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Often in engineering design selection there is no one design alternative that is 

better in terms of all attributes, and the preferred design(s) is dependent on the 

preferences of the Decision Maker (DM). In addition, there is always uncontrollable 

variability, which is mainly of two types, that has to be accounted for. The first type, 

preference variability, is caused due to the DM’s lack of information on end users’ needs. 

The second type, attribute variability, is caused due to uncontrollable engineering design 

parameters like manufacturing errors. If variability is not accounted for, the preferred 

design(s) found might be erroneous. Existing methods presume an explicit form for the 

DM’s “value function” to simplify this selection problem. But, such an assumption is 

restrictive and valid only in some special cases. 



The objective of this research is to develop a decision making framework for 

product design selection that does not presume any explicit form for the DM’s value 

function and that accounts for both preference and attribute variability. 

Our decision making framework has four research components. In the first 

component, Deterministic Selection, we develop a method for finding the preferred 

design(s) when the DM gives crisp preference estimates, i.e., best guess of actual 

preferences. In the second component, Sensitivity Analysis, we develop a method for 

finding the allowed variation in the preference estimates for which the preferred design(s) 

do not change. In the third component, Selection with Preference Variability, we develop 

a method for finding the preferred design(s) when the DM gives a range of preferences 

instead of crisp estimates. Finally, in our fourth component, Selection with Preference 

and Attribute Variability, we develop a method in which the DM gives a range of values 

for attributes of the design alternatives in addition to a range for preferences. 

We demonstrate the methods developed in each component with two engineering 

examples and provide numerical experimental results for verification. Our experiments 

indicate that the preferred design(s) found in our first, third, and fourth components 

always include the actual preferred design(s) and that our second component finds the 

allowed variation in preference estimates efficiently. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. BACKGROUND, MOTIVATION, AND OVERALL OBJECTIVE 

Selecting the “most preferred” design(s) from a set of alternatives that have 

multiple governing criteria or attributes has been a significant research thrust in 

engineering design selection and many other decision making processes [Haimes, 1983] 

[Haimes, 1998] [Hazelrigg, 1998] [Neufville, 1990]. Consider an example wherein a 

designer is selecting an automobile design. Typical attributes/criteria that the designer has 

to consider in selecting an automobile design are 0-60 time1, cost of the automobile, 

safety of the passengers, and fuel economy to name a few. These criteria are often 

conflicting (e.g., 0-60 time and fuel economy) and there is no one alternative that is better 

in every attribute and there are always trade-offs involved. So a designer acting as the 

Decision Maker (DM) has to be careful in assessing the preferences because the decisions 

taken during a design selection process are usually irrevocable [Hazelrigg, 1996]. 

When making a selection, the DM has to satisfy the requirements of the end users. 

In our automobile design selection example, an automobile user in a normal household 

would like the automobile to have higher fuel economy, low cost, high passenger safety, 

and an average 0-60 time. On the other hand, an automobile user with a racer mentality 

would like the automobile to have less 0-60 time, high passenger safety, average fuel 

economy, and average cost. So, the designer requires complete information about the end 

users’ needs for making a selection that satisfies the end users. Often, such complete 
                                                 
1 0-60 time is the time taken by an automobile to accelerate from zero to sixty miles per hour. 

 



information is not available to the DM (due to lack of resources) which induces 

“variability” in the DM’s preferences [Insua and French, 1991] 

[Kirkwood and Sarin, 1985]. By variability2, we mean uncontrollable changes in the 

parameters (e.g., preferences, attributes) of selection. In the automobile design selection 

example, when asked to state the relative importance between the attributes: 0-60 time 

and the fuel economy, the DM might not state the preferences with certainty because 

he/she does not know what exactly the end users need. We call this preference variability. 

In addition to the end user’s needs, the DM also has to consider the manufacturing 

errors, use conditions of the product when making the selection [Hazelrigg, 1998] 

[Li and Azarm, 2000]. In the automobile design selection example, an automobile that is 

designed to have an attribute level of six seconds for the 0-60 time might in reality have 

the 0-60 time between five and eight seconds due to manufacturing errors, modeling 

errors and so on. Also, the fuel economy of the automobile might vary depending on the 

use conditions. For example, a higher fuel economy is obtained when the automobile is 

used on freeways than in congested traffic. Such lack of information on manufacturing 

errors, use conditions, and so on, causes variability in the attributes, which we call 

attribute variability. 

Hence in a typical engineering design selection process, the DM, like the 

automobile designer, has to make a selection from a number of design alternatives, with 

multiple governing attributes/criteria, accounting for preference and attribute variability. 

This typical design selection situation is depicted in Figure 1.1. If the variability is not 

accounted for, the selected preferred design(s) might be erroneous [Law, 1996] [Li, 2001] 

                                                 
2 Contrary to our definition, some researchers in the literature use the term variability for referring to 
uncertainty that cannot be quantified and that cannot be reduced by obtaining more information. 
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[Neufville, 1990]. In such a situation (see Figure 1.1), the DM’s engineering judgment 

alone is not enough to make a selection and a formal, mathematically sound technique is 

needed to assist the DM in product design selection. 
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Figure 1.1: Typical design selection problem 

Multi-Attribute Decision Making (MADM) is one such popular technique that is 

used for engineering design selection [Li, 2001] [Neufville, 1990] [Yu, 1985]. MADM 

methods for product design selection generally assume that the DM has an intuitive value 

function in mind that he/she maximizes to make the selection [Keeney and Raiffa, 1976] 

[Olson, 1996]. (Conventionally, the term “value” is used when the attributes are 

deterministic, and the term “utility” when the attributes are stochastic 

[Keeney and Raiffa, 1976]. However for simplicity and to avoid confusion, we only use 
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the term value function in this dissertation.) These methods estimate the value function 

by obtaining from the DM, information about preferences which reflect the value 

function [Olson, 1996].  

Many of the existing MADM methods presume an explicit form for the DM’s 

value function to simplify the selection problem. The most common presumption is that 

the value function is additive with respect to the attributes [Barzilai, 1997a] 

[Olson, 1996] [Pomerol and Romeo, 2000] [Saaty, 1980]. When the DM’s value function 

is presumed, methods have been reported in the MADM literature that account for no 

variability, preference variability alone, attribute variability alone, and both preference 

and attribute variability (see Chapter 2 for a detailed literature review). However, the 

assumption that the DM’s value function is additive, for instance, is restrictive and valid 

only in some special cases [Keeney and Raiffa, 1976] [Thurston, 2001]. If that 

assumption is not valid, then the preferred design(s) found by using existing MADM 

methods might be erroneous. 

Therefore, the overall objective of this research is to develop a decision making 

framework for product design selection that does not presume any explicit form for the 

DM’s value function and that accounts for both preference and attribute variability. 

 

1.2. RESEARCH COMPONENTS 

To achieve the overall objective, we developed a step-by-step approach for the 

research in this dissertation. We developed four research components for different types 

of variability. These components are: (1) deterministic selection, (2) sensitivity analysis 

for deterministic selection, (3) selection with preference variability, and (4) selection with 
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preference and attribute variability. A decision making framework integrating the four 

research components is then developed. 

In the next four sections (Section 1.2.1 to Section 1.2.4), an overview and 

objective of each of the research components is given followed by an overview of the 

decision making framework in Section 1.2.5. 

 

1.2.1. Research Component 1: Deterministic Selection 

Deterministic selection refers to product design selection with no variability. In 

deterministic selection, we assume that the DM gives crisp (i.e., no variability) 

preferences and that the attributes of alternatives are an accurate representation of what is 

expected in reality (i.e., no variability). Many of the existing deterministic selection 

methods presume some explicit form for the DM’s value function (additive being the 

most popular) [Barzilai, 1997a] [Saaty, 1980]. This is a restrictive assumption and is 

applicable for some special cases only [Keeney and Raiffa, 1976].  

For example, in the selection of an automobile, if the DM is asked for the 

preferences at a design point that has the attribute levels of 20,000 dollars of cost and 

nine seconds of 0-60 time, the DM might say: “I would allow an increase in the cost of 

the automobile by 5000 dollars if the 0-60 time is decreased by two seconds”. If the DM 

is asked the same question at a design point that has the attribute levels of 30,000 dollars 

of cost and 7 seconds of 0-60 time, the DM might say: “I would allow an increase in the 

cost of the automobile by 1000 dollars if the 0-60 time is decreased by two seconds”. It is 

generally difficult to represent such a nonlinear preference structure by presuming an 
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explicitly known value function. Also, if the presumed form differs significantly from the 

DM’s implicit value function, the most preferred design might be erroneous. 

The objective of the first research component is to develop a deterministic 

selection method that is applicable when the DM’s preferences are implicit and crisp (no 

variability) and when there is no attribute variability. 

 

1.2.2. Research Component 2: Sensitivity Analysis for Deterministic Selection 

Sensitivity Analysis refers to finding the degree of “robustness” of the preferred 

design(s) to preference variation [Insua and French, 1991]. By robustness, we mean the 

amount of change (or variation) allowed between the actual preferences and the 

preference estimates before the preferred design(s) is (are) affected. In general, when the 

DM gives the preferences, in addition to design requirements (e.g., constraints on the 

size, price), he/she attempts to satisfy the needs of the end users or customers (e.g., a 

professional user of a cordless electric drill prefers to have more operations per battery 

charge, whereas a casual user prefers lower cost) [Urban and Hauser, 1993]. Hence, if the 

DM does not have complete information about the end users’ needs, he/she cannot state 

the preferences precisely [Insua and French, 1991]. The DM might also have to project 

into future markets. In cases with such uncertainty, the DM can give only crisp estimates 

(or a range, see Section 1.2.3 for details) of the actual preferences. Since small variations 

in preferences could lead to a significant change in the set of preferred design(s) 

[Korhonen et al., 1992] [White, 1972], it would be useful for the DM to have an idea 

about the robustness of the preferred design(s) with respect to variation in the preference 

estimates [Hannan, 1981] [Korhonen et al., 1992].  
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The objective of the second research component is to develop a sensitivity 

analysis method to assess the robustness of the preferred design(s) found by the 

deterministic selection method to variability in DM’s preferences (given as crisp 

estimates in the deterministic selection). In this research component, we assume that there 

is no attribute variability. 

 

1.2.3. Research Component 3: Selection with Preference Variability 

When there is variability in preferences (caused for example due to lack of 

information on end users’ needs, projecting into future markets), the DM would give a 

range of preferences and would like to know the “potentially optimal designs” (see 

Chapter 2 for definition) for that range. For example, in the automobile design selection, 

the DM would say: “I would allow an increase in the cost of the automobile by 4000 

dollars to 5000 dollars if the 0-60 time is decreased by two seconds”. In the selection of a 

cordless electric drill, the DM would say: “I would give up between 40 and 50 operations 

per battery charge to reduce the weight by 0.1 pounds”. Each of these potentially optimal 

designs would be the most preferred for a particular realization of the preferences within 

the given range.  

The objective of the third research component is to develop a selection method 

that does not assume any explicit form for the DM’s value function and finds all the 

preferred designs when there is variability in DM’s preferences. In this research 

component, we assume that there is no attribute variability. 
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1.2.4. Research Component 4: Selection with Preference and Attribute Variability 

In addition to preference variability, it is quite common in engineering design to 

have variability in the attributes of the design alternatives. Uncontrollable parameters 

during the design process (e.g., manufacturing errors, use conditions) are the source for 

attribute variability. Since it is difficult to identify and quantify the uncontrollable 

parameters exactly, more often it is only possible to state the ranges of attributes (e.g., 

40-45 operations per battery charge, 5-7 seconds of 0-60 time) instead of a number (e.g., 

40 operations per battery charge, 6 seconds of 0-60 time) [Eum et al., 2001] 

[Jimenez et al, 2003]. 

The objective of the fourth research component is to develop a selection method 

that does not assume any explicit form for the DM’s value function and finds all the 

preferred designs when there is variability in both the DM’s preferences and attributes of 

design alternatives. 

 

1.2.5. Decision Making Framework: Integrating the Four Research Components 

Figure 1.2 shows the schematic of our decision making framework for product 

design selection with variability for an implicit value function. This decision making 

framework is iterative and interactive. 

In our decision making framework, the DM starts the first iteration by obtaining 

estimates (due to the inevitable variability in the selection process) of the preferences and 

the attributes of design alternatives. With these crisp estimates of preferences and 

attributes, the DM uses our deterministic selection method for finding the set of 

non-eliminated trial designs, DNTD (this set could be a singleton, see Chapter 2 for 
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definition). Next, the DM finds (and then evaluates) the robustness of DNTD to variations 

in preference estimates using our sensitivity analysis method. If the DM is satisfied with 

the robustness of DNTD, he/she stops the iterations and takes the next action, which could 

be manufacturing one of the non-eliminated trial designs. 

DM gives attribute and 
preference estimates

RESEARCH COMPONENT 1
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SELECTION

RESEARCH COMPONENT 4

SELECTION WITH 
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ROBUSTNESS OF DNTD

SET OF NON-ELIMINATED 

TRIAL DESIGNS, DNTD

POTENTIALLY OPTIMAL 
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Stop
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Figure 1.2: Decision making framework integrating four research components 

Otherwise, i.e., if the DM is not satisfied with the robustness of DNTD, he/she can 

give a range either for preferences alone or for preferences and attributes. The DM then 

uses our method for selection with preference variability or our method for selection with 

preference and attribute variability (depending on whether DM gives the range for 

preferences alone or for both preferences and attributes) for finding the set of potentially 

optimal designs from the set of design alterantives. Since, only one of the potentially 

optimal designs can be the most preferred (see Definitions in Chapter 2 for details) for 
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the given range of preferences or given range of preferences and attributes, these 

potentially optimal designs become the set of design alternatives for the next iteration. 

For the next iteration, the DM would gather more information and improve the estimates 

for preferences and attributes (from the ranges given in the current iteration) and repeat 

the above discussed steps starting with deterministic selection. 

 

1.3. ASSUMPTIONS 

We make the following assumptions in developing the methods for our four 

research components. 

There is a single Decision Maker (DM) for making the selection and the DM 

has enough expertise to state the marginal rate of substitution (see Chapter 2 

for definition) between attributes at a design in the attribute space. 

• 

• 

• 

• 

The DM’s value function is non-decreasing, differentiable and quasi-concave 

(see Chapter 2 for definition) with respect to the attributes. The assumption 

that the value function is non-decreasing with respect to attributes is not 

required for the applicability of our deterministic selection method (see 

Chapter 3 for details). 

The design alternatives for selection are discrete and the attributes for 

selection are specified a priori. Also we assume there is no attribute variability 

for the methods developed in Chapter 3, Chapter 4 and Chapter 5. We handle 

attribute variability in Chapter 6. 

The DM can provide ranges for marginal rate of substitution (see Chapter 2 

for Definition) and ranges for attributes of the design alternatives when there 
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is variability. We also assume that the MRS values in the given ranges of 

preferences are consistent to simplify our approaches in Chapter 4, Chapter 5 

and Chapter 6. 

When there is variability in preferences and attributes, we assume that the 

ranges of marginal rate of substitution (see Chapter 2 for Definition) 

preferences that the DM gives at a design include the ranges of preferences at 

any attribute levels in the range of attributes for that design. Also, for 

simplicity, the DM’s risk attitude is not taken into account in the attribute 

range of a design. 

• 

• The value function can be approximated to be linear in a small region around 

a trial design (see Chapter 2 for definition) for the application of our heuristic 

approaches in Chapter 3 and Chapter 5. 

 

1.4. ORGANIZATION OF DISSERTATION 

The organization of the rest of the dissertation is as follows. In Chapter 2, we give 

the definitions of concepts and terminologies used throughout the dissertation, as well as 

a comprehensive review of the related previous work in the literature. In Chapter 3, we 

present our method for deterministic selection (Research Component 1). Next, in 

Chapter 4, we present a concept for sensitivity analysis (Research Component 2) and 

describe the implementation of the concept in our deterministic selection method. In 

Chapter 5, we develop our method for selection with preference variability (Research 

Component 3) and extend it to selection with preference and attribute variability 

(Research Component 4) in Chapter 6. To demonstrate the application and to verify our 
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methods for the four research components, several examples (engineering and numerical) 

are given in Chapters 3 through 6. Finally, we conclude the dissertation with remarks, 

drawbacks, contributions, and suggestions for future research directions in Chapter 7.  

After reading this chapter and the next, we recommend that the reader continue 

with Chapter 3 because it contains concepts that are the foundations for Chapters 4, 5 and 

6. Chapter 4 and Chapter 5 may be read independently. However, Chapter 6 should be 

read after Chapter 5. 

Figure 1.3 depicts the various chapters, their relationships, and the dissertation’s 

information flow. 
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CHAPTER 2 

 

DEFINITIONS AND PREVIOUS WORK 

 

2.1. INTRODUCTION 

In this chapter, we provide several definitions and terminologies that will be used 

throughout this dissertation. We also give a comprehensive review of the previous work 

in the literature related to deterministic selection, sensitivity analysis, selection with 

preference variability, and selection with preference and attribute variability. 

The organization of this chapter is as follows. In Section 2.2, we give related 

definitions and terminologies. Next in Section 2.3, we provide a literature review for the 

four research components. Finally we conclude the chapter with a summary in 

Section 2.4. 

 

2.2. DEFINITIONS AND TERMINOLOGIES 

The set of ‘n’ discrete design alternatives from which the most preferred is to be 

selected is {D1,…,Dj,…,Dn}. Each alternative Dj is represented by the set of attributes 

[a1j,…,amj] in the m-dimensional design attribute space (i.e., an m-dimensional space in 

which the coordinates are the attribute values). Let the value function, V(Dj) be a 

function of attributes [a1j,…,amj] that represents the DM’s preferences. V is said to be 

explicitly known, if we know the form of the equation (e.g., linear, polynomial) of V with 

some unknown constants or parameters (e.g., weights of attributes). The unknown 
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parameters are determined by capturing the DM’s preferences. If the equation of V is not 

known, we say that V is implicit. 

When there is no variability in attributes, aij values would be exact (i.e., 

deterministic or fixed or crisp.3). However, when there is variability in the attributes, we 

assume that the ranges of attributes for each design alternative are known. We use the 

symbol  to represent the lower bound, A  to represent the upper bound, and AL
ijA U

ij ij to 

represent the range  of the iL U
ij ijA ,A 

)ij

                                                

th attribute of design Dj. We use the symbol aij to 

represent a variable attribute that belongs to the range Aij. (Note that aij could be fixed or 

variable depending on whether or not the ith attribute of design Dj is deterministic.) 

Next, we provide several more definitions and terminologies used in this 

dissertation. 

 

2.2.1. Scale of an Attribute, ri 

The scale, ri, of an attribute ai is the difference between the maximum and 

minimum of the attribute over the set of original design alternatives. I.e., 

. This definition is applicable only when there is no attribute 

variability. 

( ) (i ij jj
r = max a - min a

 

2.2.2. Quasi-concave Function 

A function V defined on a nonempty convex domain is said to be quasi-concave 

[Bazaraa et al., 1993] [Mangasarian, 1969] if 

 
3 In this dissertation, we use the terms fixed, deterministic, and crisp interchangeably. 
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V[θX1 + (1-θ)X2]  ≥  min[V(X1),V(X2)]                                    (2.1) 

for all X1, X2  that belong to the domain of V and θ∈[0,1] (see Figure 2.1 for examples). 

X

V

V1

V2

V0 ≥ min(V1,V2)

X1 X0 X2

(a)

X

V

(b)

X

V

(c)

X

V

V1

V2

V0 ≥ min(V1,V2)

X1 X0 X2

(a)

X

V

(b)

X

V

(c)  

V(X1,X2)

X1

X2

(d)

V(X1,X2)

X1

X2

(d)  

Figure 2.1: Examples of (a) quasi-concave, (b) non-decreasing quasi-concave, and 

(c) non quasi-concave functions for one variable, and (d) quasi-concave function for 

two variables 

Note that a concave function is always quasi-concave, but the converse might not 

hold [Takayama, 1993]. For other properties of quasi-concave function refer to the 

literature e.g., [Avriel et al., 1988] [Crouzeix and Lindberg, 1986] 

[Greenberg and Pierskalla, 1971] [Schaible and Ziemba, 1981]. In this dissertation we 

assume that the DM’s implicit value function is non-decreasing, differentiable and 

quasi-concave. However, the assumption that the value function is non-decreasing is not 
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required for the applicability of our deterministic selection method (Research 

Component 1, see Chapter 3 for details). 

 

2.2.3. Trial Design DT 

The trial design DT is a particular design under consideration from the original set 

of design alternatives. 

 

2.2.4. Marginal Rate of Substitution (MRS) 

At trial design DT, let ∆aj be the amount the DM will compromise in attribute aj in 

order to gain an amount ∆ai in attribute ai while maintaining constant value (i.e., the DM 

remains indifferent [Keeney and Raiffa, 1976] with respect to DT) according to his/her 

preferences. The MRS, SijT, between attributes ai and aj at DT is the ratio -∆aj / ∆ai. 

Figure 2.2 illustrates the definition of MRS. 

∆ai

∆aj

ai

Constant value curve
aj

DT

j

i

a
a

∆ 
− ∆ 

MRS = SijT =

∆ai

∆aj

ai

Constant value curve
aj

DT

j

i

a
a

∆ 
− ∆ 

MRS = SijT =
j

i

a
a

∆ 
− ∆ 

MRS = SijT =

 

Figure 2.2: Illustration of marginal rate of substitution between attributes 

Note that when the attributes are not normalized, SijT has a dimension that is equal 

to the ratio of the dimensions of aj and ai. For example, in the selection of a cordless 

electric drill, if a1 is the attribute “cost” measured in dollars and a2 is the attribute 
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“weight” measured in pounds, then MRS, S12T, between a1 and a2 at DT has a dimension 

pound per dollar. 

When there is no variability in preferences, both ∆aj and SijT would be exact (or 

crisp). However, if there is variability in preferences, the DM would give a range for ∆aj 

(for a fixed ∆ai) thus leading to a range of MRS. We use the symbol to represent the 

lower bound, the symbol to represent the upper bound, and the symbol S

L
ijTS

U
ijTS

U
ijT

ijT to 

represent the range of MRS when there is preference variability. We use the 

symbol s

L
ijTS ,S 

ijT to represent a variable MRS that belongs to the range SijT. (In short, SijT could 

have a range or be crisp depending on whether or not MRS has variability.) 

In Chapter 3 to Chapter 7, in the description, demonstration, and discussion of the 

proposed method for each research component, when we use the word preference we 

mean the DM’s MRS preferences. However, the word preference might refer to other 

kind of preferences (e.g., relative importance of attribute) in the introduction and 

overview of the proposed method for each research component (see Chapter 3 to 

Chapter 6).  

 

2.2.5. Gradient Cut 

The gradient cut [Malakooti, 1988] is the half space CG bounded by the normal to 

the gradient of a value function V at a point DT, ∇VT, with the gradient pointing in the 

outward direction from CG; see Figure 2.3. CG does not include the boundary line HT in 

Figure 2.3.  
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Figure 2.3: Illustration of gradient cut 

For a general m-dimensional case, the boundary is a hyper-plane passing through 

DT and perpendicular to the gradient at DT. It can be shown that for a differentiable 

quasi-concave value function all design alternatives belonging to CG have a lower value 

than DT [Bazaraa et al., 1993] [Sundaram, 1996]. However, design alternatives that are 

not in CG might have higher or lower or equal value with respect to DT 

[Bazaraa et al., 1993]. 

 

2.2.6. Set of Non-eliminated Trial Designs (DNTD) 

DNTD is a subset of the original designs.  Each member of DNTD has been a trial 

design. No member of DNTD lies in the gradient cut(s) of any other trial design, and so can 

not be eliminated by any other trial design, including the other members of DNTD. (See 

Chapter 3 and Chapter 5 for further explanation.) 

 

2.2.7. Dominated Design 

When there is no attribute variability, but there is variability in MRS preferences, 

a design D+ is said to be dominated by another design DT, if D+ has lower value than DT 
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(i.e., V(D+) < V(DT)) for the whole range of MRS preferences, SijT, at DT. If there is 

attribute variability also, then D+ is said to be dominated by DT if V(D+) < V(DT) for the 

whole range of SijT and the whole range of attribute levels Ai+ and AiT (where i = 1 to m, 

m is the number of attributes). 

 

2.2.8. Potentially Optimal Design 

When there is no attribute variability, but there is variability in MRS preferences, 

a design D+ is said to be potentially optimal if D+ has the highest value among all design 

alternatives for some subset of SijT. For example, in Figure 2.4, D1 has highest value for 

some part of the MRS range and D2 has the highest value for some other part of the MRS 

range. Hence D1 and D2 are potentially optimal. On the other hand, D3 is dominated by 

D1 and D2 because it has lower value than D1 and D2 for the whole range of MRS 

preference.  

Range of MRS

L
ijTS

sijT

D1D2

Value

U
ijTS

D1 and D2 are potentially  optimal

D3
D3 is dominated by D1
and D2

Range of MRS

L
ijTS

sijT

D1D2

Value

U
ijTS

D1 and D2 are potentially  optimal

D3
D3 is dominated by D1
and D2

 

Figure 2.4: Illustration of potentially optimal and dominated designs 
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If there is attribute variability also, then D+ is potentially optimal if D+ is the 

highest valued design alternative for some subsets of SijT, Ai+ and Aid (where d = 1 to n, n 

is the number of design alternatives). 

Note that, from the above definition, a design which is not potentially optimal 

cannot be most preferred for any realization of MRS that belongs to the range of 

preferences and/or for any realization of attribute that belongs to the range of attributes. 

Eum et al., [Eum et al., 2001] gave similar definitions for dominated design and 

potentially optimal design when the value function is assumed to be additive. In this 

dissertation, we have extended their definitions for the more general case of an implicit 

value function. 

Note that dominance and potential optimality defined here are different from the 

component-wise dominance and Pareto optimality [Eum et al., 2001]. 

 

2.3. OVERVIEW OF PREVIOUS WORK 

Multi-Attribute Decision Making (MADM) is a popular technique that is used for 

engineering design selection [Li, 2001] [Neufville, 1990]. MADM methods for product 

design selection in literature can be categorized into five main groups: methods for (i) 

deterministic selection, (ii) sensitivity analysis, (iii) selection with attribute variability 

alone, (iv) selection with preference variability alone, and (v) selection with preference 

and attribute variability.  The third group, methods for selection with attribute variability 

alone, is not the focus of this dissertation and is not reviewed here. However, the 

interested reader can refer to the literature, e.g., [Bradley and Agogino, 1994] 

[Jaffray, 1989] [Keeney and Raiffa, 1976] [Li and Azarm, 2002] 
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[Marston and Mistree, 1998] [Wan and Krishnamurthy, 2001] 

[Wassenaar and Chen, 2003], for more details. In the next four sections, we provide the 

literature review of existing methods in the first, second, fourth, and fifth groups. 

 

2.3.1. Literature Review on Deterministic Selection 

Existing methods for deterministic selection assume that the DM has an intuitive 

value function that he/she maximizes to make the selection [Fishburn, 1970] 

[Keeney and Raiffa, 1976] [Yu, 1985] [Zeleny, 1982]. So, product design selection 

problem can be viewed as a discrete optimization problem with an implicit (or 

unexpressed) objective function. Existing deterministic selection methods in the literature 

try to find the implicit objective function (or the value function) by obtaining from the 

DM information about quantitative preferences which reflect the value function 

[Olson, 1996] [Triantaphyllou, 2000]. Various selection methods take the preferences in 

various forms, e.g., relative importance of attributes 

[Lootsma, 1999] [Saaty, 1980], comparison of design alternatives 

[Koksalan et al., 1984] [Malakooti, 1988] [See and Lewis, 2002] [Toubia et al., 2003], or 

marginal rate of substitution between attributes [Keeney and Raiffa, 1976] [Yu, 1985]. 

Some MADM methods for deterministic selection estimate the value function 

completely by presuming its form (e.g., linear, multiplicative) [Barzilai, 1997b] 

[Saaty, 1980] [Thurston et al., 1994] [Zeleny, 1982]. These methods have two 

shortcomings.  First, presuming a form for the value function is restrictive and is 

applicable only for some special cases (e.g., preferential independence between 

attributes) [Keeney and Raiffa, 1976] [Thurston, 2001]. Second, the presumed form can 
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differ significantly from the DM’s unexpressed value function, leading to an erroneous 

selection. 

To address those shortcomings, interactive methods have been developed to 

estimate the value function partially, and to use that information at a series of trial 

designs (recall Definition in Section 2.2.3) for eliminating lower value design 

alternatives [Korhonen et al., 1984] [Malakooti, 1988]. Rather than assuming a specific 

form for the value function, partial estimation methods allow for broad classes of 

functions (e.g., monotonic, concave). The most generalized value function that has been 

discussed in the literature is a quasi-concave value function [Koksalan et al., 1984] 

[Malakooti, 1989a]. 

There are two components in the partial estimation methods. First is the 

elimination of lower value design alternatives at a trial design. Second is the search for a 

better design alternative to use as a new trial design. For the first component, some 

methods in the literature ask the DM for the pair-wise comparisons of “adjacent” design 

alternatives [Karwan et al., 1989] [Malakooti, 1989a]. The response to these comparisons 

is used to construct convex cones and then eliminate lower value designs. These methods 

become inefficient (i.e., the number of designs eliminated by the convex cones decreases) 

if the value function is not non-decreasing with respect to the attributes (or cannot be 

converted to non-decreasing) [Korhonen et al., 1984] [Malakooti, 1988]. 

Another approach [Malakooti, 1988] for eliminating lower value design 

alternatives is to find the gradient of the value function at a trial design, and use the 

gradient cut (recall Definition in Section 2.2.5). The number of designs eliminated by this 

approach does not depend on the value function being non-decreasing. 
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Malakooti [Malakooti, 1989a] uses pair-wise comparisons of the adjacent design 

alternatives to find the gradient of value function. Unfortunately, Malakooti’s approach 

works well only if, for an m-dimensional design attribute space, there are at least m+1 

design alternatives in the vicinity of the trial design. In addition, Malakooti’s approach of 

pair-wise comparison of design alternatives to find the gradient has two problems. First, 

pair-wise comparison of alternatives by the DM might lead to intransitive preferences 

[Yu, 1985] (which have to be accounted for). Second, comparison of alternatives that are 

either “far off” or “close by” in the design space is difficult for the DM. Both of these 

problems are well known in the literature [Yu, 1985]. Also, Malakooti’s approach needs 

“strength of preference” for the comparisons [Malakooti, 1989a] to get a good estimate of 

the gradient of value function, adding burden to the DM. 

To overcome the above shortcomings, in our deterministic selection method we 

use the DM’s Marginal Rate of Substitution (MRS) between attributes (see Chapter 3) to 

find the gradient of value function at a trial design. MRS captures any nonlinearity, 

non-monotonicity and coupling (i.e., interdependence between attributes) in the DM’s 

value function [Barzilai, 1998] [Keeney and Raiffa, 1976]. It is generally easier for the 

DM to provide MRS than to do a pair-wise comparison of alternatives because each MRS 

involves only trading off between two attributes, rather than comparing two m-attribute 

designs. 

For the second component of the partial estimation methods, finding a design 

alternative with higher value for the new trial design, 

Geoffrion et al. [Geoffrion et al., 1972] and Musselman and Talavage 

[Musselman and Talavage, 1980] have approaches that are applicable only for continuous 
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design alternatives. Koksolan et al. [Koksalan et al., 1984] propose to approximate the 

value function as linear or quadratic and then to choose the design that has the maximum 

value as the new trial design. Malakooti [Malakooti, 1988] uses a one-dimensional search 

approach, which again is dependent on the spread and clustering of the design 

alternatives. In our deterministic selection method (see Chapter 3) we present a new 

approach for finding a new trial design that makes efficient use of the gradient 

information already obtained from the DM at all the previous trial designs. As with the 

approaches in the literature, our approach requires only that the value function be 

differentiable and quasi-concave with respect to the attributes. The approach does not 

depend on the distribution of the design alternatives in the attribute space. 

 

2.3.2. Literature Review on Sensitivity Analysis 

Existing literature in sensitivity analysis addresses cases where the DM’s value 

function is presumed to be explicitly known (e.g., known polynomial function of 

attributes with unknown parameters like weights, utilities [Keeney and Raiffa, 1976]). 

Sage [Sage, 1981] studied and formalized the allowed errors in the estimation and 

elicitation of probabilities and utilities before which the preferred design is affected. 

Barron and Schmidt [Barron and Schmidt, 1987] proposed two procedures: 

entropy-based and least square (i.e., L2-metric) to calculate the minimum variation 

required between the actual weights and the estimates of weights for changing the most 

preferred design when the value function is linear. Ringuest [Ringuest, 1997] later 

extended the L2-metric of Barron and Schmidt [Barron and Schmidt, 1987] to an 

LP-metric. Mareschal [Mareschal, 1988] proposed an approach for finding the “weight 

 25



stability interval”, which consists of all possible weights that maintain the rank order 

obtained using the original estimates of weights. 

Insua and French [Insua and French, 1991] proposed some distance based tools to 

identify the possible competitors to the current most preferred design when the DM’s 

preferences change. Antunes and Climaco [Antunes and Climaco, 1992] proposed a 

sensitivity analysis approach for their TRIMAP method. However, this approach is 

applicable only when the number of attributes is three or less, which is a significant 

limitation [Antunes and Climaco, 1992]. Triantaphyllou and Sanchez 

[Triantaphyllou and Sanchez, 1997] proposed a sensitivity analysis approach and applied 

it to popular MADM methods like weighted sum model, weighted product model, and 

analytical hierarchy process [Saaty, 1980]. Ma et al. [Ma et al., 2001] presented a method 

for finding the “weight-set” that contains all possible ranges of weights of an additive 

value function when the rank order of alternatives is given. Triantaphyllou and Shu 

[Triantaphyllou and Shu, 2001] studied the number of feasible rankings that are possible, 

assuming an additive value function, for the given set of design alternatives, when the 

weights of the criteria are allowed to change. 

Although the MADM literature describes significant research on sensitivity 

analysis when the value function is presumed, it is well known that presuming a form for 

the value function is restrictive and applicable only to special 

cases [Keeney and Raiffa, 1976] [Thurston, 2001]. In Chapter 4, we present a concept for 

sensitivity analysis that is applicable for an implicit value function. 
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2.3.3. Literature Review on Selection with Preference Variability 

The literature reports of two ways to account for preference variability in 

selection. One way is to assume different probability distributions for preferences and 

then study the affect of these distributions on the most preferred design. Scott 

[Scott, 2002] studied analytical hierarchy process [Saaty, 1980], assuming uniform 

distributions for the DM’s preferences, and proposed some indices to quantify the 

changes in the most preferred design. Reeves and Macloed [Reeves and Macloed, 1999] 

used the Interactive Weighted Tchebycheff [Steuer and Choo, 1983] procedure to study 

the robustness of the preferred design for various distributions of the preferences. 

However, the preferred design found by assuming some probability distributions for the 

preferences might be erroneous if the actual distributions differ from the assumed 

distributions. 

Another way (also popular in the literature) for accounting preference variability 

in selection is to ask the DM to provide some constraints on the preferences 

[Claessens et al., 1991] [Insua and French, 1991] [White et al., 1984]. Typical constraints 

could be some ranges on the preferences, like relative importance of attribute a1 is 

between 0.3 and 0.4. The constraints on preferences are then used in finding the 

non-dominated and potentially optimal designs (see Definition in Section 2.2.8) 

[Hazen, 1986]. Some people refer to selection with preference variability as selection 

with partial information [Athanassopoulos and Podinovski, 1997]. Note that it is 

generally easy for the DM to give some constraints on the preferences than the 

probability distributions governing the variability in the preferences. 
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Existing literature in selection with partial information addresses the case when 

the DM’s value function is presumed to be explicitly known (e.g., additive with unknown 

attribute weights, multiplicative with unknown scaling constants). Hazen [Hazen, 1986] 

derived a relation between dominance and potential optimality when the value function is 

explicitly known (additive or multiplicative) with unknown scaling constants or weights. 

Malakooti [Malakooti, 1989b] proposed the concepts of convex non-dominancy and 

trade-off non-dominancy and identified their relation to dominance for additive value 

functions.  

Insua and French [Insua and French, 1991] proposed some formal definitions and 

methods to identify the non-dominated and potentially optimal designs when there is 

variability in the weights of an additive value function. In their methods, 

Insua and French [Insua and French, 1991] proposed linear programming problems for 

checking the dominance and potential optimality of a design. Athanassopoulos and 

Podinovski [Athanassopoulos and Podinovski, 1997] later developed a dual linear 

programming method to identify the dominated and potentially optimal designs when 

there is variability in the weights of an additive value function. Malakooti 

[Malakooti, 2000] developed a method that can identify a number of dominated designs 

by solving a single linear programming problem. Carrizosa et al., [Carrizosa et al., 1995] 

proposed a method for ranking a set of design alternatives with partial information about 

weights of the additive value function. In their method, Carrizosa et al., 

[Carrizosa et al., 1995] do not solve any linear programming problem. Instead they use 

some “quasiorders” for ranking the design alternatives. 
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Although the MADM literature describes significant research on selection with 

preference variability when the value function is presumed, it is well known that 

presuming a form for the value function is restrictive and applicable only to special 

cases [Keeney and Raiffa, 1976] [Thurston, 2001]. In Chapter 5, we present a method for 

selection with preference variability for an implicit value function. 

 

2.3.4. Literature Review on Selection with Preference and Attribute Variability 

Existing literature in selection with preference and attribute variability addresses 

the case when the DM’s value function is presumed to be explicitly known (e.g., additive 

with unknown attribute weights, multiplicative with unknown scaling constants). 

White et al., [White et al., 1984] developed a method for identifying the dominated 

alternatives when the constraints on the attribute weights, scores of the attributes, and the 

relative importance between some alternatives are given. They assume that the DM’s 

value function is additive with respect to the attributes. Sage and White 

[Sage and White, 1984] proposed an interactive decision support system, based on the 

method proposed by White et al., for selection with preference and attribute variability.  

Weber [Weber, 1987] proposed a framework for decision making with preference 

and attribute variability when the value function is presumed. Weber [Weber, 1987] also 

surveyed existing methods based on that framework. Moskowitz et al., 

[Moskowitz et al., 1992] proposed a method called Multi-Criteria Robust Interactive 

Decision Analysis (MCRID) for eliminating dominated designs when there is preference 

and attribute variability. In their method, Moskowitz et al., [Moskowitz et al., 1992] 
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expect the DM to give some partial information about the probability distributions 

governing preference and attribute variability.  

Anandalingam and White [Anandalingam and White, 1993] extended the method 

of White et al., [White et al., 1984] by proposing a penalty function approach for finding 

the potentially optimal designs. Park and Kim [Park and Kim, 1997] developed a 

nonlinear programming formulation for finding the dominated and potentially optimal 

designs when the ranges quantifying the preference and attribute variability are known 

and when the value function is presumed. Eum et al., [Eum et al., 2001] and Lee et al., 

[Lee et al., 2001] later proposed linear programming equivalents of the nonlinear 

programming problems required for checking the dominance and potential optimality of 

designs. Jimenez et al. [Jimenez et al., 2003] proposed a decision support system that 

finds the sensitivity of the preferred design to variations in the weights and the attribute 

for the ranges given by the DM. 

Although some research has been reported in the MADM literature on selection 

with preference and attribute variability when the value function is presumed, it is well 

known that presuming a form for the value function is restrictive and applicable only to 

special cases [Keeney and Raiffa, 1976] [Thurston, 2001]. In Chapter 6, we present a 

method for selection with preference and attribute variability for an implicit value 

function. 

 

2.4. SUMMARY 

In this chapter, we gave important definitions and terminologies that will be used 

throughout this dissertation. We also provided a detailed literature review for each of our 
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four research components. The shortcomings of the literature related to each of our 

research components are summarized below. 

In deterministic selection, methods exist in the literature for selection with an 

implicit value function [Korhonen et al., 1984] [Malakooti, 1988]. These 

methods ask the DM for the pair-wise comparison of adjacent design 

alternatives. However, pair-wise comparison of design alternatives can lead to 

intransitive preferences and it is generally difficult to compare design 

alternatives that are either far off or close by in the design attribute space. To 

overcome this shortcoming we ask the DM to provide the marginal rate of 

substitution between the attributes in our deterministic selection method. 

• 

• 

• 

In sensitivity analysis, existing methods in the literature presume a form for 

the value function, additive being the most popular [Insua and French, 1991]. 

However, presuming a form for the value function is restrictive and applicable 

only in special cases. To overcome this shortcoming, we present a concept for 

sensitivity analysis that is applicable for an implicit value function. 

In selection with preference variability, some methods [Scott, 2002] assume 

probability distributions for the preferences and study the affect of the 

distributions on the most preferred design. However, it is generally difficult to 

make a good assumption of the actual distributions. Some other methods ask 

the DM to provide constraints on the preferences [Claessens et al, 1991] 

[White et al., 1984] and then find the potentially optimal designs for the given 

constraints. However, existing methods that ask for the constraints on the 

preferences are applicable only when the DM’s value function is presumed 
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explicitly. We propose a selection method for preference variability that is 

applicable for an implicit value function to overcome this shortcoming. 

In selection with preference and attribute variability, methods exist in the 

literature when there is partial information about the probability distributions 

governing the variability in preferences and attributes 

[Moskowitz et al., 1992]. Methods for finding the potentially optimal designs, 

when the ranges quantifying the preference and attribute variability are 

known, also exist in the literature. However, all of the existing methods 

presume a form for the DM’s value function. To overcome this shortcoming, 

we propose a selection method for an implicit value function, when the ranges 

quantifying the preference and attribute variability are known. 

• 

 

In the next chapter, we present the development of the method for our first 

research component, deterministic selection. 
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CHAPTER 3 

 

DETERMINISTIC SELECTION 

 

3.1. INTRODUCTION 

The amount a DM is willing to give up in one attribute to gain a certain amount in 

another attribute, for maintaining constant value is, in many instances, dependent on the 

attribute levels of a design alternative. For example, in the selection of an automobile, if 

the DM is asked for the preferences at a design point that has the attribute levels of 

20,000 dollars of cost and 9 seconds of 0-60 time, the DM might say: “I would allow an 

increase in the cost of the automobile by 5000 dollars if the 0-60 time is decreased by two 

seconds”. If the DM is asked the same question at a design point that has the attribute 

levels of 30,000 dollars of cost and 7 seconds of 0-60 time, the DM might say: “I would 

allow an increase in the cost of the automobile by 1000 dollars if the 0-60 time is 

decreased by two seconds”. Similarly, the number of operations per battery charge that a 

DM would give up to reduce the weight of a cordless electric drill is dependent on the 

attribute levels of the number of operations per battery charge and the weight of the drill. 

This kind of nonlinear preference structure is common for a designer acting as the DM in 

engineering design selection. It is generally difficult to represent such a nonlinear 

preference structure a priori by presuming an explicitly known value function (e.g., 

additive, multiplicative, quadratic). Also, if the presumed form differs significantly from 

the DM’s unexpressed value function, the resulting solution would be erroneous. One 

might argue that, the DM could be asked for the values of some sample design 
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alternatives and a curve be then fit through the sample values for approximating the 

DM’s value function. There are two problems with such an approach. First, it is 

extremely difficult for the DM to consistently state the values of some sample design 

alternatives. Second, one does not know what kind of curve (e.g., polynomial, 

exponential, multiplicative) to fit through the values of the sample design alternatives. 

The purpose of this chapter is to present a deterministic selection method that aids 

the DM in selecting the preferred design(s) from a set of design alternatives. Our 

deterministic selection method does not presume any explicit form for the DM’s value 

function, thus allowing the DM’s preference structure to be more general. 

The organization of this chapter is as follows. We begin this chapter with an 

overview of our deterministic selection method in Section 3.2. We then present the 

details of our method in Section 3.3 and present our algorithm for deterministic selection 

in Section 3.4. Next we give two engineering examples to demonstrate our deterministic 

selection method in Section 3.5. We present some experimental results to verify our 

deterministic selection method in Section 3.6 and finally conclude the chapter with a 

summary in Section 3.7. 

 

3.2. OVERVIEW OF DETERMINISTIC SELECTION METHOD 

Figure 3.1 shows the flowchart of our interactive deterministic selection method. 

This method is iterative and assumes that the DM’s preferences reflect an implicit value 

function that is differentiable and quasi-concave. In this method, we start by picking a 

trial design, DT, from the set of design alternatives. If the DM cannot make an informed 

guess of the highest valued design to use as DT, we use either the alternative that would 
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have maximum value if the value function were linear with equal importance to the 

attributes, or a random pick. 

As shown in Figure 3.1, in a small region OT around DT we approximate the value 

function to be linear with respect to the attributes. The gradient of V at DT is 

∇VT = [W1T,…,WmT]. The general form for the linear approximation of V(Dj) in OT 

would be (considering only the differences between V for design alternatives near DT): 

V(Dj) =                                                          (3.1)  
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Figure 3.1: Flowchart of our deterministic selection method 

Next, we find the gradient coefficients, WiT (i=1,…,m), at DT by obtaining 

preference information from the DM interactively (see Section 3.3.1 for details). Then we 

use the gradient cut for eliminating (to be explained in Section 3.3.2) some of the design 

alternatives which have a lower value than DT. Next, we try to find a new trial design 
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from the non-eliminated design alternatives (see Section 3.3.3 for our proposed approach 

to find a new trial design). If a new trial design is found, we repeat the above steps (recall 

Figure 3.1), referred to as “an” ‘iteration’ from here on in this chapter. Otherwise (i.e., if 

a new trial design is not found), we stop the process and collect the non-eliminated trial 

designs in a set, designated by DNTD. If the set DNTD has a single design then that design 

alternative would be the most preferred design alternative. If DNTD has more than one 

design we use a novel approach, called gradient adjacency elimination, (to be explained 

in Section 3.3.4) for finding the most preferred design alternative from DNTD. 

The DM has the option of stopping the process anytime he/she is satisfied that the 

currently identified new trial design is the most preferred design alternative, even if all 

the other design alternatives are not eliminated. 

Note that our method does not perform a “piecewise linear approximation” of the 

value function at a series of trial designs. The linear approximation is used to obtain the 

gradient of the value function at a trial design, and the gradient is used to eliminate lower 

value designs with respect to the trial design (see Section 3.3.2 for details). 

 

3.3. DESCRIPTION OF DETERMINISTIC SELECTION METHOD 

In this section, the individual parts of the deterministic selection method briefly 

described in Section 3.2 are explained in detail. First, in Section 3.3.1, we present our 

approach for obtaining the gradient of the value function at a trial design DT. Then, in 

Section 3.3.2, we describe how to eliminate lower value design alternatives using the 

gradient cut. Then we present our approach to find a new trial design in Section 3.3.3. 

Finally, we discuss gradient adjacency elimination in Section 3.3.4. 
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3.3.1. Obtaining the Gradient of V at a Trial Design 

We ask the DM questions regarding his/her MRS (recall Definition in 

Section 2.2.4 of Chapter 2) to find the gradient (∇VT = [W1T,…,WmT]) of the value 

function. Note that the location of the design alternative in the design attribute space can 

influence the DM’s MRS [Keeney and Raiffa, 1976]. MRS captures any non-linearity, 

non-monotonicity and coupling in the DM’s value function [Barzilai, 1998] 

[Keeney and Raiffa, 1976]. From the definition of MRS, it can be readily shown that the 

MRS SijT between attributes ai and aj at DT is 

T

i
ijT

j D

V
aS V
a

∂
∂

=
∂
∂

        (3.2) 

Using Eq. (3.1) as the linear approximation of the value function in OT 

iT
i

V W
a

∂
=

∂
                     (3.3) 

and 

iT
ijT

jT

WS
W

=       (3.4) 

Accordingly, MRS values when they exist are consistent [Barzilai, 1997b] 

[Barzilai, 1998]. I.e.,  

SijT · SjkT = SikT.       (3.5) 

Because of this, only MRS values between ‘m-1’ pairs of attributes are independent when 

there are ‘m’ attributes. So, querying the DM for the MRS values gives only ‘m-1’ 
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independent equations to solve for ‘m’ gradient coefficients, WiT’s, which means that 

WiT’s, might not be unique. 

Further, the solvability of the set of equations depends on the MRS values 

obtained from the DM being exact and consistent.  These conditions are not likely to be 

met in the responses of a human DM, who is estimating an unexpressed multi-attribute 

constant-value function. To address these factors, we obtain excess information from the 

DM by asking for an m-th MRS value. In our method, we ask the DM to provide the 

MRS between attributes ai and ai+1 (i=1,…,‘m-1’) and the MRS between attribute am and 

attribute a1 (if m>2), which is the m-th MRS value. (Another source of excess 

information would be to ask for reciprocal MRS values as well, i.e., SjiT in addition to 

SijT.)  

When the DM’s value function is differentiable and when there is no information 

for determining whether or not the DM’s value function is non-decreasing, we use the 

formulation in Eq. (3.6) to solve for the WiT’s. 

2
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jT jTW 0; j 1,..., p (p m) and W 0; for the rest≥ = ≤ ≤        (3.6c) 

Eq. (3.6a) is for finding the WiT’s that are as close to the given SijT’s as possible. 

Eq. (3.6b) is to account for inconsistency in the MRS values. Eq. (3.6c) is to account for 

the sign of the gradient coefficients, i.e., WjT would be positive if the value function is 

increasing with respect to attribute aj at DT and negative otherwise. It is possible to obtain 
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ambiguous results for the sign of WiT if we assign them directly from MRS values SijT. 

So, we ask the DM to provide the sign of any one of the WiT’s at the trial design DT. The 

signs of the others follow directly from the MRS values: iT
jT

ijT

WW
S

= . 

The term ri in Eq. (3.6a) and Eq. (3.6b) is the scale (recall Definition in 

Section 2.2.1 of Chapter 2) of the ith attribute. Recall from the definition of MRS 

(Section 2.2.4 of Chapter 2) that SijT has a dimension which is equal to the ratio of the 

dimensions of aj and ai. Also, from Eq. (3.1) and Eq. (3.3), WiT has a dimension that is 

the inverse of the dimension of ai. So, the term iT
ijT

jT

WS
W

 
−

 
 in Eq. (3.6a) has a dimension 

that is equal to the ratio of dimensions of aj and ai. Similarly, the term 

iT
ijT jkT
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 
⋅ −

 
 in Eq. (3.6b) has a dimension that is equal to the ratio of dimensions of 

ak and ai. So, the terms iT
ijT
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 
   and iT

ijT jkT
kT

WS S
W

 
⋅ −

 
 must be converted to 

dimensionless quantities before the summation in Eq. (3.6a) and Eq. (3.6b) respectively. 

Hence, we multiply each term by the ratio of the scales of the attributes to make the term 

dimensionless. 

The solution to the optimization problem in Eq. (3.6) is not unique. Recall we 

mentioned earlier that the WiT’s are not unique as there are only ‘m-1’ independent MRS 

preferences for ‘m’ attributes (refer Eq. (3.5)). However, as stated in the next lemma, any 

solution of Eq. (3.6) is a scalar transformation of some other solution. 
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Lemma: Let ∇VT be a solution of Eq. (3.6). Any other ∇V'T will be a solution of Eq. (3.6) 

if and only if ∇V'T is a positive scalar transformation of ∇VT , i.e., ∇V'T =µ , where 

µ>0. 

TV⋅∇

 

Proof: It is trivial to see that ∇V'T will be a solution of the optimization problem in 

Eq. (3.6) if it is a scalar transformation of ∇VT. To prove that if ∇V'T is a solution then it 

is a scalar transformation of ∇VT, let ∇VT = [W1T,…,WmT] and ∇V'T = [W'1T,…,W'mT]. 

Assuming, with out loss of generality, that W1T is not equal to zero we can rewrite ∇VT 

and ∇V'T as 

2T mT
T 1T

1T 1T

W WV W 1, ,...,
W W

 
∇ = ⋅  

 
     (3.7a) 

2T mT
T 1T

1T 1T

W ' W 'V ' W ' 1, ,...,
W ' W '

 
∇ = ⋅  

 
.               (3.7b) 

But the elements of the ∇VT and ∇V'T in Eq. (3.7) are the MRS values between attribute 

aj (j=2,…,m) and attribute a1 and hence are equal, i.e., 

jT jT
j1T

1T 1T

W W '
S ; j 2,...,m

W W '
= = = .     (3.8) 

So we can rewrite ∇VT and ∇V'T as 

T 1T 21T m1V W [1,S ,...,S ]∇ = ⋅ T

T

             (3.9a) 

T 1T 21T m1V ' W ' [1,S ,...,S ]∇ = ⋅ .           (3.9b) 

From Eq. (3.9) we can see that ∇VT and ∇V'T are positive scalar transformations of the 

other because W1T and W'1T have the same sign (depending on whether V is increasing 
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with respect to a1 or decreasing with respect to a1). This completes the proof of the 

lemma. □ 

 

It might be suggested that the solution to the optimization problem in Eq. (3.6) 

can be made unique by adding a normalization constraint (a typical constraint could 

be , if W
m

iT i
i 1

W r
=

⋅ =∑ 1 iT’s are non-negative). The reason we do not normalize the gradient 

coefficients in Eq. (3.6) is that our method needs only the direction of the gradient for 

eliminating lower value designs (see Section 3.3.2 for details). Since each solution of 

Eq. (3.6) is a positive scalar transformation of another solution, all the solutions have the 

same direction. So in our method, adding a normalization constraint might result only in 

an increase in the complexity of Eq. (3.6). 

The gradient, ∇VT, at a trial design, DT, gives the increasing direction of the value 

function at DT. But, in practice a human DM might have difficulty understanding the 

significance of the gradient coefficient WiT. However, the DM can usually interpret the 

relative importance (i.e., the weights) of the attributes [Lootsma, 1999] [Saaty, 1980]. 

Note that the weights of the attributes are different from the gradient coefficients, WiT’s. 

Unlike the gradient coefficients, the weights of the attributes are dimensionless and lie 

between zero and one. In our method, we can easily convert the gradient coefficients, 

WiT’s, into weights by multiplying each WiT by the corresponding attribute scale, ri, and 

then normalizing such that the sum of the weights is one (if WiT’s are non-negative) or 

the sum of the squares of the weights is one (if WiT’s could be negative). 

When the DM’s value function is non-decreasing and differentiable (refer 

Figure 2.1(b)), and when the attributes are normalized between zero and one (with one 
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being the more preferred), our formulation in Eq. (3.6) for finding the gradient 

coefficients reduces to the formulation in Eq. (3.10). 

2
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Eq. (3.10a) and Eq. (3.10b) are similar to Eq. (3.6a) and Eq. (3.6b) respectively, with ri, 

rj, and rk all equal to one. Eq. (3.10c) is a normalization constraint imposed on gradient 

coefficients WiT. We use Eq. (3.10c) to normalize WiT in Eq. (3.10) because, WiT is 

dimensionless when the attributes are normalized and WiT represents the weight of the 

attributes (which by convention in the literature lies between zero and one). Also WiT is 

non-negative in Eq. (3.10) because, the formulation in Eq. (3.10) is applicable only when 

the value function is non-decreasing with respect to the attributes. 

The formulations in Eq. (3.6) and Eq. (3.10) can be solved with existing 

commercial optimization software (e.g., “fmincon” of the MATLAB® optimization 

toolbox). If one of the MRS values, say SjiT, is zero, then the corresponding WjT would be 

zero for any non-zero WiT.  This would cause a divide-by-zero in attempting to solve 

Eq. (3.6) and Eq. (3.10). We avoid this difficulty by discarding an attribute if its MRS 

value is zero, converting to a problem with ‘m-1’ attributes. 

If a feasible solution for Eq. (3.6) or Eq. (3.10) does not exist (for a given ε), it 

means that the inconsistency in MRS values given by the DM is more than what we 

allowed for. In such a case, the DM can either change the MRS values or increase the 
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constant ε. However, it should be noted that increasing ε might result in erroneous 

gradient coefficients. The idea of checking the consistency of the DM’s MRS preferences 

using ε is similar to the idea of consistency index proposed by Saaty for the analytical 

hierarchy process (AHP) [Saaty, 1980]. However, in AHP, consistency of DM’s 

preferences is checked after finding the weights of the attributes whereas in our approach 

consistency of DM’s MRS preferences is checked while finding the gradient coefficients. 

In the next section, we present an approach that efficiently uses the gradient of the 

value function at a trial design, obtained from the MRS preferences given by the DM, for 

eliminating lower value designs. 

 

3.3.2. Eliminating Lower Value Designs Using Gradient Cut 

If the value function, V, is differentiable and quasi-concave, and if CG is the 

gradient cut (recall Definition in Section 2.2.5 of Chapter 2) at DT (see Figure 3.2), then 

for all D ∈ CG, V(D) < V(DT) [Bazaraa et al., 1993] [Malakooti, 1988]. That is, any 

design alternative in CG has lower value than DT, and hence can be eliminated. Applying 

the property that the gradient of V at DT is ∇VT = [W1T,…,WmT], and the attributes at DT 

are [a1T,…,amT], then a design D+  with attributes [a1+,…,am+] is in CG if [Bazaraa et al., 

1993] 

m

iT i+ iT
i=1

W (a - a ) 0⋅ <∑  .      (3.11) 

Figure 3.2 illustrates gradient cut elimination in two dimensions. Note that design 

alternatives that are not in CG might have higher or lower or equal value with respect to 

DT [Bazaraa et al., 1993] [Sundaram, 1996]. So, gradient cut does not eliminate all 
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designs that have lower value than DT. From Figure 3.2, we can see that a design D+ is in 

CG if the angle between ∇VT and the vector joining DT to D+ is greater than ninety 

degrees. Recall Section 3.3.1 (see lemma), wherein we stated that ∇VT found using 

Eq. (3.6) is unique up to a positive scalar transformation. Clearly this does not affect the 

design alternatives eliminated using gradient cut because the angle between the gradient 

vector and the vector joining DT to D+ remains the same even if ∇VT is changed by a 

positive transformation. (Note that using Eq. (3.10), when applicable, we get unique 

gradient coefficients because of the normalization constraint for gradient coefficients.) 
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Figure 3.2: Illustration of gradient cut elimination 

Our approach for eliminating lower value designs using gradient cut is similar to 

Malakooti’s [Malakooti, 1988]. The difference is that we obtain the gradient of the value 

function using MRS preferences whereas Malakooti [Malakooti, 1988] uses comparisons 

of alternatives to obtain the gradient. Also, Malakooti’s approach for finding the gradient 

involves many heuristic components, because of which the gradient cut has to be applied 

conservatively [Malakooti, 1988]. 
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In the next section, we discuss our approach for finding a new trial design. This 

approach makes efficient use of the gradient of the value function at all the previous trial 

designs. 

 

3.3.3. Finding a New Trial Design 

An important step in our deterministic selection method (and in its extensions, 

e.g., see Chapter 5 and Chapter 6) is to find a new trial design for continuing the iterative 

process shown in Figure 3.1. In order to find the most preferred design in few iterations, a 

new trial design, DNT, should be chosen, from the set of non-eliminated designs, such that 

it has higher value than the previous trial designs and it eliminates a large number of 

design alternatives using gradient cut elimination (recall 

Section 3.3.2) [Koksalan et al., 1984]. For this, we need to obtain a good estimate of the 

gradient of the DM’s value function at the non-eliminated designs. To reduce the burden 

on the DM, the estimate of the gradient of the value function should be obtained (in real 

time) without actually interacting with the DM. In this section, we discuss an approach, 

which makes good use of the available information about the gradient of the value 

function at the previous trial designs to estimate the gradient of the value function at a 

non-eliminated design. 

Consider the set of all design alternatives that are not eliminated at the current 

step in the iterative process described in Figure 3.1.  Let the current iteration number be 

‘q’. Let DT1,…, DTq be the trial designs from the first iteration to the current iteration. Let  

∇VTj = [W1Tj,…,WmTj] be the gradient of the value function at the trial design 

DTj: [a1Tj,…,amTj] (j=1,…,q). 
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Having no information about the behavior of the DM’s implicit value function at 

a non-eliminated design (that has not been a trial design), we presume that the value 

function is non-decreasing, differentiable and quasi-concave (refer Figure 2.1(b)) with 

respect to the attributes at a non-eliminated design. Note that we make this presumption 

only for the purpose of finding a new trial design. The actual value function at a 

non-eliminated design could be a general differentiable quasi-concave function. With 

this presumption, the resulting formulation for estimating the gradient at a non-eliminated 

design D+: [a1+,…,am+], Eq. (3.12), becomes a linear programming problem which can be 

solved without much computational burden. We use the vector [λ1+,…,λm+] to represent 

the estimate of the gradient of the value function at D+. 

  For i=1,…, m and j=1,…, q        

m

i iTj i
i 1
λ (a a ) 0+ +

=

⋅ − <∑        (3.12a) 

i iTj i+ iTj

i iTj i+ iTj

λ W if a a

λ W if a a
+

+

≤ ≥ 
≥ ≤ 

      (3.12b) 

i+ iTj λ 0; W 0≥ ≥        (3.12c) 

Eq. (3.12a) is used to check that each DTj lies within the gradient cut of D+ for the 

estimated gradient (recall Eq. (3.11)). Eq. (3.12b) states the constraints imposed on λi+ 

based on the gradient, ∇VTj, at each DTj. Eq. (3.12c) is the constraint on the sign of λi+. 

Since we assume that the value function is non-decreasing, the estimate of the gradient at 

D+, λi+, should be less than WiTj if ai+ > aiTj and vice versa. Also, if any of the WiTj’s are 

negative, then we impose only the constraint that the corresponding λi+ is non-negative 

(Eq. (3.12c)), i.e., we consider only the WiTj that are non-negative in Eq. (3.12b). 
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Each D+ for which λi+’s can be found has then at least one possible value function 

that eliminates all the previous trial designs DTj (j=1,…,q) by gradient cut, the gradient 

being [ ]. Each such D1+ m+λ ,...,λ + then becomes an element of the set of candidate new 

trial designs, DCNT. (Note that these λi+’s do not constitute the actual gradient of the value 

function that the DM has in mind at D+.) We apply the gradient cut approach at each D+, 

belonging to DCNT, using [ λ ] as the gradient of V, and then choose as the new 

trial design, D

1+ m+,...,λ

NT, the D+ which eliminates the greatest number of the original design 

alternatives. If there is no non-eliminated design, D+, for which λi+’s exist, then we relax 

the constraints in Eq. (3.12), corresponding to the oldest DTj (i.e., smallest ‘j’) 

successively until a D+ for which λi+’s exist is found. 

If more than one DCNT has the maximum number of alternatives eliminated, we 

choose as DNT the alternative whose vector from DT is closest to (i.e., makes the smallest 

angle with) the gradient, ∇VTq, at the current trial design, DTq. 

We mentioned earlier that gradient cut can eliminate only some of the designs that 

have lower value than DT (recall Section 3.3.2). Because of this property, it is possible 

that after applying gradient cut elimination at a series of DT’s, each time finding a new 

DT, we are left with a set of trial designs that cannot eliminate each other. We call this set 

of non-eliminated trial designs as DNTD (recall Definition in Section 2.2.6 of Chapter 2). 

Note that DNTD always contains the most preferred design irrespective of the starting trial 

design. Otherwise, the most preferred design would have been eliminated by the gradient 

cut of some trial design, contradicting the property of quasi-concave value function 

(recall Section 3.3.2). In the next section we discuss a new approach, gradient adjacency 
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elimination, to eliminate between trial designs that belong to DNTD (when it has more than 

one member). 

 

3.3.4. Gradient Adjacency Elimination 

Figure 3.3 illustrates the proposed approach for gradient adjacency elimination for 

the case of two trial designs DT1 and DT2. Lines HT1 and HT2 pass through DT1 and DT2, 

respectively, and are perpendicular to the gradient of the value function at those points. 

OT1, OT2 are the regions around DT1, DT2, respectively, in which we approximate the 

value function to be linear (recall Figure 3.1). Note that each DTi (i = 1, 2) is above the 

corresponding line HTj (j = 1, 2) of the other, so neither eliminates the other by gradient 

cut (recall Section 3.3.2). 
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Figure 3.3: Illustration of gradient adjacency elimination 
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Note that all points in the region OT1 above HT1 have higher value than DT1 

because ∇VT1 represents the increasing direction of V at DT1 and OT1 is the region in 

which the linear approximation of value function is valid. For the case here, HT2 passes 

through that part of OT1 which is above HT1. Hence, DT2
 has higher value than some 

points in OT1 above HT1 (recall gradient cut elimination, Section 3.3.2). Therefore, DT2 

has higher value than DT1. That is, DT2 eliminates DT1 by transitivity. 

For the m-dimensional case HT1 and HT2 are hyper-planes. We may, for 

simplicity, take each region OTi
 to be a hyper-sphere. We assign OTi

 the radius 

R =  η · min(r1,r2,…,rm), where η is a small positive constant and ri is the scale (recall 

Definition in Section 2.2.1 of Chapter 2) of the ith attribute. Figure 3.4 illustrates (in two 

dimensions, for three cases) the relevant geometry and some definitions for determining 

if DT1 has lower value than DT2. The perpendicular distance from DT1 to HT2 we call T1
2Hp . 

It can be seen in Figure 3.4 that HT2 passes through the region OT1 if 

T1
2Hp  ≤  R.     (3.13) 

The perpendicular distance from DT1 to the intersection of HT1 and HT2 we call T1
1 2H Hp .  

HT2 passes through the region of OT1 if 

T1
1 2H Hp  ≤  R.     (3.14) 

Thus, DT2 will eliminate DT1 if Eq. (3.13) and Eq. (3.14) are satisfied. In Figure 3.4(a), 

Eq. (3.13) is not satisfied; in Figure 3.4(b), Eq. (3.14) is not satisfied. In these two cases it 

cannot be determined if DT1 has lower value than DT2. In Figure 3.4(c), both equations 

are satisfied, and DT2 eliminates DT1. 

If there are more than two non-eliminated trial designs in the set DNTD, we apply 

the tests of Eq. (3.13) and Eq. (3.14) to all ordered pairs of non-eliminated trial designs 
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(‘all ordered pairs’ means testing DTi against DTj as well as testing DTj against DTi) and 

eliminate the lower value trial designs. The trial design that remains non-eliminated after 

testing all the ordered pairs of trial designs would then be the most preferred design. 
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Figure 3.4: Test to find if a trial design is eliminated using gradient adjacency 

elimination (a) DT1 cannot be eliminated with respect to DT2 because, T1
2Hp  > R, (b) 

DT1 cannot be eliminated with respect to DT2 because, T1
2Hp  < R but T1

1 2H Hp  > R, and 

(c) DT1 has lower value than DT2 because, T1
2Hp  < R and T1

1 2H Hp  < R 

Gradient adjacency elimination is a heuristic approach and is based on the linear 

approximation of value function in a small region OT around DT. Note that region OT is 

not arbitrary; it signifies the region around DT in which the MRS values at any design 

point are the same as the MRS values at DT. This follows from a theorem given by 
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Barzilai [Barzilai, 1998], which states that MRS values are constant if and only if the 

value function is linear. So, the DM can choose as the region OT, the region around DT 

where he/she feels that the MRS’s are constant. Note that, Eq. (3.13) and Eq. (3.14) 

involves finding the distances in the attribute space and so this part of our deterministic 

selection method needs the attributes to be normalized. 

If gradient adjacency elimination does not find the most preferred design using 

the region OT given by the DM, we increase η, hence the radius of OT, in small steps 

(say, 0.02) until a singleton most preferred design is found or the linear approximation of 

value function is no longer valid.  At each step in η we apply the tests of Eq. (3.13) and 

Eq. (3.14) to all ordered pairs of non-eliminated trial designs. 

In the next section, we discuss our algorithm for deterministic selection from a set 

of discrete design alternatives using the concepts discussed in Section 3.3. 

 

3.4. ALGORITHM FOR DETERMINISTIC SELECTION 

Our algorithm for finding the most preferred design alternative for deterministic 

selection has the following steps. 

Step 1: Set the iteration number to one (i.e., q = 1) and pick a starting trial design, 

DT1, from the set of design alternatives. We choose DT1 either as an alternative that would 

have maximum value if the value function were linear with equal importance to the 

attributes, or as a random pick. 

Step 2: Query the DM for the MRS preferences between attributes at the current 

trial design DTq.  
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Step 3: Find the gradient of the value function at DTq using the MRS preferences 

(recall Section 3.3.1). 

Step 4: Eliminate lower value designs using the gradient cut at DTq (recall 

Section 3.3.2). 

Step 5: If all designs except one are eliminated or if the DM is satisfied with the 

current trial design DTq, define DNTD to be the singleton set containing DTq, set total 

number of iterations to current iteration number (i.e., c = q), and go to Step 7. Otherwise, 

go to Step 6. 

Step 6: Find a new trial design from the non-eliminated design alternatives (recall 

Section 3.3.3). If a new trial design cannot be found, collect all the non-eliminated trial 

designs in the set DNTD, set total number of iterations to current iteration number 

(i.e., c = q), and go to Step 7. Otherwise, increase the iteration number by one (i.e., 

q = q+1), set the new trial design as DTq and go to Step 2. 

Step 7: If DNTD is a singleton then that design is the most preferred design 

alternative. Otherwise, use gradient adjacency elimination (recall Section 3.3.4) for 

finding the most preferred design alternative from among the DNTD. Increase the radius 

(R) of the hyper-sphere around the trial designs in steps until all the design alternatives 

except one are eliminated. Stop. 

In the next section, we demonstrate our deterministic selection method by 

applying the algorithm discussed above to two engineering examples. 
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3.5. DEMONSTRATION EXAMPLES 

As a demonstration, we tested our deterministic selection method by applying our 

algorithm to two engineering examples. The first example is a two-attribute problem and 

involves the selection of a payload design for an undersea autonomous vehicle. The 

second example is a three-attribute problem and involves the selection of a cordless 

electric drill. The payload design selection example graphically demonstrates the working 

of our algorithm for deterministic selection. The cordless electric drill selection example 

demonstrates the applicability of our method to a problem where the attributes are not 

normalized between zero and one. 

 

3.5.1. Deterministic Selection of Payload Design for Undersea Autonomous Vehicle 

Typically, the payload must be effective in several different uses, called 

“scenarios”. Effectiveness in a scenario is measured by a probability of success PS in that 

scenario. The design goal is to simultaneously maximize individual PS’s for all scenarios. 

The payload design is constrained by upper limits on the weight and radiated noise of the 

payload (see Appendix-I for the description of the payload design optimization problem). 

For our example, we maximized PS1 and PS2 for two different scenarios using a 

Multi-Objective Genetic Algorithm (refer [Gunawan, 2004] for details). Table 3.1 (see 

Column 2) shows the resulting ten Pareto (see [Gunawan et al., 2003] for definition of 

Pareto) optimum design alternatives from which we select, with the PSi’s being the 

attributes. 
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To verify that our deterministic selection method indeed finds the most preferred 

design, we use a simulated DM in this example. We constructed the DM’s implicit value 

function to be of the form 

V = -[(1-PS1)2+(1-PS2)2].       (3.15) 

We emphasize that the simulant value function given by Eq. (3.15) is not a 

presumed value function.  Rather, it simulates a human DM who is supposedly being 

queried by our deterministic selection method, providing MRS preferences. The only 

reason we use this simulant value function is to verify that the most preferred design 

obtained by our method is indeed accurate. Note in Eq. (3.15), V is non-decreasing, 

differentiable, and concave. 

Table 3.1: Design alternatives for payload design selection 

Design 
alternative 

number

Attributes [PS1, PS2] 
of design alternatives

Values of designs 
calculated using Eq. 

(3.15)
1 [0.016, 0.695] -1.062
2 [0.016, 0.693] -1.062
3 [0.134, 0.684] -0.849
4 [0.139, 0.675] -0.848
5 [0.274, 0.541] -0.738
6 [0.275, 0.114] -1.310
7 [0.343, 0.093] -1.254
8 [0.346, 0.091] -1.254
9 [0.355, 0.090] -1.244

10 [0.357, 0.075] -1.267
 

In the next section, Section 3.5.1.1, we describe the application of our algorithm 

for deterministic selection (recall Section 3.4) to the payload design selection example, 

and then discuss the results in Section 3.5.1.2. 
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3.5.1.1. Application of Algorithm for Deterministic Selection to Payload Design 

Following our algorithm in Section 3.4, we set the iteration number to one (i.e., 

q = 1) and randomly pick D3 as the starting trial design, i.e., 

DT1: [PS1, PS2] = [0.134, 0.684] (Step 1). Since this is a two attribute problem, we ask the 

DM to provide only one MRS preference, i.e., MRS preference between PS1 (attribute 1) 

and PS2 (attribute 2). Our simulated DM,  Eq. (3.15), responds by saying that the MRS 

preference is, S12T1: 2.74 (Step 2).  

Using Eq. (3.10), the gradient of the value function at DT1 is ∇VT1 = [0.73, 0.27] 

(Step 3). We use Eq. (3.10) for finding the gradient because the value function of the 

simulated DM, Eq. (3.15) is increasing and the attributes PSi are normalized between zero 

and one. We use an ε value of 0.01 for allowable inconsistency in the MRS values at DT1. 

Gradient cut at DT1 (Step 4) eliminates five lower value designs (shown by small 

rectangles in Figure 3.5(a)). 
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Figure 3.5: Gradient cut at (a) DT1: [0.134, 0.684] and (b) DT2: [0.274, 0.541] 
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The DM is not satisfied that DT1 is the most preferred design, and there are four 

non-eliminated designs: D4, D5, D9 and D10 (shown by ‘+’ in Figure 3.5(a)). So we skip 

Step 5 and find a new trial design (Step 6). For D4, D5, D9 and D10 we find the gradient 

estimates λi+’s in accordance with Eq. (3.12), and apply gradient cut elimination to the 

other ten members of the original set of alternatives. Table 3.2 lists the number 

eliminated and λi+’s for D4, D5, D9 and D10. Since, D5 eliminates more designs with 

gradient estimates λi5’s, it is the new trial design for the second iteration (i.e., q = 2), 

DT2: [0.274, 0.541]. 

At the second trial design DT2 our simulated DM, Eq. (3.15), gives the MRS 

preference as, S12T2: 1.59 (Step 2). Using Eq. (3.10), with ε again 0.01, the gradient of the 

value function at DT2 is ∇VT2 = [0.61, 0.39] (Step 3). Gradient cut at DT2 (Step 4) 

eliminates all of the non-eliminated designs (shown by small rectangles in Figure 3.5(b)). 

Since all designs except one are eliminated, DNTD is the singleton set with D5 as its 

member (Step 5) and D5: [0.274, 0.541] is the most preferred design alternative (Step 7). 

Table 3.2: Candidate new trial designs, λi+’s and number of original designs 

eliminated for payload design selection 

Candidate new trial 
designs Gradient estimates λ i+'s

Number of original 
design alternatives 

eliminated 
D4: [0.139, 0.675] [0.715, 0.285] 8
D5: [0.274, 0.541] [0.696, 0.304] 9
D9: [0.355, 0.090] [0.733, 0.267] 8
D10: [0.357, 0.075] [0.733, 0.267] 7
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3.5.1.2. Discussion 

To verify the result obtained by our deterministic selection method we obtained 

the values of all design alternatives using the simulant value function of Eq. (3.15).  Note 

that the maximum of  Eq. (3.15) (which is zero), is obtained when both PS1 and PS2 are 

equal to one. Column 3 of Table 3.1 shows the values of each design alternative. From 

Column 3 of Table 3.1, we can clearly see that D5 is the most preferred design alternative 

as found by our deterministic selection method. 

 

3.5.2. Deterministic Selection of Cordless Electric Drill 

For cordless electric drill selection, we consider three design attributes: a1, the 

number of operations achievable with one charge of a battery pack; a2, the cost of the 

drill; and a3, the weight of the drill. Table 3.3 presents the eighteen design alternatives 

from which the DM wishes to select the most preferred. The scales (recall Definition in 

Section 2.2.1 of Chapter 2) of the attributes are 350 to 630 operations; $70 to $100; and 

5.5 to 7.8 pounds. We emphasize that for the application of our deterministic selection, it 

does not matter how the design alternatives are obtained. 

We made one simplification for this example. The DM’s value function would 

naturally increase with the number of operations, and decrease with cost and weight. We 

converted the attributes so that the value function is monotonically increasing in all three 

attributes.  For cost and for weight we use 

(modified attribute)  =  (max value in scale of attribute)  -  (original attribute). 

This makes the gradient coefficients, WiT, non-negative. For the convenience of the DM, 

the MRS questions are asked in terms of the original attributes. (Section 3.6 describes an 
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application of our method to a more general case where in the value function is 

quasi-concave and non-decreasing.)  

Table 3.3: Design alternatives for cordless electric drill selection 

1 350 70 6
2 370 80 5.7
3 380 85 5.5
4 400 72 6.5
5 420 82 6.1
6 430 88 5.8
7 450 74 6.9
8 470 85 6.5
9 480 91 6.1
10 500 79 7.2
11 520 89 6.9
12 530 94 6.4
13 550 84 7.5
14 570 93 7.2
15 580 97 6.7
16 600 90 7.8
17 620 98 7.5
18 630 100 7

Design alternative 
number

Number of 
Operations

Cost (in 
dollars)

Weight (in 
pounds)

 

We applied our deterministic selection method to three cases of the cordless 

electric drill example with a different DM in each case. We present in detail the case 

where the DM is a casual user. We then present in lesser detail the cases for a 

professional user and for a moderate (i.e., in between a casual and a professional) user. 

We then discuss the results for all three cases. 

 

3.5.2.1. Application of Algorithm for Deterministic Selection to Cordless Electric Drill 

Selection by a Casual User 

Having no informed guess from the DM for picking the starting trial design, we 

select randomly the design alternative D7 as the trial design for the first iteration (i.e., 
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q = 1), DT1: [450 operations, 74 dollars, 6.9 pounds] (Step 1). We ask the DM for three 

MRS preferences at the current trial design: number of operations for cost; cost for 

weight; and weight for number of operations. We allow the DM to provide the marginal 

change in both attributes for each MRS (e.g., what change in number of operations for 

what change in cost). At DT1, the casual user provided the responses in the third column 

of Table 3.4 (Step 2). 

Table 3.4: MRS between attributes for DM (a casual user) 

MRS Attributes
Trade-offs for constant value 

designs at DT1: [450 operations, 74 
dollars, 6.9 pounds]

Trade-offs for constant value 
designs at  DT2: [350 operations, 70 

dollars, 6 pounds]

Operations 50 operations 50 operations
Cost 4 dollars 3 dollars
Cost 5 dollars 2 dollars

Weight  0.5 pounds  0.5 pounds
Weight 0.4 pounds 0.5 pounds

Operations 50 operations 40 operations

S12

S23

S31

 

With these data and ε of 0.01 for allowable inconsistency in the MRS values, 

Eq. (3.6) gives the gradient coefficients (WiT1) at DT1: W1T1 = 0.004 operation-1; 

W2T1 = 0.045 dollar-1; W3T1 = 0.443 pound-1 (Step 3). We use Eq. (3.6) for finding the 

gradient coefficients because the attributes are not normalized in this example. Using the 

scale of the attributes to convert the gradient coefficients (recall Section 3.3.1), we get the 

relative importance (i.e., the weights) of the attributes as [0.30, 0.40, and 0.30]. Note that 

the relative importance of the attributes obtained is consistent with the preferences of a 

casual user, i.e., the cost of the drill is more important than the number of operations and 

the weight of the drill. 
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Figure 3.6: Gradient cut at DT1: [450 operations, 74 dollars, 6.9 pounds] in the 

modified attribute space 

Using gradient cut elimination (Step 4), fifteen design alternatives are eliminated 

as shown in Figure 3.6. Figure 3.6 shows the design alternatives in the modified attribute 

space (recall Section 3.5.2). The DM is not satisfied that DT1 is the most preferred design, 

and there are two non-eliminated designs: D1 and D4 (shown by ‘+’ in Figure 3.6). So we 

skip Step 5 and proceed to finding a new trial design (Step 6). 

For D1 and D4 we find the gradient estimates λi1’s and λi4’s (i=1, 2 and 3) in 

accordance with Eq. (3.12), and apply gradient cut elimination to the other seventeen 

members of the original set of alternatives. Table 3.5 lists the number eliminated and 

λi1’s and λi4’s for D1 and D4. Since, D1 eliminates more design with gradient estimates 

λi1’s, it is the new trial design for the second iteration (i.e., q=2), 

DT2: [350 operations, 70 dollars, 6 pounds]. 
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Table 3.5: Candidate new trial designs, λi+’s and number of original designs 

eliminated for cordless electric drill selection 

Candidate new trial designs Gradient estimates λ i+'s
Number of original 
design alternatives 

eliminated 

D1: [350 operations, 70 dollars, 6 
pounds]

[0.004 operation-1, 0.028 dollar-1, 0.331 
pound-1]

17

D4: [400 operations, 72 dollars, 
6.5 pounds]

[0.004 operation-1, 0.029 dollar-1, 0.340 
pound-1]

16

 

Beginning the second iteration, we ask the DM for MRS preferences at DT2, and 

receive the data in the fourth column of Table 3.4 (Step 2). The gradient coefficients 

(WiT2) at DT2 are: W1T2 = 0.004 operation-1; W2T2 = 0.069 dollar-1; W3T2 = 0.248 pound-1 

(Step 3, ε for allowable inconsistency in the MRS values is again 0.01). Using the scale 

of the attributes to convert the gradient coefficients, we get the relative importance (i.e., 

the weights) of the attributes as [0.27, 0.57, and 0.16]. 
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Figure 3.7: Gradient cut at DT2: [350 operations, 70 dollars, 6 pounds] in the 

modified attribute  
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We apply gradient cut elimination at DT2 (see Figure 3.7) and find that all other 

design alternatives can be eliminated (Step 4). Since all designs except one are 

eliminated, DNTD is the singleton set with D1 as its member (Step 5) and 

D1: [350 operations, 70 dollars, 6 pounds] is the most preferred design alternative 

(Step 7).  

 

3.5.2.2. Application of Algorithm for Deterministic Selection to Cordless Electric Drill 

Selection by a Professional and Moderate User 

In the case where the DM is a professional user, our deterministic selection 

method found the most preferred design alternative as, 

D18: [630 operations, 100 dollars, 7 pounds], in one iteration. Table 3.6 shows the MRS 

preferences given by the professional user. In the case where the DM is a moderate user, 

the method found the most preferred design alternative as, 

D13: [550 operations, 84 dollars, 7.5 pounds], in three iterations. Table 3.7 shows the 

MRS preferences given by the moderate user. In each case, the first trial design was 

picked randomly. 

Table 3.6: MRS between attributes for DM (a professional user) 

MRS Attributes
Trade-offs for constant value 

designs at DT1: [630 operations, 100 
dollars, 7 pounds]

Operations 50 operations
Cost 10 dollars
Cost 5 dollars

Weight  0.5 pounds
Weight  0.5 pounds

Operations 30 operations

S12

S23

S31
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Table 3.7: MRS between attributes for DM (a moderate user) 

MRS Attributes

Trade-offs for constant 
value designs at DT1: 
[580 operations, 97 
dollars, 6.7 pounds]

Trade-offs for constant 
value designs at DT2: 
[450 operations, 74 
dollars, 6.9 pounds]

Trade-offs for constant 
value designs at DT3: 
[550 operations, 84 
dollars, 7.5 pounds]

Operations 50 operations 50 operations 50 operations
Cost 7 dollars 12 dollars 9 dollars
Cost 10 dollars 10 dollars 10 dollars

Weight  1 pound  1 pound  2 pounds
Weight 1 pound 1 pound 1 pound

Operations 60 operations 50 operations 40 operations

S12

S23

S31

 

 

3.5.2.3. Discussion 

We applied the deterministic selection method two times for all three users, each 

time picking a different starting trial design. We found that for all three users, the most 

preferred design (i.e. D1 for casual user, D18 for professional user, and D13 for moderate 

user) was not affected by the starting trial design. However, the number of iterations 

required to reach the most preferred design depended on the starting trial design. 

Our method selected the design which might have been selected intuitively by the 

casual user and the professional user. The casual user’s MRS preferences (recall 

Table 3.4) indicate that cost is most important; number of operations and weight are 

moderately important. Indeed, our method selected the lowest cost alternative. The 

professional user’s MRS preferences (recall Table 3.6) indicate that number of operations 

is most important; cost is least important; and weight is moderately important. Our 

method selected the option having the highest number of operations, highest cost, and 

relatively high weight. However, for the moderate user the intuitive choice is not clear. 

The MRS preferences (recall Table 3.7) indicate only that weight is of little concern. Our 
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method selected an alternative having middle values of number of operations and of cost, 

but relatively high weight. 

Next we provide some experimental results that verify our selection method and 

also support our claim that, within the limit of our experimentation, the most preferred 

design alternative can be found in just a few iterations. 

 

3.6. VERIFICATION: SOME EXPERIMENTAL RESULTS 

In this section, we provide some experimental results to verify our deterministic 

selection method. We describe the experiments in Section 3.6.1 and discuss the results in 

Section 3.6.2. 

 

3.6.1. Description of Experiments for Verifying the Deterministic Selection Method 

To verify the proposed deterministic selection method, we conducted simulations 

with fourteen different problem sizes, i.e., (number of attributes) ×  (number of design 

alternatives), ranging from two attributes and 50 alternatives to six attributes and 200 

alternatives. We generated ten sets of design alternatives for each problem size. For 

simplicity, the alternatives are uniformly distributed between 0 (worst) and 1 (best) in 

each attribute. 

We used a variety of simulant value functions to produce the answers to the MRS 

questions that our method needs. We tested our method by comparing the most preferred 

design alternative obtained by our method, with the alternative that has the maximum 

value according to the simulant value function. We emphasize here that the role of the 

simulant value functions is just to represent the preference structure of the human DM 
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and to verify the results of our method. In reality (and in our proposed method), the DM 

does not have any idea about the explicit form of the value function except that it must be 

differentiable and quasi-concave. We also recorded some statistical indicators which are 

based on “value efficiency”, Veff.  For any simulant value function V, and for each set of 

design alternatives, we define Veff for a design Dj 

minmax

minj
jeff VV

V)V(D
100)(DV

−

−
=        (3.16) 

where Vmin is the minimum value and Vmax is the maximum value of V in the set of 

design alternatives. For each problem size, we found the average number (over the ten 

sets of alternatives) of iterations and queries needed to find a design alternative that has 

Veff of at least 95% (i.e., stopping when Veff of a new trial design is greater than 95%), 

and also the number of iterations and queries needed to find an alternative with 100% 

Veff. Another statistical indicator is the average Veff of the selected design alternative 

when the stopping criterion is Veff  ≥ 95%. 

For each of the ten sets of design alternatives in each of the problem sizes we 

conducted five simulations, each using one of the following simulant value functions to 

represent the DM’s preferences. 

V1(Dj)        (3.17) 
m

β
ij

i=1
[ (a 1) ] ; β = 2= − −∑

V2(Dj) = ij
m

(1-a )
i i

i=1

1γ ;γ = ;m is the number of  attributesme− ⋅∑  (3.18) 

V3(Dj) i

m
α
ij i

i 1

1a ; α ; m is the number of  attributesm
=

= =∏   (3.19) 
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V4(Dj)      (3.20) 
2m

ij

2
i=1 ij

(a 1) ;    if  i is odd

(a 0.5) ; if  i is even

 −= − 
−

∑

V5(Dj) =        (3.21) 
m-1 m

ij kj
i=1 k=i+1

a a∑ ∑

Note that V1 is increasing for each attribute. (Malakooti [Malakooti, 1988], used the same 

value function V1 for his verification.) V2 is concave and is exponentially increasing in 

each attribute. V3 is the Cobb-Douglas function [Takayama, 1993], which is concave and 

increasing with respect to the attributes and has inter-dependence between attributes. V4 

is concave and increasing for the odd numbered attributes and uni-modal for the even 

numbered attributes. Finally, V5 is the second elementary symmetric function 

[Greenberg and Pierskalla, 1971], which is quasi-concave with respect to the attributes 

and has inter-dependence between attributes. We chose these functions to demonstrate 

that our method works with different forms of the value function as long as it is 

quasi-concave. However, the highest order polynomial function that we considered in 

these simulant value functions is two. We use a polynomial of order greater than two 

(specifically β>2 in Eq. (3.17)) in the verification of our methods in Chapter 5 and 

Chapter 6. Also we use a modification of Eq. (3.19) that is quasi-concave but not concave 

in the verification of our methods in Chapter 5 and Chapter 6. 

For the starting trial design in each simulation, we chose from the set of 

alternatives a design that has less than 40% Veff. In the next section, we present the 

results of our experiments. 
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3.6.2. Results of Experiments for the Verification of Deterministic Selection Method 

For each problem size and each simulant value function in our experiment, 

Table 3.8 shows the statistical indicators described in Section 3.6.1. Our experiments 

show that our method can, indeed, find the DM’s most preferred design, the one which 

has the highest value among the alternatives. From Table 3.8, we observe that when 

stopping at Veff ≥ 95%, the selected designs had Veff ranging from 97.2% to 100%, with 

an average (over the problem sizes) of 99.1%.  It took on average 2.9 iterations to reach 

95% and 4 iterations to reach 100% value efficient design alternatives. For the simulant 

value function V1, the results shown in Table 3.8 are comparable to the results published 

by Malakooti [Malakooti, 1988]. However, an exact comparison cannot be made because 

we do not know the design alternatives used in his verification study. Recall also that our 

method asks the DM for the comparison of attributes whereas Malakooti’s method asks 

the DM for the comparison of alternatives. 

An interesting observation from Table 3.8, is that the number of iterations 

required for our deterministic selection method depends more on the number of attributes 

than on the number of designs. For example, we can see that for the simulant value 

function V3 given by Eq. (3.19), the average number of iterations required in finding a 

design alternative with 100% Veff is: ‘2.5 iterations’ when the problem size is ‘5 

attributes’ x ‘50 designs’; ‘3.1 iterations’ when the problem size is ‘5 attributes’ x ‘100 

designs’; and ‘4.2 iterations’ when the problem size is ‘5 attributes’ x ‘200 designs’. The 

reason for this is that, gradient cut eliminates all the designs that are in the half space 

bounded by the gradient at a trial design. So, the number of iterations required by our 
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deterministic selection method will not change if the additional designs lie in the gradient 

cut of a trial design. 

Table 3.8: Results of the verification study for deterministic selection method 

Problem size: "# 
of attributes×# of 

designs"

Value 
function

Avg # of queries 
to get 95% Veff

Avg # of 
iterations to get 

95% Veff

Avg Veff of best 
design after 

reaching 95% 
Veff

Avg # of queries 
to get 100% Veff

Avg # of 
iterations to get 

100% Veff

V1 1.9 1.9 99.9 2.3 2.3
V2 2.1 2.1 99.8 2.3 2.3
V3 2.5 2.5 91.9 3.2 3.2
V4 2.9 2.9 98.7 6.2 6.2
V5 3 3 99.9 3.1 3.1
V1 1.9 1.9 99.6 2.9 2.9
V2 2.1 2.1 99.9 2.5 2.5
V3 3.4 3.4 94.0 3.8 3.8
V4 2.7 2.7 98.7 7.1 7.1
V5 3 3 99.1 3.7 3.7
V1 10.2 3.4 99.6 11.1 3.7
V2 7.8 2.6 99.6 8.4 2.8
V3 6.6 2.2 99.0 10.2 3.4
V4 5.4 1.8 99.2 7.5 2.5
V5 8.4 2.8 99.4 10.5 3.5
V1 9.6 3.2 99.4 11.7 3.9
V2 7.2 2.4 99.6 7.8 2.6
V3 11.4 3.8 99.1 14.7 4.9
V4 8.1 2.7 98.7 13.2 4.4
V5 6.3 2.1 99.0 7.8 2.6
V1 8.1 2.7 99.3 9.9 3.3
V2 6.6 2.2 99.5 8.7 2.9
V3 13.8 4.6 99.4 15.3 5.1
V4 9.3 3.1 98.5 16.8 5.6
V5 5.4 1.8 99.4 7.2 2.4
V1 11.2 2.8 99.0 17.6 4.4
V2 12 3 98.6 16 4
V3 12 3 99.7 14 3.5
V4 16.4 4.1 99.3 23.2 5.8
V5 7.6 1.9 99.1 8.4 2.1

4X50

Continued on the next page

3×200

2 × 50

2 ×100

3 ×50

3×100
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Problem size: "# 
of attributes×# of 

designs"

Value 
function

Avg # of queries 
to get 95% Veff

Avg # of 
iterations to get 

95% Veff

Avg Veff of best 
design after 

reaching 95% 
Veff

Avg # of queries 
to get 100% Veff

Avg # of 
iterations to get 

100% Veff

V1 12 3 98.6 20.4 5.1
V2 11.6 2.9 98.8 14 3.5
V3 21.2 5.3 99.0 27.6 6.9
V4 14.4 3.6 98.2 21.2 5.3
V5 9.2 2.3 99.6 10.8 2.7
V1 14.8 3.7 98.5 19.6 4.9
V2 10.8 2.7 98.7 14 3.5
V3 18.8 4.7 99.7 19.6 4.9
V4 19.6 4.9 98.7 28.4 7.1
V5 15.2 3.8 99.0 17.6 4.4
V1 8 1.6 98.9 12.5 2.5
V2 11 2.2 99.3 13 2.6
V3 12.5 2.5 100.0 12.5 2.5
V4 18 3.6 99.3 25.5 5.1
V5 11 2.2 99.6 11.5 2.3
V1 15.5 3.1 99.2 19 3.8
V2 9.5 1.9 98.9 12.5 2.5
V3 11.5 2.3 99.2 15.5 3.1
V4 13 2.6 98.3 32.5 6.5
V5 11 2.2 99.6 11.5 2.3
V1 14.5 2.9 98.9 19.5 3.9
V2 15 3 99.1 18.5 3.7
V3 16.5 3.3 98.9 21 4.2
V4 17 3.4 98.3 46 9.2
V5 12.5 2.5 99.4 14 2.8
V1 14.4 2.4 99.7 15.6 2.6
V2 15 2.5 98.7 17.4 2.9
V3 14.4 2.4 98.3 21.6 3.6
V4 27.6 4.6 98.9 37.2 6.2
V5 13.2 2.2 99.5 14.4 2.4
V1 15 2.5 99.2 19.8 3.3
V2 15 2.5 98.6 18 3
V3 14.4 2.4 99.3 16.2 2.7
V4 25.2 4.2 98.3 42.6 7.1
V5 14.4 2.4 99.5 15 2.5
V1 22.2 3.7 98.9 33.6 5.6
V2 15.6 2.6 98.3 22.8 3.8
V3 24 4 99.4 30 5
V4 27.6 4.6 97.2 55.8 9.3
V5 20.4 3.4 99.1 24 4

4X200

5×200

5×50

Continued from the last page

4X100

5×100

6×200

6×50

6×100

 

We also conducted an experiment to verify that our approach for finding a new 

trial design is better than some simplistic approach. In this experiment, we conducted a 
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simulation similar to the simulations discussed in Section 3.6.1. We used the function 

given by Eq. (3.20) as the simulant value function representing the DM’s preference 

structure. However for finding the new trial design, we used a simplistic approach rather 

than our approach (recall Section 3.3.3). In this simplistic approach, we use the 

non-eliminated design alternative which would have maximum value if the value 

function were linear with equal importance to the attributes as the new trial design. In the 

simulation, we found the number of iterations required to reach a 95% Veff design 

alternative. 

Table 3.9: Results for the verification of our approach for finding a new trial design 

Problem size 2×50 2×100 3×50 3×100 4×50 4×100 5×50 5×100

No of iterations to find 95% 
Veff design using our 

approach for finding a new 
trial design

2.9 2.7 1.8 2.7 4.1 3.6 3.6 2.6

No of iterations to find 95% 
Veff design using simplistic 
approach for finding a new 

trial design

5.4 9.7 3.4 4.3 4.3 4.3 3 3.2

 

Table 3.9 above shows the number of iterations required to find a design with 

at least 95% Veff using our approach for finding a new trial design in the first row for 

different problem sizes (i.e., (number of attributes) × (number of alternatives)). The 

number of iterations required for finding a design with at least 95% Veff using the 

simplistic approach is presented in the second row. From Table 3.9, we can see that our 

approach for finding the new trial design performs much better (for most of the problem 

sizes) than the simplistic approach. Also our approach for finding the new trial design is a 

linear programming problem and can be solved quickly. 
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3.7. SUMMARY 

In this chapter, we presented an interactive method for deterministic product 

design selection with an implicit value function. The method required that the DM state 

his/her preferences in the form of MRS between attributes at each trial design. We 

presented an approach for finding the gradient of the DM’s value function at a trial 

design using the DM’s response to MRS questions. If the DM’s MRS preferences are 

inconsistent beyond a certain limit (given by ε), our formulation for finding the gradient 

coefficients becomes infeasible thus alerting the DM about the inconsistency. The 

deterministic selection method used gradient cut to eliminate lower value designs. We 

presented an approach that makes good use of the gradient information at all the previous 

trial designs for finding a better new trial design. We presented a new approach, gradient 

adjacency elimination, which is useful for eliminating designs that are not eliminated by 

gradient cut. Finally, we presented an algorithm for deterministic selection using the 

concepts mentioned above. We demonstrated our deterministic selection with two 

engineering examples, namely, selection of a payload design for undersea autonomous 

vehicle and selection of a cordless electric drill. We also presented some experimental 

results to verify our deterministic selection method. 

Our deterministic selection method is applicable when the DM’s implicit value 

function is differentiable and quasi-concave. The main difference between our 

deterministic selection method and other selection methods for an implicit value function 

(e.g., [Malakooti, 1988]) is that in our deterministic selection method we query the DM 

for the marginal rate of substitution (MRS) between the attributes while other methods 

query the DM for the pair-wise comparison of design alternatives. However, as 
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mentioned in Section 2.3.1 of Chapter 2, pair-wise comparisons of design alternatives are 

difficult because they involve comparing two m-attribute designs, and, hence, might lead 

to intransitive preferences. 

Our deterministic selection method is iterative and requires the DM to state the 

MRS preferences at a series of trial designs. Since the method queries the DM for the 

MRS between attributes, it is presumed that the DM has the requisite level of expertise 

and consistent judgment to make the trade-offs. Because of its iterative nature, our 

method might come across as tedious. However, since we have no idea about the DM’s 

implicit value function there is no better way (without explicitly assuming a function) for 

finding the most preferred design other than eliminating lower value designs with respect 

to a series of trial designs.  

Our deterministic selection method guarantees that the set of non-eliminated trial 

designs, DNTD, always contains the most preferred design irrespective of the starting trial 

design. Otherwise, the most preferred design would have been eliminated by the gradient 

cut of some trial design, contradicting the property of quasi-concave value function 

(recall Section 3.3.2). However, if DNTD, is not a singleton, the uniqueness of the most 

preferred design is not guaranteed because the gradient adjacency elimination approach 

which is used to select from DNTD is a heuristic approach.  

For the verification of our deterministic selection method, we used simulant value 

functions, replacing a human DM, for obtaining the MRS preferences at the trial designs. 

Although such a numerical approach is mathematically valid, in reality there is no 

practical way for checking whether the DM gives the MRS preferences consistent with a 

value function as we move from one trial design to other trial design. But, unfortunately, 
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there are no benchmark problems for validating product design selection methods 

because of the subjectivity involved with human preferences. 

Also in our verification study, we stopped the deterministic selection method after 

obtaining a design with a value efficiency of 95% and 100%. We could do this in our 

verification study because we used a simulated DM. In reality, such a stopping criterion 

cannot be used because of the implicit nature of the DM’s value function and the only 

stopping criterion is that a new trial design cannot be found. However, our experiments 

showed that, on an average, irrespective of the problem size (for at least up to ‘six 

attributes’ ×  ‘200 designs’) our method finds the most preferred design alternative (i.e., 

design with value efficiency of 100%) as the new trial design in five to six iterations. So 

the DM can stop the iterative process after five to six iterations and make a selection from 

the set of non-eliminated trial designs, DNTD, at that stage 

In the next chapter, we present the development of the method for our second 

research component, sensitivity analysis for deterministic selection. This method is used 

to find the allowed preference variation for which the set of non-eliminated trial designs, 

found using the deterministic selection does not change. 
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CHAPTER 4 

 

SENSITIVITY ANALYSIS FOR DETERMINISTIC SELECTION 

 

4.1. INTRODUCTION 

In making a selection from a set of product design alternatives, the DM tries to 

meet the requirements of the end users of the product. Since, in general, the DM does not 

have complete information about the end users’ needs, he/she may want to know how the 

preferred design(s) is (are) affected if the preferences vary. For example in automobile 

design selection, the DM conducts market survey and says that: “I would allow the cost 

of the automobile to increase around 5000 dollars, if the 0-60 time is decreased by two 

seconds”. The DM gives an estimate of his/her actual preference in such a response and 

he/she cannot state his/her actual preference with certainty. So the DM would like to 

know how much variation the preferred design(s) can absorb before it is replaced by 

some other design(s). We call as robustness, the amount of change (or variation) allowed 

between the actual preferences and the preference estimates before the preferred 

design(s) is (are) changed. Finding the degree of robustness (or robustness index) of the 

preferred design(s) to preference variation is generally referred to as sensitivity analysis 

in the literature [Insua and French, 1991]. 

The purpose of this chapter is to present a concept for sensitivity analysis for 

deterministic selection. This concept can be used with any iterative selection scheme that 

chooses a trial design for each iteration, and uses the DM’s estimates of preference 

parameters at that trial design to eliminate some design options which have lower value 
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than the trial design [Maddulapalli et al., 2002] [Malakooti, 1988]. Such schemes, like 

our deterministic selection method (recall Chapter 3), are in general applicable to the 

cases where the DM’s value function is implicit. 

The organization of this chapter is as follows. In Section 4.2 we present an 

overview of our concept for sensitivity analysis. Section 4.3 describes an implementation 

of the concept using our deterministic selection method (recall Chapter 3). Next, in 

Section 4.4 we discuss our algorithm for sensitivity analysis. In Section 4.5, we 

demonstrate the application of our sensitivity analysis method with the help of two 

engineering examples. Then we present some experimental results to verify our 

sensitivity analysis method in Section 4.6 and finally conclude the chapter with a 

summary in Section 4.7. 

 

4.2. OVERVIEW OF CONCEPT FOR SENSITIVITY ANALYSIS 

Our concept for sensitivity analysis is applicable to iterative selection methods, 

which choose a trial design DT at each iteration, and examine every other design D+ in the 

original set of design alternatives to eliminate designs having lower value than DT, e.g., 

[Malakooti, 1988], our deterministic selection method of Chapter 3. The output of such a 

method is a set of non-eliminated trial designs DNTD, which could be a singleton. 

Figure 4.1 shows the flowchart of our concept for calculating three successive metrics, 

culminating in the “robustness index” of DNTD. 

For each D+ originally eliminated by DT, and for each preference (e.g., relative 

importance or MRS between attributes) estimate, there is a certain variation (i.e., a 

difference) between the estimate and the actual preference for which D+ becomes 
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non-eliminated. Our first metric δ+T, which we call elimination robustness of design D+ 

with respect to trial design DT, is defined as the smallest of those variations, where they 

are considered in magnitude, expressed as fractions of their estimates. Thus, so long as 

the variation in every preference is less than δ+T, D+ will always be eliminated by DT. If 

D+ is originally non-eliminated, δ+T can conveniently be taken as zero (i.e., no preference 

variation is needed to make it non-eliminated). For each DT, δ+T is calculated for each 

design D+ in the original set of design alternatives. 
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Figure 4.1: Flowchart of the concept for sensitivity analysis 

The second metric, δ+max, is the overall elimination robustness of a design D+. 

δ+max is the largest of the δ+T’s for D+ over all DT’s. Thus, so long as the variation in 

every preference is less than δ+max at all trial designs, D+ will be eliminated by at least one 

trial design. 
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The final metric is robustness index, δ, which is the minimum of all the δ+max’s. 

All designs not in the set of non-eliminated trial designs, DNTD, remain eliminated so long 

as the variation in every preference is less than δ. 

Table 4.1: Overall elimination robustness of design alternatives 

Design alternative 
number 3 4 1 2 9 10 8 7 6

Overall elimination 
robustness δ+max

0.35 0.38 0.97 0.97 2.52 2.52 2.95 3.08 223.14

 

To explain the usefulness of our robustness index, we present the results of one of 

our examples in Table 4.1 (see Section 4.5.1.1 for details). In this example, we selected 

from ten designs. The set DNTD consists of a single element, D5. Table 4.1 shows the 

overall elimination robustness, the δ+max’s, of the other nine designs in an ascending 

order. The minimum δ+max occurs for D3, and this value becomes the robustness index of 

DNTD: δ = 0.35. Thus, as long as all actual preferences differ from their estimates by less 

than 35%, D5 will be the most preferred design.  Any design for which δ+max = δ we call a 

“critical design”; it becomes a member of DNTD if the preference variation is δ or more. In 

the example, D3 is a singleton critical design. The DM can consider the robustness index 

δ and the identified critical designs to choose what action to take next. If the DM feels 

that the robustness index is acceptable or that the critical designs are not important, then 

he/she can make a selection from the set DNTD. Otherwise, he/she can give ranges for the 

preferences and then find the potentially optimal designs for those ranges (see Chapter 5 

for our method to find the potentially optimal designs for a range of MRS preferences). 

Note that δ+max for each design is the preference variation at the trial designs that 

would cause that design to become a member of DNTD. Arranging the designs in the 
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ascending order of δ+max (as in Table 4.1) lets the DM see which designs (other than the 

critical designs) are next nearest to becoming members of DNTD, and what amount of 

preference variation would cause that to happen. In the above example, D4 is next nearest 

to becoming a member of DNTD and that will happen if the preference variation is 38%. 

Also, the DM can give ranges of preferences symmetric  about the preference estimates 

(i.e., preference estimate is the mid point of the range) at the trial designs to account for 

the preference variability and then find the set of non-eliminated designs for those ranges 

directly using δ+max. However, if the ranges of preferences are not symmetric about the 

preference estimates then the DM should use selection with preference variability for 

finding the set of non-eliminated trial designs (see Chapter 5 for our method for selection 

with preference variability). 

The robustness index also gives the bounds or intervals within which the actual 

preferences at all trial designs must lie in order to not affect DNTD: {estimated preference 

value}⋅{1±δ}. The bounds on the preferences are similar to the weight stability intervals 

proposed by Mareschal [Mareschal, 1988]. However, Mareschal’s approach is applicable 

only for an additive value function (with unknown weights).  In contrast, our concept for 

sensitivity analysis is applicable to selection with an implicit value function. 

 

4.3. SENSITIVITY ANALYSIS IMPLEMENTATION 

In this section, we describe the implementation of the concept for sensitivity 

analysis (recall Figure 4.1) in our deterministic selection method (recall Chapter 3). In 

this implementation, we assume that the DM’s implicit value function is differentiable, 

quasi-concave and non-decreasing with respect to the attributes. (Note that the 
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assumption that the DM’s value function is non-decreasing with respect to the attributes 

is not necessary for the application of the method developed in Chapter 3.) Because the 

DM’s value function is assumed non-decreasing with respect to attributes, for selection, it 

is enough to consider only those designs that are Pareto optimal from the original set of 

design alternatives [Malakooti, 1988]. Figure 4.2 shows the flowchart of the 

implementation. 
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Figure 4.2: Flowchart of the concept for sensitivity analysis applied to our 

deterministic selection method 

The flowchart in Figure 4.2 is similar to that of Figure 4.1 except that the box 

titled “Iterative Selection Method” in Figure 4.1 is replaced by the flowchart of our 

deterministic selection method (recall Figure 3.1) in Figure 4.2. Recall from Chapter 3 

that, in our deterministic selection method, we start by picking a trial design DT from the 
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set of design alternatives. Next, we capture the DM’s preferences by querying about the 

MRS between attributes. We use the DM’s response to these MRS queries as the 

preference (or MRS) estimates in the implementation of our sensitivity analysis concept. 

In our deterministic selection method, after eliminating lower value designs using 

the gradient coefficients at a series of trial designs, we collect the non-eliminated trial 

designs in the set, designated by DNTD. We then use the gradient adjacency elimination 

approach for eliminating more designs from DNTD. However, in the implementation of the 

concept of sensitivity analysis in our deterministic selection method, the robustness index 

that we find is the robustness of the set DNTD and not of the most preferred design. 

In the next two sections we describe the individual components of the 

implementation shown in Figure 4.2. In Section 4.3.1, we explain our approach for 

finding δ+T, followed in Section 4.3.2 by our approach for finding δ. Refer to Chapter 3, 

for our approaches for: finding the gradient coefficients, eliminating lower value designs 

using gradient cut and finding a new trial design. Note, from here on in this chapter, δ+T, 

δ+max, and δ represent the preference variation between actual MRS preferences and their 

estimates. 

 

4.3.1. Finding Elimination Robustness of a Design with respect to a Trial Design 

Let SijT be the MRS estimate between attributes ai and aj given by the DM at the 

current trial design DT in our deterministic selection method (recall Figure 4.2), and let 

∇VT be the corresponding gradient of the value function. Also, let D+ be an arbitrary 

design that belongs to the original set of design alternatives and that lies in the gradient 

cut CG corresponding to ∇VT at DT (therefore DT eliminates D+). 
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Figure 4.3: Illustration of threshold gradient of D+ with respect to DT 

As illustrated in Figure 4.3, if the actual preferences (stated when there is 

complete information about end users’ needs) at DT are such that the gradient 

is∇ , then D+ would not be eliminated. We call  the threshold 

gradient of D+ with respect to DT. δ+T, the elimination robustness of D+ with respect to 

DT, is the smallest of the ‘m-1’ preference variations at DT for which the gradient reaches 

the threshold gradient. Note from Eq. (3.11) (recall Section 3.3.2 of Chapter 3) that 

Eq. (4.1) holds at ∇  (where the terms aiT and ai+ are the attributes of DT and D+, 

respectively). 

t+ t+ t+
T 1T mV :[W ,..., W ]

V

T
t+
TV∇

t+
T

m
t+

iT i+ iT
i=1

W (a - a ) 0⋅ ≥∑ .               (4.1) 

We use the symbol sijT to represent the actual MRS values between attributes ai 

and aj at DT and ∇vT = [w1T,…,wmT]  to represent the gradient corresponding to sijT. As 

long as all sijT’s lie in the range given by Eq. (4.2), their corresponding gradient will not 

reach the threshold gradient∇ . t+
TV

+T ijT ijT +T ijT(1 ) S s (1 ) S− δ ⋅ < < + δ ⋅        (4.2) 
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In the next section, we present our formulation for finding δ+T when D+ lies in the 

gradient cut of ∇VT. Recall from Section 4.2 that for convenience we set δ+T of a design 

D+ not in the gradient cut of ∇VT to zero. 

 

4.3.1.1. Formulation for Finding the Elimination Robustness of a Design with respect to 

a Trial Design 

We use the formulation in Eq. (4.3) for finding δ+T of a design D+: [a1+,…,am+] 

with respect to a trial design DT: [a1T,…,amT]  treating δ+T and the wiT as the variables that 

are to be found. In Eq. (4.3), aiT and ai+ are fixed (or deterministic). 

+TMinimize   δ         (4.3a) 

m

iT i+ iT
i=1

subject to :  w (a a ) 0⋅ − ≥∑       (4.3b) 

m

iT iT
i=1

w 1; w 0= ≥∑       (4.3c) 

iT
+T ijT +T ijT

jT

w(1 ) S (1 ) S ;   'm -1' such constraints
w

− δ ⋅ ≤ ≤ + δ ⋅  (4.3d) 

+Tδ 0≥         (4.3e) 

Eq. (4.3b) is used to check that D+ is not in the gradient cut corresponding to the gradient 

coefficients, wiT, at DT (recall Eq. (4.1)). Note that, in the formulation of Eq. (4.3), we are 

looking for preference variations that would make D+ not eliminated. 

Eq. (4.3c) is a normalization constraint on the gradient coefficients, wiT. We 

impose the constraint that the gradient coefficients, wiT, are non-negative because we 

assume that the value function is non-decreasing with respect to the attributes. We use 

Eq. (4.3c) to normalize wiT because, we assume that the attributes are normalized in 
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Eq. (4.3). When the attributes are normalized, wiT is dimensionless and represents the 

relative importance or weight of the attribute (which by convention in the literature lies 

between zero and one). However, if the attributes are not normalized we neglect 

Eq. (4.3c) in the above formulation. One could also modify Eq. (4.3c) as
m

iT i
i 1

w r
=

1⋅ =∑ , 

where ri is the scale of the ith attribute (recall Definition in Section 2.2.1 of Chapter 2). 

Eq. (4.3d) is to check that sijT (recall from Eq. (3.4) that iT
ijT

jT

w
w

=s ) are within the 

bounds, given by δ+T, of the MRS estimates, SijT. Also, if the lower bound in Eq. (4.3d) 

becomes negative, we set it equal to zero because sijT cannot be negative. Eq. (4.3e) is a 

constraint imposed on δ+T.  

In Eq. (4.3d), we assume that the actual MRS values can lie in either direction of 

(i.e., greater or lesser than) the MRS estimate SijT. I.e., we assume the preference 

variation to be symmetric about the MRS estimates. We make this assumption because 

we do not have any information about where the DM’s actual MRS preference is. 

However, we can readily modify Eq. (4.3d) if the DM says that the actual preference is in 

a particular direction of SijT. 

Note that it is important to obtain the global optimum of δ+T when using the 

formulation in Eq. (4.3). A local optimum could differ significantly from the global 

optimum giving misleading conclusions about the allowed preference variation at DT for 

which D+ is always eliminated. 

Note that in Eq. (4.3) we assume the sijT’s are exact and consistent. By exact and 

consistent we mean that Eq. (4.4) is satisfied (recall Eq. (3.4) and Eq. (3.5)). 
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Since only ‘m-1’ MRS values are independent when they are consistent, we use only 

‘m-1’ constraints for the bounds on sijT (recall Eq. (4.3d)), even though we obtain ‘m’ 

MRS estimates from the DM. However, if one feels that the exactness and consistency 

assumption is not appropriate then, the formulation in Eq. (4.3) can be easily modified by 

adding two more constraints as given by Eq. (4.5) or Eq. (4.6) depending on whether or 

not the attributes are normalized. In Eq. (4.6), ri is the scale of the ith attribute. 
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Eq. (4.5a) or Eq. (4.6a) would be used to check how close the sijT’s are to the wiT’s (recall 

Eq. (3.6a) and Eq. (3.10a)) and Eq. (4.5b) or Eq. (4.6b) would be used to check that sijT 

are consistent (recall Eq. (3.6b) and Eq. (3.10b)). However, note that adding the 

constraints in Eq. (4.5) or Eq. (4.6) (which are nonlinear and non-convex) to the 

formulation in Eq. (4.3) would increase the computational burden for finding δ+T. 

The Eq. (4.3) formulation (with or without additional constraints of Eq. (4.5) or 

Eq. (4.6)) can be solved with existing commercial optimization software (e.g., “fmincon” 
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from the MATLAB® optimization toolbox). One might argue that the bounds on sijT, 

hence δ+T, could be obtained more easily by finding the threshold gradient ∇  (see 

Figure 4.3) analytically.  could be found by minimizing the angle 

between ∇V

t+
TV

t+ t+ t+
T 1T mV :[W ,..., W ]∇ T

T and∇  subject to the constraint of Eq. (4.1), where ∇Vt+
TV T = [W1T,…,WmT] 

is the gradient of the value function at DT obtained from the MRS estimates SijT. Once 

 is found, the corresponding threshold MRS, , can be found using Eq. (3.4). The 

threshold MRS can then be used in finding the bounds on MRS values, s

t+
TV∇ t+

ijTS

ijT, as given by 

Eq. (4.7a) or Eq. (4.7b) as the case may be, and the bounds can then be used in finding 

δ+T. 
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Even though the above discussed approach looks tempting, it is not applicable for 

problems with more than two attributes, as is proven in the lemma in Appendix-II. 

In the next section, we present our approach for finding the robustness index δ of 

DNTD. 

 

4.3.2. Finding Robustness Index of DNTD 

Let D+ be any arbitrary design alternative that does not belong to the set of 

non-eliminated trial designs DNTD. Let δ+T1,…, δ+Tc be the elimination robustness of D+ 

with respect to trial designs DT1,…, DTc, respectively (c is the total number of iterations). 
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The overall elimination robustness of D+, δ+max (recall Section 4.2), is then the maximum 

of all δ+Tj’s (j = 1, ... , c). And the robustness index δ of DNTD is then the minimum of all 

δ+max’s. 

Our definition of robustness index δ is conservative because it restricts the 

variation between the actual MRS and its estimate to be the same for all pairs of attributes 

at all the trial designs. However, if we find the allowed preference variation for each pair 

of attributes at each trial design, the resulting amount of information is likely to 

overwhelm the DM. Note that we can readily modify our approach if the DM is interested 

in the robustness of DNTD with respect to a particular pair of attributes and/or a particular 

trial design. 

We mentioned earlier that our robustness index can be used for finding the critical 

designs – those that become non-eliminated if the variation between the actual MRS 

preferences and the estimates at the trial designs is δ or more. If the intermediate data (the 

δ+T’s and the δ+max’s) are retained, they can be traced back as follows to identify a 

“critical pair” -- the two attributes whose MRS variation has the largest influence in 

determining the critical designs. First, find the D+ whose δ+max equals δ (the minimum of 

all δ+max’s). For that D+, find the trial design DT whose δ+T equals its δ+max (maximum of 

the δ+T’s for that D+). Next, for that DT and D+ find which constraint(s) out of the ‘m-1’ 

constraints on the bounds of MRS (recall Eq. (4.3d)) are active. The attributes 

corresponding to that constraint(s) are the critical pair(s).  Improving the MRS estimate 

for the critical pair would give the largest increase in the robustness index, so knowing 

the critical pair can help the DM. The DM can also assign various ranges for the MRS 
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preference between the critical pair and see how the potentially optimal designs change 

using our method for selection with preference variability (see Chapter 5 for details). 

In the next section, we present the algorithm we developed for finding the 

robustness index of DNTD using the concepts developed in the earlier sections. 

 

4.4. ALGORITHM FOR SENSITIVITY ANALYSIS 

Our algorithm for finding the robustness index has the following steps. In this 

algorithm, Step 1 to Step 6 are similar to the algorithm we presented for our deterministic 

selection method in Section 3.4 of Chapter 3. 

Step 1: Set the iteration number to one (i.e., q = 1) and pick a starting trial design, 

DT1, from the set of design alternatives. We choose DT1 either as an alternative that would 

have maximum value if the value function were linear with equal importance to the 

attributes, or as a random pick. 

Step 2: Query the DM for the preference (MRS) estimates at the current trial 

design DTq. 

Step 3: Find the gradient of the value function at DTq using the preference (MRS) 

estimates (recall Section 3.3.1 of Chapter 3). 

Step 4: Eliminate lower value designs using the gradient cut at DTq (recall 

Section 3.3.2 of Chapter 3). Store the designs that are eliminated by DTq. 

Step 5: If all designs except one are eliminated, define DNTD to be the singleton set 

containing the non-eliminated design, set total number of iterations to current iteration 

number (i.e., c = q), and go to Step 7. Otherwise, go to Step 6. 
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Step 6: Find a new trial design from the non-eliminated design alternatives (recall 

Section 3.3.3 of Chapter 3). If a new trial design cannot be found, collect all the 

non-eliminated trial designs in the set DNTD, set total number of iterations to current 

iteration number (i.e., c = q), and go to Step 7. Otherwise, increase the iteration number 

by one (i.e., q = q+1), set the new trial design as DTq and go to Step 2. 

Step 7: For each D+ that does not belong to DNTD, find δ+q (q=1,…,c). If D+ is 

eliminated by DTq, use Eq. (4.3) (recall Section 4.3.1.1) for finding δ+Tq otherwise, set 

δ+Tq to zero. 

Step 8: For each D+ that does not belong to DNTD, find δ+max, the overall 

elimination robustness of D+, by finding the maximum of the δ+Tq’s (q=1,…,c). 

Step 9: Find δ, the robustness index of DNTD, by finding the minimum of all 

δ+max’s and present this δ and the corresponding critical design(s) to the DM. Stop. 

In the next section, we demonstrate our sensitivity analysis method by applying 

the algorithm discussed above to two engineering examples. 

 

4.5. DEMONSTRATION EXAMPLES 

As a demonstration, we tested our sensitivity analysis concept by applying our 

algorithm to two engineering examples. These examples are same as the examples in 

Section 3.5 of Chapter 3. The first example is a two-attribute problem and involves the 

selection of a payload design for an undersea autonomous vehicle. The second example is 

a three-attribute problem and involves the selection of a cordless electric drill. The 

payload design selection example graphically demonstrates the working of our algorithm 

for sensitivity analysis. The cordless electric drill selection example demonstrates the 
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applicability of our method to a problem where the attributes are not normalized between 

zero and one. 

 

4.5.1. Sensitivity Analysis for Deterministic Selection of Payload Design for 

Undersea Autonomous Vehicle 

For the payload design selection example, we set the ten Pareto optimum design 

alternatives, shown in Table 3.1 (reproduced in Column 2 of Table 4.2), as the design 

alternatives from which we select, with the PSi’s being the attributes. We again use the 

simulant value function given by Eq. (3.15) as the simulated DM for this example (recall 

Section 3.5.1 of Chapter 3). 

In the next section, Section 4.5.1.1, we describe the application of our algorithm 

for sensitivity analysis (recall Section 4.4) to the payload design selection example, and 

then discuss the results in Section 4.5.1.2. Some of the steps we describe in 

Section 4.5.1.1 are similar to the steps in Section 3.5.1.1 of Chapter 3. 

 

4.5.1.1. Application of Algorithm for Sensitivity Analysis to Payload Design Selection 

Following our algorithm in Section 4.4., we set the iteration number to one (i.e., 

q = 1) and randomly pick D3 as the starting trial design, i.e., 

DT1: [PS1, PS2] = [0.134, 0.684] (Step 1). The simulated DM of Eq. (3.15) responds with 

the MRS estimate as, S12T1: 2.74 (Step 2). The gradient of the value function at DT1 is 

then ∇VT1 = [0.73, 0.27] (Step 3). Gradient cut at DT1 (Step 4) eliminates five lower value 

designs; i.e., D1, D2, D6, D7, and D8 (shown by small rectangles in Figure 4.4(a)). Since 

more than one design is non-eliminated we skip Step 5 and find a new trial design 
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(Step 6). Using our approach for finding a new trial design (recall Section 3.3.3), we find 

D5 as the new trial design. We increase the iteration number by one (i.e., q = 2), set D5 as 

DT2: [0.274, 0.541] and go to Step 2. 

The simulated DM of Eq. (3.15) gives the MRS estimate at DT2 as, S12T2: 1.59 

(Step 2). The gradient of the value function at DT2 is then ∇VT2 = [0.61, 0.39] (Step 3). 

Gradient cut at DT2 (Step 4) eliminates all other designs (shown by small rectangles in 

Figure 4.5(a)). Since all designs except one are eliminated, DNTD is the singleton set with 

D5 as its member (Step 5) and we set the total number of iterations to two, i.e., c = 2 and 

go to Step 7.  
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Figure 4.4: Payload design selection (a) gradient cut at DT1 and (b) threshold 

gradient of D1 with respect to DT1 

We then find the elimination robustness of each eliminated design D+ with respect 

to DT1, i.e., δ+T1’s and DT2, i.e., δ+T2’s (Step 7). Column 3 of Table 4.2 shows the δ+T1’s of 

all designs. For example, using Eq. (4.3), the elimination robustness of D1 with respect to 
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DT1 is 0.97. From Eq. (4.2), we can then say that D1 will be eliminated by DT1 as long as 

the actual MRS value at DT1, i.e.,s12T1, is in the range 

12T10.09 s 5.40< < .     (4.8) 

When solving Eq. (4.3) for δ1T1, the inequality s12T1 > 0.09 is active, so the threshold 

MRS, S , is 0.09 (see Figure 4.4(b)). The elimination robustness of Dt1
12T1 3, D4, D9, and D10 

is zero because these designs are not eliminated by DT1. The elimination robustness of D5 

is not listed in Table 4.2 because D5 is the most preferred design and belongs to DNTD. 

Table 4.2: Elimination robustness of eliminated payload design alternatives 

Design 
alternative 

number

Attributes [PS1, PS2] of 
design alternatives

δ+T1’s elimination 
robustness of D+ with 

respect to DT1 

δ+T2’s elimination 
robustness of D+ with 

respect to DT2

δ+max , overall 
elimination robustness 

of D+

3 [0.134, 0.684] 0.00 0.35 0.35
4 [0.139, 0.675] 0.00 0.38 0.38
1 [0.016, 0.695] 0.97 0.62 0.97
2 [0.016, 0.693] 0.97 0.63 0.97
9 [0.355, 0.090] 0.00 2.52 2.52
10 [0.357, 0.075] 0.00 2.52 2.52
8 [0.346, 0.091] 0.02 2.95 2.95
7 [0.343, 0.093] 0.03 3.08 3.08
6 [0.275, 0.114] 0.47 223.14 223.14

 

Column 4 of Table 4.2 shows the δ+T2’s of all designs. Figure 4.5(b) illustrates the 

threshold gradients of D1 and D3 (recall D3 was trial design for first iteration) with respect 

to DT2. Also, from Eq. (4.2), D1 and D3 will be eliminated by DT2 so long as the actual 

MRS value at DT2, s12T2, is in the range given by Eq. (4.9a) and Eq. (4.9b), respectively. 

12T20.59 s 2.57< <       (4.9a) 

12T21.02 s 2.13< <       (4.9b) 
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When solving Eq. (4.3) for δ1T2, the inequality s12T2 > 0.59 is active, so the threshold 

MRS of D1 at DT2, , is 0.59 (see Figure 4.5(b)). Also the inequality st1
12T2S 12T2 > 1.02 is 

active when solving Eq. (4.3) for δ3T2, so the threshold MRS for D3 at DT2, St3
12T2 , is 1.02.   
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Figure 4.5: Payload design selection (a) gradient cut at DT2 and (b) threshold 

gradient of D1 and D3 with respect to DT2 

Column 5 of Table 4.2 shows the overall elimination robustness, δ+max’s, for all 

eliminated designs (Step 8). Finally we find the robustness index of D5, δ, by finding the 

minimum of all δ+max’s (Step 9). 

From Table 4.2, it can be seen that δ is 0.35, which implies that D5 will be the 

most preferred design as long as the difference between the actual MRS value and its 

estimate is less than 35%. From Table 4.2, we also see that D3 is the singleton critical 

design alternative, i.e., D3 will not be eliminated if the actual MRS value differs by 35% 

from the MRS estimate. Also, from Table 4.2, we observe that the actual MRS value at 

the trial designs can change by 38% from the MRS estimate before a design alternative 

other than D3 becomes non-eliminated. 
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In the next section, we discuss the verification of the results for payload design 

selection. 

 

4.5.1.2. Discussion 

Since, the payload design selection problem has only two attributes, it is possible 

to find analytically, the threshold MRS at which an eliminated design D+ is not 

eliminated by a trial design DT. Recall that Eq. (4.1) gives the necessary condition for the 

threshold gradient of D+ with respect to DT. Assuming that the MRS values are 

consistent, Eq. (4.1) can be modified to 

t+
12T S1+ S1T S2+ S2TS (P - P ) + (P - P ) 0⋅ ≥ ,     (4.10) 

where, and are the attributes of the designs DS1+ S2+[P ,P ]

T

S1T S2T[P ,P ] + and DT respectively 

and S is the threshold MRS. Solving Eq. (4.10) then gives the threshold MRS at which 

D

t+
12

+ is no longer eliminated by DT. 

Table 4.3: Verification of threshold MRS for payload selection 

Design 
alternative 

number

Threshold MRS with respect 
to DT1 found using Eq. (4.10)

Threshold MRS with respect 
to DT1 found using our 

approach, Eq.(4.3)

Threshold MRS with respect 
to DT2 found using Eq. (4.10)

Threshold MRS with respect 
to DT2 found using our 

approach, Eq.(4.3)

1 0.09 0.09 0.60 0.60
2 0.07 0.07 0.59 0.59
3 - - 1.03 1.03
4 - - 0.99 0.99
6 4.04 4.04 354.31 354.34
7 2.82 2.82 6.45 6.45
8 2.80 2.80 6.25 6.25
9 - - 5.56 5.56
10 - - 5.56 5.56

 

To verify the results in Section 4.5.1.1, we found the threshold MRS of each 

design with respect to both trial designs (i.e., D3 and D5) using Eq. (4.10) and then 

compared them with the threshold MRS found by our approach, i.e., Eq. (4.3). Table 4.3 
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shows the results. The second and fourth columns of Table 4.3 show the threshold MRS 

for each D+ with respect to DT1 and DT2, respectively, found using Eq. (4.10). The third 

and fifth columns in Table 4.3 show the threshold MRS obtained using our approach (i.e., 

Eq. (4.3)). It can be seen that these results match closely, thus verifying our sensitivity 

analysis method. 

 

4.5.2. Sensitivity Analysis for Deterministic Selection of Cordless Electric Drill 

In this section, we present the cordless electric drill selection example to 

demonstrate our algorithm for a problem where the attributes are not normalized. This 

example is similar to the example in Section 3.5.2 of Chapter 3. We use the eighteen 

design alternatives shown in Table 3.3 (reproduced in Column 2 of Table 4.4), as the 

design alternatives for selection. We consider three design attributes: a1, the number of 

operations achievable with one charge of a battery pack; a2, the cost of the drill; and a3, 

the weight of the drill. We present, in Section 4.5.2.1, the application of our algorithm for 

sensitivity analysis to cordless electric drill selection by a casual user. Some of the steps 

we describe in Section 4.5.2.1 are similar to the steps in Section 3.5.2.1 of Chapter 3 and 

so are discussed briefly. 

 

4.5.2.1. Application of Algorithm for Sensitivity Analysis to Cordless Electric Drill 

Selection by a Casual User 

Having no informed guess from the DM for picking the starting trial design, we 

select randomly the design alternative D7 as the trial design for the first iteration (i.e., 

q = 1) DT1: [450 operations, 74 dollars, 6.9 pounds] (Step 1). The DM, a casual user, 
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provides the MRS estimates as shown in the third column of Table 3.4 (Step 2). The 

gradient coefficients (WiT1) at DT1 are then: W1T1 = 0.004 operation-1; 

W2T1 = 0.045 dollar-1; W3T1 = 0.443 pound-1 (Step 3). Gradient cut at DT1 (Step 4) 

eliminates fifteen lower value designs (only D1 and D4 are not eliminated). Since more 

than one design is non-eliminated we skip Step 5 and find a new trial design (Step 6). 

Using our approach for finding a new trial design (recall Section 3.3.3), we find D1 as the 

new trial design. We increase the iteration number by one (i.e., q = 2), set D1 as 

DT2: [350 operations, 70 dollars, 6 pounds] and go to Step 2. 

Table 4.4: Elimination robustness of cordless electric drill designs 

Design 
alternative 

number

Attributes of design alternatives 
[Number of operations, Cost, 

Weight]

δ+Τ1 's elimination robustness of 
D+ with respect to DT1

δ+Τ2 's elimination robustness of 
D+ with respect to DT2

1 [350 operation, 70 dollars, 6.0 
pounds]

- -

2 [370 operation, 80 dollars, 5.7 
pounds]

0.02 0.85

3 [380 operation, 80 dollars, 5.5 
pounds]

0.12 0.83

4 [400 operation, 72 dollars, 6.5 
pounds]

0.00 0.22

5 [420 operation, 82 dollars, 6.1 
pounds]

0.19 1.89

6 [430 operation, 88 dollars, 5.8 
pounds]

0.27 0.91

7 [450 operation, 74 dollars, 6.9 
pounds]

0.00 0.18

8 [470 operation, 85 dollars, 6.5 
pounds]

0.53 1.21

9 [480 operation, 91 dollars, 6.1 
pounds]

0.41 1.71

10 [500 operation, 79 dollars, 7.2 
pounds]

0.69 0.39

11 [520 operation, 89 dollars, 6.9 
pounds]

1.68 1.04

12 [530 operation, 94 dollars, 6.4 
pounds]

0.51 1.29

13 [550 operation, 84 dollars, 7.5 
pounds]

0.69 0.50

14 [570 operation, 93 dollars, 7.2 
pounds]

1.13 0.93

15 [580 operation, 97 dollars, 6.7 
pounds]

0.65 1.06

16 [600 operation, 90 dollars, 7.8 
pounds]

0.76 0.63

17 [620 operation, 98 dollars, 7.5 
pounds]

0.99 0.92

18
[630 operation, 100 dollars, 

7.0 pounds] 0.84 0.91
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The casual user of the cordless electric drill gives the MRS estimates as shown in 

the fourth column of Table 3.4 (Step 2). The gradient coefficients (WiT2) at DT2 are then: 

W1T2 = 0.004 operation-1; W2T2 = 0.069 dollar-1; W3T2 = 0.248 pound-1 (Step 3). Gradient 

cut at DT2 (Step 4) eliminates all of the non-eliminated designs. Since all designs except 

one are eliminated, DNTD is the singleton set with D1 as its member (Step 5) and we set 

the total number of iterations to two, i.e., c = 2 and go to Step 7. 
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Figure 4.6: Overall elimination robustness of cordless electric drill designs  

We then find the elimination robustness of each eliminated design D+ with respect 

to DT1, i.e., δ+T1’s and DT2, i.e., δ+T2’s (Step 7). Column 3 of Table 4.4 shows the δ+T1’s 

and Column 4 of Table 4.4 shows the δ+T2’s of all designs. δ7T1 is zero because, D7 is the 

trial design for the first iteration. δ4T1 is zero because, D4 is not eliminated by the first 

trial design. Also δ1T1 and δ1T2 are empty because D1 is the most preferred design and 
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belongs to the set DNTD. While calculating the δ+Ti’s of eliminated designs, we neglect 

Eq. (4.3c) because the attributes are not normalized for the cordless electric drill 

selection. 

Figure 4.6 shows the overall elimination robustness, δ+max’s, for all designs 

(Step 8). Finally we find the robustness index of D1, δ, by finding the minimum of all 

δ+max’s (Step 9). 

From Figure 4.6, it can be seen that δ is 0.18 (shown by a black bar), meaning that 

D1 will be the most preferred design as long as the difference between the actual MRS 

values and their estimates is less than 18%. From Figure 4.6, we also see that D7 is the 

singleton critical design alternative, i.e., D7 will not be eliminated if the actual MRS 

values differ by 18% from the MRS estimates. Also, from Figure 4.6, we observe that the 

actual MRS values at the trial designs can change by 22% from the MRS estimates before 

a design alternative other than D7 becomes non-eliminated. As described in Section 4.3.2, 

we traced back through the data about the δ+T’s and the δ+max’s and found that the critical 

pair of attributes for this example is, cost of the drill and weight of the drill. 

Next we provide some experimental results that verify our sensitivity analysis 

method. 

 

4.6. VERIFICATION: SOME EXPERIMENTAL RESULTS 

To verify the proposed sensitivity analysis method, we conducted simulations 

with four different problem sizes i.e., (number of attributes) ×  (number of design 

alternatives), ranging from three attributes and fifty alternatives to six attributes and fifty 

alternatives. For each problem size, we used MATLAB® to generate the fifty random 
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Pareto design points. For simplicity, the alternatives are uniformly distributed between 0 

(worst) and 1 (best) in each attribute. We chose the four different problem sizes to 

demonstrate the applicability of our method to problems with high number of attributes. 

Appendix-III shows the design alternatives that we used for each problem size. 

For each problem size, we conducted three simulations, each using a different 

simulant value function to produce the MRS preference estimates that our method needs. 

The simulant value functions we used are given by Eq. (3.17), Eq. (3.18), and Eq. (3.19) 

(recall Section 3.6 of Chapter 3). Note that these simulant value functions are 

non-decreasing, differentiable, and quasi-concave. 

In each simulation for a problem size, we applied our algorithm for sensitivity 

analysis and found the overall elimination robustness δ+max of the designs. We then found 

the robustness index δ of the set of non-eliminated trial designs DNTD by finding the 

minimum of the overall elimination robustness of all eliminated designs. Figure 4.7 

shows, as an example, the overall elimination robustness δ+max of the designs for the 

simulation with problem size ‘three attributes’ × ‘fifty designs’ and Eq. (3.17) as the 

simulant value function. From Figure 4.7, we can see that the set of non-eliminated trial 

designs DNTD for this simulation consists of designs D32, D38, and D49 and that D45 is the 

critical design. The robustness index of DNTD for this simulation is 2.8% (shown by a 

black bar in Figure 4.7). The δ+max values of D32, D38 and D49 are zero in Figure 4.7 

because they are members of DNTD. 

Since each simulation has more than two attributes, we cannot do an analytic 

verification as we did with the payload selection example (recall Section 4.5.1.2). 
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Instead, we used a numerical approach to verify the results obtained from each 

simulation. This numerical approach is explained below. 

δ+max

Design alternative number
1 9 17 25 33 41 49

0

0.3

0.6

0.9

1.2

1.5

1.8

DNTD: [D32, D38, D49]

Critical design is D45

δ+max

Design alternative number
1 9 17 25 33 41 49

0

0.3

0.6

0.9

1.2

1.5

1.8

0

0.3

0.6

0.9

1.2

1.5

1.8

DNTD: [D32, D38, D49]

Critical design is D45

DNTD: [D32, D38, D49]

Critical design is D45

 

Figure 4.7: δ+max of design alternatives for the experiment with 

‘three attributes’ × ‘fifty designs’ with Eq. (3.17) as the simulant value function 

Once the robustness index δ of DNTD is found, we can define bounds on the 

variation in the MRS between attributes ai and aj at a trial design DTk (k=1,…c; c is the 

number of iterations), sijTk, as shown in Eq. (4.11a) if δ is less than one and as shown in 

Eq. (4.11b) if δ is greater than or equal to one. In Eq. (4.11) SijTk is the MRS estimate 

between ai and aj at DTk. 
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ijTk ijTk ijTk(1 δ) S s (1 δ) S− ⋅ < < + ⋅     (4.11a) 

ijTk ijTk0 s (1 δ) S< < + ⋅           (4.11b) 

We set the lower bound on sijTk to zero if δ is greater than or equal to one because, MRS 

values cannot be negative if the value function is non-decreasing with respect to the 

attributes. Since we assume that the MRS values are consistent, it is enough to state the 

bounds on ‘m-1’ MRS values. Also we can define the bounds on the gradient 

coefficients, wiTk, corresponding to sijTk as shown in Eq. (4.12a) if δ is less than one and 

as shown in Eq. (4.12b) if δ is greater than or equal to one. 

iTk
ijTk ijTk

jTk

w(1 δ) S (1 δ) S
w

− ⋅ < < + ⋅     (4.12a) 

iTk
ijTk

jTk

w0 (1 δ) S
w

< < + ⋅            (4.12b) 

If the δ of DNTD found by our approach is accurate, then every design D+ that does 

not belong to DNTD will be eliminated by at least one trial design DTk for a gradient ∇vTk 

whose coefficients, wiTk, satisfy either Eq. (4.12a) or Eq. (4.12b) (as appropriate). To 

check this, we first solve the optimization formulation shown in Eq. (4.13). 

For k=1,…, c (c is the total number if iterations)         

m

+k iTk i+ iTk
i=1

Maximize   G w (a a )= ⋅ −∑                 (4.13a) 

m

iTk iTk
i=1

subject to :  w 1;    w 0= ≥∑                  (4.13b) 

iTk
ijTk ijTk

jTk

iTk
ijTk

jTk

w(1-δ) S (1+ δ) S ;  'm -1' such constraints; if  δ < 0
w

w0 (1+ δ) S ;  'm -1' such constraints;if  δ 0
w

⋅ ≤ ≤ ⋅

≤ ≤ ⋅ ≥
 (4.13c) 
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Next, we find the minimum of G+k, which we call G+*, over all trial designs DTk 

(k=1,…,c). Eq. (4.13a) is used to check whether or not D+ is in the gradient cut 

corresponding to wiTk at DTk (recall Eq. (3.11)). If G+* is negative, then it means that D+ 

lies in the gradient cut of all the gradients that satisfy either Eq. (4.12a) or Eq. (4.12b) for 

at least one DTk. I.e., D+ will remain eliminated by at least one DTk.  

Eq. (4.13b) is the normalization constraint for the gradient coefficients. 

Eq. (4.13c) is the constraints imposed on wiTk using Eq. (4.12). The formulation in 

Eq. (4.13) is similar to the formulation we use for eliminating dominated designs when 

the DM gives a range of MRS preferences in selection with preference variability (see 

Chapter 5 for more details). 

To verify the robustness index found in each simulation, we solved the 

optimization problem in Eq. (4.13) for all eliminated design alternatives for each trial 

design in each simulation. In each simulation, we then found that the G+* values are 

negative for all eliminated designs. This means that in each simulation, DNTD is not 

affected for all possible gradients whose coefficients satisfy Eq. (4.12). This verifies our 

sensitivity analysis approach.  

Figure 4.8 shows, as an example, the G+* values of the designs for the simulation 

with problem size ‘three attributes’ × ‘fifty designs’ and Eq. (3.17) as the simulant value 

function. From Figure 4.8, we can see that G+* values of all designs except D32, D38, D45, 

and D49 are negative. The G+* values of D32, D38, and D49 are zero because they are 

members of DNTD (recall Figure 4.7), and so their G+* values are not calculated. G+* value 

of D45 is zero because it is the critical design. Recall, from Section 4.2, that robustness 

index corresponds to the δ+max of the critical design and δ+max corresponds to the 
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threshold gradient of the critical design. G+* of the critical design D45 is zero because it 

lies on the plane perpendicular to the threshold gradient (recall Figure 4.3). For all the 

simulations we conducted, we found that the G+* value of the critical design is zero.  

G+*

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

G+* of critical 
design D45 is zero

Design alternative number
1 9 17 25 33 41 49

G+*

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

G+* of critical 
design D45 is zero

Design alternative number
1 9 17 25 33 41 491 9 17 25 33 41 49

 

Figure 4.8: G+* values of design alternatives for the experiment with 

‘three attributes’ × ‘fifty designs’ with Eq. (3.17) as the simulant value function 

 

4.7. SUMMARY 

In this chapter, we presented a concept for sensitivity analysis in product design 

selection when the DM gives only estimates of the actual preferences. Our concept is 
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applicable to the class of iterative selection methods which eliminate some design options 

at the trial design chosen for the current iteration. Such methods are generally used when 

the DM’s value function is implicit rather than known. 

In our concept, we calculate three successive metrics, culminating in the 

robustness index for the set of non-eliminated trial designs DNTD, and we identify the 

critical design(s). The robustness index defines the bounds (or an interval) on the actual 

preferences at all trial designs for which DNTD does not change. The DM can use the 

robustness index and the critical design(s) as guidance for further actions (e.g., select 

from the present DNTD, assign ranges for preferences and find the potentially optimal 

designs). Also using the overall elimination robustness δ+max of designs, the DM can find 

the designs that will be members of DNTD for ranges of preferences symmetric about the 

preference estimates given at the trial designs. However, if the ranges of preferences are 

not symmetric about the preference estimates, the DM has to use selection with 

preference variability (see Chapter 5) for finding DNTD. 

We showed an implementation of our concept, using our deterministic selection 

method. In this implementation, we presented an approach for finding δ+T, elimination 

robustness of a design D+ with respect to a trial design DT. Our formulation finds δ+T in 

real time (i.e., not much computational burden) when the MRS values are assumed to be 

consistent. Also we introduced the concept of critical pair, i.e., the two attributes whose 

MRS variation has the largest influence in determining the critical design(s). Critical pair 

tells the DM the MRS estimate that needs to be improved, if necessary. Also the DM can 

analyze how the potentially optimal designs (see Chapter 5 for details) are affected by 

assigning various ranges to the MRS preference between the critical pair.  
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We presented an algorithm for sensitivity analysis for our deterministic selection 

and demonstrated the algorithm with two engineering examples: payload design selection 

and cordless electric drill selection. We also provided some experimental results that 

numerically verified our sensitivity analysis method. Our results show that the set of 

non-eliminated trial designs DNTD does not change if the DM’s actual MRS preferences 

lie within the bounds given by our robustness index. 

In sensitivity analysis for deterministic selection, we find the robustness of the set 

of non-eliminated designs DNTD. However the DM might be interested in the robustness 

of the most preferred design found from DNTD (i.e., when DNTD is not a singleton), which 

cannot be handled by our sensitivity analysis concept. Our approach for finding the 

robustness index is a worst case approach and restricts the variation in the MRS between 

all pairs of attributes at all trial designs to be the same and symmetric about the 

preference estimates. However, we can readily modify our approach if the DM is 

interested in the robustness of the set of non-eliminated trial designs with respect to a 

particular pair of attributes and/or a particular trial design and/or in a particular direction 

of  (i.e., greater or less than) the preference estimates.  

Note that for finding δ+T, elimination robustness of a design D+ with respect to a 

trial design DT, using Eq. (4.3), it is important to obtain the global optimum. However, in 

our simulations and examples, we used “fmincon” from the MATLAB® optimization 

toolbox, which might converge to a local optimum, as the optimizer. We used 

MATLAB® to maintain uniformity with the methods developed in the other chapters. 

But our experimental results indicate that the set of non-eliminated trial designs DNTD 

remains unaffected as long as the DM’s actual MRS preferences lie within the bounds 
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given by our robustness index. This could be due to the conservative nature of our 

approach for finding the robustness index (recall Section 4.3.2). However to be sure that 

the robustness index is accurate, one should use a global optimizer (e.g., genetic 

algorithm) or use different starting points to converge to the global optimum using a local 

optimizer (e.g., “fmincon” from the MATLAB® optimization toolbox) in solving the 

optimization problem of Eq. (4.3). A better approach (and an area for future research) 

would be to modify the formulation in Eq. (4.3) so that it becomes convex optimization 

problem. 

In the next chapter, we present the development of the method for our third 

research component, selection with preference variability. This method is used for 

finding the potentially optimal designs when a range of preferences (instead of preference 

estimates), due to preference variability, are given by the DM.  
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CHAPTER 5 

 

SELECTION WITH PREFERENCE VARIABILITY 

 

5.1. INTRODUCTION 

We mentioned earlier that when the DM does not have enough information about 

the end users’ needs, he/she may provide ranges of the actual preferences. In this chapter, 

we present a method for selection when the DM gives ranges for the actual preferences. 

We call such a selection process: selection with preference variability. 

When the DM gives ranges of the preferences, often, it is likely that for a 

particular subset of ranges some design is preferred (i.e., has highest value) and for 

another subset of ranges some other design is preferred. For example, in the automobile 

design selection, consider that the DM says: “I would allow the cost of the automobile to 

increase between 4000 dollars and 5000 dollars, if the 0-60 time is decreased by two 

seconds”. If the DM’s actual preference is to allow an increase of 4000 dollars for the 

desired reduction in the 0-60 time, then one design alternative might be preferred and if 

the DM’s actual preference is to allow an increase of 5000 dollars, then some other 

design alternative might be preferred. Since the DM cannot say with certainty what 

his/her actual preference is, both design alternatives have a chance to be the most 

preferred for the given range of preference. Such designs are referred to as “potentially 

optimal designs” (recall Definition in Section 2.2.8 of Chapter 2) in the literature 

[Eum et al., 2001]. In selection with preference variability, the task is to find the set of 

designs that are potentially optimal from the original set of designs. Note that some 
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people refer to selection with preference variability as selection with partial information 

[Eum et al., 2001]. 

 The purpose of this chapter is to present a method for selection with preference 

variability. Our method for selection with preference variability is applicable when the 

DM’s value function is implicit. In our method, we expect the DM to give ranges for the 

MRS preferences at a series of trial designs.  

The organization of the rest of this chapter is as follows. We give an overview of 

our method for selection with preference variability in Section 5.2. We then present the 

details of our method in Section 5.3 and present an algorithm for selection with 

preference variability in Section 5.4. Next in Section 5.5, we give two engineering 

examples to demonstrate our method for selection with preference variability. Then we 

present some experimental results to verify our method for selection with preference 

variability in Section 5.6, and finally we conclude the chapter with a summary in 

Section 5.7. 

 

5.2. OVERVIEW OF METHOD FOR SELECTION WITH PREFERENCE 

VARIABILITY 

Figure 5.1 shows the flowchart of our method for selection with preference 

variability. This method is iterative and assumes that the DM’s value function is 

differentiable, non-decreasing and quasi-concave with respect to the attributes. Since we 

assume the DM’s value function to be non-decreasing with respect to the attributes, for 

selection it is enough to consider only those designs that are Pareto optimal from the 

original set of design alternatives [Malakooti, 1988]. 
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Figure 5.1: Flowchart of our method for selection with preference variability 

In this method (see Figure 5.1), similar to our deterministic selection method 

(recall Figure 3.1), we start by picking an initial trial design, DT, from the set of design 

alternatives. In a small region OT around DT we then approximate the value function to be 

linear with respect to the attributes. Next, we query the DM for the MRS preferences at 

DT. Due to variability, the DM gives a range of MRS preferences. For example, in the 

selection of a cordless electric drill, the DM might say: “I would give up between 40 and 

50 operations per battery charge to reduce the weight by 0.1 pounds”. 

When the DM gives a range for MRS preferences, the gradient coefficients, which 

are a function of MRS preferences (recall Eq. (3.4)), also have a range. Because of this, 

the gradient cut approach we used for deterministic selection (recall Figure 3.2) is not 

applicable for eliminating dominated designs. So, we use a modified version of the 
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gradient cut for eliminating dominated designs based on the range of MRS preferences 

(see Section 5.3.1 for details). 

Next, we try to find a new trial design (see Section 5.3.2 for details) from the 

non-eliminated design alternatives. If a new trial design is found, we repeat the above 

steps (recall Figure 5.1), referred to as “an” ‘iteration’ from here on in this chapter. 

Otherwise, we stop the process and collect the non-eliminated trial designs in a set, 

designated by DNTD. All the designs that are not in DNTD are dominated (recall Definition 

in Section 2.2.7 of Chapter 2) by at least one design in the original set of designs. 

However, it is possible that the elements of the set DNTD are not all potentially 

optimal (i.e., they might be dominated by some designs belonging to DNTD, see 

Section 5.3.1 for a detailed explanation). So, we present a heuristic approach to test 

whether or not the elements of DNTD are potentially optimal. This heuristic approach (see 

Section 5.3.3 for details) is based on the gradient adjacency elimination approach of our 

deterministic selection method (recall Section 3.3.4 of Chapter 3). 

 

5.3. DESCRIPTION OF METHOD FOR SELECTION WITH PREFERENCE 

VARIABILITY 

In this section, we discuss in detail the individual parts of our method for 

selection with preference variability. In Section 5.3.1, we describe our approach for 

eliminating dominated designs based on the range of MRS preferences. Next, we present 

our approach for finding a new trial design in Section 5.3.2. Finally we discuss the 

heuristic approach for finding potentially optimal designs from the set of non-eliminated 

trial designs in Section 5.3.3. 
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5.3.1. Eliminating Dominated Designs based on the Range of MRS Preferences 

As mentioned earlier, when the DM gives a range of MRS preferences at a trial 

design DT, the corresponding gradient coefficients at DT also have a range. Due to this, 

some designs might lie only in the gradient cuts of some part of the range and not lie in 

the gradient cuts of some other part of the range, e.g., D* in Figure 5.2. I.e., D* is 

guaranteed to have a lower value than DT only for some part of the range of MRS 

preferences. So, we adopt a conservative approach and eliminate, as dominated designs, 

those designs that lie in all possible gradient cuts for the entire range of MRS preferences 

(e.g., D0 in Figure 5.2). 

Designs in these regions lie only 
in the gradient cuts of some part 
of the gradient range

a1

Designs in this region are dominated

a2

Range of MRS 
preference results in a 
range of gradient at DT

DT

D0

D*

Designs in these regions lie only 
in the gradient cuts of some part 
of the gradient range

a1

Designs in this region are dominated

a2

Range of MRS 
preference results in a 
range of gradient at DT

DT

D0D0

D*D*

 

Figure 5.2: Illustration of our approach for finding dominated designs based on the 

range of MRS preferences 

Based on Figure 5.2, a simple way to check whether or not a design is dominated 

by DT is to find the extremes of the range of gradient and then use Eq. (3.11) (recall 

Section 3.2 of Chapter 3) to check if that design lies in the gradient cut for the extremes 
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of the range of gradient. A design is dominated by DT if Eq. (3.11) is satisfied for both 

extremes of the range of the gradient, otherwise that design is not dominated. However, 

there is no easy (and general) way to find the extremes of the range of gradients from the 

range of MRS preferences. We observed that, the extremes of the range of gradients 

correspond to the upper and lower bounds (i.e., S  and S , respectively, recall 

Definition in Section 2.2.4 of Chapter 2) of MRS preferences at D

U
ijT

L
ijT

T only when the 

number of attributes is two. Unfortunately, this might not hold when the number of 

attributes exceeds two. 

Below, we present a formulation that uses the range of MRS preferences, SijT, 

directly (i.e., without mapping them to a range of gradient coefficients) for checking 

whether or not a design D+: [a1+,…,am+] is dominated by DT: [a1T,…,amT]. This linear 

programming (LP) problem is simple to solve by any LP solver (e.g., “linprog” from the 

MATLAB® optimization toolbox). In this formulation, wiT (i=1,…,m) are the variables 

and [a1+,…,am+], [a1T,…,amT] are fixed (or deterministic). 

m
*

iT i+ iT
i=1

Maximize   Z w (a a )= ⋅ −∑      (5.1a) 

m

iT iT
i=1

subject to :  w 1;    w 0= ≥∑      (5.1b) 

L UiT
ijT ijT

jT

w                   S S ;  'm -1' such constraints
w

≤ ≤    (5.1c) 

The objective function Z* in the above formulation, Eq. (5.1a), is used for checking 

whether or not D+ is dominated by DT (recall Figure 5.2). If there exists a vector 

∇vT: [w1T,…,wmT] from the possible range of gradient at DT for which D+ does not lie in 

the corresponding gradient cut, then the value of Z* in Eq. (5.1a) will be non-negative 
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(recall Eq. (3.11)) otherwise Z* will be negative. So, if the maximum value of Z* is 

negative then we can conclude that D+ lies in the gradient cuts of all the gradients for the 

given range of MRS preferences at DT. Hence D+ is dominated by DT. 

Eq. (5.1b) is a normalization constraint on the gradient coefficients, wiT. We 

impose the constraint that the gradient coefficients, wiT, are non-negative because we 

assume that the value function is non-decreasing with respect to the attributes. We use 

Eq. (5.1b) to normalize wiT because, we assume that the attributes are normalized in 

Eq. (5.1). When the attributes are normalized, wiT is dimensionless and represents the 

relative importance or weight of the attribute (which by convention in the literature lies 

between zero and one). However, if the attributes are not normalized we neglect 

Eq. (5.1b) in the above formulation, i.e., wiT (i=1,..,m) are not normalized. One could also 

modify Eq. (5.1b) as
m

iT i
i 1

w r
=

1⋅ =∑ , where ri is the scale of the ith attribute (recall 

Definition in Section 2.2.1 of Chapter 2). 

Eq. (5.1c) imposes the constraint that the variable MRS values iT
ijT

jT

w
w

=s  should 

belong to the range of MRS SijT: L U
ijT ijTS ,S    given by the DM at DT. Note that the 

condition iT
ijT

jT

ws
w

=  holds when the MRS values are assumed to be exact and consistent 

(recall Eq. (4.4)). Since only ‘m-1’ MRS values are independent when they are 

consistent, we use ‘m-1’ constraints for the bounds on iT
ijT

jT

w
w

=s  (recall Eq. (5.1c)). 

However, if one feels that the exactness and consistency assumption is not appropriate 

then Eq. (5.1) can be easily modified by adding two more constraints as given by 
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Eq. (4.5) if the attributes are normalized and by Eq. (4.6) if the attributes are not 

normalized. However, note that adding the constraints in Eq. (4.5) or Eq. (4.6) (which are 

nonlinear and non-convex) to the formulation in Eq. (5.1) would increase the 

computational burden in eliminating the dominated designs. 

Note that Eq. (5.1) should be applied to each design D+ (that belongs to the 

original set of design alternatives and is not already eliminated) to check whether or not 

that design is dominated by DT. Based on the definition of dominated design (recall 

Definition in Section 2.2.7 of Chapter 2), for a design D+, if Z* in Eq. (5.1) is negative 

then it is guaranteed that D+ is dominated by the trial design DT. However, it is possible 

that D+ might be dominated by DT even if Z* is positive. Recall that for a differentiable 

quasi-concave value function, design alternatives not in the gradient cut CG, i.e., above 

the hyper-plane, HT, (recall Figure 3.2) might have higher or lower or equal value with 

respect to DT. I.e., gradient cut does not necessarily eliminate all designs that have lower 

value than DT. Added to that, for eliminating dominated designs when the MRS 

preferences have a range, we use a worst case (i.e., conservative) approach and eliminate 

only those designs that are in all possible gradient cuts (recall Figure 5.2). 

Because Eq. (5.1) cannot guarantee that all dominated designs with respect to a 

trial design are eliminated, it is possible that some designs in the set of non-eliminated 

designs DNTD are dominated. We present, in Section 5.3.3, a heuristic approach to 

identify dominated designs from DNTD. 

In the next section, we present our approach for finding a new trial design. 
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5.3.2. Finding a New Trial Design 

An important step in our method for selection with preference variability is to find 

a new trial design for continuing the iterative process shown in Figure 5.1. Ideally the 

new trial design should be such that it eliminates a large number of dominated designs 

from the original set of designs. To check this, we need to approximate the range of MRS 

preferences at the candidate new trial designs and then choose as a new trial design the 

candidate new trial design that eliminates the maximum number of dominated designs 

from the original set of designs with the estimated range of MRS. But there is no easy 

way for approximating the range of MRS preferences at a candidate new trial design 

without interacting with the DM. So we use the same approach we presented for finding a 

new trial design in deterministic selection (recall Section 3.3.3 of Chapter 3) even when 

there is preference variability. 

In order to find a new trial design using the approach discussed in Section 3.3.3 of 

Chapter 3, we need the deterministic gradient of the value function at the previous trial 

designs. Since there is variability in the MRS preferences, for simplicity, we take the 

gradient corresponding to the mid-point of the range of MRS preferences at a previous 

trial design as the nominal (or deterministic) gradient for that trial design. 

In the next section, we present our heuristic approach for identifying dominated 

designs from DNTD, and hence find the set of potentially optimal designs. 

 

5.3.3. Heuristic Approach for Finding Potentially Optimal Designs 

In deterministic selection, we use the gradient adjacency elimination approach for 

finding the most preferred design alternative(s) from the set of non-eliminated trial 
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designs (recall Section 3.3.4 of Chapter 3). In this section, we extend the gradient 

adjacency elimination approach to the case when MRS preferences at a trial design DT 

have a range. 
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Figure 5.3: Illustration of our heuristic approach for eliminating dominated designs 

Let DT1 and DT2 be two non-eliminated trial designs (i.e., they belong to DNTD). 

Let SijT1:  and SL U
ijT1 ijT1S ,S  ijT2: L U

ijT2 ijT2S ,S    be the range of MRS preference between 

attributes ai and aj at DT1 and DT2, respectively. Recall that since MRS preferences at DT1 

and DT2 have a range, the corresponding gradients at DT1 and DT2 also have a range. Let 

and  be the extremes of the range of gradient at DL
T1V∇

U
T2V∇

U
T1V∇ T1 (note that the extremes of 

the range of gradient might not necessarily correspond to S and S ) and ∇  and 

 be the extremes of the range of gradient at D

L
ijT1

U
ijT1

L
T2V

T2. Figure 5.3 illustrates our heuristic 

approach for checking if DT1 is dominated by DT2 in a two attribute space. 
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Lines  and  pass through DL
T1H U

T1H

L
T1

T1 and are perpendicular to the extremes of the 

range of gradient, ∇  and , respectively. Lines V U
T1V∇ L

T2H  and U
T2H  pass through DT2 

and are perpendicular to the extremes of the range of gradient,  and ∇ , 

respectively. O

L
T2V∇ U

T2V

T1 is the region around DT1 in which we approximate the value function to 

be linear (recall Figure 5.1). I.e., at every point inside OT1, the range of MRS preferences 

is the same as the range of MRS preferences given by the DM at DT1 [Barzilai, 1998]. 

Note that neither of the two trial designs (DT1 or DT2) is dominated by the other (recall 

Figure 5.2) for the ranges of gradient. 

As shown in Figure 5.3, all points in the shaded region of OT1 have a higher value 

than DT1 for the entire range of gradient at DT1 (i.e., those points dominate DT1). For the 

case shown in Figure 5.3, all the lines that lie between the extremes L
T2H  and U

T2H  at DT2 

pass through the shaded region of OT1. Hence DT2 dominates some points (recall 

Figure 5.2) in the shaded region of OT1 that have higher value than DT1. Hence DT2 

dominates DT1 by transitivity. 

For an m-dimensional case, , , L
T1H U

T1H L
T2H , and U

T2H are hyper-planes. Note that 

in Figure 5.3, DT1 lies in the gradient cuts of the gradients perpendicular to the 

hyper-planes in the range M
T2H  and U

T2H . So it is enough to check that DT2 dominates DT1 

for the other part of the range, i.e., L
T2H  and M

T2H . Let hT1 be a hyper-plane that lies 

between L
T1H  and U

T1H  at DT1. Let hT2 be a hyper-plane that lies between L
T2H and M

T2H  at 

DT2. Also, let be the perpendicular distance from DT1
1ph h2 T1 to the intersection of hT1 and 

hT2. Assigning the radius R (typical value of R is 0.1) to OT1, we can use Eq. (5.2) to 

geometrically check that DT2 dominates DT1. 
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L U L M
T1 T1 T1 T2 T2 T2

T1
1 2

, , ,
maximum p Rh h

h H H h H H   ∈ ∈   

 
≤ 

 
         (5.2) 

It can be seen that for the case shown in Figure 5.3, the maximum distance from DT1 to 

the intersection of hT1 and hT2 (i.e., maximum ) corresponds to p  (i.e., 

intersection of the hyper-planes 

T1
1 2ph h

T1
1L 2LH H

L
T1H and L

T2H ). Also is less than R, the radius of 

O

T1p 1L 2LH H

T1. So we can say that DT2 dominates DT1 for the case shown in Figure 5.3. 

The case shown in Figure 5.3 is simple in that any hyper-plane hT1 that lies 

between L
T1H  and U

T1H  at DT1 is not parallel to any hyper-plane hT2 that lies between L
T2H  

and U
T2H  at DT2. But, this might not hold for some cases in the given range of MRS 

preferences SijT1:  and SL
ijT1S ,

U
ijT1S  ijT2: L U

ijT2 ijT2S ,S    at DT1 and DT2, respectively, resulting 

in the maximum to be infinity. T1
1 2ph h

However, for the case where hT1 is parallel to hT2, it is implied that ∇vT1 is equal 

to ∇vT2; where ∇vT1 and ∇vT2 are the gradients perpendicular to hT1 and hT2 at DT1 and 

DT2, respectively. When ∇vT1 is equal to ∇vT2, we can find the value of the designs 

directly by using Eq. (3.1) based on a linear approximation of value function. In such a 

case, Eq. (5.3) can be used to check that DT2: [a1T2,…,amT2] dominates DT1: [a1T1,…,amT1] 

(here [a1T2,…,amT2], [a1T1,…,amT1] are fixed or deterministic). 

[ ]T2 T1 1T1 mT1

m

iT1 iT1 iT2v v : w ,...,w i=1
maximum w (a a ) 0

∇ =∇

 
⋅ − ≤ 

 
∑    (5.3) 

In our heuristic approach, to mathematically check that a trial design DT2 

dominates another trial design DT1, we need to conduct two tests. First test, Eq. (5.2), is 

for the case in which any hyper-plane hT1 at DT1 is not parallel to any hyper-plane hT2 at 
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DT2 (see Section 5.3.3.1 for the formulation). Second test, Eq. (5.3), is for the case in 

which some of the hyper-planes at DT1, i.e., hT1’s, are parallel to some of the hyper-planes 

at DT2, i.e., hT2’s (see Section 5.3.2.2 for the formulation). 

In the next section we discuss the formulation for the first test, Eq. (5.2). 

 

5.3.3.1. First test to Check whether DT2 Dominates DT1 

Let ∇vT1 be any gradient that lies between the extremes of the range of gradient, 

i.e., and ∇ at DL
T1V∇ U

T1V T1. Let ∇vT2 be any gradient that lies between the extremes of the 

range of gradient ∇  and  at DL
T2V U

T2V∇ T2. Let wiT1 and wiT2 (i=1 to m) be the gradient 

coefficients corresponding to ∇vT1 and ∇vT2, respectively. Also, let hT1 and hT2 be the 

hyper-planes perpendicular to ∇vT1 and ∇vT2 at DT1 and DT2, respectively. The 

perpendicular distance from DT1 to the intersection of hT1 and hT2 we call . T1
1 2ph h

The maximum that is required to conduct the test of Eq. (5.2) can be 

calculated from Eq. (5.4). In this formulation, w

T1
1 2ph h

iT (i=1,…,m) are the variables and 

[a1+,…,am+], [a1T,…,amT] are fixed (or deterministic). 

T1
1 2Maximize   ph h        (5.4a) 

2m

iT1 iT2
i=1

m m
2 2
iT1 iT2

i=1 i=1

w w
subject to :   1

w w

 
⋅ 

  <
  
  
  

∑

∑ ∑
     (5.4b) 

m

iT1 iT1
i=1

w 1;    w 0= ≥∑      (5.4c) 

L UiT1
ijT1 ijT1

jT1

w                   S S ;  'm -1' such constraints
w

≤ ≤   (5.4d) 
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m

iT2 iT2
i=1

w 1;    w 0= ≥∑      (5.4e) 

L UiT2
ijT2 ijT2

jT2

w                   S S ;  'm -1' such constraints
w

≤ ≤   (5.4f) 

          
m

iT2 iT1 iT2
i=1

w (a a ) 0⋅ − ≥∑               (5.4g) 

Eq. (5.4b) is a constraint for checking that the angle between ∇vT1 and ∇vT2 is greater 

than zero (hence hT1 is not parallel to hT2). Note that the angle between the vectors ∇vT1 

and ∇vT2 is zero only when the cosine of the angle (given by the square root of LHS of 

Eq. (5.4b)) is one. Eq. (5.4c) to Eq. (5.4f) imposes the normalization constraint on wiT1 

and wiT2 and the constraints that MRS preferences iT1
ijT1

jT1

w
w

=s  and iT2
ijT2

jT2

w
w

=s  should 

belong to the range of MRS preferences given by the DM at DT1 and DT2, respectively. 

Eq. (5.4g) is a constraint for checking that ∇vT2 belongs to the range of the gradients that 

are perpendicular to the hyper-planes belonging to the range L
T2H  and M

T2H  (recall 

Section 5.3.3). 

In the next section we discuss the formulation for the second test, Eq. (5.3). 

 

5.3.3.2. Second test to Check whether DT2 Dominates DT1 

The formulation required for conducting the test of Eq. (5.3) is given by Eq. (5.5). 

As mentioned earlier, when ∇vT1 is equal to ∇vT2 (i.e., hT1 is parallel to hT2), we can find 

the values of the designs directly by using Eq. (3.1) (recall Section 3.2 of Chapter 3) 

based on a linear approximation of the value function. So, if the maximum of the 

difference between the values of DT1 and DT2 (i.e., objective function of Eq. (5.5)) is 
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negative, then we can conclude that DT2 dominates DT1 for the case where hT1 is parallel 

to hT2. Eq. (5.5b) is a constraint for checking that ∇vT1 is equal to ∇v  (hence hT2 T1 is 

parallel to hT2). Eq. (5.5c) to Eq. (5.5f) are similar to Eq. (5.4c) to Eq. (5.5f). In the 

formulation of Eq. (5.5), wiT (i=1,…,m) are the variables and [a1+,…,am+], [a1T,…,amT] 

are fixed (or deterministic). 

m

iT1 iT1 iT2
i=1

Maximize   w (a a )⋅ −∑      (5.5a) 

2m

iT1 iT2
i=1

m m
2 2
iT1 iT2

i=1 i=1

w w
subject to :   1

w w

 
⋅ 

  =
  
  
  

∑

∑ ∑
     (5.5b) 

m

iT1 iT1
i=1

w 1;    w 0= ≥∑      (5.5c) 

L UiT1
ijT1 ijT1

jT1

w                   S S ;  'm -1' such constraints
w

≤ ≤   (5.5d) 

m

iT2 iT2
i=1

w 1;    w 0= ≥∑      (5.5e) 

L UiT2
ijT2 ijT2

jT2

w                   S S ;  'm -1' such constraints
w

≤ ≤   (5.5f) 

Using our heuristic approach, we can say that a trial design DT2 dominates DT1 

only when the tests of Eq. (5.2) (i.e., objective function of Eq. (5.4) is less than or equal 

to R, the radius of OT1) and Eq. (5.3) (i.e., objective function of Eq. (5.5) is non-positive) 

are both satisfied. However, it is possible that Eq. (5.4) or Eq. (5.5) is infeasible. If 

Eq. (5.4) is infeasible, the test of Eq. (5.3) alone is enough to conclude that DT2 

dominates DT1. Similarly, the test of Eq. (5.2) alone is enough to conclude that DT2 

dominates DT1 if Eq. (5.5) is infeasible. Note that Eq. (5.5) becomes infeasible only when 
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no hT1 is parallel to any hT2 and Eq. (5.4) becomes infeasible only when any hT1 is parallel 

to some hT2 (hence Eq. (5.4) and Eq. (5.5) cannot be infeasible simultaneously). 

If there are more than two non-eliminated trial designs in the set DNTD, we apply 

the heuristic approach to all ordered pairs of non-eliminated trial designs (recall 

Section 3.3.4 of Chapter 3). Also note that the maximum of p  (i.e., perpendicular 

distance from D

T1
1 2h h

T2
1 2h h

T1 to the intersection of hT1 and hT2) might not be the same as the 

maximum  (i.e., perpendicular distance from DT2
1 2ph h T2 to the intersection of hT1 and hT2). 

If it so happens that the maximum values of both and are less than the given 

radius R of O

T1
1 2ph h p

Ti (i=1,2), it means that R is too large for the linear approximation to be 

valid. The designs that are not eliminated after the application of heuristic approach will 

be denoted as the potentially optimal designs. Note however, it is possible that some 

dominated designs are not eliminated even after applying our heuristic approach. Also, 

Eq. (5.4) and Eq. (5.5) involve finding the distances in the attribute space, so the 

attributes should be normalized before the application of our heuristic approach. 

In the next section, we discuss our algorithm for selection with preference 

variability using the concepts discussed in Section 5.3.  

 

5.4. ALGORITHM FOR SELECTION WITH PREFERENCE VARIABILITY 

Our algorithm for selection with preference variability has the following steps. 

Step 1: Set the iteration number to one (i.e., q = 1) and pick a starting trial design, 

DT1, from the set of design alternatives. We choose DT1 either as an alternative that would 

have maximum value if the value function were linear with equal importance to the 

attributes, or as a random pick. 
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Step 2: Query the DM for the MRS preferences between attributes at the current 

trial design DTq. Due to variability, DM responds with a range of preferences. 

Step 3: Eliminate dominated designs based on the range of MRS preferences at 

DTq (recall Section 5.3.1). 

Step 4: If all designs except one are eliminated, define DNTD to be the singleton set 

containing DTq, set total number of iterations to current iteration number (i.e., c = q), and 

go to Step 6. Otherwise, go to Step 5. 

Step 5: Find a new trial design from the non-eliminated design alternatives (recall 

Section 5.3.2). If a new trial design cannot be found, collect all the non-eliminated trial 

designs in the set DNTD, set total number of iterations to current iteration number 

(i.e., c = q), and go to Step 6. Otherwise, increase the iteration number by one (i.e., 

q = q+1), set the new trial design as DTq and go to Step 2. 

Step 6: If DNTD is a singleton then that design is the most preferred design 

alternative. Otherwise, use our heuristic approach (recall Section 5.3.3) for finding the 

potentially optimal design alternatives from among the DNTD. Stop. 

 

5.5. DEMONSTRATION EXAMPLES 

As a demonstration, we tested our method for selection with preference variability 

by applying our algorithm to two engineering examples. These examples are the same as 

the examples in Section 3.5 of Chapter 3. The first example, selection of a payload design 

for undersea autonomous vehicle, graphically demonstrates the working of our algorithm 

for selection with preference variability. The second example, selection of a cordless 
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electric drill, demonstrates the applicability of our method to a problem where the 

attributes are not normalized between zero and one. 

 

5.5.1. Selection of Payload Design for Undersea Autonomous Vehicle with 

Preference Variability 

For the payload design selection example, we set the ten Pareto optimum design 

alternatives, shown in Table 3.1 (reproduced in Column 2 of Table 5.1), as the design 

alternatives from which we select, with the PSi’s being the attributes. Since it is difficult 

for a human DM to verify that the potentially optimal designs found by our method for 

selection with preference variability are indeed accurate (i.e., the designs are indeed most 

preferred for some subset of the original range of preferences), we again use a simulated 

DM in this example. We constructed the DM’s implicit value function to be of the form 

V = -[(1-PS1)β+(1-PS2)2].       (5.6) 

Eq. (5.6) is similar to Eq. (3.15) except that we have a parameter β in Eq. (5.6) for 

creating variability in MRS preferences between the attributes. We assign a range to β 

(note that in Eq. (5.6), V is non-decreasing, differentiable, and quasi-concave for any β 

greater than or equal to one). As β varies in its specified range, the MRS preference 

between attributes also varies.  As the range of β increases, the variability in the MRS 

preference also increases. We again emphasize that the variability construct of Eq. (5.6) 

is not a presumed value function.  Rather, it simulates a human DM who is supposedly 

being queried by our selection method, providing a range of MRS preference. The only 

reason we use this variability construct is to verify that the potentially optimal designs 

obtained by our method are indeed accurate. 
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We applied our method to three cases with different ranges for β in each case. We 

discuss in detail the case where variability in β is large (thus resulting in large variability 

in MRS preference) in Section 5.5.1.1. Next, in Section 5.5.1.2 we present briefly the 

results for the other two cases, where in the variability in β is moderate. Finally, we 

discuss the results of all three cases in Section 5.5.1.3. 

 

5.5.1.1. Payload Design Selection with Large Variability in MRS Preference 

For this case, we fix the range of β to be “11 to 18”. We choose this range 

because according to Eq. (5.6) different designs will have the highest value for different 

values of β in this range (see Section 5.5.1.3 for details). The range of MRS preference at 

a trial design corresponding to a range of β can be found from Eq. (5.6) by solving a 

simple optimization problem (see Appendix-IV for details). 

Table 5.1: Z* values of payload design alternatives for selection with preference 

variability 

Design alternative 
number

Attributes [PS1, PS2] of 
design alternatives

Z* values at DT1, 
objective function in 
Eq. (5.1), of designs

Z* values at DT2, 
objective function in 
Eq. (5.1), of designs

Z* values at DT3, 
objective function in 
Eq. (5.1), of designs

1 [0.016, 0.695] -0.0812
2 [0.016, 0.693] -0.0814
3 [0.134, 0.684] 0 0.1215 -0.0001
4 [0.139, 0.675] 0.0018 0.1127 0
5 [0.274, 0.541] 0.0847 0 0.0792
6 [0.275, 0.114] 0.0024 -0.2866
7 [0.343, 0.093] 0.0532 -0.2786
8 [0.346, 0.091] 0.0549 -0.2792
9 [0.355, 0.090] 0.062 -0.2768

10 [0.357, 0.075] 0.0612 -0.2858
 

Following our algorithm in Section 5.4., we set the iteration number to one (i.e., 

q = 1) and randomly pick D3 as the starting trial design, i.e., 

DT1: [PS1, PS2] = [0.134, 0.684] (Step 1). Since this is a two attribute problem, we ask the 
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DM to provide the range of only one MRS preference, i.e., MRS preference between PS1 

(attribute 1) and PS2 (attribute 2). Our simulated DM, Eq. (5.6), responds by saying that 

the range of MRS preference is, S12T1: [2.46, 4.13] (Step 2). 

We then use Eq. (5.1) with the given MRS range to eliminate some dominated 

designs (Step 3). Table 5.1 (Column 3) shows the Z* values (objective function in 

Eq. (5.1)) at DT1 for the payload design alternatives. We can see that Z* is negative for 

D1, D2 (hence dominated by DT1) and non-negative for the rest of the design alternatives 

except D3. Z* of D3 is zero because it is the trial design for this iteration. 

Trial Design
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Figure 5.4: Dominated designs at DT1 when β lies between 11 and 18 for payload 

design selection 

Since this is a two attribute example, the upper bound, S , and the lower bound, 

, of the range of MRS preference correspond to the extremes, ∇  and ∇ , of the 

range of gradient at D

U
12T1

L
12T1S U

T1V L
T1V

T1. So we can visualize the attribute space with the range of 

gradients as shown in Figure 5.4. From Figure 5.4, we can see that only D1 and D2 lie in 
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all the possible gradient cuts that belong to the range of gradient at DT1. Hence, only D1 

and D2 are dominated by DT1 and can be eliminated. 

Since more than one design is not eliminated, we skip Step 4 and find a new trial 

design (Step 5). Using our approach for finding a new trial design, we find D5 as the new 

trial design. So we increase the iteration number by one (i.e., q = 2), set D5 as 

DT2: [0.274, 0.541] and go to Step 2. 
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Figure 5.5: Dominated designs at (a) DT2 and (b) DT3 when β lies between 11 and 18 

for payload design selection 

Our simulated DM, Eq. (5.6), gives the range of MRS preference at DT2 as, 

S12T2: [0.09, 0.49] (Step 2). We then use Eq. (5.1) for eliminating dominated designs 

based on the given range of MRS, S12T2 (Step 3). Table 5.1 (Column 4) shows the Z* 

values at DT2 for the payload design alternatives. We can see that Z* is negative for D6, 

D7, D8, D9, and D10 (hence dominated by DT2) and positive for D3 and D4. Z* of D5 is zero 
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because it is the trial design for this iteration. Z* is empty for D1 and D2 because they are 

already eliminated by DT1.  

We can see from Figure 5.5(a) also that DT2 does not dominate D3 and D4 because 

D3 and D4 do not lie in any of the gradient cuts that belong to the range of gradient at DT2. 

Since more than one design is not eliminated (recall D3, D4 and D5 are not eliminated), 

we skip Step 4 and find a new trial design. Perforce, D4 is the new trial design because it 

is the only non-eliminated design which has not been a trial design (Step 5). So we 

increase the iteration number by one (i.e., q = 3), set D4 as DT3: [0.139, 0.675] and go to 

Step 2. 

Our simulated DM, Eq. (5.6), gives the range of MRS preference at DT3 as, 

S12T3: [2.18, 3.79] (Step 2). We then use Eq. (5.1) for eliminating dominated designs 

based on the given range of MRS, S12T3 (Step 3). Table 5.1 (Column 5) shows the Z* 

values at DT3 for the payload design alternatives. We can see that Z* is negative for D3 

(hence dominated by DT3) and positive for D5. We can see from Figure 5.5(b) also that 

DT3 does not dominate D5 and D3 is dominated by DT3. D4 and D5 are the only 

non-eliminated designs at this stage. Since both of them have already been trial designs 

we stop the iterative process and collect the two designs in the set DNTD (Step 4) and go to 

Step 6. 

We then apply our heuristic approach to see if any of the two trial designs can be 

eliminated (Step 6). We fix the radius of the region, OTi (i=2, 3), around DTi (i=2, 3) 

where the linear approximation of value function is estimated to be valid as: R = 0.12 (the 

R value is chosen arbitrarily). Using the formulation in Eq. (5.4), we then find the 

maximum for DT2
2 3ph h T2 as 0.13 and the maximum for DT3

2 3ph h T3 as 0.14. Since the 
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maximum values of both and are greater than R neither design dominates the 

other. So we conclude that D

T2
2 3ph h

T3
2 3h h

T3
2 3ph h

4 and D5 are potentially optimal for the case when β lies 

between 11 and 18. 

In the next section, we present briefly our results for the selection of payload 

design when the variability in β (hence the variability in MRS preference) is moderate. 

 

5.5.1.2. Payload Design Selection with Moderate Variability in MRS Preference 

We applied our method for selection with preference variability for different β 

ranges. In the case where β lies between 11 and 14.4, the method found D5 and D4 as the 

members of the set of non-eliminated trial designs DNTD in three iterations starting with 

D3 as the initial trial design (D5 was the second trial design, DT2, and D4 was the third 

trial design, DT3). We then applied our heuristic approach to see if any of the two trial 

designs can be eliminated (Step 6). We fixed the radius of the region, OTi (i=2, 3), around 

DTi (i=2, 3) where the linear approximation of value function is estimated to be valid as: 

R = 0.12. Using the formulation in Eq. (5.4), we then found the maximum for DT2
2 3ph h

T3
2 3ph h

T2 as 

0.13 and the maximum p for DT3 as 0.11. Since the maximum value is less than 

R, the first test (recall Eq. (5.2)) for checking whether D5 dominates D4 is satisfied. So we 

conducted the second test by solving the formulation in Eq. (5.5). We found that the 

formulation in Eq. (5.5) is infeasible meaning that there is no hyper-plane hT2 that lies 

between L
T2H  and U

T2H  at DT2 that is parallel to any hyper-plane hT3 that lies between L
T3H  

and U
T3H  at DT3. Since the test of Eq. (5.2) alone is enough when Eq. (5.5) is infeasible 
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(recall Section 5.3.3.2), we conclude that for the case when β lies between 11 and 14.4, 

D5 is the singleton potentially optimal (hence the most preferred) design. 

In the case where β lies between 14.6 and 18, the method again found D5 and D4 

as the members of the set DNTD in three iterations starting with D3 as the initial trial 

design (again D5 was the second trial design, DT2, and D4 was the third trial design, DT3). 

We then applied our heuristic approach to see if any of the two trial designs can be 

eliminated (Step 6). We again fixed the radius of the region, OTi (i=1, 2) as: R = 0.12. 

Using the formulation in Eq. (5.4), we then found the maximum for DT2
2 3ph h

T2
2 3ph h

T2 as 0.10 and 

the maximum for DT3
2 3ph h T3 as 0.14. Since the maximum value is less than R, the 

first test (recall Eq. (5.2)) for checking whether D4 dominates D5 is satisfied. So we 

conducted the second test by solving the formulation in Eq. (5.5). We found that the 

formulation in Eq. (5.5) is infeasible meaning that there is no hyper-plane hT2 that lies 

between L
T2H  and U

T2H  at DT2 that is parallel to any hyper-plane hT3 that lies between L
T3H  

and U
T3H  at DT3. Since the test of Eq. (5.2) alone is enough when Eq. (5.5) is infeasible, 

we conclude that for the case when β lies between 14.6 and 18, D4 is the singleton 

potentially optimal (hence the most preferred) design. 

In the next section, we discuss the verification of the results for payload design 

selection with preference variability. 

 

5.5.1.3. Discussion 

To verify the results obtained by our method we use the variability construct 

shown in Eq. (5.6). Substituting different values for β in Eq. (5.6), we can obtain the 
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values of the design alternatives for that β (see Figure 5.6). Note that the maximum of 

Eq. (5.6) (which is zero), for each β, is obtained when both PS1 and PS2 are equal to one. 

From Figure 5.6 we can see that when β lies between 11 and 14.4, D5 has the 

highest value. When β is equal to 14.5, both D5 and D4 have the highest value. When β 

lies between 14.6 and 18, D4 alone has the highest value. Even though we showed in 

Figure 5.6 the values of the design alternatives for only some discrete β in the range 11 to 

18, it can be verified that D5 has highest value when β lies between 11 and 14.5 and D4 

has highest value when β lies between 14.5 and 18 (see Section 5.6 for an approach for 

finding the potentially optimal design alternatives according to a simulant value 

function). 
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Figure 5.6: Value of payload design alternatives for different β’s 

Recall that using our method we obtained D4 and D5 as the potentially optimal 

designs when β lies between 11 and 18. From Figure 5.6 this is expected because D4 has 
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the highest value for some part of the β range and D5 has the highest value for some other 

part of the β range. When β lies between 11 and 14.4, our method obtained a single most 

preferred design D5 and when β lies between 14.6 and 18, our method again obtained a 

single most preferred design D4, as expected from Figure 5.6. This verifies the results of 

our method for selection with preference variability for payload design selection. 

 

5.5.2. Selection of Cordless Electric Drill with Preference Variability 

In this section, we present the cordless electric drill selection example to 

demonstrate our algorithm for selection with preference variability to a problem where 

the attributes are not normalized. This example is similar to the example in Section 3.5.2 

of Chapter 3. We use the eighteen design alternatives shown in Table 3.3 (reproduced in 

Column 2 of Table 5.4), as the design alternatives for selection. We consider three design 

attributes: a1, the number of operations achievable with one charge of a battery pack; a2, 

the cost of the drill; and a3, the weight of the drill. We present, in Section 5.5.2.1, the 

application of our algorithm for selection with preference variability to cordless electric 

drill selection by a casual user. Next, in Section 5.5.2.2, we discuss our results. 

 

5.5.2.1. Cordless Electric Drill Selection with Preference Variability by a Casual User 

Having no informed guess from the DM for picking the starting trial design, we 

select randomly the design alternative D7 as the first trial design 

DT1: [450 operations, 74 dollars, 6.9 pounds] (Step 1). The DM, a casual user, provides 

the trade-offs as shown in the third column of Table 5.2 (Step 2) and says that the range 

of MRS preferences is ±25% around these trade-offs. For example, from the third column 
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of Table 5.2, the trade-off between attributes a1 and a2 at DT1 is 4 dollars per 50 

operations. The range of MRS between attributes a1 and a2 at DT1, S12T1, for a ±25% 

variability is then: [0.06 dollar operation-1, 0.1 dollar operation-1] (recall the MRS has a 

dimension equal to the ratio of attributes). Table 5.3 (Column 3) shows the range of MRS 

preferences at DT1. 

Table 5.2: Casual user’s trade-offs between attributes of cordless electric drill  

MRS Attributes

Trade-offs for constant value 
designs at DT1: [450 

operations, 74 dollars, 6.9 
pounds]

Trade-offs for constant value 
designs at DT2: [350 

operations, 70 dollars, 6 
pounds]

Trade-offs for constant value 
designs at DT3: [400 

operations, 72 dollars, 6.5 
pounds]

Operations 50 operations 50 operations 50 operations

Cost 4 dollars 3 dollars 3 dollars

Cost 5 dollars 2 dollars 2 dollars

Weight  0.5 pounds  0.5 pounds  0.5 pounds

Weight 0.4 pounds 0.5 pounds 0.5 pounds

Operations 50 operations 40 operations 45 operations

S12

S23

S31

 

Table 5.3: Range of MRS preferences with ±25% variability around the trade-offs 

of Table 5.2 for a casual user  

MRS Attributes
Range of MRS at DT1: [450 
operations, 74 dollars, 6.9 

pounds]

Range of MRS at DT2: [350 
operations, 70 dollars, 6 

pounds]

Range of MRS at  DT3: [400 
operations, 72 dollars, 6.5 

pounds]

Operations

Cost

Cost

Weight

Weight

Operations

S12

S23

S31

[0.06 dollar operation-1, 0.1 
dollar operation-1]

[0.045 dollar operation-1, 
0.075 dollar operation-1]

[93.75 operation pound-1, 
156.25 operation pound-1]

[60.0 operation pound-1, 
100.0 operation pound-1]

[67.5 operation pound-1, 
112.5 operation pound-1]

[0.045 dollar operation-1, 
0.075 dollar operation-1]

[0.075 pound dollar-1, 0.125 
pound dollar-1]

[0.188 pound dollar-1, 0.313 
pound dollar-1]

[0.188 pound dollar-1, 0.313 
pound dollar-1]

 

Using Eq. (5.1) with the MRS range shown in third column of Table 5.3, we 

eliminate some dominated designs (Step 3). Table 5.4 (Column 3) shows the Z* values 

(objective function in Eq. (5.1)) at DT1 for the cordless electric drill design alternatives. 
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We can see that Z* is non-negative for D1, D2, D3, D4 and D5 and negative (hence 

dominated by DT1) for the rest of the design alternatives except D7. Z* of D7 is zero 

because it is the trial design for this iteration. Since the attributes of cordless electric drill 

are not normalized, we neglect the constraint of Eq. (5.1b) in eliminating dominated 

designs for this example. 

Table 5.4: Z* values of cordless electric drill design alternatives for selection with 

preference variability 

Design 
alternative 

number

Attributes of design 
alternatives [Number of 

operations, Cost, Weight]

Ζ∗ values at DT1, objective 
function of Eq. (5.1), of 

designs

Ζ∗ values at DT2, objective 
function of Eq. (5.1), of 

designs

Ζ∗ values at DT3, objective 
function of Eq. (5.1), of 

designs

1 [350 operation, 70 dollars, 
6.0 pounds]

135549975.38 0.00 107085597.49

2 [370 operation, 80 dollars, 
5.7 pounds]

45029242.11 -0.09

3 [380 operation, 80 dollars, 
5.5 pounds]

12234502.72 -0.13

4 [400 operation, 72 dollars, 
6.5 pounds]

27953942.30 1204143.97 0.00

5 [420 operation, 82 dollars, 
6.1 pounds]

1239183.05 -0.09

6 [430 operation, 88 dollars, 
5.8 pounds]

-0.01

7 [450 operation, 74 dollars, 
6.9 pounds]

0.00 17568139.55 7088283.62

8 [470 operation, 85 dollars, 
6.5 pounds]

-0.04

9 [480 operation, 91 dollars, 
6.1 pounds]

-0.03

10 [500 operation, 79 dollars, 
7.2 pounds]

-0.02

11 [520 operation, 89 dollars, 
6.9 pounds]

-0.08

12 [530 operation, 94 dollars, 
6.4 pounds]

-0.05

13 [550 operation, 84 dollars, 
7.5 pounds]

-0.05

14 [570 operation, 93 dollars, 
7.2 pounds]

-0.09

15 [580 operation, 97 dollars, 
6.7 pounds]

-0.07

16 [600 operation, 90 dollars, 
7.8 pounds]

-0.08

17 [620 operation, 98 dollars, 
7.5 pounds]

-0.12

18
[630 operation, 100 dollars, 

7.0 pounds] -0.09

 

Since more than one design is not eliminated, we skip Step 4 and find a new trial 

design (Step 5). Using our approach for finding a new trial design, we find D1 as the new 
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trial design. So we increase the iteration number by one (i.e., q = 2), set D1 as 

DT2: [350 operations, 70 dollars, 6 pounds] and go to Step 2. 

The DM, a casual user, gives the range of MRS between attributes as shown in 

the fourth column of Table 5.3 (Step 2). Again, the range of MRS is obtained with ±25% 

variability around the trade-offs shown in the fourth column of Table 5.2. Using 

Eq. (5.1), D2, D3, and D5 are then eliminated as dominated designs by DT2 (Step 3). 

Table 5.4 (Column 4) shows the Z* values at DT2. Since more than one design is not 

eliminated (recall D1, D4 and D7 are not eliminated), we skip Step 4 and find a new trial 

design. Perforce, D4 is the new trial design because it is the only non-eliminated design 

which has not been a trial design (Step 5). So we increase the iteration number by one 

(i.e., q = 3), set D4 as DT3: [400 operations, 72 dollars, 6.5 pounds] and go to Step 2. 

Table 5.3 (Column 5) shows the range of MRS between attributes given by the 

casual user (Step 2). Once again the range of MRS is obtained with ±25% variability 

around the trade-offs shown in the fifth column of Table 5.2. Using Eq. (5.1), the Z* 

values (Step 3) of both D1 and D7 are non-negative (see fifth column of Table 5.4). D1, D4 

and D7 are the only non-eliminated designs at this stage. Since all of them have already 

been trial designs we stop the iterative process and collect the three designs in the set 

DNTD (Step 4) and go to Step 6.  

We then apply our heuristic approach to see if any of the three trial designs can be 

eliminated (Step 6). For the application of our heuristic approach, we normalize the 

attributes using the scale of the attributes (recall Section 5.3.3). We fix the radius of the 

region, OTi (i=1, 2, 3), around DTi (i=1, 2, 3) where the linear approximation of value 

function is estimated to be valid as: R = 0.12 (the R value is chosen arbitrarily). Our 
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approach eliminates D7 using the test of Eq. (5.2) and Eq. (5.3). So, we conclude that D1 

and D4 are the potentially optimal designs for the ranges of MRS preferences given by 

the casual user. 

In the next section, we discuss the results of cordless electric drill selection with 

preference variability. 

 

5.5.2.2. Discussion 

The trade-offs at DT1 and DT2 shown in Table 5.2 are the same as the trade-offs 

(or MRS estimates) given by the casual user for deterministic selection (recall Table 3.4) 

and for sensitivity analysis for deterministic selection (recall Section 4.5.2.1 of 

Chapter 4). Recall that in deterministic selection we found the most preferred design as 

D1: [350 operations, 70 dollars, 6 pounds] in two iterations, so there was no need for a 

third iteration. However, the trade-offs at DT3 shown in Column 5 of Table 5.2 are 

consistent with the casual user’s preferences at other trial designs.  

Recall from Figure 4.6, that the overall elimination robustness is 0.18 for D7, 0.22 

for D1 and greater than 0.25 for the rest of the design alternatives. This shows that if the 

difference between the actual MRS values and their estimates is greater than or equal to 

18%, D7 will not be eliminated using gradient cut. Also, D4 will not be eliminated using 

gradient cut if the difference between the actual MRS values and their estimates is greater 

than or equal to 22%. Stated otherwise, D7 will be eliminated if the range of MRS 

preferences at D1 is within ±18% around the trade-offs of Table 5.2 and D4 will be 

eliminated if the range of MRS preferences at D1 is within ±22% around the trade-offs of 

Table 5.2. 
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When the DM gives the range of MRS preferences as ±25% around the trade-offs 

of Table 5.2, our method for selection with preference variability, as expected, found D1, 

D4 and D7 as the non-eliminated trial designs. But D7 is eliminated as dominated design 

using the heuristic approach. 

We applied our method for selection with preference variability to two more cases 

with different MRS ranges. In the first case, the range of MRS preferences was ±20% 

around the trade-offs of Table 5.2 and in the second case, the range of MRS preferences 

was ±15% around the trade-offs of Table 5.2. As expected, in the first case, our method 

for selection with preference variability found D1, D7 as the non-eliminated trial designs 

(D7 was again eliminated using the heuristic approach). In the second case, our method 

found D1 as the singleton non-eliminated trial design. 

Next we provide some experimental results that verify our method for selection 

with preference variability.  

 

5.6. VERIFICATION: SOME EXPERIMENTAL RESULTS 

To verify the proposed method for selection with preference variability, we 

conducted simulations with four different problem sizes i.e., 

(number of attributes) ×  (number of design alternatives), ranging from three attributes 

and fifty alternatives to six attributes and fifty alternatives. For each problem size, we 

used MATLAB® to generate the fifty random Pareto design points. For simplicity, the 

alternatives are uniformly distributed between 0 (worst) and 1 (best) in each attribute. We 

chose the four different problem sizes to demonstrate the applicability of our method to 
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problems with high number of attributes. Appendix-III shows the design alternatives that 

we used for each problem size. 

We used three simulant value functions given by Eq. (5.7), Eq. (5.8), and Eq. (5.9) 

to produce the range of MRS preferences that our method needs.  

V1(Dj) =         (5.7) 
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These simulant value functions are similar to the simulant value functions of 

Eq. (3.17), Eq. (3.18), and Eq. (3.19), respectively, that we used for the verification of 

our deterministic selection method (recall Section 3.6 of Chapter 3). The only difference 

is that the parameters, β in Eq. (5.7), γi in Eq. (5.8), and αi in Eq. (5.9), have an assigned 

range and thus create variability in the MRS preferences. Note that the simulant value 

function of Eq. (5.9) is quasi-concave but not concave [Avriel et al., 1988] whereas the 

simulant value functions of Eq. (5.7) and Eq. (5.8) are concave. All three simulant value 

functions are non-decreasing and differentiable with respect to the attributes. The range 
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of MRS preferences at a trial design corresponding to the range of parameters can be 

found from Eq. (5.7), Eq. (5.8), and Eq. (5.9) by solving a simple optimization problem 

(see Appendix-IV for details).  

We tested our method for selection with preference variability by comparing the 

potentially optimal design alternatives obtained by our method with the potentially 

optimal design alternatives according to the simulant value function. A design Dj would 

be potentially optimal according to a simulant value function if Dj has the highest value 

for some value of the parameter in the assigned parameter range. I.e., Eq. (5.10) is 

satisfied for some parameter (i.e., β in V1 of Eq. (5.7), γi in V2 of Eq. (5.8), and αi in V3 

of Eq. (5.9)) value, in the assigned parameter range, for all designs Dk (k = 1,…,n; k ≠ j; 

n is the number of other designs) other than Dj. 

Vi(Dk) – Vi(Dj) < 0; 'n such constraints  (5.10) -1'

For each problem size we conducted three simulations, each using a different 

simulant value function to represent the DM’s preferences. For each problem size and 

each simulant value function, Table 5.5 shows the non-eliminated trial designs DNTD 

(recall Figure 5.1) in the third column, potentially optimal designs after applying our 

heuristic approach (with R, radius of the region where the linear approximation of value 

function is estimated to be valid, equal to 0.05) in the fourth column, and the potentially 

optimal designs according to the simulant value function in the fifth column. 

From Table 5.5, we can see that the set of non-eliminated designs DNTD, always 

includes the potentially optimal designs according to the simulant value function 

(Column 5 of Table 5.5). However, DNTD contains a number of design alternatives that 

are not potentially optimal according to the simulant value function. This is expected 
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because we use a conservative approach for eliminating dominated designs (recall 

Section 5.3.1). 

Table 5.5: Results of verification study for selection with preference variability 

Problem size: "# 
of attributes×# of 

designs"
Value function

Non-eliminated trial 
designs, members of 

DNTD

Potentially optimal 
designs after applying 
heuristic with R=0.05

Potentially optimal 
designs according to 

the simulant value 
functions

V1 D12, D32, D38, D45 D12, D32, D38, D45 D32

V2 D12, D32 D32 D32

V3 D12, D32 D12, D32 D32

V1

D18, D19, D21, D24,  
D28,  D29, D35, D37, 

D38

- D37

V2 D7, D19, D35, D37 D35, D37 D35, D37 

V3
D18, D19, D21, D24, 

D29, D35, D37
 D19, D35, D37 D35, D37 

V1

D4, D12, D14, D15, 
D16, D20, D21, D22, 
D26, D29, D31, D33, 
D35, D36, D43, D49

D12 D12

V2
D12, D16, D21, D33, 
D35, D43, D45, D49

D12, D35 D12

V3

D12, D16, D20, D21, 
D22, D26, D33, D35, 

D43, D45, D49

D12, D16, D26, D43, 
D49

D12

V1

D20, D21, D32, D36, 
D39, D40, D41, D44, 

D46, D49

 D39, D41, D46, D49 D39

V2
D20, D32, D39, D41, 

D44, D46, D49
 D20, D39, D44, D46 D39

V3
D20, D32, D39, D40, 
D41, D44, D46, D49

D20, D32, D39, D40, 
D44, D46, D49

D20, D39 

3×50

4×50

5×50

6×50

 

For example, consider the experiment with ‘three attributes’ ×  ‘fifty designs’ with 

V3, Eq. (5.9), as the simulant value function. Our method for selection with preference 

variability found D12 and D32 as the members of the set of non-eliminated trial designs 

and only D32 was the potentially optimal design according to the simulant value function. 

Figure 5.7, shows the value range (i.e., minimum and the maximum value) for each 

design alternative found using Eq. (5.9). From Figure 5.7, we can see that value ranges of 
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no design overlaps with the value range of D32. So we can clearly see that D32 dominates 

other designs. However, note that, if there is overlap between value ranges of two 

designs, it does not necessarily mean that those designs are potentially optimal. 

1 5 9 13 17 21 25 29 33 37 41 45 49
0

0.1

0.2

0.3

0.4

0.5

D32 is the potentially 
optimal design 
according to Eq. (5.9)

D12, D32 are not eliminated even after 
applying our heuristic approach

Value

Design alternative number

1 5 9 13 17 21 25 29 33 37 41 45 49
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D32 is the potentially 
optimal design 
according to Eq. (5.9)

D12, D32 are not eliminated even after 
applying our heuristic approach

Value

Design alternative number  

Figure 5.7: Value ranges of design alternatives for the experiment with ‘three 

attributes’ × ‘fifty designs’ with Eq. (5.9) as the simulant value function 

Our heuristic approach is successful in most of the experiments in reducing the 

size of DNTD. However, the potentially optimal designs that remain after applying the 

heuristic approach (Column 4 of Table 5.5) still contain design alternatives that are not 

potentially optimal according to the simulant value function (Column 5 of Table 5.5). 

This supports our earlier statement that some designs that are actually dominated might 

not be eliminated even after applying our heuristic approach. In Table 5.5, Column 4 data 

for ‘four attributes’ ×  ‘fifty designs’ is empty because our heuristic approach returned an 
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error saying that the radius R of the region where the linear approximation of value 

function is estimated to be valid is too large for that experiment (recall Section 5.3.3.2).  

 

5.7. SUMMARY 

In this chapter, we presented a method for product design selection with 

preference variability for an implicit value function. Our method assumed that the DM’s 

implicit value function is differentiable, quasi-concave and non-decreasing with respect 

to the attributes. This assumption is more general and less restrictive than other popular 

assumptions as reported in the literature (e.g., additive value function) 

[Athanassopoulos and Podinovski, 1997] [Insua and French, 1991]. 

Our method for selection with preference variability is iterative and requires that 

the DM give a range for MRS preference between attributes at a series of trial designs. 

We presented an approach for eliminating dominated designs using the range of MRS 

preferences directly. The mathematical formulation of this approach under certain 

conditions becomes a linear programming problem and can be solved quickly to obtain 

the set of non-eliminated trial designs. We also presented a heuristic for identifying the 

dominated designs from the set of non-eliminated trial designs. Finally, we presented an 

algorithm for selection with preference variability and demonstrated the algorithm with 

two engineering examples: payload design selection and cordless electric drill selection. 

We also provided some experimental results that numerically verified our method for 

selection with preference variability. Our experiments showed that the potentially optimal 

designs found using our method always include the actual potentially optimal designs 

according to the simulant value functions. 
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Our approach for eliminating dominated designs is conservative and does not 

always eliminate all the dominated designs. But on the bright side, our approach does not 

eliminate a design that is actually potentially optimal. So the set of non-eliminated trial 

designs always includes the actual potentially optimal designs. Also our method does not 

need presumed probability distributions governing the variability in MRS preferences 

since our approach for eliminating dominated designs is a worst case approach. Even 

though we assumed that in our method for selection with preference variability the DM 

gives a range of MRS, our formulation for eliminating dominated designs can 

accommodate other constraints on the MRS preferences (see Section 7.4.2 of Chapter 7 

for details). 

Our heuristic approach (recall Section 5.3.3) does not necessarily eliminate all 

dominated designs from the set of non-eliminated trial designs DNTD. The formulation for 

our heuristic approach is non-convex and is computationally expensive. Also, as the 

variability in preferences becomes large, the number of iterations required for finding 

DNTD might increase. This might be tedious for the DM. One way to reduce the number 

of iterations is to improve the approach for finding the new trial design. Recall, from 

Section 5.3.2, that the approach we use for finding a new trial design does not account for 

the range of preferences at the trial designs. 

In the next chapter, we present the development of the method for our fourth 

research component, selection with preference and attribute variability. This method is 

used for finding the set of non-eliminated trial designs when the DM gives a range of 

preferences and a range of attributes for design alternatives because of preference and 

attribute variability. 
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CHAPTER 6 

 

SELECTION WITH PREFERENCE AND ATTRIBUTE VARIABILITY 

 

6.1. INTRODUCTION 

In Chapter 5 we presented a method for selection with preference variability. In 

that method and also in the methods of Chapter 3 and Chapter 4, we assumed that there is 

no attribute variability. However, it is quite common in engineering design to have 

variability in the attributes of the design alternatives as well. Uncontrollable parameter 

variations during the design process (e.g., manufacturing errors, use conditions) are the 

source for attribute variability. For example, in the automobile design selection, an 

automobile that is designed to have an attribute level of six seconds for the 0-60 time 

might in reality have the 0-60 time between five and eight seconds due to manufacturing 

errors, use conditions, modeling errors and so on. 

The purpose of this chapter is to present a method for selection with both 

preference and attribute variability. Specifically, we extend our method for selection with 

preference variability (described in Chapter 5) to account for attribute variability also. In 

this chapter, we assume that the attribute variability can be quantified with a known range 

for each attribute of a design alternative. 

The organization of the rest of this chapter is as follows. We give an overview of 

our method for selection with preference and attribute variability in Section 6.2. We then 

present the details of our method in Section 6.3, and present an algorithm for selection 

with preference and attribute variability in Section 6.4. Next in Section 6.5, we give two 
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engineering examples to demonstrate our method for selection with preference and 

attribute variability. Then we present some experimental results to verify our method for 

selection with preference and attribute variability in Section 6.6, and finally we conclude 

the chapter with a summary in Section 6.7. 

 

6.2. OVERVIEW OF METHOD FOR SELECTION WITH PREFERENCE AND 

ATTRIBUTE VARIABILITY 

Figure 6.1 shows the flowchart of our method for selection with preference and 

attribute variability. This method is iterative and assumes that the DM’s value function is 

differentiable, non-decreasing, and quasi-concave with respect to the attributes. Because 

of this assumption, for selection it is enough to consider only those designs that are 

Pareto optimal from the original set of design alternatives [Malakooti, 1988]. The 

individual components of the method shown in Figure 6.1 are similar to the method for 

selection with preference variability (recall Figure 5.1) except for the dashed boxes. 

In our method for selection with preference and attribute variability, we assume 

that the ranges of the attributes (shown by dotted rectangles in Figure 6.1) quantifying the 

variability in the attributes of the design alternatives are known. The black dot in the 

middle of small dashed rectangles represents the nominal attribute levels of the design 

alternatives. By nominal attribute levels we mean the attribute levels that would occur if 

there were no variability. 

With the range of MRS preferences (obtained by querying the DM at a trial 

design) and the range of the attributes of design alternatives, we use a modified version of 

gradient cut (recall Section 3.3.2 of Chapter 3) for eliminating some of the dominated 

 144



designs with respect to a trial design (see Section 6.3.1 for details). We assume that the 

DM gives the range of MRS preferences at a trial design keeping in mind the range of 

attributes at that trial design. In other words, the given range of MRS preferences should 

include the range of MRS preferences at any attribute levels belonging to the range of 

attributes at a trial design. 
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Figure 6.1: Flowchart of our method for selection with preference and attribute 

variability 

Next, we try to find a new trial design (see Section 6.3.2 for details) from the 

non-eliminated design alternatives. If a new trial design is found, we repeat the above 

steps (see Figure 6.1), referred to as “an” ‘iteration’ from here on in this chapter. 

Otherwise, we stop the process and collect the non-eliminated trial designs in a set, 

designated by DNTD. Ideally none of the designs in the set DNTD should be dominated. But 
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due to the properties of quasi-concave function (to be explained in Section 6.3.1), it is 

possible that some dominated designs belong to DNTD. 

 

6.3. DESCRIPTION OF METHOD FOR SELECTION WITH PREFERENCE 

AND ATTRIBUTE VARIABILITY 

In this section, we discuss in detail the individual parts of our method for 

selection with preference and attribute variability. In Section 6.3.1, we describe our 

approach for eliminating dominated designs based on the range of MRS preferences and 

the range of attributes of design alternatives. Next, we present our approach for finding a 

new trial design in Section 6.3.2. 

 

6.3.1. Eliminating Dominated Designs based on the Range of MRS Preferences and 

the Range of Attributes 

Figure 6.2 illustrates, in two attribute space, our approach for eliminating 

dominated designs based on the range of MRS preferences and the range of attributes. 

Let DT be the current trial design with the solid rectangle as the known range of attributes 

and the black dot in the middle as the nominal design with the given attribute levels. 

Because the DM gives a range of MRS (due to variability) at DT, the corresponding 

gradient coefficients at DT also have a range as shown in Figure 6.2.  

Because of the variability in the MRS preferences and the attributes, a number of 

gradient cuts are possible at DT, the union of which is shown by the dotted region in 

Figure 6.2. The shaded area in Figure 6.2 is the intersection of all the possible gradient 

cuts at DT. We eliminate as dominated designs, those designs (e.g., D0 in Figure 6.2) 
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whose range of attributes lie completely inside the shaded area of Figure 6.2. Due to this 

reason, in our approach, if there is overlap between the ranges of attributes for two 

designs (i.e., the rectangles intersect), then those two designs will not dominate one 

another irrespective of the ranges of MRS preferences.  

Designs whose attribute 
range falls in this region are 
dominated (i.e., eliminated)

Range of MRS preferences 
results in a range of gradient

a1

a2

Range of attributes at DT

Shift in range of gradient due 
to variability in attributesDT

D0

Designs whose attribute 
range falls in this region are 
dominated (i.e., eliminated)

Range of MRS preferences 
results in a range of gradient

a1

a2

Range of attributes at DT

Shift in range of gradient due 
to variability in attributesDT

D0

 

Figure 6.2: Illustration of our approach for eliminating dominated designs based on 

the range of MRS preferences and the range of attributes of design alternatives 

However, visualizing the range of the gradient corresponding to the range of MRS 

preferences and the range of attributes as shown in Figure 6.2 is easy in two dimensions 

but is difficult for higher dimensions. So, we present a mathematical formulation in 

Eq. (6.1) for checking whether or not a design D+ is dominated by a trial design DT. In 

this formulation, wiT, ai+ and aiT (i=1,…,m) are the variables. 

m
*

iT i+ iT
i=1

Maximize   Z  = w (a a )⋅ −∑       (6.1a) 

m

iT iT
i=1

subject to: w 1;    w 0= ≥∑       (6.1b) 
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L UiT
ijT ijT

jT

w                   S S ;  'm -1' such constraints
w

≤ ≤     (6.1c) 

L U
i+ i+ i+                   A a A ;  'm' such constraints≤ ≤     (6.1d) 

L U
iT iT iT                   A a A ;  'm' such constraints≤ ≤     (6.1e) 

The formulation in Eq. (6.1) is similar to the formulation in Eq. (5.1) except that two new 

sets of constraints are added to account for the variability in attributes. Eq. (6.1d) is to 

check that the variable attributes of D+, ai+, belong to the range of attributes at D+. 

Eq. (6.1e) imposes a similar constraint on the variable attributes of DT, aiT. 

If there exists a vector ∇vT: [w1T,…,wmT] in the range of gradient at DT, and 

vectors [a1+,…am+] and [a1T,…,amT] in the ranges of attributes at D+ and DT respectively, 

for which D+ does not lie in the corresponding gradient cut, then the value of Z* in 

Eq. (6.1a) will be non-negative (recall Eq. (3.11)) otherwise Z* will be negative. So, if the 

maximum value of Z* is negative then we can conclude that D+ lies in the gradient cuts of 

all the gradients at DT. Hence D+ is dominated by DT. 

The formulation is Eq. (6.1) has a nonlinear objective function with linear 

constraints and can be solved by existing commercial software (e.g., “fmincon” of the 

MATLAB® optimization toolbox). Note that in Eq. (6.1) we impose a normalization 

constraint on gradient coefficients wiT. However, if the attributes are not normalized then 

we neglect the normalization constraint of Eq. (6.1b). One could also modify Eq. (6.1b) 

as∑ , where r
m

iT i
i 1

w r
=

⋅ = 1 i is the scale of the ith attribute (recall Definition in Section 2.2.1 

of Chapter 2). Also, in Eq. (6.1), we assume that the MRS preferences sijT are exact and 

consistent (recall Eq. (4.4)). However, if one feels that the exactness and consistency 

assumption is not appropriate then Eq. (6.1) can be easily modified by adding two more 
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constraints, as given by Eq. (4.5) if the attributes are normalized and by Eq. (4.6) if the 

attributes are not normalized. 

Note that Eq. (6.1) should be applied to each design D+ (that belongs to the 

original set of design alternatives and is not already eliminated) for checking whether or 

not that design is dominated by DT. Based on the definition of dominated design (recall 

Section 2.2.7 of Chapter 2), for a design D+, if Z* in Eq. (6.1) is negative then it is 

guaranteed that D+ is dominated by the trial design DT. However, it is possible that D+ 

might be dominated by DT even if Z* is positive. This is because, gradient cut does not 

eliminate all lower value designs with respect to DT, and we use a conservative approach 

and eliminate only those designs whose attribute ranges lie completely in all possible 

gradient cuts (recall Figure 6.2).  

In the next section, we present our approach for finding a new trial design. 

 

6.3.2. Finding a New Trial Design 

For finding a new trial design in our method for selection with preference and 

attribute variability, we again use the same approach we presented for finding a new trial 

design in deterministic selection (recall Section 3.3.3 of Chapter 3). In order to find a new 

trial design using the approach discussed in Section 3.3.3 of Chapter 3, we need the 

deterministic gradient of the value function at previous trial designs and the deterministic 

attributes for the design alternatives. Since there is preference and attribute variability, for 

simplicity, we take the gradient corresponding to the mid-point of the range of MRS 

preferences at the a previous trial design as the nominal (or deterministic) gradient for 
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that trial design and the nominal attribute levels of the design alternatives as the 

deterministic attributes. 

In the next section, we discuss our algorithm for selection with preference and 

attribute variability using the concepts discussed in Section 6.3.  

 

6.4. ALGORITHM FOR SELECTION WITH PREFERENCE AND ATTRIBUTE 

VARIABILITY 

Our algorithm for selection with preference and attribute variability has the 

following steps. 

Step 1: Obtain the ranges of attributes and the nominal attribute levels for the 

design alternatives. 

Step 2: Set the iteration number to one (i.e., q = 1) and pick a starting trial design, 

DT1, from the set of design alternatives. We choose DT1 either as an alternative (with the 

nominal attribute levels) that would have the maximum value if the value function were 

linear with equal importance to the attributes, or as a random pick. 

Step 3: Query the DM for the MRS preferences between attributes at the current 

trial design DTq. Due to variability, DM responds with a range of preferences. 

Step 4: Eliminate dominated designs based on the range of MRS preferences at 

DTq and the range of attributes for design alternatives (recall Section 6.3.1). 

Step 5: If all designs except one are eliminated, define DNTD to be the singleton set 

containing DTq, set total number of iterations to current iteration number (i.e., c = q), and 

go to Step 7. Otherwise, go to Step 6. 
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Step 6: Find a new trial design from the non-eliminated design alternatives (recall 

Section 6.3.2). If a new trial design cannot be found, collect all the non-eliminated trial 

designs in the set DNTD, set total number of iterations to current iteration number 

(i.e., c = q), and go to Step 7. Otherwise, increase the iteration number by one (i.e., 

q = q+1), set the new trial design as DTq and go to Step 3. 

Step 7: Stop. 

 

6.5. DEMONSTRATION EXAMPLES 

As a demonstration, we tested our method for selection with preference and 

attribute variability by applying our algorithm to two engineering examples. These 

examples are the same as the examples in Section 3.5 of Chapter 3. The first example 

involves the selection of a payload design for undersea autonomous vehicle and the 

second example involves the selection of a cordless electric drill. 

 

6.5.1. Selection of Payload Design for Undersea Autonomous Vehicle with 

Preference and Attribute Variability 

For the payload design selection example, we once again set the ten Pareto 

optimum design alternatives, shown in Table 3.1 (reproduced in Column 2 of Table 6.1), 

as the design alternatives from which we select, with the PSi’s being the attributes. The 

attribute levels in the second column of Table 6.1 are the nominal attribute levels of the 

payload design alternatives. Once again we use the simulated DM given by Eq. (5.6) for 

verifying the results obtained by our method. However for this example, in Eq. (5.6), in 
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addition to the parameter β, the attributes PS1 and PS2 also have variability quantified by a 

known range. 

In the next section, Section 6.5.1.1, we describe the application of our algorithm 

for selection with preference and attribute variability (recall Section 6.4) to the payload 

design selection example, and then discuss the results in Section 6.5.1.2. 

 

6.5.1.1. Application of Algorithm for Selection with Preference and Attribute Variability 

to Payload Design Selection 

We fix the range of β in Eq. (5.6) to be “11 to 18” (recall Section 5.5.1.1 of 

Chapter 5). Also, we fix the range of attribute levels PS1 and PS2 to be ±5% around the 

nominal attribute levels (Step 1). I.e., if the nominal attribute level of a design alternative, 

say D1, for the attribute, say PS1, is 0.016, then the variability in the attribute PS1 for D1 is 

quantified by the range [0.015, 0.017]. Also, for all the designs, we ensure that the lower 

bound on the range of an attribute does not become less than zero and that the upper 

bound on the range of an attribute does not become greater than one. The range of MRS 

preferences at a trial design for the given ranges of β, PS1 and PS2 can be found from 

Eq. (5.6) by solving a simple optimization problem (see Appendix-IV for details). 

Following our algorithm in Section 6.4., we set the iteration number to one (i.e., 

q = 1) and randomly pick D3 as the starting trial design, i.e., DT1 (Step 2). Since this is a 

two attribute problem, we ask the DM to provide the range of only one MRS preference, 

i.e., MRS preference between PS1 (attribute 1) and PS2 (attribute 2). Our simulated DM, 

Eq. (5.6), responds by saying that the range of MRS preferences is, S12T1: [1.95, 5.00] 

(Step 3). 
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Table 6.1: Z* values of payload design alternatives for selection with preference and 

attribute variability 

Design alternative 
number

Nominal attribute levels 
[PS1, PS2] of design 

alternatives

Z* values at DT1, 
objective function in 
Eq. (6.1), of designs

Z* values at DT2, 
objective function in 
Eq. (6.1), of designs

Z* values at DT3, 
objective function in 
Eq. (6.1), of designs

1 [0.016, 0.695] -0.0463
2 [0.016, 0.693] -0.0467
3 [0.134, 0.684] 0 0.1871 0.0343
4 [0.139, 0.675] 0.0318 0.1776 0
5 [0.274, 0.541] 0.12 0 0.115
6 [0.275, 0.114] 0.0464 -0.2316
7 [0.343, 0.093] 0.1024 -0.2179
8 [0.346, 0.091] 0.1043 -0.2182
9 [0.355, 0.090] 0.112 -0.2151

10 [0.357, 0.075] 0.1117 -0.2236
 

We then use Eq. (6.1) with the given MRS range and the ranges of attributes for 

eliminating some dominated designs (Step 4). Table 6.1 (Column 3) shows the Z* values 

(objective function in Eq. (6.1)) at DT1 for the payload design alternatives. We can see 

that Z* is negative for D1, D2 (hence dominated by DT1) and non-negative for the rest of 

the design alternatives except D3. Z* of D3 is zero because it is the trial design for this 

iteration. 

Since more than one design is not eliminated, we skip Step 5 and find a new trial 

design (Step 6). Using our approach for finding a new trial design, we find D5 as the new 

trial design. So we increase the iteration number by one (i.e., q = 2), set D5 as DT2 and go 

to Step 3. 

Our simulated DM, Eq. (5.6), gives the range of MRS preference at DT2 as, 

S12T2: [0.06, 0.62] (Step 3). We then use Eq. (6.1) for eliminating dominated designs 

based on the given range of MRS preference, S12T2, and the ranges of attributes (Step 4). 

Table 6.1 (Column 4) shows the Z* values at DT2 for the payload design alternatives. We 

can see that Z* is negative for D6, D7, D8, D9, and D10 (hence dominated by DT2) and 

 153



positive for D3 and D4. Z* of D5 is zero because it is the trial design for this iteration. Z* is 

empty for D1 and D2 because they are already eliminated by DT1. 

Since more than one design is not eliminated (recall D3, D4 and D5 are not 

eliminated), we skip Step 5 and find a new trial design. Perforce, D4 is the new trial 

design because it is the only non-eliminated design which has not been a trial design 

(Step 6). So we increase the iteration number by one (i.e., q = 3), set D4 as DT3 and go to 

Step 3. 

Our simulated DM, Eq. (5.6), gives the range of MRS preference at DT3 as, 

S12T3: [1.72, 4.58] (Step 3). We then use Eq. (6.1) for eliminating dominated designs 

based on the given range of MRS, S12T3, and the ranges of attributes (Step 4). Table 6.1 

(Column 5) shows the Z* values at DT3 for the payload design alternatives. We can see 

that Z* is positive for D3 and D5. D3, D4 and D5 are the only non-eliminated designs at 

this stage. Since all of them have already been trial designs we stop the iterative process 

and collect the three designs in the set DNTD (Step 6) and stop the selection process 

(Step 7). 

In the next section, we discuss the verification of the results for payload design 

selection with preference and attribute variability. 

 

6.5.1.2. Discussion 

Figure 6.3 shows the value range (i.e., minimum and the maximum value) for 

each design alternative found using Eq. (5.6), and the assigned ranges for β, PS1, and PS2. 

We can see from Figure 6.3 that designs D1, D2, D6, D7, D8, D9, and D10 are clearly 

dominated by D3, D4 and D5 and the value ranges of D3, D4, and D5 have some overlap. 
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Using Eq. (5.10) (recall Section 5.6 of Chapter 5), we found that only D3, D4 and D5 are 

potentially optimal for the given ranges of β, PS1, and PS2. (Note that, if there is an 

overlap between value ranges of two designs, it does not necessarily mean that those 

designs are potentially optimal, recall Section 5.6 of Chapter 5.) 

Value ranges of 
D3, D4, D5 overlap

Value of designs

-1.00

-0.50

-0.25

0.00

Design alternative number

1 2 3 4 5 6 7 8 9 10

-0.75

Value ranges of 
D3, D4, D5 overlap

Value of designs

-1.00

-0.50

-0.25

0.00

Design alternative number

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

-0.75

 

Figure 6.3: Value ranges of payload design alternatives for the simulant value 

function of Eq. (5.6) with 11 ≤ β ≤ 18 and ±5% variability in PS1 and PS2 

We applied our method for selection with preference and attribute variability to 

another case of payload design selection problem with different ranges for the attributes 

PS1 and PS2. In this case, we fixed the range of attributes PS1 and PS2 to be ±15% around 

the nominal attribute levels. Also, for all the designs, we ensure that the lower bound on 

the range of an attribute does not become less than zero and that the upper bound on the 

range of an attribute does not become greater than one. Starting with an initial trial design 

of D3, our method found designs D1, D2, D3, D4 and D5 to be the elements of DNTD. 
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However, using Eq. (5.10), we found that only D3, D4 and D5 are the potentially optimal 

designs for this case also. 

These results support our earlier statement that, in our method for selection with 

preference and attribute variability some designs that are actually dominated might be 

included in the set of non-eliminated trial designs DNTD. 

 

6.5.2. Selection of Cordless Electric Drill with Preference and Attribute Variability 

In this section, we present the cordless electric drill selection example to 

demonstrate our algorithm for selection with preference and attribute variability to a 

problem where the attributes are not normalized. This example is similar to the example 

in Section 3.5.2 of Chapter 3. We use the eighteen design alternatives shown in Table 3.3 

(reproduced in Column 2 of Table 6.3), as the design alternatives for selection. The 

attribute levels in the second column of Table 6.3 are the nominal attribute levels of the 

cordless electric drill design alternatives. We consider three design attributes: a1, the 

number of operations achievable with one charge of a battery pack; a2, the cost of the 

drill; and a3, the weight of the drill. We present, in Section 6.5.2.1, the application of our 

algorithm for selection with preference and attribute variability to cordless electric drill 

selection by a casual user. 

 

6.5.2.1. Cordless Electric Drill Selection with Preference and Attribute Variability by a 

Casual User 

We fix the range of attributes to be ±1% around the nominal attribute levels given 

in the second column of Table 6.3 (Step 1). I.e., for a design alternative, say D1, if the 
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nominal attribute level for the attribute, say number of operations, is 350, then the 

variability in the attribute, number of operations, for D1 is quantified by the range 

[346.5, 353.5]. Following our algorithm in Section 6.4., we set the iteration number to 

one (i.e., q = 1) and randomly pick D7 as the starting trial design, i.e., DT1 (Step 2). The 

DM, a casual user, provides the range of MRS as shown in the third column of Table 6.2 

(Step 3). Note that the ranges of MRS shown in Table 6.2 are obtained with ±20% 

variability around the trade-offs shown in Table 5.2 of Section 5.5.2.1 in Chapter 5. 

Table 6.2: Ranges of MRS given by a casual user for cordless electric drill selection 

with preference and attribute variability 

MRS Attributes

Ranges of MRS at DT1 with 
nominal attributes: [450 

operations, 74 dollars, 6.9 
pounds]

Ranges of MRS at DT2 with 
nominal attributes: [350 
operations, 70 dollars, 6 

pounds]

Ranges of MRS at  DT3 with 
nominal attributes: [400 

operations, 72 dollars, 6.5 
pounds]

Operations

Cost

Cost

Weight

Weight

Operations

S12

S23

S31

[0.06 dollar operation-1, 0.1 
dollar operation-1]

[0.05 dollar operation-1, 0.07 
dollar operation-1]

[100.0 operation pound-1, 
150.0 operation pound-1]

[64.0 operation pound-1, 96.0 
operation pound-1]

[72.0 operation pound-1, 
108.0 operation pound-1]

[0.05 dollar operation-1, 0.07 
dollar operation-1]

[0.08 pound dollar-1, 0.12 
pound dollar-1]

[0.20 pound dollar-1, 0.30 
pound dollar-1]

[0.20 pound dollar-1, 0.30 
pound dollar-1]

 

Using Eq. (6.1) with the MRS ranges shown in third column of Table 6.2, we 

eliminate some dominated designs (Step 4). Table 6.3 (Column 3) shows the Z* values 

(objective function in Eq. (6.1)) at DT1 for the cordless electric drill design alternatives. 

We can see that Z* is non-negative for D1, D2, D3, D4 and D5 and negative (hence 

dominated by DT1) for the rest of the design alternatives except D7. Z* of D7 is zero 

because it is the trial design for this iteration. Since the attributes of cordless electric drill 
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are not normalized, we neglect the constraint of Eq. (6.1b) in eliminating dominated 

designs for this example. 

Since more than one design is not eliminated, we skip Step 5 and find a new trial 

design (Step 6). Using our approach for finding a new trial design, we find D1 as the new 

trial design. So we increase the iteration number by one (i.e., q = 2), set D1 as DT2 and go 

to Step 3. 

Table 6.3: Z* values of cordless electric drill design alternatives for selection with 

preference and attribute variability 

Design 
alternative 

number

Nominal attribute levels of design 
alternatives [Number of operations, 

Cost, Weight]

Ζ∗ values at DT1, objective 
function of Eq. (6.1), of 

designs

Ζ∗ values at DT2, objective 
function of Eq. (6.1), of 

designs

Ζ∗ values at DT3, objective 
function of Eq. (6.1), of 

designs

1 [350 operation, 70 dollars, 6.0 
pounds]

26494.080 0.000 17272.60

2 [370 operation, 80 dollars, 5.7 
pounds]

6913.779 -0.081

3 [380 operation, 80 dollars, 5.5 
pounds]

2844.758 -0.127

4 [400 operation, 72 dollars, 6.5 
pounds]

6703.409 4337.930 0.00

5 [420 operation, 82 dollars, 6.1 
pounds]

494.789 -0.085

6 [430 operation, 88 dollars, 5.8 
pounds]

-0.004

7 [450 operation, 74 dollars, 6.9 
pounds]

0.000 6589.772 7218.79

8 [470 operation, 85 dollars, 6.5 
pounds]

-0.026

9 [480 operation, 91 dollars, 6.1 
pounds]

-0.027

10 [500 operation, 79 dollars, 7.2 
pounds]

-0.012

11 [520 operation, 89 dollars, 6.9 
pounds]

-0.070

12 [530 operation, 94 dollars, 6.4 
pounds]

-0.047

13 [550 operation, 84 dollars, 7.5 
pounds]

-0.041

14 [570 operation, 93 dollars, 7.2 
pounds]

-0.089

15 [580 operation, 97 dollars, 6.7 
pounds]

-0.068

16 [600 operation, 90 dollars, 7.8 
pounds]

-0.080

17 [620 operation, 98 dollars, 7.5 
pounds]

-0.117

18
[630 operation, 100 dollars, 7.0 

pounds] -0.085

 

The DM, a casual user, gives the ranges of MRS between attributes as shown in 

fourth column of Table 6.2 (Step 3). Using Eq. (6.1), D2, D3, and D5 are then eliminated 

as dominated designs by DT2 (Step 4). Table 6.3 (Column 4) shows the Z* values at DT2. 
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Since more than one design is not eliminated (recall D1, D4 and D7 are not eliminated), 

we skip Step 5 and find a new trial design. Perforce, D4 is the new trial design because it 

is the only non-eliminated design which has not been a trial design (Step 6). So we 

increase the iteration number by one (i.e., q = 3), set D4 as DT3 and go to Step 3. 

Table 6.2 (Column 5) shows the range of MRS between attributes given by the 

casual user (Step 3). Using Eq. (6.1), the Z* values (Step 4) of both D1 and D7 are 

non-negative (see fifth column of Table 6.3). D1, D4 and D7 are the only non-eliminated 

designs at this stage. Since all of them have already been trial designs we stop the 

iterative process and collect the three designs in the set DNTD (Step 6) and stop the 

selection process (Step 7). 

We applied our method for selection with preference variability to another case of 

cordless electric drill selection problem with different ranges for the attributes. In this 

case, we fixed the range of attributes to be ±5% around the nominal attribute levels. 

However, we used the same ranges of MRS preferences given in Table 6.2 for this case 

also. Starting with an initial trial design of D7, our method found designs D1, D4, D7, D10 

and D14 to be the elements of DNTD. This shows that, as expected, increasing the 

variability in attributes increases the number of designs in the set DNTD. 

Next we provide some experimental results that verify our method for selection 

with preference and attribute variability. 

 

6.6. VERIFICATION: SOME EXPERIMENTAL RESULTS 

To verify the proposed method for selection with preference and attribute 

variability, we conducted simulations with four different problem sizes i.e., 
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(number of attributes) ×  (number of design alternatives), ranging from three attributes 

and fifty alternatives to six attributes and fifty alternatives. For each problem size, we 

used MATLAB® to generate the fifty random Pareto design points. For simplicity, the 

alternatives are uniformly distributed between 0 (worst) and 1 (best) in each attribute. We 

chose the four different problem sizes to demonstrate the applicability of our method to 

higher attribute problems. Appendix-III shows the nominal attribute levels of the design 

alternatives that we used for each problem size. 

For each problem size we conducted three simulations, each using a different 

simulant value function for producing the range of MRS preferences that our method 

needs. The simulant value functions we used are given by Eq. (5.7), Eq. (5.8), and 

Eq. (5.9) (recall Section 5.6 of Chapter 5). In addition, for each simulation, we fix the 

range of attributes of the random design alternatives to be ±5% around the nominal 

attribute levels given in Appendix-III. Also, for all the designs, we ensure that the lower 

bound on the range of an attribute does not become less than zero and that the upper 

bound on the range of an attribute does not become greater than one. The range of MRS 

preferences at a trial design corresponding to the range of parameters and the range of 

attributes can be found from Eq. (5.7), Eq. (5.8), and Eq. (5.9) by solving a simple 

optimization problem (see Appendix-IV for details). Note that these three simulant value 

functions are non-decreasing, differentiable and quasi-concave even with variability in 

the parameters and the attributes. 

To test our method for selection with preference and attribute variability, we 

found the designs that are potentially optimal according to the simulant value function. A 

design Dj would be potentially optimal according to a simulant value function if, Dj has 
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the highest value for some value of the parameter in the assigned parameter range and for 

some attribute levels of design alternatives in the assigned ranges of attributes. I.e., 

Eq. (5.10) is satisfied for some parameter (i.e., β in V1 of Eq. (5.7), γi in V2 of Eq. (5.8), 

and αi in V3 of Eq. (5.9)) value in the assigned parameter range and for some attribute 

levels of design alternatives in the assigned ranges of attributes, for all designs Dk 

(k = 1,…,n; k ≠ j; n is the number of other designs) other than Dj.  

If the results of our method are accurate then the set of non-eliminated designs, 

DNTD, should be a super set of the set of potentially optimal designs according to the 

simulant value function. Table 6.4 shows the non-eliminated trial designs DNTD in the 

third column and the potentially optimal designs according to the simulant value function 

in the fourth column. From Table 6.4, we can see that the set of non-eliminated designs 

DNTD, always includes the potentially optimal designs according to the simulant value 

function, thus verifying our method for selection with preference and attribute variability. 

From Table 6.4, we can see that the set DNTD contains a number of design 

alternatives that are not potentially optimal according to the simulant value function. This 

shows that our method for selection with preference and attribute variability is very 

conservative in eliminating dominated designs as mentioned before (recall Section 6.3.1).  
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Table 6.4: Results of verification study for selection with preference and attribute 

variability 

Problem size: "# of 
attributes × # of 

designs"
Value function

Non-eliminated trial designs, 
members of DNTD for ±0.05% 

attribute variability

Potentially optimal designs 
according to the simulant 

value functions for ±0.05% 
attribute variability

V1
D12, D15, D16, D18, D19, D22, D23, 
D31, D32, D34, D38, D39, D43, D45

 D31, D32, D34

V2

D9, D12, D15, D16, D18, D19, D22, D23, 
D27, D29, D31, D32, D34, D38, D43, 

D45, D49

D12, D15, D18, D22, D31, D32, D34

V3

D12, D15, D16, D17, D18, D19, D22, 
D23, D27, D28, D29, D31, D32, D34, 

D38, D39, D45, D47

D12, D15, D18, D22, D31, D32, D34

V1

D4, D6, D7, D18, D19, D21, D23, D24, 
D28, D29, D31, D35, D36, D37, D38, 

D42,D43, D44, D46

D18, D21, D24, D28, D35, D37

V2

D4, D5, D7, D14, D15, D18, D19, D21, 
D24, D28, D29, D31, D35, D36, D37, 

D38, D41, D42, D44, D46

D18, D21, D24, D35, D36, D37, D38, 
D41, D44

V3

D4, D7, D14, D15, D16, D18, D19, D21, 
D24, D28, D29, D31, D35, D36, D37, 

D38, D42, D44, D46

D18, D21, D24, D29, D35, D37

V1

D4, D7, D9, D10, D11, D12, D14, D15, 
D16, D20, D21, D22, D26, D27, D29, 

D31, D33, D35, D36, D37, D39, D41, 
D42, D43, D44, D45, D49

D12, D14, D16, D22, D26

V2

D4, D6, D7, D11, D12, D14, D15, D16, 
D19, D20, D21, D22, D26, D31, D33, 

D35, D36, D38, D39, D42, D43, D44, 
D45, D49

D12, D14, D16, D21, D22, D26

V3

D4, D7, D11, D12, D14, D15, D16, D19, 
D20, D21, D22, D26, D29, D31, D33, 

D35, D36, D38, D39, D41, D42, D43, 
D44, D45, D49

D12, D14, D16, D22, D26

V1

D15, D17, D19, D20, D21, D22, D26, 
D27, D29, D30, D31, D32, D33, D34, 
D36, D38, D39, D40, D41, D43, D44, 

D45, D46, D49

 D20, D39

V2
D19, D20, D21, D32, D39, D40, D41, 

D44, D46, D49
D20, D39, D44, D46

V3
D19, D20, D21, D32, D33, D36, D39, 

D40, D41, D44, D45, D46, D49
 D20, D39

3×50

4×50

5×50

6×50
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We conducted the simulations (with Eq. (5.7), Eq. (5.8), and Eq. (5.9) as simulant 

value functions) for each problem size one more time for another case. In this case, for 

each simulation, we fix the range of attributes of the random design alternatives to be 

±1% around the nominal attribute levels given in Appendix-III. We found that the size of 

DNTD (i.e., number of designs in the set) for this case is on average about half the size of 

DNTD (see Column 3 of Table 6.4) for the case when there is ±5% variability in attributes. 

This indicates that in our method for selection with preference and attribute variability, 

the number of designs eliminated as dominated designs decrease significantly with 

increases in the attribute variability. 

 

6.7. SUMMARY 

In this chapter, we presented a method for product design selection with 

preference and attribute variability for an implicit value function. Our method assumed 

that the DM’s implicit value function is differentiable, quasi-concave and non-decreasing 

with respect to the attributes. This assumption is more general and less restrictive than 

other popular assumptions as reported in the literature (e.g., additive value function) 

[Eum et al., 2001] [Lee et al., 2001]. 

Our method for selection with preference and attribute variability requires that the 

range of attributes of design alternatives be known in addition to the range of MRS 

preferences. We presented a mathematical formulation for eliminating dominated designs 

using the ranges of attributes and MRS preferences. When the MRS values are assumed 

consistent, this formulation can be solved without much computational burden. We 

presented an algorithm for selection with preference and attribute variability and 
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demonstrated the algorithm with two engineering examples: payload design selection and 

cordless electric drill selection. We also provided some experimental results that 

numerically verified that the set of non-eliminated trial designs found by our method 

always includes the set of potentially optimal designs. 

Our method for selection with preference and attribute variability is conservative 

and does not always eliminate all the dominated designs. But on the bright side, our 

approach does not eliminate a design that is actually potentially optimal. Also our method 

does not need presumed probability distributions governing the variability in MRS 

preferences and attributes of design alternatives since our approach for eliminating 

dominated designs is a worst case approach.  

Note that for eliminating dominated designs using Eq. (6.1), it is important to 

obtain the global optimum. A local optimum for Eq. (6.1) could be negative while the 

global optimum is positive leading to erroneous conclusions. However, in our simulations 

and examples, we used “fmincon” from the MATLAB® optimization toolbox, which 

might converge to a local optimum, as the optimizer. We used MATLAB® to maintain 

uniformity with the methods developed in the previous chapters. But our experimental 

results indicate (recall Table 6.4) that our method never eliminated as dominated design a 

design that is potentially optimal according to a simulant value function. This could be 

due to the conservative nature of our approach for eliminating dominated designs (recall 

Section 6.3.1). However to be sure that only the actual dominated designs are eliminated 

using Eq. (6.1) one should use a global optimizer (e.g., genetic algorithm) or use different 

starting points to converge to the global optimum using a local optimizer (e.g., “fmincon” 

from the MATLAB® optimization toolbox). A better approach (and an area for future 
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research) would be to modify the formulation in Eq. (6.1) so that it becomes a convex 

optimization problem. 

In the next chapter we provide the conclusions for this dissertation. 
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CHAPTER 7 

 

CONCLUSIONS 

 

7.1. INTRODUCTION 

This dissertation has four research components in the context of engineering 

product design selection with an implicit value function. In our first research component, 

Deterministic Selection (Chapter 3), we developed a new method that uses the DM’s 

marginal rate of substitution (MRS) between the attributes for finding the preferred 

design alternative(s). In the second research component, Sensitivity Analysis for 

Deterministic Selection (Chapter 4), we developed a concept for finding the robustness of 

a set of non-eliminated trial designs to variations in DM’s preference estimates. Our third 

research component, Selection with Preference Variability (Chapter 5), helped us produce 

a new method for identifying dominated designs and potentially optimal designs for the 

given ranges of MRS preferences. Finally, in our fourth research component, Selection 

with Preference and Attribute Variability (Chapter 6), we extended our method for 

selection with preference variability to account for variability in the attributes of design 

alternatives. 

We presented the objectives of our research components in Chapter 1 and 

reviewed the previous works in Chapter 2. In Chapters 3-6, we demonstrated the 

application of the proposed method for each research component to a couple of 

engineering examples. Also in Chapter 3-6, we provided numerical experimental results 

to verify our proposed method for each research component. 
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The purpose of this chapter is to conclude this dissertation. In Section 7.2 we give 

concluding remarks for each research component. Next, in Section 7.3 we highlight the 

contributions of this research. Finally, in Section 7.4 we provide specific ideas and 

extensions concerning future research directions. 

 

7.2. CONCLUDING REMARKS 

In Section 7.2.1 to Section 7.2.4, we provide the concluding remarks for each of 

the four research components. Next, in Section 7.2.5 we give a common advantage and 

the common disadvantages for all of our research components. Finally, in Section 7.2.6 

we give some remarks about the computational cost for the methods of each research 

component. 

 

7.2.1. Research Component 1: Deterministic Selection 

Our deterministic selection is iterative and requires the DM to give the marginal 

rate of substitution (MRS) between the attributes at a series of trial designs. The MRS 

preferences are used in finding the gradient of the value function at the trial designs. The 

gradient is then used for eliminating some lower value designs with respect to the trial 

designs. Our proposed deterministic selection method has the following advantages and 

disadvantages. 

 

7.2.1.1. Advantages 

Our deterministic selection method has the following advantages. 
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Captures the DM’s preferences in the form of MRS between attributes at a 

series of trial designs. Capturing the MRS preferences accounts for any 

non-monotonicity and coupling (i.e., interdependence between attributes) in 

the DM’s value function. Such a nonlinear preference structure is common for 

a designer acting as a DM in engineering design selection (recall Section 3.1 

of Chapter 3). Our formulation for finding the gradient coefficients allows for 

some inconsistency in the DM’s MRS preferences and alerts the DM if the 

inconsistency is more than a threshold that is allowed for (recall Section 3.3.1 

of Chapter 3). Also our formulation for finding the gradient coefficients does 

not require normalization of the attributes (see Lemma in Section 3.3.1 of 

Chapter 3). 

• 

• 

• 

Eliminates only those designs that have lower value than the trial designs thus 

ensuring that the set of non-eliminated trial designs, DNTD, (which is usually 

small) always includes the most preferred design irrespective of the starting 

trial design. So it will be much easier for the DM to identify (e.g., using our 

gradient adjacency elimination, recall Section 3.3.4 of Chapter 3, or using 

his/her judgment/expertise) the most preferred design from the usually small 

set DNTD than identifying the most preferred design from the original set of 

design alternatives.  

Uses gradient information at all the previous trial designs in finding a new 

trial design. Such an effective usage of information reduces the number of 

iterations required in finding the most preferred design alternative as the new 

trial design (recall Section 3.6.2 of Chapter 3). 
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7.2.1.2. Disadvantages 

Our deterministic selection method has the following disadvantages. 

Because of its iterative nature, our deterministic selection method might come 

across as tedious to a DM. Also our deterministic selection method presumes 

that the DM has the requisite level of expertise and consistent judgment to 

state the MRS preferences between attributes. Because of this presumption, 

our deterministic selection method, in its current state, cannot be applied to a 

common man’s selection problem (e.g., a consumer who wants to buy a laptop 

but does not know much about laptops). 

• 

• 

• 

The most preferred design found using our heuristic gradient adjacency 

elimination (when the set of non-eliminated trial designs DNTD is not a 

singleton) might be sub-optimal (recall Section 3.3.4 of Chapter 3). I.e., our 

gradient adjacency elimination might eliminate as lower value design, a 

design which is actually the most preferred. 

In our deterministic selection method, we cannot check if the DM is giving the 

MRS preferences consistent with a quasi-concave value function as we move 

from one trial design to the other. Note, however, that one need to obtain 

additional information, form the DM, about the actual values of the design 

alternatives in order to check whether or not the DM’s preferences are 

consistent with a quasi-concave value function. 
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In the next section, we give the concluding remarks of our second research 

component. 

 

7.2.2. Research Component 2: Sensitivity Analysis for Deterministic Selection 

Our concept for sensitivity analysis is applicable to the class of iterative selection 

methods that eliminate some design options at the trial design chosen for the current 

iteration. Such methods are generally used when the DM’s value function is implicit 

rather than known. In our sensitivity analysis concept, we calculate three successive 

metrics, culminating in the robustness index for the set of non-eliminated trial designs 

DNTD, and we identify the critical design(s). Our proposed concept for sensitivity analysis 

as applied to our deterministic selection method has the following advantages and 

disadvantages. 

 

7.2.2.1. Advantages 

Our method for sensitivity analysis for deterministic selection has the following 

advantages. 

Identifies critical design(s) and critical pair of attributes (recall Section 4.3.2 

of Chapter 4). If the DM thinks that the critical design(s) is (are) not 

important, he/she can decide to make a selection from the set of 

non-eliminated trial designs. Otherwise, the DM can find the potentially 

optimal designs by assigning a range for MRS preferences. In particular, the 

DM can analyze how the potentially optimal designs change by assigning 

different ranges to the MRS preference between the critical pair of attributes. 

• 
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Identifies, using the overall elimination robustness metric, the amount of 

preference variation (for the given preference estimates) that would cause 

each eliminated design to become a member of the set of non-eliminated trial 

designs. Using this information, the DM can directly find the set of 

non-eliminated designs (i.e., without using our method for selection with 

preference variability) for ranges of MRS preferences that are symmetric 

about the preference estimates given at the trial designs in deterministic 

selection. 

• 

• 

• 

Finds elimination robustness of a design with respect to a trial design without 

much computational burden when the MRS values are consistent 

(recall Eq. (4.4)). Thus the DM can make judgments about the robustness of 

the set of non-eliminated trial designs and decide what action to take in real 

time.  

 

7.2.2.2. Disadvantages 

Our method for sensitivity analysis for deterministic selection has the following 

disadvantages. 

The robustness index found by our sensitivity analysis method is the allowed 

preference variation for which the set of non-eliminated trial designs is not 

affected. However, the DM might actually want to know the robustness index 

of the most preferred design alternative. This is a drawback of our sensitivity 

analysis method and requires future research. 
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Our approach for finding the robustness index is a worst case approach and 

restricts the variation in the MRS between all pairs of attributes at all trial 

designs to be the same. Also, the bounds given by the robustness index are 

always symmetric about the preference estimates given at the trial designs. 

But in reality, the ranges of preferences that the DM has in mind might not be 

symmetric about the preference estimates. 

• 

 

In the next section, we give the concluding remarks of our third research 

component.   

 

7.2.3. Research Component 3: Selection with Preference Variability 

Our method for selection with preference variability is iterative and requires that 

the DM give some constraints (e.g., ranges) on the marginal rate of substitution (MRS) 

between the attributes at a series of trial designs. The constraints on the MRS preferences 

at the trial designs are then used in eliminating some dominated designs. Our proposed 

method for selection with preference variability has the following advantages and 

disadvantages. 

 

7.2.3.1. Advantages 

Our method for selection with preference variability has the following 

advantages. 
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Queries the DM for constraints (e.g., ranges) on the preferences which are 

easier to state than giving the probability distributions governing the 

preference variability. 

• 

• 

• 

• 

Finds the dominated designs without much computational burden. Our 

formulation for finding the dominated designs is a linear programming 

problem when, the MRS values are consistent (recall Eq. (4.4)) and the DM 

gives linear constraints on the MRS. Hence the DM can be presented with the 

set of non-eliminated trial designs in real time. 

Eliminates only those designs that are dominated with respect to the trial 

designs thus ensuring that the set of non-eliminated trial designs, DNTD, 

always includes the potentially optimal designs. Hence, the DM can be sure 

that the most preferred design for a subset of the given ranges of preferences 

is always in DNTD. So, the DM can make a selection directly from DNTD 

(instead of the original set of designs) once he/she improves the preference 

estimates by obtaining more information about the end users’ needs (recall 

Section 1.2.5 of Chapter 1). 

 

7.2.3.2. Disadvantages 

Our method for selection with preference variability has the following 

disadvantages. 

Our approach for eliminating dominated designs is conservative. Because of 

which, the set of non-eliminated trial designs might contain some designs that 

are actually dominated. 

 173



Our heuristic approach (recall Section 5.3.3 of Chapter 5) does not eliminate 

all dominated designs from the set of non-eliminated trial designs. Also, the 

formulation for our heuristic approach is non-convex and is computationally 

expensive. 

• 

• As the variability in DM’s preferences increase, the number of designs 

dominated by a trial design might decrease thus resulting in an increase in the 

number of iterations to find the set of non-eliminated trial designs. This might 

become tedious for the DM.  

 

In the next section, we give the concluding remarks of our fourth research 

component. 

 

7.2.4. Research Component 4: Selection with Preference and Attribute Variability 

Our method for selection with preference and attribute variability is iterative and 

requires that the range of attributes of design alternatives be known in addition to the 

range of MRS preferences between the attributes at a series of trial designs. The range of 

MRS preferences and the range of attributes are then used in eliminating some dominated 

designs. Our proposed method for selection with preference and attribute variability has 

the following advantages and disadvantages. 

 

7.2.4.1. Advantages 

Our method for selection with preference and attribute variability has the 

following advantages. 
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Queries the DM for ranges of preferences and ranges of attributes which are 

easier to state than giving the probability distributions governing the 

preference variability and attribute variability. 

• 

• 

• 

• 

Finds the dominated designs without much computational burden. Our 

formulation for finding the dominated designs has a nonlinear objective 

function with linear constrains when the MRS values are consistent 

(recall Eq. (4.4)). Hence the DM can be presented with the set of 

non-eliminated trial designs in real time. 

Eliminates only those designs that are dominated with respect to the trial 

designs thus ensuring that the set of non-eliminated trial designs, DNTD, 

always includes the potentially optimal designs. Hence, the DM can be sure 

that the most preferred design for a subset of the given ranges of preferences 

and the given ranges of attributes is always in DNTD. So, the DM can make a 

selection directly from DNTD (instead of the original set of designs) once 

he/she improves the preference estimates and the attribute estimates by 

obtaining more information (recall Section 1.2.5 of Chapter 1). 

 

7.2.4.2. Disadvantages 

Our method for selection with preference and attribute variability has the 

following disadvantages. 

Our approach for eliminating dominated designs is conservative. Because of 

which, the set of non-eliminated trial designs might contain some designs that 

are actually dominated. 
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As the variability in DM’s preferences or variability in attributes increase, the 

number of designs dominated by a trial design might decrease thus resulting in 

an increase in the number of iterations to find the set of non-eliminated trial 

designs. This might become tedious for the DM.  

• 

• 

• 

 

In the next section, we give a common advantage and the common disadvantages 

of all our research components. 

 

7.2.5. Common Advantage and Disadvantages of All Research Components 

Our research components have the following common advantage. 

Our methods in each research component account for an implicit value 

function that is non-decreasing, differentiable, and quasi-concave with respect 

to the attributes. An implicit quasi-concave value function is more general 

[Malakooti, 1988] and less restrictive than other popular assumptions for the 

DM’s value function as reported in the literature (e.g., additive value 

function). Our first research component, Deterministic Selection, is applicable 

even when the DM’s value function is non-decreasing. 

 

Our research components have the following common disadvantages. 

Because we assume that the DM’s implicit value function is differentiable, our 

methods in each research component cannot be applied when the attributes are 

discrete or when then the DM’s value function is not differentiable. However, 
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it is not uncommon in engineering design selection to have discrete attributes, 

e.g., color of an automobile. 

Even though assuming that the DM’s value function is non-decreasing, 

differentiable, and quasi-concave, is more general than other popular 

assumptions, there is no evidence to suggest that, in practice, the DM’s value 

function is always quasi-concave. If the DM’s value function is not 

quasi-concave, then the preferred design(s) found by our methods in each 

research component might be erroneous.  

• 

• 

 

In the next section, we give some remarks about the computational cost of the 

methods in each research component. 

 

7.2.6. Remarks on the Computational Cost of the Research Components 

In this section, we provide some remarks about how the computational cost of the 

methods in each research component depends on the number of design alternatives ‘n’. 

In deterministic selection, at each iteration, we need to solve the optimization 

problem in Eq. (3.6) or Eq. (3.10) for finding the gradient coefficients at the 

trial design for that iteration. Once the gradient coefficients are found, 

gradient cut elimination and gradient adjacency elimination can be applied 

with out much computational burden irrespective of the number of design 

alternatives. Computational time taken for solving Eq. (3.6) or Eq. (3.10) 

depends on the number of attributes and the consistency of the DM’s MRS 

preferences.  
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In sensitivity analysis for deterministic selection, at each iteration, we need to 

solve the optimization problem in Eq. (4.3) for each eliminated design to find 

the elimination robustness of that design. I.e., if ‘c’ is total number of 

iterations and ‘t’ is the average number of designs eliminated at each iteration 

(t < n), we need to solve Eq. (4.3) ‘c⋅t’ times. So the computational burden 

increases linearly with the number of design alternatives in sensitivity 

analysis. 

• 

• In selection with preference variability, at each iteration, we need to solve the 

optimization problem in Eq. (5.1) for checking whether or not a design 

alternative is dominated by the trial design for that iteration. I.e., for the first 

iteration, Eq. (5.1) has to be solved ‘n-1’. For the subsequent iterations, 

Eq. (5.1) has to be solved for less than or equal to ‘n-1’ times because some 

designs might be eliminated in the previous iterations. So, at most, Eq. (5.1) 

has to be solved ‘c⋅(n-1)’ times, where ‘c’ is total number of iterations. Hence 

the computational cost for finding the set of non-eliminated trial designs, 

DNTD, increases linearly with the number of design alternatives in selection 

with preference variability. However, our heuristic approach (recall Eq. (5.4) 

and Eq. (5.5)) is computationally expensive because it involves solving 

non-convex optimization problems. Also in our heuristic approach we apply 

the tests of Eq. (5.2) and Eq. (5.3) to all ordered pairs (recall Section 5.3.3) of 

non-eliminated trial designs. Because of this the computational burden in 

applying the heuristic approach increases quadratically with the number of 

designs in DNTD. 
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In selection with preference and attribute variability, at each iteration, we need 

to solve the optimization problem in Eq. (6.1) for checking whether or not a 

design alternative is dominated by the trial design for that iteration. I.e., for 

the first iteration, Eq. (6.1) has to be solved ‘n-1’ times. For the subsequent 

iterations, Eq. (6.1) has to be solved for less than or equal to ‘n-1’ times 

because some designs might be eliminated in the previous iterations. So, at 

most, Eq. (6.1) has to be solved ‘c⋅(n-1)’ times, where ‘c’ is total number of 

iterations. Hence the computational cost for finding the set of non-eliminated 

trial designs, DNTD, increases linearly with the number of design alternatives 

in selection with preference and attribute variability. 

• 

• 

• 

 

In the next section, we discuss the contributions of this dissertation. 

 

7.3. CONTRIBUTIONS 

The contributions of the research presented in this dissertation are summarized 

below. 

Developed a first of its kind formal decision making framework for product 

design selection in that the DM’s value function is not presumed explicitly 

and both preference and attribute variability are accounted for. This decision 

making framework is applicable when the DM’s value function is 

non-decreasing, differentiable and quasi-concave with respect to the attributes.   

Developed a new mathematical formulation that does not need normalization 

of attributes for finding the gradient of the DM’s implicit value function using 
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marginal rate of substitution (MRS) between attributes. We showed that 

normalization of attributes, hence the normalization of gradient coefficients, is 

not necessary for eliminating lower value designs using the gradient cut. 

Developed novel heuristic approaches in Chapter 3 and Chapter 5 that make 

use of already existing gradient information at the trial designs for eliminating 

more designs from the set of non-eliminated trial designs. 

• 

• 

• 

Introduced the concept of a robustness index for measuring the allowed 

variation in the preference estimates for which the set of non-eliminated trial 

designs is not affected when the DM’s value function is implicit. Such a 

concept for robustness index exists in the literature when the DM’s value 

function is presumed explicitly. Our concept for robustness index is the first 

such concept when the DM’s value function is implicit. 

Developed a novel approach, based on the gradient cut notion, for eliminating 

dominated designs when the DM’s value function is implicit and when there is 

preference variability or both preference and attribute variability. We 

presented mathematical formulation for identifying the dominated designs 

without finding the actual gradient range for the given range of preferences 

(and attributes when attribute variability is also present).  

 

In the next section, we give suggestions for future research. 
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7.4. FUTURE RESEARCH DIRECTIONS 

The research presented in this dissertation addresses a variety of situations for 

product design selection with an implicit value function. However, there are many 

important research issues left unresolved. In this section, we briefly discuss some of these 

issues and provide some general research directions to address them. Some of the 

discussions presented here are based on currently known shortcomings of our proposed 

methods (summarized in Section 7.2).  

 

7.4.1. Robustness Index of the Set of Non-eliminated Trial Designs to Variations in 

the Attribute Levels of Design Alternatives  

In Chapter 4, we proposed a concept for sensitivity analysis for deterministic 

selection. In that concept, we find the robustness index of the set of non-eliminated trial 

designs, DNTD, to variations in the preference estimates given by the DM. However, as 

mentioned in Chapter 6, in addition to preference variability, it is quite common in 

engineering design selection to have attribute variability. In this section, we suggest a 

method for finding the robustness index of DNTD to variation in the attribute levels of 

design alternatives. 

For finding the robustness index of DNTD to variations in the attribute levels of 

design alternatives, we propose to calculate three successive metrics culminating in the 

robustness index.  

Let D+ be an arbitrary design belonging to the original set of designs. Let DT be 

the current trial design in our deterministic selection method (recall Figure 3.1), and let 

∇VT be the gradient of the value function at DT (see Figure 7.1(a)). In Figure 7.1(a), for 
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the estimated attribute levels of D+: [A1+, A2+] and DT: [A1T, A2T], D+ lies in the gradient 

cut of DT.  However, if the actual attribute levels of D+ become t t
1+ m+A , ,A  … (assume for 

simplicity that the attributes of DT do not vary) then D+ no longer lies in the gradient cut 

at DT (see Figure 7.1(a)). Also, if the actual attribute levels of DT 

become then Dt t
1T mTA , ,A …  + (even with the estimated attribute levels) will no longer 

lie in the gradient cut at DT (see Figure 7.1(b)).  
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Figure 7.1: Illustration of attribute elimination robustness of D+ with respect to DT 

Our first metric ξ+T, which we call attribute elimination robustness of design D+ 

with respect to trial design DT, is defined as the smallest variation in the attribute levels 

of D+ and DT for which DT does not eliminate D+. By variation we mean difference 

between the estimated attribute level and the actual attribute level. Here, ξ+T is 

dimensionless and is expressed as a fraction of the estimated attribute levels. We propose 

to use the formulation in Eq. (7.1) for finding ξ+T. In Eq. (7.1), ai+ and aiT are the 

variables, WiT (i=1,...,m) are the gradient coefficients corresponding to ∇VT, and Ai+ and 

AiT are the estimated attribute values at D+ and DT respectively. 
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+TMinimize   ξ         (7.1a) 

m

iT i+ iT
i=1

subject to :  W (a a ) 0⋅ − ≥∑               (7.1b) 

( ) ( )+T iT iT +T iT1 ξ A a 1 ξ A ; 'm' such constraints− ⋅ ≤ ≤ + ⋅            (7.1c) 

( ) ( )+T i+ i+ +T i+1 ξ A a 1 ξ A ; 'm' such constraints− ⋅ ≤ ≤ + ⋅            (7.1d) 

 +T
R0 ξ
2

 ≤ ≤  
 

                      (7.1e) 

Eq. (7.1b) is used to check that D+ is not in the gradient cut of DT corresponding to the 

attribute levels, ai+ and aiT, of D+ and DT respectively. Eq. (7.1c) is to check that 

aiT (i=1,…,m) are within the bounds, given by ξ+T, of the estimated attribute levels at DT. 

Eq. (7.1d) imposes a similar constraint on ai+. Also, if the lower bound in Eq. (7.1c) and 

in Eq. (7.1d) becomes negative, we set it equal to zero. Eq. (7.1e) is a constraint imposed 

on ξ+T. In Eq. (7.1e), R is the radius of region OT around DT in which the value function 

is approximated to be linear. Recall (see Section 3.3.4 of Chapter 3) that the MRS 

preferences given at DT are valid only in the region OT. The upper bound on ξ+T in 

Eq. (7.1) ensures that the attribute variations at DT are within the region OT. If a feasible 

solution for Eq. (7.1) does not exist then we propose to set ξ+T as R
2



 


 . Note that for 

each DT (i.e., at each iteration), ξ+T is calculated for each design D+ in the input set.  

The second metric ξ+max we call the overall attribute elimination robustness of a 

design D+. ξ+max is the largest of the ξ+T’s for D+ over all DT’s. Thus, so long as the 

variation in every attribute level is less than ξ+max at all trial designs and D+, D+ will be 

eliminated by at least one trial design. 
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The final metric is attribute robustness index, ξ, which is the minimum of all the 

ξ+max’s. All designs not in DNTD remain eliminated so long as the variation in every 

attribute level is less than ξ at all design alternatives. 

Using the attribute robustness index, the DM can then decide whether to make a 

selection from DNTD (e.g., using gradient adjacency elimination, recall Section 3.3.4 of 

Chapter 3) or take some other step (e.g., finding potentially optimal designs with a range 

of attributes for design alternatives). 

In the next section, we discuss our next future research direction. 

 

7.4.2. Extensions to Our Method for Selection with Preference Variability 

In Section 5.7 of Chapter 5, we mentioned that our formulation for eliminating 

dominated designs in selection with preference variability can accommodate constraints 

other than the ranges on the MRS preferences. In this section, we suggest an extension to 

the formulation in Eq. (5.1) for accommodating other type of constraints on the MRS 

preferences. 

It is not necessary that the DM can always state a range of preferences to account 

for preference variability. Sometimes (due to lack of information) the DM might give 

some other type of constraints on the MRS preferences. For example, in payload design 

selection, the DM might say: “I would give up more in the probability of success of 

scenario 2, PS2, than in the probability of success of scenario 3, PS3, to gain an increase of 

0.1 in the probability of success of scenario 1, PS1”. Such a response means that the DM’s 

MRS preference between PS1 and PS2 (i.e., S12) is greater than his/her MRS preference 

between PS1 and PS3 (i.e., S13). Also, it is possible that the DM can provide a crisp (or 
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deterministic) MRS between some attributes and give some constraints for the MRS 

between other attributes. Next, we provide an example for modifying the formulation in 

Eq. (5.1) for different types of constraints on the MRS. 

 

Example: Consider the payload design selection problem with the probability of success, 

PS, in five scenarios as the attributes, i.e., PSi (i= 1 to 5) are the attributes. Due to lack of 

information on futuristic scenarios the DM can only give the MRS between PS5 and PS1, 

i.e., S51, with certainty as 0.2. For PS1 and PS2, the DM says that the MRS S12 is between 

0.12 and 0.18. For PS2 and PS3, the DM says that MRS S23 is between 0.08 and 0.10. The 

DM also says the MRS between PS3 and PS4, i.e., S34, is always greater than the MRS 

between PS4 and PS5, i.e., S45. With these preferences, modify the formulation in Eq. (5.1) 

for eliminating dominated designs. 

 

Solution: Let wiT (i=1,…,5) be the coefficients of the variable gradient at a trial design 

DT: [PS1T,…,PS5T]. Let D+: [PS1+,…,PS5+] be an arbitrary design that belongs to the 

original set of designs. Assuming that the MRS values, sijT, are consistent (recall 

Eq. (4.4)), if the maximum value of Z* in Eq. (7.2) is negative then we can conclude that 

design D+ is dominated by DT. In Eq. (7.2), wiT, (i=1,…,5) are the variables. 

5
*

iT Si+ SiT
i=1

Maximize   Z w (P P )= ⋅ −∑      (7.2a) 

m

iT iT
i=1

subject to :  w 1;    w 0= ≥∑      (7.2b) 

1T

2T

w                   0.12 0.18
w

≤ ≤      (7.2c) 
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2T

3T

w                   0.08 0.10
w

≤ ≤      (7.2d) 

3T 4T

4T 5T

w w                   
w w

≥       (7.2e) 

4T

5T

w                   0.2
w

=       (7.2f) 

Eq. (7.2) is a simple extension of Eq. (5.1). However, for the given constraints on MRS 

preferences, the formulation in Eq. (7.2) is no longer linear (see Eq. (7.2e)). Note that, 

similar extensions can be done to the formulation in Eq. (6.1) for eliminating dominated 

designs in selection with preference and attribute variability.  

We mentioned earlier (recall Section 5.7) that our method for selection with 

preference variability does not need probability distributions governing the MRS 

preferences. However, in addition to the range of MRS preferences, if the DM can 

provide the probability distributions (with in the given range) of the MRS preferences, 

our method can be extended as follows for finding the preferred design(s). Since the 

designs not in the set of non-eliminated trial designs DNTD are dominated irrespective of 

the probability distributions for the given ranges of MRS preferences, DNTD can be used 

as the set of designs from which the selection has to be made. Pick a design D+ from 

DNTD and then conduct Monte Carlo runs. At the beginning of the Monte Carlo runs, 

assign a number called likelihood of elimination to each design belonging to DNTD and set 

it to zero. In each Monte Carlo run, sample the MRS preferences at D+ from the given 

probability distributions and then find the gradient corresponding to the sampled MRS 

preferences. If a design belonging to DNTD lies in the gradient cut corresponding to the 

sampled MRS preferences at D+, then increase the likelihood of elimination of that design 
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by one. After completing the stipulated Monte Carlo runs, compare the likelihood of 

elimination of a design belonging to DNTD with the threshold likelihood (a percentage of 

the number of simulation runs) specified by the DM and eliminate that design if the 

likelihood is greater than the threshold. The design(s) that are not eliminated after 

conducting the Monte Carlo runs at all members of DNTD would then be the preferred 

design(s). 

In the next section, we discuss our next future research direction. 

 

7.4.3. Bayesian Statistics for Predicting the Actual Values of Design Alternatives 

We mentioned earlier (recall Section 7.3.1.2) that our heuristic gradient adjacency 

elimination approach, which is used for selecting from the set of non-eliminated trial 

designs, DNTD, might sometimes result in a sub-optimal most preferred design. An 

interesting research issue is to consider using Bayesian statistics for predicting the actual 

values of the designs in DNTD and then pick the design with the highest predicted value as 

the most preferred design. Using gradient cut elimination, at each iteration of our 

deterministic selection method (recall Section 3.3.2 of Chapter 3), we obtain some 

information about the relative ranking of the designs. If this information can be used to 

predict the actual value using Bayesian statistics then heuristics like gradient adjacency 

elimination can be avoided.  

In the next section, we discuss our next future research direction. 
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7.4.4. Heuristic for Selection with Preference and Attribute Variability 

The output of our method for selection with preference and attribute variability 

contains a number of designs that are actually dominated. The possibility of developing a 

heuristic to reduce the set of non-eliminated trial designs to the set of potentially optimal 

designs should be investigated. 

In the next section, we discuss our next future research direction. 

 

7.4.5. Selection with Multiple Decision Makers 

An important issue that has been not addressed in this dissertation is that product 

design selection often involves multiple decision makers (DMs) instead of a single DM. 

In selection with multiple DMs, researchers acknowledge that it is difficult to find a 

design that satisfies the preferences of all the DMs. So the task in selection with multiple 

DMs is to find a compromise solution. Our deterministic selection method can be readily 

extended for eliminating those designs that have lower value according to all the DMs 

(see Figure 7.2). The challenge, however, is to reduce the set of non-eliminated designs to 

the compromise solution and this challenge requires future investigation. 

a1

Designs in this region have lower 
value according to all the DMs

a2

DT

1
TV∇

Gradient obtained from the 
first DM’s MRS preferences

2
TV∇ Gradient obtained from the 

second DM’s MRS preferences

a1

Designs in this region have lower 
value according to all the DMs

a2

DT

1
TV∇

Gradient obtained from the 
first DM’s MRS preferences

2
TV∇ Gradient obtained from the 

second DM’s MRS preferences

 

Figure 7.2: Illustration of eliminating lower value designs according to all DMs 
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In the next section, we discuss our next future research direction. 

 

7.4.6. Multi-Attribute Multi-Disciplinary Selection 

In our deterministic selection method, we assume that the DM can state the MRS 

between any two attributes. However it might be difficult for the DM to state the 

preferences if the two attributes belong to separate disciplines. For example, in 

automobile design selection, it would be extremely difficult for the DM to compare 

between the gear ratio of the transmission and the passenger leg room inside the 

automobile. Stating the MRS preferences would be considerably simpler for the DM if 

the attributes with some similarities were grouped into disciplines. For instance, in 

automobile design selection, attributes like passenger leg room and dashboard display can 

be grouped into an interior of the automobile discipline. Grouping similar attributes into 

disciplines will result in a two-level selection (disciplines in the upper-level and attributes 

of a discipline in the lower-level) rather than a single-level selection. We call such a 

two-level selection problem: Multi-Attribute Multi-Disciplinary Selection. Some methods 

exist in the literature for two-level selection when the DM’s value function is explicitly 

known (e.g., analytical hierarchy process [Saaty, 1980]). However, to the best of our 

knowledge, no method exists in the literature for two-level selection with an implicit 

value function. 
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APPENDIX-I 

 

DESCRIPTION OF PAYLOAD DESIGN OPTIMIZATION PROBLEM AND 

DEMONSTRATION OF SOFTWARE FOR DETERMINISTIC SELECTION 

 

In this appendix, we first provide the description of the optimization problem for 

payload design of an undersea autonomous vehicle in Section A.I-1 and then discuss the 

software we developed for payload design optimization and deterministic selection in 

Section A.I-2. 

 

A.I-1. DESCRIPTION OF THE OPTIMIZATION PROBLEM FOR PAYLOAD 

DESIGN OF AN UNDERSEA AUTONOMOUS VEHICLE (UAV) 

The original formulation for the payload design optimization problem can be 

found in [Gunawan, 2004]. Typically, the payload of a UAV must be effective in several 

different uses, called “scenarios”. Effectiveness in a scenario is measured by the 

probability of success, PS, of payload delivery in that scenario. The design goal is to 

simultaneously maximize the individual PS’s for all scenarios. The payload design is 

constrained by upper limits on the weight of the payload and on the radiated noise 

generated by the payload. 

There are six design variables: the payload length (PL), the hull diameter (DH), 

the material of the hull (HM), the payload type (PT), the first inner material type (I1), and 

the second inner material type (I2). Four of the variables are discrete: HM, PT, I1, and I2. 

The choices for HM, PT and I1 are [6061AL, 7075AL], [BULK, MULTI_MISS], and 

 190



[TYPE_1A, TYPE_1B], respectively. For the discrete variable I2, the options available 

are [TYPE_2A, TYPE_2B, TYPE_1B], but I2 can be TYPE_1B only if the variable I1 is 

TYPE_1B also. The other two variables are continuous and they are bounded as: 

6.0 ≤ DH ≤ 12.75 and 1.0(DH) ≤ PL ≤ 5.0(DH). In addition to the six design variables, 

there is a fixed continuous design parameter, the maximum depth (= 3000 ft), at which 

the payload operates. There are no closed-form relationships to map the design variables 

to the constraints and to the PS’s. Rather, we are provided with a design analyzer (a 

computer program) that maps the design variables to the payload weight, the radiated 

noise, and the PS’s for the scenarios. 

For the example in Section 3.5.1 of Chapter 3, we address a two objective payload 

design optimization with two constraints. The two objectives are to maximize PS1 and PS2 

for two different scenarios (typical names of the scenarios are ASW Small, 

ASW Medium, ASW Large, ATT Small, ATT Medium, and ATT Large). The two 

constraints are an 85 lb upper bound on the payload weight and a 0.16 Watt/m2 upper 

bound on the radiated noise generated. The problem is then mathematically formulated as 

follows. 

( )S1Maximize P PL, DH, HM, PT, I1, I2             (A.I-1a) 

( )S2Maximize P PL, DH, HM, PT, I1, I2             (A.I-1b) 

( )subject to : Weight PL, DH, HM, PT, I1, I2 85 0− ≤            (A.I-1c) 

( )Noise PL, DH, HM, PT, I1, I2 0.16 0− ≤   (A.I-1d) 

The Pareto optima obtained by solving the formulation in Eq. (A.I-1) using a 

Multi Objective Genetic Algorithm (refer [Gunawan et al., 2003] for details) is then used 
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as the set of design alternatives, with PSi as the attributes, for selection in Section 3.5.1of 

Chapter 3. 

In the next section, we discuss the software we developed for payload design 

optimization and deterministic selection. 

 

A.I-2. SOFTWARE FOR PAYLOAD DESIGN OPTIMIZATION AND 

DETERMINISTIC SELECTION 

Figure A.I-1 shows the flowchart of the software we developed in MATLAB® 

for payload design optimization and selection. The software has interfaces for various 

stages of the optimization and selection process. In our software, the DM first chooses the 

scenarios for optimization. Next, the DM chooses the optimizer that he/she wants to use 

for the optimization. Then the DM sets the objectives, constraints, and other parameters 

for the optimizer. The optimizer then generates the Pareto optima which are used as the 

design alternatives for selection, with the objectives as attributes. The DM then starts the 

selection process by invoking our deterministic selection method (recall Chapter 3).  
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OPTIMIZATION

DM CHOOSES THE 
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Figure A.I-1: Flowchart of our software for payload design optimization and 

deterministic selection 
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At present, our software has interfaces only for the deterministic selection 

method. The interface development for our other research components, sensitivity 

analysis method (recall Chapter 4), selection with preference variability (recall 

Chapter 5), and selection with preference and attribute variability (recall Chapter 6) are 

left out for future work. Dr. Gunawan [Gunawan, 200] has developed the background 

codes (i.e., not the interfaces) for the optimization part of the payload design.  

In the next section, we demonstrate our software with a simple example. 

 

A.I-2.1. Demonstration of Software with an Example 

In this section, we demonstrate our software with an example. Specifically, we 

provide some snapshots of the interfaces for payload design optimization and selection 

using the software we developed.  

 

Figure A.I-2: Interface for choosing the scenarios 
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As mentioned earlier, in our software, the DM first chooses the scenarios for 

optimization. Figure A.I-2, shows the interface with list of scenarios available for the 

DM. The button, “View Scenario Figure” corresponding to each scenario name, when 

clicked on shows the DM the figure of that scenario. In our example, the DM chooses 

scenarios ASW Small and ATT Small as the scenarios to optimize for and presses the 

button “Enter”. 

 

Figure A.I-3: Interface for optimizer selection 

Our software then generates the interface with the chosen scenarios on the left 

hand side and the list of available optimizers on the right hand side (see Figure A.I-3). In 

our example, the DM chooses ASW Small and ATT Small as the scenarios. The left hand 

side of Figure A.I-3 shows the scenario names and the corresponding figures. The DM 

has different choices of optimizers to choose from. The choices are: a baseline 

Multi-Objective Genetic Algorithm (MOGA) with no uncertainty handling capability; a 
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Robust Multi-Objective Genetic Algorithm (RMOGA) with capability to handle 

uncertainty; a Multi-Objective Multi-Disciplinary Genetic Algorithm (M-MGA) for 

optimization with multiple disciplines; and selection from existing set of design 

alternatives with no optimization (NO-OPT). Currently, only the option of baseline 

MOGA is in working condition. So perforce, for our example, the DM chooses MOGA 

as the optimizer. 

 

Figure A.I-4: Interface for choosing the parameters of optimization 

Next our software generates the interface for obtaining the inputs to the optimizer, 

MOGA (see Figure A.I-4). Using this interface, the DM can select the objectives, the 

constraints, and the design variables for optimization. In this interface, the left hand side 

provides the DM with the options for the objectives and constraints. In payload design 

selection, the probability of success (PS) in a scenario is usually an objective. However, 

the DM has an option to set the PS in a scenario as a constraint also. The DM can also 
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choose whether, the weight of the payload and the noise generated by the payload, are 

objectives or constraints or both. For our example, the DM chooses the PS of ASW Small 

and the PS of ATT Small as the objectives by checking the boxes (with a  mark, see 

Figure A.I-4). The DM then chooses the weight of the payload as a constraint. Our 

software then generates an interface (see Figure A.I-4) for the DM to enter the maximum 

limit on the weight of the payload. The DM enters 65 lbs in our example. In our example, 

the DM also chooses the noise generated by the payload as a constraint and enters the 

maximum allowable noise as 0.16 Watt/m2. 

The right hand side of Figure A.I-4 provides the DM with the options for the 

variables of optimization. As mentioned in Section A.I-1, in payload design selection, the 

hull diameter (DH), the payload length (PL), the material of the hull (HM), the payload 

type (PT), the first inner material type (I1), and the second inner material type (I2) are 

typically the variables. So our software checks the boxes (with a  mark) corresponding 

to DH, PL, HM, PT, I1, and I2 by default, thus considering them as variables. The DM 

can uncheck any of the boxes if he/she does not want to consider the corresponding 

property as a variable. Also, as mentioned in Section A.I-1, the property maximum depth 

at which the payload operates is a parameter and usually set to 3000 ft. However, the DM 

can choose the maximum depth as a variable by checking the box corresponding to it. In 

our example, the DM opts to leave maximum depth as a parameter thus choosing DH, 

PL, HM, PT, I1, and I2 as variables. 

The DM then presses the button “Enter”. Our software invokes the optimizer 

MOGA for generating the Pareto optimum designs for the inputs given by the DM. Since 

MOGA takes a few minutes for generating the Pareto optima, our software generates a 
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message box saying that: “MOGA is running the Optimization… Please Wait” (see 

Figure A.I-4). 

After MOGA finishes generating the Pareto optimum designs, our software 

displays the design alternatives in the attribute space (recall that probability of success in 

the scenarios, PSi, are the attributes in payload design selection). If the attributes are more 

than two, our software uses bar charts to display the designs. However, in our example, 

the DM chooses only two scenarios. Hence the number of attributes is two and our 

software shows the Pareto optimum design alternatives in the two attribute space as 

shown in Figure A.I-5. In our example, MOGA generate 31 designs as the Pareto 

optimum designs. 

 

Figure A.I-5: Interface to display Pareto optimum designs in the attribute space 

Our software then asks the DM to start the process of selecting from the Pareto 

optimum design alternatives by pressing the button “Start” (see Figure A.I-5). Once the 
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DM presses the “Start” button, our software invokes our deterministic selection method 

(recall Chapter 3). 

Recall that Step 1 of our algorithm for deterministic selection is to choose a trial 

design for the first iteration from the set of design alternatives (recall Section 3.4 of 

Chapter 3). Our software, displays the current trial design on the left hand side of the next 

interface (see Figure A.I-6). The trial design is displayed in the attribute space using a bar 

chart. However, the DM can see the values for the variables of the trial design by 

pressing the button “ViewDes” just below the bar chart (see Figure A.I-6). Note the 

scenarios are numbered in the order displayed in the list provided in Figure A.I-2. For our 

example, ASW Small is Scenario 1, and ATT Small is Scenario 2. 

 

Figure A.I-6: Interface for obtaining MRS preferences at the first trial design 

The right hand side of the interface in Figure A.I-6 asks the DM to enter the 

marginal rate of substitution (MRS) between the attributes (i.e., PS in a scenario). Recall 
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that in our deterministic selection method (Chapter 3), we ask the DM for ‘m’ MRS 

questions when there are ‘m>2’ number of attributes. However, when there are only two 

attributes, as in our example, we ask for only one MRS. Using the interface in 

Figure A.I-6, the DM can provide the trade-offs in both the attributes while stating the 

MRS. When the DM presses the button “View Sce”, our software generates an interface 

with the pictures of the attributes (i.e., the scenarios for payload design) the DM is 

comparing. The DM can see the definition of MRS by pressing the button “MRS 

definition” (above the button “View Sce” in Figure A.I-6). For our example, the DM 

says: “I would give up 0.03 in the PS of ATT Small to gain 0.01 in the PS of ASW Small” 

(see Figure A.I-6). I.e., the MRS between the attributes at the first trial design DT1 is, 

S12T1 = 3 (Step 3 of our algorithm, recall Section 3.4 of Chapter 3).  

 

Figure A.I-7: Interface for obtaining the MRS preferences at the current trial 

design 
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Our algorithm for deterministic selection then finds the gradient at the first trial 

design (i.e., DT1) and eliminates lower value designs using gradient cut (recall Section 3.4 

of Chapter 3). If all the designs except one are eliminated then the non-eliminated trial 

design would be the most preferred design. Otherwise, our algorithm for deterministic 

selection finds a new trial design for the next iteration. In our example, gradient at DT1 is 

∇VT1: [0.75, 0.25] and eleven design alternatives are eliminated using the gradient cut. 

Our software shows these data and also the new trial design DT2 on the left hand side of 

the next interface (see Figure A.I-7). 

In Figure A.I-7, the bar chart on the top is the new trial design in the attribute 

space and the chart on the bottom is the illustration of the gradient cut at the previous trial 

design (i.e., DT1). Note that gradient cut at a trial design is displayed only when the 

number of attributes is two. If the number of attributes is more than two it is difficult to 

visualize the gradient cut. The right hand side of Figure A.I-7 queries the DM for the 

MRS at the current trial design (i.e., DT2). For our example, the DM says that at DT2: “I 

would give up 0.02 in the PS of ATT Small to gain 0.01 in the PS of ASW Small” (see 

Figure A.I-7). 

Our algorithm for deterministic selection then finds the gradient at the current trial 

design (i.e., DT2) and eliminates lower value designs using gradient cut. In our example, 

gradient at DT2 is ∇VT2: [0.67, 0.33] and eighteen design alternatives are eliminated using 

the gradient cut. Only two design alternatives are non-eliminated at this stage and both of 

them have been trial designs already. Our gradient adjacency elimination approach (recall 

Section 3.3.4 of Chapter 3) finds the most preferred design as the design shown on the 

top of the left hand side of Figure A.I-8. 

 200



Our software generates the interface shown in Figure A.I-8 for displaying the 

most preferred design alternative using our deterministic selection. The top half of the left 

hand side shows the most preferred design in the attribute space using a bar chart. The 

bottom half of the left hand side shows the gradient cut (when the number of attributes is 

two) at the previous trial design. The right hand side of Figure A.I-8 shows the values of 

the variables for the most preferred design alternative.  

 

Figure A.I-8: Interface for displaying the most preferred design alternative 

The button “Sensitivity Analysis” when pressed should invoke our method for 

sensitivity analysis for deterministic selection. However, as we mentioned earlier, the 

interfaces for our research components other than deterministic selection are not yet 

available. 

 201



APPENDIX-II 

 

PROOF OF LEMMA IN SECTION 4.3.1.1 OF CHAPTER 4 

 

Lemma: Let ∇VT:[  be the gradient of the value function corresponding to 

the MRS estimate, S

1T mTW ,..., W ]

t+V :

ijT, at DT. Let D+ be a design that lies in the gradient cut CG at DT 

corresponding to ∇VT. Let ∇ be the threshold gradient at which Dt+ t+
T 1T m[W ,..., W ]T + no 

longer lies in the gradient cut. Let sijT be an MRS satisfying either 
t+

iT iT
ijT t+

jT jT

W Ws
W W

< ≤  or 

t+
iT

ijTt+
jT

W s
W W

< < iT

jT

W . The design D+, does not necessarily lie in the gradient cut for the 

gradient ∇vT: [w1T,…,wmT] corresponding to sijT at DT. 

(We prove the lemma for ‘m=3’ attributes. The lemma can be proved in a similar 

way if the number of attributes is greater than three.) 

Proof: Without loss of generality, assume that the MRS values sijT are consistent 

(i.e., sijT · sjkT = sikT), and let: s12T be the MRS between attributes a1 and a2; s23T be the 

MRS between attributes a2 and a3; and s31T be the MRS between attributes a3 and a1. Let 

∇vT: [w1T, w2T, w3T] be the gradient corresponding to sijT. Assuming that wiT (i=1, 2, and 

3) are normalized according to Eq. (4.3c), we can find wiT from sijT using 

12T 23T
1T

23T 12T 23T

s sw
1+ s s s

⋅
=

+ ⋅
     (A.II-1a) 

23T
2T

23T 12T 23T

sw
1+ s s s

=
+ ⋅

     (A.II-1b) 
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3T
23T 12T 23T

1w
1+ s s s

=
+ ⋅

     (A.II-1c) 

Since D+ lies in the gradient cut corresponding to ∇VT, Eq. (A.II-2) is satisfied (recall 

Eq. (3.11)). 

m

iT i+ iT
i=1

W (a - a ) 0⋅ <∑       (A.II-2) 

Since, WiT are assumed to be non-negative, Eq. (A.II-2) is satisfied if and only if at least 

one of (ai+ - aiT) is negative. Without loss of generality, assume that (a1+ - a1T) is negative. 

Now, s12T, s23T, and s31T satisfy either Eq. (A.II-3a) or Eq.  (A.II-3b) (from hypothesis of 

lemma). 

t+
iT iT

ijT t+
jT jT

W s
W W

< <
W       (A.II-3a) 

t+
iT iT

ijTt+
jT jT

W s
W W

< <
W       (A.II-3b) 

It is easy to see that both Eq. (A.II-3a) and Eq.  (A.II-3b) are satisfied by at least one sijT. 

The third sijT can satisfy either of Eq. (A.II-3a) or Eq.  (A.II-3b) depending on ∇VT and 

. Let us consider the case when st
TV∇ 12T and s23T satisfy Eq. (A.II-3a), i.e., 

t+
1T 1T

12T t+
2T 2T

W Ws
W W

< <          (A.II-4a) 

t+
2T 2T

23T t+
3T 3T

W Ws
W W

< <          (A.II-4b) 

Using Eq. (A.II-1) and Eq. (A.II-4) and some simple algebra we obtain the following 

inequalities (see Eq. (A.II-5)) for ∇vT: [w1T,w2T,w3T]. 

t+ t+
1T 3T 1T 3T

1T t+
3T 3T

W W W Ww
W W

⋅
< <

⋅               (A.II-5a) 
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t+ t+
2T 3T 2T 3T

2T t+
3T 3T

W W W Ww
W W

⋅
< <

⋅               (A.II-5b) 

t+
3T 3T 3TW w W< <            (A.II-5c) 

From Eq. (A.II-5c) and Eq. (A.II-5a), we can see that, for w1T, Eq. (A.II-6) holds. 

t+ t+
t+1T 3T 1T 3T

1T 1T 1T t+
3T 3T

W W W WW w W
W W

⋅ ⋅
< < < <                     (A.II-6) 

Now, if D+ lies in the gradient corresponding to ∇vT then Eq. (A.II-7) should be satisfied. 

m

iT i+ iT
i=1

w (a - a ) <⋅∑ 0     (A.II-7) 

Since (a1+ - a1T) is negative and w1T can be less thanW1T (thus resulting in w2T or w3T to 

be more than W2T or W3T respectively), there is no guarantee that Eq. (A.II-7) is always 

satisfied. So it is possible that D+ might not lie in the gradient cut corresponding to a 

gradient that satisfy the bounds on MRS given by Eq. (A.II-3). This proves the lemma for 

three attributes. □ 
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APPENDIX-III 

 

RANDOMLY GENERATED DESIGN ALTERNATIVES FOR VERIFICATION 

STUDY IN CHAPTERS 4, 5 AND 6 

 

Table A.III-1 to Table A.III-4 shows the design alternatives for various problem 

sizes that are randomly generated using MATLAB® for the verification study of 

Chapters 4, 5 and 6. 

 

Table A.III-1: Design alternatives for problem size ‘three attributes’ × ‘fifty designs’ 

Design 
alternative 

number
Attribute: a1 Attribute: a2 Attribute: a3

Design 
alternative 

number
Attribute: a1 Attribute: a2 Attribute: a3

1 0.393 0.640 0.725 26 0.433 0.902 0.553
2 0.635 0.150 0.474 27 0.595 0.570 0.622
3 0.094 0.996 0.398 28 0.013 0.973 0.469
4 0.502 0.914 0.400 29 0.425 0.136 0.958
5 0.213 0.305 0.902 30 0.866 0.074 0.531
6 0.639 0.695 0.111 31 0.499 0.076 0.929
7 0.666 0.370 0.085 32 0.963 0.023 0.664
8 0.279 0.967 0.566 33 0.882 0.042 0.273
9 0.367 0.927 0.660 34 0.882 0.144 0.486

10 0.301 0.351 0.893 35 0.088 0.425 0.996
11 0.425 0.408 0.686 36 0.563 0.821 0.078
12 0.989 0.013 0.169 37 0.087 0.854 0.743
13 0.564 0.571 0.644 38 0.443 0.320 0.868
14 0.719 0.369 0.436 39 0.670 0.092 0.918
15 0.585 0.793 0.609 40 0.395 0.354 0.867
16 0.413 0.581 0.783 41 0.835 0.148 0.121
17 0.509 0.120 0.917 42 0.331 0.980 0.157
18 0.725 0.150 0.007 43 0.267 0.984 0.328
19 0.242 0.234 0.902 44 0.539 0.798 0.459
20 0.321 0.719 0.886 45 0.853 0.084 0.690
21 0.586 0.725 0.078 46 0.489 0.181 0.717
22 0.785 0.034 0.864 47 0.682 0.913 0.069
23 0.153 0.440 0.913 48 0.395 0.756 0.687
24 0.468 0.091 0.936 49 0.691 0.442 0.053
25 0.319 0.969 0.402 50 0.337 0.311 0.895

Continued at right
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Table A.III-2: Design alternatives for problem size ‘four attributes’ × ‘fifty designs’ 

Design 
alternative 

number
Attribute: a1 Attribute: a2 Attribute: a3 Attribute: a4

Design 
alternative 

number
Attribute: a1 Attribute: a2 Attribute: a3 Attribute: a4

1 0.393 0.640 0.725 0.695 26 0.197 0.366 0.797 0.586
2 0.906 0.943 0.635 0.150 27 0.819 0.310 0.864 0.546
3 0.996 0.398 0.093 0.060 28 0.982 0.194 0.119 0.345
4 0.647 0.502 0.914 0.400 29 0.468 0.091 0.936 0.319
5 0.806 0.364 0.706 0.956 30 0.057 0.827 0.213 0.653
6 0.684 0.957 0.213 0.305 31 0.147 0.816 0.693 0.721
7 0.902 0.639 0.695 0.111 32 0.077 0.901 0.124 0.770
8 0.666 0.370 0.085 0.524 33 0.342 0.959 0.534 0.027
9 0.307 0.550 0.985 0.416 34 0.310 0.564 0.842 0.546

10 0.279 0.967 0.566 0.065 35 0.106 0.937 0.525 0.617
11 0.475 0.494 0.367 0.927 36 0.493 0.388 0.968 0.275
12 0.786 0.140 0.923 0.999 37 0.428 0.663 0.584 0.769
13 0.987 0.169 0.805 0.271 38 0.322 0.607 0.440 0.866
14 0.402 0.987 0.418 0.628 39 0.499 0.076 0.929 0.115
15 0.303 0.895 0.338 0.638 40 0.947 0.130 0.025 0.474
16 0.895 0.576 0.349 0.472 41 0.531 0.375 0.279 0.656
17 0.989 0.013 0.169 0.126 42 0.775 0.372 0.963 0.023
18 0.569 0.564 0.571 0.644 43 0.949 0.866 0.490 0.135
19 0.416 0.719 0.369 0.436 44 0.845 0.225 0.468 0.319
20 0.246 0.173 0.788 0.622 45 0.277 0.982 0.925 0.169
21 0.128 0.254 0.925 0.999 46 0.767 0.388 0.049 0.500
22 0.485 0.585 0.793 0.609 47 0.678 0.445 0.811 0.355
23 0.783 0.874 0.728 0.339 48 0.025 0.724 0.442 0.997
24 0.887 0.074 0.980 0.773 49 0.832 0.652 0.654 0.008
25 0.264 0.321 0.719 0.886 50 0.088 0.425 0.996 0.933

Continued at right
 

 

Table A.III-3a: Design alternatives for problem size ‘five attributes’ × ‘fifty designs’ 

Design 
alternative 

number
Attribute: a1 Attribute: a2 Attribute: a3 Attribute: a4 Attribute: a5

1 0.393 0.640 0.725 0.695 0.906
2 0.943 0.635 0.150 0.474 0.966
3 0.778 0.696 0.025 0.190 0.700
4 0.094 0.996 0.398 0.093 0.060
5 0.647 0.502 0.914 0.400 0.806
6 0.364 0.706 0.956 0.684 0.957
7 0.550 0.985 0.416 0.279 0.967
8 0.566 0.065 0.475 0.494 0.367
9 0.927 0.660 0.301 0.351 0.893

10 0.140 0.923 0.999 0.987 0.169
11 0.796 0.402 0.987 0.418 0.628
12 0.303 0.895 0.338 0.638 0.895
13 0.576 0.349 0.472 0.492 0.035
14 0.686 0.989 0.013 0.169 0.126
15 0.564 0.571 0.644 0.546 0.987
16 0.914 0.393 0.219 0.502 0.513
17 0.254 0.925 0.999 0.485 0.585
18 0.793 0.609 0.215 0.402 0.218
19 0.783 0.874 0.728 0.339 0.305
20 0.515 0.958 0.141 0.379 0.177

Continued in the next page
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Table A.III-3b: Design alternatives for problem size ‘five attributes’ × ‘fifty designs’ 

Design 
alternative 

number
Attribute: a1 Attribute: a2 Attribute: a3 Attribute: a4 Attribute: a5

21 0.452 0.774 0.495 0.996 0.625
22 0.673 0.509 0.120 0.917 0.536
23 0.667 0.788 0.004 0.071 0.741
24 0.902 0.395 0.887 0.074 0.980
25 0.773 0.264 0.321 0.719 0.886
26 0.078 0.833 0.533 0.819 0.310
27 0.864 0.546 0.785 0.034 0.864
28 0.452 0.767 0.733 0.477 0.624
29 0.936 0.319 0.969 0.402 0.433
30 0.902 0.553 0.330 0.111 0.219
31 0.921 0.230 0.817 0.709 0.088
32 0.173 0.838 0.994 0.470 0.897
33 0.978 0.479 0.476 0.066 0.223
34 0.147 0.816 0.693 0.721 0.077
35 0.870 0.534 0.312 0.371 0.342
36 0.959 0.534 0.027 0.290 0.347
37 0.562 0.958 0.981 0.106 0.937
38 0.525 0.617 0.493 0.388 0.968
39 0.136 0.958 0.149 0.291 0.540
40 0.964 0.238 0.668 0.793 0.326
41 0.609 0.186 0.363 0.597 0.536
42 0.472 0.135 0.300 0.803 0.531
43 0.375 0.279 0.656 0.775 0.372
44 0.963 0.023 0.664 0.882 0.042
45 0.273 0.949 0.866 0.490 0.135
46 0.319 0.277 0.982 0.925 0.169
47 0.889 0.119 0.262 0.719 0.998
48 0.662 0.487 0.152 0.674 0.243
49 0.355 0.667 0.510 0.843 0.841
50 0.956 0.289 0.423 0.577 0.025

Continued from the last page

 

 

Table A.III-4a: Design alternatives for problem size ‘six attributes’ × ‘fifty designs’ 

Design 
alternative 

number
Attribute: a1 Attribute: a2 Attribute: a3 Attribute: a4 Attribute: a5 Attribute: a6

1 0.393 0.640 0.725 0.695 0.906 0.943
2 0.635 0.150 0.474 0.966 0.778 0.696
3 0.025 0.190 0.700 0.094 0.996 0.398
4 0.093 0.060 0.647 0.502 0.914 0.400
5 0.806 0.364 0.706 0.956 0.684 0.957
6 0.213 0.305 0.902 0.639 0.695 0.111
7 0.666 0.370 0.085 0.524 0.624 0.030
8 0.087 0.395 0.307 0.550 0.985 0.416
9 0.279 0.967 0.566 0.065 0.475 0.494

10 0.367 0.927 0.660 0.301 0.351 0.893
11 0.881 0.707 0.982 0.458 0.786 0.140
12 0.923 0.999 0.987 0.169 0.805 0.271
13 0.113 0.344 0.114 0.796 0.402 0.987
14 0.418 0.628 0.303 0.895 0.338 0.638
15 0.895 0.576 0.349 0.472 0.492 0.035
16 0.989 0.013 0.169 0.126 0.099 0.736
17 0.546 0.987 0.914 0.393 0.219 0.502
18 0.246 0.173 0.788 0.622 0.128 0.254
19 0.413 0.581 0.783 0.874 0.728 0.339
20 0.509 0.120 0.917 0.536 0.667 0.788

Continued in the next page
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Table A.III-4b: Design alternatives for problem size ‘six attributes’ × ‘fifty designs’ 

Design 
alternative 

number
Attribute: a1 Attribute: a2 Attribute: a3 Attribute: a4 Attribute: a5 Attribute: a6

21 0.242 0.234 0.902 0.395 0.887 0.074
22 0.980 0.773 0.264 0.321 0.719 0.886
23 0.197 0.366 0.797 0.586 0.725 0.078
24 0.833 0.533 0.819 0.310 0.864 0.546
25 0.785 0.034 0.864 0.452 0.767 0.733
26 0.477 0.624 0.444 0.540 0.711 0.280
27 0.755 0.658 0.244 0.983 0.316 0.466
28 0.449 0.318 0.982 0.194 0.119 0.345
29 0.468 0.091 0.936 0.319 0.969 0.402
30 0.921 0.230 0.817 0.709 0.088 0.173
31 0.213 0.653 0.147 0.816 0.693 0.721
32 0.077 0.901 0.124 0.770 0.877 0.844
33 0.312 0.371 0.342 0.959 0.534 0.027
34 0.290 0.347 0.090 0.013 0.973 0.469
35 0.310 0.564 0.842 0.546 0.781 0.562
36 0.958 0.981 0.106 0.937 0.525 0.617
37 0.493 0.388 0.968 0.275 0.428 0.663
38 0.584 0.769 0.553 0.165 0.112 0.863
39 0.964 0.238 0.668 0.793 0.326 0.540
40 0.322 0.607 0.440 0.866 0.074 0.531
41 0.116 0.277 0.885 0.283 0.952 0.003
42 0.499 0.076 0.929 0.115 0.440 0.698
43 0.363 0.597 0.536 0.015 0.947 0.130
44 0.531 0.375 0.279 0.656 0.775 0.372
45 0.963 0.023 0.664 0.882 0.042 0.273
46 0.949 0.866 0.490 0.135 0.077 0.547
47 0.518 0.404 0.460 0.377 0.845 0.225
48 0.468 0.319 0.277 0.982 0.925 0.169
49 0.767 0.388 0.049 0.500 0.118 0.889
50 0.119 0.262 0.719 0.998 0.662 0.487

Continued from the last page
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APPENDIX-IV 

 

FORMULATIONS FOR FINDING THE RANGE OF MRS PREFERENCES FOR 

THE SIMULANT VALUE FUNCTIONS 

 

A.IV-1. SIMULANT VALUE FUNCTION V1 

The simulant value function V1 at a trial design DT is given by Eq. (A.IV-1) 

(recall Eq. (5.7)). 

V1(DT) = 

m
β

iT
i=1

- (1- a )

2 β 2.5

 
  
 ≤ ≤

∑        (A.IV-1) 

From Eq. (A.IV-1), the partial derivative of V1 with respect to attributes ai is 

( )β-11 T
iT

i

V (D ) β 1- a
a

∂
= ⋅

∂
.    (A.IV-2) 

From Eq. (3.2), the MRS between attributes ai and aj, i.e., SijT, for V1 is then 

( )
( )

β-1
iT

ijT β-1

jT

1 a
S

1 a

−
=

−
.     (A.IV-3) 

We use the formulation in Eq. (A.IV-4) for finding the range of MRS, SijT, between 

attributes ai and aj. We minimize SijT for the lower bound, S , and maximize SL
ijT ijT, , 

for the upper bound.  

U
ijTS

( )
( )

β-1
iT

ijT β-1

jT

1 a
Minimize/Maximize : S

1 a

−
=

−
    (A.IV-4a) 

subject to : 2 β 2.5≤ ≤           (A.IV-4b) 
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If there is attribute variability also, we add the constraints of Eq. (A.IV-4c) and 

Eq. (A.IV-4d) to the formulation for finding the range of MRS preference. 

L
iT iT iTA a A≤ ≤ U

U

    (A.IV-4c) 

L
jT jT jTA a A≤ ≤     (A.IV-4d) 

 

A.IV-2. SIMULANT VALUE FUNCTION V2 

The simulant value function V2 at a trial design DT is given by Eq. (A.IV-5) 

(recall Eq. (5.8)). 

V2(DT) = 

( ) ( )

iT

m
(1-a )

i
i=1

m

i
i=1

i

γ

γ 1

1 10.9 γ 1.1m m
m is the number of  attributes

e− ⋅

 =

 ≤ ≤



∑

∑     (A.IV-5) 

From Eq. (A.IV-5), the partial derivative of V2 with respect to attributes ai is 

iT(1-a )2 T
i

i

V (D ) γ e
a

∂
= ⋅

∂
.     (A.IV-6) 

From Eq. (3.2), the MRS between attributes ai and aj, i.e., SijT, for V2 is then 

iT

jT

(1-a )
i

ijT (1-a )
j

γ eS
γ e

⋅
=

⋅
.     (A.IV-7) 

We use the formulation in Eq. (A.IV-8) for finding the range of MRS, SijT, between 

attributes ai and aj. We minimize SijT for the lower bound, S , and maximize SL
ijT ijT, , 

for the upper bound.  

U
ijTS

iT

jT

(1-a )
i

ijT (1-a )
j

γ eMinimize/Maximize : S
γ e

⋅
=

⋅
    (A.IV-8a) 
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( ) ( )i
1 1subject to : 0.9 γ 1.1m m≤ ≤          (A.IV-8b) 

( ) ( )j
10.9 γ 1.1m ≤ ≤ 1

m

U

U

   (A.IV-8c) 

If there is attribute variability also, we add the constraints of Eq. (A.IV-8d) and 

Eq. (A.IV-8e) to the formulation for finding the range of MRS preference. 

L
iT iT iTA a A≤ ≤     (A.IV-8d) 

L
jT jT jTA a A≤ ≤     (A.IV-8e) 

 

A.IV-3. SIMULANT VALUE FUNCTION V3 

The simulant value function V3 at a trial design DT is given by Eq. (A.IV-9) 

(recall Eq. (5.9)). 

V3(DT) = 

( ) ( )

i

m
α
iT

i=1
m

i
i=1

i

a

α 2

1 11.8 α 2.2m m
m is the number of  attributes




 =

 ≤ ≤



∏

∑     (A.IV-9) 

From Eq. (A.IV-9), the partial derivative of V3 with respect to attributes ai is 

i

m
α3 T i
iT

i=1i iT

V (D ) α a
a a

 ∂
= ⋅ ∂  

∏ .    (A.IV-10) 

From Eq. (3.2), the MRS between attributes ai and aj, i.e., SijT, for V2 is then 

jTi
ijT

iT j

aαS
a α

  
= ⋅     

 .        (A.IV-11) 
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We use the formulation in Eq. (A.IV-12) for finding the range of MRS, SijT, between 

attributes ai and aj. We minimize SijT for the lower bound, S , and maximize SL
ijT ijT, , 

for the upper bound.  

U
ijTS

jTi
ijT

iT j

aαMinimize/Maximize : S
a α

  
= ⋅     

     (A.IV-12a) 

( ) ( )i
1 1subject to :1.8 α 2.2m m≤ ≤          (A.IV-12b) 

( ) ( )j
11.8 α 2.2m ≤ ≤ 1

m

U

U

   (A.IV-12c) 

If there is attribute variability also, we add the constraints of Eq. (A.IV-12d) and 

Eq. (A.IV-12e) to the formulation for finding the range of MRS preference. 

L
iT iT iTA a A≤ ≤     (A.IV-12d) 

L
jT jT jTA a A≤ ≤     (A.IV-12e) 

 

A.IV-4. SIMULANT VALUE FUNCTION V FOR PAYLOAD SELECTION 

The simulant value function V at a trial design DT for payload design selection is 

given by Eq. (A.IV-13) (recall Eq. (5.6)). 

V = -[(1-PS1T)β+(1-PS2T)2]     (A.IV-13) 

From Eq. (A.IV-13), the partial derivative of V with respect to attributes PS1 is 

( β-1T
S1T

S1

V(D ) β 1- P
P

∂
= ⋅

∂
) .    (A.IV-14) 

From Eq. (A.IV-13), the partial derivative of V with respect to attributes PS2 is 

(T
S2T

S2

V(D ) 2 1- P
P

∂
= ⋅

∂
) .    (A.IV-15) 
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From Eq. (3.2), the MRS between attributes PS1 and PS2, i.e., S12T, for V is then 

( )
( )

β-1
S1T

12T
S2T

β 1 P
S

2 1 P
⋅ −

=
⋅ −

.     (A.IV-16) 

We use the formulation in Eq. (A.IV-17) for finding the range of MRS, S12T, between PS1 

and PS2. We minimize S12T for the lower bound, S , and maximize SL
12T 12T, , for the 

upper bound. In Eq. (A.IV-17), β and are the lower bound and upper bound, 

respectively, on β. 

U
12TS

L Uβ

( )
( )

β-1
S1T

12T
S2T

β 1 P
Minimize/Maximize : S

2 1 P
⋅ −

=
⋅ −

    (A.IV-17a) 

Lsubject to : β β βU≤ ≤           (A.IV-17b) 

If there is attribute variability also, we add the constraints of Eq. (A.IV-17c) and 

Eq. (A.IV-17d) to the formulation for finding the range of MRS preference. 

L U
S1T S1T S1TP P P≤ ≤                (A.IV-17c) 

L U
S2T S2T S2TP P P≤ ≤                (A.IV-17d) 
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