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Preface

This thesis will prove the semiclassical generalized second law of horizon ther-

modynamics (GSL). It extends previous proofs of the GSL to the case where the

quantum fields are rapidly falling across the horizon. Unlike previous semiclassical

proofs, it expresses the second law in differential form. This means that the entropy

can be shown to be increasing locally at every spacetime point on the horizon. In

contrast, previous semiclassical proofs of the GSL only showed that the entropy

increases globally from an intial stationary state to a final stationary state (which

implies the differential form of the GSL only when the fields are changing slowly

enough that one can linearly interpolate).

In this preface I would like to informally summarize the context and content

of the dissertation that follows.1

Context. Start with one of the standard motivating questions of thermodynamics:

Is it impossible to build a machine that can run indefinitely? In order to maximize

emotional impact, one could ask a related subquestion: Is all life in the universe

ultimately doomed to extinction by virtue of the laws of nature? (If one assumes

that technologically advanced lifeforms will attempt to survive as long as possible

using whatever natural means are available, these two questions may be equivalent.)

The standard answer is yes, we are all doomed, because the usual first and second

1For the most chapter I will not provide references in this introduction; relevant citations can

be found in section I.1.
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laws of thermodynamics forbid perpetual motion machines. If energy is conserved,

then we are stuck with our initial supply of energy, and if entropy cannot decrease,

then it must eventually be converted into the highest entropy form possible (in

which, probably, life cannot exist).

It is not always noticed, however, that the argument depends on a number of

ancillary premises besides the first and second laws themselves. First, conservation

of energy is not really a limitation if there is an unlimited supply of energy. If the

universe contained an infinite amount of accessible useful energy, there would be no

problem with supporting life forever. Another ancilliary premise is that there is a

maximum entropy state. If it were possible for a fixed-energy system to have an

arbitrarily large entropy, then one could use such a system as an entropy “dump” for

the storage of thermodyanmic waste, thus avoiding “heat death”. (A finite number

of particles in infinite empty space is an example of a finite-energy system whose

entropy is unbounded above.) The lesson is this: in order to rule out perpetual

motion machines, we also need to know that our universe is a finite departure from

a thermal equilibrium state. Such a thermal equilibrium state would minimize some

free energy (i.e. it maximizes entropy subject to any relevant conservation law

constraints).

So now let us look at our actual universe to see whether this ancillary premise

about equilibrium is true. The major threat to the existence of an equilibrium state

is gravity. The classical Newtonian gravitational potential is unbounded below,
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which would seem to permit in principle an infinite amount of energy extraction, at

least for point particles.

General relativity (GR) fixes this problem by the fact that sufficiently dense

distributions of matter form black holes. Causality, as manifested by the event

horizon, rescues the stability of the theory. For this reason, it is possible in GR

to prove a positive energy theorem in asympototically flat spacetimes, for matter

sources which themselves have local positive energy densities, although the proofs

of this fact are mostly notoriously nonobvious.2

However, GR raises problems of its own for thermodyanmics. It turns out that

a (nonzero) energy is really only well-defined in the asymptotically flat context, due

to the fact that energy is canonically conjugate to time, which is not an absolute

concept anymore. The first law of thermodynamics is therefore problematized in

GR. A manifestation of this problem: there exist spacetimes in which an arbitrarily

large amount of volume can be placed inside a finite-sized box. This raises the

possibility suggested above of the storage of infinite entropy using a finite energy.

And indeed, a classical black hole is an example of this. Objects slowly lowered

into the black hole can dump in large amounts of entropy with arbitrarily little

energy. The object carries its entropy into the interior of the black hole, in which

by a dramatic, seemingly out-of-equilibrium process, it gets scrunched into the final

singularity where (at least classically) time comes to an end.

2The simplest proof I know of can actually be thought of as an instance of the second law of

horizon thermodynamics [1].
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This is the proper context for seeing the momentousness of the discovery that

(as shown bycertain gedankenexperiements) black holes obey generalized laws of

thermodynamics. These generalized laws incorperate causality into them, in that

they only refer to events taking place outside and on the horizon, far from the

singularity. They take analogous forms to the ordinary laws, but assign certain

thermodynamic properties such as temperature and entropy to the horizon itself.

For example, the generalized second law, the focus of this work, says that the event

horizon itself must be regarded as having an entropy proportional to its surface area.

This plus the entropy of matter fields outside is what increases. This is astonishing

because the ordinary second law applies only to closed systems; here a seemingly

open system (the exterior of the black hole) obeys analogous laws. Why?

The answer is simple: nobody knows, it is a deep quantum gravity question.

In fact nobody even knows (although there are guesses) what degrees of freedom the

horizon entropy is counting. The entropy of an ordinary system can be calculated

using the principles of quantum mechanics and the atomic theory. Horizon ther-

modyanmics suggests that the horizon itself has an “atomic structure”: some sort of

consituents whose internal degrees of freedom can be counted. But locally an event

horizon looks just like everywhere else. If slices of event horizons have an atomic

structure, other surfaces should to; there should be an atomic theory of spacetime.

Accordingly, one finds that the generalized second law seems to apply not only to

black hole event horizons, but also to the “subjective” event horizons such as Rindler

v



horizons (the boundary of what can be seen by an accelerating observer), and de

Sitter horizons (the boundary of what can be seen by an observer in an accelerating

expanding spacetime). More generally, it seems to hold on any “casual horizon”,

defined as the boundary of what can be seen by any future infinite worldline.

The finiteness of black hole entropy is strongly suggestive that these degrees

of freedom involve discrete units, justifying the name “atom”. On the other hand,

spacetime discreteness seems very hard to reconcile with Lorentz invariance, and

Lorentz invariance seems to be required for the GSL to hold. As explained in the

dissertation, there are counterexamples in Lorentz-violating theories. Accordingly,

Lorentz symmetry is an explicit assumption in my proofs of the GSL. Thus one

might also say that horizon thermodynamics strongly suggests that spacetime is

continuous. These sorts of paradoxes are what makes quantum gravity so interesting.

My proofs of the GSL are not in full blown quantum gravity (which we do

not understand), but in semiclassical gravity (where we do have the ability to cal-

culate and understand.) In this context, there are a a large number of convincing

gedankenexperiments showing that the GSL holds in situations where one might

have thought that it was violated.

So why bother to prove what is already known? Not because I am very worried

about the possibility of perpetual motion (as interesting as that might be for those

who adhere to secular eschatologies). My question is not so much whether the GSL

holds, but rather in what sense does it hold, and why. My eye is on a different prize:
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quantum gravity. If I can find out what makes the GSL true in semiclassical gravity,

this may give a clue about the foundation of the theory of the quantum structure of

spacetime. Whatever assumptions are necessary to prove the GSL in semiclassical

gravity, might be reinterpreted as postulates of a theory of quantum gravity.

For this purpose, it seems important to understand the GSL in as local a way

as possible. If the GSL can be understood in a local enough way, it will give insight

into the degrees of freedom crossing each individual spacetime point. The proof

given here of a differential form of the GSL is a step in this direction.3

Outline. The dissertation is divided into three chapters, each a unit intended for

separate publication:

Chapter I, “Ten Proofs of the Generalized Second Law” (originally published

as [2]) is a critical review of previous attempts to prove the GSL in various regimes.

Section 1 discusses the question of how the GSL ought to be formulated. Since

there is controversy regarding exactly how the GSL ought to be formulated, this

will provide some of the necessary background regarding some choices made in later

chapters. Sections 2-6 scrutinize the proofs which exist in the literature of the GSL.

The conclusion (section 7) is that the GSL had only been shown to hold broadly

either a) classically, b) semiclassically, either for slowly evolving matter fields, or

3It still has some nonlocal elements though, in that it applies only to points located on causal

horizons (which are defined nonlocally relative to certain observers), and refers to all entropy

located anywhere outside of that horizon.
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only between initial and final stationary configurations. Thus the GSL had not

been shown to hold in a differential form for rapidly evolving fields.

In order to do better, I wrote Chapter II, “A proof of the generalized second law

for rapidly evolving Rindler horizons” (originally published as [3]), which provides a

proof of the GSL for rapidly evolving semiclassical matter fields. The price was that

the proof only applies to flat-planar slices of Rindler horizons—the kind of causal

horizon that appears in empty Minkowski space, and acts as a horizon to accelerating

observers. The proof is thus only valid for weak gravitational perturbations on a

Minkowski background (and a few similar spacetimes) Sections 1-4 outline the main

assumptions of the proof, and 5 gives the proof itself. Section 6 describes in more

detail what kinds of background spacetimes the proof applies to—most importantly,

there must be both a boost symmetry and a lightlike (null) translation symmetry.

I tried unsuccessfully for a long time to generalize this result to other kinds

of horizons, especially black hole horizons. Since all stationary horizons look locally

like Rindler horizons when you zoom in very close to them, it seemed like some

sort of near horizon limit must be the answer. However, taking this limit was

technically very difficult. Eventually, I realized that it was best to take this limit in

the most extreme way possible: instead of considering spacetime regions very close

to the horizon, restrict consideration only to the fields actually on the horizon itself.

When one does this, one finds that the fields restricted to the horizon possess a

vacuum state which is invariant under an infinite dimensional symmetry group.
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This infinite dimensional symmetry group is the key observation behind chap-

ter III, “Proof of the generalized second law for rapidly changing fields on arbitrary

horizon slices” (not yet published), which establishes that the GSL holds semiclas-

sically in a differential sense at each spacetime point on any kind of causal horizon

(black hole, Rindler, de Sitter etc.). However, there are some technical difficulties

with restricting quantum fields to null surfaces. These technical details can be to-

tally worked out for free fields, but it is less clear whether they can be worked out for

interacting fields. My guess is that further progress in QFT will make it clear that

all UV-complete quantum field theories have a null-surface initial-value formalism.

Sections 1-2 provides the proof of the GSL from stated assumptions. The

remaining sections are about the restriction of quantum fields to null surfaces. Sec-

tions 3-4 justify this restriction for free fields of various spins. Section 5 discusses

the status of interacting fields.

Because the three chapters are each intended to stand on their own, there is

a fair amount of redundancy between the three chapters. E.g. each of the three

articles starts out by introducing and defining the GSL, sections I.1.2.5, II.2, and

III.2.2 all cover the semiclassical approximation though with different emphases,

and section II.3-5 is similar to III.2.3-7. Because of the structural integrity of each

piece, it seemed unwise to simply delete the redundant chapters. As an alternative,

I would like to suggest a reading plan that will mostly avoid the redundant bits.

Suggested Reading Plan: I.1 to introduce the GSL (except 1.2.2 Adia-
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batic Limit and 1.2.4 Hydrodynamic Limit), followed by III.1-2, the heart of the

dissertation.

Alternative Plan: If you find III.2 difficult to follow, you might choose to

read II.1-5 instead. These sections would present all of the key elements of the

dissertation except those relating to the restriction to null surfaces.

Further Reading: If you are interested more details about the nature of

quantum fields restricted to null surfaces, read III.3-5. If you are interested in how

this work fits into past work on the subject, read more of chapter I, especially I.4

which describes the method suggested by Sorkin for proving the GSL. Although the

proofs critiqued in I.4 have serious flaws rendering them invalid, my apprach was

inspired by Sorkin’s work.
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Chapter 1

Previous Proofs of the GSL

1.1 Introduction to Chapter I

In this review I summarize and critique several attempts to prove the Gen-

eralized Second Law (GSL). Here a “proof” means a detailed argument trying to

establish the GSL for a broad range of states in some particular regime. Thus I

do not include results showing that the second law holds in some particular state.

Disregarding chronology, I have classified the proofs based on the core concepts used.

Most of the proofs are unsound. Some have inconsistent or erroneous assump-

tions, and others have hidden gaps in the reasoning. Nevertheless each of these

proofs is valuable. Even an invalid proof can clarify the issues and choices that

must be resolved in order to fully understand the GSL. Faulty proofs might also

be correctable through small adjustments. It is better to view them as research

programs than as mere fallacies.

1.1.1 What does the Generalized Second Law say?

The Ordinary Second Law (OSL) states that the total thermodynamic entropy

of the universe is always nondecreasing with time. In a background-free theory such
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as General Relativity (GR), a “time” is a complete spatial slice, and a “later time”

is a complete slice which is entirely in the future of the earlier time slice.

The GSL states that the “generalized entropy” of the universe is nondecreasing

with time. This generalized entropy is given by the expression

kA

4G~
+ Sout, (1.1)

where k is Boltzmann’s constant, c = 1 [4],1 and A is the sum of the area of

all black hole horizons in the universe, while Sout is the ordinary thermodynamic

entropy of the system outside of all event horizons. The first term is called the

Bekenstein-Hawking entropy (SBH). Since the horizon area and the outside entropy

are time-dependent quantities, each term is defined (like the ordinary entropy) using

a complete spatial slice.

The above description is still very imprecise; there are several ways to interpret

it. The first step towards a proof must be to give a definition of the generalized

entropy above.

1.1.1.1 Boltzmann or Gibbs?

Even in ordinary thermodynamics there are multiple ways to define the “en-

tropy” [5]. The “Boltzmann entropy” requires a choice of coarse-grained observables

capable of being measured macroscopically. A “macrostate” is then a class of N pure

states all having the same values of all coarse-grained observables. Then each pure

1After section 1.1, I will normally use k = ~ = G = 1.
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state in the class has entropy given by S = k ln N . One then tries to prove the OSL

by showing that typical states in a macrostate are unlikely to evolve to another

macrostate with much smaller N value, but might evolve to a microstate with much

larger N value. Since the ratios of N values are typically huge in standard thermo-

dynamic applications, the Boltzmann entropy of a typically prepared low-entropy

state nearly always increases in entropy over time, except for small fluctuations.

(However, if the state were truly typical the argument could be reversed to show

that the entropy also increases in the past direction. Thus a real proof must also

show that states which are atypical in the sense that they have low entropy pasts

are still sufficiently “typical” for purposes of future evolution.) For a fully quantum

mechanical discussion of the Boltzmann entropy see Wald [6].

Another choice is the “Gibbs entropy”, which assigns an entropy to mixed

states. A probability mixture over N states has entropy

S = k
∑

i

−pi ln pi. (1.2)

This definition does not yet require any notion of coarse-graining. It agrees with

the Boltzmann entropy in the case of a uniform mixture over all the pure states in

a single macrostate. The generalization to a quantum state with density matrix ρ

is

S = −k tr(ρ ln ρ). (1.3)

This entropy is conserved under unitary time evolution. This means that the OSL

is trivially true for an ordinary closed quantum mechanical system, away from any

3



black holes. A real proof of the OSL using the Gibbs entropy must also explain why

entropy seems to increase.2

The Gibbs entropy does not fluctuate about its maximum value like the Boltz-

mann entropy does. Hence the Gibbs definition is more convenient for proofs because

it allows one to state without reservation that the entropy of the state always in-

creases with time. Presumably this is why all proofs below except one use the Gibbs

entropy. The exception is Fiola et al. [7] (section 1.6), which combines the Gibbs

and Boltzmann concepts (cf. section 1.6.2.3).

The choice between Gibbs and Boltzmann also has implications for the in-

terpretation of the area component of the generalized entropy. Consider a black

hole in a mixed state which has different possible values of the A, but has fixed

Sout. Should one say that the mixed state has an uncertain entropy? Or should one

simply calculate the entropy using the expectation value of the area? The former

choice seems to be analogous to the Boltzmann approach, since entropy values only

to pure states, leading to statistical fluctuations in the entropy even in equilibrium.

The latter choice is more like the Gibbs approach since the entropy is a function of

2A Bayesian might propose that any observer who does not know the exact Hamiltonian of a

system should predict the future using a probability distribution over the possible unitary evolu-

tion rules. This coarse-grained evolution rule will turn pure states into mixed states. But since

every unitary evolution rule preserves the maximum entropy state, a mixture of different unitary

evolution rules also preserves the maximum entropy state. Theorem 1 from section 1.4 then implies

the OSL.
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a mixed state ρ. By taking the Gibbs approach to both terms in the generalized

entropy, one ends up with a simple trace formula for the generalized entropy:

S = k tr(ρ (A − ln ρ)) = k

( 〈A〉
4G~

− tr(ρ ln ρ)

)

. (1.4)

The use of the expectation value of the entropy in situations where there are fluc-

tuations in the area is further supported by arguments in Ref. [8].

There are some respects in which proving the GSL is easier than proving the

OSL. For example, the black hole horizon favors one direction of time by definition,

removing the problem of getting a time asymmetric result from time symmetric

assumptions. And unlike the ordinary entropy, the generalized entropy does not

require an arbitrary method of coarse graining to get an entropy increase, since the

horizon determines what is observable outside in an objective way [9]. Under this

understanding, the generalized entropy at one time does not depend on any details

about the time slice except where the slice intersects with black hole horizons.

1.1.1.2 The Choice of Horizon

The GSL seems to apply not only to black hole horizons, but also to de Sitter

and Rindler horizons. Arguably the only requirement is that the horizon be the

boundary of the past of some infinite worldline [10]. However, the GSL cannot

apply to every null surface. For example, consider a trapped spherically symmetric

surface well inside the horizon of a Schwarzschild black hole. Take the quantum

field theory in curved spacetime limit: G → 0 while holding the black hole radius
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R constant. Since the area of such a trapped surface decreases even classically, the

total decrease in the entropy is of order G−1 due to the G in the denominator in Eq.

(1.1). This decrease cannot be atoned for by an increase in the Sout term, because

this term is finite in the quantum field theory limit and thus has no scale dependence

on G.

Conventional wisdom suggests that the GSL should hold on the global event

horizon, i.e. the boundary of the past of I+. This is defined by a “teleological”

boundary condition, meaning that the location of the boundary at one time can

depend on what will happen later in time [11]. The event horizon is defined using

the causal structure, a more primitive concept than the metric, and therefore more

likely to be meaningful in a full quantum gravity theory. The event horizon is

always a null surface, appropriate to the thermodynamic role it plays as a concealer

of information, while the apparent horizon may be spacelike or timelike depending

on the dynamics of the situation. Furthermore the location of the apparent horizon,

since it is local, is more sensitive to metric fluctuations, so the event horizon is more

likely to be well defined in full quantum gravity [8].

Nevertheless, analogues of the classical laws of black hole mechanics have been

proposed for the apparent horizon [12], and some suggest that the GSL should apply

to the apparent horizon, defined as a marginally trapped surface around the black

hole [13]. Unlike the event horizon, the apparent horizon is sometimes spacelike

or timelike and thus it sometimes permits information to escape. The only proof

6



reviewed here which uses the apparent horizon is that of Fiola et al. [7]. Their

argument for the apparent horizon is discussed in section 1.6.3.

1.1.2 Types of Regimes

The interpretation of the generalized entropy also depends on which regime a

proof is set in, i.e. what restrictions the proof needs to impose on the perturbations

of the black hole.

The first question is how large and how rapidly changing these perturbations

are allowed to be (sections 1.1.2.1-1.1.2.2).

The second question is how many features of quantum mechanics are taken

into account. The answer to this will determine whether the proof is set in the

classical, hydrodynamic, semiclassical, or full quantum gravity regimes (sections

1.1.2.3-1.1.2.6). Each of these four regimes involves a different interpretation of the

exterior entropy term Sout.

1.1.2.1 The Quasi-stationary and Quasi-steady Regimes

This section describes two distinct regimes. Confusingly, each has been called

the “quasi-stationary” regime by different authors. I will suggest that one regime

should retain the name, while for the other I propose the name “quasi-steady”.

For example, Sorkin uses the term “quasi-stationary” to mean that

[...] we assume that the spacetime geometry can be well approximated at
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any stage by a strictly stationary metric. [...] Notice that the requirement of

approximate stationarity applies only to the metric; the matter fields (among

which we may include gravitons) can be doing anything they like. [I have

used the ellipses here to disentangle this definition from Sorkin’s commingled

definition of “quasi-classical”.] ([14] p. 12)

Here the term “quasi-stationary” refers to any small, but otherwise arbitrary, pertur-

bation to a stationary background metric. This requires that the black hole radius

satisfy R ≫ LP , or else the Hawking radiation coming from the black hole will itself

be a large perturbation. I will be using this definition of “quasi-stationary” in this

review.

Frolov and Page appear to be using a different definition when they state that:

One would conjecture that the generalized second law applies also for rapid

changes to a black hole, but then SBH, one-quarter of the horizon area, would

depend upon the future evolution. One would presumably also need to in-

clude matter near the hole in [Sout], but it is problematic how to do that

in a precise way without getting divergences from infinitely short wavelength

modes if there is to be a sharp cutoff to exclude matter inside the hole. In a

quasistationary process, one can with negligible error allow enough time for

the modes to propagate far from the black hole, where the states ρ1 and ρ2

and their respective entropies can be evaluated unambiguously. ([15] p. 3903)

Here the same word is being used to mean that there are no rapid changes, so that

one does not need to know the future state of matter to calculate SBH. This means
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that the state the matter fields are in is an approximately steady state with respect

to the Killing field that generates the horizon, over periods of time on the order of

the black hole radius R. I will refer to this as the “quasi-steady” regime, because

it requires the system to be in an approximately steady state. The quasi-steady

regime implies the quasi-stationary regime, because it makes no sense to talk about

unchanging matter fields living on a changing metric. But the converse does not

follow, because it is possible for the power absorbed by a black hole to be small in

magnitude but still rapidly changing with time. As it happens though, all proofs

reviewed here either permit large fluctuations (i.e. are not quasi-stationary proofs)

or else require the fluctuations to be slow as well as small (i.e. are quasi-steady

proofs).

Note that in the quasi-steady regime, large changes in SBH ∼ R2/L2
P are still

permitted if they are caused by a nearly constant influx of energy into the black

hole; the requirement that the perturbation to the metric be small only requires

that

R
dSBH

dt
≪ SBH ∼ R2

L2
P

. (1.5)

On the other hand, the second derivative of SBH is related to the change in the

energy falling into the black hole, and is therefore required to be much smaller:

R
d2SBH

dt2
≪ dSBH

dt
. (1.6)
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The First Law The quasi-steady approximation is useful because it implies the

First Law [16, 17] of black hole mechanics, viewed as a relation which holds between

arbitrary slices of the black hole event horizon [18, 10]. The background space-

time (about which these quasi-steady perturbations are made) is the Kerr-Newman

electrovac solution to the Einstein field equations.

One must be careful in defining the notion of “time translation” because it

depends on the choice of electromagnetic gauge. To describe events distant from

the black hole, it is most natural to use a gauge choice in which the connection

Aa vanishes at spatial infinity. Since the Kerr-Newman spacetime is asymptot-

ically Minkowskian, one can then identify the time-translation Killing vector ξt,

rotational symmetry ξφ, and the electromagnetic U(1) phase shift based on their

action on the asymptotic region. These generate conserved quantities: the Killing

energy E, angular momentum J , and charge Q respectively. Using the quasi-steady

approximation, it now follows that between any two slices of the perturbed black

hole’s event horizon,

dE = T dSBH + Ω dJ + Φ dQ, (1.7)

where dE, dJ , and dQ are the fluxes of Killing energy, angular momentum, and

charge into the black hole between the two slices, T is the Hawking temperature, Ω

is the angular velocity and Φ is the electrostatic potential on the horizon. [18, 17].

(Since E, J , and Q are conserved, the flux of these quantities into the black hole is

equal to the change in the mass, angular momentum, and charge of the black hole
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itself.)

On the other hand, to describe events near the black hole’s event horizon, it is

more natural to use a different notion of time translation coming from the horizon

generating Killing vector ξH = ξt + Ωξφ. It is also more natural to use a gauge

choice in which the potential vanishes on the horizon (i.e. Aaξ
a
H|horizon = 0), rather

than at asymptotic infinity. The flow of ξH is then a combination of asymptotic

time-translation, rotation, and phase shifting. The Killing ‘energy’ generated by ξH

is

E ′ = E − ΩJ − ΦQ, (1.8)

which is proportional to the energy defined relative to a “fiducial observer” who

co-rotates with the black hole near the horizon. This permits the expression of the

First Law in a more compact form:

dE ′ = TdS, (1.9)

which is the form that will be used in several of the proofs below.

In order to deduce Eq. (1.7), the quasi-steady regime must require that the

state be slowly changing, not with respect to the ξt Killing flow, but with respect

to the ξH [10]. Only in the “quasi-static” case where the background metric is a

non-rotating black hole, are they the same. For example, a rapidly rotating black

hole illuminated continuously by light from the “fixed stars” is not quasi-steady,

because the incoming starlight is stationary with respect to the wrong Killing field.

This restriction may seem pedantic, but it is necessary to derive the First Law (1.7)
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as applied to arbitrary slices of the horizon. Since GSL as I have defined it in section

1.1.1 also applies to arbitrary slices of the horizon, any proof of the GSL which uses

the First Law as a step implicitly assumes the quasi-steady regime.3

1.1.2.2 The Adiabatic Limit

I will use the term “adiabatic” to refer to a process which is described by the

time evolution of a first order deviation from the Hartle-Hawking equilibrium state

ρHH .4 This limit is arguably used by the proof in Wald [19] (section 1.2.2).

More precisely, given any state ρ, one can define a one-parameter family of

states:

σ(ǫ) = (1 − ǫ)ρHH + ǫρ. (1.10)

This is a positive density matrix, at least for 0 ≤ ǫ ≤ 1. However, some quantities of

thermodynamic importance—such as the entropy—are undefined except for positive

states. For these quantities one should not expect expect a Taylor series in ǫ to

converge unless σ(ǫ) is also positive for small negative values of ǫ. Also, in a system

3If only the quasi-stationary approximation holds, the First Law still applies when comparing

the black hole before and after the perturbation is made. But then it cannot be used to rule out

temporary decreases of the entropy during the perturbative process, so one only gets a weaker

form of the GSL.
4Jacobson and Parentani [10] use the term “adiabatic” to refer to what I am calling quasi-steady

processes. This is similar to the definition of “adiabatic” in mechanics, but I would like to reserve

that term here for the thermodynamic meaning, to describe a process which is always near thermal

equilibrium.
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with infinitely many degrees of freedom, there may exist states ρ whose generalized

entropy is infinitely less than that of the Hartle-Hawking state. Assuming that ρ is

selected to avoid these pathologies, and that ǫ is a small parameter, the state σ is

adiabatic.

Assuming that the GSL is true, in the adiabatic limit all processes are re-

versible (in the sense that the generalized entropy is constant with time). This is

because dS/dt, viewed as a function of the state, takes its minimal value of zero

in the Hartle-Hawking state, and must therefore be constant to first order as one

departs from the Hartle-Hawking state. Some examples of this are given in Ref.

[20].

An adiabatic perturbation is even smaller than a quasi-stationary perturba-

tion, because it is not only small in its gravitational effect on the background metric,

but also small in its effect on the thermal atmosphere of the black hole. Surpris-

ingly, an adiabatic perturbation need not necessarily be quasi-steady. If ρ is a rapidly

changing state, then σ is an adiabatic state which is still rapidly evolving with time.

Thus the quasi-steady adiabatic regime is more restrictive than either regime taken

separately.

1.1.2.3 Classical Black Hole Thermodynamics

The previous two sections allow one to classify proofs based on how large

and rapidly changing the perturbations to the black hole are permitted to be. The
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next four sections offer a different classification based on the features of quantum

mechanics which are included.

Consider first the regime in which any change in Sout is much smaller than

the changes in SBH. This means that quantum effects such as Hawking radiation

are unimportant, leaving classical GR coupled to matter satisfying the null energy

condition. In this case the GSL reduces to the classical Second Law, which states

that the area of the event horizon is nondecreasing.

In what situations is this approximation justified? Suppose the black hole ex-

changes a small amount of Killing energy with a system outside the black hole. The

marginal entropy gain or loss in the systems is proportional to their inverse temper-

ature. So ∆Sout is negligible compared to ∆S whenever the Killing temperature of

the external system is much larger than the temperature of the black hole.

In this regime, Hawking’s area increase theorem [21] states that the area of all

black hole event horizons increases with time. This theorem requires an assumption

related to cosmic censorship; the simplest assumption is that there are no singular-

ities on the horizon. Using this assumption I now give a rough sketch of the proof

below:

Each horizon generator carries an infinitesimal amount of horizon area. The

change in this area over time is given by the Raychaudhuri equation:

−dθ

dλ
=

1

2
θ2 + σabσ

ab + 8πGTabk
akb, (1.11)

where θ = (1/A)(dA/dλ) is the expansion parameter, σ is the shear tensor, and ka
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is a null vector on the horizon of unit affine length.5 Since the right hand side of this

equation is always positive by the null energy condition, a horizon generator with

negative expansion is “trapped” and must terminate in the future at a finite value

of the affine parameter. It cannot terminate on a singularity because by assumption

there are no singularities on the horizon. Nor can it leave the horizon because

it is impossible for generators to leave a future horizon. Consequently, since all

horizon generators have nondecreasing area and any new generators appearing on

the horizon only add even more area, the area cannot decrease. Consult Ref. [22]

for the full details of the area increase theorem.

This may be regarded as the first proof of the GSL, limited to the classical

regime in which Sout is negligible compared to SBH = A/4.

1.1.2.4 The Hydrodynamic Approximation

In quantum field theory (QFT) the entropy cannot be treated as a classical 4-

vector, because it is not fully localizable. Instead the entropy in quantum mechanics

is subadditive, i.e. the entropy of a whole system can be less than the sum of the

entropy of its parts [23]. Additionally, the entropy in a region with sharp boundaries

is dominated by the divergent entanglement entropy of fields close to the boundary.

Some renormalization scheme is necessary to obtain a finite entropy. In section

1.5.1, I argue that this can sometimes lead to superadditivity, in which the whole

5I.e. λ;aka = 1 on the horizon generator.
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has more entropy than the parts.

However, in some situations the entropy is approximately localizable. In this

hydrodynamic approximation, the entropy and energy are described by classical

currents sa and T ab. This is the setting for Wald [19] (section 1.2.2), and the proofs

via Bousso’s covariant entropy bound [24, 25] (section 1.5).

Unfortunately, I have not been able to find any regime in which this approx-

imation is justified except when classical black hole thermodynamics is also valid.

This suggests that proofs using the hydrodynamic approximation are redundant,

because they never apply except when classical black hole thermodynamics also

applies.

To see the difficulty, consider blackbody radiation at local temperature T .

Quanta can only be considered well-localized at distance scales much larger than

their average wavelength, which is inversely proportional to the local temperature

T . So a reasonable first guess would be that the hydrodynamic approximation is

justified when the local thermodynamic potentials change significantly only over

distance scales much larger than the inverse temperature. But this condition does

not seem to be satisfied by the thermal atmosphere near an event horizon, because its

local inverse temperature is proportional to the proper distance from the horizon’s

bifurcation surface. Since the thermal atmosphere cannot be accurately described

by the hydrodynamic regime, it would appear that in the hydrodynamic regime can

only apply to situations in which the thermal atmosphere can be neglected. The
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only situation I know of like this is when the infalling matter has Killing temperature

much larger than the temperature of the black hole—but then classical black hole

thermodynamics also applies (cf. section 1.1.2.3), making the hydrodynamic regime

redundant.

So further work should be done to explore when the hydrodynamic regime

is really justified, in order to see exactly what new information the hydrodynamic

proofs add beyond what was already given by the area increase theorem.

1.1.2.5 The Semiclassical Regime

Neither the classical nor hydrodynamic limits permit one to consider fully

quantum mechanical states of matter using the techniques of QFT. This deficiency

is remedied by the semiclassical gravity approximation [26]. In this approximation

the metric is treated as classical but it is coupled self-consistently to the expec-

tation value of the renormalized stress-energy tensor via the semiclassical Einstein

equation:

Gab = 8πG〈Tab〉. (1.12)

Thus one neglects the gravitational effect of fluctuations in the stress energy tensor.

In the Feynman picture, this involves ignoring diagrams with graviton loops even

while taking matter loops into account.

This approximation may be justified either in the large N limit or in the

quasi-stationary limit. In the large N limit, the contributions of each field to the
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expectation value of the stress-energy contribute coherently, and is therefore of order

N times the contribution of a single field. On the other hand, the fluctuations of each

field contribute incoherently and therefore are of order
√

N times the fluctuations

due to a single field. So the matter fields can be arranged to have a large effect on

the metric even while their fluctuations are negligible. This permits exploration of

the semiclassical but not quasi-stationary regime.

A difficulty arises, however, due to radiative corrections. These can create

higher-derivative terms in the gravitational action, leading to pathological extra

degrees of freedom whose energy is unbounded below. If the perturbation due to

gravity is small, these extra degrees of freedom can be disposed of using perturbative

constraints [27], but if the perturbation is large this method does not work. Fortu-

nately, there exist two-dimensional gravitational models without this problem. This

permitted Fiola et al. [7] to create a proof of the GSL set in the non-quasi-stationary

regime using the RST model (section 1.6).

The second situation in which the semiclassical approximation may be justi-

fied is in the quasi-stationary regime, in which the effect of the matter fields is a

small perturbation to the metric. One begins by specifying a classical background

manifold (possibly sourced by some classical “background” stress-energy tensor) and

then specifying a QFT state on this background manifold. Because the perturba-

tion to the metric is small in the quasi-stationary approximation, it is permissible

to calculate the properties of this QFT state using the background metric instead of
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the perturbed metric. In the case of quantum fields whose wavelength is of the order

of a large black hole’s radius R ≫ lP , the stress energy goes as 〈Tab〉 ∼ ~R−4, and

the gravitational effects of the stress-energy on the metric are of order ~G = l2P (the

Planck length squared), which is small compared to R2. Gravitational perturba-

tions are thus negligible except when they affect the Bekenstein-Hawking term SBH.

Because SBH has an l2P in its denominator (Eq. (1.1)), these O(l2P ) perturbations of

the geometry can produce an O(1) shift in the value of the generalized entropy.

One might worry that since the fluctuations in the stress-energy can be of

the same order as the expected stress-energy, it is incorrect to treat the spacetime

geometry as taking a definite value, invalidating Eq. (1.12). However, this limitation

is irrelevant for semiclassical proofs of the GSL if, as suggested by Ref. [8], SBH is

taken as proportional to the expectation value of the area (cf. section 1.1.1.1). Then

all one needs is the expectation value of the first order change in the geometry,

allowing Eq. (1.12) to be replaced with the expectation value of the linearized

Einstein equation:

〈G1
ab〉 = 8πG〈T 1

ab〉. (1.13)

This version of the semiclassical approximation still requires any fluctuations in the

quantum fields to be small enough to neglect nonlinearities in the Einstein equation,

but it does not require the fluctuations in the energy to be small compared to the

average energy.

Since the gravitational field contains independent degrees of freedom, Eq.
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(1.12) is insufficient to completely determine the first order perturbation to the

metric caused by the first order component of the stress-energy tensor. In general

this ambiguity must be resolved by an appropriate choice of boundary conditions,

but fortunately proofs of the GSL may ignore this subtlety. Why? Because the

only feature of the first order change in the geometry which must be considered to

calculate the generalized entropy is the area, and the change in the area is given by

the expansion parameter θ. Now θ can be calculated using the linearization of the

Raychaudhuri equation (1.11) about the background spacetime:

−dθ0

dλ
= θ0θ1 + 2σ0

abσ
ab 1 + 8πG T 1

abk
akb. (1.14)

Imposing the event horizon final boundary condition θ|λ=∞ = 0, one can solve for

θ1:

θ1(λ) = 8πG

∫ ∞

λ

dλ′ T 1
abk

akb + 2σ0
abσ

ab 1 exp[

∫ λ′

λ

θ0dλ′′], 6 (1.15)

Therefore θ1 is a function of the source T 1
ab alone iff the background shear tensor σ0

ab

vanishes.

In the quasi-stationary case, the background value of σ0
ab does vanish, as well

as θ0 and T 0
abk

akb, and Eq. (1.15) becomes:

θ(λ) = 8πG

∫ ∞

λ

Tabk
akbdλ′. (1.16)

This equation can be used to determine the change in ∆SBH from one time to

6The effect of quantized gravitational wave excitations would be described using a fractional

order term σab
1/2σab 1/2 in place of the 8πGTabk

akb term, both in this equation and below.
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another in the quasi-stationary regime.7

The Entanglement Entropy Divergence Defining ∆Sout in the semiclassical regime

is harder, because the entanglement entropy of any region with a sharp boundary

diverges in QFT. So in order to define a finite Sout, one must somehow subtract off

this infinite entropy through a renormalization scheme. Wald’s proof in section 1.2.2,

because it remains in both the hydrodynamic and quasi-steady limits, can avoid

this by only considering local changes to the entropy of the black hole’s thermal

atmosphere. But proofs in the semiclassical regime must work harder: those by

Zurek and Thorne [28] (section 1.2.1) and Sorkin [14] (section 1.4.2) still require an

explicit renormalization scheme. Proofs using an S-matrix, such as Frolov and Page

[15] (section 1.3) or Mukohyama [30], evade this issue by only considering asymptotic

quantum states. However, this strategy can only be used to determine Sout and SBH

at the beginning and end of a perturbing process, making it unsuitable for proving

the GSL for intermediate time periods except in the quasi-steady approximation,

which permits one to find the intermediate values of the entropy by using a linear

interpolation justified by Eq. (1.6).

7As a bonus, if the GSL can be proven in the quasi-stationary case it can also be proven for

small perturbations of classical non-stationary black hole metrics. By Hawking’s area increase

theorem (cf. section 1.1.2.3), if on any horizon generator, at some time, σ0
ab or θ0 is nonzero, then

θ0 is positive prior to that time. That implies that the GSL is automatically true up until that

time, because the zeroth order area increase times l−2
P is of lower order in lP than any possible

decrease in Sout due to the dynamics of the quantum fields.
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In order to analyze this divergence, it is necessary to impose some cutoff which

regulates the infinite entanglement entropy, e.g. the t’Hooft “brick wall” cutoff [31],

in which the horizon is replaced with a reflecting boundary a proper distance δ from

the bifurcation surface of a stationary black hole. In four dimensions, the divergent

part of the entropy is typically found to be something like:

Sdiv = kN
A

δ2
+ O(ln δ), (1.17)

where N is the number of particle species evident at the cutoff scale δ.8

In order to define the GSL semiclassically, there should be some physically

well-motivated renormalization procedure which makes changes in the generalized

entropy finite. This could be done by also making SBH diverge with the cutoff δ in

an equal and opposite way from Sout, so that their sum is finite in the limit that δ

becomes small (though still much larger than the Planck length, so as to remain in

the semiclassical regime). This dependence of SBH on δ is due to the renormalization

of the gravitational coupling constants [33]. The RG flow of G would absorb the

divergences in the area term, while the RG flow of higher-order curvature couplings

would cancel out the subleading divergences.9 Physically speaking, the idea is that

some or all of the entropy attributed to the SBH term at long distance scales is

actually revealed at short distance scales to be part of the entanglement entropy

8But see Ref. [32] for a cutoff imposed in a freely falling frame which gives a different result.
9The modification of SBH induced by these terms may be calculated using the Noether charge

method [34]. Since the identical changes to SBH also appear in the First Law (1.7) [35], the basic

structure of the semiclassical proofs presented here should be unaffected by these extra terms.
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Sout. It is thus natural that whatever is added to the latter term must be removed

from the former term in order to avoid double counting the entropy.

If this interpretation is correct, the flow in the coupling constants needed to

make the entanglement entropy finite should be the same as the ordinary RG flow

needed to cancel the divergences of Feynman graphs. Various one-loop calculations

mostly support this correspondence, with a few anomalies [36]. However, the cutoffs

in Ref. [36] rely on a thermal exterior state on a stationary black hole in order to

identify which state in the regulated theory corresponds to the thermal Hartle-

Hawking state. To apply these ideas to a proof of the GSL, one would need to find

a more general regulator.

1.1.2.6 Full Quantum Gravity

Clearly the best proof of the GSL would be one valid in full quantum grav-

ity. Such a proof should reveal whether black hole thermodynamics is a substantive

constraint on theories of quantum gravity or whether it is a generic feature of suf-

ficiently “good” theories. The other proofs would then be seen as special cases of

this one.

However, no such proof can be made rigorous apart from a specific theory of

quantum gravity, or at least a set of axioms describing a class of theories. Since no

fully satisfactory background free theory of quantum gravity exists, such proofs are

very speculative.10 In fact only one has been attempted, that of Sorkin [38] (section

10The proposed duality between string theory on Anti-deSitter and certain Conformal Field
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1.4.1).

Full quantum gravity must be able to describe Planck sized black holes, which

have no separation of scale between quantum and gravitational effects. Quantum

fluctuations being large, the formalism must be capable of dealing with rapidly

changing black holes, as well as quantum superpositions of any number of black

holes—including none at all. Even to formulate the meaning of the GSL in this

context will be a great achievement.

If the full theory of quantum gravity cuts off the entanglement entropy at a

particular distance of order δ =
√

N in Planck units, then the entire entropy of

the black hole might be accounted for with the Sout term alone [39, 33]. This is

the viewpoint taken by Sorkin’s proof. A single term is more parsimonious than a

strange sum of two very different contributions. It also justifies the renormalization

of SBH described in section 1.1.2.5, as the reflection of an arbitrary cutoff-dependent

division of a conceptually single quantity into two component terms. But it is

difficult to reconcile a finite cutoff with the property of Lorentz symmetry [40],

which is necessary for the GSL to hold (at least generically) [41].

It is believed by many researchers that the evolution and evaporation of a black

hole is somehow described by a unitary S-matrix when full quantum gravity is taken

Theories [37] does not define a fully background free bulk theory, since it is limited to states which

are asymptotically AdS. Nevertheless it certainly describes a broad class of states in which there

are black holes, so a proof of the GSL from the AdS/CFT duality would be highly significant. See

below for a sketch of how one might prove the GSL from this duality.
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into account [42]. However, the loss of information in no way contradicts the laws of

quantum mechanics, since it quite possible to describe quantum mechanical systems

that leak out information (the positive trace-preserving linear maps of section 1.4.1

give one possible way). Every one of the proofs reviewed here permits information to

be lost. The proposal of unitary time evolution would imply that the semiclassical

regime gives inaccurate results in a regime in which it might be expected to be

valid. It also appears to be radically nonlocal unless its principles can also be also

be extended to arbitrary Rindler horizons, which cannot be locally distinguished

from black hole horizons.11

Nevertheless, suppose one were to postulate unitary time evolution on slices

11A referee suggests an argument that this unitary hypothesis is also incompatible with the GSL.

Suppose a black hole of area A forms from the collapse of matter in a pure state, and Sout > −A/4,

so that the generalized entropy increases. Then if the black hole completely evaporates, the state

must be pure by virtue of the unitary S-matrix, and the generalized entropy becomes zero again.

One possible response is that the argument that the black hole entropy initially increases is based

on semiclassical principles, while the argument that the state is pure at the end is based on full

quantum gravity principles. If the semiclassical picture is obtained from the full theory by some

sort of coarse-graining procedure, then changing regimes in the middle of the argument may be

invalid. One could make an analogy to the ordinary thermodynamics of a box of gas which begins

in a pure state at time t1. From a coarse-grained perspective, the entropy in the box increases

with time from t1 to t2, but from the fine-grained perspective it remains pure even at a later time

t3. This “decrease” of entropy from t2 to t3 is an artifact of changing perspectives and should not

be deemed a violation of the OSL.
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which are complete outside the event horizon (this “outside unitarity” assumption is

stronger than simply requiring the S-matrix to be unitary). Further assume that the

entire generalized entropy of the black hole really comes from the Sout term alone.

Under these assumptions the GSL could be proven in exact analogy to the OSL.

Trivially, the fine-grained Gibbs entropy neither goes up nor down under unitary

evolution. However, to recover the entropy increase found in the semiclassical limit

one would then have to impose some additional form of coarse graining, aside from

the horizon (since under the unitary hypothesis the horizon conceals no information).

The challenge to those who believe in unitary outside evolution is to define this

coarse grained entropy, and to show that it reduces to the generalized entropy in

the semiclassical limit.

A similar kind of proof might be possible in the case of AdS/CFT. Even if

the outside unitarity assumed by the preceding paragraph is too strong to be true,

the fact that the conformal field theory has unitary time evolution means that one

might try to prove the GSL in the bulk from the OSL on the boundary. Assuming

that the duality is exact, one would need to identify a coarse-grained entropy on

the boundary theory and show that this coarse-grained entropy both increases and

is identical to the generalized entropy in the bulk theory.
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1.1.3 Are the Entropy Bounds necessary for the GSL?

It is often asserted that the GSL limits the amount of entropy capable of being

stored in a region. The most important proposals for the purposes of this review

are Bousso’s covariant entropy bound [43] and the Bekenstein bound [44].

Bousso’s bound states: Suppose one takes any spatial 2-surface B with area A,

and shoots out from it a normal lightsurface L in any of the four possible directions.

Then as long as L is initially contracting everywhere, the entropy S passing through

L is bounded by

S ≤ kA

4G~
. (1.18)

To support the Bousso bound, one might argue that if B is a cross-section

of a black hole event horizon, and L the horizon prior to B, a violation of the

Bousso bound would mean that more entropy would fall into the black hole than

is accounted for by its current entropy. Alternatively one might argue that if L

completely encloses the past or future of an ordinary region of spacetime, and yet

more entropy is found inside than permitted by the Bousso bound, adding more

energy to the region would make it collapse into a black hole of the same area

and thus the GSL would be violated. However, neither of these arguments is very

convincing. Suppose that the Bousso bound is violated due to a large number of

particle species, or due to some hyper-entropic object carrying a large number of

degrees of freedom in a small space. Then these objects ought to feature prominently

in the black hole’s thermal atmosphere, leading to additional large contributions to
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Sout. These contributions can salvage the GSL in such cases [46].

Similarly, the Bekenstein bound states [44] that in an isolated and weakly self-

gravitating region of characteristic length R and energy E, the entropy S satisfies

S ≤ 2πk

~
RE. (1.19)

(Bekenstein took the characteristic length R to be the widest dimension of the

system, but it has also been argued that the bound should refer to the thinest

dimension [45].) The Bekenstein bound’s motivation is similar to that of the Bousso

bound, but instead of collapsing the entire system into a black hole, one adds it

to a preexisting black hole. One possibility is that the system violating the bound

is placed in a box and then slowly lowered into the black hole. By means of the

First Law (1.7), one then appears to obtain a violation of the GSL [44] (cf. section

1.6.3 for a more detailed example of this argument). However, Unruh and Wald

[47] showed that the thermal atmosphere of a black hole acts on the box with a

buoyancy force. This prevents the box from being lowered closer to the horizon

than its “floating point” without expending work, and is sufficient to save the GSL

from being violated by the box.

Alternatively the system may be released from far away and allowed to fall

into the black hole as in Ref. [48], which derives Eq. (1.19) though with a somewhat

larger numerical coefficient. However, like the argument above for the Bousso bound,

this calculation does not take into account the fact that if hyper-entropic objects

exist, they will also be Hawking radiated by the black hole, again plausibly saving
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the GSL [46].12

Note that Newton’s constant G is nowhere to be found in Eq. (1.19). The

bound is motivated by gravitational physics and yet would constrain physics even

in the QFT regime, by ruling out more than an order unity (though large) number

of particle species [51]. Bekenstein claims that his bound is saved even in the case

of large number of species because of the Casimir energy of the large number of

particle species [52]. Responses to this claim were given by Page [53], and Marolf

and Roiban [54].

Despite the fact that the GSL does not imply either of the bounds, the converse

statement that the bounds imply the GSL appears to be close to true in certain

limits. The proofs of the GSL in section 1.5 begin by formulating ang proving a

strengthened version of the Bousso bound, which in turn implies the GSL in the

hydrodynamic approximation. Since the Bousso bound as presently formulated

does not hold in every situation [55], these proofs must work from more restrictive

12Bekenstein’s rejoinder [49] that such hyper-entropic objects would take too long to form is

unpersuasive because the thermal atmosphere originates from extremely high frequency degrees

of freedom in the local vacuum state. According to the Unruh effect, such degrees of freedom are

already in a perfect thermal state in every QFT with local Lorentz symmetry [50], making their

timescale of formation and dissolution irrelevant. The objection can be sustained only if there is

a breakdown of perfect Unruh thermality in quantum gravity, but such an effect would probably

doom the GSL regardless of whether the bounds are satisfied. Also, none of the proofs in sections

1.2, 1.3, 1.4.1, 1.4.2, or 1.6 assume anything similar to either bound, which suggests that neither

bound is necessary for the GSL to hold.
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assumptions than those necessary for the GSL. In one of these proofs, the assumption

added is similar to the Bekenstein bound (section 1.5.1).

1.2 Proofs applying the OSL to the Thermal Atmosphere

1.2.1 Proof by Analogy to an Ordinary Blackbody System

Zurek and Thorne (ZT) provided one of the first proofs of the GSL [28].

Though the details are not as clear as in some later proofs, their argument was

a major influence on many of the later proofs. ZT begin by assuming that the

entropy of a black hole is entirely due to the entanglement entropy in the thermal

atmosphere. This assumption is bolstered by a quasi-steady calculation of the total

number of ways to build up a black hole by injecting quanta into the modes of the

thermal atmosphere. The resulting entropy equals the Bekenstein-Hawking entropy.

ZT proceed to write:

The above analysis provides, as a side product, a proof of the generalized

second law of thermodynamics—that in any process involving the interaction

of a black hole with the external universe, the sum of the black hole’s entropy

and the universe’s entropy cannot decrease. The proof: Since the hole’s at-

mosphere plays the role of a thermal bath which exchanges particles with the

universe, and since (when one used energy at infinity ǫ and Hawking tem-

perature TH instead of locally measured energy E and temperature T) the

change in the hole’s entropy is precisely that associated with a standard ther-
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mal bath, the generalized second law is merely a special case of the ordinary

second law. ([28] p. 2174)

Thorne, Zurek, and Price (TZP) have a more developed version of this argument

in a book on the membrane paradigm [29]. This paradigm is an elaborate mathe-

matical analogy between a quasi-steady black hole and a viscous 2-dimensional fluid

membrane located an infinitesimal distance outside of the black hole horizon, and

coupled to the fields outside the membrane by various boundary conditions. So long

as one only cares about what happens outside of the black hole, the evolution of the

exterior system coupled to the membrane is equivalent to the coupling to the black

hole interior. In this framework, TZP argue that:

From the discussion and equations in the last subsection it should be clear

that whenever a slowly evaporating black hole interacts with the surrounding

universe, its statistical properties [...] are exactly like those of an elementary,

nongravitating but rotating thermal reservoir. Compare, e.g. the probability

distributions for the number of quanta in each mode of the field in the perfectly

thermalized limit [...] or the expressions for the entropy changes resulting from

interaction with the external universe. [...] Since the standard derivations of

the second law of thermodynamics are perfectly valid for arbitrary systems

interacting with such an elementary reservoir, it is clear that they must be

equally valid for arbitrary systems interacting with a slowly evolving black

hole. Thus the second law of thermodynamics is just a special case of the

standard second law of thermodynamics. In such a system the total entropy,
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including that of matter and fields contained outside of the hole’s stretched

horizons, can never decrease [emphasis theirs]. ([29] p. 313)

This verbal argument does not specify what “standard derivation of the [ordinary]

second law” should be used as the basis for the proof. TZP thus need the reader

to supply some interpretation in order to turn the argument into a complete proof.

My attempt at interpretation now follows:

The entropy of the system is the sum of the elementary thermodynamic en-

tropy of the “elementary, nongravitating but rotating thermal reservoir” (i.e. the

membrane), and the system exterior to the membrane. One may write this as

∆S = ∆SBH + ∆Sout, (1.20)

where SBH represents the entropy of the membrane, and Sout represents the entropy

outside the membrane. Moving the membrane closer to the horizon ought to renor-

malize the black hole entropy as described in section 1.1.2.5, by decreasing the value

of SBH and increasing the value of Sout to compensate (assuming for the moment

that SBH and Sout are finite and well defined).

In order to successfully correspond with the black hole system, one must also

be able to identify SBH with the entropy stored in the layers of thermal atmosphere

between the horizon and the membrane (call this the “deep atmosphere”), so that

the generalized entropy is the same in both systems—otherwise a proof that entropy

increases for the membrane system will not carry over to the analogous black hole

system. When the membrane is far from the horizon, this “deep atmosphere” is the
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whole atmosphere, and should thus be equal to a quarter of the area of the horizon

by virtue of the calculation in ZT [28].

It can be calculated—at least for free fields and quasi-steady black holes—

that the membrane absorbs everything that falls on it and emits only exact thermal

radiation. From this it follows that anything that falls into the deep atmosphere

can be treated as though it were exactly thermalized.

Armed with the above results, the correspondence between the black hole

system and the membrane system can be shown. In the quasi-steady limit, both the

membrane and the deep atmosphere obey the Clausius relation (the former because

of the First Law of black hole thermodynamics, and the latter because anything

that falls into the deep atmosphere can be treated as if it thermalizes):

∆E = T∆S. (1.21)

Therefore, whenever matter falls into the deep atmosphere, one replaces the state of

the deep atmosphere with another in which the infalling energy is fully thermalized

amongst all the degrees of freedom in the deep atmosphere. This can only increase

the entropy. This thermalized deep atmosphere then behaves equivalently to the

membrane system, for which a second law holds. Since both of these processes

increase the entropy, the GSL always holds.

As far as I can tell, this argument is equivalent to the thin shell argument

presented by Wald [17, 56], with the “thin shell” being another name for the “ele-

mentary thermal reservoir”.
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Limitations What can go wrong here? The most serious problem is the absence of

a regularization scheme needed to make SBH and Sout finite. Both the horizon and

the membrane are sharp boundaries, and are therefore each associated with infinite

entanglement entropy. The horizon entanglement makes SBH diverge, and the mem-

brane entanglement makes both SBH and Sout diverge. The entanglement across

the membrane makes the total entropy subadditive, thus invalidating the separation

into two terms of Eq. (1.20), since the entropy cannot in fact be fully localized (cf.

section 1.1.2.4). Therefore a justification of the correspondence between the black

hole and the membrane picture requires serious work before it can be considered

well-defined.

As an alternative interpretation of TZP’s argument, one might admit that the

black hole system stands in need of regularization, but suggest that the membrane

paradigm is itself the regularization scheme needed to render the black hole entropy

finite. This interpretation would view the correspondence between the black hole

and the membrane not as a mathematical identity between two distinct well-defined

systems, but rather as a formal identity between the unregulated and ill-defined

entropy of the black hole system, and a regulated well-defined membrane system.

Replacing the deep atmosphere with the membrane would itself be the way to reg-

ulate the generalized entropy.

The trouble with this interpretation is that it is not clear that the entropy

and dynamics of the membrane are really completely mathematically well-defined.
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Although the black hole does seem to behave like a membrane for the purposes of

the several calculations listed by TZP above, in order to be completely well-defined

semiclassically, one would have to be able to fully specify the interactions between

the membrane and the dynamics in all QFT states. The membrane satisfies an

idealized blackbody condition: it absorbs everything that impinges upon it while

emitting exact thermal radiation. Unlike the usual (e.g. reflecting) boundary con-

ditions, this boundary condition permits the loss of information, meaning that the

fields coupled to the boundary condition do not evolve according to unitary dynam-

ics coming from a Hamiltonian. I do not know how one would quantize such a field

theory, nor am I aware of any work on this subject.

1.2.2 Proof by Perturbing the Thermal Atmosphere

Rather than create an analogue membrane or shell system like the proofs

in the previous section, Wald [19] obtains his proof by describing changes in the

thermal atmosphere In order to sidestep the problems with entropy localization,

he describes this atmosphere using the hydrodynamic regime, in which the entropy

outside of the black hole is can be approximated by a classical current—i.e. it is

fully localizable. Then he considers infalling matter, which must be in the form of

a small quasi-steady13 perturbation of this thermal atmosphere to obtain the GSL.

By bounding the amount by which this perturbation can increase the atmosphere

13In Ref. [19], Wald considers arbitrary small quasi-stationary perturbations, but this is only

enough to get entropy increase over the course of the entire process (cf. section 1.1.2.1).
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using the Clausius relation from ordinary thermodynamics, Wald is able to limit

the change in Sout based on the amount of energy flowing into the black hole. The

amount of energy flow also determines the change in SBH by means of the First Law

of black hole thermodynamics, resulting in a proof of the GSL.

In the Hartle-Hawking state, a stationary black hole is surrounded by a thermal

atmosphere. Locally this radiation looks just like blackbody radiation. Therefore

fiducial observers co-rotating just outside the horizon will observe an energy density

profile of the form

e = Tab ξaξb/ξ2, (1.22)

where ξ is the Killing field which generates the horizon, and Tab is the expected

stress-energy difference between the Hartle-Hawking state and the vacuum with

respect to the Killing flow (i.e the Boulware state). These fiducial observers should

also see an entropy density

s = Sa ξa/ξ, (1.23)

where Sa is the entropy current associated with the thermal radiation observed by

fiduciary observers.

In the Hartle-Hawking state, the outgoing Hawking radiation is exactly bal-

anced by incoming thermal radiation. Wald now modifies this incoming state by a

small perturbation.14

14This will result in a slightly different spacetime due to gravitational interactions. To compare

the results of the original and final spacetimes, Wald uses diffeomorphism symmetry to identify
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The perturbation in the energy density is

δe = δ[Tab ξaξb/ξ2] = (δTab)ξ
aξb/ξ2, (1.24)

and similarly the perturbation in the entropy is

δs = δ[Sa ξa/ξ] = (δSa)ξ
a/ξ. (1.25)

Any “small” perturbation to a thermal state satisfies the Clausius relation:

δs ≤ δsth = δe/T = 2πξδe/κ (1.26)

where sth is the entropy if the final state is still perfectly thermalized. Taking the

limit as the fiducial observers approach the horizon, and multiplying by ξ, Wald

obtains

−(δSa)ξ
a|horizon ≤ 2π

κ
(δTab)ξ

aξb|horizon. (1.27)

Wald integrates both sides of this inequality over the horizon, including the null

direction. The left hand side becomes the total entropy falling through the surface

as a result of the perturbing process, while the right hand side becomes the change

in A/4 given by the First Law (1.9) for all quasi-steady physical processes.

points in such a way that the Killing field ξ of the unperturbed spacetime has the same norm at

identified spacetime points. However, because the gravitational effects are a small perturbation,

it is acceptable to consider the entire process as taking place on one background spacetime (cf.

section 1.1.2.5). The only relevant gravitational effect is the infinitesimal change in the horizon

area.
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But by the OSL, Sout cannot be reduced by more than the entropy flowing

into the black hole. It follows that

−∆Sout ≤ ∆A/4, (1.28)

which is the GSL.

Limitations How “small” does the perturbation of the black hole have to be for

this proof to apply? The bottleneck is in the use of the Clausius relation on line

(1.26): only for a first order increase in energy is it generally true that δsth = δe/T ,

since to second order the temperature of the state changes. Consequently, the proof

as it was written appears to require the adiabatic regime, in which the atmosphere is

only modified by a first order perturbation. But for first order changes of the state,

the Clausius relation δs = e/T is actually an equality rather than an inequality, so

that Eq. (1.28) also becomes an equality:

−∆Sout = ∆A/4.15 (1.29)

15By the argument in section 1.1.2.2, this result must hold for all adiabatic processes even if

they are not quasi-steady. This gives rise to an apparent violation of the GSL if one sends in an

adiabatic pulse of energy with no support prior to an advanced time t. Because of the teleological

boundary condition, the horizon grows in anticipation of the energy which is to come, so it seems

that initially SBH increases while Sout remains the same. But then by Eq. (1.29), the generalized

entropy remains the same at the beginning and end of the process, which means that it must

decrease at some later time to counterbalance its initial increase. But that violates the GSL.

Presumably the solution is that any quantum state has long distance entanglements not taken into

account in the hydrodynamic limit, which affect Sout even before the advanced time t.
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This would mean that the proof would have have a very limited range of applicability.

However, it is possible to free this proof from the assumption that the pertur-

bation be adiabatic. This assumption justifies the Clausius relation (1.26), which

bounds the entropy in the thermal atmosphere given a small change in its energy

density. Assuming that the energy density ∆e of the perturbation is large enough to

meaningfully change the local temperature, Eq. (1.26) no longer applies. Let T (e)

be the temperature of thermal equilibrium at an energy density e; then the change

in entropy is given by an integral:

∆s ≤
∫ e+∆e

e

de′

T (e′)
. (1.30)

Since the heat capacity of blackbody radiation is positive (at least for weak interac-

tions), adding a finite amount of energy density increases T in the denominator and

thus makes the constraint on ∆s even more stringent than that given in (1.26). On

the other hand, if energy is removed from the thermal atmosphere this decreases T

in the denominator, which because of the change in the sign of e, also leads to a

more stringent constraint in ∆s. So as long as the thermal atmosphere has positive

heat capacity, there is no need to consider adiabatic perturbations; quasi-steady

perturbations are small enough.16

16As an alternative to this argument, in the limit that the fiducial observers approach the

horizon, the change of temperature should become less and less important in all dimensions d > 2.

Neglecting factors of order unity, the heat capacity of blackbody radiation is

C = V T d−1, (1.31)
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Therefore, there is good reason to believe that Wald’s proof can be relieved of

the need to assume adiabaticity in most settings. But the proof still relies crucially

on the hydrodynamic assumption that entropy can be fully localized, which is not

even fully true in classical mechanics and which goes very wrong in QFT. The

hydrodynamic approximation is likely to be especially inaccurate when applied to

the thermal atmosphere of a black hole (cf. section 1.1.2.4). It is difficult to see how

where V is the volume and T is the temperature defined with respect to the proper time of the local

fiducial observer. If the fiducial observer is at proper distance x from the bifurcation surface, it sees

a local temperature T = 1/x. When a pulse of energy falls into the black hole at a fixed retarded

time, a fiducial observer closer to the horizon will see this pulse in its own frame of reference as

having energy proportional to the scaling factor x−1, and volume proportional to x. This energy

pulse is viewed by the fiducial observer as raising the energy of a heat bath of equal volume whose

total heat capacity C therefore scales as x2−d. Multiplying both sides of Eq. (1.30) by the volume,

and expanding the result out as a power series in the added energy ∆E, one obtains

∆S ≤ ∆E

T0

− (∆E)2

2CT 2
0

+ O(∆E3), (1.32)

where T0 is the temperature prior to the perturbation. The first nonlinear correction term now

scales as xd−2 since T and ∆E scale together, leaving only the scaling of the heat capacity in the

denominator. The higher order terms will be even more suppressed. This shows that for d > 2,

any dose of energy falling into the black hole is “small” enough to render Eq. (1.26) valid. In

the case of interacting fields, there will be corrections to Eq. (1.31). However, the only property

of Eq. (1.31) needed is that the heat capacity of blackbody radiation increases without limit as

the temperature increases. It is difficult to imagine any sensible QFT with d > 2 violating this

assumption, since this would require that the heat capacity in the interacting theory differ from

the heat capactity in the free theory by an arbitrarily large factor in the high energy limit.
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to modify the proof in a way that gets around this assumption, given its heavy use

of the concept of local thermal equilibrium.

1.3 Proof using the S-Matrix

Frolov and Page (FP) [15], inspired by the arguments of Zurek, Thorne, and

Price [28, 29] (section 1.2.1), provided a straightforward and explicit proof of the

GSL for semiclassical, quasi-steady black holes. In the quasi-steady limit, any pro-

cesses taking place over a finite period of Killing time may be described using a

stationary black hole metric. These interactions can be described by a unitary S-

matrix relating the asymptotically past density matrix ρpast to the asymptotically

future ρfuture. The information in ρpast consists of the infalling “IN” modes and the

“UP” modes populated either by the white hole horizon (in the eternal case), or

by the Hawking effect (if the black hole formed from collapse). Similarly, ρfuture

specifies both the “DOWN” modes falling through the black hole horizon and the

“OUT” modes radiated to infinity (see Figure 1.1). The advantage of the S-matrix

formulation is that it allows one to bystep the divergence of Sout at the horizon, by

only considering the entropy when it is infinitely distant from the black hole.17

17Admittedly, the changes in the entropy and energy of the outside matter are still technically

infinite, since the S-matrix is only defined in the limit of infinite time, and the quasi-steady

assumption approximates the entropy and energy flux into the black hole as being constant with

time. However, this divergence can be removed by simply dividing all such quantities below by

the total time elapsed.
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Figure 1.1: The Penrose diagram of an eternal black hole. The S-matrix is used to evolve the UP

and IN modes into the DOWN and OUT modes. In the case of the black hole which forms from

collapse, the white hole horizon is replaced by the collapsing star and the UP modes are populated

by the Hawking effect.

So far everything is time reversal symmetric. To get the GSL, FP also need

to assume that: i) the UP state consists of radiation at the Hawking temperature,

and ii) the UP state is uncorrelated with the IN state.

In the eternal case these assumptions both hold if one begins with the Hartle-

Hawking state and arbitrarily adjusts the IN state without changing the UP state.

In the collapsing case the assumptions are reasonable in the semiclassical pic-

ture, in which the UP mode thermal radiation can be traced back to Unruh radiation

at the formation of the event horizon. Since the black hole must eventually become

quasi-steady for this proof to hold, this radiation traces back to exponentially high

frequencies and so can be expected to be essentially in the vacuum state regardless

of the matter state used to form the black hole [15]. Therefore there is good reason
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to believe that the collapsing case can be well approximated by uncorrelated UP

and IN modes.

Since the S-matrix is unitary, FP now invoke the OSL to show that

SU + SI = Spast = Sfuture ≤ SD + SO, (1.33)

using the lack of correlation between UP and IN, and also the subadditivity of

entropy for DOWN and OUT.

FP now apply the First Law of black hole thermodynamics (1.9) to the tem-

perature T and energy E observed by a fiducial observer just outside and co-rotating

with the horizon:

dSBH = T−1dE. (1.34)

In the semiclassical, quasi-steady approximation, the change in energy of the black

hole is equal to the expectation value 〈ED −EU〉, while T remains constant, so that

∆SBH = T−1〈ED − EU〉. (1.35)

Combining the change in the black hole entropy given by (1.35) with the

change of matter entropy given by (1.33), FP find that

∆S = ∆SBH + ∆Sout = T−1〈ED − EU〉 + SO − SI (1.36)

≥ (SU − T−1〈EU〉) − (SD − T−1〈ED〉). (1.37)

The quantity S − T−1〈E〉 is equal to minus the free energy divided by the temper-

ature. This quantity is maximized in a given system when it is at the thermal state

43



of temperature T, in which case its value is equal to ln Z, Z being the partition

function. Thus, as long as the partition functions are equal for the UP and DOWN

systems, ∆S ≥ 0.

Why should these systems have the same partition function? FP suggest that

this follows from CPT symmetry. However, this argument is insufficient for the case

of charged black holes, because the UP modes of a positively charged hole would be

related by CPT to the DOWN modes of a negatively charged black hole. What is

needed is a relation between the UP and DOWN modes of the same black hole. This

difficulty may be solved by appealing to the property that the partition function is

multiplicative for independent subsystems, which implies that

ln ZU + ln ZI = ln Zpast = ln Zfuture = ln ZD + ln ZO, (1.38)

and thus to prove ZU = ZD it is sufficient to show that ZI = ZO. The latter

may now be directly established by CPT since the black hole’s charge should make

no difference to the dynamics of these asymptotically distant modes. However,

perhaps it is better to avoid any reference to time-reversal symmetry and simply

note that the possibility of providing unitary energy-conserving boundary conditions

at spatial infinity relating the OUT and IN modes requires that their partition

functions match. Then the proof might be capable of extension to exotic CPT-

violating theories.18

18However, such theories must also violate Lorentz invariance [57], which seems in general to

lead to a failure of black hole thermodynamics due to UP modes no longer being thermal [41].
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Limitations Mukohyama has claimed that FP’s proof applies only to the eternal

black hole case, and fails when extended to collapsing black holes [30]. His reasoning

is that when the black hole forms from collapse the information in the UP modes

comes originally from incoming matter prior to the formation of the event horizon.

Therefore if the incoming matter at earlier times is entangled with incoming matter

at later times, the UP and IN modes will be correlated. This situation violates

assumptions i) and ii) above, which are required for FP’s proof.

This criticism does not seem to be relevant to FP’s proof because it uses the

quasi-steady limit. Although the S-matrix is also defined using a very long time

interval between the initial and final states, the period of time over which the black

hole grows from collapsing matter must be far longer—or else FP could not have

used the S-matrix elements defined on a stationary background in their proof. In

this limit all of the contaminated UP modes have plenty of time to either fall into

the black hole or escape to infinity, before the beginning of the period analyzed by

FP. The UP modes that become relevant to the proof are in the extreme UV at the

time of formation and are therefore unaffected by the particular state of the infalling

matter. Of course, any generalization to the collapsing case that went beyond the

quasi-steady limit would have to deal with the issue Mukohyama raises, but on its

own standards the proof applies equally to the eternal and collapsed cases. (Cf.

section 1.4.3 for discussion of Mukohyama’s proposed extension [30] of FP’s proof

to the collapsing, but still quasi-steady case.)
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A more serious limitation is that this proof cannot be applied to a black hole

system enclosed in a finite sized box. Such a box would reflect OUT modes into IN

modes which would generally lead to correlations between the UP and IN modes,

violating assumption ii). It would also make it impossible to regard IN as temporally

prior to OUT, invalidating the commutation relationships implicit in the S-matrix

picture. For example, suppose a particle carrying a qubit of information falls in

from the boundary, scatters off the black hole, bounces off the boundary and falls

in a second time. Describing this situation with the S-matrix above would lead to a

duplication of quantum information, with the qubit appearing twice in the IN state.

In this context it is not natural to make a sharp division between IN, OUT, UP,

and DOWN states; it makes more sense to look at the state as being defined on an

achronal time slice and ask how it evolves to future slices. This approach is used by

the proofs in the next section.19

1.4 Proofs from a Time Independent State

This kind of proof, due to Sorkin, begins by defining a special mixed state

corresponding to the thermal state outside of the event horizon of the black hole.

Astonishingly, one can show that if this particular state evolves to itself, then there

19Note that these difficulties do not apply to the boundary at “infinity” used in the partition

function argument above, since in this case the box reflects radiation back on a timescale larger

than the timescale for which the quasi-stationary S-matrix is well-defined. Therefore it does not

forbid the separation of UP and IN modes over the period of time needed for the proof.
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is a quantity which is nondecreasing under time evolution for all states. If this

nondecreasing quantity can be equated with the generalized entropy, this results in

a proof of the GSL.

Sorkin created two different proofs using this method: one applying to the

full quantum gravity regime [38], and the other to the semiclassical quasi-steady

regime [14]. Unfortunately, neither proof appears to be sound as it stands. The full

quantum gravity proof has inconsistent assumptions, while the semiclassical proof

has an unwarranted step.

Mukohyama also has a semiclassical quasi-steady proof [30] combining this

method with the S-matrix approach of section 1.3. His proof and Sorkin’s semi-

classical proof both run into difficulty when applied to rotating black holes due to

the absence of a well-defined Hartle-Hawking state for Kerr black holes (cf. section

1.4.2).

1.4.1 Full Quantum Gravity Version

The key feature of this proof [14] is the use of a remarkable theorem:

Theorem 1: Given a quantum system with a finite dimensional Hilbert space,

and a positive trace-preserving linear map on the space of density matrices, if the

uniform probability state evolves to itself, then any state always evolves to a state

with greater or equal entropy.

(I have stated Theorem 1 as it is proven by Sorkin himself in Ref. [14]. How-
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ever, it is a special case of a much more general result concerning the nonincrease

of the “relative entropy” proven in Ref. [58]. In its most general form this result

can be applied to arbitrary observable algebras.)

If one applies Theorem 1 to the system outside the horizon, a proof of the GSL

requires only a few more steps. First, one must argue that in the full quantum gravity

regime, the generalized entropy is really given by just the Sout term. This would

be true if the entropy associated with the area is entirely due to the entanglement

entropy across the horizon. If quantum gravity somehow cuts off the entanglement

entropy at distances the order of the Planck length, and the effective number of

propagating fields is of order unity, one obtains an entropy per area of the same

order as the Bekenstein-Hawking entropy, lending credence to the idea that it is

simply a form of entanglement entropy [39, 33].

Second, one must show that the hypotheses of the theorem apply to the sys-

tem outside the horizon, so that the outside entropy Sout cannot decrease. Sorkin

needs additional assumptions to prove this result. Before specifying a particular

mathematically rigorous theory of full quantum gravity, it is impossible to know for

sure that any of these assumptions are sound. However, one may appeal to those

features of QFT and GR which might plausibly apply to quantum gravity. I have

rephrased and reordered Sorkin’s assumptions below, and also filled in some steps

implicit in his argument:

1. It makes sense to talk about the region of spacetime R(t) containing everything
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which is outside of the event horizon of a black hole at a given time t, and to

assign this region an algebra of observables A(t).

For example, in GR with Anti-deSitter boundary conditions, one may pick a time

coordinate T on the conformal boundary and then covariantly define the region as

the union of the future of the T = t locus on the boundary, with the region causally

to the past of the boundary.20 In quantum gravity, there may be large quantum

superpositions of spacetime geometry, so this “region” might have very different

geometries in different branches of the superposition. Due to quantum fluctuations

there might even be no black hole or multiple black holes. Is it meaningful to assign

a fixed algebra to such a wildly varying region? The region in question is defined

solely by its causal relationship to the conformal boundary of spacetime. On the

hypothesis that the causal structure of spacetime is primitive as argued elsewhere

by Sorkin [59], and thus well defined even at the Planck scale, it seems reasonable

to believe that a notion of region defined in terms of its causal relationships is likely

to still make sense.

2. All properties of A(t) are symmetric under time translation. Thus each algebra

A(t) is canonically isomorphic to the algebra at any one time, e.g. A(0).

Because time translation symmetry is used as an assumption, the proof applies only

20Sorkin’s language in Ref. [38] associates the observables with a spacelike slice going from the

boundary of the spacetime to the horizon. On the assumption that the observables are causal this

is equivalent to the language I use here.
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to a 1-parameter family of time slices on the horizon—a special case of the full GSL.

3. The algebras A(t) are all contained as subalgebras of one big algebra H, in

such a way that each algebra also contains as a proper subalgebra all of the

algebras in its future.

H is the algebra of observables in the Heisenberg picture. Each region R(t) contains

the future regions, and therefore must contain all of the subregion’s observables as

a subalgebra. Sorkin assumes that some information falls across the horizon and is

lost, so that the algebras in R(t) do not include all observables from past times (cf.

‘Limitations’ below for the results of dropping this assumption)

The structure defined above gives rise to the Schrödinger time evolution, which

is a positive linear trace-preserving map acting on the density matrices ρ associated

with A(0). It is defined as follows: Although ρ is in the statespace dual to A(0), by

restriction ρ may also be viewed as a state dual to the algebra at a later time A(t),

t > 0. One may then apply a backwards time-translation symmetry to the algebra

A(t) in order to translate it into the algebra A(0), which transforms ρ into a new

state ρ′. This evolution is autonomous in the sense that it requires no information

besides ρ to calculate ρ′.

4. There exists a conserved energy operator Ê in H which is defined by the value

of the fields at asymptotic infinity. Because Ê is defined at infinity, it is always

measurable outside the horizon and is therefore included in each algebra A(t).

It follows from this that the Schrödinger evolution also conserves energy.
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5. The space of states dual to A(0) has a finite number of states below any given

energy Emax.

This assumption can only be true if the system has been placed in a box, e.g. AdS

boundary conditions. The restriction implies that every superselection sector of an

algebra A(t) is described by a hyperfinite type I algebra (i.e. it is isomorphic to the

algebra of all operators on some countable-dimension Hilbert space.)

Assumptions 1-5 plus the extra condition that there is only one superselection

sector are enough to prove the GSL. The microcanonical ensemble at any energy

level E is given by ρ = 1/N , where the natural number N is the degeneracy of that

energy level. Sorkin begins by proving that this microcanonical ensemble evolves to

itself as follows: Consider the projection operator P̂ = δ(Ê, E) in H which projects

onto the energy value E. Since energy is conserved, P̂ is also contained in A(t) for

any value of t. The microcanonical ensemble ρ is defined in terms of P̂ using the

formula

〈a〉ρ = tr(aP̂ /N) (1.39)

for any operator a in A(t). Now a single factor21 of type I (or II) has a unique

faithful normal semifinite trace22 up to rescaling [60]. Since the trace is unique,

21The requirement of a single superselection sector is a hidden assumption of the proof not clearly

stated in Ref. [38]. If there are multiple superselection sectors, it is easy to construct examples in

which the maximum entropy state does not evolve to itself: e.g. three classical states A, B, and C

where A and B evolve to A while C evolves to itself under time evolution.
22Some definitions: The trace of an operator algebra is defined as a positive linear function of
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it does not matter whether Eq. (1.39) is defined using the algebra at time t or

the algebra at any previous previous time t′ < t. As a result, the microcanonical

ensemble is time-independent, i.e. it evolves to itself under time evolution. Theorem

1 then shows that the outside entropy Sout associated with any system of energy E

is nondecreasing. Furthermore, by taking the sum of the microcanonical ensembles

at all energies up to some Emax, one may invoke Theorem 1 to show that the entropy

is conserved for any state with bounded maximum energy. Since every normalizable

state can be arbitrarily well-approximated by a state with sufficiently high maximum

energy, continuity implies that all states exhibit entropy increase.

Limitations Unfortunately, these five assumptions, all of which are taken from Ref.

[38], are mutually inconsistent. For suppose that there were a set of algebras A(t)

and H satisfying all of the above assumptions. Let Q̂ be the projection operator

which projects onto states with energy E > Emax. Restrict A(t) and H to the

subalgebra of elements a satisfying

Q̂a = aQ̂ = 0, (1.40)

algebra elements satisfying tr(AB) = tr(BA) for all elements A and B in the algebra. Semifinite

means that every projection operator with infinite trace is the sum of two nonzero projection

operators one of which has finite trace. Normal means that the trace of an infinite sum of positive

elements is equal to the sum of their traces. A faithful trace is one that assigns a nonzero value to

every projection operator but zero.

52



thereby obtaining the algebra of observables associated with the black hole system

under the assumption that the energy is less than Emax. These algebras AQ(t) and

HQ are finite dimensional by virtue of assumption 5, and satisfy assumptions 2 and

4 by construction. They also satisfy by construction assumption 3—except possibly

for the criterion that each algebra be a proper subalgebra of the future algebras,

since it might be true that states with energy less than Emax evolve by unitary

evolution. However, since assumption 3 requires that information loss occur for the

complete algebras A(t), and since every normalizable state is arbitrarily close to

one bounded by a sufficiently large energy bound, as long as Emax is taken to be

large enough the algebras AQ(t) also satisfy assumption 3. This implies that AQ(1)

is a proper subalgebra of any algebra AQ(0). But every proper subalgebra of a

finite dimensional algebra has smaller dimension, so AQ(1) has smaller dimension

than AQ(0). This contradicts assumption 2 which states that the two algebras are

isomorphic and therefore have equal dimension.

One possible way to bypass the contradiction is to deny assumption 5 by

allowing there to be an infinite number of states below a given energy Emax. There

is then no contradiction since an infinite dimensional algebra can contain proper

subalgebras isomorphic to itself. To adapt Sorkin’s proof it would be necessary to use

one of the generalizations of Theorem 1 to the infinite dimensional case, which are

given in Ref. [58]. One would need to show that there exists an equilibrium state and

that despite the infinite dimensionality of the algebra, the nondecreasing quantity
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can still be reasonably identified with the finite Bekenstein-Hawking entropy of the

black hole.

Another choice would be to keep the algebras A(t) finite-dimensional below

any energy, but deny assumption 3 by permitting new degrees of freedom to be

created near the black hole horizon to compensate for those degrees of freedom lost

by falling into the black hole. If this is the case, then the Heisenberg algebra H

becomes infinite dimensional even though each algebra A(t) is finite dimensional.

The above method for obtaining the Schrödinger time evolution would fail because

the algebras A(t) would no longer be subalgebras of one another. The positive linear

trace-preserving map specifying the dynamics would depend on the details of how

the new degrees of freedom entered the system. Hence it is no longer possible to

prove that the microcanonical ensemble evolves to itself, so additional assumptions

are still needed.

Alternatively, one might drop the demand of assumption 3 by hypothesizing

that the algebras A(t) are actually improper subalgebras of one another. The ob-

servables outside the horizon would then evolve by a unitary evolution. This would

resolve the contradiction. Also, one could immediately conclude from unitarity alone

that the uniform probability state evolves to itself. Since unitary evolution is a spe-

cial case of a positive trace-preserving linear map the theorem would immediately

show that Sout is nondecreasing. On the other hand, the entropy would also be

nonincreasing unless some notion of coarse-graining were introduced. The proof of
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the GSL would then become similar to proving the OSL (cf. section 1.1.2.6).

1.4.2 Semiclassical Quasi-Steady Version

Sorkin has also proposed a similar proof applying in the semiclassical quasi-

steady limit [14]. Rather than using the microcanonical ensemble, Sorkin now uses

the “Hartle-Hawking state”. When restricted to the region outside both the black

and white horizons of an eternal stationary black hole, this state is thermal with

respect to the energy Eout measured by a fiducial observer co-rotating just outside

of the horizon. There should be a generalized entropy associated with every spatial

slice that terminates on the horizon. Consider a family of such time slices Σ(t)

corresponding to the t = const. slices of some coordinate t in which the background

metric is time independent. The state of this slice is then given by a density matrix

ρ. The generalized entropy is the sum of A/4 with Sout, the latter term being given

by some renormalized version of the formula −tr(ρ ln ρ). Now if t > 0, all the infor-

mation contained in the slice Σ(t) is also contained in the slice Σ(0), which means

that ρ(0) is sufficient to determine ρ(t). The evolution of ρ from one time to another

is therefore given by a positive linear trace-preserving map. Actually, because the

time evolution results from unitary time evolution followed by restriction, the map

satisfies a stronger assumption known as complete positivity [58].23

23Complete positivity states that if the map acts on a system A which is entangled with another

independent system B, the resulting change in the combined system AB also has the positivity

property, i.e. positive states always evolve to other positive states.
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In this setting the GSL states that the completely-positive time evolution map

cannot decrease the generalized entropy. Since the stationary state is a canonical

ensemble, it does not assign to all states equal probabilities. Sorkin uses a general-

ization of Theorem 1 to cover this case (a proof can be found in Ref. [58]).

Theorem 2: Consider a quantum system described by the algebra of bounded

operators on a countable-dimension Hilbert space (i.e. a type I hyperfinite von Neu-

mann algebra), and a completely-positive trace-preserving linear map on the space

of density matrices. If the state which is thermal at temperature T with respect to

some “energy” operator Ê evolves to itself, then the free energy 〈Ê〉 − TS of any

initial state whatsoever cannot increase under this same evolution.

Sorkin chooses Ê to be the fiducial energy outside the black hole horizon.

Applying Theorem 2 to the exterior of the semiclassical black hole, the change in

Sout over time is restricted by an inequality:

∆(Sout − T−1〈Eout)〉 ≥ 0. (1.41)

The semiclassical approximation allows Sorkin to equate the change in the black

hole energy to the expectation value of the energy flowing into it. Furthermore,

the quasi-steady assumption that the flow of energy into the hole is uniform and

slow permits one to ignore the time-profile of the response of the black hole to

perturbations, and assume that the energy instantaneously increases the energy of

the black hole, using the First Law of black hole thermodynamics (1.9):

dSBH = T−1dEBH . (1.42)
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Combining (1.41) with (1.42) gives

d(SBH + Sout) ≥ 0, (1.43)

which is the GSL.

Limitations Sorkin’s approach seems to be very promising, but there are some gaps

that still need to be filled before it can be regarded as a complete proof.

One problem is that the Hartle-Hawking state is not well-defined for black

holes with superradiant modes. This includes rotating black holes except when they

are placed in a sufficiently small reflecting box [61]. The trouble is that there are

field modes carrying a negative amount of fiducial energy, which makes the thermal

state unnormalizable. To get around this problem, the proof might need to be

reformulated in a way that depends only on local events occurring near the horizon

and not on global properties of the state.

A second issue needing resolution is the nature of the renormalization scheme

used to define the entropy and energy. As Sorkin says:

It should be added that the matter entropy S(ρ̂) we have been working with is

actually infinite, due to the entanglement between values of the quantum fields

just inside and just outside the horizon [...] Thus making our proof rigorous

would require showing that changes in [Eq. 1.41] are nevertheless well-defined

and conform to the temporal monotonicity we derived for that quantity. This

probably could be done by introducing a high-frequency cutoff on the Hilbert
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space (using as high a frequency as needed in any given situation) and showing

that he evolution of ρ̂ remained unaffected because the high-frequency modes

remained unexcited. [From footnote (emphasis added):] In order to make

the proof rigorous, one would also have, for example, to specify an observable

algebra for the exterior fields and a representation of that algebra in which the

operators ρ̂ and Ê were well-defined (which in particular might raise the issue

of boundary conditions near the horizon) ([14], p. 16)

Thirdly, the above proof contains an unjustified assumption. It is true that if

one restricts the Hartle-Hawking state to a spatial slice Σ bounded by the bifurcation

surface one obtains a state thermal with respect to the Killing energy. But if the slice

Σ passes through any other place on the horizon besides the bifurcation surface, it

is not so obvious that the state is thermal. Indeed, since a thermal state is normally

defined using a notion of unitary time-translation symmetry, and since states on Σ

have no automorphisms generated by timelike Killing fields except when Σ passes

through the bifurcation surface, it is unclear what it would even mean to say that

the state was thermal.

Since every faithful state is thermal with respect to some automorphism of the

algebra of observables [60], one might try to apply Theorem 2 to the free energy

associated with this special automorphism of the restricted Hartle-Hawking state

(known as the “modular flow”). Generically, the algebras of observables in bounded

regions are expected to be type III von Neumann algebras, meaning that they do not

have a trace at all. This makes it difficult to define the free energy using the formula
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〈Ê〉 − TS. But rather remarkably, there exists a generalization of this concept of

free energy to the context of an arbitrary von Neumann algebera, known as the

“relative entropy” S(ρ1|ρ2) between two states ρ1 and ρ2. This relationship is an

asymmetrical one: if ρ1 is regarded as a thermal state, S(ρ1|ρ2) can be thought of as

the free energy of ρ2 [62].24 Furthermore, Uhlmann [58] has proven that the relative

entropy is always nonincreasing when one restricts both ρ1 and ρ2 to a subalgebra, a

result which may help prove the GSL. However, the concept of the relative entropy

is not always identical to the free energy defined by using the stress-energy tensor.

So it is still necessary to justify the use of the First Law (1.42) when the energy used

is the modular flow. Perhaps this could be done by taking some sort of near-horizon

limit.

If these problems can be addressed, this proof promises to be of greater ap-

plicability than proofs using S-matrix techniques because the method allows one to

discuss changes in the entropy of the black hole over a finite period of time. This

opens up the possibility that by replacing Eq. (1.42) with a more local formula like

Eq. (1.16) relating the stress-energy to the growth in area of a rapidly changing

black hole, the quasi-steady assumption may be lifted. The framework of slices also

has the advantage over the S-matrix proofs that it is applicable to a black hole

system contained in a reflecting box.

There are some more worrisome features, however, about attempting to ex-

24In some conventions the roles of ρ1 and ρ2 are reversed.
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tend this proof beyond the semiclassical domain. The trouble is that the canonical

ensemble is unnormalizable when the entropy of the black hole is taken into account,

because the entropy increases faster than linearly with the energy. This means that

the Hartle-Hawking state is actually unstable. If the black hole happens to grow a

little, its temperature decreases and it continues to absorb more and more energy

from its surroundings without limit. If the black hole shrinks a little, its temperature

increases and it evaporates more and more. However, the timescale of the exponen-

tial growth is of order R3 in Planck units. Also, if the black hole is in equilibrium

with a spherical ball of thermal radiation with radius greater than about R2, the ball

of radiation is itself unstable under collapse to a black hole over timescales of order

R2. But since the semiclassical limit requires R ≫ 1, neither of these instabilities

can invalidate Sorkin’s proof as applied to timescales of order R, the light-crossing

distance.

1.4.3 Combined with the S-matrix Approach

Mukohyama [30] has proven the GSL in a way that combines Sorkin’s method

using a time independent state with the S-matrix approach of Frolov & Page (section

1.3). This proof is a mathematically detailed form of Sorkin’s argument applicable to

any finite excitations of a free, real, massless scalar field on a quasi-steady collapsing

black hole background.

The S-matrix for the scalar field on a stationary black hole background is
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a positive trace-preserving linear map going from the space of IN states to the

space of OUT states. Mukohyama begins by proving that if the IN state is in the

canonical ensemble at the black hole temperature T and angular velocity Ω (the

Hartle-Hawking state), then the OUT state is also thermal at temperature T . This

implies that the free energy is nonincreasing when the same trace-preserving linear

map is applied to any finitely excited IN state falling into the black hole (proven in

Theorem 7 of Ref. [30]). The theorem only applies when the IN modes have a finite

number of excitations above vacuum, despite the fact that the thermal state used

to prove the theorem has infinitely many excitations. Finally the First Law 1.9 is

used, as in section 1.3, to show the GSL.

Limitations The Hartle-Hawking state is ill-defined for superradiant black hole,

yet it is used in an essential way in the framework of the proof. As far as I can see,

Mukohyama does not address this difficulty.

It would be nice if the proof could be generalized to more interesting forms

of matter besides free massless scalar fields. It would also be helpful to remove

the requirement that the fields be finitely excited, because then the proof might be

directly applicable to the thermal atmosphere of the black hole, which has infinitely

many excitations (semiclassically) located closer and closer to the horizon. In its

current form the proof avoids directly analyzing the thermal atmosphere by using

the S-matrix technique.

Because Mukohyama’s proof uses an S-matrix, it only applies to asymptotic
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states, so the GSL can only be proven over finite time intervals by assuming that the

matter falling into the black hole is also quasi-steady.25 This limit is in tension with

the requirement that the infalling matter be a finite excitation of the vacuum, but

presumably this apparent contradiction can be reconciled by taking the quasi-steady

limit of the infalling matter after invoking Mukohyama’s Theorem 7.

1.5 Proofs via the Generalized Covariant Entropy Bound

Now I will present a very different family of proofs, which explore the relation-

ship between the Bousso bound and the GSL in the hydrodynamic regime, outside

of the quasi-stationary limit.

Suppose one has a spacelike 2-surface B from which a lightsurface L emanates

in one of the four possible lightlike and orthogonal directions. Let the null rays

on the lightsurface L continue until terminating either on a cusp, a singularity, or

a second spacelike boundary B′. If the null surface L is initially nonexpanding at

the surface B, and if the null energy condition holds on the horizon, then the area

increase theorem shows that the A′, the area of B′, is always less than or equal to

the area A of B. In this situation Flanagan, Marolf, and Wald (FMW) proposed

a generalization of Bousso’s covariant entropy bound (GCEB). The GCEB states

25In this respect Mukohyama’s proof is the same situation as every other quasi-steady proof

reviewed here. Cf. section 1.1.2.5)
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that the total entropy S crossing the lightsurface L is limited by the relation

S ≤ A − A′

4
. (1.44)

This bound—together with the null energy condition—immediately implies the GSL.

Simply take B to be a slice of the horizon at one time, and B′ to be a slice at an

earlier time. (Since the light rays in L are going backwards in time from B, the

condition that the light rays are nonexpanding corresponds to the fact that the black

hole’s area is increasing with time). So if one can prove equation (1.44) one also has

a proof of the GSL. The following two proofs do just this.26

In QFT entropy is not fully localizable, so the interpretation of S in equation

(1.44) is tricky. The proofs below sidestep this nonlocality by explicitly using the

hydrodynamic approximation, thus assuming that the entropy falling across L is

given by the integral of a fully localizable entropy current vector (cf. section 1.1.2.4).

1.5.1 An Assumption Inspired by the Bekenstein Bound

The first proof of the GCEB was given by Flanagan, Marolf and Wald (FMW)

[24]. FMW assume that associated with every lightsurface L there is an entropy

current sa (thus sa might depend on the choice of L as well as the spacetime coor-

dinates).

FMW need to assume the following bound on sa in order to prove the GSL:

Consider a generator of L, whose affine parameter is λ at B and whose tangent

26An additional argument for the Bousso bound not reviewed here is found in Ref. [63]

63



vector is defined as ka = (d/dλ)a. This generator will either have infinite affine

parameter length or else terminate at a finite affine parameter λ′ when it hits the

surface B′, another generator in L, or perhaps a spacetime boundary such as a

singularity. If the generator goes on forever and is initially nonexpanding, then

the null energy condition implies that Tabk
akb = 0 along that generator, since any

positive energy added to the right side of the Raychaudhuri equation (1.11) would

cause the generator to be trapped making it terminate at a finite value of the affine

parameter. In this case FMW assume that the entropy flux across the generator also

vanishes. If on the other hand the generator terminates, FMW restrict the entropy

current sa
L flowing across the causal surface L to satisfy

|sa
Lka| ≤ π(λ′ − λ)Tabk

akb. (1.45)

According to FMW, “the inequality [(1.45)] is a direct analogue of the original

Bekenstein bound [(1.19)], with |sa
Lka| playing the role of S, Tabk

akb playing the

role of E, and [λ′ − λ] playing the role of R” ([24] p. 4). There are however a few

differences between FMW’s version and the original Bekenstein bound (1.19). In

the original bound, E refers to the time component of the total energy-momentum

vector, and R refers to an (orthogonal) spatial distance. But FMW’s bound relates

the null energy to a null “distance” (this is invariant because both sides of Eq.

(1.45) transform the same way under a rescaling of the affine parameter). More

importantly, FMW’s bound relates the local entropy density to the energy den-

sity instead of merely restricting the total amounts of both quantities. This makes
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FMW’s bound significantly more powerful than the original Bekenstein bound. Fur-

thermore, if the FMW bound is integrated in flat spacetime to relate the total null

energy E with the total entropy S, the numerical coefficient π is a factor of two

smaller than the coefficient 2π in the original Bekenstein bound (1.19). This also

makes FMW’s bound stronger than Bekenstein’s bound.

I will now sketch FMW’s proof. In order to prove the GCEB (1.44), it is

sufficient to show that it applies to each individual generator separately. This can

be shown trivially for generators of infinite affine length from FMW’s assumption

above that no entropy falls across infinite generators. In the case of finite generators,

the GCEB states that

I ≡
∫ 1

0

dλ sA(λ) ≤ 1

4
[1 −A(1)], (1.46)

where s = −sak
a and the area-scaling factor is

A(λ) = exp

[
∫ λ

0

dλ′ θ(λ′)

]

. (1.47)

Here FMW have used our freedom to rescale the affine parameter to make the

integral go from 0 to 1 (if the affine parameter goes to infinity, then no entropy can

cross it and the GCEB is automatically satisfied there). The Raychaudhuri equation

applied to the null generator says that

−dθ

dλ
=

1

2
θ2 + σabσ

ab + 8πTabk
akb, (1.48)

where σab is the shear tensor and the twist term is not included because null surfaces

orthogonal to any boundary B have vanishing twist. FMW now define G(λ) =
√
A,
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and obtain from Eq’s (1.47) and (1.48) that

8πTabk
akb ≤ −2

G′′

G
. (1.49)

Invoking the Bekenstein-like bound (1.45), they obtain that

|s| ≤ (1 − λ)πTabk
akb. (1.50)

Substituting Eq. (1.50) into Eq. (1.46) gives

I ≤
∫ 1

0

dλ (1 − λ)πTabk
akbG2. (1.51)

Eq. (1.49) can be used to re-express the integral as

I ≤ −
∫ 1

0

dλ (1 − λ)G′′G/4. (1.52)

Since 0 ≤ G(λ) ≤ 1 by the null energy condition, FMW drop it from the integrand

and integrate the rest by parts:

I ≤ [G(0) − G(1) + G′(0)]/4. (1.53)

Since G(0) = 1 by definition, G(1) =
√

A(1) ≥ A, and G′(0) ≤ 0 by the null energy

condition, it follows that

I ≤ [1 −A(1)]/4, (1.54)

which is the infinitesimal form of the Bousso bound as given in Eq. (1.46) From

this the GCEB and the GSL follow.
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Limitations FMW’s proof is valid outside the quasi-stationary limit, but they pay

a price for it. Not only must they assume the hydrodynamic approximation, the null

energy condition, and few enough species for their Bekenstein-like bound to hold,

but there are additional difficulties arising due to the difficulty of satisfying FMW’s

Bekenstein-like assumption (1.45) over very short distances.

One must be careful in applying the Bekenstein Bound (1.19) in the hydrody-

namic approximation, because the bound is always violated by any nonzero entropy

current in sufficiently small regions. Both the entropy and the energy scale as the

volume for constant density, causing the right side of (1.19) to vanish faster than

the left side. This violation is an artifact of going beyond the validity of the hy-

drodynamic regime, since at sufficiently small distance scales the entropy is not as

localizable as a classical current (cf. section 1.1.2.4). Even quantum mechanics by

itself is not sufficient to resolve this paradox, since in QM the entropy of indepen-

dent subsystems is subadditive, which only makes the conflict with (1.19) in small

regions worse.27

27I believe that a proper understanding of the Bekenstein bound and entropy localization requires

QFT considerations. Because the entanglement entropy of field excitations makes the entropy di-

verge in any region with sharply defined boundaries, it is necessary to renormalize by somehow

subtracting off the infinite entanglement entropy contribution from the vacuum to obtain a finite

value for the entropy. But since the entanglement entropy term being subtracted is itself subaddi-

tive, the resulting renormalized entropy can be superadditive whenever the entanglement entropy

in the reference state used for subtraction exceeds the entanglement of the state being considered.

Consequently, it is possible to have the amount of entropy stored in a system be greater than
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Because the Bekenstein bound does not play well with the hydrodynamic

regime, a fixed entropy current will always lead to violations of Eq. (1.45) when

one tries to apply the hydrodynamic limit outside of its scope. For example, Eq.

(1.45) will not apply to a spherically symmetric star collapsing into a black hole,

if one takes B to be a slice of the horizon very close to its moment of formation,

since whatever the finite ratio is between the entropy and energy at the center of

the star when the horizon forms, λ′ − λ can be taken to be small enough to violate

Eq. (1.45), despite the fact that the Bousso bound is just fine there.

This is why FMW’s proof permits the entropy current to depend on the choice

of L as well as on the spacetime point—otherwise there are no nontrivial spacetimes

in which Eq. (1.45) is satisfied everywhere. This is justified by FMW on the

grounds that “the entropy flux, |sa
Lka|, depends upon L in the sense (described

above) that modes that only partially pass through L prior to [λ′] do not contribute

to the entropy flux” ([24] p. 4). However, permitting the entropy current to depend

arbitrarily on L is somewhat ad hoc. It would be more elegant if the entropy

currents associated with different choices of L could be derived from a single common

description of the matter flowing through the spacetime.

An alternative way to justify the entropy current’s dependence on L is given

in Ref. [25]. Violations of Eq. (1.45) take place at small distance scales in which

the hydrodynamic approximation is invalid. So one may arbitrarily reconfigure the

the sum of the entropy of the parts. This might permit something like a renormalized-Bekenstein

bound to hold at all distance scales.
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entropy current as long as the averages of the entropy current remain approximately

constant at distance scales in which the hydrodynamic regime should be valid, in

order to avoid violating 1.45 for a particular choice of L. After all, the entropy

current at distances smaller than the hydrodynamic regime is nonphysical anyway,

so why not adjust its value to be most convenient?

1.5.2 An Entropy Gradient Assumption

FMW also gave another proof of the (non-generalized) Bousso bound from

different assumptions: namely a bound on the density and gradient of the entropy

current, viewed as a vector on the spacetime independent of the choice of L. This

second proof does not yield the GSL because it only proves the ordinary Bousso

bound. In order to show that this set of assumptions could not lead to a proof of the

GCEB, Guedens constructed an explicit counterexample to the generalized Bousso

bound given any fixed nonzero entropy current on spacetime [64]. In this example

the GCEB (1.44) can be violated if B is taken to be a 2-surface whose expansion

parameter vanishes and B′ is sufficiently close to B. This violation occurs because

the change in area is a quadratic function of the affine parameter interval ∆λ, while

the flux of entropy is a linear function of ∆λ. That means that the initial area

change is not enough to satisfy Eq. (1.44) unless the entropy flux vanishes initially.

Consequently no proof of the GCEB is possible for all possible causal surfaces and

fixed sa.
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Because of the counterexample, Bousso, Flanagan, and Marolf (BFM) [25]

have constructed a modified proof which only tries to prove the Bousso bound for

those causal surfaces which have no entropy falling across them initially. As a bonus,

this permits them to weaken the assumptions of Ref. [25]: they only need to restrict

the gradient of the entropy, not the density. Also, the numerical coefficient of the

entropy gradient restriction is improved.

BFM assume the existence of an entropy current sa
L satisfying the following

bound:

|s′| ≤ 2πTabk
akb, (1.55)

where s′ = −kakb∇asb and ka is the null vector generating the causal surface. Note

that Eq. (1.55) implies the null energy condition. BFM also assume the isolation

condition:

s|B = 0. (1.56)

They now attempt to prove that

∫ 1

0

dλ sA(λ) ≤ 1

4
[1 −A(1)], (1.57)

which is the the GCEB as applied to an individual generator as given by Eq. (1.46).

BFM obtain Eq. (1.49) again:

8πTabk
akb ≤ −2

G′′

G
, (1.58)

using the same argument given above. From the gradient assumption (1.55),

s′(λ) ≤ −G′′(λ)

2G(λ)
. (1.59)
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Using the isolation assumption, BFM integrate the above assumption over λ in order

to bound the entropy density:

s(λ) ≤ −
∫ λ

0

dλ̄
G′′(λ̄)

2G(λ̄)
. (1.60)

Integrate this by parts:

s(λ) ≤ 1

2

[

G′(0)

G(0)
− G′(λ)

G(λ)
−

∫ λ

0

dλ̄
G′(λ̄)2

G(λ̄)2

]

. (1.61)

The first term is nonpositive when the causal surface is initially nonexpanding, and

the third term is explicitly nonpositive. Consequently these terms can be removed

from the inequality:

s(λ) ≤ − G′(λ)

2G(λ)
. (1.62)

BFM insert this inequality into the left-hand side of Eq. (1.57) and use A = G2:

∫ 1

0

dλ sA(λ) ≤ −1

2

∫ 1

0

dλ G(λ)G′(λ) =
1

4
[G(0)2 − G(1)2]. (1.63)

Since G(0) = 1 and G(1)2 = A, BFM obtain Eq. (1.57), proving the GCEB.

Limitations BFM make two different suggestions regarding how to interpret the

isolation condition (1.56) [25]. One possible interpretation is that the condition

restricts which lightsheets L the proof is applicable to. But then one would not be

able to prove that generalized entropy increases from a time slice Σ to a later time

slice Σ′, except when no entropy is falling into the horizon at time Σ′. Under that

interpretation the GSL would not always follow from this proof.
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Another suggestion is that rather than being a restriction on which causal

surface may be considered, one should change the entropy current depending on

the lightsheet L. This would be similar to BFM’s interpretation of the entropy

bound described in the last paragraph of section 1.5.1. One simply adjusts slightly

the position of the entropy over small distance scales outside the validity of the

hydrodynamic regime, to automatically satisfy the isolation condition. This pushes

all of the meaningful physical content into the gradient assumption (1.55) and the

null energy condition, making it possible to prove the GSL for a much wider class

of black hole horizon.

Why is there so much ambiguity in the interpretation of these proofs? The hy-

drodynamic regime is at fault. The trouble is the entropy current contains too much

unphysical information even in those situations where a hydrodynamic approxima-

tion is appropriate. Fixing this might require going beyond the hydrodynamic limit,

or perhaps more carefully describing how to get a hydrodynamic entropy current

from an actual state of matter.

1.5.3 Weakening the Assumptions

The assumptions (1.45) and (1.55) can be weakened in two ways without

compromising the ability to prove the GSL. First of all one may replace Tabk
akb

with Tab + σabσ
ab/8π in the assumption and still use it to prove the GCEB, because

the shear term is also present in the Raychaudhuri equation (1.48) alongside the
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stress-energy term. This additional term can thus be consistently interpreted as

an (L dependent) gravitational energy term which is added to the matter energy.

FMW consider adding in this extra term, saying “we can then interpret sa
L as being

the combined matter and gravitational entropy flux, rather than just the matter

entropy flux” ([24] footnote p. 4). Since entropy stored in matter and entropy

stored in gravitational radiation can be interconverted by means of ordinary thermal

processes occurring away from any black holes, it seems inevitable that the outside

entropy term used when defining the GSL must include gravitational entropy. So

the best version of this proof probably includes the shear term.

Secondly, the absolute value signs in assumptions (1.45) or (1.55) are also

unnecessary for proving the GSL. Thus one may replace them with the assertion

that each generator of L with finite affine length satisfies either

s ≤ (λ′ − λ)(πTabk
akb + σabσ

ab/8), (1.64)

or else

s′ ≤ (2πTabk
akb + σabσ

ab/4). (1.65)

Similarly, if the affine parameter is infinite, then instead of requiring s = 0 in the

first proof one only needs to require s ≤ 0. The weakening of this assumption

only makes a difference in situations when s is negative which requires that sa be

spacelike or null. However, these assumptions are not sufficient to prove the GCEB

because the GCEB counts positively all the entropy that crosses the causal surface

L regardless of the direction of the entropy flow.
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As an example of a situation in which one might want to assign a negative s,

consider a black hole which is radiating Hawking quanta outward but which is kept

critically illuminated by incoming pure matter. Since entropy is being radiated from

the horizon, a hydrodynamic description of the system requires the entropy flowing

into the horizon to be negative. Admittedly, this situation is probably outside the

hydrodynamic regime’s validity. But as long as the entropy current on the horizon

is a good approximation to the change in Sout over time, the approximation is

sufficient for purposes of proving the GSL. It does not matter if the entropy current

is unphysical in other respects.

Strominger and Thompson (ST) [65] have pointed out that in BFM’s proof,

the isolation condition (1.56), the condition that the lightsheet L be initially non-

expanding, and the null energy condition can all be replaced with a single, weaker

condition:

s|B ≤ −θ/4. (1.66)

The proof then essentially states that if the GSL is satisfied at B, it is satisfied

on the entire causal surface. This is more elegant than the seemingly arbitrary

conditions of BFM’s proof. It also helps to explain why the GSL should apply to

global event horizons, which are defined using a nonlocal “teleological” boundary

condition. According to this modified proof, one can prove that a generator of a

causal surface satisfies the GSL only so long as it also satisfies the GSL at any later

time. This can be phrased in a more local way by saying that every generator which
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begins to violate the GSL cannot ever change back into a generator which satisfies

the GSL.

In the same paper ST propose that the GSL beyond the hydrodynamic regime

is related to a quantum-corrected version of Bousso’s covariant entropy bound, in

which the entanglement entropy is added to the area. Unfortunately they are not

able to make this provocative conjecture precise except in the two-dimensional RST

model. ST give a proof of the quantum Bousso bound in this setting, but it only

applies when the matter is in a coherent state.

In the following section I will discuss a proof of the GSL for coherent states

in this RST model, by Fiola, Preskill, Strominger, and Trivedi [7]. However, unlike

the ST’s proposed quantum Bousso Bound, the proof in the next section applies to

the apparent horizon, rather than to the event horizon (cf. 1.6.3).

1.6 2D Black Holes

Since it is hard to analyze important questions of quantum gravity in 3+1

dimensions, it might well be more tractable to first consider the analogous issues

in 1+1 dimensions. The 1+1 Einstein-Hilbert action is topological field theory,

and therefore has no local degrees of freedom. However, one may reintroduce local

degrees of freedom by adding a scalar field to produce “dilaton gravity” [7]. There

are many different possible actions one can write down for this scalar field. Many

of the resulting theories are equivalent to restricting to just the s-wave sector in a
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higher dimensional theory.

There exists a 1+1 dimensional model, found by Russo, Susskind, and Thor-

lacius (RST), which is exactly solvable in the large N limit and yet also includes

finite backreaction effects due to Hawking radiation. One does this by taking the

limit that Planck’s constant ~ goes to zero while holding N~ fixed so that the back-

reaction due to Hawking radiation remains finite. The hope is to prove the GSL in

regimes beyond the quasi-stationary limit by means of an exact calculation. Because

this proof is based more on calculation than on conceptual analysis, it is specific to

the RST model. Therefore, I will first present the RST model, and then go on to

describe the proof of the GSL for coherent states in this model.

1.6.1 The RST model

RST [66] began with the action of the classical CGHS model [67]:

Sclassical =
1

2π

∫

d2x
√
−g

[

e−2φ(R + 4(∇φ)2 + 4λ2)) − 1

2
(∇µfi∇µfi)

]

. (1.67)

Here g is the determinant of the metric, R is the curvature scalar, φ is the dilaton

field, fi are the N scalar fields, and the repeated index i is summed over. In black

hole like solutions, the value of the dilaton varies over the spacetime in such a way

that the theory is weakly coupled far from the black hole and strongly coupled

inside near the “singularity”. Null coordinates x+ and x− may be defined having

the property that

g++ = g−− = 0. (1.68)
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The event horizon is the boundary which separates the outgoing light rays that

escape to the weakly coupled region from the outgoing light rays that fall into the

strongly coupled region. On the other hand, the apparent horizon is located where

∂+φ vanishes. These two definitions of the horizon agree for a stationary black hole.

Let φH represent the value of φ on the horizon. One may then calculate in the usual

ways the mass:

MBH =
λ

π
e−2φH , (1.69)

the temperature (which is independent of the mass):

TBH =
λ

2π
, (1.70)

and the entropy:

SBH = 2e−2φH . (1.71)

(These properties all agree with those for a near-extremal magnetically charged

black hole in 4 dimensional dilaton gravity [68], a theory which reduces to the

CGHS model when restricted to classical s-waves.)

There are semiclassical correct corrections to the theory even in the large N

limit. Fluctuations in the metric and dilaton are negligible, and the corrections to

the stress energy of the scalars fi can be calculated using the conformal anomaly.

The one loop correction is equivalent to a classical theory with a nonlocal term

added to the action of Eq. (1.69):

Sloop = − N

96π

∫

d2x
√

−g(x)

∫

d2y
√

−g(y)R(x)G(x, y)R(y), (1.72)
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where G(x, y) is the Green’s function of ∇2. Adding an additional counterterm of

the form

Scounter = − N

48π

∫

d2x
√−gφR, (1.73)

makes the resulting RST model is exactly solvable. Defining ρ implicitly by means

of the nonzero component of the metric in null coordinates as follows:

g+− = −e2ρ/2, (1.74)

and redefining the fields so that

Ω =
12

N
e−2φ +

φ

2
+

1

4
ln

N

48
, (1.75)

and

χ =
12

N
e−2φ + ρ − φ

2
− 1

4
ln

N

3
, (1.76)

the action Seff = Sclassical + Sloop + Scounter takes the form:

Seff =
1

π

∫

d2x

[

N

12
(−∂+χ ∂−χ + ∂−Ω ∂+Ω + λ2e2χ−2Ω +

1

2
∂+fi ∂−fi

]

(1.77)

The scalar fields fi are now decoupled from Ω and χ. Further simplification comes

by choosing the null coordinates x+ and x− so that the relation

χ = Ω, (1.78)

which is equivalent to

ρ = φ +
1

2
ln

N

12
, (1.79)
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holds on-shell. This is one way of fixing the parameter ρ in Eq. (1.74), which makes

the exact solubility manifest. Another choice is the sigma coordinates (also defined

only on-shell) which are related to the null coordinates as follows:

λx+ = eλσ+

, λx− = −e−λσ−

. (1.80)

These σ asymptotically correspond to the inertial coordinates at I−, which means

that the vacuum built on them is the state that contains no quanta as measured by

asymptotic observers to the past.

Ω is not a monotonic function of φ; rather, it has a minimum at a critical

value:

φcr = −1

2
ln

N

48
, Ωcr =

1

4
. (1.81)

Values of Ω less than Ωcr do not correspond to any value of φ and are therefore

unphysical. So wherever the fields reach the critical value actually corresponds to

a boundary of the spacetime. When this boundary is timelike, the RST model

requires reflecting boundary conditions in order to be complete. This corresponds

to the “origin” of spacetime in the 3+1 dimensional analogue. When this boundary

is spacelike, it corresponds to the singularity of the 3+1 dimensional black hole—

and in fact, it is a curvature singularity in 1+1 dimensions as well. Strong coupling

occurs where Ω ∼ Ωcr, near the origin or the singularity, while weak coupling occurs

when Ω ≫ Ωcr, far from the black hole.
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1.6.2 The Entropy Formula

According to the abstract of Fiola, Preskill, Strominger, and Trivedi (hence-

forth FPST) [7], “a generalized second law of thermodynamics is formulated, and

shown to be valid under suitable conditions.” One of these conditions is that the

matter falling upon the black hole must be in a coherent state. FPST state that

if the infalling matter is not coherent, then sometimes the GSL is violated. This

claim, if true, would be even more remarkable than the proof itself. However, some

of the assumptions behind this claim are questionable, such as FPST’s formula for

the total entropy, and the choice of the apparent horizon over the event horizon for

defining the GSL. I will begin by discussing these assumptions, and then will go on

to cover their proof.

The generalized entropy should be a number associated with any spacelike

slice terminating on a point on the horizon. FPST proposed formula is:

Stot = SBH + SBO + SFG, (1.82)

where SBH is the entropy of the black hole itself (which classically is given by Eq.

(1.71), SFG represents the entanglement entropy of the quantum fields outside the

black hole, and SBO is associated with the entropy of the matter falling into the

black hole. FPST evaluate Eq. (1.82) on the apparent horizon.
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1.6.2.1 The Fine-Grained Entropy

SFG, the “fine-grained” entropy, is calculated by considering the entanglement

entropy outside of the horizon, when the fields are in a vacuum state with respect

to the σ coordinates (i.e. with respect to inertial observers at I−). It is the Gibbs

entropy −tr(ρ ln ρ) when one restricts this state to the system outside of the horizon.

Before giving its formula FPST need to define some auxiliary variables. Given a

point P on the apparent horizon, there are two possible lightlike directions going

backwards in time (see Figure 1.2). One way goes straight to I− at σ+ = σ+
H ,

while the other reflects off the “origin” and then hits I− at σ+ = σ+
B . FPST

define L = σ+
H − σ+

B as the difference between these coordinates. They also need an

ultraviolet cutoff at a proper distance δ from the horizon because the entanglement

entropy is logarithmically divergent near the horizon. FPST can now calculate the

result as

N

6

[

φH − φcr +
λL

2
+ ln

L

δ

]

, (1.83)

up to an error of order unity which can be absorbed into δ. For technical reasons,

FPST’s calculation is only valid under the simplifying assumption that there is no

infalling energy prior to σ+
B (matter falling in before then would make it impossible to

simultaneously satisfy the Kruskal gauge given by (1.78), and the equality between

the σ+ and σ− coordinates on the reflecting boundary prior to the formation of the

black hole). As the point P approaches the point of final evaportation, σ+
B limits

to the moment at which the event horizon forms. Consequently, to validate (1.83)

81



Figure 1.2: A Penrose diagram of the two dimensional black hole. The point P on the apparent

horizon can be traced backwards to σ+
B or σ+

H . The “outside” is the region whose fine-grained

entropy is being calculated.

everywhere on the horizon, FPST must assume that no matter falls into the black

hole prior to the formation of the event horizon.

Any coherent state of a free field has field expectation values given by a classical

solution, and quantum fluctuations around the mean field values of exactly the same

magnitude as in the vacuum state. Since the shift in expectation values makes no

difference to the entanglement entropy, the exact same formula (1.83) can be used

whenever the incoming matter takes the form of a coherent state built on the σ

vacuum (so long as there is no infalling matter falling in prior to the time σ+
B , as

stated above).
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1.6.2.2 The Black Hole Entropy

SBH, the entropy of the black hole, is classically just given by Eq. (1.71), but

there are quantum corrections. FPST calculate this by considering a black hole in

a box in equilibrium with its radiation. By inserting a little bit of energy into the

black hole from outside and using the First Law, they can calculate ∆SBH + ∆SFG

of the entire system. This, however, causes the black hole to grow and consume

some of the outside radiation, so ∆SFG must be subtracted off in order to find the

total change in ∆SBH. This then yields ∆SBH up to a constant, which FPST fix

by requiring the black hole to have zero entropy when it reaches zero size (that is,

when φH = φcr = (1/2) ln(N/48) The result is

SBH = 2e−2φH − N

12
φH − N

24

[

1 + ln

(

N

24

)]

.28 (1.84)

Note that the formula above does not depend on the value of the horizon cutoff

δ, whereas the formula for SFG given by (1.83) does. This means that the total fine-

grained entropy SBH + SFG of a given state depends on the cutoff δ. This result is

paradoxical because δ should ultimately be taken to zero (at least semiclassically),

which would make the entropy of the black hole diverge. However, the dependence of

the generalized entropy on δ is only an additive constant in the two-dimensional case,

meaning that it cancels out when calculating changes in the entropy. As FPST say,

“the sensitivity to the cutoff does not prevent us from making definite statements

28For some reason this term does not agree with the black hole entropy calculated by Myers [69],

using Wald’s Noether charge method.
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about how the entropy outside the black hole changes during its evolution, or about

the change in the intrinsic entropy of the black hole itself” ([7] p. 4006). There is no

problem since FPST are only interested in comparing two times when the horizon is

present. However, the δ dependence does not cancel out when comparing a time with

a horizon to a time without a horizon, or in higher than two dimensions. So checking

that the GSL holds at the instant of formation or collapse, or performing a similar

analysis in more than 2 dimensions, would require some sort of renormalization

procedure (cf. section 1.1.2.5)

1.6.2.3 The Boltzmann Entropy

The final term SBO, the Boltzmann entropy, is intended to take into account

the entropy of the matter falling into the black hole. Recall that FPST restrict their

consideration to states in which the infalling matter is in a coherent state. Coherent

states are always pure. In the Gibbs point of view, a pure state must be assigned

zero entropy, yet a robust proof of the GSL requires that matter with nontrivial

entropy be allowed to impinge upon the hole. FPST tell us that “even though the

incoming matter is in a pure state, it surely carries thermodynamic entropy. We can

assign a nonzero entropy to this state by performing a coarse-graining procedure”

([7] p. 4006). In other words, they wish to use the Boltzmann entropy for defining

the entropy of the infalling matter while retaining the Gibbs picture for the outgoing
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Hawking radiation. The infalling matter has a left-moving energy profile:

E(σ+) ≡ 12π

N
T++(σ+), (1.85)

using the same unconventional normalization of E as FPST. FPST treat E as a

measurable macroscopic observer, and assign to it an entropy based on the logarithm

of the number of states of left-movers with the same energy profile. They calculate

this to be

SBO =
N

6

∫

Σout

dσ+
√

E(σ+). (1.86)

As the coherent excitation falls into the black hole, SBO can only decrease over time.

This means that the addition of the SBO term only makes it harder to satisfy the

GSL.

I believe that this approach to calculating the entropy of infalling matter is

problematic. In the Boltzmann picture a coarse-graining procedure is only justified

if the information being ignored is somehow irrelevant to the evolution of the sys-

tem. This might be the case if the microstate is in some sense a typical member of

the macrostate in question, or if all members of the macrostate evolve in an indistin-

guishable way at the microscopic level. Neither condition is satisfied here because

most pure states are not coherent, and coherence is necessary for the calculation of

the value of SFG as given by Eq. (1.83). In other words, the coherent state is not a

typical member of its macrostate class.

On the other hand in the Gibbs perspective, this step involves the unwarranted

substitution of a mixed state for the pure incoming state. Either one retains the
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pure state, in which case the entropy of the incoming matter is zero, or else one

considers a bona fide incoherent mixed state, in which case there is no guarantee

that (1.83) is valid. As FPST themselves admit:

While the expression [(1.82)] may appear (and indeed, is) somewhat strange,

we believe it to be a precise two-dimensional analogue of the notion of ‘total

entropy’ used implicitly in discussions of four-dimensional black hole thermo-

dynamics. This prescription might be interpreted as follows. We may con-

sider, instead of a pure initial state, the mixed initial state ρ that maximizes

−trρ ln ρ subject to the constraint that the energy density is given by the spec-

ified function E(σ+). For this mixed initial state we have SBoltz = −trρ ln ρ.

What we are adding to SBH in [Eq. (1.82)] is the fine-grained entropy out-

side the horizon for this particular mixed initial state. [Footnote (emphasis

added):] Note that we have not really established that this interpretation is

correct. In particular, our expression for SFG has been derived only for co-

herent incoming states, and may not apply for arbitrary states. In any event

we have not been able to find any other reasonable and precise alternative to

[Eq. (1.82)] that obeys a generalized second law. ([7] p. 4007)

Additionally, even if SBO were the correct formula for the infalling entropy far

from the horizon, one must take into account the “observer dependence” [70] of

the entropy—the fact that the entropy attributable to an object depends not only

on the object but also on how close it is to the horizon of the observer measuring its

entropy. Thus a system with a given entropy at spatial infinity will have a different
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entropy when it is lowered down to just outside a black hole event horizon. The rea-

son is that the system is now sitting on top of the black hole’s thermal atmosphere,

whose entropy it raises less than it would have raised the vacuum. This means that

SBO and SFG cannot simply be added together.

A more defensible prescription for the generalized entropy is SBH +Sout, where

Sout = −trρ ln ρ of the region outside of the horizon at the time being considered.

This formula has no need to distinguish which component of the entropy is due

to the entanglement and which component is due to the matter; it is simply the

total fine-grained entropy of the region. However, it requires the specification of a

renormalization procedure to be valid (cf. section 1.1.2.5).

1.6.3 Which Horizon?

Is it correct to use the global event horizon or the apparent horizon for purposes

of the GSL? The choice makes a significant difference outside of the quasi-steady

limit. The usual opinion is that one ought to use the event horizon. However, FPST

take a contrary view:

We find it more appropriate to define SBO, SFG and SBH using the apparent

horizon, for several reasons. First of all, the position of the apparent horizon

can be determined locally in time, without any required information about

the global properties of the spacetime. Our observer on a time slice can

readily identify the apparent horizon as the location where ∂+Ω vanishes.
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Second, because the position of the apparent horizon is determined by this

local condition, it is easy to compute the trajectory of the apparent horizon

using the RST equations. ([7] p. 4006)

These reasons are not very convincing. The fact that the location of the event hori-

zon is sensitive to nonlocal considerations does not by itself amount to an argument

that it cannot be a physically relevant concept. Concepts relying on global structure

(such as the notion of thermal equilibrium in QFT) are often quite important to

physics. Furthermore, there is no reason why a concept of physical interest should

also be easy to calculate in a given model. FPST continue:

Third, if we use the global horizon to define the entropy, the resulting ther-

modynamic expressions do not seem to have a nice thermodynamic interpre-

tation. In particular, the would-be second law is easily violated by sending

in a very sharp pulse with a large entropy and energy density but small total

entropy and energy. The essential point is that the value of the dilaton at the

global horizon responds less sensitively to the incoming pulse than does the

dilaton at the apparent horizon. ([7] p. 4007)

Note that because the RST model is the s-wave sector of a 4 dimensional theory,

this argument threatens to invalidate the use of the event horizon in general and

not just in the two dimensional case. This startling claim is not explicated further

by FPST, so I will attempt to elucidate their argument further. (I will describe the

argument using the more familiar four dimensional black hole, whose entropy is the
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horizon area, since the essential features are the same in any dimension). Suppose

the infalling matter consists of a thin spherical shell containing energy E, entropy

S, and proper radial length r, as measured far from the black hole. If the shell is

hurled at the speed of light into a black hole of radius R at the speed of light, the

event horizon will anticipate the shell by growing to nearly its final size before the

shell even begins to cross the horizon. The horizon finishes its growth when the

shell has completely crossed the horizon. Therefore, in the limit that r → 0, the

event horizon has already grown to its final area when the shell falls in. But when

the shell falls in it reduces the outside entropy by an amount equal to S, without

any instantaneous change in SBH. Consequently the generalized entropy of the event

horizon decreases when the shell crosses the horizon. This violation would not apply

to the apparent horizon because the apparent horizon does not anticipate the infall

of matter but only grows while the shell is actually falling in.

But can r can really be taken to zero while E and S are held fixed? It is

easy to show that the Bekenstein bound would forbid this limit, since (assuming the

bound refers to the narrowest dimension of the shell), it would require that

S ≤ 2πrE. (1.87)

Now if E and r are both small, the total change in horizon area, over the interval that

the shell falls through, is proportional to rE, which is greater than S by virtue of the

bound. However, in the RST model the Bekenstein bound is violated parametrically

due to the large numbers of species. So if the generalized entropy is given by Eq.
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(1.82), the GSL can be violated for the event horizon by sending in a thin shell

containing many species and thus large SBO. This violation can be seen as an

additional reason to reject Eq. (1.82) beyond those given in section 1.6.2.3.

Suppose that instead of using Eq. (1.86), one asks how much fine-grained

entropy the shell adds to the thermal atmosphere of the black hole. When the shell

is a distance r from the black hole horizon, every part of it is immersed in a thermal

bath of temperature greater than or equal to 1/2πr. Assuming the shell’s energy is

a small perturbation to the thermal atmosphere, the Clausius relation says that

∆S ≤ 2πr∆E. (1.88)

So even though the Bekenstein bound does not hold for isolated objects containing

large numbers of species, when the objects are close to the horizon of the black hole,

the quantity ∆S does satisfy a bound with the same form as the Bekenstein bound.

So if the Bekenstein bound prevents violations of the GSL, Eq. (1.88) prevents GSL

violations even in the case of large N . So the event horizon may well obey the GSL

in FPST’s thin-shell thought experiment. However, since the above argument is

dimensional, it can only establish that no parametric violation of the GSL occurs.

Conceivably, a violation could still be present if the factors of order unity work out

badly. Since the situation goes beyond both the quasi-steady and hydrodynamic

regimes, it is outside of the scope of any of the sound arguments included in this

review.
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There is yet another reason to prefer the event horizon to the apparent horizon:

the GSL can be violated otherwise. This is demonstrated in Appendix B of FPST’s

paper, which shows that for noncoherent states, the generalized entropy given by

(1.82), as applied to the apparent horizon, can temporarily go down. FPST say

how:

[...] quantum states can be constructed that pack a large positive density of

(fine-grained) entropy without carrying a large energy density. We can prepare

matter in such a state, and allow the matter to fall into a black hole. Then the

fine-grained entropy decreases sharply, but without any compensating sharp

increase in the black hole entropy. Hence the total entropy decreases.

Alternatively, we can make the total entropy decrease (momentarily) by sim-

ply sending in negative energy into the black hole. It can be arranged that

the black hole shrinks and loses entropy without a compensating increase in

the fine-grained entropy. ([7] p. 4012)

The remainder of their Appendix is devoted to constructing such states by choosing

an alternative vacuum defined using a function of the σ+ coordinate. FPST con-

struct the analogue of the formula for the fine-grained entropy (1.83) which is valid

for this new vacuum state, and show that the total entropy as given by (1.82) can be

made to temporarily decrease. It is well-known that negative energy densities can

be made to exist for short periods or small regions in QFT, so long as they are bal-

anced by even greater positive energies elsewhere, whose size is governed by certain
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“quantum inequalities” [71]. The negative energy density between two conducting

plates due to the Casimir effect are an example. If such negative energy densities

fall across the horizon of a black hole, the apparent horizon will instantly decrease

in size and thus lose entropy. The only way to prevent GSL violation would be if

the entanglement entropy in the negative energy region always increases enough to

compensate. FPST explicitly calculate SFG to show that this does not occur for cer-

tain negative energy density pulses in the RST model. It may be shown in the case

of the Casimir energy by a simple scaling argument: As the distance x between the

Casimir plates decreases, the energy density scales like x−d where d is the spacetime

dimension, while any finite change in the entanglement entropy across a slice going

between the plates scales like x2−d.

I have argued above that the formula SBH + SFG + SBO is incorrect, but it is

not the problem here. FPST have calculated SFG in the vacuum state with respect

to any choice of null coordinate, and dropping the Boltzmann entropy term does not

resolve the GSL violation. The problem is the choice of the apparent horizon, which

responds instantly to any negative energy perturbation. Whereas the event horizon

can expand even when negative energy falls into it, so long as the negative energy

will be followed by positive energy of sufficient magnitude and closeness in time.

(This property of the event horizon has already been shown by Ford and Roman

[72] to be necessary to save the GSL from the negative energy fluxes associated

with non-minimally coupled scalar fields.) Energy inequalities may therefore be
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important in determining whether the event horizon can violate the GSL beyond

the quasi-steady limit.

1.6.4 A Proof for Coherent States

In summary, FPST have assumed so far that:

1. the system is described by the RST model,

2. the generalized entropy is given by Stot = SFG + SBH + SBO on the apparent

horizon, and

3. no energy falls into the black hole prior to the formation of the event horizon.

They have also calculated each of the three terms in the generalized entropy.

The first step is to add up the expression SFG+SBH+SBO in order to obtain the

total entropy. They begin by adding the first two terms (1.83) and (1.84) together,

and then using (1.75) to re-express the result in terms of Ω instead of φ. The result

is

SBH + SFG =
N

6

[

ΩH − 1

4
+

λL

2
+ ln

L

δ

]

. (1.89)

Next they solve for ΩH based on the energy profile E of the infalling matter, using

the definition of the apparent horizon ∂+Ω = 0 to obtain

ΩH =
1

4
+

M

λ
− λL

4
, (1.90)

where M is defined by

M(σ+
H) =

∫ σ+

H

−∞

dσ+ E(σ+). (1.91)
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Adding everything together including the Boltzmann entropy (1.86), the final result

is

Stotal =
N

6

[

1

λ
M(σ+

H) +
λL

4
+ ln

L

δ
+

∫ ∞

σ+

H

dσ+
√

E(σ+)

]

. (1.92)

FPST now calculate that

∂σ−
H

∂σ+
H

= e−λL

(

1 − E(σ+
H)

Ecr

)

, (1.93)

where Ecr is the critical infalling energy needed to balance out the Hawking radiation

to keep the size of the black hole constant. Since

L = σ+
H − σ+

B = σ+
H − σ−

H + const., (1.94)

the derivative of L is

∂L

∂σ+
H

= 1 + e−λL

( E
Ecr

)

. (1.95)

This makes it possible to calculate the derivative of Stot in terms of Ẽ = E/Ecr as

∂Stot

∂σ+
H

=
Nλ

24

[

(

√

Ẽ(σ+
H) − 1)2 + e−λL(Ẽ(σ+

H) − 1)

(

1 +
4

λL

)

+
4

λL

]

. (1.96)

Although it is not exactly manifest, this formula is always positive when Ẽ ≥ 0 and

L > 0. Therefore the GSL is established given the above assumptions. Unfortu-

nately, because the result comes from a calculation rather than a conceptual proof,

the reason for the increase in entropy is mysterious and may be model dependent.

1.7 Prospects

A summary of the proofs can be found in the Table of Proofs. The table

indicates the authors, information about the the regime (cf. section 1.1.2), as well
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as what extra assumptions or problems there are. Although there are many proofs,

the only ones that appear to be completely sound are Hawking’s area theorem ([21]

section 1.1.2.3), the three proofs in the hydrodynamic regime ([19] section 1.2.2,

[24, 25] section 1.5), and Frolov and Page’s proof from the S-matrix ([15] section

1.3). However the conceptual foundations of the hydrodynamic approximation are

not completely clear, and it may be that hydrodynamic proofs are only valid in the

classical regime.

A natural next step would be to attempt a proof of the GSL in the semiclassical

but non-quasi-steady regime. A strategy for constructing such a proof would be to

take a semiclassical quasi-steady proof and find a way to remove the quasi-steady

assumption. Such a proof would have to take into consideration the the nontrivial

response of the event horizon’s area to the infalling energy profile, which is described

by Eq. (1.16). This could be used to generalize to a new regime not covered by the

semiclassical quasi-steady proofs of Frolov and Page [15] (section 1.3), Sorkin [14]

(section 1.4.2), or Mukohyama [30] (section 1.4.3).

Because the GSL involves assertions about the increase of generalized entropy

on arbitrary time slices of the black hole spacetime, the S-matrix approach of Frolov

and Page’s proof seems to be highly dependent on the quasi-steady limit to ensure

that what happens in the asymptotic past and future is relevant for proving the GSL

at finite times. Sorkin’s semiclassical proof is a more likely starting point, because

the theorem used in the proof allows one to make deductions about the entropy
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difference between any two time slices. Although for technical reasons this proof

is invalid, if the problem can be fixed, it may well also lead to important results

outside the quasi-steady limit.

An alternative strategy would begin with one of the non-quasi-stationary hy-

drodynamic proofs and try to promote it to a proof valid in the semiclassical limit.

Here Strominger and Thompson’s proposal [65] for generalizing the Bousso bound

to a fully quantum setting by adding the entanglement entropy to the area seems

to be promising (cf. section 1.5.3). Since the weaker version of the Bousso bound

was important for formulating the GCEB which implied the GSL in the hydrody-

namic regime, it stands to reason that this quantum-corrected Bousso bound might

be used to show the GSL in the semiclassical setting. However, for it to help with

proving the GSL in higher dimensions, this quantum-corrected Bousso bound must

first be formulated and proven in dimensions higher than two. Even in two dimen-

sions the proof of the bound is so far limited to coherent states in the RST model.

It might be best to start by proving the bound in more general two-dimensional

situations, perhaps by adapting one of the more general proof methods. (Although

two-dimensional proofs like that of FPST [7] (section 1.6) are attractive because

some two-dimensional models are exactly solvable, their downside is that any proof

which takes advantage of an exact solution must necessarily be limited to particular

models.)

In order to proceed with either of these two strategies, a more rigorous ap-
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proach to the renormalization of Sout is probably needed. Because the entropy

diverges near the horizon, one naive renormalization procedure is to put a mem-

brane M just outside the black hole event horizon, and find the entropy outside of

the membrane M . Then one might hope to renormalize this entropy while taking

the limit that M approaches the horizon. Finally one would have to show that all of

the different ways of taking this limit give the same result. However, this procedure

fails because M is a perfectly sharp boundary which is itself associated with an

infinite entanglement entropy.

Instead, one might use the mutual information, defined as the difference be-

tween the sum of the entropy of two systems and the entropy of the combination

of both the systems (in other words, the mutual information measures the extent

to which the entropy of a system is less than the sum of the entropies of its parts).

The mutual information between the region inside the event horizon and the region

outside of M should be finite so long as there is a finite proper distance between ev-

ery point on M and the horizon [73]. Other possible ways to regularize the entropy

divergence are given in Ref. [74].

Another approach would be to try to frame the proof of the GSL using alge-

braic QFT. If the generalized entropy can be defined directly in terms of the infinite

algebra associated with the region outside of the event horizon, then it may be

possible to entirely sidestep any need to renormalize a finite entropy.

Another mystery of the GSL as presently formulated is why it applies to the
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event horizon, which is teleologically defined in terms of what is going to happen in

the future. However, the ultimate proof of the GSL must be framed entirely within

a theory of quantum gravity. If the GSL is ultimately true because of quantum

gravitational physics occurring at the Planck scale, it seems a little strange that

it should only apply to event horizons and not to all causal surfaces whatsoever.

But some causal surfaces disobey the GSL, as discussed in section 1.1.1.2. So it

would be nice if some local principle could be found which applies to all causal

surfaces and which implies the GSL for event horizons. Such a principle might be

provable using only the physics close to the horizon. Perhaps then, by having a

theory of generalized thermodynamics broad enough to apply to all causal surfaces

everywhere, it will be easier to see what features a microscopic theory of quantum

gravity needs in order to give rise to macroscopic thermal behavior.
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TABLE OF PROOFS

PROOF REGIME PERTURB. EXTRA CONDITIONS AND/OR DIFFICULTIES SECTION

Hawking [21] classical any null energy condition, cosmic censorship 1.1.2.3

Zurek & Thorne [28] semi. q-steady entropy localization, renormalization 1.2.1

Wald [19] hydro. q-steady adiabaticity (fixable) 1.2.2

Frolov & Page [15] semi. q-steady CPT insufficient for charged BH (fixable) 1.3

Sorkin 1 [38] full QG any inconsistent assumptions 1.4.1

Sorkin 2 [14] semi. q-steady thermality, not superradiant, renormalization 1.4.2

Mukohyama [30] semi. q-steady not superradiant, free scalar field 1.4.3

Flanagan et al. [24] hydro. any null energy condition, Bekenstein-like bound 1.5.1

Bousso et al. [25] hydro. any entropy gradient bound, isolation condition 1.5.2

Fiola et al. [7] semi. any RST model, large N, apparent horizon 1.6
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Chapter 2

Proving the GSL for Flat Planar Slices of Rindler Horizons

2.1 Introduction to Chapter II

The purpose of this article is to prove the generalized second law (GSL) in

the semiclassical approximation for rapidly changing quantum fields falling across

Rindler horizons.

The GSL is the hypothesis [4] that the generalized entropy Sgen of any future

horizon cannot decrease as time passes, where Sgen is given in general relativity by

the sum of the entropy outside the horizon and a quarter of the horizon area:

Sgen =
A

4~G
+ Sout. (2.1)

In accordance with the arguments of section I.1.2.5, A will be interpreted as the

expectation value of the area, and Sout will be interpreted as the von Neumann

entropy:

Sout = −tr(ρ ln ρ), (2.2)

although because the entanglement entropy of quantum fields is divergent, some

sort of renormalization scheme is necessary [33]. In the case of Rindler horizons,

one must subtract from Eq. (2.2) the infinite entanglement entropy of the vacuum

state. So long as one is only interested in differences in the generalized entropy, this
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divergence should be unimportant. (For the same reason it is not a problem that

A is infinite for a Rindler horizon, because only differences in area matter.) A fully

rigorous semiclassical proof of the GSL would have to specify a renormalization

procedure, but in this article I will simply assume that a satisfactory procedure

exists.

The GSL is a tantalizing clue about the statistical mechanics of quantum

gravity, which might illuminate the nature of the fundamental degrees of freedom

of spacetime [39, 10]. Although there are many gedankenexperiments showing that

the GSL holds in particular semiclassical situations, a general proof of the GSL in

semiclassical gravity will help to clarify the situation in quantum gravity. First of all,

even if we are highly confident that the GSL will turn out to be true in our universe,

knowing what physical principles are necessary to prove it will help illuminate what

physical principles are required for horizon thermodynamics, and therefore perhaps

the underlying principles of quantum gravity statistical mechanics. For example,

does the GSL require an unbroken Lorentz symmetry [41], or does it require the

particles in nature to satisfy some entropy bound [75], or to satisfy some energy

condition [76]? The proof presented here will require the existence of a Lorentz-

invariant and translation-invariant ground state, but imposes no other conditions

on the entropy or energy. It holds for arbitrary matter interactions, so long as the

matter fields are minimally coupled to gravity.

The semiclassical GSL has already been proven for small perturbations to sta-
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tionary black holes, only in the sense that the final generalized entropy at the end

of the process is greater than the initial generalized entropy (cf. section I.1.2.1).

For example, Frolov and Page [15] used an S-matrix to compare the generalized en-

tropy in the asymptotic past and future of a quasi-stationary black hole. When the

small perturbation is also slowly changing with time, one can obtain the generalized

entropy in the middle of the process by linear interpolation. But for a rapidly chang-

ing process, it is unclear from previous work whether the generalized entropy might

temporarily decrease during a rapidly changing process. Thus for rapidly changing

quantum fields, it has not previously been shown whether the GSL only holds glob-

ally, as a statement about initial and final equilibrium states, or infinitesimally at

every moment of time.

The result in this article shows that for Rindler horizons, the generalized en-

tropy is nondecreasing at every instant of time, so that dSgen/dt ≥ 0. In an in-

stantaneous proof of the GSL, it is no longer possible to use the first law of horizon

mechanics dE = TdS, because this law does not hold for rapid changes to a horizon.

For example the area of the event horizon may begin to increase before any energy

crosses the horizon at all. So it is necessary to find some other relation between the

area of the horizon and the energy outside of it. Instead of the first law, I will use

the Raychaudhuri and Einstein equations to show that the boost energy K outside

of a Rindler horizon is related to the area of the bifurcation surface:

A = c − 8πGK, (2.3)
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where c is a constant independent of the time. The fact that the vacuum state is

thermal in each Rindler wedge will then be used to relate the entropy and boost

energy to an information theoretical quantity known as the relative entropy. This

quantity satisfies a monotonicity property which will turn out to imply the GSL.

Because the proof relies on the boost symmetry of the Rindler wedge, it only

works for horizon slices which are (approximately) flat planes. Thus it does not

show that the generalized entropy is increasing locally at every place and time on

the horizon, δSgen/δt ≥ 0.

This proof is also limited to small perturbations of background spacetime; it

is intended as a stepping stone towards more robust results. For reasons given in

section 2.6, I expect that the proof can be extended to more general situations,

including arbitrary cross-sections of arbitrary horizons, and nonminimally-coupled

and/or higher-curvature theories (for which there are corrections to the Bekenstein-

Hawking area law [77]).

The plan of the paper is as follows: section 1.4.2 describes and justifies the

semiclassical approximation about a Minkowski background spacetime, section 2.3

discusses the properties of the relative entropy, section 2.4 describes the thermal

properties of the Rindler wedge, and section 2.5 gives the proof of the GSL. Finally,

section 2.6 describes how to generalize the result to anti-de Sitter space and other

spacetimes with Rindler-like horizons, and speculates how one might generalize the

proof to arbitrary slices of arbitrary horizons. I will use metric signature (−, +, +, +)
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and c = 1, taking 4 dimensions for specificity.

2.2 The Semiclassical Approximation

Consider 4-dimensional general relativity coupled to matter, described by the

following action:

I =

∫

d4x(
√
−g

R

16πG
+ Lmatter). (2.4)

I will assume that Lmatter is minimally coupled, in the sense that it has no explicit

dependence on the Riemann tensor and all derivatives are symmetrized.1

the matter fields are minimally coupled to the metric, so that Lmatter does not

lead to any additional corrections to the horizon entropy SH .

The equation of motion due to varying the metric is the Einstein equation

Gab = 8πG Tab (2.5)

where the matter stress-energy is defined as

Tab = − 2√−g

δLmatter

δgab
. (2.6)

For Tab = 0, one solution is the Minkowski vacuum, which can be written in null

coordinates as follows:

ds2 = −2du dv + dy2 + dz2. (2.7)

1In the nonminimally coupled case, there will be corrections to the horizon entropy [77]. Also,

the canonical stress-energy tensor will differ from the gravitational stress-energy tensor.
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This spacetime has many Rindler horizons, but all of them are related by symmetry

to the one defined by u = 0. This Rindler horizon contains a 1-parameter family of

Rindler wedges W (V ), defined as the locus of points satisfying

u ≤ 0; v ≥ V, (2.8)

and the surface on which u = 0 and v = V is called the bifurcation surface. The

wedge is invariant under a boost transformation whose Killing vector is given by

ξ = (v − V )∂v − u∂u. (2.9)

Note that if V < V ′, then W (V ) ⊃ W (V ′). The GSL is now the statement that

the generalized entropy Sgen(W (V )) ≡ Sgen(V ) should be a nondecreasing function

of V . Fig. 2.1 shows how these wedges relate to one another.

In the semiclassical approximation around this Minkowski space background,

Lmatter is regarded as the action for an ordinary quantum field theory (QFT). This

QFT should assign to each Rindler wedge W (V ) an algebra of observables M(V ),

such that when V < V ′, M(V ) ⊃ M(V ′) (because every observable in the smaller

wedge is also an observable of the larger one).

The QFT should also have a renormalized stress-energy operator Tab. The

semiclassical Einstein equation

Gab = 8πG〈Tab〉 (2.10)

determines the perturbation of the Minkowski space background (once boundary

conditions are specified). If the matter stress-energy is localized then the perturbed
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Figure 2.1: a) The one parameter family of Rindler wedges in the u-v coordinate system, illus-

trated by three particular wedges which share the same future Rindler horizon. The wedges are

related by null translations in the v direction. The GSL states that each wedge should have at

least as much generalized entropy as the wedges beneath it. b) The boost symmetry of a single

Rindler wedge, which is used to show that the vacuum state is thermal with respect to the boost

energy. The spatial slices related by the boost symmetry all have the same horizon area and the

same entropy content, so the generalized entropy of each slice is constant.

spacetime must remain asymptotically flat. The Rindler wedge can still be de-

fined on the perturbed spacetime as the intersection of the future and the past of

a uniformly accelerating worldline (or equivalently, the intersection of the future

of a point on I− with the past of a point on I+). This definition can be made

unambiguous even when the spacetime is gravitationally perturbed, by taking the

accelerating observer to be very far from the matter, where spacetime is nearly flat.

Consider a state of the fields with characteristic wavelength λ (in some inertial
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frame), with an order unity number of quanta. The expected stress-energy is of order

~/λ4, which implies via the Einstein equation that the curvature is of order ~G/λ4,

and since the curvature involves two derivatives of the metric, the resulting metric

perturbation is of order

a ≡ ~G/λ2 = L2
planck/λ

2, (2.11)

The effect of this metric perturbation on the horizon entropy is of order one bit,

because the factor of L2
planck in the numerator of a cancels out with the L2

planck in the

denominator of the Bekenstein-Hawking term A/L2
planck. As long as a is much less

than unity, all other effects of gravity can be neglected, justifying the quantum field

theory approximation. Thus the only important effect of the metric perturbation is

on the Bekenstein-Hawking area term.2

Because there are an order unity number of quanta, the contribution of the

matter fields to Sout should also be of order one bit, in the absence of a very large

number of species, or large logarithmic volume factors. (This is not counting the

divergent part of Sout, which is the same in all states.)

The horizon and matter entropies can be added together to obtain the gener-

alized entropy S(V ) of any Rindler wedges W (V ). The GSL then states that S(V )

is a monotonic function of V .

2Typically renormalization will induce nonminimal coupling terms into the Lagrangian. These

terms will provide additional contributions to the horizon entropy [77]. However the entropy

associated with these terms will be suppressed by positive powers of a relative to the Bekenstein-

Hawking entropy.
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The semiclassical approximation neglects the fluctuations in the metric. These

fluctuations appear for two reasons: first because of the quantization of gravitons,

and second because the source term Tab has fluctuations.

Graviton fluctuations. Although gravitons carry canonical energy and momen-

tum, they do not contribute to the matter stress-energy tensor Tab as defined in Eq.

(2.6). Nevertheless, Gab has terms which are quadratic in the metric, so in order to

describe the equation of motion correctly when there are gravitons, it is necessary to

quantize the metric field as well and impose 8πGTab = Gab as an operator equation.

Schematically one can decompose the Einstein tensor in terms of the metric and

derivatives as

∇2g + ∇2g2 + O(∇2g3), (2.12)

ignoring indices and what the derivatives act on. One may now think of the metric

as being decomposed into a) a background Minkowski metric, b) linearized gravity

waves on top of this metric, and c) nonlinear effects, due to the fact that the Einstein

tensor is nonlinear in the metric. Although the linearized gravity waves do not

contribute to Gab to first order, to second order they have a nonzero contribution

due to the ∇2g2 terms; in fact the gravitons must contribute to the Einstein equation

at the same order as ordinary matter quanta of the same wavelength. In a state

with an order unity number of gravitons, this contribution to the Einstein tensor

goes like

∇2g2 = ~G/λ4 = a/λ2, (2.13)
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from which it follows that the amplitude of g due to gravitons is of order
√

a. This

second order contribution to the Einstein tensor is cancelled out by the nonlinear

gravitational field which is induced by the linearized gravity waves, which is of order

a. Now in a state with a small number of quanta, the fluctuations in a field are of

the same order as the field itself. Thus graviton fluctuations are themselves of order

√
a—too large, in general, to be neglected.

Although I am confident that it is possible to generalize the proof below to

the case in which there are gravitons, doing so would involve additional technical

complications. So in this paper I will restrict to states with zero gravitons in them.

Assuming that the past-boundary conditions include no gravitons, the amplitude for

the matter fields to emit a graviton will be proportional to
√

a, as can be seen by

canonically normalizing the metric field in Eq. (2.4) and applying the usual Feynman

rules. Since the Einstein tensor depends quadratically on the graviton field, this

means that the graviton contributions to the Einstein equation will be suppressed

by an additional power of a compared to the matter contributions, allowing them

to be neglected.3

3Note that this argument depends on the fact that Minkowski space has a well-defined graviton

vacuum state which evolves to itself under time evolution. In contrast, if a black hole forms

from collapse, there is in general Hawking radiation of gravitons, leading to an increase in the

evaporation rate of the black hole which cannot be ignored.
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Stress-Energy fluctuations. For states with an order unity number of matter

quanta, the quantum fluctuations in Tab are of the same order as the expectation

value 〈Tab〉, so it is not clear in general whether the semiclassical Einstein equation

(2.10) is a good approximation. These fluctuations in Tab cause fluctuations in

the horizon entropy A/4~G of order one bit. However, given that the generalized

entropy as defined in the Introduction depends only on the expectation value 〈A〉,

these fluctuations do not affect the GSL as defined here, and can thus be ignored

(cf. section I.1.2.5)

2.3 The Relative Entropy

The relative entropy is an information-theoretic quantity which is closely re-

lated to the generalized entropy [78]. It satisfies a monotonicity property which will

be used below to prove that the generalized entropy is increasing with time. For

any two density matrices ρ and σ, the relative entropy is given by the formula

S(ρ | σ) = tr(ρ ln ρ) − tr(ρ ln σ). (2.14)

Intuitively speaking, the relative entropy measures how far away from each other

two states ρ and σ are. However, it is not a symmetric function of ρ and σ. In a

system with N different states, if σ = 1/N (the uniformly mixed state), then the

relative entropy is simply the difference between the entropies:

S(ρ | σ) = S(σ) − S(ρ) = ln N + tr(ρ ln ρ). (2.15)
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At the opposite extreme, when σ is a pure state, then

S(ρ | σ) = +∞ if ρ 6= σ, (2.16)

S(ρ | σ) = 0 if ρ = σ. (2.17)

In between these two cases, suppose that σ is a Gibbs thermal equilibrium state

with respect to some Hamiltonian,

σ =
e−βH

tr(e−βH)
. (2.18)

Then Eq. (2.14) is equal to beta times the free energy difference of ρ and σ:

S(ρ | σ) = [β〈H〉ρ − S(ρ)] − [β〈H〉σ − S(σ)], (2.19)

using the definition of the von Neumann entropy S(ρ) = −tr(ρ ln ρ), the fact that

ln σ = −βH up to an additive constant, and the fact that the relative entropy

vanishes when ρ = σ.

In any QFT, a regular state in a Rindler wedge has an infinite number of

excited degrees of freedom residing near the horizon. This implies that the definition

of the relative entropy in Eq. (2.14) is ill-defined due to the inability to write the

states ρ and σ as density matrices. To see this, notice that the rows and columns of a

density matrix ought to be labeled by a basis of pure quantum states. But in the case

of the Rindler wedge there are no pure states; the divergence in the entanglement

entropy tells us that every physically acceptable state is mixed.4 A state ρ can still

4For readers familiar with algebraic QFT, the failure of Eq. (2.14) comes from the fact that the

algebra of observables in any region with a boundary is actually a type III von Neumann algebra

[79], which by definition has no trace operation.
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be defined as a positive, normalized, linear functional ρ(M) over some algebra of

observables M . Any such state defined on an algebra M is automatically also a

state of any subalgebra M ′ ∈ M .

The relative entropy can still be defined for states in systems with an infinite

number of degrees of freedom by taking a limit [62]. Let the system be described

by a tensor product of an infinite number of Hilbert Spaces Hn where n ranges over

the natural numbers. Then the relative entropy of the system is given by

lim
n→∞

(tr(ρn ln ρn) − tr(ρn ln σn)), (2.20)

where ρn means ρ viewed as a density matrix on the tensor product of the first n

Hilbert Spaces. This is a special case of a more general definition which applies to

arbitrary algebras of observables [62].

Some properties of the relative entropy: First of all, S(ρ | σ) is always non-

negative, and is zero only when ρ = σ. It may however take the value +∞. More

remarkably, the relative entropy is monotonic [58], meaning that whenever ρ and

σ are restricted from one algebra (e.g. M) to a subalgebra (e.g. M ′), the relative

entropy is nonincreasing:

S(ρ | σ)M ≥ S(ρ | σ)M ′. (2.21)

Intuitively, when probed with fewer observables, ρ and σ are less distinguishable

and therefore must have less relative entropy.

This monotonicity property is reminiscent of the GSL. My strategy for proving

the GSL will be as follows: Let ρ be the state which we wish to prove has nonde-
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creasing entropy, and let σ be the vacuum state, which is translation invariant with

respect to the null coordinate v. I will show that the generalized entropy is related

to the relative entropy by

Sgen(ρ) = C − S(ρ | σ), (2.22)

where C is a constant with respect to changes in the advanced-time null coordinate

v. Then the monotonicity of the relative entropy will imply the nondecrease of the

generalized entropy. So the entire burden of the proof that follows is to establish

Eq. (2.22) for each wedge W (v).

The idea of relating the relative entropy to the generalized entropy is found

in Casini [78], who shows how it is implicitly used in the quasi-steady proofs of the

GSL due to Frolov & Page [15] (reviewed in section I.3) and Sorkin [14] (reviewed

in section I.4).

2.4 Thermal Properties of the Rindler Wedge

When the vacuum state σ is restricted to a particular Rindler wedge W (V )

located at v = V , it is thermal with respect to the boost energy K(V ) conjugate

to the boost symmetry of that wedge. This is known as the Unruh effect, and has

been proven for any QFT with a Lorentz symmetric ground state [80]. Technically

this means that σ satisfies the Kubo-Martin-Schwinger (KMS) condition [81]: For

any two observables A and B, if αz represents a Lorentz boost which translates

observables by the hyperbolic angle z, 〈Bαz(A)〉σ must be an analytic function of z
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when 0 < Im(z) < i~β, and also

〈AB〉σ = 〈Bαi~β(A)〉σ, (2.23)

where β = 2π/~ is the inverse Unruh temperature.

The boost energy associated with the wedge W (V ) is defined as the following

integral of the stress-energy tensor over any complete time slice Σ stretching from

the bifurcation surface to infinity:

K =

∫

Σ

Tabξ
adΣb (2.24)

where ξa is the Killing vector of the boost symmetry, and

dΣa =
√−ggaeǫebcd (2.25)

is a vector-valued 3-form obtained from the metric and the permutation symbol.

In principle, one should find K by integrating the canonical stress-energy tensor

derived from Noether’s theorem, rather than the gravitational stress-energy tensor

Tab found by varying the metric. That is because the canonical boost energy is

the generator of the boost symmetry of the Rindler wedge. However, in the case

of minimally coupled fields the canonical and gravitational stress-energies are the

same (e.g. [82]), so the use of the gravitational stress-energy tensor in Eq. (2.24) is

correct.

Since the KMS state is thermal in the boost energy, Eq. (2.19) suggests that

the relative entropy of a state ρ to the vacuum state σ can be written as a difference
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of free boost energies:

S(ρ | σ) = β〈K〉ρ − Sout(ρ) + Sout(σ), (2.26)

where a 〈K〉σ term need not be included because the renormalized stress-energy

vanishes in the vacuum. However, this formula was only derived above for systems

described by a Hilbert Space, and does not apply to the Rindler wedge. Because

of this, σ is only formally a Gibbs state e−βK/tr(e−βK), so Eq. (2.26) has not been

rigorously shown.

In order for Eq. (2.26) to be well defined for the Rindler wedge, one needs to

define a renormalized outside entropy Sout, and a renormalized boost energy K. The

latter can be defined in terms of the renormalized stress-energy tensor Tab, while the

latter requires some sort of regulator to make the entanglement entropy divergence

finite.

It will be assumed below that when both the energy and entropy are suitably

renormalized, Eq. (2.26) holds for the Rindler wedge, even though the wedge fields

are not desrcibed by a Hilbert Space, but rather by a von Neumann algebra. (An

analogue of this result has been shown for infinite quantum spin-systems by Araki

and Sewell (Eq. (2.15) in Ref. [83]). The conventional wisdom is that any QFT can

be discretized on a lattice, which strongly suggests that a corresponding statement

should also hold for an arbitrary QFT.) This assumption is critical to the proof of

the GSL in the next section.

Note that Eq. (2.26) depends only the difference of the entropy of the states ρ
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and σ. Given a suitable regulator scheme for the entropy, Sout(ρ)−Sout(σ) ought to

be finite as the cutoff length goes to zero, even though each term separately diverges.5

The difference between the two entropies can be interpreted as the renormalized

entropy of the state ρ.

2.5 The Generalized Entropy Increases

In this section it will be shown that the generalized entropy S(v) associated

with the wedges W (v) is a nondecreasing function of v, by relating it to the relative

entropy to the vacuum state σ.

Consider one particular wedge W (V ) at time v = V on the horizon defined by

u = 0. The boost energy K(V ) is given by Eq. (2.24) for all complete time slices.

Choose the slice Σ to be the future horizon H itself plus the asymptotic null future

v = +∞ as shown in Fig. 2.2. The boost energy is now given by the following

integral on H :

K(ρ) =

∫

H; v>V

T uu(v − V )dv d2x + Krad, (2.27)

where d2x represents the integration over the two spacelike horizon directions, and

Krad is the total amount of boost energy which radiates to null infinity instead of

5This assumes that the state ρ is a physically reasonable one. Even for a single harmonic

oscillator, which has no ultraviolet divergences, it is possible to find normalizable states in which

the expected energy or entropy is infinite, if the probability falls off sufficiently slowly with energy

level.
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Figure 2.2: The wedge W (V ) evolves forward in time to W (V ′). Each of the wedges contains a

certain amount of boost energy K all of which must either fall across the horizon H or be radiated

to infinity and thus contribute to Krad. The total amount of boost energy in each wedge is thus

proportional to the area of the wedge, up to the contribution at v = +∞, which is the same for

both W (V ) and W (V ′).

falling across the horizon.6 This radiated boost energy is given by

Krad =

∫

v=+∞; u<0

T vv(−u)du d2x. (2.28)

By virtue of conservation of boost energy, the v → +∞ limit needed to define Eq.

(2.28) is well-defined in any state that has a finite amount of boost energy falling

6In a generic state, Krad equals zero, because the only way for a particle not to fall across the

Rindler horizon is to travel away at the speed of light in the direction exactly perpendicular to the

horizon. But this consideration does not apply to black hole horizons, from which generic matter

can escape to infinity.
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across the horizon and coming in from past null infinity. Since Krad is not a function

of v, it is the same for each wedge W (V ) and therefore does not contribute to the

change in the generalized entropy with time.

When gravitational interactions are taken into account, the boost energy

falling across the horizon leads to a small, order a semiclassical correction in the

area of the bifurcation surface of the wedge W (V ). The linearized Raychaudhuri

equation, together with the Einstein equation, says that

dθ

dv
=

1

A

d2A

dv2
= −8πG Tabk

akb, (2.29)

where ka = gabu,b, and θ = (1/A)(dA/dv) is the expansion.7 Although dθ/dv also

has a (1/A2)(dA/dv)2 = θ2 component, this term is quadratic in a and can therefore

be neglected. The θ2 and σabσ
ab terms in the Raychaudhuri equation are also of

order a2 and thus negligible.8

7Strictly speaking, Eq. (2.29) is only justified for the region of the horizon which is not too far

to the past of the quantum matter perturbation. That is because the matter fields will cause the

horizon generators to focus, meaning that going backwards in time, the horizon generators will

eventually form cusps and leave the event horizon altogether. Near these cusps, the geometry of the

horizon cannot be treated as a small perturbation, since even though the metric fluctuations are

small, the horizon location has large fluctuations. However, the nonlinearities in the Raychaudhuri

equation only make the horizon area increase faster with time, so the GSL should also hold in this

region. See Refs. [10, 84] for the related issue of applying the first law to Rindler horizons.
8However, in situations where one must take into account gravitons, there are

√
a metric per-

turbations as described in section 2.2. This would make the σabσ
ab also of order a. To adapt the

proof to this circumstance, one would have to include the contribution of the gravitons themselves
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The future Rindler horizon is defined as the boundary of the past of a point

on I+. Any stress-energy falling across the horizon affects the area of the horizon

to the past, but not to the future. Because the spacetime is asymptotically flat, this

horizon should become stationary at infinite advanced time v, since in this limit all

of the stress-energy is to the past. Therefore the horizon obeys the future boundary

condition

θ|v=+∞ = 0. (2.30)

Using this boundary condition, one may solve for the area of the bifurcation surface

of W (V ) by integrating Eq. (2.29) twice along the v direction and once along each

spacelike dimension of the future horizon. The 1/A part of dθ/dv is removed by

the spatial integration, while the two v integrations remove the derivatives from

d2A/dv2:

A(V ) = A(∞) − 8πG

∫

H; v>V

Tab kakb(v − V )dv d2x (2.31)

= A(∞) − 8πG[K(V ) − Krad], (2.32)

where expectation value signs have been suppressed, and K(V ) = 〈K〉ρ is the boost

energy in the wedge at advanced time V . (It makes no difference whether one

integrates the stress-energy on the perturbed or unperturbed horizons. Because

the integrand is already of order a, the error from integrating on the unperturbed

horizon is of order a2.) This establishes Eq. (2.3), showing that the horizon area is

equal to the boost energy up to an additive constant. Note that because v − V = 0

to the boost energy K.
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on the bifurcation surface, the instantaneous boost energy change dK/dV is entirely

due to changes in the boost Killing vector ξ used to define K, rather than due to

any boost energy falling across the horizon at the bifurcation surface.

One can now apply Eq. (2.26) in order to write A(V ) in terms of the relative

entropy,

〈A(V )〉 = 〈A(∞)〉 + 8πG〈Krad〉 −
8πG

β
[S(ρ | σ) + Sout(ρ) − Sout(σ)]V (2.33)

But the final horizon area A(∞), the null energy radiated to infinity Krad, and the

renormalized entanglement entropy of the vacuum Sout(σ) are all constants with

respect to the advanced time V . Setting β = 2π/~, one finds that

−S(ρ | σ) = Sout + 〈A〉/4~G = Sgen(ρ) + const., (2.34)

Then the monotonicity of the relative entropy implies that the generalized entropy

is nondecreasing.

2.6 Discussion

The above result shows that any QFT minimally coupled to Einstein gravity

obeys the GSL semiclassically for Rindler horizons. The proof assumes that some

suitable renormalization scheme exists which validates the formal relation (2.26)

between the relative entropy, the outside entropy, and the boost energy. This extends

the proof of the GSL to rapidly changing quantum fields.

To summarize the proof: the area is related to the boost energy by means of
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Eq. (2.3):

A = const. − 8πGK. (2.35)

This is related to the fact that in general relativity the horizon area is canonically

conjugate to the Killing time [85]. The generalized entropy can then be written out

in terms of the free boost energy with β = 2π/~:

Sgen = const. − βK + Sout. (2.36)

But the free boost energy is related to the relative entropy

βK − Sout = const. + S(ρ | σ), (2.37)

and since the relative entropy can never increase, the generalized entropy can never

decrease.

I have assumed above that the background spacetime is Minkowski. This

restriction can actually be lifted somewhat, to any spacetime with an infinite 1-

parameter family of nested wedges W (v), such that each wedge has a positive boost

Killing field. Since the commutator of any two boosts is a null translation on the

horizon, these symmetries generate a 2-dimensional Lie group of null translations

and boosts of the future horizon. Choosing coordinates (u, v, xi) on the spacetime

with the property that this group acts in the standard way,

v → av + b, (2.38)

u → u/a, (2.39)
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the most general possible resulting spacetime is the following metric:

ds2 = −f(xi) du dv − g(xi)u2 dv2 + ha(x
i)u dv dxa + qab(x

i) dxa dxb, (2.40)

f > 0, qab = pos. def., g ≥ 0, (2.41)

where the first two constraints are necessary to ensure a Lorentzian signature, and

the third is necessary for the boost Killing vector to be future timelike inside each

wedge W (v). The condition g ≥ 0 automatically also implies that the translation

Killing vector is future-null or future-timelike everywhere. Hence in a stable theory

there should exist a ground state σ of the null- translation symmetry. This implies

that σ is a KMS state with respect to each of the boost Killing vectors [86], and is

translation-invariant. This is all that is needed for the argument in section 2.5, so

the GSL must hold on these spacetimes too.

Metrics of the form Eq. (2.40) include anti-de Sitter space or the product

spacetime of Minkowski with any Riemannian geometry.9 However, neither de Sitter

space nor black hole spacetimes qualify, because neither spacetime has a Killing

vector which points to the future everywhere. This means than except on the

bifurcation surface, there is no analogue of the boost-symmetric thermal Rindler

wedge. Since my proof requires both the initial and final outside regions to be

thermal, it does not apply to such spacetimes.

9Of course, if the spacetimes are not Ricci-flat it is necessary to postulate classical background

matter fields sourcing the Ricci tensor. The proof would then apply to quantum perturbations of

such spacetimes.
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Even in qualifying spacetimes, the result here only shows the GSL for those

slices of the horizon which are bifurcation surfaces. Otherwise there is no boost

symmetry of the exterior region outside of the slice, and hence no thermal state.

But on a fully dynamical horizon there are no approximate bifurcation surfaces, so

if the GSL applies to such horizons there would have to exist a more local version

of the GSL which would apply to arbitrary slices of the horizon. This more local

version of the GSL would imply other important results such as the averaged null

energy condition [87].

Both the horizon restrictions and the slice restrictions might be overcome by

invoking some sort of near-horizon limit, by exploiting the fact that for an arbitrary

horizon slice, there is an approximate boost symmetry very close to the horizon

slice, which guarantees that the fields are approximately thermal very close to the

horizon. Furthermore, there is an approximate null translation symmetry relating

any two nearby slices locally. Assuming that the question of whether or not entropy

increases comes down to what happens very close to the horizon, the GSL could

then be shown for arbitrary horizons. The challenge of such an approach would be

to find a helpful way to take advantage of the near-horizon limit despite the fact that

thermodynamic quantities like Sout are defined globally on the entire exterior region.

Such an approach might follow Ref. [86], in which the thermality of a Schwarzschild

black hole is a consequence of a null translation symmetry of the horizon, despite

the fact that this symmetry does not extend to the rest of the spacetime.
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Another limitation of the present result is the restriction to fields which are

minimally coupled to general relativity. This assumption came into the proof in

two different ways: 1) in the assumption that the horizon entropy is A/4~G, rather

than the Wald entropy defined by differentiating the Lagrangian with respect to the

Riemann tensor [77], and 2) in the assumption that the Rindler wedge is thermal

with respect to the boost energy derived from the gravitational stress-energy tensor

Tab, rather than the canonical boost energy. Classically, the difference between the

canonical and gravitational stress-energies is simply proportional to the contribution

of the matter fields to the Wald entropy [82], so these two errors probably cancel out,

so that the GSL still holds. Since the canonical boost energy includes contributions

from gravity waves, such a proof might also automatically apply to states containing

gravitons. But in order to show this rigorously, it would be necessary to show

that these properties of the Wald entropy hold even when metric perturbations are

quantized.
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Chapter 3

Proving the GSL for Arbitrary Slices of Arbitrary Horizons

3.1 Introduction to Chapter III

This article will describe a set of physical assumptions which are sufficient for

a semiclassical gravitational theory to obey the generalized second law (GSL) of

thermodynamics [4]. From these physical assumptions, a proof of the GSL will be

given for rapidly evolving matter fields and arbitrary horizon slices. This shows that

the GSL holds in differential form, i.e. the entropy is increasing at each spacetime

point on the horizon. As far as I am aware, this is the first time such a general proof

of the GSL has been given.

The generalized second law of thermodynamics (GSL) appears to hold on any

causal horizon, i.e. the boundary of the past of any future infinite worldline [10].

Causal horizons include black hole event horizons, as well as Rindler and de Sitter

horizons. The GSL states that on any horizon, the total entropy of fields outside the

horizon, plus the total entropy of the horizon itself, must increase as time passes.

This total increasing quantity is known as the generalized entropy.

More precisely, for any complete spatial slice Σ intersecting the horizon H , the
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generalized entropy of Σ is given by

SH + Sout. (3.1)

In general relativity, the horizon entropy is proportional to the area:

SH =
〈A〉
4~G

|Σ∩H , (3.2)

where I am using the expectation value of the entropy in accordance with the argu-

ments in section I.1.2.5. The second term is the von Neumann entropy of the matter

fields restricted to the region outside of the horizon:

Sout = −tr(ρ ln ρ)|Σ∩ I−(H) (3.3)

However, this outside entropy term has an ultraviolet divergence at the horizon

due to the entanglement entropy of fields at very short distances. So to define

the generalized entropy, some kind of renormalization scheme must be employed to

subtract off these divergences (cf. section 3.2.7)

Historically, the laws of thermodynamics for matter have provided substan-

tial clues about the microscopic statistical mechanics of atomic systems. It seems

probable that the GSL will provide similar insight into the statistical mechanics of

spacetime itself [39]. Because quantum gravity is currently outside of our exper-

imental range of detection, any help which can be obtained from the GSL would

be very useful. The GSL is especially evocative because of how surprising it is:

it essentially says that an appararently open system (the exterior of the horizon)
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behaves in roughly the way that we would expect a closed thermodynamic system

to behave.

There are several different claims that in order for the GSL to be true, certain

restrictions must hold even semiclassically on e.g. bounds on the entropy and/or

number of particle species proposed by Bekenstein [88], Bousso [89], or Dvali [90],

bounds on the fine structure constant [91], the unbrokenness of the Lorentz group

[41], and/or energy conditions [87]. If true, these claims hint at important restric-

tions on any good theory of quantum gravity. (However, in the author’s opinion,

only the last two of these claims have been clearly established.) One way to test

these proposed requirements is by proving the GSL, and thus seeing explicitly what

assumptions are necessary. Once we know what key assumptions are necessary for

the GSL to hold semiclassically, we will be in a better position to guess background-

free constructions of quantum gravity based on thermodynamic principles.

Until recently, there were satisfactory proofs of the semiclassical GSL only

in the ‘quasi-steady’ case in which the fields falling into the black hole are slowly

changing with time (cf. section I.1.2.1). One such ‘quasi-steady’ argument was the

illuminating but incomplete proof by Sorkin [14] (reviewed in section I.4.2). Sorkin

considered the case of a physical process T (which may involve information loss),

with the property that a thermal state

ρ =
e−βH

Z
(3.4)
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evolves to itself under the process:

T (ρ) = ρ. (3.5)

He then invoked a theorem saying that whenever this happens, the free energy of

any other state σ cannot increase under the same time evolution:

(H − TS)σ ≥ (H − TS)T (σ) (3.6)

The free energy can then be related to the generalized entropy using the so-called

first law of horizon thermodynamics

dE = TdSH (3.7)

(which applies only to slowly changing horizons). Unfortunately, the proof founders

when applied to black holes, because the state outside the black hole could only be

shown to be thermal outside of the bifurcation surface, but a nontrivial application

of the GSL requires time evolution from one slice of the horizon to another slice.

Furthermore the Hartle-Hawking thermal state exists only for nonrotating black

holes, so the proof works even less for Kerr black holes.

The proof in section II side-stepped these problems in the special case of (per-

turbed) Rindler wedges evolving to other Rindler wedges. In this case it was possible

to show that the GSL holds semiclassically even for rapid changes to the horizon,

at every instant of time, using a reasonable assumption about the renormalization

properties of Sout. However, this proof was limited to Rindler horizons sliced by flat
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planes; it was unable to reach de Sitter space, black holes, or even arbitrary slices

of Rindler horizons. The basic problem is that the proof requires not only a boost

symmetry of each wedge (in order to show that the state restricted to the wedge is

thermal), it also needs a null translation symmetry (so that there will be multiple

thermal wedges). But this is more symmetry than is possessed by most spacetimes

with stationary horizons.

In this article I will generalize the proof to (semiclassical perturbations of)

arbitrary slices Σ of the future horizon H . The new ingredient is the technique

of restricting the quantum fields to a null hypersurface. In particular (at least for

free fields) there is an infinite dimensional symmetry group due to the freedom to

reparameterize each horizon generator separately [92]. This symmetry will play an

important role in the proof of the GSL in section 3.2.5.

Restriction to a null surface is helpful for solving a variety of quantum field

theory problems, e.g. deep inelastic scattering in QCD, because of the insight it

gives into the quantum vacuum [93]. The technique was used by Sewell to derive

the Hawking effect in a very illuminating way [94]. More recently, it has also been

used as a simple way to characterize quantum fields on Schwarzschild past horizons

[95] and future horizons [96], certain past cosmological horizons [97], 1+1 Rindler

horizons [98], de Sitter horizons [99] and the conformal boundary of asymptotically

flat spacetimes [100].1

1Some of this work refers to this principle of restricting to a null surface by the name of

“holography”, because the null surface has one less dimension than the rest of the spacetime. But
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The algebra of observables A(H) on the horizon plays an important role in the

proof: it is required to exist and satisfy four axioms described in section 3.2.3. In

the case of free fields and 1+1 conformal field theories, it will be shown that there

exists a horizon algebra satisfying these axioms.

In the case of general interacting quantum field theories, the restriction of the

fields to a null hypersurface is a more delicate matter. Nevertheless, there are reasons

to believe that interacting field theories also satisfy the axioms. At least at the level

of formal perturbation theory, the horizon algebra is completely unaffected by the

addition of certain kinds of interactions, including both nonderivative couplings,

and nonabelian Yang-Mills interactions. However, renormalization effects can lead

to the introduction of additional higher derivative couplings, as well as infinite field

strength renormalization. Because of these issues, it is not completely clear whether

general interacting field theories have a null hypersurface formulation. However,

some handwaving arguments will be made in section 3.5.2 that they do.

The plan of this article is as follows: Section 3.2, will outline the physical

assumptions used to prove the GSL, and show why the GSL follows from them.

Section 3.3 will describe in detail the null hypersurface formulation for a free scalar

field. Section 3.4 will generalize these results to free spinors, photons, and gravitons.

this use of the term is somewhat misleading when compared with the normal usage in quantum

gravity, in which it refers to the ability to determine spacetime data from a codimension 2 surface.

Holography in this latter sense should normally only arise when gravitational effects are taken into

account.

130



Section 3.5 will discuss what happens when interactions are included.

Conventions: The metric signiture will be plus for space and minus for time.

On the horizon, y is a system of D − 2 transverse coordinates which is constant on

each horizon generator, λ is an affine parameter on each horizon generator, and ka

points along each horizon generator and satisfies ka∇aλ = 1. When moving off the

horizon, u will be a null coordinate such that the horizon is located at u = 0, and v

will be a null coordinate which satisfies v = λ on the horizon, such that the metric

on the horizon is

ds2 = −du dv + σijdyidyj. (3.8)

To reduce clutter, I will use the notation vaXa ≡ Xv.

3.2 Argument for the GSL

3.2.1 Outline of Assumptions

In order to prove the GSL, I need to make three basic physical assumptions:

1. Semiclassical Einstein Gravity. The proof will apply to the semiclassical

regime, in which all physical effects can be controlled by an expansion in

~G/λ2, where λ is the characteristic de Broglie wavelength of the matter fields.

This expansion is valid when λ ≫ Lplanck. By holding λ and G fixed, one

can regard this as an expansion in ~. The leading order physics is given

by quantum field theory on a fixed classical spacetime. However, at higher
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orders in ~ there are perturbations to the spacetime metric due to gravitation.

These perturbations affect the horizon entropy SH, and can be calculated by

assuming that the matter fields are minimally coupled to general relativity.

2. The Existence of a Null Hyperspace Formalism. The quantum field

theory which describes matter must have a null hypersurface formulation, i.e.

there must be a nontrivial algebra of operators A(H) corresponding to fields

restricted to the horizon itself.

This algebra must satisfy four axioms: Determinism means that all informa-

tion outside of the horizon can be predicted from the horizon algebra A(H)

together with the algebra A(I−) at future null infinity. Ultralocality means

that that the operators in A(H) are integrals over independent degrees of free-

dom for each horizon generator; one expects these degrees of freedom to be

independent because they are spacelike separated. Local Lorentz Symmetry

means that the degrees of freedom on each horizon generator are symmetric

under translations and boosts. And Stability is the requirement that the fields

on each horizon generator have positive energy with respect to the null trans-

lation symmetry. (These four axioms will be shown for free QFT’s in section

3.3-3.4.)

In the case of a free field φ, this algebra can contain operators that depend on

the pullback of φ to the horizon φ(u = 0), but not on e.g. the derivative moving

away from the horizon ∇uφ(u = 0). For this definition, all four axioms will be
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shown to hold for fields with various spins (sections 3.3-3.4). But in the case

of interacting fields, it is not clear which operator(s) should be regarded as the

fundamental field. In this case it will simply be taken as an assumption that

there exists some algebra A(H) satisfying these properties. Some tentative

arguments for this assumption will be discussed in sections 3.5.

3. A Renormalization Scheme for the Generalized Entropy. Because the

entanglement entropy outside of the horizon diverges, any proof that general-

ized entropy increases must be formal unless this divergence is regulated and

renormalized. Rather than specify a particular renormalization scheme, I will

simply describe what properties the scheme must have. The proof of the GSL

depends on proving that the free boost energy K − TS cannot increase as

time passes. Formally, this quantity can be divided into two parts: the boost

energy K and the entropy S. Although K − TS can be rigorously defined

and is finite, both K and S suffer divergences which must be renormalized. It

is necessary to assume that, when K is written in terms of the renormalized

stress-energy tensor, and S is written in terms of the renormalized entropy, the

expected relationship between these three quantities continues to hold. Since

this property can be rigorously shown for infinite lattice spin systems [83], it

is reasonable to believe that it also holds for quantum field theories.

In the remainder of this section, the consequences of these three assumptions will

be described in more detail.
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3.2.2 Semiclassical Limit

In the strictly classical ~ → 0 limit, the horizon entropy SH = 1/4G~ of the

GSL dominates over the Sout term. For any classical manifold with classical fields

obeying the null energy condition Tkk = 0, the area of any future horizon is required

to be nondecreasing by Hawking’s area increase theorem [21]. Let θ be the expansion

of the horizon, and σab the shear. Then it follows from the convergence property of

the Raychaudhuri equation:

∇kθ = − θ2

D − 2
− σabσ

ab − Rkk. (3.9)

together with the null-null component of the Einstein equation

Rkk = 8πG Tkk, (3.10)

and the absence of any singularities on the horizon itself, that

θ ≥ 0. (3.11)

Furthermore, if any generator of the horizon has nonvanishing null energy or shear

anywhere, the entropy is strictly increasing along that horizon generator prior to

that time. This is the classical area increase theorem.

In the semiclassical approximation, we add certain quantum fields φ to the

classical spacetime, and use their expected stress-energy 〈Tab〉 as a source for an

order ~ perturbation to the metric. In the semiclassical limit one takes ~ to be

small, so that the perturbation to the metric is small compared to the classical
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metric.2

The perturbed metric can be expanded as:

gab = g0
ab + g

1/2
ab + g1

ab + O(~3/2). (3.12)

The zeroth order term is the classical background metric, the half order term is due

to quantized graviton fluctuations, and the first order term is due to the gravitational

field of matter or gravitons. Since the GSL is an inequality, in the limit of ~ → 0,

the truth or falsity of the GSL is determined solely based on the highest order in ~

contribution to the time derivative of the generalized entropy.

This can be used to divide the semiclassical GSL into three cases based on the

classical (~0) part of the metric. Either: 1) the horizon is classically growing, 2) it is

classically stationary, or 3) it is classically growing up to a certain time t, after which

it becomes stationary. In case (1), the zeroth order area increase corresponds to an

O(~−1) increase in the generalized entropy, which dominates over all other effects.

Therefore the GSL holds. In case (2) quantum effects can cause the area to decrease,

and therefore it is an interesting question whether the GSL holds or not. In case

(3), the GSL must be true before time t, so the only question is whether it holds

after t. But the GSL after t makes no reference to anything that occured before

2The semiclassical ~ regime invoked here should be distinguished from the large N semiclassical

regime in which one has a large number of particle species and takes ~ → 0 while holding ~N fixed.

In that kind of semiclassical regime the quantum corrections to the metric can be of the same order

as the classical metric, so that it is not possible to regard it as a small perturbation. Proving the

GSL in the large N regime will be left for another day.
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t. Consequently without loss of generality we need consider only case (2), in which

the horizon is always classically stationary. Any violation of the GSL must come

from quantum effects, corresponding to order ~
0 contributions to the generalized

entropy.3

Since there is no half-order contribution to Tab or σabσ
ab, the half order Ray-

chaudhuri equation says

∇kθ
1/2 = 0. (3.13)

We can now write the first order part of the Raychaudhuri equation as

∇kθ
1 = −σ

1/2
ab σab 1/2 − 8πT 1

kk. (3.14)

The θ2 term is of order O(~2) and is therefore negligible. If one ignores gravitons,

then the shear term σ
1/2
ab σab 1/2 can be neglected. On the other hand, in processes

involving gravitons, the shear term must be included (cf. section 3.4.3). The easiest

way to handle gravitons is to lump the shear squared term in with Tkk as a gravi-

tational analogue of the null energy flux. Below, the stress-energy tensor should be

3This article will not consider contributions to the generalized entropy which are higher order

in ~. In the semiclassical limit, the only way these higher order corrections could violate the GSL

is if the GSL is saturated at order ~
0. This would require the fields on the horizon to be in a special

state for which the time derivative of the generalized entropy is exactly zero at order ~
0. Probably

the only such equilbrium state is the stationary vacuum state |0〉. But in this state, the GSL holds

to all orders in ~, by virtue of time translation symmetry. Thus, the GSL can be expected to hold

to all orders in ~, in the semiclassical regime. A more interesting question is what happens outside

the semiclassical regime, when all orders in ~ can become equally important.
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read as including the shear-squared term, thus:

∇kθ = −8πG Tkk. (3.15)

So when energy falls across the classically stationary horizon, it makes it no longer

stationary at order ~
1.

Let us now calculate the area A of a slice Σ cutting the horizon. A specific

slice Σ may be defined by specifying the affine parameter λ = Λ(y) as a function of

the horizon generator. In order to calculate the effects of Tkk on the area A(Λ) of

the slice, we use the relation between the expansion and the area:

θ = (1/A)(dA/dλ). (3.16)

By integrating Eq. (3.15) once in the y directions and twice in the λ direction, using

the the future horizon boundary condition

θ(+∞) = 0, (3.17)

one obtains:

A(Λ) = A(+∞) − 8πG

∫ ∞

Λ

Tkk (λ − Λ) dλ dD−2y. (3.18)

(In deriving this equation, the 1/A part of dθ/dv is removed by the spatial integra-

tion, while the two v integrations remove the derivatives from d2A/dv2.) So up to

an additive constant, the boost energy K is proportional to the area:

A(Λ) = C − 8πG K(Λ). (3.19)
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The constant C can be dropped for purposes of the GSL, which is only concerned

with area differences.

In the special case where Σ is the bifurcation surface of the unperturbed hori-

zon, Eq. (3.18) is the ‘physical processes’ version of the first law of black hole

thermodyanmics [17], while Eq. (3.19) indicates that the horizon area is canonically

conjugate to the Killing time [85]. But to show the GSL, it is important that these

formulae hold even when Σ is not the bifurcation surface.

3.2.3 Properties of the Horizon Algebra

As stated above, we are assuming that our matter quantum field theory has a

valid null-hypersurface initial- value formalism. That means that there must be a

field algebra A(H) which can be defined on the horizon H without making reference

to anything outside of H . More precisely, all properties of the algebra must be

defined using no more than 1) some set of quantum field operators φ evaluated

on H , 2) the pullback of the metric to H , and 3) an affine parameter λ on each

horizon generator (which actually depends on a Christoffel symbol Γv
vv = guv,v in

null coordinates).4

Assuming that an algebra can be so defined, one expects it to obey the four

axioms: Determinism, Ultralocality, Local Lorentz Symmetry, and Stability. These

4In the case of free fields, λ can actually be reparameterized by special conformal transforma-

tions, not just affine transformations (cf. section 3.3.7. However, this additional symmetry is not

required to prove the GSL.
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axioms will be shown in sections 3.3-3.4 for free fields, but plausibly follow even for

interacting fields, assuming that a null hypersurface restriction makes sense at all

for such fields.

The axiom of Determinism says that A(H) gives a complete specification of

all information falling across the horizon, so that together with the information

in A(I+) at null infinity, one can determine all the information outside the event

horizon. Consequently, any symmetries of the horizon H will correspond to hidden

symmetries of the theory on the bulk. Thus by working out the symmetry group of

A(H), hidden properties of the bulk dynamics will become manifest.

The axiom of Ultralocality says that no information propagates from horizon

generator to horizon generator (technically, any operators supported on disjoint sets

of horizon generators must commute.) This is to be expected given microcausality,

the property that quantum fields commute at spacelike separations. Ultralocality

implies that different horizon generators can be treated as independent systems. It

also means that the remaining two axioms, Lorentz Symmetry and Stability, can be

applied to each horizon generator separately.

Local Lorentz Symmetry means that the algebra A(H) is invariant under an

infinite dimensional group of symmetries corresponding to affine transformations of

each horizon generator:

λ → a(y)λ + b(y), (3.20)

a and b being functions of y. This is quite a bit more symmetry than can be possessed
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by the spacetime in which H is embedded. These secret symmetries of H , together

with the other assumptions, will turn out to imply the GSL. (One expects these

symmetries to exist so long as the field variables φ inside A(H) can be constructed

in a way which is independent of any degrees of freedom other than the null surface

metric and affine parameter.)

In order to implement these symmetries, we need not only the field f but also

certain integrals of the Tkk component of the stress-energy tensor. This component

of the stress-energy tensor represents the flux of null energy across the horizon.

Since the null energy is the generator of null diffeomorphisms, Tkk can be integrated

to obtain the generator of affine reparameterizations.

The generator of a null translation λ → λ + a(y) is given by

pk(a) ≡
∫

Tkk dλ a(y) dD−2y. (3.21)

(Here and below, the area element of the horizon will be considered to be implicit

in the integration measure dD−2y.) Stability says that so long as a(y) > 0, pk ≥ 0.

In other words, the generator of null translations must be nonngegative. By taking

the limit in which the amount of translation is a delta function (a(y) → δD−2(y)),

one finds that Stability is equivalent to the average null energy condition (ANEC)

[101], as evaluated on horizon generators;

pk(y) ≡
∫ +∞

−∞

Tkk dλ. (3.22)

The ANEC is a manifestation of the positivity of energies in a quantum field theory.5

5The ANEC can be derived from the stability of the quantum field theory by the following
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It is possible to show that the ANEC holds on the null generators of a stationary

horizon by invoking the GSL [87]. Here we go in the converse direction, using the

ANEC to help prove the GSL.

Given any a(y) > 0, it is possible to define the vacuum state |0〉 on the horizon

as being the ground state with respect to the null energy pk(a) [94]. However,

in an ultralocal theory, there can be no interaction between the different horizon

generators. Therefore the state factorizes: it is a ground state with respect to each

pk(y) separately. This means that each possible choice of a(y) > 0 defines the same

vacuum state.

We can also perform a rescaling λ → b(y)λ. This symmetry is generated by

K(y) ≡
∫

Tkk λ dλ b(y) dD−2y. (3.23)

For any particular spatial slice of the horizon located at λ = Λ(y), one can define a

canonical ‘boost energy’ K of the horizon in the region λ > Λ(y):

K(Λ) ≡
∫ ∞

Λ

Tkk (λ − Λ) dλ dD−2y. (3.24)

argument: any stationary horizon H can be embedded in a spacetime M1,1 ⊗ (Σ ∩ H), where

the first factor is 1+1 dimensional Minkowski space, and the second is some D − 2 dimensional

Riemannian manifold. Now suppose that the quantum fields have their energy bounded below,

relative to time translation on M1,1. By Lorentz symmetry and continuity, the null energy on

M1,1 must also be bounded below. All null energy must eventually cross the horizon H , hence

the null energy on H is bounded below. But by Ultralocality this is only possible if each horizon

generator is separately stable.
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The definition of K depends on the slice Λ(y) in two different ways: not only does

the lower limit of integration change, but the horizon Killing vector λ − Λ which

preserves the slice Λ also changes.

In any quantum field theory in Minkowski space (interacting or not), the

Bisongano-Wichmann theorem [80] says that stability of the ground state, together

with Lorentz symmetry, implies that when the vacuum state is restricted to a Rindler

wedge, it is thermal with respect to the boost energy (cf. section II.4). By an

analogue of this theorem proven by Sewell [94], when the vacuum |0〉 is restricted

to the region λ > Λ, it is a KMS state (i.e. is thermal) with respect to the boost

generated by K(Λ), with a temperature T = ~/2π. This is just the Unruh/Hawking

effect as viewed on the horizon itself.

In Sewell’s construction, |0〉 is simply the Hartle-Hawking state associated with

the fields on the horizon H itself. This means that if the bulk spacetime possesses

a Hartle-Hawking state, it will restrict to |0〉 on H . However, even in spacetimes

which do not possess a Hartle-Hawking state (such as the Kerr black hole), the state

|0〉 is still well-defined. This fills a lacuna in certain previous proofs of the GSL,

which did not apply to such horizons (cf. section I.1.4.2-3).

3.2.4 The Relative Entropy

In order to prove that the generalized entropy increases, I need to use a mono-

tonicity property of an information-theoretical quantity known as the “relative en-
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tropy”. The relationship between the relative and generalized entropies was made

explicit in Casini [78], and was used in section II to prove the GSL for the special

case of Rindler wedges.

For a finite dimensional system, the relative entropy of two states ρ and σ is

defined as

S(ρ | σ) = tr(ρ ln ρ) − tr(ρ ln σ). (3.25)

For a QFT system with infinitely many degrees of freedom, it may be defined as the

limit of this expression as the number of degrees of freedom go to infinity [62].6 The

relative entropy lies in the range [0, +∞]. In some sense it measures how far apart

the two states ρ and σ are, but it is asymmetric: S(ρ | σ) is not in general the same

as S(σ | ρ).

Examples When the two states are the same the relative entropy vanishes:

S(ρ | ρ) = 0. (3.26)

When σ = Ψ is a pure state and ρ 6= Ψ, the relative entropy is infinite:

S(ρ |Ψ) = +∞. (3.27)

Normally, one wants to use a faithful state for σ (i.e. one without probability zeros)

so that S(ρ | σ) is finite on a dense subspace of the possible choices for ρ.

6The von Neumann algebra of a bounded region in a QFT is a hyperfinite type III algebra [79].

Hyperfinite means that one can approximate it by a series of finite dimensional algebras; hence

the limit. Because of the monotonicity property, it does not matter how the limit is taken.
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When σ is the maximally mixed state in an N state system, the relative entropy

is just the entropy difference:

S(ρ | 1/N) = lnN − Sρ. (3.28)

Finally, when σ is a KMS (i.e. thermal) state with respect to evolution with re-

spect to some ‘time’ t, the relative entropy S(ρ | σ) is the difference of free energy

with respect to the corresponding conjugate ‘energy’ parameter E, divided by the

temperature:

S(ρ | σ) = [(Eρ − TσSρ) − (Eσ − TσSσ)]/Tσ, (3.29)

where Tσ is the temperature of the KMS state σ.7

Despite the fact that the entanglement entropy of a system is divergent and

needs to be renormalized, the relative entropy does not need to be renormalized; it

is finite for physically realistic choices of ρ and σ. That is because the divergences

associated with the two terms in Eq. (3.25) cancel each other out.

7In fact, every faithful state can be thought of as thermal with respect to some choice of

evolution parameter ‘t’ [102]. The evolution with respect to such a t is called the “modular flow”.

Strictly speaking, a thermal KMS state is defined with respect to a notion of time, not a notion of

energy. In systems with infinitely many degrees of freedom, a thermal state cannot necessarily be

written in the form eβH/tr(eβH) with respect to a well defined Hamiltonian operator H . Another

way of putting this is that H suffers divergences which must be renormalized. The assumption

that an appropriate renormalization scheme exists is essentially just the assumption the one can

“get away with” pretending that the boost Hamiltonian exists.
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Monotonicity However, the most important property of the relative entropy is that

it monotonically decreases under restriction. Given any two mixed states ρ and σ

defined for a system with algebra M , if we restrict to a smaller system described by

a subalgebra of observables M ′, the relative entropy cannot increase [58]:

S(ρ | σ)M ≥ S(ρ | σ)M ′. (3.30)

Intutitively, since the relative entropy measures how different ρ is from σ, if there

are less observables which can be used to distinguish the two states, the relative

entropy should be smaller.

3.2.5 Proving the GSL on the Horizon

The monotonicity property looks very similar to the GSL. And in fact, with

the right choice of ρ and σ it is the GSL.

It was observed in section 3.2.3 that there is a vacuum state |0〉 defined on

H , which is a KMS state with respect to K(Λ), no matter what Λ slice is chosen.

Therefore, under horizon evolution a thermal state restricts to another thermal

state. Of course, the GSL holds trivially for this vacuum state |0〉 because of null

translation symmetry—the goal is to prove it for some other arbitrary mixed state

of the horizon. Let ρ(H) be the state of the horizon algebra A(H) which we wish

to prove the GSL for, and let σ = |0〉〈0| be the vacuum state with respect to null

translations.

Since σ is a KMS state when restricted to the region above any slice, the
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relative entropy S(ρ | σ) is a free energy difference of the form Eq. (3.29), where

E is the boost energy K(Λ) of the region λ > Λ, S is the entropy of λ > Λ, and

T = ~/2π is the Unruh temperature.

Furthermore by virtue of null translation symmetry, (K − TS)σ is just a con-

stant. So the monotonicity of relative entropy theorefore tells us that as we evolve

from a slice Λ to a later slice Λ′,

2π

~
K(Λ) − S(Λ) ≥ 2π

~
K(Λ′) − S(Λ′), (3.31)

Using Eq. (3.19), this implies that the GSL holds on the horizon for the state ρ(H):

A

4~G
(Λ′) + S(Λ′) ≥ A

4~G
(Λ) + S(Λ). (3.32)

3.2.6 The Region Outside the Horizon

This does not yet amount to a complete proof of the GSL, because the GSL

refers to the entropy Sout on a spacelike surface Σ outside of H , not just to the

entropy which falls across H . Depending on how H is embedded in the spacetime,

it cannot necessarily be assumed that all of the information on Σ will fall across the

horizon. Some of it may escape.

Suppose we have an arbitrary quantum state ρ defined on the region of space-

time R exterior to some stationary horizon H . All of the information in R should

either fall across the horizon H or else escape to future infinity I+. (This assumes

that any singularities are hidden behind H—otherwise the information falling into
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these will need to be included as well.) H and I+ should factorize into independent

Hilbert spaces, but ρ may be some entangled state on H ∪ I+.

We can now generalize the proof above by choosing a reference state σ that

factors into the vacuum state on H times some other state:

σ(H ∪ I+) = |0〉〈0|(H)⊗ σ(I+). (3.33)

The second factor σ(I+) can be chosen to be any faithful state (so long as the

relative entropy S(ρ | σ) is finite). After slicing the horizon at Λ(y), the relative

entropy is then once again a free energy with respect to some modular energy E:

S(ρ | σ) = (E − S)ρ − (E − S)σ, (3.34)

where because σ is a product state, the modular energy E is a sum of terms for the

horizon system Hλ>Λ and I+:

E(Hλ>Λ ∪ I+) =
2π

~
K(Λ) + E(I+), (3.35)

with E(I+) being the modular energy conjugate to the modular flow of σ(I+). The

addition of the new modular energy term E(I+ makes no difference to ∆E, the

change in the relative entropy with time, because E(I+)ρ is not a function of the

horizon slice Λ. Consequently one can still use Eq. (3.19) to show that

∆E =
2π

~
∆K = − ∆A

4~G
. (3.36)

On the other hand, S is now interpeted as the total entropy of ρ on on the combined

system Hλ>Λ ∪ I+. Because of unitarity, the entropy S(Σ) of any slice Σ that
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intersects the horizon at Λ must be the same as the entropy S(Hλ>Λ ∪ I+). In other

words, S = Sout, for any state ρ. (Note that ρ, unlike σ, may have entanglement

between H and I+.) Thus, the monotonicity property of S(ρ | σ) is equivalent to

the GSL.

3.2.7 Renormalization

It should be noted that in every QFT, K and S are both subject to divergences.

The relative entropy packages all of these divergent quantities together in a way

that can be rigorously defined for arbitrary algebras of observables [62]. However,

in order to apply the Raychaudhuri equation (as needed to obtain Eq. (3.19)) it is

necessary to unpackage the relative entropy into separate K and S terms, each of

which needs to be renormalized separately. Because of the connection between the

relative entropy and the free energy for finite dimensional subsytems, one expects

that after defining K in terms of the renormalized stress-energy tensor T̃kk, and the

entropy in terms of some renormalized entropy S̃, that Eq. (3.29) still holds:

S(ρ | σ) = [(K̃ − T S̃)ρ − (K̃ − T S̃)σ]/T. (3.37)

This is especially plausible given that the only quantities that enter into Eq. (3.29)

are energy and entropy differences.

As in my previous proof for Rindler horizons (cf. section II.4), I will assume

that this equation is in fact true in an appropriate renormalization scheme. There

is a theorem to this effect for quantum spin systems on an infinite lattice [83], and
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it seems likely that any QFT can be approximated arbitrarily well by such a lattice.

If one wishes to interpret the GSL as a statement about a regulated entan-

glement entropy on a spacelike surface, then it is also necessary for the regulator

scheme defining S̃ on the null surface H ∪ I− to give the same answer as the regu-

lator scheme defining S̃out on a spacelike surface Σ. This is a plausible assumption

since there exist choices of Σ which are arbitrarily close to H . But it is not entirely

trivial, because the way that the entropy divergence is localized on a null surface is

different from the way it is localized on a spacelike surface.

In the case of a spacelike surface the entropy can be regulated by cutting off all

entropy closer than a certain distance x0 to the boundary. As x0 → 0, the divergence

with respect to that cutoff then scales like x2−D
0 on dimensional grounds.

This method cannot work on H because there is no invariant notion of distance

along the horizon generators. By dimensional analysis, this means that the entropy

must be logarithmically divergent along the null direction. Therefore, there is an

infrared divergence as well as an ultraviolet divergence.

Even if one cuts off the entropy at an affine distance λU in the ultraviolet

and λI in the infrared, the entanglement entropy is still infinite due to the infinite

number of horizon generators. One must in addition regulate by e.g. discretizing the

space of horizon generators to a finite number N . One then finds that the entropy

divergence of the vacuum state scales like

Sdiv ∝ N(ln λI − ln λU). (3.38)
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(Cf. section 3.3.7 for a justification of this statement.) The renormalized entropy S̃

can then found by subtracting the entropy of the vacuum state:

S̃(ρ) = S(ρ) − S(σ). (3.39)

It is reasonable to hope that this renormalized entropy is the same as the

renormalized entropy defined on a spatial slice. Formally, one can simply take the

limit of the entropy difference as a spatial slice Σ slants closer and closer to H .

However, the renormalization of the generalized entropy is itself a limiting process,

so there are issues involving orders of limits. The analysis of section 3.2.6 implicitly

assumes that everything works out.

Another consequence of renormalization is to add higher curvature contribu-

tions to the Lagrangian (cf. section 3.5.3) [33]. For example, for free fields in 4

dimensional spacetime, the coefficients of the curvature squared terms in the La-

grangian are logarithmically divergent. This would invalidate the assumption that

the matter is minimally coupled to general relativity. Fortunately, this effect can

be neglected here, because the effects of these higher order terms on the generalized

entropy are of higher order in ~.

3.3 Quantizing a Free Scalar on the Horizon

The proof of the GSL in section 3.2 was incomplete: it depended on four

axioms describing the properties of quantum fields on the null surface. The purpose

of this section is to explicitly show how these axioms are satisfied in the simplest
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case: a free scalar field. This completes the proof in section 3.2 of the semiclassical

GSL.

Since the reader may not be familiar with the technical issues regarding null

quantization, this section will demonstrate null surface quantization for a free, mini-

mally coupled scalar field Φ with mass m2 ≥ 0 in D > 2 dimensions. This is a quick

way to construct the algebra of observables A(H). It will be shown that this algebra

is nontrivial, and obeys the four axioms required to prove the GSL: Determinism,

Ultralocality, Local Lorentz Symmetry, and Stability.

It will also be shown that the horizon algebra can be approximated by the left-

moving modes in a large number of 1+1 dimensional conformal field theories. This

allows one to understand, using the conformal anomaly, why the horizon algebra is

not symmetric under arbitrary reparameterizations of λ, but only special conformal

transformations.

The discussion of null quantization will be confined mostly to those issues

which are of interest in determining the symmetry properties of the horizon. For

a more detailed review of null quantization, including a fuller treatment of the

technically difficult “zero modes”, consult Burkardt [93].

3.3.1 Stress-Energy Tensor

The Lagrangian of the Klein-Gordon field is

L = Φ(∇2 − m2)Φ/2. (3.40)
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The classical stress-energy tensor on the horizon H can be derived by varying with

respect to the gkk component of the metric:

Tkk = (∇kΦ)2/2. (3.41)

This is positive except when Φ is constant, and depends only on the pullback of Φ

to H . The total null energy on the horizon can be found by inserting Eq. (3.41)

into Eq. (3.21):8

pk =

∫

(∇kΦ)2

2
dλdD−2y. (3.42)

The positivity of this quantity indicates that A(H) satisfies Stability. Classically

this positivity is obvious. Quantum mechanically, this expression is divergent. After

subtracting off this divergence, one finds that Tkk is actually unbounded below.

Nevertheless, the integral of Tkk is bounded below by a vacuum state. This will

become obvious after a Fock space quantization is performed in section 3.3.6

3.3.2 Equation of Motion and Zero Modes

For the purposes of specifying initial data, λ acts more like a space dimension

than a time dimension, in the sense that the value of Φ at one value of λ is (almost)

indpendent of the value of Φ at other values of λ. However, there are some ‘zero

mode’ constraints on the field which must be treated carefully. There are also some

8This formula would have to be modified if the scalar field had a nonminimal coupling term

Φ2R.
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convergence properties required if the total flux of momentum across the null surface

is to be finite.

The Klein-Gordon equation of motion is

(∇2 − m2)Φ = 0. (3.43)

This equation can be written in terms of horizon coordinates as

∇uΦ = ∇−1
v (∇2

y − m2)Φ. (3.44)

This equation almost permits us to arbitrarily specify Φ(y, λ) as ‘initial data’ on

H . The only constraint is that ∇uΦ must be finite. This requires that the operator

∇v be invertible, which places constraints on the ‘zero modes’ of Φ(λ). If one

decomposes Φ into its Fourier modes, the only one which does not invert properly is

the one with zero wave number. In order for ∇uΦ to be well defined, it is necessary

to require that
∫ +∞

−∞

Φ dλ = finite. (3.45)

An exception for this arises when m = 0, for solutions which are also zero modes in

the y direction (i.e. they lie in the kernel of ∇2
y). In this case, Eq. (3.44) becomes

undefined rather than infinite. Thus one can add a mode defined by

∫ +∞

−∞

Φ dλ = C, (3.46)

for some C which is constant over the whole (connected component of) H .

In addition to the zero mode constraints, it is natural to require that the flux

of stress-energy across the horizon be finite. In order for the null momentum to be
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finite, one needs the integral of Tkk to converge:

∫ +∞

−∞

(∇kΦ)2 dλ = finite. (3.47)

One can also demand that the other components of momentum have finite flux over

the horizon. This leads to an additional constraint:

∫ +∞

−∞

m2Φ2 dλ = finite, (3.48)

which is a nontrivial constraint only for a massive field. This permits massless fields

to have soliton-like solutions in which the asymptotic behavior of Φ at λ = +∞ may

differ from the behavior at λ = −∞.

None of the zero mode constraints are physically important when proving the

GSL. That is because they relate to infrared issues on the horizon—to modes which

are very long wavelength with respect to λ. In other words, they relate to the

behavior of the fields at λ → ±∞. But the GSL has to do with the relationship

between two horizon slices at finite values of λ. Any information which can only be

measured at λ = −∞ is totally irrelevant because it does not appear above either

horizon slice. On the other hand, information stored at λ = +∞ can without loss

of generality be equally well regarded as present in the asymptotic region I+ which

‘meets’ the horizon at λ = +∞.

Consequently the zero modes can simply be ignored. This is a relief because

zero mode issues tend to be one of the trickier aspects of quantum field theory on a

null surface [93]. Since the mass m only matters for calculating the zero mode and

finite energy constraints, it will not be of significance for anything that follows.
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3.3.3 Smearing the Field

Now Φ(x) is not a bona fide operator, because the value of a field at a single

point undergoes infinite fluctuations and therefore does not have well-defined eigen-

values (even though its expectation value 〈Φ(x)〉 is well-defined for a dense set of

states). In order to get an operator, we need to smear the field in some n of the D

dimensions with a smooth quasi-localized test function f :

Φ(f) =

∫

fΦ dnx (3.49)

Because free fields are Gaussian, a finite width probability spectrum is sufficient to

show that the operator is well-behaved. So to check that Φ(f) has finite fluctua-

tions, one can look to see whether its mean square 〈Φ(f)2〉 is well-defined in the

vacuum state. Since spacetime is locally Minkowskian everywhere, the leading-order

divergence can be calculated in momentum space using the Fourier transform of the

smearing function f̃ . Because f(x) is smooth, f̃ falls off faster than any polynomial

at large p values in all dimensions in which it is smeared, while it is constant in all the

other dimensions. Up to error terms associated with m2 and the curvature (whose

degree of divergence must be less by 2 powers of the momentum), the fluctuations

in Φ are thus given by:

〈Φ(f)2〉 ∝
∫

dDp δp2H(p0)f̃
2(p) =

∫

E=|p|

dD−1p

2E
f̃ 2(E, p), (3.50)

where H is the Heavyside step function. This means that in order to damp out

the divergences coming from large p values, it is sufficient to smear either in all the

155



space directions or in the time dimension. But neither of these is convenient for a

null quantization procedure. Instead one wants to be able to smear the integral in a

null plane. To do this we rewrite Eq. (3.50) in a null coordinate system (pu, pv, py)

where y represents all transverse directions. The mass shell condition is

pv =
p2

y + m2

pu

, (3.51)

and the integral over the lightcone (again neglecting mass and curvature) is

〈Φ(f)2〉 ∝
∫

pupv=p2
y

dD−2py H(pu)
dpu

pu

f̃ 2(pv, py), (3.52)

where f is smeared in the v and y dimensions but not in the u dimension. The

integral is dominated by momenta that point purely in the v direction. Since the

integration measure falls off like 1/v, the result is a log divergence. Therefore Φ

does not make sense as an operator when restricted to a horizon.

However, ∇kΦ does make sense as an operator, since its mean square has two

extra powers of the null momentum pv (one for each derivative):

〈[∇kΦ(f)]2〉 ∝
∫

pupv=p2
y

dD−2py H(pu)
dpu

pu
p2

vf̃
2(pv, py). (3.53)

By substituting in Eq. (3.51), this integral becomes

∫

pupv=p2
y

dD−2py H(pu)
dpu p4

y

p3
u

f̃ 2(pu, py) (3.54)

which is convergent. (This may seem surprising, because taking derivatives normally

makes fields more divergent, not less. The extra factors of pv do make the integral
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more divergent in the v direction, but that direction is already very convergent

because of the rapid falloff of f̃ .)

Since ∇kΦ(f) is a genuine operator, it generates an algebra A(H) on the

horizon.

3.3.4 Determinism

Specifying Φ on H is almost enough to determine the value of Φ outside the

horizon as well, by using Eq. (3.44) as a time evolution equation in the u direction.

Since Eq. (3.44) is first-order in ∇u it is not necessary to specify the velocities of

the field, only their positions. The reason it does not quite work is that ∇−1
v is a

nonlocal operator, making other boundary conditions potentially relevant.

Whether or not Φ can actually be determined is therefore a global issue de-

pending on the causal structure of the whole spacetime. In the case of a de Sitter

horizon, Φ is determined by the value on H since it is almost a complete Cauchy

surface once one adds a single point a conformal timelike infinity (the value of a free

field must exponentially die away when approaching this conformal timelike point,

so the addition of this point doesn’t change anything). In the case of a Rindler

horizon in Minkowski space the field is generically determined, since the only modes

which are not determined are massless modes propagating in the exact same direc-

tion as the horizon. But for a black hole horizon, the field Φ is notdetermined, since

fields can also leave to future timelike or null infinity (I+).
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Let Σ be a complete Cauchy surface of the exterior of H , which includes both

H itself, and the asymptotic future I+ outside of H . H and I+ can be connected

only at λ = +∞. However, any zero mode information measurable at λ = +∞ can

be assigned to the system I+. In order to remove this redundant information from

H , one can write the field at one time as the boundary term in an integral:

Φ(λ) = Φ(+∞) −
∫ +∞

λ

∇kΦ dλ′, (3.55)

showing that classically, all the information in Φ(λ) not measurable at λ = +∞ is

stored in the derivative ∇kΦ. And this derivative, as shown in section 3.3.3, is a

well defined operator after smearing with a test function.

Thus the algebra of the whole spacetime can therefore be factorized into

A(H) ⊗A(I+), ignoring any degrees of freedom in the zero modes.

This means that there also exist states that factorize:

Ψ(Σ) = Ψ[Φ(H)] ⊗ Ψ[Φ(I+)] (3.56)

The existence of these factor states is needed for the validity of the proof of the GSL

in section 3.2.6. If there are any operators in the algbera which depend on the zero

modes of Φ, these may be considered part of the algebra of I+.

158



3.3.5 Commutation Relations

Ordinarily we are used to quantizing a scalar field on using the equal-time

canonical commutation relation:

[Φ(x1), Φ̇(x2)] = i~δD−1(x1 − x2). (3.57)

On a curved spacetime this relation can be covariantly adapted to any spacelike

slice Σ by using the determinant of the spatial metric q and Σ’s future orthonormal

vector na:

[Φ(x1), ∇nΦ(x2)] = i~
√

q δD−1(x1 − x2), (3.58)

In order to obtain the commutation relations on a null surface, one can take the limit

of an infinitely boosted spacelike surface. Measured in any fixed coordinate system,

each side of Eq. (3.58) diverges like 1/
√

1 − v2 due to the Lorentz transformation

of na or
√

q. By dividing out the common divergent factor as one takes the limit,

one ends up with

[Φ(y1, λ1), ∇kΦ(y2, λ2)] = i~δD−2(y1 − y2)δ(λ1 − λ2), (3.59)

where the horizon’s area element has been absorbed into the definition of the delta

function δD−2(y1 − y2).

By integrating Eq. (3.59) in the λ1 direction, one can find the commutator of

Φ with itself in terms of the Heavyside step function H :

[Φ(y1, λ1), Φ(y2, λ2)] = i~δD−2(y1 − y2)[H(λ1 − λ2) − H(λ2 − λ1)]/2, (3.60)
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where because the constant of integration only affects the zero modes, I have chosen

it so that the commutator is antisymmetric.9

Notice how even though the null surface acts like an initial data slice, there are

nontrivial commutation relations of Φ on the horizon. Since neither the commutation

relations nor the generator of local null translations Tkk carry any derivatives in the

space directions, the horizon theory is ultralocal—i.e. the horizon theory is just the

integral over a bunch of independent degrees of freedom for each horizon generator.

3.3.6 Fock Space Quantization

In order to perform Fock quantization, the fields will be analyzed in terms of

modes Φ̃ with definite null-frequency ω:

Φ̃(y, ω) =
e−iωλ

√
2π

Φ(y, λ) dλ, (3.61)

taking ω 6= 0 in order to ignore the zero modes.10 By Ultralocality, it is not necessary

to leave the position space basis in the y directions.

9One should not attempt to use Eq. (3.60) in situations where zero modes are important,

because then the constant of integration is undefined. This happens because the commutator of

the full spacetime theory is ill-defined for null separations. The reason Eq. (3.60) can be used for

the horizon theory is because all horizon observables will ultimately be expressed in terms of ∇kΦ.
10It is interesting to analyze the three kinds of zero modes in the momentum space picture. In

order for the null energy (3.42) to be finite, ωΦ̃ has to be square-normalizable. Near ω = 0, Φ̃ can

look like

Φ̃(y, ω) = c1δ(0) +
c2

ω
+ c3(y) + O(ω), (3.62)
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The commutation relations of the field in this basis can be calculated by taking

the Fourier transform of Eq. (3.60):

[Φ̃(y1, ω1), Φ̃(y2, ω2)] = 4~
δ(ω1 + ω2)

ω2 − ω1
δD−2y (3.64)

One can use this to define creation and annihilation operator densities

a†(y, ω) = Φ̃(y, ω)

√

ω

2~
, a(y, ω) = Φ̃(y, −ω)

√

ω

2~
, (3.65)

which create and destroy particles of any frequency ω > 0, and satisfy the commu-

tation relations

[a(y, ω), a†(y, ω)] = −δ(ω1 − ω2)δ
D−2(y1 − y2). (3.66)

The single particle Hilbert Space corresponds to normalizable wavefunctions in the

space Ψ(y, ω) (ω > 0) of creation operators. By taking the Fock space, one con-

structs the full Hilbert space of the scalar field on the horizon.

The (renormalized) null energy of the state can be calculated by rewriting Eq.

where the first term represents a constant Φ on the horizon, the second term represents the solitonic

zero mode, and the third term represents the integral of Φ zero modes. As stated in Eq. (3.45),

one can eliminate the zero modes by imposing the constraint

Φ̃(y, 0) = finite, (3.63)

forcing c1 = c2 = 0. One should not go further by imposing the constraint c3 = 0 since 〈Φ̃(y, 0)〉

can be defined within the horizon algebra using the limit as ω → 0. Also, such a constraint would

not be invariant under special conformal transformations, discussed in section 3.3.7).
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(3.42) in terms of the normal-ordered creation and annihilation operators:

pk =

∫ ∇kΦ∇kΦ
∗

2
dλ dD−2y =

∫

~ω a†a dω dD−2y =
∑

n

~ωn, (3.67)

where ωn is the frequency of the nth particle. Thus the particles satisfy the Planck

quantization formula.

The resulting picture of the scalar field on the horizon is surprisingly simple: it

is simply a superposition of a bunch of particles localized at distinct positions on the

horizon, each with some positive amount of null energy ~ω. In contrast to the usual

quantization on a spacelike surface, each particle can be arbitrarily well-localized

near any horizon generator. The particles cannot however be localized with respect

to the λ coordinate on the horizon generator. No two particles can reside on exactly

the same horizon generator, because that would not be a normalizable vector in the

Fock space.

There is an enormous amount of symmetry of the scalar field on the horizon.

The only geometrical structures used in the quantization are the affine parameters

of each horizon generator (up to rescaling), and the area-element (coming in via

the dD−2y) integration), which comes in through the commutation relation (3.59).

Therefore the Fock space is invariant under 1) arbitrary translations and dilations

of the affine parameter of each horizon generator independently, 2) area-preserving

diffeomorphisms acting on the space of horizon generators, and even 3) any non-

area-preserving diffeomorphism that sends dD−2y → Ω(y)2dD−2y so long as one also

sends Φ → Ω(y)−1Φ. This is so much symmetry that the only invariant quantity is
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the total number n of particles; every n-particle subspace of the Hilbert space is a

single irreducible representation of the group of symmetries.11

3.3.7 Conformal Symmetry

Even this does not exhaust the symmetries of the scalar field on the horizon

(minus zero modes); one is actually free to perform any special conformal trasfor-

mation of each λ(y), i.e. any combination of a translation, dilation, and inversion

λ → 1/λ. It is easiest to see this if the quantization is done in a slightly different

way: by discretizing the horizon into a finite number of horizon generators. Let there

be N discrete horizon generators spread evenly throughout the horizon area A, and

let the field Φ(n, λ) be defined only on this discretized space. The commutator is

[Φ(m, λ1), ∇kΦ(n, λ2)] = i~
A

N
δmnδ(λ1 − λ2), (3.68)

and the null energy is

pk =
N

∑

n=1

A

N

∫

(∇kΦn)2

2
dλ. (3.69)

11To see that this is the case, note that every n-particle state can be written as a superpostion

of states in which each of the n identical particles is localized in a delta function on n different

horizon generators. All such states are equivalent to one another by the symmetry transformations,

so pick one of them, Ψ. If the n-particle representation were reducible, there would have to exist a

projection operator which is invariant under all the symmetry and acts nontrivially on this state

by turning it into a linearly independent state Ψ′. But by virtue of the symmetry, Ψ′ must be

zero except on the n horizon generators initially chosen, and therefore linearly dependent on Ψ.

Consequently the projection operator does not exist and the representation is irreducible.
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These expressions converge to Eq. (3.59) and (3.42) respectively as N → ∞. Since

the theory is ultralocal there are no divergences associated with the transverse di-

rections, so the limit should exist. Every continuum horizon state can be described

as the N → ∞ limit of a sequence of states in the discretized model. However, not

every smooth seeming limit of states in the discretized model corresponds to a state

in the continuum model; for example, one could take a limit of states in which one

horizon generator has two particles on it and the rest are empty.

The discretized model is nothing other than a collection of N different con-

formal field theories each of which is the left-moving sector of one massless scalar

field in 1+1 dimensions. The entanglement entropy divergence is therefore just the

same as in a CFT with N scalar fields, which has central charge c = N [103]:

Sdiv =
c

12
ln

(

λI

λU

)

(3.70)

where λI is the affine distance of the infrared cutoff from the boundary, and λU is

the affine distance of the ultraviolet cutoff. This justifies Eq. (3.38) mentioned in

section 3.2.7 on renormalization.

In any CFT, the vacuum state |0〉 is invariant under all special conformal

transformations. But the N → ∞ limit of |0〉 is just the vacuum of the contin-

uum theory, so the continuum vacuum is also invariant under the group of special

conformal transformations SO(2, 1).

A 1 + 1 dimensional CFT is also invariant under general conformal transfor-

mations, i.e. arbitrary reparameterizations of a null coordinate v → f(v). However,
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the vacuum state is not invariant under general conformal transformations. This is

a consequence of the anomalous transformation law of the stress energy tensor Tvv

[103]:

Tvv → f ′(v)−2Tvv +
c

12
S(f), (3.71)

where c = 1 is the central charge of one scalar field, and S(f) is the Schwarzian

derivative:

S(f) =
f ′′′

f ′
− 3

2

(f ′′)2

(f ′)2
, (3.72)

which vanishes only when f(v) is special. Since the vacuum must have Tvv = 0,

any nonspecial conformal transformation of the vacuum must produce a nonvacuum

state with positive expectation value of the null energy.

What if one tries to perform a general conformal transformation λ → f(λ, y)

of the horizon generator parameters λ for D > 2 dimensions? In the discretized

model, the null energy of the transformed vacuum is

pk =
N

∑

n=1

1

12

∫

S(f, n)dλ (3.73)

and the integrand is positive. But now disaster strikes—as N → ∞, pk → ∞ too!

The general conformal transformation takes the vacuum out of the Hilbert space

altogether, by creating infinitely many quanta. So the conformal anomaly prevents

λ from being reparameterized, except by a special conformal transformation.

Since the stress-energy Tkk is the generator of reparameterizations, this means

that most integrals of Tkk on the horizon do not give rise to operators in the Hilbert
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Space. Since Tkk = (∇kΦ)2/2 is a product of two fields, there is a danger of di-

vergence. The fact that only special conformal transformations of the vacuum are

allowed implies that the only integrals of Tkk which are horizon observables are those

of this form:
∫

Tkk [a(y) + b(y)λ + c(y)λ2] dλ dD−2y. (3.74)

3.4 Other Spins

In this section some basic details of null quantization for alternative spins will

be briefly provided, omitting detailed derivations and neglecting zero modes.

3.4.1 Spinors

The Lagrangian of a spinor field in spinor notation is

L = γABiΨA∇iΨB + mǫABΨAΨB, (3.75)

where A or B belong to spinor representations written in a real (Majorana) basis,

γABi is the gamma matrix, and ǫAB is the invariant symplectic structure on the

spinor space.12 As long as D > 2, the qualitative features of null surface quantization

12In dimensions D mod 8 = 0, 1, 2, 6, the irreducible spinor representations do not possess an

invariant symplectic structure ǫAB. Consequently, for m > 0 it is necessary to use reducible spinor

representations. The Majorana spinor basis has been chosen in order to keep the spinor expressions

homogeneous across different spacetime dimensions. Dirac and/or Weyl spinors may be obtained

from representations which admit a complex structure.
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are the same for every kind of spinor.13

The equation of motion is

∇iΨBγABi = mΨA, (3.76)

using ǫAB to raise the spinor index. At any point on a spacelike slice of the horizon,

the D dimensional spinor decomposes into the tensor product of a Majorana spinor

in D−2 dimensional space, and a Dirac spinor on a 1+1 dimensional spacetime. The

Dirac spinor in 1 + 1 dimensions decomposes into the direct sum of a left-pointing

spinor ΨL that and a right-handed spinor ΨR, where we take γLLa to point in the

ka direction and γRRa to point along the other lightray la. The Majorana equation

(3.76) takes the schematic form:

∇LLΨR + ∇LRΨL + mΨL = ∇kΨR + ∇yΨL + mΨL; (3.77)

∇RRΨL + ∇RLΨR + mΨR = ∇lΨL + ∇yΨR + mΨR. (3.78)

The first equation (3.78) only involves derivatives that lie on the horizon itself, and

can be used to define ΨR as a function of ΨL (up to zero modes):

ΨR(λ) = ΨR(+∞) −
∫ +∞

λ

(∇yΨL + mΨL) dλ′. (3.79)

On the other hand, Eq. (3.77) determines the derivative of ΨL off the horizon, and

so it does not act as a constraint. Therefore, the spinor degrees of freedom are

13In D = 2, the chirality of the field determines whether it propagates to the left or to the right.

Only fields which propagate across a null surface can be quantized on that surface.
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determined by the arbitrary specification of ΨL(y, λ) on the horizon. From now on

we will focus on just the ΨL(y, λ) degrees of freedom.

ΨL(y, λ) yields a (fermionic) operator when smeared over the horizon direc-

tions by a test function f . The mean-square of a massless spinor in momentum

space is

〈ΨL(f)2〉 ∝
∫

pupv=p2
y

dD−2py H(pu)
dpu

pu
pvf̃

2(pu, py). (3.80)

The extra power of pLL = pv = (p2
y + m2)/pu comes from the contraction of the

momentum with the spin in the propagator, and serves to render the integral con-

vergent. Thus for spinors there is no need to take a ∇k derivative in order to restrict

the field to the horizon.

The anticommutator of the field on a spatial slice Σ with normal vector na is:

{ΨA(x1), ΨB(x2)} = −i~ γAB
n

√
qδD−1(x1 − x2). (3.81)

By making an infinite boost, one can obtain the anticommutator for the field ΨL on

the horizon:

{ΨIL(y1, λ1), ΨJL(y2, λ2)} = −i~ gIJδ(λ1 − λ2)δ
D−2(y1 − y2), (3.82)

where I and J are (real) spinor representations of SO(D−2) (the group of rotations

of the D− 2 dimensional transverse space). Since these representations are unitary,

there is a natural metric gIJ = γILJL
k on the transverse spinor space.

The null-null component of the stress-energy is

Tkk = gIJΨIL∇kΨJL. (3.83)
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Tkk and the anticommutation relations look just like the integral of the corresponding

quantities for left-moving spinor fields in 1+1 dimensions. Therefore, if the horizon

generators are discretized, the corresponding CFT is that of N/2 massless left-

moving chiral fermions, where N is the number of components of the spinor field.

3.4.2 Photons

The Maxwell Lagrangian is

L = FabF
ab/4. (3.84)

After imposing Lorentz gauge ∇aA
a = 0 and null gauge Ak = 0, the only remaining

(nonzero mode) degrees of freedom are the transverse directions Ay on the horizon.

The commutator is

[Ai(y1, λ1),∇kAj(y2, λ2)] = i~gijδ
D−2(y1 − y2)δ(λ1 − λ2), (3.85)

and the stress-energy tensor is

Tkk = gij(∇kAi)∇kAj , (3.86)

where the indices i, j are restricted to the transverse directions. Ai cannot be

smeared to make a valid operator on the horizon, but ∇kAi can.

After discretization of horizon generators, the CFT of each horizon generator

consists of D − 2 left-moving massless scalars.
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3.4.3 Gravitons

In the semiclassical limit the metric can be described as a background metric

gab ≡ g0
ab plus an order ~

1/2 metric perturbation hab = g
1/2
ab . Impose Lorentz gauge

∇ah
a
b = 0 and null gauge hka = 0.

The Lagrangian and equations of motion are simply that of perturbative GR.

The only constraint on hab on the horizon at half order is the null-null component

of the Einstein equation:

Gkk = 0. (3.87)

By integrating ∇kθ
1/2 = 0 (the half order Raychaudhuri equation (3.13), one finds

that there is no half order contribution to the area:

hijg
ij = 0. (3.88)

In order to keep things simple, the trace degree of freedom of hij will therefore be

set to zero before quantization. Only the traceless part of hij represents physical

graviton degrees of freedom.14

hij cannot be smeared to make an operator on the horizon, but ∇khij can.

Thus, the only physical components of the field are the transverse shear components

14Rotational symmetry assures that the commutator of the trace degrees of freedom cannot

mix with the commutator of the traceless degrees of freedom. The constraint (3.87) generates

diffeomorphisms in the k direction. Consequently if one wished to impose this constraint after

quantization, for consistency it would also be necessary to include as a physical degree of freedom

the parameter λ which breaks this symmetry.
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σij ∝ ∇khij.

In GR, gravitons do not contribute to the gravitational stress-energy tensor Tab

found by varying the matter Lagrangian with respect to the metric, since gravitons

do not contribute to the matter Lagrangian. And if one varies with respect to the full

gravitational Lagrangian, the resulting tensor vanishes when the equations of motion

are satisfied. However, in perturbative GR, one can still define a stress-energy tensor

perturbatively by varying the Lagrangian with respect to the background metric,

rather than the perturbed metric. The resulting stress-energy tensor is proportional

to the contribution of hab to the Einstein tensor:

T 1
ab = G1

ab/8πG, (3.89)

to first order in ~. On the horizon this is just

Tkk = (∇khij)∇kh
ij/8πG. (3.90)

The canonically conjugate quantities for canonical general relativity on a

spacelike slice Σ are the spatial metric qab and the extrinsic curvature Kab = ∇nqab/2

[104]:

[qab(x1), (Kab − qabK)(x2)] =
i~

16πG
δkl
ab

√
qδD−1(x1 − x2) (3.91)

If one takes the infinite boost limit, the spatial extrinsic curvature Kij with i, j

lying in the transverse plane becomes the null extrinsic curvature:

Kij → Bij = ∇khij/2 = σij +
1

D − 2
gijθ. (3.92)
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Because the trace part has been made to vanish by Eq. (3.88), only the traceless

shear part remains. Therefore the commutator is

[hij , σkl] =
i~

16πG
δkl
ij δ

D−2(y1 − y2)δ(λ1 − λ2). (3.93)

As for the other bosonic fields, σij is an observable when smeared on the horizon,

but hij is not. When the horizon generators are discretized, the graviton CFT is

that of (D − 2)2 − 1 left-moving scalar fields.

3.5 Interactions

Does the argument given in section 3.2 for the GSL continue to work when

the quantum fields have nontrivial interactions besides the minimal coupling to

gravity? The question is whether one can continue to define a horizon algebra A(H)

satisfying the four axioms required for the proof described in sections 3.2.1 and 3.2.3:

Determinism, Ultralocality, Local Lorentz Invariance, and Stability. Except for free

fields and 1+1 CFT’s (see below), it is not obvious that this is the case. Nevertheless,

it is possible to give some handwaving arguments that things work out even when

there are interactions. Hopefully future work will clarify these issues.

3.5.1 Perturbative Yang-Mills and Potential Interactions

Let φi stand for a field (indexed by i) in any free field theory, of any spin.

What happens to the horizon algebra upon adding interactions?
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In general, the addition of arbitrary terms to the Lagrangian will change both

the commutation relations and the value of the null stress-energy tensor Tkk. But

for certain special kinds of interactions, the null algebra may remain unaffected.

In particular, at least at the level of formal perturbation theory, the horizon

fields φi do not care about the addition of an arbitrary potential term V (φ) to the

Lagrangian. In order to be a potential, V must depend only on the fields and the

metric, not field derivatives or the Riemann tensor.

The general horizon commutator can be written as

[φi, Πi] = i~δD−2(y1 − y2)δ(λ1 − λ2), (3.94)

where the conjugate momentum to the field in the null direction is given by

Πi =
∂L
∇kφi

, (3.95)

and the commutator is replaced with an anticommutator for fermionic fields. Now

since V does not depend on any derivatives of the field,

∂V

∇kφi
= 0, (3.96)

and the momentum Πi is the same as in the free theory. Since the horizon algebra

is generated by the free field operators subject to the above commutation relation,

the horizon algebra A(H) is unaffected by the perturbation.

A similar result holds for Yang-Mills interactions. The Yang-Mills Lagrangian

coupled to spinors and scalars is

L = −1

4
FabF

ab − 1

2
∇aΦ∇aΦ + γABiΨA∇iΨB, (3.97)
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where Fab = ∇aAb −∇bAa. Because ∇a is the covariant derivative, there are cubic

boson interactions which depend on the ∇k derivative, of the form AaAk∇kAa and

AkΦ∇kΦ. However, these interactions both depend on Ak which vanishes in null

gauge, which was used to obtain the horizon algebra in section 3.4.2). The spinor

interactions do not depend ∇k. So Yang-Mills interactions also do not affect A(H),

as a special consequence of gauge symmetry.

Because the horizon algebra is the same, the generator of null translations Tkk

must also be the same. Since for minimally coupled theories the canonical stress-

tensor and the gravitational stress-tensor of matter are the same up to boundary

terms at infinity [82], this means that the formula for the area A in terms of Tkk is

the same. Also, the (translation-invariant) vacuum state |0〉 of the interacting field

theory is the same as the free field vacuum, up to zero modes [93]. This is because,

unlike spatial surfaces, null surfaces have a kinematic momentum operator pk which

is required to be positive.15 Since everything in A(H) is exactly the same as in the

free case, at the level of formal perturbation theory the entire proof goes through

without depending in any way on the interactions.

However, this entire discussion needs to be taken with a large grain of salt,

because it assumes that the interactions in the Lagrangian can be treated as a finite

perturbation. Once loop corrections are taken into account, there will be divergences

which have to be absorbed into the coupling constants. Even if one starts with an

15In the case of spacelike surfaces, the interacting vacuum cannot even lie in the Fock space of

the free vacuum [105].
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interaction potential V (φ) which seems not to have any harmful derivative couplings

in it, renormalization will typically produce derivative couplings which will affect

the commutation relations.

For example, a field strength renormalization of the propagator term will

change the overall coefficient of the commutation relation. Unless the theory is

superrenormalizable, this field strength renormalization will be infinite. Even then,

it is not clear whether the null hypersurface formulation of the theory continues to

exist nonperturbatively.

In the case of spacelike hypersurfaces, there is a series of theorems [106] which

show that for any quantum field theory which is reducible to bosons and fermions

satisfying the equal time canonical (anti-)commutation relations (ETCCR), the the-

ory must be free unless the interactions are sufficiently weak in the ultraviolet. Su-

perrenormalizable theories do obey the ETCCR, nonrenormalizable theories cannot

obey the ETCCR (even if they can be defined using a UV fixed point), while the

status of marginally renormalizable theories is unclear. The problem arises because

of infinite renormalization of the fields. Thus there exist at least some QFT’s which

do not satisfy the equal time ETCCR. One possible interpretation of this result is

that the “equal time” is at fault, and it is necessary to smear the fields in time as

well as in space in order to get a well defined operator. This probably would mean

that such fields are not well defined when smeared on a null surface either. However,

it could still be that there exist a different set of fields which do not obey canonical
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commutation relations, and can be defined on the horizon algebra.

3.5.2 Nonperturbative Field Theories

So do nonperturbatively interacting QFT’s really have a horizon algebra? Here

is an argument that they do. Any physically consistent QFT must have good ul-

traviolet behavior as length scales are taken to zero. The conventional wisdom is

that this happens if and only if the theory approaches an ultraviolet fixed point

of the renormalization group flow. At short distances, the theory is therefore scale

invariant. All known scale invariant QFT’s are also conformally invariant, so let us

first ask whether conformal field theories can be null quantized.

In the special case of 1+1 CFT’s, the horizon algebra is simply the algebra

of left-moving (chiral) fields. Such fields do not depend on the u coordinate and

therefore must be localizable to the horizon. Since in any 1+1 CFT, the left and

right moving modes do not interact with each other [107], the axiom of Determinism

holds. Ultralocality is trivial in 1+1 dimensions, since there is only one horizon

generator. Lorentz Symmetry and Stability hold by virtue of the normal QFT

axioms.16

Even in higher dimensions, any CFT which has a well-defined S-matrix must

16Although the discussion in this subsection is entirely about QFT on a fixed background space-

time, the reader may wonder why one would want to consider a 1+1 CFT’s for a matter sector

given that GR is topological in 2 dimensions. The answer is that the proof given in section 3.2 is

equally applicable to 2d dilaton gravity, in which the dilaton plays the role of the “area”.
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also have nontrivial algebras associated with null surfaces. That is because in a CFT

there is no distinction between finite and infinite distances. Suppose one applies a

Weyl rescaling gab → Ω2(x)gab with the property that the affine distance to the

horizon becomes infinite. Because curvature has mass-dimension 2, this also should

lead to the scaling away of any curvature effects.

The existence of an algebra on the horizon is now equivalent to the existence of

final scattering observables for particles travelling into this new, nearly flat asymp-

totic region. This converts ultraviolet problems to infrared problems. After applying

the Weyl rescaling, there now exists an infinite amount of volume near any point on

H ∪ I+, so one now can smear operators over finite spacetime volumes without los-

ing localization near H . This suggests the existence of nontrivial operators in A(H).

By virtue of causality, one expects that all information inside the bulk should be

located in the algebra A(H ∪ I+), suggesting that the axiom of Determinism should

also hold.

However, because a CFT has no mass gap, there are long range interactions,

and the asymptotic states might not form a Fock space, due to the possibility of

creating an infinite number of soft massless particles. In order to apply the proof

of the GSL in section 3.2, one must show that despite the existence of these long

range forces, the final scattering algebra can be decomposed into a part associated

with H and a part associated with I+:

A(H ∪ I+) = A(H) ⊗A(I+)), (3.98)
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and also show that A(H) obeys the other three axioms: Ultralocality, Local Lorentz

Invariance, and Stability. Even then, further extension of the proof in section 3.2

may be necessary if the fields are not minimally coupled to general relativity (or

else some theory, such as dilaton gravity, which is related to general relativity by a

field redefinition).

Suppose now that one deforms the CFT by the addition of some set of relevant

couplings gi, so as to produce a nonconformal QFT with a UV fixed point. After

performing a Weyl rescaling, these new couplings become functions of Ω and there-

fore of the spacetime position. One can still convert the horizon into an asymptotic

scattering region. Because Ω(x) → ∞ as one approaches the horizon, in the scat-

tering picture, the values of the coupling constants gi must fall off to zero as time

passes. This suggests that the relevant couplings are not important for determining

the S-matrix final states, and therefore also do not matter when restricting to a null

surface.17

It is therefore reasonable to believe that null hypersurface algebras exist in

typical interacting QFT’s. If there are any QFT’s in which the A(H) does not

exist, extending the proof would presumably require a much more delicate near-

horizon limit. One would have to show that a small smearing of fields out from the

17In the case of couplings which are marginally relevant (such as the approach of 4d Yang-Mills

to the asymptotically free point), the falloff of the coupling can be extremely slow. Since 4d

Yang-Mills theory has not yet been rigorously constructed [108], probably it is not yet possible to

rigorously prove the existence of this null algebra either!
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horizon does not break the symmetry group of the horizon sufficiently to spoil the

proof.

3.5.3 Nonminimal Coupling

Further generalization of the proof is necessary when the gravity theory goes

beyond the Einstein theory, either because the matter fields are nonminimally cou-

pled, or because there are higher curvature terms in the gravitational Lagrangian. In

general, the presence of such terms will not only change the metric field equations,

but also lead to the addition of extra terms in the horizon entropy SH. These cor-

rections can be calculated for stationary black holes by means of the Wald Noether

charge method [77]; however, there are certain ambiguities which arise for the case

of dynamically evolving horizons. Except for some special cases like f(R) gravity

(which can be related by field redefinitions to scalar fields minimally coupled to

general relativity) it is unknown whether such theories even obey a classical second

law, let alone a generalized one.

Although the present work is restricted to the Einstein theory, some insight

into these problems might be gained by analyzing the structure of horizon observ-

ables in non-Einstein theories. The reason why the GSL holds on black holes in

general relativity is that A(H) is small enough to have lots of symmetry (Local

Lorentz Invariance) and yet large enough to contain all the information falling across

the horizon (Determinism). In general, alternative gravities will require A(H) to
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depend on additional information besides the metric and affine parameter on the

horizon, e.g. curvature components.

If this additional information breaks the ability to translate each horizon gen-

erator independently, this may account for the failure of the second law in these

theories. Another reason why theories may fail to obey the second law is if the

theory permits negative energy excitations, violating the Stability axiom.

On the other hand, if a set of quantum field and metric observables can be

found which obey all four axioms used in section 3.2, this is auspicious for the

GSL. It might be that the ambiguities in the Wald Noether charge can be fixed by

requiring that SH depend only on quantities measurable in A(H) itself. Suppose

that this were done. Then the GSL might be shown by the following argument:

First we need an analogue of Eq. (3.18), relating the horizon entropy to the

boost energy falling across the horizon:

SH(Λ) = SH(+∞) − 2π

~

∫ ∞

Λ

Tkk (λ − Λ) dλ dD−2y. (3.99)

But the Wald Noether charge method shows that this is true in any classical dif-

feomorphism invariant theory when Tkk is interpreted as a canonical stress-energy

current [77]. (The “gravitational” stress energy tensor defined by varying with re-

spect to the metric is not very meaningful at this level of generality, because it is

not invariant under field redefinitions of the metric). Wald’s argument is classical,

so in order to use Eq. (3.99), one would have to show that it survives a semiclassical

quantization of the matter fields.
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Since the canonical stress-energy tensor generates diffeomorphisms, one can

also rewrite Eq. (3.99) in terms of K(Λ), the generator of boost symmetries about

a horizon slice with λ = Λ:

SH(Λ) = C − 8πG K(Λ). (3.100)

Since the canonical stress-energy tensor is the generator K of boost symme-

tries, so by the Bisongano-Wichmann theorem, the quantum fields should be in

a thermal state with respect to K. Assuming that a non-Einstein gravity theory

satisfies each of the criteria described above, it too should obey a semiclassical GSL.
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