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Abstract— This paper addresses the joint quantization and
control problem for hidden Markov chains with variable-
length block-coding. The aim is to understand the impact
of communication bandwidth and information delay (due
to block-coding) on the control performance. A heuristic
algorithm is developed to solve the dynamic programming
(DP) equation through the introduction of a metric on the
discrete observation space. Numerical results are presented
demonstrating the attention division in block-coding and the
tradeoffs between control performance and communication
bandwidth.

I. INTRODUCTION

Sensing and/or actuation signals in networked control
systems are quantized and transmitted through networks
for processing or execution. Understanding the impact of
information compression is central to proper assignment of
communication and computing resources in such systems.
Control with communication constraints has received in-
creasing attention in recent years, see, e.g., [1], [2], [3], [4],
[5] and the references therein. In [6] the authors studied op-
timal sequential quantization for Markov sources. Optimal
control of Markov systems (in particular, finite-state Markov
chains) under communication constraints was discussed
in [7]. There, again, sequential output quantization was
considered; namely, the observation Yn is quantized and
sent to the controller at each time n. It is well-known that,
if one is only concerned about the compression error, vector
quantization on long data blocks should be used [8]. For
real-time control systems, the delay associated with block-
coding might pose a problem. But a more careful study is
required to answer questions like, “can block-coding with
moderate block lengths strike the best balance between
coding efficiency and control performance?”.

The problem of joint quantization and estimation with
variable length block-coding was investigated in [9] for
hidden Markov chains. Preliminary study on joint sequential
quantization and control was also conducted in [9] with
analysis on an example problem. In this paper the joint
quantization and control problem is extended to the case
where block-coding is allowed. To highlight the idea, it is
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assumed that data transmission is completed instantly and
thus induces zero delay. But block-coding itself leads to
times when the controller does not receive any data, in
which case it still has to produce a control action based
on the previous data and the system model.

The “curse of dimensionality” for dynamic programming
(DP), coupled with the combinatorial nature of the problem,
makes solving the DP equation a formidable task. A heuris-
tic algorithm is introduced to approximately solve the DP,
which provides significant speedup. This algorithm is based
on the introduction of a metric on the discrete observation
space. In the numerical examples the heuristic algorithm
is shown to yield the same solutions as obtained through
exhaustively searching the solution space.

Understanding the bits allocation in block coding is of
interest for the development of efficient coding schemes.
Based on the analysis of mutual information between the
state and the observation, it is predicted that the more
recent observation will be paid more attention (i.e., be
quantized more finely) in block-coding. This prediction
is verified by numerical results. Numerical computations
are also performed to study the tradeoffs between control
performance and communication bandwidth.

The remainder of the paper is organized as follows. In
Section II the joint quantization and control problem with
block-coding is formulated and a DP equation obtained.
The heuristic scheme is described in Section III. Section IV
discusses the attention division problem. Numerical results
on the tradeoff study are presented in Section V. Some
concluding remarks are provided in Section VI.

II. OPTIMAL QUANTIZATION AND CONTROL WITH

BLOCK-CODING

Recall the setup in [9]. Consider a homogeneous, con-
trolled, hidden Markov chain (HMC) Xn taking values in
X = {x1, · · · , xS} for some S ≥ 1. The control Un takes
values in U = {u1, · · · , uK} for some K ≥ 1, and the
output Yn takes values in Y = {y1, · · · , yM} for some
M ≥ 1. For u ∈ U , 1 ≤ i, j ≤ S, 1 ≤ k ≤ M , denote

aij(u)
�
= Pr[Xn+1 = xi|Xn = xj , Un = u],

cik
�
= Pr[Yn = yk|Xn = xi].

The observation Yn needs to be compressed (with pos-
sibly block-coding) and transmitted to a remote controller.
The controller then computes the control action Un based
on the received bits and sends it back to the HMC. It is
assumed that the communication link from the HMC to



the controller is bandwidth-limited, while the link from the
controller to the HMC has no bandwidth limitation (such
asymmetry happens, e.g., when the remote site has much
more power for communication than the HMC does).

Let Π0 = (π0(x1), · · · , π0(xS)) be the a priori prob-
ability mass function (PMF) for X0. Given N > 0, the
goal is to find an admissible (to be made precise below)
quantization and control decision δ such that the following
cost is minimized:

J(Π0, δ) = E[
N−1∑
n=0

λJc(n) + Jr(n)], (1)

where J c(n) is the communication cost at time n, J p(n) =
gn(Xn, Un) is the running cost at n, and λ is a weighting
coefficient. By varying λ, one could obtain a family of
optimal solutions reflecting different tradeoffs between the
control performance and the communication consumption.

At time 0 one determines the length of the first data block
Y n1

0 = (Y0, Y1, · · · , Yn1) and the quantization scheme Q(·)
for this block. Here n1 + 1 ≤ B (the maximum block
length). Control actions U n1

0 should also be specified ap-
propriately at time 0. At time n1 the quantized information
qn1 = Q(Y n1

0 ) is sent to the controller. Note that if a plain
binary coding is used (as in the rest of the paper),

Jc(n) =
{

0 if 0 ≤ n < n1

log2(|qn1 |) if n = n1
,

where |qn1 | denotes the number of possible outcomes of
qn1 . At n1, one also needs to plan the quantization and con-
trol decision for the next data block. This process continues
until it reaches N −1. Time instants such as 0, n1, · · · , are
called decision times. Denote by Rn the bits received by the
controller before time n. A quantization/control decision is
admissible if:

• The quantization decision at time n (if n is a decision
time) for the next data block depends only on Π0, Rn,
and Un−1

0 ;
• Un depends only on Π0, Un−1

0 , Rn, and qn (if any
information is sent at n).

This is an “equi-memory” condition [7], and it elimi-
nates the need to transmit the quantization/control deci-
sion separately. On the other hand, it entails certain stor-
age/computation capability at the HMC side; in particular,
it needs to store the optimal quantization and control
policies (computed off-line), update the information state,
and perform online table lookup for quantization decisions.

For 1 ≤ j ≤ B, let Yj be the product space of j copies of
Y . Let Θj be the space of quantization (encoding) schemes
for a data block of length j, i.e., ∀Qj ∈ Θj , Qj : Yj →
{1, 2, · · · , M j}. Note that each Qj is essentially a partition
scheme for Y j . Denote by Π̂i = {π̂i(x1), · · · , π̂i(xS)} the
conditional PMF of Xi given Π0, Ri, and U i−1

0 . One can
write down a recursive formula for Π̂i; in particular, for
Qj ∈ Θj ,

Π̂i+j = Fj(Π̂i,Qj(Y
i+j−1
i ), U i+j−1

i ), (2)

for some function Fj (An example of Fj for j = 1 can be
found in [9]).

Now define a sequence of optimal control problems with
the cost functions Ji; 0 ≤ i ≤ N − 1, where Ji is obtained
by replacing “n = 0” in (1) with “n = i”. Let the value
function of the i−th problem be Vi. {Vi}N−1

i=0 can be solved
by DP.

Proposition 2.1: Let Πi be the initial condition (a priori
PMF) of the i-th problem. For 1 ≤ j ≤ B, Qj ∈ Θj ,
denote by |Qj | the number of partitions under Qj , and by
AQj the space of functions mapping the range of Q j to U .
The value functions Vi; 0 ≤ i ≤ N − 1, satisfy:

VN−1(ΠN−1) = min
Q1∈Θ1

min
α∈AQ1

λ log2(|Q1|)
+ E[gN−1(XN−1, α(Q1(YN−1)))], (3)

and for 0 ≤ i ≤ N − 2,

Vi(Πi) = min
j∈{1,··· ,B}

min
Qj∈Θj

λ log2(|Qj |) +

min
v0,··· ,vj−2∈U

min
α∈AQj

E[
j−2∑
k=0

gi+k(Xi+k, vk)

+gi+j−1(Xi+j−1, α(Qj(Y
i+j−1
i ))) +

Vi+j(Fj(Πi,Qj(Y
i+j−1
i ), vj−2

0 , α(Qj(Y
i+j−1
i ))))]. (4)

Sketch of proof. Note that there exist at most B choices for
the block length, and then use the dynamic programming
principle. �

By properly concatenating the minimizers in (3) and (4),
one obtains the optimal quantization and decision scheme.
Note that at any decision instant n, based on the current
information state Π̂n, one decides the optimal block length
j∗, the associated quantization scheme Q∗

j∗ , the controls
Un+j∗−2

n (since no observation is available at these times),
and the control map α∗ at time n + j∗ − 1.

III. A HEURISTIC SCHEME

Solving the DP equations (3) and (4) exactly is pro-
hibitive even for small-size problems due to their com-
binatorial nature. A heuristic scheme is developed here
to trade some accuracy for computational speed. The key
observation is that, the output (or the quantized output)
provides useful information only through the conditional
PMF of the state. For each block length j, instead of
exhaustively searching over the whole space Θ j for quan-
tizing Y i+j−1

i , in this scheme one only clusters outcomes
of Y i+j−1

i that yield “adjacent” a posteriori PMFs. The
underlying rationale is that, if the conditional PMFs Π̂(1)

and Π̂(2) corresponding to two outcomes y (1) and y(2) are
approximately equal, then the resulting conditional PMF
given observing either y(1) or y(2) (i.e., y(1) and y(2) are
grouped together) is

Pr(y(1))
Pr(y(1)) + Pr(y(2))

Π̂(1) +
Pr(y(2))

Pr(y(1)) + Pr(y(2))
Π̂(2),



which is approximately equal to Π̂(1) and Π̂(2). Therefore,
the information loss due to quantization (clustering) is
small.

To further illustrate the idea, consider a one-stage prob-
lem (N = 1) with the number of states S = 2. In this case
it suffices to consider only the first component π̂0(x1) of
Π̂0.

Proposition 3.1: Let N = 1, S = 2, and M ≥ 3. Let
(Q∗

1, α
∗) be an optimal quantization/control scheme. For

1 ≤ k ≤ 3, let y(k) ∈ Y , and denote

π̂(k) = Pr(X0 = x1|Y0 = y(k)).

If
π̂(1) < π̂(2) < π̂(3), (5)

then the following cannot happen:

Q∗
1(y

(1)) = Q∗
1(y

(3)) �= Q∗
1(y

(2)). (6)

Proof. Fix a quantization level L (number of clusters),
1 ≤ L ≤ M . We shall show that among all Q1 with |Q1| =
L, the one minimizing the running cost E[g0(X0, U0)] does
not satisfy (6).

Let π = Pr(X0 = x1| (quantized) observation). Fix u ∈
U ,

Eπ[g0(X0, u)] = πg(x1, u) + (1 − π)g(x2, u), (7)

which is a linear function of π. Minimizing (7) with
respect to u, one gets a concave function h(π) =
minu∈U Eπ[g(X0, u)].

For ease of discussion, assume that M = 3 (the case
M > 3 can be dealt with similarly). To further simplify
the presentation, assume that Pr(y(1)) = Pr(y(2)) =
Pr(y(3)) = 1

3 (Note Pr(y(k)) = Pr(Y0 = y(k))
given the a priori Π0). Consider L = 2, and there are
three possible clustering schemes: a) [y (1), y(2)], [y(3)]; b)
[y(1)], [y(2), y(3)]; c) [y(1), y(3)], [y(2)]. Denote the running
costs corresponding to the schemes by J (a), J (b), and J (c),
respectively. For the equi-probability case here, we shall
prove J (a) ≤ J (c) and J (b) ≤ J (c); for general cases, one
can prove min(J (a), J (b)) ≤ J (c). To show J (a) ≤ J (c),
denote π′ = π(1)+π(2)

2 and π′′ = π(1)+π(3)

2 . Then

J (a) =
2h(π′)

3
+

h(π(3))
3

, J (c) =
2h(π′′)

3
+

h(π(2))
3

.

Since π′ < π′′ < π(3), and π′ < π(2) < π(3), by the
concavity of h(·),

h(π′′) − h(π′)
π′′ − π′ ≥ h(π(3)) − h(π(2))

π(3) − π(2)
,

implying Ja ≤ Jc. Similarly J (b) ≤ J (c) is proved. �
The study of extension of Proposition 3.1 to the case

N ≥ 2 is underway. The above proposition suggests that
in quantization (for the purpose of control) one may use
metrics on the space of PMFs to measure the “distance”

between (discrete) output outcomes. Based on such a met-
ric many quantization schemes can be ruled out without
detailed evaluation, which provides computational savings.

For S = 2, the heuristic is particularly simple since
only one component of Π̂0 is needed and it becomes a
one-dimensional problem. Table I compares the number N q

of quantization schemes to be evaluated under exhaustive
search with that under the heuristic method, where No

denotes the number of possible outcomes (e.g., for a data
block of length 2, No = M2). It is clear from the table that
the exhaustive search soon becomes unaffordable, and the
heuristic provides a feasible alternative.

TABLE I

COMPLEXITY COMPARISON BETWEEN THE EXHAUSTIVE SEARCH AND

THE HEURISTIC ALGORITHM.

No Nq (Exhaustive) Nq (Heuristic)
5 52 16
7 877 64
9 21,147 256

11 678,570 1,024
13 27,644,437 4,096
15 1,382,958,545 16,384

Fig. 1 compares the value functions obtained through the
exhaustive search and the approximation method. Here the
horizontal axis is the first component of a priori PMF for
X0. In the computation N = 4, B = 1, S = 2, M = 5,
λ = 0.01, A(u) = [aij(u)] and C = [cik] are given by

A(u1) =
[

2/3 0
1/3 1

]
, A(u2) =

[
2/3 2/3
1/3 1/3

]
, (8)

C =
[

1/15 2/15 3/15 4/15 5/15
5/15 4/15 3/15 2/15 1/15

]
, (9)

and the cost matrix G = [gij ], where gij = gn(Xn =
xi, Un = uj), ∀n, is

G =
[

0 1
2 1

]
. (10)

For this example the two value functions overlap and the
heuristic algorithm yields the exact solution. In another
computed example (not shown here) with B = 2 and
M = 3, the solutions generated by the heuristic again agree
with those by the exhaustive search.

IV. ATTENTION DIVISION IN BLOCK-CODING

It is of interest to study the attention division problem in
block-coding. For example, if a block Y i+j−1

i of length j
is quantized, one can ask how the bits are divided among
Yn; i ≤ n ≤ i + j − 1. Answers to such questions can help
in evaluating the importance of different data samples, and
may provide hint in developing approximate solutions.

Note that in (4), the quantized version of Y i+j−1
i is used

for evaluation of the information state at time i + j − 1,
which is subsequently used for picking control action at
i + j − 1 and for propagation of the information state.



0 0.2 0.4 0.6 0.8 1
2

2.5

3

Va
lu

e f
un

cti
on

s

π
0
(x

1
)

Exhaustive
Heuristic

Fig. 1. Comparison of value functions obtained through the exhaustive
search and the heuristic algorithm.

The concept of mutual information [8] is useful here.
The mutual information I(W ; V ) = H(W ) − H(W |V )
between two random variables W and V reveals how much
information of W is contained in V or vice versa. Here H(·)
and H(·|·) denote the entropy and the conditional entropy,
respectively. In the setup of this paper one can compare
I(Xi+j−1; Yn) for i ≤ n ≤ i + j − 1.

Lemma 4.1: For n1 ≤ n2 ≤ n3,

I(Xn3 ; Yn2) ≥ I(Xn3 ; Yn1), (11)

i.e., the mutual information between the state and the
observation decreases as their time difference increases.
Sketch of proof. To illustrate the idea, consider the case
S = M = 2 (two-state and two-output), and without loss
of generality, we shall show I(X1; Y1) ≥ I(X1; Y2) (this
is equivalent to proving I(X2; Y2) ≥ I(X2; Y1) since the
reverse chain is also Markovian).

The conditional PMF of Y1 given X1 is given by
C = [cik], while that of Y2 given X1 is given by C ′ =
[c′ik] = AT C, where A = [aij ] is the probability transition
kernel. This implies c′11, c

′
21 ∈ [c11, c21] (assuming c11 ≤

c21). Hence Y2 tends more to produce same outcomes for
different states X1 than Y1 does, implying I(X1; Y1) ≥
I(X1; Y2). �

As an illustration, Fig. 2 compares I(X2; Y1), I(X2; Y2),
and I(X2; Y1, Y2), where the horizontal axis is Pr(X1 =
x1). The transition kernel used here is A(u1) in (8), and

C =
[

5/9 1/3 1/9
1/9 1/3 5/9

]
. (12)

A problem for S = 2, B = 2, and M = 3 is solved using
the exhaustive search. The matrices A(u1) and A(u2) are
as in (8), C as in (12), and G as in (10). Blocks of both
length 1 and length 2 show up in the optimal quantization
schemes. A closer look reveals that there are two coding
schemes for data blocks of length 2, both partition Y 2 into
two sets:
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Fig. 2. Comparison of mutual information.

• Scheme 1: [(y1, y1), (y2, y1), (y3, y1)], and
[(y2, y1), (y2, y2), (y2, y3), (y3, y1), (y3, y2), (y3, y3)];

• Scheme 2: [(y1, y1), (y2, y1), (y3, y1), (y2, y1)], and
[(y2, y2), (y2, y3), (y3, y1), (y3, y2), (y3, y3)].

Here each pair (ym, yl) represents an outcome of (Yi, Yi+1).
It can been seen that in both schemes, Yi+1 is quantized
more finely than Yi.

V. NUMERICAL RESULTS ON TRADEOFF ANALYSIS

Fig. 3 shows the running cost J r vs the total bits Jc as the
weighting coefficient λ (communication cost per bit) is var-
ied from 0.01 to 0.5, calculated using the heuristic method.
Here S = 2, M = 3, K = 2, B = 2, N = 2, and A(u),
G, and C are as in (8), (10), and (12) respectively. Higher
λ leads to less bits and consequently higher running cost.
As λ changes from 0 to ∞, the resulting optimal solutions
for (1) constitute the family of Pareto optimal solutions
for the two-objective problem, providing the tradeoff curve
between the running cost and the communication bits.
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Fig. 3. Running cost vs. the communication bits.

In general the optimal quantization schemes involve time-
varying block lengths, and for different a priori PMFs of
X0, the total communication bits might be different. Next



we restrict to the class of quantization/control schemes that
carry certain fixed block-length B0, and compare the control
performance of optimal schemes in this class as B0 is varied
while the total number of bits is fixed. The motivation is to
see, given a fixed number of communication bits, which
one leads to better control performance: more frequent
communication with coarser quantization, or less frequent
communication with finer quantization. In the examples
here, we compare the case B0 = 1 (Block-1) with the case
B0 = 2 (Block-2). In Block-1, 1 bit is allocated for each
block; in Block-2, two bits are allocated for each block.
The time horizon N = 4, S = 2, M = 3, K = 2. Two sets
of parameters are used. In the first set, A(u), C, and G are
as in (8), (12), and (10), respectively. In the second set,

A(u1) =
[

1/5 3/5
4/5 2/5

]
, A(u2) =

[
5/7 3/7
2/7 4/7

]
,

C =
[

3/16 9/16 4/16
8/25 7/25 10/25

]
, G =

[
5.4 2.8
3.5 5.9

]
.

For the first set of parameters, control performance is better
under Block-1 (Fig. 4). For the second set of parameters,
Block-1 does better than Block-2 except for some initial
conditions (Fig. 5). The figures suggest that, for the current
setup, there is no general answer about which (fixed) block-
length offers the best control performance; indeed, the
optimal block-length seems to depend on the parameters
and the initial condition.
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Fig. 4. Running cost vs. Pr(X0 = x1) based on the first set of
parameters.

VI. CONCLUSIONS

In this paper the problem of combined quantization and
control with block-coding has been studied, where the DP
equation is of a special form. A heuristic algorithm has been
proposed to facilitate solving the DP equations numerically.
The algorithm lifts the output observation from the discrete
space Yj to the space of conditional PMFs of the state thus
endowing a metric on Y j .

An important goal of this paper has been to understand
the impact of block-coding on the control performance. It
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Fig. 5. Running cost vs. Pr(X0 = x1) based on the second set of
parameters.

has been found that the more recent observation is more
relevant for the purpose of control, and indeed the optimal
scheme quantizes it more finely. Numerical results have
been presented showing the tradeoff between the control
performance and the communication needs.

Despite the significant speedup it provides comparing
with the exhaustive search algorithm, the heuristic algorithm
is still of combinatorial nature and its complexity grows
exponentially with the number M of outcomes. However,
the current framework lends itself naturally to various
stochastic and deterministic tools in the literature of vector
quantization (VQ) [10]. Future work will involve applying
VQ algorithms to develop scalable methods for solving the
DP equations.
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