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Chapter 1IntroductionCellular automata are computational systems where individual automata are connected in a grid likemanner and only local interactions are allowed among these automata [von Neumann, 1966; Codd,1968; To�oli & Margolus, 1987]. Cellular automata are inherently massively parallel systems. Self-replicating systems are systems that direct their own replication by mechanisms mostly embodiedin themselves. Examples of self-replicating systems in nature are living systems. A self-replicatingstructure in a cellular automata space is a pattern of active (non-quiescent) automata cells whichwill replicate itself based on instruction codes embedded within itself.John von Neumann �rst tried to capture the idea that the fundamental information processingprinciples and algorithms involved in self-replication, although an essential property of living sys-tems, were independent of the physical system which realized them [Burks, 1970; von Neumann,1966]. He designed a computer-theoretic self-replicating machine embedded in a cellular automataspace to support this idea. This opened the door for computer scientists to study the phenomenonof self-replication and other life-like behaviors from an information processing point of view, a �eldthat is referred to today as \arti�cial life" [Langton, 1989; Langton, 1991].The study of self-replication using computational models is a di�erent approach than the syn-thetic way chemists use in their laboratories. Computer models permit arbitrarily large numbers ofsimulations with precise control over the details and parameters of individual experiments. Theyare open to detailed and repeated internal inspection of why certain emerging properties appear inthe simulations. More importantly, as von Neumann notes, they permit one to set aside the issueof what speci�c chemical substances are involved in self-replication and focus on the functionalinformation processing properties that are present. The computational study of self-replicationcan help to develop a better theoretical understanding of the fundamental information processingmechanisms underlying self-replication. Such study may allow computer scientists to build systemsthat are much more autonomous in future systems than we can build today. The choice of cellularautomata as the base model for studying self-replication is especially advantageous since cellularautomata have some nice properties. They are local, simple, scalable and can be easily mapped tophysical systems for hardware implementation.Since von Neumann's pioneering work, the study of self-replicating systems by others has ledto progressively smaller and simpler systems [Codd, 1968; Langton, 1984; Byl, 1989; Reggia et al.,1993a]. The existence of these systems raises the question of whether contemporary techniquesdeveloped by organic chemists studying autocatalytic systems [Orgel, 1992] or the many innova-tive manufacturing techniques currently being developed in the �eld of nanotechnology [Schneiker,1989; Drexler, 1989; Hop�eld et al., 1988] could be used to realize self-replicating molecular struc-1



tures patterned after the information processing occurring with those systems in cellular automataspace. As others have indicated, creation of such self-replicating devices may prove to be criti-cal for atomic-scale manufacturing technology [Drexler, 1989]. In addition, the existence of suchsimple self-replicating systems may provide theoretical support for those theories of the origins oflife that postulate a prebiotic stage involving simple, self-replicating molecules [Or�o et al., 1990;Ponnamperuma et al., 1992].1.1 Speci�c goals, hypothesis and motivationAlthough using computers to study self-replicating systems has long been believed to be promis-ing, and some remarkable discoveries of self-replicating structures have been made with computermodels, the border between man-made machines and true arti�cial living systems is still wide. Eventhough arti�cial self-replicating structures can direct their own replication, and therefore in somesense achieve life-like behavior, they were designed and implemented by people. It is of interest tobe able to automatically generate self-replicating structures in a cellular automata space.In addition, although self-replication phenomena in cellular automata spaces have attractedgreat scienti�c interest and are worth studying by themselves, they have not actually made anyreal contribution in solving problems. Therefore, it is also highly desirable to be able to see howself-replicating structures may potentially solve problems at the same time they are doing theirself-replication.This research attempts to address the following issues:� whether it is possible to provide a general rule set for self-replication of arbitrary cellularautomata structures, in contrast to previous work where di�erent self-replicating structuresgenerally required di�erent, incompatible, cellular automata rule sets;� whether it is possible for self-replicating phenomena to be made to occur spontaneously in acellular automata space, in contrast to previous work where the �rst self-replicating structurealways has to be introduced by a person before self-replication will start; and� whether it is possible to make use of the self-replicating behaviors of cellular automata struc-tures for useful computational work, in contrast to previous work, where self-replicating struc-tures only do self-replication, but nothing more.In the short summary below and in the following chapters, it can be seen that all of theseprimary research issues have been addressed and answered in the a�rmative.1.2 Summary of accomplishmentsA major contribution of this work is the discovery of a general purpose self-replicating ruleset, which supports self-replicating structures with di�erent sizes and shapes. These variable sizestructures replicate and grow in the cellular automata space at the same time. This is a signi�-cant improvement over previous self-replication incarnations, in that each di�erent self-replicatingstructure needs its own supporting cellular automata rule set to function. Since previous rule setsare generally incompatible with each other it is unlikely they could support di�erent self-replicatingstructures in a cellular automata space at the same time using any one of these rule sets. The new2



general purpose self-replicating rule set not only supports di�erent self-replicating structures at thesame time, it even allows structures to grow or evolve into others of increased size. This kind ofuniversality provides the foundation upon which to base the next major accomplishment.With this general purpose self-replicating rule set, it is demonstrated in this research thatit is now possible to automatically create self-replicating structures rather than, as has beendone exclusively in the past, to design them manually. It is shown that self-replication can be anemergent property arising from numerous concurrent but local interactions of basic componentsin the cellular automata space. Starting from a spontaneously generated minimal self-replicatingstructure, it is shown that larger and larger structures can grow out of the starting one, resultingin a fast expanding, self-replicating colony with lots of variation beyond what the original minimalstructure might suggest.Another main result in this research is the application of the self-replicating structures todo something besides just replicate. It is shown that computations can be done as well as self-replication by the self-replicating structures. Speci�cally, it is demonstrated that in addition to theirown replication, self-replicating structures can be made to direct their e�ort at solving a computer-theoretical hard problem, the Satis�ability (SAT) problem. Self-replicating structures can be madeto carry \characteristic codes." During the course of self-replication, their characteristic codes canevolve and selection forces are based upon the �tness of these characteristic codes so that thosethat survive at the end of the evolution process will be answers to the SAT problem.All the discoveries above would not be possible without using a new general purpose cellularautomata simulator and an associated high level cellular automata programming language, Trend.These software tools are also a major contribution of this work. The new simulator and languageprovide easy backtracking of a cellular automata simulation in a graphical environment, speciallanguage constructs to take advantage of the rotational symmetry of the cellular automata space, alarge bit depth in each cell, arbitrary neighborhood templates and data �eld divisions within cells.These and lots of other features are not found in other past or currently available cellular automatasimulation systems.1.3 Overview of dissertationThe rest of this dissertation is organized as follows. A short summary of previous relatedwork on cellular automata self-replicating systems is given in Chapter 2. This is followed by adescription of some preliminary work relevant to this research in Chapter 3. A general purposecellular automata simulation environment developed for this research is introduced in Chapter 4.After that, a high level cellular automata programming language, Trend, also developed for thisresearch, is introduced in Chapter 5.By using the new cellular automata simulation environment and the high level cellular automataprogramming language Trend, an emergent self-replicating cellular automata rule set, which allowsself-replicating structures to spontaneously emerge and grow in cellular automata space, is presentedin Chapter 6. Following that, in Chapter 7, another major cellular automata rule set which supportsself-replicating structures capable of solving the Satis�ability (SAT) problem by letting them carrycharacteristic code and go through a selection process in the cellular automata space, is introduced.Finally, conclusions are drawn and some future research prospects are pointed out in Chapter 8.3



Chapter 2Previous Related WorkBrief summaries of previous related work are presented in this chapter, including the de�nitionof cellular automata, the idea of self-replicating structures in cellular automata space, and somepreviously available software and hardware tools for cellular automata simulations. This briefreview chapter provides a general orientation about what is being studied and gives links to themain goals of the research. It also re
ects the contributions made in this work, which will becomeapparent in the following chapters.2.1 Cellular automataA cellular automata model is an array of identical processing units called cells that are arrangedand interconnected throughout space in a regular manner. Each cell represents the same abstract�nite automaton (computer). Cellular automata can be one, two or multiple dimensional arrays,but generally only one and two dimensional cellular automata are studied. One dimensional cel-lular automata have been extensively studied in the past and generated lots of interesting results[Wolfram, 1994; Wuensche & Lesser, 1992], but we are mainly concerned with two dimensionalcellular automata in this thesis since they are the basis for self-replication studies.In two dimensional cellular automata models, space is divided into cells, each of which can bein one of n possible states. These internal states are often represented by integers starting from 0to n� 1, where 0 is usually used to designate the \quiescent" or \inactive" state. Non-zero valuesare said to be \active" states. At any moment most cells are in the quiescent state while other cellsare in active states. During each instance of simulated time, each cell or component uses a set ofrules called the transition function to determine its next state as a function of its current state andthe state of its immediate neighbor cells. Which cells are considered to be immediate neighborsvaries from model to model. Two popular choices are the \von Neumann neighborhood" and the\Moore neighborhood", which are named after their inventors. In the von Neumann neighborhooda cell has four immediate neighbors: north, east, south and west. Generally, a cell is also part ofits own neighborhood, so there are �ve neighbors in the von Neumann neighborhood. The Mooreneighborhood includes all neighbors in the von Neumann neighborhood, plus the four diagonalneighbors: northeast, southeast, southwest and northwest, for a total of nine neighbors. The vonNeumann neighborhood and Moore neighborhood are given in Figure 2.1.In cellular automata the state transitions of each cell are governed by the same set of ruleswhich collectively are called the transition function. For example, suppose each cell can be in oneof the two states, 0 and 1. Also suppose that the Moore neighborhood is used. Then one transition4
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Figure 2.1: The von Neumann and Mooreneighborhoods.rule might be \If a cell is in the state 0, and of its eight neighbor cells exactly three are in state1, then that cell should change to state 1 at the next instance of time, otherwise, it remains instate 0." Each single rule is simple and based solely on locally-available information. However,experience has shown that the complete set of rules forming the transition function, through theirapplication by all cells in the model simultaneously and repetitively over time, can produce veryrich and at times striking behavior. For this reason, cellular automata are being increasingly usedas models in physics, chemistry, biology, and other scienti�c �elds [Gerhardt et al., 1990; Preston& Du�, 1984; To�oli & Margolus, 1987; Wolfram, 1986].The rule used as an example in the previous paragraph is actually part of the famous Game ofLife rule set developed by John Conway in the 70's [Gardner, 1970]. The second rule in this ruleset is \If a cell is in the state 1, and of its eight neighbor cells more than three or less than two arein state 1, then that cell should change to state 0 at the next instance of time, otherwise, it remainsin state 1." The �rst rule is called the rule of birth, and the second rule is called the rule of death.Literally, a new active cell will be born if there are exactly three active neighbors around it, andan active cell will die due to overcrowding (over three active neighbors) or loneliness (less than twoactive neighbors). The application of the Game of Life rule set on a sample cellular automata spacecon�guration is shown in Figure 2.2. Note that we follow the convention here and in the following�gures of showing quiescent cells in state 0 as being empty or blank. The grid lines between cellswill not be shown in the following �gures to avoid cluttering. We can examine the content of eachcell before and after each transition to verify that the rules have been correctly followed. This �gureshows a staged diagonal transition of a pattern, called a \glider", in the cellular automata space.This pattern is not prescribed anywhere in the rule set. Instead, it is a phenomenon arising fromthe collected behavior of each individual cell doing local interactions only. It is thus an emergentproperty of the cellular automata space under the Game of Life rule set.2.2 Self-replicating models in cellular automataJohn von Neumann �rst conceived of using cellular automata to study the logical organizationof self-replicating structures or \machines" [von Neumann, 1966; Burks, 1970]. His and subsequentrelated work has tried to obtain a deeper understanding of the fundamental information processingprinciples and algorithms involved in self-replication, independent of how they might be physicallyrealized. A self-replicating structure in cellular automata space is represented as a contiguouscon�guration of active cells, each of which represents a component of the \machine". At eachinstance of simulated time, each cell or component uses the same rules to determine its next state5
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Figure 2.2: The Game of Life rule set. Successive application of the Game of Life rule set on aninitial cellular automata pattern called the glider. This glider pattern will gradually move towardthe lower right corner while each cell is plainly following the Game of Life rules.as a function of its current state and the state of its immediate neighbor cells. Thus, any processof larger scale self-replication captured in a model like this must be an emerging behavior arisingfrom the strictly local interactions that occur among cells. Based solely on these local interactionsa self-replicating structure goes through a sequence of steps to construct a duplicate copy of itself.John von Neumann's original self-replicating structure was a universal constructor-computerembedded in a two-dimensional cellular automata space that consisted of 29-state cells. It wasliterally a simulated digital computer that used a construction arm in a step-by-step fashion toconstruct a copy of itself from instructions on a tape (see Figure 2.3). Subsequently, Codd showedthat if one assumes that the components or cell states meet certain symmetry requirements, vonNeumann's con�guration could be done in a simpler fashion using cells having only eight possiblestates [Codd, 1968]. Other variations of von Neumann's model have been studied to examine anumber of issues, and continue to generate theoretical consideration today. However, while thesestructures self-replicate, they consist of at least tens of thousands of components or active cells,and have thus not actually been fully simulated computationally because of their tremendous sizeand complexity.The complexity of these early cellular automata models seemed consistent with the remarkablecomplexity of biological self-replicating systems: they appeared to suggest that self-replication is,from an information processing perspective, an inherently complex phenomenon. However, morerecently a much simpler self-replicating structure based on 8-state cells, the sheathed loop, wasdeveloped (see Figure 2.4a) [Langton, 1984]. The term \sheathed" here indicates that this struc-ture is surrounded by a protective covering or sheath (X's in Figure 2.4). To create a sheathedloop the biologically-implausible requirement of universal computability used in earlier models wasabandoned. To avoid certain trivial cases, sheathed loops are required to have a readily-identi�ablestored instruction sequence that is used by the underlying transition function in two ways: as in-structions that are interpreted to direct the construction of a replica, and as uninterpreted datathat is copied onto the replica [Langton, 1984]. Thus, sheathed loops are truly \information repli-6
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Figure 2.3: von Neumann's self-replicating machine. Schematic diagram of von Neumann's self-replicating cellular automata con�guration (modi�ed from an illustration in [Burks, 1970]). Notethat this �gure is not drawn to scale; the actual con�guration contains tens of thousands of cells,and has not been fully simulated on a computer before.cating systems" in the sense that this term is used by organic chemists [Orgel, 1992]. For example,in Langton's loop (Figure 2.4a) the instruction sequence \+ + + + + + L L" can be identi�ed byreading o� the loop content in a clockwise manner starting with the �rst '+' at the branching cell.This instruction sequence directs the loop to replicate another copy of itself in 151 iteration stepsin the cellular automata space.The original sheathed loop was a modi�ed version of a device called a periodic emitter that waspreviously used as a storage element and timing device in a simpli�ed version of von Neumann'soriginal model [Codd, 1968]. It consists of 86 active cells as pictured in Figure 2.4a, and itstransition function has 219 rules based on the von Neumann, or 5-cell neighborhood. Subsequently,two smaller self-replicating sheathed loops containing as few as 12 active cells in one case have beendescribed (Figure 2.4b) [Byl, 1989].These previous self-replicating structures have a drawback that they are all man-made: peopledesigned them, in contrast to the fact that real self-replicating molecules are most likely naturallyemergent. The replication of these self-replicating structures must be started with an initial Adamstructure put in the cellular automata space by human experimenters, and the environment inwhich they replicate, the cellular automata space, must be free of impurities. Any tiny bit of7
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Figure 2.4: Langton and Byl's self-replicatingloops. (a) Langton's self-replicating loops,SL86S8V. (b) Byl's self-replicating loops,SL12S6V.unwanted con�guration in the cellular automata space can dramatically ruin the whole replicationprocess. Such a high vulnerability to noise is not observed in natural molecular replications.A second drawback of these past self-replicating structures is that they have no useful compu-tation ability. Although von Neumann's and Codd's self-replicating machines are capable of uni-versal computation, they cannot be easily simulated on digital computers. Even if they could, theirmethod of computation in the cellular automata space is still based on the sequential Turing Ma-chine architecture, and is not e�cient enough to do any practical computation. The self-replicatingloop structures of Langton and others, although they can be simulated by computers, are incapableof doing computations. They basically just replicate themselves without doing any other usefulwork.In this research, all the aforementioned drawbacks of self-replicating structures have been ad-dressed. We will see, in Chapter 6, how self-replicating structures can be made to emerge in arandomly initialized cellular automata space, to replicate with some resistance to noise, and togradually grow in size. We will also see, in Chapter 7, how self-replicating structures can be madeto carry characteristic code, to compute solutions of a hard problem while they are replicating, andto do these computations in an e�cient, parallel manner.2.3 Software and hardware environments for cellular automataresearchJohn von Neumann studied and solved his 29 state universal computer-constructor problemusing an analytical approach, using only his own reasoning and testing a few cases by hand [Burks,1970]. Usually, for the kind of research people have been doing with cellular automata, the followingsteps are taken. The investigator de�nes an experimental transition function for a cellular space. Heor she then speci�es an initial cellular automata con�guration and then computes a �nite fragmentof the resultant cellular automata space in an attempt to produce one of the desired phenomena.This step is repeated until it succeeds or it appears not promising. In the latter case an alternatede�nition of the transition function may be tried. If the step succeeds, the de�nition is augmentedfurther in an attempt to produce other desired phenomena, and this procedure repeats again.Without the help of a computer, these steps are tedious and almost impossible to be followed by ahuman.Edgar Codd tried to reduce von Neumann's 29 state machine to 8 states, using an \interactiveman-machine method" [Burks, 1970]. As von Neumann did, Codd chose as subgoals certain ele-8



mentary phenomena such as signal passing and path extrusion, but Codd used a computer to assisthim. There are great advantages to such simulations. The computer can make routine calcula-tions rapidly as well as accurately, and it can assume responsibility for storing and arranging largeamounts of data in a way that makes vital information immediately available to the user when heneeds it. With a computer to test each possible transition function by simulation, Codd could aimdirectly at achieving the basic phenomena needed for his 8 state cellular automata machine. Hissuccess was due in part to the assistance he received from the computer [Burks, 1970]. Startingfrom Codd and other people in his time, the use of computers for cellular automata research hasbeen extensive and natural.Codd's computer was small in scale, having only 8K words of memory with 18 bits per wordand a memory access time of 5 microseconds. It was used with only four I/O devices: a paper tapereader, paper tape puncher, online typewriter, and o�-line printer. The cellular automata spacewas printed on paper for visualization, and saved on tapes. Commands to control the simulationwere typed in using the typewriter [Codd, 1968]. Although his system was state-of-the-art in the60's, it is not very useful compared to today's technology.We need a cellular automata simulation system which can exploit the high speed computingpower available today, and which also incorporates the mainstream graphical user interface strategywe all enjoy now. Although there were many public domain cellular automata speci�c simulationsystems which had been developed when the work described in this dissertation began, they wereusually designed for a speci�c model, such as the Game of Life rule set. There are very few generalpurpose cellular automata simulators in existence. Often a researcher has to write his or herown simulation program in order to carry out studies with a new cellular automata model. Twoof the most capable general purpose cellular automata simulation systems are brie
y introducedbelow. There are other cellular automata simulation programs which are documented online in theInternet1.The CAM-6 machine (abbreviated CAM in the following) is a cellular automata simulationsystem involving both hardware and software components [To�oli & Margolus, 1987]. It consists ofa module that plugs into a single slot of the IBM-PC or compatible models, and driving softwareoperating under PC-DOS. The control software for CAM is written in Forth, and runs on theIBM-PC with 256K of memory. Forth is a semi-high level post�x programming language wherethe operators are always after their operands in the program source code, which is sometimes hardto read and understand. The Forth language adopted by CAM has been extended to contain avariety of words and constructs useful for de�ning cellular automata rules and for constructing,documenting, and running experiments. Source rule sets written in Forth are converted by the hostcomputer to an internal rule table stored in the CAM hardware before the simulation starts. Thesimulation results can be visualized on a color monitor; each cell is represented by a colored dot.The colormap for di�erent cell states can be speci�ed by the user to suit the requirements of eachexperiment.In CAM, up to four bit-planes are available for encoding the state of a cell; thus a cell can haveup to 16 states. However, there are some restrictions on the collective use of the four bit-planes;the center cell can see only values of its own four bit planes at once. CAM has a limited setof preselected neighborhoods; there is no general mechanism to allow de�nition of arbitrary newneighborhoods. To avoid boundary problems, CAM space is wrapped at the edges to form a torus-1http://alife.santafe.edu/alife/topics/cas/ca-faq/soft/soft.html as of 7/17/96.9



like connected cellular automata space in all four directions. See the reference [To�oli & Margolus,1987] for more details about the CAM machine. The CAM machine is important because it is the�rst general purpose cellular automata simulation system that is widely available, it is the �rst lowcost hardware accelerated simulator, it is the �rst simulator to introduce the concept of data �eldswithin cells, and it is also the �rst popular cellular automata simulator using a high level languageinstead of a table to describe its rule sets. Although the capabilities of the CAM machine may seemcomparably outdated, it has inspired several new cellular automata simulator designs including theone presented in this work, and is still being used by researchers around the world. However, mostpeople do not have access to this hardware and thus its usefulness is limited.Cellular is a system designed to model physical systems [Eckart, 1995]. It consists of thefollowing separate program components: a programming language, Cellang, and associated com-piler, cellc; a cellular automata simulator for execution, avcam; and a viewer for display output,cellview. Compiled Cellang programs can be run using avcam with input provided separately in adata �le. The result of an execution can either be viewed on screen or output to a �le. The outputcan later be viewed using the cellview utility.Cellular uses an imperative programming language Cellang to implicitly specify deterministiccellular automata rules. Programs written in Cellang have two main components, a cell descriptionand a set of statements. The cell description determines how many dimensions there are, what�eld(s) each cell contains, and the bit depth in each �eld. There are three kinds of statements inCellang: if, forall and assignment. The Cellular space is also folded at the boundary cells toform a torus shape in the case of a 2-D space. This is a common practice among cellular automatasimulators. A prede�ned variable cell has a special meaning: it refers to the current cell underconsideration. Assignment to cell sets the next state value of the current cell. Neighbors canbe arbitrarily referenced using a relative indexing format such as [0,1] for the east neighbor or[-1,1] for the northwest neighbor. There are no named neighborhood positions in the language.The Cellang language does not have language constructs to exploit the rotational symmetry of thecellular automata space, nor does it have mechanisms to prevent nonisotropic cellular automatarule set or rule con
icts. There are other interesting features of the Cellular system; additionalinformation of the system can be obtained online2.Although the two simulation systems above are very capable in doing many general purposecellular automata simulations, they are still inadequate to the kind of work required in this research.Speci�cally, we need a system which allows easy backtracking to a previous cellular automata spacecon�guration, a high level cellular automata programming language which can exploit the rotationalsymmetry of the cellular automata space, a larger bit depth in each cell, etc. For these and otherreasons, a new general purpose cellular automata simulation system has been developed, along witha new language for the de�nition of cellular automata transition functions. It is more powerful thanmost, if not all, of the previously available cellular automata simulation systems.We will come back to make some comparisons of the new system with the two simulatorsmentioned above after the new system and its associated cellular automata programming languagehave been introduced in Chapters 4 and 5. We will see in those comparisons that the new system hassome major advantages over the available ones, especially when doing simulations of the complexcellular automata models we will meet in Chapters 6 and 7.2http://www.cs.runet.edu/~dana/ca/cellular.html as of 7/17/96.10



Chapter 3Preliminary StudiesThis chapter provides a brief description of two preliminary studies relevant to my research. The�rst section describes work in which I participated that our group1 did on creating and studyingeven simpler self-replicating loops [Reggia et al., 1993a; Reggia et al., 1993b]. The motivation forthis research was that creating self-replicating structures of minimal complexity is an importantprerequisite to studying their spontaneous emergence. I also did some random con�guration exper-iments with these self-replicating loops. The second section describes a pilot study I did to extendthe cellular automata framework to facilitate supporting movement and interaction between com-posite structures [Chou et al., 1994]. Traditional cellular automata models are very inconvenient inmodeling chemical reactions when reactants represented by multiple cells in the cellular automataspace need to act and move together at once. The motivation for this research was to see if thismodelling limitation could be remedied by allowing multiple cells to be considered as a whole inan extended cellular automata model.3.1 Simpli�ed self-replicating loopsIn the work done here, it is essential for one interested in the spontaneous emergence of self-replication in cellular automata space to have self-replicating structures as small and simple aspossible. The smaller and simpler the structure, the greater the chance of its self-assembly fromcomponents which are not self-replicating in the cellular automata space. That is the motivationunderlying this �rst part of my preliminary studies.After studying previous cellular automata models of self-replicating structures we hypothesizedthat adjustments to the rules controlling the interactions between components should allow elimina-tion of the sheath (see Chapter 2), and this in turn would make simpler and smaller self-replicatingstructures possible. It was not obvious a priori, though, that complete removal of the sheath ispossible. The sheath was introduced by Codd and retained in developing sheathed loops becauseit was believed to be essential for indicating growth direction and for discriminating right fromleft in a strongly rotation-symmetric space (see [Codd, 1968, p.40] and [Byl, 1989, p.296]). Infact, we discovered that having a sheath is not essential for these tasks. In the following it isdemonstrated that removing the sheath leads to smaller self-replicating structures that also havesimpler transition functions. For clarity, self-replicating structures are labeled in the following bytheir type (SL = sheathed loop, UL = unsheathed loop) followed by the number of components,1In addition to myself, J. Reggia, S. Armentrout and Y. Peng worked on this problem.11
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(a) (b) (c) (d) (e)Figure 3.1: Initial con�gurations of some unsheathed loops. (a) UL48S8V. (b) UL32S8V. (c)UL10S8V. (d) UL06S8V and UL06S6V (same initial con�gurations). (e) UL05S6V.the rotational symmetry of the individual cell states (S=strong, W=weak), the number of possiblestates a cell may be in, and the neighborhood (V=von Neumann, M=Moore). For example, thesheathed loop in Figure 2.4a of Chapter 2 is labeled SL86S8V because it spans 86 active cells, hasstrongly-symmetric cell states with each cell assuming one of 8 possible states, and its transitionfunction is based on the von Neumann neighborhood.To understand how the sheath (surrounding covering of X's) can be discarded, consider theunsheathed version UL32S8V (shown in Figure 3.1b) of the original 86-component sheathed loop(shown in Figure 2.4a). The cell states and transition rules of this unsheathed loop obey the samesymmetry requirements as those of the sheathed loop, and the signal sequence +-+-+-+-+-+-L-L-directing self-replication is also the same (read o� of the loop clockwise starting at the lower rightcorner and omitting the \core" cells in state O). As illustrated in Figure 3.2, the instruction sequencecirculates counterclockwise around the loop, with a copy passing onto the construction arm. Asthe elements of the instruction sequence reach the tip of the construction arm, they cause it toextend and turn periodically until a new loop is formed. A growth cap of X's at the tip of theconstruction arm enables directional growth and right-left discrimination at the growth site (seenin Figures 3.2b-d). It is this growth cap that makes elimination of the sheath possible. As shown inFigure 3.2e, after 150 units of time the original structure (on the left, its construction arm havingmoved to the top) has created a duplicate of itself (on the right).The unsheathed loop UL32S8V in Figure 3.1b not only self-replicates but it also exhibits allof the other behaviors of the sheathed loop: it and its descendants continue to replicate, andwhen they run out of room for new replica, they retract their construction arm and erase theircoded information. After several generations a single unsheathed loop has formed an expandingcolony where actively replicating structures are found only around the periphery. Unsheathedloop UL32S8V has the same number of cell states, neighborhood relationship, instruction sequencelength, rotational symmetry requirements, etc. as the original sheathed loop and it replicates inthe same amount of time. However, it has only 177 rules compared to 207 for the sheathed loop,and is less than 40% of the size of the original sheathed loop (32 active cells vs. 86 active cells,respectively). The rules forming the transition function for UL32S8V are given in [Reggia et al.,1992]. An example of rules for another loop UL06W8V can be seen later in Figure 3.4.Successful removal of the sheath makes it possible to create a whole family of self-replicatingunsheathed loops using 8-state cells. Examples are shown ordered in terms of progressively de-12
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(d) (e)Figure 3.2: Successive states of unsheathed loop UL32S8V. (a) At t=3, the sequence of instruc-tions has circulated 3 positions counterclockwise around the loop with a copy also entering theconstruction arm; (b) at t = 6, the arrival of the �rst + state at the end of the constructionarm produces a growth cap of X's; (c) the con�guration at t=80; (d) the con�guration at t=115;and (e) at t=150, a duplicate of the initial loop has been formed and separated on the right; theoriginal loop is already beginning another cycle of self-directed replication.creasing size in Figure 3.1a-d and are summarized in the �rst four rows of Table 3.1. Each of thesestructures is implemented under exactly the same assumptions about number of cell states available(8), rotational symmetry of cell states, neighborhood, isotropic and homogeneous cellular space,etc., as sheathed loops. Given the initial states shown here, it is a straightforward but tedious andtime-consuming task to create the transition rules needed for replication of each of these structuresusing software we developed for this purpose. The smallest unsheathed loop in this speci�c groupusing 8-state cells, UL06S8V in Figure 3.1d, is listed in row 4 of Table 3.1; it is more than anorder of magnitude smaller than the original sheathed loop. Consisting of only six components andusing the instruction sequence +L, it replicates in 14 units of time (column \Replication Time"in Table 3.1). Replication time is de�ned as the number of iterations it takes for both the replicato appear and for the original loop to revert to its initial state. This very small structure uses atotal of 174 rules (\Total Rules" in Table 3.1) of which only 83 are needed to produce replication(\Replication Rules"); the remaining rules are used to detect and handle \collisions" between dif-ferent growing loops in a colony, and to erase the construction arm and instruction sequence onloops during the formation of a colony.The smallest previously described structure that persistently self-replicates, designated SL12S6Vhere, uses 6-state cells, has 12 components (Figure 2.4b of Chapter 2), and as indicated in Table 3.1,requires 60 state change replication rules [Byl, 1989]. We have created unsheathed loops, designatedUL06S6V and UL05S6V, using 6-state cells with half as many components and requiring only 46or 35 state change replication rules, respectively (last two rows of Table 3.1). The initial state ofUL06S6V is shown in Figure 3.1d and that of UL05S6V is shown in Figure 3.1e; the complete tran-13



                                              State

                                     State    Change    Reduced  Reduced

       Replication Total Replication Change Replication  Total Replication

 Label    Time     Rules   Rules     Rules    Rules      Rules    Rules

 -----    -----    -----   -----     ----     -------    ------ ----------

UL48S8V    234      177    167       109        104        75       72

UL32S8V    150      177    166       109        104        74       71

UL10S8V     34      163    117        74         54        50       40

UL06S8V     14      174     83        91         49        66       32

UL48W8V    234      142     98        80         52        68       42

UL32W8V    151      134     98        77         52        66       42

UL10W8V     34      114     82        43         35        31       24

UL06W8V     10      101     58        44         31        33       20

SL86S8V    151      207    181       118        101        90       77

UX10W8V     44      173    103        70         36        57       25

SL12S6V     26      145    140        61         60        46       45

UL06S6V     18      115     83        64         46        30       30

UL05S6V     17       65     58        35         35        23       23Table 3.1: Replication time and di�erent measure on number of rules for each loop.sition functions are given in [Reggia et al., 1992]. To our knowledge, UL05S6V is the smallest andsimplest self-replicating structure created under exactly the same assumptions as sheathed loops[Langton, 1984; Byl, 1989].Cellular automata models of self-replicating structures have always assumed that the underlyingtwo dimensional space is homogeneous (every cell is identical except for its state) and isotropic (thefour directions NESW are indistinguishable). However, there has been disagreement about the de-sirable rotational symmetry requirements for individual cell states as represented in the transitionfunction. The earliest cellular automata models had transition functions satisfying weak rotationalsymmetry: some cell states were directionally oriented [von Neumann, 1966]. These oriented cellstates were such that they permuted among one another consistently under successive 90� rota-tions of the underlying two-dimensional coordinate system (rotational symmetry in these modelsis described mathematically in [Codd, 1968, pp.15{16]). For example, the cell state designated "in von Neumann's work is oriented and thus permutes to di�erent cell states !, #, and  un-der successive 90� rotations; it represents one oriented component that can exist in four di�erentstates or orientations. However, the simpli�ed version of von Neumann's self-replicating universalconstructor-computer [Codd, 1968] and the dramatically simpler sheathed loops [Langton, 1984;Byl, 1989] are all based upon more stringent criteria called strong rotational symmetry. With strongrotational symmetry all cell states are viewed as being unoriented or rotationally symmetric. Thetransition functions for all unsheathed loops shown in Figure 3.1 also use this strong rotationalsymmetry requirement (indicated by S in their labels). Their eight cell states are designated. O # L - * X +where the period designates the quiescent state. All of these states are treated as being unoriented14
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(a) (b) (c) (d) (e)Figure 3.3: Unsheathed loops based on weak rotational symmetry. (a) UL48W8V (b) UL32W8V(c) UL10W8V (d) UL06W8V (e) UL05W8V.or rotationally symmetric by the transition function2.The fact that the simplest self-replicating structures developed so far have all been based onstrong rotational symmetry raises the question of whether the use of unoriented cell states intrin-sically leads to simpler algorithms for self-replication. Such a result would be surprising as thecomponents of self-replicating molecules generally have distinct orientations. To examine this issuewe developed a second family of self-replicating unsheathed loops, shown in Figure 3.3 whose initialstate and instruction sequence are similar to those already described in Figure 3.1. However, forthe structures in Figure 3.3 weak symmetry is assumed, and the last four of the eight possible cellstates . O # L ^ > _ <are treated as oriented according to the permutation (.)(O)(#)(L)(^ > _ <). In other words, the cellstate ^ is considered to represent a single component that has an orientation and is thus permutedto >, _ and < by successive 90� rotations of the coordinate system, while the remaining four cellstates do not change. For example, in Figure 3.3b the states >, _, and < appear on the lower,left and upper loop segments, respectively, to represent the instruction sequence <<<<<<LL.While cells in such a model have 8 possible states and are thus comparable in this sense with theabove work on sheathed and unsheathed loops (Figures 2.4 and 3.1), they also can be viewed assimpler in that they have only �ve distinct possible components. As can be seen in Table 3.1(rows 5{8) where the presence of oriented cell states or weak symmetry is indicated by W in thestructure labels, relaxing the strong rotational symmetry requirement like this consistently led totransition functions requiring fewer rules than the corresponding strong symmetry version; this istrue by any of the measures in Table 3.1. This decrease in complexity occurred in part becausethe directionality of the oriented cell states intrinsically permits directional growth and right-leftdiscrimination, making even a growth cap unnecessary.As noted earlier, the complete transition function includes a number of rules that are extraneousto the actual self-replication process (e.g., instruction sequence erasure) and many rules which2Care should be taken not to confuse the rotational symmetry of a cell state as interpreted by the transitionfunction with the rotational symmetry of the character used to represent that state. Here the character L is notrotationally symmetric, for example, but the cell state it represents is treated as such.15



....> -> ^   ...^O -> <   ...>. -> O   ...#. -> O   ..<<_ -> #

..OOO -> ^   ^.O__ -> .   >__.L -> L   v.O__ -> .   <...# -> .
<..L_ -> L   O.<O. -> v   O.<O^ -> v   O._.> -> >   O._>_ -> <
O^___ -> v   OvO._ -> >   OOO._ -> >   L____ -> O   #____ -> O

Rules after reduction for UL06W8V:

..... -> .   ....> -> ^   ...^O -> <   ...>. -> O   ...>< -> .

...v. -> .   ...v< -> .   ...O. -> .   ...OO -> .   ...L< -> .

...LL -> .   ...#. -> O   ..>>O -> .   ..<<. -> #   ..O.O -> .

..OOO -> ^   ..OL. -> .   ..L.. -> .   ..L>O -> .   ..#v. -> .

.>... -> .   .<vv< -> .   .<L.L -> .   .O>.. -> .   ^...L -> L
^.OOO -> .   >...L -> L   >.O.L -> L   >OO.L -> L   v.O.L -> .
<.... -> <   <...# -> .   <..LO -> L   O...> -> >   O...O -> O
O..>O -> <   O..L. -> O   O.^>O -> <   O.<O. -> v   O.<O^ -> v
O.O.> -> >   O.OL. -> O   O.L.O -> O   O^O.> -> v   OvO.v -> >
OO.O. -> O   OO.OL -> O   OOO.> -> >   OOL.O -> O   OLL.O -> O
L..Ov -> O   L.>.O -> O   L<>.O -> O   L<v.O -> O   LO^.O -> O
LO>.. -> O   L#.Ov -> O   #.<L. -> O

Rules for replication for UL06W8V:

Figure 3.4: Cellular automata rule compression. Top: rules for replication of UL06W8V. Bottom:reduced rules for the same loop, UL06W8V.simply specify that a cell state should not change. The state change rules alone are completelyadequate to encode the replication process. For this reason, we believe that the number of statechange rules used for one replication is the most meaningful measure of complexity of transitionfunctions supporting self-replication. As shown in the sixth column of Table 3.1, this measureindicates that, from an information processing perspective, algorithms for self-directed replicationcan be relatively simple compared to what has been recognized in the past, especially when orientedcomponents are present.The simplicity of unsheathed loop transition functions when oriented components are used iseven more striking if one permits the use of unrestricted placeholder positions in encoding theirrules. I implemented a search program which takes as input a set of rules representing a transitionfunction, such as those forming the top part of Figure 3.4, and produces as output a smaller setof reduced rules containing \don't care" or \wildcard" positions (bottom part of Figure 3.4). Thisprogram systematically combines the original rules, replacing multiple rules when possible with asingle rule containing positions where any cell state is permissible (designated by the underlinecharacter ` '). Introduction of such wildcard positions is done carefully so that the new reducedrules do not contradict any of the original rules, including those that do not change a cell's state.The size of the reduced rule sets that result from applying this program to the complete original setof rules and to only the replication rules of each of the cellular automata models described aboveis shown in the rightmost two columns of Table 3.1. For example, with UL06W8V the single newrule L ! Othat means \state L always changes to state O" replaces seven original replication rules, while the16



single rule > .L ! Lindicating that L follows > around a loop replaces three original replication rules. With UL06W8Vthis procedure reduces the set of rules needed for one replication from 58 to 20. Thus, by capturingregularities in rules through wildcard positions, it is possible to encode the replication process forunsheathed loop UL06W8V in only 20 rules (Figure 3.4, bottom part).This work done on simplifying loops is very useful with regard to my research. It not only gaveme hints on how the basic building blocks can be constructed, but also on where to start searchingfor emerging self-replicating structures. Also, the experience of designing software which facilitatescellular automata modeling was quite helpful.The self-replicating loops introduced in this section were constructed by giving both a dedi-cated cellular automata rule set and a well organized initial con�guration. Each dedicated cellularautomata rule set for a loop is incompatible with one another. Intuitively, the cellular automatarule set should be �xed and should not be changed during the course of self-replication. On theother hand, if the end goal is to discover emergent self-replicating structures, then the initialcon�guration should be allowed to vary and be randomly determined. This means that the cellularautomata rule set to support emergent self-replication should be much more universal than thosedescribed above in order to encompass all possible situations in the cellular automata space. Itshould specify a correct next state value for any cell in the cellular space and with any possiblecurrent neighborhood con�guration. In addition, the cellular automata rule set should be sharedamong di�erent loops which are growing at the same time in the same cellular automata space.If one closely examines the self-replicating loops described above it becomes evident that thereare di�culties in using them directly for emergent self-replication research. The self-replicatingloops we have now are all very fragile: if the initial con�guration is wrong by even one cell, or ifa single unwanted disturbance in the form of a nonquiescent cell adjacent to a loop occurs duringthe replication process, then the result can be unpredictable and can end in total destruction ofthe replicating process.To examine this issue, some preliminary experiments were done where various disturbances wereapplied to self-replicating loops. These disturbances can basically be classi�ed into two types. Inone type a self-replicating loop was made incomplete (e.g., some part of it removed) either initiallyor during its replication. In the second type the self-replicating loop was not changed but someextra active cells were put into its periphery.Figure 3.5 shows two examples of the �rst type of disturbance. In Figure 3.5a the tip L ofUL10W8V as indicated is removed; the result is a con�guration as shown which will cycle throughsome simple patterns but can never grow beyond its current size. In Figure 3.5b an O of UL32W8Vis removed as indicated; the result is a �xed pattern of O's as shown.Figure 3.6 shows two examples of the second type of disturbance. In Figure 3.6a # state is addedin the periphery of UL32W8V. The result is a growing static area of O's which will �nally takeup the whole cellular automata space. In Figure 3.6b, O is added to the periphery of UL10W8V.Interestingly enough, this will not disturb the loop; instead, it will inhibit the growth of the loop.The loop will constantly send out signals through its arm but these signals will all be killed by theadded O so the loop is no longer self-replicating.In most cases examined in this fashion the self-replicating loop structure starts to deteriorateonce a disturbance is introduced, and it does not take long for the whole cellular space to run17



O<<   L
O L   O
OOOL>>O

   <
  v#OOO
OO##O O
O O O O
OOO#OOO
    O
    O

OO<LLOOO
v      O
O      O
O      O
v      O
O      O
O      O
>OO>OO>OOOOO

        O
OOOOOOOOO
OOO    OO
OOO   OOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOOOOOOO
OOO#><OOOOOOOOO
   >  OOOOOOOOOO

(a) (b)Figure 3.5: Two examples of removing an active cell from a self-replicating loop and the results.The removed active cells are indicated by arrows. (a) UL10W8V with its tip L removed duringself-replication. (b) UL32W8V with one of the O's removed initially.into an unpromising status such that no self-replication can proceed. Since random, unexpectedcon�gurations are assumed in my research, this shows that to design a robust general purpose ruleset that allows a structure to survive at random environment con�gurations is hard. We will seehow such a rule set is constructed in the following chapters.3.2 An extended cellular automata model with binding and move-ment supportsThe second direction I took during my preliminary studies was the introduction of movementand binding into basic cellular automata models. Most past work on computational models ofself-replicating structures has been done with cellular automata. While such models have producedinteresting results, they have been limited in terms of their biological plausibility. For example,most previous cellular automata models of self-replicating structures do not allow movement of thesestructures. As a �rst step to address this issue, I designed and implemented a software environmentwhich permits composite structures spanning multiple cells to randomly translate and rotate. Thissystem is described in detail elsewhere [Chou et al., 1994]. The ideas involved were examined inthe context of simulating a speci�c chemical reaction, a self-replicating deoxyhexanucleotide, C-C-G-C-G-G, which is referred to here as molecule T. This speci�c reaction was selected as a casestudy because: (1) it is the �rst report of autocatalytic replication of an oligonucleotide; (2) it has
OO<LLOOO
v      O
O      O
O      O
v      O
O      O
O      O      #
>OO>OO>OOOOO

             <O#<
         <<OOOO#^
     <<OOOOOOOO##^
O<OOOOOOOOOOOOO#
 OOOOOOOOOOOOOO#<
 O      OOOOOOO#^
 O      OOOOOOO##^
 O      O   OOO#
 O      ^     O#<
 O      O   ><##^
 O      O   O####^
 OOOOOLL^OO>OOOO
              O
              O
              O

OOO
O O    O
L>>OO

v<L
O O    O
OOOOL>^

(a) (b)Figure 3.6: Two examples of adding active cells to the periphery of a self-replicating loop andthe results. (a) a # is added close to UL32W8V; (b) an O is added close to UL10W8V.18



Compound*

d(MeO-C-C-Gp)
d(HO-C-G-Gp-Ph-Cl)
d(MeO-C-C-G-C-G-Gp-Ph-Cl)
d(MeO-C-C-Gp-C(=N-R1)-NH-R2)
R1-N=C=N-R2

Symbol

A
B
T
A*
CDI

*Me is methyl, Ph is phenyl, C is cytosine, G is guanine,
R1 is C2H5 and R2 is C3H6-N(CH3)2OTable 3.2: Initial chemical species modeled for deoxyhexanucleotide reactions.been more thoroughly studied from a kinetic point of view than other related systems; and (3) itis signi�cant to prebiotic chemistry [von Kiedrowski, 1986].The chemical species involved in the autocatalytic reaction that I used to demonstrate myapproach are listed in Table 3.2. The right hand column speci�es a symbol representing the twotrideoxynucleotides (A, B) that can react to form the hexadeoxynucleotide (T). Graphically, thesereactions can be represented as in Table 3.3 and Table 3.4. The labels associated with the arrowsrepresent the probability of the reaction taking place as explained later in this section.There are four simple molecules in the simulation: A, B, T, and A* (top row of Figure 3.7).They are treated as basic, or indivisible units in the simulation. Composite molecules are formedby bonding between these simple molecules. The bonding of simple molecules to form compositemolecules is indicated by the reverse color of the icons. For example, the reverse color of compositemolecules in the middle row of Figure 3.7 indicates that they are a single, bound structure ratherthan separate molecules that happen to be adjacent to each other, as shown in the last row. Sincesome molecules occupy multiple cells, we assign an anchor point, where all references of positionsare made. The anchor point for each single cell molecule is simply its cell. The anchor points formulti-cell molecules are drawn in Figure 3.7. The anchor points for multi-cell molecules are alwaysat their lower-left corner when they are sitting upright as shown in the �gure.The actual reaction occurs in a three dimensional space, but for simplicity a two dimensionalspace is used as has generally been done with cellular automata in the past. This two dimensionalspace is divided into a grid of cells. Each molecule is located at some particular cell position(s),with some molecules (e.g., T, A*T) occupying multiple cells. In displaying what is occurring duringa simulation, simple small icons similar to those shown in Table 3.3 and 3.4 are used to representmolecules. Each icon in a cell indicates that a molecule of that type is in the indicated spatiallocation with the indicated orientation; for simplicity it is assumed that only one molecule canoccupy a cell at a time. Each movement of a molecule must be discrete in a cell-to-cell manner.The simulation can be viewed on the screen, as depicted in Figure 3.8. The simulated world ismuch like that of a cellular automata model except for the following di�erences:� Each cell in the cellular automata is a state machine in itself, but the cell used here is just aspatial position that a molecule can occupy.� It's possible to have a molecule which occupies more than one cell and acts as a whole. But19
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3. Monomer B. Its active side (    ) can interact by hydrogen bonding with the
corresponding portion (    ) of the templae (T) leading to a reversible association of
the complex TB.

B

B

TT

+
splitBT

bindBT

4. Monomer B can also associate reversibly with the complex TA.

B

A

T

+
splitB_AT

bindBAT
A

T

B

5. Complex TAB can also be formed by the reaction:

B

T

A

+

splitA_BT

bindABT
A

T

B

6. Monomer A reacts irreversibly with 1-(3-dimethylaminopropyl)-3-
ethylcarbodiimide (CDI) leading to A's activation:

A A*
+ CDI

activeACDI

7. Complex TA can also react irreversibly with 1-(3-dimethylaminopropyl)-3-
ethylcarbodiimide (CDI) leading to its activation:

A

T +
CDI activeATCDI

T

A*

1. Initial chemical species:

A

TT

A

+
splitAT

bindAT

2. Monomer A. One of its sides (    ) can interact by hydrogen bonding with the
corresponding portion (    ) of the template (T) leading to a reversible association of
the complex TA:

Table 3.3: Deoxyhexanucleotide reactions modeled, part one.
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8. The hydrolysis of CDI (irreversible reaction) decreases the rate of formation of
the hexadeoxynucleotide. Its consumption from the reaction mixture is the limiting
factor that causes the autocatalytic replication to end.

C2H5-N=C=N-C3H6-N(CH3)2 + H2O C2H5-N=C(-OH)-NH-C3H6-N(CH3)2

hydrolysisCDI

9. A* behaves the same as A in terms of association with the template:

10. Complex TA*B reacts irreversibly leading to the formation of a new complex,
TT:

11. Complex TT dissociates reversibly forming two single- stranded templates:

12. Monomer A* and complex TA* undergo deactivation by hydrolysis:

13. Another route to the synthesis to the template is the non-directed template
reaction of A* with B:

T

A*

T

+
splitAST

bindAST

B

T

+
splitB_AST

bindBAST
T

BA*A*

B

T

+

splitAS_BT

bindASBT

A*

T

BA*

A*

T

BA* joinASBT

T

T

T

T bindTT

splitTT
T

T

+

A*
+ H2O

hydrolysisAS
A

+ product

T

A*

+ H2O
hydrolysisAST

T

A

+ product

B
+

joinBAS T
+ productA*

A+
joinAAS

+ productA* A A
p-p

14. A side reaction producing a pyrophosphate is:Table 3.4: Deoxyhexanucleotide reactions modeled, part two.
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examplesFigure 3.7: Sample deoxyhexanucleotide reaction molecules. Top row: simple molecules. Middlerow: composite molecules treated as single structures as indicated by reverse coloring. Bottomrow: adjacent molecules that are not bonded together and treated as independent entities. Anchorpoints for multi-cell molecules are indicated by arrow marks.in cellular automata, there is no concept of \multiple cells as one".One drawback of traditional cellular automata models is their lack of an aggregate operator:each cell acts individually according to local rules and in general a composite pattern/structurespanning multiple cells cannot act as a whole3. There is also no concept of bond formation betweenstructures occupying adjacent cells. These limitations pose an immediate problem when repre-3It is possible to simulate movement of composite structures in cellular automata models such as the gliders inthe Game of Life [Gardner, 1970], but this movement often involves cyclic structural transformations and is notapplicable to simulating chemical reactions.

Figure 3.8: Sample simulateddeoxyhexanucleotide world con�guration. Eachicon denotes a molecule of some kind. The�gure also shows the control menu and scrollbars of the program.22
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Figure 3.9: Data structures used by the deoxyhexanucleotide simulator. The computationalspace is represented by a two-dimensional pointer array of cells. If there is a molecule occupying acell position, the cell will contain a pointer to the appropriate molecular data structure allocatedsomewhere in memory.senting molecular structures with cellular automata. Although it is easy and straightforward torepresent each simple molecule in an individual cell, it is very hard to represent composite moleculesthat span multiple cells and still move as a whole. For example, suppose that a nucleotide is repre-sented as a sequence of 10 units spanning 10 cells. If one wants to represent rotation or translationof such a multi-cell structure as a unit, how is one end of the molecule to know the directionthat the other end is moving given that only local operations between adjacent cells can occur?While one can imagine possible solutions to this problem within the basic cellular automata frame-work, they are not realistic in the chemical sense. An alternative approach that I adopted was totry to implement phenomena that involve operations on a multicellular structure considered as aunit (movement, binding, etc.). This was done by making changes and extensions to the cellularautomata framework itself while preserving the local nature of the computations involved.To represent the simulated space computationally, I declared a two dimensional array of pointersto molecular data structures. Each molecular data structure has the following information for themolecule occupying a cell: x, y coordinates, type of molecule, and orientation (Figure 3.9). Thebene�ts of this data structure are that memory storage for molecular information must be allocatedonly for molecules which exist, and molecules can be moved very easily by changing the pointervalues in each cell without explicitly moving the data structure in memory.Before a simulation is started, molecules must be put into the array representing the simulatedspace. The initialization procedure will put as many molecules of each kind as de�ned by the userinto the space, each with a random position and orientation. It does this by �rst picking a randomposition and orientation for each molecule. If that position has already been occupied by othermolecules, it will then search from there sequentially until it �nds an empty space for that molecule.The goal of the initialization procedure is to distribute the initial molecules fairly evenly.The simulation algorithm (Figure 3.10) works by examining at each iteration all cells in thespace trying to �nd if there are any molecules there. The order of examining cells is determinedrandomly for each iteration (called epoch), so there will not be any bias toward any direction of the23



simulated space. For each molecule found, the procedure in Figure 3.10 does the following:1. See if the molecule there will change its identity. Possible changes are dissociation (split intotwo molecules), hydrolysis (deactivation of the molecule), and condensation (dehydrationreaction of A*BT to form TT). If one of these does occur, the molecule has changed itsidentity; the procedure would then proceed to examine the next cell.2. If no identity change occurs, the procedure then determines a random new orientation for themolecule. If the cells for the new orientation have not been occupied by other molecules, therotation is made successfully4. But if the cells in the new location are already occupied byother molecules, a check for potential chemical reactions is made. If a reaction does occur, themolecule changes its identity, and the procedure proceeds to examine the next cell. Otherwise,the rotation cannot be made and the molecule must stay with its old orientation.3. If no reaction has occurred, the procedure now determines a random new position for themolecule. If the cells for the new position have not been occupied by other molecules, thetranslation is made successfully. Otherwise, the procedure determines whether a chemicalreaction occurs. If a reaction does occur, the molecule changes its identity, and the procedureproceeds to examine the next cell. If no reaction occur, the translation cannot be made andthe molecule must stay in its old position.Molecules rotate and translate constantly. In my implementation, a random number generatordetermines the new orientation and position of molecules. In those cases where rotation andtranslation do not result in collisions between molecules, the new molecular orientation and positionare simply updated as described later. If the new position has been occupied by other molecules, acheck for reactions is made. If two molecules collide but do not react, they will remain in positionwith the old orientation. As noted earlier, simply being in cells adjacent to each other with theappropriate orientation does not represent a collision and does not result in a reaction. Collisionsoccur only if one molecule tries to move into the other during random rotations and translations.While it is relatively easy to describe the actions the program takes, the actual coding isquite complex since there are so many di�erent molecules, each with potentially di�erent sizes andgeometric shapes. Every new cell that a molecule tries to occupy must be checked to determine ifit can be safely used, and all of this must be done for four di�erent orientations for each molecule.Molecules in each cell can take on one of four possible orientations: UP, RIGHT, DOWN, LEFT.It is necessary to maintain these orientations since chemical reactions between molecules will occuronly in some speci�c mutual positions and orientations. The other important data is the anchorpoint for each molecule. This is especially important for multi-cell molecules, where rotations andtranslations are related to their anchor point. The orientation and anchor point data are stored inthe molecular data structure related to each molecule (recall Figure 3.9). Each cell in the pointerarray occupied by the same molecule will contain a pointer to the same molecular data structure inmemory. But only the anchor position and orientation of that molecule are stored in the moleculardata structure. When dealing with the translation or rotation of multi-cell molecules, the correctpointers from cells to molecular data structures must be maintained at all times. The anchor pointand orientation of each molecule are heavily referenced to determine the correct pointer updates.When a molecule undergoes a translation, the following things must be done:4Note that single cell molecules can always be successfully rotated.24



for each cell in the spatial array do
   if there is a molecule there then
      if it changes its identity then
         continue with the next cell
      endif

determine a random new orientation for it
if this new orientation has been occupied then

         if this collision causes a reaction then
do the reaction and continue with the next cell

   else
stay with old orientation

   endif
      else

   rotate the molecule accordingly
endif
determine a random new position for it
if this new position has been occupied then

         if this collision causes a reaction then
do the reaction and continue with the next cell

   else
stay in old position

   endif
else
   translate the molecule accordingly
endif

   endif
enddoFigure 3.10: An algorithmic description of the deoxyhexanucleotide simulation procedure.� store the new anchor point coordinates in the data structure of the molecule;� erase all pointers in cells corresponding to the old position of the molecule; and� store the new pointers to the molecular data structure in cells corresponding to the newposition of the molecule.When a molecule rotates, the following things need to be done. Note that rotation is done usingthe anchor point as the center; the anchor point cannot change during rotation.� store the new orientation into the molecular data structure;� for multi-cell molecules, erase pointers in cells corresponding to the old orientation; and� for multi-cell molecule, store pointers in cells corresponding to the new orientation.The rotation and translation of molecules can only occur one step at a time. A step is a changeto an adjacent orientation or position. For example, rotating from orientation RIGHT to DOWNor UP, and moving from coordinates (22; 22) to (23; 23) or (21; 22), etc., are considered to be onestep. Rotating from orientation UP to DOWN or moving from coordinates (22; 22) to (24; 22) aretwo steps. 25



joinASBT joinAA bindABT activeACDI

bindASBT bindAT activeATCDI joinBAS

bindBAST bindBAT bindBT bindTAS

bindTT hydrolysisAS hydrolysisAST hydrolysisCDI

splitAST splitAS_BT splitAT splitA_BT

splitBT splitB_AST splitB_AT splitTTTable 3.5: Deoxyhexanucleotide reaction parameters.Almost all actions during the simulation are determined by random numbers: new orientations,new positions, changes of identity, reactions, etc. There are various parameters which governthe decision making about the change and reaction of molecules (see Table 3.3 and 3.4). Theseparameters are loosely related to chemical reaction kinetic constants. To make the decision makingprocess as e�cient as possible, an integer is used to represent the probability about a particularreaction. Each time a decision needs to be made, a random number generator is called to producean integer. If this random integer is greater than the stored parameter integer, the correspondingdecision is \no"; otherwise, the decision is \yes". For example, to determine if two molecules willreact, �rst the program checks if they collide with each other and have the prerequisite positionsand mutual orientations. If they do, the program simply gets a random number to determine ifthe reaction occurs. If the reaction does occur, the old molecules are replaced by their reactionproducts in the space.Listed in Table 3.5 are those parameters used in the program; they are the labels on the arrowsin Table 3.3 and 3.4. For example, joinASBT5 determines if the two molecules A* and B in thecon�guration A*BT will bond to form TT, bindASBT determines if two molecules A* and BT willreact to form A*BT, and hydrolysisAS determines if A* will be hydrolyzed to form A.Recall from Table 3.3 and 3.4 that molecules can change in four ways: association, dissociation,hydrolysis and condensation. Except for association, which has been described above, the outcomeof the other three changes for each molecule is determined according to its type. For example,to determine whether the molecule AT will split into A and T, �rst a random decision is madeaccording to the reaction parameter SplitAT. If dissociation does occur, two new molecular datastructures are acquired (one from the old one, the other is newly allocated), and their new valuesare established according to the original orientation of the molecule AT.The simulation program I developed was subsequently used by others to conduct a battery ofsimulations [Navarro-Gonz�alez et al., 1994]. As shown in Figure 3.11, it produced data reminiscentof an actual chemical experiment reported in the literature [von Kiedrowski, 1986]. In Figure 3.11a,the time-variation of molecule T's is shown. Comparing that with the actual chemical reactioncurves in Figure 3.11b, the similarity is evident. It is the �rst successful use of a modi�ed cellu-lar automata environment to simulate a self-replicating oligonucleotide. With this technique theoligonucleotide molecules are represented as active cells embedded in a two-dimensional array of5We use \S" in place of \*" in the program code since \*" is inconvenient in the programming language C.26



Figure 3.11: The time-variations of molecules T in deoxyhexanucleotide reactions. Left,simulation results. Right, �gure from actual chemical reactions [von Kiedrowski, 1986].Dr. Rafael Navarro-Gonz�alez and Miss Jayoung Wu provided the simulation data for this il-lustration.inactive cells. Random movements and probability-governed chemical reactions occurring in a cel-lular space can e�ectively simulate the experimental behavior observed in self-directed replicationof oligonucleotides.In this model the multi-cell translation and rotation problems have been solved by making somechanges to the basic cellular automata framework. This experience provided helpful guidance thatled to e�cient implementation of a general purpose cellular automata simulator as described in thenext chapter.
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Chapter 4A General Purpose Cellular Automata SimulatorIntroduced in this chapter is a general purpose cellular automata simulation program that wascreated to support the research described in subsequent chapters. It was used for the development,experiment and simulation of all cellular automata rule sets presented in this work.The simulator is created because there is no other cellular automata simulation software avail-able which can provide the requirements for the research conducted in this work. Speci�cally, weneed a cellular automata simulator which provides a high level language for rule set de�nitions, alarge number of allowable cell states (264), a mechanism for easy backtracking of simulation steps,support for data �elds within cells, and an integrated, easy to use graphical user interface. Whenthis research was starting, none of the available cellular automata simulation software, both inthe public domain and through commercial channels, can provide an adequate set of features asdescribed above to support the research. Therefore, although development of a powerful cellularautomata simulator was not intended at the beginning, it became a very important part of thiswork.Because nothing available came close enough to the speci�cation of the new simulator whichcould have been used as a starting point, this simulator was built completely from scratch. A basicframework of the simulator was developed �rst which allowed at least the beginning of simulationsfor some simple cellular automata rule sets. Then, a large e�ort went into the development ofthe high level cellular automata programming language and its compiler. Parallel to the compilerdevelopment was the development of an evaluation module for the virtual machine code generatedby the compiler. This was used for the actual execution of the cellular automata rules duringsimulations. The language was gradually enhanced to contain a complete set of powerful high levellanguage constructs speci�cally designed for cellular automata. Later, more features were addedinto the visualization and control modules of the simulation, which further extended the usefulnessof the simulator and made it even easier to use.Although the new simulator described in this chapter is developed for the study of self-replicatingstructures in a cellular automata space, it is by no means limited to just that application. It isuseful for a wide variety of simulation needs in the cellular automata research domain. Because ofits high level, general purpose programming language, and its 
exibility in the neighborhood de�-nition and data �eld allocation, the simulator can be used for virtually all one or two dimensionalcellular automata experiments. Even better, it could also be used in other similar domains such asneural network research, where autonomous entities are connected together in a �xed pattern todo cooperative computations.The simulator has a built-in compiler for the high level cellular automata programming language,28



Trend, which can describe cellular automata rules in a highly readable and logical format. Inaddition, the simulator uses a state-of-the-art graphical user interface to provide easy operationsof its functions. It also includes a variety of display options providing clear and instant feedbackabout the simulation status, a built-in text editor for entering and correcting Trend rules on-the-
y,and a sophisticated backtracking mechanism which actually encourages users to experiment withdi�erent cellular automata rules. The backtracking mechanism guarantees safe return to a previouscellular automata con�guration at any time if needed.The Trend cellular automata programming language, its compiler and the low level virtualmachine code generated by the compiler will be the main topic of the next chapter. In this chapter,we will see how the simulator works. First, an example is given of how to use the simulatorto experiment with cellular automata models. Next, a brief description of the various simulatorfunctions and components is given. Finally, the data structure of the cellular automata space thesimulator is based on, the organization of the simulation program, its internal program modulesand their interactions, are described.4.1 Using the simulatorAlthough all the simulator controls will be described in the following sections, it may be clearerto the reader if a typical session using the simulator is �rst demonstrated to conduct the cellularautomata simulation described earlier. The capabilities, and generally how users can use thissimulator to implement a cellular automata model, are also summarized in this section.4.1.1 A typical session using the simulatorUsually the user starts up the simulator, then tries to provide cellular automata templateinformation either by loading a previously designed one from a template �le, or by designing anew one using the template design facility of the simulator. The template information includes theneighborhood positions, data �elds and their sizes, symbols used to denote states, etc. When thesimulator gets the template information it needs, it will present the user with two empty windows,similar to the main window and the text window shown in Figure 4.1, but without active cellularautomata cells and loaded rules which is visible in the windows of Figure 4.1.The user can load a previously designed rule program into the text window of the simulator, orthe user can start inputting new rules into the text window. The user also needs to provide an initialcellular automata con�guration in the main window. This can be done by either hand-inputtingvalues into individual cells of the main window or by loading a previously design con�gurationfrom a �le. The user can also load in a con�guration �le and then modify it for use. If the defaultcellular automata space size is not adequate, the user can also use the \Size" menu item to modifyit. Once the initial cellular automata con�guration and the rule set for simulation have beenprepared, the user can start the simulation by using either the right arrow key or the up arrow keyon the keyboard. If this is an initial development of new rules such that the rule set can have someproblems, the user can turn on the tracing mechanism by selecting \Trace simulation steps" in the\Option" menu.If everything goes well the simulator will compute the next con�guration from the currentcellular automata con�guration according to the rules in the text window. If there is any errors the29



(a) The main window

(b) The text windowFigure 4.1: The main window and the text window of the simulator.
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simulator will stop and report the problem. The user will have to �nd out what is wrong and correctthe problem before he or she can continue the simulation. The user can use the backtracking buttonsto go back in time to see if the problem is caused by a previous mistake. Going back and forthin simulation is very common when designing new rules, and is a major advantage this simulatorprovides to the user. Typical main window and text window contents when using the simulator areshown in Figure 4.1.During the course of a simulation the user can do lots of things. He or she can stop thesimulation for examination at any time. The user can choose di�erent display speeds from the\ReDraw" menu item. The cellular automata space can be displayed using pixels for the user tosee the big picture, or the viewing area can be scrolled around the simulated cellular automataspace for the user to examine di�erent parts of the space in detail. Some of the possibilities arepresented in Figure 4.2.The user can continue the simulation for as long as he or she sees �t. At the end of the simulationthe user can either save the �nal cellular automata con�guration to a �le for further analysis, orhe can export the con�guration to an Encapsulated Postscript (EPSF) �le for printing purposes.Those above are just some typical operation steps of the simulator. The simulator is fullyinteractive and all its commands can be used in any order. Therefore, there are plenty of di�erentapproaches the simulator can be used, which are limited only by the imagination of the user.4.1.2 Capabilities of the simulatorOne of the major bene�ts of the simulator is that it allows an arbitrary number of neighborsto be de�ned in arbitrary positions within an eleven by eleven cellular automata region centeredaround the target cell. This is in direct contrast to most previous cellular automata simulationsystems, which generally provided only a limited number of preset neighborhood templates for theuser to choose from.The simulator imposes no a priori limit on the size of the cellular automata space which canactually be simulated. This is determined by the actual computer memory size and CPU power.Up to 64 bits can be allocated for each cell of the cellular automata space, which can then bearbitrarily subdivided into di�erent data �elds for various applications.Another major bene�t of the simulator is that any neighbor or �eld name de�ned for a particularcellular automata model will automatically become one of the reserve words in the Trend cellularautomata programming language, and can then be used in many of the powerful cellular automataspeci�c language constructs provided in the language.The simulator is very 
exible in rule set de�nition and is designed to facilitate developmentof new cellular automata models. A user can start with only a very limited number of cellularautomata rules, and work toward augmenting and perfecting the rule set while the simulation isgoing. When more rules are needed to lead the present cellular automata con�guration to thenext con�guration desired by the user, they can simply be added to the current rule set. Thebacktracking mechanism of the simulator allows multiple levels of undoing and redoing, whichgives 100% control to the user on how the cellular automata model or rule set should be modi�edand/or corrected.There is no limit on how big the cellular automata rule set can be, either. The one-pass compilermakes virtually no di�erence in compiling speeds between rule sets of di�erent sizes. Evaluation ofthe compiler generated code is also very e�cient. Because of the way the cellular automata rules31



(a) (b)

(c) (d)Figure 4.2: Operation examples of the simulator window. The main window of Figure 4.1 canbe resized, as shown in part (a). If the backtracking mechanism has been turned on, a simulationcan also go backward as shown in part (b). The \E:100" label shows the current epoch number,which is smaller than in part (a). The simulation can go forward again and some data �elds canalso be turned on for displaying, as shown in part (c). In addition, the whole cellular automataspace can be displayed using pixels instead of characters, which allows the user to see a biggerpicture of the cellular automata space, as shown within the circled region of part (d).32



are usually composed, the evaluation speed of the compiled code does not necessarily relate directlyto the size of the cellular automata source rules.4.2 Simulator functions and componentsA concise but otherwise thorough description of the various features of the simulator is providedin this section. First we will see how the simulator is initialized with some suitably de�ned templateinformation for the cellular automata model being used. Controls and features of the two majorwindows of the simulator, the main window and the text window, will be described in details next.4.2.1 InitializationUpon starting up, the simulator needs to know which kind of neighborhood template the user isusing for a particular cellular automata model. Since the simulator uses a high level programminglanguage to describe the cellular automata rules, it also needs to have names associated with eachneighbor position in the neighborhood template. In addition, since a cell can now hold di�erent�elds, it is also necessary to assign names to each �eld. The user may assign di�erent symbolsand colors to some �elds for displaying them on the screen. The user must also designate if thecellular automata neighborhood template is symmetric and if some �eld states have weak rotationalsymmetry (see Chapter 3). All information like this for a particular cellular automata model iscalled its template information and is stored in a template �le.When the simulator is starting up it asks the user to provide this template information, eitherfrom a previously saved template �le or by designing a new one. The user can also choose to loadin an old template �le and modify it for use instead of always having to start from scratch. Allthree choices are presented in the \Template Query" dialog window as shown in Figure 4.3. In thefollowing two subsections we will see how di�erent approaches work.Loading a prede�ned templateIf the user chooses to read in a prede�ned template �le, a \File Selection" dialog window willpop up, as shown in Figure 4.4. The user can simply select a template �le by clicking on one of the�lenames displayed in the dialog, which are all �les with the designated �lename extension *.tmplfor template �les.When a template �le has been selected the simulator will load it in, and display the two majorwindows, the main window and the text window, which will be described shortly.Designing a new templateIf the user chooses to design a new template, or if he or she chooses to modify an existingtemplate design, the \Template Design" dialog window will appear, as shown in Figure 4.5. In thecase of modifying an existing template, the \File Selection" dialog mentioned above will appear�rst to allow the user to choose a template �le to work on.The \Template Design" dialog window consists of two major parts, dealing with neighborinformation and �eld information separately.In the left part of the \Template Design" window is a set of choices regarding the neighborhoodtemplate of the cellular automata model being designed. First the user will have to determine if33



Figure 4.3: The template query window. The simulator asks users to provide a template infor-mation de�nition by giving three choices. Users can choose to read in a prede�ned template �leby clicking the �rst (topmost) button, design a new template on the 
y by clicking the second(middle) button, or read in an old �le and modify it by clicking the third (bottommost) button.the neighborhood template is rotationally symmetric, i.e., if cellular automata rules de�ned forthis model can be applied after rotation or not. For example, if the neighborhood template isrotationally symmetric, the following rule can set a cell to 1 if any of its north, east, south or westneighbor cells is 1.rot if (north:cell==1) cell=1;This rule tests the north neighbor of a cell to determine if the assignment should be made. Ifthe neighborhood template is rotationally symmetric and the rot pre�x is given, this rule will beautomatically rotated by the compiler to test against the other three neighbors east, south and west,which are all rotationally symmetric positions of the north in the template. If the neighborhoodtemplate is not symmetric this rule cannot be rotationally applied and only a value of 1 in thenorth neighbor cell can trigger the assignment statement. Actually, if the neighborhood templateis not rotationally symmetric the reserve word rot cannot be used in the cellular automata rule atall. The compiler will check the symmetry status of the neighborhood template and deny usage ofrot if it is not rotationally symmetric. See Section 5.10 at page 72 about the rotated if statementfor details.Following the symmetry choice in the \Template Design" window is a matrix of cells for neigh-borhood position de�nition. The center cell, marked by the letter `C', is always selected since it isrequired in the cellular automata fundamental de�nition to include the center cell into the neigh-borhood template. It will be the \current cell" or cell of focus for any neighborhood template. Theuser can de�ne additional neighbors by clicking on the other cells. If a neighbor is de�ned it willhave an `X' mark on it and its name is shown in the \Neighbor Name" area. If the user deletes thename of a neighbor, in this area, that neighbor will be deleted from the template and its `X' mark34



Figure 4.4: The �le selection dialog window. The left box shows the directories accessible fromthe current directory. The right box shows �les which conform to the �lename extension patternas given in the �lter area. Below the two boxes is the �lename area, which displays the �lenamewhich is being selected. Down below there are three buttons OK, Filter and Cancel, which candirect the simulator to either load the �le, re-scan the current directory, or cancel �le loading.will be removed. The user cannot remove the center cell from the template due to the requirementstated above.All neighbor names de�ned in a template will become reserve words in the cellular automatalanguage Trend, i.e., they will be associated with neighbor positions but nothing else when theyare used in the rules.If rotational symmetry is chosen, neighbor positions must also be symmetric, or cellular au-tomata rules will be unde�ned when rotated. In the previous rule example, the east, south andwest neighbors must also be de�ned in the template for the rule to be rotatable. The simulator willcheck this property and will report errors if rotational symmetry is chosen but the neighborhoodtemplate itself is not symmetric.In the right part of the \Template Design" window is a set of choices regarding �eld de�nitionof the cellular automata model. In the top is a set of four \Bit Depth Reference" choices. \BitDepth Reference" gives visual advice on how many bits has been allocated to �elds and how manyfree bits are still available within the designated bit depth. The user can use this to budget bitallocations to di�erent �elds. The \Bit Depth Reference" selection has no real e�ect on the actual35



Figure 4.5: The template design window. The left portion of the window is used for neighborinformation de�nitions. The right portion is for �eld information de�nitions in a cell. Fields arenamed bit groups which can be used to store data. See the text for details. A Moore neighborhoodis illustrated here.number of bits used for a cell in a cellular automata model. The simulator uses one byte as thebasic unit for cell storage allocation and allocates only as many bytes as needed to represent all�elds in a cell. For example, if the user de�nes four �elds, each using �ve bits, the actual allocatedbits for a cell will be 24, or three bytes. The smaller the bit depth, the less storage space is required,and the faster the simulation speed will be. Therefore, a user should never allocate more bits thannecessary to a �eld to prevent wasting storage space and slowing down the simulation.Below the bit depth reference choices is the \Field Division" area, where the user clicks in tode�ne new data �elds. The two indicators \No. of bits" and \Free bits" give the user an idea ofthe size of data �elds he or she allocates. Once a new �eld is de�ned its name will be displayedin the \Field Name" area. Deleting the name for a �eld will e�ectively remove that �eld from thetemplate. If color is enabled in a simulation session, the user can pick a color for a de�ned �eldfor displaying on the screen. Color is enabled when the user is using a color capable computerworkstation and that at least 36 free colors are available to the simulator. If color is not enabledall �elds will be displayed using a default color which varies from system to system.Once a �eld has been de�ned, if its bit depth is smaller than eight bits, state symbols can bechosen for that �eld, which are displayed in the \State Symbols of This Field" area. The user cande�ne symbols of his choice to represent di�erent states of this �eld. The user can also determinethe strong or weak rotational symmetry of a state. If a state is weak rotational symmetry the nextthree states following it will be reserved as its weak rotational counterpart values. Recall fromthe de�nition that a state has weak rotational symmetry if it rotates to three other di�erent state36



values. These four weak rotational states will be displayed on screen using the same symbol but atdi�erent orientations. The last three states of a �eld cannot be weakly rotational symmetry sincethere is not enough space after them to make up their weak rotational symmetry accompanyingvalues.If a �eld has more than seven bits the user cannot de�ne individual state symbols for its states.A default symbol 'o' will be used for all its states when displaying on screen. This is because alarge number of states makes individual state di�erentiation on the screen di�cult and no longermeaningful. In addition, there is only a limited number of symbols in any computer font set weuse. The user is encouraged to split up a large data �eld into smaller �elds if feasible.Do not confuse the rotational symmetry property of states of a �eld and the rotation symmetryproperty of the neighborhood template. The user can always choose weak rotational symmetry forstates even when the neighborhood template is not symmetric. In this case the user simply picksthe four orientations of a particular symbol to display the four states in a weak rotational symmetrygroup, without having any real relationship between each of them. Of course, if the neighborhoodtemplate is also symmetric and rotated if rules are used, these four states will again start to rotateinto one another.After the template is complete, the simulator will check the integrity of the template design asstated. If the template information is found to be consistent, the user can save the current templatedesign to a �le of his choice.4.2.2 The main windowAfter the simulator has received all the template information it needs, it will display two majorwindows on the screen. One is the \Main Window" where most simulation activities are conductedand displayed. The other is the \Text Window" where cellular automata rules can be edited andcompiled. We will look at functions of the main window �rst in this subsection. The Text windowwill be discussed in the next subsection.Main window componentsA sample of the main window is shown in Figure 4.6. The name of the most recently saved orloaded cellular automata world �le is shown at the very top of the window. A cellular automataworld �le is used to store the cellular automata space con�guration, usually with the .worldextension in its �lename. Below the names is the menu bar, from which the user can select avariety of menu commands to execute. Under the menu bar is a status bar, where various simulationinformation is displayed. The majority of the main window belongs to the working area, where thecellular automata space con�guration is displayed and edited.In the right side of the main window is a scroll bar which the user can use to move upwardor downward the current viewing area of the cellular automata space. In the bottom of the mainwindow is another scroll bar the user can use to make left or right adjustment of the viewingarea. A simulated cellular automata space can be much larger than the screen can display at once,therefore we need these scroll bars to adjust the portion of the cellular automata space which isvisible through the working area.In the working area the user can see the currently simulated cellular automata space con�g-uration. Field states are represented by their prede�ned symbols in the template informationprescribed by the user. A set of weak rotational symmetric states are represented by the same37
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Figure 4.7: File related menu commands. \New Template" allows the user to change the currenttemplate information. \Load" allows the user to load in a cellular automata con�guration froma .world �le. \Save" and \Save As" allows the user to save the current cellular automata spacecon�guration into a .world �le. \Export Selection" lets the user export the currently selectedregion in the working area to an Encapsulated Postscript File for printing or inclusion into doc-uments. The Encapsulated Postscript format, or EPSF, is a resolution independent �le formatsuitable for high quality printing. \Quit" will terminate the simulator.symbol, properly rotated. Di�erent data �elds can be chosen to be displayed or to be hidden fromthe scene using the 
oating \Control Window", which will be described later. The more data �eldsdisplayed, the harder it is to view each individual symbol. Therefore, it is up to the user to deter-mine the suitable data �elds to be displayed. The working area always re
ects the current cellularautomata space con�guration. When a simulation is going on or when backtracking is triggered,the cellular automata space displayed in the working area will be updated accordingly.File related commandsThe �rst menu item of the menu bar is \File", which hosts a sub-menu with many commandsas shown in Figure 4.7. The \New Template" command allows the user to change the currenttemplate information used by the simulator. The \Load" command allows the user to load in acellular automata space con�guration from a world �le.The \Save" and \Save As" command both allow the user to save the current cellular automataspace con�guration into a .world �le, but the \Save" uses a default �lename which is given inthe title area as seen in Figure 4.6. The \Export Selection" command lets the user save thecurrent selection in the working area into an Encapsulated Postscript �le, which can later be usedin printing or for inclusion into the other documents. All cellular automata space samples in thefollowing chapters are made by this command. Finally, the \Quit" command will terminate theexecution of the simulator.The 
oating window for display controlThere is a 
oating \Control Window" of the simulator, which is associated with the mainwindow. It is used to control the display and editing of cellular automata �elds in the workingarea. A typical \Control Window" is shown in Figure 4.8. Listed names in the right column are�elds de�ned in the current template. Clicking on any of the �eld names will select that �eld asthe current focus �eld. A focus �eld has two properties. First, the focus �eld content will alwaysbe displayed. Second, the �eld editing popup menu, which will be discussed next, will always beassociated with the current focus �eld. There is only one focus �eld at any time; a new focus �eld39



Figure 4.8: The 
oating control window. Fieldnames are listed in the right column which theuser can choose to set the focus �eld. In the leftthere is a set of check boxes the user can use tocontrol displaying of the �elds. The \Show AllFields" button will force all �elds to bedisplayed, disregarding the status of their checkboxes.selection will replace the previous focus �eld.To the left of the name list is a set of check boxes. The user can decide which data �elds arenecessary to be displayed at any time by setting these check boxes. It does not matter if a �eld isthe current focus �eld or not.Editing cellular automata spaceEditing in the working area is simple, and is conducted by the combination of mouse actionsand a few menu commands. Under the \Edit" menu item there is a set of commands for editingthe cellular automata space con�guration, which is shown in Figure 4.9.The �rst command is \Undo". No matter what change the user has just made in the cellularautomata space, choosing the \Undo" command will undo that change.A set of �ve commands \Cut", \Paste", \Copy", \Clear" and \Drop" are the second group inthe edit sub-menu. Their ranges of application are determined by the status of the 
oating controlwindow. All �elds currently being displayed will be a�ected. For example, the \Cut" commandwill remove everything within the currently selected region from every �eld which is currently beingdisplayed into the \Clipboard", which is a temporary storage area set aside by the simulator. Theoriginal content of all a�ected �elds will be set to zero, which is usually the quiescent state for each�eld.The region which the user \Cuts" is stored in the \Clipboard", which the user can paste backinto the cellular automata space by using the \Paste" command. The pasted content includes all�elds that are previously stored in the \Clipboard". The pasted clipboard content will form a newselected region which can replace the current region. A newly pasted region has not been actuallycombined with the cellular automata region under it. It is 
oating atop the cellular automata space.The user can adjust its position using the mouse. When the user has decided to settle the 
oatingselection with the cellular automata space, he or she can choose the \Drop" command to drop the
oating selection into the cellular automata space. The original cellular automata region under the
oating selection will be replaced by the selection. Before the user drops a 
oating selection, theactual cellular automata space content has not been changed.The \Copy" command behaves like the \Cut" command but does not remove the currentcellular automata space content. The \Clear" command removes the current cellular automataspace content but does not put it into the clipboard. As stated before, these �ve editing commands40



Figure 4.9: The editing commands. \Undo" will undo any recent change in the cellular automataspace. \Cut" will copy the selected region into the clipboard and erase the region in the space.\Paste" will put the clipboard content into the cellular automata space. \Copy" will copy theselected region into the clipboard without removing it. \Clear" will erase the selected region with-out moving it into the clipboard. \Drop" will settle a 
oating selection into place. \Randomize"can generate some random states in the current focus �eld by user speci�cations. \Pattern Setup"can de�ne the content of the focus �eld within the currently selected region as a pattern, whichcan later be used by the \Pattern Use" selection. \Clear All Fields" will set all �elds in all cellularautomata cells to the quiescent state (i.e., all zeros). Finally, \Reset Epoch Number" will resetthe current epoch counter of the simulation to zero.in the second menu group will in
uence any �eld which is currently being displayed, not just thefocus �eld only. But the following three editing commands in the third menu group will in
uenceonly the focus �eld content.The \Randomize" command displays a query window, as shown in Figure 4.10, which the usercan use to randomize the current focus �eld. After the user has set appropriate conditions in thiswindow, the focus �eld can be randomized with state values from the range speci�ed by the twobounds and to the percentage set by the user. The \Randomize" command is a useful tool torandomly initialize a cellular automata space.The \Pattern Setup" command de�nes the content of the current focus �eld within the selectedregion to be a pattern, which the user can use later to �ll out a cellular automata �eld using the\Pattern Use" submenu, as shown in Figure 4.11. If the user chooses any pattern in this sub-menu,that pattern will �ll the current focus �eld by being repetitively copied into the �eld.In the bottom group of the edit sub-menu, there are two more commands. The \Clear AllFields" command will literally do what it says: clear all data �elds in the cellular automata space.The �nal \Reset Epoch Number" command will set the current epoch counter to zero, which doesnot actually in
uence the cellular automata space but can be quite handy when the user wants tostart counting a new simulation cycle.One last thing which has not been mentioned is how the initial cell value can be entered intothe cellular automata space in addition to just being randomly generated. The user can use themouse button to pop up a state menu of the current focus �eld within the working area. The usercan choose a state value to be placed in the cell under the mouse position from this popup menu.41



Figure 4.10: The randomize query window. The \Upper Bound" and \Lower Bound" are usedto set a value range. The \Percentage" is used to set the �lling density. The current focus �eldwill be randomized accordingly.

Figure 4.11: The pattern use sub-menu. The user can choose a pattern using this sub-menu to�ll the current focus �eld.
42



Figure 4.12: The Redraw speed selectionsub-menu.Changing the focus �eld will change the popup menu too, so the user can edit di�erent �elds.Scrolling, re-drawing and resizing the viewing areaAs said before, the simulated cellular automata space can be very large, larger than the screencan display at once. Therefore, the working area of the main window will be viewing just a portionof the simulated cellular automata space. There are two scroll bars in the right and bottom area ofthe main window which the user can use to scroll another portion of the cellular automata spaceinto the viewing area.The user can choose the screen update frequency by using the \ReDraw" menu item, as seen inFigure 4.12. This is useful when the user is not interested in individual simulation steps and wantsto speed up the simulation. The size of the simulated cellular automata space can also be changedon-the-
y by using the \Size" menu item, as seen in Figure 4.13.When the user chooses to enlarge the simulated space, the current smaller space con�gurationwill be left in the center of the larger new one. Those cells originally connected in the boundary ofthe smaller con�guration will now become disconnected. If the user chooses to shrink the cellularautomata space, those cells beyond the smaller new boundary will be discarded.

Figure 4.13: The Size selection sub-menu.43



Figure 4.14: Options of the simulator. See themain text for descriptions of each option.OptionsThere are some simulator options the user can choose, which are under the \Option" menuitem as displayed in Figure 4.14. The dashed line in the top of the sub-menu denotes that thisis a tear-o� capable sub-menu panel, which means the user can select the dashed line to cut thesub-menu o� the menu bar. This is very handy when the user wants to constantly change theoptions without going through the menu each time.The �rst option is \Trace simulation steps". If set, it will enable the tracing mechanism ofthe simulator. Cellular automata space changes during the simulation will be saved to the �lesystem if this option is on. The user can go back to a previous con�guration using the backtrackingcommands only if this option is set. Tracing will use up available �le system space temporarily (thetrace �le will be deleted when the simulator quits), but it allows very convenient trial-and-errordevelopment of the cellular automata rules.The second option is \Catch con
ict rules". Normally this option is set so that the simulatorwill try to catch cellular automata rules which are con
icting to each other during runtime, suchas assigning di�erent values to the same �eld of a cell. The con
ict error is described further inSection 5.11 in the following chapter about the cellular automata programming language. Thiserror catching mechanism is very useful when debugging the cellular automata rule set, but mayincur some speed penalty to the simulator. The user should disable this option only when thecellular automata rule set has been found to be correct.The third option is \Display with pixels". When the simulated cellular automata space is verylarge, sometimes it is hard to see the whole space even by constantly scrolling within the workingarea. The user can choose this command to display cells in the cellular automata space by pixels,instead of by symbols which the simulator normally uses. This can give the user a big picture of thecellular automata space but with lesser description power than using symbols. Each �eld is nowdisplayed using only the same color pixels, so there is no telling which state value is at each cell.If multiple �elds are chosen to be displayed, colors of di�erent �elds will be mixed, which makesreading even more di�cult.The fourth option is \Display zero states". Normally quiescent states in each �eld are repre-sented by the zero state value. Zero states are not displayed by the simulator on screen since it isbelieved that these states are not interesting to the user and can potentially prevent a clearer viewof the cellular automata space. The user can check this option to override that simulator behaviorso any state value will be displayed by their associated symbols.The �fth option is \Show con
ict states". Normally a cell where a rule con
ict is found is44
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(a) (b) (c) (d)Figure 4.15: The e�ects of the EPSF export options. (a) all options are on. (b) \Export linebackground" is disabled. (c) \Export epoch number" is also disabled. (d) \Export frame box" isalso disabled.reported in the message area of the \Text Window", which will be described in the next subsection.If the user �nds that it is hard to locate the cell by the coordinates reported in the message area,he or she can choose to show con
ict states by reversed video too, so that a cell with con
ictscan be easily identi�ed. The trouble with this option is that unde�ned cells, where no applicablerules can be found to calculate the next state values, are also displayed with reversed video bythe simulator. Therefore, there will be a problem knowing if a cell in reversed video is having acon
ict or is unde�ned. The user has to check the message area coordinates to determine if it isan unde�ned or con
ict cell.The last three options deal with exporting the cellular automata space selection to EncapsulatedPostscript �les. Each of them a�ects the EPSF output in one of the following ways:� \Export line background". This option will export background �eld state values between 1and 4 using directed lines. The focus �eld or any state value not falling in that value rangewill be exported normally using symbols. This is very useful when the user uses the statevalues 1 through 4 to represent directions in the cellular automata space. Otherwise, it isseldom used.� \Export epoch number". The current epoch number will be included in the EPSF �le if thisoption is selected.� \Export frame box". A rectangle box will be drawn around the selected region in the exportedEPSF �le.Examples of how these three export options a�ects the look of the EPSF �le are given in Figure 4.15.Simulation and backtracking controlsThe simulation progress is controlled by the sub-menu under the \Control" menu item as seenin Figure 4.16. The dashed line is again showing that this sub-menu can be torn o� to form anindependent 
oating window, just like the \Option" sub-menumentioned in the previous subsection.The \{>>" command will push the simulation forward continuously. The \{>" commandwill move the simulation forward one step at a time. The \stop" command will stop the currentcontinuously forward or backtracking operation. The \<{" command will backtrack the simulationone step backward, and the \<<{" command will start backtracking continuously until reachingthe �rst saved cellular automata con�guration or until the user presses the \stop" button. Note45



Figure 4.16: The control sub-menu. Arrow keys direct the progress of the simulation in the asso-ciated directions. Double arrow keys make it run continuously. \Stop" will stop any continuouslyrunning action. The dashed line allows the sub-menu to be teared o� to form a 
oating window.that backtracking is available only when the \Trace simulation steps" option is on and when atleast one cellular automata con�guration has been recorded.The tracing mechanism is very handy since it allows the user to pinpoint the cellular automataevolution back and forth with great 
exibility. But the tracing mechanism eats up disk storage,especially for large cellular automata space and long simulations. The simulator will attempt tokeep an eye on the current �le system usage ratio and will stop the tracing mechanism automaticallywith an error message to the user when the �le system is about 90% full.Status barThe last undiscussed component of the main window is the \Status bar". The Status bar isshown in Figure 4.17. Basically, some simulation and editing information is displayed in the statusbar, which is outlined below:� The �rst 
ag \E:" denotes the current epoch number. If the simulator is just starting up, thecurrent epoch number is zero. When the simulation moves forward, this number will increase.When backtracking, this number will decrease.� The \%:" 
ag shows how e�ciently the caching mechanism of the simulator is functioning.The caching mechanism of the simulator tries to record recent cellular automata rule evalua-tion results for the oncoming evaluations so that if a result can be found in the cache lookuptable, the rule evaluation can be skipped. If this e�ciency value is low, it means most of thetime the simulator has to resort to rule evaluations.� The \X:" and \Y:" 
ags show the current coordinates of the mouse pointer in the cellularautomata space covered by the working area.� The \U:" 
ag shows the number of cells with unde�ned errors, i.e., cells whose next statevalue cannot be determined by the cellular automata rule set.� The \C:" 
ag shows the number of cells with con
ict errors, i.e., cells with more than onenext state value when evaluated by the cellular automata rule set.� The �nal \F%:" 
ag shows the current �le system usage status. If this value is high, a �lesystem full crash may occur with a higher probability.
Figure 4.17: The status bar. Various simulation and editing information is displayed in thestatus bar. See the text for explanations. 46



Figure 4.18: The text window of the simulator. The title shows the current program name,window name and �le name of the simulator. A menu bar follows the title which has three sub-menus: \File", \Edit" and \Compile". Under the menu bar is a message area where variouserrors are reported, such as the compiling syntax error or the runtime con
ict error. The textarea occupies most of the text window, where cellular automata rules can be edited just like a texteditor. The message area and the text area both have scroll bars to adjust the viewing positionif the text to be displayed is larger than the size of the window.4.2.3 The text windowBesides the main window, there is another \Text Window" that the user can use to load thecellular automata rule set into the simulator, edit and experiment with the rules, and save thoserules back to a .rule �le. A sample of the text window is shown in Figure 4.18.Standard basic Gnus Emacs editing commands is supported in the text area. The rules withinthe text area can be saved to or loaded from a rule �le by commands under the \File" menu item,which is shown in Figure 4.19.Some text editing commands are shown in Figure 4.20. Two interesting commands \Jump" and\Goto" are listed in the third group. They do not actually change the text area in any way. The\Jump" command moves the cursor in the text area to a character position shown in the messagearea. Usually when a compiler error or runtime error is found, the simulator reports error spotswith their character positions in the rule text. The user just needs to highlight (select) the positionvalue, then choose the \Jump" command to jump to the error spot in the rule text. This functionis very convenient when the user is trying to �nd the error spots within the rule text. The \Goto"command behaves similarly but asks the user to input the character position rather than gettingit directly from the the message text.The last group of editing commands deal with searching and replacement of strings in the ruletext. The \Find" command asks the user a string to search for and then tries to locate that string47



Figure 4.19: File commands for rule set manipulation. \New" will erase the content of the textarea to prepare for a new rule set. \Load" will load a .rule �le into the text area, which can laterbe modi�ed and compiled. The \Save" and \Save As" command both try to save the current textarea content into a .rule �le, the di�erence being that the \Save" command will use the defaultrule �le name shown in the title of the text window if there is one.in the rule text if there is any. The \Find Next" command continues the search of the same stringdone used by a previous \Find" command. The \Find&Replace" command asks for both a searchstring and a replacement string so that if the search string is found in the rule text it will bereplaced by the replacement string.The �nal menu item is \Compile" which is used to invoke the Trend compiler. If compilation issuccessful the newly generated evaluation codes will replace the current codes directly, even whenthe simulation is still running. If there any error is found during compilation, it will be shown inthe message area.4.3 Under the hoodIn this section we will see how the simulator is implemented. First, we will discuss the idea ofdata �elds within cellular automata cells, as well as the neighborhood and �eld de�nition capability

Figure 4.20: Editing commands for rule text. \Undo" will undo any recent change in the rule text.\Cut" copies the selected text into the clipboard and erases it. \Paste" puts the clipboard contentinto the text at the cursor position. \Copy" copies the selected text into the clipboard withoutremoving it. \Clear" erases the selected text without copying it into the clipboard. \Jump" movesthe cursor to a text position highlighted in the message area. \Goto" does a similar job but allowsthe user to specify the position. \Find" locates a string in text speci�ed by the user, \Find Next"continues the search done by the previous \Find" command. \Find&Replace" replaces the searchstring with a replacement string speci�ed by the user.48



provided by the simulator. Next, we will see an overview picture of what the various modules ofthe simulator program are and how they are connected together. After that, we will discuss themajor data structures used by the simulator, the transition function evaluation module, the tracingmechanism, the compiler, the memory management of the simulator, the template design module,�le formats used by the simulator, the user interface construction, and �nally the resource �le ofthe simulator program.4.3.1 The cellular automata space organizationIn the early days of cellular automata, two dimensional cellular automata models had only twocommonly used neighborhood templates: the von Neumann template and the Moore template1.Each cell of a cellular automata model was treated as a state variable, i.e., it could hold di�erentvalues, but was considered to represent the same property. Actually, most of the time the statevariable was just a binary bit showing 0 or 1.With the advent of more complex modern cellular automata models, new neighborhood tem-plates were introduced for di�erent applications, but the two classic neighborhood templates stillretain their popularity because they are simple and regular. However, a single variable cell designbecame very limited for any but the simplest models. To solve this limitation, the concept of celldivision into �elds (sometimes called layers or planes) was introduced [To�oli & Margolus, 1987].Fields are functional divisions of the state variable of a cell into di�erent bit groups, each encodinga di�erent property of the cellular automata model being used. We can think of each �eld as a sliceof a cell state variable with its own name and value. Alternatively, we can just treat each �eld asa di�erent state variable in a cell, as if each cell can now hold many state variables.For example, the emergent self-replicating rule set (which will be discussed in Chapter 6) usesfour data �elds, component, special, growth and bound, as shown in Figure 4.21. Each �eld isassigned a name and can be referenced with that name in the cellular automata programminglanguage. The automata transition function used to compute a new value for a �eld can be basedon current values of many �elds in many neighbors of the neighborhood template. With the helpof �elds, a very complex cellular automata model and its rule set can be designed in a concise andeasy to understand manner.Up to 64 bits can be allocated for a cell. The simulator described here allows an arbitrarynumber of data �elds to divide this 64 bits. The neighborhood template is no longer prede�nedand limited to a number of well-known templates. With the new template design facility mentionedabove, any cell within an 11 by 11 cell region around the center cell can be part of a neighborhoodtemplate. The possibility of new template designs becomes enormous.4.3.2 The construction of the simulatorA functional view of the simulator software components and their mutual relationships aredepicted in Figure 4.22. In this �gure, data structures are represented by rectangle boxes andprogram modules are represented by rounded rectangle boxes. The relationships between di�erentprogram components are indicated by arrows. Modules in the gray area are called by all the othermodules, so arrows are omitted from them.1See Figure 2.1 at page 5 for the de�nition of the von Neumann and Moore neighborhoods.49
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ected to the screen by the display module. The tracing mechanism usesits own �les to store the tracing data to the �le system, which makes returning to a previous epochpossible.The evaluation module can be viewed as the core of the whole simulation system. It uses thecompiled rule codes generated by the compiler and references the template information maintainedby the template design module to determine the next state of the cellular automata space con�g-uration. It also maintains a cache table for itself to speed up evaluation. The compiler takes therule text source and also references the template information to generate the compiled rule codeswhich is used by the evaluation module.There are two editing modules, one for editing the rule text, the other for editing the cellularautomata space con�guration. The cellular space editing module also uses an auxiliary cellularautomata space of its own to maintain the \Undo" information.The four supporting modules (memory management, input/output, user interface and errorrecovery) are called by all the other modules in the simulator. Their involvement with the othermodules is deep and more than what is shown in Figure 4.22.In the following several subsections each component will be discussed separately.4.3.3 Major data structuresThe most obvious data structure the simulator uses is the cellular automata space data. It isamazingly simple, consisting of only pointers to two character arrays. They are declared in thefollowing C language constructs: 50
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immediate value, if any, of the machine instruction. Valid instruction codes in this virtual machinelanguage are listed in Table 4.1 at page 55, which will be discussed in detail in the following chapterabout the compiler.typedef struct ParseNode fint operator, value;struct ParseNode *left, *right, *true, *false;g ParseNode;The cellular automata template information is kept in two separate arrays of NeighborStructand FieldStruct records. Each neighbor or �eld information is kept in one record in those arrays.The two record declarations are listed below, together with the explanation of their data �elds.typedef struct NeighborStruct fint id; /* The integer id of the neighbor *//* Pointer to its check box in the ``Template Design'' window */Widget w;char *name; /* Referenced name of the neighbor in rules *//* Positions of the neighbor in the neighborhood template. */struct fint x, y;g offset[4];g Neighbor;The id �eld records the integer id of the neighbor. It starts from zero to one minus the numberof neighbors in a neighborhood template. The w �eld contains a pointer to a check box in the\Template Design" window (Figure 4.5 at page 36), which is used to associate the neighbor withthe check box. The name �eld records the name of the neighbor when referenced in the cellularautomata rule set. This name actually is part of the reserve word set of the Trend language. The�nal four x, y pairs in the offset �eld record the actual coordinate positions of the neighbor,when properly rotated. If the neighborhood template is not rotationally symmetric, then only the�rst x, y pair is used.typedef struct FieldStruct fint bits; /* The number of bits in the field */int states; /* The number of states in the field */int show; /* If user chooses to display this field on screen */char *name; /* Referenced name of the field in rules */unsigned mask, mark; /* Data used by the evaluation module */int shift; /* Data used by the evaluation module */int type; /* Data used by the evaluation module */Widget popup; /* Pointer to the popup menu for the field */int pixel; /* The color of the field for displaying */GC normal, reverse; /* Data used by the display module */char *symbols; /* The defined state symbols of the field */char (*rotation)[4]; /* The state rotational values array */Pixmap *positive, *negative; /* The normal and reverse video */int select; /* See if this field is selected for output. */g Field; 52



The bits �eld records how many bits are allocated to this �eld. The states �eld records howmany states are expressible in this �eld, which is always 2bits. The show �eld determines if this�eld should be displayed on screen or not, which is set by the user using the \Control Window"(Figure 4.8 at page 40). The name �eld store the name of the data �eld which is referenced incellular automata rules. This name becomes part of the reserve words of the Trend language whenthe template information containing this �eld is loaded. The mask, mark, shift and type �elds arelower level auxiliary data used by the evaluation module for cellular automata transition functioncomputation. The popup �eld contains a pointer to the popup menu of the �eld which is usedto manually input state values into this �eld by the user. The pixel �eld stores the color fordisplaying this data �eld on screen. The normal and reverse �elds are used by the display modulefor displaying normal cells and cells with unde�ned or con
ict errors. Same is the positive andnegative �eld.The symbol �eld stores all symbols de�ned by the user to represent states of this data �eld.The rotation table records the mutual weak rotational symmetric states for states. For example,if states 1 to 4 are within a weak rotational symmetric group, then rotation[1] will contain 1,2, 3, 4, rotation[2] will contain 2, 3, 4, 1, rotation[3] will contain 3, 4, 1, 2, etc. Finally,the select �eld determines if a �eld is chosen by the user when outputting the current simulatedcellular automata space con�guration to a �le.The cache table used by the evaluation module is built from the following basic record unit:typedef struct Cache fchar *lhs, *rhs;int replace, visit;struct Cache *search;g Cache;The cache table stores the recently computed cellular automata transition function values. It isboth a hash table for fast value lookups and a priority tree for value replacements. The lhs andrhs �elds keep the priority tree structure, and the field keeps the hash table structure. Collisionof a hash table entry is resolved by using the search �eld to form a linked list in that entry. Thevisit counter keeps the number of references to a particular record and the replace counter keepsthe order in the priority tree. When a record is referenced again, it is moved down in the prioritytree. When a new record is needed to store a new transition function value, the top node of thepriority tree is used.The last major data structure used in the simulation software is the tracing array used by thetracing mechanism module which is composed of the following data record:typedef struct TraceRecordStruct fint num, pos, epoch;g TraceRecord;The pos �eld keeps track of the �le position in the trace �le on the �le system. The epoch �eldkeeps the epoch number represented by this record and the num �eld stores the number of the tracerecord.
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Figure 4.23: The evaluation steps. Theevaluation module �rst skips invariant cells. Itthen uses the cache table to quickly �nd anyapplicable previous evaluation result which itcan use. If both methods fail the evaluationmodule will have to resort to the compiled rulecodes to do the evaluation.4.3.4 EvaluationThe evaluation module calculates the next cellular automata space state from the current one,using the rule code compiled by the compiler from the source rule set expressed in the Trendlanguage. The evaluation module uses a three step strategy to conduct the next state evaluationprocess. This is depicted in Figure 4.23.The �rst step is invariant checking. Most cellular automata cells, especially during earliersimulation steps, are at quiescent states. According to the de�nition of the cellular automatamodel, a quiescent cell in the cellular automata space will remain quiescent inde�nitely, until itsneighbors become active. The evaluation module takes advantage of this fact. Actually, it takes iteven further. If a cell and its neighbors have not changed their values during the past epochs, thatcell can be skipped in the evaluation process since its value will not change in the current epoch.That is exactly what the evaluation module does to avoid evaluating invariant cells.If the cell has di�erent neighbor values than the previous evaluation, or if its value has changed inthe previous evaluation, the evaluation module has to calculate its next state value. The evaluationmodule �rst looks at the cache table to see if it can �nd any recent evaluation which has exactlythe same neighbor con�guration, or transition function inputs, as the cell in question. If such acase can be found its evaluation result will be taken to be the next state value for the cell, so actualevaluation is not necessary. The visit counter of the found case in the cache table is increased byone and the entry is also moved down in the priority tree, so that its chance of getting replaced islower.If none of the above procedures works, the evaluation module will have to calculate the nextstate by using the compiled rule codes. First, states in a cell and its neighbors are split intoindividual �elds which can be referenced directly and e�ciently by the compiled rule codes. Then,the rule codes are executed. After the termination of the rule codes, the evaluation module willcheck to see if there is any unde�ned �eld value for the cell. If found, the cell has unde�ned errors.If the evaluation module �nds that multiple assignments have been made to the same �eld, the cellhas con
ict errors. In either case, the evaluation module will report errors and mark the problemcell.If rule execution is successful for a cell, the evaluation module will pack new �elds back intothe cell. It will also put the new evaluation result into the cache table for future references. If noempty entries can be found in the cache table, the less frequently referenced entry will be replaced54



PFIELD1 1 PAND 11 PPLUS1 21 PLEQ 31 PMOD 41PFIELD2 2 POR 12 PPLUS2 22 PLT 32PFIELD3 3 PXOR 13 PFSET 23 PRETURN 33PFIELD4 4 PVALUE 14 PFPLUS 24 PROTS 34PADDR 5 PCALL 15 PDEF 25 PRVALUE 35PARRAY 6 PROT 16 PNEQ 26 PFMINUS 36PADD 7 PROTE 17 PNZE 27 PMINUS1 37PSUB 8 PBREAK 18 PGT 28 PMINUS2 38PMUTL 9 PSET1 19 PGEQ 29 PRFIELD1 39PDIV 10 PSET2 20 PEQ 30 PRFIELD2 40Table 4.1: Virtual machine codes used by the simulator.by the new evaluation result.If an evaluation error is found during the evaluation process, the simulation control modulewill stop the simulation. The display module then displays the new cellular automata space con-�guration on screen. Marked cells will be displayed in reversed video. If no error is found duringthe evaluation and the user chooses to continuously simulating, the simulation control module willexchange the OldWorld and the NewWorld pointer and continue the simulation.4.3.5 Tracing mechanismIf the user chooses to trace the cellular automata simulation, the tracing mechanism of thesimulator will save the di�erences between each iteration to a temporary trace �le on disk. Thelocation and size of each iteration di�erence information within the trace �le is recorded in memoryusing the trace record array. The tracing mechanism uses dynamic addressing into the trace �leto recall previous con�guration di�erences from the current con�guration, and applies them to thecurrent cellular automata space to get to previous epochs.4.3.6 CompilingThe compiler for the Trend cellular automata programming language uses a standard LR(1)grammar to describe the rule syntax, and was built by using the yacc compiler construction toolin Unix. The compiler currently is strictly one-pass with no forward references allowed in therules. That means all variables and functions must be declared before being used. Because of this,recursive procedure call is impossible with the Trend language. Actually, for e�ciency reasons, allvariables are allocated statically in a heap rather than dynamically on a stack. Therefore, multipleentrances to the same procedure may produce unpredictable results. It is determined that forcellular automata programming none of these unsupported features are needed.The compiler generates compiled rule codes represented in a virtual machine instruction set,which is listed in Table 4.1. The bene�t of compiling into a virtual machine code rather thanto the host computer machine code is that it is machine independent. Porting the simulator tothe other workstation platforms does not require rewriting of the code generation modules in thecompiler. The drawback of this is that a simulation runs about three times slower than if it is usingreal machine instructions. But with the help of invariant skipping and cache table lookup in theevaluation module, the slowdown is more than justi�ed by the portability and stability.55



The compiler optimizes output machine code by removing constant expressions (expressionswhich do not involve variables) and by coercing multiple indirect jumps to one direct jump. Sincethe compiler is one pass only and is e�ciently implemented, it can compile thousands of Trendsource lines in less than a second, essentially making the compiling phase not noticeable by theuser. The compiler can be called even during active simulation runs. The compiled rule code itgenerates will immediately replace any previous code and be used by the evaluation module.We will discuss the virtual machine instruction set and the compiler in more detail after wehave introduced the Trend language in the following chapter.4.3.7 Memory managementThe simulator attempts to do memory management itself rather than by using the standardC language memory management functions such as malloc() and free() directly. Since only alimited number of �xed-size data types are used by the simulator, the simulator tries to form apool of free data objects for each type internally. Whenever a data object is freed, it is returnedto the object pool rather than to the heap maintained by the standard C routines. When a newobject of the same type is needed, objects in its associated pool will be provided �rst. In case thereis no more free objects in a particular pool, the memory management module of the simulator willthen call the standard memory allocation routine again to get a bunch of the new objects at once.Surplus objects will be returned to the pool.Managing data objects by the simulator itself can greatly improve the execution speed andprevent heap fragmentation caused by using the standard C library memory management routines.4.3.8 Template designThe simulator makes use of the \Template Design" window shown in Figure 4.5 on page 36 toprovide template design controls to the user. The template design module will check the consistencyof the user design, as stated before. The template information generated by the template designmodule is stored in the neighbor and �eld information arrays and is used by both the compiler andthe evaluation module.Currently the template design module allows neighbors within an eleven by eleven square,rooted on the center cell, to be put into the neighborhood template. It also allows a maximum of64 bits in each cell to be used for data �eld allocations. These limitations are arbitrary rather thanmandatory, and can be extended by resetting some of the program parameters, but it is found thatthese limitations are seldom reached by any practical application of the simulator, i.e., they aremore than enough for normal uses.4.3.9 File formatsThe simulator makes use of three di�erent �le formats for recording the template information,the cellular automata space con�guration, and the rule set source text. The rule set source text isjust like any text �le in the computer system, and can be edited by any popular text editor.A sample of the template information �le is given below. We can see that it records most ofthe data �elds in the NeighborStruc and the FieldStruc records. Although the template �le isdesigned to be readable, it is not meant to be edited by the user in anyway. If the user wants to56



modify a template �le, he or she should load that template �le using the simulator and use the\Template Design" window of the simulator to do the job.File: life.tmplCreated Mon Mar 4 21:01:16 1996BitDepth=8, ByteDepth=1, LhsLength=9, UseColor=1Symmetry=1, NeighborNumber=9, FieldNumber=4, SolvedMask=17Neighbor Descriptions:ce: (0,0), (0,0), (0,0), (0,0)no: (0,-1), (1,0), (0,1), (-1,0)ne: (1,-1), (1,1), (-1,1), (-1,-1)ea: (1,0), (0,1), (-1,0), (0,-1)se: (1,1), (-1,1), (-1,-1), (1,-1)so: (0,1), (-1,0), (0,-1), (1,0)sw: (-1,1), (-1,-1), (1,-1), (1,1)we: (-1,0), (0,-1), (1,0), (0,1)nw: (-1,-1), (1,-1), (1,1), (-1,1)Field Descriptions:component: bits=4, states=16, mask=17, mark=1, shift=28, type=1, color=26.> LOEFBCDoooospecial: bits=2, states=4, mask=3, mark=2, shift=26, type=1, color=32.-*#growth: bits=1, states=2, mask=1, mark=4, shift=25, type=1, color=18.+bound: bits=1, states=2, mask=1, mark=8, shift=24, type=1, color=9.!The above denotes that the template information is saved to the �le life.tmpl. The template uses8 bits in a cell for �eld allocations (BitDepth=8), which is exactly one byte (ByteDepth=1) long.The neighborhood template has nine neighbors (NeighborNumber=9), and each cell is one byte long,so the total input length to the cellular automata transition function is 9 bytes (LhsLength=9).This template has color information encoded for each �eld (UseColor=1). Its neighborhood tem-plate is rotational symmetry (Symmetry=1). It has four data �elds (FieldNumber=4), and the bitpattern for checking for four data �elds are 1111, which is 17 if expressed in octal number format(SolvedMask=17).After the template parameter de�nitions, the actual neighbor and �eld descriptions follow. Eachneighbor description entry contains the name of the neighbor ce, and the four rotational symmetricpositions of the neighbor, expressed in coordinate pairs in the neighborhood template. The centercell of a neighborhood template always has the coordinates (0,0). Each data �eld descriptioncontains the name of the �eld component, the number of bits allocated to the �eld bits=4, thenumber of states expressible in the �eld states=16, the mask, mark, shift and type data used bythe evaluation module, and �nally, the color for displaying this data �eld on screen color=26. Inthe second line of a �eld description, it lists the symbols de�ned to represent states of this �eld.> LOEFBCDoooo. The three underline symbols \ " and the symbol > before them means thatthey are weak rotational symmetric states and are displayed on screen by the same symbol > butrotated di�erently.The cellular automata space con�guration is recorded in a .world �le. A world �le consists ofa readable preamble part which details the saved �elds in the world �le, together with a binary57



unreadable part which actually records the con�guration. A sample of the readable world �lepreamble is shown below.File: sample.worldCreated Tue Mar 5 19:23:31 1996WorldSize=40, SavedFields=4Field name and depths:component: 4 bit(s)special: 2 bit(s)growth: 1 bit(s)bound: 1 bit(s)It says that the cellular automata space con�guration is saved to the �le sample.world, the cellularautomata space has 40 � 40 cells (WorldSize=40, and there are four data �elds saved in this �led(SavedFields=4). After that, the names and bits for each saved data �eld are listed.4.3.10 User interfaceThe simulation program provides a graphical user interface to present great ease of use of itsfunctions to users. The graphical user interface allows the user to interactively pursue rule setdevelopment and cellular automata simulations. The power of the simulator is greatly increasedby the ease of use of the interface.Currently, the simulator is built around the X Window system under Unix. The simulator usesthe Motif widget library to provide the user interface components, such as the menus and scrollbars, but all other interface features like cellular automata space drawings on screen and templatedesign window operations, etc., are still implemented in the simulator itself.Since the core simulation routines and compiler are not dependent on the user interface design,porting the simulator to other platforms involves rewriting the user interface components only.4.3.11 The resource �leThe current simulation program under Unix makes heavy uses of the X Window resource �lemechanism. Whenever possible, any feature and look-and-feel setup is de�ned in the resource �le,rather than hard-coded into the program source code. Working with the resource �le has the bene�tof 
exibly changing the appearance of the simulation program without the need to recompile thesource code. All colors and text labels that the program uses can be modi�ed. Even changing to aforeign language for multi-language ports is easy using the resource �le. A portion of the resource�le which de�nes the \File" sub-menu content is shown in the following example. It can be seenthat all the hot keys, names and colors can be changed here.*MenuBar*foreground: yellow*MenuBar*NewTemplate.labelString: New Template ...*MenuBar*NewTemplate.mnemonic: N*MenuBar*NewTemplate.accelerator: Meta<Key>N*MenuBar*NewTemplate.acceleratorText: Meta+N*MenuBar*Load.mnemonic: L*MenuBar*Load.accelerator: Meta<Key>L58



*MenuBar*Load.acceleratorText: Meta+L*MenuBar*Save.mnemonic: S*MenuBar*Save.accelerator: Meta<Key>S*MenuBar*Save.acceleratorText: Meta+S*MenuBar*SaveAs.labelString: Save As ...*MenuBar*Export.labelString: Export Selection ...*MenuBar*Export.mnemonic: E*MenuBar*Export.accelerator: Meta<Key>E*MenuBar*Export.acceleratorText: Meta+E*MenuBar*Quit.mnemonic: Q*MenuBar*Quit.accelerator: Meta<Key>Q*MenuBar*Quit.acceleratorText: Meta+QModi�cation of the resource �le should be done as carefully as changing the program source code,otherwise unexpected errors may appear. The resource �le for the simulator should be installedin the X Window resource �le directories for all users to share. Some user changeable properties,such as the font used to display cells or the color of the selection dashed lines, can be changed byan individual user by putting those values of his preference into his own .Xdefault �le.4.4 Comparison to previous simulatorsThe CAM machine and Cellular system described in Section 2.3 are more or less designed forsimulating physical systems, notably reaction-di�usion systems [Keener & Tyson, 1986; To�oli &Margolus, 1987]. Their design objective is very di�erent from the simulator presented in this chap-ter. This new simulator is designed for the sole purpose of complex cellular automata rule setdevelopment, which supports feature-rich and somewhat more complex cellular automata struc-tures. In the development of cellular automata rule sets which support a desired behavior such asself-replication, we need to observe constantly the simulation results of our current rule set underdevelopment, modify the rule set, go back in time, and run the simulation on the same startingcellular automata space con�guration again. This kind of design approach is not easily supportedin the two aforementioned systems. In those systems, the cellular automata space con�guration isnot saved automatically unless the user gives speci�c commands to save it. Loading and savinga cellular automata con�guration is not as easy as the one click backtracking o�ered in our newsimulator.The CAM machine has at most four bit planes, which support only 16 states in a cell; itis therefore unable to support the cellular automata model studied in this research. The newsimulator supports up to 64 bits in a single cell, which can be further divided into separate nameddata �elds for di�erent purposes. But it is worth noting that since the CAM machine is a hardwareaccelerated cellular automata simulator, for any particular cellular automata model this machineis capable of simulating, it can usually simulate it much faster than software-based simulators.The Cellular system also allows de�nition of arbitrary data �elds in a cell, but it does not allowmultiple data �elds to be displayed on screen at the same time, nor can it use symbols to representstates of each �eld. The Cellular system can only display cells on screen using colors and, in someplatforms, the numerical values of a �eld. Our new simulator allows the de�nition of colors andsymbols to represent data �elds on screen for any �eld having less than 128 states. Those symbols59



which represent weak rotational symmetric states can even be rotationally displayed on screen ifnecessary.Neighborhood con�gurations are prede�ned in the CAM machine and cannot be easily modi�edor extended. The Cellular system allows arbitrary neighborhoods to be used, but it does not allowsymbolic naming of the neighbors in a neighborhood template. References to neighbors thereforehave to be done using indexing conventions, which sometimes require some imagination to be usedproperly.All of the other main features of the new simulator, like direct entering of cellular automatastates using popup menus, direct exporting of cellular automata space content to EncapsulatedPostscript �les, the easy cut, copy and paste editing operations of the cellular automata con�g-urations, etc., are not seen in the other systems. The on screen design of new cellular automatamodels using the \Template Design" dialog window is especially convenient. It provides at a glanceall the essential structures of a new cellular automata model being speci�ed. The direct linking ofneighbor and �eld names to compiler reserved words is also very handy; we will see their usefulnessin the following chapter.4.5 DiscussionIn this chapter a general purpose cellular automata simulator is presented. Currently thissimulator is available on Unix platforms, but it will soon be ported to the other two popularcomputer systems, the Apple Macintosh and Microsoft Windows 95/NT. All the cellular automataworld �les, template �les and rule �les are machine independent, so everything developed on Unixcan be used on the other platforms without any modi�cation.Currently the simulator is reasonably fast for world sizes up to 500 by 500 cells, say, at about oneiteration every 20 seconds on a Sun Sparcstate 20. Beyond that, the speed of the simulation can beslow, which hurts the original interactive design of the simulator. Since an intrinsic characteristicof cellular automata is that they are scalable, it should be easy to port the simulator, or at least theevaluation module portion of it, to a multi-processor parallel computer. This can greatly improvethe speed of the simulation. Actually, it is possible to build the simulator so that when runningon a parallel computer, it can dynamically adjust workload to available processors installed, so norebuilding of the simulator program is necessary when the power of the parallel computer improves.The Trend cellular automata programming language (to be discussed in the next chapter) or theuser interface does not have to be modi�ed to port it to the parallel computer.The simulator is for two dimensional cellular automata simulations. It can be used for onedimensional cellular automata simulations, too. It may not be easily used with three or higherdimensional cellular automata simulations, although the large bit depth of 64 in each cell can beused for simulations of some speci�c three dimensional layered models, such as the neural networksimulations. Neural network simulations usually use a limited number of two dimensional layersconnected vertically with one another, which is perfect for this simulator.It is possible to modify the evaluation engine of the simulator to support higher dimensionalcellular automata simulations, but actually, for such higher dimensional simulations, the technicaldi�culty is not how to simulate them, but how to visualize the results. A three dimensionalvisualization library such as the PEXLib for the X Window system or the QuickDraw 3D systemextension for the Macintosh can be used for that purpose.60



Chapter 5Trend: A High Level Cellular AutomataProgramming LanguageTrend is a high level language for cellular automata programming1. It is used in the cellular au-tomata simulator described in the previous chapter. Traditionally, cellular automata transitionfunctions are depicted in a tabular format, which lists all mappings from the neighborhood con-�guration domain into the next state value range. This kind of representation has at least twoproblems:� When the the number of states in each cell or the number of neighbors in the neighborhoodtemplate gets bigger, the table size grows exponentially, making it hard, if not impossible, torepresent the table explicitly in the limited computer memory.� A tabular representation of a cellular automata transition function is not easy to understandsince it does not explicitly convey the idea of the rule set to the reader. It is hard for readersto understand a table full of plain numbers. In addition, it is inconvenient for a cellularautomata rule set designer to convert his ideas into the tabular format, something he mustdo �rst before he can start testing the ideas.Because of these problems, a high level structured programming language approach is taken. Inthis approach the cellular automata transition function is implicitly de�ned by the algorithmicoperations expressed in the language. These operations de�ne how a next state value can becalculated based on the various conditions in the cellular automata space. Because the Trendlanguage contains most modern programming language constructs, it allows algorithms expressedusing it to be very complex, yet still quite readable. This greatly extends the power of cellularautomata programming when compared to tabular rule sets.Previously there has been some similar work to improve cellular automata programming. Theprogramming language used in the CAM-6 machine was a semi-high level language based on thestack-operated language Forth [To�oli & Margolus, 1987]. This language used the post�x statementformat rather than the in�x format commonly used in modern programming languages, whichcould impose some di�culties in learning it. The idea to slice neighbor values into data �elds wasintroduced in this system, too. Trend itself was modeled after the popular programming language C,with cellular automata speci�c constructs added to it. These constructs include statements to scan1It is named \Trend" because we hope that it will be useful in programming the trend of cellular automataevolution. 61



all neighbors in a neighborhood template, special data types to access data �elds in the neighbors,special notations for rotatable2 literal value representations, and a special rotated if statement toexploit the rotational symmetry characteristic of cellular automata. A previous knowledge of theC language could make learning the Trend language very straightforward, but it is not required.Conceptually, a high level language for cellular automata programming should provide abstract,named data items to denote the data �elds within neighbors in a speci�c neighborhood templateused in a particular cellular automata model. Based on those data items, new values are computedand assigned to names representing �elds in the center cell. These values are taken as the nextstate values of the cellular automata. The user's job of �nding and listing the transition functionof a cellular automata model in the past now becomes the job of de�ning how the next state valuescan be computed from data items representing the current cellular automata neighbor values. Thisis familiar and straightforward using high level algorithmic language constructs for anyone withsome basic modern programming language experience. Therefore, adapting to cellular automataprogramming becomes nothing more than learning a new programming language. The tedious workof the past, sometimes involving writing a complex program or making a complex rule table just tostart up a simple simulation, is no longer needed once the user has mastered the Trend languageand its associated simulator.The Trend compiler is a full-
edged compiler bundled with the cellular automata simulatorprogram. Although the language is modeled after C, the compiler itself is not an extended Ccompiler. Instead, it is a new compiler implemented from scratch, because cellular automata ruleswork in parallel among cells, which are intrinsically di�erent from sequential C programs. A userloads the Trend language source code into a text window and then invokes the compiler to parse thecode. If no error is found, the compiler will generate a virtual machine code which the simulatoruses for e�cient runtime evaluation of the cellular automata rules. If the runtime behavior of thecellular automata is not what the user wants, the user can modify the source code right in thetext window, recompile and run the simulation again. This highly interactive design and testingenvironment is the major bene�t of the Trend language and its simulator.5.1 A preliminary exampleBefore we consider the details of the Trend language, let us look at a simple example of the Trendlanguage �rst. The following is the famous \game of life" rule expressed in the Trend language3.Here life is a �eld (and the only �eld) of a particular cellular automata model which is de�ned bythe template information the simulator loads during starting up.default life=life; // default is no change for cell valuesint count; //declare an integer variable 'count'nbr y; //declare a neighbor variable 'y'count=0; // initialize counter to zero2That is, their value changes when rotated with the rules.3The game of life rule states that an active cell will be born if it has exactly three active neighbors, that an activecell will keep active if it has two or three active neighbors, and that an active cell will die with less than two or morethan three active neighbors. 62



over each other y: // count the number of active neighborsif (y:life) count++;if (count<2 jj count>3) // the death rulelife=0;if (count==3) // the birth rulelife=1;The statements of the Trend language are executed in order from the viewpoint of a single cell,just like in C. The fact that di�erent cells can follow di�erent rules of the same Trend rule setmakes up the parallelism of cellular automata programming. In the beginning default denotes thatthe statement after it will be a default statement, such that if no rule is applicable for the currentcell, the default statement will be used to determine the next state value for that cell. Here it juststates that everything stays unchanged if no applicable rule is found. Normally the default rule isused to catch all \left over" conditions of the rule de�nition.After that, int and nbr are used to declare two variables, count and y. One is used to storeinteger values and the other to store a neighbor position index. The rule starts with an initializationoperation to set the counter to zero, and then accumulates the number of active neighbors. Finallytwo rules are used to determine the two value change situations: birth and death. If none of thebirth or death rules is applicable (say, if count equals to 2), the default rule will be used.Comments on the rule set can be marked by either the delimiter // or the /* and */ pair.Anything after // until the end of line will be ignored by the compiler as a comment. Similarly,anything enclosed between /* and */ will be ignored by the compiler too, which can include severallines. Note that nested comment pairs are not allowed in Trend.The Trend language utilizes a strictly one-pass compiler to speed up the compilation process.Since it is built within a highly interactive cellular automata simulator, the user should not needto wait for compilation, and a one-pass compiler facilitates this. Because of the strongly one-passcompiler, all variables and functions must be declared before their use. Normally the programstarts with variable and function declarations, followed by the main rules. The default rules can beput anywhere within the program, as long as they obey the same \declare before use" restrictionfor variables and functions. Usually default rules are put at either the beginning or the end of theprogram.5.2 Reserve Words, Names, and VariablesJust like ordinary programming languages, the Trend language has its own set of reserve wordsfor language constructions. These reserve words cannot be used for any other purpose within thelanguage. Reserve words will be displayed using a special slanted font face in this article in orderto distinguish them from the other language elements. Reserve words in the Trend language are:if, int, nbr, 
d, rot, default, over, void, each, else, while, other, break, return.Unlike other programming languages, Trend has a special set of semi-reserve words called nameswhich are de�ned not in the compiler itself, but in the simulator template information loaded duringeach invocation of the simulation program. They can also be de�ned on-the-
y by the user usingthe cellular automata template design window provided by the simulator and saved for future uses.63



These semi-reserve words are the �eld and neighbor names for the corresponding cellular automatatemplate. These names will be displayed in this article using a sans-serif font face in order todistinguish them from the other language elements. Some possible names areNorth, East, South, West, ne, se, sw, nw, �eldA, component, life.Finally, the user can de�ne temporary storage space in the Trend language as variables. Thesevariables can store temporary computational values, neighbor or �eld indices, etc. Variables aredisplayed in this article using a typewriter-like font face in order to distinguish them fromthe other language elements. Some example of variables arex, y, z, count, a, b, c, from, to, pos, layer.5.3 Data typesThere are three data types in the Trend language. One is an integer type which is common inother programming languages, but the other two are special types used only in the Trend language.Types are not interchangeable among each other. However, a user can explicitly write code to mapvalues in one data type to values in another data type by a sequence of if-else statements. SeeSection 5.5 for an example.� int is a positive integer type which can be stored in cellular automata cells to represent cellstates. In fact, cellular automata cells can accept only data of this type. During every epocheach cellular automata cell is expected to get a new value for each of its �elds. Otherwise aruntime error will be reported. See Section 5.11 for details about runtime errors. Symbols,such as 'O', 'L', '>', etc., can be de�ned in the simulator model template for values of theinteger data type which can later be used in the language to represent those integer values.These symbolic literal values are converted to integers by the compiler during compiling time.See the following section about data objects for details about literal values.� nbr is a special type which is used to denote neighbor positions, like north, south, east, west,etc. When combined with the 
d data type they can uniquely specify a particular �eld withina particular neighbor cell.� 
d is a special type which is used to denote �elds within each cellular automata cell. Theconcept of �elds came from the book by [To�oli & Margolus, 1987]. Basically, the originalbit depth of a cellular automata cell (say, 8 bits) is functionally divided into di�erent �elds(say, 2, 2 and 4 bits each) such that each �eld encodes di�erent meanings and functions (tothe human rule writer). The utilization of �eld division greatly simpli�es cellular automatarule programming, and makes the resulting code much more readable.Data of type int can be manipulated and compared just like normal integer values in other pro-gramming language. Data of type nbr and 
d are more restricted; they cannot be used withmathematical operators since it is meaningless to add two neighbor indices together, for example.They can be compared by equal '==' and unequal '! =' operators only.
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5.4 Data objectsLike all major programming languages, the Trend language provides di�erent data objects forprogramming convenience. Data objects are the basic constituents of expressions, and can beliterals, variables, neighbor references, array elements, or function calls.5.4.1 LiteralsLiterals are de�ned by their face values. Their values are constant in the program, and cannotbe put into the left hand side of an assignment statement. There are two basic formats of literals:the numeric format and the symbolic format. Symbolic format is de�ned in the simulator templatefor the cellular automata model being used. For example0, 1, 2, 99, 'O', '>', '>,2', '>,1:s', North:, :�eldA.are all literals4. Here 'O' represents the int type value of the symbol \O" de�ned in the current�eld5, which is de�ned by the current program context. It could take the numeric value 5 if \O"is the sixth symbol de�ned for the current �eld (starting from zero) in the model template. Theliteral '>,2' denotes the second rotation value of the weak rotational base symbol \>". Thus, ifthe numeric value of \>" is 6, then '>,2' will assume the value 8 (rotation is counted clockwise).'>,1:s' denotes the �rst rotation value of the weak rotational base symbol '>' for the �eld s. Notethat symbolic format and numeric format are interchangeable: we may use 5 and 8 in replace for'O' and '>,2', and vice versa. However, the symbolic format generally provides more descriptiveinformation to the reader of the cellular automata program. In addition, only the symbolic formatwill be rotated in a rotated if statement. See Section 5.10 for details. But symbols must be de�nedin the cellular automata model template before they can be used to represent integer values.North: and :�eldA are literal values for nbr and 
d data types. North: is a neighbor constant ofthe nbr data type and :�eldA is a �eld constant of the 
d data type, provided they both are de�nedin the loaded cellular automata template in the simulator. Note that there is no numerical formatfor nbr and 
d data type literals. Note also the mandatory symbol \:" after a nbr literal nameand before a 
d literal name to distinguish them from the other data types. For example, �eldAdenotes the value of the �eld named \�eldA" in the center cell, which is a reference to the valueof \�eldA" (thus not a literal) and has the type int, but :�eldA denotes the �eld index of the �eld\�eldA", which is a literal and has the 
d data type. Thus, the value of :�eldA can be assigned toa 
d type variable, say slice ptr, by the following assignment statement::slice ptr = :�eldA;The actual value of �eldA can then be indirectly accessed by using the 
d variable slice ptr,which contains a pointer to the actual value stored in \�eldA". On the other hand, if the assignmentstatement is written in the following way (assuming that slice value is an int type variable), acopy of the value of \�eldA" is made to int variable slice value, instead of a pointer to it. Thisnew copy is therefore independent of the value stored at \�eldA".4Assuming, of course, that the neighbor \North", �elds \�eldA" and \s", the strong rotational symbol \O" and theweak rotational symbol \>" are all de�ned in the current cellular automata template.5See the following paragraphs for the explanation of current �eld.65



slice value = �eldA;The syntax of the four di�erent formats of literals is the following::field name // 
d type literalneighbor name: // nbr type literal's[,n][:field name]' // symbolic int type literaln // numerical int type literalwhere s stands for a symbol de�ned for the current �eld in the cellular automata model templateand n stands for an integer number. Note that symbols `[' and `]' denote optional parts of the literaland are not part of the literal. Therefore, both the rotation count [,n] and the �eld designationpart [:field name] of the symbolic int literal can be omitted. The rotation count, if used, mustbe either 1, 2, or 3.The �eld designation part (e.g., the \:s" in '>,1:s') of a symbolic literal is needed only whenan e�ective current �eld cannot be resolved by the compiler. Normally if the literal is used togetherwith a �eld name in an assignment or boolean expression the compiler can extract the current �eldinformation from the program context, and thus an explicit �eld designation part is not needed.For example, in the following code segment examples an explicit �eld designation is not neededwithin the literal since they have been speci�ed implicitly somewhere before the literal object:�eldA='O'; //assign the symbolic literal 'O' to field �eldAs='>,2'; //assign the symbolic literal '>,2' to field scomponent='L'; //assign the symbolic literal 'L' to component//if �eldA value in the north neighbor is equal to 'O', set//the variable 'count' to 0.if (North:�eldA=='O') count=0;//if the southwest component field equals '>,1', set current//component value to '>,1' too.if (sw:component=='>,1') component='>,1';A speci�cation like \�eldA='O:fieldA'" is acceptable although it is redundant to specify the �elddesignation tag �eldA twice, both implicitly in the assignment target and explicitly within theliteral quotations.However, if a literal is used together with a variable or array element name where the intended�eld is not obvious from the context so the compiler has no way to �gure out the current �eld, thedesignation part will be needed within the literal quotation marks, as shown below (assuming x,y, z are all variables). Compare this to the examples above.x='O:�eldA';y='>,2:s';z='L:component';if (x=='O:�eldA') count=0;if (z=='>,1:component') z='>,1:s';The compiler will report errors when a current �eld is not available from the context and the �elddesignation part is not given in a symbolic literal either, such as in the statement \x='O';".66



5.4.2 VariablesVariables are named storage places to hold di�erent data values. Their values can be changed byan assignment statement. They are usually used to hold test results, 
ags, or temporary calculationresults. Their values are unde�ned if used before being initialized by either an assignment statementor an initialization operator in declarations.5.4.3 Neighbor referencesNeighbor references are given in the formatnbr : 
dwhere nbr can be any valid nbr data type object like a literal, variable, array element or functioncall. Similarly, the 
d can be any valid representation of the 
d data type. This whole structuredenotes one particular �eld within one particular neighbor cell and the value there is referencedwith the int data type. The \nbr :" part can be omitted all together. In that case, the defaultneighbor is the center cell.5.4.4 ArraysA chunk of storage space can be allocated at once and referenced using the array index withinbrackets \[" and \]". Only one dimensional arrays are supported in Trend. The array index mustbe of type int, but the array itself can be any of the int, nbr and 
d types. For an N element arraythe array index runs from 0 to N�1. No runtime checking of array index bound is o�ered by thesimulator. The value of an out of bound array reference is unde�ned, and an assignment to an outof bound array can crash the simulator at present.5.4.5 Function callsFunction calls are formed by giving a declared function name together with a list of actualarguments to the function, separated by commas. Those actual arguments can be expressions ordata objects (e.g., other function calls). A function returns a value in its declared data type. Callsto a function which returns a value must be done within an expression; a function cannot be used asa procedure unless it is declared as a procedure with the void data type, which means that no valueis returned. A procedure which does not return a value cannot be used in expressions. Instead, aprocedure call is a stand alone statement itself.A function returns values by giving an expression to the return statement within the functionbody. The return statement will immediately terminate the execution of the current function andreturn the value of its argument to the caller routine to be used in an expression.5.5 Declaration and initialization statementsVariables, arrays and functions must be declared before used. Variable and array declarationsconsist of a type name, followed by a list of variable or array names separated by commas, andending with a semicolon. The di�erence between a variable and an array lies in the fact that an67



array has an index declaration marked by the \[" and \]" symbols. An optional initialization partcan follow each variable or array name which assigns initial values to the variable or array.For example, all of the following declarations are valid:int i, j, k; // int type variables i, j and knbr from, to, where; // nbr type variables from, to and where
d a, b, c; // 
d type variables a, b and c// declare an int array buf[] with ten elements, an int array// x[] with two elements, and an int variable yy.// Initialize them too.int buf[10]=f 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 g,x[2]=f 'O:layerA', '>,2:layerB'g, yy=99;// declare a nbr array permute[] with five elements,// initialize it to the five neighbor values.nbr permute[5]=f Center:, East:, South:, West:, North: g;// declare 
d variables tag and trace and initialize them
d tag = :layerA, trace = :layerB;Note that a �eld designation is usually needed when initialization with a symbolic literal value like'O:layerA' since the compiler has no way to know which �eld the symbol \O" belongs to. Therecan be many \O" symbols in di�erent �elds, each having di�erent values. But within each �eld allsymbols used must be unique.Function declarations consist of a type name, followed by a function name, a left parenthesis,formal arguments (if any) separated by commas, a right parenthesis, and �nally the function body.The function body can be just a single statement or a block statement. See Section 5.8.2 for detailson block statements.The following is an example of a typical function declaration. This particular function mapsa neighbor position to an integer value which is treated as a pointer in the \d" data �eld, asmentioned in Section 5.3. The symbol 'V' is used to visually denote how neighbors should pointto the center cell. Therefore, the north neighbor should point to south with 'V', the east neighborshould point to west with 'V,1', etc. Because there is no diagonal arrow symbols in the usualcharacter set, the symbol 'Q' is used for similar purposes for the diagonal neighbors northeast,southeast, southwest and northwest. The extra \leg" of the letter Q is used as a directional arrow.Therefore, the northwest neighbor should point to southeast as denoted by 'Q', and the southeastneighbor should point to northwest as denoted by 'Q,2'.int ntod(nbr x)if (x:==no:) return 'V:d'; // north points southelse if (x:==ne:) return 'Q,1:d'; // northeast points southwestelse if (x:==ea:) return 'V,1:d'; // east points westelse if (x:==se:) return 'Q,2:d'; // southeast points northwestelse if (x:==so:) return 'V,2:d'; // south points northelse if (x:==sw:) return 'Q,3:d'; // southwest points northeast68



else if (x:==we:) return 'V,3:d'; // west points eastelse if (x:==nw:) return 'Q:d'; // northwest points southeastelse return 0;5.6 Mathematical expressionsSimple mathematical expressions are formed by grouping together int data objects using math-ematical operators. When evaluated, they will generate int values which can be assigned to �eldsas next state values, or be stored in variables for further computational purposes. Mathematicalexpressions can be used in comparison expressions to form boolean values for use in control 
owstatements, or they can be arguments to a function or procedure call. A mathematical expressionwill never form a statement by itself; it must be part of a complete statement. Note that only inttype data objects can be used in mathematical expressions; nbr and 
d types cannot be combinedwith mathematical operators.All normal mathematical operators are provided in the Trend language. Listed below are theseoperators in order of ascending precedence. Operators with the same precedence level will beevaluated from left to right.+ �� / % & j ^( )Parentheses have the highest precedence and can be used to change computation order. Multipli-cation (�), division (/), modulus (%), bitwise conjunction (&), bitwise disjunction (j) and bitwiseexclusion (^ ) operators are at the second priority level. Finally, the addition and subtractionoperators (+, �) have the lowest priority among mathematical operators.Note that mathematical operators always take precedence over comparison operators (e.g., >,<, ==, etc.), which in turn take precedence over boolean operators (&&) and (jj). Assignmentstatement operators (=, ++, ��) always have the lowest precedence among all operators.5.7 Assignment statementsAssignment statements assign a value computed from a mathematical expression (for int typeonly) or a value from a data object (for int, nbr or 
d types) to a variable, array element, or a �eldwith the same data type. If the value is assigned to a �eld name, that value is taken as the nextstate value of that �eld and must be of type int .5.7.1 Normal assignment statementsA normal assignment statement is composed of a left-hand-side, an equal sign, a right-hand-side, and a semicolon as the terminator. The left-hand-side can be in any of the three data typesint, nbr and 
d, although in the latter two cases the corresponding right-hand-side can only besimple data objects with the same data type; they cannot be expressions since 
d and nbr dataobjects cannot form expressions. The left hand side can be �eld names, variables or array elementsbut not literals or function names. 69



5.7.2 ++ and �� statementsTwo special assignment statements are formed by a left-hand-side, either one of the ++ or�� operators, and a semicolon. They either increase or decrease the left-hand-side object valueby one, and assign that new value back to the left-hand-side. Since a mathematical operation isinvolved, these two special assignment statements cannot be used with data objects of type nbrand 
d since increasing or decreasing their values is meaningless. The left-hand-side can be �eldnames, variables or array elements but not literals or function names.5.8 Control 
ow statementsVarious common control 
ow constructs are provided in the Trend language to change the orderof rule execution. These control 
ow constructs rely on a boolean expression to determine the 
owpattern.5.8.1 Boolean expressions and comparison expressionsBoolean expressions are formed by combining together comparison expressions using logicaloperators && and jj. && has higher precedence than jj but parenthesizes can be used to changethe order of evaluations. The evaluation is from left to right within the same precedence level.Just like in the C programming language, whenever a de�nite result can be determined duringthe partial evaluation of a boolean expression, the unevaluated part of the boolean expression willbe ignored since it will not change the outcome of the boolean expression in any way. For example,in the following boolean expression1<2 jj North:�eldA==�eldAthe second comparison expression never gets evaluated since the �rst is always true and thereforethe whole boolean expression is always true. It is not advisable to put a function call in the booleanexpression like this since that function call may not get executed at all!Similarly most of the following boolean expressions will not be evaluated at all if direc is notequal to '>':direc=='>' && (nw:component=='>,3' jj nw:component=='O') &&(ne:component=='B' jj ne:component=='>,1') &&no:component=='.' && ea:component && we:component)Comparison expressions are usually composed of two mathematical expressions or data objectsseparated by comparison operators. A special case of just having one mathematical expressionalone in a comparison expression is taken as testing if that mathematical expression is not equal tozero. For example, a simple comparison expression6 \a+b" is equal to a more lengthy \a+b != 0"where != means \not equal to." The comparison operators o�ered in the Trend language are <,<=, ==, >=, >, and !=. Note that 
d and nbr data types can be combined with only == and !=comparison operators since it is meaningless to compare the magnitude of these data types.6This is a simple mathematic expression within part of a boolean expression and taken as a comparison expression.70



5.8.2 Block statementsStatements can be blocked together using left and right braces, \f" and \g", to form a blockstatement. A block statement can appear wherever a single statement appears in the followingcontrol 
ow constructs. Thus it permits multiple statements to be put into one single control 
owconstruct.5.8.3 Conditioning statementsConditional statements can take either the formif ( boolean ) statementor the formif ( boolean ) statement1 else statement2In the �rst case if the boolean expression is true the statement will be executed, otherwise the wholeif statement is skipped. In the latter case statement1 will be executed if the boolean expressionis true, otherwise statement2 will be executed. Nested if statements are allowed and the danglingelse problem is resolved the traditional way: associate it with the nearest if.5.8.4 over statementsThe over statement in the Trend language is directed toward scanning over all neighbors for acell. It takes the following form:over each f other g nbr variable statementIn essence, it loops through all neighbors of a cell (including the center cell itself), and assigns eachneighbor position index value into the nbr variable. Although not required by the language itself,the nbr variable will usually be referenced in the statement that follows. The optional tag \other"can be added to exclude the center cell in the scanning process.For example, the following code segment determines how many neighbors are in non-quiescentstates (nonzero):count=0;over each other y:if (y:component) count++;5.8.5 while statementsThe while statement in the language Trend is exactly the same as the while statement in C. Ittakes this form:while ( boolean ) statement
71



When the boolean expression is true the statement will be executed repeatedly until the booleanexpression turns false. If the boolean statement is false on entry to the while statement the wholewhile statement will be skipped without execution of the included statement.Note that no runtime checking for an in�nite loop is provided by the simulator. Therefore, theprogrammer is responsible for making sure the while statement will terminate. This is one of thefew places where a badly designed Trend program can crash the system7.5.8.6 break statementsA break statement can be used in the statement part of the innermost over or while statement toforcefully terminate the current looping and jump directly to the next statement after the innermostover or while statement.5.8.7 Procedure call statementsProcedure calls are very similar to function calls except that procedures are declared as typevoid and do not return values. Therefore, they are statements by themselves with a terminatingsemicolon, unlike function calls which must be a part of an expression. Procedure call statementsallows multiple code segments to be repeatedly used with di�erent given arguments.5.9 Default operationsSometimes it is more convenient to designate default rules such that after the execution of allnormal rules, if some �elds still have not been given their next state values, the default rules canbe used to make the decision. Default rules are formed by giving the tag default in front of anynormal statement except declarations. Often the default rule is simply an assignment statementwhich sets the current value of a �eld to be its next state. It simply states that \if none of the ruleschanges the current value of this �eld, this �eld should stay unchanged". The default rule can beused to set whatever value normal rules can set to a �eld, using all language constructs providedby the language to compute the value.5.10 The rotated if statementOne unique feature of the Trend language is its strong support in writing cellular automataspeci�c rules by providing the rotated if command construct. The rotated if command is formedwith a conditional statement by putting the reserve word rot in front of the if and by givingrotatable literal values, i.e., symbolic literals, in the boolean expression and the statement part ofan if statement. A conditional statement formed by using the rotated if command is called a rotatedif statement. Only symbolic literal values (including the int, nbr and 
d symbolic literals) will berotated in the boolean expression and the statement part of a rotated if statement. The rotatedif statement greatly exploits the symmetrical characteristics of most cellular automata models andcan cut the size of the rule set to 1/4 that size of the same rule set without using the rotated ifstatements.7The other case is an assignment to an out-of-bound array element.72



For example, the following function which uses standard nested if statements is introduced inSection 5.5. It maps a neighbor position to one of eight pointer symbols, using eight if statements.int ntod(nbr x)if (x:==no:) return 'V:d'; // north points southelse if (x:==ne:) return 'Q,1:d'; // northeast points southwestelse if (x:==ea:) return 'V,1:d'; // east points westelse if (x:==se:) return 'Q,2:d'; // southeast points northwestelse if (x:==so:) return 'V,2:d'; // south points northelse if (x:==sw:) return 'Q,3:d'; // southwest points northeastelse if (x:==we:) return 'V,3:d'; // west points eastelse if (x:==nw:) return 'Q:d'; // northwest points southeastelse return 0;It can be replaced by using only two rotated if statements. In addition, the rotated if statementsare much more obvious in meaning than the above one: they just return di�erent weak rotationalvalues of the base symbol 'V' or 'Q', according to di�erent input neighbor position arguments.int ntod(nbr x)rot if (x:==no:) return 'V:d'; // north points southrot if (x:==nw:) return 'Q:d'; // northwest points southeastelse return 0;The term isotropy means something is directionally indi�erent. An isotropic cellular automatarule set guarantees that it will produce the same result, properly rotated, from di�erent orientationsof the same initial cellular automata con�guration. An isotropic cellular automata rule set isimportant since it makes the transition function of the cellular automata independent of the globalorientation of the cellular automata space. Speaking in another way, no matter what speci�cevaluation order of a cellular automata rule set is taken, the result will be the same if the rule setitself is isotropic.For some speci�c cellular automata modelings, such as the emergent self-replication cellularautomata structures which will be discussed in Chapter 6, it is especially important that thesame outcome will appear on the cellular automata space no matter what initial random cellularautomata con�guration is. We certainly cannot assume that the �rst self-replicating molecule onearth knew where the north pole of the earth was, neither can we assume that the �rst emergentself-replicating structure on the cellular automata space knew where the top side of the cellularautomata space was, and acted accordingly. We will see below how the rotated if statement can bemade to safeguard the isotropy of a cellular automata rule set.The rotated if statement can be tested up to four times for the four di�erent orientationsof a reference template, depending on the boolean expression values of the rotated if statement.Whenever an orientation of the template makes the boolean expression value true, the statementpart of the rotated if statement will be evaluated based on the same orientation, and the rotated ifstatement ends. Therefore, the outcome of a rotated if statement depends on the order of testing thedi�erent orientations of a template and can be non-isotropic. That is, if you turn the initial cellularautomata con�guration clockwise 90 degrees and run the same rule set which uses the rotated ifstatements again, you may not end up having the same results rotated clockwise 90 degrees too73
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non-isotropic statement effects isotropic statement effectsFigure 5.1: The isotropy of rotated if statements. Parts (a), (b), (c) and (d) are the e�ects of anon-isotropic rotated if statement on a cellular automata con�guration in di�erent orientations.Parts (e), (f), (g) and (h) are the e�ects of a modi�ed isotropic rotated if statement on the samecellular automata con�gurations. We can see in the later cases that the center cell always getsthe same value, no matter how the cellular automata con�guration is oriented.unless some programming precautions have been observed. It is the programmer's responsibilityto ensure an isotropic rule set while using the rotated if statement8.For example, the following non-isotropic rotated if statement copies di�erent values to the centercell when the cellular automata space is oriented di�erently, as seen in part (a), (b), (c) and (d)of Figure 5.1. Since this statement is evaluated with an upright orientation �rst, the value in thenorth neighbor always gets copied �rst, no matter what it is. Here the symbols 'A', 'B', 'C' and'D' represent strong rotational symmetry states, and the symbol '>' represents a group of fourweak rotational symmetry states. Note that to simplify matters, we only consider the outcome ofdi�erent rotated if statements on the center cell; it is assumed that all the other neighbor cells stayunchanged by the e�ect of some other cellular automata rules not shown here.rot if (no:value)value==no:value; // copy active neighbor valuesAn isotropic rule set can be guaranteed if one of the following two conditions is met by allrotated if statements used in the rule set and for all possible neighbor con�gurations that can occurin the cellular automata space.� Either none of the four rotation orientations makes the boolean expression turn true; or� Only one of the four rotation orientations makes the boolean expression turn true.If there are more than one of the four rotation orientations which can make the boolean expressionturn true, then only one of the orientation will be chosen to evaluate the statement part of a rotatedif statement, thus the outcome is non-isotropy since the choices can be di�erent for di�erent initialcon�gurations.8But even by not using the rotated if statement, there is still no guarantee that a rule set will be isotropic. Infact, it is easier to get a non-isotropic rule set by not using the rotated if statement.74



To make a rotated if statement isotropic, the user can always add (&&) a boolean factor into theboolean expression such that he or she knows that only one out of four orientations can make thisboolean factor turn true, therefore ensuring that the whole rotated if statement is isotropic. Thisboolean factor can usually be a comparison of directional pointer values in a �eld. Since directionalpointer values are unique in that they only point to one direction for each cell, this added booleanfactor is a very good isotropy protection scheme.For example, if the previous non-isotropic rotated if statement is modi�ed as below, it becomesisotropic. It copies the same value to the center cell even when the cellular automata space isoriented di�erently, as seen in part (e), (f), (g) and (h) of Figure 5.1. Since this statement isevaluated according to how the weak rotational symbol '>' is oriented, the value of the neighbor atthe back of the arrow always gets copied, no matter how the cellular automata space is oriented.rot if (value=='>,1' && no:value)value==no:value; // copy active neighbor valuesThe rotated if statement takes the following form:rot f ( alignment boolean ) g if ( boolean ) statementThe \( alignment boolean )" part is optional and has two uses. First, sometimes it is desirable tomake the isotropy protection boolean factor stands out from the actual boolean expression in orderto avoid confusing the ideas. In that case the user can move the isotropy protection boolean factorinto the alignment boolean part. Second, sometimes the user knows that multiple orientations ofthe template will all make the boolean expression turn true (thus this rotated if statement is notisotropic), but he or she wants to give a particular orientation higher precedence to be used toevaluate the statement part. Rather than using the default system rotation order of the templateto test a rotated if statement, the user can align the starting orientation with some pointer valuesby giving a pointer comparison boolean factor in the alignment boolean part. Note the rotationtesting direction is always clockwise and cannot be changed; only the starting orientation can bechanged by the alignment part.For example, the previous isotropic rotated if statement can be rewritten in the following way,which still is isotropic and functions the same. Comparing to the non-isotropic example above, thefollowing rotated if statement can also be seen as giving precedence to the symbol 'A' by aligningthe rotated if statement with the symbol '>' �rst before its boolean condition test begins.rot (value=='>,1') if (no:value)value==no:value; // copy active neighbor valuesFrom the example above, it may seem that if the optional alignment boolean is added, a rotated ifstatement will become isotropic automatically. This is not necessarily the case. For example, thefollowing rotated if statement has the optional alignment boolean, and is very similar to the previousstatement, but it is not isotropic. Its e�ect when applied to the same four cellular automata spaceorientations of Figure 5.1 is given in Figure reffg:nonisotropy. Again, only the e�ect on the centercell is considered in this �gure.rot (value<='>,1') if (no:value)value==no:value; // copy active neighbor values75
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Figure 5.2: E�ects of nonisotropic rotated if statement. The e�ects of a non-isotropic rotated ifstatement with optional alignment boolean on the same four cellular automata space orientationsof Figure 5.1 is shown in parts (a), (b), (c), and (d).No matter what the reason, if an alignment boolean part is given for a rotated if statement,the rotated if statement will now be tested �rst against the alignment boolean until a true valueis obtained. Then starting from the orientation which makes the alignment boolean expressiontrue, up to four continuous clockwise rotations of the template will be made to test the booleanexpression part until a true value is found and the statement evaluated or none is found and therotated if statement skipped.An else part can follow a rotated if statement just like a normal if statement. Nested if state-ments are also acceptable inside or outside a rotated if construct, but nested rotated if statementsare not allowed since they are meaningless.5.11 Compilation and runtime errorsAll compilation errors will be shown on the message window when they are discovered. SinceTrend is based on a highly interactive system, only the �rst syntax or semantic error is reported.Users can modify the code right in the text window and recompile. The user saves the �nal,compilation error free source code before running a simulation when using the text window tocompose a Trend program. It is recommended that the user use a text editor such as vi or emacsto compose the source code, and load the �nished program code into the simulator for executiononly.There are basically four kinds of runtime errors, two of which can be caught by the simulatorbut two of which are fatal:� The unde�ned error. During every epoch each �eld in each cell must get a new next state valuefrom the execution of the compiled rule code. If that is not the case, the simulator will reportthe \unde�ned" errors, together with the cells which have unde�ned �elds. The unde�nedcells are highlighted on screen, so the user can check their �eld values and determine whythe assignment is not complete. Most commonly the error is caused by forgetting to assign adefault rule for the corresponding �eld(s).� The con
ict error. A con
ict error occurs when cellular automata rules assign more than76



one value to a given �eld. This is usually caused by an inconsistent or an inaccuratelypartitioned rule set. This error is usually a hint that some reasoning in the cellular automatarule design is not correct. The checking for runtime con
ict errors can be disabled by usingthe main simulation window. This speeds up the simulation process somewhat since theevaluation process will stop whenever all �elds have been given next state values; the restof the unevaluated cellular automata rules will be ignored. But it is recommended that thisfeature be disabled only after cellular automata rules have been completely tested and allpossible (con
ict) errors have been �xed.� The in�nite loop error. When a while statement does not terminate during the evaluationprocess, the in�nite loop error occurs. This error is currently not automatically resolved.The user has to abort the execution of the simulation program when this error happens. Atimeout feature could be added to the simulator in future revisions to cure this problem.� The memory fault error. An assignment to an out-of-bound array element will cause this error.The out-of-bound array element can actually reside in the compiled code area, the data area,or the simulator program area itself. The e�ect of this error is totally unpredictable and itis not checked for in the current simulator. The Trend programmer must be careful not toreference or assign to an out-of-bound array element.5.12 ExamplesSeveral simple examples are given in this section to show typical uses of some of the Trendlanguage constructs. More complex examples can be found in the following two chapters.5.12.1 A simple reaction-di�usion system simulationA reaction-di�usion system is a set of chemical reactions where several catalysts are competingand/or cooperating with each other in a circular manner. For example, in a three catalysts system,catalyst A can help produce catalyst B but inhibits catalyst C, catalyst B can help produce catalystC but inhibits catalyst A, and catalyst C can help produce catalyst A but inhibits catalyst B. Ifa mixture of these three catalysts is put together, spiral waves consisting of the three catalystscatching each other's tail will usually occur in the mixture through time.The reason the spiral wave is forming is because whenever there is a region with high densityof catalyst A, catalyst B will be catalytically produced in that region shortly by the help of A.Since catalysts are not only produced and destroyed by chemical reactions, but are also translatedby the di�usion process, the concentrated region of B seems to follow the concentrated region of Ain the mixture. This will make a spiral wave distribution pattern in the long run. A well-knownreaction-di�usion system is the Belousov-Zhabotinsky reaction [Keener & Tyson, 1986].The following Trend rule set is obtained directly from a CAM Forth program in Section 9.3 ofthe book [To�oli & Margolus, 1987]. It is a good example showing that the CAM Forth languagecan be easily translated into the Trend language. This cellular automata rule set tries to catch thespirit of the reaction-di�usion reaction in a very simple manner. There is only one self-annealingreactant in this simpli�ed system. The existence of a reactant is represented by the one bit �eldvalue. During each iteration, a cell �rst scans neighbors to accumulate density information. TheMoore neighborhood is used in this rule set. The alarmbit is set according to the conditions in the77



Figure 5.3: A simple reaction-di�usion systemsimulation. The cellular automata space (250by 250 cells) is setup by randomly initializingthe three data �elds value, alarmand counter,which puts individual cells at di�erent phases ofthe rule set. This picture is taken after about800 iterations of the simulation.array table[]. The cell will set the alarmbit when there are over three active neighbors, or whenthere are exactly two active neighbors. The alarmbit then triggers the counter to countdown, whichdisables the cell's valueuntil it becomes zero.Each cell in the cellular automata space is running independently according to this rule set.Because of the interaction between cells, in Figure 5.3, we can clearly see the formation of spiralsafter the simulation has run a while starting from a randomly distributed initial cellular automatacon�guration. For more detailed simulations of this sort with more catalysts, the cellular automatarules in [Boerlijst & Hogeweg, 1991] can be used to replace the very simple rules here./* the alarm condition table */int table[]={ 0, 0, 1, 0, 1, 1, 1, 1, 1};int sum; /* the variable used to accumulate neighbor density */nbr y; /* the dummy variable used in the scanning (over) statement *//* The default is no change in all fields */default value=value;default alarm=alarm;default counter=counter;/* scanning neighbor density */sum=0; /* set accumulator to zero */over each other y: /* loop through all neighbors */if (y:value) sum++; /* if active, increase sum by one *//* alarm value is set according to the table */alarm=table[sum];/* value is reset if counter is counting, otherwise it is set */if (counter==0)value=1;else value=0; 78



/* counter is set to 3 if alarm is set and the cell is active */if (value && alarm)counter=3;else if (counter) /* otherwise, counter counts down toward zero */counter--;5.12.2 Backward compatibilitySometimes it may be desirable to run some old cellular automata rule sets in the new simulatorusing the Trend language. As said before, many previous cellular automata rule sets are encoded ina tabular format, which de�nes the cellular automata transition function using numerous (domain,next state) pairs. Although it is not recommended that cellular automata rules be written this waywith the Trend language, the language does have the capability to easily adopt such a table intoits rules, so that old rule sets can still be run without too many modi�cations.The following Trend rule set implements a well-known self-replicating rule set using tables[Langton, 1984]. The transition function domain values, each of them consisting of the center,north, east, south and west neighbor values in a von Neumann neighborhood, are listed in thetable domain[]. The corresponding next state values are listed in the table next[]. The coreof this rule set is actually very short and simple; it just loops through the table trying to �nd amatching domain value for the current cell, and then sets the next state value accordingly whensuch a matching domain value can be found on the table. The looping rules are independent ofthe table and can be used with many other tables to implement di�erent old cellular automatarule sets. The only thing that needs to be modi�ed is the table length constant, which is 207 forLangton's table [Reggia et al., 1992].The looping rules may seem ine�cient at �rst glance, since they always sequentially scan throughthe table to �nd the matching domain value; they could be replaced by some clever algorithms,such as hashing or binary search, to do the search. Since the simulator has its own fast lookupcaching mechanism, it is actually not necessary to do any clever table search in the rule set itself.Within one full replication cycle (151 epochs for Langton's loop), the simulator will have all tableinformation in its own cache. After that, cell evaluations will no longer need to go through thecompiled rule code but can obtain the next state values directly from the simulator cache table.This rule set correctly implements Langton's self-replicating loop. The result is given in Fig-ure 5.4. Note that here we choose to use the actual state values instead of symbolic states torepresent the loop in order to facilitate comparison with the tabular rule set below. Other thanusing di�erent symbols to represent states, this Langton's loop is exactly the same as the one inFigure 2.4 at page 8./* the domain table, in Center, North, East, South and West order */int domain[]={00000, 00020, 00220, 20210, 20272, 20202, 20212, 20242,20042, 20120, 12702, 72021, 02127, 12420, 42021, 02124, 42201, 20024,27220, 21022, 10212, 17202, 11212, 22271, 11272, 22211, 22000, 01722,71120, 12221, 20001, 00030, 20270, 20342, 30002, 00023, 20720, 72012,03214, 24122, 22277, 07721, 12210, 20122, 22200, 10027, 12402, 12211,24220, 12227, 72220, 20007, 12271, 21722, 00012, 10001, 00001, 01002,10024, 41120, 22244, 04421, 10021, 11121, 12124, 11127, 12224, 42220,20004, 20312, 30012, 13221, 13224, 20302, 30042, 43220, 20112, 10012,79
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Figure 5.5: The Extended Game of Lifetemplate. In addition to the 9 standard Mooreneighbors, 16 new neighbors around the originalMoore neighborhood are also added to thistemplate.state=next[i];break;}i++; /* increase counter */}5.12.3 Extended template Game of Life rulesIt is interesting to see how the familiar Game of Life rules can be modi�ed to use a largerneighborhood template than the Moore neighborhood. In this example, we extend the neighborhoodtemplate to include also the secondary neighbors in addition to the immediate neighbors, as shownin Figure 5.5. Each cell still carries a bit �eld as in the standard rules.The construction of the Trend rule set is almost identical to the standard one we have seen inSection 5.1, the only di�erence lies in the condition for the death and birth rules. In this modi�ednew rule set a cell will die if it has more than 9 or less than 6 active neighbors, and a cell willbe born if it has exactly 7 or 8 active neighbors. We can see that the scanning rules are stillthe same as before, despite the fact that in the extended neighborhood template there are nowmore neighbors. This presents the power of the new simulator, which allows an arbitrary newneighborhood template to be de�ned and used, unlike previous simulators, which usually providea limited number of prede�ned templates and cannot allow the creation of new ones. This alsoshows the power of the versatile over statement, which can easily accumulate neighbor informationwithout even mentioning neighbor names in the statement itself.int count; /* variable for accumulating active neighbor count */nbr y; /* dummy nbr pointer to scan the neighbors */default life=life; /* default is no change for a cell *//* find out how many active neighbors are there */count=0; /* clear the counter */over each other y: /* scan all neighbors */if (y:life) count++; /* add one if alive */81
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ipper, which is actually a pair of stable patternsthat are changing into each other with a period of two. One 
ipper found in the extended templateGame of Life simulations is shown in Figure 5.7.Additionally, three glider patterns, with periods 3, 4 and 5, are shown in Figure 5.8. Glider (a)is moving toward the upper right direction, with a period of 3. Glider (b), which is very similarto glider (a) but a little bit smaller, is also moving toward the upper right direction with a periodof 4. The last glider, (c), moves in a horizontal direction toward the left, which actually resemblesa spaceship in the standard Game of Life terminology. It should be noted that it is very hard toget a naturally occurring spaceship in the standard Game of Life simulation, but in the extendedtemplate Game of Life simulation, the horizontally moving gliders can be seen easily with justseveral simulation runs.5.12.4 Finding the cellular automata Voronoi diagramA Voronoi diagram among some anchor points in a two dimensional space is the collectionof points in the space which are in equal distance to their two closest surrounding anchor points.
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(b)

(c)Figure 5.8: Some gliders in the extended template Game of Life simulation. (a) A period 3glider moving toward the upper right corner. (b) A period 4 glider moving toward the upper rightcorner, too. (c) A period 5 glider moving toward the left horizontally.Therefore, the Voronoi diagram seems to divide the space into regions centered around those anchorpoints. For example, the Voronoi diagrams for two, three, four and �ve randomly chosen anchorpoints are shown in Figure 5.9.In this subsection we will see how a Voronoi diagram for the cellular automata space can beconstructed using cellular automata rules. Note that distances in a cellular automata space arecomputed using the L1 metric, i.e., dist(p; q) = max(jpx � qxj; jpy � qyj). First let us see how itworks in Figure 5.10. In epoch 0, some random points are set in a cellular automata space of 250 by250 cells. The cellular automata rule set makes an expanding square wave go out from each anchorpoint, as seen in epoch 5 and all the following epochs. When waves from two anchor points collide,they will from a Voronoi segment at the crash points. Since waves are expanding at the same speedfrom both anchor points, we know that points on the Voronoi segment are in equal distance to bothanchor points. The collection of all Voronoi segments between anchor points forms the Voronoi
Figure 5.9: The Voronoi diagram. A Voronoi diagram divides the space into regions centeredaround individual anchor points. The diagram itself is represented by line segments in the space.The Voronoi diagrams for two, three, four and �ve anchor points are shown.83



diagram for the cellular automata space9. One way to examine if the resulted Voronoi diagram iscorrect is to see if all of its segments are connected together. If there is any unconnected segment,the Voronoi diagram is not fully constructed or maybe incorrect. In the following discussion thiscriterion is used to check the correctness of the automata rule set.We can see in Figure 5.10 that gradually, each wave claims a portion of the cellular automataspace for its anchor point, and the free space of the cellular automata space is shrinking. By epoch40, the Voronoi diagram has been fully established, and nothing will change after that.The following is the rule set for constructing the Voronoi diagram of a cellular automata spacewith random anchor points. This cellular automata rule set references the Moore neighborhoodtemplate and uses only one data �eld, \value". Eight weak rotational symmetric states are usedto denote the wave. Three strong symmetric states are used to denote the anchor point, theVoronoi point, and the anchor point after epoch 0. The symbol '>' and its rotated forms areused to represent the four weak rotational symmetric states denoting an expanding square towardquadrilateral directions. The symbol 'Q' and its rotated forms are used to represent the four weakrotational symmetric states denoting an expanding square toward diagonal directions. Recall fromSection 5.5 that the extra \leg" of the letter 'Q' is used to denote diagonal directions, due to thelack of more suitable arrow symbols in the usual character set. The symbol '*' is used to denotethe anchor point. The symbol '%' is used to denote the Voronoi point. The symbol 'S' is used todenote the same anchor point after epoch 0.Sometimes it is easier to explain the rules using accompanying pictures. There are ten casesshown in Figure 5.11 which will be used to illustrate the rules in the following comments surroundingthe rules.nbr y; // variable used for scanning neighborsint sum; // variable counting incoming waves toward a quiescent cellint ptr; // variable storing the new direction of a quiescent celldefault value=value; // default is no change to any cell/* Function ntod() maps neighbor positions to the eight weakrotational symmetric states, which determine the direction a wave isexpanding. From the point of view for a quiescent cell, this functionis used to determine if some nearby waves are moving towarditself. This function has also been discussed in the section aboutrotated if statement in this chapter. */int ntod(nbr x)rot if (x:==we:) return '>:value';else rot if (x:==nw:) return 'Q:value';else return 0;if (value==0) { // rules for quiescent cells/* The enclosed rules determine the next state value for a quiescentcell. The idea is to scan the neighbors of the quiescent cell in order9Note that the cellular automata Voronoi diagram is di�erent to the geometric Voronoi diagram due to di�erentdistance metrics being used. In cellular automata space expanding square waves are used to �nd the Voronoi segments;in geometric space the segments can be viewed as found by expanding cycles.84
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30 35 40Figure 5.10: The cellular automata Voronoi diagram. The Voronoi diagram is found by makingexpanding square waves out of each anchor point. During initialization some random anchorpoints are spread into the 250 by 250 cellular automata space. Each cell is represented by apixel in this �gure. Note that we only di�erentiate active and quiescent states in this �gure. Asusual, the cellular automata space is wrapped around the four sides in a torus shape. Activecells are drawn with dark color while quiescent space is shown in light gray color. In epoch 5we can see that small squares are expanding out from anchor points. Some squares have alreadycollided, forming tiny Voronoi segments. In all the following epochs, we can see that those squaresare getting bigger and bigger. They keep expanding unless they are stopped by collisions withthe other squares, in that case, permanent Voronoi segments are formed. The Voronoi diagramis gradually shaped up. Finally, in less than 40 epochs, the Voronoi diagram for this cellularautomata space is fully constructed. 85
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Figure 5.11: The role of the cellular automata rules. Ten cases are illustrated in this �gure toshow the purpose of various cellular automata rules. Refer to the comments in the rule set fordetails.
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to determine if there is any wave moving toward it. The variable 'sum'records how many of such waves are found. If it is more than 1 afterthe scanning process, a collision of waves occurs, and the quiescentcell must be converted to carry the Voronoi point state '%'. If thereis only one incoming wave, the quiescent cell will be converted tocarry one of the eight expansion pointers, depending on whichdirection the wave is coming from. The new pointer value istemporarily stored in variable 'ptr'. */sum=0; // clear the incoming wave counterover each other y: { // scan neighbors for incoming waves/* This rule starts the expanding wave around an anchor point,as seen in case 1. Whenever there is an anchor point'*' around a quiescent cell, that quiescent cell will beconverted to an expansion pointer in the next epoch. Note thatthe anchor point '*' will be immediately converted to anonfunctional state 'S' by the following rules in order toprevent multiple expanding waves from the same anchorpoint. */if (y:value=='*') {sum++;ptr=ntod(y:);/* This rule keeps expanding the wave, as seen in case2. It is very similar to the rule above except that thedirection of the wave also has to be verified. Thefunction ntod() is used again to determine if a wave isdirecting toward the quiescent cell. */} else if (y:value==ntod(y:)) {sum++;ptr=y:value;/* This rule keeps expanding the wave, but at the corners. Seecase 3 for its effects. Note that the pointer of the neighbordoes not actually point at the quiescent cell. This rule, whencombined with the previous one, makes a continuously expandingsquare, as seen in case 4. */} else rot if (y:==no: && (y:value=='Q' || y:value=='Q,1')) {ptr='>,1:value';sum++;}}/* After the scanning, if there is only one incoming wave, set thenew expansion pointer accordingly. */if (sum==1)value=ptr;/* Otherwise, there is a collision. This quiescent cell should87



be part of a Voronoi segment. Set the Voronoi state '%' instead */else if (sum>1)value='%';/* This rule keeps the Voronoi segment expand after it isformed. There are three special cases in which the Voronoisegment has to expand after it is formed in order to ensureconnection with the other Voronoi segments. The first case is whentwo waves meet at exactly the same row or column of quiescentcells. That will generate a single line Voronoi segment. But theproblem is, this Voronoi segment will not be connected to theother segments if it does not keep expanding toward its twoends, as seen in case 5. The first line of the OR'ed conditionsmakes sure the Voronoi segment is still expanding, as seen in case6. The other two OR'ed lines of conditions work similarly, but forthe double lines Voronoi segment which is formed when twoexpanding waves reach each other at the same time. The behavior ofa double lines Voronoi segment with and without these two lines ofconditions are shown in case 8 and 7, respectively. */else rot if (we:value=='%' &&(nw:value=='>' && sw:value=='>' ||nw:value=='%' && sw:value=='>' ||nw:value=='>' && sw:value=='%'))value='%';} else if (value=='*') // rules for anchor points/* The anchor point should always change to something else afterepoch 0, or multiple waves will come out of the same point. */value='S';else rot if (value=='>') { // rules for quadrilateral pointers/* A pointer cell in the expanding wave will return to thequiescent state in the next epoch, unless there is a collision, asin cases 7, 8, 9 and 10. In these cases, it changes instead to aVoronoi point '%' due to the collision. */if (ea:value)value='%';elsevalue=0;} else rot if (value=='Q') { // rules for diagonal pointers/* Similarly, the pointers at the four corners of a squarewill return to the quiescent state unless they collide with otherwaves. This rule has extra conditions to make sure two expandingwaves will not cross each other without changing their cornersto the Voronoi point state, as shown in case 9. The correctedbehavior when the two extra OR'ed conditions are added, is shownin case 10. */ 88



OPCODE VALUE LEFT RIGHT TRUE FALSEFigure 5.12: A virtual machine instruction. Each instruction of the Trend virtual machine hassix �elds, as shown.if (se:value || ea:value=='Q,1' || so:value=='Q,3')value='%';elsevalue=0;}5.13 The virtual machine codeWe have seen several examples of the Trend language rule sets in this chapter. It is time to seehow the source rules are converted by the compiler to the virtual machine code which the simulatoractually uses to compute the cellular automata transition function. As explained in the previouschapter, a virtual machine instruction is represented by a ParseNode record, which can be viewedas a machine instruction having 6 �elds as shown in Figure 5.12.The OPCODE �eld encodes the machine instruction operator. The VALUE �eld contains anyimmediate value if used by the OPCODE. The LEFT and RIGHT �elds contain the address of theoperands for the OPCODE. They may not both be used for a unary OPCODE. The operands aredata fetching machine instructions by themselves. The �elds TRUE and FALSE are used for control
ow. They store the address of the next instruction to be executed after the current instruction.For most OPCODE's which do not generate a boolean outcome, the TRUE �eld is followed by theinstruction. For a boolean OPCODE, the TRUE or the FALSE �eld is followed depending on theboolean outcome.Valid OPCODE's and their meanings are listed in Table 5.1. In addition to these OPCODE's,there will be an extra \PDUMMY" code which is used only in the following code listing to representtemporary storage used by the compiler. It is not actually part of the virtual machine instructionset.To facilitate explanation some tags are used as examples in the table. Here \field" means acellular automata data �eld name, \fvar" means a �eld variable name, \nvar" means a neighborvariable name, \var" means a data variable name, \array" means an array name, \expr" means anarithmetic expression, and \nbr" means a cellular automata neighbor name. In addition, VALUEmeans the VALUE �eld in the machine instruction.The best way to know how the Trend source rules are translated into the virtual machine codeis to look at an example. We choose the reaction-di�usion rule set introduced in Section 5.12.1as the example. After all original comments are stripped o�, this rule set is reproduced below foreasy reference. The region comments are added to associate part of the rule set to portions of thetranslated code. See below.int table[]={ 0, 0, 1, 0, 1, 1, 1, 1, 1};int sum;nbr y;// ----------------------- region Fdefault value=value; 89



MNEMONIC OPCODE Meaning of the instructionPFIELD1 1 data �eld access of the form \field"PFIELD2 2 data �eld access of the form \fvar"PFIELD3 3 data �eld access of the form \nvar:field"PFIELD4 4 data �eld access of the form \nvar:fvar"PADDR 5 variable access, VALUE has the variable addressPARRAY 6 array access, VALUE has the array addressPADD 7 arithmetic addition operationPSUB 8 arithmetic subtraction operationPMUTL 9 arithmetic multiplication operationPDIV 10 arithmetic division operationPAND 11 bitwise AND operationPOR 12 bitwise OR operationPXOR 13 bitwise Exclusive OR operationPVALUE 14 immediate data access, VALUE has the dataPCALL 15 subroutine call operationPROT 16 rotated if rotate operationPROTE 17 rotated if end of rotation operationPBREAK 18 direct jumping operation, usually used in loopsPSET1 19 variable assignment of the form \var=expr"PSET2 20 array assignment of the form \array[var]=expr"PPLUS1 21 variable increment of the form \var++"PPLUS2 22 array increment of the form \array[var]++"PFSET 23 assignment to the data �eld, �eld index in VALUEPFPLUS 24 increment to the data �eld, �eld index in VALUEPDEF 25 beginning of default rules, a no return jumpPNEQ 26 boolean testing operation \not equal"PNZE 27 boolean testing operation \not zero"PGT 28 boolean testing operation \greater than"PGEQ 29 boolean testing operation \greater or equal"PEQ 30 boolean testing operation \equal"PLEQ 31 boolean testing operation \less or equal"PLT 32 boolean testing operation \less than"PRETURN 33 subroutine call return operationPROTS 34 rotated if start of rotation operationPRVALUE 35 immediate data access with rotation, for \nbr:"PFMINUS 36 decrement to the data �eld, �eld index in VALUEPMINUS1 37 variable decrement of the form \var--"PMINUS2 38 array decrement of the form \array[var]--"PRFIELD1 39 data �eld access of the form \nbr:field"PRFIELD2 40 data �eld access of the form \nbr:fvar"PMOD 41 arithmetic modulo operationTable 5.1: Virtual machine instructions and their meanings.
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default alarm=alarm;default counter=counter;// ----------------------- region Asum=0;// ----------------------- region Bover each other y:if (y:value) sum++;// ----------------------- region Calarm=table[sum];// ----------------------- region Dif (counter==0)value=1;else value=0;// ----------------------- region Eif (value && alarm)counter=3;else if (counter)counter--;The compiler generated code from the rule set above is listed below. It is a direct memory ex-cerpt after being properly disassembled and formated. Various OPCODE's are converted to theirmnemonic labels to facilitate reading. As said before, the PDUMMY label represents temporarystorage used by the compiler, which is not part of the instruction set, and is neither used nor refer-enced by the machine code itself. Entry point at the end denotes the starting machine instructionwith which an evaluation should begin.ADDR: OPCODE VALUE LEFT RIGHT TRUE FALSE-------------------------------------------------------600584: PDUMMY 0 0 0 0 0600608: PDUMMY 0 0 0 600584 0600632: PDUMMY 1 0 0 600608 0600656: PDUMMY 0 0 0 600632 0600680: PDUMMY 1 0 0 600656 0600704: PDUMMY 1 0 0 600680 0600728: PDUMMY 1 0 0 600704 0600752: PDUMMY 1 0 0 600728 0600776: PDUMMY 1 0 0 600752 0600800: PVALUE 0 0 0 0 0600824: PDUMMY 0 0 0 0 0600848: PFIELD1 514224 0 0 0 0600872: PFSET 68 600800 600848 600968 0600896: PVALUE 1 0 0 0 0600920: PDUMMY 1 0 0 0 0600944: PFIELD1 514240 0 0 0 0600968: PFSET 89 600896 600944 601064 0600992: PVALUE 2 0 0 0 0601016: PDUMMY 2 0 0 0 0601040: PFIELD1 514256 0 0 0 0601064: PFSET 112 600992 601040 0 0601088: PADDR 625168 0 0 0 091



601112: PVALUE 0 0 0 0 0601136: PSET1 126 601088 601112 601208 0601160: PADDR 625208 0 0 0 0601184: PVALUE 1 0 0 0 0601208: PSET1 147 601160 601184 601280 0601232: PPLUS1 147 601160 0 601280 0601256: PVALUE 9 0 0 0 0601280: PGEQ 0 601160 601256 601520 601376601304: PADDR 625208 0 0 0 0601328: PDUMMY 0 0 0 0 0601352: PFIELD3 514224 601304 0 0 0601376: PNZE 0 601352 0 601424 601232601400: PADDR 625168 0 0 0 0601424: PPLUS1 166 601400 0 601232 0601448: PVALUE 1 0 0 0 0601472: PADDR 625168 0 0 0 0601496: PARRAY 625172 601472 0 0 0601520: PFSET 175 601448 601496 601616 0601544: PDUMMY 2 0 0 0 0601568: PFIELD1 514256 0 0 0 0601592: PVALUE 0 0 0 0 0601616: PEQ 0 601568 601592 601688 601760601640: PVALUE 0 0 0 0 0601664: PVALUE 1 0 0 0 0601688: PFSET 210 601640 601664 601832 0601712: PVALUE 0 0 0 0 0601736: PVALUE 0 0 0 0 0601760: PFSET 225 601712 601736 601832 0601784: PDUMMY 0 0 0 0 0601808: PFIELD1 514224 0 0 0 0601832: PNZE 0 601808 0 601904 602048601856: PDUMMY 1 0 0 0 0601880: PFIELD1 514240 0 0 0 0601904: PNZE 0 601880 0 601976 602048601928: PVALUE 2 0 0 0 0601952: PVALUE 3 0 0 0 0601976: PFSET 258 601928 601952 602120 0602000: PDUMMY 2 0 0 0 0602024: PFIELD1 514256 0 0 0 0602048: PNZE 0 602024 0 602096 602120602072: PVALUE 2 0 0 0 0602096: PFMINUS 288 602072 0 602120 0602120: PDEF 0 0 0 600872 0Entry point: 601136The TRUE and FALSE �elds for all instructions always refer to instruction addresses within thecode listing itself. The LEFT and RIGHT operand �elds also refer to data fetching instructionswithin the code listing. The VALUE �eld for some data fetching instructions, nevertheless, maycontain addresses of pre-declared variables, arrays, or data �elds within neighboring cells. Theseaddresses are not within the code listing addressing space. Instead, they are allocated elsewhere.92



For this particular simulator session, we �nd the following variable or �eld addresses assignments:int table at 625172, int sum at 625168, nbr y at 625208, value at 514224, alarm at 514240,counter at 514256. Note that the PFSET instruction assigns new values to cellular automata data�elds, and it uses a logical index number instead of absolute memory addresses to refer to �elds.The index numbers are 0 for value, 1 for alarm and 2 for counter for this particular rule set.It is easier to view the code listing in a graphical format rather than read it o� line by line on thecode listing. For that purpose the code listing is manually converted into a graph in Figure 5.13.The OPCODE labels and VALUE �elds are retained in this graph, but the operand referencesand control 
ow directions are converted to arrow lines for better clari�cation. Other than theseconversions, this graph is exactly the same as the code listing above. The graph has also beendivided into six regions related to the original Trend source rule set, also marked with regioncomments. These regions are enclosed by dotted lines in the graph. By comparing instructions ineach region with the corresponding source rules, it is much easier to understand how the compilertranslates source rules into individual virtual machine instructions.Region (A) is translated from the �rst assignment statement in the source rule set. It sets zeroto the variable sum. Region (B) is translated from the over statement in the source rule set. Notethat machine instructions to assign 1 to the variable y and to increase the value of y are added bythe compiler; they are not prescribed in the original source rule set. Region (C) is translated fromthe array assignment statement, region (D) is translated from the �rst if-else statement group inthe source rule set, and region (E) is translated from the second if-else-if statement group. Finally,region (F) is translated from the default rules.5.14 Comparison to other cellular automata languagesThe Trend cellular automata programming language introduced in this chapter contains manynew cellular automata speci�c language constructs which are not found in other cellular automataprogramming languages. The rotated if statement is a major invention in the Trend language, whichfully exploits the rotational symmetry of the cellular automata space, and therefore potentiallyreduces the size of an isotropic cellular automata rule set to only 1=4 the size it would be withoutusing the rotated if command. The Trend language and its associated cellular automata simulatorhave been carefully designed to support developing cellular automata rule sets which are bothisotropic and con
ict free. Preventive features, like the con
ict catching and reporting mechanismin the evaluation module, and the aligned rotated if statement, cannot be found in other languages,including CAM Forth and the Cellang language used in the Cellular system.The Trend language presents a standard C like syntax which is familiar to most users and easyto use. This is unlike CAM Forth, which uses a post�x notation that sometimes can be hard tounderstand. In the Trend language all neighbor and �eld names automatically become reservedwords in the language once they are de�ned in the \Template Design" window. These reservedwords are given special treatment by the compiler and can be quite handy in describing cellularautomata rules at a higher conceptual level. Trend is also unlike the Cellang language in theCellular system, which can only use relative indexing to describe neighbors (which can be hard torecognize sometimes).Trend allows the de�nition of symbolic literal values. Such symbols are used both to displaythe cellular automata space on screen and to represent individual states in the Trend rule set.Therefore, the direct correspondence between what the user writes in the rule set and what he93
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sees on the screen greatly simpli�es e�orts to recognize and correct rule set errors. Even more, theuse of symbolic literals in the rotated if statement further enhances the usefulness of the rotated ifstatement. These features are also not available in other cellular automata languages.It is worth mentioning, however, that the Cellang language does have some interesting featureswhich are not available in the Trend language, such as the special time and random system variables,support of multi-dimensional cellular automata, and the object oriented agents mechanism. As willbe discussed in the following section, it is usually not hard to implement a higher dimensionalcellular automata model, but it is hard to visualize its contents on screen. Therefore, higherdimensional support will not be added into the Trend system before a suitable visualization methodcan be devised. The other extra features of Cellang generally do not belong to the standard cellularautomata model, but are extensions to the standard cellular automata model by the Cellular system.When designing the Trend language and its associated simulator, a strong desire has been put intofollowing the standard model of a uniform, time indi�erent and self-contained cellular automataspace. Therefore, those extra features of Cellular were neither required nor pursued in this work.5.15 DiscussionThe Trend cellular automata programming language was designed from the ground up with twohopes in mind: to be as powerful as possible for cellular automata speci�c programming needs,and to be as similar to the C programming language as possible. For cellular automata rule setdesign we need speci�c language constructs to exploit the symmetry and regularity of the cellularautomata space, yet such features are not available in general purpose programming languages. Bybeing as similar to the C language as possible, we can ensure that users do not have to spend toomuch time learning the Trend language since the C or C++ programming languages are familiarto most people nowadays. It has to be noted that although the Trend language is made to besimilar to C, its compiler is di�erent from a C compiler due to the fact that cellular automata areparallel systems but C programs are generally sequential. For this reason the Trend compiler wasimplemented completely from scratch.The Trend language currently supports three data types: int, nbr and 
d. The nbr and 
dare special data types used to denote neighbor positions and �elds, so the only data type whichcan be accepted by a cell is the integer data type int. The integer data type is the most naturaldata type for cellular automata cells, and is the only data type needed by the two major cellularautomata rule set developments presented in the following two chapters. Although it is not obviousat this moment that other data types are needed, adding 
oating number data type to the Trendlanguage is planned for its next revision. Actually, since all data types are stored in the bit �eldsin a cell, it does not matter to the cellular automata model if those �elds represent integers or
oating pointer numbers. It is just how the cellular automata rules manipulate those data �eldsthat makes a di�erence. Having more data types available to the programmer can certainly helpin designing cellular automata rule sets with great 
exibility.The one-pass compiler of Trend currently imposes a strict, no-forward-reference requirementon the rule set. Although this is not a limitation to the power of the Trend language, it may beinconvenient for some occasions. This restriction will also be addressed in the next revision. Thecompiler can be modi�ed by either adding some forward reference resolving data structures andkeeping the one-pass only style, or by changing to a two-pass compiler. The �rst choice is certainlybetter than the second one since the speed of the compiler is very important to the interactive user.95



The Trend compiler generates a set of virtual machine code currently. The bene�t of usingthe virtual machine code rather than the real machine code is portability, which has been men-tioned before in the previous chapter. Running the virtual machine code requires another layerof interpretation by the evaluation module of the simulator, which can slow down the simulationspeed up to three times. Although this speed penalty of using the virtual code is not a major issuewhen compared to the bene�t of being able to port the simulator easily to other major computerplatforms without the need to modify the compiler at all, it may become an issue when simulationneeds are increased. If speed becomes very important, the code generation module of the compilercan be modi�ed to generate actual machine code directly. Another solution is to make one morepass through the virtual machine code by the compiler to convert it to the native machine code ofthe host computer.The Trend language is a general purpose cellular automata programming language. For anygeneral purpose programming language, the potential application of the language is often beyondthe imagination of the language designer. Even familiar users of the language still occasionallydiscover new usages of the language. It is possible that some clever Trend language programmerscan discover many new applications in the future. A library of useful Trend language applicationscan be maintained to avoid re-engineering them by other new Trend language programmers.
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Chapter 6Emergent Self-Replicating Cellular AutomataStructuresIt is desired in this research to be able to discover a cellular automata rule set which allowsgeneration of self-replicating behaviors from a randomly initialized cellular automata space. Severalconditions must be met by the rule set:� There should be no assumption about the initial composition of the cellular automata space,except that there be a reasonable number of non-quiescent cells. Of course if the simulationstarts with a completely quiescent, or near completely quiescent space, the whole cellularautomata space will remain or return to a completely quiescent state in a short time, andnothing interesting will appear.� There should be a well-de�ned self-replicating behavior which is easily observable by thehuman experimenter.� The self-replication should be non-trivial. The self-replicating process should not rely primar-ily upon the physics of the cellular space (i.e., the cellular automata rule set) to support itsreplication. Otherwise, a simple cellular automata rule which just says \copy your neighbor"will su�ce to generate replicating individual cells. This is not self-replicating.� In order to distinguish trivial self-replication from non-trivial self-replication, Langton's ex-amination condition must be passed by the rule set [Langton, 1984]. According to thiscondition, a self-replication process is non-trivial if its replication process is self-directed byits own stored instructions, and during the replication process there is an easily identi�ableinstruction transcription phase and an instruction translation phase.The following sections will describe a rule set which satis�es all of the conditions above. Due tothe complexity of the rule set, it is more feasible to introduce the rule set one part at a time, andthen put together everything at the end. Therefore, signals and data �elds used by the rule set are�rst described, and then how signals 
ow and turn and why they can support the replication ofloops of arbitrary sizes are explained. After that, it is shown how initial loops are formed. Finally,we will see how loops can grow in size. A listing of the complete rule set is provided in at the endof this chapter for reference.
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6.1 An augmented self-replicating loop rule setTo start, the functions of the self-replicating loop rule set [Reggia et al., 1993a] are used asa basic framework. They are augmented and new features are added to get what we want: anemergent self-replication rule set. Doing it this way has the advantage of working on a frameworkof self-replicating behaviors which have been studied thoroughly and are well-known. The Mooreneighborhood template is used for the rule set.Although designing the rule set uses reference to the functions, or \behaviors" of a previous ruleset, it is still a completely new rule set since it is necessary to add at least the following featuresto the original function set:� A size independent self-replication rule set. The original self-replicating loops need to have anindependent rule set coded for each self-replicating loop of a di�erent size. To allow emergentself-replicating structures to emerge and grow in size, we need a cellular automata rule setwhich can support the self-replicating process of any structure with any size.� A bootstrap procedure. The original self-replicating loops start their replicating process froma template which is arti�cially placed in the cellular automata space at the initial stage. Butnow our purpose is to allow randomly formed initial cellular automata space con�guration toyield self-replicating structures. Therefore, we need a logically sound and general pathwaywhich will lead from the random initial cellular automata con�guration to the �rst self-replicating structure in the cellular automata space.� Enabling growth and mutation. Even after we have the pathway from random initial cellularautomata con�guration to the �rst self-replicating structure, if the self-replicating structurecannot change in size and position once formed, the whole process will still not be interesting.We need to allow existing self-replicating structures to grow and gradually change to a biggersize.As we will gradually see in the following sections, the new cellular automata rule set does encompassall the above required features.6.2 A running exampleTo make the detailed rule set description that follows easier to understand, a continuous exampleof the emergent self-replication rule set is shown in Figures 6.1, 6.2, 6.3 and 6.4 running in arandomly initialized 40 � 40 cellular automata space using an initial component density of 25%.Note that all boundaries are wrapped around so that if a signal sequence goes o� the right boundaryit will reappear on the left boundary and vice versa. Similarly, if a signal sequence goes o� the topboundary it will reappear on the bottom boundary again.Emergent self-replicating structures have been obtained before epoch 500 in this example (seeFigure 6.1). The size of the structures has the tendency to grow bigger and bigger until thestructures are too big to �t comfortably in such a small world (40� 40 only). Big loops will easilyannihilate each other and return themselves to monomers if they are too big. Since all dying loopcells return to monomer format and can trigger generation of loops again, this cellular automataspace does not show any sign of ceasing activity even at epoch 7500. In fact, apparently it neverrepeats itself, so we do not know when the world will stop its evolution, even at epoch 7500.98
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Figure 6.2: A running example (part 2). By epoch 2000 the biggest loop is now 6 by 6. Inepoch 2500 that becomes 7 by 7. When the size of loops grows, the number of loops decreases.In epoch 3000 the biggest loop is 8 by 8 and it is about to generate a 9 by 9 loop. In epoch 3500an amazingly big 10 by 10 loop can be seen in the upper right region of the space. This is 1=4the linear size of the cellular automata space!
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y outlined below. The actual use of eachcomponent will become clear in the following sections which detail the behaviors of the cellularautomata structures.O This is the building block of cellular automata structures. It allows passage of a signal sequencethrough, providing a pathway for the 
ow of information. Because of this it is also called theBlock O.>> This is the extrude signal, which directs the expansion of a cellular automata signal pathwayinto the quiescent space. This is the only weak rotational signal used in this rule set and isactually represented by four rotational symmetric values >, _, < and ^ which are designatedin the rule set by '>', '>,1', '>,2' and '>,3'.B This is the birth component left by the extrude signal >. A quiescent neighbor will �rst beconverted into this state before it becomes a normal part of a cellular automata structure.Because of this it is called the Birth B.L This is the turning signal. It changes the direction of expansion of a signal pathway by 90 degreescounterclockwise. 103



C This is the corner component left by the turning signal L. A signal > going through it willbe rotated 90 degrees counterclockwise and form a corner. Because of this it is called theCorner C.E F This pair of signals in sequence direct the branching of a signal pathway.D This is the detachment component which separates the parent and child cellular automatastructures during the replication process. Because of this it is called the Detach D.Of course, there is always the quiescent state which is denoted by `.' when referenced in rules;quiescent states are shown by white space in all the �gures.6.4 Functional divisions and data �eldsTo ease the rule set design e�ort a functional division of data �elds are usually used. Thisconcept came from the book by [To�oli & Margolus, 1987]. Basically, the original bit depth of acellular automata cell (in our case 8 bits) is functionally divided into di�erent �elds (in our casefour �elds: 4, 2, 1 and 1 bit each) such that each �eld encodes di�erent meanings and functions(to the human rule writer). The utilization of �eld division greatly simpli�es the cellular automatarule programming e�ort, and makes the resulting rules much more readable.The component �eld introduced in the previous section is the primary data �eld which accountsfor most of the normal operations of the cellular automata structures. It takes four bits to encodeits twelve possible state values.There are additional data �elds to encode for rare or occasional special situations in the cellularautomata space or to store additional information in some cell. These additional data �elds areoutlined below. Their usages and purposes will be introduced in the following sections.special This is a two-bit �eld which denotes special situations that arise occasionally in the cellularautomata space. There are four possible cases:'.' No special situation.'*' A branching signal sequence (EF) will be generated.'-' A cell will not allow the signal sequence to pass through it, thus e�ectively deleting thesignal sequence.'#' A bound cell is in the dissolve mode, and will become a monomer in the next epoch.growth This one bit �eld, if set (denoted by '+'), records the stimulus hidden in a cell which maycause the existing signal sequence to grow in length.bound This one bit �eld, if set (denoted by '!'), marks a cell as part of a multi-cell cellular automatastructure, otherwise the cell is a monomer.Again, like the components, all the functions of these additional data �elds will become clear in thefollowing sections which detail the cellular automata structure behavior. A very good visualizationof how the cell state is divided is shown in Figure 6.6.104
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are added to the rule to make sure that only the correct quiescent neighbor will be turned into anO, but not the other quiescent neighbors around E.The O then sees the incoming F signal and will change to signal >, which will in turn extendthe arm by one more cell and complete the branching. Again, since there are many O's around thesignal F (three in epoch 5 alone), we need to add more conditions to the rule to make sure thatonly the right one (the O in the branching arm) will be turned into the signal >.In this case signal > and Birth B will just fall back to Block O.The only thing left unexplained is when and why the special �eld will be set to the value '*'.Basically, when a cellular automata structure is completing its replication process and has its armclose on itself, it will generate a D component, or Detach D. The Detach D is a component forseparation between the parent cellular automata structure and the child structure. When seeingthe Detach D in the neighbor, a cell's special �eld will be set to the value '*' by the following rule.rot if (component!=0 && special=='.' &&(ea:component=='D' && no:component && we:component jjwe:component=='D' && no:component && ea:component))special='*';Again, conditions are added to make sure only two special �elds, one in the parent and one in thechild, will be set to '*'. This will cause the formation of a new arm in the other corner a fewepochs later so that both the parent and child cellular automata structures can continue their ownreplication process. The formation and function of Detach D will be explained in the followingsection.6.9 Loop closing and separationThe basic procedure by which a cellular automata structure achieves self-replication is to extrudean arm, turn the arm after a certain length of extrusion, continue extruding and turning until thearm closes on itself. At that stage, a new loop which is capable of preserving signal sequences hasbeen formed (see Section 6.7). Now the original cellular automata structure has to separate itselffrom the new loop. This is achieved by setting a Detach D in the connecting cell, as shown inFigure 6.14. Note the setting of '*' values in the special �eld for both loops at epoch 35, which willcause new arms to be formed in the other corners later and a replication cycle to complete.The rules to set Detach D and the rule to remove it are the following:rot if (component=='>')if ((nw:component=='>,3' jj nw:component=='O') &&(ne:component=='B' jj ne:component=='>,1')&& no:component=='.' && ea:component &&we:component)component='D';
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D. Detach D will disappear right after seeing the special �elds in its neighbors are set.Usually a cellular automata structure will replicate another structure with the same size andsignal sequence as itself as shown in Figure 6.14, but this can be changed if the cellular automatastructure contains a signal sequence which will generate a bigger structure than itself. This is calledan extended replication case. A cellular automata structure's signal sequence can be modi�ed togenerate di�erent structures than itself by an active growth �eld sitting on one of its cells duringthe arm branching process, which will be explained in Section 6.12. The growth �eld is set when aloop dies, which will also be explained in Section 6.12.When an extended replication is under way, there is a timing problem, as shown in Figure 6.15.The problem is that due to the di�erent sizes of parent and child structures, there will be a partialsignal sequence copied into the new loop, together with a complete, correct signal sequence. Thispartial signal sequence must be erased in order to guarantee a healthy new loop. This is achievedby setting the special �eld to the value '-' in the closing corner cell of the new loop. The Block Othere will detect an extended replication in progress and will set its special �eld accordingly. Oncethe special �eld is set to '-', the Block O will stop copying signal sequences, thus e�ectively erasingany signal sequence going through it, as shown in Figure 6.15 at steps 39, 40 and 41. This erasingprocess will end only when the Block O sees an incoming signal L, which is the tail of the partiallycopied signal sequence which must be erased. Once it sees this incoming signal L, it will reset thespecial value from '-' to '*', to start the process of generating a new arm, which is what a new loopwould have done already if it was not of di�erent size to its parent.The rule to set the special �eld to '-' is this:if (component=='O')rot if (no:component=='B' && nw:component=='.' &&(we:component=='O' jj ea:component=='L'))special='-';The rule to inhibit the normal copying of signal sequence for Block O and the changing of '-'to '*' once it sees incoming signal L is this:if (component=='O')if (special!='-')doing normal copying...else rot if (we:component=='L')special='*';Self-replication rules which support extended replications are new in this research and are veryimportant since only by the support of them can the emergent self-replicating structures diversifytheir sizes and shapes in the cellular automata space. They are also better than the old self-replication rules since they abstract the self-replication phenomena out of any particular shape andsize of the self-replicating structures; they are truly general purpose self-replicating rules.
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6.10 Failure detection and clean upIn the original self-replicating loops [Reggia et al., 1993a], all cellular automata space behaviorsare predictable. Therefore, the cellular automata rules do not need to account for random behaviors.Put another way, while writing the rules the cellular automata rule set designer has complete controlover the behaviors occurring in the cellular automata space, including the initial state.In contrast, in this endeavor, the very �rst assumption is that a rule set designer does not haveany a priori knowledge about the interactions between cellular automata structures in the cellularautomata space, or even what the cellular automata space will begin in epoch zero. Although therules considered here are correct and can reliably direct a structure to do replication or extendedreplication when working alone, it does not guarantee that a structure will not run into anotherstructure, or two structures will not try to replicate into the same region of the cellular automataspace. These factors are all randomly determined, not by the designer.Because of this, we need to assume that not all designated regular procedures like extrusion,branching, closing, etc. of the cellular automata structure will always be followed without interrup-tion or disturbance from the other structures. To account for this unpredictability, and to come tothe rescue when something goes wrong, we need to build into the cellular automata rule set ruleswhich will detect any failed regular procedure and clean up the cellular automata space after thefailure.It is this fail-safe feature of the new rule set which distinguishes it signi�cantly from the originalself-replicating loop rule set.A failed situation happens when something prevents the regular replicating procedures fromcontinuing, such as an obstacle in the extrusion path, or two loops colliding into each other. Whensuch a situation occurs it is marked by the fail-safe rules using the value '#' in the special �eld.When a cellular automata structure has any of its cells go into this \fail" mode, the structure willbe plagued by this \fail" mark in a very short time, as shown in Figure 6.16, and will dissolvecompletely. Note that Detach D has the ability to block the fail mark from passing through it, thusprotecting a failed child from its parent or vice versa.When a cell of a cellular automata structure goes into the dissolve mode, it will lose its boundbit and become a monomer. Once becoming a monomer the cell will be governed by the monomerrules. The bound bit, monomers and monomer rules will be explained in Section 6.13 below.The following rules govern the spreading of fail marks '#' and the dissolve of bound bits incellular automata structures. Note that Detach D will not copy the fail mark. The testing conditioncomponent is to check if it is non-zero, or non-quiescent, which is equal to test if (component!='.').This test is necessary since the fail mark will only be set for non-quiescent components.if (special=='#')bound=0;else rot if (component && component!='D' &&(no:special=='#' jj ne:special=='#'))special='#';Each of the following rules checks for a speci�c failure situation and sets the fail mark once sucha fail situation is found. 116
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// if zero or more than 5, it's abnormal!if (count && count<=5)return 0;else return 1;gAll the rest of the failure checking rules bear a similar resemblance to the following example, i.e.,they are all elaborated forms of previous rules which were introduced already for various regularfunctions. More code is added to check for abnormal situations. For example, the following rulefor passing signal > in Block O was introduced in Section 6.5:if (component=='O')rot if (we:component='>')component='>';To check for failures more conditions are added to see if there is more than one > signal whichwants to move into the same O. If that is the case it must be a collision and the fail mark shouldbe set. Otherwise everything goes normally and the signal > is copied.if (component=='O')rot if (we:component=='>')if (no:component!='>,1' && no:component!='>,2' &&ea:component!='>,2' && ea:component!='>,3' &&so:component!='>,3' && so:component!='>')component='>';else special='#';Based on the same reasoning the rule to turn a signal > at the corner (Section 6.6) now becomes:if (component=='O')rot if (so:component=='>')if (we:component!='>,1' && we:component!='>' &&no:component!='>,2' && no:component!='>,1' &&ea:component!='>,3' && ea:component!='>,2')component='>,3';else special='#';Each of the following rules checks for an unwanted situation for each di�erent component typeand sets the fail mark accordingly.Birth B should not be within a line of components:118



if (component=='B')rot if (no:component && so:component)special='#';Signal > should not catch up with signal L:if (component=='L')rot if (we:component=='>')special='#';EF signal sequence should not reach Corner C:if (component=='C')rot if (no:component=='E' jj no:component=='F')special='#';The E before the F should have made a new Block O, unless something prevents it from doingso, in that case the loop has failed to make a new arm, and then it is a failure:if (component=='F')rot if (no:component=='O' &&(ea:component=='O' jj ea:component=='L') &&so:component=='.' && we:component=='.')special='#';else component='O';6.11 The minimum loopOur examples in previous sections show cellular automata structures of various sizes. This leadsone to ask: what is the smallest possible cellular automata structure capable of self-replication? Inorder to facilitate emergent self-replicating behaviors we would like the self-replicating structures tobe as small as possible so that the chance of getting them from monomers can be high. A previousresearch endeavor in minimizing self-replicating loops has led to a self-replicating structure withonly 5 cells [Reggia et al., 1993a]. Our rules so far can support the self-replication of loops 3 by 3cells and larger. That seems to be the smallest loop we can get since the signal sequence passingrules we have so far require that signal sequence 
ows not be adjacent to each other. But theactual limiting factor is the number of cells in a loop. For the arm extrusion sequence (EF) to workwe need on some occasions two more cells in addition to the number of cells to hold the normalreplication sequence. We also need to have at least one more cell if we want to allow extendedreplication cases so that loops can grow in size. For a 3 by 3 cells structure the total number ofrequired cells is six. For a 2 by 2 cells structure that number becomes �ve, a seemingly impossiblecase since it only has four cells.After some careful studies it is found that we can reduce the size of the loop even further byadding some more rules to the rule set we have gotten so far. This makes possible a self-replicating119



structure as small as only 2 by 2 cells. The added rules watch for special cases for 2 by 2 loopssince signals in a 2 by 2 loop are so close to each other that requires special signal passing rules inaddition to those we already have. This smallest self-replicating loop can be called the Adam Loop.A whole new world of self-replicating cellular automata structures can be generated from this loop.In Figure 6.17 we show an Adam Loop and its replication process.This added rule turns the signal L after the signal > around the corner as seen in epoch 18 and19 of Figure 6.17 for the child loop.rot if (component=='>')if (no:component=='L')component='L';The following rule copies signal L to B's position as seen in epoch 17 and 18 of Figure 6.17.if (component=='B')rot if (we:component=='L' && no:component=='O')component='L';The following rule rotates the signal > in a tight corner as shown in epoch 15 and 16 ofFigure 6.17.if (component=='C')rot if (we:component=='>,1')component='>,3';Finally, this rule mobilizes the signal > behind the F signal as shown in epoch 2 and 3 ofFigure 6.17. It has the added failure checking code.if (component=='F')rot if (no:component=='>,2' && ea:component)if (ea:component=='E' jj so:component=='O')component='>,1';else special='#';6.12 Growth stimuliAs shown in the previous section, the smallest loop has only 2 by 2 cells. The previous smallestself-replicating loop has 5 cells [Reggia et al., 1993a]. It is made possible in this work since thenumber of states used in this model, 256, is far more than the 8 states used in the previous research.To get bigger cellular automata structures from this 2 by 2 loop, mechanisms are needed to let thesmaller loop generate bigger loops. This is achieved by the growth stimulus bit in the growth �eldtogether with the help of several more rules. 120
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First we need to devise a way to set the growth bit. Remember that we do not have any a prioriknowledge about what will happen in the cellular automata space, and therefore we cannot presetthe growth bit at any �xed position. Even to start with randomly assigned growth bits may seem abit arti�cial since the positions of the growth bits will not be changed during the whole simulation.The function of generating the growth bit is thus included in the cellular automata rule set.Whenever there is a signal L dying, it will leave a growth bit at its location. This way, the generationof the growth bit itself becomes part of the behavior of the cellular automata space. The rule to dothis is as follows:rot if (component && component!='D' &&(no:special=='#' jj ne:special=='#')) fspecial='#';if (component=='L') growth='+';gThe growth bit is utilized during the arm branching phase of a cellular automata structure (seeSection 6.8). It is a two step strategy. First, if a signal > sees a growth bit in its place and it isthe last > before the signal L, it will not copy the signal L behind it as it normally does. Instead,it stays at its current value > for one more epoch, thus e�ectively increasing the size of the signalsequence by one. The signal L will disappear temporarily since it is not copied, but will reappearwhen the signal > sees a trailing signal F and the growth bit in its position. The growth bit will bereset after signal L is regained, so the same growth bit will not cause another growth stimulus.To sum up, if a loop is stimulated by a growth bit, its replicating code is expanded to makebigger loops than itself. Without any growth bit stimulus, loops always replicate themselves. Whena loop dies, it leaves a growth bit behind, and when a loop expands, it uses a growthbit. This is aninteresting ecological balance factor in the cellular automata universe.The growth behavior is shown in detail in Figure 6.18 and the rules are shown below. Notethat there is one special case considered in the rules. For a 2 by 2 loop to generate a 3 by 3 loop,it needs the signal sequence L>>. When it is expanding its arm, it also needs the signal sequenceEF. Together that is �ve signals, more than the four cells in a 2 by 2 loop. To solve this limitingproblem the growth bit is used to temporarily hide the signal L when the EF signal sequence isgenerating a new arm for the 2 by 2 cells. The signal L will be regained after the EF signal sequencehas done its job of creating a new branch, as stated above. Therefore, a 2 by 2 loop can generateonly 3 by 3 loops; nothing bigger than 3 by 3 can come out from it directly. Normally for the otherloops which are bigger than 2 by 2 the rules allow them to generate loops more than one cell biggerthan themselves.rot if (component=='>')if (we:component=='L')if (nw:component=='E' && (growth jj no:component=='>,3'))growth='+';else component='L';else if (growth && nw:component=='F') fcomponent='L';growth=0;g 122
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� If an active cell has exactly two or three active neighbors, it will stay active; otherwise, anactive cell will return to quiescent state in the next epoch.A few modi�cations to the old Game of Life rules are required in order to determine the activestate value of a birth cell. The old rules deal with binary cellular automata states so there is onlythe choice of 1 or 0, but the cellular automata cells here have more than one active state and theprobability of generating any active state value to is desired to be about equal. This is achieved byusing a value accumulator variable during the scanning phase of the rules, and using its value todetermine the new state value if a new cell will be generated according to Conway's rules:if (bound==0) fcount=0; value=0;over each other y: fif (y:component) fcount++;value = value + y:component;gif (count<2 jj count>3)component='.';if (component=='.' && count==3)component = (value+1)%6+1;gNote that as stated before, we use the bound bit to determine if a cellular automata cell is amonomer, or if it belongs to a multi-cell cellular automata structure. A cellular automata cell willbe governed by the monomer rules if its bound bit is not set. The outer if statement tests if thecell is a monomer (so its bound bit is 0). If it is a monomer, the inner over command will scanall its neighbors and count the number of active neighbors in the count variable and also add upactive neighbor state values in the value variable. The value variable will be used later if it isdetermined that a new active cell will be born.The �rst if statement after the scanning statement tests to see if the current cell will return to(or stay at) the quiescent state due to too few or too many active neighbors. It is the classic Gameof Life rule for death.The second if statement tests if the current cell is quiescent but has exactly three active neigh-bors. If that is the case a birth will happen. This is also the classic Game of Life rule for birth.The only di�erence here is that the value is used in the calculation to determine what active statevalue will be set to this new birth cell.An example of this monomer rule set is given in Figure 6.19.6.14 Emergence of �rst replicatesFinally, I need to link the monomer rules to the self-replicating rules from previous sections,such that an emergent self-replicating structure can spontaneously appear in the cellular automataspace. This is done by adding a last set of cellular automata rules.The original over statement for the monomer rule (see previous section) is modi�ed to includea new statement to check for any bound cell around a monomer cell. If any bound cell is found124
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we will always see a clear band of '!' marks around a multi-cell loop, because of this rule.if (count==99) fcomponent='.';bound='!';gThe second rule checks for a nonzero special �eld and will reset it to zero if found. It e�ectivelydelays the application of normal monomer rules by one epoch. This delay is necessary to protect acell being dissolved from a multi-cell cellular automata structure from being destroyed by its ownfellow neighbors belonging to the same structure which are still being dissolved.else if (special)special=0;The last three added rules watch for the formation of the smallest loop con�guration (the 2 by2 loop, see Section 6.11) in the cellular automata space during the course of monomer activities.Once such an \Adam Loop" con�guration is found, all four members of it will set their own boundbit simultaneously and produce an active smallest loop in the next epoch. This is how the �rstself-replicate is formed! These three rules each work for one of the three di�erent componentsin an Adam Loop, after the previous two rules.else rot if (component=='>' && we:component=='L' &&nw:component=='O' && no:component=='O') fbound='!'; special='*';gelse rot if (component=='L' && ea:component=='>' &&no:component=='O' && ne:component=='O')bound=1;else rot if (component=='O' &&(so:component=='L' && se:component=='>' &&ea:component=='O' jjso:component=='>' && sw:component=='L' &&we:component=='O'))bound=1;Finally, if none of the above special cases is found, the familiar Game of Life conditions arechecked just like the monomer rules of previous section.else if (count<2 jj count>3)component='.';else if (component=='.' && count==3)component = (value+1)%6+1;An example of how the new monomer rule set works and how it leads to the �rst self-replicatingstructure is demonstrated in Figure 6.20. This completes the discussion of my emergent self-replicating cellular automata rule set. 126
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S p a c e    S i z e
50 by 50 100 by 100 150 by 150200 by 200 

10 1 till 20158 5 till 30000 5 till 30000 5 till 30000
1 till 19527
2 till 30000
1 till 95

20 3 till 30000 5 till 30000 5 till 30000 5 till 30000
1 till 10418

Initial 1 till 29788
Monomer 30 1 till 8424 5 till 30000 2 till 30000 5 till 30000

Density 1 till 8230 1 till 29874 
(%) 1 till 18621

1 till 17004
1 till 26459

40 2 till 30000 5 till 30000 1 till 30000 2 till 30000
1 till 7140   
1 till 16887
1 till 28108

50 1 till 30000 5 till 30000 None None
1 till 15488
1 till 22946
1 till 21092
1 till 9194Table 6.1: Summary of simulations with di�erent parameters. For each combination of spacesize and initial monomer density, a number of simulations were done, each with a di�erent initialrandom con�guration. Some simulations stopped before reaching epoch 30000 because their cel-lular automata spaces had ceased activities. If a simulation reached epoch 30000 it was stoppedmanually. Table entries are the actual number of epochs each simulation reached. Therefore, \1till 20158" means 1 simulation is run until epoch 20158, and \5 till 30000" means 5 simulationsare run and they all stop at epoch 30000.epochs unless the cellular automata space ceased its activity before reaching epoch 30000.The number of simulations for each category and the actual number of epochs each simulationreached are summarized in Table 6.1. Since it appears that the initial random pattern and the initialmonomer density are not in
uencing factors of the simulation characteristic (see the followingsubsections), fewer simulations were conducted for some combinations of space sizes and initialmonomer densities.It can immediately be seen in Table 6.1 that it was harder to support longer term evolution ofthe emergent self-replicating loops in the smaller cellular automata space size. Many simulationsfor the 50 by 50 world size ceased their activity before reaching epoch 30000. Despite the shorterlife span of simulations for this space size, they still generated self-replicating loops except for onesimulation with a 10% monomer density, where the cellular automata space failed to produce aworking minimum self-replicating loop before all monomers stopped their activities early at epoch128



95. Since only one out of a total of 81 simulations failed to generate self-replicating loops, apparantlyit is easy to generate self-replicating loops with the emergent self-replication rule set.6.15.2 How the data were collectedSince it was not feasible to collect the simulation data manually, a carefully designed sophisti-cated data collecting module was built into the simulator to analyze the cellular automata spacecon�guration on-the-
y while the simulation was running. The data collecting module is smartenough that it not only counts the number of cells of certain types, it also recognizes some higherlevel structures. Replicating loops were intelligently identi�ed by the data collecting module indi-vidually on the space, and their sizes were recorded. Accumulated data for each simulation epochcontained the number of active cells, the number of active bound cells, the number of growth stimulibits, and the size of individual loops in the cellular automata space. The size data were later batchprocessed by a condensing utility program to determine the average size of loops for each epoch.Therefore, the �nal data for analysis were the number of active cells, the number of bound cells,the number of growth bits, the number of loops and the average size of loops, for each epoch.6.15.3 The in
uence of random initial con�gurationsFirst it is necessary to determine if simulations having the same space size and initial monomerdensity but di�erent initial con�guration will behave very di�erently. Based on all of the simulationsfor each di�erent category, the answer is NO; their behavior was not in
uenced by the initial randomcon�guration. All simulations sharing the same parameters except the initial random con�gurationreveal the same characteristic behavior. Therefore, this indicates that the initial random patterndoes not substantially in
uence the characteristic of the emergent self-replicating behavior of therule set. This can be seen in the four examples of Figure 6.21 and Figure 6.22. Note that di�erenttypes of components were evenly distributed initially to make sure the initial cellular automatacon�guration was at equilibrium.In the �rst example, curves representing the number of active cells are drawn for four di�erentsimulations using a space size of 100 by 100 and an initial monomer density of 10%. The behaviorof those curves are very similar. The number of active cells for all four simulations grows from500 and settles roughly at 2600 at epoch 3000. The second example shows curves representing thegrowth bits for the four simulations over the whole course of 30000 epochs. It is clear that the foursimulations have almost identical behavior despite having di�erent initial random con�gurations.In the third example and the fourth example, curves representing the number of loops in thecellular automata space and the average size of loops for another four simulations using a space sizeof 200 by 200 and an initial monomer density of 30% are drawn for comparison. Again, behaviors ofthose curves are very similar. The similarity of behaviors is found throughout all simulations usingthe other space sizes and initial monomer densities. I conclude that the initial random con�gurationdoes not substantially in
uence the behavior of the emergent cellular automata rule set.6.15.4 The in
uence of initial monomer densitiesSince the initial random con�guration do not appear to in
uence the behavior of simulations,next the behavior of simulations having di�erent initial monomer densities but the same cellular129
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Figure 6.21: Comparison of simulations having di�erent initial con�gurations, part one. In the�rst two examples, simulations for a 100 by 100 cellular automata space with initial monomerdensity of 10% are compared. In example 1, four di�erent simulation runs each with a di�erentrandom initial con�guration are compared. Shown in the graph are the number of active cellsduring each epoch for the �rst 1000 epochs. We can see that although these four simulations havedi�erent curves, their trend of change are very similar. In example 2, the number of growth bitsin the cellular automata space for the same four simulations are compared for the whole lengthof the simulation. Again, these curves are very much the same.
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Figure 6.22: Comparison of simulations having di�erent initial con�gurations, part two. In thenext two examples, simulations for a 200 by 200 cellular automata space with initial monomerdensity of 30% are compared. In example 3, the number of loops during each epoch for the �rst3000 epochs are shown for four di�erent simulations. In example 4, the average loop size for eachsimulation is shown. We can clearly see that although all curves are di�erent, they behave verymuch the same way.
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automata space is compared, using one case for each density only. Surprisingly, the initial monomerdensity also does not signi�cantly in
uence the emergent rule set behaviors.In the example shown in Figure 6.23, the number of active cells is compared for four simulationsusing a cellular automata space size of 150 by 150, each with an initial monomer density of 10%,20%, 30% and 40%. The �rst 1000 epochs are shown in graph A for a closer view, and the �rst10000 epochs are shown in graph B to give an overall view. It is clear that no matter what initialmonomer density the simulation starts with, the number of active cells gradually approximates thesame trend for all four simulations.In the second example shown in Figure 6.24, the number of loops in the cellular automataspace during each epoch are compared for four simulations each using an initial monomer densityof 10%, 20%, 30% and 40%, for a cellular automata space size of 100 by 100 cells. The �rst 1000epochs are shown in Graph A and the �rst 6000 epochs are shown in Graph B. We can see thatalthough the curves are somewhat di�erent for the four simulations, especially at the initial stage,they gradually become almost the same after 1000 epochs. It is again seen that the initial monomerdensity variation does not make any signi�cant di�erence beyond epoch 1000.In our last example shown in Figure 6.25, the number of active bound cells (i.e., active cellswhich belong to a loop) are compared. This example shows four simulations for a 200 by 200 cellularautomata space with initial monomer densities of 10%, 20%, 30% and 40%. Again, although initiallythese four curves are di�erent, they gradually exhibit the same trend. This similarity occurs at allthe other cellular automata space size and for all the other data collected. It is concluded that theinitial monomer density does not signi�cantly in
uence the behavior of the emergent self-replicationrule set either.6.15.5 The in
uence of cellular automata space sizeThe next thing we consider is whether di�erent cellular automata space sizes will in
uence thebehavior of the emergent self-replication rule set. Of course, since the space size di�ers, the numberof active cells, etc., cannot be in the same data range. But we will see that if we normalize all databy dividing them by the size of the cellular automata space, the ratio results are again similar.Figure 6.26 shows the active cells comparison. The number of active cells in a cellular automataspace is divided by the space size ratio, i.e., the number of cells for a 50 by 50 cellular automataspace is divided by 1, the number of cells for a 100 by 100 cellular automata space is divided by4, the number of cells for a 150 by 150 cellular automata space is divided by 9, and the number ofcells for a 200 by 200 cellular automata space is divided by 16. The scaled active cell numbers arethen plotted in this �gure. All simulations start with a 10% initial monomer density. We can seefrom both the short term and long term graphs that the behavior of the emergent self-replicationrule set as re
ected in the number of active cells per area is linearly scalable and independent ofthe cellular automata space size.In the second example of Figure 6.27, the number of growth bits are scaled and compared forsimulations having four di�erent cellular automata space sizes. The initial monomer density is 30%.Again, although there are slight variations, the general trend for all curves is the same. Therefore,we can conclude that the growth bit behavior of the emergent self-replication rule set is also scalableand space size independent.In example three, the short term and long term behaviors of the number of loops in the cellularautomata space are compared. These simulations all start with an initial monomer density of 40%.132
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Example 1: Active cells comparison (B)

Figure 6.23: Comparison of simulations having di�erent initial monomer densities, part one. Inthis example simulations for a cellular automata space of 150 by 150 cells are compared. The fourdi�erent initial densities used for the four simulations are 10%, 20%, 30% and 40%, as shown.Graph A is a closer look at the �rst 1000 epochs and Graph B shows the �rst 10000 epochs, bothare representing the number of active cells in the cellular automata space. It is clear that thesefour simulations have similar behaviors.
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Example 2: Number of Loops comparison (B)

Figure 6.24: Comparison of simulations having di�erent initial monomer densities, part two. Inthis example simulations for a cellular automata space of 100 by 100 cells are compared. Thefour di�erent initial densities used for the four simulations are 10%, 20%, 30% and 40%. Thenumber of loops are compared in this example. Graph A gives closer look at the �rst 1000 epochsand Graph B compares the �rst 6000 epochs. It is clear that these four simulations have similarbehaviors.
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Example 3: Active Bound Cells comparison (A)
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Example 3: Active Bound Cells comparison (B)

Figure 6.25: Comparison of simulations having di�erent initial monomer densities, part three.In this example simulations for a cellular automata space of 200 by 200 cells are compared. Thefour di�erent initial densities used for the four simulations are 10%, 20%, 30% and 40%. Thenumber of active bound cells are compared in this example. Graph A gives closer look at the �rst1000 epochs and Graph B compares the �rst 6000 epochs. It is clear that these four simulationshave similar behaviors.
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Example 1: Active Cells comparison (B)

Figure 6.26: Comparison of simulations having di�erent cellular automata space size, part one. Inthis example simulations with a 10% initial monomer density but four di�erent cellular automataspace sizes are compared. The number of active cells in the space is scaled by the cellular automataspace size ratio before being plotted in the graphs. We can see that all curves are very similar,although the smaller the cellular automata space size, the more noise in the curves, which isunderstandable in view of the small cellular automata space (50 by 50 cells) where regional
uctuations have profound impact on the global data values. Larger cellular automata spacestend to even out the e�ect of local variations.
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Example 2: Growth Bits comparison

Figure 6.27: Comparison of simulations having di�erent cellular automata space size, part two.The number of growth bits in the cellular automata space for four di�erent simulations are com-pared. The starting monomer density is 30%. It is obvious that the growing pattern of the curvesare very coherent.It is clear that curves for smaller cellular automata spaces tend to have greater variances, but still,the general trends are the same. This and other similar behaviors re
ected in other simulations showthat the number of loops per unit area for the emergent self-replicating rule set is also independentof the cellular automata space size.In the previous three examples, simulations having the same initial monomer density werecompared in order to limit changing factors in the comparison. Since we have found that the initialmonomer density does not in
uence the general behavior of the rule set, actually it can be seenin the fourth example shown in Figure 6.29 that even simulations having di�erent initial monomerdensities are very coherent. The growth bit curves for four simulations having four di�erent cellularautomata space sizes as before and four di�erent initial monomer densities 10%, 20%, 30% and 40%were compared. The growth bit data is scaled by the cellular automata space size ratio in the graphshown. The similarity of the curves shows again that both of our conclusions are correct, that thegrowth bit is space size independent and that the initial monomer density is not in
uential. CurveA has the largest variance due to the smallest cellular automata space size.It seems that the only thing which is not linearly scalable is the average loop size for di�erentsimulations. In Figure 6.30, both the scaled and un-scaled average loop size curves are drawn forfour simulations having an initial monomer density of 30%. It can be seen that although a largercellular automata space tends to allow larger loops, the scaling is not linear. In the lower graphwhere average loop sizes are not scaled by the cellular automata space size ratio, the curve for a200 by 200 space seems to be higher than the other curves. When scaled in the upper graph, itbecomes the lowest in the four curves. Obviously, the scaling factor for the average loop size issomewhere between 0 and 1, but much less than 1.To sum up, the following properties of the emergent self-replication rule set have been observed:� Di�erent simulations having the same cellular automata space size and initial monomer den-137
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Example 3: Number of Loops comparison (A)
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Example 3: Number of Loops comparison (B)

Figure 6.28: Comparison of simulations having di�erent cellular automata space size, part three.The number of loops in the cellular automata space is scaled by the space size ratio for the foursimulations. It is clear that the pattern of change is very similar despite the di�erent cellularautomata space size.
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Example 4: Growth Bit comparison

Figure 6.29: Comparison of simulations having di�erent cellular automata space size, part four.The scaled number of growth bits for simulations having di�erent cellular automata space sizeand initial monomer densities are compared.sity but di�erent random initial con�gurations behave the same;� Di�erent simulations having the same cellular automata space size but di�erent initial monomerdensities behave the same; and� Di�erent simulations having di�erent cellular automata space sizes and initial monomer den-sities behave the same in all aspects except the average loop size once these data are scaledaccording to the cellular automata space size ratio.Because of these observations, in the following discussions of various behaviors of the emergentself-replication rule set, we will use simulations with a 200 by 200 cellular automata space size asexamples, presuming that the other simulations will behave similarly. These simulations producecurves more stable than simulations with a smaller space, due to their larger sampling areas.6.15.6 Behavior analysisIn the upper graph of Figure 6.31, the number of active cells and the number of bound cellsare compared for a simulation with a 200 by 200 cellular automata space and an initial monomerdensity of 30%. Remember that bound cells must be active cells, too. We can see that these twocurves are very much synchronous with each other, with an almost constant di�erence betweentheir values. An enlarged view for these two curves is shown in the lower graph; the similarity isobvious. The average di�erence between these two curves is 2480 cells, the number of monomercells. The same average di�erences for the other three similar simulations with an initial monomerdensity of 10%, 20% and 40% are 2475, 2477 and 2473. It is clear that this value is very stableand is a property of the emergent self-replication rule set not related to the other parameters. The139
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Example 5: Loop Size comparison (A)
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Example 5: Loop Size comparison (B)

Figure 6.30: Comparison of simulations having di�erent cellular automata space size, part �ve.In the �gure, the average loop size for each simulation are compared. In the upper graph the sizeis scaled by the cellular automata space size ratio. In the lower graph, it is not scaled. We cansee that generally the position of curves are reversed in these two graphs, i.e., the curve for a 200by 200 space size is the lowest in the upper graph but the highest in the lower graph. This meansthat the average loop size is dependent upon the cellular automata space size, but the scalingfactor is not 1. It must be somewhere between 0 and 1.
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average monomer density in the cellular automata space is very stable over time and is about 2480per 40000 cells.In order to determine if this constant population of monomers is the natural tendency of thegame of life rule which I used to translate the monomers, or if it is the joint property of theself-replicating loop rules and the game of life rules together, some simulations where bound cellwere not allowed to be generated were conducted. The result is that none of these simulations cankeep a constant monomer population as high as that of 2480 in a 200 by 200 cellular automataspace. Actually, all of them cease activities early before reaching 30000 epochs. In conclusion,monomers in the cellular automata space are co-evolving with the self-replicating loops. Withouteither monomers or self-replicating loops, the other kind will not last very long in the cellularautomata space.The behavior of active cells can be seen in the lower graph of Figure 6.31. At the beginning,there are 12000 active cells, or 30% of the total cells, in the space. This number drops rapidly sincethe game of life rule alone is not capable of holding such a high number of active cells. If no boundcell is formed, the number will never climb back. After just a little while bound cells start formingin the space; they take the active cell curve with them from then on, controlling the shape of thecurve.There is an initial surge of bound cells as can be seen in Figure 6.31. This is due to the initialblooming of small and fast replicating loops. Gradually, the mutual competition between thembalances out and lowers the curve.The changing of growth bit number is shown in Figure 6.32 for a 200 by 200 cells simulationwith 30% initial monomer density. Remember that the growth bit stimulates size expansion of theself-replicating loops. They are generated when a loop dies and consumed by loops during theirexpansion process. The number of growth bits climbs rapidly at the beginning, but gradually levelso� at 22500, when consumption and generation of growth bits are balanced. The �nal growth bitdensity is balanced at 56%.When the number of growth bits levels o�, the number of loops seems to stabilize too. InFigure 6.33 the long term behavior of the number of loops for the same simulation is shown. After10000 epochs, there is no signi�cant change of the average number of loops in the cellular automataspace. The number settles at 147 loops in a 200 by 200 space. In the beginning of the simulation,there is an overshoot of the number of loops. This is caused by the same reason that the numberof bound cells has an overshoot, that smaller loops are blooming at the beginning but slow downwhen competition pressure raises.The average loop size varies a lot at �rst glance at its long term behavior, as shown in theupper graph of Figure 6.34, here the average loop size for the same 200 by 200 cells simulationwith 30% initial monomer density is shown for the whole course of the simulation. But if we lookcloser at the curve, such as in the lower graph, where a detailed portion of the curve is shown, wecan �nd out that actually the average loop size curve is going through a constant cycle of up anddown. This behavior is in exact accordance with what we observed in the cellular automata spaceduring the simulation. Recall from Section 6.2 that loops in the cellular automata space have thetendency to grow bigger and bigger, until when there is no more space to grow any further, thenthe bigger loops will disappear, replaced by smaller loops again. It is this cycling behavior whichproduces the zigzag shape of the curve.The average loop size after the cellular automata space has reached a stable condition is about73 cells for a 200 by 200 cellular automata space size. As noted before, the average loop size is141
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Figure 6.31: The relationship between active cells and bound cells. The number of active cellsand active bound cells are plotted in these two graphs for a simulation with 200 by 200 spacesize and 30% initial monomer density. These two curves are very similar. The lower graph is anexpanded view of the �rst 2000 epochs of the top graph.
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Figure 6.32: The long term behavior of the growth bits. This is for a simulation with 200 by200 cellular automata space size and 30% initial monomer density.
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Figure 6.33: The long term behavior of the number of loops.
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Figure 6.34: The long term behavior of the average loop size. In the upper graph the averageloop size of each epoch for the whole course of the simulation is shown. In the lower graph thesame data but only for epochs between 20000 and 22000 is shown. It is clear these graphs thatthe average loop size is constantly cycling within a range of values.
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Figure 6.35: The comparison of simulation data and the �tted curve. The average loop size foreach simulation are marked by the `o' marks. The �tted curves are shown with the line.not linearly scalable with the cellular automata space size. The average loop size for 150 by 150cellular automata space size is 64 cells, for 100 by 100 cellular automata space it is about 56 cells,and for the smallest 50 by 50 space it is about 39 cells. A two terms curve-�tting with the availablesimulation data reveals the following logarithmic relationship between the cellular automata spacesize and the average loop size we can get in such a space:loop size = �56:5291 + 24:3794 log(space size)The �tted curve and the simulation data are compared in Figure 6.35.6.15.7 Extremely long term behaviorIn the previous sections, all simulations were run for 30000 epochs. Although this number isbig, it is still possible that some change in the cellular automata space status can happen beyondthat range. To determine if such a case is possible, an extremely long simulation was done with a200 by 200 space size and an initial monomer density of 30%. This simulation was allowed to runfor 613920 epochs, about 20 times longer than the normal simulation length. The results show nosign of behavior changing once a stable status has been reached. Some of the data are shown inFigure 6.36.Since the status of the cellular automata space seems to be very stable in the graphs shown inFigure 6.36, it makes one wonder if the cellular automata space is going through some sort of cycle,i.e., whether the con�guration of the cellular automata space is repeating itself. To study this, theaccumulated data of the simulation for each epoch were cross-compared with each other. Monomernumbers are not taken into account in the comparison since an exact duplication of the cellularautomata monomer con�guration at di�erent epochs is very unlikely for a 200 by 200 cellularautomata space. Checking for repeated epochs was conducted by comparing only the position and145
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Figure 6.36: Extremely long term behavior of the emergent self-replication rule set. In the uppergraph, the number of active cells and the number of growth bits are shown. In the lower graph,the number of loops are shown. All are for a simulation running till 613920 epochs. It is obviousthat the cellular automata space is maintaining a dynamic equilibrium status after the initialtransient stage. This equilibrium does not change through time.
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the number of self-replicating loops in the cellular automata space. Even with this somewhat lessstringent comparison criteria, no duplication is found in the comparison.6.16 DiscussionIn this chapter, an emergent self-replicating cellular automata rule set was presented. It allowsa randomly initialized cellular automata space to spontaneously generate self-replicating structures.This is the �rst cellular automata emergent rule set does this, which allows arbitrary size loops toform.The rule set used here is based on a central design, a design which allows loops of arbitrary sizeto replicate in the cellular automata space. This is called the general purpose self-replication ruleset. In addition to that, mechanisms which allow loops to grow in size are supported in the ruleset. These features, together with a four cell minimal self-replicating loop, produce a whole familyof self-replicating structures in the cellular automata space, all supported by the same rules.This is the �rst demonstration that it is possible to produce self-organization behaviors in arandom cellular automata space. The generated self-replicating loops replicate by following theinstructions stored within their own structure. Those instructions are interpreted by the self-replicating loops to produced their o�spring, and are translated to their o�spring. By carefullydesigning the cellular automata rules, or the physics of the cellular automata universe, it is possiblethat such an entropy decreasing, self-organization behavior can naturally occur, at least in anarti�cial cellular automata environment. This provides key insights to how an autonomous self-replicating entity can be constructed in the cellular automata space.Systematic simulations showed that the emergent self-replication rule set provides rich activitiesin a cellular automata space of varying size, yet the global property of the rule set is generallyindependent of any particular simulation run and initial parameters. It always leads to the samebehaviors when given enough time to stabilize. This kind of \bound to happen" characteristic ofthe rule set is very encouraging, since it provides a stable foundation for further research.There are some future possibilities for expanding the emergent self-replication rule set. For one,the self-replicating loops can be allowed to carry not only code for replication control, but also codefor evolution. One form of this expansion is studied in the following chapter. Another possiblefuture direction is to support other di�erent structures to replicate, in addition to the loop form.6.17 The complete rule listingThe actual Trend program used to simulate all examples in this chapter is given here. Thereare several things which make the program a little di�erent than the individual rules I introducedbefore. First, for e�ciency, I use more else-if statements than plain if statements in the programsince an else-if statement will prevent the following codes from being evaluated if its condition isselected, which makes the Trend program more e�cient for cellular automata simulations.Second, rules are organized according to the component types they are dealing with, ratherthan functions of the rules as was the case in organizing the sections in this chapter. This providesclear and concise program code.Third, for each component type some preferences and priorities must be decided for each in-dividual rule while ordering them in the program. Generally, special cases are always considered147



�rst before normal operations. This organization will not in
uence the cellular automata behaviorin any way.This Trend program is heavily commented to make it self-explanatory. In various areas of theprogram the relevant section numbers in this chapter where the associated features are discussedwere marked. This is denoted by the x symbol followed by the section number(s).// *****************************************************************// *****************************************************************// Emergent Self-Replicating Rules// written by Hui-Hsien Chou// *****************************************************************// *****************************************************************//// This Trend rule set de�nes a CA space which allows arbitrarily// chosen initial CA con�gurations to generate self-replicating loops// over time.//// *****************************************************************// ***************** Default Rules *******************// *****************************************************************// The default action is to maintain no change if none of the rules// explicitly speci�es a next state value for each �eld. Therefore,// the current value is copied over to the next state for each �eld.default component=component;default special=special;default growth=growth;default bound=bound;// *****************************************************************// *********** Variable and Function Declarations ***************// *****************************************************************// count: a temporary variable used to store the count of neighbors// which meet a certain condition.// value: a temporary variable used to accumulate component values// from the neighbors. Used to determine the signal for a new// monomer if birth is occurring.// y: a nbr variable used for looping through all neighbors.int count, value; nbr y;// AbnormalNeighbor is a function which determines if a bound cell may// have run into a failure situation where too many or too few// neighbors are around it. This usually means that a collision// with another loop has occurred. If that's the case a dissolve// mark will be generated next (in the main code below).int AbnormalNeighbor() f // discussed in x6.10count=0; // clear the counter// count the no. of non-quiescent neighbors.148



over each other y:if (y:component) count++;// if zero or more than 5, it's abnormal!if (count && count<=5)return 0;else return 1;g// Main program starts here!// *****************************************************************// *************** Rules for Monomers! *****************// *****************************************************************if (bound==0) f // discussed in x6.14// A cell is obeying the rules for monomers when its "bound" �eld// is set to zero. In this mode the monomer cell basically obeys// a Game-of-Life-like rule set, except that some additional rules// to deal with non-monomer actions are included.// First the neighbors are scanned, non-quiescent neighbors are// counted in variable count, and their component values are// accumulated in variable "value". This accumulated value is later// used to determine the component value of a new active cell.count=0; value=0; // reset to zeroover each other y: fif (y:component) fcount++; // count the no. of active neighborvalue = value + y:component; // and accumulate their valuesg// see if a bound cell is a neighbor; if yes, the current// cell must be returned to quiescent state and the bound 
ag// marked. This is to make a shield around bound cells (loops)// to protect them. The magic value 99 was stored in count for// checking below. Note that the only case a bound neighbor// cell won't cause a problem to the current cell is when it// itself is in the dissolve mode. See the rules for loops for// details about the dissolve mode. It is marked by a # mark in// the "special" �eld.if (y:bound && y:component && y:special!='#') fcount = 99; // make a special 
ag in countbreak; // then stop scanning, get out// of the over command.gg // close of the over command. 149



// After the scanning of neighbor cells, various actions are taken// to determine the next state values for the current cell.// case 1: if there is a bound cell as a neighbor, the current// cell should return to quiescent state and its bound bit set.if (count==99) fcomponent='.';bound='!';g// case 2: if the current cell is just being dissolved from a loop// (by having a nonzero "special" �eld), we make one more epoch// delay so that it won't be killed by its own fellow cells which// are also dissolving from the same loop.else if (special)special=0;// case 3: A particular con�guration has been designed to be the// birth initiation con�guration. When such a con�guration of// monomers occurs in the CA space, it will form a 2x2 bound loop in the// next epoch. The con�guration is (note that rotation is possible)://// OO// L>//// Since each member of this "Adam" con�guration can see each// other within its own neighbors, we just need three di�erent// checks for the di�erent components >, L and O to make them do their// own "changing to bound mode" work. Signal > needs one more step of// setting the "special" �eld to * to extrude an arm later, so// replication can begin.else rot if (component=='>' && we:component=='L' && nw:component=='O' &&no:component=='O') fbound='!'; special='*';gelse rot if (component=='L' && ea:component=='>' && no:component=='O' &&ne:component=='O')bound=1;else rot if (component=='O' &&(so:component=='L' && se:component=='>' && ea:component=='O'jjso:component=='>' && sw:component=='L' && we:component=='O'))bound=1;// other than above special cases, the current cell will just// follow a traditional Game of Life rule. If a birth will occur// the new value of the birth cell will be determined by the// accumulated value in the "value" variable. 150



else if (count<2 jj count>3) // the death rulecomponent='.';else if (component=='.' && count==3) // the birth rulecomponent = (value+1)%6+1;g else f // closure of the "if (bound==0) ..." statement// *****************************************************************// **************** Rules for Loops! *******************// *****************************************************************// If a bound cell is in the dissolve mode, it will be dissolved to// monomer (i.e., lose bound bit) in the next epoch, no matter// what happens in the neighborhood.if (special=='#') bound=0; // discussed in x6.10// If a bound cell sees a dissolving cell in its neighborhood,// it itself will be going into that mode too. This dissolving// mark was represented by a # in the "special" �eld of the// neighboring cells, and is given the highest priority to// consider. Thus when one cell in a loop structure goes into this// mode, the whole loop will be taken into that mode in a very// short time, and the whole structure dissolves.// The only exception is the D component. It is used to separate// newly formed loops from their parents. Since this is a// separating component, it is considered not part of a loop, so the// dissolve mark # won't pass through it. Speaking in another way,// the dissolving of parent and child loops is independent. This// helps to preserve the parent loop even when the replicating is// unsuccessful, or vice versa.else rot if (component && component!='D' &&(no:special=='#' jj ne:special=='#')) fspecial='#'; // discussed in x6.10// The only time the system will generate the growth// stimulation bit on the "growth" �eld is when a L signal is// dissolving. If this line is disabled no growth stimulation// bit will be generated, thus no bigger loop will be generated.if (component=='L') growth='+'; // discussed in x6.12g// One of the way the system checks for collision of loops is to// check if a cell has too many or too few neighbors (<1 or >5).// If these situations happen the cell must be in a wrong// structure and must be dissolved.else if (component && AbnormalNeighbor())special='#'; // discussed in x6.10151



else f// When none of the three special cases above apply, the bound// cell is in a healthy loop, and should perform normal loop// replicating functions according to its component type.// ***************** Block O rules ****************// Block O is the building block of loops. Normally it will// allow the other signals like > or L to pass through it,// unless it is in a special clear mode denote by a - mark// in the "special" �eld. In this special mode it will not copy// other signals through it, thus cleaning up the signals.// This special mode occurs when a hybrid replication// situation happens where a smaller loop is generating a// bigger loop. Because of the timing di�erence, an// incomplete signal sequence will be copied into the new loop,// together with a complete and normal sequence. This// incomplete signal sequence must be destroyed.if (component=='O') fif (special!='-') f // discussed in x6.9// Here the Block O isn't in the clear mode, so normal// operations will be done.// First check to see if it's in the closing of a hybrid// replication by looking at the closing Birth B and all// relevant neighbor positions which signify a hybrid// replication. If yes, set the special clear mark.rot if (no:component=='B' && nw:component=='.' &&(we:component=='O' jj ea:component=='L'))special='-'; // discussed in x6.9// Otherwise, it should pass signals. First check if there// is a > signal which wants to pass through. If so, copy// it over here.// But if there is more than one > signal which wants to// pass through, this must be a collision situation, so the// special dissolve mode is entered.else rot if (we:component=='>') // > signal which wants to// pass.// check for no other signal wants to pass too.if (no:component!='>,1' && no:component!='>,2' &&ea:component!='>,2' && ea:component!='>,3' &&so:component!='>,3' && so:component!='>')component='>'; // copy it, discussed in x6.5else 152



special='#'; // otherwise, set dissolve mode// discussed in x6.10// This is similar, but for 90 degree passing of > in O.// Check for collision too.else rot if (so:component=='>') // > signal which wants to// pass .// check for no other signal wants to pass too.if (we:component!='>,1' && we:component!='>' &&no:component!='>,2' && no:component!='>,1' &&ea:component!='>,3' && ea:component!='>,2')component='>,3'; // copy it, discussed in x6.6elsespecial='#'; // otherwise, set dissolve mode// discussed in x6.10// Extrude by F to complete a new arm. When O is in the tip// of a new arm, it will get a > signal when seeing the F// signal. This will complete the arm branching step by// forming a standard two-cell arm in two steps.// O <arm// O ^ O// <LOF LOOO OOOO// O ----> O ----> O// O O Oelse rot if (so:component=='F' && se:component=='.' &&no:component=='.' && ea:component=='.'&& we:component=='.')component='>,3'; // discussed in x6.8// Check to see if it's in the gap between a parent and a// child loop and the replication cycle has just// completed, by looking at the closing Birth B or the// opposite direction of signal 
ows on both side, and// relevant neighbor positions which signify a closing// replication cycle. If yes, change to D to disconnect// these two loops.else rot if ((nw:component=='>,3' jj nw:component=='O') &&(ne:component=='B' jj ne:component=='>,1')&& no:component=='.' && ea:component&& we:component )component='D'; // discussed in x6.9g else// if the Block O sees the clear 
ag -, the 
ag// will be changed to the arm extrude 
ag when all// signals has been cleared (L is the last signal).153



rot if (we:component=='L')special='*'; // discussed in x6.9g// ***************** Signal > rules ****************// Signal > is the extruding signal command. When at the tip// of a replicating arm, it will cause the adjacent quiescent// space it points to to change to a Birth B in the next epoch.// Usually > signals are going in a sequence with a trailing L,// so it must copy the signal behind it, be it a > or a L, to// its own current position, unless there is no L or >// after it, in that case it will change back to O. Note that// changing back to O doesn't mean its signal disappears.// Remember that the cell before it will be copying it too// (be it an O or another > signal), thus signal > is 
owing// in the loops normally, unless something special happens.else rot if (component=='>') f// One special condition is that it may be in the gap// between a parent and a child loop when the replication// cycle has just completed. By looking at the closing B// or the opposite direction of signal 
ows on both// sides, and the relevant neighbor positions which signify// a closing replication cycle, it can tell if it's in// that position. If yes, it will change to Detach D to// disconnect these two loops. This is very similar to the// last statement for the Block O above.if ((nw:component=='>,3' jj nw:component=='O') &&(ne:component=='B' jj ne:component=='>,1') &&no:component=='.' && ea:component && we:component)component='D'; // discussed in x6.9// Otherwise, see if L is behind it. If so, it should copy// the L signal. One very interesting special case here is// that if the "growth" �eld is set, it will stimulate the// growth of signal sequence by one during arm extrusion// time. This is achieved by NOT copying the L signal and// stay as > for one more cycle. Since > signal is always// copied, this will actually insert one more > into the// sequence. Yes, the L signal will disappear in the next// epoch, but since the "growth" �eld is still set, that L// signal will be recovered in one more epoch. See the// rule below.// Another special case is when a 2x2 loop has just// completed generating a 3x3 loop and is about to extrude// its new arm. Since the signals L>> and EF is more than// four, the number of cells in a 2x2 loop, there must be// some way this L>> sequence can be regained after the154



// transient E and F signal that extruding a new arm. This// is achieved by utilizing the "growth" �eld. Yes, that// way, no matter what's the status of the "growth" �eld we// will always set it to on, so you can't get more >'s in// the signal sequence within a 2x2 loop.else if (we:component=='L')if (nw:component=='E' &&(growth jj no:component=='>,3'))growth='+'; // discussed in x6.12elsecomponent='L'; // discussed in x6.5// With the two special cases considered, all the rest is// just simple copying and doesn't need further// explanation.// copying the L signal, for four cell special caseelse if (no:component=='L')component='L'; // discussed in x6.11// copying the > signalelse if (we:component=='>')component='>'; // discussed in x6.5// copying the > signal through the cornerelse if (we:component=='>,1')component='>'; // discussed in x6.6// copying the > signal through the corner, in arm tipelse if (no:component=='>,1')component='>'; // discussed in x6.6// Now here is the special case companion rule, see// above. If the "growth" �eld is set on and L is not// following >, the > will change back to L again to// regain it.else if (growth && nw:component=='F') fcomponent='L'; growth=0; // discussed in x6.12g// otherwise > always changes to Oelsecomponent='O'; // discussed in x6.8g// **************** Birth B rules *****************// Birth B is generated when a quiescent bound cell is// pointed by a > signal. This is the way how loops grow.// Functionally B is very similar to Block O in that it just// copies signals through it. The reason we need the Birth B is155



// that it is easier to decide if a replication arm is closing// on itself by spotting the B at the periphery.else if (component=='B') f// In the closing of 2x2 loops the B should change to L// immediately to preserve the signal sequence.rot if (we:component=='L' && no:component=='O')component='L'; // discussed in x6.11// Otherwise B usually change to the Corner C when seeing Lelse rot if (we:component=='L')component='C'; // discussed in x6.6// If > is behind B will just copy it. Note that this is// one of the two places where a monomer can kill a loop// since the > signal is not checked to be bound or not. So if// a monomer > signal is facing the Birth B it will// in
uence the normal operation of the loops and kill it.else rot if (we:component=='>')component='>'; // discussed in x6.5// B can't be in a line of bound cells unless it's a// collision.else rot if (no:component && so:component)special='#'; // discussed in x6.10// Finally B always changes to O. This occurs when// extruding a new arm.elsecomponent='O'; // discussed in x6.8g// **************** Signal L rules *****************// Signal L gives the command of turning the growth direction// 90 degree counterclockwise at the tip of the replicating arm.// Signal L will also help generate a new replicating arm// when closing with the current replication cycle.else if (component=='L') f// L will change to extrude signal E if it sees the special// extrude mark on the "special" �eld. This extrude mark// itself was set when seeing Detach D, the disconnect// component, in its neighbor.if (special=='*') 156



component='E'; // discussed in x6.8// if > catch up with L, the signal sequence must have// some problems (possibly due to too many growth stimuli// +), and must be destroyed.else rot if (we:component=='>')special='#'; // discussed in x6.10// copying the E after the L, unless it's already at the// corner (thus sw:component=='F', since F always follows E).else rot if (so:component=='E' && sw:component!='F'&& (no:component=='.' jj we:component=='.'))component='E'; // discussed in x6.8// otherwise L always changes to Oelse component='O'; // discussed in x6.5g// **************** Component . rules *****************// . might not be called component at all since it's the// quiescent state for the "component" �eld. It will be changed// to a non-quiescent state if seeing either the > or E// signal, or it may fall back to monomer state if none of its// neighbor is a bounded non-quiescent cell.// Note that a monomer can kill a loop by inhibiting the// generation of the arm when standing beside the potential// "O" position. This is the second way a monomer can kill a loop.else if (component=='.') f// When seeing signal > pointed to itself, it will change// to the Birth B.rot if (we:bound && we:component=='>' &&(nw:component=='.' jj nw:component=='>,1' jjnw:component=='L'))component='B'; // discussed in x6.5// Or it will extrude the arm at the corner when seeing E.// If north is occupied (no matter it is a bound cell or// monomer), the extrusion will fail.else rot if (so:special==0 && so:component=='E' &&se:component=='.' && no:component=='.')component='O'; // discussed in x6.8// Otherwise, see if no bound neighbor is nearby. If so,// change back to unbound mode. 157



else f // discussed in x6.13count=0;over each other y:if (y:bound && y:component && y:special==0)count++;if (count==0) bound=0;gg// **************** Corner C rules *****************// C is the corner component generated by L signal at the tip of// a replicating arm. It will turn an incoming > signal 90// degree counterclockwise, thus changing the direction of// replication.else if (component=='C') f// First check for fail situation. E or F shouldn't meet C in// anyway. If they meet C that means something must have gone// wrong so the current loop must be destroyed.rot if (no:component=='E' jj no:component=='F')special='#'; // discussed in x6.10// turn > at the corner, four cell case considered, too.else rot if (we:component=='>' jj we:component=='>,1')component='>,3'; // discussed in x6.6,6.11g// **************** Detach D rules *****************// Detach D is the blocking component. It is generated when a// replicating arm has fallen back to itself, thus making a new// child loop. This component can block the dissolve 
ag # in the// "special" �eld to preserve either the child or parent loop// from the death of each other. This component is erased when// the two loops have seen it and have generated the arm// extruding 
ags.else if (component=='D') f// removing of the blocking cell when seeing "special" �eld set// in the neighbor.rot if (ea:special) component='.'; // discussed in x6.9g// **************** Signal E rules *****************// E always followed by F, so it always changes to F. It is// part of the two signals EF extruding sequence which extrudes158



// a new arm.else if (component=='E') fcomponent='F'; // discussed in x6.8// always reset the arm extrude special 
ag so only one EF// sequence is generated.special='.'; // discussed in x6.8g// **************** Signal F rules *****************// Signal F is part of the EF sequence to extrude a new arm.// When it sees no new arm generated by its predecessor E, it// will set the dissolve 
ag since extrusion fails.else if (component=='F') f// extrude testing for 2x2 loop special caserot if (no:component=='>,2' && ea:component)// copying the > signal or set the dissolve modeif (ea:component=='E' jj so:component=='O')component='>,1'; // discussed in x6.11elsespecial='#'; // discussed in x6.10// if arm extruding fails, self-destruction will beginelse rot if (no:component=='O' &&(ea:component=='O' jj ea:component=='L') &&so:component=='.' && we:component=='.')special='#'; // discussed in x6.10// otherwise F always change to Oelse component='O'; // discussed in x6.8g// A special rule for the arm extrude 
ag. Whenever a cell// sees the Detach D and it itself is a corner cell (note: not the// Corner C component), the arm extrude 
ag * will// always be set, no matter what component the cell is.rot if (component && special=='.' &&(ea:component=='D' && no:component && we:component jjwe:component=='D' && no:component && ea:component))special='*'; // discussed in x6.8gg // closure of the "g else f ..." statement 159



Chapter 7Solving SAT Problems with Self-Replicating LoopsRecently there have been suggestions that recombinant DNA techniques can be used to solve someNP-complete problems [Lipton, 1995; Adleman, 1994]. The basic idea is to use di�erent DNAsequences to represent di�erent trial solutions, and to use the separation methods from molecularbiology to isolate those DNA sequences which are desired or correct solutions. Since all of theseparation operations are done in parallel to all molecules, it is as if we are testing all possiblesolutions at once. The answer to a problem, if any, can thus be found in a linear number ofseparation steps. Since the number of DNA molecules is very large even in a small test tube, theproblem space this method can explore is astronomically big.Solving NP-complete problems on a traditional sequential computer normally requires expo-nential time. The Satis�ability Problem (SAT problem) is one classic example of an NP-completeproblem [Hopcroft & Ullman, 1979]. Given a boolean predicate likeP = (:x1 _ x3) ^ (x1 _ :x2) ^ (x2 _ :x3)the SAT problem asks \what assignment of boolean values to the binary variables x1, x2 and x3can satisfy this predicate", i.e., can make this predicate evaluate to True? The predicate P hereis in Conjunctive Normal Form (CNF), where each part of the predicate surrounded by a pair ofparentheses is called a clause. A SAT problem is usually marked as m-SAT problem if there are mboolean variables in a clause of its predicate. Therefore, the above example is a 2-SAT problem1.The SAT problem is NP-complete since, in general, we do not know how to make the assignmentto let a predicate be true. Intuitively, we can only test all possible assignments seeking to �nd if thereis any one which will satisfy the predicate. Thus, it takes exponential time to explore the solutionspace since if there are n boolean variables, there are 2n possible assignments to those variables.Although there are algorithms which can do better than 2n, they still require exponential time (e.g.2pn).The so called DNA computer technique mentioned above separates DNA sequences representingpossible SAT assignments all at once based on the clauses of a given SAT predicate. During eachseparation cycle all current DNA sequences were tested against one clause of the predicate, andunsatisfying sequences were removed. Therefore, in a limited number of steps which corresponds1Note that without loss of generality, 2-SAT problems are chosen as examples in this chapter due to their simplicity.Although 2-SAT problems can actually be solved in polynomial time and are not truly NP-complete, the methodpresented in this chapter does not take advantage of that special property and therefore is equally applicable to3-SAT or higher problems. 160
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In the following section, several examples of solving the SAT problem using self-replicating loopsare presented �rst. This is followed by a description of the cellular automata rule set in Section 7.2and its subsections. Analysis of the rule set and some running results are given in the next twosections. It is shown in this chapter that in addition to self-replication, self-replicating loops canbe made to solve problems, too. It is also shown that complex selection mechanisms among self-replicating loops can be incorporated into a cellular automata space. Detailed discussions aboutthese and other contributions of this work are given in the �nal discussion section.7.1 ExamplesFigure 7.2(a) shows the enumeration result for a self-replicating loop carrying 3 binary bits. Inthe original loop, unexplored bits are represented by the symbol A. We can see that these A's arereplacing some of the block O's in the old self-replicating loop (see Figure 7.1 for a comparison).The original growth signal '>', which has weak rotational symmetry, is also replaced by the symbolG (literally for Growth) in the new loop. The new symbol G is strong rotational symmetry. Thereason for this change is because the original '>' symbol for growth no longer needs to be weakrotational symmetry and has been used for other purposes now, which will become clear when welook at the cellular automata rule set which implements all of this in the next section. Exploredbits are represented by either digit 0 or 1 in the loops. The binary sequence a loop carries is reado� starting right after the L symbol, therefore, the lower left loop in the bottom left �gure carriesthe sequence 001 and topmost loop carries 011. The block O has also been changed to lowercase'o' typographically in order to avoid confusion with the digit zero. Note that in Figure 7.2(a), onlythe enumeration process is at work.Without the selection process, in three generations we get all eight possible boolean assignmentsfor a three variable SAT predicate carried by eight loops in the cellular automata space. Loopswill stop growing once they have explored all of their bits (no more A's within themselves). Sincethe exploration of bits is done one bit at a time for one generation, and explored bits are preservedin the loops and inherited from the parents unmodi�ed, we can be sure that all possible booleanassignments will be found with the enumeration process. Remember that for each exploration stepwe get a di�erent value in the parent and child loops. For example, starting with the loop carryingtotally unexplored binary sequence AAA, in the �rst generation we will get 0AA in the parent loopand 1AA in the (�rst) child loop. In the second generation we will get two more new loops carrying01A and 11A; the two parents (for this 2nd generation) now carry 00A and 10A. In the third and�nal generation, we get four more new loops 011, 111, 001 and 101. The four parents now carry010, 110, 000 and 100. Together, we get all eight values for a 3 bit binary sequence.To remove those loops which do not satisfy a SAT predicate, we spread \monitors" throughoutthe cellular automata space. Each monitor tests for a particular clause of the SAT predicate. Ifthe condition a monitor is looking for is veri�ed, it will \destroy" the loop on top of it. For thepredicate example P we gave before, three classes of monitors, each testing for one of the followingconditions, are planted in the cellular automata space:x1 ^ :x3:x1 ^ x2:x2 ^ x3162
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Figure 7.2: The enumeration and selection of satisfying boolean assignments by self-replicatingloops. (a) one 3 by 3 self-replicating loop can carry 3 binary bits (location marked by AAA) andenumerate all eight possible boolean assignments in three generations. (b) When \monitors" areintroduced into the cellular automata space, the selection process kicks in. In three generationsonly those loops carrying satisfying assignments to the boolean predicate P will be immune fromelimination by monitors and will survive in the cellular automata space. Monitors are representedby light gray digits in part (b). There are three di�erent kinds of monitors, each standing for oneclause of the original predicate P .These conditions are based upon the clauses of the speci�c predicate P, with their expressionnegated, because if any one clause of predicate P is not satis�ed, the whole predicate will not besatis�ed, thus the negation. A monitor will destroy the loop if its corresponding clause is found to beunsatis�ed by the binary sequence carried by the loop on top of it. This detection process is done inlinear time since essentially each monitor is just a �nite automata machine and the binary sequencepassing through it can be seen as the regular expression for recognition. With enough monitors inthe cellular automata space, they can e�ectively remove all unsatisfying solutions. Remember thatall clauses of a SAT predicate must be satis�ed for the whole predicate to be satis�ed and failingto satisfy any one clause can prove to be fatal. Note that the size of the self-replicating loop mustalways be big enough to cover di�erent monitors at least once, otherwise some clauses will not bechecked against the loop.Figure 7.2(b) displays the result of replication starting from the same original loop as used inFigure 7.2(a) but with the selection process turned on this time. Monitors are planted throughoutthe cellular automata space according to the three conditions set above. They are shown in lightgray color in the background of the �gure. Since it does not hurt to have more monitors than lessin the cellular automata space, it was decided to �ll all cellular automata cells with monitors. Wecan see that there are three types of monitors designated by symbol 1, 2 and 3 because there are163



three conditions to test.The symbol of a monitor tells it which condition it should test. Like all the other cellularautomata activities, the testing rules for each condition are de�ned in the cellular automata ruleset. Basically, a monitor keeps track of the boolean bit sequence 
owing through its position, sets
ags and destroys loops if the cellular automata rule condition is found. The monitor rule set isworking independently of the self-replication and enumeration rule set for the self-replicating loops.But if an unsatisfying loop is found, the monitor will interfere with the self-replicating rule set sothat the un�t loop can be destroyed.In three generations we have only two loops left in the cellular automata space instead of theoriginal eight. These two loops carry exactly the only two satisfying boolean assignments for theoriginal SAT predicate P, which are 000 and 111.We display more intermediate steps for the enumeration and selection process starting with the3 by 3 loop carrying three unexplored binary bits in Figure 7.3. Since monitors do not move onceplanted, for the sake of clarity they are not shown in this �gure. But they are still there, doingtheir jobs, exactly as shown in part (b) of Figure 7.2.It can be seen in this �gure that part of the family tree is killed without even being generated,i.e., the topmost loop in Figure 7.2(a) has never been generated because its parent loop (theone below it in the same �gure), which still carries unexplored binary bits, is killed early in thereplication cycle. Since it has been found (by the monitors) that the partially explored bits 01A inthis parent loop do not satisfy one of the clauses, there is no need to explore further since all itsdescendents will carry the same binary bits.Another example solving a six variable SAT problem using 4 by 4 loops is shown in Figure 7.4.This is for satisfying the six variable predicateQ = (:x1 _ x3) ^ (x1 _ :x2) ^ (x2 _ :x3) ^ (x4 _ x4) ^ (:x4 _ :x5) ^ (x5 _ :x6)Self-replicating loops are able to �nd the only two satisfying boolean assignments out of a total of64 possible assignments in 394 iteration steps, or about six generations. One replicating generationfor a 4 by 4 loop takes 65 cellular automata iteration steps, which involves four cycles of thereplication signal sequence in the parent loop to build the child loop plus one more cycle to extrudethe new arm. Detailed analysis of replication steps needed for loops of di�erent sizes is provided inSection 7.3.We can see from this and the three variable SAT example above that generally it takes ngenerations to solve an n variable SAT problem. It is understandable why this is the case since foreach generation one bit is explored and there are n bits in an n variable SAT predicate. Again,in this example the monitors are not shown in the �gure for the sake of clarity but they areeverywhere in the cellular automata space trying to �nd their victims. They are like a classicalautomata machine recognizing computer-theoretical regular expressions represented by the booleansequences carried by the self-replicating loops. They use di�erent 
ags to represent di�erent stagesof the recognition process and will destroy the loop on top of them if the recognition is completed,i.e., an unsatisfying loop has been found. There are six di�erent kinds of monitors in this examplesince there are six clauses in the predicate Q. Starting from the totally unexplored bit sequenceAAAAAA, the only two satisfying boolean assignments of this particular 6 variable SAT predicateis 000100 and 111100 (remember bit sequences are read o� right after the signal L, and correspondto boolean assignments to the variables of a predicate).164
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code 4 bits . o G L E F D A B 0 1

direct 3 bits . <(4)

pos 4 bits 0 1 2 3 4 5 ...

clause 4 bits 0 1 2 3 4 5 ...

color 2 bits ^(4)

special 3 bits . * - + # ?!

A Cell

Cellular Automata SpaceFigure 7.8: The data �elds used in solving the SAT problem. Listed are the bit depths and validstate symbols in each �eld. Weak rotational symmetry symbols are denoted by \(4)" after them,indicating that they represent four states. Quiescent states are represented by a period '.' in therule set, but are not displayed when showing the cellular automata space con�guration.o This is the building block of the loop. It serves as a place holder to keep the integrity of theloop and conceptually allows other codes to pass through it. It was represented by thecapital letter 'O' in the rule set we discussed in the previous chapter. It is now changedto lowercase 'o' to avoid confusion with the number '0', which is also a valid state of thisdata �eld.G This is the extrude signal, which directs the expansion of a cellular automata signal path-way into the quiescent space. It was represented by the symbol '>' in previous self-replicating rule sets that had weak rotational symmetry. It is now changed to the letter'G' and to have strong rotational symmetry (i.e., represented by only one state value).With the help of the direc �eld to provide directional discriminations now (see below),weak rotational symmetry is no longer needed for this signal. The introduction of adedicated direc �eld to provide directional discrimination is necessary because there isno speci�c signal order in the loop anymore and it also simpli�es rule set design.L This is the turning signal. It changes the expansion direction of a signal pathway by 90degrees counterclockwise, as before.E F This is the pair of signal sequences to direct the breaking out of a new arm for replication.D This is the detach component which separates the parent and child loops during thereplication process.Those above are signals for replication control. The following four more signals have no e�ecton the replication process but are added for enumerating and representing SAT binary bitassignments:A An unexplored SAT binary bit. When explored during a replication cycle it will alwaysbecome 0 in the parent loop and 1 in the child loop.170



B Also an unexplored SAT binary bit. It is seldom used in our examples of this chapter.When explored during a replication cycle, it will always become 1 in the parent loop and0 in the child loop. Its function is a direct opposite of signal A. When to use it will bediscussed in the section about e�ciency (Section 7.4).0 The explored SAT binary bit 0. It will not change further except when it is carried aroundin a self-replicating loop. It represents an assignment of boolean value zero to a corre-sponding boolean variable of the SAT predicate.1 The explored SAT binary bit 1. It will remain in this state except being carried around in aself-replicating loop. It represents an assignment of boolean value one to a correspondingboolean variable of the SAT predicate.We actually need only signal A or B to represent unexplored SAT bits, not both. Buthaving both of them has the advantage of changing the exploration pattern and may help thee�ciency issue (see Section 7.4).2. direc(3 bits): This is a new �eld which de�nes the signal 
ow pathway. One di�erent designfeature of the SAT rule set when compared to the self-replicating rule set in the last chapteris that the signal 
ow direction is no longer implicitly de�ned by the signals themselves. Forexample, where \signal 'L' always follows signal '>"', when we see a signal sequence 'L>',we know it is going to the right, and when we see a signal sequence '<L', we know it isgoing to the left. There are de�nite patterns of signal sequences in the loop (always a certainnumber of '>' signals followed by the signal 'L'), and the cellular automata rule set can takeadvantage of that knowledge and determine the 
owing direction unambiguously.But in the SAT rule set a loop can now carry an arbitrary SAT bit sequence and there isno easy way to tell which way the signal sequence 010101 or 001001 will 
ow, for example.Although one might �nd some other solution, such as making all bit states have weak ro-tational symmetry to gain a sense of orientation for the SAT sequence, these methods areat best awkward and would waste useful cellular automata states. A more elegant solutionis to use a \direc" data �eld to explicitly point out the signal pathway. The direction thedirec data �eld points will be the direction any signal sequence on top of it will 
ow toward.We can imagine the direc �eld as a conveyor belt in a factory assembly line which carrieseverything with it. What we are doing here is to factor the weak symmetry information outinto a separate �eld direc that all symbols can reference. Valid state values for direc are thequiescent state plus the four weak rotational state values of the signal >, which always pointat where signals 
ow.3. pos(4 bits): This is the data �eld which records what corresponding boolean variable in aSAT predicate is represented by a binary bit in a SAT sequence carried in a loop. We needthis �eld in order to tell the order of bits and (for the monitor) to check for unsatisfyingbit sequences. Values in this �eld are attached to bits in the code �eld and 
ow with them.Valid values for this �eld are numbers 0, 1, 2, : : : etc., each standing for boolean variable one,boolean variable two, : : : etc. in the SAT predicate.4. clause(4 bits): This is the \monitor" �eld which encodes what particular SAT predicate clausethe monitor in a cell should be checking for. A cell with a particular non-quiescent clausevalue will look for any bit sequence passing atop it which represents an unsatisfying boolean171



assignments with regard to the clause it is checking for. Cellular automata rules are de�nedto control this checking process. If the monitor can �nd such an unsatisfying sequence it willdestroy the loop by setting a special 
ag and kill the loop carrying that sequence on top of it.Valid values this �eld are numbers 0, 1, 2, : : : , etc. which stand for clause one, clause two,etc. in the SAT predicate.5. color(2 bits): This is a tag �eld to mark the expansion direction for each loop. It is usedto detect the collision of the expansion arms of two self-replicating loops. Since two loopsexpanding at the same direction (thus carrying the same color) can never collide, if a collisionof loops occurs it can be detected by di�erent color's of the arms. Valid values for this �eldare just the four weak rotational values of the signal .̂ This �eld is di�erent to the direc �eldin that its values are always the same within a loop, but such is not the case for the direc�eld, which can have four di�erent values in the four di�erent sides of a loop.6. special(3 bits): This is the �eld which denotes occasional special situations in the cellularautomata space. There are the following special situations:. No special situation.* A branching signal sequence (EF) will be generated.- Unexplored binary bit A will change to bit 1 and unexplored binary bit B will change tobit 0 when seeing this special 
ag.+ Unexplored binary bit A will change to bit 0 and unexplored binary bit B will change tobit 1 when seeing this special 
ag.# The destruction 
ag. Any loop cell touching this special 
ag will be erased in the nextiteration. It is set when an unsatisfying loop is found by a monitor. It will kill anunsatisfying loop in a very short time.? A partial unsatisfying 
ag. When the �rst boolean variable of a clause is not satis�edthis 
ag will be set by the checking monitor. It signals another state of the monitorautomata. The monitor in a cell with this special 
ag on will be checking against thesecond variable of the clause it is assigned to check for (by the clause �eld), instead ofthe �rst variable as it normally will check. If the second variable of the clause is alsofound to be not satis�ed by the current binary sequence on top of it, according to thecellular automata rules, the monitor will set the destruction 
ag #, to destroy the loop.! The collision 
ag. It is set when the expanding arm of a loop detects that it is collidingwith other loops or their arms. Any active loop part touching this special 
ag will beerased in the next iteration unless it is a branching point where more than one signalpathway is branching out from the same cell. It will e�ectively remove an old replicatingarm of a loop in a very short time and set to start a new arm at another direction.At the beginning of a simulation, one loop is put into the cellular automata space. The code �eldof the cellular automata space is initialized to re
ect a normal self-replicating loop con�guration.Some unexplored A bits to represent the boolean assignment sequence is placed in the loop body,too. The direc �eld is initialized to control the signal 
ow direction for the loop. The pos cellsunder those A bits are set to represent their associated variable numbers of the SAT predicate. Anarbitrary cell in the clause �eld is set to a nonzero value, usually one, to represent a seed monitor172
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7.2.3 Self-replication, detachment and new arm extrusionWhen the replicating arm �nally turns on itself, it will trigger the formation of the detach signalD, which will in turn close the new signal path, form a new loop and �nally separate the two loops.When signal D is generated it triggers the setting of two special 
ags in its neighbors. Each ofthe 
ag belongs to each of the loops. These two special 
ags have the e�ect of enumerating the SATbit sequences and generating new replicating arms. The details about how enumeration is donewill be discussed in the following subsection. We look at how the new replicating arm is formed inthis subsection.Consider Figure 7.11. In epoch 33 the arm is closing, which triggers the formation of detachsignal D in epoch 34. Signal D then triggers the setting of two special �eld 
ags in epoch 35. Notethat signal D also modi�es the direction of the direc pointer in the new loop to complete the loopin epoch 35. When seeing the appearing of special 
ags in its neighbors signal D will disappear inepoch 36 together with its underlying direc pointer. This completely separates the two loops.The two special 
ags in corners of the two loops will trigger the formation of the signal sequenceEF as seen in epochs 38, 39, 40 and 41. The EF signal sequence will form a new replication arm inthe following corner as seen in epochs 41, 42 and 44 of Figure 7.11.7.2.4 Enumerating the SAT sequencesAs seen in Figure 7.11, in epoch 35, two `+' 
ags are formed beside signal D. The left `+' 
agimmediately causes the code signal A atop it to be changed to binary bit 0 in epoch 36 while itselfchanges to the `*' 
ag for generating an arm extrusion sequence next. In the meantime, the signalL atop the right `+' 
ag changes it to a `-' 
ag from epoch 36 to 37. The `-' special 
ag then causesthe signal A atop it to change to binary bit 1 in epoch 38 while itself changing to the `*' 
ag forgenerating arm extrusion sequence next. In epoch 39 the left `*' special 
ag disappears since it hasgenerated the EF sequence. The right `*' 
ag will also disappear in epoch 41 when its EF sequencehas also been generated.The function of the `+' special 
ag is to make the code signal A change to binary bit 0, and thefunction of the `-' special 
ag is to make the same signal A change to binary bit 1. Because of thetiming di�erence in the parent and child loop, the special 
ag `+' in the child loop will be changedto 
ag `-' before it in
uences the following signal A. Therefore, the explored SAT sequences willbe di�erent in the parent and child loop. This is how the SAT rule set enumerates the SATbinary bit sequences.Explored binary bits 0 or 1 will stay unchanged and get copied into all further descendent loops,while unexplored signal A's will be gradually reduced to either binary bit 0 or 1, depending onwhether they are in the parent or child loop. Starting with only one loop with all unexplored signalA's in the cellular automata space, the replication/enumeration process will eventually produceall possible SAT binary bit sequences with the same number of bits as the original loop. Theorder in which these bit sequences are generated is dependent on how loops get replicated andnormally starts with the bit closest to the signal L. These are representations of all possible binarybit assignments to the variables of a predicate. An example has been shown in Figure 7.2(a) wherean original loop with three A's sequence generates all eight possible SAT binary bit assignments inthe end. When the enumeration sequence ends, all A's have been explored. Loops will no longerreplicate but signals within them will still be cycling around.175
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7.2.5 Collision detection, recovery and preservation of loopsIt is possible for two loops to compete for space and collide with each other in the cellularautomata space. The SAT rule set makes sure that all collisions are resolved peacefully and noinformation is lost because of the collision, i.e., the bit sequences will all be generated by the loopsdespite the collision.A typical collision situation is shown in Figure 7.12. The lower left and the right loop both tryto grow into the middle space between them. The lower left loop is several steps ahead of the rightloop, which is just about to extrude its new replicating arm. In epoch 4 the signal L of the lowerleft loop reaches the tip of its arm. Normally, signal L will change the replication direction to pointup but in this particular situation it will cause the special 
ag `!' to be set in its upper neighborin epoch 5. The reason is that the neighbor there has sensed the lower left loop's intention to growinto its position but has also found out that there is no more space to grow beyond it (since itsupper neighbor is occupied by the right loop now). So it sets the `!' collision 
ag. This collision
ag will 
ow backward along the signal path as seen in epochs 6, 7, and 9, killing everything on itsway back to the main loop until it reaches the corner of the left loop in epoch 10, where it will thenchange to an extrusion 
ag `*'. Remember that the `*' extrusion 
ag has the function of generatinga new replication arm in the next corner. Together these two special 
ags '!' and '*' achievethe e�ect of retracting an old replicating arm and generating a new one.The replication of the right loop is unin
uenced since when it reaches the edge of the lower leftloop in epoch 9, the replication arm of the lower left loop has already moved out of its way, so theright loop still has room to grow and does not have to retract its arm.A more complicated matter here is that the upper region of the lower left loop has also beentaken by another loop already there. While the special `*' 
ag left in the corner does successfullygenerate an arm extrusion sequence EF in epoch 13, this EF sequence fails to make a new armsince there is no space left in the upper part of the loop, as seen in epoch 15.But by the same mechanism, the failed EF sequence leaves another special `*' 
ag in the newcorner as seen in epoch 16. This new special `*' 
ag generates a new EF sequence in epoch 23 which�nally makes a successful new arm in epoch 26.The detection of collisions needs further explanation. Look back at epoch 4 of Figure 7.12 andcompare the situation with epoch 32 of Figure 7.11. In the former case, two loops are colliding witheach other and one arm needs to be retracted. In the latter case, it is the closing of the replicatingarm for the same loop and should be allowed to continue. Given that only local information isavailable to the colliding central cell, how can it tell one way from the other?To resolve the problem the color �eld is used. When replicating toward di�erent directions,loops will possess di�erent colors. This is then used to judge the situation when a collision occurs.If two colliding paths possess the same color, they belong to the same loop and this is the closingof a replicating arm. If these two paths have di�erent colors, we know that a collision has occurredbetween two di�erent loops. In the example of Figure 7.12, the lower left loop is growing towardthe right and the right loop is growing toward the left, so they have di�erent colors, even thoughthe color value is not shown in this �gure for the sake of clarity.7.2.6 SAT clause checking, unsatisfying loops detection and deletionAll of the previous description is about the replication of loops and the enumeration of SAT bitsequences. In this �nal subsection we consider how monitors work in the cellular automata space177
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Figure 7.13: Monitors in the clause �eld. Aftermonitor distribution is done, the clause �eld willbe full of di�erent monitor values which aredistributed in such a way that all loops will betouching all di�erent monitors at least once.Shown in the background light gray color is theclause �eld content. In the foreground there aretwo loops exactly as shown in Figure 7.2(b). Wecan see that these two loops touch all threedi�erent monitors many times in various cells.to erase those loops carrying unsatisfying bit assignments for a SAT predicate.The clause �eld determines which SAT clause the monitor in each cell of the cellular automataspace is checking for. The clause �eld is independent of all of the other �elds used in the SAT ruleset since monitors work independently of the self-replicating loops, and have their own governingcellular automata rules. Monitors distribute themselves throughout the clause �eld at early stagesof the cellular automata simulation. Once distributed, the particular clause each of them checksfor is �xed and will not change over time. The distribution of monitors is arbitrary as long as wecan be sure that each loop will touch all di�erent monitors at least once on its path, so that alldi�erent monitors will have a chance to check the bit sequence of the loop. Remember that wehave di�erent monitors to check for di�erent clauses of a SAT predicate. This requirement is tomake sure that all clauses of the SAT predicate will be checked for with all loops.One arbitrary monitor is initialized by putting it in an arbitrary cell in the cellular automataspace at the beginning of the simulation. The following cellular automata rules distribute the seedmonitor throughout the cellular automata space, but with di�erent clause values at di�erent cells.if (clause==0)if (no:clause)clause=no:clause%noclauses+1;else if (we:clause)clause=we:clause%noclauses+1;These rules are simple. If there is no active monitor in a cell, thus clause==0, then the monitor valuefrom either its north or west neighbor is referenced, if any of them exists. This value is modi�edmodulo the total number of clauses (noclauses), and then increased by one. The calculated valueis stored in the cell. This rule set guarantees that any monitor in a cell di�ers to all its neighborsat most modulo one (1 and 3 have a modulo distance of one for a three clauses predicate), as canbe seen in Figure 7.13.A typical clause �eld content after monitor distribution has been done is shown in Figure 7.13,which is the same as Figure 7.2(b). The clause �eld contains three di�erent monitors numbered 1,2 and 3 for the three clauses of predicate P that we have discussed in the beginning of this chapter.We can see that the distribution of the clause values (the monitors) is even and each loop touchesall three monitors at least once.The clause �eld makes up the \monitors" we mentioned in Section 7.1. Each monitor will keepchecking the SAT binary sequence passing through it for unsatisfying sequences, according to the179



following cellular automata rules. If an unsatisfying sequence (and the loop which carries it) isfound by a monitor, that monitor will set the special �eld to 
ag `#', to destroy the loop. This willkill the whole loop carrying the sequence. The process of checking and deletion of loops done bymonitors works independently from the other functions of the SAT rule set such as self-replicationand the SAT bit sequence enumeration of loops.First, the clauses of a SAT predicate is represented by four arrays within the cellular automatarule set, such as the following:int noclauses = 3;int pos1[] = f 0, 1, 1, 2g;int code1[] = f 0, '1:code', '0:code', '0:code'g;int pos2[] = f 0, 3, 2, 3g;int code2[] = f 0, '0:code', '1:code', '1:code'g;The arrays above encode the 3 variable SAT problem we have seen in Section 7.1. Rememberthat there are three conditions to check for this problem, thus noclauses=3. These conditions arereproduced below for ease of reference. The �rst element, with index value 0, of all arrays is alwaysset to zero and is not used. Condition one is encoded by the second element (which has index value1) of the four arrays. In pos1[], its index 1 element has the value 1, which denotes that the �rstboolean variable in condition one is variable 1. The index 1 element of code1[] is '1:code', whichmeans that this �rst variable (variable 1) must equal symbol '1', in the code �eld. The index 1element of pos2[] is 3 and the same element of code2[] is '0:code', together they mean that thesecond boolean variable of condition one (i.e. variable 3) must equal '0' in the code �eld. Thesefour index 1 elements of the four arrays precisely encodes condition one of the following:x1 ^ :x3:x1 ^ x2:x2 ^ x3Similarly, as read o� from index 2 elements of these arrays, the �rst variable of condition two isvariable 1, which must equal '0', and the second variable of condition two is variable 2, which mustequal '1', etc. All clauses of a predicate is encoded in this fashion. The value of noclauses andthe size of the arrays are adjusted with respect to the actual predicate length.If a monitor is set to check for condition 1, it will reference index 1 elements of all four arrays.If a monitor is set to check for condition 2, it will reference index 2 elements of all four arrays, etc.The rules for monitor checking are listed below. These are independent of the SAT predicate beingchecked: if (special=='.' && pos==pos1[clause] && code==code1[clause])special='?';else if (special=='?' && pos==pos2[clause])if (code==code2[clause])special='#';else special='.'; 180



The �rst if statement checks for the �rst variable of the condition denoted by the clause �eld value,which is used as an index into the four encoding arrays. If the variable and its value represented inthe pos and code �eld match the condition values stored in arrays pos1[clause] and code1[clause],the alarm 
ag '?' is set in the current cell, which announces checking for the second variable of thesame condition. The second if statement in above rules works similarly to the �rst if statement.If the variable and its value are also found to match the condition, the destruction 
ag '#' is setin the current cell, which will end up destroying the whole loop carrying the sequence. Otherwise,the special �eld is cleared, and checking resumes with the �rst variable of the condition again.Since the function of monitors is dependent on the particular SAT boolean predicate they arechecking for and is built into the cellular automata rule set, di�erent rule sets will have to be usedfor di�erent predicates. But this requires just a change of the condition arrays used by the monitorsand is not a di�cult task. The rules for checking do not have to be modi�ed.A more detailed example about how monitors work is shown in Figure 7.14. For the sake ofclarity, the monitor distribution rule set is disabled for this example. Only one monitor is plantedinto the cellular automata space, which is located at the upper right corner cell of the top loop.The monitor is set to check for condition 2 of the predicate P, as seen by the number 2 in the clause�eld. No other cell in the cellular automata space has monitors in it for this example. If this No.2 condition :x1 ^ x2is found to be true by the only monitor in this space, then clause 2 of the predicate P is determinedto be unsatis�ed by the loop occupying that cell and destruction will begin.The bottom loop in Figure 7.14 is a parent loop. In epoch 77 the detach signal D causes thetwo special 
ags `+' to be set in both loops. The `+' 
ag in the child loop (top one) is later changedto the `-' 
ag by the L signal in epoch 79, which in turn causes the following signal A to bechanged to binary bit 1 in epoch 81. Since the �rst variable (x1) has been veri�ed to be '0' by themonitor (pos==pos1[2] && code==code1[2]), at epoch 81 the monitor in the upper right cornercell causes the special 
ag `?' to be set in its position in epoch 82, which marks checking for thesecond variable of the condition. Remember that this is the e�ect of the �rst if statement in therules above. Continuing in epoch 82 the second bit (which has just been converted from signal Ain epoch 81) is just passing over the monitor embedded cell. Since it is the second bit with thevalue '1', the second part of the condition has also been veri�ed by the monitor (pos==pos2[2] &&code==code2[2]), which ful�lls the No. 2 condition above and proves that clause 2 is not satis�edby the current SAT sequence 01A carried by the loop sitting on top of the monitor. Therefore, inepoch 83 the special destruction 
ag `#' is set by the monitor which quickly destroys the whole loopin epoch 88. Note that the third bit has not even been explored yet in this loop.Recall that the monitor knows the bit 0 on top of it in epoch 81 is assigned to variable x1 of thepredicate P and the bit 1 on top of it in epoch 82 is assigned to variable x2 of the same predicateby looking at the pos data �eld, which encodes the variable associated with a bit in the code �eld.The pos �eld content is always translated with bits in the code �eld so that any monitor touchingthose bits will know which boolean variables they are associated with in the original SAT predicate.In actual simulations, there are monitors all over the cellular automata space in every cell. Aslong as a loop is touching all di�erent monitors at least once, which is the case by the current181
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Figure 7.14: Checking for unsatisfying loops and deletion of them by the monitor. The upperrow shows the code �eld, the middle row shows the clause �eld with the pos �eld in the backgroundgray color, and the lower row shows the special �eld with the direc �eld in the background colorfor reference. The only monitor is in the upper right corner cell of the top loop which is set tocheck for clause 2 of the predicate P we discussed before.182



monitor distribution rules, it is guaranteed that unsatisfying loops will all be removed by monitorseventually.7.3 AnalysisEach cell of the CA space can accommodate one instruction, or code �eld value. For a self-replicating loop which has n cells on one side (an n by n loop) it needs n code values for its ownreplication control, plus two code values for the arm extrusion control sequence. The rest of its cellscan be used to carry the SAT bit assignments. Therefore, an n by n loop can carry the followingnumber of SAT bits: 4� (n� 1)� (n+ 2) = 3n� 6For example, for the 3 by 3 loop in Figure 7.14, the loop can carry 3� 3� 6 = 3 SAT bits.On the other hand, if we are trying to �nd the smallest n by n loop which can solve an x-bitSAT problem, we can form the inequality x � 3n� 6, which givesn � x+ 63or n = �x+ 63 �that is the smallest loop size capable of solving an x-bit SAT problem.The number of iteration steps needed for the replication of an n by n parent loop is5� 4� (n� 1) + (n� 1) = 21(n� 1)which is calculated based on the fact that an n by n loop has 4(n� 1) cells and it takes 4 cycles ofthe signal sequence in the parent loop to replicate the child loop. Plus, it takes one more cycle toextrude the new arm and n� 1 more steps to move the starting signal G to the new arm position.The child loop is always two steps behind the parent loop, so it takes 21(n�1)+2 steps to complete.During each replication generation, one SAT bit is explored. For an x-bit SAT problem, xgenerations are needed to explore all possible bit assignments. To calculate the cellular automataworld size required to solve an x-bit SAT problem, we notice that the maximum expansion alongone direction in the CA space for x generations is x(n+ 1), which is the width for each loop plusone boundary cell, timed by generations. Therefore, the maximum size needed to solve an x-bitSAT problem along one dimension of the cellular automata space is2x(n+ 1) + nwhere the extra n is the original loop width. The maximum world size of a dimension is independentof the characteristic of the SAT problem being solved. It is dependent only on the SAT bit number,x. The estimated number of iterations of the cellular automata universe needed to determinewhether a SAT predicate is satis�able or not is calculated by multiplying the number of generationsby the number of replicating steps per generation. The number of replicating steps for a child loopis used in the calculation, which gives 21x(n� 1) + 2x183



loop total maximum rep. steps rep. steps maximum estimatedsize cells SAT bits (parent) (child) CA width iterationsn 4(n-1) x=3n-6 21(n-1) 21(n-1)+2 2x(n+1)+n 21x(n-1)+2xO(n) O(n) O(n) O(n) O(n) O(n2) O(n2)3 8 3 42 44 27 1324 12 6 63 65 64 3905 16 9 84 86 113 7746 20 12 105 107 174 12847 24 15 126 128 247 19208 28 18 147 149 332 26829 32 21 168 170 429 357010 36 24 189 191 538 458411 40 27 210 212 659 572412 44 30 231 233 792 699013 48 33 252 254 937 838214 52 36 273 275 1094 990015 56 39 294 296 1263 1154416 60 42 315 317 1444 1331417 64 45 336 338 1637 1521018 68 48 357 359 1842 1723219 72 51 378 380 2059 1938020 76 54 399 401 2288 2165421 80 57 420 422 2529 2405422 84 60 441 443 2782 26580Table 7.1: Mathematical property for some self-replicating loopsIn Table 7.1, the cell numbers, maximum SAT bits, replication steps, maximum world size along onedimension and estimated iteration steps are listed for some di�erent loops. The order of magnitude,or complexity, is also given for each term.Normally we just need to �nd one satisfying boolean assignment to determine if a predicateis satis�able or not. That usually requires only the estimated number of iteration steps statedabove. But in some cases, the actual iteration steps needed can be critically dependent on thecharacteristics of the SAT problem being solved. This is especially so when we try to �nd allsatisfying boolean assignments to a predicate. An example was given in Figure 7.5 at page 167where solutions were so abundant that loops crowded each other and could not explore all booleanassignment cases. In such a situation, the self-replicating loop cannot explore all of the satisfyingassignments to a predicate and therefore cannot �nd all satisfying ones.7.4 E�ciency issuesIn the examples of Section 7.1, we can see that the characteristics of a particular SAT problemcan dramatically in
uence the e�ciency of �nding the satisfying boolean assignments using self-replicating loops. Actually, self-replicating loops may not �nd all satisfying cases if the cellularautomata space gets too crowded. The last column of Table 7.1 lists the estimated number of184



iteration steps needed to determine if a given SAT predicate is satis�able or not, but this maynot be the exact steps to �nd the satisfying boolean assignments for the predicate. If we assumethat loops in the cellular automata space will never get too crowded to prevent continuing self-replication, then that number will be the exact number of steps to �nd the satisfying cases. Thequestion now is whether this assumption that loops will never get too crowded is reasonable or thatthe cellular automata space is usually crowded when solving SAT problems.First, we need to determine how the satis�ability checking process of the method in
uence thecellular automata space occupancy density. If loops will never be killed after being born, in �vegenerations loops in the central region of the population will start to have problems continuingreplication, despite still carrying unexplored code A's. This has been demonstrated in Figure 7.5.It will prevent the method from �nding all satisfying assignments. On the contrary, if during eachgeneration only one loop is kept (the other one being killed, be it the parent or the child loop), theself-replicating loop can �nish searching in exactly x generations for an x-bit SAT problem. Thisis the theoretical best case the method can achieve since it takes at least x generations to exploreall x variable assignments in an x variable SAT predicate2.The monitor selection process is the key factor here. To have a quantitative understanding ofhow the selection process in
uences the e�ciency of the method in �nding all satisfying booleanassignments, a series of simulations were run, each with a controlled monitor selection behavior.In order to measure the progress of loops toward �nding all satisfying assignments during eachiteration, the generation index of a loop is de�ned as the number of unexplored code A's withinthat loop deducted from the number x for an x-bit SAT problem. Therefore, the starting loop, withx unexplored bit A's, is at generation x� x = 0. The �nal, totally explored loop which no longerreplicates, is at generation x� 0 = x. The reason of using the generation index instead of directlyusing the number of explored bits is to avoid decreasing the value through time. The progress ofthe whole cellular automata space con�guration toward �nding all satisfying boolean assignmentsis then de�ned as the average value of the generation index of all loops in the space.To facilitate comparison, iteration steps are also calibrated with generations. The currentiteration number is divided by the number of steps for one full replication generation of a loop toobtain a calibrated generation index of the time step.In Figure 7.15, the progress curves of four di�erent selection schemes are shown, each is con-trolled by a custom tailored SAT predicate of the problem being solved. All cases are based onsolving 6-bit SAT problems using 4 by 4 loops:� Curve A represents the theoretical best case where for each generation only one loop is kept,so it reaches all satisfying assignments in exactly 6 iteration generations.� Curve B represents the worse case where loops are never killed by the monitor, so overcrowdingprevents �nding all satisfying assignments for the predicate. It never reaches an averagegeneration index of 6.� Curve C represents a selection scheme where 50% SAT sequences are satisfying but selectionoccurs only at the �nal generation (the exploration of the last A bit). It is very slow to �nd allsatisfying assignments in this case since loops in the central region are trapped while waiting2Assuming, of course, that the SAT problem is actually satis�able; it takes even shorter time to determine a SATproblem is not satis�able if there is no loop in the space after some early generations.185
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Figure 7.15: The progress speed for di�erent selection schemes. Each selection scheme is con-trolled by a specially designed SAT predicate of the problem being solved. The vertical axisshows the average generation index of the cellular automata space, which reveals the progress ofthe cellular automata space toward �nding all satisfying boolean assignments for a SAT problem.For 6 variable SAT problems of this example, the generation index is always between 0 and 6.The horizontal axis shows the cellular automata iteration steps taken, calibrated by the iterationsteps for one full replication cycle of the loops.for peripheral loops to explore. Outer loops must be erased �rst to leave space for inner loopsto expand. This is a time consuming process and it takes a much longer time to �nish (12iteration generations).� Curve D represents the same 50% satisfying ratio of all possible boolean assignments but theremoval of unsatisfying loops occurs at the �fth bit A (i.e., one generation earlier than CurveC). We can see that the time it takes to �nd all satisfying assignments is faster than CurveC, at generation 8.From Figure 7.15 it seems to suggest that the earlier the selection occurs, the faster the methodwill be in �nding all satisfying SAT sequences. To examine this belief two additional 50% curveswith even earlier selection stages are plotted in Figure 7.16, together with the two original 50%curves of Figure 7.15. The critical region is zoomed in to facilitate comparison in this new �gure.It can be seen that the suggestion above is true, that earlier selection at bit 4 does run fasterthan selections at bit 5 or 6, but when the selection goes too early in the case of curve D, theovercrowding e�ect will kick back which prevents the method from �nding all satis�able answers.This is similar to the worse case of Figure 7.15.186
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Figure 7.16: The progress speed for 50% satisfying assignments at di�erent selection stages.Again, the satisfying assignment ratios and the selection stages are controlled by custom tailoredSAT predicates. The vertical axis shows the progress of the cellular automata space toward �ndingall satisfying assignments for a particular SAT problem, using the average generation index as theunit. The horizontal axis shows the iteration steps taken, which is calibrated by the steps for onefull replication cycle of the loops. To facilitate comparison, only the critical region are shown inthis Figure.We come to wonder if the satisfying ratio will in
uence the speed of �nding all satisfyingassignments, too. Figure 7.17 displays solving similar 6-bit SAT problems using 4 by 4 loops, butat di�erent satisfying ratios and selection stages. In this �gure, the critical part is also zoomed inon. � Curve A represents a 50% satisfying ratio with selection occurring at bit 6.� Curve B represents a 25% satisfying ratio with selection occurring at bit 5 and 6. (We needtwo distinguishing bits to trim the satisfying ratio down to 25%).� Curve C represents a 50% satisfying ratio with selection occurring at bit 4.� Curve D represents a 25% satisfying ratio with selection occurring at bit 3 and 4.It is obvious from Figure 7.17 that the less the ratio of satisfying assignments, the faster the �ndingof all satisfying assignments will be at comparable selection stages, but the speed up can nevergo beyond the theoretical best case. Intuitively, the reason for this behavior is because a smaller187
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Figure 7.17: Progress curves for di�erent ratios of satisfying assignments and selection schemes.The same coordinate system as in the previous two �gures is used here.satisfying ratio will allow more loops to be killed by the monitor and can decrease the crowdednessof the cellular automata space. This will facilitate loop growth and exploration, thus speeding upthe process. Again, the crowdedness of the cellular automata space should be the controlling factorof the e�ciency of the method in �nding all satisfying SAT sequences.To better understand how the crowdedness of the cellular automata space correlates with thespeed of the method, we must have a quantitative measurement of the crowdedness. The crowdingfactor for a loop is de�ned to be four minus the number of directions the loop can still grow. Fora loop alone in the cellular automata space, its crowding factor is 4� 4 = 0, i.e., it is not crowdedat all. For a loop which is fully surrounded by other loops, its crowding factor becomes 4� 0 = 4,which is also the maximum value of the crowding factor. The average value of crowding factors ofall loops in the cellular automata space during each iteration is taken as the crowdedness of thespace as a whole.With the new measurement of the crowdedness of the space, the corresponding crowdednesscurves for solving the same four 6 variable SAT problems of Figure 7.15 are shown in Figure 7.18,these are for the best case, worse case, 50% selection at the 6th bit, and 50% selection at the 5thbit, respectively.� Curve A for the best case has a pulse-like pattern since only one loop is kept during eachgeneration. Whenever a replication cycle is completed one of the two loops in the cellularautomata space is identi�ed by the monitors as unsatisfying and is removed, so the average188
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Figure 7.18: The crowdedness curve for di�erent selection schemes. These selection schemesare controlled via four manually designed predicates for the four 6 variable SAT problems. Ver-tical axis shows the average crowdedness of the cellular automata space during the simulation.Horizontal axis is still the iteration steps calibrated to generations.crowding factor of the space is jumping between 0 and 1.� Curve B for the worse case climbs rapidly to a crowding factor around 3 and then stays there.This high crowdedness prevents further exploration. The whole cellular automata space is ata standstill; nothing ever changes afterward.� Curve C represents the crowdedness for a case with a 50% ratio of satisfying assignments andthat selection occurs only at the last (6th) bit. We can see that initially the curve shoots uprapidly like curve B does until it is almost impossible to continue due to overcrowding, thena sudden drop of the crowdedness occurs due to the selection process done by monitors forbit 6. It then 
uctuates between the crowding factor of 1.25 and 2.3 for a long time. This isthe time when inner loops get the chance to expand, but slowly.� Curve D, for a case with 50% ratio of satisfying assignments and selection at the 5th bit,behaves similarly to curve C. But its drop of crowdedness occurs one generation earlier thancurve C. Since selection occurs when the crowdedness value is lower, the drop of the crowded-ness curve is deeper, too. Before the curve is able to climb back to a higher value all satisfyingassignments have been found, therefore the curve does not 
uctuate.189
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Figure 7.19: The crowdedness curve and the progress curve for two di�erent 6 variable SATproblems. One with a 50% ratio of satisfying assignments, the other with a 25% ratio. Verticalaxis shows either the average generation index (for Curve A and C), or the average crowdingfactor (for Curve B and D), of the cellular automata space. Horizontal axis shows the iterationsteps calibrated to generations.For more comparisons the crowdedness curve and the progress curve are plotted together fortwo additional cases. One has a 50% satisfying assignment ratio with selection at the 5th bit, andthe other has a 25% assignment ratio with selections at the 5th and 6th bit. See Figure 7.19.It is obvious that the 25% curve and the 50% curve behave similarly in the beginning and the�rst drop of crowdedness since they both have their �rst selection occurring at bit 5. But the 25%curve has one more major drop of the crowding factor, which helps to ease o� the congestion ofthe cellular automata space, therefore also helps with the speed. As such, the 25% case is able to�nish earlier accordingly.Our last example is about the long term behavior of the method. In this example, two 9-bitSAT problems are solved using 5 by 5 loops. The satisfying assignment ratio is controlled to be 1=8,with selections occurring at bit 7, 8, 9 for the �rst problem, and bit 3, 6, 9 for the second problem.The progress curve and crowdedness curve for the two cases are summarized in Figure 7.20. Wecan clearly see that early selections in the second case can greatly help in lowering the cellularautomata space crowdedness and can therefore make self-replicating loops proceed faster in �ndingall satisfying assignments.Based on all these observations we can draw the following conclusions. To e�ciently �nd allsatisfying assignments for a SAT problem, the cellular automata space cannot become too crowded.The average crowding factor must be kept under 2 to avoid slowdown of the search process. If the190
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Figure 7.20: Behaviors of solving two 9 variable SAT problems with di�erent selection schemes.The same coordinates of the previous �gure are used in this example. Curve A and C showthe average generation index of the cellular automata space; Curve B and D show the averagecrowdedness.average crowding factor reaches 3 it can halt the whole exploration process, making �nding of allsatisfying assignments impossible. Since the average crowding factor is climbing rapidly during eachgeneration, it must be brought down at least once in three generations if it has to be below 2. Sincethe satisfying assignment ratio for a SAT problem is closely related to how many times selectionsare made by the monitors, for an x-bit SAT problem this roughly amounts to a 12x=3 assignmentratio. This can be seen as the upper bound on satisfying assignment ratio for any particular SATproblem if we hope to e�ciently solve the problem by self-replicating loops.In Table 7.2 the corresponding satisfying ratio bounds for same entries of Table 7.1 are listed.The last question is whether these bounds are reasonable for the SAT problem. Of course, it isharder to �nd all satisfying boolean sequences for a particular SAT predicate than to �nd just afew. If we only want to determine whether a SAT predicate is satis�able, this method can tell usthe answer in fewer number of iteration steps and within a predetermined cellular automata spacesize, regardless of whether this method can �nd all satisfying assignments eventually. The reasonfor this conclusion is the following. For the best case of SAT problems, where there is only oneloop left in the cellular automata space during each generation: if there is a loop left in the cellularautomata space at the end, we know that the SAT problem being solved is satis�able. For theworse case of SAT problems where all loops are crowding together in the cellular automata spacewhich prevents the exploration of all satisfying assignments, we still have at least those peripheralloops to prove that the SAT problem is satis�able. Note that eventually, loops in the periphery will191



loop total maximum solvable max.size cells SAT bits satisfying ration 4(n� 1) x = 3n� 6 1=(2x=3)3 8 3 50.000000%4 12 6 25.000000%5 16 9 12.500000%6 20 12 6.250000%7 24 15 3.125000%8 28 18 1.562500%9 32 21 0.781250%10 36 24 0.390625%11 40 27 0.195313%12 44 30 0.097656%13 48 33 0.048828%14 52 36 0.024414%15 56 39 0.012207%16 60 42 0.006104%17 64 45 0.003052%18 68 48 0.001526%19 72 51 0.000763%20 76 54 0.000381%21 80 57 0.000191%22 84 60 0.000095%Table 7.2: Maximum satis�ability for di�erent SAT problems which self-replicatingloops can e�ectively solve.all carry a fully explored bit sequence since there is nothing there to prevent them from continuousreplication, unless they have fully explored their SAT bits. If these peripheral loops survive theattack of monitors, their bit sequences must be satisfying assignments. Therefore, if we cannot�nd all satisfying assignments of a given predicate by this method, that alone has proved that thepredicate is satis�able since loops in the periphery are always fully explored and satisfying.We know that generally for a SAT problem to be hard it must have a very small satisfyingassignment ratio, otherwise other methods like random testing for arbitrary values should havesolved it already, and it will not be hard. Therefore, these satisfying ratio bounds are believed tobe reasonable. Actually, we can see that the lower the satisfying ratio, the harder the SAT problemwill be if solved by traditional methods, and the better the self-replicating loop method can performto �nd all satisfying boolean assignments.All selection schemes in this section are designed and controlled in a particular manner in orderto see how they a�ect various parameters. In real life we do not know in advance what the selectionscheme will be for a particular SAT problem. All we have will be just a predicate for satis�abilitytesting. Even so, the e�ciency of �nding all satisfying assignments may still be improved by doingone or more of the following preparations before we start to breed our self-replicating loops:� First, do early random tests to determine the satisfying assignment ratio of the predicatein question. If a high satisfying ratio is found with random testing, the predicate is easily192



satis�able, and the self-replicating loop method should not be used.� Rearrange clauses and bits in a way such that the most referenced bits will be the earliest tobe explored.� Change some of the unexplored binary code A's to B's. This will change the explorationsequences among the parent and child loops, which may help a bit in spreading out loops.� For a big SAT problem more than one seed loops can be started at widespread locations ofthe cellular automata space. Each of those loops carries a partially explored bit sequencewhere explored bits can be in random positions of the sequence. This also helps to spreadout loops. By adding more initial loops the searching process can also be speeded up, too.7.5 DiscussionIn this chapter it is shown that a controlled evolution in cellular automata space is possible. Herethe self-replicating loop is used to carry SAT codes, the potential assignments to the variables of aSAT predicate. The evolution of the loops is controlled in such a manner such that the replicationprocess of the loops will carry out the enumeration of all possible SAT assignments.A selection process like competition among loops in the cellular automata space is then im-plemented by rules. Those loops which do not survive the environment pressure (imposed by themonitors) will die, leaving only those loops which carry satisfying SAT codes to the SAT predicate.This is the �rst demonstration that self-replicating structures can be used to solve problems as wellas replicate.With this new methodology, a new series of cellular automata models can be built, where self-replicating structures can be used to solve computationally expensive practical problems while theyare going through the arti�cial evolution and selection. The codes that self-replicating loops cancarry are not limited to only binary bits as in the examples of this chapter; it can be any arbitrarycode.The eventual goal will be to get autonomous and evolving self-replicating agents in the cellularautomata space. Those self-replicating structures can make meaningful adjustments, given thehardships and changes of their environment, and produce intelligent solutions. Those environmentalhardships and the solutions those self-replicating agents come up with, if mapped properly to aproblem domain, can potentially solve many of our real world questions.7.6 The cellular automata rule listing// *****************************************************************// *****************************************************************// SAT Problem Solving Self-Replicating Rules// written by Hui-Hsien Chou// *****************************************************************// *****************************************************************//// *****************************************************************193



// *********** The SAT Predicate Encoding Section ***************// *****************************************************************// A SAT predicate is encoded using the following four arrays, pos1[]// pos2[], code1[], and code2[]. The position arrays listed the// index of the variables in a SAT predicate, and the code arrays// listed the expected boolean values of the variable. For example,// as set in the following arrays, the predicate//// (x 1 and not x 3) or (not x 1 and x 2) or (not x 2 and x 3)//// are encoded.// This variable denotes the number of SAT clauses.int noclauses = 3;// First condition position for each clause. The number is the index// of the binary bit within each SAT sequence.int pos1[] = f 0, 1, 1, 2g;// First condition listing for each clause.int code1[] = f 0, '1:code', '0:code', '0:code'g;// Second condition position for each clause. The number is the index// of the binary bit within each SAT sequence.int pos2[] = f 0, 3, 2, 3g;// Second condition listing for each clause.int code2[] = f 0, '0:code', '1:code', '1:code'g;// *****************************************************************// ***************** Default Rules *******************// *****************************************************************// The default action is to maintain no change if none of the rule// changes the next state value for each �eld. Therefore, the current// value is copied over to the next state for each �eld.default code=code;default pos=pos;default direc=direc;default clause=clause;default special=special;default color=color;// *****************************************************************// ********* Direction to Neighbor Position Conversion *************// *****************************************************************// This function maps a directional pointer in the 'direc' �eld to// a neighbor position.nbr PointTo(int x)rot if (x=='<:direc') return ea:; 194



else return ce:;// *****************************************************************// ***************** Virus Broadcasting Rules **********************// *****************************************************************// If there is no virus in a cell, thus clause==0, then copy the virus// value from either the north or west neighbor, if any of them exists,// then modify the value by one modulo the total number of the clauses.// This modi�ed virus value is then stored in the cell.if (clause==0)if (no:clause)clause=no:clause%noclauses+1;else if (we:clause)clause=we:clause%noclauses+1;// *****************************************************************// ************ The SAT Rules for Setting Flags ********************// *****************************************************************// If special is set at any of the destruction 
ags, reset it.if (special=='#' jj special=='!')special='.';// If current cell is bound (thus direc!=0) and there is a destruction// 
ag nearby, set the destruction 
ag in the current cell.else rot if (direc && no:special=='#')special='#';// This rule retracts the replicating arm once a collision is found// (thus the ' !' 
ag is set). It will copy the retraction 
ag// until the end of the corner (judged by we:direc=='<') is reached,// where the retraction 
ag is converted to the arm extrusion// 
ag '*'.else rot if (no:direc=='<,1' && no:special=='!')if (we:direc=='<')special='*';elsespecial=' !';// This rule determines ifelse rot if (code && direc=='<,2' && (special=='.' jj special=='?') &&(ea:code=='D' jj we:code=='D'))special='+';// The arm extrusion failure checking. A failed attempt at new arm// extrusion will result in 
ag '*' being set in the corner, which// allows further attemps at the other direction later.else rot if (code=='F' && direc=='<,1' && no:direc==0 && we:code=='o')special='*'; 195



// This rule resets 
ag '+' to '-' after seeing L.else if (special=='+' && code=='L')special='-';// Code E will always clear the special �eld.else if (code=='E')special='.';// This rule resets the special 
ags '+' or '-' to either quiescent// state or 
ag '*', depending the conditionelse if (special=='+' jj special=='-') fif (PointTo(direc):code=='o')special='.';else if (code=='A' jj code=='B')special='*';// The virus checking codes. If a SAT bit is on the current cell (thus// pos!=0)...g else if (pos) f// see if it violates the �rst variable expectation of the virusif (special=='.' && pos==pos1[clause] && code==code1[clause])special='?'; // yes, set the alarm 
ag ?// if alarm 
ag has been set, see if it violates the second// variable expectation. If both are violated, set the destruction// 
ag '#' to infect the loop. Otherwise, reset to normal, the// loop is not infected.else if (special=='?' && pos==pos2[clause])if (code==code2[clause])special='#';elsespecial='.';g// *****************************************************************// *************** Rules for Bound Cells *****************// *****************************************************************if (direc) f// if any of the destruction 
ag is set, reset everything to 0if (special=='#' jj special=='!') fdirec=0; code=0; pos=0; color=0;// do checking for real codes onlyg else if (code)// if D sees a '+' 
ag nearby, it disappearsif (code=='D') frot if (ea:special=='+') fcode='.'; 196



direc='.';color=0;g// if the closing of loop is detected, set Code Dg else rot if (direc=='<,2' && nw:direc=='<,1' && nw:code &&ne:direc=='<,3' && ne:code) fcode='D';pos=0;// the rule to close the loop in the child loopg else if (PointTo(direc):code=='D') frot if (direc=='<,2') fdirec='<,3';code=no:code;g// the rule to generate the EF sequence seeing 
ag '*'g else if (code!='o' && PointTo(direc):code=='o' &&code!='E' && special=='*') fcode='E';pos='0';g else if (code=='E')code='F';// the rule to prevent signal E getting copied beyound cornerelse rot if (direc=='<' && ea:code=='E' && ea:direc=='<,1'&& se:code=='F') fcode='o';pos='0';// same rule to prevent signal F getting copied beyound cornerg else if (code=='o' && PointTo(direc):code=='F')code='o';// rules to explore binary bit A or B to 0 or 1 when seeing '+'else if (PointTo(direc):special=='+') fif (PointTo(direc):code=='A')code='0';else if (PointTo(direc):code=='B')code='1';elsecode=PointTo(direc):code;pos=PointTo(direc):pos;// rules to explore binary bit A or B to 1 or 0 when seeing '+'g else if (PointTo(direc):special=='-') fif (PointTo(direc):code=='A')code='1';else if (PointTo(direc):code=='B')code='0'; 197



elsecode=PointTo(direc):code;pos=PointTo(direc):pos;// normal copying rules for signal 
ow in the loopg else fcode=PointTo(direc):code;pos=PointTo(direc):pos;g// quiescent state changes to 'o' when seeing signal Gelse if (PointTo(direc):code=='G')code='o';// *****************************************************************// *************** Rules for Unbound Cells *****************// *****************************************************************g else f// quiescent state changes to 'o' when seeing signal Grot if (no:code=='G' && (no:special==0 jj no:special=='?')&& no:direc=='<,3' && ne:direc!='<,2') fdirec='<,3';// check to see if collision occursif (so:direc==0 jj so:color==no:color) f// no collisioncode='o';color=no:color;g else // yes, collision, setspecial=' !'; // 
ag ' !' to retract arm// EF sequence extruding a new branchg else rot if (so:code=='E' && so:direc=='<,1' &&(so:special==0 jj so:special=='?') && no:direc==0) fdirec='<,1';code='G';color='^';// The rule to set turn the signal 
owing direction// when seeing signal Lg else rot if (no:code=='L' && (no:special==0 jj no:special=='?')&& no:direc=='<' && nw:direc==0) fdirec='<,3';if (so:direc==0 jj so:color==no:color)color=no:color;elsespecial=' !';gg 198



Chapter 8ConclusionCellular automata are massively parallel systems where only strictly local interactions are allowed[von Neumann, 1966; Codd, 1968]. Such a model of parallel computation has the beauty of regu-larity since all of the \cells" are running the same rule set. It also has the beauty of being scalablesince we can build bigger and bigger cellular automata spaces just by adding more processing cellsto the periphery of the current space. Assuming that cellular automata simulation chips can bebuilt in quantity, we can easily make up our cellular automata space by connecting those chips ina grid-like manner, with local connections only. There are never long wiring, fan out or specialtopology problems. There is no bus congestion or scheduling problem either. Cellular automataare immune to these problems which usually occur in other parallel computer systems. All cellularautomata processing cells are running simultaneously and never need to wait for one another.Although simple in its architecture, cellular automata have been found to generate complexbehaviors even from a simple rule set. One classic example is the Game of Life rule set. It is a verysimple cellular automata rule set, yet it dictates a complex, feature-rich world of cellular automatastructures such as the block, breeder, glider, etc., each has a special characteristic and many ofwhich are moving and changing in the cellular automata space.The collective behavior of cellular automata cells can be very interesting too. Actually, mostmodern cellular automata research is focused on the collective, global behavior of the models. Thisglobal behavior can involve self-organization, self-replication, competition or evolution. In a self-replicating structure, none of its components controls or even knows about the whole process ofself-replication. It is the distributed yet collaborating behavior that leads people to refer to thiskind of self-replicating structures as arti�cial life.It has been shown in this work how self-replicating structures can be made to emerge in acellular automata space and how they can be used to solve a classic computer-theoretical hardproblem, the SAT problem. In the following sections, the �ndings and achievements of this workare summarized, and a list of some future research possibilities are discussed.8.1 Improvements on cellular automata simulation environmentsFor the purpose of studying the self-replicating cellular automata structures several softwaretools were built during the course of the research. Some of them represent signi�cant improvementsover previously available cellular automata simulation tools. The most notable one is an integratedgeneral purpose cellular automata simulation software based on a graphical user interface.199



In the past, very few general purpose cellular automata simulation tools were available to cellularautomata researchers. Either they were written with built-in restrictions suitable for speci�c tasks,limiting their usefulness for modelling other applications (e.g., Xlife for game of life simulations[Bennett, 1989]), or they require special hardware devices to operate, which also limits their avail-ability to researchers [To�oli & Margolus, 1987]. Although computer speed has increased severalorders of magnitude in the past decade, to use a computer to study cellular automata phenomena,researchers generally still have to write their own simulation programs for a speci�c application andthe particular computer platform they use. When I was starting my research several years ago, Icould not �nd any applicable general purpose cellular automata simulation software which �t myneeds.This di�culty has been ameliorated by the creation of the integrated, general purpose cellularautomata simulation environment described in Chapter 4. This simulation environment allowsarbitrary neighborhood templates and data �elds to be de�ned by the user via an easy-to-usegraphical user interface. It takes care of simulation details and also provides for backtracking withthe simulations. The backtracking functionality is the only one avaliable in any cellular automatasimulation environment that the author knows about.Another major improvement made in this research over previous cellular automata simulationtools is the creation of a high level cellular automata rule set programming language, Trend.Cellular automata rule set de�nition in the past has always been laborious and nonintuitive.Researchers sometimes build the rule set transition functions into their own cellular automatasimulation software. Usually, a table is used to represent the rule set transition functions, andthe simulation program reads in the table to control the simulation. Either way, rule developmentis in
exible and inconvenient. A table-like rule set also does not convey to the reader the highlevel meanings and purposes of the cellular automata rules. In addition, the describable cellularautomata rule set complexity is limited by the table size, which in turn is limited by the availablecomputer memory. Altogether, using a table lookup method would have been impractical for theresearch presented in this work.The high level cellular automata programming language developed in this work addresses all ofthe problems mentioned above. The Trend language is a high level language very similar to thepopular C programming language, so researchers can easily translate their ideas into rules withthis language without worrying about the formating details of the rule table or its size. Readers ofa cellular automata rule set expressed in the Trend language can easily understand the semanticsof the rules. The Trend compiler automatically converts the rule set into low level code for actualsimulation evaluations, so performance is not compromised by the ease of use. Actually, the additionof invariant skipping and caching mechanisms on top of rule set evaluation makes the simulationeven more e�cient than traditional table lookup cellular automata simulators without these twoadditional mechanisms.The most signi�cant bene�t of the new cellular automata simulation environment and the highlevel Trend programming language is that they now allow much more complex cellular automatamodels to be de�ned and simulated by computers. To gain an idea about how the envelope ofcellular automata modelling complexity has been expanded by the new software tools, some previoussoftware tools for cellular automata simulation and their capabilities are listed below for comparison.This list is not meant to be complete and thorough; it just serves the purpose of giving the readeran idea about how things have been dramatically improved by the new tools.� XLife. Game of life simulation. Fixed Moore neighborhood (9 neighbors). One bit �eld depth200



(alive or dead). Cannot change the rule set or the �eld depth without reprogramming thecode [Bennett, 1989].� CAM-61. General purpose cellular automata simulator with dedicated hardware accelerator.Several neighborhoods to choose from but all are limited within the 3 by 3 grid of the Mooreneighborhood. Four bit planes provide a total of 16 states in each cell. Some limitations onhow the bit planes can see each other. The middle level Forth programming language is usedto describe cellular automata rules, which is compiled into tables stored in the CAM-6 forsimulations [To�oli & Margolus, 1987].� xca. Self-replicating loops simulation. Two neighborhoods, Moore and von Neumann, tochoose from. Ten states in each cell maximum. Rules are de�ned in tables [Reggia et al.,1992].And, by comparison:� Trend. General purpose cellular automata simulator with no special hardware requirement.Portable to all major computer platforms. Neighborhood template limited only by a 11 by 11grid but even this could be expanded by reprogramming. A total of 64 bit planes provides upto 264 states in each cell. Bit planes division into di�erent data �elds provides great 
exibility.High level programming language interface for rule set programming.8.2 Discovery of a cellular automata rule set for emergent self-replicating structuresWith the help of the improved cellular automata simulation tools, an emergent self-replicationrule set, which allows a randomly initialized cellular automata space to generate self-replicatingstructures, was discovered. This is the �rst rule set reported for emergent self-replication in acellular automata space. It is also an important demonstration of the self-organization potential ofthe cellular automata models.Self-organization is one important aspect of what makes living things di�erent from non-livingmachineries. Although we can build very complex machines today, none of them can be built bythe self-organization of component parts into place, nor can any man-made machines self-replicate.On the contrary, living things can generally direct the replication and construction of themselves.The theoretical study of self-organization as evidenced in the self-replicating behavior sheds lighton how we may build more autonomous, self-replicating and self-repairing machines or computerprograms in the future.The emergent self-replication cellular automata rule set employs a general purpose self-replicationrule set which leads to progressively more diverse and more powerful self-replicating structures. Inthe past, each individual self-replicating structure developed needed its own supporting rule setto work. It was di�cult for di�erent self-replicating structures to co-exist in the same cellularautomata space due to rule set di�erences, not to mention to have them cooperate or competein the same space. Now, with this new emergent self-replication rule set, structures ranging from1CAM-7 and CAM-8 are supposed to be better than CAM-6, but technical speci�cations are not yet available tothe author. 201



only 2 by 2 cells to that of the size of the cellular automata space can be supported by the same,general purpose set of rules. This is a very signi�cant step forward for self-replication studies inparticular and self-organization studies in general. The general purpose self-replication rule setmakes only limited assumptions about the shape of self-replicating structures and only prescribeshow self-replicating steps can be performed in a shape and size independent manner. This kind ofextraction of function, independent of cellular automata structure size and shape context, is a veryimportant step toward building more complex and general cellular automata structures and rulesets.In addition, the emergent self-replication rule set demonstrates how a bootstrapping process canbe implemented among cellular automata structures so that smaller loops can gradually generatelarger and more complex loops. This feature, combined with the characteristic code carryingmechanism described in the following section, makes a fully evolvable cellular automata universe astep closer to reality.8.3 Evolution and selection with self-replicating loopsThe other major research e�ort of this work was to make the self-replicating loop carryingcode in addition to its own self-replicating code. This allows other functions to be built into theself-replication process of the loops. In the past, the sole function of self-replicating structures hasbeen to replicate themselves. There has never been an attempt to also add a purpose to theirself-replication. This work presents the �rst attempt to encode additional information into the self-replicating structures, speci�cally, information that represents boolean assignments to the variablesof a SAT predicate.With the loop now carrying this additional code, meaningful evolution and selection becomespossible in the cellular automata space. Self-replicating loops no longer die simply because of spacelimitations, but because of the unsatis�ed predicate assignments they carry. In other words, theselection phenomenon is geared around �nding satisfying boolean assignments to a SAT predicate,and the self-replicating loops evolve to generate di�erent assignments to a SAT predicate. Onlythose which carry satisfying assignments will survive the selection process.The ability to add problem-speci�c code to the self-replicating loop body and the selectionmechanism built into the cellular automata space suddenly make the self-replication phenomenapotentially useful to us. In addition to the theoretical interest of studying self-replication andself-organization modelled within cellular automata space, we can now also study solving somepractical problems by the self-replicating loops.Combining the application code carrying, arti�cial selection self-replication rule set togetherwith the general purpose self-replicating and growing features of the emergent self-replication ruleset, a new level of cellular automata implementation is near achievement. Now arti�cial self-replicating structures can not only breed and grow, but can also evolve and compete, and theire�ort in striving to survive in their universe may at the same time ultimately be helpful in solvingreal world problems.
202



8.4 Future prospectsThe current primary limitation of the new general purpose cellular automata simulation en-vironment is speed. The simulation environment currently runs on sequential computers. Eventhough the simulator is not slow compared to other, less 
exible simulation software under similarresource limitations and when they are implementing similar cellular automata models, the newsimulator can be slow when simulating the much more expanded and complex cellular automatamodels now made possible by its extended abilities. Therefore, when larger and even more complexcellular automata spaces and rule sets are developed, it will be necessary to port this simulationenvironment to a more powerful, perhaps massively parallel computer. Thanks to the hardwaretransparency the simulation environment provides to the user, all Trend language programs willbe executable no matter whether the simulator is running on a sequential computer or a parallelsupercomputer.Similar applications for self-replicating loops can be studied further. Instead of carrying justbinary codes 0 and 1 as when solving the SAT problem, we can let the loop carry more powerfuland more complex codes. When loops are allowed to evolve and change based on the �tness of thecomplex code sequence they carry, much more complex cellular automata behaviors are expected.This is a new approach toward arti�cial life and one that will generate more interesting results inthe future.Another possible direction of research may be to build a new cellular automata rule set withmany functioning units, such as the ability to sense, to search, to communicate and to makeboolean decisions. These new units, when combined with the current functions of signal passing,turning, growing and replication in the self-replicating rule set, could potentially create a cellularautomata universe so feature rich that these units may go through a phase transition process toform cooperating self-replicating structures. This has been suggested by some scientists in thecomplexity study �elds [Kau�man, 1993].The shape of a self-replicating structure can be changed to some other form to better utilizethe available cellular automata space. Currently, the most popular self-replicating structure shapeis the rectangle loop shape. This shape is not very economical since quiescent cells within the loopare not used for any purpose. We can try to change the loops to some other forms, probably a solidrectangle, to improve the cell utilization density of the self-replicating structures.We can also try to allow self-replicating structures to merge, cooperate and communicate witheach other. This may lead to the discovery of the �rst multi-cellular self-replicating structures inthe future.
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