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Abstract

Title of Dissertation: =~ Modeling and Control of Multibody Systems

Narasingarao Sreenath, Doctor of Philosophy, 1987

Dissertation directed by: Dr. P. S. Krishnaprasad
Professor

Electrical Engineering Department

Dynamics of a system of many bodies in space is formulated in a Hamil-
tonian setting. Typically there are symmetry groups associated to such problems,
and one can reduce the phase space by these symmetry groups. Dynamics in the
reduced phase space is determined by appropriate Poisson structure. Equilibria
for specific cases are obtained and their stability examined using energy-Casimir
method. Nonlinear control techniques including exact linearization are applied
successfully. A global controllability theorem is proved and feedback stabilization
is studied. Applications to robotics and multibody systems in space are discussed.
Symbolic computational tools were used extensively in the research. OOPSS -
an Object Oriented Planar System Simulator package has been developed to au-
tomatically generate, analyze, simulate and graphically display the dynamics of

planar multibody systems.
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CHAPTER

ONE
INTRODUCTION

With the advent of large sophisticated spacecraft with multiple missions, the num-
ber and size of the attachments on the main satellite body has grown. Control of such
multibody spacecraft is difficult since the kinematics and the dynamics in such systems
are coupled. A better and deeper understanding of the dynamics is imperative for
pragmatic design of such multi-body systems in space. Equipped with this knowledge,
we would be able to design control systems to realize the mission objectives.

Spacecraft in general are collections of rigid and elastic bodies, sensors and actua-
tors. Complicating issues such as unmodeled/unmodelable dynamics, nonlinearities,
reconfiguration, external disturbances, material properties (including material aging
effects) are impossible to treat in a completely rigorous and deterministic way [29]. In-
herent inability to model a system perfectly has motivated feedback control. However,
a significant degree of modeling is absolutely necessary to develop such control.

Currently large antennae, instrumentation, solar arrays and various manipulator
systems are being designed as possible attachments. Examples include SASP (Science
and Application Systems Package), LDF (Large Deflector Facility), TWS (Tele-robot
Work System) etc.. These attachments are usually connected to the main body by
revolute joints. The movement of the one body relative to another induces reaction

torques and forces on the main satellite body and also on the connected bodies.



Extensive use of remote manipulators and robots for assembly, construction, re-
pair, and servicing of satellites is being considered seriously (28], [6],(61]. Recent
developments in automation and robotics have increased the importance of their ap-
plications to future space endeavors. It has already been demonstrated that the RMS
( Remote Manipulator System) on the space shuttle could be used to capture and
service a satellite [7]. But suitable corrections have to be made on the Space Shuttle
to compensate for the arm movements. The MRMS (Mobile RMS) on the proposed
Space Station will be used for assembly and construction of Space Station itself {62].
The reaction torques and forces on the Space Station due to the MRMS movement
may cause the center of mass of the station to translate and may rotate the station
about its center of mass [39]. Tele-operation of manipulator arms is expected to be
crucial in replacing a sizable amount of EVA (Extra Vehicular Activity). The ROBIN
[6] and the Grumman tele-robot [61] are typical Telerobotic Work System (TWS)
configurations. These missions involve complex tasks and call for a higher degree of
manipulation and control than is available now. Furthermore, the mission objectives
lay down stringent specifications on the attitude and orbit control of such spacecraft.

The above sets of complex tasks and and requirements have generated a number of
challenging problems in the area of dynamics and control of multi-body spacecraft. A
thorough understanding of the dynamics of such systems is required for good control
system design. Knowledge of the relative equilibria and their stability is essential.
Movement of these equilibria under feed-back control needs to be examined closely.
Thus a need for a complete understanding of such dynamic systems is identified.

With the growing importance of spacecraft configurations with many bodies con-
nected together by revolute joints, problems involving re-orientation of such space-
craft wherein the bodies are comparable in terms of their physical parameters have
become important [46]. The spacecraft slewing (large angle) maneuver problem is
inherently nonlinear owing to nonlinear kinematics and gyroscopic coupling effects
[29]. Time-optimal slewing of spacecraft has been considered in the Lagrangian and
Newton-Euler setting and the solutions provided range from using numerical meth-

ods [55](like relaxation and continuation methods), to using feedback linearization
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[23] and then solving for the control [11].

It is the purpose of this thesis to gain better understanding and insight into the
dynamics and control of multi-body systems. We deal with planar multibody systems
connected in the form of open kinematic chain (no closed loops). Individual bodies
are modeled as rigid bodies. The thesis is organized as follows : Chapter two gives
the basic geometric results which facilitate understanding of the modeling aspects.
Chapter three deals with the construction of dynamical models of planar multibody
systems in Hamiltonian setting. In Chapter four we give some examples of planar
multibody systems, - two-body, three-body and chain-body systems in space , and
planar body systems on ground. We examine the equilibria of these dynamical systems
and their stability using the energy-Casimir method in Chapter five. Chapter six
deals with controllability, feedback linearization and feedback stabilization issues. In
Chapter seven we present some symbolic and graphic tools we developed as a part of
our research, in particular OOPSS (Object Oriented Planar System Simulator).

Theorems, Lemmas, Corollaries, Definitions and Remarks are numbered individ-
ually, with the first number representing the chapter they occur and the second the
section. For example, Corollary 3.5.1 is a Corollary in Chapter 3, Section 5 and is
the first Corollary in that section. The next Corollary in the same section will be

Corollary 3.5.2.



CHAPTER

TWO
GEOMETRIC PRELIMINARIES

In this chapter we discuss some mathematical definitions and concepts as related
to the subject material on hand. We assume that the reader is familiar with the
basic concepts such as manifolds, vector fields (see Abraham, Marsden and Ratiu [3]
Chapter 3 and 4 for a good exposition of these basic concepts) and symmetries (see
Abraham and Marsden [2], Chapter 4, p. 341). As we proceed in this chapter we give

necessary ideas and definitions or refer the reader to other sources.

Let M be a smooth manifold. Let C®(U) be the set of all real valued smooth
functions in a neighborhood U of p, where U C M. There exists a tangent vector
at p to every smooth curve in the neighborhood U of p and passing through p. The
tangent space T,M to M at p is the set of all tangent vectors to all the smooth

curves in the neighborhood U of p and passing through p. The tangent bundle TM
is defined on M to be

TM = {T,M:Vpe M},

which is the union of tangent spaces of all points on M. The linear dual of tangent
space T,M is the cotangent space T, M composed of covectors at p. Similarly the
dual of the tangent bundle TM is the cotangent bundle T*M.



2.1 Lie Groups

The following material has been developed as in Abraham and Marsden [2] Chap-
ter 4.

A Lie group G is a smooth manifold with a group structure and the group oper-
ations of multiplication and inversion being smooth. The vector space T,G with the

Lie algebra structure
[£a77] = [Xfa Xn] fOl‘f,ﬂ € T,G

is called the Lie algebra of G and is denoted by g. Here X is the vector field obtained
by translating £ to all of G, and e is the identity of G.

Action of a Group : An action of a Lie Group G on a smooth manifold M is a
smooth mapping ® : G X M — M such that Vz € M,
(i) (e, z) = =,
(ii) for every g,h € G, ¢(g,¢(h,z)) = ¢(gh, z).

The action @, of g € G, is defined as &, : M — M : z — ®(g,z). The orbst or
flowof zisgiven by G-z = {®,(z):9 € G}.

Infinitesimal Generator : If { € .G, then ¢ : R x M - M : (t,z) —
®(exp(t£),z)! is an R - action on M i.e., ®¢ is a flow on M. The corresponding
vector field on M given by

ule) = 50exp(t)7)

is called the snfinstessimal generator of the action corresponding to €.

Pull back & Push forward : Given two manifolds M and N with F(N) =
{set of all real valued C* functions onN} and X (M) = {vector fields on M} and ¢ :
M — N is a diffeomorphism, the pull back of f by ¢ is

¢$'f = fopeF(M).

1see Abraham and Marsden [2] page 256 for the definition of ezponential mapping.




The push forward of X by ¢ is defined as

$.X = TpoXod™! € X(N).

2.2 Mechanics on Manifolds

The following material is patterned after Omohundro [43] and Abraham and Mars-
den [2] Chapter 3 and 4.

2.2.1 Dynamics on Manifolds

The evolution of mechanical systems could be described classically in terms of
the generalized coordinates ¢; coordinatizing the configuration space @ , and a scalar

quantity L called the Lagrangian defined on the tangent space TQ of Q i.e.,
L : TQ - R : (qhéi) = L(Qiaéi)-

The Lagrangtan is the difference between the kinetic and the potential energies of

the system. The dynamics of the system is given by

afon)_on) _
dt \ 9¢; ¢

The evolution of classical mechanical systems could also be described in terms

of the generalized coordinates ¢;, the conjugate momenta p; and the corresponding

Hamiltonian H which maps the cotangent space into the real line i.e.,
H : T'Q - R : (gi,p) — H(g,p)

The dynamics of the system could be represented as

) |
4G = -a—; ’
N
p = — _éq_,



In association with the Hamiltonian description, one has the notion of a Possson

bracket {-,-}. The Poisson bracket

{f.g} = > 9405 9. 9q

=1

N [6! dg of ag]

of two functions of ¢; and p;, defines the Poisson structure on the manifold 7" Q. The
above bracket is known as the canonical bracket.

A Poisson bracket is a bilinear map from pairs of functions to functions which
makes the space of smooth functions on T*Q into a Lie Algebra, and acts on

products like a derivative does. The axioms obeyed by the Poisson Brackets are :

Bilinearity : {afi + bf2,9} = a{fi,9} + b{f2 9},

Anti-symmetry : {f,9} =—{9,f},

Jacobi’s identity : {f,{9,h}} + {9,{h,f}} + {h,{f,9}} = O,

Derivation property : {f,gh} = {f,9}r + {f,h}g.

A manifold P with a Poisson structure is a Poisson manifold, on which the
Hamiltonian is a function. The dynamics evolve on this Potsson manifold. The

evolution (dynamical) equations could also be represented in terms of the bracket as

& = {q,H},
p = {p,H}.

Any function which commutes with every function on the Poisson manifold is auto-
matically a constant of motion and is called a Casimir function. Thus ¢ is a Casimir

function iff,
{4} = 0 Vg:PoR.

If there exists a closed nondegenerate two-form %, w called a symplectic structure
then the Poisson manifold P is known as the symplectic manifold (P,w). Here
w : Vect(P) x Vect(P) — F(P) is a bilinear skew-symmetric map, F(P) is the
space of smooth real valued function on P and Vect(P) is the space of smooth vector

fields on P.

2If w(X,Y) =0V Y € Vect(P) implies X = 0, then w is nondegenerate.



Let f,g € F(P) and let Xy be a vector field of F such that
w(X;,Y) = df(Y) VY € Vect(P)
Now the Poisson bracket could be defined as
{}: F(P)x F(P) — F(P):(f,9) — {f,9} = w(X,, X,)

From the properties of w it follows that (F(P),{:,:}) is a Lie algebra. Since w is a
nondegenerate form, the associated Poisson structure is said to be nonsingular. So
the concept of Poisson manifold generalizes the notion of symplectic manifold.

A natural symplectic structure arises from Lagrangian mechanical systems on the
configuration space Q. The Lagrangian description is based on the tangent bundle
TQ. The Hamiltonian lives on the cotangent bundle T°Q (momenta being deriva-
tives of L with respect to velocity are naturally dual to velocities and thus are cov-
ectors). The fiber derivative FL relates points on the tangent bundle to points

on the cotangent bundle. The following diagram helps keep the relations in mind.

L
roQe—r — 1a—*R

NS

Here E is called the energy of the Lagrangian. T Q has a canonical symplectic
structure w = —d@ where 8 is an intrinsically defined one-form, i.e., in the coordinate

notation 8 = X; p;dg;.
2.2.2 Momentum Mapping

Consider two symplectic manifolds (M,w) and (N, p). Amap f : (M,w) — (N, p)
is symplectic if f*+p = w. Let (P,w) be a connected symplectic manifold. An
action ® : G x P — P of a group G is a symplectic action if for each g € G the map
®,: P— P:z+ ®(g,z) is symplectic. Let g and g* be the Lie algebra of G and

its dual respectively. A mapping J : P — g* is a momentum mapping of the action



o, if forevery £ € g
dJ())(z) = lgw

where J(€)(z) = J(z) - £ and ix is and inner product 3.
Let @ be an action on Q and let T = T*®,-: be the lifted actionon P = T*Q.
Then this action is symplectic with respect to the canonical symplectic structure and

has an Ad* equivariant momentum mapping given by
J : P—g":J(p) = J(p).6 = p-Eqlq)
where £ € ¢ and £g is the infinitesimal generator of the action corresponding to £.
The momentum for a vector field X on Q is
P(X) : T'Q—>R : p—p-X(q)

The following diagram commutes.
*

* (2] *
TQ—» T Q

Jl 1.,
g* -—_— g*
*
Ad ,
g

If L is the Lagrangian on TQ with 6, = (FL)*8 and L is invariant under the

action Qf = T®,, then the momentum mapping

j(f)(v,) = FL(v,) - £q(q)

is Ad* equivariant and J is an integral of the Lagrangian equations.

EXAMPLE : Consider @ = R® and G = SO(3); one can identify so(3) = T.50(3),
the Lie Algebra of SO(3), with R® as follows. Define

R*—~T.SO(8) : z = [21,22,25)T = 2 = zs 0 -z

see Abraham and Marsden [2] page 115 for definition of the inner product

9



An easy computation shows that for z,y € R®

1=
<
[
<)
(3

(ﬁxg) = [5,§] =

Thus T,50(3) = so(3) the Lie algebra of SO(3) can be viewed as R® with the cross
product being identified with the Lie bracket.
Consider the group action & : SO(3) x Q@ — Q : (4,q) — Aq. If £ € R? then
E € s0(3). Now the infinitesimal generator {g can be seen to be
b0 = 3 (2(ep(d), ) o

d -
= dt (exP(tf) . Q) |t=o
= %-q
§xgq
The momentum mapping J(p) where p € T*Q is given by
J(p)- &€ = p-%q

Working on T'Q we have

)(g,v) = <v, &>

m™m)

J(

<gxXv,€E>

or
J(g,v) = gxv

which is just the angular momentum of the system.

10



CHAPTER

THREE
PLANAR MULTIBODY SYSTEMS

The problem of dynamics and control of multibody systems has long been of spe-
cial interest to the aerospace community [12] [22] [47] [57]. The methods used for the
generation of equations of motion, in general, could be grouped broadly under vec-
torial mechanics (Newton-Euler formulation) and analytical mechanics (Lagrangian-
Hamiltonian formulation) [38].

The Newton-Euler method involves the application of Newton’s laws of motion and
Euler’s equations to generate the necessary dynamical equations. Since the method
utilizes physically observable quantities, for relatively small systems, it is intuitively
appealing. However, for more complex systems the computations can become tedious.
Efforts have been made to take advantage of ways to mechanize the formulations [22],
[13], [59]. Symbolic processing capabilities have been exploited to generate automat-
ically the dynamical equations [14], [49], [60] . More on this in Chapter 7.

The Lagrangian method requires the formulation of a scalar quantity called the
Lagrangian. This quantity is the difference between the kinetic and potential ener-
gies of the system. A systematic procedure of partial differentiation involving the
Lagrangian would result in a set of second-order ordinary differential equations which
represent the dynamics of the system [38].

Hamiltonian methods involve the formulation of a single variational equation using

11



Hamilton’s principle [1]. Much of Newtonian mechanics is inherent in this single
equation. The representation of the dynamical system is by a set of canonical, first
order, ordinary differential equations with a simple structure. An underlying Poisson
structure provides an elegant representation of the first order dynamical equations in
terms of the bracket. The Poisson structure can also help us identify the kinematically
conserved quantities, the Casimirs. Casimirs could be effectively employed to study
the stability of equilibria. The chaotic solutions produced by the splitting of the
homoclinsc orbits when the system is perturbed, could be studied using Melnikov’s
method (see Guckenheimer and Holmes [17]). Hamiltonian methods have been applied
to dynamical systems in space in the past by Pringle [44], [45] and more recently
by Krishnaprasad [32], Krishnaprasad and Berenstein [33], and Krishnaprasad and
Marsden [34].

Satellite Dynamicists are interested in both rigid and flexible body formulations
[38]. In this research we will focus on satellites modeled as rigid bodies.

Here we formulate the dynamics of a planar system of arbitrary number of rigid
bodies connected in the form of a tree structure using Lagrangian and Hamiltonian
formulations, We start by giving the notation used, followed by the Lagrangian
dynamics. The Legendre transformation which maps the Lagrangian equations to
the Hamiltonian equations is given next. We discuss the underlying symmetries and
the procedure of reduction and effectively use it to get the reduced dynamics in the

Hamiltonian setting.
3.1 Notation

Consider a system of arbitrary number of planar rigid bodies connected in the
form of a topological tree! (no closed paths). To define the system mathematically,
each individual body should be assigned a unique label. A set of consecutive integers

is used as labels. Let,

N - total number of bodies in the system.

1j.e., there exists a unique path from one body to another — also referred as an open kinematic

chain

12



Body 1 could be chosen arbitrarily. Let body 1 be the principal or the main body
of the system. All other bodies are given distinct integer labels varying from 2 to
N inclusive. For simplicity of computation, it is convenient to label the bodies such
that the body labels are of increasing magnitude along any topological path starting
at body 1.

A body is considered snboard of body 1 if it is contained in the topological path
connecting body 1 and body ¢ . A body is considered outboard of body 1 if it is not
inboard of body 1 , and if body ¢ is contained in the topological path connecting body
1 and the body under consideration.

Similarly it is necessary to assign unique labels to all joints. An efficient way of
doing it is the following. The joint connecting body ¢ and the body which is contiguous

to and inboard to body ¢ is labeled s-1. Hinge O is assumed to be the center of mass

of body 1.
Let,
1 - body label of body 1,
J(7) - body label of the body contiguous to and inboard of body i,
Os(), s - joint label of joint connecting body ¢ and body J(t); also referred to
as joint (¢ — 1),
Sk-1,i - set of all body labels associated with those bodies lying on the topo-

logical path from joint k — 1 to the center of mass of body ¥,

Figure 3.1 shows one way of labeling a system of 12 bodies connected in the form
of a tree. The topological path connecting joint 0 (body 1) and body 6 , i.e., the set
of body labels in the path connecting body 1 (joint 0) and body 6, Sy, is given by

Sos = [1,2,5,6]. (1.1)

Here, body 5 is considered inboard of body 6. Body 6 is considered outboard of bodies
1, 2 and 5. Body 9 is neither inboard nor outboard of body 5. The body contiguous

13



Figure 3.2: Origins and body angles

to and snboard of body 5, i.e., J(5) is body 2. The joint connecting body 5 and J(5),
(body 2) is labeled joint 4 (i.e., joint (5-1)).

To formulate the equations of motion of the system under consideration, define
the origin of the inertial coordinate system to be fixed at the point of reference with
its Z axis being perpendicular to the plane of the paper. Define a local frame of
reference for each body, the origin of which is fized to the body center of mass. The
Z axes of the Jocal frames of reference are also perpendicular to the plane of paper.

Refer to Figure 3.2.

O; - origin of the local frame of reference of body 1 located at the center of

14



mass of body ¢,
- center of mass of the system of N rigid bodies,
- reference point and origin of inertial coordinate system,

- angle made by the local frame of reference to the inertial frame of

reference,

- angle made by the local frame of reference of body ¢ with respect to

the local frame of reference of body j; equal to (6; — 6;),

- inertial angular velocity of body ¢ along the Z axis (perpendicular to

the plane of the paper); equal to ‘Z',

- (2 x 2) rotation matrix associated with body ¢ ,

cos(6;) —sin(6;) i
R(6;) = y ¢ = 1,...,N. 1.2
(4 sin(6;) cos(6;) (12)

To complete the description of the multibody system, define a set of position

vectors (see Figure 3.3) and associated physical parameters of the system : let,

oy

B:

Bl

- inertial vector from joint (¢ — 1) to the center of mass of body ¢,
- inertial vector from joint (J(¢) — 1) to joint (s — 1),

- vector from joint (8 — 1) to the center of mass of body § in the local

frame of reference of body ¥ ,

- vector from joint (J(f) —1) to joint (f—1) in the local frame of reference

of body J (1),
- vector from the reference point to the system center of mass,

- vector from the center of mass of the system of N bodies to the center

of mass of body ¢ ,

15



Figure 3.3: Body and inertial vectors

b o - vector from the reference point to the center of mass of body ¢ .

See Figure 3.2 for a description of some of these vectors.

Note that forallt = 2,...,N,

ry =r+rf
=r+r+ X Bi+a
JESo, J#1
=rn+ Y B+ a (1.3)
jESO.o'l J#1
m; - mass of body 1,
N
m =) m, (1.4)
i=1
I; - moment of inertia of body ¢ at its center of mass and along an axis

perpendicular to the plane of the paper,

K; - kinetic energy of body ¢
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3.2 Basic Kinematics

The configuration space @ for the planar N-body system is the subset of SE'(Z) X
.-+ X SE(2) (N copies of the special Euclidean group of the plane) consisting of pairs
((R(6,),r1),-..,(R(6x),rn)) and satisfying the joint constraints :

rn =+ Y B+ o

JESomr i#1
= rn+ > R(lsp)B; + R(0)&, k=2,....,N.  (21)
J€Sa, %1

Notice that Q is of dimension N + 2 and is parametrized by 0;,...,0y and, say r;;

jie. Q~ S'x...8! xIR?. We form the velocity phase space TQ and momentum

N times
phase space T*Q.

The Lagrangian on T'Q is the map L : TQ — IR, obtained by summing the kinetic
energies of the individual bodies, i.e.,
N
L = ) K, (2.2)
=1
where K is the kinetic energy of body k. The equations of motion then are the

Euler-Lagrange equations for this L on TQ :

HORCRE

where, ¢ = [0y,... ,9N]T. Equivalently, they are Hamilton’s equations for the
corresponding Hamiltonian.

To formulate L in terms of the kinematic parameters we proceed as follows : let
X denote a position vector in body k relative to the center of mass of body &, and let
pk(X:) denote the mass density of body k (see Figure 3.4). Then the inertial position
of the point with material label X, is

Xy = R(ﬂk)xk + rg.
Thus
% = R(0.)Xe + t,
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Figure 3.4: Position vectors in body ¢

and so the kinetic energy of body kis
_ 1 .0z g2
Ko = 3 [ o) 1% | &',
1 . . .
= /8 p(Xs) < R6X: + i, R(0)Xs + £ > d?Xy
&k
1 . . .
= 3 /B px(Xe)[< B(6:)Xs, R(6:)Xs > + 2 < R(8:)X, 4 >
k
+ || f2 1P)d*Xe. (2.4)
Here B, denotes the extent of body k and p,d*X; denotes its mass measure.
But
< RODXi, R(6:)Xe > = tr(R(8)XL(R(6:)X:)T)
= tr(R(0.)X: XTR(6,)7), (2.5)
and

/h pe(Xs) < R(6:)XeFi > &%y = < R(a,,)/h e (Xe)Xxd? Xy, 54 > = 0,
(2.6)
since Xy is the vector relative to the center of mass of body k. Substituting (2.5) and
(2.6) into (2.4) and defining the matrix

I = /8 p(X) X XT dPX,, (2.7)
&

18



we get

1 . . 1 .
Ky = Et"(R(gk)IkR(ok)T) + o || £ |?
1, ,. . 1 . .
= Etr(R(()k)I"R(Ok)T) + Emg ” r, +r ”2
_ 1 . ko T 1 Y N2 .o = .2
= Etr(R(ﬂk)I R(6:)") + oMk [” rp ] +2<iL,F> + |1 ] .(2.8)
For later convenience, we shall rewrite the energy (2.2) in terms of wy = 6, and

r’s. To do this, note by definition the vector from the reference point to the center

of mass of the system in the inertial coordinate system is given by

1 N
r = — kark.
mk:l

Substituting for r; from (1.3) and simplifying we have,

1 N
r=r1+—2m1[ E ﬂj+az]-
ml=2

jesﬂ,h J#1
Keeping in mind that r; = r 4 rj, we rewrite the above equation as,
1 N
P == m| 3 b+a
™ i=2 €S0, 1#1
N
= - Z € }: Bi + af,

i=2  |j€Soy 5#1

m

where ¢ = —.
m

We know that,

l‘: = r‘1’+ Z ﬂ,-+a,,.

JESon, J#1

From (2.11) and (2.13) we get,

N
I'Z:—ZGI[Z ﬂi+al]+ Yo B + a

=2 1‘650',, $#1 jeso,k: J#1
N
= ) laB + bige]
=1

19

(2.9)

(2.10)
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where,

{ 1-N, Lja iflcSo,andk#1,
ary =

- E;v:z I ;€ otherwise ,

0 otherwise,

1 - ¢ if l=k,
by =
—q ifl # k.

1if les
L; = { l o

Differentiating (2.14) w.r.t. time we get

N 3
g = > [ak,zﬂz + bk,zdk] . (2.15)

I=1

Now we substitute

B = R(al(l))ﬁl o B = R(”J(z))ﬁz,
a = R(az)&g S0 (11 = R(0;)&,,

into (2.14) to get

N
;= 3 [anR(00)B + buR(6)E)

-~
I
[

R(oz)zk,x, (2.16)

I
M=

L ol
I
-

and into (2.15) to get

N
f o= 3 [onskO) + buik(0)E)

=1
N . ,
= Y R(6)bu, (2.17)
=1 .
where 3',;_, is given by
3&,1 = > [ak,iﬁl‘] + biudy
Vi, 5.t J(§) = I

51
i (2.18)
()
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Also from (1.2)

. 6;) —sin(6
() ad— cos(8;) —sin(6))
| sin(8) cos(@)
—sin(8) — cos(8 —
_ sin(8;) — cos(6;) w = R(O) wy
cos(6;)) —sin(6;) w; O
= R(6)d,. (2.19)
From (2.17) and (2.19) we find
. N . ~ N . ~
Irg P = (2 _[R(8;)bks) 2 IR(6:)6k4])
J=1 =1
N N ~ . . ~
= 2> 6 ;.R(6;)".R(6:).6n1
J=1il=1
SN ET 22
= Z ” 6k,: ” w;

j=1
N1 N 8 — 0 in(6, — 8) | ~

+ 2 Z 63:,-. COS( ! l) Sln( 7 ‘) .6k,1w;w,~.(2.20)
i=1 l=j+1 — sin(8; — 6;) cos(8; — 6)

Substituting from (2.18) for Zk,, in the above equation we get,

N N-1 N
181 = E % s “’,2' + 2 E Z {[5:,55:,1 + 53,553,1] cos(f; — 6;)
Jj=1 j=1 I=j+1

+ [‘5:.’3’:” - 5:’,3,:,,] Sin(o: - 0[)} W[wJ'

N N-1 N
S8 Fw? + 23 3 {[BesBui] cos(6)
i=1

=1 I=j+1
-+ [lgk.j X &,l] sin(ﬂ,-,g)} wiwy, (2.21)
where 8,; = (6; — 6,) and
lgkd X 3k.[l = [‘gklgzkz,l - 3:',3;1’1] . (2.22)

Recall that the Lagrangian for the system which is also the total kinetic energy of the
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system is then given by,
1 N . ko T 1 N <o 112 .o = < 112
L = 3 > tr(R(6:,)TFR(0:)") + 3 > ms [” Bllf+2<i,r>+ |1 ] . (2.23)
k=1 k=1

But
N N
domr; =0 so Y mi = 0, (2.24)
k=1 k=1

and from (2.19) we can see that

tr(R(6:)I%.R(6:)T) = tr(R(6:)7.07 1.0 R(0:)) = tr(0]T"0s)
2 0
= tr(OToIY) = er(| * I*) = wltr(1})
0 wi
= w,fI;,, (2'25)
where,

L = [ p(XuY)(X] + Y2)dX.dYs,
k

is the moment of inertia of the body k about the Z axis of the local frame of reference.

Substituting (2.24) and (2.25) into (2.23) gives

1Y o .
L = 3 {he} + mell 817 +ma 7).
k=1

Finally simplifying using (2.21) we get

[y, N-1 N _ 1
L = S22 Tk + 23 30 XalO)wsng + om 2]
k=1

i=1i=j+1
1 r IpI?
= —w'Jd .
zg w + o (2 26)
where, p = mf is the system linear momentum, m is as given by (1.4),
— T .
@Ww = [wl""’wN] ’ (227)
j AR Xin
X ] Tz bl X21\!’
I= (0T (2.28)
Suw Faw oo Ty




is a symmetric nonsingular matrix; for the sake of clarity the arguments of X,-; have

been dropped,
%ul0) =[5 maCBs)| cos(0) + [32 ma(By x Bul)| sin(o), 229
=1 k=1
note that X,‘( = XU;
~ N ~
L = Lo+ Y mil 6. (2.30)
i=1
Remark 3.2.1 : The I, of a body k is the moment of inertia of an “augmented”
body k with lumped reduced masses at the joints through which it is connected to

other bodies. It is to be noted here that the concept of “augmented” bodies arises

naturally in the context of multibody problems in our formulation.

Remark 3.2.2 : The term “augmented body” was first used by Hooker and
Margulies [22] in the context of tree connected multibody dynamics. They define
“augmented body” k as follows. Consider a body k in the multibody system. For
each joint (I — 1) on the body k the mass distribution of body k is augmented by the

mass equal to

m, = Z m;.
J ESk-1,, J#k
Obviously the mass of the “augmented body” is defined as equal to
My = mi + Z mi.

Vi, a.t. J(I)=k
The center of mass of the “augmented body” (also known as the connection barycen-
ter or simply barycenter) could be obtained easily. The inertia dyadic for this “aug-
mented body” about its barycenter figures prominently in the formulation of the
system dynamics. Also see Wittenburg [59]. In contrast a quick look at (2.30) and

(2.18) indicates that in our formulation we use lumped reduced masses at the joints

instead of lumped masses.
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3.3 Legendre Transformation

The Legendre Transformatson maps the Lagrangian equations into the corre-
sponding Hamiltonian equations. Classically, the name Legendre transformation (see

Courant and Hilbert [8]) is reserved for a map from

L(g,§) — H(g,p) = &'p — L(g,d), (3.1)

where L : TQ — R is the Lagrangian, H : T*Q — IR is the Hamiltonian, and

[qlv""qN]T, (3.2)

S
I

r L
= geeey = -, 3.3
? [p1 pN) 37 (3.3)

Here, we state a theorem which gives the Legendre transformation explicitly with
the proof given in coordinate notation. Using this transformation we construct the
Hamiltonian for the system of N planar rigid bodies connected in the form of tree

structure. Some definitions are in order before we give the theorem.

Definition 8.8.1 : Let (E,n,M) and (F,p,M) be fiber bundles with the same
basespace M. Let # : E—- M : er+mandp : F oM. Ifeg=n"'m C E,
then ep is a fiber of E. The concept of fiber bundle generalizes the notion of a product
space.

Let f : E — F be a smooth map which is fiber preserving, then 7 (e) = po f(e),

i.e., the following diagram commutes.
E—L _+F
\ /
M

Let 7(en) =m € M and fm = f|Em = fln~'(m). Then the fiber derivative
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of fm (Frechet derivative of f) evaluated at e,, is the map

Ff: E - |J L(En,Fa),
mEeEM
emn — Dfn(en) € L(E,, Fy).

For our purposes we specialize M to be the configuration space Q, E to be TQ
the tangent bundle of Q, and F to be @ x IR. We consider the Lagrangian L on the
velocity phase space TQ asthemap L : TQ — R. Let L: TQ - QxR :y, — gxR.
Then the fiber derivative FLis

FI(v,) ~ FL{v,) = DL, € L(TQ,,R) = T'Q

The Hamiltonian on the momentum phase space T*Q is a map H : T*Q — R that

can be expressed in terms of FL.

Definition 3.8.2: The action Aisdefinedas A : TQ — R, by A(v,) = FL(v,).v,;
in coordinate notation A(g, §) = QT%—;.T. The energy function E, definedby E = A - L
is determined on TQ by L.

When F is translated to T°Q by means of the fiber dersvative of L, FL : TQ —
T*Q, we get a suitable Hamiltonian. Then solution curves in both T*Q and T'Q will
coincide when projected to @, i.e., the solution curves of the Hamiltonian and the
Lagrangian equations coincide on Q. 7¢ and 7§ are maps from TQ and T*Q to Q
respectively. The following diagram helps keep the relations straight.

N
NS~

Definition 3.3.3 : Let M be a manifold. Define 7as : TM — M and ¢(t) : I —

¥ R
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TM. Thentpgoc: I — M is a base integral curve.

Theorem 3.3.1: Let L be the Lagrangian on Q with a diffeomorphic fiber derivative
FL:TQ - T'Q,andlet H = Eo(FL)!:T'Q — IR, where E is the energy of
L. Then the vector fields Xg and Xy are related by (FL),Xg = Xpg. Furthermore

XEg and Xy have the same base integral curves.

Proof : The proof of this theorem is given here in coordinate notation (for more
details and a ‘coordinate free’ proof see Theorem 3.6.2 and Example 3.6.10, Abraham
and Marsden [2}).

Let ¢ = [g1,...,qn]T and p = [py,...,pn]T. By the definition of fiber derivative
FL we have

FL:TQ — T'Q:(¢,d) = (¢.p) = (q@)

1 ag
Recall from the definition of the action we have A(q,§) = QT%?. andp = %—g‘ from
(3.3), so,
H(g,p) = Eo(FL)(g,p)
= Aled) - L(g,9
.OL .
= 45 L(g, &)
= §'p - Lig9), (3.4)
which is the Hamiltonian.
Taking partials on (3.4) yields
oH ) ag; oL 0¢;
. a + P — Y-y
Opi E,: dp; ' 4 84, 9p; .
= §. (3.5)
. . . . . . d
Keeping in mind the Lagrangian dynamical equations (g—g.‘) - %ﬁ = 0, and (3.3)
we find that
_ 9L
£ E-q:’
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or from (3.4) we have,

om _ o1
o¢  OBg
= _.ﬁl (3.6)

So from (3.5) and (3.6) we find that

b
|
3l%

, (3.7)

@
ol

p = -

)
1)

which are the Hamiltonian dynamical equations with the Hamiltonian given by (3.4).

Q.E.D.
3.3.1 Hamiltonian for the Muitibody Problem

In the planar multibody problem, the configuration space Q can be coordinatized
by (61,...,0n,T1) and the tangent space TQ by (1,...,0n,w1,...,wN), ie., § =
[wi,...,wn]T. The Lagrangian, from (2.26), is given by

| p |2
2m

(3.8)

1
L = inJu_) +

With p= p = [u1,...,un~]T, a simple calculation from (3.3) indicates that

oL
b = Ow
= Jw. (3.9)

Constructing the Hamiltonian analogous to (3.1) using (3.9) leads to

1 ro- IpI?
H = 37 :
tutay 4 LRI (3.10)
where p = [pyg,... ,un]T and pi’s, k = 1,---,N, are the conjugate momenta.

Remark 3.3.1: By making use of the reduction technique due to Arnold [1] and
Marsden and Weinstein [41] we can prove that in the general case of a system of N
planar rigid bodies connected in the form of a tree, the Hamiltonian is indeed given

by (3.10), with the linear momentum equal to zero. This we do in the next section.
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3.4 Symmetries

In this section we recognize the basic symmetries involved in the planar NV rigid
body problem and reduce the dynamics accordingly. The reduction technique used
here goes back to Arnold [1] and Marsden and Weinstein [41]. One starts with
a Poisson manifold P and a Lie group G acting on P by canonical transforma-
tions. The reduced phase space P/G (assume it has no singularities) has a natural
Poisson structure whose symplectic leaves are the Marsden- Weinstein-Meyer spaces
J1(u)/G, = J71(0)/G where p € g*, the dual of the Lie algebra of G, J : P — g*
is an equivariant momentum map for the action of G on P, G, is the isotropy group of
¢ (relative to the coadjoint action) i.e., G, = {g €EG : Ad;_,p = p,}, and O is the
coadjoint orbit through x. The coadjoint orbit O, is even dimensional and possess a
natural symplectic structure known as Kirillov 2-form (see Kirillov [35]). For details,
we refer the reader to Chapter 2 for a brief exposition on momentum map (also see
Abraham and Marsden [2] Chapter 4, Section 4.3) and Marsden and Weinstein [41]

for the Marsden-Weinstein reduction theorem.
3.4.1 Reduction to the Center of Mass Frame

We reduce the dynamics by the action of the translation group IR?. This group

acts on the original configuration space @ by
v-((R(6:1),r1)5-..,(R(ON),tN)) = ((R(61),r1+V),...,(R(ON),r~ +V)) (4.1)

This is well-defined since the joint constraints (2.1) are preserved by this action. The

induced momentum map on T'Q is calculated by the standard formula

aL .,
Je = 'a‘qub(q)’ (4.2)

or on T*@ by
Je = pifo(a), (4.3)
where £ is the infinitesimal generator of the action on Q. (see Abraham and Marsden

[2]). To compute (4.2) and (4.3) we parametrize @ by 0;,..., On and r withry, k =
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1,...,N determined by (2.14). From (2.26) we see that the momentum conjugate to

ris
_ oL _ .
= o . ™h
and so (4.2) and (4.3) gives
Je = (p,§£), E€ R (4.4)

Thus J = p is conserved since H is cyclic in r and so is translation invariant. The

corresponding reduced space is obtained by fixing p = po and letting
Py, = J7'(po)/R?, (4.5)

(see Chapter 4, Abraham and Marsden, [2],). But P, is clearly isomorphic to
T"(S1 X +++ X S!) i.e. to the space of 81,..., Oy and their conjugate momenta

N times
(#1,...,un). The reduced Hamiltonian is simply the Hamiltonian corresponding

to (2.26) with p regarded as a constant.

Note that in this case the reduced symplectic manifold is a cotangent bundle, in
agreement with the cotangent bundle reduction theorem (Abraham and Marsden [2],
Kummer [36]). The reduced phase space has the canonical symplectic form; one can

also check this directly here.

In (2.26) we can adjust L by a constant and thus assume p = 0; this obviously

does not affect the equations of motion.
Reduced Hamiltonian

The Lagrangian from (2.26) is given by

_ 17 ”I’”2
L—2ng._)+ o

(4.6)

Assuming p = 0, and using the Legendre transform and the corresponding conjugate
momentum vector (see section 3.3.1) # = Jw, we get the Hamiltonian as,
1 740
H = gk I u. (4.7)
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It is to be noted here that J = J(g) where g = [0y,---,0x].

Let us observe that the reduced system is given by geodesic flow on S x -.. x §1
—————

N tim
since (2.26) is quadratic in the velocities. Indeed the metric tensor is just the m:trix

J given by (2.28).

Remark 3.4.1 : The reduction to center of mass coordinates here is somewhat
simpler and more symmetric than the Jacobi-Haretu reduction to center of mass
coordinates for n point masses. (Just taking the positions relative to the center of
mass does not achieve this since this does not reduce the dimension at alll) What is
different here is that the bodies are connected by revolute joints, and so by (2.13),

ry%sforj = 1,...,N, are determined by other data.
3.4.2 Reduction by Rotations

Recall from the previous section that the configuration space after reduction to
the center of mass frame is

Q = (S'x---x8Y,

N times

and so the cotangent space is T*(S? x -+« x S%).

N times
There exists a rotational symmetry group S* which acts on the cotangent space

as follows :

0'((0lsﬂl)a"'a(0N,uN)) = ((01+0,”1):"'1(0N+0sﬂN))
= ((81’”1)s""(0N’ﬂN))-

To complete the reduction, we reduce by the diagonal action of S! on the config-

uration space S X - -+ x S that was obtained in Section 3.2.1. The momentum map
LA

N times

for this action is found next. We know that S is diffeomorphic to SO(2) (the special
orthogonal group of (2 x 2) matrices i.e., A € SO(2), AAT = I, and det(4) = 1).
The Lie algebra of SO(2) is so(2) ( skew-symmetric matrices with determinant equal
to k, k;0), i.e., 7.50(2) = s0(2).

30



For

- [ ]

where £ € so(2), the ezponential of { is

exp(tf) = exp (t[ 0 1])
-1 0

[ cos(t) sin(t)]

—sin(t) cos(t)

Il

So exp(tg) € O(2).
The infinitesimal generator £g(g) can now be calculated as follows :
d
fa()) = 5 ®(exp(t€),9) lico
t in{t
dq> [ cos(t) sin(t)

dt ( —sin(t) cos(t)

}, (O1r--,08) ) lemo
d
= EZ(O; +t,...,0N +t) |t=0
= (1,...,1).
The momentum map is given by
J:T'Q — g' = so0*(2),
with the momentum P: TQ — R
P(s) = J(&)(v)

= FL(v,) - {qlq)
= (vg,€q(9)) onTQ.

Note that the metric here is the Reimannian metric and the inner product ¢(,)’ is

given by (z,y) = z7Jy.

P(vq) = ((wl,---,wN)’ (ls"’:l»
= [1,...,1]Jw on TQ,
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or on T*Q, for a; € T*Q we have
P(aq) = MW + cee + UN-

J((01,1)5- s (On,sn)) = 1 + -+ pn. (4.8)

For purposes of later stability calculations, we shall find it convenient to form the

Poisson reduced space

P :=T(S'x---x 8Y)/S? (4.9)

N times

whose symplectic leaves are the reduced symplectic manifolds
P, = JYu)/S'c P (4.10)
We coordinatize P by 0,7(x), k = 2,...,N, and p;, j = 1,... N; topologically,
P = §'x...x §' xRN, (4.11)
(S
(N-1) times
The Poisson structure on P is computed in the standard way: take two functions
F(ak'J(k),k = 1,...,N,[l1,...,ﬂN) and H(ak,_](k),k = 2,...,N, [ll,...,[lN). Re-

gard them as functions of 01,...,0n,u1,...,un by substituting 0, sy = 0 — s

and compute the canonical bracket.

Lemma 3.4.1 : The Poisson structure on P is given by the non-canonical bracket

(g} = EN: ( of _af) dg __( dg _Bg) of
’ ios L\Orsx)y Our/) 96i ) Ousy Our/) 00r 1)

where f,g: P — R.

] ,(4.12)

Proof : The canonical bracket on the Poisson manifold P is given by (see Chapter

2):

_ XMTafag  og of
{f,9} = fi:,[amafh - 6;;,,60,,]' (4.13)

Since f,g : P — R and P is coordinatized by pi,...,un,0c04), k = 2,...,N,
we have f and g being functions of uy,...,un,(0k — O0s)), k = 2,...,N , since
Oc,o(k) = (6 — Osx))-
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Therefore,

of _ of
30~ e’ (4.14)

aof af
= - . 4.1
ET ETRE (4.15)

Substituting (4.14) and (4.15) in (4.13) and combining suitable terms results in the
non-canonical bracket (4.12). Q.E.D..

CASIMIRS

The Casimirs on P are obtained by composing J with Casimirs on the dual of the

Lie algebra of S1; i.e. with arbitrary functions of one variable; thus

C = ®(ur+...+un), (4.16)

results. This can of course be checked directly.

The cotangent bundle reduction theorem asserts in this case that the reduction of

T*(S! x --- x §) by S! is symplectically diffeomorphic to

N times

T*(S'x---x 8Y)/8' = T*(S'x-.-x S§Y).
N timee (N-1) times

Remark 3.4.2: The reduced bracket on T*(S! x --. x S!)/S! can also be ob-

tained from the general formula for the bracket on (P x T*G)/G = P x g* found in
Krishnaprasad and Marsden [34].

The reduced Hamiltonian on P is just (3.10) regarded as a function of u;,...,un

and 6 sy, k = 2,...,N. We therefore know that the Euler-Lagrange equations
(2.3) are equivalent to ' = {F, H} for the reduced bracket (4.12).

Reduced Hamiltonian

The reduced Hamiltonian is given by

1 o
H = Spl37(ge = 737 (O, (4.17)
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where the conjugate momentum vector g = [u1,...,un]and 8 = [0,;,1(,:), k=2,--., N] .

The momentum map J is given by
J) = m + - + pw.
and the conjugate momenta y;’s are given by
g = J(0)w, (4.18)
with w and J given by (2.27) and (2.28) respectively.

We now take a moment to review our analysis and put the results obtained so
far into perspective. The reduced Poisson space P is coordinatized by 8 s, k =

2,...,Nand ui, k=1,...,N; topologically P = S! x .- x S* xIR¥. The Poisson
e Ve
(N=1) times
structure on this manifold is given by

(g} = i[( af af) dyg _( dg ag) of ]’(4.19)

=2 L\ Ousm) e bk s (x) Opsx) A 00k s (x)

We summarize the results so far as a lemma.

Lemma 3.4.2 : The reduced Hamiltonian for the planar system of N rigid bodies

connected in the form of a tree structure by means of frictionless revolute joints is

given by :
1 .
H = E_ﬂJ E, (4.20)
where,
T
g o= lus-e6n], (4.21)
Fjl A1z Aiv
A 7. e A
J = .12 .z . .2N ’ (4.22)
 Saw S o T |




,\:,-;(0,-,,) = [Z m,,(&k,-.SH)J cos(0 "1) + Z m,,(l&k,- X 6);1'.2)} sin(ﬂ,-,,), (4.23)

k=1 =1

N ~
Lo o= Iy + 2omy || & |I*. (4.24)

i=1

The Legendre transform for the reduced system maps
L(ah o On, Wy, e ,U-’N) — H(Ok,,,(,,),k =2,...,N,u,... ,[J,N), (4.25)

where

b= Juw. (4.26)

3.5 Hamiltonian Dynamics
3.5.1 Dynamics

The dynamics of a conservative system of an arbitrary number of rigid bodies con-
nected in the form of a tree structure, is formulated by mapping the Euler-Lagrange
equations into Hamilton’s equations with the help of the Legendre transformation.

The resulting equations are consolidated in the following theorem.

Theorem 3.5.1 : The Hamiltonian dynamics for the planar, rigid N body system

with the bodies connected to each other by revolute joints is given by :

oH oH

il'l' = E -— fOl’i:l,._.,N’ (5.1)
Vi, a.t. J(f)=¢ 99, 80; 5(5)
; oH oH .
by = o B fort=2,...,N, (5.2)

where H is as given by Lemma 3.4.2.
Proof : The Lagrangian dynamics in the absence of any external torques or forces

is given by

d (OL oL
ﬂ@‘@‘“ (53]

35



with
L = -w'iw, (5.4)

and ¢ = [6,...,0N]
The dynamics in the Hamiltonjan setting can be derived using the Lagrangian for-

mulation with the appropriate transformation

p = Jw. (5.5)

Simple computation using (5.3) — (5.5) shows that,

I = de + Jw = —(-i— oL 5
E= =" = a\s) (5.6)
Also
oL
agk EAzkwka + Elc:lAkaka’ (5'7)
j=k+
where
x Ay
Ay = [ 3 0: ] (5.8)
Differentiating (4.20) with respect to 0; y(;) and using (5.5) we get,
oH 1 , dJ
— J-—l J—l
36; () T2 db; 5 (5) £
_ 1l dI
27 dbi s
= - Z Auwkw,
J(§) SESk—1
k<l kd=1,---,N
Consider,
oH o0H ~
Z - = - E 2 Awiwi
vj st i=J(5) 80;s 80,-,,(,-) Vi et J(5)=i Vk<l 8.t53ESp 1y
+ Z thkw,
Vk(’ s.t. J(l),iesk —-14
s—1
= E A.,w.w; - E/\hw.w;
I=¢+1
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But this is the same as (5.7), therefore,

oL oH 8H
= ) - . (5.9)
96; vi st 2()=i 995i  90i1G)
It is obvious from comparing (5.6), (5.9) and (5.3) that
oH oH
o= > - Vi = 1,...,N. 5.10
vi atd(i)=i 9% 96; 53 (6.10)
Finally,
dH
= J—l = ———
"Lg' .li dﬁ 1
or,
bisiy = b — b5
= Wi T Wi
dH dH
= - (5.11)
dp; Ay i)
Q.E.D..

Corollary 8.5.1 : The dynamics of a multibody system evolves over a reduced
Poisson space P coordinatized by 8; s(x), £k = 2,...,N and ux, £k =1,...N. Topo-

logically P is S* x -+ x S xRN, The system is Hamiltonian in the Poisson structure
e e’

N-1 times
of P with the bracket given by :

(g} = ﬁ’:[( af af) dg _( dg ag) of ]’(5.12)

=2 L\ %usm) A 00y (k) Op ) "~ A 00k, 1)

where f,g: R ! 5 R.

The corresponding dynamics represented in terms of the bracket are

i"k = {ukaH} k=1"",Na (5-13)
ék,J(k) = {0k,J(k),H} k=2,---,N. (5.14)

Proof : Use Lemma 3.4.2 and Theorem 3.5.1.

Corollary 3.5.2 : The sum of all the conjugate momentum variables u;, k =

1,..., N is equal to the angular momentum of the multibody system.
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Proof : The angular momentum of the multibody system along the Z axis at the

center of mass is given by :
N
system angular momentum = Y [Liwe + (r) X mu£)]. (5.15)
From (2.16) and (2.17) we have

R(6,)8y,,

|
M=

r, =

Lo
I
[

R(8,)8 ;.

e X
I
M=

1

[*%
il

Substituting for R(8;), R(9;) and &, as given by (1.2), (2.19) and (2.18) respectively,

we have

(ri x £}) = f: (R(8)8ks) x (R(6,)8;)

f=1

+

“a,

abive

{[6“ 6;;,,] cos(f; — 6;)

—

i=1

kl X 6k, |] sin(ﬂj - 01)} Wi (5.16)

.

Therefore from (5.15) and (5.16) we have

N N N N
system angular momentum = Z L, + Z my z Z { [3“ . 3‘,‘,,.] cos(0; — 6;)
k=1 k=1 j=11=1

+ []3” X 5k,j|] sin(0_.,- - 0[)} w

N N -
= 2 e+ omill & P w
k=1

5=1

Zw, E {[gk,l . 3);.,'] COS(oj - 01)

k=1 J =1 1= 1'#}

+ [|3 ki X 6&,[] Sln(a - 01)}

[V]z

N ~
= Z I;,wk
k=1
+ kaZw, E {[5;;1 6):.,] Cos(o — 0[)
i=1 1=1 17y
[|6k.l X 5k,j I] sin 0,' - 01)} . (5.17)
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But from Lemma 3.4.2 we have that

I '\1,2 oo /\1,N wy
N Xl,z Tx s Xz N w
Z He = [1) 1, ’ 1] ' * :
k=1 .

_ XI,N xz,N TN ] | WN j
N[, N
= Z I + Z Ak,,-w,, .
k=1 J=1, s#k

Substituting for X;;’s from (2.30) in the above equation and noting that Ak j

we get

N N N N N " -
E He — Z Iy + Z E Z myg { [51;‘1 . 51,._,'] COS(o,' - 0[)
k=1 =1j5=11=1, l#5

[]:S'k,[ X k.:'l] sin(0,- - 9‘)} Wy.

T
+ L
"
[

Rearranging the summations we have

N N N N N ~ ~
z: K = 2 Iy + Z m; Z Wy Z { [5k,l . 6k,j] cos(e,- - 01)
k=1

k=1 k=1 i=1 I=1 I#5
+ [!‘51;.1 X Ek,jl] Sin(aj - 0[)} .

Comparing (5.17) and (5.18) we see that

N
Z”" = system angular momentum about the Z axis. Q.E.D..
k=1

3.6 Internal and External Torques

~

Ajk

(5.18)

A multibody system in space can experience internal and ezternal torques. An

internal torque at a joint acting on one of the bodies produces an equal and opposite

(reaction) torque on the body to which it is connected to (at the joint). Torque due

to a motor at a joint, is an example of internal torque.

For a multibody system if the angular momentum is conserved, the dynamics

evolve on a given symplectic leaf of the Poisson manifold P. In other words the

symplectic leaf is determined by assigning a particular value to the system angular
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momentum. Since internal torques change the energy of the system but leave the
system angular momentum invariant, the corresponding motion will be confined to a
single leaf.

Ezternal torques on a multibody system change the energy as well as the angular
momentum of the system. The evolution of dynamics switches from one symplectic
leaf to another on the application of external pulse torques. Examples of external
torques are, torques induced by gas jets, gravity gradient torque , solar radiation
pressure, solar wind, etc. Actuators may be used to create internal and external
torques for control purposes.

We are interested in studying the effect of these torques on the dynamics of the
system. The following theorem gives the dynamics when internal and external torques

are applied to the multibody system.

Theorem 3.6.1 : The dynamics of the planar multibody system, under the appli-

cation of external and internal torques are given by:

OH oOH
12. = E —_ <+ E Ti1—Tiq + 1}“‘ 6.1
' vi, ek 3= 0055 9010 v i ay=i ’ (€1

fortr=1,...,N

. oH oH
O; 5y = - fort=2,...,N 6.2
6 oui Qs o ’ ’ (6:2)

where Tj_, is the internal (reaction) torque acting at joint £ — 1 (Tp = 0), and T is
the external torque acting on body t.
Proof : The Lagrangian dynamics in the presence of any internal and external

torques is given by

d (0L oL
a(5) % -=® o
where,
L = %QTJQ,
.E = [Fl’-“’FN]a

and F}’s are the generalized force acting on body 1.
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We know that
virtual work = (generalized force) - (displacement).
Now, the total infinitesimal virtual work done by the internal torques acting on the

system, 6W,,,, is given by,
N
Wine = z Tk—1(501(k) — 60;). (6.4)
k=2

Similarly, the total infinitesimal virtual work done by the external torques acting on

the system, 6W,,, is N
Weoe = D TF™66;. (6.5)

=1

Thus from (6.4) and (6.5), the total infinitesimal virtual work done by both internal

and external torques 6W is,

W = avvm,t + 5W¢zt
N N
= Y Ti-1(8854) — 66i) + D Tr=66;.
k=2 =1

By definition the generalized force F; is given by,

ow
a0,

= > Tjoy — Ty + TF. (6.6)
Vi st J(5)=é

F, =

From Theorem 3.5.1 and (6.3) we have,

. d (OL oL
= a(é‘q—) =6 T (6.7)
and
oL oH oH
90 > - , 6.8
06 i at i s g (6.8)

Substituting (6.6), (6.8) in (6.7) we get,

oOH oH
2 86, 90,50 | 2

Vi, a.t. J(5)=i V5 at. J(5)=¢

7}_1 _ T;'—l + szt,

i

i=1,...,N
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Also from Theorem 3.5.1 we have,

. 8H 0H
0;' 0 = - | = cve .
J(5) £ Briry fors =2,...,N

Q.E.D..

Remark 3.6.1 : In the last result some special things happen because we are in the
plane and deal with pure torques. As a consequence the torques seen by an observer
fixed on to a body is equal to the torque seen by an observer fixed in the inertial

frame.
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CHAPTER

FOUR
FEW-BODY EXAMPLES

In this chapter we consider some interesting examples of multibody systems in
space. We begin by specializing our results of Chapter three to the case of two-
body and three-body systems. Applications of our formalism to terrestrial multibody
systems, in particular to ground based robot manipulators, is discussed. We illustrate
this extension procedure for a planar two-link manipulator on ground. Dynamics of a
system of planar N bodies in space connected in the form of an open chain is given.
The notation used in this chapter is the same as in the general tree connected N body

problem (Chapter three).
4.1 Planar Two-Body System

A system of two bodies in space, connected together by a one degree of freedom
joint occurs in many contexts. Consider a two-body system where the bodies are of
comparable mass and inertia, relative to each other. One of the bodies may represent
a large space based sensor. Rapid reorientation of the sensor from one stationary
position to another may be desirable. Such a “step-stare” maneuver would require
thorough knowledge of the dynamics and thus a good mathematical model to formu-
late the necessary control [46].

We start with a planar two-body system as shown in Figure 4.1. The bodies are
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body 2

body 1

Figure 4.1: Planar two body system

connected together by a frictionless revolute joint. The system is conservative with
no external or internal torques acting on it. The centers of mass of the bodies are
chosen to be the origins of the respective local frames of reference. Without loss of
generality, the x-axes of the local frames of reference of the bodies is chosen to be
parallel to the line joining the body center of mass and O;3.

The Lagrangian dynamical equations are as given below.

oy = —y(Tw] + X12(02.1)w)

Wy = —y(hw] + Xpa(021)w])
él = w
bz = Wi
where, .
AL (6
N = 12(62,1) (1.1)

B (L1, - C’xn(oz,x)) ’
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L = (11 + ed}),

72 = (Ig -+ ed%),
€ = ;%43:; > (1.2)
Ma(621) = 312

Xu(oz'l) = edldgcos(ﬂz'l) )

Remark 4.1.1 : Here € is known as the ‘reduced mass’ and is different from our
earlier notation (in Chapter two) that ¢; = 71:1_’?5; fort = 1,2, which is a dimensionless

quantity.
4.1.1 Hamiltonian Formulation

We now use Hamilton’s principle and present the dynamics of the two-body system
in this new setting. We use Lemma 3.4.2 and Theorem 3.5.1 with N = 2, §; = [dy,0]
and &; = [d;,0] to compute the dynamics. The Hamiltonian for this system is simply

the total kinetic energy of the system.

Lemma 4.1.1 : For the planar two-body problem the Hamiltonian is given by

1
H= 5;_{..1".& (1.3)
where,
b= u1,m2]", (1.4)
J= }1 X1‘2(02,1) \ (1.5)

X12(02,1) I,
p#1 and pg are the conjugate momentum variables and are related to the angular

velocities w; and w; as below:
_ T
g =J.|wy,ws], (1.6)

T, and T, are pseudo inertia constants given by (1.2) ( similar to the ‘aguemented’
body inertias used by Wittenburg [59] ).
Proof : Use Lemma 3.4.2 with N = 2.
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Theorem 4.1.1: The dynamics of a planar two-body system in the (61, uy, us)

space is given by

. _ ©OH
= ET (1.7)
. 0H
H2 = ET (1.8)
. 0H OH
0 = T 5 1.9
1 Ouz Oy (1.9)

Proof : Use Theorem 3.5.1 with N = 2.

In Chapter 5 we will discuss the numerical simulation results of the dynamics
of a planar two-body system with suitable initial conditions, and find the system
equilibria. We analyze the stability of these equilibria using the Energy-Casimsr

method and show that this agrees with the simulation results.

Remark 4.1.2: The sum of conjugate momentum variables (i.e., p; + p2), is equal

to the system angular momentum - constant in the absence of external torques.
4.1.2 Poisson Bracket
The phase space for the evolution of the dynamics is on a Poisson reduced space
P:=T'(S'x s1)/s? (1.10)

The phase space P is coordinatized by (2,1, #1,#2). The Poisson structure on the P

space is given by:

_(of of\ ég (89 g\ 8f
{f’g}_(aﬂl aﬂz) 803, (aﬂl 3#2) 06z, (1.11)
where,
f,9:P —R. (1.12)
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2

a Av=uiﬂ11

Ryl
(hH,) -
%e

Figure 4.2: Dynamics of a two-body system

Corollary 4.1.1 : The dynamics rewritten in terms of the Poisson brackets are:

i1 = {p1, H} (1.13)
b2 = {p2, H} (1.14)
021 = {021, H} (1.15)

Proof : See Corollary 3.5.1 with N = 2.
4.1.3 Control & Disturbance Torques

We are interested to study the effect of external and internal torques on the dy-
namics of the system. These torques may be applied as a form of control. It is to be
noted here that internal torques change the energy of the system but the system an-
gular momentum itself is conserved i.e., the symplectic leaf is left invariant. External
torques acting on the system however change the system angular momentum as well
as the energy; in other words the evolution of dynamics shift from one symplectic leaf
to another on the application of such torques.

The dynamics of a planar two-body system evolves on the surface of a “cylinder”

(see Figure 4.2). Internal torques leave the “cylinder” invariant. On the other hand
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the external torques change the evolution of dynamics from one “cylinder” to another.
The following Corollary illustrates the dynamics when these torques are present. It

is important to observe the linear way in which the torques appear.

Corollary 4.1.2 : The dynamics of a planar two-body system in the (8,1, uy, u2)
space under the action of an internal control (reaction) torque T at the joint, and an

external torque T¥** on body 1 is given by :

f = 0, + T + T, (1.16)
. oH

Ha = —602 ) - T, (1.17)

. 8H O8H

02'1 = 'a—; - 'a—z. (1.18)

4.2 Three-Body Problem

A logical extension of the two-body problem is the three-body problem. A satellite
with symmetrically placed solar arrays on either side of the main satellite body, may
be modeled by such a system. The results presented in Section 4.1 with respect to the
Hamiltonian formulation can be extended to the planar three body case. A planar,
three-body system, with the bodies being connected in the form of a open chain with
frictionless revolute joints is considered. It is assumed that there are no external

torques or forces acting on the system.

Lemma 4.2.1 : The Hamiltonian of the planar three-body problem is given by
(1.3) with the conjugate momentum vector u and the pseudo Inertia matrix J being

defined as below:

ﬁ = [”1’”% ”S]T [ (2.1)
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J =

with

X12(62,1)
Xis(62,1 + 65.2)
X23(83,2)
Aa5(6:5)

E.'j

Tl x12 (92,1) x13(02,1 +0s2)
X1z (62,1) I, Xz (6s,2) ’
x1:'.(02,1 + 03,2) Xas (0s,2) I,

I + (a2 +e€) || Bz |2

L+ en|l&|* +es | Bs—& |2 + e Il Bs |12,
Is + (e2s+es1) | 832,

6121\;2,52(02,1) + 631'\5','79',’

€31 A:a"E’ (02,1 + 08,2)’
631A38,§8_;2(02,1) + GSIAZJ,‘Es’
(a-b)cos(b;;) + |a x b|sin(6;;),
L iAf hi=123,

(2.2)

r (2.3)

J

a and b are any (2 X 1) vectors. 02,1 and 03, are the relative angles between body 2

and body 1, and, body 3 and body 2, respectively.

Proof : Use Lemma 3.4.2, with N = 3.

Theorem 4.2.1: The dynamics of a planar, three-body system in the Hamiltonian

setting is given by:

”l = aoz'l’
. oH 4 OH
B = T 6., T 865,
. OH

ﬂs - 603'2’

P _ oH _ oH

2,1 allz 6#1’

p _ oH _ oOH

** T Bus 0w
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Proof : See Theorem 3.5.1, with N = 3.

Remark 4.2.1: The sum of conjugate momentum variables (i.e., )y + pg + pg) is a

constant.

The phase space for the evolution of the dynamics is a Poisson reduced space P,
and is coordinatized by (621,032, 41, 2, #3). The Poisson structure on the P space

{.,.} for this case is given by:

{9} = (31' af) dg _ of (39 39)

Ou1  Ouz) 8021 0821 \Ouy s
of 8f) g  8f (6g ag)

+ _ - — , 2.9
(al-tz Ous 303,2 303,2 Oug Ous ( )

where f,g :P— R

Corollary 4.2.1 : The dynamics of the three-body system could also be written in

terms of the brackets as below,

Ky = {uiaH} +=1,2,3
0,7 = {6:1,H} , (2.10)
bs; = {052, H}

Proof : See Corollary 3.5.1, with N = 3.

4.3 N-Body Problem (Chain)

In Chapter 3 we have given the Hamiltonian formulation of a planar rigid N-body
system, connected in the form of a tree structure. The equations for a open chain of
rigid, planar, IN body system, can be realized as a particular case of the tree structure

(see Figure 4.3). Note that J(f) =¢—1Vi=2,...,N.

Lemma 4.3.1 : The Hamiltonian for an open chain of planar, N rigid bodies

connected together by revolute joints is given by

1 -
H= EETJ l.&, (3.1)
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Figure 4.3: Planar N-body satellite connected in the form of a open chain

where, 4 = [#1, 12, ... un) is the conjugate momentum vector and J is an N x N

pseudo-inertia matrix,

I, X AIN ]
X2 T X
3 12 ‘z 2N (3.2)
AN Ao In |

Proof : Sce Lemma 3.4.2.

Theorem 4.3.1: For a system of planar N rigid bodies connected in the form of
a chain, the dynamics in the Hamiltonian setting under the application of internal

torques T;, + = 1,...N — 1 and external torques T*, 1 =1,... N, is given by:

. _ oH ezt
OH OH

B2 = B0y, 80a,

+ T - T + I,%,
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oH oH

(1 = — A A gzt
Hi 80115 06 + T T + T,

oH oH

, — _ _ ext
AN-1 = Bomns  0m-im-a + Tn Tn-2 + Ty—y,
. aH ezt
UN = —aoN,N-l - TN—l + TN ’
. OH oH
0,‘4_1..' = a#.+1 - 'a—“— for i=1,..,N-1,
] ]

where, 0,41 is the angle between body ¢ + 1 and body ¢, for1 =1,..., N.
Proof : Note J(¢) =i —1, Vi =2,...,N and use Theorem 3.6.1.

Poisson Structure

The Poisson reduced space P on which the dynamics evolve is coordinatized by

(62,1 -- 0N N-1,H15---,1n). The Poisson structure is given by,

{f,g}={fag}1+"'+{fvg}N_1’ (3.3)

where

af 6f) dg af (69 ag)

{f’g}o' = (au‘ - au‘-+1 6.0‘+"’.. - 30.-+1,e aﬂs - aﬂi+l

and f,g: P — R.

(3.4)

Corollary 4.3.1 : The dynamics in terms of the Poisson bracket under the absence

of external and internal torques, are given below,

ﬂ" = {#.‘,H} fori=1,...,N, (3.5) '
b,‘+1,.' = {0,’+1,;,H} for ¢ = 2, cee ,N, (3.6)

Proof : See Corollary 3.5.1.
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Figure 4.4: N-body (chain) example : special case
4.3.1 N-Body (Chain) : Special Case

Consider a special case of the N-body chain example wherein the center of mass of
a generic body 1 is along the line joining the two joints (see Figure 3.5). Symbolically

we have,
& = Kifiy1 1=2,...,N—2 (3.7)

where x; € R. By proper choice of the local frames of reference we have

. 1
Bisr = di i=2,...,N. (38)
[ 0]
.
1
&1 = dl . (3’9)
0-
1
&y = dy (3.10)
0

To find the dynamics of this system we first find the Hamiltonian of the system
as given by Lemma 4.3.1.

Thus we get

N
L = L+ Y _milléal?

=1
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N ~ o~
Ajl = ka5kj-6kl cos(oj,z),
k

=1

and

—(1-€)di[1,07 ;=1
611' = 9 —(Z{ij+1€l + fj'cf) di[l:O]T Jj=2,...,N-1, (3'11)
—-ENdN[l,O]T j =N

b + d;[1,0T 1<j<k-1
b + di[1,0]T =k . (3.12)
b; k+1<j<N

A\

5”' =

\

The dynamical equations are as given by Theorem 3.5.1.
Symmetrical N-Body Case

For the particular case of a planar N-body problem wherein the bodies have equal
mass, inertia and other physical parameters, and with the center of mass of a generic

body at the center of the line connecting the joints, we have

m; = m' Vi=1,...,N

d =d vVi=2,...,N—-1
d, = dy = 0.5d

ki = 05 Vi=2,...,N—1,

the 31,,- ’s are given by

- (&2) dL,0 j=1
— (#522) d1,0" j=2,....,N-1,

—5d[1,0]T j=N

A

61,' -

4

& + 41,07 1<j<k-1
bu + d1,0T 7=k
bj k+1<j<N

L
!
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4.4 Terrestrial Multibody Systems : An Example

The dynamics of a planar multibody system on ground connected in the form of
tree could be derived from the general multibody system dynamics in the following
way. Consider a multibody satellite system where the main satellite body is of infi-
nite mass. This could be easily modeled in the Hamiltonian setting. The resulting
equations for such a case are equivalent to the dynamics of a planar ground based
multibody system, with the earth playing the role of a body with tnfinite mass. We
give the following procedure for such a derivation.

The dynamics of a N 4+ 1 body system is computed first. The limiting set of
dynamical equations as the body 1 mass (and so its inertia) tends to infinity gives
the dynamics of the N body system on ground - with the absence of the gravity
term. The effect of gravity on the system can be modeled separately as an external
torque. The procedure is illustrated with a simple example of a planar two-link robot
manipulator.

We derive the dynamical equations of a planar two-link manipulator on ground as
a limiting case (as described above) of a planar three-body satellite system and verify
it using an example in Horn[21]. The dynamical equations of a three body system in

space is given by (2.2)-(2.8). As m; — 00 so I; — 00 we have from (2.3),

mpm;

€1,2, = lim = m
* m1—o my + mg + mg 2
€ = lim s =m
3,1 = =
oo mi—~ m; + my + mg s’
maqms

€230 = _lim = 0,

m1—00 My + mq + mg
Lo = [Iz + mg || & || + ms | Bs ”2] )

T = [Is + mg || s “2] '

Xizeo = m2A;2'§2(02,1) + mskga’gz(oz,l),
xlSoo = msf\;;,,a',(os,l),
Xnoo = msxga,‘ﬁ,(as.z)-
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Substituting so in (2.2) we get,

J3 = lJim J™

= Ihm Xz B Xy
Xas Xas T
0 O 0
1 ~ ~
= A0 Be Ame | (4.1)
0 A2300 Izoo

where, A, = (jszsw - X;Sw)'

From Lemma 4.2.1 and (4.1), the Hamiltonian for such a system can be calculated

as’
. 1 7
Hyo = lim -p Ju
Il—ooo 2_ -
1 7300 —Xzs«: U2
= E‘A—[ﬂz,#s] " . (4.2)
oo —A2300 200 Us

The dynamical equations of the ground based planar two-link manipulator in the

Hamiltonian setting computed using Theorem 4.2.1 are,

0H,,

f = v 0, (4.3)
Hr = gz:, (4.4)
ls = —ZZ‘:, (4.5)
é2,1 = aaIic:, (4.6) -
o = Shm 2t

where, H,, is given by (4.2).

Remark 4.4.1 : It is to be noted here that j; = 0 could be interpreted as that any

movement of other bodies has no effect on the main satellite body (i.e., the ground).
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Figure 4.5: Planar two-link manipulator in Horn’s example

Horn'’s Example : Counsider a particular case of a planar two-link manipulator as in
Figure 4.4. The links are in the form of two thin, similar rods of length I’ and mass
m' with the centers of mass of each link at the center of the rod. The Hamiltonian

for such a case from (4.2) is given by,

1 gt 12 cos(6s,2) - B3
Hoo = "2' [Mz ] ""3] g’l_”_ m'’3
2 605(93.2) e Hs
_ m'l" [wz ws} % -;-cos(os,z) Wa2 (4 8)
2 % cos(fs,2) -;- ws

We know that in the absence of internal and external torques for the above system,
the Lagrangian L is equal to the Hamiltonian H,, (as given by (4.8)). The Lagrangian

dynamics are given by,

4oL _ oL
dt 8 aq’
where ¢ = [0;, 6, 0s).
Simplifying the above equation we get,
b, _ 1| —9cos (65 ) sin (03,2)53.1 — 65in(0s2) (82,1 + 0s2)?
Bsa | A | {[24+9cos(0s2)] 625 + [9cos(@s.2) + 6] (921 + 85 2)?) sin(8s.2)
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A = (9cos?*(0s2) — 16),

which can be easily verified to be the time evolution equations of a two-link manipu-

lator in the example in Horn|[21].
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CHAPTER

FIVE
RELATIVE EQUILIBRIA & THEIR STABILITY

Stability of relative equilibria for the multibody problem is of interest. Study
of equilibria and their stability is essential for a better understanding of the phase
portrait of the system. Stability of equilibria of rigid spacecraft with multiple rotors
has been studied by Krishnaprasad and Berenstein [33] in the Hamiltonian setting.
Holm, Marsden, Ratiu and Weinstein, [18] have studied the stability of a heavy top
under this setting, using the energy-Casimir method. We use Arnold’s [1] energy-
Casimir method, as is summarized in Holm, Marsden, Ratiu and Weinstein [18] and
Krishnaprasad and Marsden [34] to determine the equilibria and to assess their sta-
bility. An equivalent alternative to this method is to look for the critical points of the
Hamiltonian H restricted to the symplectic leaves and test for definiteness of d*H at
these equilibria. The equilibria are not trivial to find since they involve the solution
of a set of nonlinear algebraic equations with trignometric polynomials. The solution
of these equations is a difficult task and as such no general analytical methods exist.
Numerical techniques like the continuation methods which in the past have been used
to solve inverse kinematics of robot manipulators [53], could be used to solve these

equations.
Definition : Consider a dynamical system X:
£ = f(z)
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with £ € P and P is the phase space. The equilibria z, are defined as the points
z, € P such that

z, = f(z.) = 0.

The energy-Casimir technique is introduced along with a simple free rigid body
example. General formulae to determine the Casimir functions and to find the Hessian
(d*H) are given, for a general multibody system. The equilibria for a two-body system
are computed. Their stability is analyzed and the results confirmed by numerical
simulation. Even though an upper bound on the number of equilibria for a three-
body problem can be found, the equilibria themselves are difficult to find. So, a
special kinematic case of the three-body problem is considered and the corresponding
equilibria are given explicitly. The energy-Casimir technique is applied successfully
to the case of N-symmetrical bodies wherin the bodies are rotating with constant

angular velocity in an extended position.
5.1 Energy-Casimir Method

We present the energy-Casimir method as given in Holm, Marsden, Ratiu and
Weinstein [18] and illustrate it for a simple example of a free rigid body. The procedure

to be followed regarding the method is outlined in three steps.

Step 1: Consider the system ¥ with the equilibrium point z, whose Liapunov sta-

bility we wish to ascertain. Find the conserved energy H: P— R, i.e.,

dH
= =0 (r1)

Consider a family of conserved quantities F : P— R. These conserved quantities
are typically Casimirs (generated by symmetry groups). The bracket of a Casimir
function with any other function g, where g : P — R, should be identically equal to

Zero.
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Step 2: ( First Variation ) Find all F in step 1 s.t. Hr = H + F has a critical
point at z, :

d(H + F)(z,) =0. (1.2)

Step 3: ( Second Variation ) The second derivative d*Hp(z,) is computed. If
it is definite then the system is Liapunov stable. The test is inconclusive if the above

computed value is indefinite.

We give here an application of the above method for the case of a free rigid body

(see Holm, Marsden, Ratiu, and Weinstein [18]}).

Example 5.1.1 : Free Rigid Body
The free rigid body equations are

m = mXuw, (1-3)

where m,w € R?®, w is the angular velocity and m is the angular momentum.
m is related to w by m = I.w where I = diag(l),[;,]5) is the diagonalized
moment of inertia tensor. The system is Hamiltonian in the Lie-Poisson structure on
IR® considered as a dual of the Lie algebra of the special orthogonal rotation group

SO(3). The Lie-Poisson bracket is given by,
{F,G} = -m(vF(m) x vG(m)), (14)

where F,G : R® — R.
It can be easily verified that for the bracket the system is Hamiltonian in the
sense of m; = {m;,H}, ¢ =1,2,3, where m = [m;,mz,ms]T. The Hamiltonian H

is simply the kinetic energy of the system and is given by

H = L—,_rr_zT I m. (1.5)
The Casimir function for the bracket (1.4) is any smooth function ¢ : R — R
such that

cs = o2, (16)
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An easy computation shows that the bracket of ¢ with any other function G is zero.

Application of the energy-Casimir method follows.

Step 1 : The equilibria of (1.3) occur when m and w are parallel to one another.
Without loss of generality the direction of m can be taken as the z axis. Further m

could be normalized as m, = [1,0,0].

Step 2 : (First Variation)
The derivative of

2
He, = s 'm + ¢(2h) (L.7)

¢ 2
o Iml?
dHe,-6m = (w + m¢'(5-)) - 6m, (1.8)
For the first variation dHc, to be zero we have

2l = 1. (1.9)

Step 3 : (Second Variation)
The second derivative of (1.7) at equilibrium point m, = [1,0,0] from (1.8) and
(1.9) is,

bw-bm + 4>'(lm—z;li)'|5ml2 + (m_¢-5m)’¢"(|—%ﬁ)

3 '_2 Py 2 " __2
_ 2(5’2) - ) }"f) + ¢(2Ey5m?

dzHC‘ . 5m_

The various conditions for the definitiveness of (1.10) are as given below.

(i) The quadratic form is positive definite if and only if

¢" > 0 ,

ILL > L, I > I,
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The function

sm) = ~Zlml + (In-1)", (111)

makes d?Hg, positive definite at the equilibrium point [1,0,0]. So any stationary
rotation along the longest axis is Liapunov stable.

(i) The quadratic form is negative definite if and only if

¢" < 0,

I, < L, I, <lIs.

An example of the function ¢ which satisfies the above condition is

2 Iml2 1\
2y _ _Zym? - (12 _ 2
¢(Imf) = —7|m| ( 2 2) , (1.12)
which makes d*Hg, positive definite at [1,0,0]. This proves that the rotation around
the short axis is (Liapunov) stable.

(iii) The quadratic form is indefinite if
L > L, I<I,
so we cannot prove by this method that the middle axis is unstable.

In summary the motion of a free rigid body along the long and short axes is stable.

5.2 Stability of Equilibria - A General Formulation

For a general multibody system we know that the Hamiltonian (which is nothing

but the system kinetic energy), as given by Lemma 3.4.2 is

1
H = §&T Iy, (2.1)

where J = J(0i ), k = 2,...,N) and the conjugate momentum vector u =

[61y. .., un]. Also
u = Jw, (2.2)
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where w is the vector of angular velocities.
Step 1 : The equilibria for the system can be determined by setting the dynamical

equations in Theorem 3.5.1 to zero, i.e.,

oH oH
by = > - =0 k=1,...,N, 2.3
Vi s.t.i=J(5) 30:'.-' aai,l(i) ( )
. oH oH
bk 0x) o Bus(F) 0 k=2,...,N. (2.4)
This results in
oH JoH ..
80
W = W = o = WN = W, (2.6)
and
O0H
=0 k=2,...,N, 2.7
[60::,1(,:)], (2.7)

where the subscript e indicates that the expression is evaluated at the equlibrium

point.

From (2.1) and (2.2) we have

H=-p-w (2.8)

[ RN

At any equilibrium, using (2.6) in the above equation we get,

1
H = cp-rw
= 1 w 2.9
= GHeWos (2.9)
where,
r = [ls""]-]T, (2'10)
and
Be = (B1 + -+ pun). (2.11)

Here p, is the system angular momentum.
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The constant angular velocity with which the bodies rotate when the system is at any

equilibrium is
2H
Wo = . (2.12)
e

Step 2 : For the noncanonical bracket in Corollary 3.5.1, the Casimirs are any
smooth functions of the form ¢ = ¢(u?) where, y, = (1 +---+ pn). It is easy
to check that the bracket of ¢ with any other function ¢ : R*~! » IR is equal to
zero. Using (2.5) - (2.7), the first variation of (2.1) at any equilibrium point can be

computed as

d(H + Cy¢).

2255 o ]

il

oH
[EE] 6”' + '—Elzl‘a¢ (ﬂ.) bu;

N
= Y [we + 2m8'(ud)] bms (2.13)
=1
Setting the first variation in (2.13) to zero would result in a constraint on the Casimir

function
Wo

$(1) =~z (2.14)

Step 3 : (Second variation) We initially calculate the Hessian (d*H) and then find
the second variation - d*(H + Cy). Using the first variation as in (2.13) we find

3°H  3°H
d’H = | o4 o ] (2.15)
8’0 8%H |~ ’
biop 887
Now from (2.1) we have
FH _ yu 2.16
8&2 - : ( . )
Taking partial derivatives of (2.1) as below and using (2.6) we get,
o’H [ 8J ]
| = -3 J-! 2.17
[39k,1(k)3_&], T (217)
aJ
—|J? e, 2.18
[ a”t,l(k)]," ’ (218)
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where the N X 1 vector r is as given by (2.10), and,

ot H 1 8 [,., oF ]
— —_ J-l ________J-l
[30):,1(1:)391,1(:)] 206k 5 [y‘ LRI =

1 _ 9*J 8y __, 87 -
= —EET 1 [30::,1(1;)391,1(1) - 230k,:(k)J 1301,1(1)] I
The above equation along with (2.2) and (2.6) gives
[ *H ] _ _gérr [ 9*J g oy __,
30k, 76)001,001) §, 27 |00k w)00150) OOk
with r as in (2.10). »
Assembling the second variation from the Hessian in (2.15) and, (2.16), (2.18) and

o1 ]r (2.19)
0] 7

(2.19) we get

s (4113‘75" + 2¢')R ~Wo [J—l Nf-}(nl]
O k=2,...,.N
(H +C4)e = Y [ ~1_aJ r]T [__gin__] )
° 80k s)— c B0k, 5k)061,0(1) R
k=2,...,N Vk,l=2,...,NJ
where -
[ 11 .---1
11 ..-1
R 221
11 1

5.3 Equilibria: Two-Body Case

We refer to the two-body example discussed in Chapter 4. The equilibria for the
system are found and their stability analyzed. To search for the equilibria we look
directly at the Hamilton’s equations on P, as given in Theorem 4.1.1, by setting them
equal to zero.

The first two equations turn out to be

. . [6H]
Ky = —H2 =

= edyd;sin(fz,) = 0, (3.1)
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whereas, the equilibrium condition bz,l = 0 becomes

Oy Buz) (3:2)
S0, jll‘l — €Az = jzﬂz — €Apy, or
Wy =Wy = wo(constant). (3,3)

From the above equations (3.1 and 3.3) we get the equilibrium conditions:

1. u; = constant,
2. p, = constant,

3. 0y =0orm

We are interested to study the non-degenerate equilibria, i.e., the system angular
velocity w, # 0. Degenerate equilibria occur when w, = 0. For notational simplicity
we will call the (non-degenerate) equilibrium points with 8 equal to 0 and 7 as “equi-
librium points 1 and 2” respectively. Equilibrium point 1 physically corresponds to
the uniform rotation of the bodies in an extended position (Figure 5.1a). In a similar
way the equilibrium point 2 corresponds to the bodies rotating uniformly in a folded

position (Figure 5.1b).
5.3.1 Stability

Energy-Casimir Method Applied to the Two-Body System:
First Variation : Let a Casimir Cy €F be chosen as below :
Co = ¢(ud),

where, #, = (41 + p2). Then the first variation of the Hamiltonian H (see Lemma

4.1.1) when computed taking into account (3.1 - 3.3) would result in,

oH o0H
d(H + C¢) = (‘_" + 2ﬂc¢') dl‘l + (— + 2ﬂ0¢’) dﬂz + (ﬂ) dé

O O ot
oH oH

= | == +2u,¢'|du, + ——-+2,')d . 3.4
(Bm u¢) 75 (6;;, U@ | duy (3.4)

67



body 1 body 2 body 1

0=0

(a) stable equilibrium (b) unstable equilibrium

Figure 5.1: Equilibrium positions for a Two-Body Problem

Applying (1.2) along with (3.4) we get

dH+Cy)=0 = ¢'(u,) - [BH

Ouy R
Wo
2u,’

where p, = (11 + p2),
Second Variation : The second variation of H can be computed either from the

general formula (2.20) or directly,

5E+ (16" +26) it (4" +20) 5l

8u38ua
& (H+Cp) = | G228+ (426" +2¢) 25+ (aui¢" +2¢') 550

L3I 4 8%°H 8%H

B8p1863, Ou3z8é3, Y
3.5)

Evaluating all the terms and choosing (2u2¢" + ¢') = 0 we get,
. I, ~X12(63.1) 0
dz(H + C¢)¢ = 'A— —112(92'1) T; 0 . (3'6)
e
0 0 Awjwsyd,d; cos (02,1)
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where A, = [ﬁz - ezz\fz(ﬂ)].
From (3.6), we see that the principal minors of d?>(H + C,) are,

UJZdldz COs (02.1)
E, Ac and AL .

Since I > 0 and A, > 0 we can see that the definiteness of d?(H + Cy) depends

on w?d;d; cos(f;,1). The following table gives the stability of the non-degenerate

equilibria for various conditions.

Item 02,1 =0 02,1 =
did; >0 Stable | Unstable
dyd; < 0 || Unstable | Stable

If w, = O (degenerate equilibria) then H is not definite and the energy-Casimir

test fails. In fact for w, = O the number of equilibria are snfinite.
5.3.2 Simulation: Two-Body Case

Numerical simulation of the dynamics of a planar, rigid, two-body problem, was
carried out to supplement our knowledge of the phase space and also to confirm
the results from the application of the energy-Casimir method. The simulation code
was written in FORTRAN and run on a VAX 11/785 under UNIX!. The results were
displayed on a IRIS 2400 Graphics work-station. The initial conditions were generated
separately for a particular value of the kinetic energy H and for a fixed value of the
conjugate momentum sum. A set of output data was taken for sufficient problem
time.

From Lemma 4.1.1 we have

1 X
H = %[wl,wz] 1 12 21) [ ]

~

12 02,1)

= [Ilwl + 2eb1c1w1w2 COS(02 1 + Izwz (37)

1UNIX is the trademark of Bell Labs. NJ.
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Now the system angular momentum g, (equal to the sum of the conjugate momentum

variables) is,

Be = (#1+ pa)

[ﬂl,ﬂ2] [ ! ] .
1

But from Lemma 4.1.1 we know that y = Jw, so

Hs = [wl,W2].JT. [ 1]
1

= (71 + ed;d; cos(ﬂo)) w; + (Tz + edyd; cos(8p) )ws.

i.e.,

o — #a = (T + edyda cos(6o) Jwy
2 — ~

(Iz + Ed;dz COS(00))
where, 0, is the angle 8,5 at time zero. Substituting for w, in (3.8) from (3.7), we get

: (3.8)

an equation of the form,

aw? + buy +¢ =0, (3.9)
where,

. = 1 [f N (Tl + edyd; cos(ﬂo))2T B (Tl + edyd; cos(p))

€d1 dz COS(ao)] N

27" (B + edidscos(80))* ° (Tz + edyd; cos(6o))
(’jl + €d1d2 COS(ao)) ~ Gdldz COSs (00)
b ~ Izu' + ~ k]
(Ig + Gdldz COS(ao)) (Iz + €d1d2 COS(00))

Ly;

x — H.
(I2 + ed1d; cos(6))?

A set of physical parameters ? and a fixed value of the conjugate momentum sum
#s = (1 + p3 ) were assumed. For a given value of H, from (3.9) and (3.8), we get
two sets of values for the [wy,w;]T vector and so for the (11, ug]T vector. Simulations
were carried out for each pair of these initial conditions by assuming a initial value of

n/2 for 03, i.e., 0, = 7w/2.

my = 125, m; = 100,d, = 0.8,d; = 0.6, I; = 70, I, = 50, and u, = 50. (SI units).
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A coordinate frame consisting of z = (i + ) cos(83,1), y = (k1 + p2) sin(02,)
and z = (u; — p3) was chosen to display the results. The trajectories were found to
live on a cylinder with the generators parallel to the 2 axis. The radius of the cylinder
(as expected) was equal to the conjugate momentum sum. For a given value of the
kinetic energy and 8,; at time zero the trajectories were closed. The trajectories
around the equilibrium point 1 were elliptical in nature with the ellipse being laid
out on the surface of the cylinder (see Figure 5.2). The major axes of these closed
trajectories (orbits) were along the circumference of the cylinder. The opposite ends
of the major axis ultimately met at a saddle point, which is the equilibrium point
2 ( see Figure 5.3). From then on the trajectories were closed around the cylinder.
From Figure 5.3 we can see that there are two homoclinic orbits from the unstable
equilibrium (equilibrium point 2) and back onto itself.

Application of internal torque (this changes the energy level in the system) resulted
in the trajectory jumping from one orbit to another but still remaining on the surface
of the ‘cylinder’ one started with. Application of an external torque would result in the
trajectory jumping from one concentric ‘cylinder’ to another depending on whether
angular momentum was added (bigger radius ‘cylinder’) or subtracted (smaller radius
‘cylinder’).

One can expect that, when an additional third body is attached or if the system
is forced (by means of a joint torque) there will be splitting of these homoclinic
orbits resulting in chaotic dynamics. Melnikov’s method may be used (see Holmes
and Marsden[19] ) for such analysis. The whole process of these evolving trajectories
suggests that the existence of a ‘energy ellipsoid’ which gradually emerges out, from
inside the cylinder, and the trajectories being formed by the points where this ‘energy

ellipsoid’ intersects the momentum cylinder.
5.4 Equilibria : Three-Body Case

Consider a planar satellite composed of three rigid bodies connected by revolute
joints in the form of an open chain (for details on notation refer to Chapter 4, Section

4.3). The local coordinate system for body 1 is chosen such that the x-axis is parallel
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Figure 5.2: Planar Two-Body Simulation - Equilibrium Point 1

Figure 5.3: Planar Two-Body Simulation - Equilibrium Point 2
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Figure 5.4: Planar Three-Body System

to the line joining Oy and Oy . Similarly the coordinate systems for body 2 and body
3 are chosen to be parallel to the line joining O and O;;, and, the line joining Os
and Oa3 respectively.

With such preliminaries taken care of, we define the vectors &3, &3,,52,&«,, in their
respective local coordinate systems to be : &; = [61,0]7, &s = [d1,0]7, Bz = [c1,0]7,
Bs = &2 + [e1, &5]7,

The equilibria for the three-body system can be found by setting the dynamical

equations (in Theorem 4.2.1) to be zero. This results in the following equations :

JoH dH
= =0 .
80,, 005, ’ (41)
bz,l = W — w1 = 0, (4.2)
bs'z = wg—w3=0. (4.3)
From the above equations it can be seen that
w; = wp = ws = w,(constant). (4.4)
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The system angular momentum y,, and the Hamiltonian H are given by

s
Hse = Wp [Z I + 2(A12(02,1) + A2s + As1 (021 + 93,2))] ’ (4.5)
1 T ~ o ~ ~
H = §w3 [Z L + 2(A12(02,1) + A2s(8s,2) + As1(021 + 03,2))]
i=1
1
= 3 ols)y (4.6)
or,
2H
Wo = —. 4.7
! (17)

Keeping in mind Lemma 4.2.1 we get,

oH 1 9 _
[392,1]e - 5802.1 (ETJ lﬁ)la

- — L4 H 0 .
3(rms + iz + ma) [A18in(02,; + 03,2) + By sin(f;,:) + C; cos(6z,)]

=0’

or, for the non-degenerate case (w, # 0),

A, sin(&z,l + 0312) + B sin(ﬁz,l) + C; COS(oz,l) =0, (48)
where,
Al = m,mscldl, (4.9)
Bl = [m3(61 + el) + mzbl] micy, (410)
Cl = Mmymgciéyz. (411)

Similarly, for 5% we get,

oH w?
303.2 - 2(m1 + my + mg

) [A1 Sin(az,l + 03,2) + Bz Sin(ag,z) + Csg COS(03'2)] =0,
(4.12)
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where,

B, = [ml(bl + 61) + m2€1] mgsd,, (4.13)

C; = (mi+ mz)msd;e. (4.14)

From (4.8) and (4.12) we assemble the final equilibrium equations:

A1 sin(02,1 + 03,2) + Bl sin(ﬂz,l) + C;l COS(oz,l) = 0 (4 15)
Ajysin(fz1 + 05.2) + B;sin(fs2) + Czcos(f32) = 0 .
We now use a polar transformation on the above equations.
Let,
n = €' so sin(fz1) = & [77 - 'l,] ; cos(fy) =1 [17 + %]
€ = e'Pa1%023) 50 sin(fy1 + 0s,) = 3 [E - %] ; cos(fz1+0s2) = 3 [f + %]
(4.16)
Substituting from (4.16) for the trignometric terms in (4.15) and simplifying we get,
1 . AN |
(f — E) A1 + (B1 + 1C1)7] + (—Bl -+ ZCI); = 0, (4.17)
1 N A
ol f— E Al + (Bz + 102)-’; -+ (—‘Bz + 102)—5- = 0. (4.18)
Further manipulation of the above equations yield,
(pr + ig:)n” + (pe +9g6)n° + -+ + (p1 + i) + (po + ig0) =0, (4.19)
[ 41+ (=B +iCy)n
== ; 4.20) .
¢ \J—(Bz+:oz)+.4m " (4.20)

where p;’s and ¢;’s are real constants, and ¢ is the imaginary operator.

From the fundamental theorem of algebra we see that the polynomial equation (4.19)
should have exactly seven roots subject to the condition p; + fg7 # 0. From (4.20)
we know that for every value of  we have two values of £.

Therefore in total we have 14 solutions of the (1, ) pair
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== 14 solutions of the (63 1,0s2) pair

The obvious question is whether all the above fourteen solutions of (4.19) are
feasible, since we have not taken into account the constraints | n |= 1 and | ¢ |= 1.
Several approaches have been tried, to answer this question satisfactorily . Since the
solutions have to lie on a unit circle an analogy to the stability of a discrete time
control system whose characteristic equation is (4.19), can be considered. This has
not led us to any conclusive result since the resulting expressions are horrendous.

Another approach is the following. If the ratio of the magnitudes of the coefficients
of n° to n7 is equal to one, then all the solutions have to lie on the unit circle, otherwise,
we know that there are only an even number of solutions which are less than fourteen.

Yet another approach would be that of restricting ourselves to a sub-class of
problems with simple kinematics, solving them and hope to gain some insight about
the number of feasible solutions.

With this motivation, the following special case of the three body system wherein
the joints and the centers of mass of the bodies lie in a straight line was considered
and solved. It was found that there may be 4 or 6 solutions of the (63,85 2) pair for

this special kinematic case of the three body system.

5.5 Three-Body System : Special Kinematic Case

We consider here a case of the three-body system with a special kinematic struc-
ture where the centers of mass of the bodies are aligned with the joints in a straight line
when the bodies are in a stretched out position. It follows that ﬁs—az = [e;,0]7.

So from (4.11) and (4.14)
e2=0 = C(C;=0C;=0.
Thus (4.15) reduces to,
A;sin(6z, + 0s2) + Bysin(6,;) = 0, (5.1)

Ay Sin(ﬂz,l + 03_2) + B, Sin(os,z) = 0, (5.2)
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with

Ay = cidymyms,

B, = [(bi+e)ms +. bymg) cimy,

B; = [(bl+€1)m1 + eym;] dims.

Subtracting (5.1) and (5.2) we get
sin(03,2) = nsin(ﬂz,l),

where

_ B
=5
Expanding (5.1) and substituting (5.6), we get

K

A;sin(6z,) [cos(fs2) + xcos(6,:) + 7] = O,

where

Consequently from (5.6) and (5.8) we have

sin(ﬂg,l) = 0 and Sin(oslz) = 0,

or,

sin(fs2) = «sin(6z,),

cos(fs2) + xcos(62y) + 7 = 0.

(5.3)
(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

It is obvious from considering (5.10) that the following four roots of the {621,032} -

pair could be readily identified :

{0,0} |
{0, 7}
{=,0}
{m,7} ]
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Figure 5.5: Fundamental equilibria

We label these equilibria as the fundamental equilibria. A stick figure representation

(Figure 5.5) helpsin bringing out the symmetrical way in which these equilibria occur.

The remaining equilibria for this system are computed as the solutions to (5.11)
and (5.12). Since the equilibrium equations are nonlinear and parameter dependent,
one needs to exercise care while solving them. The parameter dependence of the
equilibrium solutions can be summarized by two sets of constraints - parameter-sign
and parameter-value constraints respectively. It was found that two eztra equilibria
(other than the fundamental equilibria) can exist at a time, subject to the existence
of suitable values of x and 7 satisfying these constraints. The maximum number
of equilibria for a general three-body system (special kinematic case) is thus, 6. For
some values of x and 7 not satisfying these constraints and for the cases with x and /or
7 being gzero these eztra equilibria merge with the fundamental equilibria to give a

total of four equilibria.
5.5.1 Parameter-Sign Constraints
This constraint set restricts the existence of values of {6;,8s2} pair depending
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x>0 >0

D x:<0 1 <0

D x>0 1 <0
E x <0 t>0

Figure 5.6: Parameter-Sign Constraints

on the signs of £ and 7.

Using (5.9) in (5.1) we get
sin(fy1 + 0s2) = —r7sin(0,). (5.14)

Taking into account the signs of kK and 7, from (5.11) and (5.14) we get Figure
5.6, which illustrates the feasible regions of the solution pair {f;,,032} to form the

parameter-sign constraints.

5.5.2 Parameter-Value Constraints

The existence of solutions of (5.11) and (5.12) is also dependent on the actual
values of k and 7 (which are constants for a given three-body system). The parameter- |
value dependence of the solutions can be formulated by squaring and adding (5.11)
and (5.12), and simplifying to get

1-k%—-172

COS(az'l) = T, (5.15)
K*—72-1

COS(og.z) = '———2—7_————, (5.16)
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Figure 5.7: Parameter-Value Constraints
80,
2 2
l1—kx“—17
1 < —«<«1, (5.17)
2kt
P L |
1 < ———K<1. (5.18)
27

These equations could be represented in the form of a graph as in Figure 5.7. The

graph has been drawn for x’ > 0 and 7/ > 0, where

K = "cl’

o= |7

5.5.3 Local Frames of Reference

It is necessary to choose a local frame of reference for each of the bodies in order
to parameterize the system and study the system equilibria. Refer to Figure 5.8.
Proper choice of the local frames of reference for bodies 1 and 3 results in the vectors

B = [cl,O]T and &3 = [dI,O]T, where both ¢; and d; are positive. In general, the
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b, positive

by negative

Figure 5.8: Reference Configuration

local frame of reference of body 2 could be chosen in such a way that ,‘53 —ap =
[ex,€2]T = [e1,0]T, where ¢, is positive. Note that if & = [b;,0]T, the kinematic
parameter b; could be either negative or positive. The two cases of the signs of b;
represent whether the center of mass of body 2 is inside the line segment joining the
joints O;2 and Ogs or outside it. If any of the kinematic parameters ¢; or d; is equal
to zero then the three body problem decomposes into a two-body problem and a one-
body problem. It is also important to observe that with this choice of local frames of

reference, A; is positive (see (5.3)).
5.5.4 Parameter-Dependent Equilibria

We now delve into particular cases of the signs of parameters x and 7 and establish
the solutions to the equilibrium equations. We constantly refer to (5.3)-(5.9) while
formulating the necessary conditions.

In all the cases we consider, we first ascertain that there exist physically realizable
values of the kinematic parameters - ¢;, b1, €; and d;, before finding the actual

solutions. The equilibria are evaluated based on the signs of cos(6;,), and, cos(fs ;)
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(see (5.15) and (5.16) ), and according to the parameter-sign and parameter-value
constraints. The results are presented in the form of a table for each case. The
graphs under the column parameter-sign constraints have to be read with 6, ; as the
X-axis and 832 being the Y-axis (see Figure 5.6 for more details). The shaded regions
represent the valid regions of existence of the {6,,,032} pair. In the column of the
parameter-value constraints, the regions referred to are the regions of Figure 5.7.
Given values of k and 7, one can identify the corresponding table depending on
the signs of these parameters, and determine which region they belong to with regard

to Figure 5.7. The two eztra equilibria, if any, could then be read off from the table.
CASE1:xk>07>0

For x and 7 to be greater than zero, A;,B; and B; should be greater than zero.By

choice of the local frames of reference we have from (5.4) and (5.5) :

(by + e1)ms + bymz > 0 so €& > _(1 n %)bl,
]

mg
b - o (o)
(62 + e1)my + exmy so e > p—ra— by,

ie.,

e > — (1 + -"3) by (5.19)
mg

This is automatically satisfied if &; > 0.

The equilibrium solutions are given in a compact form in Table 5.1.
CASE2:xk<0.7<0

The case £ < 0 and 7 < O can be realized if and only if B, < 0, and B; > 0 (since
A; > 0 always).
Simplifying so from (5.4) and (5.5) we have

mse | my
—{1+=2)b, > >—(—————)b. 5.20
( +m,) > e e (5.20)

Naturally, the above equation indicates that this case is possible only if §; is negative

(since e; > 0).
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Cos(6 Parameter-sign Parameter-value _
Cas Cos(ez.) ( 3,) constraints constraints Equilibria
1.1 >0 >0 not satistied
1.2 <0 <0 . region 2 AN
L
1.3 <0 >0 region 1 L—"
1.4 >0 <0 region 3 N\
J
TABLE1: x>07>0
Cos(8 Cos(e )| Parameter-angle Parameter -value _
Case ( 2,1) 3,2 constraints constraints Equilibria
21 >0 >0 region 3 l—\
2.2 <0 <0 region 1 “l‘—?
2.3 <0 >0 Q region 2 —L—\
» _‘_/
2.4 >0 <0 not satisfied

TABLE 5.2: k<07 <0
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Cos(93 ) Parameter-sign Parameter -value

Case C°5(32,;) constraints constraints

Equilibria

3.1 >0 >0 region 2 L__/
7N\

3.2 <0 <0 not satisfied
3.3 <0 >0 region 3
3.4 >0 <0 region 1 \ :

TABLE53: k>07<0

Table 5.2 gives the equilibria associated with this case if (5.20) is satisfied.

CASE3:k>0,7<0

For this case since A; > 0 we have to have B;, B; < O i.e.,

e < —(1‘*‘91)61,
ms

< - (__TL__) b!.
m; + ma
With the choice of local frames of reference, €; > 0 so this case is possible only if b;

is negative and

ey < —(——m-l~) b;. (5.21)

m; + mg
The equilibria are as given in Table 5.3.

CASE4:x<0,7>0

The necessary condition for this case is

b, (1 + m’) < e <—b (——-'—"l——) (5.22)

my my + m;
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But e; > 0, so b; has to be negative. Then from (5.22) ]%h is greater than 1 but less
than a fraction — which is impossible.

So kinematic parameters satisfying k < 0 and 7 > 0 can never exist.

5.6 Equilibria of N-Body (Chain) : Special Case

We consider the special case of the N-body (chain) discussed in Chapter 4.3.1 with

no internal or external torques. The dynamical equations given by Theorem 4.3.1 are,

#1 - 602.19

B2 = B8y, 865,

. oH _ oH
pi = 80i41; 805y’

. _ OH B oH
Hr-1 = d9nnN-1 OOn_1n-2’
. - __OH
HUN = aaN,N—l ’
. o0H oH
Oiv1s = for i=1,..,N-1,

Opiv1 Oy
where u; ’s are the conjugate momentum variables.

Setting

i = 0,i=1,...,N
é.’+1..' = 0,{=1,...,N—1

we get the relative equilibrium conditions.
Considering non-degenerate equilibrium solutions (w, # 0) we have on simplifi-

cation,

w = [1,...,1]Tw.,,
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where w, is the constant angular velocity with which all the bodies rotate when the

system is at equilibrium. Also

8H ] N -
EY = wf }: Z Ajk sin(o,,,,-) = 0. (6.1)
s+1¢ i=1k=i+1

It is clear from 6.1 that

0"+1,,‘ = nm, i=1,...,N—'1,

n=01,2,...

gives a set of solutions.

Further it is obvious that
0,'+1,,' = 0, 1= 1,...,N—1, (6.2)

i.e., the case wherein the bodies are in a stretched out position and rotating with
constant angular velocity is definitely an equilibrium solution.

We now study the stability of this equilibrium solution for the case of symmetrical
bodies (bodies with same mass, inertia and physical parameters, and, with the center
of mass at the center of the line connecting the joints, see Chapter 4.3.1) using energy-
Casimir method.

By suitable choice of the second derivative of the Casimir function i.e.,
2u2¢" + ¢' = 0, (6.3)

we have from (2.20) the Hessian at the equilibrium given by (6.2) as

J! OnnN-1
d*(H + Cy), = On-1n [ﬁ%’m]‘ . (6.4)

Vk,l=2,...,N
We need to establish the definiteness of the above matrix at the equilibrium point
to prove stability. Since J is positive definite we need to find the definiteness of the

remaining part in (6.4), which on simplification yields

[ 8'H ] 1, [rT 823 65)
e | = 3% |L 35 ag L :
OOk k-100-1], 2 001 k-1001;-17],
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where

r 03 LN
r m[ = Z Z A.‘J(O) fO!‘le, l=2,...,N. (6.6)

e 1=1g5=l+1

and X ’sis given in terms of 8 ’s (see Chapter 4.3.1 and Theorem 3.4.2).

The expressions for 8 ’s involve inequalities and it is hard to prove in general the
definiteness of the matrix given by (6.5). A numerical experiment was conducted for
such systems, with the number of bodies varying from two to ten. In all cases the
matrix was found to be positive definite. These results are given in Appendix 1.

This conclusively proves that multibody systems consisting of two and upto ten
bodies have a stable equilibrium when all the bodies are rotating with a constant

angular velocity, in an extended position.
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CHAPTER

SIX

CONTROL & STABILIZATION

We have so far addressed the modeling aspects of multibody systems in space as
well as on ground. The equilibria of these dynamical systems have been looked into
and their stability for particular cases examined by means of rigorous analysis as well
as simulations. This leads to the next logical step which is the study of control of
multi-body systems.

The issues involved in the control of spacecraft can be divided into three categories:
sensing, control and actuation. Sensing of control and state variables is essential for
feedback control and supervisory purposes. Control of spacecraft could be done by ei-
ther passive (e.g. gravity gradient methods) or active means (e.g. momentum wheels,
gas jets, etc.) [58]. Actuation of control signals could be achieved by methods which
conserve mass and momentum of the system or by the ones which do not. Techniques
which make use of the former concept are based on the use of momentum and reac-
tion wheels, while the use of gas jets, magnetic torquers etc. do not preserve angular
momentum. The control strategy itself is dictated by the goal specifications, system
dynamics, external and internal disturbances, workspace limitations, and lastly the
available technology. A certain amount of analysis and understanding of the control
theoretic aspects greatly helps in devising such strategies.

In this chapter we prove global controllability as applicable to such multibody

88



systems connected in the form of a tree structure. We also prove that these multibody
systems are linearizable in the Input/Output (henceforth referred to as I/O) sense
by means of a nonlinear state feedback. Differential geometric methods are made
use of to achieve this “exact linearization” and the I/O map of the linearized system
is also given. Finally we conclude the chapter with a discussion of stabilizability of
these systems and prove a feedback stabilization theorem. In each section we will
go through examples which amply illustrate the control problem being tackled with
reference to multibody systems - particularly multibody spacecraft and terrestrial

and space-based robots.
6.1 Controllability

Consider a robot arm mounted on a satellite. The commanded motions of this
robot arm induce motions of the satellite constituting the robot base. As a result
the robot joint angles that would normally be commanded (on a stationary base) to
produce the desired robot end-effector motion, would result in a missed target. A
simple example illustrates this. Consider a space shuttle of mass mgs = 100,000 kgs.
with a maximum payload of my = 30,000 kgs on the shuttle remote manipulator
arm. We desire to move the payload by say r = 10 m. in inertial space. Making use
of standard kinematic relations, with a point mass model, the invariance of center of

mass position indicates that the payload has moved only

r
1+ &

= 7.5m. (1.1)

This would result in the end-effector missing the target by a large margin. Further if
the base of the shuttle arm is uncontrolled, the final end-effector state is not function
of the terminal joint angles alone, but is determined by the entire joint angle history. .
Thus the control of these special kinds of dynamical systems is made difficult since

the kinematics and the dynamics are coupled in these systems.

The reaction torques and forces on the Space Station due to the movement of the
MRMS could be minimized if the MRMS presents a low inertia profile when traversing

the space station keel. Similarly, for an open chain of bodies in space, it is of interest
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to us to study how using articulation control we could get this system of bodies —
which presents a larger inertia profile, to form a closed chain — which presents a
relatively smaller inertia profile for the dynamics. We may also want to conduct this
maneuver in an optimal way with respect to time and fuel.

Similar problems are also encountered in other applications involving robotics in
space. The Telerobotic Work System (TWS) ! as envisioned by NASA [28], is to be
used in conjunction with the Orbital Maneuvering Vehicle (OMV). The function of
the TWS will be the servicing of satellites; satellite repair; assembly and construction;
payload handling, and contingency repair of spacecraft. Imagine the TWS already
docked with the satellite to be repaired or serviced, and has now formed an ‘open’
chain along with the satellite. The manipulator arms on the TWS are now to be
used to repair the satellite. Commanded movement of the arm produces undesirable
reaction forces on the remaining (connected) bodies including the satellite. These
forces may move the position of center of mass of the satellite and may rotate the
body about its center of mass, resulting in the end-effector missing the target.

Thus the problem of closing an open chain of bodies in space appears to be generic.

Rapid reorientation of large space-based sensors from one stationary orientation
to another is a problem of continuing concern [46]. Such a “step-stare” maneuver is
rendered difficult due to the interaction of dynamics of the connected bodies. For
example consider a space based telescope which is connected to the main satellite
body by means of a revolute joint. Reorientation of the telescope may be necessary
while keeping the antennae on the main satellite body oriented towards the earth.

All the above examples require that a suitable control input be found to drive the
system from any initial state to a given final state in finite time. In other words we

are interested in controllability questions.
6.1.1 Multibody System Controllability

The Hamiltonian dynamics of a planar multibody system connected in the form

of a tree structure with joint (internal) torques T}, k = 1,..., N — 1 and an external

recent telerobotic literature refers to this as Flight Telerobotic Servicer (FTS) [63]
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torque T¥* on body 1 is given by Theorem 3.6.1 to be

(1.2)

(1.3)

for1=2,...,N -1,

. JoH
= > ot X Ta+T,
Vi, 8.t J()=1 "0 vy et J(j)=1
oH 0H
i = > - + > Tja—Tiy,
v, a.t. J(5)=¢ 30, 86:.3i) v, a.t. J(5)=i ’
oH
N =~ Ty,
BN 30N,J(N) N-1
. oH oH
. g - —_— f 1 = geony .
bt Ou; Ous(i) ot N

The above equations could be also written as,

- f(£)+gu}
y = h(z) ’

Q-

where the state vector z and control (input) vector u are given by

zr = [ﬂls---all’N’ok,J(k)a k = 2’--°7N] ’
T
u = [Tl’ v aTN—laT;z‘] ’
and
OH
205, et J()=155,;
8H aH
EVj, at. J(j)=i :’K - 86; 1 (5)
flz) = i=2, ..., N-1
)
86N, 2(w)
8H _ _8H —
| . Bpsy? k = 2""’N.
Q|lw
g = ’
I On_aN

(1.4)

(1.5)

(1.6)

1.7
(1.8)

(1.9)

(1.10)

and @ is a N x N — 1 matrix whose elements are either 0, +1, or —1, w =

[1,0,...,0]T, and On_yxn is the N — 1 X N null matriz.
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The output y is the vector of inertial angular velocities w of the system and is

given by :

h(z)

Je2
Il

= Ww

= [37]. (1.11)

Lemma 6.1.1 : The matrix _Q_ is full rank.

Proof : Let us first list some of the properties of the matrix @

0
(i)

(ii)

(iv)

(v)

_Q_isaNxN—lma.trix.

Any column of Q contains only two nonzero elements a (+1) and a (-1),

the rest are all zeros.

Consequently adding all the rows of @ results in a zero row vector. This

means that the rank of @ is less than or equal to (N — 1).

Addition of any r < N rows of @ results in a nonzero row vector (since
Q represents a directional vertez matriz of a connected graph. For more

details see Seshu and Reed [48], Lemma 5-1(b) and Theorem 5-1).

The non-zero elements of the first row of @ are always 1.

Let Q,,... » @ be the rows of Q. Let ci’s be scalar; the equation

N
ch_Q_h = QI,N—I’
k=1

has the only non-trivial solution (modulo a scale factor),

cp=¢cp=-r=¢cy=1, (1.12)

from properties (iii) and (iv).

Thus only one independent relation exists among the rows of Q. Since @ has N

rows the rank of @ is N — 1. Q.EE.D.
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Theorem 6.1.1 : The multibody system given by (1.6) is globally controllable., ie.,
one can find an input to take the system from any initial state in the state space to

any given final state in arbitrarily small time.

Proof : Diflerentiating (1.11) we get

. _ Oh,
vy = a_:gE
oh
= %2 [£(z) + gu]
oh 8h
= 3.7+ 5 gu (1.13)
Again from (1.11) we have,
[ -1.8J 4~
_ETJ 15_0;'-;‘1 1
_q’_f. = J—l _“TJ_I__B_‘!_J—I . Qlw—
oz= - 88i,5(i) 0O
UN-1,N
_,Ty-1_8d -1
| uJ MN,J(N)J )
= 3[Q|y. (1.14)
Recall that @ is full rank from Lemma 6.1.1, so [Q | _ul] is full rank and
oh
=g = ful
3;2 full rank,
i,e., from (1.13) we can choose
or 17'[ ok
u = [55_] [—E_f(z) +2] , (1.15)

where v € U is the new input. The block diagram (Figure 6.1) illustrates a realization ‘
by feedback.
So (1.13) becomes

vy =y, (1.16)

i.e., from (1.11), the above equation becomes
_d_) = V. (117)
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Figure 6.1: Controllable realization
Let
.Q. = [01,92s“'s0N]T, (1.18)

where 0; is the angle made by the local coordinate system of body i with the inertial

coordinate system. i.e.,

6 = w (1.19)
From (1.17) and (1.19) we get
(<) Oxn In © o
w Onn Onnw w INn . (1.20)
y = w

By choosing a suitable nonlinear control as in (1.15) we have reduced the system
in (1.6) to a I/O linearized system given by (1.20), which is controllable.

This means we can go from any given initial state [©(0),w(0)]T to any given final -
(arbitrary) state, [©(ts),w(ts)]T, in arbitrary time t; € R by carefully choosing the
control input v.

Consequently, we can go from any given initial state [Q(O),;_J_(O)]T to any given
final (arbitrary) state, [Q(t 7)1t ,)] T, in arbitrary time t; € R, since

b = Jw,
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0 = Q7e,
= the multibody system given by (1.6) is controllable. Q.E.D.

Actually we can say something more than just proving the existence of an input
which takes the system in (1.20) from any initial position at time zero to any final

position at time T (arbitrary). Let us represent the system as

2 = Az + By (1.21)

v = [OwnIn]2z

where z = [©, g]T. The following remark gives such an input v* which could be used

as a form of an open loop control.

Remark 6.1.1 : Consider the system (1.21). One of the controls which takes
the system from an initial position z(0) = [©(0),w(0)] at time zero, to a position

2(T) = |8(T),w(T)] at time T (arbitrary) is given by

v* = —BTe 4Ty, (1.22)
where * is any solution of
W(,T)n = 2z(0) — e 4T2(T), (1.23)
and
wo.y = [ ‘e-ATBBTe AT gy, (1.24)

for t € [0,T] is the controllability grammian [30].

Remark 6.1.2 : Orientation of articulated sensors could be accomplished by first
choosing a feedback as in (1.15) to I/O linearize the system and then accomplishing

the orientation by means of the open loop control given by (1.22).
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6.2 Exact Linearization

Exact linearization as opposed to linearization around an operating point involves
the use of differential geometric methods to determine the nonlinear transforma-
tion /feedback which linearizes the system. Beginning with the work of Brockett
[4] there has been considerable interest in nonlinear feedback theory to linearize a
nonlinear system by using the concept of feedback equivalence among systems (char-
acterized via necessary and sufficient Lie-algebraic conditions). Systems for which
feedback equivalence could be applied and which could be linearized can then be
taken to be equivalent to the linear controllable ones. Jackubczyk and Respondek
[27] discovered the necessary and sufficient conditions for the (local) feedback equiva-
lence for a nonlinear system, under a large group of equivalence transformation than
considered by Brockett [4].

Transformation of a nonlinear system to an equivalent linear system has been
done both in the single input case by Su [52], and in the multi-input case by Hunt,
Su, and Meyer [24]. This theory provided a formal mathematical framework for the
successful implementation of an automatic flight controller design for the vertical
and short takeoff (VSTOL) aircraft. The nonlinear plant could be controlled by
controlling the linear system, and any controller design could be done on the “linear
side” of the system (i.e., on the transformed nonlinear system). An inflight testing of
an automatic flight control system for a DHC-6 and an Automatic Wing Jet STOL
Research aircraft have been successful, and the methodology is being used for the UH-
1H helicopter. However these results are true locally only i.e., ‘in the neighborhood
of the origin’. Hunt, Su, and Meyer [23] have also formulated a procedure for the
global transformation of nonlinear systems to linear controllable ones for the single -
input case.

Isidori and Krener [26] consider a multi-input multi-output system case with the
inputs entering linearly, and achieved the Input/State linearization by using a combi-
nation of coordinate changes and static state feedback. The resulting transformation

could be explicitly solved to achieve the desired linearization. These methods are in
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general known as Input/State linearization.

Input/Output linearization as given by Isidori [25] for a class of nonlinear systems
with the inputs entering linearly could be effected either by a change of coordinates
or by a proper choice of nonlinear state feedback. The method uses Lie brackets
extensively and along with the Volterra series expansion achieves the desired results.
Here we use the Input/Output linearization procedure as delineated in Isidori[25]
Chapter 5.

The rigid body dynamical model of a general multi-body system in space could

be represented as ,

z = f(z)+gu,
v = h(z),

where, z € R, u € R™, y € R f:R¥™ 1, RN g: R2N-1 , RIV-1
R™, and h: R?V"1 5 R

Here z denotes system state vector, u denotes the vector of control variables (internal
torques only) and y is the vector of the system outputs, m and ! are the number of
inputs and outputs respectively. It is to be noted here that the control enters linearly
in the above equations.

The technique for exact linearization basically involves three steps. Firstly we
determine whether or not the system is Input/Output linearizable (here onwards re-
ferred to as I/O linearizable or simply linearizable) by a possibly nonlinear coordinate
transformation. The second step is a test to determine whether or not the system is

I/0 linearizable by the use of a feedback of the form,

v = afz) + B(z)v,

where, a : R ! S R™and 8: R ' S R™*XxR™and y € R™ is the new input.

If this test is positive, we go through the final step wherein we determine the
exact nonlinear feedback necessary to make the system I/O linearizable. The resulting
nonlinear representation of this I/O linearized system could also be found. It is to be

noted here that the technique is to be used locally. The submanifold over which this
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method works successfully could be found in the second step. A major difference with
regard to the model between this section and the previous one is that we consider

only internal torques here.
6.2.1 1/O Linearization of the Multibody System :

The dynamical equations for the multibody system with only snternal torques at
the joints and no erxternal torques, could be represented as (see Lemma 3.4.2 and

Theorem 3.6.1),

z = f(z)+gu
=)+ g ’ (2.2)
¥y = kh(z)
where
T
zr = [ltn B2 BNy 021,00 Ok g(k)s 00 s 0N,J(N)] , (2.3)
v = [T,Ta-Tna)” . (2.4)
f(z) is given by (1.9) and
9
g = - ; (2.5)
| On-1,n—1
h(z) = :01:,.7(1:), k= 2,...N]
= :QN—I,N | IN—l] z, (2.6)

where O, ; is a (k X j) zeromatriz, and Q is a (N x N — 1) matrix with elements 0,

-1 or 1. Note that by Lemma 6.1.1 the matrix @ is full rank.
LINEARIZATION :

We follow a method outlined by Isidori [25] Chapter 5, for the design of a control
system to re-orient the spacecraft under consideration. We give here the following
steps.

STEP I: Check whether the system given by (2.2) is linearizable by a change of

coordinates.
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First form

T --- T

Im
Ty = LiLjh = | i .. i | k=000, (2.7)
T - T
where
T: = L,Lihi i =1,--,l (2.8)
J =1,---,m,

and g; and h; are the element of g and h(z) respectively. m is the number of inputs
(equal to N —1) and [ is the number of outputs ( equal to N —1). The Lse derivative

L;g is defined as

Lyg = [Z—Z] s (2.9)

with the following properties easily proved by direct computation,
OL:h
oz
Lig = Ly[Li?'g] k21

Lk = |

If Ty, kK = 0,:--,00 is independent of z then we can find a (possibly nonlinear)
transformation to render the system I/O linearizable.

From (2.7) we calculate T to be

T, =

= QN-I,N—I ’ (2'10)

where Oy_; vy i8 a (N —1 x N — 1) zeromatriz.

Similarly we know from (2.7) that
T, = L,L;h. (2.11)
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But Lgh can be calculated from (2.9 and (2.6) to be,

[Oh
Lh = |—
w = o]
= [_O_N—I,N | IN-1] - f(z)
[ om _ om
duz Ouy
= 8H _ _8H
Opux (k)
8H _ _ 8H
L Sun  dun sy
oH
T—.——
5 (2.12)
Since from Lemma 3.4.2
oH -1
o T T E
= w
= [wlv va]T’
we have from (2.12),
Lih(z) = Q"w
’- Wo — Wy
= Wk — Wr(k)
| WN T W(N) |
= QTJ"IE_ (2.13)

Substituting (2.13) in (2.11) we get

T: = L, (Q"3'4)

= [;% (@73 'lﬁ)] g
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— 711 _ oTy-19 11 | 7
= 13| -Q"J BQJ u] On ]
= QTIT(9)Q. (2.14)

Since T1(z) is dependent on the state variables, there exists no transformation to I/O

linearize the system.

STEP II : Now we attempt to I/O linearize the system using nonlinear feedback
of the form u(z) = a(z) + B(z)v where B(z) is invertible and v is the new input.

To this end we construct a formal power series
[+ o]
T(s,z) = > Ti(z)s™*, (2.15)
k=0
where T is given by (2.7).

Fact 6.2.1 : There exists a solution to the I/O linearization problem if and only if

T(s, z) is separable i.e.,

T(s,z) = K(s)R(s,z), (2.16)
where
K(s) = 5 Kps*, (2.17)
and -
R(s,z) = R_1+§Rk(s)s"“l, (2.18)

and, with the inverse of R_; existing.

Proof : See Isidori [25] Chapter 5, Theorem (1.11).
NOTE: Ky is a matrix of real numbers.

Lemma 6.2.1 : The multibody system is I/O linearizable by feedback of the form

u = a(z) + B(z)v-
Proof : We know from (2.7) and (2.15)

M8

T(s,2) = On-in-1+[@7-3'-Q]s7?+ > [L,LER] ™

k=2

[Iv-157%] - [QT JNQ+ f: L,L%h] s—(k—l)] (2.19)
k=2
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comparing the above equation with (2.16) we get

K(s) = Onoan-108 + Incis™? + Onogner-87° + -+ (2.20)

ie,Ko = Ky = --+ = Koo = Oy_yn_; and K3y = —IN_j, and
R(s,z) = _Q_T-J‘I-Q+i[L,Ljh] g HtL, (2.21)
k=2
ie.,
R, = QT-J7'.qQ. (2.22)

Thus we can find a feedback of the form

u(z) = a(z)+ B(z)v,

if and only if R_, is invertible <=> R_; is full rank.
But from (2.21) R_; is full rank <=> J~! and Q are full rank.
It is clear from Lemma 6.1.1 that @ is full column rank. Since J is a pseudo inertia
matrix its inverse always exists, i.e.,
=> R_, is full rank.

So there exists a feedback which I/O linearizes the multibody system around any
point z,. The subspace over which this is true is given by the subspace over R_,
exists. Since R_; exists everywhere the system is I/O linearizable at any point in the

phase space.

STEP III : To find a(z) and B(z) using the structure algorithm.

We apply the structure algorithm as in Isidori [25] Chapter 5, to find the expression
for a(z) and B(z).
STEP IIL.1 : From (2.10) we know that

T, = Lgh = QN—I,N—I, (223)

VlTo = QN—I,N—I’ (224)
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where

P,
i = ’ (2.25)
Ki
and P, is a matrix with no rows. K} = Iy_;,
6 = 0 = r, (2.26)
71 = R;h = does not exist,
Y = Kih,
T
= [02,1, ,0k’J(k),...,0N’J(N)] . (2.27)
STEP III.2: Now
Ly~
g1 = L,Lih = R_;. (2.28)
L,Limi

Since Ry has rank ! = (N — 1) the algorithm terminates setting

& = rp = (N-1), (2.29)
P, = In-i,
K2 = does not exist,
Y2 = PyLm,
= Lsh. (2.30)

STEP III.3: Linearizing feedback
With the introduction of the feedback input ¥ = a(z) + f(z)v the dynamical

equations (2.2) becomes

= f(z)+gla(z) + B(z)y)
= f(z) + go(z) + gB(z)v,
z = f(z)+§(z)e }’ (2.31)
y = h(z)
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where
flw = fl@)+ge(z), (2.32)
i(z) = g¢B(2), (2.33)
f(z), h(z) and g are given by (1.9), (2.5) and (2.6) respectively.
a(z): For the closed loop system to be linearizable in the I/O sense we have to have
LiT(z) = On-in-1s (2.34)

where f, § are given by (2.32) and (2.33) respectively, and,

I‘(z) _ [ 7 J
72

= Lsh, (2.35)
i.e., (2.34) reduces to
[L,T(g)] e(z) = —L,T(z),
or using (2.13) and (2.35),
[LiLhla(z) = —L;[QI7'4].

But from (2.14) we have L,L;h = QTJ'Q, therefore,

o) = - [ag]” @1~ D i e

B(z): The I/0 linearizing feedback also needs to satisfy the following condition,
LiP(z) = [L,.. 9], (2:37)
where ¢ is the number of steps it took for the algorithm to terminate (here ¢ = 2).
i.e.,
[LT(2)) 8(z) = [L..,|0]
= [I'l I-Q-]

= In-1. (2.38)
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X(t) xr
-——' B() 4 X = f(x)+gu. h() "

Figure 6.2: 1/0 linearization of the planar multibody system

From (2.14) and (2.38) we have

Blz) = -[Q"3'@]™". (2.39)
LINEARIZED MODEL :

£ = flz)+3(z)v, (2.40)

y = h(z), (2.41)
where

fl@) = 1)+ ge(), (2.42)

#(z) = gb(a). (2.43)

f(z), g, h(z), e(z) and B(z) are given by (1.9), (2.5), (2.6), (2.36) and (2.39) respec-

tively. Figure 6.2 gives a block diagram representation of the system.

Remark 6.2.1: Since J™lpy =y = [, wn]T, we can rewrite (2.36) as
«la) = -[@ 00" [ @ |- grag 5% 0u] 162

= —[@"aY0)Q]™ [Q’J “1(0) |- @T3Y(g) %ﬂ f2),  (2.49)
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Also from (2.39) we have f(z) as

Blz) = [@TI(0)Q]™. (2.45)

From (2.44) and (2.45) it is clear that the knowledge of the inertial angular veloci-
ties of the individual bodies (w) along with the relative angles (§) between the bodies

is enough to find the linearizing feedback at any given instant.
6.2.2 Output in terms of new input:

We will compute y in terms of v the new input.

From Isidori chapter 5 equation (1.3) [25] we have

y = Wo(t)+./;tW(t,'r)g(r)dr, (2.46)

and
Wolt) = 3 L3h(z.) & (2.47)

and
W(t,r) = ZZL"°L~L"1h( o 1.)'” (t;;)%. (2.48)

- Point in state space around which the system is being linearized in the I/O sense.

Now from (2.47)

Wolt) = h(.azo)+§1;;~'h(go)t-':
1

= h(z,) + Lih(z, 1'+§L'Lh(_o) (2.49)
Lih(z,) = Lyptgah(z,) = Lsh(z) + Liha(z,). (2.50)
From (2.10) and (2.13) we have
Lih(z)) = QT37u(0) = Q"w(0), (2.51)
L, = [E(O),Q(O)]
= [12(0),- -, (0), 04,00 (0), k=2,---,N]",  (2.52)
w(0) = J7'(6(0)) - p(0). (2.53)
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Also from (2.13), (2.50) and (2.34) we have

therefore,

and,

L’,}’h(zo) = On_1,N-1

From (2.48) we have,

Using (2.54) and (2.51) we have

But from (2.38) [L;Lsh] 8(z) = Lys, substituting so in (2.57) we have

W (t,7)

Lih(z) = LyLsh(z)
= LT (z)

= ON_1N-1-

Wol(t) = 6(0) + Q"w(O)t.

0o T)nl Tﬂo

— no ni (t_
Wi(t,r) = ZL?LFL}'h(Q")_——nI! et

ng=0

o0 no

n T
= noz=o L}rOI/;th(_.'I_:o) (t —_ T)ro!

> L [LyLsh(z,)] B(z) (¢ - )n_

ng=0

o0 o Tno
W(t,r) = [Z L;IN} (t—T)n—o!

no=0
= IN..l(t - T).

Substituting (2.49) and (2.58) in (2.46) we have

where

y =

00) + Q7w(0) + [ ' /0 " 1\ o(rs)drydry,

T
= [02.1(0),---,0k,J(k)(0)1---’0N,J(N)(O)] ’

[w1(0),...,w:(0),... ,wN(O)]T ,
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We sum the results up in the following theorem.

Theorem 6.2.1 : The multibody system given by (2.2) can be Input/Output lin-
earized by the application of static state feedback v = a(z) + B(z)v where a and
B are state feedbacks given by (2.36) and (2.39) respectively, and v is the new input.
The I/O map with the feedback is given by (2.59).

6.3 Stabilization - N-Body Problem

In the case of a Hamiltonian system a natural approach to stabilization is pro-
vided by Liapunov’s second or direct method as noted by several authors Tsinias &
Kaloupsidis [54] , Marino [40], van der Schaft [56]. The obvious reason being that
the internal energy of the system H is a natural candidate for the Liapunov function,
since %}% = 0 along any system trajectory with the input equal to zero. If H posseses
a strict local minimum at the origin this tmplies that the system s locally stable
[32]. However in the present context H does not possess a strict local minimum,
but H + C does, where C is a Casimir function. In other words if we restrict the
system to the symplectic leaf of the Poisson manifold then H has a strict local
minimum.

The dynamics of the multibody system with control torques at the joints (in-

ternal torques) and an output y is given by (2.2) - (2.6).

Consider a Liapunov function V(z) as shown below,

V() = H + Cy

= A0k + $(u) (3-1)

where z = [u7,07]. Now using (2.2) - (2.6) and keeping in mind that Cy = ¢ (u?)

(1, is the total system angular momentum), we have

. d(H + C,
V(g) — ( ;t' ¢)
0H, X o¢(u?).
Bt z-——";fj‘ i, (3.2)
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But

0 (u3) _ 94(kd) . ._
P = 6_1‘1 Vi, 7 =1,...,N, (3.3)
also
N
i=1
from Theorem 3.5.1.
Using (3.3) and (3.4) in (3.2) we have
. oH
M
J0H O0H
= [gz _63:] (f(z) + gu)
N OH o0H 0H
= ) — [ > - + Tj—1 — Ti
i=1 O vy . J(5)=i 9855 8050 V5 a.t.EJ(j)zi ’
YN O0H ([0H OH
+ > [ - — ]
i=2 900y Omui Fusg)
N oH oH ]
= T, il
,.; ! [aﬂJ(i) O
N -
= =) Ti 1050 (3.5)
=2

Consider now a feedback
I, = C.'-lé.',.l(.‘),

on the system where, C; > 0

Substituting so in (3.5) results in

N
Viz) = -2 Ciabisq:
$=2 '
Since V(z) <0 and z = [ET,QT], V(z) is a valid Liapunov function for the

system. Further V(z) > 0. The system will converge to a maximal invariant set

given by
S = {x:V(:L') <C,V(z) = 0}.
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Now

Viz) = 0 = 8 = 0
=3> @ = constant vector.
But
0 = constant = w; = wy = -+ = Wy = W'
= w' = constant (since total angular momentum is conserved).
Since @ is constant and w = [w;,ws,--- ,wN]T is constant and 4 = J7!(f)w,
i is a constant. i.e.,
g =0,
6 =0
=> § = {z:z = equilibrium points of system 1 with 7} = 0}
Since S contains only discrete set of points and no trajectories, the system
given by (2.2) — (2.6) with a feedback T; = C;f; with C; > 0 is asymptotically
stable.

Thus we give the following Theorem.

Theorem 6.3.1 : The planar multibody system given by (2.2) - (2.6) with a
feedback T;_; = C;_lﬂ.',_;(.') and C;_; > 0 converges to a maximum invariant set

given by

S = {z:z = equilibrium points of the system with 7; = 0} (3.6)
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CHAPTER

SEVEN
SYMBOLIC COMPUTATION

We have used symbolic and LISP based computation as tools for generation, anal-
ysis and simulation of dynamics of multibody systems. This chapter discusses our
efforts in that direction. In Section 7.1 we present OOPSS a system designed to
generate, simulate and animate the dynamics of planar multibody system. We have
also used symbolic computation in a MACSYMA ! environment to generate the ex-
plicit dynamical equations of multibody system using augmented body method [59]
and nested-body approach [13]. Software has been written and validated. Section 7.2

discusses the symbolic generation of dynamical equations.

7.1 OOPSS : Object Oriented Planar System Simulator

OOPSS - Object Oriented Planar System Simulator, is a general purpose soft-
ware system architecture designed to generate the dynamical equations of a multi-
body system symbolically and to simulate the equations so generated numerically.
OOPSS animates the multibody system by exploiting the high resolution graphics
and windowing facilities of a LISP machine and has been implemented in Zeta-Lisp on
a Symbolics 3600 series machine. A nice user interface is characteristic of OOPSS.

Users can interactively :

1MACSYMA is a trademark of Symbolics Inc., Cambridge, Mass.

111



(i) choose any kinematic or physical parameter for the system,

(i) change any runtime initial condition - system energy, system angular
momentum, time step, maximum problem time, initial values of state

and other variables (angles, conjugate momentum variables),
(iii) select display parameters for the graphs,

(iv) choose torque laws and gains.

OOPSS is implemented using the Object Oriented Programming (OOP) tech-
nique. A brief introduction to OOP follows.

Objects are entities that combine the properties of procedures and data, since
they perform computation and save local state [50]. Also, objects could be linked to
real world things. A program could be built using a set of objects. In OOP we have
uniform usage of objects whereas conventional programming uses separate procedures
and data. Sending messages between objects causes action in OOP. Message sending
is a form of indirect procedure call and supports data abstraction.

General descriptions of objects in Zeta-Lisp are in the form of flavors. In Zeta-Lisp
a conceptual class of objects and their operations are realized by the Flavor System,
where part of its implementation is simply a convention in procedure calling style; part
is a powerful language feature, called Flavors, for defining classes of abstract objects.
Any particular object is an snstance of a flavor; for example a flavor satellite-body may
have satellite-body-1 and satellite-body-2 as its instances. Flavors have tnheritance
property; thus if we build a flavor using other flavors then all the properties of the
latter are inherited by the former. The variables associated with a generic object are
known as tnstance variables.

In a multibody system for example, a generic body ¢ can be defined as an object
with the following instance variables : a vector connecting the joint (i-1) to the center
of mass of body t, vector(s) connecting the joint (4-1) and other joint(s) on body i,
angle made by the body with respect to the inertial coordinate system and shape of

the body.
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Symbolic
eqn.
Generator

FORTRAN

Descriptor
Simulator

DISPLAY

Figure 7.1: Block diagram representation of OOPSS

Specific operations could be associated with the objects using methods. One can
create a method to define a specific operation on any instance of a flavor and attribute
special properties to it. For instance one can define a method for a body which is the
leaf of a tree and so has only one joint (i.e., only one body attached to it - contiguous
to and inboard) where as a generic body has two or more bodies attached to it.

Functions are used to send messages to instances of flavors through the already
defined methods.

OOPSS uses OOP along with symbolic manipulation to formulate and simulate
the dynamics of a planar multibody system. Figure 7.1 shows the block diagram
representation of OOPSS. A detailed description of each block is given in the following
paragraphs.

7.1.1 Symbolic manipulation

The symbolic equation generator generates the dynamics of a planar multibody
system connected in the form of a tree structure in the Hamiltonian setting. The
formulation and the notation is the same as detailed in Chapter three. This block is
implemented in MACSYMA. The input data for this block consists of the following:
the label of the body contiguous and inboard of the body under consideration J(1),
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7% ~%~ Node: Macsyma; Fonts: cptfontb ~3- %/
block(
n:3,

s8[2):11,2],
s8[3):11,2,8],

JJ[?] :1,
33i3l:2,

for $:1 thru n do dnertli]:in[4],

beta_t[2):matrix(lc_11,18]),
beta_t[3]:natrix([b_1+e_1],[e_21),

alpha_t[2):natrix([b_1],([8]),
alpha_t[3]:natrix([d_1],[8])

);8

Figure 7.2: Data file for the MACSYMA program

the various kinematic parameters included in the vectors &; and fi,-, the physical
parameters like the mass and inertia of the bodies; any external and internal torques.
A sample data file is as shown in Figure 7.2 for a planar three-body system. A session

of the automatic equation generation is given for the above data file in Appendix 2.
7.1.2 FORTRAN simulator

The FORTRAN simulator simulates the dynamical equations generated by the
symbolic equation generator, and has been implemented by FORTRAN-77 running
on the LISP machine. The FORTRAN simulator needs numerical values of all
parameters to be in an input data file. This input data file is generated by the
DESCRIPTOR. The input data file contains the numerical values of all kinematic
and physical parameters, the system angular momentum and system energy values,
problem time, time step etc., associated with the particular example.

The state and related variables (for example, angular velocities) at any instance
of time could be passed onto the DISPLAY block by means of lispfunctions to be

used for animation and display purposes. For example the,

lispfunction displaybody displaybody (omegal,omegaZ2,omega8,theta2l,thetaS2,time)

can be used as
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displaybody(wy,ws,ws, 021,032, 1)

in the FORTRAN program to pass the relevant variables to the DISPLAY block.
The function ‘displaybody’ is implemented in Zeta-Lisp in the DISPLAY package.

The initial condition for initiating the simulation is chosen as follows. An initial
system energy H, system angular momentum p,, and relative angle 8,; = @, are
selected. Since the energy is quadratic in the conjugate momenta (see Lemma 3.4.2)
and the system angular momentum u, = p;+uz we get two solutions for the (uy, p2)
pair. User has the choice to select either the ‘First initial condition’ or the ‘Second

initial condition’ (see Figure 7.3).
7.1.4 DESCRIPTOR

The DESCRIPTOR consists of descriptions of various flavors to implement the
display and the user interface. It also contains flavors to define a generic body in the
multibody system. Using methods we can attribute special properties to the instances
of the flavors.

The user snterface consists of a window with many panes (Figure 7.3). Three
frames of references in the corresponding window panes: inertial frame of reference
and two other selectable frames (from various joint and/or body frames), have been
implemented . The message pane where a part of runtime data for the FORTRAN
program is displayed. The simulation pane draws various graphs of state and/or other
variables as functions of time. The menu pane is self descriptive. Every item in this
pane is mouse sensitive (mouse selectable). More on this in the following sections as
we deal with particular examples of planar two-body and planar three-body systems.
A brief online HELP facility exists and information can be got by clicking left using
the mouse when it is highlighted.

7.1.5 DISPLAY

The DISPLAY block is the implementation of various functions to drive the

instances of flavors by sending messages to them. DISPLAY keeps track of sending
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proper messages to the relevant panes as and when it receives data from the FOR-
TRAN block. DISPLAY is characterized by a ‘tv:alu-zor’ option which helps in
erasing the display at time ¢ and creating a new display at time t + At. ‘displaybody’
and ‘cleanbody’ are functions to display the system and clean the displayed picture

off the relevant pane respectively.
7.1.6 Implementation
Two-Body Example

Refer to Chapter four for notation and description of the problem. Figure 7.4a
shows the menu pane for this example. Clicking left on the mouse when system
parameters is highlighted gives Figure 7.4b. Clicking left on Torque Law results in
Figure 7.4c. Further clicking on P-D Torque Law implements a joint torque law
(internal torque) - a proportional sinusoidal biased spring plus derivative controller,
ie., (Kpsin(fs,1 — Opias) + Ka8,,). Gains K, and K and the bias angle 8, could
be chosen (see Figure 7.4d) interactively by the user.

The stable equtlibrium is displayed in Figure 7.5. The trace shown in the inertial
frame is the trace left by the joint as it moves in space. Simple calculation shows
that this trace is indeed a circle when the system is in stable equilibrium position.
Figure 7.6 displays a trajectory when the system is at a point very near the saddle
point. Figure 7.7 describes a trajectory for an arbitrary value of the system energy. If
a P-D torque is introduced in the system then the resulting trajectory is as shown in
Figure 7.8 - 7.9 (no bias) and Figure 7.10 - 7.11 (bias). Notice that with K, equal to
zero and K  positive the system always goes to the stable equilibrium and confirms
our ‘stabilization theorem’ - Theorem 6.3.1, i.e., introduction of a feedback internal
torque proportional to the rate of the relative angle stabilizes the system. One could
also interpret this result as follows: by introducing this torque law the energy in the
system is dissipated till the system goes to a minimum energy state which is the stable

(stretched out) equilibrium.
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Connand . —
Show Simulation Draw Graphs
Change System Parameters Change Initial.Conditions
Choose Torque Law Clean Graphic Panes

Clean Simulation Pane Show Herald
Help Exit
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Figure 7.4: Two-body problem menu-pane
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Three-Body Example

A general three-body example has also been implemented on OOPSS. Figure 7.12
shows a general three-body system wherein the center of mass of the middle body is
not along the line joining the two joints. The filled-in circles represents the center of
mass of each body (the first body represented by a big circle, second with a smaller
circle and the third with the smallest circle). Display frames could be chosen by
clicking left on the ‘Choose display frames’ using the mouse. Figure 7.13 displays
special kinematic case of a three-body example discussed in Chapter 5.3. Joint torques
of the proportional sinusoidal bias spring plus derivative type can be introduced at

the joints (see Figure 7.14 ).
Complex Multibody Examples

Plans are underway to implement complex multibody system examples. As the
complexity of the examples grow one may find oneself limited by the processing ca-
pabilities of the currently available LISP machines. One could take advantage of the
existing parallelism in these problems by utilizing the processing power of parallel
LISP processors. A Connection Machine ? may just serve the purpose. Thus dy-
namics of complex multibody systems may be generated automatically, simulated and

animated.
7.2 Symbolic Dynamical Equation Generation

The formulation of dynamical equations by hand is a tedious process and of-
ten prone to errors. Many researchers have taken up the possibility of computer-
aided methods to generate these equations. One way of categorizing these computer-
oriented methods is by the way of numerical and symbolic programs. Numerical pro-
grams are characterized by numerical digital computation whereas symbolic programs

generate equations and accompanying expressions in symbolic (or alpha-numeric)

Zmanufactured by Thinking Machines Inc, Cambridge, Mass.
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form on the basis of alpha-numeric data. Efforts in this area have lead to a vari-
ety of simulation tools. We mention here a few such tools. This list is by no means
exhaustive.
(1) NBOD : A program written exclusively in FORTRAN ([13], to simulate the
dynamics of a multi - rigid body system, connected in the form of a tree structure
[14], gyrostats and spring loaded point masses could also be taken into account.
(2) TOAD ( Tele Operator Arm Design ) : This program is written in PL1/FORMAC
for a multi-link robot manipulator with revolute and prismatic (translational) joints
[51].
(3) OSSAM ( OHIO State Symbolic and Algebraic Manipulator ) : It is written in
LISP and was designed to reduce the use of memory. It can be implemented on a
small computer such as PDP-11 [10].
(4) EDYLMA : (Equation Dynamiques Litterales d’ un Manipulateur Artticule’)
Written for revolute joints only, in PL1/FORMAC [37].
(5) EGAM : (Equation Generation of Articulated Mechanisms ) Written in PL1 /
FORMAC for both revolute and prismatic joints. An evolution of EDYLMA [37].
(6) DYMIR : Written in REDUCE, it can take into account revolute, as well as,
prismatic joints [5].
(7) ARM : Algebraic Robot Modeler, generates forward solution and Lagrangian
dynamic robot model; implemented in ‘C’ and ‘LISP’ [42].
(8) MESA-VERDE : (MEchanism, SAtellite, VEhicle, and Robot Dynamics Equa-
tions) Simulates nonlinear dynamics and kinematics of articulated multibody systems,
uses augmented body method. Written in PASCAL (ANSI 1983 standard).
(9) DYNAMAN : (DYnamics and Analysis of MANipulators) Program to auto-
matically generate the dynamical equations and the Jacobian of a multi-link robot
manipulator. Written in MACSYMA it can also generate FORTRAN code to simulate
the dynamical equations so generated [49)].

Symbolic programs in general are more efficient in terms of running time in com-
parison with numerical programs due to the following reason. A symbolically gen-

erated expression for a specific multibody system, is composed of non-zero variables
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with fixed addresses. Its numerical evaluation takes little time. In a numerical pro-
gram, large number of summations and multiplications of terms which are zero for a
specific multibody system can cause substantial loss of computation time. Further-
more, computation of addresses for a large number of array elements with variable
indices can take significant amount of computation time. Complicated multibody
system evaluation based on symbolic methods can be faster by a factor of ten and
more as compared to numerical programs [59].

Symbolic programs have the ability to compute “sensitivity” of the model with
respect to parameters such as mass, length or inertia. This would be useful for design
purposes. A symbolic tool allows us to simulate some nonlinear control techniques
which would be difficult to realize using numerical methods [5]. Many these programs
are computationally transparent and so are easier to implement and to debug.

Increasing availability of LISP machines has lead to the popularization of LISP
based symbolic tools. These machines support a variety of languages including MAC-
SYMA, PROLOG, REDUCE, FORTRAN-77 and C. The windowtng, object oriented
programming and the menu driven programming capabilities make the programming
environment attractive. Excellent debugging facilities facilitates faster turn-around
time. Evaluation of slices of the program inside the editor is possible. Reasonable
graphic capabilities and good resolution are characteristic of such machines. A variety
of fonts help display of equations in a compact form 3.

Symbolic tools could be used to explore the phase space characteristics of dynam-
ical equations — like the computation of equilibria and also to study their stability
properties. They could also be used as advanced (symbolic) “calculators” to compute,
simplify and resolve symbolic expressions. In short a symbolic tool can be used as a
discovery tool.

A number of symbolic computation languages like MACSYMA, REDUCE, PRO-
LOG, MAPLE, and SCRATCHPAD II are available. We chose to use MACSYMA to

implement our symbolic computation. It has a nice interactive facility, it can be imple-

3Symbolics 3600 series, TI explorer, Xerox Dandelion are some examples of LISP machines

available in the market.
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mented in any computer system which runs LISP, is easily available and consequently
widespread in its usage. We have used MACSYMA to compute the equilibrium equa-
tions of a planar two-body and planar three-body systems. The stability of some of

these equilibria has been computed using energy-Casimir method (see Chapter 5).

7.2.1 Some Symbolic Manipulation Programs

A general purpose computer program for the automatic generation of multibody
systems in space, was created using the symbolic manipulation language MACSYMA.
The program uses the augmented body approach as given by Wittenburg [59] to
symbolically generate the dynamical equations. Dynamical equations for a three
dimensional multibody satellite connected in the form of a tree structure can be
generated. Individual bodies are modeled as rigid bodies, and are connected to each
other by revolute joints with as many as six degrees of freedom per joint. Input to the
program consists of the physical parameters of the satellite bodies like - mass, inertia
tensor, relative locations of the centers of mass and the joints; and the position of
the body 1 center of mass in the inertial coordinate frame. The external torques
and forces acting on the satellite bodies could be given either in the inertial or the
body frame of coordinates. The output is a set of second order ordinary differential
equations representing the dynamics of the system. The dynamical equations of a
planar two-body example in Quartararo [46] were generated using this program, and
the results were found to be in complete agreement.

Another symbolic manipulation program to generate the dynamical equations of
multibody systems in space was also implemented. Here we use a Newton-Euler
approach which is based on the method of nested bodies due to Velman [57]. Details
of the method are available in Frisch [13]. This program was also run with the previous
example and the results were found to be in total agreement with the augmented body

approach.
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CHAPTER

EIGHT
CONCLUSION

Dynamics and control of multibody systems has been the focus of this thesis. It has
been our contention that a good understanding of the dynamics of multibody systems
is imperative for formulating control strategies and for the eventual goal of controlling
such complex systems. We have dealt with a subclass of multibody systems namely
planar multibody systems connected in the form of an open kinematic chain. This
assumption is not restrictive in the sense that lot of applications could be found.

A Hamiltonian formulation of the dynamics of a general tree connected multibody
system was found. Existing translational and rotational symmetries in the problem
reduce the space on which the dynamics evolve. A Potisson structure (bracket) on
the reduced space was found and the dynamics represented in a elegant way using
these brackets. Any external and internal torque acting on the system could be taken
into account in the modeling. All this was presented in Chapter three.

Some interesting examples of few-body systems ~ two, three and N-body (chain),
were worked out in Chapter four. Equilibria of the multibody system dynamics on the
reduced space were studied in Chapter five. Non-degenerate equilibria (rotation of all
the bodies in the system with a constant angular velocities) were of interest. Stability
of such equilibria was examined using energy-Casimir method. A formulation of the
energy-Casimir method for a general case of an N-body system was given. It was

shown that for the planar two-body example there were two equilibria — a stretched
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out one (stable one) and a folded one (unstable one). A graphic computer simulation
study of the problem was also presented. We have also proved that there can be
as many as six equilibria for the special kinematic case of planar three-body system
where the system center of mass of the second body is along the line joining the two
joints. The equilibria of an N-body system where all the bodies were symmetrical
was studied and it was proved that the stretched out configuration is defintely an
equilibrium. A numerical experiment conducted to find the stability of equilibria
using the energy-Casimir method for specific cases of number of bodies ranging from
N = 2 to N = 10 indicated that the stretched out configuration is stable.

Some important control problems were tackled in Chapter six. Global controlla-
bility of planar multibody systems was proved, given all joint torques plus an external
torque (say a gas jet) on one of the bodies. Also the multibody system could be also
I/0 linearized by a feedback of the form u(z) = a(z) + B(z)v where u is the con-
trol input of only joint torques. A stability theorem was proved which states that the
system converges to a maximal invariant subset consisting of all the system equilibria
on the introduction of a feedback of the form I; = C — iéi’.](") where C; > 0.

Chapter seven was the concluding chapter of the thesis and presented our efforts in
applying symbolic and LISP based computation as tools for analysis and simulation
of planar multibody systems. OOPSS - an Object Oriented Planar System Sim-
ulator based on object oriented programming methodology, with a general purpose
architecture for generation, simulation and animation of planar multibody systems
was proposed. OOPSS has been implemented for two and three-body systems in
Zeta-lisp on a Symbolics 3600 series machine *. Forcing inputs like the joint torques
could be introduced and equilibria could be displayed. A stabilizing input illustrates

our stabilization theorem.
Future Work

We plan to extend the above formalism to three-dimensional systems i.e., for

systems with one or more degrees of rotational freedom between two bodies. Some

4manufactured by Symbolics Inc, Cambridge, Mass.
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work has been done in this regard by Grossman, Krishnaprasad and Marsden [16),
where they consider two rigid bodies connected by a ball-in socket (three degrees of
freedom) joint. Equilibria of complex multibody systems needs to be identified and
stability issues studied. Extension of this modeling methodology to flexible systems
are interesting to consider. One also would like to see a “controllability” theorem
on the symplectic leaf given the joint torques only. Implementation of OOPSS for

complex multibody systems is being considered.
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Appendix 1

We give the results of a numerical experiment conducted to study the stability of
the stretched out equilibrium (6,434 = 0, ¢ = 1, N — 1) for the symmetrical N-body
(chain) example using energy-Casimir method. The experiment was conducted with
the number of bodies varying from 2 to 10.

Finding the definiteness of the Hessian d?(H + C) at the above equilibrium is
equivalent to finding whether the matrix given by equation (6.6) Chapter 5, is definite
or not (since the psuedo inertia matrix J is always positive definite). Call this matrix
M. Recall that the matrix M is a (N —1 X N — 1) matrix. The numerical results are
given below. Note that p = d?muw?, where d is the distance between two adjacent
joints, m is the mass of each body and w, is the angular velocity with which all the

bodies in the system rotate at equilibrium.
N =2
First principal minor of M = 0.125.

So matrix M and thus d*(H + C) is positive definite.

N =3
First principal minor of M = 0.333p.
Second principal minor of M = 0.10416p%.

So matrix M and thus d*(H + C) is positive definite.

N =4

First principal minor of M = 0.5625p.
Second principal minor of M = 0.5p%.
Third principal minor of M = 0.25p5.
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So matrix M and thus d?(H + C) is positive definite.

N =35

First principal minor of M = 0.8p.
Second principal minor of M = 0.12375p%.
Third principal minor of M = 0.17875p53.
Fourth principal minor of M = 0.12289p*.

So matrix M and thus d*(H + C) is positive definite.

N =6

First principal minor of M = 1.041p.
Second principal minor of M = 2.33p%.
Third principal minor of M = 5.906p%.
Fourth principal minor of M = 11.813p4..
Fifth principal minor of M = 10.336p5.

So matrix M and thus d*(H + C) is positive definite.

N =7

First principal minor of M = 1.286p.
Second principal minor of M = 3.795p2.
Third principal minor of M = 13.964p5.
Fourth principal minor of M = 49.093p%.
Fifth principal minor of M = 125.46p°.
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Sixth principal minor of M = 133.3p5.

So matrix M and thus d*(H + C) is positive definite.

N =8

First principal minor of M = 1.531p.
Second principal minor of M = 5.625p%.
Third principal minor of M = 27.34p5.
Fourth principal minor of M = 140.0p*.
Fifth principal minor of M = 630.0p5.
Sixth principal minor of M = 1960.0p°.
Seventh principal minor of M = 2450.0p".

So matrix M and thus d?(H + C) is positive definite.

N =9

First principal minor of M = 1.777p.
Second principal minor of M = 7.826p2.
Third principal minor of M = 47.44p5.
Fourth principal minor of M = 321.19p%.
Fifth principal minor of M = 2107p5.
Sixth principal minor of M = 11555p°%.
Seventh principal minor of M = 42370p".
Eighth principal minor of M = 60908p%.
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So matrix M and thus d?(H + C) is positive definite.

N =10

First principal minor of M = 2.025p.
Second principal minor of M = 10.4p2.
Third principal minor of M = 75.64p%.
Fourth principal minor of M = 639.11p%.
Fifth principal minor of M = 5548p°.
Sixth principal minor of M = 44382p°%.
Seventh principal minor of M = 287101p".
Eighth principal minor of M = 12122058,
Ninth principal minor of M = 1969834p°.

So matrix M and thus d*(H + C) is positive definite.
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Appendix 2

DD DE 00D BB 00 DD DL DE 00 DL D DT E 06 6 06 0 D 00 0 0 0 0 D O 0 00 06 06 0 O D0 OE DE NS BE S

DYNAMICS OF PLANAR MULTIBODY SYSTEMS

WM MR UMMM NN H RN MMM MMM MNMMMNNMMNNNREEE NN N MRRNRNRRENNN

The nultibody system data s tn file :

DRTR FILE i>sreenathdplanar>datal.nacsyna.3

The path from center of mass of body 1 to body 2 1is [1, 2]

The path fron center of mass of body 1 to body 3 1s [1, 2, 3]

Hamlitonlan of the system is

LMy )
[ 1]
[y ne MU 3 [ ]
[ 1 2 3).JIN . [M ]
[ -~ =~ =--= [ 23
{ 2 2 2 1] { ]
fr )
£ 81

HNote: J_tnv is the matrix J “-1

The J matrix is given below

b 2 ]
[ (M M en n)ca ]
L 13 1 2 ]
L + IN ]
[ Hoen oN 1 h]
[ 3 2 1 ]
1
H M BINCTHETR ) C.1 E.2 COS(THETR ) (M M C1E 1+ (M H +H ¥ 1
Coti1=[ 1 3 2, 1 2,1 1 3 - 13 1 2) 8-1 6. g
*
1
H e M + N0 M +M +N
3 2 1 3 2 1 %
M M COS(THETA « THETR ) C_1 D_1 %
13 , 2 , 1 ]
Ho+n en ;
3 2 1 ]
[ M N BIN(THETA ) C_1 £2 COS(THETR ) (M M C1E1+ (M H + 8 H) B1C1)
1 3 , 2,1 13 18 12 - °
*+
H oM oo M oeH oen
3 2 1 3 2 1
(" +H)NM E 22 M +H) 2 ’ 2
. 2+ . mE1 +28 n B1EL N
Lol 2 = [ 2 1 3 2 1 3 3 A R
[ Hoem on * 1"2
[ 3 2 1
[ COSCTHETA. ) {((M < H )M DIEL1+H N B.1D1) (M + M) M BIN(THETR
[ , 2 2 1 3 3 2 1 3 ( 3, 2) p-1 .2
[, B B ] ;]
8 z 1 "3 : 2 * "1
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[ " " COS(THETA + THEYR y .1 D1
E 19 , 2 , 1
[ n o+M +n
E 3 2 1
[ COS(THETA ) ((H +M)M DIEL+M M B1D1) (M «n)n SINITHETA ) D1 E_2
r 3, 2 2 1 3 1 03 2 1 3 3
ol 3 = ( -— - -
C o+ «n noen en
C 3 2 1 3 2 1
{
4 2
£ (" +M)M D
£ 2 1 3
£t memmemmmmeoeomees + IN
4 M oen + M 3
L 3 2 1
The HAMILTONIAN DYNAMICS are
Conjugate Momentum (§.e., mu®s) Rates
)
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