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This dissertation deals with various newly emerging topics in the context of cooper-

ative networking. The first part is about the cognitive radio. To guarantee the performance

of high priority users, it is important to know the activity of the high priority communi-

cation system but the knowledge is usually imperfect due to randomness in the observed

signal. In such a context, the stability property of cognitive radio systems in the presence

of sensing errors is studied. General guidelines on controlling the operating point of the

sensing device over its receiver operating characteristics are also given. We then consider

the hybrid of different modes of operation for cognitive radio systems with time-varying

connectivity. The random connectivity gives additional chances that can be utilized by

the low priority communication system.

The second part of this dissertation is about the random access. We are specifically

interested in the scenario when the nodes are harvesting energy from the environment.

For such a system, we accurately assess the effect of limited, but renewable, energy avail-

ability on the stability region. The effect of finite capacity batteries is also studied. We



next consider the exploitation of diversity amongst users under random access frame-

work. That is, each user adapts its transmission probability based on the local channel

state information in a decentralized manner. The impact of imperfect channel state infor-

mation on the stability region is investigated. Furthermore, it is compared to the class of

stationary scheduling policies that make centralized decisions based on the channel state

feedback.

The backpressure policy for cross-layer control of wireless multi-hop networks is

known to be throughput-optimal for i.i.d. arrivals. The third part of this dissertation

is about the backpressure-based control for networks with time-correlated arrivals that

may exhibit long-range dependency. It is shown that the original backpressure policy is

still throughput-optimal but with increased average network delay. The case when the

arrival rate vector is possibly outside the stability region is also studied by augmenting

the backpressure policy with the flow control mechanism.

Lastly, the problem of neighbor discovery in a wireless sensor network is dealt. We

first introduce the realistic effect of physical layer considerations in the evaluation of the

performance of logical discovery algorithms by incorporating physical layer parameters.

Secondly, given the lack of knowledge of the number of neighbors along with the lack

of knowledge of the individual signal parameters, we adopt the viewpoint of random

set theory to the problem of detecting the transmitting neighbors. Random set theory is

a generalization of standard probability theory by assigning sets, rather than values, to

random outcomes and it has been applied to multi-user detection problem when the set of

transmitters are unknown and dynamically changing.
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Chapter 1

Introduction

1.1 Motivation

The cognitive radio, a means of opening up licensed bands to unlicensed users,

has the potential to become a solution to the current spectrum underutilization prob-

lem [1–4]. Exploiting renewable energy resources from the environment, often termed

energy harvesting, permits unattended operation of infrastructureless distributed wireless

networks [5–7]. The diversity amongst users due to constructive/destructive effect of mul-

tipath signal propagation can be exploited to increase the data rate [8]. The cross-layer

approach can significantly leverage the overall network performance when compared to

the conventional layered approach [9]. The wireless sensor networks have great versa-

tility in civilian/military applications such as environmental monitoring and target detec-

tion/tracking in a cost-effective manner [10]. This dissertation deals with such newly

emerging topics in wireless communications and networking.

There is an increasing demand for variety of wireless devices and applications for

our daily lives, but the usable electromagnetic radio spectrum is of limited physical ex-

tend. Recent studies on the spectrum usage have revealed that substantial portion of the

licensed spectrum is underutilized, which arouses a pressing need for developing a new

technique for improved spectrum utilization [1]. The cognitive radio communication is

a promising solution to the spectrum underutilization problem [2–4]. The high-priority
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user, often called as the primary (or licensed), is allowed to access the spectrum whenever

it needs, while the low-priority user, called as the secondary, is required to make a deci-

sion on its transmission based on what the primary user does. Thus, knowing the activity

of the primary user is an important part of operating the cognitive radio systems. In real-

ity, such knowledge is acquired through a certain decision process at the secondary user,

which is subject to errors. In such a context, we study the effect of practical spectrum

sensing on the stability of cognitive radio systems. Furthermore, the problem of control-

ling the operating point of the sensing device over its receiver operating characteristic is

dealt.

On the other hand, there have been different communication models proposed for

cognitive radio, which are broadly classified into overlay, underlay, and interweave modes

[11]. The overlay approach allows concurrent primary and secondary transmissions, but

the secondary users are required to use part of their power to assist primary transmis-

sions and the remainder of the power for its own communication. The enabling premise

is that the secondary user knows the primary message non-casually, which makes the

implementation of the overlay mode practically challenging. The underlay mode also al-

lows concurrent primary and secondary transmissions, but the primary communication is

protected via regulating the power of the secondary user such that the induced amount

of interference at the primary destination is kept below the acceptable noise floor. In

both the underlay and overlay modes, concurrent primary and secondary user operation

is invariably associated with interference at the primary destination, which is not desired.

The interweave approach is based on the idea of opportunistic communication exploiting

the idleness of the primary user. In this thesis, the hybrid of interweave and underlay
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modes of operation for cognitive radio systems with time-varying connectivity is con-

sidered. Note that the random connectivity of links gives additional chances that can be

utilized by the secondary communication system. That is, although the primary system is

active, the secondary system can operate in the interweave mode when the link between

the secondary transmitter and the primary receiver is disconnected.

The ALOHA protocol, the simple scheme of attempting transmission randomly, in-

dependently, distributively, and based on simple ACK/NACK feedback from the receiver,

has gained continued popularity since its creation by Abramson [12, 13]. It is especially

suitable for distributed multi-access communication systems due to its simplicity and the

independence of the centralized controller. It also serves as a cornerstone benchmark

for assessment of performance of more elaborate schemes. On the other hand, exploit-

ing renewable energy resources such as thermal, vibration, solar, acoustic, wind, and

even ambient radio power allows unattended operation of infrastructureless distributed

wireless networks [5–7]. Despite the rapid advancement of hardware technologies, the

study of communication systems comprised of nodes that have energy harvesting capa-

bility are still in a very early stage. Note that when dealing with nodes equipped with

non-rechargeable batteries, the common objectives were usually short-term such as maxi-

mizing the finite network lifetime [14,15]. The functionality of harvesting energy permits

our assessment of the system long-term performance such as throughput, fairness and sta-

bility. In such a context, we revisit the canonical problem of the random access stability

when nodes are powered by batteries recharging from randomly time-varying renewable

energy sources.

Increasing demand for high data rate to support a wide range of services in wireless
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data networks has led to the exploitation of diversity amongst users [8]. The diversity

gain arises from the fact that wireless links experience random fading due to the con-

structive/destructive effect of multipath signal propagation and, thereby, there is always

a user having better channel quality than the others at any time [16]. A downlink sched-

uler exploiting such diversity gain is called the opportunistic scheduler [17–19]. Similar

concept can be applied to the uplink communication but it is needed to have a central-

ized controller gathering channel state information (CSI) from distributed users, making

a centralized decision, and distributing the decision information back to the distributed

users. There is a recent line of work on exploiting CSI under random access framework,

which is called channel-aware random access (CARA) [20–23]. The CARA allows the

distributed nodes to adjust their random access probability based on the local CSI. How-

ever, most of the previous work on CARA was performed based on the ideal assumption

that the perfect local CSI is available at each user [20–23]. In reality, however, the CSI is

imperfect due to randomness in the observed signal and the performance of CARA would

highly depend on the accuracy of CSI. In such a context, the performance of CARA in

the presence of channel estimation errors is studied and the impact of imperfect CSI on

the achieved stability region is identified.

In [24], the problem of optimal control for general wireless multi-hop networks was

studied and a maximum throughput policy that supports the entire stability region was

proposed, although the region is unknown a priori. The maximum throughput policy is

comprised of two parts: maximum differential backlog routing and max-weight schedul-

ing. Since the policy selects paths dynamically according to the differential backlog be-

tween neighboring nodes (rather than requiring them to be specified in advance), it is often
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referred to as the backpressure policy. After the original work of [24], there has been a lot

of effort on its generalization and extension [25–32]. A notable achievement concerned

the case where the arrival rate vector is possibly outside the stability region [26,27]. This

was accomplished by augmenting the backpressure policy with the flow control mecha-

nism that is designed to maximize the network utility [9,33–36]. Despite the significance

of the original work and its extensions, one weakness might be the fact that they were

derived under the assumption that the number of packet arrivals at each node is inde-

pendent and identically distributed (i.i.d.) over time slots. Several measurement-based

studies have revealed that scale-invariant burstiness, often called as self-similarity, exists

in local/wide-area network and Internet traffic [37–39]. Possible explanation includes

heavy-tailed file size distribution, human interactions, and protocol-level dynamics. It

was also shown that the variable-bit-rate video traffic is long-range dependent [40]. Self-

similarity and long-range dependence are two distinct concepts and, hence, one does not

necessarily imply the other. However, when both are viewed at the asymptotically large

scale, they are identical [41]. In such a context, we revisit the backpressure-based stochas-

tic control for wireless multi-hop networks with time-correlated arrivals. Specifically, the

considered arrival process is fairly general in the sense that it may exhibit short/long-range

dependence depending on the asymptotic shape of the autocorrelation function.

In a wireless sensor network, a large number of sensors are randomly deployed over

the region of interest and, presumably, neighbor discovery is the first and foremost process

to run after the deployment to form a network whose connectivity greatly affects the per-

formance of subsequent network operations over the entire life span [42]. The challenge

is compounded by the fact that neighbor discovery has to be done without any a priori
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knowledge on the random deployment or any communication infrastructures. The prob-

lem of neighbor discovery is considered in this thesis by incorporating the physical layer

parameters in contrast to the most of the previous work [42–45]. In [42], which assumed

a collision channel. Specifically, the pilot signals that nodes transmit are successfully

decoded if the strength of the received signal relative to the interference is sufficiently

high. Thus, each node must extract signal parameter information from the superposition

of an unknown number of received signals. This problem falls naturally in the purview

of random set theory (RST) which generalizes standard probability theory by assigning

sets, rather than values, to random outcomes [46]. First, we introduce the realistic effect

of physical layer considerations in the evaluation of the performance of logical discov-

ery algorithms; such an introduction is necessary for the accurate assessment of how an

algorithm performs. Secondly, given the double uncertainty of the environment (that is,

the lack of knowledge of the number of neighbors along with the lack of knowledge of

the individual signal parameters), we adopt the viewpoint of RST and demonstrate its

advantage relative to classical matched filter detection method.

1.2 Thesis Outline

This thesis is organized as follows. In Chapter 2, we explain the model for the

success of packet transmissions, revisit the notion of stability, and describe the stochastic

dominance technique used in the subsequent chapters, which is a useful tool to deal with

systems of interacting queues. Chapter 3 is about the cognitive radio systems comprised

of a set of source-destination pairs having different priorities in accessing the shared
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medium. Specifically, in Chapter 3.2, the stability property of cognitive radio systems

in the presence of sensing errors is studied. In Chapter 3.3, we consider the hybrid cog-

nitive access for systems with time-varying connectivity. Chapter 4 is about the random

access systems. The scenario when the nodes are harvesting energy from the environment

is studied in Chapter 4.2. We then move to the channel-aware random access in the pres-

ence of channel estimation errors in Chapter 4.3. Chapter 5 extends the backpressure-

based stochastic control for general wireless multi-hop networks to the case when the

arrivals are time-correlated. Specifically, in Chapter 5.3, we consider the case when the

arrival rate vector is inside the stability region, and Chapter 5.4 deals with the case when

the arrival rate vector is possibly outside the stability region. In Chapter 6, we study the

problem of neighbor discovery in a wireless sensor network. The performance of chosen

neighbor discovery algorithm is precisely analyzed in Chapter 6.4 by incorporating phys-

ical layer parameters. In Chapter 6.5, the problem of detecting the transmitting neighbors

is considered using random set theory. Finally, we draw conclusions in Chapter 7 with

summary on additional contributions and collaborations.
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Chapter 2

Stability of Constrained Queueing Systems

2.1 SINR-Based Model for Packet Transmissions

A queueing system is constrained in the sense that the services are interdependent

such as the activation of links in wireless networks. A simplistic form describing such de-

pendency might be the collision channel model, in which if more than one nodes transmit

at the same time, none of them are successful. However, it is too pessimistic in the sense

that a transmission may succeed even in the presence of interference, which is called cap-

ture effect [47–51]. Throughout this thesis, we consider interfering channels and nodes

whose transmissions are successful if the received signal-to-interference-plus-noise-ratio

(SINR) exceeds a certain threshold. This reflects the effect of fading, attenuation and

interference at the physical layer, along with the capability of multi-user detection at the

receiver [51–54]. Denote with qi|M the success probability of node i when a set M of

nodes are transmitting simultaneously. The success probability qi|M is a function of the

received SINR as

qi|M = Pr[γi|M ≥ θ] (2.1)

where γi|M denotes node i’s SINR at the receiver given set M of transmitters and θ is

the threshold for the successful decoding of the received packets, which depends on the

modulation scheme, target bit-error-rate, and the number of bits in the packet, i.e., the

transmission rate. The use of matched filters was implicitly assumed in writing Eq. (2.1)

8



for decoding the signal at the receiver, which fundamentally treats interference as white

Gaussian noise. Although techniques such as the successive interference cancellation [55]

can improve the probability of success, comparing different physical layer techniques is

outside the scope of our work here.

The SINR of the signal transmitted from node i at the receiver is described as

γi|M =
Prx,i

N +
∑

j∈M\{i} Prx,j

where M is the set of nodes transmitting simultaneously, N is the background noise

power, and Prx,i is the received signal power from node i at the receiver which is modeled

by

Prx,i = ψ2
iKr

−ν
i Ptx,i

where ψi is a Rayleigh random variable with E[ψ2
i ] = 1, K is a constant, ν is the prop-

agation loss exponent, ri is the distance between node i and the receiver, and Ptx,i is the

transmission power of node i. Let fψ2
i

be the probability density function of ψ2
i , which is

exponential with unit mean [56]. Then, the success probability of a transmission by node

i when it transmits alone is computed as

qi|{i} = Pr

[
ψ2
iKr

−ν
i Ptx,i

N
≥ θ

]
=

∫ ∞
0

Pr

[
ω ≥ θNrνi

KPtx,i

]
fψ2

i
(ω)dω

= exp

(
− θNrνi
KPtx,i

)

Similarly, the success probability of a transmission by node iwhen it transmits along with

9



the other node j is given by

qi|{i,j} = Pr

[
ψ2
iKr

−ν
i Ptx,i

N + ψ2
jKr

−ν
j Ptx,j

≥ θ

]

=

∫ ∞
0

∫ ∞
0

Pr

[
ωi ≥

θ(N + ωjKr
−ν
j Ptx,j)

Kr−νi Ptx,i

]
fψ2

i
(ωi)fψ2

j
(ωj)dωidωj

=

∫ ∞
0

exp

(
−
θ(N + ωjKr

−ν
j Ptx,j)

Kr−νi Ptx,i

)
fψ2

j
(ωj)dωj

=

(
1 + θ

Ptx,j

Ptx,i

(
ri
rj

)ν)−1

exp

(
− θNrνi
KPtx,i

)

where i, j ∈ {1, 2}, j 6= i, and ψi and ψj were assumed mutually independent. Similarly,

it can be extended to the case when multiple interfering signals exist and the computation

involves multiple integrals over the fading distributions.

Note from Eq. (2.1) that, if θ < 1, it is possible for two or more signals to simul-

taneously satisfy the criterion, and if θ ≥ 1, at most one signal having the highest SINR

may satisfy the criterion. If θ goes to∞ and the noise effect is neglected, the criterion in

Eq. (2.1) is equivalent to the collision channel model, and if θ goes to 0, all transmissions

will be successful, but at the same time, the data rate also goes to 0.

2.2 Revisiting the Notion of Stability

We adopt the notion of stability used in [57] in which the stability of a queue is

equivalent to the existence of a proper limiting distribution. In other words, a queue is

said to be stable if

lim
n→∞

Pr[Qi(n) < x] = F (x) and lim
x→∞

F (x) = 1
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If a weaker condition holds, namely,

lim
x→∞

lim inf
n→∞

Pr[Qi(n) < x] = 1

the queue is said to be substable or bounded in probability. Otherwise, the queue is

unstable. A stable queue is necessarily substable, but a substable queue is stable if the

distribution tends to a limit. IfQi(n) is an aperiodic and irreducible Markov chain defined

on a countable space, substability is equivalent to the stability and it can be understood as

the recurrence of the chain. Both the positive and null recurrence imply stability because

a limiting distribution exists for both cases although the latter may be degenerate.

Loynes’ theorem plays a central role in the stability analysis [58]. It states that if

the arrival and service processes of a queue are strictly jointly stationary and the average

arrival rate is less than the average service rate, the queue is stable. If the average arrival

rate is greater than the average service rate, the queue is unstable and the value of Qi(n)

approaches infinity almost surely. If they are equal, the queue can be either stable or

substable.

2.3 Stochastic Dominance Technique

Consider two-node random access having bursty packet arrivals. Even with the

collision channel model, the stability analysis is non-trivial due to the interaction between

queues. That is, the service process of a queue depends on the status of the other and,

thus, the rates of the individual departure processes cannot be computed directly without

knowing the stationary probability of the joint queue length process. One way to bypass

this difficulty is the stochastic dominance technique for two-node systems, which was

11
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Figure 2.1: Example queue length sample path of the cognitive radio system in Chapter

3.2

introduced in [59] and further utilized to deal with such interacting queueing systems [53,

60–63]. The essence of the stochastic dominance technique is to decouple the interaction

between queues via the construction of a hypothetical system which operates as follows:

i) the packet arrivals at each node occur at exactly the same instants as in the original

system, ii) the coin tosses that determine the random access of nodes have exactly the

same outcomes in both systems, iii) however, one of the nodes in the system continues to

transmit dummy packets even when its packet queue is empty. Sending dummy packets is

only aimed to cause constant interference to the other node regardless of the emptiness of

its own queue and does not contribute to throughput. It is obvious that sample-pathwise

the queue sizes in this dominant system will never be smaller than their counterparts in
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the original system, provided the queues start with identical initial conditions, which is

depicted in Fig. 2.1. Thus, the stability condition obtained for the dominant system is

a sufficient condition for the stability of the original system. It turns out, however, that

it is indeed sufficient and necessary. The reason is this: if for some input rate vector,

the queue at the node transmitting dummy packets is unstable in the hypothetical system,

then the size of the corresponding queue approaches infinity almost surely. Note that as

long as the queue does not empty, the behavior of the hypothetical system and the original

system are identical, provided they start from the same initial conditions, since dummy

packets will never have to be used. A sample-path that goes to infinity without visiting the

empty state, which is a feasible one for a queue that is unstable, will be identical for both

the hypothetical and the original systems. Therefore, the instability of the hypothetical

system implies the instability of the original system. For more details, please refer [59].
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Chapter 3

Cognitive Radio

3.1 Background

We begin with some background study on cognitive radio. In [64], an opportunis-

tic scheduling policy for cognitive access systems was developed based on the collision

channel model. Furthermore, the activity of the primary user was modeled as a random

process which evolves independent of the secondary users. In other words, even if the pri-

mary user’s packet is lost due to the collision caused by a secondary user, the primary user

does not attempt to retransmit the lost packet; this cannot be validated in the majority of

data networks. Unless the primary user is servicing a certain loss-tolerant application, the

lost packets must be retransmitted through a medium access control (MAC) protocol such

as the automatic-repeat-request (ARQ) and those retransmissions would surely affect the

primary user’s activity. In [65], the unrealistic assumption made in the previous work [64]

mentioned above was corrected for a reduced system model consisting of a single primary

and secondary user. In such an effort, an active period that the primary user transmits suc-

cessively until it becomes idle was defined as an interval that the primary user’s packet

queue is non-empty. This is based on the assumption that the primary user transmits

whenever its queue is non-empty. Consequently, the primary user’s activity is affected

by the secondary user through the queueing dynamics because the interference caused by

concurrent transmissions lowers the service rate of the queue. For the considered model, a
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joint flow control and power allocation policy was obtained, but the derivation is based on

the assumption that the primary user is always stable. In the absence of the knowledge on

the network stability region, however, it is infeasible to judge the stability of the primary

user’s queue a priori, and the characterization of the stability region is usually not an easy

problem especially when the network nodes are interacting. In [66], the interaction be-

tween users was fully taken into account for a similar network model with that considered

in [65]. In contrast to the traditional notion of cognitive radio, in which the secondary user

is required to relinquish the channel as soon as the primary user is detected, the secondary

user is allowed to not only exploit the idle slots of the primary user but also to transmit

along with the primary user with some probability to attain full utilization of the shared

channel with capture. Such abolition of strong primacy, however, requires the secondary

user to properly control its multi-access probability in the way that it does not hamper the

stability of the primary user at any given input rate whenever it is stabilizable. In [60], the

approach in [66] was further extended to the scenario when the primary user is powered

from a randomly time-varying renewable energy source and has a battery for storing the

harvested energy. The limited energy availability imposed by the battery status results in

a reduced stability region, which is precisely quantified in the paper.

3.2 Cognitive Radio with Imperfect Sensing

3.2.1 Motivation

Most of the previous work on cognitive radio, e.g., [60, 64–66], was performed

based on the ideal assumption that the secondary user always knows the exact activity of
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Figure 3.1: The cognitive access system model with sensing at the secondary source

the primary user without an error. In reality, however, such knowledge is acquired through

a certain decision process at the secondary user, and it is partial knowledge because the oc-

currence of errors in the decision process is inevitable as long as there exists randomness

in the observed signal. In [67], the performance of the energy detector, which is popular

due to its generosity and low complexity [68], was derived in terms of the probabilities of

false alarm and miss, which are functions of the sensing duration, the sampling rate, and

the received signal-to-noise-ratio (SNR). After that, the sensing duration is optimized in

order to maximize the secondary user’s throughput at given target error probabilities, but

the primary user’s activity was abstracted as in [64] as a random process with fixed a pri-

ori probability. In [69], the approach in [67] was extended to the multi-channel scenario,

and a cooperative sensing scheduling policy was proposed to detect the activities over the

channels.

In this chapter, we focus attention on the effect of practical spectrum sensing on

which the overall performance of the cognitive access system depends. The opportunistic

cognitive access protocol proposed in [66] is considered again for the system consisting
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of a single primary and secondary source-destination pair as shown in Fig. 4.9. The

primary user transmits uninterruptedly whenever its queue is non-empty which is inde-

pendent of actions made by the secondary user. On the other hand, the transmission by

the secondary user is chosen in a careful manner that does not hamper the primary user’s

stability guarantee. The secondary user first observes the activity of the primary user

and, if it is sensed to be idle, the secondary user transmits with probability 1 if its packet

queue is non-empty. Otherwise, if the primary user is sensed to be active, the secondary

user transmits with some probability p to take advantage of the capture effect although,

at the same time, it risks impeding the primary user’s success. Our design objective is,

therefore, to optimally choose the multi-access probability p by the secondary user so as

to maximize its own stable throughput while ensuring the stability of the primary user at

given input rate demand in the presence of sensing errors at the secondary user.

Our contributions can be summarized as follows. First, we introduce a practical

model for cognitive access systems. Specifically, when compared to the previous work

that oversimplified the primary user’s activity [64, 67, 69], the primary user’s activity in

this work is precisely modeled through the queueing dynamics which is also subject to the

interference caused by the secondary user. Furthermore, the imperfect spectrum sensing,

one of the most practical aspects of cognitive access systems but generally overlooked in

most of the related previous work [60, 64–66], is also incorporated in the model. Sec-

ondly, the impact of imperfect sensing on the stability of the cognitive access systems is

precisely analyzed. The remarkable result is that there exists a condition for which we can

achieve identical stability region that is achieved with perfect sensing, which fundamen-

tally eliminates the need for the spectrum sensing itself. This is the case when relatively
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strong capture effect exists and the condition is expressed in terms of value of physical

layer parameters. For the case when the condition does not hold, we quantify the loss due

to the imperfect sensing in terms of the size of the stability region when compared against

the case when perfect sensing is performed. Finally, we study the problem of controlling

the operating point of the sensing device over its receiver operating characteristic (ROC)

and summarize some key aspects observed in the control.

3.2.2 System Model

We consider a system consisting of two source-destination pairs, the primary pair

(s1, d1) and the secondary pair (s2, d2), as shown in Fig. 4.9. Each source si, i ∈ { 1, 2 },

has an infinite size queue for storing the arriving packets of fixed length. Time is slotted

and the slot duration is equal to a packet transmission time. As illustrated in Fig. 3.2, the

primary user’s transmission consists of the preamble symbols followed by the encoded

data symbols of a packet, if the primary user transmits during time slot n. Otherwise,

if the primary user does not transmit, the entire slot is unused. It is assumed that the

secondary user knows the exact timing of the primary user’s frame and performs sensing

during the preamble symbol duration. Once the secondary user decides to transmit, it

transmits over the primary user’s data symbol duration in a synchronous manner. It is

assumed that the acknowledgments (ACKs) on the success of transmissions are sent back

from the destinations to the corresponding sources instantaneously and error-free.

Let Qi(n) denote the number of packets buffered at si at the beginning of the n-th
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Figure 3.2: Frame structure for cognitive access systems with periodic sensing

slot which evolves according to

Qi(n+ 1) = max[Qi(n)− µi(n), 0] + Ai(n)

where the stochastic processes {µi(n)}∞n=0 and {Ai(n)}∞n=0 are sequences of binary ran-

dom variables representing the number of arrivals and services at si during time slot n,

respectively. The arrival process {Ai(n)}∞n=0 is modeled as an independent and identically

distributed (i.i.d.) Bernoulli process with E[Ai(n)] = λi, and the processes at different

nodes are assumed to be independent of each other. The service process {µi(n)}∞n=0 de-

pends jointly on the transmission protocol, sensing errors, and the underlying channel

model, which governs the success of transmissions. In the considered cognitive access

protocol, s1 transmits whenever Q1(n) 6= 0, whereas s2 adapts its transmission based on

the observation made on the activity of s1. Given thatQ2(n) 6= 0, s2 transmits with proba-

bility 1 if s1 is observed to be idle. Although s1 is observed to be active, s2 transmits with

probability p to take advantage of the capture. Note that s1 can be falsely perceived to be

active by s2 when indeed it is idle or falsely perceived to be idle when it is active, which

are called false alarm and miss, and their rates are denoted by εf and εm, respectively.
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Figure 3.3: Receiver operating characteristic curves under energy detection scheme

3.2.3 Stability in the Presence of Sensing Errors

3.2.3.1 Background on the Spectrum Sensing

Spectrum sensing is the task of obtaining awareness about the existence of the pri-

mary user’s transmission over the shared channel. It is mandatory by IEEE 802.22 that

the secondary user must perform sensing before making any transmission decision over

the licensed spectrum [70]. The goal of this chapter is to point out some fundamental

aspects of the spectrum sensing. Please refer [3], [68], and references therein for more

details on various spectrum sensing techniques. Among many others, the energy detector

is the most popular because of its low computational and implementation complexity. In

addition, it is more generic as receivers do not need any a priori knowledge on the pri-

mary user’s signal waveform [68]. The output of the energy detector, which is the sum
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of the sampled received signal power, is compared to a certain threshold τ to decide the

existence of the primary user’s signal as illustrated in Fig. 4.9. The performance of a de-

tector can be specified in terms of the probability of miss εm and the probability of false

alarm εf . Let ε̄m = 1− εm and ε̄f = 1− εf , which are the probabilities of detection and

correct rejection, respectively. With phase-shift keying (PSK) modulation and circular

symmetric Gaussian noise modeling, the probability of detection with the energy detector

was derived as [67]

ε̄m = Q
(

1√
2γ + 1

(
Q−1(εf )−

√
Tsfsγ

))
(3.1)

where Q(·) is the Q-function, i.e., the tail probability of the standard Gaussian distribu-

tion, γ is the received SNR of the signal transmitted from s1 at the detector at s2, Ts

denotes the sensing time, and fs is the sampling frequency. In Fig. 3.3, the receiver op-

erating characteristic (ROC) curve, i.e., Eq. (3.1), is plotted for different received SNR

values. In general, εm and εf are in a trade-off relationship, as observed in the figure,

since one can always be made arbitrarily small at the expense of the other [71]. Specif-

ically, any point on a given curve can be attained by controlling the threshold τ for the

detection. It is assumed throughout this chapter that ε̄m > εf , which simply indicates that

the equipped detector performs better than the pure random guessing1 whose ROC curve

is the diagonal line connecting (0, 0) and (1, 1) in the figure.

1The random guessing, which completely ignores the observation, can be done by running coin tossing,

and each point on the diagonal line can be achieved by altering the probability of head.
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3.2.3.2 Main Result on the Stability Region

In this chapter, we describe the stability region of the cognitive access system in

the presence of sensing errors. This enables us to judge the stability of the system at any

given input rate vector. As noted earlier, the queues in the system are interacting, which

makes the analysis challenging. The proof of the main results described in this chapter is

presented in Chapter 3.2.4 which can be outlined as follows: we first obtained the stabil-

ity region for given multi-access probability p using the stochastic dominance technique

explained in Chapter 2.3. Since an input rate vector that is outside of the stability region

at a certain multi-access probability may be stably supported by another feasible multi-

access probability, determination of the closure of the stability region is necessary and

important. Thus, we take the closure of the stability region over all feasible values of p,

which is what is described in this chapter.

Define ∆i = qi|{i}−qi|{1,2}, i ∈ { 1, 2 }, which is the difference between the success

probabilities when si transmits alone and when it transmits along with sj (j 6= i). The

quantity ∆i is strictly positive since interference only reduces the probability of success.

Let us further define

η , q1|{1}q2|{1,2} + q2|{2}q1|{1,2} − q1|{1}q2|{2}

which can be viewed as an indicator of the degree of the capture effect. In the case of

the collision channel, for instance, it is given by qi|{i} = 1 and qi|{1,2} = 0, ∀i ∈ { 1, 2 }

and, thus, η = −1. On the contrary, in the case of the perfect orthogonal channel with

qi|{i} = qi|{1,2} = 1, ∀i ∈ { 1, 2 }, we have η = 1.

Described below is our main finding, which is a sufficient and necessary condition
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Figure 3.4: Illustration of the stability region for Case A (parameter setting: q1|{1} =

q2|{2} = 0.9, q1|{1,2} = q2|{1,2} = 0.6 with any positive values of εm and εf )

for the stability of the considered cognitive access system.

• Case A: If η ≥ 0, the stability region of the system is given by the union of the

following subregions:

RA
1 =

{
(λ1, λ2) : λ2 ≤ q2|{2} −

∆2

q1|{1,2}
λ1, 0 ≤ λ1 ≤ IA1

}
RA

2 =

{
(λ1, λ2) : λ2 ≤

q2|{1,2}

∆1

(q1|{1} − λ1), IA1 < λ1 ≤ q1|{1}

}

where IA1 = q1|{1,2}. The region is depicted in Fig. 3.4, which is a convex polygon.

The entire boundary of the region can be achieved with multi-access probability

p∗ = 1. Note that the stability region does not depend on sensing error rates.

• Case B: If −q2|{2}εf∆1 ≤ η < 0, the stability region is given by the union of the
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Figure 3.5: Illustration of the stability region for Case B (parameter setting: q1|{1} =

q2|{2} = 0.9, q1|{1,2} = q2|{1,2} = 0.4, εm = εf = 0.3)

following subregions:

RB
1 =

{
(λ1, λ2) : λ2 ≤ q2|{2} −

∆2

q1|{1,2}
λ1, 0 ≤ λ1 ≤ IB1

}
RB

2 =

{
(λ1, λ2) : λ2 ≤

(
√
−η′ −

√
q2|{2}εfλ1)2

ε̄m∆1

+
q2|{1,2}(q1|{1} − λ1)

∆1

,

IB1 < λ1 ≤ IB2

}
RB

3 =

{
(λ1, λ2) : λ2 ≤

q2|{1,2}

∆1

(q1|{1} − λ1), IB2 < λ1 ≤ q1|{1}

}

where η′ = ε̄mη − q1|{1,2}q2|{2}εf , IB1 =
q2
1|{1,2}q2|{2}εf

−η′ , and IB2 = −η′
q2|{2}εf

. Note that

η < 0 implies η′ < 0 but the converse is not true. The boundary of the subregion

RB
1 is achieved with p∗ = 1, that ofRB

2 is achieved with

p∗ =
q1|{1} − εm∆1 −

√
−η′λ1
q2|{2}εf

ε̄m∆1

(3.2)
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Figure 3.6: Illustration of the stability region for Case C (parameter setting: q1|{1} =

q2|{2} = 0.9, q1|{1,2} = q2|{1,2} = 0.3, εm = εf = 0.3)

and that of RB
3 is achieved with p∗ given by Eq. (3.2) evaluated at λ1 = IB2 . The

region is non-convex as illustrated in Fig. 3.5. This follows from the non-convexity

of the region described by RB
2 . Also, the slope of the boundary of the subregion

RB
1 is steeper than that ofRB

3 for the considered case.

• Case C: If η < −q2|{2}εf∆1, the stability region is given by the union of the fol-
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lowing subregions:

RC
1 =

{
(λ1, λ2) : λ2 ≤ q2|{2} −

∆2

q1|{1,2}
λ1, 0 ≤ λ1 ≤ IC1

}
RC

2 =

{
(λ1, λ2) : λ2 ≤

(
√
−η′ −

√
q2|{2}εfλ1)2

ε̄m∆1

+
q2|{1,2}(q1|{1} − λ1)

∆1

,

IC1 < λ1 ≤ IC2

}
RC

3 =

{
(λ1, λ2) : λ2 ≤ q2|{2}ε̄f −

q2|{2}ε̄f − q2|{1,2}εm
q1|{1} − εm∆1

λ1, I
C
2 < λ1 ≤ IC3

}
RC

4 =

{
(λ1, λ2) : λ2 ≤

q2|{1,2}

∆1

(q1|{1} − λ1), IC3 < λ1 ≤ q1|{1}

}

where IC1 =
q2
1|{1,2}q2|{2}εf

−η′ , IC2 =
q2|{2}εf (q1|{1}−εm∆1)2

−η , and IC3 = q1|{1} − εm∆1. As

in Case B, the boundary of subregion RC
1 is achieved with p∗ = 1, and that of RC

2

is achieved with p∗ given in Eq. (3.2) which diminishes from one to zero as λ1

increases from IC1 to IC2 . For the boundary of subregionsRC
3 andRC

4 , it is given by

p∗ = 0. The entire region is non-convex as in Case B.

Remark 3.2.1. Consider the case with perfect sensing whose operating point is the upper

left corner on the ROC space as shown in Fig. 3.3. By substituting εf = εm = 0 into

the descriptions of the stability region given above, we find the stability region for the

case with perfect sensing, which reconfirms the previous result obtained in [66]. For

comparison’s sake, it is also depicted in Fig. 3.4 to 3.6 along with the case of imperfect

sensing. Most importantly, it is observed from Fig. 3.4 that the stability region is not

affected by the sensing errors when η ≥ 0. This is because the boundary achieving multi-

access probability is p∗ = 1 regardless of the values of sensing error rates. In other words,

when relatively strong capture effect presents which is indicated by η, it is beneficial to

let the secondary node access the channel persistently and aggressively regardless of the
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Figure 3.7: Transition of the stability region when moving towards direction I in Fig. 3.3

from ε?f to 1 (energy detector with γ = −20dB, other parameters: q1|{1} = q2|{2} = 0.9,

q1|{1,2} = q2|{1,2} = 0.3→ ε?f = 0.5)

sensing outcome, whenever it has non-empty queue. This fundamentally eliminates the

need for sensing itself when η ≥ 0. In contrast, from Fig. 3.5 and 3.6, it is observed

that when η < 0, the system suffers from the sensing errors. The difference between the

regions, therefore, can be understood as the loss due to the imperfect sensing.

3.2.3.3 Controlling the Operating Point of the Detector

In this chapter, the problem of controlling the operating point of the sensing device

is studied. Clearly, Case A in Chapter 3.2.3.2, i.e., when η ≥ 0, is not of our concern be-

cause the stability region is not affected by sensing errors. On the other hand, when η < 0,
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Figure 3.8: Transition of the stability region when moving towards direction II in Fig. 3.3

from ε?f to 0 (identical setting with Fig. 3.7)

which includes both Case B and Case C, there arises a need for optimally choosing the

operating point of the sensing device. It is not easy, however, to find certain decisive rules

on the control from the descriptions given in Chapter 3.2.3.2, which is complicated with

sensing error rates and packet reception probabilities. Moreover, at ε?f = −η/q2|{2}∆1, the

stability region experiences a transition from Case B to Case C, and no simple relation-

ship exists between them such as one region becomes a subset of the other. Instead, we

summarize some general aspects observed by changing the operating point of the sensing

device. The results are demonstrated specifically for the case of energy detectors intro-

duced in Chapter 3.2.3.1, but the statements made in this chapter hold for any rational

detector satisfying the following mild conditions: i) its ROC curve connects the points
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Figure 3.9: Transition of the stability region when moving towards direction III in Fig.

3.3, i.e., from random guessing to ideal sensing (identical parameters with Fig. 3.7)

(0, 0) and (1, 1) in Fig. 3.3, ii) the superiority over the random guessing, i.e., ε̄m > εf ,

and iii) the monotonicity in the trade-off between εm and εf .

We first observe that increasing εf over ε?f only reduces the stability region as shown

in Fig. 3.7. Thus, it is better to lower εf up to ε?f which directly increases the probability of

correct rejection and, thereby, improves the chance to utilize the idle slots, although, at the

same time, it risks the success of the primary user by increasing the probability of miss.

We next observe that when εf is further lowered below ε?f , the inclusion relation does not

hold anymore. As illustrated in Fig. 3.8, each operating point results in a different shape

that is not a proper subset of the others at different operating points. We finally consider

the case when the accuracy of the sensing device itself is improved from the random

guessing to the ideal sensing. It is obvious that the stability region becomes larger as
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observed in Fig. 3.9, in which the sensing operating point is moved from (0.5, 0.5) to

(0, 1) on the ROC plane with the step size of 0.1. The stability region may or may not

experience the transition from Case B to Case C depending on the channel parameter

values. Note that in the case of the ideal sensing, the stability region becomes a right

triangle as shown in the figure which agrees with the previous result in [66]. On the other

hand, we can derive the stability region for the case with random guessing by substituting

ε̄m = εf into the descriptions in Chapter 3.2.3.2. Interestingly, it turns out to be identical

with that obtained for the two-node random access system [53]. This indicates that if the

cognitive access system is based on the sensing information that is nothing but randomly

guessed, its performance is not better than that of the random access system.

3.2.4 Stability Analysis

In this chapter, we provide details on the derivation of our main results presented

in the previous chapter. In the considered protocol, primary user s1 transmits a packet

whenever its queue is non-empty, independent of the actions made by the secondary user

s2. Secondary user s2, on the other hand, makes use of the ability to sense before trans-

mitting. If s1 is observed to be idle, s2 transmits with probability 1 given that its queue

is non-empty. Otherwise, if s1 is observed to be active, s2 transmits with probability p.

The probability that s1 is sensed to be idle is ε̄f when s1 is indeed idle and εm when s1

is actually active. Similarly, the probability that s1 is sensed to be active is ε̄m when it

is indeed active and εf when it is actually idle. Taking these into account, the average
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service rates of the users can be written as

µ1 = q1|{1} (Pr[Q2 = 0] + Pr[Q2 6= 0]ε̄m(1− p)) + q1|{1,2}Pr[Q2 6= 0] (εm + ε̄mp)

(3.3)

µ2 = q2|{2}Pr[Q1 = 0](ε̄f + εfp) + q2|{1,2}Pr[Q1 6= 0] (εm + ε̄mp) (3.4)

where Qi denotes the steady-state number of packets in the queue at si. In the previous

work, it is often required that the probability of detection must be above a certain value

as a protection for the primary user. However, this is based on the assumption that the

secondary user is always backlogged and, therefore, the occurrence of the missed detec-

tion directly results in the interference to the primary user. In the practical system with

bursty packet arrivals, however, it is unclear how users interfere with each other since

they transmit only when having non-empty queues, and this is the reason why we focus

on the queueing stability of the system. Note that the rates of the individual departure

processes cannot be computed directly, as they are interdependent, without knowing the

stationary probability of the joint queue length process. We bypass this difficulty by using

the stochastic dominance technique described in Chapter 2.3.

3.2.4.1 First Dominant System

Construct a hypothetical system which is identical to the original system except that

the secondary user s2 transmits dummy packets when it decides to transmit but when its

packet queue is empty. Thus, s2 transmits with probability 1 if s1 is sensed to be idle and

with probability p if s1 is sensed to be active, regardless of the emptiness of its queue.
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Hence, from Eq. (3.3), the average service rate of s1 is obtained as

µ1 = q1|{1}ε̄m(1− p) + q1|{1,2} (εm + ε̄mp)

which can be rewritten as

µ1 = q1|{1} − εm∆1 − ε̄m∆1p (3.5)

By Loynes’ Theorem, the queue at s1 is stable if λ1 ≤ µ1, and the content size follows a

discrete-time M /M /1 model with the arrival rate λ1 and the service rate µ1. For a stable

input rate λ1, the queue at s1 empties out with probability given by

Pr[Q1 = 0] = 1− λ1

µ1

= 1− λ1

q1|{1} − εm∆1 − ε̄m∆1p
(3.6)

By substituting Eq. (3.6) into Eq. (3.4), the average service rate of the queue at s2 is

obtained as

µ2 = q2|{2} (ε̄f + εfp) +
q2|{1,2}εm − q2|{2}ε̄f + (q2|{1,2}ε̄m − q2|{2}εf )p

q1|{1} − εm∆1 − ε̄m∆1p
λ1 (3.7)

and the queue at s2 is stable if λ2 ≤ µ2. Consequently, for a given multi-access probability

p, stable input rate pairs (λ1, λ2) are those componentwise less than (µ1, µ2). In Fig.

3.10, we illustrate the obtained stability region at given p, where the stability region of

the second dominant system is obtained in the subsequent chapter. The stability region

obtained for the dominant system is indeed the stability region of the original system due

to the stochastic dominance and the indistinguishability argument discussed in Chapter

2.3.

We now take the closure of the stability region over the multi-access probability p.

This can be equivalently done by solving the following boundary optimization problem
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q1|{1} = q2|{2} = 0.9, q1|{1,2} = q2|{1,2} = 0.3, εm = εf = 0.3, p = 0.5)

in which we maximize µ2 over p for a given value of λ1 while guaranteeing the stability

of the queue at s1, that is

max
p

µ2 = q2|{2} (ε̄f + εfp)

+
q2|{1,2}εm − q2|{2}ε̄f + (q2|{1,2}ε̄m − q2|{2}εf )p

q1|{1} − εm∆1 − ε̄m∆1p
λ1 (3.8)

subject to 0 ≤ λ1 ≤ q1|{1} − εm∆1 − ε̄m∆1p (3.9)

0 ≤ p ≤ 1 (3.10)

To maximize µ2 over p, we need to understand their relationship. Differentiating µ2

with respect to p gives

∂µ2

∂p
= q2|{2}εf +

η′λ1(
q1|{1} − εm∆1 − ε̄m∆1p

)2
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where η′ was defined as η′ = ε̄mη − q1|{1,2}q2|{2}εf . When η ≥ 0, which is equivalent to

the case when η′ ≥ −q1|{1,2}q2|{2}εf , we observe that

∂µ2

∂p
≥ q2|{2}εf −

q1|{1,2}q2|{2}εfλ1(
q1|{1} − εm∆1 − ε̄m∆1p

)2

≥ q2|{2}εf

(
1−

q1|{1,2}

q1|{1} − εm∆1 − ε̄m∆1p

)
≥ 0

where the last inequality follows from

q1|{1} − εm∆1 − ε̄m∆1p ≥ q1|{1} − εm∆1 − ε̄m∆1

= q1|{1} −∆1

= q1|{1,2}

Thus, if η ≥ 0, µ2 is a non-decreasing function of p. Note, however, that having η < 0

does not necessarily mean that µ2 is a non-increasing function of p. By differentiating µ2

once again, we have

∂2µ2

∂p2
=

2ε̄m∆1η
′λ1(

q1|{1} − εm∆1 − ε̄m∆1p
)3

Since the denominator is strictly positive, if η′ ≥ 0, µ2 is convex with respect to p.

Otherwise, it is concave with respect to p. These properties of µ2 is described in Fig.

3.11.

The case when η ≥ 0: In this case, µ2 is a non-decreasing function of p. Thus, the

maximizing p∗ is the largest value satisfying both constraints in Eqs. (3.9) and (3.10), that

is

p∗ = min

[
1,
q1|{1} − εm∆1 − λ1

ε̄m∆1

]
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Figure 3.11: Properties of µ2 with respect to p

Note that the role of Eq. (3.9) is to impose an upper limit on p∗ so that the stability of s1 is

guaranteed. For 0 ≤ λ1 ≤ q1|{1,2}, it is given by p∗ = 1, and the corresponding maximum

function value is obtained as

µ∗2,line1
= q2|{2} −

∆2

q1|{1,2}
λ1 (3.11)

For q1|{1,2} < λ1 ≤ q1|{1} − εm∆1, it is given by p∗ = (q1|{1} − εm∆1 − λ1)/ε̄m∆1, and

the corresponding maximum function value is obtained as

µ∗2,line2
=
q2|{1,2}

∆1

(q1|{1} − λ1) (3.12)

Note that if λ1 > q1|{1}−εm∆1, the constraint in Eq. (3.9) cannot be met with any feasible

p ∈ [0, 1] and, thus, µ2 is not defined.

The case when −q2|{2}εf∆1 ≤ η < 0: In this case, µ2 is concave with respect to p

and, thus, equating the first derivative to zero gives the maximizing p∗ as

p∗ =
q1|{1} − εm∆1 −

√
−η′λ1
q2|{2}εf

ε̄m∆1

(3.13)

and the corresponding maximum function value is obtained as

µ∗2,curve =
(q2|{2}εf − q2|{1,2}ε̄m)λ1 − 2

√
−q2|{2}εfη′λ1 − η′ + q1|{1}q2|{1,2}ε̄m

ε̄m∆1
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which can be rearranged to

µ∗2,curve =
(
√
−η′ −

√
q2|{2}εfλ1)2

ε̄m∆1

+
q2|{1,2}(q1|{1} − λ1)

∆1

Note that µ∗2,curve is feasible when both constraints in Eqs. (3.9) and (3.10) are satisfied.

For used p∗, Eq. (3.9) becomes

λ1 ≤
−η′

q2|{2}εf
(3.14)

and Eq. (3.10) becomes

q2
1|{1,2}q2|{2}εf

−η′
≤ λ1 ≤

q2|{2}εf (q1|{1} − εm∆1)2

−η′
(3.15)

which is obtained by rearranging Eq. (3.13) and substituting the extreme values of p. For

the considered case when −q2|{2}εf∆1 ≤ η < 0, the intersection of the ranges of values

of λ1 determined by Eqs. (3.14) and (3.15) is given by

q2
1|{1,2}q2|{2}εf

−η′
≤ λ1 ≤

−η′

q2|{2}εf
(3.16)

On the other hand, if λ1 lies on the left-hand side (LHS) of the range of Eq. (3.16),

we observe that

∂µ2

∂p
≥ q2|{2}εf

(
1−

(
q1|{1,2}

q1|{1} − εm∆1 − ε̄m∆1p

)2
)
≥ 0

where we used the facts that η′ is negative for the considered case and q1|{1} − εm∆1 −

ε̄m∆1p ≥ q1|{1,2} as observed in the previous case. Since µ2 is a non-decreasing function

of p, p∗ = 1 and the maximum function value is given by µ∗2,line1
in Eq. (3.11). Note that

the constraint in Eq. (3.9) is automatically satisfied when λ1 is on the LHS of the range

of Eq. (3.16).
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Next consider the case when λ1 lies on the right-hand side (RHS) of the range of

Eq. (3.16). This is the case that, if p∗ is set according to Eq. (3.13), the stability of s1 is

lost. For the stability of s1, it is required that the multi-access probability p is bounded

above as

p ≤
q1|{1} − εm∆1 − λ1

ε̄m∆1

<
q1|{1} − εm∆1 + η′

q2|{2}εf

ε̄m∆1

For p satisfying the above inequality, we observe that

∂µ2

∂p
> q2|{2}εf

(
1−

(
−η′

q2|{2}εf (q1|{1} − εm∆1 − ε̄m∆1p)

)2
)
> 0

In other words, µ2 is an increasing function of p and, hence, we have

p∗ =
q1|{1} − εm∆1 − λ1

ε̄m∆1

for λ1 on the RHS of the range of Eq. (3.16). The corresponding maximum function

value is given by µ∗2,line2
in Eq. (3.12). Again, if λ1 > q1|{1}− εm∆1, the constraint in Eq.

(3.9) cannot be met with any feasible p ∈ [0, 1] and, thus, µ2 is not defined.

The case when η < −q2|{2}εf∆1: In this case, µ2 is still concave with respect to

p, but the range of µ∗2,curve, which was the intersection of the ranges of values of λ1

determined by Eqs. (3.14) and (3.15), would be identical with the range specified by

Eq. (3.15). Again, for λ1 on the LHS of the range of Eq. (3.15), µ2 is a non-decreasing

function of p, and the maximum function value is given by µ∗2,line1
as in the previous case.

On the other hand, if λ1 lies on the RHS of Eq. (3.15), we observe that

∂µ2

∂p
< q2|{2}εf

(
1−

(
q1|{1} − εm∆1

q1|{1} − εm∆1 − ε̄m∆1p

)2
)
< 0
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Therefore, µ2 is a decreasing function of p and, hence, by substituting p∗ = 0 into Eq.

(3.8), we have

µ∗2,line3
= q2|{2}ε̄f −

q2|{2}ε̄f − q2|{1,2}εm
q1|{1} − εm∆1

λ1

For λ1 > q1|{1} − εm∆1, µ2 is not defined.

3.2.4.2 Second Dominant System

By reversing the roles of the two users in the previous dominant system, we can

construct another parallel dominant system in which the primary user s1 is now transmit-

ting dummy packets, instead of the secondary node s2, when its packet queue is empty.

Since s1 transmits with probability 1 in this dominant system, the average service rate of

s2 in Eq. (3.4) becomes

µ2 = q2|{1,2}(εm + ε̄mp)

By Loynes’ theorem, the queue at s2 is stable if λ2 ≤ µ2, and it empties out with proba-

bility given by

Pr[Q2 = 0] = 1− λ2

q2|{1,2}(εm + ε̄mp)
(3.17)

Substituting Eq. (3.17) into Eq. (3.3) and after some manipulation, the stability condition

for the queue at s1 is obtained as

λ1 ≤ µ1 = q1|{1} −
∆1

q2|{1,2}
λ2 (3.18)

which is depicted in Fig. 3.10 for the range of λ2 ≤ µ2. Observe that Eq. (3.18) can be

rearranged to

λ2 ≤
q2|{1,2}

∆1

(q1|{1} − λ1) (3.19)
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Figure 3.12: Average queue length over 106 slots along the diagonal arrow in Fig. 3.10,

i.e., λ = λ1 = λ2, with the same parameter setting used for Fig. 3.10

whose boundary is identical with µ∗2,line2
in Eq. (3.12) for the range of λ1 ≥ q1|{1} −

∆1(εm + ε̄mp). Since Eq. (3.19) does not depend on p, there is no need to optimize over

p, and p only has the effect of changing the range of λ1. This together with the descriptions

obtained for the first dominant system completes the proof of our main results presented

in Chapter 3.2.3.

3.2.5 Simulation

Here we focus on the validation of the stability result obtained using the stochastic

dominance technique, which is illustrated in Fig. 3.10. The simulation results reconfirm

that the stability region in Fig. 3.10 is indeed the stability region of the original system.
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Figure 3.13: Queue length samplepath at point A in Fig. 3.10

Results illustrated from Fig. 3.4 to Fig. 3.9 are consequences of the stability region

in Fig. 3.10 by taking the closure over the multi-access probability p by the secondary

transmitter.

We first observe the behavior of the average queue sizes as the traffic load increases.

For simplicity of exposition, we consider symmetric Bernoulli arrivals, so that λi = λ for

all i in { 1, 2 }. We simulated the system over 106 slots with the same parameter setting

used for Fig. 3.10. That is, q1|{1} = q2|{2} = 0.9, q1|{1,2} = q2|{1,2} = 0.3, εm = εf = 0.3,

and p = 0.5. The resulting simulated queue averages are shown in Fig. 3.12. It can be

observed that as we cross the boundary of the stability region, which is at λ = 0.3613

from Eq. (3.7), the size of the queue at s2 starts growing. As the input rate is further

increased such that it exceeds λ = 0.51, which is obtained from Eq. (3.5), we observe

that the size of the queue at s1 also starts growing.
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Figure 3.14: Queue length samplepath at point B in Fig. 3.10

However, this result is still insufficient because stability is an asymptotic property of

a system but the queue length averages were taken over the finite time interval. Although

the simulation interval can be further increased, it is nevertheless finite. Thus, the best

we can do is to observe the tendency of queue sizes over the course of time. From Fig.

3.13 to Fig. 3.15, we illustrate queue length sample-paths at input traffic load at points

A, B, and C depicted in Fig. 3.10. At point A, the queues at both s1 and s2 are expected

to be stable, whereas at points B and C, the queue at s2 and the queues at both s1 and s2

are expected to be unstable, respectively. From Fig. 3.13, it can be seen that the queue

sizes at both nodes do not increase as time goes on, albeit bursty. From Fig. 3.14 and Fig.

3.15, it can be observed that there is an increasing tendency in the queue size at s2 and

the queue sizes at both s1 and s2, respectively. This increasing tendency in the queue size

allows us to conjecture the instability of the corresponding queues.
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Figure 3.15: Queue length samplepath at point C in Fig. 3.10

3.2.6 Discussion

We studied the effect of imperfect sensing on the stability region of the cognitive

access system. Surprisingly, we observed that when there exists relatively strong capture

effect, we can achieve the identical stability region that is achieved with perfect sensing,

even with positive sensing error rates. This is remarkable because the spectrum sensing

itself becomes unnecessary in terms of the achieved stability region, although other per-

formance measures such as the average queueing delay may suffer from the occurrence

of errors. When it is not the case that we can achieve identical stability region that is

achieved with perfect sensing, the loss due to the imperfect sensing was precisely quanti-

fied in terms of the size of the stability region.
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3.3 Hybrid Access for Systems with Random Connectivity

3.3.1 Motivation

In this chapter, we are interested in a hybrid of interweave and underlay modes of

operation for the system consisting of the primary and the secondary communication sys-

tems. The considered system is dynamic in the sense that all the links from sources to

destinations have time-varying random connectivity. It is assumed that the primary source

transmits uninterruptedly whenever the link from itself to the primary destination is con-

nected and its queue is non-empty. The secondary source, on the other hand, transmits

opportunistically by observing the primary source’s activity and taking into account the

connectivity of the links from itself to both the primary and the secondary destinations2.

That is, the secondary communication system runs in the interweave mode when it is

guaranteed that its operation has no effect on the primary communication. This is when

the primary source is idle or the interference link from the secondary source to the primary

destination is disconnected, which can be viewed as an example of the spatial resource

reuse [72]. In addition to the interweave mode, the secondary communication system can

optionally operate in the underlay mode, even when it is unavoidable to interfere with the

primary communication. The underlay mode is activated with some probability, which

we call a hybrid rate. Our design objective is, thus, to optimally choose the hybrid rate

to maximize the stable throughput of the secondary communication system while ensur-

ing the stability of the primary communication system at given input demand. In [73]

2It is assumed that the secondary source knows the connectivity of the link from itself to the primary

destination by overhearing the pilot signal broadcasted from the primary destination.
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and [74], a similar hybrid access policy was proposed as in our work, but the channel

model with static multipacket reception (MPR) capability was assumed [52]. It was also

assumed that the secondary source is always backlogged. In [66], a complete stability

analysis was performed for a similar hybrid access policy when both the primary and

the secondary sources have bursty arrivals. However, the analysis is again based on the

static MPR model as in [73]. In [75], it was considered that the secondary source adjusts

its hybrid rate according to the channel state alternating between good and bad states.

However, both the primary and the secondary sources communicate with a common des-

tination, and only the link between the secondary source and the common destination is

assumed time-varying. Moreover, how to adjust the hybrid rate according to the channel

state is missing.

Our contributions can be summarized as follows. First, the stability of the hybrid

access policy is precisely analyzed for a dynamic system with time-varying connectivity.

Secondly, we observe that the hybrid access policy is not always beneficial when com-

pared against to the interweave-only mode and, consequently, the condition for which

the hybrid access policy can outperform is obtained. Finally, the static MPR model, or

equivalently the system with time-varying connectivity but with no channel connectivity

information, is revisited as a special case of our general model.

3.3.2 System Model

We consider a system consisting of two source-destination pairs, the primary pair

(s1, d1) and the secondary pair (s2, d2), as shown in Fig. 3.16. The assumptions on
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Figure 3.16: The cognitive radio system model with time-varying connectivity (the solid

and dotted lines denote that a link is connected and disconnected, respectively.)

arrival processes, time-slotted system model, and transmission acknowledgement follows

those of Chapter 3.2.2. The queueing model in Eq. (5.1) is used here as well. Unlike

Chapter 3.2, the link between si and dj , ∀i, j ∈ { 1, 2 }, may be either connected or

disconnected due to such as the shadowing effect [56]; that is denoted by the binary

variable Cij(n), which is equal to 1 and 0, respectively. The fact that an interference link

such as those from s1 to d2 and from s2 to d1 is disconnected implies that a transmission

over a designated link such as those from s1 to d1 and from s2 to d2 is not affected by the

interference signal. The connectivity process {Cij(n)}∞n=0 is i.i.d. with E[Cij(n)] = cij .

In complying with widely accepted requirements on cognitive radio systems, that is, the

primary communication system is oblivious of the existence of any additional systems, it

is assumed that the primary source s1 knows only the connectivity of its own link, i.e.,

C11(n), based on the pilot signal sent from d1. On the other hand, the secondary source

s2 is assumed to know the connectivity of not only its own link, i.e., C22(n), but also the

interference link from itself to the primary destination, i.e, C21(n), by overhearing the
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the pilot signal sent from d1. Note that neither s1 nor s2 knows the connectivity of the

link from s1 to d2, i.e., C12(n). Thus, the random connectivity over that interference link

only reduces the success probability of the secondary transmission in the average sense.

To focus on the effect of channel dynamics, it is assumed that the sensing at secondary

source on the activity of the primary system is accurate and error-free.

In the following, we describe the transmission policy of each sources. At time slot

n, the primary source s1 transmits with probability 1 at some fixed power if Q1(n) 6= 0

and C11(n) = 1. Otherwise, it remains silent. The secondary source s2, on the other hand,

makes decision on its transmission based on the activity of s1 and the connectivity of both

its own link and the interference link from itself to d1. The interweave mode is enabled

only when the transmission by s2 has no effect on the primary communication. That is, if

either s1 does not transmit at time slot n (i.e., either due to Q1(n) = 0 or C11(n) = 0) or

s1 does transmit but the interference link from s2 to d1 is disconnected, i.e., C21(n) = 0,

s2 transmits with probability 1 at some fixed power if Q2(n) 6= 0 and C22(n) = 1. The

underlay mode is optionally enabled, although when it is inevitable to cause interference

to the primary communication, but at lower power than the interweave mode. That is, even

when s1 transmits at time slot n and the interference link is connected, i.e., C21(n) = 1, s2

transmits with probability ph, which is called hybrid rate, if Q2(n) 6= 0 and C22(n) = 1.

This can be viewed as a stationary randomized policy for triggering the underlay mode of

operation.

The success of transmissions jointly depend on the actions made by both sources

and the underlying connectivity of the links. Also note that a transmission over a con-

nected link can fail even without interference due to fast fading and/or background noise.
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The followings are the probabilities of success at given set of actions and configuration

of channel connectivity, which also take into account the effect of random failure.

• q1|{1}: the probability of success of a transmission by s1 when s2 does not transmit

or it does transmit but C21(n) = 0.

• q1|{1,2}: the probability of success of a transmission by s1 when both s1 and s2

transmit and C21(n) = 1, i.e., s2 operates in the underlay mode.

• qi2|{2}: the probability of success of a transmission by s2 when it operates in the

interweave mode and either s1 does not transmit or it does transmit but C12(n) = 0.

• qi2|{1,2}: the probability of success of a transmission by s2 when it operates in the

interweave mode, s1 transmits and C12(n) = 1.

• qu2|{2}: the probability of success of a transmission by s2 when it operates in the

underlay mode and C12(n) = 0.

• qu2|{1,2}: the probability of success of a transmission by s2 when it operates in the

underlay mode and C12(n) = 1.

In the above probabilities, although not mentioned specifically, if si transmits, the corre-

sponding designated channel is connected, i.e., Cii(n) = 1. Once transmit power levels

and other physical characteristics such as the distance, propagation loss exponent, statis-

tics of fading are known, those probabilities can be readily computed as in Chapter 2.1.

47



3.3.3 Stability of Hybrid Access

Let ∆1 = q1|{1} − q1|{1,2}, which is the difference in the success probabilities of

s1 when it transmits alone and when s2 transmits along with s1 in the underlay mode.

Similarly, let ∆i
2 = qi2|{2} − qi2|{1,2} and ∆u

2 = qu2|{2} − qu2|{1,2}. Further define

Ψ(ph) , qi2|{2}c21 + ∆i
2c12c̄21 + c21ph(∆

u
2c12 − qu2|{2}) (3.20)

where c̄ = 1− c and this notation is used throughout the paper.

Theorem 3.3.1. The system is stable under the hybrid access policy with hybrid rate ph

if and only if λ ∈
⋃
i∈{ 1,2 }Λi where

Λ1 =

{
λ : λ1 ≤ c11

(
q1|{1} −∆1c21c22ph

)
, λ2 ≤ c22

(
qi2|{2} −

Ψ(ph)λ1

q1|{1} −∆1c21c22ph

)}
Λ2 =

{
λ : λ1 ≤ c11

(
q1|{1} −

∆1c21phλ2

qi2|{2} − c11Ψ(ph)

)
, λ2 ≤ c22

(
qi2|{2} − c11Ψ(ph)

)}
Proof. Under the hybrid access protocol described in Chapter 3.3.2, the average service

rates of the queues at the sources can be expressed as

µ1 = q1|{1}c11 {Pr[Q2 = 0] + Pr[Q2 6= 0](c̄22 + c̄21c22 + c21c22p̄h)}

+ q1|{1,2}c11c21c22phPr[Q2 6= 0]

and

µ2 = qi2|{2}c22 {Pr[Q1 = 0] + Pr[Q1 6= 0] (c̄11 + c11c̄12c̄21)}

+ Pr[Q1 6= 0]
{
qi2|{1,2}c11c12c̄21c22 + qu2|{2}c11c̄12c21c22ph + qu2|{1,2}c11c12c21c22ph

}
By substituting Pr[Q1 = 0] = 1 − Pr[Q1 6= 0] into the above equations and rearranging

the terms, they are further simplified to

µ1 = q1|{1}c11 −∆1c11c21c22phPr[Q2 6= 0] (3.21)
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and

µ2 = qi2|{2}c22 − c11c22Ψ(ph)Pr[Q1 6= 0] (3.22)

where Ψ(ph) was defined in Eq. (3.20).

It can be seen from Eq. (3.21) and Eq. (3.22) that the service rate of one depends on

the other, i.e., the queues are interacting. Thus, we use the stochastic dominance technique

in Chapter 2.3 to resolve the interaction between queues. Consider first a hypothetical sys-

tem which is identical to the original system except that the secondary source s2 transmits

dummy packets when it decides to transmit but its queue is empty. Since s2 transmits re-

gardless of the emptiness of its queue, it is equivalent to setting Pr[Q2 6= 0] = 1. Hence,

from Eq. (3.21), the average service rate of s1 in this hypothetical system becomes

µ1 = c11(q1|{1} −∆1c21c22ph) (3.23)

By Loynes’ Theorem, the queue at s1 is stable if λ1 ≤ µ1, and the content size follows a

discrete-time M /M /1 model. For a stable rate λ1(≤ µ1), the probability that the queue at

s1 is non-empty is given by

Pr[Q1 6= 0] =
λ1

µ1

=
λ1

c11(q1|{1} −∆1c21c22ph)
(3.24)

and, by substituting Eq. (3.24) into Eq. (3.22), we obtain

µ2 = c22

(
qi2|{2} −

Ψ(ph)λ1

q1|{1} −∆1c22c21ph

)
(3.25)

and the queue at s2 is stable if λ2 ≤ µ2. For a given hybrid rate ph, input rate pairs (λ1, λ2)

that can be stably admitted into the system are those componentwise less than (µ1, µ2),

where µ1 and µ2 are given in Eq. (3.23) and Eq. (3.25), respectively. The stability region

of this dominant system is denoted by Λ1 in Theorem 3.3.1.
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Construct next a parallel dominant system in which the primary source s1 transmits

dummy packets, instead of the secondary source s2, when its queue is empty. Then, the

average service rate of s2 in Eq. (3.22) becomes

µ2 = c22(qi2|{2} − c11Ψ(ph)) (3.26)

and the queue at s2 is stable if λ2 ≤ µ2. For a stable rate λ2(≤ µ2), the probability that

the queue at s2 is non-empty is given by

Pr[Q2 6= 0] =
λ2

c22(qi2|{2} − c11Ψ(ph))

and by substituting the above probability into Eq. (3.21), we obtain the average service

rate of s1 as

µ1 = c11

(
q1|{1} −

∆1c21phλ2

qi2|{2} − c11Ψ(ph)

)
(3.27)

and the queue at s1 is stable if λ1 ≤ µ1. The stability region of this dominant system,

which is denoted by Λ2 in Theorem 3.3.1, is comprised of input rate pairs (λ1, λ2) that

are componentwise less than (µ1, µ2), where µ1 and µ2 are specified in Eqs. (3.27) and

(3.26), respectively.

3.3.4 Interpretation

3.3.4.1 Superiority of the Hybrid Access

We first illustrate in Fig. 3.17 the stability region of the system described in Theo-

rem 3.3.1 for different values of the hybrid rate ph. The vertex of the region, denoted by

PV , in the figure is the point where the boundaries of the subregions Λ1 and Λ2 meet with
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PV

c22(q2|{2}-c11 (0))i

q2|{2}c22
i

q1|{1}c11

Figure 3.17: Illustration of the stability region: Interweave-only mode vs. hybrid access

each other and is given by

PV = (PV,x, PV,y) =
(
c11(q1|{1} −∆1c21c22ph), c22(qi2|{2} − c11Ψ(ph))

)
(3.28)

The stability region of the interweave-only mode, which is also depicted in the figure, can

be found by setting ph = 0 in Theorem 3.3.1. Let us define

Υ , q1|{1}(q
u
2|{2} −∆u

2c12)−∆1c22(qi2|{2}c21 + ∆i
2c12c̄21)

The following corollary answers the question on the necessity of the hybrid access policy.

In other words, does the hybrid access policy indeed perform better than the interweave-

only mode?

Corollary 3.3.1. If Υ ≤ 0, the stability region of the hybrid access policy becomes a

proper subset of that of the interweave-only mode for any ph ∈ (0, 1]. If Υ > 0, one is

not a subset of the other.
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Proof. The upper boundary of the stability region of the interweave-only mode in Fig.

3.17 is given by

λ̄2 = c22

(
qi2|{2} −

Ψ(0)λ1

q1|{1}

)
for λ1 ≤ c11q1|{1}, which is obtained by substituting ph = 0 into the description of Λ1 in

Theorem 3.3.1. For the proof, it suffices to show that if Υ ≤ 0, the value of PV,y is less

than or equal to the value of λ̄2 evaluated at λ1 = PV,x. The fact that Υ ≤ 0 is written as

q1|{1}(q
u
2|{2} −∆u

2c12) ≤ ∆1c22

(
qi2|{2}c21 + ∆i

2c12c̄21

)
Multiplying by a positive number c21ph, ph ∈ (0, 1], to both sides, which does not change

the inequality, yields

q1|{1}(Ψ(0)−Ψ(ph)) ≤ ∆1c21c22phΨ(0)

By dividing by q1|{1}, multiplying by c11c22 and adding qi2|{2}c22 to both sides of the above

inequality, which again does not affect the inequality, it follows that

c22

(
qi2|{2} − c11Ψ(ph)

)
≤ c22

(
qi2|{2} −

c11(q1|{1} −∆1c21c22ph)Ψ(0)

q1|{1}

)

Finally, we observe that the left-hand side of the above inequality is equal to PV,y, whereas

the right-hand side is the value of λ̄2 at λ1 = PV,x. This completes the proof.

From the above corollary, we see that if Υ ≤ 0, there is no need for the hybrid

mode of operation in terms of the stability region. The following corollary establishes

the closure of the stability region over the hybrid rate ph for the case when Υ > 0. Note

that when Υ ≤ 0, the closure is equal to the stability region of the interweave-only mode.

Let us define the following points in the two-dimensional Euclidean space to facilitate the
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Figure 3.18: Closure of the stability region for the case when Υ > 0

description of the next corollary:

P 1
V =

(
c11(q1|{1} −∆1c21c22), c22(qi2|{2} − c11Ψ(1))

)
P 0
V =

(
q1|{1}c11, c22(qi2|{2} − c11Ψ(0))

)
where P 1

V and P 0
V are the points that PV in Eq. (3.28) is evaluated at ph = 1 and ph = 0,

respectively.

Corollary 3.3.2. The boundary of the closure of the stability region for the case when

Υ > 0 is described by three segments: (i) the straight line connecting (q1|{1}c11, 0) and

P 0
V , (ii) the straight line connecting P 0

V and P 1
V , and (iii) the straight line connecting P 1

V

and (0, qi2|{2}c22).

Proof. The proof follows from the geometry in Fig. 3.18, which depicts the stability

region of the hybrid access policy by varying ph from zero (interweave-only mode) to one
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(full hybrid mode).

3.3.4.2 Special Case without the Connectivity Information

Let us now consider a special case without the channel connectivity information.

It is equivalent to assume that the channels are always connected, i.e., cij = 1, ∀i, j, but

each source experiences random disconnection of the links without knowing it a priori.

Thus, the success probability of a transmission is now the one that is normalized over

the underlying channel conditions. On the other hand, also note that s2 does not know

a priori whether its transmission would interfere with the transmission over the primary

link or not without knowing the connectivity of the link from itself to d1. Hence, it is

impossible or unnecessary to differentiate the transmit power level set for the underlay

mode from the interweave mode and, thus, we let q2|{2} = qi2|{2} = qu2|{2} and q2|{1,2} =

qi2|{1,2} = qu2|{1,2}. Consequently, s1 transmits whenever its queue is non-empty, whereas

s2 transmits with probability 1 if s1 is inactive and with probability ph if s1 is active with

constant power, given that its queue is non-empty. The normalized success probabilities

are q̃1|{1} = c11q1|{1}, q̃2|{2} = c22q2|{2}, q̃1|{1,2} = c̄21q1|{1} + c21q1|{1,2}, and q̃2|{1,2} =

c̄12q2|{2} + c12q2|{1,2}. By setting cij = 1, ∀i, j, and by replacing the success probabilities

in Theorem 3.3.1 with the normalized ones, we obtain the stability region of the system

as in the following corollary, which reconfirms the previous result obtained in [66] for the

system with static MPR capability, i.e., without the notion of channel connectivity.

Corollary 3.3.3. The stability region of the hybrid access policy for the case without the
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channel connectivity information is given by the union of the following subregions:

Λ̃1 =

{
λ : λ1 ≤ q̃1|{1} − ∆̃1ph, λ2 ≤ q̃2|{2} −

q̃2|{2} − q̃2|{1,2}ph

q̃1|{1} − ∆̃1ph
λ1

}

Λ̃2 =

{
λ : λ1 ≤ q̃1|{1} −

∆̃1

q̃2|{1,2}
λ2, λ2 ≤ q̃2|{1,2}ph

}

where ∆̃1 = q̃1|{1} − q̃1|{1,2}.

In Fig. 3.19, we illustrate the stability region for the case without the channel

connectivity information. The vertex of the region in Fig. 3.19(a) is given by P̃V =(
q̃1|{1} − ∆̃1ph, q̃2|{1,2}ph

)
and, similarly as in Fig. 3.17, if P̃V is contained inside the

stability region of the interweave-only mode for any ph ∈ (0, 1], then there is no need for

the hybrid mode of operation. This corresponds to the condition that

Υ̃ , q̃1|{1}q̃2|{1,2} + q̃2|{2}q̃1|{1,2} − q̃1|{1}q̃2|{2} ≤ 0

Fig. 3.19(b) illustrates the closure of the stability region for the case when Υ̃ > 0, where

P̃ 1
V is the point that P̃V is evaluated at ph = 1. From the figure, we observe that the closure

is equal to the stability region of the full hybrid mode. In other words, the stability region

obtained for any ph ∈ [0, 1) becomes a subset of that obtained for ph = 1. Thus, if we are

considering a system with static channels or dynamic channels but with no connectivity

information, there is no room in which a partial hybrid access policy can play a role.

The optimal policy that achieves the maximum stability region is simply a threshold rule:

interweave-only mode (ph = 0) if Υ̃ ≤ 0 or full hybrid mode (ph = 1) if Υ̃ > 0.
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Figure 3.19: Illustration of the stability region for the case without channel connectivity

information
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3.3.5 Discussion

We studied the hybrid access policy for cognitive radio systems with time-varying

connectivity and showed that it is not always the case that the hybrid access policy outper-

forms the interweave-only mode. Thus, the condition for which there is a gain from using

the hybrid access policy is specified. For the special case without the channel connectivity

information, it was shown that the optimal policy is either interweave-only or full-hybrid

mode depending on the MPR capability. In future work, we plan to study a dynamic hy-

brid access policy that triggers the underlay mode of operation at the secondary source

based on the queue length information using the Lyapunov drift technique.

3.4 Chapter Summary

This chapter attempts to answer some of those important yet unaddressed questions

on cognitive radio systems. The first was about the effect of imperfect sensing on the

stability region of the cognitive radio systems. Interestingly, we showed that even with

non-zero sensing error rates, there exists a condition for which we can achieve the iden-

tical stability region that is achieved with perfect sensing. The next was about the hybrid

of interweave and underlay modes of operation for cognitive radio systems with random

connectivity. We analyzed the stability of the hybrid access policy and showed that it is

not always beneficial when compared against the interweave-only mode.
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Chapter Appendix 3.A – On the Convexity of the Stability Region in Chap-

ter 3.2.3.2

In this appendix, we interpret the criterion on the convexity of the stability region

in terms of values of physical layer parameters. In Chapter 3.2.3.2, it was shown that the

convexity is determined by the sign of η, which is equivalent to judge

η ≷ 0⇔ ∆1

q1|{1}
+

∆2

q2|{2}
≶ 1 (3.29)

where ∆i = qi|{i} − qi|{i,j} for i, j ∈ { 1, 2 } and i 6= j. These packet reception probabili-

ties were derived in Chapter 2.1 and, by substituting these probabilities into the definition

of ∆i, we obtain

∆i = θ
Ptx,j

Ptx,i

(
rii
rji

)ν (
1 + θ

Ptx,j

Ptx,i

(
rii
rji

)ν)−1

exp

(
− θNr

ν
ii

KPtx,i

)

Then, by substituting ∆i, ∀i ∈ {1, 2}, into (3.29), we express the criterion in terms of the

physical layer parameters as

η ≷ 0⇔ θPtx,2r
ν
11

Ptx,1rν21 + θPtx,2rν11

+
θPtx,1r

ν
22

Ptx,2rν12 + θPtx,1rν22

≶ 1

⇔ θ2rν11r
ν
22 ≶ rν12r

ν
21

⇔ Υ ,

(
r12

r11

r21

r22

)ν/2
≷ θ (3.30)

Note that Υ is expressed only in terms of the distances between sources and destinations

and the propagation loss exponent. Thus, changing the transmission power, for example,

does not affect the above comparison. Finally, if Υ ≥ 0, we can achieve identical stability

region that is achieved with perfect sensing even with positive sensing error rates.
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Chapter 4

Random Access

4.1 Background

This chapter begins with some background on the stability of random access sys-

tems. The characterization of the stability region of random access systems for bursty

sources (in contrast to infinitely backlogged sources, for which the concept does not make

sense) is known to be extremely difficult. This is because each node transmits and thereby

interferes with the others only when its queue is non-empty. Such queues are said to be

interacting, or coupled, with each other in the sense that the service process of one de-

pends on the status of the others. Consequently, the individual departure rates of the

queues cannot be computed separately without knowing the stationary probability of the

joint queue length process, which is intractable [59]. This is the reason why most work

has focused on small-sized networks and only bounds or approximations are known for

the networks with larger number of nodes [53, 57, 59, 76–78]. In [76], the exact stability

region was obtained for the two-node case and for an arbitrary number of nodes with sym-

metric parameters (that is, equal arrival rates and random access probabilities). In [59],

a sufficient stability condition for an arbitrary number of nodes with asymmetric param-

eters was obtained. In [57], the necessary and sufficient stability condition was derived

but it can only be evaluated up to the three-node case. The concept of the instability rank

was introduced in [77] to further improve the inner bound for the general asymmetric
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cases. In [78], an approximate stability region was obtained for an arbitrary number of

nodes based on the mean-field asymptotics. All the above results were derived under the

collision channel model in which, if more than one nodes transmit simultaneously, none

of them are successful. This is too pessimistic assumption today in the sense that a trans-

mission may succeed even in the presence of interference [51–53]. In such a context,

the two-node stability result was extended to the channel with the multipacket reception

(MPR) capability which enables the probabilistic reception of simultaneously transmitted

packets [53]. The advent of the multiuser detection technique for separating signals from

the superposition of multiple received signals enables a receiver to correctly decode more

than one packets simultaneously transmitted from different users. However, the level of

abstraction does not allow the exploitation of the channel variation as the channels are

modeled with constant success probabilities over time.

Recently, there is a line of work on exploiting the channel state information (CSI)

under random access framework, which is called channel-aware random access (CARA)

[20–23]. In [20], it is assumed that each user has perfect local CSI and transmits only

when the channel gain exceeds a certain threshold. The main contribution of the work

is the characterization of the throughput scaling law for the system with infinitely back-

logged users, i.e., users have packets to transmit at any time. Limitations of this work

include the collision assumption made for the analysis. Also users were assumed to be

symmetric in channel statistics. In [21], a similar problem with that in [20] was considered

but with additional MPR capability [51–53]. However, like [20], this work is based on the

assumptions that users are always backlogged and symmetric in channel statistics. Note

that in the system with bursty input traffic, it is not straightforward to know how users
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interfere with each other since they transmit only when having non-empty queues, which

is more realistic than assuming always backlogged queues. In [22], the stability region

of the system comprised of users having bursty packet arrivals and asymmetric channel

statistics was obtained under the collision assumption and further extended in [23] to

the case with MPR capability. However, the analysis in both [22] and [23] is limited to

the two-user scenario. This limitation is again due to the complex interaction between

network queues.

4.2 Random Access of Nodes having Energy Harvesting Capability

4.2.1 Motivation

In this chapter, we focus attention on the effect of limited availability of energy in

each node’s battery, that can be recharged by harvesting energy from the environment,

on the system stability region when a pair of such nodes are randomly accessing a com-

mon receiver with static MPR capability as that in [53]1. Note that the analysis becomes

significantly more challenging than in the case with unlimited energy for transmission,

because the service process of a node depends not only on the status of its own queue and

its battery, but also on the status of the other node’s queue and battery. The key fact that

makes the analysis tractable in this doubly interacting system is that the energy consump-

tion is somewhat simplified as it does not depend on the success of the corresponding

transmission. For the characterization of the stability region, we first obtain an inner and

an outer bound of the stability region for a given transmission probability vector. Since an

1Thus, in this chapter, we do not exploit the time-varying nature of wireless channels.
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Figure 4.1: Random access of nodes with stochastic energy harvesting

input rate vector that is outside of the stability region at a given transmission probability

vector may be stably supported by another transmission probability vector, determina-

tion of the closure of the stability region is necessary and important. Consequently, we

take the closure of the inner and the outer bound separately over all feasible transmission

probability vectors. The remarkable result is that they turn out to be identical. Therefore,

our characterization is exact in the sense that the bounds are tight in terms of the closure.

Finally, we remark that the results presented in this work generalize those of previous

work that assumed unlimited energy for transmission over the collision channel [59, 76]

and over the channel with MPR capability [53].

4.2.2 System Model

The system consists of a pair of source nodes randomly accessing a common re-

ceiver, each powered by its own battery that can recharge from randomly time-varying
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renewable energy sources as shown in Fig. 4.9. Each node has an infinite size queue for

storing the arriving packets, that have fixed length, and a battery2 for storing the harvested

energy. Time is slotted and the slot duration is equal to one packet transmission time. En-

ergy is harvested in chunks of fixed size and one chunk of energy is consumed in each

transmission. That is, the size of the chunk is equal to the slot duration times the power

needed to transmit the fixed size packet over the slot duration. Let (Ai(n), n ≥ 0) and

(Hi(n), n ≥ 0) denote the packet arrival and energy harvesting processes at node i, re-

spectively. They are modeled as independent and identically distributed (i.i.d.) Bernoulli

processes with E[Ai(n)] = λi and E[Hi(n)] = δi. The processes at different nodes are

also assumed to be independent of each other. Let Qi(n) and Bi(n) represent the number

of buffered packets and the number of stored energy chunks at node i at the beginning of

the n-th slot, respectively. Then, Qi(n) and Bi(n) evolve according to

Qi(n+ 1) = Qi(n)− µi(n) + Ai(n) (4.1)

and

Bi(n+ 1) = Bi(n)− 1i(n) +Hi(n) (4.2)

where µi(n) ∈ { 0, 1 } is the actual number of packets that are successfully serviced and,

thus, depart from the queue of node i during time slot n, and 1i(n) is the indicator function

such that 1i(n) = 1 if node i transmits at time slot n, while otherwise 1i(n) = 0. Node i

is said to be active if both its data queue and its battery are non-empty at the same time,

so that it can then transmit with probability pi. If either the queue or the battery is empty,

node i is said to be idle and remains silent. Since the nodes are accessing a common

2The battery capacity is first assumed to be infinite and later relaxed to any finite number.
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receiver, the service variable µi(n) depends not only on the status of its own queue and

of its battery but also on the status of the other node’s queue and battery. Furthermore, it

also depends on the underlying channel model.

4.2.3 Main Results on the Stability Region

This chapter presents our main results on the stability of slotted ALOHA for the

two-node case with stochastic energy harvesting when the capacity of the batteries is

assumed to be infinite. Define ∆i = qi|{i} − qi|{1,2}, which is the difference between the

success probabilities when node i is transmitting alone and when it transmits along with

the other node j ( 6= i). The quantity ∆i is strictly positive since interference only reduces

the probability of success. Let us define the following points in the two-dimensional

Euclidean space to facilitate the description of our main theorem:

PA =
(
0, δ2q2|{2}

)
PB1 =

(
q2|{2}(q1|{1} −∆1δ2)2

∆2q1|{1}
,
∆1δ

2
2q2|{2}

q1|{1}

)
PB2 =

(
∆2δ

2
1q1|{1}

q2|{2}
,
q1|{1}(q2|{2} −∆2δ1)2

∆1q2|{2}

)
PB3 =

(
δ1(q1|{1} −∆1δ2), δ2(q2|{2} −∆2δ1)

)
PC =

(
δ1q1|{1}, 0

)
where PB1 , PB2 , and PB3 are in the first quadrant and PA and PC are on y and x-axes,

respectively. These points can be seen in Fig. 4.2. Let us further define

Ψ ,
∆1δ2

q1|{1}
+

∆2δ1

q2|{2}

which is non-negative and decreasing as the MPR capability improves.
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Figure 4.2: Two-node stability region S(δ) at different MPR probabilities where δ =

(0.8, 0.7) and q1|{1} = 0.9, q2|{1} = 0.8
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Theorem 4.2.1. If Ψ ≥ 1, the boundary of the stability region S(δ) of the slotted ALOHA

at a given energy harvesting rate δ is described by three segments: (i) the straight line

connecting PA and PB1 , (ii) the curve

√
∆2λ1 +

√
∆1λ2 =

√
q1|{1}q2|{2} (4.3)

from PB1 to PB2 , and (iii) the straight line connecting PB2 and PC . If Ψ < 1, it is

described by two straight lines: (i) the line connecting PA and PB3 and (ii) the line

connecting PB3 and PC .

Proof. The proof is presented in Chapter 4.2.4.

In Fig. 4.2, we illustrate the stability region S(δ) for different packet reception

probabilities. The boundary of the region is indicated by the solid line. The case with

unlimited energy, i.e., δi = 1, ∀i ∈ { 1, 2 }, is also depicted in the figure with the dotted

line. The difference between the two regions, therefore, can be understood as the loss

due to the limited availability of energy imposed by the variable battery content and the

stochastic recharging process.

Corollary 4.2.1. If Ψ > 1, the stability region S(δ) is non-convex, whereas if Ψ ≤ 1, it

is a convex polygon. When Ψ = 1, the region becomes a right triangle.

This corollary can be easily verified by comparing the slopes of the lines from PA

to PB1 and from PB2 to PC and those from PA to PB3 and from PB3 to PC . Specifically,

when Ψ = 1, the curve Eq. (4.3) shrinks to a point whose coordinates are identical to

those of PB1 and PB2 and the slopes of the lines from PA to PB1 and from PB2 to PC

become identical.
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Figure 4.3: Two-node stability region S(δ) under the collision channel model, i.e.,

qi|{i} = 1 and qi|{1,2} = 0, ∀i ∈ { 1, 2 }

When we do not have MPR, i.e., when the channel is described by the classical

collision channel model, we can obtain the stable region as described in the following

corollary and shown in Fig. 4.3.

Corollary 4.2.2. The stability region S(δ) of the slotted ALOHA under the collision

channel model is described as follows. If δ1 + δ2 ≥ 1, its boundary is described by

three segments: (i) the line segment connecting (0, δ2) and ((1 − δ2)2, δ2
2), (ii) the curve

√
λ1+
√
λ2 = 1 from ((1−δ2)2, δ2

2) to (δ2
1, (1−δ1)2), and (iii) the line segment connecting

(δ2
1, (1 − δ1)2) and (δ1, 0). If δ1 + δ2 < 1, it is described by two lines: (i) the line

segment connecting (0, δ2) and (δ1(1−δ2), δ2(1−δ1)) and (ii) the line segment connecting

(δ1(1− δ2), δ2(1− δ1)) and (δ1, 0).

The corollary is obtained by substituting qi|{i} = 1 and qi|{1,2} = 0, ∀i ∈ { 1, 2 },
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into Theorem 4.2.1.

Corollary 4.2.3. The stability region S(1) of the slotted ALOHA with the unlimited en-

ergy for transmission under the collision channel is the region below the curve
√
λ1 +

√
λ2 = 1 in the first quadrant of the two-dimensional Euclidean space.

This last corollary, which is obtained by substituting δi = 1, ∀i ∈ { 1, 2 }, into

Corollary 4.2.2, reconfirms the well-known result on the stability of the slotted ALOHA

obtained in [59].

4.2.4 Stability Analysis

In this chapter, we prove our main result presented in the previous chapter. We first

derive a sufficient condition for stability in Chapter 4.2.4.1 and, separately, a necessary

condition for stability in Chapter 4.2.4.2 for given energy harvesting rates δ and transmis-

sion probabilities p, which yield an inner and an outer bound of S(δ,p), respectively, and

they are shown in Fig. 4.4. The achievability and the converse of Theorem 4.2.1 is shown

in Chapter 4.2.4.3 by taking the closure of the inner and the outer bounds of S(δ,p) over

p and by observing that these closures turn out to be identical.

4.2.4.1 Sufficient Condition

For the sufficiency, we show that any arrival rate vector λ = (λ1, λ2) that is com-

ponentwise less than the saturated throughput vector of the system, denoted by µs =

(µs1, µ
s
2), can be stably supported. An input queue is said to be saturated if, after a head-

of-the-line (HOL) packet is transmitted from the queue, there is always a packet queued
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Figure 4.4: An inner and an outer bound of the stability region (parameter setting: p =

(0.7, 0.8), δ = (0.8, 0.7), q1|{1} = 0.9, q2|{2} = 0.8, q1|{1,2} = 0.2, q2|{1,2} = 0.15)

behind it waiting to take the HOL position, i.e., the input buffer is never empty. Since

each node transmits with probability pi whenever its battery is non-empty and each trans-

mission consumes one chunk of energy, the content size of the battery, Bi(n), forms a de-

coupled discrete-time M /M /1 queue with input rate δi and service rate pi. Consequently,

the probability that the battery is non-empty is given by min( δi
pi
, 1). The probability of

success seen by node i is equal to piqi|{i} if its battery is non-empty while the battery

of node j(6= i) is empty, and equal to pi(1 − pj)qi|{i} + pipjqi|{1,2} if both batteries are

non-empty. Hence, the saturated throughput of node i is equal to the average service rate
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given by

µsi =

{
piqi|{i}

[
1−min

(
δj
pj
, 1

)]
+ [pi(1− pj)qi|{i} + pipjqi|{1,2}] min

(
δj
pj
, 1

)}
×min

(
δi
pi
, 1

)

which can be summarized to

µsi = min(δi, pi)(qi|{i} −∆i min(δj, pj)) (4.4)

for i, j ∈ { 1, 2 } and i 6= j.

Lemma 4.2.1. The system is stable under the slotted ALOHA if the arrival rate vector

λ = (λ1, λ2) is componentwise less than or equal to the saturated throughput vector

µs = (µs1, µ
s
2).

Proof. It suffices to show that there is no λ � µs, where ‘�’ denotes componentwise

inequality, that makes the system unstable. The intuition is that the behavior of a node

with unstable queue is statistically identical to that with saturated queue as time goes to

infinity. This is because a queue being unstable, or equivalently transient, implies that its

size grows to∞ without emptying with a nonzero probability. Therefore, if one queue,

say queue i, becomes unstable at some λ′, then the corresponding input rate component

λ′i is greater than the service rate seen in the saturated throughput µsi .

We formally support this argument as follows. Let εi be any real number satisfying

0 ≤ εi < µsi and let λi = µsi − εi, ∀i ∈ { 1, 2 }, such that λ � µs and suppose that the

system is unstable with the chosen input rate vector. The instability of a system implies

that at least one queue in the system is unstable. Let us first suppose that both queues
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are unstable such that their queue sizes, Qi(n), ∀i ∈ { 1, 2 }, grow to infinity without

emptying with nonzero probability. Since the number of recurrences of the empty-state

is finite with probability 1, the probability that each battery is non-empty approaches

min( δi
pi
, 1) as n → ∞, for i ∈ { 1, 2 }. Then, the limiting expectation on the actual rate

serviced out of queue i, denoted by limn→∞E[µi(n)], is equal to µsi in Eq.(4.4). On the

other hand, from the queueing dynamics in Eq. (4.1), for any n > 0, we have

Qi(n)−Qi(0) =
n−1∑
k=0

Ai(k)−
n−1∑
k=0

µi(k)

By taking expectations, diving by n, and taking a limit as n→∞ we have

lim
n→∞

E[Qi(n)]

n
= λi − lim

n→∞

1

n

n−1∑
k=0

E[µi(k)] (4.5)

where we use the fact that the effect of the initial queue size disappears as n → ∞

because of the stationarity of the arrival process. The instability of queue i implies that

the left-hand-side (LHS) of Eq. (4.5) is strictly positive and, then, it must be the case that

λi = µsi − εi > lim
n→∞

E[µi(n)] = µsi

which is impossible because εi is non-negative.

Consider now the case when only one of the queue in the system, say node i, is

unstable and the other queue at node j(6= i) is stable, i.e., the limiting distribution exists

only for the queue at node j while the queue at node i is transient. At the steady-state

of queue j, the probabilities that the queue and the battery at node i are non-empty are 1

and min( δi
pi
, 1), respectively. These do not depend on j. In other words, node i randomly

interferes with node j with some probability which only has the effect of lowering the

average success probability of node j. Since queue j is stable, the average input rate
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is equal to the average output rate, which can be deduced by setting the LHS of Eq.

(4.5) to zero. Additional care should be taken here, because, not all the random variables

with a well-defined distribution function have finite expectation, when the distribution

is heavy-tailed with tail exponent that is less than 1 [79]. However, in most standard

queueing systems includingM /M /1,M /G/1, andG/M /1 systems, the queue size exhibits

exponential tail [80, 81]. The queue j under consideration is a decoupled discrete-time

system that is a variant of M /M /1 system whose service is paused when the battery is

empty. Since the inter-arrival times of energy chunks follow geometric distribution, and

since the energy process is independent of the data process and the channel, the limiting

distribution of queue j is also not heavy-tailed. Let us now compute µj|active which is

defined as the expected number of packets that is successfully serviced from node j given

that node j is active, i.e., given that both its data queue and its battery are non-empty.

Since the probability of success seen by node j is pjqj|{j}, if node i’s battery is empty, and

pj(1− pi)qj|{j} + pipjqj|{1,2}, if node i’s battery is non-empty, we obtain

µj|active = pjqj|{j}

[
1−min

(
δi
pi
, 1

)]
+ [pj(1− pi)qj|{j} + pipjqj|{1,2}] min

(
δi
pi
, 1

)
= pj(qj|{j} −∆j min(δi, pi))

Since the expected number of packets arriving into the data queue per slot is λj , it follows

from the property of a stable system, that the input rate is equal to the output rate so that

the probability that node j is active at any given time slot is given by

Pr[Bj 6= 0, Qj 6= 0] =
λj

µj|active

(4.6)

which does not depend on δj . As expectedly, however, if δj is decreased, the non-active

slots will be more likely to occur due to the emptiness of the battery, rather than that of the
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queue. Nevertheless, what it says is that the ratio between the active and non-active slots

must remain the same for a given input rate λj as long as the queue is stable. By noting

that node j transmits with probability pj only when it is active and node i is unstable, the

limiting expectation on the actual rate serviced out of queue i is obtained by

lim
n→∞

E[µi(n)] =

{
piqi|{i}

(
1− λj

µj|active

)
+ [pi(1− pj)qi|{i} + pipjqi|{1,2}]

λj
µj|active

}
×min

(
δi
pi
, 1

)
= min(δi, pi)

(
qi|{i} −

∆iλj
qj|{j} −∆j min(δi, pi)

)
(a)

≥ min(δi, pi)(qi|{i} −∆i min(δj, pj))

= µsi

where, for (a), we replaced λj with µsj − εj and used the fact that εj is non-negative.

Again, the instability of the queue i implies that the LHS of Eq. (4.5) is strictly positive

and, then, it must be the case that

λi = µsi − εi > lim
n→∞

E[µi(n)] ≥ µsi

which is impossible because εi is non-negative.

4.2.4.2 Necessary Condition

The necessary condition for the stability of the considered system is derived through

the construction of a hypothetical system as in Chapter 2.3; i) the packet and energy chunk

arrivals at each node occur at exactly the same instants as in the original system, ii) the
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coin tosses that determine transmission attempts at each node have exactly the same out-

comes in both systems, iii) however, one of the nodes in the system continues to transmit

dummy packets even when its data queue is empty but its battery is non-empty. The

dummy packet transmission continues to consume one chunk of energy in the battery but

does not contribute to throughput if the transmission is successful. Such a construction of

a hypothetical system with dummy packet transmissions has been widely used to analyze

systems of interacting queues as mentioned in Chapter 2.3. However, in the case of a sys-

tem with batteries, as is considered in this work, there exist sample-paths on which this

strict path-wise dominance is violated. This is because dummy packet transmissions alter

the dynamics of the batteries through unproductive use of their contents. For example,

there are instants when a node is no more able to transmit in the hypothetical system due

to the lack of energy while it is able to transmit in the original system. Being not able

to transmit may imply a better chance of success for the other node, if the latter attempts

to transmit at those instants, which causes a collapse of the sample-path dominance. In-

stead, here we use the hypothetical system of transmitting dummy packets only to derive

a necessary condition for the stability of the original system.

Let us define

Ri =

{
λ : λi ≤ min(δi, pi)

(
qi|{i} −

∆iλj
qj|{j} −∆j min(δi, pi)

)
,

λj ≤ min(δj, pj)(qj|{j} −∆j min(δi, pi))

}

where i 6= j and i, j ∈ { 1, 2 }.

Lemma 4.2.2. If the system is stable under the slotted ALOHA, then λ ∈
⋃
i∈{1,2}Ri.
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Proof. Let us consider a hypothetical system in which node i transmits dummy packets

when its packet queue is empty and node j(6= i) operates as in the original system, where

i, j ∈ { 1, 2 }. As mentioned earlier, all other random events including the packet arrivals,

energy harvesting, and the decisions for transmissions have the same realizations as in

the original system. In the hypothetical system, node i transmits with probability pi re-

gardless of the emptiness of its data queue, provided its energy queue is non-empty, and

each transmission consumes one chunk of energy. Therefore, Bi(n) forms a decoupled

discrete-time M /M /1 queue whose probability of non-emptiness is given by min( δi
pi
, 1)

and node i behaves independently from node j, i.e., node i only has the effect of lowering

the success probability of node j in the average sense. The saturated throughput of node

j, therefore, can be computed separately as in Eq. (4.4) and the queue at node j is stable

if

λj ≤ min(δj, pj)(qj|{j} −∆j min(δi, pi)) (4.7)

which follows by applying Lemma 4.2.1 to a single-node case. For λj satisfying Eq.

(4.7), the probability that node j is active is obtained as in Eq. (4.6) by noting that the

probability that battery i is non-empty is given by min( δi
pi
, 1). Thus, the queue at node i

is stable if

λi ≤
{
piqi|{i}

(
1− λj

µj|active

)
+ [pi(1− pj)qi|{i} + pipjqi|{1,2}]

λj
µj|active

}
min

(
δi
pi
, 1

)
= min(δi, pi)

(
qi|{i} −

∆iλj
qj|{j} −∆j min(δi, pi)

)
(4.8)

The pair of equations Eqs. (4.7) and (4.8) describes the stability condition for the hypo-

thetical system in which node i transmits dummy packets, which is a necessary condition

for the stability of the original system for the range of values of λj specified in Eq. (4.7).
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The reason is this: if for some λi, queue i is unstable in the hypothetical system, i.e., Eq.

(4.8) does not hold, then Qi(n) approaches infinity almost surely. Note that as long as

queue i does not empty, the behavior of the hypothetical system and the original system

are identical, provided they start from the same initial conditions, since dummy packets

will never have to be used. A sample-path that goes to infinity without visiting the empty

state, which is a feasible one for a queue that is unstable, will be identical for both the hy-

pothetical and the original systems. Therefore, the instability of the hypothetical system

implies the instability of the original system.

4.2.4.3 Proof of Theorem 4.2.1

Here we first compute the closure of the outer bound of S(δ,p) over all feasible

transmission probability vectors p ∈ [0, 1]2. Therefore, any rate vector that is outside the

closure is not attainable. After that, it is proven that the entire interior of the closure can

be achieved by showing that the closure of the inner bound is identical with that of the

outer bound.

Note that the description on the outer bound of S(δ,p) in Lemma 4.2.2 does not

depend on δ for p � δ and also note that increasing pi over δi has no effect since the value

of min(δi, pi) is bounded below by δi. For the subregion Ri, i ∈ { 1, 2 }, let us consider

the following boundary optimization problem in which we maximize the boundary of λi,
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denoted by λ̄i, for a given value of λj (j 6= i) as p varies3, that is

max
p

λ̄i = pi

(
qi|{i} −

∆iλj
qj|{j} −∆jpi

)
(4.9)

subject to λj ≤ pj(qj|{j} −∆jpi) (4.10)

pi ≤ δi, ∀i ∈ { 1, 2 } (4.11)

To maximize λ̄i over p, we need to understand their relationship. Note that λ̄i depends

only on pi. Differentiating λ̄i with respect to pi gives

∂λ̄i
∂pi

= qi|{i} −
∆iqj|{j}λj

(qj|{j} −∆jpi)2

and by differentiating once again, we have

∂2λ̄i
∂p2

i

= −
2∆i∆jqj|{j}λj

(qj|{j} −∆jpi)3

Since qj|{j} > ∆j , the second derivative is negative and, thus, λ̄i is a concave function of

pi. Equating the first derivative to zero gives the maximizing p∗i as

p∗i =
1

∆j

(
qj|{j} −

√
∆iqj|{j}λj
qi|{i}

)
(4.12)

and the corresponding maximum function value is obtained by substituting Eq. (4.12)

into Eq. (4.9), thus yielding

λ̄∗i,curve =

(
1−

√
∆iλj

qi|{i}qj|{j}

)(
qi|{i}qj|{j} −

√
∆iqi|{i}qj|{j}λj

∆j

)
(4.13)

Suppose now that the maximum occurs at a strictly interior point of the feasible region,

i.e., p∗i ∈ (0, δi), which corresponds to the condition

qi|{i}(qj|{j} −∆jδi)
2

∆iqj|{j}
< λj <

qi|{i}qj|{j}
∆i

(4.14)

3Note that optimizing the boundary of a region over p is equivalent to take the closure of the region over

p.
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which is obtained by rearranging Eq. (4.12) and substituting the extreme values of p∗i .

On the other hand, the constraint in Eq. (4.10) should also be satisfied for the derived p∗i .

Hence, by substituting Eq. (4.12) into Eq. (4.10) and using pj ≤ δj , we obtain

λj ≤
∆iqj|{j}δ

2
j

qi|{i}
(4.15)

Consequently, λ̄∗i,curve in Eq. (4.13) is valid only for the range of values of λj that satisfy

both Eqs. (4.14) and (4.15). The intersection of the ranges of values of λj determined

by Eqs. (4.14) and (4.15) would be identical with the range specified by Eq. (4.14) if

δj ≥
qi|{i}
∆i

, which is impossible because qi|{i} > ∆i while δj ≤ 1. Thus, if Ψ ≥ 1, where

Ψ is defined in Chapter 4.2.3, the intersection is given by

qi|{i}(qj|{j} −∆jδi)
2

∆iqj|{j}
< λj ≤

∆iqj|{j}δ
2
j

qi|{i}

Otherwise, if Ψ < 1, the intersection is an empty set.

Next suppose that either p∗i = 0 or p∗i = δi, which is the case when λj lies outside of

the range of Eq. (4.14). If λj is on the right-hand side of the range, i.e., if λj ≥
qi|{i}qj|{j}

∆i
,

λ̄i is a non-increasing function of pi since its first derivative in Eq. (4.3.4) is non-positive.

Therefore, p∗i = 0 and λ̄∗i = 0. On the other hand, if λj is on the left-hand side of the

range of Eq. (4.14), λ̄i is a non-decreasing function of pi and, hence, p∗i = δi and the

corresponding maximum function value is obtained as

λ̄∗i,line = δi

(
qi|{i} −

∆iλj
qj|{j} −∆jδi

)

for

λj ≤
qi|{i}(qj|{j} −∆jδi)

2

∆iqj|{j}
(4.16)
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On the other hand, the constraint in Eq. (4.10) at p∗i = δi becomes

λj ≤ δj(qj|{j} −∆jδi) (4.17)

Thus, λ̄∗i,line is valid for the range of values of λj specified as the intersection of the ranges

given by Eqs. (4.16) and (4.17). If Ψ ≥ 1, the intersection coincides with Eq. (4.16) and,

if Ψ < 1, it coincides with Eq. (4.17). To sum up, λ̄∗i is obtained as follows:

• If Ψ ≥ 1,

λ̄∗i =


λ̄∗i,curve, for

qi|{i}(qj|{j}−∆jδi)
2

∆iqj|{j}
< λj ≤

∆iqj|{j}δ
2
j

qi|{i}

λ̄∗i,line, for λj ≤
qi|{i}(qj|{j}−∆jδi)

2

∆iqj|{j}

• If Ψ < 1,

λ̄∗i = λ̄∗i,line, for λj ≤ δj(qj|{j} −∆jδi)

Substituting i ∈ { 1, 2 } into the above yields the description for λ̄∗1 and λ̄∗2 which lead

us to the description for the stability region given in Theorem 4.2.1. Specifically, when

Ψ ≥ 1, the end points of λ̄∗2,curve and λ̄∗2,line and those of λ̄∗1,curve and λ̄∗1,line meet at PB1

and PB2 (which are defined in Chapter 4.2.3), respectively. Furthermore, λ̄∗1,curve and

λ̄∗2,curve are functions that are inverse of each other and they can be identically rearranged

to coincide with Eq. (4.3). These segments together with the axes form a closed region in

the two-dimensional Euclidean space as shown in Fig. 4.3.3. If Ψ < 1, the end points of

λ̄∗1,line and λ̄∗2,line meet at PB3 and, likewise, they define a closed region as shown in Fig.

4.3.3.

What is left to be shown is the achievability of the specified region. From Lemma

4.2.1, we know that λ � µs can be stably supported. For some j ∈ { 1, 2 }, if p � δ, µsj

79



is written as

µsj = pj(qj|{j} −∆jpi)

from which we derive

pj =
µsj

qj|{j} −∆jpi
(4.18)

By substituting pj into the expression for µsi (i 6= j), we have

µsi = pi

(
qi|{i} −

∆iµ
s
j

qj|{j} −∆jpi

)

which turns out to be identical to the expression for the outer boundary in Eq. (4.9) by

replacing µsi with λ̄i and µsj with λj . In other words, the operating point of the saturated

system can be controlled to any point on the boundary of Ri by adjusting pj according

to Eq. (4.18) for i ∈ { 1, 2 } and j 6= i. This implies that the outer bound described by

Lemma 4.2.2 can be indeed achieved, which proves the achievability of Theorem 4.2.1.

4.2.5 The Impact of Finite Capacity Batteries

In this chapter, we consider the case where the capacity of the batteries is finite

and study the impact of that on the previously obtained stability region. Denote by ci the

capacity of the battery at node i. Then, the number of energy chunks stored in the battery

evolves according to

Bi(n+ 1) = min (Bi(n)− 1i(n) +Hi(n), ci)

i.e., the harvested energy chunks now can be stored only if the corresponding battery is

not fully recharged. Since most of the analysis overlaps with the case of infinite capacity

batteries, the result is demonstrated only for the collision channel model for brevity and
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Figure 4.5: Two-node stability region Sc(δ) with finite capacity batteries where δ =

(0.8, 0.6) and c = (3, 3) (the case when λmax
1 + λmax

2 ≥ 1)

to simplify the exposition. It becomes clear from the analysis that the channel with MPR

capability can be handled similarly. Denote by ci the capacity of the battery at node i and

let λmax
i , δi(1− δcii )/(1− δci+1

i ).

Theorem 4.2.2. For a given energy harvesting rate δ, the two-node stability region Sc(δ)

of the collision channel random access with batteries that have finite capacities, denoted

by c = (ci, i ∈ { 1, 2 }), is as follows. If λmax
1 + λmax

2 ≥ 1, the boundary of the stability

region is composed of three segments: (i) a line segment connecting (0, λmax
2 ) and ((1 −

λmax
2 )2, (λmax

2 )2), (ii) the curve
√
λ1 +

√
λ2 = 1 from the point with coordinates ((1 −

λmax
2 )2, (λmax

2 )2) to the point with coordinates ((λmax
1 )2, (1 − λmax

1 )2), and (iii) a line

segment connecting points ((λmax
1 )2, (1− λmax

1 )2) and (λmax
1 , 0). If λmax

1 + λmax
2 < 1, the

boundary is described by two straight line segments, namely, (i) the one connecting points

81



(0, λmax
2 ) and (λmax

1 (1 − λmax
2 ), λmax

2 (1 − λmax
1 )) and (ii) the one connecting (λmax

1 (1 −

λmax
2 ), λmax

2 (1− λmax
1 )) and (λmax

1 , 0).

Proof. We begin by noting that when a node, say node i, transmits with probability pi

whenever its battery is non-empty in case it is either saturated or transmits dummy packets

if its queue is empty, the size of the battery, Bi(n), follows a decoupled discrete-time

M /M /1/ci model whose probability of being non-empty is given by [80]

fi =


(δi/pi) (1− (δi/pi)

ci)

1− (δi/pi)
ci+1 , if δi 6= pi

ci
ci + 1

, if δi = pi

By following similar steps as in the previous chapter, the outer bound of Sc(δ,p) for the

case of the collision channel model is obtained as the union of regions described by

Ri =

{
λ : λi ≤ pifi

(
1− λj

1− pifi

)
, λj ≤ pjfj(1− pifi)

}
(4.19)

for i ∈ { 1, 2 } and i 6= j. Similarly, the saturated throughput vector of the system, which

corresponds to an inner bound of the stability region, is obtained asµs = (µsi , i ∈ { 1, 2 })

with µsi = pifi(1−pjfj). By substituting pj = µsj/(fj(1−pifi)) into the expression for µsi ,

we observe that the saturated throughput vector µs can achieve any point on the boundary

ofRi, i.e., the rate region inside the outer bound of Sc(δ,p) can be indeed achieved. Let

us now compute the closure of the stability region. Observe that the function pifi is an

increasing function of pi and, thus, its maximum occurs at p∗i = 1 and the corresponding

maximum function value is obtained as δi(1− δcii )/(1− δci+1
i ), which we denoted by

λmax
i . Consequently, any non-negative function value that is less than or equal to λmax

i

can be attained by appropriately selecting a value for pi between zero and one. Based on
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this observation, replace pifi in Eq. (4.19) with another variable p′i ∈ [0, λmax
i ]. The rest of

the proof follows that of Theorem 4.2.1. Specifically, we set up and solve an optimization

problem similar to that of Chapter 4.2.4.3 from Eq. (4.9) to Eq. (4.11) with qi|{i} = 1,

qi|{1,2} = 0, and pi ∈ [0, λmax
i ], ∀i ∈ { 1, 2 }. Indeed, the result for the channel with the

MPR capability can be obtained by solving the same problem as in Chapter 4.2.4.3 but

with pi ∈ [0, λmax
i ], ∀i ∈ { 1, 2 }. The remainder of the proof is omitted for brevity.

An example two-node stability region Sc(δ) with finite capacity batteries is de-

picted in Fig. 4.5 which is the region below the solid line. For comparison’s sake, the

stability region with infinite capacity batteries for the same parameter values is also de-

picted in the figure with the dotted line. The difference between the two regions, therefore,

represents the loss due to the finite capacity of the batteries.

Corollary 4.2.4. Denote by S∞(δ) the stability region of the slotted ALOHA with infinite

capacity batteries. Then, for any finite capacity batteries, the relation Sc(δ) ⊂ S∞(δ)

holds.

As observed in the proofs of Theorem 4.2.1 and Theorem 4.2.2, we can compute

S∞(δ) and Sc(δ) through a closure operation over p varying in the rectangles [0, δ1] ×

[0, δ2] and [0, λmax
1 ]× [0, λmax

2 ], respectively. The corollary follows from the fact that λmax
i

is strictly less than δi for any finite ci.

4.2.6 Simulation

The simulation results presented here suggest that the outer bound obtained in Sec-

tion 4.2.4 is the stability region of the original system. We simulate the system at the
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parameter setting that is identical to that of Fig. 4.4. Note that the main result in Fig.

4.2 is a consequence of the result in Fig. 4.4 by taking the closure of the inner and the

outer bounds over the access probability vector p. Thus, validating the inner and the outer

bounds is necessary and important.

We first observe the average behavior of the system as the traffic load increases. For

simplicity of exposition, we consider symmetric Bernoulli arrivals, so that λi = λ for all i

in { 1, 2 } as illustrated in Fig. 4.4 with the diagonal arrow. We simulated the system over

106 slots and the results are illustrated in Fig. 4.6. It is observed from Fig. 4.6(a) that as

we cross the outer bound of the stability region, which is at λ̄ = 0.2603 from Eq. 4.8,

the size of the queue at s2 starts growing. As the input rate is further increased such that

it exceeds λ = 0.287, which is the service rate of s1 when s2 transmits dummy packets

given in Eq. 4.7, the size of the queue at s1 also starts growing. The corresponding

average battery levels are also shown in Fig. 4.6(b).

Note, however, that the average behavior of the system demonstrated in Fig. 4.6 is

not enough to judge the stability of the system because stability is an asymptotic property

but the queue length averages were taken over the finite time interval. Although the

simulation interval can be further increased, it is nevertheless finite. Thus, the best we

can do is to observe the tendency of system dynamics over the course of time. In Fig. 4.7,

we illustrate queue length and battery level sample paths at input traffic load at λ = λ̄− ε

with ε = 0.01, where λ̄ is again the point on which in Fig. 4.4 the diagonal arrow meets

the outer bound of the stability region. Thus, the chosen loading point is inside the outer

bound of the stability region, which is slightly below the boundary. From Fig. 4.7(a), no

clear evidence is found to suggest that there is an increasing tendency in the queue size
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Figure 4.6: Average behavior of the system over 106 slots along the arrow in Fig. 4.4, i.e.,

λ = λ1 = λ2 for the range λ ∈ [0.2, 0.4]
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Figure 4.7: Sample paths of the system parameters at λ = λ̄ − ε with ε = 0.01, where λ̄

is the point on which in Fig. 4.4 the diagonal arrow meets the outer bound of the stability

region
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Figure 4.8: Sample paths of the system parameters at λ = λ̄ + ε with ε = 0.01, where λ̄

is the point on which in Fig. 4.4 the diagonal arrow meets the outer bound of the stability

region
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of both nodes, which allows us to conjecture that the system is stable. The corresponding

battery level sample paths are shown in Fig. 4.7(b). It is observed that the battery levels

at both nodes are increasing. Such an increasing tendency is obvious for the battery at

s1 because δ1 is greater than p1, which means that the energy expenditure rate cannot

exceeds the energy harvesting rate. It is conjectured that at this loading point, the queue

at s2 is non-empty for less than δ2/p2 fraction of time slots and, thus, the battery level at

s2 also increases.

Fig. 4.8 illustrates queue length and battery level sample paths at input traffic load

at λ = λ̄ + ε, which is slightly outside the outer bound of the stability region. It is

observed from Fig. 4.8(a) that there is an increasing tendency in the size of the queue at

s2, which allows us to conjecture the instability of the system. Since the queue at s2 is

keep increasing and does not empty over the simulation interval, the energy expenditure

rate is greater than the energy harvesting rate at give δ2 and p2, which can be seen in Fig.

4.8(b).

4.2.7 Discussion

We studied the effect of stochastic energy harvesting, which imposes energy avail-

ability constraint on each node, on the stability of the slotted ALOHA. An exact character-

ization of the stability region was carried out for the two-node case under the generalized

wireless channel model with MPR capability. By comparing to the case of unlimited en-

ergy for transmissions, we identified the loss in terms of the size of the stability region for

either infinite or finite battery capacities.
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4.3 Channel-Aware Random Access

4.3.1 Motivation

In this chapter, we consider the random access of nodes adapting their transmission

probability based on the local channel state information (CSI) in a distributed manner,

which is called the channel-aware random access (CARA). It needs to be emphasized that

the analysis in all the previous work on CARA discussed in Chapter 4.1 was performed

based on the ideal assumption that the perfect local CSI is available at each user [20–23].

In reality, however, the CSI is obtained through an estimation and any kind of estimation

is imperfect as long as there is randomness in the observed signal. Consequently, the

occurrence of errors in estimation is inevitable and the performance of CARA would

certainly depend on the accuracy of channel estimation. To see the effect of imperfect

CSI, we allow channel estimation errors in the two-state time-varying channel model

considered in [22,23], in which each user i transmits with probability pi when its channel

state is good and the packet queue is non-empty. Note that the errors either deprives

the chance to utilize the good channel state when falsely estimated to be bad or causes

unnecessary interference to the other user when its actual channel state is bad but falsely

estimated to be good. There is some related work on CARA with imperfect CSI; in [82],

the two-user system was considered under the collision channel model and, in [83], a

system with an arbitrary number of users was considered but with always backlogged

queues and symmetric channel statistics.

Our contributions can be summarized as follows. We first introduce the realistic

effect of practical channel estimation into the stability analysis of CARA. The analysis
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also takes into account the compound effect of the MPR capability, which depends not

only on the set of transmitters but also on their instantaneous channel states. The derived

stability region describes the theoretical limit on rates that can be pushed into the system

while maintaining the queues stable at given channel estimation error rates and MPR

probabilities. Secondly, by comparing with the case of having perfect CSI, we identify

the loss due to the imperfect CSI on the stability region of CARA. Finally, the stability

region of the longest connected queue (LCQ) policy [24], which is a throughput-optimal

policy that can stabilize the system whenever the stability is attainable, is derived again

in the presence of channel estimation errors. The LCQ policy schedules a user having

longest queue among those whose channel is connected and, thus, requires queue length

and channel state information feedback to the centralized controller. Interestingly, we

observed that the stability region of CARA, a fully distributed policy, is not always a

proper subset of that of the LCQ policy. This is when relatively strong MPR capability

presents.

4.3.2 System Model

We consider a multi-access system consisting of N nodes and a common receiver.

The stability analysis of CARA is done for N = 2 as illustrated in Fig. 4.9, whereas N

is set to an arbitrary positive integer for the analysis of the LCQ policy in Chapter 4.3.5.

Each node i has an infinite size queue for storing the arriving packets that have fixed

length. Time is slotted and the slot duration is equal to one packet transmission time. Let

Qi(n) denote the number of packets buffered at si at the beginning of the n-th slot which
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Figure 4.9: Illustration of the system with bursty packet arrivals and channel estimation

evolves according to

Qi(n+ 1) = max[Qi(n)− µi(n), 0] + Ai(n)

where the stochastic processes {µi(n)}∞n=0 and {Ai(n)}∞n=0 are sequences of random vari-

ables representing the number of arrivals and services at si during time slot n, respectively.

The arrival process {Ai(n)}∞n=0 is modeled as an independent and identically distributed

(i.i.d.) Bernoulli process with E[Ai(n)] = λi, and the processes at different nodes are as-

sumed to be independent of each other. The service process {µi(n)}∞n=0 depends jointly

on the transmission protocol and the underlying channel model, which governs the suc-

cess of transmissions.

The channel between node i and the receiver is randomly time-varying and its state

at time slot n is denoted by Ci(n) and let C(n) = {Ci(n), . . . , CN(n)}. We assume

that channels hold their state for the duration of a slot and potentially change on the slot

boundaries4. As in the previous work [22, 23], we model the time-varying channel as a

4This assumption can be validated when the channel coherence time is relatively longer than the slot
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discrete-time stochastic process taking values from {G,B}, which represents good and

bad states, respectively. The channel processes at different nodes are assumed to be inde-

pendent of each other but the realizations of a channel at a node at different time slots are

not necessarily independent. If fact, a channel process can be arbitrarily correlated over

time as long as stationary. We denote by πGi and πBi (= 1 − πGi ) the steady-state prob-

abilities that channel i is in good and bad states, respectively. The transmission control

policy considered in [23] is studied again in which node i transmits with probability pi

when Ci(n) = G and its queue is non-empty. We denoted by C̃i(n) the estimated channel

state over the link between node i and the receiver, and node i is now transmitting with

probability pi if C̃i(n) = G and its queue is non-empty. It is obvious that the perfor-

mance of this adaptation would highly depend on the accuracy of the channel estimation.

Let us define εGi = Pr[C̃i(n) = B|Ci(n) = G] and εBi = Pr[C̃i(n) = G|Ci(n) = B],

which are the probabilities of falsely estimating the channel state and let ε̄Gi = 1− εGi and

ε̄Bi = 1− εBi .

The success of a transmission depends on the underlying channel model. Unlike

the static MPR model used in [51–53], in which the time-varying nature of wireless chan-

nels was disregarded, our model captures not only the effect of interference but also the

instantaneous channel states of the transmitters. Denote by Ntx and Ctx(n) the set of

transmitting nodes and their channel states, respectively. Then, the probability that a

packet transmitted from node i is successfully decoded at the destination is described by

qi|Ctx(n) = Pr[γi|Ctx(n) > θ]

duration.
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where γi|Ctx(n) is the signal-to-interference-plus-noise-ratio (SINR) of the signal transmit-

ted from node i at the receiver given the channel states of the transmittersCtx(n) and the

threshold for the successful decoding θ. We assume throughout the paper that the success

probability when a node’s own channel state is bad is negligible due to such as the deep

fading regardless of the interference. This is the situation when the signal-to-noise-ratio

(SNR) itself is below the threshold θ for the successful decoding. Thus, for N = 2, we

are particularly interested in the following reception probabilities5

q1|{G}, q1|{G,B}, q1|{G,G}, q2|{G}, q2|{B,G}, q2|{G,G}

Note that the success probability when a signal is transmitted in the presence of interfer-

ence cannot exceed the probability when it is transmitted alone. Moreover, since we are

considering the multi-access to a common receiver, the fact that a node’s channel is in the

good state implies potentially higher interference level to the other node if they transmit

at the same time. Therefore, the following relations hold: q1|{G} > q1|{G,B} > q1|{G,G}

and q2|{G} > q2|{B,G} > q2|{G,G}.

4.3.3 CARA with Imperfect CSI

This chapter describes the stability region of CARA in the presence of channel

estimation errors. As noted earlier, the service process of a queue depends on the status

of the other, which makes the analysis challenging. The proof of the results, which is

based on the stochastic dominance technique [59], is presented in the next chapter. Let us

5For example, q2|{B,G} is the probability that the transmission by node 2 is successful when C1(n) = B

and C2(n) = G.
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define

Ψε
1 = πG2 ε̄

G
2

(
q1|{G} − q1|{G,G}

)
+ πB2 ε

B
2

(
q1|{G} − q1|{G,B}

)
Ψε

2 = πG1 ε̄
G
1

(
q2|{G} − q2|{G,G}

)
+ πB1 ε

B
1

(
q2|{G} − q2|{B,G}

)
which are shorthand notations to simplify the description of our main results.

Lemma 4.3.1. The stability region S(ε,p) of CARA at given channel estimation error

rate vector ε and transmission probability vector p is the union of the following subre-

gions:

R1 =

{
(λ1, λ2) : λ1 < πG1 ε̄

G
1 p1

(
q1|{G} −

Ψε
1λ2

πG2 ε̄
G
2

(
q2|{G} −Ψε

2p1

)) ,
λ2 < πG2 ε̄

G
2 p2

(
q2|{G} −Ψε

2p1

)}

and

R2 =

{
(λ1, λ2) : λ1 < πG1 ε̄

G
1 p1

(
q1|{G} −Ψε

1p2

)
,

λ2 < πG2 ε̄
G
2 p2

(
q2|{G} −

Ψε
2λ1

πG1 ε̄
G
1

(
q1|{G} −Ψε

1p2

))}

Proof. The proof is presented in the next chapter.

Let us define the following points in the two-dimensional Euclidean space:

P1 =

(
πG1 ε̄

G
1 q2|{G}(q1|{G} −Ψε

1)2

Ψε
2q1|{G}

,
πG2 ε̄

G
2 Ψε

1q2|{G}

q1|{G}

)
(4.20)

P2 =

(
πG1 ε̄

G
1 Ψε

2q1|{G}

q2|{G}
,
πG2 ε̄

G
2 q1|{G}(q2|{G} −Ψε

2)2

Ψε
1q2|{G}

)
(4.21)

P3 = (πG1 ε̄
G
1 (q1|{G} −Ψε

1), πG2 ε̄
G
2 (q2|{G} −Ψε

2)) (4.22)

which are all in the first quadrant.
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Theorem 4.3.1. If Ψε
1

q1|{G}
+

Ψε
2

q2|{G}
≥ 1, the boundary of the stability region S(ε) of CARA

at a given channel estimation error rate vector ε is described by three segments: (i) the

line connecting PY = (0, πG2 ε̄
G
2 q2|{G}) and P1, (ii) the curve√

Ψε
2

πG1 ε̄
G
1

λ1 +

√
Ψε

1

πG2 ε̄
G
2

λ2 =
√
q1|{G}q2|{G} (4.23)

from P1 to P2, and (iii) the line connecting P2 and PX = (πG1 ε̄
G
1 q1|{G}, 0). If Ψε

1

q1|{G}
+

Ψε
2

q2|{G}
< 1, it is described by two lines: (i) the line connecting PY and P3 and (ii) the line

connecting P3 and PX .

Proof. The proof is presented in the next chapter.

Corollary 4.3.1. If Ψε
1

q1|{G}
+

Ψε
2

q2|{G}
> 1, the stability region S(ε) is non-convex. If Ψε

1

q1|{G}
+

Ψε
2

q2|{G}
≤ 1, it is a convex polygon. Specifically, when Ψε

1

q1|{G}
+

Ψε
2

q2|{G}
= 1, the region

becomes a right triangle.

This corollary can be easily verified by comparing the slopes of the lines from PY

to P1 and from P2 to PX and those from PY to P3 and from P3 to PX . Specifically, if

Ψε
1

q1|{G}
+

Ψε
2

q2|{G}
= 1, the curve Eq. (4.23) shrinks to a point whose coordinate is identically

described by both P1 and P2 and the slopes of the lines from PY to P1 and from P2 to PX

become identical.

Consider the case when perfect CSI is available. This can be viewed as a special

case of our model with ε = 0, where 0 is the vector of zeros. By substituting ε = 0 into

Theorem 4.3.1, we can obtain the stability region for the case with perfect CSI, which

reconfirms the previous results obtained in [22] and [23]. For the comparison’s sake, let

us consider the case when CSI is not available and, hence, each node has to make de-

cisions on transmission independent of the underlying channel states. This corresponds
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to the original ALOHA in which each node transmits with probability pi regardless of

the underlying channel states whenever its queue is non-empty. Thus, at a given set of

transmitters, the success probability of each node is given as a constant, which is ob-

tained by taking the average over the stationary distribution of the channel states. Denote

by qs
i and qm

i (i ∈ { 1, 2 }) the transmission success probabilities seen by node i when

it transmits alone or along with the other node j( 6= i). For the two-node case, it is

obtained as qs
1 = πG1 q1|{G}, qm

1 = πG1 π
G
2 q1|{G,G} + πG1 π

B
2 q1|{G,B}, qs

2 = πG2 q2|{G}, and

qm
2 = πG1 π

G
2 q2|{G,G} + πB1 π

G
2 q2|{B,G}. Also define ∆i = qs

i − qm
i , which is assumed to

be strictly positive without loss of generality. The following theorem obtained in [53]

describes the stability region of the original ALOHA for the case with static MPR chan-

nels, but it is also applicable to the system with time-varying channels but when the CSI

is unavailable. This is because the success probabilities are given as constants over time.

We especially denote the stability region for this case by S(∅) since the notion of channel

estimation errors for the case with no CSI is not valid.

Theorem 4.3.2. If ∆1

qs1
+ ∆2

qs2
≥ 1, the boundary of the stability region of ALOHA with

no CSI, denoted by S(∅), is described by three segments: (i) the line connecting PY =

(0, qs
2) and P1 = (

qs2(qs1−∆1)2

∆2qs1
,

∆1qs2
qs1

), (ii) the curve
√

∆2λ1 +
√

∆1λ2 =
√
qs

1q
s
2 from P1 to

P2 = (
∆2qs1
qs2
,
qs1(qs2−∆2)2

∆1qs2
), and (iii) the line connecting P2 and PX = (qs

1, 0). If ∆1

qs1
+ ∆2

qs2
< 1,

it is described by two lines: (i) the line connecting PY and P3 = (qs
1 −∆1, q

s
2 −∆2) and

(ii) the line connecting P3 and PX .

Proof. Please refer to [53].

In Fig. 1 and Fig. 2, we illustrate the stability region of CARA with imperfect
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Figure 4.10: Stability region of CARA: the case of non-convex region (parameter

setting:πG1 = 0.8, πG2 = 0.7, q1|{G} = 1, q2|{G} = 0.9, q1|{G,B} = q2|{B,G} = 0.2,

q1|{G,G} = q2|{G,G} = 0.1, εji = 0.2,∀i, j)

CSI along with the case with perfect CSI and the original ALOHA with no CSI. It is

evident that the stability region of CARA with perfect CSI always includes that of original

ALOHA, which complies with the previous results obtained in [22]. It is also obvious that

the stability region of CARA with perfect CSI always includes that with imperfect CSI,

and the difference between the two regions, therefore, can be understood as the loss due

to the errors in channel estimation. However, the stability region of original ALOHA is

not a proper subset of that of CARA with imperfect CSI as shown in the figures. The

inefficiency of CARA is due to the fact that each node transmits only when the channel

is estimated to be good and those time slots when the channel is estimated to be bad but

when it is indeed good is not exploited.
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Figure 4.11: Stability region of CARA: the case of convex region (parameter setting:πG1 =

0.8, πG2 = 0.7, q1|{G} = 1, q2|{G} = 0.9, q1|{G,B} = q2|{B,G} = 0.5, q1|{G,G} = q2|{G,G} =

0.4, εji = 0.1,∀i, j)

4.3.4 Stability Analysis

In this chapter, we provide details on the derivation of our main result presented in

the previous chapter. Note that nodes are interfering with each other only when they are

transmitting and, under the considered protocol, node i transmits with probability pi if

the estimated channel state is good and its queue is non-empty. Since the queues in the

system are interacting, we use the stochastic dominance technique introduced in Chapter

2.3.

Construct a hypothetical system which is identical to the original system except that

node 2 transmits dummy packets when it decides to transmit but its packet queue is empty.
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Define 1i(n) to be an indicator function whose value is one if the transmission by node

i is successful, which also necessarily requires that the corresponding node transmits at

that time slot. Otherwise, 1i(n) = 0. By conditioning on the underlying actual channel

states, the average service rate of the queue at node 1 can be expressed as

µ1 =
∑
C′

Pr[11|C = C ′]Pr[C = C ′]

= Pr[11|C = {G,G}]πG1 πG2 + Pr[11|C = {G,B}]πG1 πB2 (4.24)

where we used the fact that the transmission success probability is zero when a node’s

own channel state is bad and the time index n is suppressed in the steady-state. Note that

each node i transmits with probability pi only when the estimated channel state is good.

By further conditioning on the estimated channel states, it is expressed as

Pr[11|C = C ′] =
∑
C̃
′

Pr[11|C = C ′, C̃ = C̃
′
]Pr[C̃ = C̃

′|C = C ′]

where

Pr[11|C = {G,G}] =
[
q1|{G}p1(1− p2) + q1|{G,G}p1p2

]
ε̄G1 ε̄

G
2 + q1|{G}p1ε̄

G
1 ε

G
2 (4.25)

and

Pr[11|C = {G,B}] = q1|{G}p1ε̄
G
1 ε̄

B
2 +

[
q1|{G}p1(1− p2) + q1|{B,G}p1p2

]
ε̄G1 ε

B
2 (4.26)

By substituting Eqs. (4.25) and (4.26) into Eq. (4.24) and, after some manipulations, the

average service rate of the queue at node 1 is derived as

µ1 = πG1 ε̄
G
1 p1

(
q1|{G} −Ψε

1p2

)
where Ψε

i is defined in Chapter 4.3.3. By Loynes’ Theorem, the queue at node 1 is stable

if λ1 < µ1. Note that the queue size at node 1 in this dominant system can be modeled
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as a discrete-time M /M /1 system with arrival rate λ1 and the service rate given above,

which does not depend on the status of the queue at node 2. For stable input rate λ1 that

is less than µ1, the queue at node 1 empties out with probability

Pr[Q1 = 0] = 1− λ1

µ1

= 1− λ1

πG1 ε̄
G
1 p1

(
q1|{G} −Ψε

1p2

)
Observe that the service process of the queue at node 2 depends on the status of the queue

at node 1 since node 1 is able to transmit only when its queue is non-empty and, thereby,

interfering with node 2. By conditioning on the emptiness of the queue at node 1, the

average service rate of the queue at node 2 can be expressed as

µ2 = Pr[12|Q1 6= 0]Pr[Q1 6= 0] + Pr[12|Q1 = 0]Pr[Q1 = 0] (4.27)

The service rate of the queue at node 2 when the queue at node 1 is non-empty can be

obtained by following the same procedure used for deriving the service rate of the queue

at node 1 and is given by

Pr[11|Q2 6= 0] = πG1 ε̄
G
1 p1

(
q1|{G} −Ψε

2p1

)
(4.28)

The service rate of the queue at node 2 when the queue at node 1 is empty can be obtained

quite simply as it does not depend on the action made by node 1 and is given by

Pr[11|Q2 = 0] = πG1 ε̄
G
1 p1q1|{G} (4.29)

Substituting Eqs. (4.28) and (4.29) into Eq.(4.27) yields the average service rate of the

queue at node 2 which can be summarized to

µ2 = πG2 ε̄
G
2 p2

(
q2|{G} −

Ψε
2λ1

πG1 ε̄
G
1

(
q1|{G} −Ψε

1p2

))
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and by Loyne’s Theorem, the queue at node 2 is stable if λ2 < µ2. Consequently, the

stable input rate pairs (λ1, λ2) are those less than (µ1, µ2) elementwise, and it gives the

description of R2 in Lemma 4.3.1. By reversing the roles of the two nodes, we construct

a parallel dominant system in which node 1 transmits dummy packets and, by following

the same procedure used for the first dominant system, the stability region for this parallel

dominant system is obtained as described in Lemma 4.3.1, which is denoted byR1.

Importantly, the stability condition obtained using the dominant system technique

is not merely a sufficient condition for the stability of the original system but is sufficient

and necessary. Consider, for example, the subregion R2 obtained for the dominant sys-

tem in which node 2 transmits dummy packets. The sufficient part is trivial which follows

from the construction of the dominant system such that the dominant system stochasti-

cally dominates the original system in number of packets in the queues at all times. The

necessary part can be proved as follows: if for some λ2, the queue at node 2 is unstable in

the hypothetical system, then Q2(n) approaches infinity almost surely. Note that as long

as the queue does not empty, the behavior of the hypothetical system and the original

system are identical, provided they start from the same initial conditions, since dummy

packets will never have to be used. A sample-path that goes to infinity without visiting the

empty state, which is a feasible one for a queue that is unstable, will be identical for both

the hypothetical and the original systems. Therefore, the instability of the hypothetical

system implies the instability of the original system.

We now obtain the maximum achievable stability region, which is the closure of

the stability region S(ε,p) over the transmission probability vector p. An equivalent

way of taking the closure operation is to optimize the boundary of the stability region
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S(ε,p) over p. For the subregionR2, for example, we set up the following optimization

problem, in which µ2 is maximized over p at given λ1 while satisfying the stability of the

queue at node 1.

max
p

µ2 = πG2 ε̄
G
2 p2

(
q2|{G} −

Ψε
2λ1

πG1 ε̄
G
1

(
q1|{G} −Ψε

1p2

)) (4.30)

subject to λ1 < πG1 ε̄
G
1 p1

(
q1|{G} −Ψε

1p2

)
(4.31)

~p ∈ [0, 1]2 (4.32)

Note that µ2 depends only on p2 but not on p1. Differentiating µ2 with respect to p2 gives

∂µ2

∂p2

= πG2 ε̄
G
2

(
q2|{G} −

Ψε
2q1|{G}λ1

πG1 ε̄
G
1

(
q1|{G} −Ψε

1p2

)2

)

By differentiating once again, we have

∂2µ2

∂p2
2

= −
2Ψε

1Ψε
2π

G
2 ε̄

G
2 q1|{G}λ1

πG1 ε̄
G
1

(
q1|{G} −Ψε

1p2

)3

Observe that

q1|{G} −Ψε
1p2 ≥ q1|{G} −Ψε

1

= (1− πG2 ε̄G2 − πB2 εB2 )q1|{G} + πG2 ε̄
G
2 q1|{G,G} + πB2 ε

B
2 q1|{G,B}

≥ (1− πG2 − πB2 )q1|{G} + πG2 ε̄
G
2 q1|{G,G} + πB2 ε

B
2 q1|{G,B}

= πG2 ε̄
G
2 q1|{G,G} + πB2 ε

B
2 q1|{G,B}

> 0 (4.33)

Therefore, the second derivative is strictly negative and, consequently, µ2 is a concave

function of p2. Equating the first derivative to zero gives the maximizing p∗2 as

p∗2 =
1

Ψε
1

(
q1|{G} −

√
Ψε

2q1|{G}λ1

πG1 ε̄
G
1 q2|{G}

)
(4.34)
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and the corresponding maximum function value is obtained by substituting Eq. (4.34)

into Eq. (4.30) as

µ∗2,curve =
πG2 ε̄

G
2

Ψε
1

(
q1|{G} −

√
Ψε

2q1|{G}λ1

πG1 ε̄
G
1 q2|{G}

)(
q2|{G} −

√
Ψε

2q2|{G}λ1

πG1 ε̄
G
1 q1|{G}

)

Suppose that the maximum occurs at a strictly interior point of the feasible region, i.e.,

p∗2 ∈ (0, 1), which corresponds to the condition

πG1 ε̄
G
1 q2|{G}(q1|{G} −Ψε

1)2

Ψε
2q1|{G}

< λ1 <
πG1 ε̄

G
1 q1|{G}q2|{G}

Ψε
2

(4.35)

that is obtained by rearranging Eq. (4.34) and substituting the extreme values of p∗2, i.e., 0

and 1. On the other hand, the constraint Eq. (4.31) should also be satisfied for the derived

p∗2, which gives

λ1 <
πG1 ε̄

G
1 Ψε

2q1|{G}

q2|{G}
(4.36)

Consequently, µ∗2,curve is valid only for the intersection of Eqs. (4.35) and (4.36). By

comparing the endpoints, the intersection is specified to be the same with Eq. (4.35) if

Ψε
2 ≥ q2|{G}, which is impossible. This is because, from the relation described in Eq.

(4.33), it can be deduced that Ψε
i < qi|{G}. If Ψε

1

q1|{G}
+

Ψε
2

q2|{G}
≥ 1, the intersection becomes

πG1 ε̄
G
1 q2|{G}(q1|{G} −Ψε

1)2

Ψε
2q1|{G}

< λ1 <
πG1 ε̄

G
1 Ψε

2q1|{G}

q2|{G}

Otherwise, it is an empty set.

Next suppose that p∗2 is either 0 or 1, which is the case when λ1 is outside of the

range in Eq. (4.35). If λ1 is on the right-hand side of the range, ∂µ2
∂p2

becomes non-positive

and, thus, µ2 is a non-increasing function of p2. Therefore, p∗2 = 0, which gives µ∗2 = 0.

Whereas, if λ1 is on the left-hand side of the range, µ2 is a non-decreasing function of p2
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and, thus, p∗2 = 1. The corresponding maximum function value is obtained as

µ∗2,line = πG2 ε̄
G
2

(
q2|{G} −

Ψε
2λ1

πG1 ε̄
G
1 (q1|{G} −Ψε

1)

)

By substituting p∗2 = 1 into Eq. (4.31), we have

λ1 < πG1 ε̄
G
1 (q1|{G} −Ψε

1) (4.37)

Given the fact that λ1 lies on the left-hand side of the range in Eq. (4.35) in addition

to the above constraint, it is shown that if Ψε
1

q1|{G}
+

Ψε
2

q2|{G}
≥ 1, µ∗2,line is valid for λ1 on

the entire range of the left-hand side of Eq. (4.35). Otherwise, it is valid for the range

specified by Eq. (4.37). Following the similar procedure, we can optimize the boundary

of the subregionR1, which completes the proof of Theorem 4.3.1.

4.3.5 Comparisons with the Centralized Schedulers

In this chapter, we compare the stability region of CARA to that achieved by

scheduling policies that make centralized decision based on the CSI feedback. Note that

a scheduler allocates each time slot to one of the nodes such that the scheduled node

can transmit in an interference-free environment during the allocated slot. In [84], it

was shown that queue length information can be utilized to improve the scheduling per-

formance. Specifically, the discovered policy that serves the longest-connected-queue

(LCQ) among those in ‘Good’ channel state stabilizes the system whenever the input rate

vector is inside the stability region. Here, the stability region is defined as the set of arrival

rate vectors that can be stably supported by considering all possible stationary scheduling

policies. This is why the LCQ policy is called a throughput-optimal policy. The following
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theorem is derived again for the case with channel estimation errors, which was originally

derived in [84] for the case with perfect CSI.

Theorem 4.3.3. The necessary and sufficient stability condition by considering all possi-

ble stationary scheduling policies in the presence of channel estimation errors is

∑
i∈N ′

λi
qi|{G}

< 1−
∏
i∈N ′

(
1− πGi ε̄Gi

)
, ∀N ′ ∈ { 1, . . . , N } (4.38)

Furthermore, the LCQ policy stabilizes the system as long as it is stabilizable.

Proof. Assume that the system is operating under certain stationary policy and it is stable.

Denote by 1i(n) the indicator function that is equal to 1 if the transmission by node i is

successful, which necessarily implies that node i is chosen to transmit at that time slot.

Also denote by Ii(n) the indicator function that is equal to 1 if the actual channel state

between node i and the receiver is Good and it is estimated correctly. The expectations

are given by E[1i(n)] = qi|{Ci(n)}, and E[Ii(n)] = πGi ε̄
G
i . The number of packets at

queue i evolves with time according to the queueing dynamics in Eq. (5.1) with µi(n) =

hi(n) · 1i(n), where hi(t) = 1 if node i is scheduled at time slot n and Ii(n) = 1. Thus,

the departure rate from queue i is written as

E[hi(t)1i(t)] = qi|{G}E[hi(t)]

Note that if the system is stable, the rate of what comes in must be equal to the rate of

what goes out. In other words, for any subset of network nodesN ′, the following equality

must hold. ∑
i∈N ′

λi
qi|{G}

=
∑
i∈N ′

E[hi(t)] (4.39)
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Consider now the partition of the probability space into the events

Ω1 = { Ii(t) = 0, i ∈ N ′ }

Ω2 = { Ii(t) = 0, i ∈ N ′ }c ∩ {Qi(t− 1) = 0, i ∈ N ′ }

Ω3 = { Ii(t) = 0, i ∈ N ′ }c ∩ {Qi(t− 1) = 0, i ∈ N ′ }c

where Ωc is the complementary set of Ω. Notice that E
[∑

i∈N ′ hi(t)|Ωl

]
= 0 for l = 1, 2

and, therefore, we have

∑
i∈N ′

E[hi(t)] = E

[
E

[∑
i∈N ′

hi(t)|Ω3

]
Pr[Ω3]

]

< 1− Pr[Ω1]− Pr[Ω2]

Owing to the assumption on the independence of the channel processes between different

nodes, we have

Pr[Ω1] =
∏
i∈N ′

(1− πGi ε̄Gi )

and Pr[Ω2] > 0. Therefore, we have

∑
i∈N ′

E[hi(t)] < 1−
∏
i∈N ′

(1− πGi ε̄Gi ) (4.40)

and Eqs. (4.39) and (4.40) implies Eq. (4.38) in the theorem.

For the sufficiency, we use the Lyapunov drift argument similar to that used in

[84]. Denote by L( ~Q(t)) a Lyapunov function of the queue length process and define

the conditional Lyapunov drift as ∆(L( ~Q(t))) = E[L( ~Q(t + 1)) − L( ~Q(t))| ~Q(t)]. If

there exist some ε > 0 and a finite number b such that the conditional Lyapunov drift

satisfies ∆(L( ~Q(t))) < −ε for L( ~Q(t)) > b, the queues in the system are stable. This is

an application of Foster’s criterion for ergodicity of a Markov chain [24]. Let us consider
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L( ~Q) =
∑N

i=1 q
−1
i|{G}Q

2
i . Then, for the considered Lyapunov function, it can be shown

that the conditional Lyapunov drift satisfies

∆(L( ~Q(t))) < 1 +
N∑
i=1

q−1
i|{G}

(
E[A2

i (t)] + 2λiQi(t)
)
− 2E

[
N∑
i=1

Qi(t)hi(t+ 1)| ~Q(t)

]
(4.41)

The details on the derivation of the above inequality can be found in [84].

Define now a permutation ei for i = 0, . . . , N such that e0 = 0 and Qei(t) ≥

Qei−1
(t), for i = 2, . . . , N . Consider also a partition of the probability space into the

events Φi defined by

Φi = { Iei(t+ 1) = 1, Iej(t+ 1) = 0, N ≥ j > i }

for i = 1, . . . , N and Φ0 = { ~I(t+ 1) = ~0 }. Notice that from the definition of the LCQ

policy, in the event Φj , queue ej is served if it is not empty. Therefore, the last term in the

right-hand side of Eq. (4.41) becomes

E

[
N∑
i=1

Qi(t)hi(t+ 1)| ~Q(t)

]
=

N∑
i=1

Qei(t)π
G
i ε̄

G
i

N∏
j=i+1

(1− πGej ε̄
G
ej

)

By substituting the above into Eq. (4.41) and after some manipulation, we obtain

∆(L( ~Q(t))) < 1+
N∑
i=1

E[A2
i (t)]+2QeN (t) max

N ′⊂{ 1,...,N }

[∑
i∈N ′

λi
qi|{G}

− 1 +
∏
i∈N ′

(
1− πGi ε̄Gi

)]

It is not difficult to observe that if the condition in Eq. (4.38) is met, then for sufficiently

large QeN (t), the right-hand side of the above conditional Lyapunov drift becomes nega-

tive. This completes the proof.

For the two-node case, the stability condition in Eq. (4.38) in the above theorem

becomes

λ1

q1|{G}
+

λ2

q2|{G}
< πG1 ε̄

G
1 + πG2 ε̄

G
2 (1− πG1 ε̄G1 )
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Figure 4.12: Comparison with the LCQ policy (common setting: πG1 = 0.8, πG2 = 0.7,

q1|{G} = q2|{G} = 0.9, parameter setting 1: q1|{G,B} = q2|{B,G} = 0.7, q1|{G,G} =

q2|{G,G} = 0.6, εji = 0.1,∀i, j, parameter setting 2: q1|{G,B} = q2|{B,G} = 0.4,

q1|{G,G} = q2|{G,G} = 0.3, εji = 0.3,∀i, j)

and λi < πGi ε̄
G
i qi|{G} for i ∈ {1, 2}. In Fig. 2, we compare the stability region of CARA

to that achieved by LCQ policy, and it can be observed that the former is not necessarily a

subset of the latter. Indeed, the relationship between them depends on parameters such as

the channel estimation error and the MPR probabilities. Note that the stability region of

CARA becomes a subset of that of the LCQ policy when the stability region of CARA is

non-convex, or convex but if the vertex P3 given in Eq. (4.22) is strictly contained in the

stability region achieved by LCQ policy. The condition for P3 to be inside the stability
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region of the LCQ policy is given by

Ψε
1

πG2 ε̄
G
2 q1|{G}

+
Ψε

2

πG1 ε̄
G
1 q2|{G}

> 1

Otherwise, if the stability region of CARA is convex and the above inequality does not

hold, the stability region of CARA is not a proper subset of that of the LCQ policy, i.e.,

there exists a region that can be achieved only by CARA.

4.3.6 Discussion

We studied the stability property of CARA in the presence of channel estimation er-

rors and showed that its stability region may not strictly contain that of original ALOHA.

To guarantee the superiority of CARA even with imperfect CSI, we need to modify the

protocol itself such that each node transmits with some positive probability, although it be-

lieves that the channel is in the bad state. Such modification was not considered here. We

also compared the stability region of CARA to that achieved by the throughput-optimal

LCQ policy and showed that the former is not necessarily a subset of the latter especially

as the MPR capability improves.

4.4 Chapter Summary

In this chapter, interesting variants of the random access systems was studied. The

first was the random access of nodes having energy harvesting capability. We accurately

assessed the effect of limited energy availability due to harvesting on the stability region

by comparing against the case of having unlimited energy. We next considered the random
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access of nodes adapting their transmission probability based on the local channel state

information and studied the impact of imperfect sensing on the achieved stability region.
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Chapter 5

Cross-Layer Control for Wireless Multi-Hop Network with

Time-Correlated Arrivals

5.1 Background

The performance of the backpressure-based stochastic network control in multi-

hop wireless networks with time-correlated arrivals is studied in this chapter using the

Lyapunov drift technique [24–27]. The considered arrival process is fairly general in the

sense that it may exhibit short/long-range dependence depending on the asymptotic shape

of the autocorrelation function. The results are obtained separately for both cases when

the arrival rate vector is strictly inside and possibly outside the stability region, which

incorporates the statistical information of the arrival processes. To the best of our knowl-

edge, there is no existing work which takes arrivals that are possibly long-range depen-

dent into the analysis of the backpressure-based control for general mult-ihop networks.

In [25], it was shown that the original backpressure policy [24] is still throughput-optimal

for the system with non-i.i.d. arrivals and channel states. Since, however, it uses the

fact that the correlations would be eventually averaged out over sufficiently long time

interval, the derived results do not explicitly contain the statistical information of such

non-i.i.d. processes. Also, only the case when the arrival rate vector is strictly inside the

stability region was considered in the work. In [85], the delay performance of the max-
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weight scheduling was studied for both single-hop and multi-hop networks with two-state

Markov modulated arrival processes that are certainly short-range dependent. The arrival

process considered in [86] is as general as ours but was considered in the context of max-

imal scheduling for single-hop networks.

This chapter begins with the case when the arrival rate vector is strictly inside the

stability region. This is the case when the throughput of each flow is equal to its arrival

rate if the network is stable. For this, we show that the backpressure policy stabilizes the

network no matter whether the arrivals are i.i.d. or time-correlated as long as the average

rate vector is contained in the stability region. The effect of correlations in the network

traffic appears in the increased average network delay when compared to the i.i.d. case.

We next consider the case when the arrival rate vector is possibly outside the stability

region and use the method of joint flow control and backpressure policy developed in

[26,27]. The joint policy performs arbitrarily close to the utility-optimal throughput point

with a corresponding tradeoff in the average network delay. The effect of correlations in

the network traffic appears in the tradeoff relation and we make a comparison with the

i.i.d. case.

5.2 Correlation in the Input Traffic

We consider a time-slotted wireless multi-hop network withN nodes andL directed

links. An example network topology is shown in Fig. 5.1. We denote by N and L the set

of nodes and links, respectively. Let An,c(t) represent the exogenously arriving amount

of data at node n during time slot t which is destined to node c in units of bits/slot. At
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Figure 5.1: Wireless multi-hop network with multiple input streams and per-destination

queueing

each node, all the exogenous and endogenous traffic due to relaying is classified and

queued according to their destinations. We let Qn,c(t) be the backlog of destination c data

that is awaiting transmission in node n at time slot t in units of bits and define
−→
Q(t) ,

(Qn,c(t),∀n, c). We assume that the system starts with empty queues, i.e., Qn,c(0) = 0

for all (n, c) pairs. Denote by µl(t) and µl,c(t) the transmission rate over link l during

time slot t and the amount of rate that is offered to destination c traffic in µl(t) in units of

bits/slot, respectively. Thus,
∑

c µl,c(t) ≤ µl(t) for all l. Note that the transmission rate

of each link depends not only on the underlying channel state but also on the activation of

other interfering links. Denote by Γt the feasible region of link transmission rate vector

−→µ (t) , (µl(t),∀l) at time slot t. In each time slot, a control policy chooses −→µ (t) from

the constrained set Γt and allocates rates to the traversing flows.

In this work, the arrival process An,c(t) does not necessarily to be i.i.d. but only

needs to be wide-sense stationary (WSS); that is a process with constant mean λn,c, finite

variance σ2
n,c, and an autocorrelation function ρn,c(k) , E[(An,c(t)−λn,c)(An,c(t− k)−

λn,c)]/σ
2
n,c that depends only on the time-lag between samples. Denote by H(t) the past
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history of all arrivals up to but not including time slot t. If there exists finite number

T ≥ 0 such that E[An,c(t)|H(t − k)] = λn,c for k ≥ T , then ρn,c(k) = 0 for k > T .

Stochastic processes that fall in this category are said to have finite-length memory; an

i.i.d. process is a special case with T = 0. If there is no such finite T , we further di-

vide the processes according to the asymptotic shape of autocorrelation function ρn,c(k).

For most of the stochastic models including autoregressive moving average processes and

Markov modulated processes, the autocorrelation functions are characterized by expo-

nential decay, i.e., ρn,c(k) ∼ αk as k →∞, where 0 < α < 1. The exponential tail of the

autocorrelation function implies
∑

k ρn,c(k) <∞. Stochastic processes belonging to this

category are said to be short-range dependent. The burstiness of the input traffic modeled

by a short-range dependent process would tend to be smoothed by averaging over a long

enough time scale. On the other hand, long-range dependent processes are character-

ized by power-law decay of the autocorrelation function, i.e., ρn,c(k) ∼ k−β as k → ∞,

where 0 < β < 1. As a consequence, the autocorrelation function is nonsummable, i.e.,∑
k ρn,c(k) = ∞, which implies that while high-lag correlations are individually small,

their cumulative effect gives rise to features which are drastically different from those of

short-range dependent processes [40]. Examples of long-range dependent processes are

fractional Brownian motion and its discrete-time analog, fractional Gaussian noise. The

degree of self-similarity of a series is expressed using a single parameter H , called Hurst

parameter. Self-similar processes and long-range dependent processes are related through

the relationH = 1−β/2; for a self-similar process with long-range dependence, we have

1/2 < H < 1. Nevertheless, they are two different concepts; self-similarity involves all

scales whereas long-range dependence only involves asymptotically large scale. Yet, if we
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Figure 5.2: Illustration of two-dimensional stability region and the arrival rate vector that

is inside the stability region

are only concerned about the steady-state performance measures such as average network

delay, the effect of self-similarity is not different from that of long-range dependency.

5.3 Network with Stabilizable Input Traffic

Define In andOn as the set of incoming and outgoing links of node n, respectively.

In other words, In = { l : rx(l) = n } and On = { l : tx(l) = n }, where tx(l) and rx(l)

are the transmitting and receiving nodes of link l, respectively. Then, the queue length

process at node n for destination c data evolves as

Qn,c(t+ 1) ≤ max

[
Qn,c(t)−

∑
l∈On

µl,c(t), 0

]
+
∑
l∈In

µl,c(t) + An,c(t) (5.1)

which is an inequality rather than an equality because the actual endogenous arrivals may

be less than the allocated link rates if the corresponding transmitters do not have enough

data. The reason for Eq. (5.1) to contain the max operation is the same. The stability
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region Λ of a system is defined as the set of arrival rate vectors
−→
λ , (λn,c,∀n, c) for

which all queues in the network are stable by considering all possible stationary policies

[24]. Assuming that the arrival rate vector is inside the stability region, i.e.,
−→
λ ∈ Λ, as

shown in Fig. 5.2, the exact throughput that is equal to the arrival rate is achieved at each

flow simply by stabilizing the network. It is well-known that the the backpressure policy

in Algorithm 1 stabilizes a network whenever the arrival rate vector is inside the stability

region but requires the i.i.d. assumption on the number of arrivals [24, 26].

Algorithm 1 Backpressure Policy [24]

• Differential Backlog Routing/Scheduling: The differential backlog of destination

c data over link l is defined as Dl,c(t) , Qtx(l),c(t) − Qrx(l),c(t). If the link is

directly connected to the destination, i.e, rx(l) = c, Dl,c(t) , Qtx(l),c(t). The

maximum differential backlog over link l is obtained as Dl(t) = maxcDl,c(t) and

the maximizing destination c∗ data is chosen for potential transmission over link l.

• Max-Weight Rate Allocation: The link transmission rate vector ~µ(t) is selected

from feasible region Γt to maximize the weighted sum rate as

arg max
~µ(t)∈Γt

∑
l∈L

Dl(t)µl(t)

where the weight of each link corresponds to the maximum differential backlog of

the link.

Note that the policy lets the maximizing commodity c∗ use all the allocated rate

over the link. Therefore, µl,c∗(t) = µl(t) and µl,c(t) = 0 for all c 6= c∗. Before presenting

the performance of the backpressure policy with time-correlated arrivals, let us define
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the following constants. Denote by Amax the maximum amount of arrivals to any node

in any slot, i.e.,
∑

cAn,c(t) ≤ Amax for all n. Further define µout
max and µin

max as the

maximum transmission rate out of, and into, any node in any slot as
∑

l∈On µl(t) ≤ µout
max

and
∑

l∈In µl(t) ≤ µin
max, respectively.

Theorem 5.3.1. If arrival rate vector
−→
λ is strictly interior to stability region Λ and there

exists finite integer T > 0 such that E[An,c(t)|H(t − k)] = λn,c for k ≥ T and for

all (n, c) pairs, the backpressure policy stabilizes the network and guarantees bounded

average queue backlog as

lim sup
t→∞

1

t

t−1∑
τ=0

∑
n,c

E[Qn,c(τ)] ≤ 1

2νmax

(
NB1 + 2

∑
n,c

φn,c(T )

)

where

φn,c(T ) , σ2
n,c

T∑
k=1

ρn,c(k) + Tλn,c
(
µin

max + λn,c
)

and B1 , (µin
max + Amax)2 + (µout

max)2 and νmax is defined as the maximum of ν such that

−→
λ + ν

−→
1 ∈ Λ where

−→
1 is a vector of ones whose cardinality is the same with that of

−→
λ .

Proof. Define L(
−→
Q(t)) ,

∑
n,cQn,c(t)

2 as a Lyapunov function for scalar measure of

the network congestion. From the queueing dynamics in Eq. (5.1), it can be verified that

Qn,c(t+ 1)2 ≤ Qn,c(t)
2 +

(∑
l∈On

µl,c(t)

)2

+

(∑
l∈In

µl,c(t) + An,c(t)

)2

− 2Qn,c(t)

(∑
l∈On

µl,c(t)−
∑
l∈In

µl,c(t)

)
+ 2Qn,c(t)An,c(t)

Summing over all (n, c) pairs and taking conditional expectation given the current queue
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backlog
−→
Q(t) yields the conditional Lyapunov drift satisfying

∆(
−→
Q(t)) , E[L(

−→
Q(t+ 1))− L(

−→
Q(t))|

−→
Q(t)]

≤ NB1 − 2
∑
n,c

Qn,c(t)E

[∑
l∈On

µl,c(t)−
∑
l∈In

µl,c(t)

∣∣∣∣∣−→Q(t)

]

+ 2
∑
n,c

Qn,c(t)E
[
An,c(t)|

−→
Q(t)

]
(5.2)

Note that the control variables on the right-hand side (RHS) of the drift expression are

link transmission rates µl,c(t). By simply converting the corresponding terms containing

control variables from node-centric to link-centric expressions, we obtain the following

identity:

∑
n,c

Qn,c(t)

(∑
l∈On

µl,c(t)−
∑
l∈In

µl,c(t)

)
=
∑
l

∑
c

µl,c(t)
(
Qtx(l),c(t)−Qrx(l),c(t)

)
(5.3)

which reveals the rationale behind the design of backpressure policy; it is aimed to min-

imize the RHS of Eq. (5.2) by maximizing Eq. (5.3). The original proof in [24] showed

that for sufficiently large values of queue backlogs, the RHS of Eq. (5.2) under the back-

pressure policy becomes negative, which corresponds to the Forster’s criteria for stability

of irreducible Markov chains [87]. In [25–27], the Lyapunov drift technique was extended

such that an explicit upper bound on the sum of average queue backlogs can be obtained,

which suffices for the stability proof as well. Note that since we are considering the

case where
−→
λ ∈ Λ, there must exist some constant ν > 0 such that

−→
λ + ν

−→
1 ∈ Λ. From

Corollary 3.9 of [26], we know that there exists a stationary randomized policy that makes

decision based only on the current channel states and independent of queue backlogs and
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yields

E

[∑
l∈On

µl,c(t)−
∑
l∈In

µl,c(t)|
−→
Q(t)

]
= λn,c + ν

Since, by definition, the backpressure policy minimizes the RHS of Eq. (5.2) than any

other policy including the class of stationary randomized policies, it follows that

∆(
−→
Q(t)) ≤ NB1 − 2

∑
n,c

(λn,c + ν)Qn,c(t) + 2
∑
n,c

Qn,c(t)E
[
An,c(t)|

−→
Q(t)

]
(5.4)

For the case with i.i.d. arrivals, the relation E[An,c(t)|
−→
Q(t)] = λn,c holds and this simpli-

fies the rest of the analysis. However, if arrivals are correlated, Qn,c(t) is also correlated

through the queueing dynamics, andAn,c(t) andQn,c(t) are no longer independent of each

other. The multislot Lyapunov drift technique proposed in [88] and elaborated in [25] can

be envisioned; since the technique uses the fact that the non-i.i.d. behavior of the system

would be eventually averaged out over sufficiently long interval, the results obtained us-

ing this technique do not explicitly contain the correlation structure of the arrival process.

Thus, we take a different approach as below. We note from the queueing dynamics that

Qn,c(t) ≤ Qn,c(t− T ) +
T∑
k=1

(∑
l∈In

µl,c(t− k) + An,c(t− k)

)

By multiplying An,c(t) on both sides and taking expectation, we have

E[Qn,c(t)An,c(t)] ≤ E [Qn,c(t− T )An,c(t)]

+ E

[
T∑
k=1

(∑
l∈In

µl,c(t− k) + An,c(t− k)

)
An,c(t)

]
(5.5)

Because all the arrival processes are assumed to have finite memory of at most length T ,
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we have

E [Qn,c(t− T )An,c(t)] = E
[
Qn,c(t− T )E

[
An,c(t)|

−→
Q(t− T )

]]
= λn,cE [Qn,c(t− T )] (5.6)

For the remaining of the RHS of Eq. (5.5), we obtain

E

[
T∑
k=1

(∑
l∈In

µl,c(t− k) + An,c(t− k)

)
An,c(t)

]
≤ σ2

n,c

T∑
k=1

ρn,c(k)

+ Tλn,c
(
µin

max + λn,c
)

(5.7)

Substituting Eqs. (5.6) and (5.7) into the RHS of Eq. (5.5) yields an upper bound on

E[Qn,c(t)An,c(t)]. Taking the expectation of Eq. (5.4) with respect to the distribution of

queue backlogs and applying the bound yields the unconditional Lyapunov drift satisfying

E[L(
−→
Q(t+ 1))− L(

−→
Q(t))] ≤ NB1 − 2

∑
n,c

(λn,c + ν)E [Qn,c(t)]

+ 2
∑
n,c

λn,cE [Qn,c(t− T )] + 2
∑
n,c

(
σ2
n,c

T∑
k=1

ρn,c(k) + Tλn,c
(
µin

max + λn,c
))

Summing the inequality over t ∈ { 0, . . . ,M − 1 } yields

E[L(
−→
Q(M))− L(

−→
Q(0))] ≤ NMB1 − 2

M−1∑
τ=0

∑
n,c

(λn,c + ν)E [Qn,c(τ)]

+ 2
M−1∑
τ=0

∑
n,c

λn,cE [Qn,c(τ − T )] + 2M
∑
n,c

(
σ2
n,c

T∑
k=1

ρn,c(k) + Tλn,c
(
µin

max + λn,c
))

where E[Qn,c(t)] = 0 for t ≤ 0. Dividing both sides by 2M , rearranging terms, and using

the fact that the system starts with empty queues and non-negativity of the Lyapunov
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function, we obtain

1

M

M−1∑
τ=0

∑
n,c

(λn,c + ν)E [Qn,c(τ)]− 1

M

M−1∑
τ=0

∑
n,c

λn,cE [Qn,c(τ − T )]

≤ NB1

2
+
∑
n,c

(
σ2
n,c

T∑
k=1

ρn,c(k) + Tλn,c
(
µin

max + λn,c
))

Taking a lim sup as M →∞, and noting that

lim sup
M→∞

1

M

M−1∑
τ=0

E[Qn,c(τ − T )] = lim sup
M→∞

1

M

M−1∑
τ=0

E[Qn,c(τ)] (5.8)

and optimizing over ν yields the result.

Theorem 5.3.1 guarantees the stability of the network under the backpressure policy

when the arrival rate vector is inside the stability region and the arrival processes are

time-correlated over fixed length of interval. This is done by explicitly showing that the

sum of average queue backlogs in the network is upper bounded by some finite number.

However, if the condition E[An,c(t)|H(t − k)] = λn,c for k ≥ T is not satisfied with

any finite integer T , the theorem fails simply because the upper bound becomes infinite.

The arrivals with short-range dependence might be dealt similarly with the arrivals with

finite memory using the fact that their autocorrelations decrease exponentially fast as the

time-lag increases. Our following theorem, on the other hand, is applicable for both short-

range and long-range dependent arrivals as it only requires very mild conditions on the

arrival process such as the monotonicity of its absolute autocorrelation function.

Theorem 5.3.2. If arrival rate vector
−→
λ is strictly interior to stability region Λ and the

absolute autocorrelation functions |ρnc(k)| of the arrival processes are monotonically de-

creasing for all (n, c) pairs, the backpressure policy stabilizes the network and guarantees
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bounded average queue backlog as

lim sup
t→∞

1

t

t−1∑
τ=0

∑
n,c

E[Qn,c(τ)] ≤ 1

2(νmax − δ)

(
NB1 + 2

∑
n,c

φn,c(Tδ)

)

where δ is an arbitrary constant satisfying 0 < δ < νmax and Tδ is the minimum of T such

that |E[An,c(t)|H(t− k)]− λn,c| ≤ δ for k ≥ T and for all (n, c) pairs.

Proof. As in the proof of Theorem 5.3.1, the main difficulty of analyzing the Lyapunov

drift is due to the correlation between Qn,c(t) and An,c(t). Assume that δ and correspond-

ing Tδ are chosen such that the conditions described in the theorem are met. Then, for

T ≥ Tδ, we have

E [Qn,c(t− T )An,c(t)] = E
[
Qn,c(t− T )E

[
An,c(t)|

−→
Q(t− T )

]]
≤ (λn,c + δ)E [Qn,c(t− T )]

for all (n, c) pairs and inequality in Eq. (5.7) holds for any T > 0. Therefore, the

unconditional Lyapunov drift satisfies

E[L(
−→
Q(t+ 1))− L(

−→
Q(t))] ≤ NB1 − 2

∑
n,c

(λn,c + ν)E [Qn,c(t)]

+ 2
∑
n,c

(λn,c + δ)E [Qn,c(t− T )] + 2
∑
n,c

(
σ2
n,c

T∑
k=1

ρn,c(k) + Tλn,c
(
µin

max + λn,c
))

for T ≥ Tδ. The rest of the proof is identical with that of Theorem 5.3.1.

Theorem 5.3.2 can be applied to any long memory arrivals but with monotonically

decreasing absolute autocorrelation functions. It is expected that long-range dependent

arrivals would induce longer Tδ satisfying the condition when compared to short-range

dependent arrivals due to the hyperbolic shape of the autocorrelation function. Once the
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autocorrelation functions are given, one can compute Tδ deterministically. From Theo-

rem 5.3.1 and Theorem 5.3.2, we know that the backpressure policy stabilizes the network

whenever the arrival rate vector is inside the stability region no matter whether arrival pro-

cesses are i.i.d. or time-correlated. Specifically, in Theorem 5.3.1, the upper bound on the

sum of average queue backlogs is always finite whenever νmax > 0, which corresponds

to the condition that the arrival rate vector is strictly inside the stability region. In Theo-

rem 5.3.2, there must exist δ such that 0 < δ < νmax because νmax > 0 and Tδ must be

finite for given δ because the autocorrelation functions are assumed to be monotonically

decreasing. Therefore, the upper bound on the sum of average queue backlogs is always

finite. Note that in case of i.i.d. arrivals, the upper bound is given by NB1/2νmax [26].

Thus, apart from the stability issue, the upper bound on average network delay will in-

crease if arrivals are time-correlated. This follows from the Little’s law which states that

the average network delay is proportional to average network backlog [89].

5.4 Network with Arbitrary Input Traffic

In this chapter, we consider an arrival rate vector
−→
λ that is possibly outside the

stability region Λ as shown in Fig. 5.3. If
−→
λ 6∈ Λ, no policy can stabilize the network

unless we have a set of flow controllers in front of queues as shown in Fig. 5.4. Denote

by Rn,c(t) the amount of data that is admitted into the queue at node n for commodity c

at time slot t, and define rn,c , limt→∞
1
t

∑t−1
τ=0 E[Rn,c(τ)]. The role of flow controllers

is to keep the average admission rate vector −→r = (rn,c) to be inside the stability region.

If then, the stability can be achieved by the backpressure policy in Algorithm 1. With the
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Figure 5.3: Illustration of the ε-stripped stability region Λε with an arrival rate vector

outside the stability region Λ

flow-controlled input, the queue size evolves as

Qn,c(t+ 1) ≤ max

[
Qn,c(t)−

∑
l∈On

µl,c(t), 0

]
+
∑
l∈In

µl,c(t) +Rn,c(t)

where the exogenous arrival An,c(t) is replaced by Rn,c(t) from Eq. (5.1).

The flow controllers need to be designed in some optimum way, which is funda-

mentally about how to choose the operating point of the network on the boundary of

the stability region Λ. This is often modeled as a network utility maximization problem,

where the utility is a measure of relative satisfaction of the users at a given rate [9,33–36].

maximize
∑
n,c

Un,c(rn,c)

subject to −→r ∈ Λ

0 ≤ rn,c ≤ λn,c, ∀(n, c)

(5.9)

where Un,c(·) is the utility function associated with the input stream described by (n, c)
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Figure 5.4: An input-controlled queueing model

pair. The first constraint in the formulation states that the average admitted rate vector

must be stabilizable and the next set of constraints state that the admission rate of each

stream cannot exceed its incoming rate. Those constraints are automatically satisfied

under any stabilizing policy. It is often assumed that utility functions are strictly concave,

non-decreasing, and continuously differentiable. As a result, the first derivative of the

utility function is monotonically decreasing with maximum at r = 0. We assume that

the maximum is bounded by some finite value θn,c. It is further assumed that the utility

achieved at a node is bounded by some finite value Umax. The joint flow control and

backpressure policy described in Algorithm 2 and originally derived in [26,27] was shown

for i.i.d. arrivals to achieve arbitrarily close to the optimal solution of Eq. (5.9) with a

corresponding tradeoff in average network delay.

Theorem 5.4.1. If there exists finite integer T > 0 such that E[An,c(t)|H(t− k)] = λn,c

for k ≥ T and for all (n, c) pairs, the joint flow control and backpressure policy stabilizes

the network and yields bounds on time average queue backlog as

lim sup
t→∞

1

t

t−1∑
τ=0

∑
n,c

E[Qn,c(τ)] ≤ 1

2λmax

(
NB2 + V NUmax + 2

∑
n,c

ψn,c(T )

)
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Algorithm 2 Joint Flow Control and Backpressure Policy [27]

• Flow Control — Every time slot and for each input stream (n, c), observe Qn,c(t)

and Yn,c(t) and choose:

Rn,c(t) =


An,c(t), if Yn,c(t) ≥ Qn,c(t)

0, otherwise

where Yn,c(t) is updated according to

Yn,c(t+ 1) = max [Yn,c(t)−Rn,c(t), 0] + γn,c(t) (5.10)

which is called the virtual flow state queue in which we set γn,c(t) = γn,c where

γn,c is the solution to

maximize V Un,c(γn,c)− 2Yn,c(t)γn,c

subject to 0 ≤ γn,c ≤ Amax

(5.11)

where V > 0 is a design parameter which affects the utility-delay tradeoff of the

algorithm.

• Routing/scheduling and resource allocation are performed as in Algorithm 1.
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and network utility as

lim inf
t→∞

∑
n,c

Un,c(r̄n,c(t)) ≥
∑
n,c

Un,c
(
r∗n,c
)
− 1

V

(
NB2 + 2

∑
n,c

ψn,c(T )

)

where rn,c(t) , 1
t

∑t−1
τ=0E[Rn,c(τ)] and

ψn,c(T ) ,

{
2σ2

n,c

T∑
k=1

ρn,c(k) + Tλn,c
(
µin

max + λn,c
)}

and B2 , B1 + 2A2
max, λmax is the largest scalar such that (λmax) ∈ Λ, and (r∗n,c) is the

utility-optimal rate allocation vector.

Proof. We begin by noting that problem Eq. (5.9) is equivalent to maximize
∑

n,c Un,c(γn,c)

with an additional set of constraints, 0 ≤ γn,c ≤ rn,c for all (n, c) pairs because utility

functions are non-decreasing. The constraints are satisfied by stabilizing the virtual flow

state queues in Eq. (5.10)1. Define L(
−→
Θ(t)) ,

∑
n,c(Qn,c(t)

2 + Yn,c(t)
2) as a Lyapunov

function whose conditional drift is written as

∆(
−→
Θ(t)) , E[L(

−→
Θ(t+ 1))− L(

−→
Θ(t))|

−→
Θ(t)]

where
−→
Θ(t) , [

−→
Q(t);

−→
Y (t)]. Omitting the drift computation details for brevity, the con-

1The notion of virtual queueing was originally introduced in [27] and it is often used as a means of

ensuring long-term average constraints.
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ditional Lyapunov drift can be shown to satisfy

∆(
−→
Θ(t))− V

∑
n,c

E
[
Un,c(γn,c(t))|

−→
Θ(t)

]
≤ NB2

− 2
∑
n,c

Qn,c(t)E

[∑
l∈On

µl,c(t)−
∑
l∈In

µl,c(t)

∣∣∣∣∣−→Θ(t)

]

+ 2
∑
n,c

(Qn,c(t)− Yn,c(t))E
[
Rn,c(t)|

−→
Θ(t)

]
+ 2

∑
n,c

Yn,c(t)E
[
γn,c(t)|

−→
Θ(t)

]
− V

∑
n,c

E
[
Un,c(γn,c(t))|

−→
Θ(t)

]
(5.12)

where the optimization metric V
∑

n,cE
[
Un,c (γn,c(t))|

−→
Θ(t)

]
was subtracted on both

sides. It is apparent that the joint flow control and backpressure policy in Algorithm 2 is

designed to minimize the RHS of Eq. (5.12) among all other policies.

Define for some ε > 0, Λε , {−→r | −→r + ε
−→
1 ∈ Λ } and let (r∗n,c(ε)) be the optimal

solution to Eq. (5.9) with the reduced stability region Λε as illustrated in Fig. 5.3. From

Corollary 3.9 of [26], we know that there exists a stationary randomized policy that makes

decision based only on the current channel states and independent of queue backlogs such

that

E

[∑
l∈On

µl,c(t)−
∑
l∈In

µl,c(t)

∣∣∣∣∣−→Θ(t)

]
= r∗n,c(ε) + ε

for all (n, c) pairs. We further fix γn,c(t) to r∗n,c(ε) for all t and consider a randomized

policy for Rn,c(t) such that Rn,c(t) = An,c(t) with probability r∗n,c(ε)/λn,c and Rn,c(t) =

0 with probability 1−r∗n,c(ε)/λn,c. Because the joint flow control and backpressure policy

in Algorithm 2 outperforms any other policy, which follows from the construction of the
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algorithm, the conditional Lyapunov drift satisfies

∆(
−→
Θ(t))− V

∑
n,c

E
[
Un,c(γn,c(t))|

−→
Θ(t)

]
≤ NB2

− 2
∑
n,c

(
r∗n,c(ε) + ε

)
Qn,c(t) + 2

∑
n,c

r∗n,c(ε)

λn,c
(Qn,c(t)− Yn,c(t))E

[
An,c(t)|

−→
Θ(t)

]
+ 2

∑
n,c

r∗n,c(ε)Yn,c(t)− V
∑
n,c

Un,c
(
r∗n,c(ε)

)
(5.13)

Note that because the arrivals are time-correlated, An,c(t) is not independent with Qn,c(t)

and Yn,c(t) and, thus, we take a similar approach as the one used in Chapter 5.3. From the

proof of Theorem 5.3.1, we know that

E[Qn,c(t)An,c(t)] ≤ λn,cE [Qn,c(t− T )]+σ2
n,c

T∑
k=1

ρn,c(k)+Tλn,c
(
µin

max + λn,c
)

(5.14)

Furthermore, from Eq. (5.10), we note

Yn,c(t) ≥ Yn,c(t− T )−
T∑
k=1

Rn,c(t− k) +
T∑
k=1

γn,c(t− k)

and, thus, it follows that

E [Yn,c(t)An,c(t)] ≥ E [Yn,c(t− T )An,c(t)]− E

[
T∑
k=1

Rn,c(t− k)An,c(t)

]

+ E

[
T∑
k=1

γn,c(t− k)An,c(t)

]

= λn,cE [Yn,c(t− T )]−
r∗n,c(ε)

λn,c

(
σ2
n,c

T∑
k=1

ρn,c(k) + Tλ2
n,c

)

+ Tr∗n,c(ε)λn,c

= λn,cE [Yn,c(t− T )]−
r∗n,c(ε)σ

2
n,c

λn,c

T∑
k=1

ρn,c(k) (5.15)

Taking the expectation of Eq. (5.13) with respect to the distribution of
−→
Θ(t) and ap-

plying the inequalities in Eqs. (5.14) and (5.15) yields the unconditional Lyapunov drift
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satisfying

E[L(
−→
Θ(t+1))−L(

−→
Θ(t))]−V

∑
n,c

E [Un,c(γn,c(t))] ≤ NB2−2
∑
n,c

(
r∗n,c(ε) + ε

)
E[Qn,c(t)]

+ 2
∑
n,c

{
r∗n,c(ε)E [Qn,c(t− T )] +

r∗n,c(ε)σ
2
n,c

λn,c

T∑
k=1

ρn,c(k) + Tr∗n,c(ε)
(
µin

max + λn,c
)}

− 2
∑
n,c

{
r∗n,c(ε)E [Yn,c(t− T )]−

(
r∗n,c(ε)σn,c

λn,c

)2 T∑
k=1

ρn,c(k)

}

+ 2
∑
n,c

r∗n,c(ε)E[Yn,c(t)]− V
∑
n,c

Un,c
(
r∗n,c(ε)

)
(5.16)

Summing the inequalities over t ∈ { 0, . . . ,M − 1 }, dividing by M , and taking limit as

M →∞ results into

− V lim
M→∞

1

M

M−1∑
τ=0

∑
n,c

E [Un,c(γn,c(τ))] ≤ NB2 − 2ε lim
M→∞

1

M

M−1∑
τ=0

∑
n,c

E[Qn,c(τ)]

+ 2
∑
n,c

{(
r∗n,c(ε)

λn,c
+

(
r∗n,c(ε)

λn,c

)2
)
σ2
n,c

T∑
k=1

ρn,c(k) + Tr∗n,c(ε)
(
µin

max + λn,c
)}

− V
∑
n,c

Un,c
(
r∗n,c(ε)

)
(5.17)

where we used the fact that the system starts with empty queues, i.e., L(
−→
Θ(0)) = 0, the

non-negativity of the Lyapunov function, and the lim version of identity of Eq. (5.8), and

the fact that

lim
M→∞

1

M

M−1∑
τ=0

E[Yn,c(τ − T )] = lim
M→∞

1

M

M−1∑
τ=0

E[Yn,c(τ)] (5.18)

Rearranging Eq. (5.17) and dividing by 2ε, we have

lim
M→∞

1

M

M−1∑
τ=0

∑
n,c

E[Qn,c(τ)] ≤ NB2 + V NUmax

2ε

+
1

ε

∑
n,c

{
2σ2

n,c

T∑
k=1

ρn,c(k) + Tλn,c
(
µin

max + λn,c
)}

(5.19)
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where we used the fact that r∗n,c(ε)/λn,c ≤ 1 and the non-negativity of the utility function.

Rearranging Eq. (5.17) differently, dividing by V , and using the facts that r∗n,c(ε)/λn,c ≤ 1

and the non-negativity of queue backlogs yields

lim
M→∞

1

M

M−1∑
τ=0

∑
n,c

E [Un,c(γn,c(τ))] ≥
∑
n,c

Un,c
(
r∗n,c(ε)

)
− NB2

V

− 2

V

∑
n,c

{
2σ2

n,c

T∑
k=1

ρn,c(k) + Tλn,c
(
µin

max + λn,c
)}

(5.20)

Applying Jensen’s inequality based on the concavity of the utility functions, we have

1
M

∑M−1
τ=0 E [Un,c (γn,c(τ))] ≤ Un,c(

1
M

∑M−1
τ=0 E [γn,c(τ)]). On the other hand, we can

show that virtual flow queues Yn,c(t) are always stable under the joint flow control and

backpressure policy implying γn,c(t) ≤ rn,c(t), which are time averages up to slot t.

The stability of the virtual queues can be established via a simple argument. Suppose

that Yn,c(t) > 1
2
V θn,c, where θn,c is the bound on the first derivative of Un,c. Then, the

solution to Eq. (5.11) is always γn,c = 0 until Yn,c(t) drops below 1
2
V θn,c. Suppose now

that Yn,c(t) ≤ 1
2
V θn,c. Then, the virtual queue can grow at most by Amax but, after that, it

cannot grow further because Yn,c(t) exceeds 1
2
V θn,c. Therefore, the virtual queue Yn,c(t)

is always bounded below 1
2
V θn,c + Amax. Further note that taking lim sup or lim inf

instead of lim does not change the results because the inequality in Eq. (5.16) holds

for every t. Finally, optimizing ε for Eqs. (5.19) and (5.20) separately over (0, λmax]

completes the proof.

Theorem 5.4.1 shows that the joint flow control and backpressure policy stabilizes

the network even when the arrival rate vector is outside the stability region and the arrival

processes are time-correlated over fixed length of interval. The theorem also shows that
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the joint policy yields admission rate vector that is arbitrarily close to the utility-optimal

operating point with a corresponding tradeoff in average network delay, where parameter

V enables to exploit the tradeoff. We now proceed to a general case where arrivals may

have infinite-length of memory such as short/long-range dependent processes.

Theorem 5.4.2. If the absolute autocorrelation functions |ρn,c(k)| of the arrival processes

are monotonically decreasing for all (n, c) pairs, the joint flow control and backpressure

policy stabilizes the network and yields bounds on time average queue backlog as

lim sup
t→∞

1

t

t−1∑
τ=0

∑
n,c

E[Qn,c(τ)] ≤ 1

2(λmax − δ)

×

(
NB2 + V NUmax + V δ

∑
n,c

θn,c + 2
∑
n,c

ψn,c(Tδ) + 2δNAmax

)

and network utility as

lim inf
t→∞

∑
n,c

Un,c(r̄n,c(t)) ≥
∑
n,c

Un,c
(
r∗n,c
)
− δ

∑
n,c

θn,c

− 1

V

(
NB2 + 2

∑
n,c

ψn,c(Tδ) + 2δNAmax

)

where δ is an arbitrary constant satisfying 0 < δ < λmax and Tδ is the minimum of T

such that |E[An,c(t)|H(t− k)]− λn,c| ≤ δ for k ≥ T and for all (n, c) pairs.

Proof. As in the proof of Theorem 5.4.1, the main difficulty of the analysis is due to the

correlations between Qn,c(t) and An,c(t) and between Yn,c(t) and An,c(t). Assume that δ

and Tδ are chosen such that the conditions described in the theorem are met. Then, for

T ≥ Tδ, we have

E[Qn,c(t)An,c(t)] ≤ (λn,c + δ)E [Qn,c(t− T )] + σ2
n,c

T∑
k=1

ρn,c(k) + Tλn,c
(
µin

max + λn,c
)

(5.21)
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and

E [Yn,c(t)An,c(t)] ≥ (λn,c − δ)E [Yn,c(t− T )]−
r∗n,c(ε)σ

2
n,c

λn,c

T∑
k=1

ρn,c(k) (5.22)

Taking the expectation of Eq. (5.13) with respect to the distribution of
−→
Θ(t) and ap-

plying the inequalities in Eqs. (5.21) and (5.22) yields the unconditional Lyapunov drift

satisfying

E[L(
−→
Θ(t+ 1))− L(

−→
Θ(t))]− V

∑
n,c

E [Un,c(γn,c(t))] ≤ NB2

− 2
∑
n,c

(
r∗n,c(ε) + ε

)
E[Qn,c(t)] + 2

∑
n,c

{(
r∗n,c(ε) +

r∗n,c(ε)δ

λn,c

)
E [Qn,c(t− T )]

+
r∗n,c(ε)σ

2
n,c

λn,c

T∑
k=1

ρn,c(k) + Tr∗n,c(ε)
(
µin

max + λn,c
)}

− 2
∑
n,c

{(
r∗n,c(ε)−

r∗n,c(ε)δ

λn,c

)
E [Yn,c(t− T )]−

(
r∗n,c(ε)σn,c

λn,c

)2 T∑
k=1

ρn,c(k)

}

+ 2
∑
n,c

r∗n,c(ε)E[Yn,c(t)]− V
∑
n,c

Un,c
(
r∗n,c(ε)

)
(5.23)

Summing the inequalities over time slots t ∈ { 0, . . . ,M − 1 }, dividing byM , and taking

limit as M →∞ results

− V lim
M→∞

1

M

M−1∑
τ=0

∑
n,c

E [Un,c(γn,c(τ))] ≤ NB2

− 2(ε− δ) lim
M→∞

1

M

M−1∑
τ=0

∑
n,c

E[Qn,c(τ)] + 2δ lim
M→∞

1

M

M−1∑
τ=0

∑
n,c

E[Yn,c(τ)]

+ 2
∑
n,c

{
2σ2

n,c

T∑
k=1

ρn,c(k) + Tλn,c
(
µin

max + λn,c
)}
− V

∑
n,c

Un,c
(
r∗n,c(ε)

)
(5.24)

where we used the fact that the the system starts with empty queues, r∗n,c(ε)/λn,c ≤ 1,

the non-negativity of Lyapunov function, and the lim version of identity of Eqs. (5.8)

and (5.18). Rearranging terms, dividing by 2(ε − δ), and using non-negativity of utility
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function, we obtain

lim
M→∞

1

M

M−1∑
τ=0

∑
n,c

E[Qn,c(τ)] ≤ NB2 + V NUmax

2(ε− δ)

+
1

ε− δ
∑
n,c

{
2σ2

n,c

T∑
k=1

ρn,c(k) + Tλn,c
(
µin

max + λn,c
)}

+
δ

ε− δ
lim
M→∞

1

M

M−1∑
τ=0

∑
n,c

E[Yn,c(τ)] (5.25)

Rearranging Eq. (5.24) differently, dividing by V , and using non-negativity of queue

backlogs, we have

lim
M→∞

1

M

M−1∑
τ=0

∑
n,c

E [Un,c(γn,c(τ))] ≥
∑
n,c

Un,c
(
r∗n,c(ε)

)
− NB2

V

− 2

V

∑
n,c

{
2σ2

n,c

T∑
k=1

ρn,c(k) + Tλn,c
(
µin

max + λn,c
)}
− 2δ

V
lim
M→∞

1

M

M−1∑
τ=0

∑
n,c

E[Yn,c(τ)]

(5.26)

The rest of the proof follows closely that of Theorem 5.4.1 and the result is obtained by

optimizing ε for Eqs. (5.25) and (5.26) separately over (0, λmax] and using the fact that

Yn,c(t) is always bounded below 1
2
V θn,c+Amax from the proof of Theorem 5.4.1. Finally,

note that because inequality in Eq. (5.23) holds for all t, taking lim sup or lim inf instead

of lim does not change the results.

In the case of i.i.d. arrivals, it was shown that the sum of average queue backlogs

is at most (NB2 + V NUmax)/2λmax and the achieved network utility is at worst NB2/V

apart from the value at the utility-optimal operating point [27]. Therefore, the additional

terms in the tradeoff of network utility and sum of average queue backlog in Theorem

5.4.1 and Theorem 5.4.2 can be viewed as a penalty due to the correlations on the arrival

processes. In Theorem 5.4.1, we needed to increase V to achieve performance that is
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arbitrarily close to that of the optimal utility value with a corresponding increase in the

sum of average queue backlogs. In case of Theorem 5.4.2, as V goes to infinity, the

achieved network utility approaches a point that is at most δ
∑

n,c θn,c apart from the

optimal network utility.

5.5 Chapter Summary

The performance of backpressure-based stochastic network controls in wireless

multi-hop networks with time-correlated arrivals was studied using the Lyapunov drift

technique. The impact of input correlations appears in the upper bound on the average

network delay when the arrival rate vector is inside the stability region and the tradeoff

between the average network delay and utility when the arrival rate vector is possibly

outside the stability region. To handle the Lyapunov drift with correlated terms, we first

expressed the evolution of the system dynamics over multiple slots and used the fact that

the conditional expectation of the arrival process given the past history falls within arbi-

trarily small constant range around its unconditional expectation if the time-lag between

the arrival process and the past history becomes sufficiently large. This is true for both fi-

nite memory and infinite memory arrivals with monotonically decreasing autocorrelation

functions. On the other hand, usual sum-of-queue-squares-type Lyapunov function was

used in which no cross-terms between different links are emerging. Therefore, in order

to incorporate the explicit form of the cross-correlation between the different links, the

Lyapunov function needs to be modified.
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Chapter 6

Neighbor Discovery in a Wireless Sensor Network with Physical-Layer

Considerations

6.1 Background

Neighbor discovery in wireless networks is defined to be the process to identify a

set of nodes with which a node can communicate, and it has been addressed by several au-

thors [42–45]. In [42], a simple ALOHA-like neighbor discovery algorithm was proposed

in which each node randomly transmit/listen in each time slot and analyzed for both syn-

chronous and asynchronous timing cases. This type of discovery algorithm based on the

random access protocol is well suited for randomly distributed wireless networks. In [43],

similar neighbor discovery algorithm was considered and the expected time to find neigh-

bors was obtained. In [44], a gossip-based algorithm was proposed in which each node

transmits a table of gossip data (which is the list of neighbors that it has discovered so

far and their locations) in a random direction using directional antennas. In [45], a family

of probabilistic protocols, called birthday protocols, have been proposed to initiate the

randomly deployed wireless networks. From a physical-layer point of view, however, the

previous works are extremely limited due to the use of collision channel model. Under

this model, if more than one nodes transmit at the same time, none of them are successful.

However, it is too pessimistic in the sense that a transmission may succeed even in the
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presence of interference which is called capture effect [47–51]. We, thus, claim that the

performance of neighbor discovery algorithm has been quite underestimated so far due to

the use of unrealistic channel model, and correct reassessment of the discovery algorithm

is required.

Two main topics concerning with the neighbor discovery in a wireless sensor net-

work is covered in this chapter. The first part of the chapter is devoted to an analysis of

the performance of the chosen neighbor discovery algorithm under realistic physical layer

conditions. For this, we consider a shared channel and nodes with multipacket reception

capability in which a transmission is successful if the received signal-to-interference-

plus-noise-ratio (SINR) exceeds a certain threshold. Specifically, under the discovery al-

gorithm proposed in [42], we obtain the expression for the expected number of successful

receptions per slot at a given SINR threshold and find the optimal transmission probabil-

ity which maximizes the expected number of successful receptions. We note, however,

that for a given modulation scheme and target bit error rate (BER), the data rate is an

increasing function of the SINR threshold. Therefore, we derive the expected number of

successful receptions per second rather than per slot under certain modulation scheme for

a fair comparison. Finally, the performance of the discovery algorithm is evaluated over

multiple slots which is important in deciding the run-time of the discovery process.

In the second part of the chapter, we consider the problem of the actual detection of

transmitting neighbors. Note that the received signal at each time slot is the superposition

of the signals transmitted from random set of nodes and noise. Therefore, determining

the existence of a signal from a particular node itself is not an easy task. For this prob-

lem, we first present the classical matched filter method which fundamentally treats the

137



interference as noise. As an alternative, a more accurate method can be envisioned in

an additional cost of complexity. Since the number of transmitters and their entities are

all unknown, we adopt the viewpoint of random set theory (RST: see Chapter Appendix

6.A and references therein) and propose RST-based method for detecting the transmitting

nodes in each time slot [46, 90–95]. Besides, it is also possible with RST to estimate

additional parameters of transmitted signals such as signal amplitudes and phase.

6.2 Network Model

We consider a time-slotted wireless sensor network which is deployed over a region

of interest such as large tactical area for target detection or vast rural area for environmen-

tal observation. In such scenarios, a large number of sensor nodes are released from an

airplane. For a large number of nodes over a large area, the locations of nodes are mod-

eled by a homogeneous, two-dimensional Poisson point process with intensity λ which is

the average number of nodes per unit area. Therefore, the number of nodes in a unit area

follows Poisson distribution with parameter λ. As is well known, a spatial Poisson pro-

cess on the plane, conditioned on a given number of nodes within a given area, yields the

uniform distribution of these nodes in that area. As a result, for example, if a node’s dis-

covery region is modeled as a circle of radius R0, the cumulative probability distribution

on the distance from the node to the other nodes in the region is given by

Fr(x) =



0, if x < 0(
x

R0

)2

, if 0 ≤ x ≤ R0

1, if x > R0

(6.1)
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The signal received by a node at time slot t (if the node is listening) is given by

yt =
∑
k∈It

gkt s
k
t + nt (6.2)

where It is the set of transmitting neighbors, gkt is the complex amplitude of the signal

received from the k-th node, skt is the signal transmitted from the k-th node which is the

message multiplied by the signature sequence bitwise, and nt is a random noise. We

assume that the signatures of all nodes are known to each other by assuming that they

share an identical key generator which can be implemented using a linear feedback shift

register. If the length of signature is L and each node transmits a 1-bit known message,

then yt = {yt,1, ..., yt,L}T , skt = {skt,1, ..., skt,L}T which is equal to the signature sequence,

and nt = {nt,1, ..., nt,L}T , where the symbol T denotes vector transpose. The noise

samples in nt are assumed to be independent and identically distributed (i.i.d.) with

the normal distribution N (0, N) where N is the noise power which is the product of

noise spectral density N0 and bandwidth B. The complex amplitude gkt is of the form

gkt =
√
G(1 + rk)−ηψ

k
t , where G is the transmission power, rk is the distance from the k-

th node to the receiver, η is the path loss exponent, and ψkt is the channel fading coefficient

which is modeled by i.i.d. standard circular symmetric Gaussian random process [55].

Denote by J and J the set of neighbors and the number of neighbors of a node,

respectively, and we suppressed the particular node index for notational brevity. The

SINR of node k at time slot t (if the k-th node is transmitting) is given by

SINRk
t =

Prx,k∑
i∈It,i 6=k

Prx,i +N

where Prx,k is the received signal power from the k-th transmitter. Note that the distances

rk (k = 1, . . . , J) are i.i.d. under the Poisson point process modeling. Also the channel
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fading coefficients ψkt are i.i.d., and by further assuming that rk and ψkt are mutually

independent, the received signal powers Prx,k (k = 1, . . . , J) are i.i.d. as well, and the

common cumulative distribution function of the received signal power is obtained by [48]

FP (x) = 1−
∫ ∞

0

Fr

((
ωG

x

) 1
η

− 1

)
f|ψ|2(ω)dω (6.3)

where f|ψ|2(·) is the probability density of the squared magnitude of the stationary fading

process which is an exponential with unit mean. The transmission of the k-th node is said

to be successful if

SINRk
t ≥ τ (6.4)

where the threshold τ depends on parameters such as data rate and target BER [56].

6.3 The Neighbor Discovery Algorithm

6.3.1 Description of the Algorithm

An ALOHA-like neighbor discovery algorithm proposed in [42] is considered again

in which each node transmits with probability pT or listens with probability 1− pT. The

transmission probability pT and the transmission power G are identical for all nodes; all

these simplifying assumptions were made to reduce non-essential complexities. Notice

that a plain method such as the periodic beaconing can be thought but such a static ap-

proach would certainly fail in a randomly deployed network which has irregular node

density. Under the chosen discovery algorithm, in order for a node to be discovered by

some other node, the former should transmit and the other should listen at the same time.

On top of that, the transmission must be successful which requires a certain criterion; in
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the collision channel, the criterion is that there is only one transmission at that time slot.

However, we adopt a more realistic SINR criterion for success and optimize the transmis-

sion probability which has been quite underestimated so far due to the use of collision

channel model.

6.3.2 Considerations on Early Termination

Obviously, the marginal revenue of running the discovery algorithm diminishes as

time goes and, because sensors are usually assumed to be battery-powered, it is needed

to consider an early termination of the discovery process to prolong the lifetime of the

network. Several metrics can be envisioned as a criterion for the early termination. A

simple criterion is to terminate when a node has discovered a predetermined number of

neighbors. In the case of nodes located at the sparsely populated areas, however, this

may not be satisfied until the end of the discovery process (even if all the neighbors are

discovered early). Alternatively, one may want to allow an early termination if a node

has discovered a predetermined fraction of neighbors. However, because each node does

not know a priori how many neighbors it has, this criterion is untestable. As will be

seen in the next chapter, as time goes, the set of discovered neighbors in each time slot

will overlap with the previously discovered ones. Therefore, if a node do not find any

new neighbors for a sufficiently large number of slots, then it can be regarded that all the

neighbors have been discovered. Hence, an early termination can be declared if a node

does not receive any new messages during a predetermined number of time slots.
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6.4 Analysis with the Multipacket Reception Capability

6.4.1 Optimal Transmission Probability

We start by deriving the expected number of successful receptions in each time slot

as a function of SINR threshold τ . After that the transmission probability pT is set to

maximize it. We first denote by Ist(⊆ It) the set of transmitting neighbors satisfying the

SINR criterion in Eq. (6.4). Then, the expected number of successful receptions by one

node is expressed as1

E[|Ist |] = Pr {a node is listening}
J∑
n=1

Pr {|It| = n}Sn

=
J∑
n=1

(
J

n

)
pT

n(1− pT)J−n+1Sn

where Sn is the expected number of successful receptions given n(≥ 1) simultaneous

transmissions and is obtained by

Sn = nPr
{

SINR1
t > τ

∣∣ |It| = n, 1 ∈ It
}

(6.5)

where SINR1
t is the SINR of the first transmitter [48]. Note that Eq. (6.5) follows from

the assumption that the received signal powers Prx,k (k = 1, . . . , J) are i.i.d. and, thus,

the first transmitter needs not be the closest one to the receiver. It is computed as

Pr
{

SINR1
t > τ

∣∣ |It| = n, 1 ∈ It
}

= 1

−
∫ ∞

0

· · ·
∫ ∞

0

FP

(
τ

n∑
i=2

xi

)
dFP (x2) · · · dFP (xn) (6.6)

1| · | is the cardinality of a set.
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where the noise effect was neglected for simplicity. Consequently, in principle, we can

find the optimal transmission probability that maximizes the expected number of success-

ful receptions.

Example 6.4.1. As an illustration of the use of above equations, consider a simple exam-

ple in which there are three nodes and they are within the radio range of each other. Since

all three nodes have two neighbors, the expected number of successful receptions by one

node is given by

E[|Ist |] = 2pT(1− pT)2Pr
{

SINR1
t > τ

∣∣ |It| = 1, 1 ∈ It
}

+ 2pT
2(1− pT)Pr

{
SINR1

t > τ
∣∣ |It| = 2, 1 ∈ It

}
Let us further consider a simplified path loss model in which the received signal power is

given by Prx,k = r−ηk . Then, it can be easily shown that for τ < 1,

E[|Ist |] = τ
2
η pT

3 −
(

2 + τ
2
η

)
pT

2 + 2pT (6.7)

and for τ ≥ 1,

E[|Ist |] =
(

2− τ−
2
η

)
pT

3 +
(
τ−

2
η − 4

)
pT

2 + 2pT (6.8)

Note that Eqs. (6.7) and (6.8) are (strictly) concave over the feasible region. Thus, dif-

ferentiating them with respect to pT, and setting the derivatives to 0, we find the optimal

transmission probability p∗T which maximizes the expected number of successful recep-

tions in each slot as

p∗T =



τ
2
η + 2−

√
(τ

2
η − 1)2 + 3

3τ
2
η

, if τ < 1

τ−
2
η − 4 +

√
(τ−

2
η − 1)2 + 3

3(τ−
2
η − 2)

, if τ ≥ 1

(6.9)
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Figure 6.1: Optimal transmission probability p∗T and corresponding maximum expected

number of successful receptions E[|Ist |]∗ for the three node example

In Fig. 6.1, we plot Eq. (6.9) as a function of τ with path loss exponent η = 4. It

can be seen that as threshold τ increases, p∗T decreases. This is because at a higher thresh-

old, it becomes more difficult for multiple transmitters to simultaneously satisfy the SINR

criterion. We can also see that the maximum expected number of successful receptions

E[|Ist |]∗ decreases as the threshold τ increases. However, it does not necessarily mean that

we will have a reduced number of successful receptions in a unit time, because the trans-

mission duration will also become shorter. We will look at this issue in the subsequent

chapter.

Remark 6.4.1. In [42], the optimal transmission probability under the collision channel

model was derived, and was given by the inverse of the total number of nodes as in the
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original slotted ALOHA system. Recall that as τ goes to ∞, our model accommodates

the collision channel model. In Eq. (6.9), we have p∗T = 1/3 as τ goes to ∞, which is

consistent with the quoted result. Therefore, we conclude that the optimal transmission

probability derived under collision channel model is fundamentally assuming the worst

prior on the channel conditions by neglecting all the possibilities of succeeding in the

presence of interference.

6.4.2 Controlling the Threshold for the Successful Decoding

For a given modulation scheme and target BER, the data rate is an increasing func-

tion of the SINR threshold τ [56]. Hence, if the number of bits to be transmitted is fixed

and we increase τ , the slot duration must be shortened due to the increased rate. However,

as we have seen in the previous chapter, the transmission probability pT needs to be low-

ered. To investigate this, let us consider the M -PSK modulation scheme2 whose symbol

rate [symbols/sec/Hz] at a given target BER z is given by

Rs ≈



min
{

2τ
[Q−1(z)]2

, Rm
s

}
, M = 2(BPSK)

min
{

τ
2[Q−1(z)]2

, Rm
s

}
, M = 4(QPSK)

min

{
2τ sin2(π/M)

[Q−1( z log2M
2 )]

2 , Rm
s

}
, M = 2n, n > 2

where Q(z) is the probability that the standard normal random variable is greater than

z. The maximum symbol rate Rm
s is given by Rm

s = 1/kg, where kg is the constant

that depends on the pulse shape of the analog signal. Without loss of generality, we

set kg = 1 (i.e., the raised cosine pulse with roll-off factor of 1). Denote by W the

2We could use the Shannon capacity formula but it would not make practical sense since it gives an

asymptotic limit of the rate with arbitrarily small probability of error and arbitrarily long block length.
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Figure 6.2: The maximum expected number of successful receptions per second under

the M -PSK modulation scheme

number of bits to be transmitted in each time slot. Then, the transmission duration is

given by Tslot = W
RsB log2M

. Consequently, we can redraw the maximum expected number

of successful receptions as in Fig. 6.2, where we set η = 4, z = 10−6, W = 1 bit, and

B = 1 Hz, respectively. Note that in the figure, the units were changed from [nodes/slot]

to [nodes/sec].

6.4.3 Performance over Multiple Slots

Because as time goes on, the set of discovered neighbors in each time slot will

overlap with the previously discovered ones, it is important to know the performance of

the discovery algorithm over multiple slots. We start with a simplifying assumption that

the set of successful transmitters Ist is independent from slot to slot. This is a hypothetical
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scenario because the set Ist is indeed correlated since a node closer to the receiver has a

better chance of being discovered in any slots. The scenario where Ist is correlated over

slots will also be studied later in this chapter.

Assuming that the set of successful transmitters Ist is independent from slot to slot

implies that each neighboring node has equal probability of success. Therefore, for a

given number of successful receptions ht and the total number of neighbors J , the prob-

ability that a certain neighboring node belongs to the set Ist is given by ht/J and, over D

multiple slots, the probability is obtained by

Pr

{
k ∈

D⋃
t=1

Ist

∣∣∣∣∣ |Is1| = h1, . . . , |IsD| = hD

}
= 1−

D∏
t=1

(
1− ht

J

)
(6.10)

We call Eq. (6.10) a slot-basis prediction to distinguish from the Bernoulli approximation

which will be given in the sequel.

Note that the event that a particular neighboring node belongs to the set Ist can be

approximated by the Bernoulli trial with success probability E[|Ist |]/J . Thus, the ap-

proximated number of discovering the particular node over D multiple slots is a binomial

random variable with success probability E[|Ist |]/J and the total number of trials D. For

large D and small E[|Ist |]/J , it can be further approximated by the Poisson random vari-

able with parameter DE[|Ist |]/J [96, p. 435]. Hence, the probability that the particular

node has been discovered over D multiple slots is approximately 1− exp(−DE[|Ist |]/J),

which is equal to the probability that the Poisson random variable is non-zero. Note that

the slot-basis prediction in Eq. (6.10) and the above approximation do not depend on

the particular node index because we assumed that Ist is independent from slot to slot.

Therefore, it can be viewed as the predicted fraction of neighbors discovered up to time
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Figure 6.3: The fraction of neighbors discovered by node A for the example trans-

mit/listen pattern in Table 6.1

slot D. In Fig. 6.3, we plot the actual/predicted fraction of neighbors discovered for the

example transmit/listen pattern in Table 6.1. For the figure, the SINR threshold τ is set

to 1 (in linear scale), and the transmission probability pT is set to 0.4226, which is the

optimal value by Eq. (6.9) with path loss exponent η = 4. Note that this is the optimal

transmission probability which maximizes the expected number of successful receptions

at that threshold value. Consequently, we obtain the expected number of successful re-

ceptions per slot as 0.3849 by Eq. (6.8), and this value was used to plot the Bernoulli

approximation.

In practice, the probability that a particular node belongs to the set of successful

transmitters Ist depends on the distance between the node and the receiver and, thus, Ist

is correlated over time slots. Therefore, we first obtain the conditional probability that a
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Table 6.1: An example transmit/listen pattern of three nodes (the letters T and L stand for

transmit and listen, respectively.)

Time slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Node A T T L L T L T L L T T L T T L

Node B L L T L T T L T L L L L T T T

Node C L T T L T L L T T T T T T T L

particular node at the specific distance from the receiver belongs to the set Ist given the

total number of successful receptions ht as (see Chapter Appendix 6.B)

Pr { k ∈ Ist | |Ist | = ht, rk = r′ } =

∑J
n=ht

(
J−1
n−1

)
pT

n(1− pT)J−nζn∑J
n=ht

(
J
n

)
pT

n(1− pT)J−n
(
n
J

(ζn + γn − ξn) + ξn
)

(6.11)

where ζn, γn, and ξn are defined as

ζn =

(
n− 1

ht − 1

)
f1,nf

ht−1
2,n (1− f2,n)n−ht

γn =

(
n− 1

ht

)
fht2,n(1− f2,n)n−ht−1(1− f1,n)

ξn =

(
n

ht

)
fhtn (1− fn)n−ht

and f1,n is the probability that a transmitter located at distance r′ from the receiver will

succeed among n(≥ 1) simultaneous transmissions and f2,n is the probability that a trans-

mitter at an arbitrary distance will succeed among n(> 1) simultaneous transmissions

given that one of the other transmitter is located at distance r′ from the receiver. The

expressions for f1,n and f2,n are given in Chapter Appendix 6.B. The function fn is the

shorthand notation for Eq. (6.6). Using the conditional probability in Eq. (6.11), the

probability that a particular node at distance r′ has been discovered over multiple slots
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Figure 6.4: The probability that a node at distance r′ from the reference node is in the

set of successful transmitters for the three node example given the number of successful

transmissions ht = 1

can be obtained similarly with Eq. (6.10). To get a better understanding on the condi-

tional probability in Eq. (6.11), let us consider the following example which is in line

with the Example 6.4.1.

Example 6.4.2. Since each node has two neighbors, Pr { k ∈ Ist | |Ist | = 0, rk = r′ } = 0

and Pr { k ∈ Ist | |Ist | = 2, rk = r′ } = 1. For ht = 1, we obtain

Pr { k ∈ Ist | |Ist | = 1, rk = r′ } =
1− pT + pT

(
1− r′2

)2

2(1− pT) +
((

1− r′2
)2

+ r′4
)
pT

where the discovery range R0 in Eq. (6.1) is normalized to 1 and the threshold τ is set to

1. We plot the result in Fig. 6.4 where all other parameters are set identical with those

used for Fig 6.3. Note that even if r′ = 0, the probability is not equal to 1 because of the
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random transmit/listen pattern of a node.

6.5 Detection of the Transmitting Neighbors

6.5.1 Classical Approach Using a Bank of Matched Filters

To decide the existence of a signal from a particular node, we require the use of

matched filters in which the outputs of the filters are compared to a certain threshold.

Note that such a decision is subject to probabilistic errors such as the false alarm and

miss and, thus, the threshold needs to be chosen in some optimum way. Since the set of

transmitting neighbors and their signal amplitudes are all unknown and hard to be tracked,

we simplify it by assuming that the sum of interfering signals and the noise act as another

noise process n′t = {n′t,1, ..., n′t,L}T whose samples are i.i.d. with N (0, N ′). The average

noise power N ′ can be computed as

N ′ = N +
J̄−1∑
n=1

(
J̄ − 1

n

)
pT

n(1− pT)J̄−1−nnP̄rx (6.12)

where J̄ and P̄rx is the average number of neighbors and the received signal power, re-

spectively. Note that this is a reasonable approximation if there is a large number of

nodes, and it is commonly applied to the analysis of cellular code division multiple ac-

cess (CDMA) systems [56].

Based on the above approximation, we formulate the binary hypothesis testing
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Figure 6.5: Bank of matched filters

problem for the transmission of a particular node k as

H0 : yt = n′t

versus

H1 : yt = gkt s
k
t + n′t

which is a composite hypothesis testing because the signal skt is known but still not its

amplitude. For the problem, a generalized likelihood ratio test method would provide a

simple decision rule as3 [71, p. 51]

1

N ′

L∑
l=1

yt,ls
k
t,l

H1

≷

H0

β (6.13)

This structure is depicted in Fig. 6.5, where β′ = βN ′. Note that each node transmits

with probability pT and listens with probability 1−pT, and they are the prior probabilities

for each hypothesis.

3Note that the decision rule in Eq. (6.13) is optimal for gkt near 0 which holds for most of the practical

situations.
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Given the cost structure Cij which is the cost incurred by choosing hypothesis Hi

when hypothesis Hj is true, the optimum threshold for the minimum average cost is

given by β = π0(C10−C00)
π1(C01−C11)

, where πi is the prior probability of hypothesis Hi. Under

the minimum-probability-of-error criterion where the cost assignment is done by Cij = 0

for i = j, and Cij = 1 for i 6= j, the threshold is obtained by β = π0/π1 = (1− pT)/pT.

6.5.2 Random Set Theory-based Approach

The classical approach using a bank of matched filters holds a certain desired prop-

erty; that is, its complexity does not scale with the number of nodes by averaging out

the effect of random interferences. However, the performance would be worse than the

class of decorrelator detectors. On the other hand, total number of transmitting neighbors

and their entities are all random in our problem setting and, thus, standard decorrelator

detectors are not directly applicable because they fundamentally assume a fixed num-

ber of transmitters with known entities. This problem naturally falls in the purview of

RST which generalizes standard probability theory by assigning sets, rather than values,

to random outcomes (see Chapter Appendix 6.A and references therein). RST has been

applied before in the context of multi-source data fusion and multi-target identification

problems [46, 90–94] and, recently, multi-user detection problem in a dynamic environ-

ment [95]. The utility of RST mostly comes from the fact that we can readily treat the

random behavior of a random number of entities as a single random set having likelihood.

Mathematically, a random set X is defined as a mapping from a sample space Ω to

a power set P(S) of a hybrid space S. It is referred to as a random finite set, if for all
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ω ∈ Ω, the set is finite (i.e., |X(ω)| <∞). The hybrid space S , Rd×U is the Cartesian

product of a d-dimensional Euclidean space Rd and a finite discrete space U . To illustrate

the use of the RST-based method, we focus on the case where the hybrid space S is given

by a finite discrete space as S = {1, ..., K}, i.e., the random set Xt is simply equal to the

unknown set of transmitting neighbors at that time slot, which was previously denoted by

It in Eq. (6.2). Additionally, if the amplitudes of the signals from transmitting neighbors

are of interest, we can define it as S = {1, . . . , K} × R+, where R+ is the non-negative

real space. In the following, we estimate the random set Xt based on the observed signal

yt in each time slot.

Since the number of transmitting neighbors in each time slot depends on the total

number of neighbors, both the random set Xt and the total number of neighbors J need

to be jointly estimated as

arg max
(X′t,J

′)
fXt,J |Yt (X′t, J

′|yt)

where fXt,J |Yt(·) is the likelihood of random set Xt and J neighbors given the received

signal Yt = yt. By Bayes rule, fXt,J |Yt (X′t, J
′|yt) is proportional to

fYt|Xt,J (yt|X′t, J ′) fXt|J(X′t|J ′)fJ(J ′)

where fYt|Xt,J(·) is the likelihood of received signal Yt given Xt = X′t and J = J ′,

fXt|J(·) is the likelihood of random set Xt given J = J ′, and fJ(·) is the likelihood of

having J neighbors. Consequently, the joint MAP estimator of the random set Xt and the

total number of neighbors J is obtained by

arg max
(X′t,J

′)
fYt|Xt,J (yt|X′t, J ′) fXt|J(X′t|J ′)fJ(J ′)
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In order to run the above estimator, it is required to specify the densities fYt|Xt,J(·),

fXt|J(·), and fJ(·). We outline how these densities are obtained.

The received signal yt not only depends on the set of transmitting neighbors Xt, but

also depends on their signal amplitudes gt = {gkt ,∀k ∈ Xt}. Since the amplitudes are all

random, we take average by assuming that the amplitudes of the nodes are independent

of each other as

fYt|Xt,J(yt|X′t, J ′) =

∫ ∞
0

· · ·
∫ ∞

0

fYt|Xt,gt,J(yt|X′t,g′t, J ′)dFg(g′1) · · · dFg(g′|X′t|)

(6.14)

where fYt|Xt,gt,J(yt|X′t,g′t, J ′) is the likelihood of received signal Yt given Xt = X′t,

gt = g′t, and J = J ′. The set g′t = {g′1, . . . , g′|X′t|} and Fg(·) denote the realization

of gt and the common cumulative distribution of the received signal amplitude, respec-

tively. Note that by further conditioning the received signal yt on the set of transmitting

neighbors and their signal amplitudes, the only randomness remaining is in the noise nt.

Therefore, it is given by

fYt|Xt,gt,J(yt|X′t,g′t, J ′) =
1

(2πN)L/2
exp

− 1

2N

L∑
l=0

yt,l −∑
k∈X′t

g′m(k)s
k
t,l

2
where the bijective function m(k) has been introduced to map the elements in X′t to the

elements in the set {1, . . . , |X′t|}. For example, if X′t = {2, 5}, then m(2) = 1 and

m(5) = 2.

In order to obtain fXt|J(X′t|J ′), we first obtain the belief mass of a random set Xt

for a given number of neighbors J = J ′ as (see Chapter Appendix 6.A)

βXt|J(C|J ′) =
J ′∑
n=0

∑
B:B⊆C,|B|=n

Pr{Xt = B|J = J ′}

155



where C is a closed subset of the space S, and B is a realization of the random set Xt.

Let us first derive βXt|J(C|J ′) for a particular example as follows.

Example 6.5.1. Set S = {1, 2, 3}, C = S, and J ′ = 2. 1) The set {B : B ⊆ C, |B| = 0}

is given by {∅} and, thus,
∑

B:B⊆C,|B|=0 Pr{Xt = B|J = 2} = (1− pT)2. 2) The set

{B : B ⊆ C, |B| = 1} is given by {{1}, {2}, {3}} and, thus,
∑

B:B⊆C,|B|=1 Pr{Xt =

B|J = 2} = 3pT (1− pT). 3) The set {B : B ⊆ C, |B| = 2} is given by {{1, 2}, {1, 3},

{2, 3}} and, thus,
∑

B:B⊆C,|B|=2 Pr{Xt = B|J = 2} = 3pT
2. 4) Since J ′ = 2, the

probability that a random set Xt is equal to B for |B| > 2 is zero. Summing over all

possible B’s yields βXt|J(C|J ′) =
∑2

n=0

(
3
n

)
pT

n (1− pT)2−n.

For general cases, we have

βXt|J(C|J ′) =
J ′∑
n=0

(
|C|
n

)
pT

n (1− pT)J
′−n

The belief density fXt|J(X′t|J ′) is obtained by taking the set derivative of the belief mass

obtained above. For the case where the hybrid space S is comprised only of the discrete

space, it can be readily obtained through the following Möbius inversion formula as (see

Chapter Appendix 6.A)

fXt|J(X′t|J ′) =
∑
C⊆X′t

(−1)|X
′
t\C|βXt|J(C|J ′)

Example 6.5.2. Take X′t = {1, 3} and J ′ = 2, then the set {C : C ⊆ X′t} is given

by {∅, {1}, {3}, {1, 3}}. 1) For C = ∅, βXt|J(C|J ′) = (1− pT)2. 2) For C = {1},

βXt|J(C|J ′) = (1− pT)2 + pT (1− pT). 3) For C = {3}, βXt|J(C|J ′) = (1− pT)2 +

pT (1− pT). 4) For C = {1, 3}, βXt|J(C|J ′) = (1− pT)2+2pT (1− pT)+pT
2. Summing

over all the possible C’s by considering the sign of the terms yields fXt|J(X′t|J ′) = pT
2.
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Similarly, for general cases, we have

fXt|J(X′t|J ′) =


pT
|X′t| (1− pT)J

′−|X′t| , for |X′t| ≤ J ′

0, otherwise

Note that the scenario in which Xt contains only the identity of the transmitters is the

simplest case that can be solved by standard probability theory as well. The usefulness

of RST comes when we extend the set Xt so that additional parameters, such as signal

amplitudes, can be estimated at the same time.

The density fJ(J ′) is the probability that there are J ′ number of neighbors. By

defining the discovery region as the circle of radius R0, from Chapter 6.2, the number

of nodes inside the discovery region follows a Poisson random variable with parameter

λπR0
2. Notice that there is no definite way of choosing R0 because the decisions on

whether a particular node is my neighbor are inconclusive due to the continuity of signal

strength together with the random effect of noise and fading. However, as will be shown

in the numerical example, the estimator gives more weights to an appropriate size of the

set which is likely to be occurred at that size of discovery region.

6.6 Numerical Results

Here, we focus on the comparison of the physical layer signal processing methods

for the detection of transmitting neighbors. For the simulation, a total of 8 wireless sensor

nodes are uniformly deployed over the region of interest which is modeled as a circle of

radiusR which is set to 1 km as shown in Fig. 6.6. The reference node denoted by index 0

is assumed to be located at the center of the circle. For the wireless channel, we consider

157



R0

X X X X

(a) Discretization of the distance

R0

R=1km

1

2

3

4

5

06

7 8

(b) Deployment scenario 1

R0

R=1km

1

2

3

4

5

0

6

7

8
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Figure 6.6: Discretization of the distance for fast computation of Eq. (6.14) and example

deployment scenarios

a simple path loss model which only depends on the transmitter-receiver distance, and

the path loss exponent η is set to 4. The transmission power G is set to -24 dBm4, and

the noise spectral density N0 is set to -173 dBm/Hz as commonly done. The effect of

fading was intentionally ignored to clearly reveal the effect of the distance between nodes

in detection outcomes. The bandwidth B is set to 100 Hz (which is artificially low but

really irrelevant for our purposes here). The transmission probability pT is set to 0.5 (to

better observe the effect of the multiple access). For the signatures of the nodes, we used

length 15 maximal-length sequences [98]. Gold and Kasami sequences which have better

correlation property can be used, but comparing the performance of different codes is

beyond the scope of this work.

Note that the computation of fYt|Xt,J(·) in Eq. (6.14) is tedious because of the mul-

tiple integrals. Hence, we transform the integrals to a finite summation by discretizing the

distance. To do this, we first divide the discovery region of the reference node into a finite

4For example, the transmission power of the MICAz Mote, a commercial wireless sensor node by

Crossbow Technology, Inc., is programmable in 8 steps from -24 to 0 dBm [97].
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number of strips having the same area and, after that, each strip is further divided into two

having the same area as shown in Fig. 6.6(a). By doing so, the probability that a node is

on either one of those radii becomes uniform. For the numerical examples, we used 7 dis-

crete points and, obviously, the accuracy will improve as the number of points increases.

Also note that, since a total of 8 nodes are uniformly deployed over the specified region

of interest, the density fJ(·) on the number of nodes inside the discovery region of radius

R0 can be more accurately described by the binomial distribution B(8, R0
2

R2 ), rather than

the Poisson approximation. For the classical approach, it is computed by β′ = βN ′ where

β = (1−pT)/pT = 1 and N ′ = N0B+3.5P̄rx by Eq. (6.12) with P̄rx = 3.3333×10−7G

using the cumulative distribution function of the received signal power in Eq. (6.3) with-

out fading.

Table 6.2 and 6.3 show the detection results for deployment scenario 1 and 2 in Fig.

6.6(b)-(c), respectively. Note that the objective of the neighbor discovery is to identify

the correct set of neighbors which is difficult to be measured with a single parameter, and

it is the reason why we simply listed the detection outcomes as shown in the tables. The

letters H, C, F, and M stand for hit, correct rejection, false alarm, and miss, respectively.

Note that F and M are the erroneous detections. From Table 6.2, it can be seen that a total

of 1 miss and 3 false alarms are induced under the RST-based approach with R0 = 1 km

(which is the entire region of interest), and 2 misses and 1 false alarm are occurred with

R0 = 0.5 km. Under the classical approach, however, a total of 6 misses and 10 false

alarms occur, which is 4 times more than the RST-based approach with R0 = 1 km and

5.3 times more than that with R0 = 0.5 km.

From Table 6.3, we can see that a total of 2 misses and 4 false alarms are induced
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Table 6.2: Detection results for deployment scenario 1 in Fig. 6.6(b) (the letters H, C, F,

and M stand for hit, correct rejection, false alarm, and miss, respectively.)

(a) RST-based approach (R0 = 1 km)

Time slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Node 1 C H C C C C H C H C H C H C C H H C C H

Node 2 H H H H H C C C H C C H C C C C H H C H

Node 3 H H C C C C C H H F H H H H C C C C C C

Node 4 C C C F H C H H C C C C H C C H M C C H

Node 5 H C H H H C C C C C C H C C H C C H C H

Node 6 H C C H H C C C H C C C H H C H H H H C

Node 7 H H C C H C H C C C H C H F C C H H H C

Node 8 C H H H H H H H C C H H H C H C H H H H

(b) RST-based approach (R0 = 0.5 km)

Time slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Node 1 C H C C C C H C H C H C H C C H H C C H

Node 2 H H H H H C C C H C C H C C C C H H C H

Node 3 H H C C C C C H H F H H H H C C C C C C

Node 4 C C C C M C H H C C C C H C C H M C C H

Node 5 H C H H H C C C C C C H C C H C C H C H

Node 6 H C C H H C C C H C C C H H C H H H H C

Node 7 H H C C H C H C C C H C H C C C H H H C

Node 8 C H H H H H H H C C H H H C H C H H H H

(c) Classical approach using a bank of matched filters

Time slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Node 1 C H C C C F H C H F H C H C C H H C C H

Node 2 H H H H H C C C H F C H C C C C H H C H

Node 3 H H C C C C C H H F H H H H C C C C C C

Node 4 C C C C M C H H C F C C M C C H M C C M

Node 5 H C H H H C C C C C C H C C H C C H C H

Node 6 M C C H M C C F H F C C H H C H H H H C

Node 7 H H C C H C H C C F H C H F C C H H H C

Node 8 C H H H H H H H C C H H H F H C H H H H
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Table 6.3: Detection results for deployment scenario 2 in Fig. 6.6(c)

(a) RST-based approach (R0 = 1 km)

Time slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Node 1 C C C C C C H C H H C H H C H H H H C H

Node 2 H C H H C F C H C C H C C F H C C H C C

Node 3 H C H H H H H M C C C C H H C C H C C C

Node 4 H C H H H H C C H H C M C C H H C C C H

Node 5 H C C H H H F H H C H H C H C C H C H H

Node 6 H C C H C H H H H H H H H C C F C H C C

Node 7 C H C H H C C C H H H C C C H H H C C C

Node 8 H C H C C H C H C C H H H C H H H H H H

(b) RST-based approach (R0 = 0.5 km)

Time slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Node 1 C C C C C C H C H H C H H C H H H H C H

Node 2 H C H H C C C H C C H C C C H C C H C C

Node 3 H C H M M H H M C C C C H H C C M C C C

Node 4 H C H M M M C C H H C M C C H M C C C H

Node 5 H C C H H H F H H C H H C H C C H C H H

Node 6 H C C H C H H H H H H H H C C C C H C C

Node 7 C H C H H C C C H H H C C C H H H C C C

Node 8 H C H C C H C H C C H H H C H H H H H H

(c) Classical approach using a bank of matched filters

Time slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Node 1 C C C C C C H C H H C H H C H H H H C H

Node 2 H C H H C F C H C C H C C F H C C H C C

Node 3 H C H H H H H M C C C C H H C C H C C C

Node 4 H C H H H H C C H H C M C C H H C C C H

Node 5 H C C H H H F H H C H H C H C C H C H H

Node 6 H F C H C H H H H H H H H C C F C H C C

Node 7 C H C H H C C C H H H C C F H H H C C C

Node 8 H F H C C H C H C C H H H C H H H H H H
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under the RST-based approach with R0 = 1 km, and 9 misses and 1 false alarm are

occurred with R0 = 0.5 km. Overall, by reducing the discovery range R0, the occurrence

of false alarm is reduced, whereas that of miss is increased. Note, however, that most of

the misses are due to the nodes outside the discovery region (i.e., node 3 and 4). In fact,

the detection of the nodes inside the discovery region is more accurate than before. These

are because the density fJ(·) gives more weight to the smaller size of the set Xt during

the decision process. Also, it should be mentioned that the nodes outside the discovery

region can be detected in a particular reception since there is no absolute and deterministic

boundary for a node detection. On the other hand, under the classical approach, a total of

2 misses and 7 false alarms occur, which is 1.5 times more than the RST-based approach

with R0 = 1 km and is tantamount to that with R0 = 0.5 km. Note again that most of the

errors under the RST-based approach, specifically the misses, come from detecting the

nodes outside the discovery region which is actually a preferred error.

6.7 Chapter Summary

In this work, we studied the problem of neighbor discovery in a wireless sensor

network. By incorporating physical layer parameters, we enabled a more accurate and

realistic performance assessment of the chosen neighbor discovery algorithm. Unlike the

collision channel, such incorporation required us to explicitly specify the set of transmit-

ting neighbors in each time slot based on the received signal. With the aid of the theory of

random set, we were able to present an alternative method to the classical approach using

a bank of matched filters for detecting the set of transmitting neighbors. The performance
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gain of using this new method comes in an additional cost of complexity. Several steps

are still needed to complete our work. To fully validate the advantages of the alternative

method, the performance evaluation needs to be supplemented with additional simula-

tions. Also, it should be noted that we focused on discovering unidirectional links as

in most of the previous work. However, for routing and other important functions of a

network, bidirectional links simplify the network operation. Therefore, it is of interest to

develop a self-organizing protocol which establishes bidirectional links in a distributed

manner.

Chapter Appendix 6.A – Fundamentals of the Theory of Random Set

Random set theory (RST) and its associated finite-set statistics (FISST) are exten-

sively studied in the book Mathematics of Data Fusion [46]. This appendix briefly intro-

duces the essentials of RST, and refer to [46] and other companion publications [90–94]

for more details. In RST, the belief mass of a random finite set X plays a similar role to

that of the cumulative distribution function of a random variable, and is defined as

βX(C) , Pr{X ⊆ C} (6.15)

where C is a closed subset of the space S. For example [92], if X = {x}, i.e., a singleton,

where x is a random vector, βX(C) = Pr{X ⊆ C} = Pr{x ∈ C} where Pr{x ∈ C}

is the probability measure on S. From this, it can be conjectured that the belief mass

generalizes the ordinary probability measure. It is straightforward to write the belief
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mass in Eq. (6.15) as

βX(C) =
∑
B⊆C

Pr{X = B} =
∑
B⊆C

fX(B) (6.16)

where fX(·) is the belief density of a random set X, and it plays the role of a probability

density function. One natural question is how to derive fX(·) from βX(·) which will be

answered in the sequel.

Consider the case where the hybrid space S is comprised only of a finite discrete

space U . Then, the belief density fX(·) of a random finite set X can be obtained via the

Möbius inverse transform of βX(·) as

fX(B) =
∑
C⊆B

(−1)|B\C|βX(C) (6.17)

by viewing sets as points in another space.

Example 6.7.1. Take S = U = {a, b}. Then, P(S) = {∅, {a}, {b}, {a, b}}. Assign

probability to each element of the power set so that the sum is equal to 1:

fX(∅) = 0.1, fX({a}) = 0.4, fX({b}) = 0.3, fX({a, b}) = 0.2

Then, we can obtain the values of the belief mass using Eq. (6.16). For example,

βX({b}) = fX(∅) + fX({b}) = 0.4. Likewise, we have

βX(∅) = 0.1, βX({a}) = 0.5, βX({a, b}) = 1

We can also retrieve the values of the belief density from the belief mass using Eq. (6.17).

For example, fX({b}) = −βX(∅) + βX({b}) = 0.3.

For a general case where S , Rd × U with d > 0, the Möbius inverse transform is

not applicable because it applies only for a finite partially ordered set [46]. The continuous
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analog of the Möbius inverse transform, which is often called the set derivative, at Z =

{z1, . . . , zn} with z1 6= · · · 6= zn, is defined by [93]

δF (C)

δZ
,

δnF

δzn · · · δz1

(C) ,
δ

δzn

δn−1F

δzn−1 · · · δz1

(C)

where

δF (C)

δzi
, lim

ν(Ezi )→0

F (C ∪ Ezi)− F (C)

ν(Ezi)

where Ezi is a small neighborhood of zi and ν(·) is the hyper-volume (i.e., Lebesgue

measure) of a given set, and δF (C)
δ∅ , F (C).

Chapter Appendix 6.B – Derivation of Eq. (6.11)

The details in deriving Eq. (6.11) is delivered in this appendix. By applying Bayes

rule to the conditional probability, we have

Pr { k ∈ Ist | |Ist | = ht, rk = r′ } =
Pr{k ∈ Ist , |Ist | = ht, rk = r′}

Pr{|Ist | = ht, rk = r′}

whose numerator and denominator are specified one by one in the following. Condi-

tioning the numerator on the number of transmitters and applying Bayes rule once again

yields

Pr{k ∈ Ist , |Ist | = ht, rk = r′} =
J∑

n=ht

Pr{|Ist | = ht|k ∈ Ist , rk = r′, |It| = n}

× Pr{k ∈ Ist , rk = r′, |It| = n}

Define f1,n as the probability that a transmitter located at distance r′ from the receiver

will succeed among n(≥ 1) simultaneous transmissions and it is given by

f1,n = 1−
∫ ∞

0

· · ·
∫ ∞

0

FP

(
τ

n∑
i=2

xi

∣∣∣∣∣ r′
)
dFP (x2) · · · dFP (xn)
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Also, define f2,n as the probability that a transmitter at an arbitrary distance will succeed

among n(> 1) simultaneous transmissions given that one of the other transmitters is

known to be located at distance r′ from the receiver which is obtained by

f2,n = 1−
∫ ∞

0

· · ·
∫ ∞

0

FP

(
τ

n∑
i=2

xi

)
dFP (x2|r′)dFP (x3) · · · dFP (xn)

and f2,1 = 0. Using these probabilities, we can compute the numerator as

Pr{k ∈ Ist , |Ist | = ht, rk = r′} =
J∑

n=ht

(
n− 1

ht − 1

)
fht−1

2,n (1− f2,n)n−ht

×
(
J − 1

n− 1

)
pnT(1− pT)J−nf1,nfr(r

′)

Similarly, the denominator can be expanded as

Pr{|Ist | = ht, rk = r′} =
J∑

n=ht

Pr{|Ist | = ht|rk = r′, |It| = n} · Pr{rk = r′, |It| = n}

(6.18)

Denote by Jn the set of elements in the power set P(J ) whose cardinality is equal to

n, and J k
n (⊆ Jn) the set of elements containing a specific node index k. For exam-

ple, if J = {1, 2, 3}, then P(J ) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}},

J2 = {{1, 2}, {1, 3}, {2, 3}}, and J 1
2 = {{1, 2}, {1, 3}}. Using these notations, the first

probability in the summation of Eq. (6.18) can be split into

Pr{|Ist | = ht|rk = r′, |It| = n} =
∑
S∈J kn

Pr{k ∈ Ist , |Ist | = ht, It = S|rk = r′, |It| = n}

+
∑
S∈J kn

Pr{k /∈ Ist , |Ist | = ht, It = S|rk = r′, |It| = n}

+
∑

S∈Jn\J kn

Pr{|Ist | = ht, It = S|rk = r′, |It| = n} (6.19)
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Since nodes are randomly transmitting with equal probability, each realization of the set

of transmitters having same cardinality are equiprobable, i.e., Pr { It = S | |It| = n } =

1/
(
J
n

)
, for all S ∈ Jn, and the set of transmitters It itself is independent over time slots

(but the set of successful transmitters Ist is not). Therefore, the probability in the first

summation of Eq. (6.19) is computed as

Pr{k ∈ Ist , |Ist | = ht, It = S|rk = r′, |It| = n} =

(
n− 1

ht − 1

)
fht−1

2,n (1− f2,n)n−htf1,n
1(
J
n

)
for all S ∈ J k

n . Likewise, we can specify the remaining probabilities in Eq. (6.19).

By noting that |Jn| =
(
J
n

)
and |J k

n | =
(
J−1
n−1

)
and after some manipulation, Eq. (6.19)

becomes

Pr{|Ist | = ht|rk = r′, |It| = n} =
n

J

(
n− 1

ht − 1

)
fht−1

2,n (1− f2,n)n−htf1,n

+
n

J

(
n− 1

ht

)
fht2,n(1− f2,n)n−ht−1(1− f1,n) +

(
1− n

J

)(n
ht

)
fhtn (1− fn)n−ht (6.20)

where fn is the shorthand notation for Eq. (6.6). The second probability in Eq. (6.18) is

simply

Pr{rk = r′, |It| = n} =

(
J

n

)
pT

n(1− pT)J−nfr(r
′) (6.21)

By substituting Eqs. (6.20) and (6.21) into Eq. (6.18), the denominator becomes

Pr{|Ist | = ht, rk = r′} =
J∑

n=ht

(n
J

(ζn + γn − ξn) + ξn

)(J
n

)
pT

n(1− pT)J−nfr(r
′)

where the shorthand notations ζn, γn and ξn are defined in Chapter 6.4.3.
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Chapter 7

Conclusion

7.1 Summary of Contributions

In the first part of this dissertation, we studied the stability property of cognitive

radio systems. Interestingly, we showed that even with non-zero sensing error rates, there

exists a condition for which we can achieve the identical stability region that is achieved

with perfect sensing. This is remarkable because the spectrum sensing itself becomes

unnecessary in terms of the achieved stability region. The problem on how to control the

operating point of sensing device over its receiver operating characteristics was also dis-

cussed. We next studied the hybrid access for cognitive radio systems with time-varying

connectivity and showed that the hybrid access policy does not always outperform the

interweave-only mode, and the condition for which there is a gain from using the hybrid

access policy was specified.

In the second part of this dissertation, we studied the stability property of random

access systems. Specifically, the effect of limited, but renewable, energy availability due

to harvesting on the stability region was precisely analyzed. The effect of finite capacity

batteries was studied. We then considered the channel-aware random access, in which

each node adapts its transmission probability based on the local channel state information

which is erroneous. It was shown that the stability region of the channel-aware random

access is not necessarily a proper subset of that of the centralized optimal policy, specifi-
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cally, as the multipacket reception capability improves.

In the third part of this dissertation, we studied the performance of backpressure-

based stochastic control for wireless multi-hop networks with time-correlated arrivals

using the Lyapunov drift technique. It was shown that the original backpressure policy

is still throughput-optimal even with time-correlated arrivals but with increased average

network delay. The case when the arrival rate vector is possibly outside the stability region

was also studied and the performance of the joint flow control and backpressure policy

was derived in terms of the average network delay and the achieved network utility for

the case with time-correlated arrivals.

In the last part of this dissertation, we studied the problem of neighbor discovery

in a wireless sensor network. By incorporating physical layer parameters, we provided

more accurate and realistic performance assessment of the chosen neighbor discovery

algorithm. For the actual detection of the set of transmitting neighbors in each time slot,

we applied the theory of random set and showed its superiority over the classical approach

using a bank of matched filters. The performance gain of using this new method, however,

comes in an additional cost of computational complexity.

7.2 Additional Contributions and Collaborations

7.2.1 Cognitive Radio with a Rechargeable Primary Source

In [99] and its conference version [60], we considered two source-destination pairs

and applied the concept of cognitive radio in sharing the shared medium. The high-

priority communication pair is assumed to harvest energy from the environment as in
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Chapter 4.2, whereas the low-priority communication pair is plugged to a reliable power

supply and, thus, free from the energy availability constraint. For the considered model,

we obtained the two-dimensional stability region separately for both cases when the ca-

pacity of the battery is infinite and finite.

7.2.2 Wireless Network-Level Partial Relay Cooperation

Cooperative communication helps overcome fading and attenuation in wireless net-

works. Its main purpose is to increase the communication rates across the network and to

increase reliability of time-varying links. It is known that wireless communication from a

source to a destination can benefit from the cooperation of a node that overhear the trans-

mission. The classical single relay channel [100] exemplifies this situation. On the other

hand, it was shown that additional gains can be achieved with network-layer cooperation

(or packet-level cooperation), that is plain relaying without any physical layer consider-

ations [101, 102]. In [63], we introduced the notion of partial network-level cooperation

by adding a flow controller for the traffic from source to relay and showed that the system

with the flow controller always performs better than or at least equal to the system without

the flow controller by optimally choosing the traffic admission rate.
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