
and mutual orientations. If they do, the program simply gets a random number to determine if
the reaction occurs. If the reaction does occur, the old molecules are replaced by their reaction
products in the space.

Listed in Table 3.5 are those parameters used in the program; they are the labels on the arrows
in Table 3.3 and 3.4. For example, joinASBT® determines if the two molecules A* and B in the
configuration A*BT will bond to form TT, bindASBT determines if two molecules A* and BT will
react to form A*BT, and hydrolysisAS determines if A* will be hydrolyzed to form A.

Recall from Table 3.3 and 3.4 that molecules can change in four ways: association, dissociation,
hydrolysis and condensation. Except for association, which has been described above, the outcome
of the other three changes for each molecule is determined according to its type. For example,
to determine whether the molecule AT will split into A and T, first a random decision is made
according to the reaction parameter SplitAT. If dissociation does occur, two new molecular data
structures are acquired (one from the old one, the other is newly allocated), and their new values
are established according to the original orientation of the molecule AT.

The simulation program I developed was subsequently used by others to conduct a battery of
simulations [Navarro-Gonzalez et al., 1994]. As shown in Figure 3.11, it produced data reminiscent
of an actual chemical experiment reported in the literature [von Kiedrowski, 1986]. In Figure 3.11a,
the time-variation of molecule T’s is shown. Comparing that with the actual chemical reaction
curves in Figure 3.11b, the similarity is evident. It is the first successful use of a modified cellu-
lar automata environment to simulate a self-replicating oligonucleotide. With this technique the
oligonucleotide molecules are represented as active cells embedded in a two-dimensional array of

®We use “S” in place of “*” in the program code since “*” is inconvenient in the programming language C.
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Right, figure from actual chemical reactions [von Kiedrowski, 1986].

Dr. Rafael Navarro-Gonzdlez and Miss Jayoung Wu provided the simulation data for this il-

lustration.

inactive cells. Random movements and probability-governed chemical reactions occurring in a cel-
lular space can effectively simulate the experimental behavior observed in self-directed replication

of oligonucleotides.

In this model the multi-cell translation and rotation problems have been solved by making some
changes to the basic cellular automata framework. This experience provided helpful guidance that
led to efficient implementation of a general purpose cellular automata simulator as described in the

next chapter.
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Chapter 4

A General Purpose Cellular Automata Simulator

Introduced in this chapter is a general purpose cellular automata simulation program that was
created to support the research described in subsequent chapters. It was used for the development,
experiment and simulation of all cellular automata rule sets presented in this work.

The simulator is created because there is no other cellular automata simulation software avail-
able which can provide the requirements for the research conducted in this work. Specifically, we
need a cellular automata simulator which provides a high level language for rule set definitions, a
large number of allowable cell states (264), a mechanism for easy backtracking of simulation steps,
support for data fields within cells, and an integrated, easy to use graphical user interface. When
this research was starting, none of the available cellular automata simulation software, both in
the public domain and through commercial channels, can provide an adequate set of features as
described above to support the research. Therefore, although development of a powerful cellular
automata simulator was not intended at the beginning, it became a very important part of this
work.

Because nothing available came close enough to the specification of the new simulator which
could have been used as a starting point, this simulator was built completely from scratch. A basic
framework of the simulator was developed first which allowed at least the beginning of simulations
for some simple cellular automata rule sets. Then, a large effort went into the development of
the high level cellular automata programming language and its compiler. Parallel to the compiler
development was the development of an evaluation module for the virtual machine code generated
by the compiler. This was used for the actual execution of the cellular automata rules during
simulations. The language was gradually enhanced to contain a complete set of powerful high level
language constructs specifically designed for cellular automata. Later, more features were added
into the visualization and control modules of the simulation, which further extended the usefulness
of the simulator and made it even easier to use.

Although the new simulator described in this chapter is developed for the study of self-replicating
structures in a cellular automata space, it is by no means limited to just that application. It is
useful for a wide variety of simulation needs in the cellular automata research domain. Because of
its high level, general purpose programming language, and its flexibility in the neighborhood defi-
nition and data field allocation, the simulator can be used for virtually all one or two dimensional
cellular automata experiments. Even better, it could also be used in other similar domains such as
neural network research, where autonomous entities are connected together in a fixed pattern to
do cooperative computations.

The simulator has a built-in compiler for the high level cellular automata programming language,
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Trend, which can describe cellular automata rules in a highly readable and logical format. In
addition, the simulator uses a state-of-the-art graphical user interface to provide easy operations
of its functions. It also includes a variety of display options providing clear and instant feedback
about the simulation status, a built-in text editor for entering and correcting Trend rules on-the-fly,
and a sophisticated backtracking mechanism which actually encourages users to experiment with
different cellular automata rules. The backtracking mechanism guarantees safe return to a previous
cellular automata configuration at any time if needed.

The Trend cellular automata programming language, its compiler and the low level virtual
machine code generated by the compiler will be the main topic of the next chapter. In this chapter,
we will see how the simulator works. First, an example is given of how to use the simulator
to experiment with cellular automata models. Next, a brief description of the various simulator
functions and components is given. Finally, the data structure of the cellular automata space the
simulator is based on, the organization of the simulation program, its internal program modules
and their interactions, are described.

4.1 Using the simulator

Although all the simulator controls will be described in the following sections, it may be clearer
to the reader if a typical session using the simulator is first demonstrated to conduct the cellular
automata simulation described earlier. The capabilities, and generally how users can use this
simulator to implement a cellular automata model, are also summarized in this section.

4.1.1 A typical session using the simulator

Usually the user starts up the simulator, then tries to provide cellular automata template
information either by loading a previously designed one from a template file, or by designing a
new one using the template design facility of the simulator. The template information includes the
neighborhood positions, data fields and their sizes, symbols used to denote states, etc. When the
simulator gets the template information it needs, it will present the user with two empty windows,
similar to the main window and the text window shown in Figure 4.1, but without active cellular
automata cells and loaded rules which is visible in the windows of Figure 4.1.

The user can load a previously designed rule program into the text window of the simulator, or
the user can start inputting new rules into the text window. The user also needs to provide an initial
cellular automata configuration in the main window. This can be done by either hand-inputting
values into individual cells of the main window or by loading a previously design configuration
from a file. The user can also load in a configuration file and then modify it for use. If the default
cellular automata space size is not adequate, the user can also use the “Size” menu item to modify
it.

Ounce the initial cellular automata configuration and the rule set for simulation have been
prepared, the user can start the simulation by using either the right arrow key or the up arrow key
on the keyboard. If this is an initial development of new rules such that the rule set can have some
problems, the user can turn on the tracing mechanism by selecting “Trace simulation steps” in the
“Option” menu.

If everything goes well the simulator will compute the next configuration from the current
cellular automata configuration according to the rules in the text window. If there is any errors the
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Figure 4.1: The main window and the text window of the simulator.
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simulator will stop and report the problem. The user will have to find out what is wrong and correct
the problem before he or she can continue the simulation. The user can use the backtracking buttons
to go back in time to see if the problem is caused by a previous mistake. Going back and forth
in simulation is very common when designing new rules, and is a major advantage this simulator
provides to the user. Typical main window and text window contents when using the simulator are
shown in Figure 4.1.

During the course of a simulation the user can do lots of things. He or she can stop the
simulation for examination at any time. The user can choose different display speeds from the
“ReDraw” menu item. The cellular automata space can be displayed using pixels for the user to
see the big picture, or the viewing area can be scrolled around the simulated cellular automata
space for the user to examine different parts of the space in detail. Some of the possibilities are
presented in Figure 4.2.

The user can continue the simulation for as long as he or she sees fit. At the end of the simulation
the user can either save the final cellular automata configuration to a file for further analysis, or
he can export the configuration to an Encapsulated Postscript (EPSF) file for printing purposes.

Those above are just some typical operation steps of the simulator. The simulator is fully
interactive and all its commands can be used in any order. Therefore, there are plenty of different
approaches the simulator can be used, which are limited only by the imagination of the user.

4.1.2 Capabilities of the simulator

One of the major benefits of the simulator is that it allows an arbitrary number of neighbors
to be defined in arbitrary positions within an eleven by eleven cellular automata region centered
around the target cell. This is in direct contrast to most previous cellular automata simulation
systems, which generally provided only a limited number of preset neighborhood templates for the
user to choose from.

The simulator imposes no a priore limit on the size of the cellular automata space which can
actually be simulated. This is determined by the actual computer memory size and CPU power.
Up to 64 bits can be allocated for each cell of the cellular automata space, which can then be
arbitrarily subdivided into different data fields for various applications.

Another major benefit of the simulator is that any neighbor or field name defined for a particular
cellular automata model will automatically become one of the reserve words in the Trend cellular
automata programming language, and can then be used in many of the powerful cellular automata
specific language constructs provided in the language.

The simulator is very flexible in rule set definition and is designed to facilitate development
of new cellular automata models. A user can start with only a very limited number of cellular
automata rules, and work toward augmenting and perfecting the rule set while the simulation is
going. When more rules are needed to lead the present cellular automata configuration to the
next configuration desired by the user, they can simply be added to the current rule set. The
backtracking mechanism of the simulator allows multiple levels of undoing and redoing, which
gives 100% control to the user on how the cellular automata model or rule set should be modified
and/or corrected.

There is no limit on how big the cellular automata rule set can be, either. The one-pass compiler
makes virtually no difference in compiling speeds between rule sets of different sizes. Evaluation of
the compiler generated code is also very efficient. Because of the way the cellular automata rules
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Figure 4.2: Operation examples of the simulator window. The main window of Figure 4.1 can
be resized, as shown in part (a). If the backtracking mechanism has been turned on, a simulation
can also go backward as shown in part (b). The “E:100” label shows the current epoch number,
which is smaller than in part (a). The simulation can go forward again and some data fields can
also be turned on for displaying, as shown in part (c¢). In addition, the whole cellular automata
space can be displayed using pixels instead of characters, which allows the user to see a bigger
picture of the cellular automata space, as shown within the circled region of part (d).
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are usually composed, the evaluation speed of the compiled code does not necessarily relate directly
to the size of the cellular automata source rules.

4.2 Simulator functions and components

A concise but otherwise thorough description of the various features of the simulator is provided
in this section. First we will see how the simulator is initialized with some suitably defined template
information for the cellular automata model being used. Controls and features of the two major
windows of the simulator, the main window and the text window, will be described in details next.

4.2.1 Initialization

Upon starting up, the simulator needs to know which kind of neighborhood template the user is
using for a particular cellular automata model. Since the simulator uses a high level programming
language to describe the cellular automata rules, it also needs to have names associated with each
neighbor position in the neighborhood template. In addition, since a cell can now hold different
fields, it is also necessary to assign names to each field. The user may assign different symbols
and colors to some fields for displaying them on the screen. The user must also designate if the
cellular automata neighborhood template is symmetric and if some field states have weak rotational
symmetry (see Chapter 3). All information like this for a particular cellular automata model is
called its template information and is stored in a template file.

When the simulator is starting up it asks the user to provide this template information, either
from a previously saved template file or by designing a new one. The user can also choose to load
in an old template file and modify it for use instead of always having to start from scratch. All
three choices are presented in the “Template Query” dialog window as shown in Figure 4.3. In the
following two subsections we will see how different approaches work.

Loading a predefined template

If the user chooses to read in a predefined template file, a “File Selection” dialog window will
pop up, as shown in Figure 4.4. The user can simply select a template file by clicking on one of the
filenames displayed in the dialog, which are all files with the designated filename extension *.tmpl
for template files.

When a template file has been selected the simulator will load it in, and display the two major
windows, the main window and the text window, which will be described shortly.

Designing a new template

If the user chooses to design a new template, or if he or she chooses to modify an existing
template design, the “Template Design” dialog window will appear, as shown in Figure 4.5. In the
case of modifying an existing template, the “File Selection” dialog mentioned above will appear
first to allow the user to choose a template file to work on.

The “Template Design” dialog window counsists of two major parts, dealing with neighbor
information and field information separately.

In the left part of the “Template Design” window is a set of choices regarding the neighborhood
template of the cellular automata model being designed. First the user will have to determine if
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Figure 4.3: The template query window. The simulator asks users to provide a template infor-
mation definition by giving three choices. Users can choose to read in a predefined template file
by clicking the first (topmost) button, design a new template on the fly by clicking the second
(middle) button, or read in an old file and modify it by clicking the third (bottommost) button.

the neighborhood template is rotationally symmetric, i.e., if cellular automata rules defined for
this model can be applied after rotation or not. For example, if the neighborhood template is
rotationally symmetric, the following rule can set a cell to 1 if any of its north, east, south or west
neighbor cells is 1.

rot if (north:cell==1) cell=1;

This rule tests the north neighbor of a cell to determine if the assignment should be made. If
the neighborhood template is rotationally symmetric and the rot prefix is given, this rule will be
automatically rotated by the compiler to test against the other three neighbors east, south and west,
which are all rotationally symmetric positions of the north in the template. If the neighborhood
template is not symmetric this rule cannot be rotationally applied and only a value of 1 in the
north neighbor cell can trigger the assignment statement. Actually, if the neighborhood template
is not rotationally symmetric the reserve word rot cannot be used in the cellular automata rule at
all. The compiler will check the symmetry status of the neighborhood template and deny usage of
rot if it is not rotationally symmetric. See Section 5.10 at page 72 about the rotated if statement
for details.

Following the symmetry choice in the “Template Design” window is a matrix of cells for neigh-
borhood position definition. The center cell, marked by the letter ‘C’, is always selected since it is
required in the cellular automata fundamental definition to include the center cell into the neigh-
borhood template. It will be the “current cell” or cell of focus for any neighborhood template. The
user can define additional neighbors by clicking on the other cells. If a neighbor is defined it will
have an ‘X’ mark on it and its name is shown in the “Neighbor Name” area. If the user deletes the
name of a neighbor, in this area, that neighbor will be deleted from the template and its ‘X’ mark
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Figure 4.4: The file selection dialog window. The left box shows the directories accessible from
the current directory. The right box shows files which conform to the filename extension pattern
as given in the filter area. Below the two boxes is the filename area, which displays the filename
which is being selected. Down below there are three buttons OK, Filter and Cancel, which can
direct the simulator to either load the file, re-scan the current directory, or cancel file loading.

will be removed. The user cannot remove the center cell from the template due to the requirement
stated above.

All neighbor names defined in a template will become reserve words in the cellular automata
language Trend, i.e., they will be associated with neighbor positions but nothing else when they
are used in the rules.

If rotational symmetry is chosen, neighbor positions must also be symmetric, or cellular au-
tomata rules will be undefined when rotated. In the previous rule example, the east, south and
west neighbors must also be defined in the template for the rule to be rotatable. The simulator will
check this property and will report errors if rotational symmetry is chosen but the neighborhood
template itself is not symmetric.

In the right part of the “Template Design” window is a set of choices regarding field definition
of the cellular automata model. In the top is a set of four “Bit Depth Reference” choices. “Bit
Depth Reference” gives visual advice on how many bits has been allocated to fields and how many
free bits are still available within the designated bit depth. The user can use this to budget bit
allocations to different fields. The “Bit Depth Reference” selection has no real effect on the actual
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Template Design

Figure 4.5: The template design window. The left portion of the window is used for neighbor
information definitions. The right portion is for field information definitions in a cell. Fields are
named bit groups which can be used to store data. See the text for details. A Moore neighborhood
is illustrated here.

number of bits used for a cell in a cellular automata model. The simulator uses one byte as the
basic unit for cell storage allocation and allocates only as many bytes as needed to represent all
fields in a cell. For example, if the user defines four fields, each using five bits, the actual allocated
bits for a cell will be 24, or three bytes. The smaller the bit depth, the less storage space is required,
and the faster the simulation speed will be. Therefore, a user should never allocate more bits than
necessary to a field to prevent wasting storage space and slowing down the simulation.

Below the bit depth reference choices is the “Field Division” area, where the user clicks in to
define new data fields. The two indicators “No. of bits” and “Free bits” give the user an idea of
the size of data fields he or she allocates. Once a new field is defined its name will be displayed
in the “Field Name” area. Deleting the name for a field will effectively remove that field from the
template. If color is enabled in a simulation session, the user can pick a color for a defined field
for displaying on the screen. Color is enabled when the user is using a color capable computer
workstation and that at least 36 free colors are available to the simulator. If color is not enabled
all fields will be displayed using a default color which varies from system to system.

Once a field has been defined, if its bit depth is smaller than eight bits, state symbols can be
chosen for that field, which are displayed in the “State Symbols of This Field” area. The user can
define symbols of his choice to represent different states of this field. The user can also determine
the strong or weak rotational symmetry of a state. If a state is weak rotational symmetry the next
three states following it will be reserved as its weak rotational counterpart values. Recall from
the definition that a state has weak rotational symmetry if it rotates to three other different state
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values. These four weak rotational states will be displayed on screen using the same symbol but at
different orientations. The last three states of a field cannot be weakly rotational symmetry since
there is not enough space after them to make up their weak rotational symmetry accompanying
values.

If a field has more than seven bits the user cannot define individual state symbols for its states.
A default symbol "0’ will be used for all its states when displaying on screen. This is because a
large number of states makes individual state differentiation on the screen difficult and no longer
meaningful. In addition, there is only a limited number of symbols in any computer font set we
use. The user is encouraged to split up a large data field into smaller fields if feasible.

Do not confuse the rotational symmetry property of states of a field and the rotation symmetry
property of the neighborhood template. The user can always choose weak rotational symmetry for
states even when the neighborhood template is not symmetric. In this case the user simply picks
the four orientations of a particular symbol to display the four states in a weak rotational symmetry
group, without having any real relationship between each of them. Of course, if the neighborhood
template is also symmetric and rotated if rules are used, these four states will again start to rotate
into one another.

After the template is complete, the simulator will check the integrity of the template design as
stated. If the template information is found to be consistent, the user can save the current template
design to a file of his choice.

4.2.2 The main window

After the simulator has received all the template information it needs, it will display two major
windows on the screen. One is the “Main Window” where most simulation activities are conducted
and displayed. The other is the “Text Window” where cellular automata rules can be edited and
compiled. We will look at functions of the main window first in this subsection. The Text window
will be discussed in the next subsection.

Main window components

A sample of the main window is shown in Figure 4.6. The name of the most recently saved or
loaded cellular automata world file is shown at the very top of the window. A cellular automata
world file is used to store the cellular automata space configuration, usually with the .world
extension in its filename. Below the names is the menu bar, from which the user can select a
variety of menu commands to execute. Under the menu bar is a status bar, where various simulation
information is displayed. The majority of the main window belongs to the working area, where the
cellular automata space configuration is displayed and edited.

In the right side of the main window is a scroll bar which the user can use to move upward
or downward the current viewing area of the cellular automata space. In the bottom of the main
window is another scroll bar the user can use to make left or right adjustment of the viewing
area. A simulated cellular automata space can be much larger than the screen can display at once,
therefore we need these scroll bars to adjust the portion of the cellular automata space which is
visible through the working area.

In the working area the user can see the currently simulated cellular automata space config-
uration. Field states are represented by their predefined symbols in the template information
prescribed by the user. A set of weak rotational symmetric states are represented by the same
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Figure 4.6: The main window of the simulator. In the top is information about the program
name, window name and filename, followed by the menu bar. Under the menu bar is a status
bar where simulation information is displayed. The working area makes up the largest portion
of the main window where the cellular automata space is displayed. Ome vertical scroll bar
and one horizontal scroll bar can be seen in the right and lower region of the window. Various
window manager decorations surround the main window as marked. Their functions depend on
the particular window manager the user uses. Characters representing the state of different data
fields in a cell can overlay each other; they are easier to read off on computer screen than presented
here because originally they are in color. These characters can also be rotated to represent weak
rotational symmetric states.
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Figure 4.7: File related menu commands. “New Template” allows the user to change the current
template information. “Load” allows the user to load in a cellular automata configuration from
a .world file. “Save” and “Save As” allows the user to save the current cellular automata space
configuration into a .world file. “Export Selection” lets the user export the currently selected
region in the working area to an Encapsulated Postscript File for printing or inclusion into doc-
uments. The Encapsulated Postscript format, or EPSF, is a resolution independent file format
suitable for high quality printing. “Quit” will terminate the simulator.

symbol, properly rotated. Different data fields can be chosen to be displayed or to be hidden from
the scene using the floating “Control Window”, which will be described later. The more data fields
displayed, the harder it is to view each individual symbol. Therefore, it is up to the user to deter-
mine the suitable data fields to be displayed. The working area always reflects the current cellular
automata space configuration. When a simulation is going on or when backtracking is triggered,
the cellular automata space displayed in the working area will be updated accordingly.

File related commands

The first menu item of the menu bar is “File”, which hosts a sub-menu with many commands
as shown in Figure 4.7. The “New Template” command allows the user to change the current
template information used by the simulator. The “Load” command allows the user to load in a
cellular automata space configuration from a world file.

The “Save” and “Save As” command both allow the user to save the current cellular automata
space configuration into a .world file, but the “Save” uses a default filename which is given in
the title area as seen in Figure 4.6. The “Export Selection” command lets the user save the
current selection in the working area into an Encapsulated Postscript file, which can later be used
in printing or for inclusion into the other documents. All cellular automata space samples in the
following chapters are made by this command. Finally, the “Quit” command will terminate the
execution of the simulator.

The floating window for display control

?

There is a floating “Control Window” of the simulator, which is associated with the main
window. It is used to control the display and editing of cellular automata fields in the working
area. A typical “Control Window” is shown in Figure 4.8. Listed names in the right column are
fields defined in the current template. Clicking on any of the field names will select that field as
the current focus field. A focus field has two properties. First, the focus field content will always
be displayed. Second, the field editing popup menu, which will be discussed next, will always be
associated with the current focus field. There is only one focus field at any time; a new focus field
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Figure 4.8: The floating control window. Field
names are listed in the right column which the
user can choose to set the focus field. In the left
there is a set of check boxes the user can use to
control displaying of the fields. The “Show All
Fields” button will force all fields to be
displayed, disregarding the status of their check
boxes.

selection will replace the previous focus field.

To the left of the name list is a set of check boxes. The user can decide which data fields are
necessary to be displayed at any time by setting these check boxes. It does not matter if a field is
the current focus field or not.

Editing cellular automata space

Editing in the working area is simple, and is conducted by the combination of mouse actions
and a few menu commands. Under the “Edit” menu item there is a set of commands for editing
the cellular automata space configuration, which is shown in Figure 4.9.

The first command is “Undo”. No matter what change the user has just made in the cellular
automata space, choosing the “Undo” command will undo that change.

A set of five commands “Cut”, “Paste”, “Copy”, “Clear” and “Drop” are the second group in
the edit sub-menu. Their ranges of application are determined by the status of the floating control
window. All fields currently being displayed will be affected. For example, the “Cut” command
will remove everything within the currently selected region from every field which is currently being
displayed into the “Clipboard”, which is a temporary storage area set aside by the simulator. The
original content of all affected fields will be set to zero, which is usually the quiescent state for each
field.

The region which the user “Cuts” is stored in the “Clipboard”, which the user can paste back
into the cellular automata space by using the “Paste” command. The pasted content includes all
fields that are previously stored in the “Clipboard”. The pasted clipboard content will form a new
selected region which can replace the current region. A newly pasted region has not been actually
combined with the cellular automata region under it. It is floating atop the cellular automata space.
The user can adjust its position using the mouse. When the user has decided to settle the floating
selection with the cellular automata space, he or she can choose the “Drop” command to drop the
floating selection into the cellular automata space. The original cellular automata region under the
floating selection will be replaced by the selection. Before the user drops a floating selection, the
actual cellular automata space content has not been changed.

The “Copy” command behaves like the “Cut” command but does not remove the current
cellular automata space content. The “Clear” command removes the current cellular automata
space content but does not put it into the clipboard. As stated before, these five editing commands
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Figure 4.9: The editing commands. “Undo” will undo any recent change in the cellular automata
space. “Cut” will copy the selected region into the clipboard and erase the region in the space.
“Paste” will put the clipboard content into the cellular automata space. “Copy” will copy the
selected region into the clipboard without removing it. “Clear” will erase the selected region with-
out moving it into the clipboard. “Drop” will settle a floating selection into place. “Randomize”
can generate some random states in the current focus field by user specifications. “Pattern Setup”
can define the content of the focus field within the currently selected region as a pattern, which
can later be used by the “Pattern Use” selection. “Clear All Fields” will set all fields in all cellular
automata cells to the quiescent state (i.e., all zeros). Finally, “Reset Epoch Number” will reset
the current epoch counter of the simulation to zero.

in the second menu group will influence any field which is currently being displayed, not just the
focus field only. But the following three editing commands in the third menu group will influence
only the focus field content.

The “Randomize” command displays a query window, as shown in Figure 4.10, which the user
can use to randomize the current focus field. After the user has set appropriate conditions in this
window, the focus field can be randomized with state values from the range specified by the two
bounds and to the percentage set by the user. The “Randomize” command is a useful tool to
randomly initialize a cellular automata space.

The “Pattern Setup” command defines the content of the current focus field within the selected
region to be a pattern, which the user can use later to fill out a cellular automata field using the
“Pattern Use” submenu, as shown in Figure 4.11. If the user chooses any pattern in this sub-menu,
that pattern will fill the current focus field by being repetitively copied into the field.

In the bottom group of the edit sub-menu, there are two more commands. The “Clear All
Fields” command will literally do what it says: clear all data fields in the cellular automata space.
The final “Reset Epoch Number” command will set the current epoch counter to zero, which does
not actually influence the cellular automata space but can be quite handy when the user wants to
start counting a new simulation cycle.

One last thing which has not been mentioned is how the initial cell value can be entered into
the cellular automata space in addition to just being randomly generated. The user can use the
mouse button to pop up a state menu of the current focus field within the working area. The user
can choose a state value to be placed in the cell under the mouse position from this popup menu.
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Figure 4.10: The randomize query window. The “Upper Bound” and “Lower Bound” are used
to set a value range. The “Percentage” is used to set the filling density. The current focus field
will be randomized accordingly.

Figure 4.11: The pattern use sub-menu. The user can choose a pattern using this sub-menu to
fill the current focus field.
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Figure 4.12: The Redraw speed selection
sub-menu.

Changing the focus field will change the popup menu too, so the user can edit different fields.

Scrolling, re-drawing and resizing the viewing area

As said before, the simulated cellular automata space can be very large, larger than the screen
can display at once. Therefore, the working area of the main window will be viewing just a portion
of the simulated cellular automata space. There are two scroll bars in the right and bottom area of
the main window which the user can use to scroll another portion of the cellular automata space
into the viewing area.

The user can choose the screen update frequency by using the “ReDraw” menu item, as seen in
Figure 4.12. This is useful when the user is not interested in individual simulation steps and wants
to speed up the simulation. The size of the simulated cellular automata space can also be changed
on-the-fly by using the “Size” menu item, as seen in Figure 4.13.

When the user chooses to enlarge the simulated space, the current smaller space configuration
will be left in the center of the larger new one. Those cells originally connected in the boundary of
the smaller configuration will now become disconnected. If the user chooses to shrink the cellular
automata space, those cells beyond the smaller new boundary will be discarded.

Figure 4.13: The Size selection sub-menu.
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Figure 4.14: Options of the simulator. See the
main text for descriptions of each option.

Options

There are some simulator options the user can choose, which are under the “Option” menu
item as displayed in Figure 4.14. The dashed line in the top of the sub-menu denotes that this
is a tear-off capable sub-menu panel, which means the user can select the dashed line to cut the
sub-menu off the menu bar. This is very handy when the user wants to constantly change the
options without going through the menu each time.

The first option is “Trace simulation steps”. If set, it will enable the tracing mechanism of
the simulator. Cellular automata space changes during the simulation will be saved to the file
system if this option is on. The user can go back to a previous configuration using the backtracking
commands only if this option is set. Tracing will use up available file system space temporarily (the
trace file will be deleted when the simulator quits), but it allows very convenient trial-and-error
development of the cellular automata rules.

The second option is “Catch conflict rules”. Normally this option is set so that the simulator
will try to catch cellular automata rules which are conflicting to each other during runtime, such
as assigning different values to the same field of a cell. The conflict error is described further in
Section 5.11 in the following chapter about the cellular automata programming language. This
error catching mechanism is very useful when debugging the cellular automata rule set, but may
incur some speed penalty to the simulator. The user should disable this option only when the
cellular automata rule set has been found to be correct.

The third option is “Display with pixels”. When the simulated cellular automata space is very
large, sometimes it is hard to see the whole space even by constantly scrolling within the working
area. The user can choose this command to display cells in the cellular automata space by pixels,
instead of by symbols which the simulator normally uses. This can give the user a big picture of the
cellular automata space but with lesser description power than using symbols. Each field is now
displayed using only the same color pixels, so there is no telling which state value is at each cell.
If multiple fields are chosen to be displayed, colors of different fields will be mixed, which makes
reading even more difficult.

The fourth option is “Display zero states”. Normally quiescent states in each field are repre-
sented by the zero state value. Zero states are not displayed by the simulator on screen since it is
believed that these states are not interesting to the user and can potentially prevent a clearer view
of the cellular automata space. The user can check this option to override that simulator behavior
so any state value will be displayed by their associated symbols.

The fifth option is “Show conflict states”. Normally a cell where a rule conflict is found is
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Figure 4.15: The effects of the EPSF export options. (a) all options are on. (b) “Export line
background” is disabled. (¢) “Export epoch number” is also disabled. (d) “Export frame box” is
also disabled.

reported in the message area of the “Text Window”, which will be described in the next subsection.
If the user finds that it is hard to locate the cell by the coordinates reported in the message area,
he or she can choose to show conflict states by reversed video too, so that a cell with conflicts
can be easily identified. The trouble with this option is that undefined cells, where no applicable
rules can be found to calculate the next state values, are also displayed with reversed video by
the simulator. Therefore, there will be a problem knowing if a cell in reversed video is having a
conflict or is undefined. The user has to check the message area coordinates to determine if it is
an undefined or conflict cell.

The last three options deal with exporting the cellular automata space selection to Encapsulated
Postscript files. Each of them affects the EPSF output in one of the following ways:

e “Export line background”. This option will export background field state values between 1
and 4 using directed lines. The focus field or any state value not falling in that value range
will be exported normally using symbols. This is very useful when the user uses the state
values 1 through 4 to represent directions in the cellular automata space. Otherwise, it is
seldom used.

e “Export epoch number”. The current epoch number will be included in the EPSF file if this
option is selected.

e “Export frame box”. A rectangle box will be drawn around the selected region in the exported
EPSF file.

Examples of how these three export options affects the look of the EPSF file are given in Figure 4.15.

Simulation and backtracking controls

The simulation progress is controlled by the sub-menu under the “Control” menu item as seen
in Figure 4.16. The dashed line is again showing that this sub-menu can be torn off to form an
independent floating window, just like the “Option” sub-menu mentioned in the previous subsection.

The “-—>>" command will push the simulation forward continuously. The “->” command
will move the simulation forward one step at a time. The “stop” command will stop the current
continuously forward or backtracking operation. The “<—” command will backtrack the simulation
one step backward, and the “<<-" command will start backtracking continuously until reaching
the first saved cellular automata configuration or until the user presses the “stop” button. Note
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Figure 4.16: The control sub-menu. Arrow keys direct the progress of the simulation in the asso-
ciated directions. Double arrow keys make it run continuously. “Stop” will stop any continuously
running action. The dashed line allows the sub-menu to be teared off to form a floating window.

that backtracking is available only when the “Trace simulation steps” option is on and when at
least one cellular automata configuration has been recorded.

The tracing mechanism is very handy since it allows the user to pinpoint the cellular automata
evolution back and forth with great flexibility. But the tracing mechanism eats up disk storage,
especially for large cellular automata space and long simulations. The simulator will attempt to
keep an eye on the current file system usage ratio and will stop the tracing mechanism automatically
with an error message to the user when the file system is about 90% full.

Status bar

The last undiscussed component of the main window is the “Status bar”. The Status bar is
shown in Figure 4.17. Basically, some simulation and editing information is displayed in the status
bar, which is outlined below:

e The first flag “E:” denotes the current epoch number. If the simulator is just starting up, the
current epoch number is zero. When the simulation moves forward, this number will increase.
When backtracking, this number will decrease.

e The “%:” flag shows how efficiently the caching mechanism of the simulator is functioning.
The caching mechanism of the simulator tries to record recent cellular automata rule evalua-
tion results for the oncoming evaluations so that if a result can be found in the cache lookup
table, the rule evaluation can be skipped. If this efficiency value is low, it means most of the
time the simulator has to resort to rule evaluations.

e The “X:” and “Y:” flags show the current coordinates of the mouse pointer in the cellular
automata space covered by the working area.

e The “U:” flag shows the number of cells with undefined errors, i.e., cells whose next state
value cannot be determined by the cellular automata rule set.

e The “C:” flag shows the number of cells with conflict errors, i.e., cells with more than one
next state value when evaluated by the cellular automata rule set.

e The final “F%:” flag shows the current file system usage status. If this value is high, a file
system full crash may occur with a higher probability.

Figure 4.17: The status bar. Various simulation and editing information is displayed in the
status bar. See the text for explanations.
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Figure 4.18: The text window of the simulator. The title shows the current program name,
window name and file name of the simulator. A menu bar follows the title which has three sub-
menus: “File”, “Edit” and “Compile”. Under the menu bar is a message area where various
errors are reported, such as the compiling syntax error or the runtime conflict error. The text
area occupies most of the text window, where cellular automata rules can be edited just like a text
editor. The message area and the text area both have scroll bars to adjust the viewing position
if the text to be displayed is larger than the size of the window.

4.2.3 The text window

Besides the main window, there is another “Text Window” that the user can use to load the
cellular automata rule set into the simulator, edit and experiment with the rules, and save those
rules back to a .rule file. A sample of the text window is shown in Figure 4.18.

Standard basic Gnus Emacs editing commands is supported in the text area. The rules within
the text area can be saved to or loaded from a rule file by commands under the “File” menu item,
which is shown in Figure 4.19.

Some text editing commands are shown in Figure 4.20. Two interesting commands “Jump” and
“Goto” are listed in the third group. They do not actually change the text area in any way. The
“Jump” command moves the cursor in the text area to a character position shown in the message
area. Usually when a compiler error or runtime error is found, the simulator reports error spots
with their character positions in the rule text. The user just needs to highlight (select) the position
value, then choose the “Jump” command to jump to the error spot in the rule text. This function
is very convenient when the user is trying to find the error spots within the rule text. The “Goto”
command behaves similarly but asks the user to input the character position rather than getting
it directly from the the message text.

The last group of editing commands deal with searching and replacement of strings in the rule
text. The “Find” command asks the user a string to search for and then tries to locate that string
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Figure 4.19: File commands for rule set manipulation. “New” will erase the content of the text
area to prepare for a new rule set. “Load” will load a .rule file into the text area, which can later
be modified and compiled. The “Save” and “Save As” command both try to save the current text
area content into a .rule file, the difference being that the “Save” command will use the default
rule file name shown in the title of the text window if there is one.

in the rule text if there is any. The “Find Next” command continues the search of the same string
done used by a previous “Find” command. The “Find&Replace” command asks for both a search
string and a replacement string so that if the search string is found in the rule text it will be
replaced by the replacement string.

The final menu item is “Compile” which is used to invoke the Trend compiler. If compilation is
successful the newly generated evaluation codes will replace the current codes directly, even when
the simulation is still running. If there any error is found during compilation, it will be shown in
the message area.

4.3 Under the hood

In this section we will see how the simulator is implemented. First, we will discuss the idea of
data fields within cellular automata cells, as well as the neighborhood and field definition capability

Figure 4.20: Editing commands for rule text. “Undo” will undo any recent change in the rule text.
“Cut” copies the selected text into the clipboard and erases it. “Paste” puts the clipboard content
into the text at the cursor position. “Copy” copies the selected text into the clipboard without
removing it. “Clear” erases the selected text without copying it into the clipboard. “Jump” moves
the cursor to a text position highlighted in the message area. “Goto” does a similar job but allows
the user to specify the position. “Find” locates a string in text specified by the user, “Find Next”
continues the search done by the previous “Find” command. “Find&Replace” replaces the search
string with a replacement string specified by the user.
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provided by the simulator. Next, we will see an overview picture of what the various modules of
the simulator program are and how they are connected together. After that, we will discuss the
major data structures used by the simulator, the transition function evaluation module, the tracing
mechanism, the compiler, the memory management of the simulator, the template design module,
file formats used by the simulator, the user interface construction, and finally the resource file of
the simulator program.

4.3.1 The cellular automata space organization

In the early days of cellular automata, two dimensional cellular automata models had only two
commonly used neighborhood templates: the von Neumann template and the Moore template’.
Each cell of a cellular automata model was treated as a state variable, i.e., it could hold different
values, but was considered to represent the same property. Actually, most of the time the state
variable was just a binary bit showing 0 or 1.

With the advent of more complex modern cellular automata models, new neighborhood tem-
plates were introduced for different applications, but the two classic neighborhood templates still
retain their popularity because they are simple and regular. However, a single variable cell design
became very limited for any but the simplest models. To solve this limitation, the concept of cell
division into fields (sometimes called layers or planes) was introduced [Toffoli & Margolus, 1987].
Fields are functional divisions of the state variable of a cell into different bit groups, each encoding
a different property of the cellular automata model being used. We can think of each field as a slice
of a cell state variable with its own name and value. Alternatively, we can just treat each field as
a different state variable in a cell, as if each cell can now hold many state variables.

For example, the emergent self-replicating rule set (which will be discussed in Chapter 6) uses
four data fields, component, special, growth and bound, as shown in Figure 4.21. Each field is
assigned a name and can be referenced with that name in the cellular automata programming
language. The automata transition function used to compute a new value for a field can be based
on current values of many fields in many neighbors of the neighborhood template. With the help
of fields, a very complex cellular automata model and its rule set can be designed in a concise and
easy to understand manner.

Up to 64 bits can be allocated for a cell. The simulator described here allows an arbitrary
number of data fields to divide this 64 bits. The neighborhood template is no longer predefined
and limited to a number of well-known templates. With the new template design facility mentioned
above, any cell within an 11 by 11 cell region around the center cell can be part of a neighborhood
template. The possibility of new template designs becomes enormous.

4.3.2 The construction of the simulator

A functional view of the simulator software components and their mutual relationships are
depicted in Figure 4.22. In this figure, data structures are represented by rectangle boxes and
program modules are represented by rounded rectangle boxes. The relationships between different
program components are indicated by arrows. Modules in the gray area are called by all the other
modules, so arrows are omitted from them.

1See Figure 2.1 at page 5 for the definition of the von Neumann and Moore neighborhoods.
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Figure 4.21: The cellular automata fields. The cellular automata state variable in each cell is
horizontally sliced into different bit groups called fields. Each field represents a specific piece of
information in the cellular automata model, and is supported by rules which compute its new
value during each iteration. Different bit-depths are assigned to different fields as indicated. The
total number of bits used is the size of the state variable in each cell; the simulation program
keeps track of this information.

The simulation control module calls either the tracing mechanism module or the evaluation
module to modify the simulated cellular automata space. The change in the cellular automata
space configuration is reflected to the screen by the display module. The tracing mechanism uses
its own files to store the tracing data to the file system, which makes returning to a previous epoch
possible.

The evaluation module can be viewed as the core of the whole simulation system. It uses the
compiled rule codes generated by the compiler and references the template information maintained
by the template design module to determine the next state of the cellular automata space config-
uration. It also maintains a cache table for itself to speed up evaluation. The compiler takes the
rule text source and also references the template information to generate the compiled rule codes
which is used by the evaluation module.

There are two editing modules, one for editing the rule text, the other for editing the cellular
automata space configuration. The cellular space editing module also uses an auxiliary cellular
automata space of its own to maintain the “Undo” information.

The four supporting modules (memory management, input/output, user interface and error
recovery) are called by all the other modules in the simulator. Their involvement with the other
modules is deep and more than what is shown in Figure 4.22.

In the following several subsections each component will be discussed separately.

4.3.3 Major data structures

The most obvious data structure the simulator uses is the cellular automata space data. It is
amagzingly simple, consisting of only pointers to two character arrays. They are declared in the
following C language constructs:
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Figure 4.22: The structure of the simulator program. Data structures are represented by rectan-
gles. Program modules are represented by rounded rectangles. Reference or data flow directions
are represented by arrow lines. If a data structure is referenced by a program module, there is an
arrow line from the data structure to the module. If a program module writes a data structure,
there is an arrow line from the module toward the data structure. If a module both reads and
writes a data structure, a two-way arrow links them. The simulation control module calls both
the tracing mechanism module and the evaluation module, so there are arrow lines from the con-
trol module toward both the tracing and evaluation module. In the gray area to the left of the
figure there are some supporting modules which are called by all the other modules. To simplify
matters, lines are not drawn for them.
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typedef char Cell;
Cell *0ldWorld, *NewWorld;

The simulator needs to maintain two separate arrays 0ldWorld and NewWorld in order to com-
pute the next state value from the current state. To obtain maximum flexibility for the size of the
cellular automata space, a one dimensional array is favored over the standard two dimensional C
language array to represent the space. The simulator keeps track of the shape of the two dimen-
sional cellular automata space with the help of a couple C macros and the WorldSize variable. All
two dimensional references to the cellular automata space are converted by the simulator into the
one dimensional array.

Compiler generated virtual machine code for the cellular automata rule set is kept in the
ParseNode records, with one record per one code. The declaration of the record is shown be-
low. Each ParseNode record is like a machine code with one instruction field and four branching
address fields left, right, true and false which are maintained by the four pointer fields left, right,
true and false. The operator field keeps the instruction code and the value field keeps the
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immediate value, if any, of the machine instruction. Valid instruction codes in this virtual machine
language are listed in Table 4.1 at page 55, which will be discussed in detail in the following chapter
about the compiler.

typedef struct ParseNode {

int operator, value;

struct ParseNode *left, *right, *true, *false;
} ParseNode;

The cellular automata template information is kept in two separate arrays of NeighborStruct
and FieldStruct records. Each neighbor or field information is kept in one record in those arrays.
The two record declarations are listed below, together with the explanation of their data fields.

typedef struct NeighborStruct {
int id; /* The integer id of the neighbor */
/* Pointer to its check box in the ‘‘Template Design’’ window */
Widget w;
char *name; /* Referenced name of the neighbor in rules */
/* Positions of the neighbor in the neighborhood template. */
struct {
int x, y;
} offset[4];
} Neighbor;

The id field records the integer id of the neighbor. It starts from zero to one minus the number
of neighbors in a neighborhood template. The w field contains a pointer to a check box in the
“Template Design” window (Figure 4.5 at page 36), which is used to associate the neighbor with
the check box. The name field records the name of the neighbor when referenced in the cellular
automata rule set. This name actually is part of the reserve word set of the Trend language. The
final four x, y pairs in the offset field record the actual coordinate positions of the neighbor,
when properly rotated. If the neighborhood template is not rotationally symmetric, then only the
first x, y pair is used.

typedef struct FieldStruct {
int bits; /* The number of bits in the field */
int states; /* The number of states in the field */
int show; /* If user chooses to display this field on screen */
char *name; /* Referenced name of the field in rules */
unsigned mask, mark; /* Data used by the evaluation module */
int shift; /* Data used by the evaluation module */
int type; /* Data used by the evaluation module */
Widget popup; /* Pointer to the popup menu for the field */
int pixel; /* The color of the field for displaying */
GC normal, reverse; /* Data used by the display module */
char *symbols; /* The defined state symbols of the field */
char (xrotation)[4]; /* The state rotational values array */
Pixmap *positive, *negative; /* The normal and reverse video */
int select; /* See if this field is selected for output. */

} Field;
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The bits field records how many bits are allocated to this field. The states field records how
many states are expressible in this field, which is always 2P1S. The show field determines if this
field should be displayed on screen or not, which is set by the user using the “Control Window”
(Figure 4.8 at page 40). The name field store the name of the data field which is referenced in
cellular automata rules. This name becomes part of the reserve words of the Trend language when
the template information containing this field is loaded. The mask, mark, shift and type fields are
lower level auxiliary data used by the evaluation module for cellular automata transition function
computation. The popup field contains a pointer to the popup menu of the field which is used
to manually input state values into this field by the user. The pixel field stores the color for
displaying this data field on screen. The normal and reverse fields are used by the display module
for displaying normal cells and cells with undefined or conflict errors. Same is the positive and
negative field.

The symbol field stores all symbols defined by the user to represent states of this data field.
The rotation table records the mutual weak rotational symmetric states for states. For example,
if states 1 to 4 are within a weak rotational symmetric group, then rotation[1] will contain 1,
2, 3, 4, rotation[2] will contain 2, 3, 4, 1, rotation[3] will contain 3, 4, 1, 2, etc. Finally,
the select field determines if a field is chosen by the user when outputting the current simulated
cellular automata space configuration to a file.

The cache table used by the evaluation module is built from the following basic record unit:

typedef struct Cache {
char *lhs, *rhs;
int replace, visit;
struct Cache *search;
} Cache;

The cache table stores the recently computed cellular automata transition function values. It is
both a hash table for fast value lookups and a priority tree for value replacements. The lhs and
rhs fields keep the priority tree structure, and the field keeps the hash table structure. Collision
of a hash table entry is resolved by using the search field to form a linked list in that entry. The
visit counter keeps the number of references to a particular record and the replace counter keeps
the order in the priority tree. When a record is referenced again, it is moved down in the priority
tree. When a new record is needed to store a new transition function value, the top node of the
priority tree is used.

The last major data structure used in the simulation software is the tracing array used by the
tracing mechanism module which is composed of the following data record:

typedef struct TraceRecordStruct {
int num, pos, epoch;
} TraceRecord;

The pos field keeps track of the file position in the trace file on the file system. The epoch field
keeps the epoch number represented by this record and the num field stores the number of the trace
record.
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4.3.4 Evaluation

The evaluation module calculates the next cellular automata space state from the current one,
using the rule code compiled by the compiler from the source rule set expressed in the Trend
language. The evaluation module uses a three step strategy to conduct the next state evaluation
process. This is depicted in Figure 4.23.

The first step is invariant checking. Most cellular automata cells, especially during earlier
simulation steps, are at quiescent states. According to the definition of the cellular automata
model, a quiescent cell in the cellular automata space will remain quiescent indefinitely, until its
neighbors become active. The evaluation module takes advantage of this fact. Actually, it takes it
even further. If a cell and its neighbors have not changed their values during the past epochs, that
cell can be skipped in the evaluation process since its value will not change in the current epoch.
That is exactly what the evaluation module does to avoid evaluating invariant cells.

If the cell has different neighbor values than the previous evaluation, or if its value has changed in
the previous evaluation, the evaluation module has to calculate its next state value. The evaluation
module first looks at the cache table to see if it can find any recent evaluation which has exactly
the same neighbor configuration, or transition function inputs, as the cell in question. If such a
case can be found its evaluation result will be taken to be the next state value for the cell, so actual
evaluation is not necessary. The visit counter of the found case in the cache table is increased by
one and the entry is also moved down in the priority tree, so that its chance of getting replaced is
lower.

If none of the above procedures works, the evaluation module will have to calculate the next
state by using the compiled rule codes. First, states in a cell and its neighbors are split into
individual fields which can be referenced directly and efficiently by the compiled rule codes. Then,
the rule codes are executed. After the termination of the rule codes, the evaluation module will
check to see if there is any undefined field value for the cell. If found, the cell has undefined errors.
If the evaluation module finds that multiple assignments have been made to the same field, the cell
has conflict errors. In either case, the evaluation module will report errors and mark the problem
cell.

If rule execution is successful for a cell, the evaluation module will pack new fields back into
the cell. Tt will also put the new evaluation result into the cache table for future references. If no
empty entries can be found in the cache table, the less frequently referenced entry will be replaced
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PFIELD1 PAND 11 PPLUS1 21 PLEQ 31 PMOD 41
PFIELD2 POR 12 PPLUS2 22 PLT 32
PFIELD3 PXOR 13 PFSET 23 PRETURN 33
PFIELD4 PVALUE 14 PFPLUS 24 PROTS 34

1

2

3

4
PADDR 5 PCALL 15 PDEF 25 PRVALUE 35
PARRAY 6 PROT 16 PNEQ 26 PFMINUS 36
PADD 7 PROTE 17 PNZE 27 PMINUS1 37
PSUB 8 PBREAK 18 PGT 28 PMINUS2 38
PMUTL 9 PSET1 19 PGEQ 29 PRFIELD1 39
0 PSET2 20 PEQ 30 PRFIELD2 40

Table 4.1: Virtual machine codes used by the simulator.

by the new evaluation result.

If an evaluation error is found during the evaluation process, the simulation control module
will stop the simulation. The display module then displays the new cellular automata space con-
figuration on screen. Marked cells will be displayed in reversed video. If no error is found during
the evaluation and the user chooses to continuously simulating, the simulation control module will
exchange the 01dWorld and the NewWorld pointer and continue the simulation.

4.3.5 Tracing mechanism

If the user chooses to trace the cellular automata simulation, the tracing mechanism of the
simulator will save the differences between each iteration to a temporary trace file on disk. The
location and size of each iteration difference information within the trace file is recorded in memory
using the trace record array. The tracing mechanism uses dynamic addressing into the trace file
to recall previous configuration differences from the current configuration, and applies them to the
current cellular automata space to get to previous epochs.

4.3.6 Compiling

The compiler for the Trend cellular automata programming language uses a standard LR(1)
grammar to describe the rule syntax, and was built by using the yacc compiler construction tool
in Unix. The compiler currently is strictly one-pass with no forward references allowed in the
rules. That means all variables and functions must be declared before being used. Because of this,
recursive procedure call is impossible with the Trend language. Actually, for efficiency reasons, all
variables are allocated statically in a heap rather than dynamically on a stack. Therefore, multiple
entrances to the same procedure may produce unpredictable results. It is determined that for
cellular automata programming none of these unsupported features are needed.

The compiler generates compiled rule codes represented in a virtual machine instruction set,
which is listed in Table 4.1. The benefit of compiling into a virtual machine code rather than
to the host computer machine code is that it is machine independent. Porting the simulator to
the other workstation platforms does not require rewriting of the code generation modules in the
compiler. The drawback of this is that a simulation runs about three times slower than if it is using
real machine instructions. But with the help of invariant skipping and cache table lookup in the
evaluation module, the slowdown is more than justified by the portability and stability.
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The compiler optimizes output machine code by removing constant expressions (expressions
which do not involve variables) and by coercing multiple indirect jumps to one direct jump. Since
the compiler is one pass only and is efficiently implemented, it can compile thousands of Trend
source lines in less than a second, essentially making the compiling phase not noticeable by the
user. The compiler can be called even during active simulation runs. The compiled rule code it
generates will immediately replace any previous code and be used by the evaluation module.

We will discuss the virtual machine instruction set and the compiler in more detail after we
have introduced the Trend language in the following chapter.

4.3.7 Memory management

The simulator attempts to do memory management itself rather than by using the standard
C language memory management functions such as malloc() and free() directly. Since only a
limited number of fixed-size data types are used by the simulator, the simulator tries to form a
pool of free data objects for each type internally. Whenever a data object is freed, it is returned
to the object pool rather than to the heap maintained by the standard C routines. When a new
object of the same type is needed, objects in its associated pool will be provided first. In case there
is no more free objects in a particular pool, the memory management module of the simulator will
then call the standard memory allocation routine again to get a bunch of the new objects at once.
Surplus objects will be returned to the pool.

Managing data objects by the simulator itself can greatly improve the execution speed and
prevent heap fragmentation caused by using the standard C library memory management routines.

4.3.8 Template design

The simulator makes use of the “Template Design” window shown in Figure 4.5 on page 36 to
provide template design controls to the user. The template design module will check the consistency
of the user design, as stated before. The template information generated by the template design
module is stored in the neighbor and field information arrays and is used by both the compiler and
the evaluation module.

Currently the template design module allows neighbors within an eleven by eleven square,
rooted on the center cell, to be put into the neighborhood template. It also allows a maximum of
64 bits in each cell to be used for data field allocations. These limitations are arbitrary rather than
mandatory, and can be extended by resetting some of the program parameters, but it is found that
these limitations are seldom reached by any practical application of the simulator, i.e., they are
more than enough for normal uses.

4.3.9 File formats

The simulator makes use of three different file formats for recording the template information,
the cellular automata space configuration, and the rule set source text. The rule set source text is
just like any text file in the computer system, and can be edited by any popular text editor.

A sample of the template information file is given below. We can see that it records most of
the data fields in the NeighborStruc and the FieldStruc records. Although the template file is
designed to be readable, it is not meant to be edited by the user in anyway. If the user wants to
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modify a template file, he or she should load that template file using the simulator and use the
“Template Design” window of the simulator to do the job.

File: life.tmpl
Created Mon Mar 4 21:01:16 1996
BitDepth=8, ByteDepth=1, LhsLength=9, UseColor=1
Symmetry=1, NeighborNumber=9, FieldNumber=4, SolvedMask=17
Neighbor Descriptions:

ce: (0,0), (0,0), (0,0), (0,0)

no: (07 1)7( ) ( ) ('170)
ne: (1,-1), (1,1), (-1,1), (-1,-1)
ea: (1,0), (0,1), (-1, ) (0-1)
ser (L,1), (-1,1), (-1,-1), (1,-1)
so: (0,1), (-1,0), (0-1), (1,0)
sw: (-1,1), (-1,-1), (1,-1), (1,1)
e: (-1,0), (0,-1), (1,0), (0,1)
nw: ('17'1)7 (17'1)7 (171)7 ('171)

Field Descriptions:

component: bits=4, states=16, mask=17, mark=1, shift=28, type=1, color=26
>__LOEFBCDoooo

special: bits=2, states=4, mask=3, mark=2, shift=26, type=1, color=32
R

growth: bits=1, states=2, mask=1, mark=4, shift=25, type=1, color=18
-+

bound: bits=1, states=2, mask=1, mark=8, shift=24, type=1, color=9
!

The above denotes that the template information is saved to the file 1ife.tmpl. The template uses
8 bits in a cell for field allocations (BitDepth=8), which is exactly one byte (ByteDepth=1) long.
The neighborhood template has nine neighbors (NeighborNumber=9), and each cell is one byte long,
so the total input length to the cellular automata transition function is 9 bytes (LhsLength=9).
This template has color information encoded for each field (UseColor=1). Its neighborhood tem-
plate is rotational symmetry (Symmetry=1). It has four data fields (FieldNumber=4), and the bit
pattern for checking for four data fields are 1111, which is 17 if expressed in octal number format
(SolvedMask=17).

After the template parameter definitions, the actual neighbor and field descriptions follow. Each
neighbor description entry contains the name of the neighbor ce, and the four rotational symmetric
positions of the neighbor, expressed in coordinate pairs in the neighborhood template. The center
cell of a neighborhood template always has the coordinates (0,0). Each data field description
contains the name of the field component, the number of bits allocated to the field bits=4, the
number of states expressible in the field states=16, the mask, mark, shift and type data used by
the evaluation module, and finally, the color for displaying this data field on screen color=26. In
the second line of a field description, it lists the symbols defined to represent states of this field

>___LOEFBCDoooo. The three underline symbols “_” and the symbol > before them means that
they are weak rotational symmetric states and are displayed on screen by the same symbol > but
rotated differently.

The cellular automata space configuration is recorded in a .world file. A world file consists of
a readable preamble part which details the saved fields in the world file, together with a binary
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unreadable part which actually records the configuration. A sample of the readable world file
preamble is shown below.

File: sample.world
Created Tue Mar 5 19:23:31 1996
WorldSize=40, SavedFields=4
Field name and depths:
component: 4 bit(s)
special: 2 bit(s)
growth: 1 bit(s)
bound: 1 bit(s)

It says that the cellular automata space configuration is saved to the file sample.world, the cellular
automata space has 40 x 40 cells (WorldSize=40, and there are four data fields saved in this filed
(SavedFields=4). After that, the names and bits for each saved data field are listed.

4.3.10 User interface

The simulation program provides a graphical user interface to present great ease of use of its
functions to users. The graphical user interface allows the user to interactively pursue rule set
development and cellular automata simulations. The power of the simulator is greatly increased
by the ease of use of the interface.

Currently, the simulator is built around the X Window system under Unix. The simulator uses
the Motif widget library to provide the user interface components, such as the menus and scroll
bars, but all other interface features like cellular automata space drawings on screen and template
design window operations, etc., are still implemented in the simulator itself.

Since the core simulation routines and compiler are not dependent on the user interface design,
porting the simulator to other platforms involves rewriting the user interface components only.

4.3.11 The resource file

The current simulation program under Unix makes heavy uses of the X Window resource file
mechanism. Whenever possible, any feature and look-and-feel setup is defined in the resource file,
rather than hard-coded into the program source code. Working with the resource file has the benefit
of flexibly changing the appearance of the simulation program without the need to recompile the
source code. All colors and text labels that the program uses can be modified. Even changing to a
foreign language for multi-language ports is easy using the resource file. A portion of the resource
file which defines the “File” sub-menu content is shown in the following example. It can be seen
that all the hot keys, names and colors can be changed here.

*MenuBar*foreground: yellow
*MenuBar*NewTemplate.labelString: New Template ...
*MenuBar*NewTemplate.mnemonic: N
*MenuBar*NewTemplate.accelerator: Meta<Key>N
*MenuBar*NewTemplate.acceleratorText: Meta+N
*MenuBar*Load.mnemonic: L
*MenuBar*Load.accelerator: Meta<Key>L
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*MenuBar*Load.acceleratorText: Meta+L
*MenuBar*Save.mnemonic: S
*MenuBar*Save.accelerator: Meta<Key>S
*MenuBar*Save.acceleratorText: Meta+S
*MenuBar*SaveAs.labelString: Save As ...
*MenuBar*Export.labelString: Export Selection ...
*MenuBar*Export.mnemonic: E
*MenuBar*Export.accelerator: Meta<Key>E
*MenuBar*Export.acceleratorText: Meta+E
*MenuBar*Quit.mnemonic: Q
*MenuBar*Quit.accelerator: Meta<Key>Q
*MenuBar*Quit.acceleratorText: Meta+Q

Modification of the resource file should be done as carefully as changing the program source code,
otherwise unexpected errors may appear. The resource file for the simulator should be installed
in the X Window resource file directories for all users to share. Some user changeable properties,
such as the font used to display cells or the color of the selection dashed lines, can be changed by
an individual user by putting those values of his preference into his own .Xdefault file.

4.4 Comparison to previous simulators

The CAM machine and Cellular system described in Section 2.3 are more or less designed for
simulating physical systems, notably reaction-diffusion systems [Keener & Tyson, 1986; Toffoli &
Margolus, 1987]. Their design objective is very different from the simulator presented in this chap-
ter. This new simulator is designed for the sole purpose of complex cellular automata rule set
development, which supports feature-rich and somewhat more complex cellular automata struc-
tures. In the development of cellular automata rule sets which support a desired behavior such as
self-replication, we need to observe constantly the simulation results of our current rule set under
development, modify the rule set, go back in time, and run the simulation on the same starting
cellular automata space configuration again. This kind of design approach is not easily supported
in the two aforementioned systems. In those systems, the cellular automata space configuration is
not saved automatically unless the user gives specific commands to save it. Loading and saving
a cellular automata configuration is not as easy as the one click backtracking offered in our new
simulator.

The CAM machine has at most four bit planes, which support only 16 states in a cell; it
is therefore unable to support the cellular automata model studied in this research. The new
simulator supports up to 64 bits in a single cell, which can be further divided into separate named
data fields for different purposes. But it is worth noting that since the CAM machine is a hardware
accelerated cellular automata simulator, for any particular cellular automata model this machine
is capable of simulating, it can usually simulate it much faster than software-based simulators.
The Cellular system also allows definition of arbitrary data fields in a cell, but it does not allow
multiple data fields to be displayed on screen at the same time, nor can it use symbols to represent
states of each field. The Cellular system can only display cells on screen using colors and, in some
platforms, the numerical values of a field. Our new simulator allows the definition of colors and
symbols to represent data fields on screen for any field having less than 128 states. Those symbols
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which represent weak rotational symmetric states can even be rotationally displayed on screen if
necessary.

Neighborhood configurations are predefined in the CAM machine and cannot be easily modified
or extended. The Cellular system allows arbitrary neighborhoods to be used, but it does not allow
symbolic naming of the neighbors in a neighborhood template. References to neighbors therefore
have to be done using indexing conventions, which sometimes require some imagination to be used
properly.

All of the other main features of the new simulator, like direct entering of cellular automata
states using popup menus, direct exporting of cellular automata space content to Encapsulated
Postscript files, the easy cut, copy and paste editing operations of the cellular automata config-
urations, etc., are not seen in the other systems. The on screen design of new cellular automata
models using the “Template Design” dialog window is especially convenient. It provides at a glance
all the essential structures of a new cellular automata model being specified. The direct linking of
neighbor and field names to compiler reserved words is also very handy; we will see their usefulness
in the following chapter.

4.5 Discussion

In this chapter a general purpose cellular automata simulator is presented. Currently this
simulator is available on Unix platforms, but it will soon be ported to the other two popular
computer systems, the Apple Macintosh and Microsoft Windows 95/NT. All the cellular automata
world files, template files and rule files are machine independent, so everything developed on Unix
can be used on the other platforms without any modification.

Currently the simulator is reasonably fast for world sizes up to 500 by 500 cells, say, at about one
iteration every 20 seconds on a Sun Sparcstate 20. Beyond that, the speed of the simulation can be
slow, which hurts the original interactive design of the simulator. Since an intrinsic characteristic
of cellular automata is that they are scalable, it should be easy to port the simulator, or at least the
evaluation module portion of it, to a multi-processor parallel computer. This can greatly improve
the speed of the simulation. Actually, it is possible to build the simulator so that when running
on a parallel computer, it can dynamically adjust workload to available processors installed, so no
rebuilding of the simulator program is necessary when the power of the parallel computer improves.
The Trend cellular automata programming language (to be discussed in the next chapter) or the
user interface does not have to be modified to port it to the parallel computer.

The simulator is for two dimensional cellular automata simulations. It can be used for one
dimensional cellular automata simulations, too. It may not be easily used with three or higher
dimensional cellular automata simulations, although the large bit depth of 64 in each cell can be
used for simulations of some specific three dimensional layered models, such as the neural network
simulations. Neural network simulations usually use a limited number of two dimensional layers
connected vertically with one another, which is perfect for this simulator.

It is possible to modify the evaluation engine of the simulator to support higher dimensional
cellular automata simulations, but actually, for such higher dimensional simulations, the technical
difficulty is not how to simulate them, but how to visualize the results. A three dimensional
visualization library such as the PEXLib for the X Window system or the QuickDraw 3D system
extension for the Macintosh can be used for that purpose.
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Chapter 5

Trend: A High Level Cellular Automata
Programming Language

Trend is a high level language for cellular automata programming!. It is used in the cellular au-
tomata simulator described in the previous chapter. Traditionally, cellular automata transition
functions are depicted in a tabular format, which lists all mappings from the neighborhood con-
figuration domain into the next state value range. This kind of representation has at least two
problems:

e When the the number of states in each cell or the number of neighbors in the neighborhood
template gets bigger, the table size grows exponentially, making it hard, if not impossible, to
represent the table explicitly in the limited computer memory.

e A tabular representation of a cellular automata transition function is not easy to understand
since it does not explicitly convey the idea of the rule set to the reader. It is hard for readers
to understand a table full of plain numbers. In addition, it is inconvenient for a cellular
automata rule set designer to convert his ideas into the tabular format, something he must
do first before he can start testing the ideas.

Because of these problems, a high level structured programming language approach is taken. In
this approach the cellular automata transition function is implicitly defined by the algorithmic
operations expressed in the language. These operations define how a next state value can be
calculated based on the various conditions in the cellular automata space. Because the Trend
language contains most modern programming language constructs, it allows algorithms expressed
using it to be very complex, yet still quite readable. This greatly extends the power of cellular
automata programming when compared to tabular rule sets.

Previously there has been some similar work to improve cellular automata programming. The
programming language used in the CAM-6 machine was a semi-high level language based on the
stack-operated language Forth [Toffoli & Margolus, 1987]. This language used the postfix statement
format rather than the infix format commonly used in modern programming languages, which
could impose some difficulties in learning it. The idea to slice neighbor values into data fields was
introduced in this system, too. Trend itself was modeled after the popular programming language C,
with cellular automata specific constructs added to it. These constructs include statements to scan

Tt is named “Trend” because we hope that it will be useful in programming the trend of cellular automata
evolution.
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all neighbors in a neighborhood template, special data types to access data fields in the neighbors,
special notations for rotatable? literal value representations, and a special rotated if statement to
exploit the rotational symmetry characteristic of cellular automata. A previous knowledge of the
C language could make learning the Trend language very straightforward, but it is not required.

Conceptually, a high level language for cellular automata programming should provide abstract,
named data items to denote the data fields within neighbors in a specific neighborhood template
used in a particular cellular automata model. Based on those data items, new values are computed
and assigned to names representing fields in the center cell. These values are taken as the next
state values of the cellular automata. The user’s job of finding and listing the transition function
of a cellular automata model in the past now becomes the job of defining how the next state values
can be computed from data items representing the current cellular automata neighbor values. This
is familiar and straightforward using high level algorithmic language constructs for anyone with
some basic modern programming language experience. Therefore, adapting to cellular automata
programming becomes nothing more than learning a new programming language. The tedious work
of the past, sometimes involving writing a complex program or making a complex rule table just to
start up a simple simulation, is no longer needed once the user has mastered the Trend language
and its associated simulator.

The Trend compiler is a full-fledged compiler bundled with the cellular automata simulator
program. Although the language is modeled after C, the compiler itself is not an extended C
compiler. Instead, it is a new compiler implemented from scratch, because cellular automata rules
work in parallel among cells, which are intrinsically different from sequential C programs. A user
loads the Trend language source code into a text window and then invokes the compiler to parse the
code. If no error is found, the compiler will generate a virtual machine code which the simulator
uses for efficient runtime evaluation of the cellular automata rules. If the runtime behavior of the
cellular automata is not what the user wants, the user can modify the source code right in the
text window, recompile and run the simulation again. This highly interactive design and testing
environment is the major benefit of the Trend language and its simulator.

5.1 A preliminary example

Before we consider the details of the Trend language, let us look at a simple example of the Trend
language first. The following is the famous “game of life” rule expressed in the Trend language®.
Here life is a field (and the only field) of a particular cellular automata model which is defined by
the template information the simulator loads during starting up.

default life=life; // default is no change for cell values
int count; //declare an integer variable ’count’
nbr y; //declare a neighbor variable ’y’
count=0; // initialize counter to zero

2That is, their value changes when rotated with the rules.

3The game of life rule states that an active cell will be born if it has exactly three active neighbors, that an active
cell will keep active if it has two or three active neighbors, and that an active cell will die with less than two or more
than three active neighbors.
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over each other y: // count the number of active neighbors
if (y:life) count++;

if (count<2 || count>3) // the death rule
life=0;

if (count==3) // the birth rule
life=1;

The statements of the Trend language are executed in order from the viewpoint of a single cell,
just like in C. The fact that different cells can follow different rules of the same Trend rule set
makes up the parallelism of cellular automata programming. In the beginning default denotes that
the statement after it will be a default statement, such that if no rule is applicable for the current
cell, the default statement will be used to determine the next state value for that cell. Here it just
states that everything stays unchanged if no applicable rule is found. Normally the default rule is
used to catch all “left over” conditions of the rule definition.

After that, int and nbr are used to declare two variables, count and y. One is used to store
integer values and the other to store a neighbor position index. The rule starts with an initialization
operation to set the counter to zero, and then accumulates the number of active neighbors. Finally
two rules are used to determine the two value change situations: birth and death. If none of the
birth or death rules is applicable (say, if count equals to 2), the default rule will be used.

Comments on the rule set can be marked by either the delimiter // or the /* and */ pair.
Anything after // until the end of line will be ignored by the compiler as a comment. Similarly,
anything enclosed between /* and */ will be ignored by the compiler too, which can include several
lines. Note that nested comment pairs are not allowed in Trend.

The Trend language utilizes a strictly one-pass compiler to speed up the compilation process.
Since it is built within a highly interactive cellular automata simulator, the user should not need
to wait for compilation, and a one-pass compiler facilitates this. Because of the strongly one-pass
compiler, all variables and functions must be declared before their use. Normally the program
starts with variable and function declarations, followed by the main rules. The default rules can be
put anywhere within the program, as long as they obey the same “declare before use” restriction
for variables and functions. Usually default rules are put at either the beginning or the end of the
program.

5.2 Reserve Words, Names, and Variables

Just like ordinary programming languages, the Trend language has its own set of reserve words
for language constructions. These reserve words cannot be used for any other purpose within the
language. Reserve words will be displayed using a special slanted font face in this article in order
to distinguish them from the other language elements. Reserve words in the Trend language are:

if, int, nbr, fld, rot, default, over, void, each, else, while, other, break, return.

Unlike other programming languages, Trend has a special set of semi-reserve words called names
which are defined not in the compiler itself, but in the simulator template information loaded during
each invocation of the simulation program. They can also be defined on-the-fly by the user using
the cellular automata template design window provided by the simulator and saved for future uses.
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These semi-reserve words are the field and neighbor names for the corresponding cellular automata
template. These names will be displayed in this article using a sans-serif font face in order to
distinguish them from the other language elements. Some possible names are

North, East, South, West, ne, se, sw, nw, fieldA, component, life.

Finally, the user can define temporary storage space in the Trend language as variables. These
variables can store temporary computational values, neighbor or field indices, etc. Variables are
displayed in this article using a typewriter-like font face in order to distinguish them from
the other language elements. Some example of variables are

X, y, z, count, a, b, c, from, to, pos, layer.

5.3 Data types

There are three data types in the Trend language. One is an integer type which is common in
other programming languages, but the other two are special types used only in the Trend language.
Types are not interchangeable among each other. However, a user can explicitly write code to map
values in one data type to values in another data type by a sequence of if-else statements. See
Section 5.5 for an example.

e int is a positive integer type which can be stored in cellular automata cells to represent cell
states. In fact, cellular automata cells can accept only data of this type. During every epoch
each cellular automata cell is expected to get a new value for each of its fields. Otherwise a
runtime error will be reported. See Section 5.11 for details about runtime errors. Symbols,
such as 'O’, ’L’, ’>’, etc., can be defined in the simulator model template for values of the
integer data type which can later be used in the language to represent those integer values.
These symbolic literal values are converted to integers by the compiler during compiling time.
See the following section about data objects for details about literal values.

e nbris a special type which is used to denote neighbor positions, like north, south, east, west,
etc. When combined with the fld data type they can uniquely specify a particular field within
a particular neighbor cell.

e fld is a special type which is used to denote fields within each cellular automata cell. The
concept of fields came from the book by [Toffoli & Margolus, 1987]. Basically, the original
bit depth of a cellular automata cell (say, 8 bits) is functionally divided into different fields
(say, 2, 2 and 4 bits each) such that each field encodes different meanings and functions (to
the human rule writer). The utilization of field division greatly simplifies cellular automata
rule programming, and makes the resulting code much more readable.

Data of type int can be manipulated and compared just like normal integer values in other pro-
gramming language. Data of type nbr and fld are more restricted; they cannot be used with
mathematical operators since it is meaningless to add two neighbor indices together, for example.
They can be compared by equal '==" and unequal ’! =’ operators only.
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5.4 Data objects

Like all major programming languages, the Trend language provides different data objects for
programming convenience. Data objects are the basic constituents of expressions, and can be
literals, variables, neighbor references, array elements, or function calls.

5.4.1 Literals

Literals are defined by their face values. Their values are constant in the program, and cannot
be put into the left hand side of an assignment statement. There are two basic formats of literals:
the numeric format and the symbolic format. Symbolic format is defined in the simulator template
for the cellular automata model being used. For example

0, 1, 2, 99, ’0°, >, ’>,27, ’>,1:s’, North:, :fieldA.

are all literals*. Here ’0’ represents the int type value of the symbol “0” defined in the current
field®, which is defined by the current program context. It could take the numeric value 5 if “O”
is the sixth symbol defined for the current field (starting from zero) in the model template. The
literal ">,2" denotes the second rotation value of the weak rotational base symbol “>”. Thus, if
the numeric value of “>” is 6, then ’>,2" will assume the value 8 (rotation is counted clockwise).
> .1:s" denotes the first rotation value of the weak rotational base symbol ’>’ for the field s. Note
that symbolic format and numeric format are interchangeable: we may use 5 and 8 in replace for
'O’ and ’>,2’, and vice versa. However, the symbolic format generally provides more descriptive
information to the reader of the cellular automata program. In addition, only the symbolic format
will be rotated in a rotated if statement. See Section 5.10 for details. But symbols must be defined
in the cellular automata model template before they can be used to represent integer values.

North: and :fieldA are literal values for nbr and fld data types. North: is a neighbor constant of
the nbr data type and :fieldA is a field constant of the fld data type, provided they both are defined
in the loaded cellular automata template in the simulator. Note that there is no numerical format
for nbr and fld data type literals. Note also the mandatory symbol “” after a nbr literal name
and before a fid literal name to distinguish them from the other data types. For example, fieldA
denotes the value of the field named “fieldA” in the center cell, which is a reference to the value
of “fieldA” (thus not a literal) and has the type int, but :fieldA denotes the field index of the field
“fieldA”, which is a literal and has the fild data type. Thus, the value of :fieldA can be assigned to
a fld type variable, say slice_ptr, by the following assignment statement:

:sliceptr = :fieldA;

The actual value of fieldA can then be indirectly accessed by using the fld variable slice ptr,
which contains a pointer to the actual value stored in “fieldA”. On the other hand, if the assignment
statement is written in the following way (assuming that slice_value is an int type variable), a
copy of the value of “fieldA” is made to int variable slice_value, instead of a pointer to it. This
new copy is therefore independent of the value stored at “fieldA”.

* Assuming, of course, that the neighbor “North”, fields “fieldA” and “s”, the strong rotational symbol “0” and the
weak rotational symbol “>”" are all defined in the current cellular automata template.

5See the following paragraphs for the explanation of current field.
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slice_value = fieldA;

The syntax of the four different formats of literals is the following:

:field name // fld type literal
neighbor name: // nbr type literal
’s[,n][:field name]’ // symbolic int type literal
n // numerical int type literal

where s stands for a symbol defined for the current field in the cellular automata model template
and n stands for an integer number. Note that symbols ‘[’ and ‘]’ denote optional parts of the literal
and are not part of the literal. Therefore, both the rotation count [,n] and the field designation
part [:field name] of the symbolic int literal can be omitted. The rotation count, if used, must
be either 1, 2, or 3.

The field designation part (e.g., the “:s” in >>,1:s”) of a symbolic literal is needed only when
an effective current field cannot be resolved by the compiler. Normally if the literal is used together
with a field name in an assignment or boolean expression the compiler can extract the current field
information from the program context, and thus an explicit field designation part is not needed.
For example, in the following code segment examples an explicit field designation is not needed
within the literal since they have been specified implicitly somewhere before the literal object:

fieldA=’0?; //assign the symbolic literal ’0’ to field fieldA
s=7>,27; //assign the symbolic literal ’>,2’ to field s
component="L’; //assign the symbolic literal ’L’ to component

//if fieldA value in the north neighbor is equal to ’0’, set
//the variable ’count’ to O.
if (North:fieldA==’0’) count=0;

//if the southwest component field equals ’>,1’, set current
//component value to ’>,1’ too.
if (sw:component==">,1’) component=>>,1";

A specification like “fieldA="0:fieldA’” is acceptable although it is redundant to specify the field
designation tag fieldA twice, both implicitly in the assignment target and explicitly within the
literal quotations.

However, if a literal is used together with a variable or array element name where the intended
field is not obvious from the context so the compiler has no way to figure out the current field, the
designation part will be needed within the literal quotation marks, as shown below (assuming x,
y, z are all variables). Compare this to the examples above.

x=0:fieldA’;

y=’>,2:57;

z=’L:component’;

if (x=="0:fieldA’) count=0;

if (z==’>,1:component’) z=’>>,1:s’;

The compiler will report errors when a current field is not available from the context and the field
designation part is not given in a symbolic literal either, such as in the statement “x=’07;".
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5.4.2 Variables

Variables are named storage places to hold different data values. Their values can be changed by
an assignment statement. They are usually used to hold test results, flags, or temporary calculation
results. Their values are undefined if used before being initialized by either an assignment statement
or an initialization operator in declarations.

5.4.3 Neighbor references

Neighbor references are given in the format
nbr: fld

where nbr can be any valid nbr data type object like a literal, variable, array element or function
call. Similarly, the fild can be any valid representation of the fld data type. This whole structure
denotes one particular field within one particular neighbor cell and the value there is referenced
with the int data type. The “nbr :” part can be omitted all together. In that case, the default
neighbor is the center cell.

5.4.4 Arrays

A chunk of storage space can be allocated at once and referenced using the array index within
brackets “[” and “|”. Ounly one dimensional arrays are supported in Trend. The array index must
be of type int, but the array itself can be any of the int, nbr and fid types. For an N element array
the array index runs from 0 to N—1. No runtime checking of array index bound is offered by the
simulator. The value of an out of bound array reference is undefined, and an assignment to an out
of bound array can crash the simulator at present.

5.4.5 Function calls

Function calls are formed by giving a declared function name together with a list of actual
arguments to the function, separated by commas. Those actual arguments can be expressions or
data objects (e.g., other function calls). A function returns a value in its declared data type. Calls
to a function which returns a value must be done within an expression; a function cannot be used as
a procedure unless it is declared as a procedure with the void data type, which means that no value
is returned. A procedure which does not return a value cannot be used in expressions. Instead, a
procedure call is a stand alone statement itself.

A function returns values by giving an expression to the return statement within the function
body. The return statement will immediately terminate the execution of the current function and
return the value of its argument to the caller routine to be used in an expression.

5.5 Declaration and initialization statements

Variables, arrays and functions must be declared before used. Variable and array declarations
consist of a type name, followed by a list of variable or array names separated by commas, and
ending with a semicolon. The difference between a variable and an array lies in the fact that an
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array has an index declaration marked by the “[” and “|” symbols. An optional initialization part
can follow each variable or array name which assigns initial values to the variable or array.
For example, all of the following declarations are valid:

int i, j, k; // int type variables i, j and k
nbr from, to, where; // nbr type variables from, to and where
fld a, b, c; // fld type variables a, b and ¢

// declare an int array buf[] with ten elements, an int array
// x[] with two elements, and an int variable yy.
// Initialize them too.
int buf[10]1={ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 },
x[2]1={ ’0:layerA’, >>,2:layerB’}, yy=99;

// declare a nbr array permute[] with five elements,
// initialize it to the five neighbor values.
nbr permute[5]={ Center:, East:, South:, West:, North: };

// declare fld variables tag and trace and initialize them
fld tag = :layerA, trace = :layerB;

Note that a field designation is usually needed when initialization with a symbolic literal value like
'O:layerA’ since the compiler has no way to know which field the symbol “O” belongs to. There
can be many “O” symbols in different fields, each having different values. But within each field all
symbols used must be unique.

Function declarations consist of a type name, followed by a function name, a left parenthesis,
formal arguments (if any) separated by commas, a right parenthesis, and finally the function body.
The function body can be just a single statement or a block statement. See Section 5.8.2 for details
on block statements.

The following is an example of a typical function declaration. This particular function maps
a neighbor position to an integer value which is treated as a pointer in the “d” data field, as
mentioned in Section 5.3. The symbol ’V’ is used to visually denote how neighbors should point
to the center cell. Therefore, the north neighbor should point to south with *V?, the east neighbor
should point to west with ’V,1’, etc. Because there is no diagonal arrow symbols in the usual
character set, the symbol ’Q’ is used for similar purposes for the diagonal neighbors northeast,
southeast, southwest and northwest. The extra “leg” of the letter Q is used as a directional arrow.
Therefore, the northwest neighbor should point to southeast as denoted by ’Q’, and the southeast
neighbor should point to northwest as denoted by ’Q,2’.

int ntod(nbr x)
if (x:==no:) return ’V:d’; // north points south
else if (x:==ne:) return ’Q,1:d’; // northeast points southwest
else if (x:==ea:) return ’V,1:d’; // east points west
else if (x:==se:) return ’Q,2:d’; // southeast points northwest
else if (x:==s0:) return ’V,2:d’; // south points north
else if (x:==sw:) return ’Q,3:d’; // southwest points northeast
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else if (x:==we:) return ’V,3:d’; // west points east
else if (x:==nw:) return ’Q:d’; // northwest points southeast
else return 0O;

5.6 Mathematical expressions

Simple mathematical expressions are formed by grouping together int data objects using math-
ematical operators. When evaluated, they will generate int values which can be assigned to fields
as next state values, or be stored in variables for further computational purposes. Mathematical
expressions can be used in comparison expressions to form boolean values for use in control flow
statements, or they can be arguments to a function or procedure call. A mathematical expression
will never form a statement by itself; it must be part of a complete statement. Note that only int
type data objects can be used in mathematical expressions; nbr and fld types cannot be combined
with mathematical operators.

All normal mathematical operators are provided in the Trend language. Listed below are these
operators in order of ascending precedence. Operators with the same precedence level will be
evaluated from left to right.

h&| "

~ ¥ +
~

Parentheses have the highest precedence and can be used to change computation order. Multipli-
cation (x), division (/), modulus (%), bitwise conjunction (&), bitwise disjunction (|) and bitwise
exclusion (" ) operators are at the second priority level. Finally, the addition and subtraction
operators (+, —) have the lowest priority among mathematical operators.

Note that mathematical operators always take precedence over comparison operators (e.g., >,
<, ==, etc.), which in turn take precedence over boolean operators (&&) and (]|). Assignment
statement operators (=, ++, ——) always have the lowest precedence among all operators.

5.7 Assignment statements

Assignment statements assign a value computed from a mathematical expression (for int type
only) or a value from a data object (for int, nbr or fld types) to a variable, array element, or a field
with the same data type. If the value is assigned to a field name, that value is taken as the next
state value of that field and must be of type int .

5.7.1 Normal assignment statements

A normal assignment statement is composed of a left-hand-side, an equal sign, a right-hand-
side, and a semicolon as the terminator. The left-hand-side can be in any of the three data types
int, nbr and fld, although in the latter two cases the corresponding right-hand-side can ounly be
simple data objects with the same data type; they cannot be expressions since fld and nbr data
objects cannot form expressions. The left hand side can be field names, variables or array elements
but not literals or function names.
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5.7.2 ++ and —— statements

Two special assignment statements are formed by a left-hand-side, either one of the +4 or
—— operators, and a semicolon. They either increase or decrease the left-hand-side object value
by one, and assign that new value back to the left-hand-side. Since a mathematical operation is
involved, these two special assignment statements cannot be used with data objects of type nbr
and fld since increasing or decreasing their values is meaningless. The left-hand-side can be field
names, variables or array elements but not literals or function names.

5.8 Control flow statements

Various common control flow constructs are provided in the Trend language to change the order
of rule execution. These control flow constructs rely on a boolean expression to determine the flow
pattern.

5.8.1 Boolean expressions and comparison expressions

Boolean expressions are formed by combining together comparison expressions using logical
operators && and ||. && has higher precedence than || but parenthesizes can be used to change
the order of evaluations. The evaluation is from left to right within the same precedence level.

Just like in the C programming language, whenever a definite result can be determined during
the partial evaluation of a boolean expression, the unevaluated part of the boolean expression will
be ignored since it will not change the outcome of the boolean expression in any way. For example,
in the following boolean expression

1<2 || North:fieldA==fieldA

the second comparison expression never gets evaluated since the first is always true and therefore
the whole boolean expression is always true. It is not advisable to put a function call in the boolean
expression like this since that function call may not get executed at all!

Similarly most of the following boolean expressions will not be evaluated at all if direc is not
equal to >

direc==’>’ && (nw:component==">,3" || nw:component=="0") &&
(ne:component=="B’ || ne:component==>>,1") &&
no:component==".’ && ea:component && we:component)

Comparison expressions are usually composed of two mathematical expressions or data objects
separated by comparison operators. A special case of just having one mathematical expression
alone in a comparison expression is taken as testing if that mathematical expression is not equal to
zero. For example, a simple comparison expression® “a-+b” is equal to a more lengthy “a-+b != 07
where != means “not equal to.” The comparison operators offered in the Trend language are <,
<=, ==, >=, >, and !=. Note that fld and nbr data types can be combined with only == and !=
comparison operators since it is meaningless to compare the magnitude of these data types.

5This is a simple mathematic expression within part of a boolean expression and taken as a comparison expression.
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5.8.2 Block statements

Statements can be blocked together using left and right braces, “{” and “}”, to form a block
statement. A block statement can appear wherever a single statement appears in the following
control flow constructs. Thus it permits multiple statements to be put into one single control flow
construct.

5.8.3 Conditioning statements

Conditional statements can take either the form
if ( boolean ) statement
or the form
if ( boolean ) statementl else statement2

In the first case if the boolean expression is true the statement will be executed, otherwise the whole
if statement is skipped. In the latter case statementl will be executed if the boolean expression
is true, otherwise statement2 will be executed. Nested if statements are allowed and the dangling
else problem is resolved the traditional way: associate it with the nearest if.

5.8.4 over statements

The over statement in the Trend language is directed toward scanning over all neighbors for a
cell. It takes the following form:

over each { other } nbr_variable statement

In essence, it loops through all neighbors of a cell (including the center cell itself), and assigns each
neighbor position index value into the nbr_variable. Although not required by the language itself,
the nbr_variable will usually be referenced in the statement that follows. The optional tag “other”
can be added to exclude the center cell in the scanning process.

For example, the following code segment determines how many neighbors are in non-quiescent
states (nonzero):

count=0;
over each other y:
if (y:component) count++;

5.8.5 while statements

The while statement in the language Trend is exactly the same as the while statement in C. It
takes this form:

while ( boolean ) statement
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When the boolean expression is true the statement will be executed repeatedly until the boolean
expression turns false. If the boolean statement is false on entry to the while statement the whole
while statement will be skipped without execution of the included statement.

Note that no runtime checking for an infinite loop is provided by the simulator. Therefore, the
programmer is responsible for making sure the while statement will terminate. This is one of the
few places where a badly designed Trend program can crash the system”.

5.8.6 break statements

A break statement can be used in the statement part of the innermost over or while statement to
forcefully terminate the current looping and jump directly to the next statement after the innermost
over or while statement.

5.8.7 Procedure call statements

Procedure calls are very similar to function calls except that procedures are declared as type
void and do not return values. Therefore, they are statements by themselves with a terminating
semicolon, unlike function calls which must be a part of an expression. Procedure call statements
allows multiple code segments to be repeatedly used with different given arguments.

5.9 Default operations

Sometimes it is more convenient to designate default rules such that after the execution of all
normal rules, if some fields still have not been given their next state values, the default rules can
be used to make the decision. Default rules are formed by giving the tag default in front of any
normal statement except declarations. Often the default rule is simply an assignment statement
which sets the current value of a field to be its next state. It simply states that “if none of the rules
changes the current value of this field, this field should stay unchanged”. The default rule can be
used to set whatever value normal rules can set to a field, using all language constructs provided
by the language to compute the value.

5.10 The rotated if statement

One unique feature of the Trend language is its strong support in writing cellular automata
specific rules by providing the rotated if command construct. The rotated if command is formed
with a conditional statement by putting the reserve word rot in front of the if and by giving
rotatable literal values, i.e., symbolic literals, in the boolean expression and the statement part of
an if statement. A conditional statement formed by using the rotated if command is called a rotated
if statement. Only symbolic literal values (including the int, nbr and fld symbolic literals) will be
rotated in the boolean expression and the statement part of a rotated if statement. The rotated
if statement greatly exploits the symmetrical characteristics of most cellular automata models and
can cut the size of the rule set to 1/4 that size of the same rule set without using the rotated if
statements.

"The other case is an assignment to an out-of-bound array element.
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For example, the following function which uses standard nested if statements is introduced in
Section 5.5. It maps a neighbor position to one of eight pointer symbols, using eight if statements.

int ntod(nbr x)
if (x:==no:) return ’V:d’; // north points south
else if (x:==ne:) return ’Q,1:d’; // northeast points southwest
else if (x:==ea:) return ’V,1:d’; // east points west
else if (x:==se:) return ’Q,2:d’; // southeast points northwest
else if (x:==s0:) return ’V,2:d’; // south points north
else if (x:==sw:) return ’Q,3:d’; // southwest points northeast
else if (x:==we:) return ’V,3:d’; // west points east
else if (x:==nw:) return ’Q:d’; // northwest points southeast
else return O;

It can be replaced by using only two rotated if statements. In addition, the rotated if statements
are much more obvious in meaning than the above one: they just return different weak rotational
values of the base symbol ’V’ or ’Q’, according to different input neighbor position arguments.

int ntod(nbr x)
rot if (x:==no:) return ’V:d’; // north points south
rot if (x:==nw:) return ’Q:d’; // northwest points southeast
else return O;

The term isotropy means something is directionally indifferent. An isotropic cellular automata
rule set guarantees that it will produce the same result, properly rotated, from different orientations
of the same initial cellular automata configuration. An isotropic cellular automata rule set is
important since it makes the transition function of the cellular automata independent of the global
orientation of the cellular automata space. Speaking in another way, no matter what specific
evaluation order of a cellular automata rule set is taken, the result will be the same if the rule set
itself is isotropic.

For some specific cellular automata modelings, such as the emergent self-replication cellular
automata structures which will be discussed in Chapter 6, it is especially important that the
same outcome will appear on the cellular automata space no matter what initial random cellular
automata configuration is. We certainly cannot assume that the first self-replicating molecule on
earth knew where the north pole of the earth was, neither can we assume that the first emergent
self-replicating structure on the cellular automata space knew where the top side of the cellular
automata space was, and acted accordingly. We will see below how the rotated if statement can be
made to safeguard the isotropy of a cellular automata rule set.

The rotated if statement can be tested up to four times for the four different orientations
of a reference template, depending on the boolean expression values of the rotated if statement.
Whenever an orientation of the template makes the boolean expression value true, the statement
part of the rotated if statement will be evaluated based on the same orientation, and the rotated if
statement ends. Therefore, the outcome of a rotated if statement depends on the order of testing the
different orientations of a template and can be non-isotropic. That is, if you turn the initial cellular
automata configuration clockwise 90 degrees and run the same rule set which uses the rotated if
statements again, you may not end up having the same results rotated clockwise 90 degrees too
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Figure 5.1: The isotropy of rotated if statements. Parts (a), (b), (c¢) and (d) are the effects of a
non-isotropic rotated if statement on a cellular automata configuration in different orientations.
Parts (e), (1), (g) and (h) are the effects of a modified isotropic rotated if statement on the same
cellular automata configurations. We can see in the later cases that the center cell always gets
the same value, no matter how the cellular automata configuration is oriented.

unless some programming precautions have been observed. It is the programmer’s responsibility
to ensure an isotropic rule set while using the rotated if statement®.

For example, the following non-isotropic rotated if statement copies different values to the center
cell when the cellular automata space is oriented differently, as seen in part (a), (b), (¢) and (d)
of Figure 5.1. Since this statement is evaluated with an upright orientation first, the value in the
north neighbor always gets copied first, no matter what it is. Here the symbols ’A’, 'B’, ’C’ and
"D’ represent strong rotational symmetry states, and the symbol >’ represents a group of four
weak rotational symmetry states. Note that to simplify matters, we only consider the outcome of
different rotated if statements on the center cell; it is assumed that all the other neighbor cells stay
unchanged by the effect of some other cellular automata rules not shown here.

rot if (no:value)
value==no:value; // copy active neighbor values

An isotropic rule set can be guaranteed if one of the following two conditions is met by all
rotated if statements used in the rule set and for all possible neighbor configurations that can occur
in the cellular automata space.

e Either none of the four rotation orientations makes the boolean expression turn true; or
e Only one of the four rotation orientations makes the boolean expression turn true.

If there are more than one of the four rotation orientations which can make the boolean expression
turn true, then only one of the orientation will be chosen to evaluate the statement part of a rotated
if statement, thus the outcome is non-isotropy since the choices can be different for different initial
configurations.

®But even by not using the rotated if statement, there is still no guarantee that a rule set will be isotropic. In
fact, it is easier to get a non-isotropic rule set by not using the rotated if statement.
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To make a rotated if statement isotropic, the user can always add (&&) a boolean factor into the
boolean expression such that he or she knows that only one out of four orientations can make this
boolean factor turn true, therefore ensuring that the whole rotated if statement is isotropic. This
boolean factor can usually be a comparison of directional pointer values in a field. Since directional
pointer values are unique in that they only point to one direction for each cell, this added boolean
factor is a very good isotropy protection scheme.

For example, if the previous non-isotropic rotated if statement is modified as below, it becomes
isotropic. It copies the same value to the center cell even when the cellular automata space is
oriented differently, as seen in part (e), (f), (g) and (h) of Figure 5.1. Since this statement is
evaluated according to how the weak rotational symbol '>’ is oriented, the value of the neighbor at
the back of the arrow always gets copied, no matter how the cellular automata space is oriented.

rot if (value==’>,1’ && no:value)
value==no:value; // copy active neighbor values

The rotated if statement takes the following form:
rot { ( alignment boolean ) } if ( boolean ) statement

The “( alignment_boolean )” part is optional and has two uses. First, sometimes it is desirable to
make the isotropy protection boolean factor stands out from the actual boolean expression in order
to avoid confusing the ideas. In that case the user can move the isotropy protection boolean factor
into the alignment boolean part. Second, sometimes the user knows that multiple orientations of
the template will all make the boolean expression turn true (thus this rotated if statement is not
isotropic), but he or she wants to give a particular orientation higher precedence to be used to
evaluate the statement part. Rather than using the default system rotation order of the template
to test a rotated if statement, the user can align the starting orientation with some pointer values
by giving a pointer comparison boolean factor in the alignment _boolean part. Note the rotation
testing direction is always clockwise and cannot be changed; only the starting orientation can be
changed by the alignment part.

For example, the previous isotropic rotated if statement can be rewritten in the following way,
which still is isotropic and functions the same. Comparing to the non-isotropic example above, the
following rotated if statement can also be seen as giving precedence to the symbol A’ by aligning
the rotated if statement with the symbol >’ first before its boolean condition test begins.

rot (value==’>,1?) if (no:value)
value==no:value; // copy active neighbor values

From the example above, it may seem that if the optional alignment boolean is added, a rotated if
statement will become isotropic automatically. This is not necessarily the case. For example, the
following rotated if statement has the optional alignment boolean, and is very similar to the previous
statement, but it is not isotropic. Its effect when applied to the same four cellular automata space
orientations of Figure 5.1 is given in Figure reffg:nonisotropy. Again, only the effect on the center
cell is considered in this figure.

rot (value<=’>,1) if (no:value)
value==no:value; // copy active neighbor values
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Figure 5.2: Effects of nonisotropic rotated if statement. The effects of a non-isotropic rotated if
statement with optional alignment boolean on the same four cellular automata space orientations
of Figure 5.1 is shown in parts (a), (b), (c), and (d).

No matter what the reason, if an alignment_boolean part is given for a rotated if statement,
the rotated if statement will now be tested first against the alignment boolean until a true value
is obtained. Then starting from the orientation which makes the alignment boolean expression
true, up to four continuous clockwise rotations of the template will be made to test the boolean
expression part until a true value is found and the statement evaluated or none is found and the
rotated if statement skipped.

An else part can follow a rotated if statement just like a normal if statement. Nested if state-
ments are also acceptable inside or outside a rotated if construct, but nested rotated if statements
are not allowed since they are meaningless.

5.11 Compilation and runtime errors

All compilation errors will be shown on the message window when they are discovered. Since
Trend is based on a highly interactive system, only the first syntax or semantic error is reported.
Users can modify the code right in the text window and recompile. The user saves the final,
compilation error free source code before running a simulation when using the text window to
compose a Trend program. It is recommended that the user use a text editor such as vi or emacs
to compose the source code, and load the finished program code into the simulator for execution
only.

There are basically four kinds of runtime errors, two of which can be caught by the simulator
but two of which are fatal:

e The undefined error. During every epoch each field in each cell must get a new next state value
from the execution of the compiled rule code. If that is not the case, the simulator will report
the “undefined” errors, together with the cells which have undefined fields. The undefined
cells are highlighted on screen, so the user can check their field values and determine why
the assignment is not complete. Most commonly the error is caused by forgetting to assign a
default rule for the corresponding field(s).

e The conflict error. A conflict error occurs when cellular automata rules assign more than
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one value to a given field. This is usually caused by an inconsistent or an inaccurately
partitioned rule set. This error is usually a hint that some reasoning in the cellular automata
rule design is not correct. The checking for runtime conflict errors can be disabled by using
the main simulation window. This speeds up the simulation process somewhat since the
evaluation process will stop whenever all fields have been given next state values; the rest
of the unevaluated cellular automata rules will be ignored. But it is recommended that this
feature be disabled only after cellular automata rules have been completely tested and all
possible (conflict) errors have been fixed.

e The infinite loop error. When a while statement does not terminate during the evaluation
process, the infinite loop error occurs. This error is currently not automatically resolved.
The user has to abort the execution of the simulation program when this error happens. A
timeout feature could be added to the simulator in future revisions to cure this problem.

e The memory fault error. An assignment to an out-of-bound array element will cause this error.
The out-of-bound array element can actually reside in the compiled code area, the data area,
or the simulator program area itself. The effect of this error is totally unpredictable and it
is not checked for in the current simulator. The Trend programmer must be careful not to
reference or assign to an out-of-bound array element.

5.12 Examples

Several simple examples are given in this section to show typical uses of some of the Trend
language constructs. More complex examples can be found in the following two chapters.

5.12.1 A simple reaction-diffusion system simulation

A reaction-diffusion system is a set of chemical reactions where several catalysts are competing
and/or cooperating with each other in a circular manner. For example, in a three catalysts system,
catalyst A can help produce catalyst B but inhibits catalyst C, catalyst B can help produce catalyst
C but inhibits catalyst A, and catalyst C can help produce catalyst A but inhibits catalyst B. If
a mixture of these three catalysts is put together, spiral waves consisting of the three catalysts
catching each other’s tail will usually occur in the mixture through time.

The reason the spiral wave is forming is because whenever there is a region with high density
of catalyst A, catalyst B will be catalytically produced in that region shortly by the help of A.
Since catalysts are not only produced and destroyed by chemical reactions, but are also translated
by the diffusion process, the concentrated region of B seems to follow the concentrated region of A
in the mixture. This will make a spiral wave distribution pattern in the long run. A well-known
reaction-diffusion system is the Belousov-Zhabotinsky reaction [Keener & Tyson, 1986].

The following Trend rule set is obtained directly from a CAM Forth program in Section 9.3 of
the book [Toffoli & Margolus, 1987]. It is a good example showing that the CAM Forth language
can be easily translated into the Trend language. This cellular automata rule set tries to catch the
spirit of the reaction-diffusion reaction in a very simple manner. There is only one self-annealing
reactant in this simplified system. The existence of a reactant is represented by the one bit field
value. During each iteration, a cell first scans neighbors to accumulate density information. The
Moore neighborhood is used in this rule set. The alarmbit is set according to the conditions in the
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Figure 5.3: A simple reaction-diffusion system
simulation. The cellular automata space (250
by 250 cells) is setup by randomly initializing
the three data fields value, alarmand counter,
which puts individual cells at different phases of
the rule set. This picture is taken after about
800 iterations of the simulation.

array table[]. The cell will set the alarmbit when there are over three active neighbors, or when
there are exactly two active neighbors. The alarmbit then triggers the counter to countdown, which
disables the cell’s valueuntil it becomes zero.

Each cell in the cellular automata space is running independently according to this rule set.
Because of the interaction between cells, in Figure 5.3, we can clearly see the formation of spirals
after the simulation has run a while starting from a randomly distributed initial cellular automata
configuration. For more detailed simulations of this sort with more catalysts, the cellular automata
rules in [Boerlijst & Hogeweg, 1991] can be used to replace the very simple rules here.

/* the alarm condition table */
int table[]={ 0, O, 1, O, 1, 1, 1, 1, 1};

int sum; /* the variable used to accumulate neighbor density */
nbr y; /* the dummy variable used in the scanning (over) statement */

/* The default is no change in all fields */
default value=value;

default alarm=alarm;

default counter=counter;

/* scanning neighbor density */
sum=0; /* set accumulator to zero */
over each other y: /* loop through all neighbors */
if (y:value) sumt++; /* if active, increase sum by one */

/* alarm value is set according to the table */
alarm=table[sum];

/* value is reset if counter is counting, otherwise it is set */
if (counter==0)

value=1;
else

value=0;
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/* counter is set to 3 if alarm is set and the cell is active */
if (value && alarm)
counter=3;
else if (counter) /* otherwise, counter counts down toward zero */
counter--;

5.12.2 Backward compatibility

Sometimes it may be desirable to run some old cellular automata rule sets in the new simulator
using the Trend language. As said before, many previous cellular automata rule sets are encoded in
a tabular format, which defines the cellular automata transition function using numerous (domain,
next_state) pairs. Although it is not recommended that cellular automata rules be written this way
with the Trend language, the language does have the capability to easily adopt such a table into
its rules, so that old rule sets can still be run without too many modifications.

The following Trend rule set implements a well-known self-replicating rule set using tables
[Langton, 1984]. The transition function domain values, each of them consisting of the center,
north, east, south and west neighbor values in a von Neumann neighborhood, are listed in the
table domain[]. The corresponding next state values are listed in the table next[]. The core
of this rule set is actually very short and simple; it just loops through the table trying to find a
matching domain value for the current cell, and then sets the next state value accordingly when
such a matching domain value can be found on the table. The looping rules are independent of
the table and can be used with many other tables to implement different old cellular automata
rule sets. The only thing that needs to be modified is the table length constant, which is 207 for
Langton’s table [Reggia et al., 1992].

The looping rules may seem inefficient at first glance, since they always sequentially scan through
the table to find the matching domain value; they could be replaced by some clever algorithms,
such as hashing or binary search, to do the search. Since the simulator has its own fast lookup
caching mechanism, it is actually not necessary to do any clever table search in the rule set itself.
Within one full replication cycle (151 epochs for Langton’s loop), the simulator will have all table
information in its own cache. After that, cell evaluations will no longer need to go through the
compiled rule code but can obtain the next state values directly from the simulator cache table.

This rule set correctly implements Langton’s self-replicating loop. The result is given in Fig-
ure 5.4. Note that here we choose to use the actual state values instead of symbolic states to
represent the loop in order to facilitate comparison with the tabular rule set below. Other than
using different symbols to represent states, this Langton’s loop is exactly the same as the one in
Figure 2.4 at page 8.

/* the domain table, in Center, North, East, South and West order */
int domain[]={00000, 00020, 00220, 20210, 20272, 20202, 20212, 20242,
20042, 20120, 12702, 72021, 02127, 12420, 42021, 02124, 42201, 20024,
27220, 21022, 10212, 17202, 11212, 22271, 11272, 22211, 22000, 01722,
71120, 12221, 20001, 00030, 20270, 20342, 30002, 00023, 20720, 72012,
03214, 24122, 22277, 07721, 12210, 20122, 22200, 10027, 12402, 12211,
24220, 12227, 72220, 20007, 12271, 21722, 00012, 10001, 00001, 01002,
10024, 41120, 22244, 04421, 10021, 11121, 12124, 11127, 12224, 42220,
20004, 20312, 30012, 13221, 13224, 20302, 30042, 43220, 20112, 10012,
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Figure 5.4: Langton’s self-replicating loop. The initial loop at epoch 0 produces a replica of itself
in epoch 151.

20172, 20102, 20712, 00202, 01020, 02220, 22202, 22212, 27020, 22272,
11232, 02320, 31020, 23202, 11027, 02021, 01120, 12020, 22152, 22261,
72520, 52027, 01625, 62120, 12026, 25202, 26202, 12527, 52221, 22105,
02621, 25002, 00302, 22057, 07521, 52020, 00205, 07512, 25001, 25021,
22062, 10226, 10232, 02321, 31220, 22003, 23002, 22067, 07621, 62000,
00006, 06002, 20057, 00032, 10127, 30001, 00052, 02517, 50020, 12327,
00050, 20552, 50022, 02527, 52240, 25025, 45202, 22077, 72320, 30007,
10542, 50021, 25024, 00062, 12621, 60001, 20742, 72502, 50027, 07214,
25020, 10510, 11240, 12512, 20510, 50052, 12542, 55021, 00070, 00720,
70070, 00027, 77202, 10070, 12324, 42320, 30004, 30062, 00013, 12624,
63121, 10006, 26002, 20227, 00522, 50230, 35102, 12670, 62121, 26227,
72501, 52127, 12425, 25220, 20520, 52022, 02125, 52120, 12115, 25120,
24221, 22103, 22162, 11126, 52121, 11125, 22032, 21261, 62212};

/* the corresponding next state table of the domain table above */

int next[]={0, 0, 0, 2, 2, 2, 2, 2, 3, 2, 7,0, 1, 4,0, 1, 0, 2, 2,
2,1,7,1,2,7,2,2,1,60,1,2,0,2,2,2,0,2,0,1,2, 2,1,
1, 2,2,7,4,1,2,7,1,1,7,2,2,1,2,2,4,60, 2,1, 1,1, 4,
7, 4,1,2,2,3,1,4,2,1,1,2,1,2,2,2,0,2,0,2,2,3, 2,
1, 2,1, 1,¢0,5,0,6,2,2,5,2,1,0,6,0,2,5,0,2,1, 0,0,
5,1, 2,0,1,2,2,2,3,7,1,0,6,2,2,1,1, 3, 2,5,0,7, 3,
5,5%5,2,7,0,1,5,1,4,2,0,2,1,6,7,5,2,2,1,1, 2,1, 2,
1, 2,1, 4,1,7,0,7,2,1,2,7,2,0,7,4,6,1,2,2,7,1,1,
2,2,2,2,1,7,5,2,0,2,5,2,2,0,5,2,2,2,2,6,2,1, 2,
1, 6, 1, 5};

/* counter for looping through all table entries */
int 1i;

/* default is no change in a cell if no applicable rules */
default state=state;

i=0; /* clear counter */
while (i<207) { /* loop through all table entries */
/* if found a match, then get the next state value accordingly */
rot if (domain[i]==state*10000+no:statex1000+ea:statex100+so:state*x10+we:state) {
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Figure 5.5: The Extended Game of Life
template. In addition to the 9 standard Moore
neighbors, 16 new neighbors around the original
Moore neighborhood are also added to this
template.

state=next[i];
break;

}

i++; /* increase counter */

¥

5.12.3 Extended template Game of Life rules

It is interesting to see how the familiar Game of Life rules can be modified to use a larger
neighborhood template than the Moore neighborhood. In this example, we extend the neighborhood
template to include also the secondary neighbors in addition to the immediate neighbors, as shown
in Figure 5.5. Each cell still carries a bit field as in the standard rules.

The construction of the Trend rule set is almost identical to the standard one we have seen in
Section 5.1, the only difference lies in the condition for the death and birth rules. In this modified
new rule set a cell will die if it has more than 9 or less than 6 active neighbors, and a cell will
be born if it has exactly 7 or 8 active neighbors. We can see that the scanning rules are still
the same as before, despite the fact that in the extended neighborhood template there are now
more neighbors. This presents the power of the new simulator, which allows an arbitrary new
neighborhood template to be defined and used, unlike previous simulators, which usually provide
a limited number of predefined templates and cannot allow the creation of new ones. This also
shows the power of the versatile over statement, which can easily accumulate neighbor information
without even mentioning neighbor names in the statement itself.

int count; /* variable for accumulating active neighbor count */
nbr y; /* dummy nbr pointer to scan the neighbors */

default life=life; /* default is no change for a cell */
/* find out how many active neighbors are there */
count=0; /* clear the counter */

over each other y: /* scan all neighbors */
if (y:life) count++; /* add one if alive */
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Figure 5.6: Several block patterns found in the modified Game of Life simulation.

/* The death rule. If there are over 9 or below 6 active neighbors, */
/* an active cell will die */
if (count<6 || count>9)

life=0;

/* The birth rule. If there are exactly 7 or 8 active neighbors, */
/* an active cell will be born */
if (count==7 || count==8)

life=1;

Running the extended template Game of Life rules on several randomly initialized cellular au-
tomata configurations immediately let us recognize several well-known patterns which have coun-
terparts in the standard Game of Life simulations. First, some blocks, which are fixed patterns in
the cellular automata space, can be easily identified. Several blocks are shown in Figure 5.6. Most
Game of Life configurations, if not all, will reduce to several blocks in the space at the end of the
simulation.

Another familiar Game of Life pattern is the flipper, which is actually a pair of stable patterns
that are changing into each other with a period of two. One flipper found in the extended template
Game of Life simulations is shown in Figure 5.7.

Additionally, three glider patterns, with periods 3, 4 and 5, are shown in Figure 5.8. Glider (a)
is moving toward the upper right direction, with a period of 3. Glider (b), which is very similar
to glider (a) but a little bit smaller, is also moving toward the upper right direction with a period
of 4. The last glider, (c), moves in a horizontal direction toward the left, which actually resembles
a spaceship in the standard Game of Life terminology. It should be noted that it is very hard to
get a naturally occurring spaceship in the standard Game of Life simulation, but in the extended
template Game of Life simulation, the horizontally moving gliders can be seen easily with just
several simulation runs.

5.12.4 Finding the cellular automata Voronoi diagram

A Voronoi diagram among some anchor points in a two dimensional space is the collection
of points in the space which are in equal distance to their two closest surrounding anchor points.

00
0000 00 .
0000 00 Figure 5.7: A flipper in the extended Game of
00 Life simulation. These two patterns repetitively
0 1 change into each other in a fixed cellular

automata space location.
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Figure 5.8: Some gliders in the extended template Game of Life simulation. (a) A period 3
glider moving toward the upper right corner. (b) A period 4 glider moving toward the upper right
coruer, too. (c) A period 5 glider moving toward the left horizontally.

Therefore, the Voronoi diagram seems to divide the space into regions centered around those anchor
points. For example, the Voronoi diagrams for two, three, four and five randomly chosen anchor
points are shown in Figure 5.9.

In this subsection we will see how a Voronoi diagram for the cellular automata space can be
constructed using cellular automata rules. Note that distances in a cellular automata space are
computed using the Lo metric, i.e., dist(p,q) = max(|ps — ¢z, |py — ¢y|)- First let us see how it
works in Figure 5.10. In epoch 0, some random points are set in a cellular automata space of 250 by
250 cells. The cellular automata rule set makes an expanding square wave go out from each anchor
point, as seen in epoch 5 and all the following epochs. When waves from two anchor points collide,
they will from a Voronoi segment at the crash points. Since waves are expanding at the same speed
from both anchor points, we know that points on the Voronoi segment are in equal distance to both
anchor points. The collection of all Voronoi segments between anchor points forms the Voronoi

Figure 5.9: The Voronoi diagram. A Voronoi diagram divides the space into regions centered
around individual anchor points. The diagram itself is represented by line segments in the space.
The Voronoi diagrams for two, three, four and five anchor points are shown.
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diagram for the cellular automata space’. One way to examine if the resulted Voronoi diagram is
correct is to see if all of its segments are connected together. If there is any unconnected segment,
the Voronoi diagram is not fully constructed or maybe incorrect. In the following discussion this
criterion is used to check the correctness of the automata rule set.

We can see in Figure 5.10 that gradually, each wave claims a portion of the cellular automata
space for its anchor point, and the free space of the cellular automata space is shrinking. By epoch
40, the Voronoi diagram has been fully established, and nothing will change after that.

The following is the rule set for constructing the Voronoi diagram of a cellular automata space
with random anchor points. This cellular automata rule set references the Moore neighborhood
template and uses only one data field, “value”. Eight weak rotational symmetric states are used
to denote the wave. Three strong symmetric states are used to denote the anchor point, the
Voronoi point, and the anchor point after epoch 0. The symbol >’ and its rotated forms are
used to represent the four weak rotational symmetric states denoting an expanding square toward
quadrilateral directions. The symbol ’Q’ and its rotated forms are used to represent the four weak
rotational symmetric states denoting an expanding square toward diagonal directions. Recall from
Section 5.5 that the extra “leg” of the letter ’Q’ is used to denote diagonal directions, due to the
lack of more suitable arrow symbols in the usual character set. The symbol '*’ is used to denote
the anchor point. The symbol '}’ is used to denote the Voronoi point. The symbol ’S’ is used to
denote the same anchor point after epoch 0.

Sometimes it is easier to explain the rules using accompanying pictures. There are ten cases
shown in Figure 5.11 which will be used to illustrate the rules in the following comments surrounding
the rules.

nbr y; // variable used for scanning neighbors
int sum; // variable counting incoming waves toward a quiescent cell
int ptr; // variable storing the new direction of a quiescent cell

default value=value; // default is no change to any cell

/* Function ntod() maps neighbor positions to the eight weak
rotational symmetric states, which determine the direction a wave is
expanding. From the point of view for a quiescent cell, this function
is used to determine if some nearby waves are moving toward
itself. This function has also been discussed in the section about
rotated if statement in this chapter. */
int ntod(nbr x)

rot if (x:==we:) return ’>:value’;

else rot if (x:==nw:) return ’Q:value’;

else return O;

if (value==0) { // rules for quiescent cells

/* The enclosed rules determine the next state value for a quiescent
cell. The idea is to scan the neighbors of the quiescent cell in order

“Note that the cellular automata Voronoi diagram is different to the geometric Voronoi diagram due to different
distance metrics being used. In cellular automata space expanding square waves are used to find the Voronoi segments;
in geometric space the segments can be viewed as found by expanding cycles.
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Figure 5.10: The cellular automata Voronoi diagram. The Voronoi diagram is found by making
expanding square waves out of each anchor point. During initialization some random anchor
points are spread into the 250 by 250 cellular automata space. Each cell is represented by a
pixel in this figure. Note that we only differentiate active and quiescent states in this figure. As
usual, the cellular automata space is wrapped around the four sides in a torus shape. Active
cells are drawn with dark color while quiescent space is shown in light gray color. In epoch 5
we can see that small squares are expanding out from anchor points. Some squares have already
collided, forming tiny Voronoi segments. In all the following epochs, we can see that those squares
are getting bigger and bigger. They keep expanding unless they are stopped by collisions with
the other squares, in that case, permanent Voronoi segments are formed. The Voronoi diagram
is gradually shaped up. Finally, in less than 40 epochs, the Voronoi diagram for this cellular
automata space is fully constructed.
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Figure 5.11: The role of the cellular automata rules. Ten cases are illustrated in this figure to
show the purpose of various cellular automata rules. Refer to the comments in the rule set for
details.
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to determine if there is any wave moving toward it. The variable ’sum’
records how many of such waves are found. If it is more than 1 after
the scanning process, a collision of waves occurs, and the quiescent
cell must be converted to carry the Voronoi point state ’J’. If there
is only one incoming wave, the quiescent cell will be converted to
carry one of the eight expansion pointers, depending on which
direction the wave is coming from. The new pointer value is
temporarily stored in variable ’ptr’. */

sum=0; // clear the incoming wave counter
over each other y: { // scan neighbors for incoming waves

/* This rule starts the expanding wave around an anchor point,
as seen in case 1. Whenever there is an anchor point
’x’ around a quiescent cell, that quiescent cell will be
converted to an expansion pointer in the next epoch. Note that
the anchor point ’*’ will be immediately converted to a
nonfunctional state ’S’ by the following rules in order to
prevent multiple expanding waves from the same anchor
point. */
if (y:value==’x’) {

sum++;

ptr=ntod(y:);

/* This rule keeps expanding the wave, as seen in case
2. It is very similar to the rule above except that the
direction of the wave also has to be verified. The
function ntod() is used again to determine if a wave is
directing toward the quiescent cell. */
} else if (y:value==ntod(y:)) {

sum++;

ptr=y:value;

/* This rule keeps expanding the wave, but at the corners. See
case 3 for its effects. Note that the pointer of the neighbor

does not actually point at the quiescent cell. This rule, when
combined with the previous one, makes a continuously expanding
square, as seen in case 4. */

} else rot if (y:==no: && (y:value==’Q’ || y:value=="Q,1’)) {
ptr=’>,1:value’;
sum++;

}

/* After the scanning, if there is only one incoming wave, set the
new expansion pointer accordingly. */
if (sum==1)

value=ptr;

/* Otherwise, there is a collision. This quiescent cell should
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be part of a Voronoi segment. Set the Voronoi state ’%’ instead */
else if (sum>1)
value="%";

/* This rule keeps the Voronoi segment expand after it is
formed. There are three special cases in which the Voronoi
segment has to expand after it is formed in order to ensure
connection with the other Voronoi segments. The first case is when
two waves meet at exactly the same row or column of quiescent
cells. That will generate a single line Voronoi segment. But the
problem is, this Voronoi segment will not be connected to the
other segments if it does not keep expanding toward its two
ends, as seen in case 5. The first line of the OR’ed conditions
makes sure the Voronoi segment is still expanding, as seen in case
6. The other two OR’ed lines of conditions work similarly, but for
the double lines Voronoi segment which is formed when two
expanding waves reach each other at the same time. The behavior of
a double lines Voronoi segment with and without these two lines of
conditions are shown in case 8 and 7, respectively. */
else rot if (we:value==’Y’ &&
(nw:value==">’ && sw:value==’>’ ||
nw:value=="7%’ && sw:value==’>’ ||
nw:value==">’ && sw:value==’%’))
value="%";

} else if (value==’%’) // rules for anchor points

/* The anchor point should always change to something else after
epoch 0, or multiple waves will come out of the same point. */
value=’S’;

else rot if (value==’>’) { // rules for quadrilateral pointers

/* A pointer cell in the expanding wave will return to the
quiescent state in the next epoch, unless there is a collision, as
in cases 7, 8, 9 and 10. In these cases, it changes instead to a
Voronoi point ’%’ due to the collision. */
if (ea:value)

value="%";
else

value=0;

} else rot if (value==’Q’) { // rules for diagonal pointers

/* Similarly, the pointers at the four corners of a square

will return to the quiescent state unless they collide with other
waves. This rule has extra conditions to make sure two expanding
waves will not cross each other without changing their corners

to the Voronoi point state, as shown in case 9. The corrected
behavior when the two extra OR’ed conditions are added, is shown
in case 10. */
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| OPCODE | VALUE | LEFT | RIGHT | TRUE | FALSE |

Figure 5.12: A virtual machine instruction. Each instruction of the Trend virtual machine has
six fields, as shown.

if (se:value || ea:value==’Q,1’ || so:value==’Q,3’)
value="%";

else
value=0;

5.13 The virtual machine code

We have seen several examples of the Trend language rule sets in this chapter. It is time to see
how the source rules are converted by the compiler to the virtual machine code which the simulator
actually uses to compute the cellular automata transition function. As explained in the previous
chapter, a virtual machine instruction is represented by a ParseNode record, which can be viewed
as a machine instruction having 6 fields as shown in Figure 5.12.

The OPCODE field encodes the machine instruction operator. The VALUE field contains any
immediate value if used by the OPCODE. The LEFT and RIGHT fields contain the address of the
operands for the OPCODE. They may not both be used for a unary OPCODE. The operands are
data fetching machine instructions by themselves. The fields TRUE and FALSE are used for control
flow. They store the address of the next instruction to be executed after the current instruction.
For most OPCODE’s which do not generate a boolean outcome, the TRUE field is followed by the
instruction. For a boolean OPCODE, the TRUE or the FALSE field is followed depending on the
boolean outcome.

Valid OPCODE’s and their meanings are listed in Table 5.1. In addition to these OPCODE’s,
there will be an extra “PDUMMY” code which is used only in the following code listing to represent
temporary storage used by the compiler. It is not actually part of the virtual machine instruction
set.

To facilitate explanation some tags are used as examples in the table. Here “field” means a
cellular automata data field name, “fvar” means a field variable name, “nvar” means a neighbor
variable name, “var” means a data variable name, “array” means an array name, “expr” means an
arithmetic expression, and “nbr” means a cellular automata neighbor name. In addition, VALUE
means the VALUE field in the machine instruction.

The best way to know how the Trend source rules are translated into the virtual machine code
is to look at an example. We choose the reaction-diffusion rule set introduced in Section 5.12.1
as the example. After all original comments are stripped off, this rule set is reproduced below for
easy reference. The region comments are added to associate part of the rule set to portions of the
translated code. See below.

int table[]={ 0, O, 1, O, 1, 1, 1, 1, 1};
int sum;

nbr y;

/] ————————— region F
default value=value;
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MNEMONIC | OPCODE | Meaning of the instruction

PFIELD1 1 | data field access of the form “field”

PFIELD2 2 | data field access of the form “fvar”

PFIELD3 3 | data field access of the form “nvar:field”
PFIELD4 4 | data field access of the form “nvar:fvar”
PADDR 5 | variable access, VALUE has the variable address
PARRAY 6 | array access, VALUE has the array address
PADD 7 | arithmetic addition operation

PSUB 8 | arithmetic subtraction operation

PMUTL 9 | arithmetic multiplication operation

PDIV 10 | arithmetic division operation

PAND 11 | bitwise AND operation

POR 12 | bitwise OR operation

PXOR 13 | bitwise Exclusive OR operation

PVALUE 14 | immediate data access, VALUE has the data
PCALL 15 | subroutine call operation

PROT 16 | rotated if rotate operation

PROTE 17 | rotated if end of rotation operation

PBREAK 18 | direct jumping operation, usually used in loops
PSET1 19 | variable assignment of the form “var=expr”
PSET2 20 | array assignment of the form “array[var]=expr”
PPLUS1 21 | variable increment of the form “var++”
PPLUS2 22 | array increment of the form “array[var]++”
PFSET 23 | assignment to the data field, field index in VALUE
PFPLUS 24 | increment to the data field, field index in VALUE
PDEF 25 | beginning of default rules, a no return jump
PNEQ 26 | boolean testing operation “not equal”

PNZE 27 | boolean testing operation “not zero”

PGT 28 | boolean testing operation “greater than”

PGEQ 29 | boolean testing operation “greater or equal”
PEQ 30 | boolean testing operation “equal”

PLEQ 31 | boolean testing operation “less or equal”

PLT 32 | boolean testing operation “less than”
PRETURN 33 | subroutine call return operation

PROTS 34 | rotated if start of rotation operation

PRVALUE 35 | immediate data access with rotation, for “nbr:”
PFMINUS 36 | decrement to the data field, field index in VALUE
PMINUS1 37 | variable decrement of the form “var--”
PMINUS2 38 | array decrement of the form “array[var]--"
PRFIELD1 39 | data field access of the form “nbr:field”
PRFIELD2 40 | data field access of the form “nbr:fvar”

PMOD 41 | arithmetic modulo operation

Table 5.1: Virtual machine instructions and their meanings.
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default alarm=alarm;
default counter=counter;

[/ ———————————— region A
sum=0;
// ———————————— region B

over each other y:
if (y:value) sumt+;

/] —————— region C
alarm=table[sum];
/] ——m—mmm e region D
if (counter==0)

value=1;
else

value=0;
/] ——————— region E

if (value && alarm)
counter=3;

else if (counter)
counter--;

The compiler generated code from the rule set above is listed below. It is a direct memory ex-
cerpt after being properly disassembled and formated. Various OPCODE’s are converted to their
mnemonic labels to facilitate reading. As said before, the PDUMMY label represents temporary
storage used by the compiler, which is not part of the instruction set, and is neither used nor refer-
enced by the machine code itself. Entry point at the end denotes the starting machine instruction
with which an evaluation should begin.

ADDR: OPCODE VALUE  LEFT RIGHT TRUE FALSE

600584: PDUMMY O 0 0 0 0
600608: PDUMMY O 0 0 600584 0
600632: PDUMMY 1 0 0 600608 0
600656: PDUMMY O 0 0 600632 0
600680: PDUMMY 1 0 0 600656 O
600704: PDUMMY 1 0 0 600680 O
600728: PDUMMY 1 0 0 600704 O
600752: PDUMMY 1 0 0 600728 0
600776: PDUMMY 1 0 0 600752 0
600800: PVALUE O 0 0 0 0
600824: PDUMMY O 0 0 0 0
600848: PFIELD1 514224 O 0 0 0
600872: PFSET 68 600800 600848 600968 O
600896: PVALUE 1 0 0 0 0
600920: PDUMMY 1 0 0 0 0
600944 : PFIELD1 514240 O 0 0 0
600968: PFSET 89 600896 600944 601064 O
600992: PVALUE 2 0 0 0 0
601016: PDUMMY 2 0 0 0 0
601040: PFIELD1 514256 O 0 0 0
601064: PFSET 112 600992 601040 O 0
601088: PADDR 625168 O 0 0 0
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601112: PVALUE O 0 0 0 0
601136: PSET1 126 601088 601112 601208 O
601160: PADDR 625208 O 0 0 0
601184: PVALUE 1 0 0 0 0
601208: PSET1 147 601160 601184 601280 O
601232: PPLUS1 147 601160 O 601280 O
601256: PVALUE 9 0 0 0 0
601280: PGEQ 0 601160 601256 601520 601376
601304: PADDR 625208 O 0 0 0
601328: PDUMMY O 0 0 0 0
601352: PFIELD3 514224 601304 O 0 0
601376: PNZE 0 601352 O 601424 601232
601400: PADDR 625168 O 0 0 0
601424: PPLUS1 166 601400 O 601232 0
601448: PVALUE 1 0 0 0 0
601472: PADDR 625168 O 0 0 0
601496: PARRAY 625172 601472 O 0 0
601520: PFSET 175 601448 601496 601616 O
601544 : PDUMMY 2 0 0 0 0
601568: PFIELD1 514256 O 0 0 0
601592: PVALUE O 0 0 0 0
601616: PEQ 0 601568 601592 601688 601760
601640: PVALUE O 0 0 0 0
601664: PVALUE 1 0 0 0 0
601688: PFSET 210 601640 601664 601832 O
601712: PVALUE O 0 0 0 0
601736: PVALUE O 0 0 0 0
601760: PFSET 225 601712 601736 601832 O
601784: PDUMMY O 0 0 0 0
601808: PFIELD1 514224 0 0 0 0
601832: PNZE 0 601808 O 601904 602048
601856: PDUMMY 1 0 0 0 0
601880: PFIELD1 514240 O 0 0 0
601904 : PNZE 0 601880 O 601976 602048
601928: PVALUE 2 0 0 0 0
601952: PVALUE 3 0 0 0 0
601976: PFSET 258 601928 601952 602120 O
602000: PDUMMY 2 0 0 0 0
602024: PFIELD1 514256 O 0 0 0
602048: PNZE 0 602024 O 602096 602120
602072: PVALUE 2 0 0 0 0
602096: PFMINUS 288 602072 O 602120 O
602120: PDEF 0 0 0 600872 0

Entry point: 601136

The TRUE and FALSE fields for all instructions always refer to instruction addresses within the
code listing itself. The LEFT and RIGHT operand fields also refer to data fetching instructions
within the code listing. The VALUE field for some data fetching instructions, nevertheless, may
contain addresses of pre-declared variables, arrays, or data fields within neighboring cells. These
addresses are not within the code listing addressing space. Instead, they are allocated elsewhere.
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For this particular simulator session, we find the following variable or field addresses assignments:
int table at 625172, int sum at 625168, nbr y at 625208, value at 514224, alarm at 514240,
counter at 514256. Note that the PFSET instruction assigns new values to cellular automata data
fields, and it uses a logical index number instead of absolute memory addresses to refer to fields.
The index numbers are 0 for value, 1 for alarm and 2 for counter for this particular rule set.

It is easier to view the code listing in a graphical format rather than read it off line by line on the
code listing. For that purpose the code listing is manually converted into a graph in Figure 5.13.
The OPCODE labels and VALUE fields are retained in this graph, but the operand references
and control flow directions are converted to arrow lines for better clarification. Other than these
conversions, this graph is exactly the same as the code listing above. The graph has also been
divided into six regions related to the original Trend source rule set, also marked with region
comments. These regions are enclosed by dotted lines in the graph. By comparing instructions in
each region with the corresponding source rules, it is much easier to understand how the compiler
translates source rules into individual virtual machine instructions.

Region (A) is translated from the first assignment statement in the source rule set. It sets zero
to the variable sum. Region (B) is translated from the over statement in the source rule set. Note
that machine instructions to assign 1 to the variable y and to increase the value of y are added by
the compiler; they are not prescribed in the original source rule set. Region (C) is translated from
the array assignment statement, region (D) is translated from the first if-else statement group in
the source rule set, and region (E) is translated from the second if-else-if statement group. Finally,
region (F) is translated from the default rules.

5.14 Comparison to other cellular automata languages

The Trend cellular automata programming language introduced in this chapter contains many
new cellular automata specific language constructs which are not found in other cellular automata
programming languages. The rotated if statement is a major invention in the Trend language, which
fully exploits the rotational symmetry of the cellular automata space, and therefore potentially
reduces the size of an isotropic cellular automata rule set to only 1/4 the size it would be without
using the rotated if command. The Trend language and its associated cellular automata simulator
have been carefully designed to support developing cellular automata rule sets which are both
isotropic and conflict free. Preventive features, like the conflict catching and reporting mechanism
in the evaluation module, and the aligned rotated if statement, cannot be found in other languages,
including CAM Forth and the Cellang language used in the Cellular system.

The Trend language presents a standard C like syntax which is familiar to most users and easy
to use. This is unlike CAM Forth, which uses a postfix notation that sometimes can be hard to
understand. In the Trend language all neighbor and field names automatically become reserved
words in the language once they are defined in the “Template Design” window. These reserved
words are given special treatment by the compiler and can be quite handy in describing cellular
automata rules at a higher conceptual level. Trend is also unlike the Cellang language in the
Cellular system, which can only use relative indexing to describe neighbors (which can be hard to
recognize sometimes).

Trend allows the definition of symbolic literal values. Such symbols are used both to display
the cellular automata space on screen and to represent individual states in the Trend rule set.
Therefore, the direct correspondence between what the user writes in the rule set and what he
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Figure 5.13: A graphical view of the compiler generated code. Regions enclosed in dotted lines
are associated with statements in the original Trend source code.
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sees on the screen greatly simplifies efforts to recognize and correct rule set errors. Even more, the
use of symbolic literals in the rotated if statement further enhances the usefulness of the rotated if
statement. These features are also not available in other cellular automata languages.

It is worth mentioning, however, that the Cellang language does have some interesting features
which are not available in the Trend language, such as the special time and random system variables,
support of multi-dimensional cellular automata, and the object oriented agents mechanism. As will
be discussed in the following section, it is usually not hard to implement a higher dimensional
cellular automata model, but it is hard to visualize its contents on screen. Therefore, higher
dimensional support will not be added into the Trend system before a suitable visualization method
can be devised. The other extra features of Cellang generally do not belong to the standard cellular
automata model, but are extensions to the standard cellular automata model by the Cellular system.
When designing the Trend language and its associated simulator, a strong desire has been put into
following the standard model of a uniform, time indifferent and self-contained cellular automata
space. Therefore, those extra features of Cellular were neither required nor pursued in this work.

5.15 Discussion

The Trend cellular automata programming language was designed from the ground up with two
hopes in mind: to be as powerful as possible for cellular automata specific programming needs,
and to be as similar to the C programming language as possible. For cellular automata rule set
design we need specific language constructs to exploit the symmetry and regularity of the cellular
automata space, yet such features are not available in general purpose programming languages. By
being as similar to the C language as possible, we can ensure that users do not have to spend too
much time learning the Trend language since the C or C++ programming languages are familiar
to most people nowadays. It has to be noted that although the Trend language is made to be
similar to C, its compiler is different from a C compiler due to the fact that cellular automata are
parallel systems but C programs are generally sequential. For this reason the Trend compiler was
implemented completely from scratch.

The Trend language currently supports three data types: int, nbr and fld. The nbr and fid
are special data types used to denote neighbor positions and fields, so the only data type which
can be accepted by a cell is the integer data type int. The integer data type is the most natural
data type for cellular automata cells, and is the only data type needed by the two major cellular
automata rule set developments presented in the following two chapters. Although it is not obvious
at this moment that other data types are needed, adding floating number data type to the Trend
language is planned for its next revision. Actually, since all data types are stored in the bit fields
in a cell, it does not matter to the cellular automata model if those fields represent integers or
floating pointer numbers. It is just how the cellular automata rules manipulate those data fields
that makes a difference. Having more data types available to the programmer can certainly help
in designing cellular automata rule sets with great flexibility.

The one-pass compiler of Trend currently imposes a strict, no-forward-reference requirement
on the rule set. Although this is not a limitation to the power of the Trend language, it may be
inconvenient for some occasions. This restriction will also be addressed in the next revision. The
compiler can be modified by either adding some forward reference resolving data structures and
keeping the one-pass only style, or by changing to a two-pass compiler. The first choice is certainly
better than the second one since the speed of the compiler is very important to the interactive user.
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The Trend compiler generates a set of virtual machine code currently. The benefit of using
the virtual machine code rather than the real machine code is portability, which has been men-
tioned before in the previous chapter. Running the virtual machine code requires another layer
of interpretation by the evaluation module of the simulator, which can slow down the simulation
speed up to three times. Although this speed penalty of using the virtual code is not a major issue
when compared to the benefit of being able to port the simulator easily to other major computer
platforms without the need to modify the compiler at all, it may become an issue when simulation
needs are increased. If speed becomes very important, the code generation module of the compiler
can be modified to generate actual machine code directly. Another solution is to make one more
pass through the virtual machine code by the compiler to convert it to the native machine code of
the host computer.

The Trend language is a general purpose cellular automata programming language. For any
general purpose programming language, the potential application of the language is often beyond
the imagination of the language designer. Even familiar users of the language still occasionally
discover new usages of the language. It is possible that some clever Trend language programmers
can discover many new applications in the future. A library of useful Trend language applications
can be maintained to avoid re-engineering them by other new Trend language programmers.
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Chapter 6

Emergent Self-Replicating Cellular Automata
Structures

It is desired in this research to be able to discover a cellular automata rule set which allows
generation of self-replicating behaviors from a randomly initialized cellular automata space. Several
conditions must be met by the rule set:

e There should be no assumption about the initial composition of the cellular automata space,
except that there be a reasonable number of non-quiescent cells. Of course if the simulation
starts with a completely quiescent, or near completely quiescent space, the whole cellular
automata space will remain or return to a completely quiescent state in a short time, and
nothing interesting will appear.

e There should be a well-defined self-replicating behavior which is easily observable by the
human experimenter.

e The self-replication should be non-trivial. The self-replicating process should not rely primar-
ily upon the physics of the cellular space (i.e., the cellular automata rule set) to support its
replication. Otherwise, a simple cellular automata rule which just says “copy your neighbor”
will suffice to generate replicating individual cells. This is not self-replicating.

e In order to distinguish trivial self-replication from non-trivial self-replication, Langton’s ex-
amination condition must be passed by the rule set [Langton, 1984]. According to this
condition, a self-replication process is non-trivial if its replication process is self-directed by
its own stored instructions, and during the replication process there is an easily identifiable
instruction transcription phase and an instruction translation phase.

The following sections will describe a rule set which satisfies all of the conditions above. Due to
the complexity of the rule set, it is more feasible to introduce the rule set one part at a time, and
then put together everything at the end. Therefore, signals and data fields used by the rule set are
first described, and then how signals flow and turn and why they can support the replication of
loops of arbitrary sizes are explained. After that, it is shown how initial loops are formed. Finally,
we will see how loops can grow in size. A listing of the complete rule set is provided in at the end
of this chapter for reference.
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6.1 An augmented self-replicating loop rule set

To start, the functions of the self-replicating loop rule set [Reggia et al., 1993a] are used as
a basic framework. They are augmented and new features are added to get what we want: an
emergent self-replication rule set. Doing it this way has the advantage of working on a framework
of self-replicating behaviors which have been studied thoroughly and are well-known. The Moore
neighborhood template is used for the rule set.

Although designing the rule set uses reference to the functions, or “behaviors” of a previous rule
set, it is still a completely new rule set since it is necessary to add at least the following features
to the original function set:

e A size independent self-replication rule set. The original self-replicating loops need to have an
independent rule set coded for each self-replicating loop of a different size. To allow emergent
self-replicating structures to emerge and grow in size, we need a cellular automata rule set
which can support the self-replicating process of any structure with any size.

e A bootstrap procedure. The original self-replicating loops start their replicating process from
a template which is artificially placed in the cellular automata space at the initial stage. But
now our purpose is to allow randomly formed initial cellular automata space configuration to
yield self-replicating structures. Therefore, we need a logically sound and general pathway
which will lead from the random initial cellular automata configuration to the first self-
replicating structure in the cellular automata space.

e Enabling growth and mutation. Even after we have the pathway from random initial cellular
automata configuration to the first self-replicating structure, if the self-replicating structure
cannot change in size and position once formed, the whole process will still not be interesting.
We need to allow existing self-replicating structures to grow and gradually change to a bigger
size.

As we will gradually see in the following sections, the new cellular automata rule set does encompass
all the above required features.

6.2 A running example

To make the detailed rule set description that follows easier to understand, a continuous example
of the emergent self-replication rule set is shown in Figures 6.1, 6.2, 6.3 and 6.4 running in a
randomly initialized 40 x 40 cellular automata space using an initial component density of 25%.
Note that all boundaries are wrapped around so that if a signal sequence goes off the right boundary
it will reappear on the left boundary and vice versa. Similarly, if a signal sequence goes off the top
boundary it will reappear on the bottom boundary again.

Emergent self-replicating structures have been obtained before epoch 500 in this example (see
Figure 6.1). The size of the structures has the tendency to grow bigger and bigger until the
structures are too big to fit comfortably in such a small world (40 x 40 only). Big loops will easily
annihilate each other and return themselves to monomers if they are too big. Since all dying loop
cells return to monomer format and can trigger generation of loops again, this cellular automata
space does not show any sign of ceasing activity even at epoch 7500. In fact, apparently it never
repeats itself, so we do not know when the world will stop its evolution, even at epoch 7500.
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Figure 6.1: A running example (part 1). The simulation starts with a randomly allocated cellular
automata space with 25% non-quiescent occupancy. By epoch 500 many 2 by 2 and some 3 by 3
loops have formed. In epoch 1000 most smaller loops are gone, replaced by some 4 by 4 loops. In
epoch 1500 a 4 by 4 loop is about to generate a 5 by 5 loop in the middle left region.

In the following sections we will see how this emergent self-replication rule set is constructed.
After that, the properties of the rule set and its simulation results will be discussed.

6.3 Components, signals and signal sequences

In a cellular automata space, each cell can hold a different state value. This value, if non-
quiescent, constituents the “component” of a cellular automata structure. A cellular automata
structure can be just a single cell, i.e., it has no connection with the other non-quiescent cells in the
neighbors, and in that case we call it a monomer. On the other hand, a cellular automata structure
can have several non-quiescent cells which are functionally connected together and behave as a
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Figure 6.2: A running example (part 2). By epoch 2000 the biggest loop is now 6 by 6. In
epoch 2500 that becomes 7 by 7. When the size of loops grows, the number of loops decreases.
In epoch 3000 the biggest loop is 8 by 8 and it is about to generate a 9 by 9 loop. In epoch 3500
an amazingly big 10 by 10 loop can be seen in the upper right region of the space. This is 1/4

the linear size of the cellular automata space!
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Figure 6.3: A running example (part 3). By epoch 4000 it seems that loop size has reached its
limitation in this cellular automata space, so loops start to annihilate each other easily. Only one
gigantic 9 by 9 loop is still replicating. In epoch 4500 10 by 10 loops are coming back again. Two
such loops are in the lower left and right region of the space. In epoch 5000 again gigantic loops
annihilate each other and only one 10 by 10 loop is left. Some smaller loops are in the space,

generated from monomers.

automata space, but unfortunately they collide.
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In epoch 5500 it seems that gigantic loops dominate the cellular
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Figure 6.4: A running example (part 4). By epoch 6000 we finally see no more gigantic loops
since they have all died due to space competition and mutual annihilation. We see some smaller
loops resuming the growth process again. In epoch 6500 they become bigger. In epoch 7000 it
seems that 7 by 7 loops dominate the space but by epoch 7500 they all die. Still, there are 3 by 3
loops in the space and we do not know when (if ever) this cellular automata space will cease its

activity.
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8 Figure 6.5: Sample cellular automata space.
>00 Quiescent states are represented by empty white
space. Non-quiescent states are represented by
o characters. Some state values, like >, L, etc.,
are also signals. A sequence of signals becomes a
signal sequence. Bound cells are defined by the
bound bits which are shown in light gray color.

ie]e)

whole. In the latter case we call the structure a “multi-cell” cellular automata structure or simply
a cellular automata structure, and we call its cells bound cells.

Some cell states have special meanings. Each of them will direct some specific steps during
the self-replication process and is viewed as moving through the other components within the
cellular automata structure body, like water flowing in a pipe. Therefore, those states are not
only components of cellular automata structures but also signals for the self-replicating process. A
sequence of signals on a cellular automata structure comprises the signal sequence which completely
describes and controls the self-replication process.

For example, in Figure 6.5, all non-quiescent states are visible characters. Quiescent states are
represented by empty white spaces. Among non-quiescent states, those which overlap a bound bit
are in bound cells. They are at the upper left region of the figure. The definition of the bound bit
will be given shortly in the next section. It can be seen that there are three signals in this cellular
automata structure, i.e., L>>.

In the cellular automata model considered here, the following components are used:

O>LCBEFD

Among them > L E F are signals. Except the > signal, all the components have strong rotational
symmetry. The function of each component is briefly outlined below. The actual use of each
component will become clear in the following sections which detail the behaviors of the cellular
automata structures.

O This is the building block of cellular automata structures. It allows passage of a signal sequence
through, providing a pathway for the flow of information. Because of this it is also called the
Block O.

> This is the extrude signal, which directs the expansion of a cellular automata signal pathway
into the quiescent space. This is the only weak rotational signal used in this rule set and is
actually represented by four rotational symmetric values >, V, < and A which are designated
in the rule set by '>’, ’>,1’, ’>,2" and '>,3’.

B This is the birth component left by the extrude signal >. A quiescent neighbor will first be
converted into this state before it becomes a normal part of a cellular automata structure.
Because of this it is called the Birth B.

L This is the turning signal. It changes the direction of expansion of a signal pathway by 90 degrees
counterclockwise.
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C This is the corner component left by the turning signal L. A signal > going through it will
be rotated 90 degrees counterclockwise and form a corner. Because of this it is called the
Corner C.

E F This pair of signals in sequence direct the branching of a signal pathway.

D This is the detachment component which separates the parent and child cellular automata
structures during the replication process. Because of this it is called the Detach D.

b

Of course, there is always the quiescent state which is denoted by ‘.” when referenced in rules;

quiescent states are shown by white space in all the figures.

6.4 Functional divisions and data fields

To ease the rule set design effort a functional division of data fields are usually used. This
concept came from the book by [Toffoli & Margolus, 1987]. Basically, the original bit depth of a
cellular automata cell (in our case 8 bits) is functionally divided into different fields (in our case
four fields: 4, 2, 1 and 1 bit each) such that each field encodes different meanings and functions
(to the human rule writer). The utilization of field division greatly simplifies the cellular automata
rule programming effort, and makes the resulting rules much more readable.

The component field introduced in the previous section is the primary data field which accounts
for most of the normal operations of the cellular automata structures. It takes four bits to encode
its twelve possible state values.

There are additional data fields to encode for rare or occasional special situations in the cellular
automata space or to store additional information in some cell. These additional data fields are
outlined below. Their usages and purposes will be introduced in the following sections.

special This is a two-bit field which denotes special situations that arise occasionally in the cellular
automata space. There are four possible cases:
’.” No special situation.
’x’ A branching signal sequence (EF) will be generated.

’-> A cell will not allow the signal sequence to pass through it, thus effectively deleting the
signal sequence.

#’ A bound cell is in the dissolve mode, and will become a monomer in the next epoch.

growth This one bit field, if set (denoted by '+’), records the stimulus hidden in a cell which may
cause the existing signal sequence to grow in length.

bound This one bit field, if set (denoted by "!’), marks a cell as part of a multi-cell cellular automata
structure, otherwise the cell is a monomer.

Again, like the components, all the functions of these additional data fields will become clear in the
following sections which detail the cellular automata structure behavior. A very good visualization
of how the cell state is divided is shown in Figure 6.6.
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A Cell component
special
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fields bits states
component 4 16
special 2 4
growth 1 2
Cellular Automata Space bound 1 2
N Within a cell

Figure 6.6: The data fields used in the emergent self-replication rule set. In this application,
a cellular automata state variable in each cell is horizontally sliced into four different bit groups
called fields. Each field represents a specific piece of information in the cellular automata model.
Different bit-depths are assigned to different fields as indicated. The total number of bits used is
eight, which is the size of the state variable in each cell.

6.5 Signal flow and path extrusion

A basic feature of a self-replicating cellular automata structure is to allow a signal sequence
to be transmitted to another area of the cellular automata space. The signal sequence should
be preserved during transmission to keep its original meaning. The general format of the signal
sequence which will be transmitted in our model is of this form L>>>>, where an arbitrary number
of signals > are followed by a signal L (the signals flow toward the right here; so they are read from
right to left).

The building block of a cellular automata structure is the component O which allows the signal
sequence to flow “through it”. A typical signal sequence flow is shown in Figure 6.7.

The Trend cellular automata programming language described in the previous chapter is used
to write the rules in this and the following chapter. The neighbor position prefixes used are no, ne,
ea, se, so, sw, we and nw, which stand for north, northeast, east, southeast, south, southwest,
west and northwest, respectively, of the Moore neighborhood template. North is up, east is to the
right, etc.

With this convention, the rules that implement the signal sequence flow are these:

if (component=="0")
rot if (we:component==’>")
component=’>";
rot if (component==’>")
if (we:component=="1L")
component="L";
else if (we:component==’>7)
component=’>";
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Figure 6.7: The signal sequence flow in a cellular automata structure. Each box here is a snapshot
of the same region in the cellular automata space during different iteration steps. Numbers under
each box are denoting the relative iteration steps. Signal > is followed by either a signal > or
by the signal L. Signal L itself always changes to Block O. Block O itself will be changed to > if
pointed at by >.

if (component=="L")
component=’0";

A little explanation is needed for this first rule example. The first outer if statement says that
if there is a signal > as the west neighbor of a component O which points to it (as is the case in
Figure 6.7), the component O will change to signal > in the next epoch. The rotated if prefix rot
on the inner if statement helps expand this condition to the other three possibilities, i.e., a V in
the north, a < in the east or a A in the south.

The second outer if statement says that if the west neighbor of a > signal is a L signal, the
> signal will change to L, but if the west neighbor there is instead a signal >, it will stay as >.
Again, the rotated prefix rot expands the condition to the other three cases: a signal V with a L
or a V on the north neighbor, a signal < with a L or a < on the east neighbor, and a signal A with
a L or a A in the south neighbor.

The last if statement simply says L always changes to O.

The use of the rotated if statement (Section 5.10) is very important in writing cellular automata
rules. It simplifies the effort by requiring only one description of a condition and automatically
converts the condition to the other three orientations. Without the rotated if statement we would
need to provide a much more awkward nested if statement to encompass all four orientations.
Otherwise our signal sequence would only flow toward the right but not toward the top, left or
bottom directions.

In addition to being able to pass a signal sequence around in its own body, a cellular automata
structure should also be able to extrude toward the quiescent space so that it can grow in size, as
shown in Figure 6.8. The rules to implement the extrusion are the following.

if (component=="B"’)
rot If (we:component==">")
component=’>"’;
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Figure 6.8: Extrusion of a cellular automata structure. The signal > will extrude a path toward
a quiescent space by changing a quiescent neighbor cell into the Birth B. The signal L will change
the tip of an extrusion path to the Corner C, which will cause the direction of extrusion to be
rotated 90 degree counterclockwise. See Section 6.6 for rules about this.

if (component==".")
rot if (we:bound && we:component==’>"’ &&
(nw:component=="." || nw:component==">,1" ||
nw:component=="L"))
component="B’;

The first rule says that Birth B can pass along signal > too, just like the Block O. The second rule
says that a quiescent state will be changed to Birth B when pointed at by a > signal. Since signal
> is meaningful and can direct extrusion into quiescent neighbors only when it is part of a cellular
automata structure, the rule needs to test the bound bit to see if it is not a monomer. The reason
for the three test conditions in the second rule will be explained in the following section, after the
turning and branching rules are introduced.

6.6 Signal turning and branching

A signal sequence can not only be transmitted straight ahead, it can also be transmitted around
a corner, thus changing the direction of an extrusion, as shown in Figure 6.9. The additional rules
to make the turning of a signal sequence transmission are these:

if (component=="0")
rot if (so:component==’>")
component=’>,37;
rot if (component==’>")
if (we:component==">,1")
component=’>"’;

The first rule is invoked when going from epoch 2 to epoch 3 in Figure 6.9 and the second rule
is invoked when going from epoch 3 to epoch 4 of the same figure. Note that the second rule is
rotated before use in this case.
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Figure 6.9: Signal sequence turning at the corner. A signal sequence can change its direction of
transmission by going through a corner.

A corner itself is formed in two stages. First the signal L at the tip of an extrusion path changes
the tip to a Corner C, as shown in Figure 6.8, after that, Corner C will rotate an incoming signal >
counterclockwise 90 degrees, as shown in Figure 6.10, thus forming a corner. The additional rules

to make this happen are these:

rot if (component==’>")
if (no:component==">,1")
component=’>";
if (component==’B")
rot if (we:component=="L")
component="C’;
if (component=="C"’)
rot if (we:component==’>")
component=’>,37;

OL>>0cC OoOoL>>C O00L>na
0 1 2

B

B A L

O000LA O0000L 000000
3 4 5

Figure 6.10: The formation of a corner. Corner C will rotate an incoming signal > 90 degrees
counterclockwise, thus forming a corner.
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Figure 6.11: The branching of a signal sequence. When going through a dividing pathway a
signal sequence will be duplicated.

The first rule allows subsequent turning of all > signals, as shown in epoch 2 to 3 of Figure 6.10.
The second rule changes the tip of an extrusion path into the Corner C as stated, which is shown in
epoch 3 to 4 of Figure 6.8. The third rule rotates the incoming signal > into A as shown in epoch
1 to 2 of Figure 6.10.

It should now be clear why the three test conditions of the last rule in the previous section about
quiescent state changing to Birth B is necessary. Look at epochs 3 and 4 of Figure 6.9. We certainly
do not want the quiescent neighbor to the right of the corner cell to change to a Birth B in epoch
4, despite the fact that it is pointed at by a signal > in epoch 3. This and other similar situations
require explicit listing of conditions about when a Birth B can be formed. Specifically, only in three
conditions a quiescent state pointed at by a signal > will change to Birth B. These conditions all
are based on checking the value of its Northwest neighbor. The first case is a quiescent Northwest
neighbor as shown in the two extrusion cases of Figure 6.8 for straight extrusion. The second case
is shown in epochs 2 and 3 of Figure 6.10 for extrusion through a corner. The third case is similar
to case 2 but for an extremely small loop with the L> sequence (so that L followed right after >).

A signal sequence will be duplicated when going through a branching pathway, as shown in
Figure 6.11. No new rule needs to be written to support this behavior. How the branching pathway
itself is formed will be explained in Section 6.8.

6.7 An endless signal sequence source — the loops

Given that signal sequences can be turned around in cellular automata space, we can utilize
this behavior to make a circular pathway, or a loop, for signal sequences, so that a signal sequence
can be preserved within the loop and repeat itself. The loop, together with the branching of the
signal pathway, makes an endless signal sequence source possible. In fact, that is the fundamental
idea of the self-replicating loops [Reggia et al., 1993a]. A typical example of the loop is shown in
Figure 6.12.
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Figure 6.12: The signal sequence loop. A signal sequence can be preserved within a loop. This
signal sequence can then be repeatedly sent out through the branching pathway.

6.8 Branch formation

As shown in the previous section, a signal sequence can be repeatedly sent out by utilizing a loop
together with a branching signal pathway. In this section I will demonstrate how this branching
signal pathway can itself be formed by a cellular automata signal sequence.

The signal sequence to form a new branch, or arm, of the signal pathway consists of the two
transient signals E and F following the normal signal L. The signal sequence EF itself is formed by
the help of a special value ’*’ in the special field (see Figure reffg:efields). When a normal signal L
goes through a cell which has its special value set to ’+’, the signal L will change to E in the next
epoch. Visually this appears as if the signal L “pulls out” a trailing EF signal sequence after it.
When this trailing EF signal sequence reaches the next corner of the loop, it will break out the
loop and form a new branch of the signal pathway, as demonstrated in Figure 6.13.

The rules to implement the “pulling out” of the EF signal sequence (epochs 1, 2, 3 and 4 of
Figure 6.13) are the following. Signal L has two choices: if it sits on top of a special value of "’ it
will change to signal E no matter what; otherwise it will change to E if followed by E. The extra
conditions in the rule for signal L, make sure the EF sequence will not be copied through the corner,
as shown in epochs 4 and 5 of Figure 6.13. Signal E will always change to signal F and clear the
special value. Signal F will always return to O (but it reappears in the current position of E).

if (component=="L")
if (special=="%7)
component="E’;
else rot if (so:component=="E’ && sw:component!=’F’
&& (no:component==’." || we:component==’."))
component="E’;
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Figure 6.13: The branching out of a signal pathway. Note the special value '’ shown with a light
gray color in the lower left corner of the loop at epoch 0. (Where the "*’ comes from is explained
later in the text.) When signal L reaches that cell it will change to the signal E instead of to
the usual Block O, as shown in epoch 1 and 2. The signal E itself will “pull out” the signal F in
the next epoch (epoch 3). It will also erase the special value '+’ so that next time when signal L
goes there again there will be no more EF signal sequences. This EF signal sequence will follow
the signal L to the next corner of the loop, as shown in epoch 4. It will then form a branch, or
arm, at that corner as shown in epochs 5, 6, 7 and 8. Signal L will never carry the EF sequence
through the corner.

if (component=="E’) {
component="F’;
special=".7;

if (component=="F")
component="0";

The rules to implement the breaking out of a loop corner to form a new branch (epochs 5, 6, 7,
and 8 on Figure 6.13) are the following.

if (component==".")
rot if (so:special==0 && so:component=="E’ &&
se:component==’." && no:component==’.")
component=’0";
if (component=="0")
rot if (so:component=="F’ && se:component==’." &&
no:component==’." && ea:component==’." &&
we:component==’_"7)
component=’>,37;
rot if (component==>>")
component="0";
if (component=="B"’)
component=’0";

Signal E will turn the quiescent neighbor cell facing its moving path into an O. Several conditions
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are added to the rule to make sure that only the correct quiescent neighbor will be turned into an
O, but not the other quiescent neighbors around E.

The O then sees the incoming F signal and will change to signal >, which will in turn extend
the arm by one more cell and complete the branching. Again, since there are many O’s around the
signal F (three in epoch 5 alone), we need to add more conditions to the rule to make sure that
only the right one (the O in the branching arm) will be turned into the signal >.

In this case signal > and Birth B will just fall back to Block O.

The only thing left unexplained is when and why the special field will be set to the value *’.
Basically, when a cellular automata structure is completing its replication process and has its arm
close on itself, it will generate a D component, or Detach D. The Detach D is a component for
separation between the parent cellular automata structure and the child structure. When seeing
the Detach D in the neighbor, a cell’s special field will be set to the value '+’ by the following rule.

rot if (component!=0 && special=="." &&
(ea:component=="D’ && no:component && we:component ||
we:component=="D’ && no:component && ea:component))
special="%";

Again, conditions are added to make sure only two special fields, one in the parent and one in the
child, will be set to "*’. This will cause the formation of a new arm in the other corner a few
epochs later so that both the parent and child cellular automata structures can continue their own
replication process. The formation and function of Detach D will be explained in the following
section.

6.9 Loop closing and separation

The basic procedure by which a cellular automata structure achieves self-replication is to extrude
an arm, turn the arm after a certain length of extrusion, continue extruding and turning until the
arm closes on itself. At that stage, a new loop which is capable of preserving signal sequences has
been formed (see Section 6.7). Now the original cellular automata structure has to separate itself
from the new loop. This is achieved by setting a Detach D in the connecting cell, as shown in
Figure 6.14. Note the setting of '*’ values in the special field for both loops at epoch 35, which will
cause new arms to be formed in the other corners later and a replication cycle to complete.

The rules to set Detach D and the rule to remove it are the following:

rot if (component==’>")
if ((nw:component==>>,3" || nw:component=="0") &&
(ne:component=="B’ || ne:component==">,1")
&&% no:component==’.’ && ea:component &&
we : component)
component="D’;
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Figure 6.14: The replication and separation of loops. The original cellular automata structure
(epoch 0) goes through a series of extruding and turning processes (epochs 1, 10, 18, 26, and 32)
until finally its arm is closing on itself (epoch 33). When this happens Detach D will be formed
in the connecting cell between these two loops (epoch 34). The Detach D will in turn trigger the
settings of '+’ values in the special field for both loops, shown in a light gray color in epoch 35.
After seeing the setting of ’x’ values in its periphery, Detach D itself will return to quiescent state
to complete the separation process (epoch 36). In epoch 37 and 38 the right (child) loop is going
through the branching process, which has been demonstrated in Figure 6.13, that will cause a
new arm to be formed to its lower right corner later in epoch 44. In the same epoch we also see
the complete replication of a child loop. The left (parent) loop will go through the same process
too and a new arm will be formed to its upper right corner later in epoch 49. It will return to its
original state (but rotated 90 degrees) in epoch 50.

if (component==’0")
rot if ((nw:component==>>,3’ || nw:component=="0") &&
(ne:component=="B’ || ne:component==">,17)
&% no:component==’.’ && ea:component &&
we : component)
component="D’;
if (component==’D")
rot if (ea:special)
component=’.";

Normally the Detach D will come from the signal > rule, but in the extended replicating case,
where a smaller loop is generating a bigger loop, the Detach D will come from the Block O rule.
The extended replicating case will be explained in the following paragraphs. Note that lots of
conditions are added to the two rules to make sure that only the correct 'O’ or ’>’ will change to
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D. Detach D will disappear right after seeing the special fields in its neighbors are set.

Usually a cellular automata structure will replicate another structure with the same size and
signal sequence as itself as shown in Figure 6.14, but this can be changed if the cellular automata
structure contains a signal sequence which will generate a bigger structure than itself. This is called
an extended replication case. A cellular automata structure’s signal sequence can be modified to
generate different structures than itself by an active growth field sitting on one of its cells during
the arm branching process, which will be explained in Section 6.12. The growth field is set when a
loop dies, which will also be explained in Section 6.12.

When an extended replication is under way, there is a timing problem, as shown in Figure 6.15.
The problem is that due to the different sizes of parent and child structures, there will be a partial
signal sequence copied into the new loop, together with a complete, correct signal sequence. This
partial signal sequence must be erased in order to guarantee a healthy new loop. This is achieved
by setting the special field to the value =’ in the closing corner cell of the new loop. The Block O
there will detect an extended replication in progress and will set its special field accordingly. Once
the special field is set to -7, the Block O will stop copying signal sequences, thus effectively erasing
any signal sequence going through it, as shown in Figure 6.15 at steps 39, 40 and 41. This erasing
process will end only when the Block O sees an incoming signal L, which is the tail of the partially
copied signal sequence which must be erased. Once it sees this incoming signal L, it will reset the
special value from ’-’ to 'x’, to start the process of generating a new arm, which is what a new loop
would have done already if it was not of different size to its parent.

The rule to set the special field to ’-’ is this:

if (component==’0")
rot if (no:component=="B’ && nw:component=="." &&
(we:component==>0" || ea:component=="L"))
special="-";

The rule to inhibit the normal copying of signal sequence for Block O and the changing of '’
to '*’ once it sees incoming signal L is this:

if (component=="0")
if (special'="-7)
doing normal copying...
else rot if (we:component=="L")
special="%";

Self-replication rules which support extended replications are new in this research and are very
important since only by the support of them can the emergent self-replicating structures diversify
their sizes and shapes in the cellular automata space. They are also better than the old self-
replication rules since they abstract the self-replication phenomena out of any particular shape and
size of the self-replicating structures; they are truly general purpose self-replicating rules.
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Figure 6.15: An extended replication of loops. Note that in epoch 0 the parent loop has one
more > signal than it normally has (compared to Figure 6.14), which will cause a bigger loop
to be generated. How this extra > signal gets added will be discussed in Section 6.12. In epoch
8 we see this signal sequence generate a longer arm. In epoch 34 the arm has completed about
3/4 of its closing process. In epoch 38 the arm is closing on itself, which causes two things to
happen: the Detach D will be set in the connecting cell as usual, and a special -’ value will be
set to the special field, shown in a light gray color in epoch 39. This setting of the special field will
immediately stop the Block O from copying the signal sequence until it sees an incoming signal
L in epoch 40. Then it will set the special field to the value '+’ as shown in the same light gray
color in epoch 41 (L is not copied). From then on the new arm branching process is under way
as shown in epoch 49, 50 and 51. Note that the parent (left) loop completes its arm branching
process and starts a new replication cycle in epoch 50. The extended signal in the child (right)
loop makes it take longer time to finish the replication. In epoch 57 the new arm of the child loop
is formed and finally in epoch 61 the bigger child loop is completed.
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6.10 Failure detection and clean up

In the original self-replicating loops [Reggia et al., 1993a], all cellular automata space behaviors
are predictable. Therefore, the cellular automata rules do not need to account for random behaviors.
Put another way, while writing the rules the cellular automata rule set designer has complete control
over the behaviors occurring in the cellular automata space, including the initial state.

In contrast, in this endeavor, the very first assumption is that a rule set designer does not have
any a priori knowledge about the interactions between cellular automata structures in the cellular
automata space, or even what the cellular automata space will begin in epoch zero. Although the
rules considered here are correct and can reliably direct a structure to do replication or extended
replication when working alone, it does not guarantee that a structure will not run into another
structure, or two structures will not try to replicate into the same region of the cellular automata
space. These factors are all randomly determined, not by the designer.

Because of this, we need to assume that not all designated regular procedures like extrusion,
branching, closing, etc. of the cellular automata structure will always be followed without interrup-
tion or disturbance from the other structures. To account for this unpredictability, and to come to
the rescue when something goes wrong, we need to build into the cellular automata rule set rules
which will detect any failed regular procedure and clean up the cellular automata space after the
failure.

It is this fail-safe feature of the new rule set which distinguishes it significantly from the original
self-replicating loop rule set.

A failed situation happens when something prevents the regular replicating procedures from
continuing, such as an obstacle in the extrusion path, or two loops colliding into each other. When
such a situation occurs it is marked by the fail-safe rules using the value '# in the special field.
When a cellular automata structure has any of its cells go into this “fail” mode, the structure will
be plagued by this “fail” mark in a very short time, as shown in Figure 6.16, and will dissolve
completely. Note that Detach D has the ability to block the fail mark from passing through it, thus
protecting a failed child from its parent or vice versa.

When a cell of a cellular automata structure goes into the dissolve mode, it will lose its bound
bit and become a monomer. Once becoming a monomer the cell will be governed by the monomer
rules. The bound bit, monomers and monomer rules will be explained in Section 6.13 below.

The following rules govern the spreading of fail marks '#’ and the dissolve of bound bits in
cellular automata structures. Note that Detach D will not copy the fail mark. The testing condition
component is to check if it is non-zero, or non-quiescent, which is equal to test if (component!=’.").
This test is necessary since the fail mark will only be set for non-quiescent components.

if (special=="#")
bound=0;
else rot if (component && component!=’D’ &&
(no:special=="#’ || ne:special=="#"))
special="#";

Each of the following rules checks for a specific failure situation and sets the fail mark once such
a fail situation is found.
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Figure 6.16: The dissolve of cellular automata structures. The bound bit, if set, is shown as a
light gray exclamation mark ’!” in the background. It denotes the part of the cellular automata
space which belongs to a cellular automata structure. In epoch 0 we have two cellular automata
structures both starting their replicating cycles. In epoch 26 both cellular automata structures
have attained certain sizes. In epoch 33 the smaller inner new loop has closed on itself, but
unfortunately the new outer loop is just about to touch the inner one. In epoch 34 the separation
Detach D is formed at the connecting cell. At the same epoch the upper left L cell of the inner loop
sees a fail situation and sets its fail mark "# in its special field in the next epoch (shown in light
gray in epoch 35). In epoch 36 the Detach D has disappeared and therefore the left most original
loop is secured, while the fail mark is spreading in the inner and outer loops. The spreading of
the fail mark '# in the cellular automata structures is very fast (epoch 39), such that in epoch
49 all but the leftmost cellular automata structure has been dissolved completely into monomers.
The original left loop is not influenced and will continue its replication in the new direction.

The first rule checks for abnormal cell neighbor density. A normal cellular automata structure
cell should not have too few (less than 1) or too many (more than 5) neighbors, unless a collision
has occurred which pushes cells together. The function AbnormalNeighbor () checks for that.

if (component && AbnormalNeighbor())
special="#";

The definition of the function AbnormalNeighbor() is given below:

int AbnormalNeighbor() {
count=0; // clear the counter

// count the no. of non-quiescent neighbors.
over each other y:

if (y:component) count++;
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// if zero or more than 5, it’s abnormal!
if (count && count<=5)

return 0;
else return 1;

}

All the rest of the failure checking rules bear a similar resemblance to the following example, i.e.,
they are all elaborated forms of previous rules which were introduced already for various regular
functions. More code is added to check for abnormal situations. For example, the following rule

for passing signal > in Block O was introduced in Section 6.5:

if (component=="0")
rot If (we:component=’>")
component=’>"’;

To check for failures more conditions are added to see if there is more than one > signal which
wants to move into the same O. If that is the case it must be a collision and the fail mark should

be set. Otherwise everything goes normally and the signal > is copied.

if (component=="0")
rot if (we:component==’>")

if (no:component!=’>,1’ && no:component!=’>,2" &&
ea:component!=’>,2’ && ea:component!=’>,3’ &&
so:component!=’>,3’ && so:component!=’>")
component=’>";

else
special="#7;

Based on the same reasoning the rule to turn a signal > at the corner (Section 6.6) now becomes:

if (component==’0")
rot Iif (so:component==’>7)

if (we:component!=’>,1’ && we:component!=’>’ &&
no:component!=?> 2’ && no:component!=’> 1’ &&
ea:component!=’>,3’ && ea:component!=’>,2)
component=’>,37;

else
special="#";

Each of the following rules checks for an unwanted situation for each different component type

and sets the fail mark accordingly.
Birth B should not be within a line of components:

118



if (component=="B")
rot if (no:component && so:component)
special="#";

Signal > should not catch up with signal L:

if (component=="L")
rot if (we:component==’>")
special="#";

EF signal sequence should not reach Corner C:

if (component=="C")
rot if (no:component=="E’ || no:component=="F’)
special="#";

The E before the F should have made a new Block O, unless something prevents it from doing
so, in that case the loop has failed to make a new arm, and then it is a failure:

if (component=="F")
rot if (no:component=="0’ &&
(ea:component=="0’ || ea:component=="L") &&
so:component=="." && we:component==",")
special="#";
else
component="0";

6.11 The minimum loop

Our examples in previous sections show cellular automata structures of various sizes. This leads
one to ask: what is the smallest possible cellular automata structure capable of self-replication? In
order to facilitate emergent self-replicating behaviors we would like the self-replicating structures to
be as small as possible so that the chance of getting them from monomers can be high. A previous
research endeavor in minimizing self-replicating loops has led to a self-replicating structure with
only 5 cells [Reggia et al., 1993a]. Our rules so far can support the self-replication of loops 3 by 3
cells and larger. That seems to be the smallest loop we can get since the signal sequence passing
rules we have so far require that signal sequence flows not be adjacent to each other. But the
actual limiting factor is the number of cells in a loop. For the arm extrusion sequence (EF) to work
we need on some occasions two more cells in addition to the number of cells to hold the normal
replication sequence. We also need to have at least one more cell if we want to allow extended
replication cases so that loops can grow in size. For a 3 by 3 cells structure the total number of
required cells is six. For a 2 by 2 cells structure that number becomes five, a seemingly impossible
case since it only has four cells.

After some careful studies it is found that we can reduce the size of the loop even further by
adding some more rules to the rule set we have gotten so far. This makes possible a self-replicating
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structure as small as only 2 by 2 cells. The added rules watch for special cases for 2 by 2 loops
since signals in a 2 by 2 loop are so close to each other that requires special signal passing rules in
addition to those we already have. This smallest self-replicating loop can be called the Adam Loop.
A whole new world of self-replicating cellular automata structures can be generated from this loop.
In Figure 6.17 we show an Adam Loop and its replication process.

This added rule turns the signal L after the signal > around the corner as seen in epoch 18 and
19 of Figure 6.17 for the child loop.

rot if (component==’>")
if (no:component=="L")
component="L";

The following rule copies signal L to B’s position as seen in epoch 17 and 18 of Figure 6.17.

if (component=="B")
rot if (we:component==’L’ && no:component=="0’)
component="L";

The following rule rotates the signal > in a tight corner as shown in epoch 15 and 16 of
Figure 6.17.

if (component=="C")
rot if (we:component==’>,1")
component=’>,37;

Finally, this rule mobilizes the signal > behind the F signal as shown in epoch 2 and 3 of
Figure 6.17. It has the added failure checking code.

if (component=="F")
rot if (no:component==’>,2’ && ea:component)
if (ea:component=="E’ || so:component=="07)
component=’>,17;
else
special="#";

6.12 Growth stimuli

As shown in the previous section, the smallest loop has only 2 by 2 cells. The previous smallest
self-replicating loop has 5 cells [Reggia et al., 1993a]. It is made possible in this work since the
number of states used in this model, 256, is far more than the 8 states used in the previous research.
To get bigger cellular automata structures from this 2 by 2 loop, mechanisms are needed to let the
smaller loop generate bigger loops. This is achieved by the growth stimulus bit in the growth field
together with the help of several more rules.
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Figure 6.17: The smallest self-replicating cellular automata structure in this model. This struc-
ture starts as only a 2 by 2 loop with its lower left cell’s special field set to '*’ for extruding an
arm. In epoch 2 the arm branching sequence EF has been generated and is approaching the next
corner. In epoch 3 the branching starts. In epoch 4 and 5 the branching sequence and the original
self-replicating signal sequence are precisely combined to continue extruding the new arm. In
epoch 8 one side of a new loop has been established. Epochs 15 and 16 show the intermediate
stages of its replicating process. In epoch 17 the new arm is closing on itself and in Epoch 18
the separation Detach D is formed as usual. In epoch 19 the two branching special values '+’ are
set for both loops. Note that although the child (right) loop has not detached from the parent
(left) loop, it has completely replicated the parent loop in epoch 19. In epoch 20 the Detach
D disappears, completely separates the parent and child loop. In epoch 21 the parent loop also
completes its replication cycle and is rotated 90 degrees counterclockwise. In epoch 25 both loops
extrude a new arm and start their own replication cycle. In epochs 40 and in epoch 42 both loops
are again completing their replication cycle. We get four loops, all are still actively replicating in
epoch 42.
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First we need to devise a way to set the growth bit. Remember that we do not have any a prior:
knowledge about what will happen in the cellular automata space, and therefore we cannot preset
the growth bit at any fixed position. Even to start with randomly assigned growth bits may seem a
bit artificial since the positions of the growth bits will not be changed during the whole simulation.

The function of generating the growth bit is thus included in the cellular automata rule set.
Whenever there is a signal L. dying, it will leave a growth bit at its location. This way, the generation
of the growth bit itself becomes part of the behavior of the cellular automata space. The rule to do
this is as follows:

rot if (component && component!=’D’ &&
(no:special=="#’ || ne:special=="#")) {
special="#";
if (component=="L") growth="+";

}

The growth bit is utilized during the arm branching phase of a cellular automata structure (see
Section 6.8). It is a two step strategy. First, if a signal > sees a growth bit in its place and it is
the last > before the signal L, it will not copy the signal L behind it as it normally does. Instead,
it stays at its current value > for one more epoch, thus effectively increasing the size of the signal
sequence by one. The signal L will disappear temporarily since it is not copied, but will reappear
when the signal > sees a trailing signal F' and the growth bit in its position. The growth bit will be
reset after signal L is regained, so the same growth bit will not cause another growth stimulus.

To sum up, if a loop is stimulated by a growth bit, its replicating code is expanded to make
bigger loops than itself. Without any growth bit stimulus, loops always replicate themselves. When
a loop dies, it leaves a growth bit behind, and when a loop expands, it uses a growthbit. This is an
interesting ecological balance factor in the cellular automata universe.

The growth behavior is shown in detail in Figure 6.18 and the rules are shown below. Note
that there is one special case considered in the rules. For a 2 by 2 loop to generate a 3 by 3 loop,
it needs the signal sequence L>>. When it is expanding its arm, it also needs the signal sequence
EF. Together that is five signals, more than the four cells in a 2 by 2 loop. To solve this limiting
problem the growth bit is used to temporarily hide the signal . when the EF signal sequence is
generating a new arm for the 2 by 2 cells. The signal L will be regained after the EF signal sequence
has done its job of creating a new branch, as stated above. Therefore, a 2 by 2 loop can generate
only 3 by 3 loops; nothing bigger than 3 by 3 can come out from it directly. Normally for the other
loops which are bigger than 2 by 2 the rules allow them to generate loops more than one cell bigger
than themselves.

rot if (component==’>")
if (we:component=="L")
if (nw:component=="E’ && (growth || no:component==>>,37))
growth=>+";
else
component="L";
else if (growth && nw:component=="F’) {
component="L";
growth=0;
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Figure 6.18: The growing of a loop. In epoch 0 the branch special flag in the lower left cell
and the growth bit in the middle right cell are both set. In epoch 2 the normal arm branching
EF signal sequence is generated. In epoch 3 the signal sequence becomes >>> and the signal L
disappears temporarily due to the growth bit. In epoch 4 the signal L reappears and the growth
bit is erased. Epochs 5, 6 and 7 show the continuation of the arm branching process. In epoch
8 the parent loop returns to its normal position and is about to start the replication cycle. Note
that now it has one more > signal than it normally has. In epoch 47 a whole new loop bigger
than the original one is generated. In epoch 58 the two loops have separated and the original one
is just about to start another replication cycle. Finally in epoch 69 the new and bigger loop has
finished its arm branching effort and is starting its own replication cycle too.

All of our discussion in previous sections is focused on how self-replicating structures function
and how the smallest loop can bootstrap to generate larger and larger loops. But we still need to
get the smallest loop first before anything can happen. The cellular automata space starts at epoch
zero with randomly distributed components, which are all monomers. Even though the smallest
loop has only 2 by 2 cells, the chance to get it at epoch zero is still minimal. We need to have some
means to stir up monomers in the initial cellular automata space so that they will translate and
change state. Through time, the chance to get the smallest loop will be much more higher.
The rules used to implement these monomer actions are motivated by the well-known “Game
of Life” rules by John Conway [Gardner, 1970]. They state the following conditions under which a
cellular automata monomer will be modified:

e If a quiescent cell has exactly three active neighbors, it will itself become active in the next

6.13 Monomer behavior and the game of life

epoch. Its active value will be determined randomly by the neighbors.
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e If an active cell has exactly two or three active neighbors, it will stay active; otherwise, an
active cell will return to quiescent state in the next epoch.

A few modifications to the old Game of Life rules are required in order to determine the active
state value of a birth cell. The old rules deal with binary cellular automata states so there is only
the choice of 1 or 0, but the cellular automata cells here have more than one active state and the
probability of generating any active state value to is desired to be about equal. This is achieved by
using a value accumulator variable during the scanning phase of the rules, and using its value to
determine the new state value if a new cell will be generated according to Conway’s rules:

if (bound==0) {
count=0; value=0;
over each other y: {
if (y:component) {
count++;
value = value + y:component;
}
if (count<2 || count>3)
component="."7;
if (component=="." &% count==3)
component = (value+1)%6+1;

}

Note that as stated before, we use the bound bit to determine if a cellular automata cell is a
monomer, or if it belongs to a multi-cell cellular automata structure. A cellular automata cell will
be governed by the monomer rules if its bound bit is not set. The outer if statement tests if the
cell is a monomer (so its bound bit is 0). If it is a monomer, the inner over command will scan
all its neighbors and count the number of active neighbors in the count variable and also add up
active neighbor state values in the value variable. The value variable will be used later if it is
determined that a new active cell will be born.

The first if statement after the scanning statement tests to see if the current cell will return to
(or stay at) the quiescent state due to too few or too many active neighbors. It is the classic Game
of Life rule for death.

The second if statement tests if the current cell is quiescent but has exactly three active neigh-
bors. If that is the case a birth will happen. This is also the classic Game of Life rule for birth.
The only difference here is that the value is used in the calculation to determine what active state
value will be set to this new birth cell.

An example of this monomer rule set is given in Figure 6.19.

6.14 Emergence of first replicates

Finally, I need to link the monomer rules to the self-replicating rules from previous sections,
such that an emergent self-replicating structure can spontaneously appear in the cellular automata
space. This is done by adding a last set of cellular automata rules.

The original over statement for the monomer rule (see previous section) is modified to include
a new statement to check for any bound cell around a monomer cell. If any bound cell is found

124



A
L vL > v >
AV <AV <AV < Vv >< VA
O< L (e} L (e} L (e} L (e} L
o> o> o> o>
0 1 2 3 4
A
\% OvO OovO
A AAN ANNA \Y; A vOA VA
VvV >« v vOv>< (@] > O« <>
>< VA L Vv L< Ov L \Y; LLL VVV
(6] L (6] OnLvVvL A < AS> L<
o> vO> vO> \% A vOO>na
L <Lv <Lv
(6]
5 6 7 8 9

Figure 6.19: The monomer stirring examples. In epoch 0 some random active states are put into
the cellular automata space. In epoch 1 the middle '<’ component dies because it has more than
3 active neighbors. In the same epoch two new components, one 'O’ and one ’<’, are born since
there is exactly three active neighbors in their positions. Note that the state value 'O’ and ’<’
are determined by state values of the active neighbors. In epoch 2 only one new 'L’ component is
born. The stirring process continues in this fashion indefinitely.

around a monomer cell, this statement will set the count value to a magic number 99 to denote such
a situation. The reason to do that is because all monomers around a multi-cell cellular automata
structure should be removed to guarantee safer operations of the replication process of the multi-cell
structure.

count=0; value=0;
over each other y: {
if (y:component) {
count++;
value = value + y:component;
¥
if (y:bound && y:component && y:special!="#’) {
count=99;
break ;

After the scanning process done by the over statement a set of test rules are added to the
original monomer rule set. Each of these rules checks for one special condition and invokes its
associated monomer actions. These conditions are exclusive to each other, so the else if construct
is used among these rules.

The first rule checks to see if there is any bound cell around a monomer by looking at the
count value accumulated in the scanning phase. As stated above, a monomer component will be
destroyed if it is adjacent to a bound cell. In addition, its bound bit will be set on (represented by

symbol ’!” in the rule code) to prevent further monomer growth in its position. If we visualize this
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we will always see a clear band of ’!’ marks around a multi-cell loop, because of this rule.

if (count==99) {
component=’.7;
bound="1";

The second rule checks for a nonzero special field and will reset it to zero if found. It effectively
delays the application of normal monomer rules by one epoch. This delay is necessary to protect a
cell being dissolved from a multi-cell cellular automata structure from being destroyed by its own
fellow neighbors belonging to the same structure which are still being dissolved.

else if (special)
special=0;

The last three added rules watch for the formation of the smallest loop configuration (the 2 by
2 loop, see Section 6.11) in the cellular automata space during the course of monomer activities.
Once such an “Adam Loop” configuration is found, all four members of it will set their own bound
bit simultaneously and produce an active smallest loop in the next epoch. This is how the first
self-replicate is formed! These three rules each work for one of the three different components
in an Adam Loop, after the previous two rules.

else rot if (component==’>’ && we:component=="L"> &&
nw:component==>0’ && no:component==’0") {
bound=’1!’; special="%";
}
else rot if (component==’L’> && ea:component==’>’ &&
no:component=="0’ && ne:component==’0")
bound=1;
else rot if (component==’0" &&
(so:component=="L" && se:component==">" &&
ea:component=="0" ||
so:component==">’ && sw:component=="L" &&
we:component=="0"))
bound=1;

Finally, if none of the above special cases is found, the familiar Game of Life conditions are
checked just like the monomer rules of previous section.

else if (count<2 || count>3)
component=’.7;

else if (component==." && count==3)
component = (value+1)7%6+1;

An example of how the new monomer rule set works and how it leads to the first self-replicating
structure is demonstrated in Figure 6.20. This completes the discussion of my emergent self-
replicating cellular automata rule set.
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Figure 6.20: The emerging of the first self-replicating structure. Remember that self-replicating
structures are marked by a non-zero bound bit, or an '!’ mark in the space. Therefore, to look
for emergent self-replicating structures we just need to look for marked "!’ regions in the cellular
automata space. Note that bound bits are shown only in this figure and in Figure 6.16 when
necessary but not in the other figures of this chapter, to avoid interference with the other symbols
since their bound bit status are clear from the context. In epoch 0 a randomly generated initial
space is given. This space shows normal monomer activities until epoch 8, when the smallest loop
configuration (the Adam Loop, as circled) randomly appears in the cellular automata space. In
epoch 9 this configuration turns into a functioning self-replicating loop in the cellular automata
space when its four cells set their bound bit simultaneously (marked by four ’!’ marks in the
right region of the space). This loop immediately clears its peripheral cells and begins its arm
branching process (epochs 10, 11, 12 and 13). In epoch 28 its first sibling is about to be separated
from itself. In epoch 51 four loops are obtained and all are actively engaging in their replication
processes.

6.15 Properties of the emergent rule set

In this section the properties of the emergent self-replicating rule are explored through a sys-
tematic battery of simulations. Most of the results are presented by graphs.

6.15.1 How the simulation is conducted

In order to study the properties of the emergent self-replicating rule set, a series of simulation

runs were conducted. Cellular automata space sizes of 50 by 50, 100 by 100, 150 by 150 and 200
by 200 were chosen for simulations. For each space size, initial monomer densities of 10%, 20%,
30%, 40% and 50% were used. For each combination of space size and initial monomer density, a
certain number of simulations each with different random initial configurations were run for 30000
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Space Size
50 by 50 100 by 100 | 150 by 150200 by 200
10|1 till 20158 | 5 till 30000 | 5 till 30000| 5 till 3000C
1 till 19527
2 till 30000
1 till 95
20(3 till 30000 | 5 till 30000 | 5 till 30000| 5 till 30004
1till 10418
Initial 1 till 29788
Monomer | 301 till 8424 |5 till 30000 | 2 till 30000 | 5 till 30000
Density 1 till 8230 1 till 29874
(%) 1 till 18621
1 till 17004
1 till 26459
40|2 till 30000 | 5 till 30000 | 1 till 30000| 2 till 3000d
1till 7140
1 till 16887
1 till 28108
50| 1 till 30000 | 5 till 30000 [None None
1 till 15488
1 till 22946
1 till 21092
1 till 9194

Table 6.1: Summary of simulations with different parameters. For each combination of space
size and initial monomer density, a number of simulations were done, each with a different initial
random configuration. Some simulations stopped before reaching epoch 30000 because their cel-
lular automata spaces had ceased activities. If a simulation reached epoch 30000 it was stopped
manually. Table entries are the actual number of epochs each simulation reached. Therefore, “1
till 20158” means 1 simulation is run until epoch 20158, and “5 till 30000” means 5 simulations
are run and they all stop at epoch 30000.

epochs unless the cellular automata space ceased its activity before reaching epoch 30000.

The number of simulations for each category and the actual number of epochs each simulation
reached are summarized in Table 6.1. Since it appears that the initial random pattern and the initial
monomer density are not influencing factors of the simulation characteristic (see the following
subsections), fewer simulations were conducted for some combinations of space sizes and initial
monomer densities.

It can immediately be seen in Table 6.1 that it was harder to support longer term evolution of
the emergent self-replicating loops in the smaller cellular automata space size. Many simulations
for the 50 by 50 world size ceased their activity before reaching epoch 30000. Despite the shorter
life span of simulations for this space size, they still generated self-replicating loops except for one
simulation with a 10% monomer density, where the cellular automata space failed to produce a
working minimum self-replicating loop before all monomers stopped their activities early at epoch
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95. Since only one out of a total of 81 simulations failed to generate self-replicating loops, apparantly
it is easy to generate self-replicating loops with the emergent self-replication rule set.

6.15.2 How the data were collected

Since it was not feasible to collect the simulation data manually, a carefully designed sophisti-
cated data collecting module was built into the simulator to analyze the cellular automata space
configuration on-the-fly while the simulation was running. The data collecting module is smart
enough that it not only counts the number of cells of certain types, it also recognizes some higher
level structures. Replicating loops were intelligently identified by the data collecting module indi-
vidually on the space, and their sizes were recorded. Accumulated data for each simulation epoch
contained the number of active cells, the number of active bound cells, the number of growth stimuli
bits, and the size of individual loops in the cellular automata space. The size data were later batch
processed by a condensing utility program to determine the average size of loops for each epoch.
Therefore, the final data for analysis were the number of active cells, the number of bound cells,
the number of growth bits, the number of loops and the average size of loops, for each epoch.

6.15.3 The influence of random initial configurations

First it is necessary to determine if simulations having the same space size and initial monomer
density but different initial configuration will behave very differently. Based on all of the simulations
for each different category, the answer is NO; their behavior was not influenced by the initial random
configuration. All simulations sharing the same parameters except the initial random configuration
reveal the same characteristic behavior. Therefore, this indicates that the initial random pattern
does not substantially influence the characteristic of the emergent self-replicating behavior of the
rule set. This can be seen in the four examples of Figure 6.21 and Figure 6.22. Note that different
types of components were evenly distributed initially to make sure the initial cellular automata
configuration was at equilibrium.

In the first example, curves representing the number of active cells are drawn for four different
simulations using a space size of 100 by 100 and an initial monomer density of 10%. The behavior
of those curves are very similar. The number of active cells for all four simulations grows from
500 and settles roughly at 2600 at epoch 3000. The second example shows curves representing the
growth bits for the four simulations over the whole course of 30000 epochs. It is clear that the four
simulations have almost identical behavior despite having different initial random configurations.

In the third example and the fourth example, curves representing the number of loops in the
cellular automata space and the average size of loops for another four simulations using a space size
of 200 by 200 and an initial monomer density of 30% are drawn for comparison. Again, behaviors of
those curves are very similar. The similarity of behaviors is found throughout all simulations using
the other space sizes and initial monomer densities. I conclude that the initial random configuration
does not substantially influence the behavior of the emergent cellular automata rule set.

6.15.4 The influence of initial monomer densities

Since the initial random configuration do not appear to influence the behavior of simulations,
next the behavior of simulations having different initial monomer densities but the same cellular
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Example 1: Active cells comparison
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Figure 6.21: Comparison of simulations having different initial configurations, part one. In the
first two examples, simulations for a 100 by 100 cellular automata space with initial monomer
density of 10% are compared. In example 1, four different simulation runs each with a different
random initial configuration are compared. Shown in the graph are the number of active cells
during each epoch for the first 1000 epochs. We can see that although these four simulations have
different curves, their trend of change are very similar. In example 2, the number of growth bits
in the cellular automata space for the same four simulations are compared for the whole length
of the simulation. Again, these curves are very much the same.
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Example 3: Number of Loops comparison
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Figure 6.22: Comparison of simulations having different initial configurations, part two. In the
next two examples, simulations for a 200 by 200 cellular automata space with initial monomer
density of 30% are compared. In example 3, the number of loops during each epoch for the first
3000 epochs are shown for four different simulations. In example 4, the average loop size for each
simulation is shown. We can clearly see that although all curves are different, they behave very

much the same way.
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automata space is compared, using one case for each density only. Surprisingly, the initial monomer
density also does not significantly influence the emergent rule set behaviors.

In the example shown in Figure 6.23, the number of active cells is compared for four simulations
using a cellular automata space size of 150 by 150, each with an initial monomer density of 10%,
20%), 30% and 40%. The first 1000 epochs are shown in graph A for a closer view, and the first
10000 epochs are shown in graph B to give an overall view. It is clear that no matter what initial
monomer density the simulation starts with, the number of active cells gradually approximates the
same trend for all four simulations.

In the second example shown in Figure 6.24, the number of loops in the cellular automata
space during each epoch are compared for four simulations each using an initial monomer density
of 10%, 20%, 30% and 40%, for a cellular automata space size of 100 by 100 cells. The first 1000
epochs are shown in Graph A and the first 6000 epochs are shown in Graph B. We can see that
although the curves are somewhat different for the four simulations, especially at the initial stage,
they gradually become almost the same after 1000 epochs. It is again seen that the initial monomer
density variation does not make any significant difference beyond epoch 1000.

In our last example shown in Figure 6.25, the number of active bound cells (i.e., active cells
which belong to a loop) are compared. This example shows four simulations for a 200 by 200 cellular
automata space with initial monomer densities of 10%, 20%, 30% and 40%. Again, although initially
these four curves are different, they gradually exhibit the same trend. This similarity occurs at all
the other cellular automata space size and for all the other data collected. It is concluded that the
initial monomer density does not significantly influence the behavior of the emergent self-replication
rule set either.

6.15.5 The influence of cellular automata space size

The next thing we counsider is whether different cellular automata space sizes will influence the
behavior of the emergent self-replication rule set. Of course, since the space size differs, the number
of active cells, etc., cannot be in the same data range. But we will see that if we normalize all data
by dividing them by the size of the cellular automata space, the ratio results are again similar.

Figure 6.26 shows the active cells comparison. The number of active cells in a cellular automata
space is divided by the space size ratio, i.e., the number of cells for a 50 by 50 cellular automata
space is divided by 1, the number of cells for a 100 by 100 cellular automata space is divided by
4, the number of cells for a 150 by 150 cellular automata space is divided by 9, and the number of
cells for a 200 by 200 cellular automata space is divided by 16. The scaled active cell numbers are
then plotted in this figure. All simulations start with a 10% initial monomer density. We can see
from both the short term and long term graphs that the behavior of the emergent self-replication
rule set as reflected in the number of active cells per area is linearly scalable and independent of
the cellular automata space size.

In the second example of Figure 6.27, the number of growth bits are scaled and compared for
simulations having four different cellular automata space sizes. The initial monomer density is 30%.
Again, although there are slight variations, the general trend for all curves is the same. Therefore,
we can conclude that the growth bit behavior of the emergent self-replication rule set is also scalable
and space size independent.

In example three, the short term and long term behaviors of the number of loops in the cellular
automata space are compared. These simulations all start with an initial monomer density of 40%.
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Example 1: Active cells comparison (A)
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Figure 6.23: Comparison of simulations having different initial monomer densities, part one. In
this example simulations for a cellular automata space of 150 by 150 cells are compared. The four
different initial densities used for the four simulations are 10%, 20%, 30% and 40%, as shown.
Graph A is a closer look at the first 1000 epochs and Graph B shows the first 10000 epochs, both
are representing the number of active cells in the cellular automata space. It is clear that these

four simulations have similar behaviors.
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Example 2: Number of Loops
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Figure 6.24: Comparison of simulations having different initial monomer densities, part two. In
this example simulations for a cellular automata space of 100 by 100 cells are compared. The
four different initial densities used for the four simulations are 10%, 20%, 30% and 40%. The
number of loops are compared in this example. Graph A gives closer look at the first 1000 epochs
and Graph B compares the first 6000 epochs. It is clear that these four simulations have similar

behaviors.
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Example 3: Active Bound Cells comparison (A)
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Example 3: Active Bound Cells comparison (B)
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Figure 6.25: Comparison of simulations having different initial monomer densities, part three.
In this example simulations for a cellular automata space of 200 by 200 cells are compared. The
four different initial densities used for the four simulations are 10%, 20%, 30% and 40%. The
number of active bound cells are compared in this example. Graph A gives closer look at the first
1000 epochs and Graph B compares the first 6000 epochs. It is clear that these four simulations
have similar behaviors.
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Example 1: Active Cells comparison (A)
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Example 1: Active Cells comparison (B)
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Figure 6.26: Comparison of simulations having different cellular automata space size, part one. In
this example simulations with a 10% initial monomer density but four different cellular automata
space sizes are compared. The number of active cells in the space is scaled by the cellular automata
space size ratio before being plotted in the graphs. We can see that all curves are very similar,
although the smaller the cellular automata space size, the more noise in the curves, which is
understandable in view of the small cellular automata space (50 by 50 cells) where regional
fluctuations have profound impact on the global data values. Larger cellular automata spaces
tend to even out the effect of local variations.
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Example 2: Growth Bits comparison
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Figure 6.27: Comparison of simulations having different cellular automata space size, part two.
The number of growth bits in the cellular automata space for four different simulations are com-
pared. The starting monomer density is 30%. It is obvious that the growing pattern of the curves
are very coherent.

It is clear that curves for smaller cellular automata spaces tend to have greater variances, but still,
the general trends are the same. This and other similar behaviors reflected in other simulations show
that the number of loops per unit area for the emergent self-replicating rule set is also independent
of the cellular automata space size.

In the previous three examples, simulations having the same initial monomer density were
compared in order to limit changing factors in the comparison. Since we have found that the initial
monomer density does not influence the general behavior of the rule set, actually it can be seen
in the fourth example shown in Figure 6.29 that even simulations having different initial monomer
densities are very coherent. The growth bit curves for four simulations having four different cellular
automata space sizes as before and four different initial monomer densities 10%, 20%, 30% and 40%
were compared. The growth bit data is scaled by the cellular automata space size ratio in the graph
shown. The similarity of the curves shows again that both of our conclusions are correct, that the
growth bit is space size independent and that the initial monomer density is not influential. Curve
A has the largest variance due to the smallest cellular automata space size.

It seems that the only thing which is not linearly scalable is the average loop size for different
simulations. In Figure 6.30, both the scaled and un-scaled average loop size curves are drawn for
four simulations having an initial monomer density of 30%. It can be seen that although a larger
cellular automata space tends to allow larger loops, the scaling is not linear. In the lower graph
where average loop sizes are not scaled by the cellular automata space size ratio, the curve for a
200 by 200 space seems to be higher than the other curves. When scaled in the upper graph, it
becomes the lowest in the four curves. Obviously, the scaling factor for the average loop size is
somewhere between 0 and 1, but much less than 1.

To sum up, the following properties of the emergent self-replication rule set have been observed:

e Different simulations having the same cellular automata space size and initial monomer den-
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Example 3: Number of Loops comparison (A)
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Figure 6.28: Comparison of simulations having different cellular automata space size, part three.
The number of loops in the cellular automata space is scaled by the space size ratio for the four
simulations. It is clear that the pattern of change is very similar despite the different cellular
automata space size.
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Example 4: Growth Bit comparison
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Figure 6.29: Comparison of simulations having different cellular automata space size, part four.
The scaled number of growth bits for simulations having different cellular automata space size
and initial monomer densities are compared.

sity but different random initial configurations behave the same;

e Different simulations having the same cellular automata space size but different initial monomer
densities behave the same; and

e Different simulations having different cellular automata space sizes and initial monomer den-
sities behave the same in all aspects except the average loop size once these data are scaled
according to the cellular automata space size ratio.

Because of these observations, in the following discussions of various behaviors of the emergent
self-replication rule set, we will use simulations with a 200 by 200 cellular automata space size as
examples, presuming that the other simulations will behave similarly. These simulations produce
curves more stable than simulations with a smaller space, due to their larger sampling areas.

6.15.6 Behavior analysis

In the upper graph of Figure 6.31, the number of active cells and the number of bound cells
are compared for a simulation with a 200 by 200 cellular automata space and an initial monomer
density of 30%. Remember that bound cells must be active cells, too. We can see that these two
curves are very much synchronous with each other, with an almost constant difference between
their values. An enlarged view for these two curves is shown in the lower graph; the similarity is
obvious. The average difference between these two curves is 2480 cells, the number of monomer
cells. The same average differences for the other three similar simulations with an initial monomer
density of 10%, 20% and 40% are 2475, 2477 and 2473. It is clear that this value is very stable
and is a property of the emergent self-replication rule set not related to the other parameters. The
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Example 5: Loop Size comparison (A)
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Example 5: Loop Size comparison (B)
140 T T T T T
— A: 50x50
120 — — - B: 100100 T
|
— — C: 150x150 |
100 D: 200x200 :
@ I
N I
% 8o
o
o
p—)
D
&
§ 60
<
40

20

o 1 1 1 1 1 1 1 1 1
4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000
Epoch

Figure 6.30: Comparison of simulations having different cellular automata space size, part five.
In the figure, the average loop size for each simulation are compared. In the upper graph the size
is scaled by the cellular automata space size ratio. In the lower graph, it is not scaled. We can
see that generally the position of curves are reversed in these two graphs, i.e., the curve for a 200
by 200 space size is the lowest in the upper graph but the highest in the lower graph. This means
that the average loop size is dependent upon the cellular automata space size, but the scaling
factor is not 1. It must be somewhere between 0 and 1.
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average monomer density in the cellular automata space is very stable over time and is about 2480
per 40000 cells.

In order to determine if this constant population of monomers is the natural tendency of the
game of life rule which I used to translate the monomers, or if it is the joint property of the
self-replicating loop rules and the game of life rules together, some simulations where bound cell
were not allowed to be generated were conducted. The result is that none of these simulations can
keep a constant monomer population as high as that of 2480 in a 200 by 200 cellular automata
space. Actually, all of them cease activities early before reaching 30000 epochs. In conclusion,
monomers in the cellular automata space are co-evolving with the self-replicating loops. Without
either monomers or self-replicating loops, the other kind will not last very long in the cellular
automata space.

The behavior of active cells can be seen in the lower graph of Figure 6.31. At the beginning,
there are 12000 active cells, or 30% of the total cells, in the space. This number drops rapidly since
the game of life rule alone is not capable of holding such a high number of active cells. If no bound
cell is formed, the number will never climb back. After just a little while bound cells start forming
in the space; they take the active cell curve with them from then on, controlling the shape of the
curve.

There is an initial surge of bound cells as can be seen in Figure 6.31. This is due to the initial
blooming of small and fast replicating loops. Gradually, the mutual competition between them
balances out and lowers the curve.

The changing of growth bit number is shown in Figure 6.32 for a 200 by 200 cells simulation
with 30% initial monomer density. Remember that the growth bit stimulates size expansion of the
self-replicating loops. They are generated when a loop dies and consumed by loops during their
expansion process. The number of growth bits climbs rapidly at the beginning, but gradually levels
off at 22500, when consumption and generation of growth bits are balanced. The final growth bit
density is balanced at 56%.

When the number of growth bits levels off, the number of loops seems to stabilize too. In
Figure 6.33 the long term behavior of the number of loops for the same simulation is shown. After
10000 epochs, there is no significant change of the average number of loops in the cellular automata
space. The number settles at 147 loops in a 200 by 200 space. In the beginning of the simulation,
there is an overshoot of the number of loops. This is caused by the same reason that the number
of bound cells has an overshoot, that smaller loops are blooming at the beginning but slow down
when competition pressure raises.

The average loop size varies a lot at first glance at its long term behavior, as shown in the
upper graph of Figure 6.34, here the average loop size for the same 200 by 200 cells simulation
with 30% initial monomer density is shown for the whole course of the simulation. But if we look
closer at the curve, such as in the lower graph, where a detailed portion of the curve is shown, we
can find out that actually the average loop size curve is going through a constant cycle of up and
down. This behavior is in exact accordance with what we observed in the cellular automata space
during the simulation. Recall from Section 6.2 that loops in the cellular automata space have the
tendency to grow bigger and bigger, until when there is no more space to grow any further, then
the bigger loops will disappear, replaced by smaller loops again. It is this cycling behavior which
produces the zigzag shape of the curve.

The average loop size after the cellular automata space has reached a stable condition is about
73 cells for a 200 by 200 cellular automata space size. As noted before, the average loop size is
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Active Cells and Bound Cells comparison
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Figure 6.31: The relationship between active cells and bound cells. The number of active cells
and active bound cells are plotted in these two graphs for a simulation with 200 by 200 space
size and 30% initial monomer density. These two curves are very similar. The lower graph is an
expanded view of the first 2000 epochs of the top graph.

142



Growth Bits

x 10

Long term Growth

Bit variations

.
0.5 1 1.5
Epoch

2.5 3
4
x 10

Figure 6.32: The long term behavior of the growth bits. This is for a simulation with 200 by
200 cellular automata space size and 30% initial monomer density.
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Figure 6.33: The long term behavior of the number of loops.
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Long term loop size variation
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Figure 6.34: The long term behavior of the average loop size. In the upper graph the average
loop size of each epoch for the whole course of the simulation is shown. In the lower graph the
same data but only for epochs between 20000 and 22000 is shown. It is clear these graphs that

the average loop size is constantly cycling within a range of values.
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Curve—fitting the simulation data
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Figure 6.35: The comparison of simulation data and the fitted curve. The average loop size for
each simulation are marked by the ‘0’ marks. The fitted curves are shown with the line.

not linearly scalable with the cellular automata space size. The average loop size for 150 by 150
cellular automata space size is 64 cells, for 100 by 100 cellular automata space it is about 56 cells,
and for the smallest 50 by 50 space it is about 39 cells. A two terms curve-fitting with the available
simulation data reveals the following logarithmic relationship between the cellular automata space
size and the average loop size we can get in such a space:

loop size = —56.5291 4 24.3794 log (space size)

The fitted curve and the simulation data are compared in Figure 6.35.

6.15.7 Extremely long term behavior

In the previous sections, all simulations were run for 30000 epochs. Although this number is
big, it is still possible that some change in the cellular automata space status can happen beyond
that range. To determine if such a case is possible, an extremely long simulation was done with a
200 by 200 space size and an initial monomer density of 30%. This simulation was allowed to run
for 613920 epochs, about 20 times longer than the normal simulation length. The results show no
sign of behavior changing once a stable status has been reached. Some of the data are shown in
Figure 6.36.

Since the status of the cellular automata space seems to be very stable in the graphs shown in
Figure 6.36, it makes one wonder if the cellular automata space is going through some sort of cycle,
i.e., whether the configuration of the cellular automata space is repeating itself. To study this, the
accumulated data of the simulation for each epoch were cross-compared with each other. Monomer
numbers are not taken into account in the comparison since an exact duplication of the cellular
automata monomer configuration at different epochs is very unlikely for a 200 by 200 cellular
automata space. Checking for repeated epochs was conducted by comparing only the position and
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Figure 6.36: Extremely long term behavior of the emergent self-replication rule set. In the upper
graph, the number of active cells and the number of growth bits are shown. In the lower graph,
the number of loops are shown. All are for a simulation running till 613920 epochs. It is obvious
that the cellular automata space is maintaining a dynamic equilibrium status after the initial
transient stage. This equilibrium does not change through time.
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the number of self-replicating loops in the cellular automata space. Even with this somewhat less
stringent comparison criteria, no duplication is found in the comparison.

6.16 Discussion

In this chapter, an emergent self-replicating cellular automata rule set was presented. It allows
a randomly initialized cellular automata space to spontaneously generate self-replicating structures.
This is the first cellular automata emergent rule set does this, which allows arbitrary size loops to
form.

The rule set used here is based on a central design, a design which allows loops of arbitrary size
to replicate in the cellular automata space. This is called the general purpose self-replication rule
set. In addition to that, mechanisms which allow loops to grow in size are supported in the rule
set. These features, together with a four cell minimal self-replicating loop, produce a whole family
of self-replicating structures in the cellular automata space, all supported by the same rules.

This is the first demonstration that it is possible to produce self-organization behaviors in a
random cellular automata space. The generated self-replicating loops replicate by following the
instructions stored within their own structure. Those instructions are interpreted by the self-
replicating loops to produced their offspring, and are translated to their offspring. By carefully
designing the cellular automata rules, or the physics of the cellular automata universe, it is possible
that such an entropy decreasing, self-organization behavior can naturally occur, at least in an
artificial cellular automata environment. This provides key insights to how an autonomous self-
replicating entity can be constructed in the cellular automata space.

Systematic simulations showed that the emergent self-replication rule set provides rich activities
in a cellular automata space of varying size, yet the global property of the rule set is generally
independent of any particular simulation run and initial parameters. It always leads to the same
behaviors when given enough time to stabilize. This kind of “bound to happen” characteristic of
the rule set is very encouraging, since it provides a stable foundation for further research.

There are some future possibilities for expanding the emergent self-replication rule set. For one,
the self-replicating loops can be allowed to carry not only code for replication control, but also code
for evolution. One form of this expansion is studied in the following chapter. Another possible
future direction is to support other different structures to replicate, in addition to the loop form.

6.17 The complete rule listing

The actual Trend program used to simulate all examples in this chapter is given here. There
are several things which make the program a little different than the individual rules I introduced
before. First, for efficiency, I use more else-if statements than plain if statements in the program
since an else-if statement will prevent the following codes from being evaluated if its condition is
selected, which makes the Trend program more efficient for cellular automata simulations.

Second, rules are organized according to the component types they are dealing with, rather
than functions of the rules as was the case in organizing the sections in this chapter. This provides
clear and concise program code.

Third, for each component type some preferences and priorities must be decided for each in-
dividual rule while ordering them in the program. Generally, special cases are always considered
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first before normal operations. This organization will not influence the cellular automata behavior
in any way.

This Trend program is heavily commented to make it self-explanatory. In various areas of the
program the relevant section numbers in this chapter where the associated features are discussed
were marked. This is denoted by the § symbol followed by the section number(s).

// Kok ok ok ok ok ok ok ok ok ok kok ok ok ok okook skook skok skok kok skoko ok skok skok skok skoke sk ok ok kok sk ok skokesk skskokok skok skok skokeskok skokskok ok ok
// >k sk >k ke ok ok ok ok ok ok okk ok ok ok skook skook skok kok skok skok sk skok skok kok skoko sk ok sk kok skok skoke sk skoskoksk skok skok skokoskok skokoskokok ok

// Emergent Self-Replicating Rules

// written by Hui-Hsien Chou
// >k >k ki ok ok ok ok sk ok ki sk sk sk ki sk ok skeok sk ok ok sk sk sk ok ok sk skokok sk sk ok kosk sk ok skokosk sk skokoskosk skokokoskoskokokok skokokok skk

// Kok ok ok ok ok ok ok ok ok ok kok ok ok ok okok skook kok skok kok skok ok skok skok skok skoko sk ok ok kok ok ok skokesk skskokok skok skok skokeskok skokskok ok ok

// This Trend rule set defines a CA space which allows arbitrarily
// chosen initial CA configurations to generate self-replicating loops
// over time.

//

>Rk ok ok ok ok ok ok ok ok ok ok ok ok ok ok okok skook kok skok kok skoko ok skok skok skok skoke sk ok ok kok sk ok skokesk skskokok skok skok skokeskok skokskok ok ok
// kokoskokok skokok kokok kokok ok ck ok Default Rules >kokoskokok kokosk kokoskokok kokck kck ok
// >k ok >k sk ok ok ok ok ok ok ok koo sk ok sk ok skook kok skok kok skok sk skok skok kok skoko sk ok ok kok sk ok skokesk skoskoksk skok skok skokoskok skokoskokokk

// The default action is to maintain no change if none of the rules
// explicitly specifies a next state value for each field. Therefore,
// the current value is copied over to the next state for each field.

default component=component;
default special=special;

default growth=growth;

default bound=bound;

// >k ok >k k ok ok sk ok ok ok okk ok ok ok sk sk skook skok skok kok skok sk skok skok kok skokokok sk kok sk ok skoke sk koskoskok skokoskok skokoskok skokskokokk

FRRkkokkkx - Variable and Function Declarations *¥¥ikrkiskokiork
// Sk 3k 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk skok sk sk sk sk sk sk sk sk sk sk sk sk sk skosk skosk sk sk sk skosk sk sk sk skok sk sk sk sk skosk sk skosk skok skoskosk kok sk

// count: a temporary variable used to store the count of neighbors

// which meet a certain condition.

// value: a temporary variable used to accumulate component values
// from the neighbors. Used to determine the signal for a new
// monomer if birth is occurring.

// y: a nbr variable used for looping through all neighbors.
int count, value; nbr y;

// AbnormalNeighbor is a function which determines if a bound cell may

// have run into a failure situation where too many or too few

// neighbors are around it. This usually means that a collision

// with another loop has occurred. If that’s the case a dissolve

// mark will be generated next (in the main code below).

int AbnormalNeighbor() { // discussed in §6.10
count=0; // clear the counter

// count the no. of non-quiescent neighbors.
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over each other y:
if (y:component) count++;
// if zero or more than 5, it’s abnormal!
if (count && count<=5)
return 0;
else return 1;

// Main program starts here!

// Kok ok ok ok ok ok ok ok ok ok kok ok ok ok okook skook skok skok kok skok ok kok skok skok skokosk ok ok kok sk ok skokesk skskokok skok skok skokeskok skokskok ok ok
// kokokokokokokokkokokkok ok x Rules for Monomers! kokokokok kok ok kokok kokokok ok ok
// >k ok >k sk ok ok ok ok ok ok okk ok ok ok skosk skook skok skok skok skok sk okok skok kok skok sk k sk kok skok skok sk skoskoksk skokoskok skokoskok skokskokokk

if (bound==0) { // discussed in §6.14

// A cell is obeying the rules for monomers when its ”bound” field
// is set to zero. In this mode the monomer cell basically obeys

// a Game-of-Life-like rule set, except that some additional rules
// to deal with non-monomer actions are included.

// First the neighbors are scanned, non-quiescent neighbors are

// counted in variable count, and their component values are

// accumulated in variable "value”. This accumulated value is later
// used to determine the component value of a new active cell.

count=0; value=0; // reset to zero
over each other y: {
if (y:component) {
count++; // count the no. of active neighbor
value = value + y:component; // and accumulate their values

}

// see if a bound cell is a neighbor; if yes, the current

// cell must be returned to quiescent state and the bound flag
// marked. This is to make a shield around bound cells (loops)
// to protect them. The magic value 99 was stored in count for
// checking below. Note that the only case a bound neighbor

// cell won’t cause a problem to the current cell is when it

// itself is in the dissolve mode. See the rules for loops for

// details about the dissolve mode. It is marked by a # mark in
// the "special” field.

if (y:bound && y:component && y:special!="#") {
count = 99; // make a special flag in count
break; // then stop scanning, get out
// of the over command.

}

} // close of the over command.
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// After the scanning of neighbor cells, various actions are taken
// to determine the next state values for the current cell.

// case 1: if there is a bound cell as a neighbor, the current
// cell should return to quiescent state and its bound bit set.

if (count==99) {
component=".";
bound=""";

}

// case 2: if the current cell is just being dissolved from a loop

// (by having a nonzero ”special” field), we make one more epoch
// delay so that it won’t be killed by its own fellow cells which

// are also dissolving from the same loop.

else if (special)
special=0;

// case 3: A particular configuration has been designed to be the

// birth initiation configuration. When such a configuration of

// monomers occurs in the CA space, it will form a 2x2 bound loop in the
// next epoch. The configuration is (note that rotation is possible):

/] 00
// L>

// Since each member of this ” Adam” configuration can see each

// other within its own neighbors, we just need three different

// checks for the different components >, L and O to make them do their
// own ”changing to bound mode” work. Signal > needs one more step of
// setting the "special” field to * to extrude an arm later, so

// replication can begin.

else rot if (component==">’ && we:component=="L" && nw:component=="0" &&
no:component=="0") {
bound="""; special="*;
}
else rot if (component=="L" && ea:component==">" && no:component=="0" &&
ne:component=="0’)

bound=1;
else rot if (component=="0" &&
(so:component=="L" && se:component==">" && ea:component=="0’||
so:component==">’ && sw:component=="L" && we:component=="0"))
bound=1;

// other than above special cases, the current cell will just
// follow a traditional Game of Life rule. If a birth will occur
// the new value of the birth cell will be determined by the
// accumulated value in the ”value” variable.
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else if (count<2 || count>3) // the death rule
component=".";

else if (component=="." && count==3) // the birth rule
component = (value+1)%6+1;

} else { // closure of the ”if (bound==0) ...” statement

// >k ok >k k ok ok ok ok ok ok okk ok ok ok skosk skook skok skok skok skok sk skok skok skok skokokok sk kok skok skokoskoskoskoskok kok skok skokoskok skokskokok ok
// kokoskokok kokok kokokkokok ok ok Rules for LOOpS' Kook ok ok ok ok ok ok Kok kokook ko kok kok
// >k ok >k ok ok ok ok ok ok ok ok ok ok ok sk sk skook ok kok skok skok sk skok skok skok skokoskok ok kok skok skoko sk koskoksk skokoskok skokoskok skokskokokk

// If a bound cell is in the dissolve mode, it will be dissolved to
// monomer (i.e., lose bound bit) in the next epoch, no matter
// what happens in the neighborhood.

if (special=="#’) bound=0; // discussed in §6.10

// If a bound cell sees a dissolving cell in its neighborhood,

// it itself will be going into that mode too. This dissolving

// mark was represented by a # in the "special” field of the

// neighboring cells, and is given the highest priority to

// consider. Thus when one cell in a loop structure goes into this
// mode, the whole loop will be taken into that mode in a very

// short time, and the whole structure dissolves.

// The only exception is the D component. It is used to separate
// newly formed loops from their parents. Since this is a

// separating component, it is considered not part of a loop, so the
// dissolve mark # won’t pass through it. Speaking in another way,
// the dissolving of parent and child loops is independent. This

// helps to preserve the parent loop even when the replicating is
// unsuccesstul, or vice versa.

else rot if (component && component!="D’ &&
(no:special=="#" || ne:special=="#")) {
special="#"; // discussed in §6.10

// The only time the system will generate the growth

// stimulation bit on the ”"growth” field is when a L signal is
// dissolving. If this line is disabled no growth stimulation

// bit will be generated, thus no bigger loop will be generated.

if (component=="L’) growth="+"; // discussed in §6.12

}

// One of the way the system checks for collision of loops is to
// check if a cell has too many or too few neighbors (<1 or >5).
// If these situations happen the cell must be in a wrong

// structure and must be dissolved.

else if (component && AbnormalNeighbor())
special="#"; // discussed in §6.10
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else {

// When none of the three special cases above apply, the bound
// cell is in a healthy loop, and should perform normal loop
// replicating functions according to its component type.

// Kook ok ok ok ok ok ok ok ok sk kok skokkok Block O rules Kook ok ok ok ok ok ok ok ok sk kok kokk

// Block O is the building block of loops. Normally it will
// allow the other signals like > or L to pass through it,

// unless it is in a special clear mode denote by a - mark

// in the ”special” field. In this special mode it will not copy
// other signals through it, thus cleaning up the signals.

// This special mode occurs when a hybrid replication

// situation happens where a smaller loop is generating a

// bigger loop. Because of the timing difference, an

// incomplete signal sequence will be copied into the new loop,
// together with a complete and normal sequence. This

// incomplete signal sequence must be destroyed.

it (component=="0") {
if (special!="-") { // discussed in §6.9

// Here the Block O isn’t in the clear mode, so normal
// operations will be done.

// First check to see if it’s in the closing of a hybrid
// replication by looking at the closing Birth B and all
// relevant neighbor positions which signify a hybrid
// replication. If yes, set the special clear mark.

rot if (no:component=="B’ && nw:component=="." &&
(we:component=='0’ || ea:component=="1"))
special="-"; // discussed in §6.9

// Otherwise, it should pass signals. First check if there
// is a > signal which wants to pass through. If so, copy
// it over here.

// But if there is more than one > signal which wants to
// pass through, this must be a collision situation, so the
// special dissolve mode is entered.

else rot if (we:component==">’) // > signal which wants to
// pass.

// check for no other signal wants to pass too.
if (no:component!=">1" && no:component!="> 2’ &&
ea:component!=">2" && ea:component!="> 3" &&
so:component!=">,3" && so:component!=">")
component=">’; // copy it, discussed in §6.5
else
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special="#";  // otherwise, set dissolve mode
// discussed in §6.10

// This is similar, but for 90 degree passing of > in O.
// Check for collision too.

else rot if (so:component==">") // > signal which wants to
// pass .

// check for no other signal wants to pass too.

if (we:component!=">1" && we:component!=">" &&
no:component!=">2" && no:component!=">1" &&
ea:component!=">3" && ea:component!=">2")

component=">3"; // copy it, discussed in §6.6
else
special="#";  // otherwise, set dissolve mode

// discussed in §6.10

// Extrude by F to complete a new arm. When O is in the tip
// of a new arm, it will get a > signal when seeing the F

// signal. This will complete the arm branching step by

// forming a standard two-cell arm in two steps.

// 0 <arm

// 0 i 0

// <LOF 1000 0000

// 0 ——> 0 -——=> 0

// 0 0 0

else rot if (so:component=="F" && se:component=="." &&
no:component=="." && ea:component=="."
&& we:component==".")

component=">,3"; // discussed in §6.8

// Check to see if it’s in the gap between a parent and a
// child loop and the replication cycle has just

// completed, by looking at the closing Birth B or the
// opposite direction of signal flows on both side, and
// relevant neighbor positions which signify a closing

// replication cycle. If yes, change to D to disconnect

// these two loops.

else rot if ((nw:component==">,3" || nw:component=="0") &&

(ne:component=="B’ || ne:component==">,1")
&& no:component=="." && ea:component
&& we:component )

component="D’; // discussed in §6.9

} else

// if the Block O sees the clear flag -, the flag
// will be changed to the arm extrude flag when all
// signals has been cleared (L is the last signal).
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rot if (we:component=="L")
special="*"; // discussed in §6.9

}

// kokokokok ok kok ok ok ckok ok kokckok Slgnal > rules ok koK ok ok ok ok ok ok ok ok ok kok ok

// Signal > is the extruding signal command. When at the tip
// of a replicating arm, it will cause the adjacent quiescent

// space it points to to change to a Birth B in the next epoch.
// Usually > signals are going in a sequence with a trailing L,
// so it must copy the signal behind it, be it a > or a L, to

// its own current position, unless there is no L or >

// after it, in that case it will change back to O. Note that

// changing back to O doesn’t mean its signal disappears.

// Remember that the cell before it will be copying it too

// (be it an O or another > signal), thus signal > is flowing
// in the loops normally, unless something special happens.

else rot if (component==">") {

// One special condition is that it may be in the gap

// between a parent and a child loop when the replication
// cycle has just completed. By looking at the closing B
// or the opposite direction of signal flows on both

// sides, and the relevant neighbor positions which signify
// a closing replication cycle, it can tell if it’s in

// that position. If yes, it will change to Detach D to

// disconnect these two loops. This is very similar to the
// last statement for the Block O above.

it ((nw:component==">,3" || nw:component=="0") &&

(ne:component=="B’ || ne:component==">1") &&
no:component=="." && ea:component && we:component)
component="D’; // discussed in §6.9

// Otherwise, see if L is behind it. If so, it should copy

// the L signal. One very interesting special case here is

// that if the "growth” field is set, it will stimulate the

// growth of signal sequence by one during arm extrusion
// time. This is achieved by NOT copying the L signal and
// stay as > for one more cycle. Since > signal is always

// copied, this will actually insert one more > into the

// sequence. Yes, the L signal will disappear in the next

// epoch, but since the ”"growth” field is still set, that L

// signal will be recovered in one more epoch. See the

// rule below.

// Another special case is when a 2x2 loop has just

// completed generating a 3x3 loop and is about to extrude
// its new arm. Since the signals L>> and EF is more than
// four, the number of cells in a 2x2 loop, there must be

// some way this L>> sequence can be regained after the
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}

// transient E and F signal that extruding a new arm. This
// is achieved by utilizing the "growth” field. Yes, that

// way, no matter what’s the status of the "growth” field we
// will always set it to on, so you can’t get more >’s in

// the signal sequence within a 2x2 loop.

else if (we:component=="L")
if (nw:component=="E’ &&
(growth || no:component==">,3"))

growth="+"; // discussed in §6.12
else
component="L"; // discussed in §6.5

// With the two special cases considered, all the rest is
// just simple copying and doesn’t need further
// explanation.

// copying the L signal, for four cell special case
else if (no:component=="L")
component="L"; // discussed in §6.11

// copying the > signal
else if (we:component==">")
component=">"; // discussed in §6.5

// copying the > signal through the corner
else if (we:component==">,1")
component=">"; // discussed in §6.6

// copying the > signal through the corner, in arm tip
else if (no:component==">,1")
component=">"; // discussed in §6.6

// Now here is the special case companion rule, see

// above. If the "growth” field is set on and L is not

// following >, the > will change back to L again to

// regain it.

else if (growth && nw:component=="F") {
component="L’; growth=0; // discussed in §6.12

}

// otherwise > always changes to O
else
component="0’; // discussed in §6.8

// Kok ok ok ok ok ok ok ok ok sk kok kokk Birth B rules Kook koK ok ok ok ok ok ok sk kok skokkok

// Birth B is generated when a quiescent bound cell is

// pointed by a > signal. This is the way how loops grow.

// Functionally B is very similar to Block O in that it just

// copies signals through it. The reason we need the Birth B is
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// that it is easier to decide if a replication arm is closing
// on itself by spotting the B at the periphery.

else if (component=="B") {

}

// In the closing of 2x2 loops the B should change to L
// immediately to preserve the signal sequence.

rot if (we:component=="L" && no:component=="0")
component="L"; // discussed in §6.11

// Otherwise B usually change to the Corner C when seeing L
else rot if (we:component=="L")
component="C"; // discussed in §6.6

// If > is behind B will just copy it. Note that this is

// one of the two places where a monomer can kill a loop

// since the > signal is not checked to be bound or not. So if
// a monomer > signal is facing the Birth B it will

// influence the normal operation of the loops and kill it.

else rot if (we:component==">")
component=">"; // discussed in §6.5

// B can’t be in a line of bound cells unless it’s a
// collision.

else rot if (no:component && so:component)
special="#"; // discussed in §6.10

// Finally B always changes to O. This occurs when
// extruding a new arm.

else
component="0’; // discussed in §6.8

// ok koK ok koK ok ok ok ok kok kok ok Slgnal L rules kokokokok ok okok ok ok sk kokkokk ok

// Signal L gives the command of turning the growth direction
// 90 degree counterclockwise at the tip of the replicating arm.
// Signal L will also help generate a new replicating arm

// when closing with the current replication cycle.

else if (component=="L") {

// L will change to extrude signal E if it sees the special
// extrude mark on the "special” field. This extrude mark
// itself was set when seeing Detach D, the disconnect

// component, in its neighbor.

it (special=="*")
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component="E’; // discussed in §6.8

// if > catch up with L, the signal sequence must have
// some problems (possibly due to too many growth stimuli
// +), and must be destroyed.

else rot if (we:component==">")
special="#"; // discussed in §6.10

// copying the E after the L, unless it’s already at the
// corner (thus sw:component=="F", since F always follows E).

else rot if (so:component=="E’ && sw:component!="F’
&& (no:component=="." || we:component=="."))
component="E’; // discussed in §6.8

// otherwise L always changes to O
else component="0’; // discussed in §6.5

}

// Kok ok ok ok ok ok ok ok ok sk kok skokk Component rules kokosk ok skokok kokokokokskokok ok

// . might not be called component at all since it’s the

// quiescent state for the ”component” field. It will be changed

// to a non-quiescent state if seeing either the > or E

// signal, or it may fall back to monomer state if none of its

// neighbor is a bounded non-quiescent cell.

// Note that a monomer can kill a loop by inhibiting the

// generation of the arm when standing beside the potential

// 7O” position. This is the second way a monomer can kill a loop.

else if (component==".") {

// When seeing signal > pointed to itself, it will change
// to the Birth B.

rot if (we:bound && we:component==">" &&

(nw:component=="." || nw:component==">1" ||
nw:component=="L"))
component="B’; // discussed in §6.5

// Or it will extrude the arm at the corner when seeing E.
// If north is occupied (no matter it is a bound cell or
// monomer), the extrusion will fail.

else rot if (so:special==0 && so:component=="E’ &&
se:component=="." && no:component==".")

component="0’; // discussed in §6.8

// Otherwise, see if no bound neighbor is nearby. If so,
// change back to unbound mode.
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else { // discussed in §6.13
count=0;
over each other y:

if (y:bound && y:component && y:special==0)
count++;

if (count==0) bound=0;

}

}

// Kok ok ok ok ok ok ok kok sk kok skokk Corner C rules Kook koK ok ok ok ok ok ok sk kokkokkok

// C is the corner component generated by L signal at the tip of
// a replicating arm. It will turn an incoming > signal 90

// degree counterclockwise, thus changing the direction of

// replication.

else if (component=='C") {

// First check for fail situation. E or F shouldn’t meet C in
// anyway. If they meet C that means something must have gone
// wrong so the current loop must be destroyed.

rot if (no:component=="E’ || no:component=="F")
special="#"; // discussed in §6.10

// turn > at the corner, four cell case considered, too.

else rot if (we:component==">" || we:component==">,1")
component=">,3"; // discussed in §6.6,6.11
}

// Kok ok ok ok ok ok ok okok kokok kokk Detach D rules kokosk ok skokok kokok kokckokck ok

// Detach D is the blocking component. It is generated when a

// replicating arm has fallen back to itself, thus making a new

// child loop. This component can block the dissolve flag # in the
// "special” field to preserve either the child or parent loop

// from the death of each other. This component is erased when
// the two loops have seen it and have generated the arm

// extruding flags.

else if (component=="D’) {

// removing of the blocking cell when seeing ”special” field set
// in the neighbor.

rot if (ea:special) component="."; // discussed in §6.9

}

// ok ok ok ok koK ok ok ok ok kok kok ok Slgnal E rules kokok ok ok ok okook ok ok kokok kokokok

// E always followed by F, so it always changes to F. It is
// part of the two signals EF extruding sequence which extrudes
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// a new arm.
else if (component=="E’) {
component="F’; // discussed in §6.8

// always reset the arm extrude special flag so only one EF
// sequence is generated.

special="."; // discussed in §6.8

}

// ok koK ok ok ok ok ok ok sk kok kok ok Slgnal F rules ok koK ok ok ok ok ok ok kokok kokck ok

// Signal F is part of the EF sequence to extrude a new arm.
// When it sees no new arm generated by its predecessor E, it
// will set the dissolve flag since extrusion fails.

else if (component=="F") {

// extrude testing for 2x2 loop special case
rot if (no:component==">2" && ea:component)

// copying the > signal or set the dissolve mode
it (ea:component=="E’ || so:component=="0’)

component=">,1"; // discussed in §6.11
else
special="#"; // discussed in §6.10

// if arm extruding fails, self-destruction will begin
else rot if (no:component=="0" &&
(ea:component=="0" || ea:component=="L") &&
so:component=="." && we:component==".")
special="#; // discussed in §6.10

// otherwise F always change to O
else component="0’; // discussed in §6.8

}

// A special rule for the arm extrude flag. Whenever a cell

// sees the Detach D and it itself is a corner cell (note: not the
// Corner C component), the arm extrude flag * will

// always be set, no matter what component the cell is.

rot if (component && special=="." &&
(ea:component=="D’ && no:component && we:component ||
we:component=="D" && no:component && ea:component))
special="*"; // discussed in §6.8

// closure of the ”} else { ...” statement
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Chapter 7

Solving SAT Problems with Self-Replicating Loops

Recently there have been suggestions that recombinant DNA techniques can be used to solve some
NP-complete problems [Lipton, 1995; Adleman, 1994]. The basic idea is to use different DNA
sequences to represent different trial solutions, and to use the separation methods from molecular
biology to isolate those DNA sequences which are desired or correct solutions. Since all of the
separation operations are done in parallel to all molecules, it is as if we are testing all possible
solutions at once. The answer to a problem, if any, can thus be found in a linear number of
separation steps. Since the number of DNA molecules is very large even in a small test tube, the
problem space this method can explore is astronomically big.

Solving NP-complete problems on a traditional sequential computer normally requires expo-
nential time. The Satisfiability Problem (SAT problem) is one classic example of an NP-complete
problem [Hopcroft & Ullman, 1979]. Given a boolean predicate like

P = (_LT]_ \Y £1?3) AN (il?l \Y —IIQ) VAN (.732 \Y —1133)

the SAT problem asks “what assignment of boolean values to the binary variables x;, 9 and x3
can satisfy this predicate”, i.e., can make this predicate evaluate to True? The predicate P here
is in Conjunctive Normal Form (CNF), where each part of the predicate surrounded by a pair of
parentheses is called a clause. A SAT problem is usually marked as m-SAT problem if there are m
boolean variables in a clause of its predicate. Therefore, the above example is a 2-SAT problem®.

The SAT problem is NP-complete since, in general, we do not know how to make the assignment
to let a predicate be true. Intuitively, we can only test all possible assignments seeking to find if there
is any one which will satisfy the predicate. Thus, it takes exponential time to explore the solution
space since if there are n boolean variables, there are 2" possible assignments to those variables.
A\l/t_hough there are algorithms which can do better than 2", they still require exponential time (e.g.
2vm),

The so called DNA computer technique mentioned above separates DNA sequences representing
possible SAT assignments all at once based on the clauses of a given SAT predicate. During each
separation cycle all current DNA sequences were tested against one clause of the predicate, and
unsatisfying sequences were removed. Therefore, in a limited number of steps which corresponds

!Note that without loss of generality, 2-SAT problems are chosen as examples in this chapter due to their simplicity.
Although 2-SAT problems can actually be solved in polynomial time and are not truly NP-complete, the method
presented in this chapter does not take advantage of that special property and therefore is equally applicable to
3-SAT or higher problems.
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Figure 7.1: A typical self-replicating loop. Starting from epoch 0, the left loop makes a copy
of itself in 44 steps, and returns itself to the original state in epoch 50 (rotated 90 degrees
counterclockwise). Both the old loop and the new loop are continuing to replicate more loops
at epoch 50. It is obvious that many cells are in the block state O and can be used for other
purposes other than just being the building blocks of the loop.

to the length of the SAT predicate, the satisfying assignment, if any, can be found in the final test
tube.

Although the DNA computer technique is still in its early stages, it does suggest that we may
be able to use self-replicating loops to solve the SAT problem, too. Self-replicating loops in a
cellular automata space are autonomous entities that function independently and in parallel. The
cellular automata model they are based on is without bound theoretically. If we can grow many
self-replicating loops, each carrying a different trial boolean assignment for a SAT problem, and we
can also somehow impose selection upon these loops so that only those carrying satisfying variable
assignments will survive, we can achieve the same phenomenon that a DNA computer can. That
is the method of using self-replicating loops to solve the SAT problem described in this chapter.

A typical self-replicating loop like those used in the previous chapter is shown in Figure 7.1. It
uses only a quarter of its cells to encode its replication steps, leaving about 3/4 of its cells unused
in the Block O state. These unused cells are used to encode bit sequences representing possible
satisfying boolean assignments for a SAT problem. A selection mechanism is built into the cellular
automata rule set so that only those loops which carry satisfying assignments to a SAT predicate
will survive in the cellular automata space through time.

The basic idea is this: we just let the self-replicating loops using their extra cells carry the
binary sequences and grow in the cellular automata space, making generations of new loops. The
replication process is designed in a way such that each time a new loop is born, its binary bit
sequence will be explored for one bit and that this bit will be different when in the child and in the
parent loop. Initially, there will be only one loop in the cellular automata space carrying a totally
unexplored bit sequence; in the end there will be many loops in the cellular automata space each
carrying a different fully explored bit sequence. This is called the enumeration process. With this
enumeration process, we can get all possible assignments for a given SAT predicate if there is no
congestion of loops.

During the course of enumeration, monitoring mechanisms are also built into the cellular au-
tomata space to look for any loop which carries unsatisfying assignments. This will be the natural
enemy of loops such that those loops which carry unsatisfying binary sequences will not survive.
This is called the selection process. Since the replication of loops is proceeding in exponential speed
(1, 2,4,8, ...), we can literally explore all possible SAT solutions in linear time, the same as “the
DNA computer”, and leave only those loops carrying satisfying boolean assignments in the cellular
automata at the end. Put another way, we use self-replication to bring together computing power
that increases as the size of the cellular automata space increases.
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In the following section, several examples of solving the SAT problem using self-replicating loops
are presented first. This is followed by a description of the cellular automata rule set in Section 7.2
and its subsections. Analysis of the rule set and some running results are given in the next two
sections. It is shown in this chapter that in addition to self-replication, self-replicating loops can
be made to solve problems, too. It is also shown that complex selection mechanisms among self-
replicating loops can be incorporated into a cellular automata space. Detailed discussions about
these and other contributions of this work are given in the final discussion section.

7.1 Examples

Figure 7.2(a) shows the enumeration result for a self-replicating loop carrying 3 binary bits. In
the original loop, unexplored bits are represented by the symbol A. We can see that these A’s are
replacing some of the block O’s in the old self-replicating loop (see Figure 7.1 for a comparison).
The original growth signal '>’, which has weak rotational symmetry, is also replaced by the symbol
G (literally for Growth) in the new loop. The new symbol G is strong rotational symmetry. The
reason for this change is because the original >’ symbol for growth no longer needs to be weak
rotational symmetry and has been used for other purposes now, which will become clear when we
look at the cellular automata rule set which implements all of this in the next section. Explored
bits are represented by either digit 0 or 1 in the loops. The binary sequence a loop carries is read
off starting right after the L symbol, therefore, the lower left loop in the bottom left figure carries
the sequence 001 and topmost loop carries 011. The block O has also been changed to lowercase
'0’ typographically in order to avoid confusion with the digit zero. Note that in Figure 7.2(a), only
the enumeration process is at work.

Without the selection process, in three generations we get all eight possible boolean assignments
for a three variable SAT predicate carried by eight loops in the cellular automata space. Loops
will stop growing once they have explored all of their bits (no more A’s within themselves). Since
the exploration of bits is done one bit at a time for one generation, and explored bits are preserved
in the loops and inherited from the parents unmodified, we can be sure that all possible boolean
assignments will be found with the enumeration process. Remember that for each exploration step
we get a different value in the parent and child loops. For example, starting with the loop carrying
totally unexplored binary sequence AAA, in the first generation we will get 0AA in the parent loop
and 1AA in the (first) child loop. In the second generation we will get two more new loops carrying
01A and 11A; the two parents (for this 2nd generation) now carry 00A and 10A. In the third and
final generation, we get four more new loops 011, 111, 001 and 101. The four parents now carry
010, 110, 000 and 100. Together, we get all eight values for a 3 bit binary sequence.

To remove those loops which do not satisfy a SAT predicate, we spread “monitors” throughout
the cellular automata space. Each monitor tests for a particular clause of the SAT predicate. If
the condition a monitor is looking for is verified, it will “destroy” the loop on top of it. For the
predicate example P we gave before, three classes of monitors, each testing for one of the following
conditions, are planted in the cellular automata space:

x1 N\ X3
A AN D)

WA
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Figure 7.2: The enumeration and selection of satisfying boolean assignments by self-replicating
loops. (a) one 3 by 3 self-replicating loop can carry 3 binary bits (location marked by AAA) and
enumerate all eight possible boolean assignments in three generations. (b) When “monitors” are
introduced into the cellular automata space, the selection process kicks in. In three generations
only those loops carrying satisfying assignments to the boolean predicate P will be immune from
elimination by monitors and will survive in the cellular automata space. Monitors are represented
by light gray digits in part (b). There are three different kinds of monitors, each standing for one
clause of the original predicate P.

These conditions are based upon the clauses of the specific predicate P, with their expression
negated, because if any one clause of predicate P is not satisfied, the whole predicate will not be
satisfied, thus the negation. A monitor will destroy the loop if its corresponding clause is found to be
unsatisfied by the binary sequence carried by the loop on top of it. This detection process is done in
linear time since essentially each monitor is just a finite automata machine and the binary sequence
passing through it can be seen as the regular expression for recognition. With enough monitors in
the cellular automata space, they can effectively remove all unsatisfying solutions. Remember that
all clauses of a SAT predicate must be satisfied for the whole predicate to be satisfied and failing
to satisfy any one clause can prove to be fatal. Note that the size of the self-replicating loop must
always be big enough to cover different monitors at least once, otherwise some clauses will not be
checked against the loop.

Figure 7.2(b) displays the result of replication starting from the same original loop as used in
Figure 7.2(a) but with the selection process turned on this time. Monitors are planted throughout
the cellular automata space according to the three conditions set above. They are shown in light
gray color in the background of the figure. Since it does not hurt to have more monitors than less
in the cellular automata space, it was decided to fill all cellular automata cells with monitors. We
can see that there are three types of monitors designated by symbol 1, 2 and 3 because there are
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three conditions to test.

The symbol of a monitor tells it which condition it should test. Like all the other cellular
automata activities, the testing rules for each condition are defined in the cellular automata rule
set. Basically, a monitor keeps track of the boolean bit sequence flowing through its position, sets
flags and destroys loops if the cellular automata rule condition is found. The monitor rule set is
working independently of the self-replication and enumeration rule set for the self-replicating loops.
But if an unsatisfying loop is found, the monitor will interfere with the self-replicating rule set so
that the unfit loop can be destroyed.

In three generations we have only two loops left in the cellular automata space instead of the
original eight. These two loops carry exactly the only two satisfying boolean assignments for the
original SAT predicate P, which are 000 and 111.

We display more intermediate steps for the enumeration and selection process starting with the
3 by 3 loop carrying three unexplored binary bits in Figure 7.3. Since monitors do not move once
planted, for the sake of clarity they are not shown in this figure. But they are still there, doing
their jobs, exactly as shown in part (b) of Figure 7.2.

It can be seen in this figure that part of the family tree is killed without even being generated,
i.e., the topmost loop in Figure 7.2(a) has never been generated because its parent loop (the
one below it in the same figure), which still carries unexplored binary bits, is killed early in the
replication cycle. Since it has been found (by the monitors) that the partially explored bits 01A in
this parent loop do not satisfy one of the clauses, there is no need to explore further since all its
descendents will carry the same binary bits.

Another example solving a six variable SAT problem using 4 by 4 loops is shown in Figure 7.4.
This is for satisfying the six variable predicate

Q= (_LT]_ Vv .T3) A (il?l Vv —IJZQ) A (IQ Vv —lilig) A (il?4 Vv .T4) A (—|.T4 Vv —l£E5) A\ (il?5 Vv —IJZG)

Self-replicating loops are able to find the only two satisfying boolean assignments out of a total of
64 possible assignments in 394 iteration steps, or about six generations. One replicating generation
for a 4 by 4 loop takes 65 cellular automata iteration steps, which involves four cycles of the
replication signal sequence in the parent loop to build the child loop plus one more cycle to extrude
the new arm. Detailed analysis of replication steps needed for loops of different sizes is provided in
Section 7.3.

We can see from this and the three variable SAT example above that generally it takes n
generations to solve an n variable SAT problem. It is understandable why this is the case since for
each generation one bit is explored and there are n bits in an n variable SAT predicate. Again,
in this example the monitors are not shown in the figure for the sake of clarity but they are
everywhere in the cellular automata space trying to find their victims. They are like a classical
automata machine recognizing computer-theoretical regular expressions represented by the boolean
sequences carried by the self-replicating loops. They use different flags to represent different stages
of the recognition process and will destroy the loop on top of them if the recognition is completed,
i.e., an unsatisfying loop has been found. There are six different kinds of monitors in this example
since there are six clauses in the predicate Q. Starting from the totally unexplored bit sequence
AAAAAA/ the only two satisfying boolean assignments of this particular 6 variable SAT predicate
is 000100 and 111100 (remember bit sequences are read off right after the signal L, and correspond
to boolean assignments to the variables of a predicate).
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Figure 7.3: Progressive stages in the enumeration and selection of 3 by 3 loops. In epoch 0
the initial loop is placed on the cellular automata space, which carries unexplored binary bits
represented as AAA. Monitors checking for the three clauses of the predicate P are also planted
in the cellular automata space just like in Figure 7.2(b), but are not shown in this figure so we can
easily read the data in the loops. In epoch 44 the first replication cycle has completed and we get
two loops in the cellular automata space. The first binary bit has been expanded into 0 and 1 in
the two loops by the enumeration process. In epoch 82 the second replication cycle has completed
and we have four loops in the cellular automata space. But starting in epoch 84 the top loop is
being destroyed and erased (look at the missing corner cell of the loop in epoch 84). Apparently
its bit sequence does not satisfy one of the clauses of predicate P (‘01A’ does not satisty x; V —as,
the second clause), therefore it is being erased by the monitor under its upper-right corner. In
epoch 86 the erasing process continues while the other loops start their next replication cycle. In
epoch 124 the third (also the last) replication stage is completed and we have six loops in the
cellular automata space, but four of them do not survive the monitors very long since they do not
satisfy some clauses and are erased (epochs 129 and 131). Finally, we are left with two satisfying
assignments 000 and 111 at epoch 134.
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Figure 7.4: Solving a 6 variable SAT problem using 4 by 4 loops. The predicate to satisfy is
P = (w1 Vaz) Az V-xe) A (22 Vows) A(xa Vag) A (mxg V oxs) A (25 V ng) The original
loop carrying six unexplored bits AAAAAA is placed in the cellular automata space at epoch 0.
New loops are generated and killed by monitors (not shown in the figure for clarity) if they carry
unsatisfying bit sequences. There are only two satisfying boolean assignments out of a total of
64 possible assignments for the predicate @, 000100 and 111100, which are found in epoch 394,
about six generations of the 4 by 4 loop.
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Self-replicating loops may not always find all satisfying boolean assignments for a given predi-
cate, but they will find at least one if there are some satisfying assignments. The DNA computer
cannot find all satisfying boolean assignments for a given predicate either, since its recombinant
DNA separation method is not 100% precise. Both the self-replicating loop and the DNA computer
can tell us if a boolean predicate is satisfiable at the least but they may not find all satisfying cases.
The SAT problem asks if a predicate is satisfiable by at least one boolean assignment; finding all
satisfying assignments is usually not needed, especially when there are many satisfying assignments.

For example, for the contrived six variable predicate

R = (.Tl V —|.T1) VAN (.Tz V —|.T2) VAN (il?g V —|.T3) VAN (il?4 \Y —|.T4) VAN (il?5 \Y —|£E5) VAN (il?ﬁ \Y _‘5176)

which is satisfiable by any boolean assignment, self-replicating loops will never die once born since
all of them are immune to the six (non-destructive) monitors representing the six trivial clauses.
Since loops will not be erased from the cellular automata space, they will crowd each other in
the cellular automata space in a short time. Therefore, they cannot explore all possible boolean
assignments, as shown in Figure 7.5. Nonetheless, they do tell us that this predicate R is satisfiable
in numerous ways and thus answer the SAT problem: is the predicate satisfiable?

A 100% satisfiability in the case of predicate R may be a little bit extreme, since in that case we
do not need to “solve” the trivial SAT problem at all. But a high satisfiability of a given boolean
predicate does slow down the process of finding its satisfying assignments. Self-replicating loops
can take a much longer time to search for possible boolean assignments, even if they can find all
satisfying assignments eventually. Loops in the congested region cannot grow until new space are
provided around them, which could take a very long time. For example, if 50% of all possible
boolean assignments of a 6 variable SAT problem are satisfying, the self-replicating loop takes
787 iteration steps, or about 12 generations, to reach all these satisfying assignments as shown in
Figure 7.6(a). At 25% satisfying assignments, the cellular automata space is less congested, but the
self-replicating loop still takes 695 iteration steps, or about 11 generations to reach all satisfying
assignments, as shown in Figure 7.6(b). The reason is that the cellular automata space for the 25%
case is still as congested as in the 50% case until very late in the simulation, when most of the
unsatisfying loops start being removed.
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Figure 7.6: Slow exploration of SAT assignments. (a) If 50% of all possible boolean assignments
for a 6 variable SAT problem are satisfying, it takes self-replicating loops 787 iterations to reach
all these assignments. (b) It still takes 695 iterations for self-replicating loops to reach all 25%
satisfying boolean assignments for another 6 variable SAT problem.

The time for removing of unsatisfying loops plays a major role in the efficiency of finding satis-
fying boolean assignments for a given SAT problem. Note that to determine whether a predicate is
satisfiable or not is generally easier than finding all satisfying boolean assignments, since we need
to find only one satisfying boolean assignment to answer that question.

For example, at the same satisfying assignment ratio as in Figure 7.6(a) and (b), if some unsat-
isfying loops can be decided earlier by the monitors during the replication process (at generations 3
and 4), it takes only about 7 generations to reach all satisfying assignments shown in Figure 7.7(a)
for 50% satisfiability, and it takes only about 6 generations to reach all satisfying assignments shown
in Figure 7.7(b) for 25% satisfiability. In the latter case we have reached the theoretical minimum
(fastest) number of steps to find the satisfying assignments. The fact that SAT problem charac-
teristics (like the time for removing unsatisfying loops, etc.) can influence the efficiency of finding
satisfying boolean assignments by self-replicating loops will be discussed further in Section 7.4.

Note that all examples presented in this chapter are for solving 2-SAT problems, i.e., their
clauses have two boolean variables. This is for the purpose of simplicity. The cellular automata
rule set can be easily modified to solve SAT problems with longer clauses. There is no inherent
limitation on the clause length for using this method to solve a SAT problem.

7.2 A behavioral look at the cellular automata rules

We start to look at how self-replicating loops can be made to solve the SAT problem in this
section. Since the structure and function of the cellular automata rule set for solving SAT problems
is very similar to the emergent self-replicating rule set, only a behavioral look at the working of the

168



LO0O 00GG
GL10 G 11 G
G 0 G 11 L
G 1 Gool 1001
ooll
looG GLO1l 100G
1 GG 11 G
1 G G 11 G
110L o001 101L
1011
GLO1 1000 GL10O 100G 1 1
G 11 o G 1 1 G L o
G 1 1 GG 11 G GGGo
0010 OLGG 0001 0O11L
00GG
GL10 1000 GL11 1111 0 G
G 11 o G 0 L 1 1 L
G 10 G G 1 G 1 1011
0010 1LGG 0001 GGoo
00GG LO10 00Oo0o0 00GG L110
GLO1 1100 GGGL GL11 1000 000G 1 GG 11 G 1 GG 1
G 00 oo 0 G 0 0 o 1 G 1 LG 10 G 0 L G 0
G 11 G o 1 G 11 G 1 G 1010 GooO 10LG 1011 GooO
ooll OLGG 0010 0010 1LGG 111L
L010 Oloo
1010 GGGL 1010 GGGL looG GL11 G 1 1 G
1 o o 00 o 0 0 GG 1 G 00 G
0 Go 01 G o 0 1 G G 1 Gool 00LG
OLGG 0011 OLGG 1010 111L 0000
GGLO 0000 L100
1100 01 GGGL 1010 G 01 G G 1
1 [} 0 0 10 o] (o] 0 0 G G 0
0 G [} 00 G 0001 01LG Gool
0LGG GGGo 0010 1LGG
1000 L100O
GLOO 1110 GGGL 1100 1 G G 1
G 10 o} 0 0 o 0 GG 1
G 10 G o 0 0 G 00LG GooO
001l OLGG 0110 1LGG
448 396

(a) (b)

Figure 7.7: Fast exploration of SAT assignments. (a) self-replicating loops take 448 iterations
to find all satisfying boolean assignments for a 6 variable SAT problem with 50% satisfying
ratio if trimming of unsatisfying loops occurred earlier at generation 3 and 4 instead of at the
last (6th) generation. (b) Similar results for a 6 variable SAT problem with 25% satisfying
boolean assignments. It takes self-replicating loops only 396 iterations to find them all, which is
approaching the theoretical optimum speed of this method.

cellular automata rule set is provided. We leave the detail rule set listing at the end of this chapter
for reference.

Again, a split of the cellular automata cell into fields is used to simplify rule set programming.
First, let us look at the data fields used by the rule set. A brief description is given of each data field
and its state values. Their usage will become clear when we see the inner working of the cellular
automata rule set in the following subsections. The SAT rule set uses the Moore neighborhood,
which is the same as the emergent self-replicating rule set of the last chapter.

7.2.1 Fields

The cellular automata rule set to solve the SAT problem is based on six functionally divided
fields. A graphical depiction of the data fields used in the SAT rule set is shown in Figure 7.8.
Valid states for each field are also listed.

The fields are:

1. code(4 bits): This is the fundamental field which carries instructions for self-replicating control
and also the SAT bit assignment sequences. Valid values are the following:

. This is the quiescent state: it means nothing is there. Normally when displaying the cellular
automata space it is replaced by white spaces. The ’.” symbol is only used in the cellular

automata rules to represent the quiescent state.
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Figure 7.8: The data fields used in solving the SAT problem. Listed are the bit depths and valid
state symbols in each field. Weak rotational symmetry symbols are denoted by “(4)” after them,
indicating that they represent four states. Quiescent states are represented by a period ’.” in the
rule set, but are not displayed when showing the cellular automata space configuration.

o This is the building block of the loop. It serves as a place holder to keep the integrity of the
loop and conceptually allows other codes to pass through it. It was represented by the
capital letter 'O’ in the rule set we discussed in the previous chapter. It is now changed
to lowercase '0’ to avoid confusion with the number ’0’, which is also a valid state of this

data field.

G This is the extrude signal, which directs the expansion of a cellular automata signal path-
way into the quiescent space. It was represented by the symbol ">’ in previous self-
replicating rule sets that had weak rotational symmetry. It is now changed to the letter
G’ and to have strong rotational symmetry (i.e., represented by only one state value).
With the help of the direc field to provide directional discriminations now (see below),
weak rotational symmetry is no longer needed for this signal. The introduction of a
dedicated direc field to provide directional discrimination is necessary because there is

no specific signal order in the loop anymore and it also simplifies rule set design.

L This is the turning signal. It changes the expansion direction of a signal pathway by 90

degrees counterclockwise, as before.

E F This is the pair of signal sequences to direct the breaking out of a new arm for replication.

D This is the detach component which separates the parent and child loops during the

replication process.

Those above are signals for replication control. The following four more signals have no effect
on the replication process but are added for enumerating and representing SAT binary bit

assignments:

A An unexplored SAT binary bit. When explored during a replication cycle it will always

become 0 in the parent loop and 1 in the child loop.
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B Also an unexplored SAT binary bit. It is seldom used in our examples of this chapter.
When explored during a replication cycle, it will always become 1 in the parent loop and
0 in the child loop. Its function is a direct opposite of signal A. When to use it will be
discussed in the section about efficiency (Section 7.4).

0 The explored SAT binary bit 0. It will not change further except when it is carried around
in a self-replicating loop. It represents an assignment of boolean value zero to a corre-
sponding boolean variable of the SAT predicate.

1 The explored SAT binary bit 1. It will remain in this state except being carried around in a
self-replicating loop. It represents an assignment of boolean value one to a corresponding
boolean variable of the SAT predicate.

We actually need only signal A or B to represent unexplored SAT bits, not both. But
having both of them has the advantage of changing the exploration pattern and may help the
efficiency issue (see Section 7.4).

. direc(3 bits): This is a new field which defines the signal flow pathway. One different design
feature of the SAT rule set when compared to the self-replicating rule set in the last chapter
is that the signal flow direction is no longer implicitly defined by the signals themselves. For
example, where “signal 'L’ always follows signal ">"’, when we see a signal sequence 'L>’,
we know it is going to the right, and when we see a signal sequence ’<L’, we know it is
going to the left. There are definite patterns of signal sequences in the loop (always a certain
number of ">’ signals followed by the signal 'L’), and the cellular automata rule set can take
advantage of that knowledge and determine the flowing direction unambiguously.

But in the SAT rule set a loop can now carry an arbitrary SAT bit sequence and there is
no easy way to tell which way the signal sequence 010101 or 001001 will flow, for example.
Although one might find some other solution, such as making all bit states have weak ro-
tational symmetry to gain a sense of orientation for the SAT sequence, these methods are
at best awkward and would waste useful cellular automata states. A more elegant solution
is to use a “direc” data field to explicitly point out the signal pathway. The direction the
direc data field points will be the direction any signal sequence on top of it will flow toward.
We can imagine the direc field as a conveyor belt in a factory assembly line which carries
everything with it. What we are doing here is to factor the weak symmetry information out
into a separate field direc that all symbols can reference. Valid state values for direc are the
quiescent state plus the four weak rotational state values of the signal >, which always point
at where signals flow.

. pos(4 bits): This is the data field which records what corresponding boolean variable in a
SAT predicate is represented by a binary bit in a SAT sequence carried in a loop. We need
this field in order to tell the order of bits and (for the monitor) to check for unsatisfying
bit sequences. Values in this field are attached to bits in the code field and flow with them.
Valid values for this field are numbers 0, 1, 2, ... etc., each standing for boolean variable one,
boolean variable two, ...etc. in the SAT predicate.

. clause(4 bits): This is the “monitor” field which encodes what particular SAT predicate clause
the monitor in a cell should be checking for. A cell with a particular non-quiescent clause
value will look for any bit sequence passing atop it which represents an unsatisfying boolean
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assignments with regard to the clause it is checking for. Cellular automata rules are defined
to control this checking process. If the monitor can find such an unsatisfying sequence it will
destroy the loop by setting a special flag and kill the loop carrying that sequence on top of it.
Valid values this field are numbers 0, 1, 2, ..., etc. which stand for clause one, clause two,
etc. in the SAT predicate.

. color(2 bits): This is a tag field to mark the expansion direction for each loop. It is used
to detect the collision of the expansion arms of two self-replicating loops. Since two loops
expanding at the same direction (thus carrying the same color) can never collide, if a collision
of loops occurs it can be detected by different color’s of the arms. Valid values for this field
are just the four weak rotational values of the signal . This field is different to the direc field
in that its values are always the same within a loop, but such is not the case for the direc
field, which can have four different values in the four different sides of a loop.

. special(3 bits): This is the field which denotes occasional special situations in the cellular
automata space. There are the following special situations:

. No special situation.

*

A branching signal sequence (EF) will be generated.

Unexplored binary bit A will change to bit 1 and unexplored binary bit B will change to
bit 0 when seeing this special flag.

+ Unexplored binary bit A will change to bit 0 and unexplored binary bit B will change to
bit 1 when seeing this special flag.

# The destruction flag. Any loop cell touching this special flag will be erased in the next
iteration. It is set when an unsatisfying loop is found by a monitor. It will kill an
unsatisfying loop in a very short time.

7 A partial unsatisfying flag. When the first boolean variable of a clause is not satisfied
this flag will be set by the checking monitor. It signals another state of the monitor
automata. The monitor in a cell with this special flag on will be checking against the
second variable of the clause it is assigned to check for (by the clause field), instead of
the first variable as it normally will check. If the second variable of the clause is also
found to be not satisfied by the current binary sequence on top of it, according to the
cellular automata rules, the monitor will set the destruction flag #, to destroy the loop.

! The collision flag. It is set when the expanding arm of a loop detects that it is colliding
with other loops or their arms. Any active loop part touching this special flag will be
erased in the next iteration unless it is a branching point where more than one signal
pathway is branching out from the same cell. It will effectively remove an old replicating
arm of a loop in a very short time and set to start a new arm at another direction.

At the beginning of a simulation, one loop is put into the cellular automata space. The code field

of the cellular automata space is initialized to reflect a normal self-replicating loop configuration.
Some unexplored A bits to represent the boolean assignment sequence is placed in the loop body,
too. The direc field is initialized to control the signal flow direction for the loop. The pos cells
under those A bits are set to represent their associated variable numbers of the SAT predicate. An
arbitrary cell in the clause field is set to a nonzero value, usually one, to represent a seed monitor
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(a) The initial cellular automata configuration for 3-SAT problem

1
AAo <<A 23
A o vV A 1
LGGoo V>>>>
code direc pos clause color special

(b) The initial cellular automata configuration for 6-SAT problem

1
AAAA <<<A 3456
A o] v A 2
A 0 \% A 1
LGGGoo V>>>>>
code direc pos clause color special

Figure 7.9: Examples of the initial cellular automata configuration. (a) The initial cellular
automata fields for solving the 3 variable SAT problem as given in Section 7.1. (b) The initial
cellular automata fields for solving the 6 variable SAT problem given in Section 7.1, too.

in the clause field. After the simulation begins, the cellular automata rule set will evenly spread
different monitor values over the whole clause field starting from that seed monitor. Without this
seed monitor the spreading of monitors will not be carried out and the clause field will remain
quiescent. This seed monitor can be seen as the switch to turn on the monitor checking mechanism
of the cellular automata rule set. The color field and the special field is initialized to the quiescent
state zero. Two typical examples of the initial cellular automata space configuration for solving
the 3 variable SAT and the 6 variable SAT problem mentioned Section refse:examples are given in
Figure 7.9, where all initial field contents are displayed in detail.

This completes our discussion about fields. Although there are six data fields, only the code
field is displayed in the examples of previous sections (except Figure 7.2) when the content of the
cellular automata space was presented. This is because the major functionality of the SAT rule
set is controlled by the code field. In the following subsections, our discussion will still be oriented
around the code field. When no explicit context is given, any symbol described will be associated
with the code field. Some other fields will also be displayed alongside the code field when we
consider the inner working of the SAT rule set and when it is necessary to explain the functions of
the other fields together with the code field.

The SAT cellular automata rule set has two independent functionalities which have been in-
troduced before: the enumeration process by self-replication loops to generate all possible boolean
assignments to a SAT predicate, and the selection process by monitors to select only those loops
which carry satisfying assignments to survive at the end. The enumeration process is bundled within
a normal self-replication process of the self-replicating loop by providing more rules to change an
unexplored bit A in the original loop into bit 0 in the parent and bit 1 in the child loop after the
replication. The selection process is a new mechanism in this rule set which is basically modelled
after the usual regular expression checking automata machine, which has its own states to represent
different stages of the checking process. The binary sequence carried by a loop is the string this
automata is checking against. We will first look at the enumeration process in the following several
subsections. The monitor selection process will be discussed in the last subsection.
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Figure 7.10: The flow, extending and turning of signal sequence. The code field (top) is displayed
with its associated direc field (bottom) for a number of epochs. The direc field defines the signal
flow direction. Note that these two fields actually overlay each other at each cell; they are displayed
separately only for ease of reading.

7.2.2 Signal flow, extending and turning

The signal flow pattern in the SAT rule set is very similar to that of the emergent self-replicating
rule set. The only difference is that the direction of signal flow is now explicitly defined by the direc
data field. Look at the code field and its associated direc field content as shown in Figure 7.10. Each
cell with an active direc field will copy the signal value from the neighbor sitting in the back of its
direc field pointer during each iteration. Therefore, the signal flow direction is the exact direction
to which the direc field points.

When a signal G reaches the end of the signal path it will extend into the quiescent space and
produce an ‘o’ there which will allow other signals to continue passing through it; signal G will
also set a new direc pointer there to point to its extension direction, as shown in epochs 2 and 3 in
Figure 7.10.

The turning of the extension direction is made by the signal L. When reaching the end of the
signal path, it will set a new direc field pointer at its left neighbor cell pointing at the new extension
direction. Note that the code field does not get extended by the L signal; only the direc field is
influenced by the L signal. This is shown in epochs 6 and 7 of Figure 7.10. When a signal G reaches
the end again in epoch 12, it will extend toward the new direction set forth by the L signal, making
a new ‘o’ at the code field, as seen in epoch 13. Continuing with this working pattern, we will get
a replication arm turning counterclockwise as seen in epoch 24.

Ouly signals G and L will change the quiescent space into active cells. The other signals are
ignored when reaching the end of the signal path. These other signals like A, 0 or 1 are used to
carry the SAT binary bits and do not play roles in the replication control, as seen in epochs 7 and
8 of Figure 7.10, where some A’s disappear at the end of the extending path without making any
change to the quiescent neighbors.
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7.2.3 Self-replication, detachment and new arm extrusion

When the replicating arm finally turns on itself, it will trigger the formation of the detach signal
D, which will in turn close the new signal path, form a new loop and finally separate the two loops.

When signal D is generated it triggers the setting of two special flags in its neighbors. Each of
the flag belongs to each of the loops. These two special flags have the effect of enumerating the SAT
bit sequences and generating new replicating arms. The details about how enumeration is done
will be discussed in the following subsection. We look at how the new replicating arm is formed in
this subsection.

Counsider Figure 7.11. In epoch 33 the arm is closing, which triggers the formation of detach
signal D in epoch 34. Signal D then triggers the setting of two special field flags in epoch 35. Note
that signal D also modifies the direction of the direc pointer in the new loop to complete the loop
in epoch 35. When seeing the appearing of special flags in its neighbors signal D will disappear in
epoch 36 together with its underlying direc pointer. This completely separates the two loops.

The two special flags in corners of the two loops will trigger the formation of the signal sequence
EF as seen in epochs 38, 39, 40 and 41. The EF signal sequence will form a new replication arm in
the following corner as seen in epochs 41, 42 and 44 of Figure 7.11.

7.2.4 Enumerating the SAT sequences

As seen in Figure 7.11, in epoch 35, two ‘+” flags are formed beside signal D. The left ‘+” flag
immediately causes the code signal A atop it to be changed to binary bit 0 in epoch 36 while itself
changes to the ‘*’ flag for generating an arm extrusion sequence next. In the meantime, the signal
L atop the right ‘+’ flag changes it to a ‘=’ flag from epoch 36 to 37. The ‘-’ special flag then causes
the signal A atop it to change to binary bit 1 in epoch 38 while itself changing to the ‘*’ flag for
generating arm extrusion sequence next. In epoch 39 the left ‘*’ special flag disappears since it has
generated the EF sequence. The right ‘*’ flag will also disappear in epoch 41 when its EF sequence
has also been generated.

The function of the ‘+’ special flag is to make the code signal A change to binary bit 0, and the
function of the ‘-’ special flag is to make the same signal A change to binary bit 1. Because of the
timing difference in the parent and child loop, the special flag ‘+” in the child loop will be changed
to flag ‘=7 before it influences the following signal A. Therefore, the explored SAT sequences will
be different in the parent and child loop. This is how the SAT rule set enumerates the SAT
binary bit sequences.

Explored binary bits 0 or 1 will stay unchanged and get copied into all further descendent loops,
while unexplored signal A’s will be gradually reduced to either binary bit 0 or 1, depending on
whether they are in the parent or child loop. Starting with only one loop with all unexplored signal
A’s in the cellular automata space, the replication/enumeration process will eventually produce
all possible SAT binary bit sequences with the same number of bits as the original loop. The
order in which these bit sequences are generated is dependent on how loops get replicated and
normally starts with the bit closest to the signal L. These are representations of all possible binary
bit assignments to the variables of a predicate. An example has been shown in Figure 7.2(a) where
an original loop with three A’s sequence generates all eight possible SAT binary bit assignments in
the end. When the enumeration sequence ends, all A’s have been explored. Loops will no longer
replicate but signals within them will still be cycling around.
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Figure 7.11: The separation of loops and formation of replicating arms. As in Figure 7.10, the
direc field is displayed in a separate figure below the code field figure to facilitate reading. It is
shown in a light gray color. The special field is shown overlaying the direc field in a darker color.
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7.2.5 Collision detection, recovery and preservation of loops

It is possible for two loops to compete for space and collide with each other in the cellular
automata space. The SAT rule set makes sure that all collisions are resolved peacefully and no
information is lost because of the collision, i.e., the bit sequences will all be generated by the loops
despite the collision.

A typical collision situation is shown in Figure 7.12. The lower left and the right loop both try
to grow into the middle space between them. The lower left loop is several steps ahead of the right
loop, which is just about to extrude its new replicating arm. In epoch 4 the signal L of the lower
left loop reaches the tip of its arm. Normally, signal L will change the replication direction to point
up but in this particular situation it will cause the special flag ‘!’ to be set in its upper neighbor
in epoch 5. The reason is that the neighbor there has sensed the lower left loop’s intention to grow
into its position but has also found out that there is no more space to grow beyond it (since its
upper neighbor is occupied by the right loop now). So it sets the ‘!’ collision flag. This collision
flag will low backward along the signal path as seen in epochs 6, 7, and 9, killing everything on its
way back to the main loop until it reaches the corner of the left loop in epoch 10, where it will then
change to an extrusion flag ‘*’. Remember that the ‘*’ extrusion flag has the function of generating
a new replication arm in the next corner. Together these two special flags !’ and '*’ achieve
the effect of retracting an old replicating arm and generating a new one.

The replication of the right loop is uninfluenced since when it reaches the edge of the lower left
loop in epoch 9, the replication arm of the lower left loop has already moved out of its way, so the
right loop still has room to grow and does not have to retract its arm.

A more complicated matter here is that the upper region of the lower left loop has also been
taken by another loop already there. While the special ‘*’ flag left in the corner does successfully
generate an arm extrusion sequence EF in epoch 13, this EF sequence fails to make a new arm
since there is no space left in the upper part of the loop, as seen in epoch 15.

But by the same mechanism, the failed EF sequence leaves another special ‘*’ flag in the new
corner as seen in epoch 16. This new special ‘*’ flag generates a new EF sequence in epoch 23 which
finally makes a successful new arm in epoch 26.

The detection of collisions needs further explanation. Look back at epoch 4 of Figure 7.12 and
compare the situation with epoch 32 of Figure 7.11. In the former case, two loops are colliding with
each other and one arm needs to be retracted. In the latter case, it is the closing of the replicating
arm for the same loop and should be allowed to continue. Given that only local information is
available to the colliding central cell, how can it tell one way from the other?

To resolve the problem the color field is used. When replicating toward different directions,
loops will possess different colors. This is then used to judge the situation when a collision occurs.
If two colliding paths possess the same color, they belong to the same loop and this is the closing
of a replicating arm. If these two paths have different colors, we know that a collision has occurred
between two different loops. In the example of Figure 7.12, the lower left loop is growing toward
the right and the right loop is growing toward the left, so they have different colors, even though
the color value is not shown in this figure for the sake of clarity.

7.2.6 SAT clause checking, unsatisfying loops detection and deletion

All of the previous description is about the replication of loops and the enumeration of SAT bit
sequences. In this final subsection we consider how monitors work in the cellular automata space
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Figure 7.12: The collision of replicating loops. The code field is shown in the background light
gray color and the special field is shown in the foreground black color. Note in epoch 5 a special
‘17 flag was generated in between the two lower loops. It is moving backward toward the lower
left loop in epochs 6, 7, and 9. In epoch 10 it changes to a special ‘*’ flag at the lower right
corner of the left loop. The '+’ special flag induces a new EF sequence in the following epochs.
Unfortunately, the EF sequence still fails to generate a new arm at epoch 15 and 16 since the
upper region of the left loop is also occupied by another loop above it. Again, In epoch 16 the
failed extrusion signal sequence EF leaves a special ‘¥’ flag in the upper right corner, which will
cause new arm extrusion EF sequence to be generated later. Finally this EF sequence works and
a new arm is produced at the left side of the loop in epoch 26.

178



Figure 7.13: Monitors in the clause field. After
monitor distribution is done, the clause field will
be full of different monitor values which are
distributed in such a way that all loops will be
touching all different monitors at least once.
Shown in the background light gray color is the
clause field content. In the foreground there are
two loops exactly as shown in Figure 7.2(b). We
can see that these two loops touch all three
different monitors many times in various cells.
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to erase those loops carrying unsatisfying bit assignments for a SAT predicate.

The clause field determines which SAT clause the monitor in each cell of the cellular automata
space is checking for. The clause field is independent of all of the other fields used in the SAT rule
set since monitors work independently of the self-replicating loops, and have their own governing
cellular automata rules. Monitors distribute themselves throughout the clause field at early stages
of the cellular automata simulation. Once distributed, the particular clause each of them checks
for is fixed and will not change over time. The distribution of monitors is arbitrary as long as we
can be sure that each loop will touch all different monitors at least once on its path, so that all
different monitors will have a chance to check the bit sequence of the loop. Remember that we
have different monitors to check for different clauses of a SAT predicate. This requirement is to
make sure that all clauses of the SAT predicate will be checked for with all loops.

One arbitrary monitor is initialized by putting it in an arbitrary cell in the cellular automata
space at the beginning of the simulation. The following cellular automata rules distribute the seed
monitor throughout the cellular automata space, but with different clause values at different cells.

if (clause==0)
if (no:clause)
clause=no:clause/noclauses+1;
else if (we:clause)
clause=we:clause/noclauses+1;

These rules are simple. If there is no active monitor in a cell, thus clause==0, then the monitor value
from either its north or west neighbor is referenced, if any of them exists. This value is modified
modulo the total number of clauses (noclauses), and then increased by one. The calculated value
is stored in the cell. This rule set guarantees that any monitor in a cell differs to all its neighbors
at most modulo one (1 and 3 have a modulo distance of one for a three clauses predicate), as can
be seen in Figure 7.13.

A typical clause field content after monitor distribution has been done is shown in Figure 7.13,
which is the same as Figure 7.2(b). The clause field contains three different monitors numbered 1,
2 and 3 for the three clauses of predicate P that we have discussed in the beginning of this chapter.
We can see that the distribution of the clause values (the monitors) is even and each loop touches
all three monitors at least once.

The clause field makes up the “monitors” we mentioned in Section 7.1. Each monitor will keep
checking the SAT binary sequence passing through it for unsatisfying sequences, according to the
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following cellular automata rules. If an unsatisfying sequence (and the loop which carries it) is
found by a monitor, that monitor will set the special field to flag ‘#’, to destroy the loop. This will
kill the whole loop carrying the sequence. The process of checking and deletion of loops done by
monitors works independently from the other functions of the SAT rule set such as self-replication
and the SAT bit sequence enumeration of loops.

First, the clauses of a SAT predicate is represented by four arrays within the cellular automata
rule set, such as the following:

int noclauses = 3;

int posi[] = { 0, 1, 1, 2};

int codel[] = { 0, ’1:code’, ’0:code’, ’0:code’};
int pos2[] = { 0, 3, 2, 3};

int code2[] = { 0, ’0:code’, ’1:code’, ’1:code’};

The arrays above encode the 3 variable SAT problem we have seen in Section 7.1. Remember
that there are three conditions to check for this problem, thus noclauses=3. These conditions are
reproduced below for ease of reference. The first element, with index value 0, of all arrays is always
set to zero and is not used. Condition one is encoded by the second element (which has index value
1) of the four arrays. In pos1[], its index 1 element has the value 1, which denotes that the first
boolean variable in condition one is variable 1. The index 1 element of code1[] is *1:code’, which
means that this first variable (variable 1) must equal symbol ’1’; in the code field. The index 1
element of pos2[] is 3 and the same element of code2[] is *0:code’, together they mean that the
second boolean variable of condition one (i.e. variable 3) must equal ’0” in the code field. These
four index 1 elements of the four arrays precisely encodes condition one of the following:

x1 N\ X3

i ANAN D)
-2 A\ X3

Similarly, as read off from index 2 elements of these arrays, the first variable of condition two is
variable 1, which must equal ’0’, and the second variable of condition two is variable 2, which must
equal '1’, etc. All clauses of a predicate is encoded in this fashion. The value of noclauses and
the size of the arrays are adjusted with respect to the actual predicate length.

If a monitor is set to check for condition 1, it will reference index 1 elements of all four arrays.
If a monitor is set to check for condition 2, it will reference index 2 elements of all four arrays, etc.
The rules for monitor checking are listed below. These are independent of the SAT predicate being
checked:

if (special==.’ && pos==posll[clause] && code==codel[clause])
special="7";
else if (special=="7’ && pos==pos2[clause])
if (code==code2[clause])
special="#";
else
special=".7;
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The first if statement checks for the first variable of the condition denoted by the clause field value,
which is used as an index into the four encoding arrays. If the variable and its value represented in
the pos and code field match the condition values stored in arrays pos1[clause] and codel[clause],
the alarm flag ’?’ is set in the current cell, which announces checking for the second variable of the
same condition. The second if statement in above rules works similarly to the first if statement.
If the variable and its value are also found to match the condition, the destruction flag '#’ is set
in the current cell, which will end up destroying the whole loop carrying the sequence. Otherwise,
the special field is cleared, and checking resumes with the first variable of the condition again.

Since the function of monitors is dependent on the particular SAT boolean predicate they are
checking for and is built into the cellular automata rule set, different rule sets will have to be used
for different predicates. But this requires just a change of the condition arrays used by the monitors
and is not a difficult task. The rules for checking do not have to be modified.

A more detailed example about how monitors work is shown in Figure 7.14. For the sake of
clarity, the monitor distribution rule set is disabled for this example. Only one monitor is planted
into the cellular automata space, which is located at the upper right corner cell of the top loop.
The monitor is set to check for condition 2 of the predicate P, as seen by the number 2 in the clause
field. No other cell in the cellular automata space has monitors in it for this example. If this No.
2 condition

-1 N\ Xy

is found to be true by the only monitor in this space, then clause 2 of the predicate P is determined
to be unsatisfied by the loop occupying that cell and destruction will begin.

The bottom loop in Figure 7.14 is a parent loop. In epoch 77 the detach signal D causes the
two special flags ‘+’ to be set in both loops. The ‘+’ flag in the child loop (top one) is later changed
to the ‘=7 flag by the L signal in epoch 79, which in turn causes the following signal A to be
changed to binary bit 1 in epoch 81. Since the first variable (x1) has been verified to be '0’ by the
monitor (pos==pos1[2] && code==codel[2]), at epoch 81 the monitor in the upper right corner
cell causes the special flag ‘?” to be set in its position in epoch 82, which marks checking for the
second variable of the condition. Remember that this is the effect of the first if statement in the
rules above. Continuing in epoch 82 the second bit (which has just been converted from signal A
in epoch 81) is just passing over the monitor embedded cell. Since it is the second bit with the
value '1’, the second part of the condition has also been verified by the monitor (pos==pos2[2] &&
code==code2[2]), which fulfills the No. 2 condition above and proves that clause 2 is not satisfied
by the current SAT sequence 01A carried by the loop sitting on top of the monitor. Therefore, in
epoch 83 the special destruction flag ‘#’ is set by the monitor which quickly destroys the whole loop
in epoch 88. Note that the third bit has not even been explored yet in this loop.

Recall that the monitor knows the bit 0 on top of it in epoch 81 is assigned to variable x1 of the
predicate P and the bit 1 on top of it in epoch 82 is assigned to variable x5 of the same predicate
by looking at the pos data field, which encodes the variable associated with a bit in the code field.
The pos field content is always translated with bits in the code field so that any monitor touching
those bits will know which boolean variables they are associated with in the original SAT predicate.

In actual simulations, there are monitors all over the cellular automata space in every cell. As
long as a loop is touching all different monitors at least once, which is the case by the current
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Figure 7.14: Checking for unsatisfying loops and deletion of them by the monitor. The upper
row shows the code field, the middle row shows the clause field with the pos field in the background
gray color, and the lower row shows the special field with the direc field in the background color
for reference. The only monitor is in the upper right corner cell of the top loop which is set to

check for clause 2 of the predicate P we discussed before.
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monitor distribution rules, it is guaranteed that unsatisfying loops will all be removed by monitors
eventually.

7.3 Analysis

Each cell of the CA space can accommodate one instruction, or code field value. For a self-
replicating loop which has n cells on one side (an n by n loop) it needs n code values for its own
replication control, plus two code values for the arm extrusion control sequence. The rest of its cells
can be used to carry the SAT bit assignments. Therefore, an n by n loop can carry the following
number of SAT bits:

4x(n—-1)—(n+2)=3n-06

For example, for the 3 by 3 loop in Figure 7.14, the loop can carry 3 x 3 — 6 = 3 SAT bits.
On the other hand, if we are trying to find the smallest n by n loop which can solve an x-bit
SAT problem, we can form the inequality @ < 3n — 6, which gives

n>x+6
- 3

=[]

that is the smallest loop size capable of solving an x-bit SAT problem.
The number of iteration steps needed for the replication of an n by n parent loop is

or

5x4x(n—-1)4+(n-1)=21(n-1)

which is calculated based on the fact that an n by n loop has 4(n — 1) cells and it takes 4 cycles of
the signal sequence in the parent loop to replicate the child loop. Plus, it takes one more cycle to
extrude the new arm and n — 1 more steps to move the starting signal G to the new arm position.
The child loop is always two steps behind the parent loop, so it takes 21(n—1)+2 steps to complete.

During each replication generation, one SAT bit is explored. For an a-bit SAT problem, =
generations are needed to explore all possible bit assignments. To calculate the cellular automata
world size required to solve an x-bit SAT problem, we notice that the maximum expansion along
one direction in the CA space for = generations is x(n + 1), which is the width for each loop plus
one boundary cell, timed by generations. Therefore, the maximum size needed to solve an x-bit
SAT problem along one dimension of the cellular automata space is

2e(n+1)+n

where the extra n is the original loop width. The maximum world size of a dimension is independent
of the characteristic of the SAT problem being solved. It is dependent only on the SAT bit number,
x.

The estimated number of iterations of the cellular automata universe needed to determine
whether a SAT predicate is satisfiable or not is calculated by multiplying the number of generations
by the number of replicating steps per generation. The number of replicating steps for a child loop
is used in the calculation, which gives

2lz(n — 1) 4+ 2x
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loop | total | maximum | rep. steps | rep. steps | maximum estimated
size | cells | SAT bits | (parent) (child) CA width iterations
n | 4(n-1) | z=3n-6 21(n-1) | 21(n-1)42 | 2z(n+1)+n | 21lz(n-1)+2x
O(n) | O(n) O(n) O(n) O(n) O(n?) O(n?)
3 8 3 42 44 27 132
4 12 6 63 65 64 390
) 16 9 84 86 113 774
6 20 12 105 107 174 1284
7 24 15 126 128 247 1920
8 28 18 147 149 332 2682
9 32 21 168 170 429 3570
10 36 24 189 191 538 4584
11 40 27 210 212 659 5724
12 44 30 231 233 792 6990
13 48 33 252 254 937 8382
14 52 36 273 275 1094 9900
15 56 39 294 296 1263 11544
16 60 42 315 317 1444 13314
17 64 45 336 338 1637 15210
18 68 48 357 359 1842 17232
19 72 51 378 380 2059 19380
20 76 54 399 401 2288 21654
21 80 o7 420 422 2529 24054
22 84 60 441 443 2782 26580

Table 7.1: Mathematical property for some self-replicating loops

In Table 7.1, the cell numbers, maximum SAT bits, replication steps, maximum world size along one
dimension and estimated iteration steps are listed for some different loops. The order of magnitude,
or complexity, is also given for each term.

Normally we just need to find one satisfying boolean assignment to determine if a predicate
is satisfiable or not. That usually requires only the estimated number of iteration steps stated
above. But in some cases, the actual iteration steps needed can be critically dependent on the
characteristics of the SAT problem being solved. This is especially so when we try to find all
satisfying boolean assignments to a predicate. An example was given in Figure 7.5 at page 167
where solutions were so abundant that loops crowded each other and could not explore all boolean
assignment cases. In such a situation, the self-replicating loop cannot explore all of the satisfying
assignments to a predicate and therefore cannot find all satisfying ones.

7.4 Efficiency issues

In the examples of Section 7.1, we can see that the characteristics of a particular SAT problem
can dramatically influence the efficiency of finding the satisfying boolean assignments using self-
replicating loops. Actually, self-replicating loops may not find all satisfying cases if the cellular
automata space gets too crowded. The last column of Table 7.1 lists the estimated number of
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iteration steps needed to determine if a given SAT predicate is satisfiable or not, but this may
not be the exact steps to find the satisfying boolean assignments for the predicate. If we assume
that loops in the cellular automata space will never get too crowded to prevent continuing self-
replication, then that number will be the exact number of steps to find the satisfying cases. The
question now is whether this assumption that loops will never get too crowded is reasonable or that
the cellular automata space is usually crowded when solving SAT problems.

First, we need to determine how the satisfiability checking process of the method influence the
cellular automata space occupancy density. If loops will never be killed after being born, in five
generations loops in the central region of the population will start to have problems continuing
replication, despite still carrying unexplored code A’s. This has been demonstrated in Figure 7.5.
It will prevent the method from finding all satisfying assignments. On the contrary, if during each
generation only one loop is kept (the other one being killed, be it the parent or the child loop), the
self-replicating loop can finish searching in exactly x generations for an x-bit SAT problem. This
is the theoretical best case the method can achieve since it takes at least « generations to explore
all x variable assignments in an x variable SAT predicate?.

The monitor selection process is the key factor here. To have a quantitative understanding of
how the selection process influences the efficiency of the method in finding all satisfying boolean
assignments, a series of simulations were run, each with a controlled monitor selection behavior.
In order to measure the progress of loops toward finding all satisfying assignments during each
iteration, the generation index of a loop is defined as the number of unexplored code A’s within
that loop deducted from the number = for an x-bit SAT problem. Therefore, the starting loop, with
x unexplored bit A’s, is at generation x — x = 0. The final, totally explored loop which no longer
replicates, is at generation x — 0 = x. The reason of using the generation index instead of directly
using the number of explored bits is to avoid decreasing the value through time. The progress of
the whole cellular automata space configuration toward finding all satisfying boolean assignments
is then defined as the average value of the generation index of all loops in the space.

To facilitate comparison, iteration steps are also calibrated with generations. The current
iteration number is divided by the number of steps for one full replication generation of a loop to
obtain a calibrated generation index of the time step.

In Figure 7.15, the progress curves of four different selection schemes are shown, each is con-
trolled by a custom tailored SAT predicate of the problem being solved. All cases are based on
solving 6-bit SAT problems using 4 by 4 loops:

e Curve A represents the theoretical best case where for each generation only one loop is kept,
S0 it reaches all satisfying assignments in exactly 6 iteration generations.

e Curve B represents the worse case where loops are never killed by the monitor, so overcrowding
prevents finding all satisfying assignments for the predicate. It never reaches an average
generation index of 6.

e Curve C represents a selection scheme where 50% SAT sequences are satisfying but selection
occurs only at the final generation (the exploration of the last A bit). It is very slow to find all
satisfying assignments in this case since loops in the central region are trapped while waiting

2 Assuming, of course, that the SAT problem is actually satisfiable; it takes even shorter time to determine a SAT
problem is not satisfiable if there is no loop in the space after some early generations.
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Figure 7.15: The progress speed for different selection schemes. Each selection scheme is con-
trolled by a specially designed SAT predicate of the problem being solved. The vertical axis
shows the average generation index of the cellular automata space, which reveals the progress of
the cellular automata space toward finding all satisfying boolean assignments for a SAT problem.
For 6 variable SAT problems of this example, the generation index is always between 0 and 6.
The horizontal axis shows the cellular automata iteration steps taken, calibrated by the iteration
steps for one full replication cycle of the loops.

for peripheral loops to explore. Outer loops must be erased first to leave space for inner loops
to expand. This is a time consuming process and it takes a much longer time to finish (12
iteration generations).

e Curve D represents the same 50% satisfying ratio of all possible boolean assignments but the
removal of unsatisfying loops occurs at the fifth bit A (i.e., one generation earlier than Curve
C). We can see that the time it takes to find all satisfying assignments is faster than Curve
C, at generation 8.

From Figure 7.15 it seems to suggest that the earlier the selection occurs, the faster the method
will be in finding all satisfying SAT sequences. To examine this belief two additional 50% curves
with even earlier selection stages are plotted in Figure 7.16, together with the two original 50%
curves of Figure 7.15. The critical region is zoomed in to facilitate comparison in this new figure.
It can be seen that the suggestion above is true, that earlier selection at bit 4 does run faster
than selections at bit 5 or 6, but when the selection goes too early in the case of curve D, the
overcrowding effect will kick back which prevents the method from finding all satisfiable answers.
This is similar to the worse case of Figure 7.15.
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Figure 7.16: The progress speed for 50% satisfying assignments at different selection stages.
Again, the satisfying assignment ratios and the selection stages are controlled by custom tailored
SAT predicates. The vertical axis shows the progress of the cellular automata space toward finding
all satisfying assignments for a particular SAT problem, using the average generation index as the
unit. The horizontal axis shows the iteration steps taken, which is calibrated by the steps for one
full replication cycle of the loops. To facilitate comparison, only the critical region are shown in
this Figure.

We come to wonder if the satisfying ratio will influence the speed of finding all satisfying
assignments, too. Figure 7.17 displays solving similar 6-bit SAT problems using 4 by 4 loops, but
at different satisfying ratios and selection stages. In this figure, the critical part is also zoomed in
on.

Curve A represents a 50% satisfying ratio with selection occurring at bit 6.

Curve B represents a 25% satisfying ratio with selection occurring at bit 5 and 6. (We need
two distinguishing bits to trim the satisfying ratio down to 25%).

Curve C represents a 50% satisfying ratio with selection occurring at bit 4.
e Curve D represents a 25% satisfying ratio with selection occurring at bit 3 and 4.

It is obvious from Figure 7.17 that the less the ratio of satisfying assignments, the faster the finding
of all satisfying assignments will be at comparable selection stages, but the speed up can never
go beyond the theoretical best case. Intuitively, the reason for this behavior is because a smaller
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Figure 7.17: Progress curves for different ratios of satisfying assignments and selection schemes.
The same coordinate system as in the previous two figures is used here.

satisfying ratio will allow more loops to be killed by the monitor and can decrease the crowdedness
of the cellular automata space. This will facilitate loop growth and exploration, thus speeding up
the process. Again, the crowdedness of the cellular automata space should be the controlling factor
of the efficiency of the method in finding all satisfying SAT sequences.

To better understand how the crowdedness of the cellular automata space correlates with the
speed of the method, we must have a quantitative measurement of the crowdedness. The crowding
factor for a loop is defined to be four minus the number of directions the loop can still grow. For
a loop alone in the cellular automata space, its crowding factor is 4 —4 = 0, i.e., it is not crowded
at all. For a loop which is fully surrounded by other loops, its crowding factor becomes 4 — 0 = 4,
which is also the maximum value of the crowding factor. The average value of crowding factors of
all loops in the cellular automata space during each iteration is taken as the crowdedness of the
space as a whole.

With the new measurement of the crowdedness of the space, the corresponding crowdedness
curves for solving the same four 6 variable SAT problems of Figure 7.15 are shown in Figure 7.18,
these are for the best case, worse case, 50% selection at the 6th bit, and 50% selection at the 5th
bit, respectively.

e Curve A for the best case has a pulse-like pattern since only one loop is kept during each
generation. Whenever a replication cycle is completed one of the two loops in the cellular
automata space is identified by the monitors as unsatisfying and is removed, so the average
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Figure 7.18: The crowdedness curve for different selection schemes. These selection schemes
are controlled via four manually designed predicates for the four 6 variable SAT problems. Ver-
tical axis shows the average crowdedness of the cellular automata space during the simulation.
Horizontal axis is still the iteration steps calibrated to generations.

crowding factor of the space is jumping between 0 and 1.

e Curve B for the worse case climbs rapidly to a crowding factor around 3 and then stays there.
This high crowdedness prevents further exploration. The whole cellular automata space is at
a standstill; nothing ever changes afterward.

e Curve C represents the crowdedness for a case with a 50% ratio of satisfying assignments and
that selection occurs only at the last (6th) bit. We can see that initially the curve shoots up
rapidly like curve B does until it is almost impossible to continue due to overcrowding, then
a sudden drop of the crowdedness occurs due to the selection process done by monitors for
bit 6. It then fluctuates between the crowding factor of 1.25 and 2.3 for a long time. This is
the time when inner loops get the chance to expand, but slowly.

e Curve D, for a case with 50% ratio of satisfying assignments and selection at the 5th bit,
behaves similarly to curve C. But its drop of crowdedness occurs one generation earlier than
curve C. Since selection occurs when the crowdedness value is lower, the drop of the crowded-
ness curve is deeper, too. Before the curve is able to climb back to a higher value all satisfying
assignments have been found, therefore the curve does not fluctuate.
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Figure 7.19: The crowdedness curve and the progress curve for two different 6 variable SAT
problems. One with a 50% ratio of satisfying assignments, the other with a 25% ratio. Vertical
axis shows either the average generation index (for Curve A and C), or the average crowding
factor (for Curve B and D), of the cellular automata space. Horizontal axis shows the iteration
steps calibrated to generations.

For more comparisons the crowdedness curve and the progress curve are plotted together for
two additional cases. One has a 50% satisfying assignment ratio with selection at the 5th bit, and
the other has a 25% assignment ratio with selections at the 5th and 6th bit. See Figure 7.19.

It is obvious that the 25% curve and the 50% curve behave similarly in the beginning and the
first drop of crowdedness since they both have their first selection occurring at bit 5. But the 25%
curve has one more major drop of the crowding factor, which helps to ease off the congestion of
the cellular automata space, therefore also helps with the speed. As such, the 25% case is able to
finish earlier accordingly.

Our last example is about the long term behavior of the method. In this example, two 9-bit
SAT problems are solved using 5 by 5 loops. The satisfying assignment ratio is controlled to be 1/8,
with selections occurring at bit 7, 8, 9 for the first problem, and bit 3, 6, 9 for the second problem.
The progress curve and crowdedness curve for the two cases are summarized in Figure 7.20. We
can clearly see that early selections in the second case can greatly help in lowering the cellular
automata space crowdedness and can therefore make self-replicating loops proceed faster in finding
all satisfying assignments.

Based on all these observations we can draw the following conclusions. To efficiently find all
satisfying assignments for a SAT problem, the cellular automata space cannot become too crowded.
The average crowding factor must be kept under 2 to avoid slowdown of the search process. If the
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Figure 7.20: Behaviors of solving two 9 variable SAT problems with different selection schemes.
The same coordinates of the previous figure are used in this example. Curve A and C show
the average generation index of the cellular automata space; Curve B and D show the average
crowdedness.

average crowding factor reaches 3 it can halt the whole exploration process, making finding of all
satisfying assignments impossible. Since the average crowding factor is climbing rapidly during each
generation, it must be brought down at least once in three generations if it has to be below 2. Since
the satisfying assignment ratio for a SAT problem is closely related to how many times selections
are made by the monitors, for an 2-bit SAT problem this roughly amounts to a 21% assignment
ratio. This can be seen as the upper bound on satisfying assignment ratio for any particular SAT
problem if we hope to efficiently solve the problem by self-replicating loops.

In Table 7.2 the corresponding satisfying ratio bounds for same entries of Table 7.1 are listed.
The last question is whether these bounds are reasonable for the SAT problem. Of course, it is
harder to find all satisfying boolean sequences for a particular SAT predicate than to find just a
few. If we only want to determine whether a SAT predicate is satisfiable, this method can tell us
the answer in fewer number of iteration steps and within a predetermined cellular automata space
size, regardless of whether this method can find all satisfying assignments eventually. The reason
for this conclusion is the following. For the best case of SAT problems, where there is only one
loop left in the cellular automata space during each generation: if there is a loop left in the cellular
automata space at the end, we know that the SAT problem being solved is satisfiable. For the
worse case of SAT problems where all loops are crowding together in the cellular automata space
which prevents the exploration of all satisfying assignments, we still have at least those peripheral
loops to prove that the SAT problem is satisfiable. Note that eventually, loops in the periphery will
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loop total maximum | solvable max.

size cells SAT bits | satisfying ratio
n |4n—-1)|x=3n-06 1/(2%/3)
3 8 3 50.000000%
4 12 6 25.000000%
5 16 9 12.500000%
6 20 12 6.250000%
7 24 15 3.125000%
8 28 18 1.562500%
9 32 21 0.781250%
10 36 24 0.390625%
11 40 27 0.195313%
12 44 30 0.097656%
13 48 33 0.048828%
14 52 36 0.024414%
15 56 39 0.012207%
16 60 42 0.006104%
17 64 45 0.003052%
18 68 48 0.001526%
19 72 51 0.000763%
20 76 54 0.000381%
21 80 57 0.000191%
22 84 60 0.000095%

Table 7.2: Maximum satisfiability for different SAT problems which self-replicating
loops can effectively solve.

all carry a fully explored bit sequence since there is nothing there to prevent them from continuous
replication, unless they have fully explored their SAT bits. If these peripheral loops survive the
attack of monitors, their bit sequences must be satisfying assignments. Therefore, if we cannot
find all satisfying assignments of a given predicate by this method, that alone has proved that the
predicate is satisfiable since loops in the periphery are always fully explored and satisfying.

We know that generally for a SAT problem to be hard it must have a very small satisfying
assignment ratio, otherwise other methods like random testing for arbitrary values should have
solved it already, and it will not be hard. Therefore, these satisfying ratio bounds are believed to
be reasonable. Actually, we can see that the lower the satisfying ratio, the harder the SAT problem
will be if solved by traditional methods, and the better the self-replicating loop method can perform
to find all satisfying boolean assignments.

All selection schemes in this section are designed and controlled in a particular manner in order
to see how they affect various parameters. In real life we do not know in advance what the selection
scheme will be for a particular SAT problem. All we have will be just a predicate for satisfiability
testing. Even so, the efficiency of finding all satisfying assignments may still be improved by doing
one or more of the following preparations before we start to breed our self-replicating loops:

e First, do early random tests to determine the satisfying assignment ratio of the predicate
in question. If a high satisfying ratio is found with random testing, the predicate is easily
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satisfiable, and the self-replicating loop method should not be used.

e Rearrange clauses and bits in a way such that the most referenced bits will be the earliest to
be explored.

e Change some of the unexplored binary code A’s to B’s. This will change the exploration
sequences among the parent and child loops, which may help a bit in spreading out loops.

e For a big SAT problem more than one seed loops can be started at widespread locations of
the cellular automata space. Each of those loops carries a partially explored bit sequence
where explored bits can be in random positions of the sequence. This also helps to spread
out loops. By adding more initial loops the searching process can also be speeded up, too.

7.5 Discussion

In this chapter it is shown that a controlled evolution in cellular automata space is possible. Here
the self-replicating loop is used to carry SAT codes, the potential assignments to the variables of a
SAT predicate. The evolution of the loops is controlled in such a manner such that the replication
process of the loops will carry out the enumeration of all possible SAT assignments.

A selection process like competition among loops in the cellular automata space is then im-
plemented by rules. Those loops which do not survive the environment pressure (imposed by the
monitors) will die, leaving only those loops which carry satisfying SAT codes to the SAT predicate.
This is the first demonstration that self-replicating structures can be used to solve problems as well
as replicate.

With this new methodology, a new series of cellular automata models can be built, where self-
replicating structures can be used to solve computationally expensive practical problems while they
are going through the artificial evolution and selection. The codes that self-replicating loops can
carry are not limited to only binary bits as in the examples of this chapter; it can be any arbitrary
code.

The eventual goal will be to get autonomous and evolving self-replicating agents in the cellular
automata space. Those self-replicating structures can make meaningful adjustments, given the
hardships and changes of their environment, and produce intelligent solutions. Those environmental
hardships and the solutions those self-replicating agents come up with, if mapped properly to a
problem domain, can potentially solve many of our real world questions.

7.6 The cellular automata rule listing

// >k >k ki ok sk ok sk sk ok skeok sk sk sk ki sk sk ok skeok sk sk skok sk sk sk skok sk sk skokok sk sk ok kosk sk sk skokosk sk skokoskosk skokokoskoskokokok skokokok skk
// >k >k ki ok sk ok sk sk ok ki ko sk sk ki sk sk ok skok sk ok skok sk sk sk skok ok sk skokok sk sk ok kosk sk sk skokosk sk skokoskok skokokoskoskokokok skokokok skk
// SAT Problem Solving Self-Replicating Rules

// written by Hui-Hsien Chou
// >k >k ki ok sk ok ok sk ok ki sk sk sk ki sk sk ok skok sk sk okok sk sk sk ok sk sk skokok sk sk ok kosk sk sk skokosk sk skokoskosk skokokoskoskokokok skokokok skk

// ok ok ok ok ok ok ok ok ok ok kok ok ok ok okook skook skok skok kok skoko ok skok skok skok skoko sk ok ok kok sk ok skokeok skskokok skok skok skokeskok skokskok ok ok

//

// >k sk >k ok ok ok ok ok ok ok okok ok sk ok sk sk skook skok kok kok skok sk skok skok kok skokokok sk kok skok skoke sk skoskokosk skokoskok skokoskok skokskokok ok
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| ik The SAT Predicate Encoding Section ki
| FRRRR R AR R
// A SAT predicate is encoded using the following four arrays, posl|]
// pos2][], codel[], and code2[]. The position arrays listed the
// index of the variables in a SAT predicate, and the code arrays
// listed the expected boolean values of the variable. For example,
// as set in the following arrays, the predicate

/]

// (x-1 and not x-3) or (not x_1 and x.2) or (not x-2 and x_3)

//

// are encoded.

// This variable denotes the number of SAT clauses.
int noclauses = 3;

// First condition position for each clause. The number is the index
// of the binary bit within each SAT sequence.
int posl[] ={ 0,1, 1, 2};

// First condition listing for each clause.
int codel[] = { 0, "1:code’, ’0:code’, '0:code’};

// Second condition position for each clause. The number is the index
// of the binary bit within each SAT sequence.
int pos2]] = { 0, 3, 2, 3};

// Second condition listing for each clause.
int code2[] = { 0, ’0:code’, "1:code’, "1:code’};

>k sk >k k ok ok ok ok ok ok ok sk ok ok ok sk sk skook kok kok skok skok sk skok skok kok skoko sk ok ok kok skok skokosk skoskoksk skokoskok skokoskok skokoskkok ok
// >kokosk ok kokok kokok koksk ok ck ok Default Rules >kokoskokok kokosk kokokokok skokosk kck ok
// Kok ok ok ok ok ok ok ok ok ok kok ok ok okoskok skook skok skok kok skok sk skok skok skok skokosk ok ok kok sk ok skokesk skskokok skok skok skokeskok skokskok ok ok

// The default action is to maintain no change if none of the rule
// changes the next state value for each field. Therefore, the current
// value is copied over to the next state for each field.

default code=code;
default pos=pos;
default direc=direc;
default clause=clause;
default special=special;
default color=color;

// Kok ok ok ok ok ok ok ok ok ok kok ok ok ok okok skook skok skok skok skok sk skok skok skok skoko sk ok ok kok ok ok skokesk skskokok skok skok skokeskok skokskok ok ok

| Rk Direction to Neighbor Position Conversion stk
] RSO R OO

// This function maps a directional pointer in the 'direc’ field to
// a neighbor position.

nbr PointTo(int x)
rot if (x=="<:direc’) return ea;
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else return ce:;

// >k ok >k ok ok ok ok ok ok ok okok ok ok ok sk ok skosk kok kok kok skok sk skok kok kok skokoskok sk kok skok skokosk skoskokok skokoskok skokoskok skokoskokok ok
// kokosk ok skokok kokokokokok kck ok Virus Broadcasting Rules Kook ok ok ok ok ok ok ook kokok kokoskoksk kokkok
// >k ok >k k ok ok ok ok ok ok okk ok sk ok sk ok skook ok skok kok skok sk skok skok skok skokoskok ok kok skok skoke sk skoskoksk skok skok skokoskok skokoskkokk

// If there is no virus in a cell, thus clause==0, then copy the virus

// value from either the north or west neighbor, if any of them exists,

// then modify the value by one modulo the total number of the clauses.
// This modified virus value is then stored in the cell.

if (clause==0)
if (no:clause)
clause=no:clause%noclauses+1;
else if (we:clause)
clause=we:clause%noclauses+1;

// Kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok skok skook skok skok kok skok ok skok skok skok skoke sk ok ok kok ok ok skokesk skskokok skok skok skokeskok skokskok ok ok

// kokokokokkok ok kok ok ok The SAT Rules for Settlng Flags ok ok ok ok ok ok ok ook ok okokokokok ok kokk
// >k ok >k ok ok ok ok ok ok ok okk ok okook sk sk skeok skok kok skok skok sk skok skok skok skokoskok ok kok skok skoko sk koskoskok skok skok skokoskok skokskokokk

// If special is set at any of the destruction flags, reset it.
if (special=="#" || special==""")
special=".";

// If current cell is bound (thus direc!=0) and there is a destruction
// flag nearby, set the destruction flag in the current cell.
else rot if (direc && no:special=="#")

special="#’;

// This rule retracts the replicating arm once a collision is found
// (thus the *!" flag is set). It will copy the retraction flag

// until the end of the corner (judged by we:direc=='<") is reached,
// where the retraction flag is converted to the arm extrusion
// flag "*".
else rot if (no:direc=="<,1’ && no:special==""")
if (we:direc=="<’)
special="*";
else
special=""";

// This rule determines if

else rot if (code && direc=="<,2’ && (special=="." || special==""") &&
(ea:code=="D’ || we:code=="D’))
special="+";

// The arm extrusion failure checking. A failed attempt at new arm

// extrusion will result in flag '*’ being set in the corner, which

// allows further attemps at the other direction later.

else rot if (code=="F’ && direc=="<,1’ && no:direc==0 && we:code=="0’)
special="%";
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// This rule resets flag '+’ to ’-” after seeing L.
else if (special=="+4" && code=="L")
special="-";

// Code E will always clear the special field.
else if (code=="E’)
special=".";

// This rule resets the special flags '+’ or -’ to either quiescent
// state or flag '*’, depending the condition
else if (special=="+" || special=="-") {
if (PointTo(direc):code=="0")
special=".";
else if (code=="A’ || code=="B’)
special="*";

// The virus checking codes. If a SAT bit is on the current cell (thus
// pos!=0)...
} else if (pos) {

// see it it violates the first variable expectation of the virus
if (special=="." && pos==posl|clause] && code==codel][clause])
special="7"; // yes, set the alarm flag ?

// if alarm flag has been set, see if it violates the second
// variable expectation. If both are violated, set the destruction
// flag '#’ to infect the loop. Otherwise, reset to normal, the
// loop is not infected.
else if (special=="?" && pos==pos2|[clause])
it (code==code2[clause])
special="#"’;
else
special=".";

}

// >k ok >k sk ok ok sk ok ok ok okok ok sk ok sk sk skook skok skok skok skok sk okok kok kok skok sk k ok skok skok skokesk skoskokosk skokoskok skokoskok skokoskokokk
// kokoskokok skokokkokkkokck ok Rules for Bound Cells Kook ok ok ok ok ok ok ok ok sk kok skokkok
// Kok ok ok ok ok ok ok ok ok ok kok ok ok ok skeok skook kok skok kok skoko ok skok skok skok skok sk ok ok kok sk ok skokesk skskokok skok skok skokeskok skokskok ok ok

it (direc) {
// if any of the destruction flag is set, reset everything to 0
if (special=="#’ || special==""") {
direc=0; code=0; pos=0; color=0;

// do checking for real codes only
} else if (code)

// if D sees a '+’ flag nearby, it disappears
if (code=="D") {
rot if (easpecial=="+") {
code=".";
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direc=".%;
color=0;

}

// if the closing of loop is detected, set Code D
} else rot if (direc=="<,2" && nw:direc=="<,1’ && nw:code &&
ne:direc=="<,3’ && ne:code) {
code="D’;
pos=0;

// the rule to close the loop in the child loop
} else if (PointTo(direc):code=="D’) {
rot if (direc=="<,2’) {
direc="<,3’;
code=no:code;

}

// the rule to generate the EF sequence seeing flag ™*’
} else if (code!="0" && PointTo(direc):code=="0’ &&
code!="E’ && special=="*’) {

code="E’;
pos="0";

} else if (code=="E’)
code="F";

// the rule to prevent signal E getting copied beyound corner
else rot if (direc=="<’ && ea:code=="E’ && ea:direc=="<,1’
&& se:code=="F") {
code="0’;
pos="0";

// same rule to prevent signal F getting copied beyound corner
} else if (code=="0" && PointTo(direc):code=="F")
code="0’;

// rules to explore binary bit A or B to 0 or 1 when seeing '+’
else if (PointTo(direc):special=="+") {
if (PointTo(direc):code=="A")

code="0’;

else if (PointTo(direc):code=="B’)
code="1";

else

code=PointTo(direc):code;
pos=PointTo(direc):pos;

// rules to explore binary bit A or B to 1 or 0 when seeing '+’
} else if (PointTo(direc):special=="-") {
if (PointTo(direc):code=="A")

code="1";
else if (PointTo(direc):code=="B")
code="0";
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else
code=PointTo(direc):code;
pos=PointTo(direc):pos;

// normal copying rules for signal flow in the loop
} else {
code=PointTo(direc):code;
pos=PointTo(direc):pos;

}

// quiescent state changes to 'o’ when seeing signal G
else if (PointTo(direc):code=="G")
code="0’;

>k sk >k ok ok ok ok ok ok ok okk ok sk ok sk ok okook skok skok skok skok sk skok skok kok skoko sk ko skokok sk ok skoko sk skoskoksk skok skok skokoskok skokskokok ok
// kokokokokoskokokkokokkok ok x Rules for Unbound Cells kokokokokkok ok koo kokok ok ok ok
// >kok ok ok ok ok ok ok ok ok ok kok ok ok ok skok skook skok skok kok skoko sk kok skok skok skoko sk ok ok kok ok ok skokesk skskokok skok skok skokeskok skokokok ok ok

} else {

// quiescent state changes to o’ when seeing signal G
rot if (no:code=='G’ && (no:special==0 || no:special==""7")
&& nowdirec=="<,3’ && ne:direc!="<,2’) {
direc="<,3’;

// check to see if collision occurs
if (so:direc==0 || so:color==no:color) {// no collision

code="0’;
color=no:color;

} else // ves, collision, set
special="""; // flag ’!" to retract arm

// EF sequence extruding a new branch
} else rot if (so:code=="E’ && so:direc=="<,1’ &&

(so:special==0 || so:special==""") && no:direc==0) {
direc="<,1’;
code="G’;
color=""";

// The rule to set turn the signal flowing direction
// when seeing signal L
} else rot if (no:code=='L’ && (no:special==0 || no:special==""")
&& nowdirec=="<’ && nw:direc==0) {
direc="<,3’;
if (so:direc==0 || so:color==no:color)
color=no:color;
else
special="1";
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Chapter 8

Conclusion

Cellular automata are massively parallel systems where only strictly local interactions are allowed
[von Neumann, 1966; Codd, 1968]. Such a model of parallel computation has the beauty of regu-
larity since all of the “cells” are running the same rule set. It also has the beauty of being scalable
since we can build bigger and bigger cellular automata spaces just by adding more processing cells
to the periphery of the current space. Assuming that cellular automata simulation chips can be
built in quantity, we can easily make up our cellular automata space by connecting those chips in
a grid-like manner, with local connections only. There are never long wiring, fan out or special
topology problems. There is no bus congestion or scheduling problem either. Cellular automata
are immune to these problems which usually occur in other parallel computer systems. All cellular
automata processing cells are running simultaneously and never need to wait for one another.

Although simple in its architecture, cellular automata have been found to generate complex
behaviors even from a simple rule set. One classic example is the Game of Life rule set. It is a very
simple cellular automata rule set, yet it dictates a complex, feature-rich world of cellular automata
structures such as the block, breeder, glider, etc., each has a special characteristic and many of
which are moving and changing in the cellular automata space.

The collective behavior of cellular automata cells can be very interesting too. Actually, most
modern cellular automata research is focused on the collective, global behavior of the models. This
global behavior can involve self-organization, self-replication, competition or evolution. In a self-
replicating structure, none of its components controls or even knows about the whole process of
self-replication. It is the distributed yet collaborating behavior that leads people to refer to this
kind of self-replicating structures as artificial life.

It has been shown in this work how self-replicating structures can be made to emerge in a
cellular automata space and how they can be used to solve a classic computer-theoretical hard
problem, the SAT problem. In the following sections, the findings and achievements of this work
are sumiarized, and a list of some future research possibilities are discussed.

8.1 Improvements on cellular automata simulation environments

For the purpose of studying the self-replicating cellular automata structures several software
tools were built during the course of the research. Some of them represent significant improvements
over previously available cellular automata simulation tools. The most notable one is an integrated
general purpose cellular automata simulation software based on a graphical user interface.
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In the past, very few general purpose cellular automata simulation tools were available to cellular
automata researchers. Either they were written with built-in restrictions suitable for specific tasks,
limiting their usefulness for modelling other applications (e.g., Xlife for game of life simulations
[Bennett, 1989]), or they require special hardware devices to operate, which also limits their avail-
ability to researchers [Toffoli & Margolus, 1987]. Although computer speed has increased several
orders of magnitude in the past decade, to use a computer to study cellular automata phenomena,
researchers generally still have to write their own simulation programs for a specific application and
the particular computer platform they use. When I was starting my research several years ago, I
could not find any applicable general purpose cellular automata simulation software which fit my
needs.

This difficulty has been ameliorated by the creation of the integrated, general purpose cellular
automata simulation environment described in Chapter 4. This simulation environment allows
arbitrary neighborhood templates and data fields to be defined by the user via an easy-to-use
graphical user interface. It takes care of simulation details and also provides for backtracking with
the simulations. The backtracking functionality is the only one avaliable in any cellular automata
simulation environment that the author knows about.

Another major improvement made in this research over previous cellular automata simulation
tools is the creation of a high level cellular automata rule set programming language, Trend.

Cellular automata rule set definition in the past has always been laborious and nonintuitive.
Researchers sometimes build the rule set transition functions into their own cellular automata
simulation software. Usually, a table is used to represent the rule set transition functions, and
the simulation program reads in the table to control the simulation. Either way, rule development
is inflexible and inconvenient. A table-like rule set also does not convey to the reader the high
level meanings and purposes of the cellular automata rules. In addition, the describable cellular
automata rule set complexity is limited by the table size, which in turn is limited by the available
computer memory. Altogether, using a table lookup method would have been impractical for the
research presented in this work.

The high level cellular automata programming language developed in this work addresses all of
the problems mentioned above. The Trend language is a high level language very similar to the
popular C programming language, so researchers can easily translate their ideas into rules with
this language without worrying about the formating details of the rule table or its size. Readers of
a cellular automata rule set expressed in the Trend language can easily understand the semantics
of the rules. The Trend compiler automatically converts the rule set into low level code for actual
simulation evaluations, so performance is not compromised by the ease of use. Actually, the addition
of invariant skipping and caching mechanisms on top of rule set evaluation makes the simulation
even more efficient than traditional table lookup cellular automata simulators without these two
additional mechanisms.

The most significant benefit of the new cellular automata simulation environment and the high
level Trend programming language is that they now allow much more complex cellular automata
models to be defined and simulated by computers. To gain an idea about how the envelope of
cellular automata modelling complexity has been expanded by the new software tools, some previous
software tools for cellular automata simulation and their capabilities are listed below for comparison.
This list is not meant to be complete and thorough; it just serves the purpose of giving the reader
an idea about how things have been dramatically improved by the new tools.

e XLife. Game of life simulation. Fixed Moore neighborhood (9 neighbors). One bit field depth
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(alive or dead). Cannot change the rule set or the field depth without reprogramming the
code [Bennett, 1989].

e CAM-6!. General purpose cellular automata simulator with dedicated hardware accelerator.
Several neighborhoods to choose from but all are limited within the 3 by 3 grid of the Moore
neighborhood. Four bit planes provide a total of 16 states in each cell. Some limitations on
how the bit planes can see each other. The middle level Forth programming language is used
to describe cellular automata rules, which is compiled into tables stored in the CAM-6 for
simulations [Toffoli & Margolus, 1987].

e xca. Self-replicating loops simulation. Two neighborhoods, Moore and von Neumann, to
choose from. Ten states in each cell maximum. Rules are defined in tables [Reggia et al.,
1992].

And, by comparison:

e Trend. General purpose cellular automata simulator with no special hardware requirement.
Portable to all major computer platforms. Neighborhood template limited only by a 11 by 11
grid but even this could be expanded by reprogramming. A total of 64 bit planes provides up
to 204 states in each cell. Bit planes division into different data fields provides great flexibility.
High level programming language interface for rule set programming.

8.2 Discovery of a cellular automata rule set for emergent self-
replicating structures

With the help of the improved cellular automata simulation tools, an emergent self-replication
rule set, which allows a randomly initialized cellular automata space to generate self-replicating
structures, was discovered. This is the first rule set reported for emergent self-replication in a
cellular automata space. It is also an important demonstration of the self-organization potential of
the cellular automata models.

Self-organization is one important aspect of what makes living things different from non-living
machineries. Although we can build very complex machines today, none of them can be built by
the self-organization of component parts into place, nor can any man-made machines self-replicate.
On the contrary, living things can generally direct the replication and construction of themselves.
The theoretical study of self-organization as evidenced in the self-replicating behavior sheds light
on how we may build more autonomous, self-replicating and self-repairing machines or computer
programs in the future.

The emergent self-replication cellular automata rule set employs a general purpose self-replication
rule set which leads to progressively more diverse and more powerful self-replicating structures. In
the past, each individual self-replicating structure developed needed its own supporting rule set
to work. It was difficult for different self-replicating structures to co-exist in the same cellular
automata space due to rule set differences, not to mention to have them cooperate or compete
in the same space. Now, with this new emergent self-replication rule set, structures ranging from

LCAM-7 and CAM-8 are supposed to be better than CAM-6, but technical specifications are not yet available to
the author.
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only 2 by 2 cells to that of the size of the cellular automata space can be supported by the same,
general purpose set of rules. This is a very significant step forward for self-replication studies in
particular and self-organization studies in general. The general purpose self-replication rule set
makes only limited assumptions about the shape of self-replicating structures and only prescribes
how self-replicating steps can be performed in a shape and size independent manner. This kind of
extraction of function, independent of cellular automata structure size and shape context, is a very
important step toward building more complex and general cellular automata structures and rule
sets.

In addition, the emergent self-replication rule set demonstrates how a bootstrapping process can
be implemented among cellular automata structures so that smaller loops can gradually generate
larger and more complex loops. This feature, combined with the characteristic code carrying
mechanism described in the following section, makes a fully evolvable cellular automata universe a
step closer to reality.

8.3 Evolution and selection with self-replicating loops

The other major research effort of this work was to make the self-replicating loop carrying
code in addition to its own self-replicating code. This allows other functions to be built into the
self-replication process of the loops. In the past, the sole function of self-replicating structures has
been to replicate themselves. There has never been an attempt to also add a purpose to their
self-replication. This work presents the first attempt to encode additional information into the self-
replicating structures, specifically, information that represents boolean assignments to the variables
of a SAT predicate.

With the loop now carrying this additional code, meaningful evolution and selection becomes
possible in the cellular automata space. Self-replicating loops no longer die simply because of space
limitations, but because of the unsatisfied predicate assignments they carry. In other words, the
selection phenomenon is geared around finding satisfying boolean assignments to a SAT predicate,
and the self-replicating loops evolve to generate different assignments to a SAT predicate. Ounly
those which carry satisfying assignments will survive the selection process.

The ability to add problem-specific code to the self-replicating loop body and the selection
mechanism built into the cellular automata space suddenly make the self-replication phenomena
potentially useful to us. In addition to the theoretical interest of studying self-replication and
self-organization modelled within cellular automata space, we can now also study solving some
practical problems by the self-replicating loops.

Combining the application code carrying, artificial selection self-replication rule set together
with the general purpose self-replicating and growing features of the emergent self-replication rule
set, a new level of cellular automata implementation is near achievement. Now artificial self-
replicating structures can not only breed and grow, but can also evolve and compete, and their
effort in striving to survive in their universe may at the same time ultimately be helpful in solving
real world problems.
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8.4 Future prospects

The current primary limitation of the new general purpose cellular automata simulation en-
vironment is speed. The simulation environment currently runs on sequential computers. Even
though the simulator is not slow compared to other, less flexible simulation software under similar
resource limitations and when they are implementing similar cellular automata models, the new
simulator can be slow when simulating the much more expanded and complex cellular automata
models now made possible by its extended abilities. Therefore, when larger and even more complex
cellular automata spaces and rule sets are developed, it will be necessary to port this simulation
environment to a more powerful, perhaps massively parallel computer. Thanks to the hardware
transparency the simulation environment provides to the user, all Trend language programs will
be executable no matter whether the simulator is running on a sequential computer or a parallel
supercomputer.

Similar applications for self-replicating loops can be studied further. Instead of carrying just
binary codes 0 and 1 as when solving the SAT problem, we can let the loop carry more powerful
and more complex codes. When loops are allowed to evolve and change based on the fitness of the
complex code sequence they carry, much more complex cellular automata behaviors are expected.
This is a new approach toward artificial life and one that will generate more interesting results in
the future.

Another possible direction of research may be to build a new cellular automata rule set with
many functioning units, such as the ability to sense, to search, to communicate and to make
boolean decisions. These new units, when combined with the current functions of signal passing,
turning, growing and replication in the self-replicating rule set, could potentially create a cellular
automata universe so feature rich that these units may go through a phase transition process to
form cooperating self-replicating structures. This has been suggested by some scientists in the
complexity study fields [Kauffman, 1993].

The shape of a self-replicating structure can be changed to some other form to better utilize
the available cellular automata space. Currently, the most popular self-replicating structure shape
is the rectangle loop shape. This shape is not very economical since quiescent cells within the loop
are not used for any purpose. We can try to change the loops to some other forms, probably a solid
rectangle, to improve the cell utilization density of the self-replicating structures.

We can also try to allow self-replicating structures to merge, cooperate and communicate with
each other. This may lead to the discovery of the first multi-cellular self-replicating structures in
the future.
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