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Often in engineering design selection there is no one design alternative that is
better in terms of all attributes, and the preferred design(s) is dependent on the
preferences of the Decision Maker (DM). In addition, there is always uncontrollable
variability, which is mainly of two types, that has to be accounted for. The first type,
preference variability, is caused due to the DM’s lack of information on end users’ needs.
The second type, attribute variability, is caused due to uncontrollable engineering design
parameters like manufacturing errors. If variability is not accounted for, the preferred
design(s) found might be erroneous. Existing methods presume an explicit form for the
DM’s “value function” to simplify this selection problem. But, such an assumption is

restrictive and valid only in some special cases.



The objective of this research is to develop a decision making framework for
product design selection that does not presume any explicit form for the DM’s value
function and that accounts for both preference and attribute variability.

Our decision making framework has four research components. In the first
component, Deterministic Selection, we develop a method for finding the preferred
design(s) when the DM gives crisp preference estimates, i.e., best guess of actual
preferences. In the second component, Sensitivity Analysis, we develop a method for
finding the allowed variation in the preference estimates for which the preferred design(s)
do not change. In the third component, Selection with Preference Variability, we develop
a method for finding the preferred design(s) when the DM gives a range of preferences
instead of crisp estimates. Finally, in our fourth component, Selection with Preference
and Attribute Variability, we develop a method in which the DM gives a range of values
for attributes of the design alternatives in addition to a range for preferences.

We demonstrate the methods developed in each component with two engineering
examples and provide numerical experimental results for verification. Our experiments
indicate that the preferred design(s) found in our first, third, and fourth components
always include the actual preferred design(s) and that our second component finds the

allowed variation in preference estimates efficiently.
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CHAPTER 1

INTRODUCTION

1.1. BACKGROUND, MOTIVATION, AND OVERALL OBJECTIVE

Selecting the “most preferred” design(s) from a set of alternatives that have
multiple governing criteria or attributes has been a significant research thrust in
engineering design selection and many other decision making processes [Haimes, 1983]
[Haimes, 1998] [Hazelrigg, 1998] [Neufville, 1990]. Consider an example wherein a
designer is selecting an automobile design. Typical attributes/criteria that the designer has
to consider in selecting an automobile design are 0-60 time', cost of the automobile,
safety of the passengers, and fuel economy to name a few. These criteria are often
conflicting (e.g., 0-60 time and fuel economy) and there is no one alternative that is better
in every attribute and there are always trade-offs involved. So a designer acting as the
Decision Maker (DM) has to be careful in assessing the preferences because the decisions
taken during a design selection process are usually irrevocable [Hazelrigg, 1996].

When making a selection, the DM has to satisfy the requirements of the end users.
In our automobile design selection example, an automobile user in a normal household
would like the automobile to have higher fuel economy, low cost, high passenger safety,
and an average 0-60 time. On the other hand, an automobile user with a racer mentality
would like the automobile to have less 0-60 time, high passenger safety, average fuel
economy, and average cost. So, the designer requires complete information about the end

users’ needs for making a selection that satisfies the end users. Often, such complete

' 0-60 time is the time taken by an automobile to accelerate from zero to sixty miles per hour.



information is not available to the DM (due to lack of resources) which induces
“variability” in the DM’s preferences [Insua and French, 1991]
[Kirkwood and Sarin, 1985]. By Variabilityz, we mean uncontrollable changes in the
parameters (e.g., preferences, attributes) of selection. In the automobile design selection
example, when asked to state the relative importance between the attributes: 0-60 time
and the fuel economy, the DM might not state the preferences with certainty because
he/she does not know what exactly the end users need. We call this preference variability.

In addition to the end user’s needs, the DM also has to consider the manufacturing
errors, use conditions of the product when making the selection [Hazelrigg, 1998]
[Li and Azarm, 2000]. In the automobile design selection example, an automobile that is
designed to have an attribute level of six seconds for the 0-60 time might in reality have
the 0-60 time between five and eight seconds due to manufacturing errors, modeling
errors and so on. Also, the fuel economy of the automobile might vary depending on the
use conditions. For example, a higher fuel economy is obtained when the automobile is
used on freeways than in congested traffic. Such lack of information on manufacturing
errors, use conditions, and so on, causes variability in the attributes, which we call
attribute variability.

Hence in a typical engineering design selection process, the DM, like the
automobile designer, has to make a selection from a number of design alternatives, with
multiple governing attributes/criteria, accounting for preference and attribute variability.
This typical design selection situation is depicted in Figure 1.1. If the variability is not

accounted for, the selected preferred design(s) might be erroneous [Law, 1996] [Li, 2001]

? Contrary to our definition, some researchers in the literature use the term variability for referring to
uncertainty that cannot be quantified and that cannot be reduced by obtaining more information.



[Neufville, 1990]. In such a situation (see Figure 1.1), the DM’s engineering judgment
alone is not enough to make a selection and a formal, mathematically sound technique is

needed to assist the DM in product design selection.

PRODUCT DESIGN SELECTION
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Figure 1.1: Typical design selection problem
Multi-Attribute Decision Making (MADM) is one such popular technique that is
used for engineering design selection [Li, 2001] [Neufville, 1990] [Yu, 1985]. MADM
methods for product design selection generally assume that the DM has an intuitive value
function in mind that he/she maximizes to make the selection [Keeney and Raiffa, 1976]
[Olson, 1996]. (Conventionally, the term “value” is used when the attributes are
deterministic, and the term ‘“utility” when the attributes are stochastic

[Keeney and Raiffa, 1976]. However for simplicity and to avoid confusion, we only use



the term value function in this dissertation.) These methods estimate the value function
by obtaining from the DM, information about preferences which reflect the value
function [Olson, 1996].

Many of the existing MADM methods presume an explicit form for the DM’s
value function to simplify the selection problem. The most common presumption is that
the value function is additive with respect to the attributes [Barzilai, 1997a]
[Olson, 1996] [Pomerol and Romeo, 2000] [Saaty, 1980]. When the DM’s value function
is presumed, methods have been reported in the MADM literature that account for no
variability, preference variability alone, attribute variability alone, and both preference
and attribute variability (see Chapter 2 for a detailed literature review). However, the
assumption that the DM’s value function is additive, for instance, is restrictive and valid
only in some special cases [Keeney and Raiffa, 1976] [Thurston, 2001]. If that
assumption is not valid, then the preferred design(s) found by using existing MADM
methods might be erroneous.

Therefore, the overall objective of this research is to develop a decision making
framework for product design selection that does not presume any explicit form for the

DM’s value function and that accounts for both preference and attribute variability.

1.2. RESEARCH COMPONENTS

To achieve the overall objective, we developed a step-by-step approach for the
research in this dissertation. We developed four research components for different types
of variability. These components are: (1) deterministic selection, (2) sensitivity analysis

for deterministic selection, (3) selection with preference variability, and (4) selection with



preference and attribute variability. A decision making framework integrating the four
research components is then developed.

In the next four sections (Section 1.2.1 to Section 1.2.4), an overview and
objective of each of the research components is given followed by an overview of the

decision making framework in Section 1.2.5.

1.2.1. Research Component 1: Deterministic Selection

Deterministic selection refers to product design selection with no variability. In
deterministic selection, we assume that the DM gives crisp (i.e., no variability)
preferences and that the attributes of alternatives are an accurate representation of what is
expected in reality (i.e., no variability). Many of the existing deterministic selection
methods presume some explicit form for the DM’s value function (additive being the
most popular) [Barzilai, 1997a] [Saaty, 1980]. This is a restrictive assumption and is
applicable for some special cases only [Keeney and Raiffa, 1976].

For example, in the selection of an automobile, if the DM is asked for the
preferences at a design point that has the attribute levels of 20,000 dollars of cost and
nine seconds of 0-60 time, the DM might say: “I would allow an increase in the cost of
the automobile by 5000 dollars if the 0-60 time is decreased by two seconds”. If the DM
is asked the same question at a design point that has the attribute levels of 30,000 dollars
of cost and 7 seconds of 0-60 time, the DM might say: “I would allow an increase in the
cost of the automobile by 1000 dollars if the 0-60 time is decreased by two seconds”. It is

generally difficult to represent such a nonlinear preference structure by presuming an



explicitly known value function. Also, if the presumed form differs significantly from the
DM’s implicit value function, the most preferred design might be erroneous.

The objective of the first research component is to develop a deterministic
selection method that is applicable when the DM’s preferences are implicit and crisp (no

variability) and when there is no attribute variability.

1.2.2. Research Component 2: Sensitivity Analysis for Deterministic Selection
Sensitivity Analysis refers to finding the degree of “robustness” of the preferred
design(s) to preference variation [Insua and French, 1991]. By robustness, we mean the
amount of change (or variation) allowed between the actual preferences and the
preference estimates before the preferred design(s) is (are) affected. In general, when the
DM gives the preferences, in addition to design requirements (e.g., constraints on the
size, price), he/she attempts to satisfy the needs of the end users or customers (e.g., a
professional user of a cordless electric drill prefers to have more operations per battery
charge, whereas a casual user prefers lower cost) [Urban and Hauser, 1993]. Hence, if the
DM does not have complete information about the end users’ needs, he/she cannot state
the preferences precisely [Insua and French, 1991]. The DM might also have to project
into future markets. In cases with such uncertainty, the DM can give only crisp estimates
(or a range, see Section 1.2.3 for details) of the actual preferences. Since small variations
in preferences could lead to a significant change in the set of preferred design(s)
[Korhonen et al., 1992] [White, 1972], it would be useful for the DM to have an idea
about the robustness of the preferred design(s) with respect to variation in the preference

estimates [Hannan, 1981] [Korhonen et al., 1992].



The objective of the second research component is to develop a sensitivity
analysis method to assess the robustness of the preferred design(s) found by the
deterministic selection method to variability in DM'’s preferences (given as crisp
estimates in the deterministic selection). In this research component, we assume that there

is no attribute variability.

1.2.3. Research Component 3: Selection with Preference Variability

When there is variability in preferences (caused for example due to lack of
information on end users’ needs, projecting into future markets), the DM would give a
range of preferences and would like to know the “potentially optimal designs” (see
Chapter 2 for definition) for that range. For example, in the automobile design selection,
the DM would say: “I would allow an increase in the cost of the automobile by 4000
dollars to 5000 dollars if the 0-60 time is decreased by two seconds”. In the selection of a
cordless electric drill, the DM would say: “I would give up between 40 and 50 operations
per battery charge to reduce the weight by 0.1 pounds”. Each of these potentially optimal
designs would be the most preferred for a particular realization of the preferences within
the given range.

The objective of the third research component is to develop a selection method
that does not assume any explicit form for the DM’s value function and finds all the
preferred designs when there is variability in DM’s preferences. In this research

component, we assume that there is no attribute variability.



1.2.4. Research Component 4: Selection with Preference and Attribute Variability

In addition to preference variability, it is quite common in engineering design to
have variability in the attributes of the design alternatives. Uncontrollable parameters
during the design process (e.g., manufacturing errors, use conditions) are the source for
attribute variability. Since it is difficult to identify and quantify the uncontrollable
parameters exactly, more often it is only possible to state the ranges of attributes (e.g.,
40-45 operations per battery charge, 5-7 seconds of 0-60 time) instead of a number (e.g.,
40 operations per battery charge, 6 seconds of 0-60 time) [Eum et al., 2001]
[Jimenez et al, 2003].

The objective of the fourth research component is to develop a selection method
that does not assume any explicit form for the DM’s value function and finds all the
preferred designs when there is variability in both the DM’s preferences and attributes of

design alternatives.

1.2.5. Decision Making Framework: Integrating the Four Research Components

Figure 1.2 shows the schematic of our decision making framework for product
design selection with variability for an implicit value function. This decision making
framework is iterative and interactive.

In our decision making framework, the DM starts the first iteration by obtaining
estimates (due to the inevitable variability in the selection process) of the preferences and
the attributes of design alternatives. With these crisp estimates of preferences and
attributes, the DM uses our deterministic selection method for finding the set of

non-eliminated trial designs, Dntp (this set could be a singleton, see Chapter 2 for



definition). Next, the DM finds (and then evaluates) the robustness of Dntp to variations
in preference estimates using our sensitivity analysis method. If the DM is satisfied with
the robustness of Dxtp, he/she stops the iterations and takes the next action, which could
be manufacturing one of the non-eliminated trial designs.

DM gives attribute and
preference estimates

RESEARCH COMPONENT 1
SET OF NON-ELIMINATED RESEARCH COMPONENT 2
DETERMINISTIC
TRIAL DESIGNS, Dyp SENSITIVITY ANALYSIS
SELECTION

Y

DM would update preference
and attribute estimates

DM satisfied

POTENTIALLY OPTIMAL
ROBUSTNESS OF Dy, Stop
DESIGNS
h
DM not satisfied
DM gives range of DM gives range of
preferences and attributes preferences only
A, A
RESEARCH COMPONENT 4 RESEARCH COMPONENT 3
SELECTION WITH SELECTION WITH
PREFERENCE AND PREFERENCE
ATTRIBUTE VARIABILITY VARIABILITY

Figure 1.2: Decision making framework integrating four research components
Otherwise, 1.e., if the DM is not satisfied with the robustness of Dnrp, he/she can
give a range either for preferences alone or for preferences and attributes. The DM then
uses our method for selection with preference variability or our method for selection with
preference and attribute variability (depending on whether DM gives the range for
preferences alone or for both preferences and attributes) for finding the set of potentially
optimal designs from the set of design alterantives. Since, only one of the potentially

optimal designs can be the most preferred (see Definitions in Chapter 2 for details) for



the given range of preferences or given range of preferences and attributes, these

potentially optimal designs become the set of design alternatives for the next iteration.

For the next iteration, the DM would gather more information and improve the estimates

for preferences and attributes (from the ranges given in the current iteration) and repeat

the above discussed steps starting with deterministic selection.

1.3. ASSUMPTIONS

We make the following assumptions in developing the methods for our four

research components.

There is a single Decision Maker (DM) for making the selection and the DM
has enough expertise to state the marginal rate of substitution (see Chapter 2
for definition) between attributes at a design in the attribute space.

The DM’s value function is non-decreasing, differentiable and quasi-concave
(see Chapter 2 for definition) with respect to the attributes. The assumption
that the value function is non-decreasing with respect to attributes is not
required for the applicability of our deterministic selection method (see
Chapter 3 for details).

The design alternatives for selection are discrete and the attributes for
selection are specified a priori. Also we assume there is no attribute variability
for the methods developed in Chapter 3, Chapter 4 and Chapter 5. We handle
attribute variability in Chapter 6.

The DM can provide ranges for marginal rate of substitution (see Chapter 2

for Definition) and ranges for attributes of the design alternatives when there
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is variability. We also assume that the MRS values in the given ranges of
preferences are consistent to simplify our approaches in Chapter 4, Chapter 5
and Chapter 6.

When there is variability in preferences and attributes, we assume that the
ranges of marginal rate of substitution (see Chapter 2 for Definition)
preferences that the DM gives at a design include the ranges of preferences at
any attribute levels in the range of attributes for that design. Also, for
simplicity, the DM’s risk attitude is not taken into account in the attribute
range of a design.

The value function can be approximated to be linear in a small region around
a trial design (see Chapter 2 for definition) for the application of our heuristic

approaches in Chapter 3 and Chapter 5.

1.4. ORGANIZATION OF DISSERTATION

The organization of the rest of the dissertation is as follows. In Chapter 2, we give

the definitions of concepts and terminologies used throughout the dissertation, as well as

a comprehensive review of the related previous work in the literature. In Chapter 3, we

present our method for deterministic selection (Research Component 1). Next, in

Chapter 4, we present a concept for sensitivity analysis (Research Component 2) and

describe the implementation of the concept in our deterministic selection method. In

Chapter 5, we develop our method for selection with preference variability (Research

Component 3) and extend it to selection with preference and attribute variability

(Research Component 4) in Chapter 6. To demonstrate the application and to verify our
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methods for the four research components, several examples (engineering and numerical)
are given in Chapters 3 through 6. Finally, we conclude the dissertation with remarks,
drawbacks, contributions, and suggestions for future research directions in Chapter 7.

After reading this chapter and the next, we recommend that the reader continue
with Chapter 3 because it contains concepts that are the foundations for Chapters 4, 5 and
6. Chapter 4 and Chapter 5 may be read independently. However, Chapter 6 should be
read after Chapter 5.

Figure 1.3 depicts the various chapters, their relationships, and the dissertation’s

information flow.
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Figure 1.3: Organization of dissertation
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CHAPTER 2

DEFINITIONS AND PREVIOUS WORK

2.1. INTRODUCTION

In this chapter, we provide several definitions and terminologies that will be used
throughout this dissertation. We also give a comprehensive review of the previous work
in the literature related to deterministic selection, sensitivity analysis, selection with
preference variability, and selection with preference and attribute variability.

The organization of this chapter is as follows. In Section 2.2, we give related
definitions and terminologies. Next in Section 2.3, we provide a literature review for the
four research components. Finally we conclude the chapter with a summary in

Section 2.4.

2.2. DEFINITIONS AND TERMINOLOGIES

The set of ‘n’ discrete design alternatives from which the most preferred is to be
selected is {D;,...,D;,....Dy}. Each alternative D; is represented by the set of attributes
[aij,...,amj] In the m-dimensional design attribute space (i.e., an m-dimensional space in
which the coordinates are the attribute values). Let the value function, V(D;) be a
function of attributes [a;,...,amj] that represents the DM’s preferences. V is said to be
explicitly known, if we know the form of the equation (e.g., linear, polynomial) of V with

some unknown constants or parameters (e.g., weights of attributes). The unknown
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parameters are determined by capturing the DM’s preferences. If the equation of V is not
known, we say that V is implicit.

When there is no variability in attributes, a; values would be exact (i.e.,
deterministic or fixed or crisp.’). However, when there is variability in the attributes, we

assume that the ranges of attributes for each design alternative are known. We use the

symbol Ag to represent the lower bound, Aff to represent the upper bound, and Aj; to

represent the range [AL

i A ] of the i" attribute of design D;. We use the symbol aj; to
represent a variable attribute that belongs to the range Aj;. (Note that a;; could be fixed or
variable depending on whether or not the i"™" attribute of design D; is deterministic.)

Next, we provide several more definitions and terminologies used in this

dissertation.

2.2.1. Scale of an Attribute, r;
The scale, r;, of an attribute a; is the difference between the maximum and

minimum of the attribute over the set of original design alternatives. l.e.,

I, Z(max aij)-(m_inaij). This definition is applicable only when there is no attribute
J J

variability.

2.2.2. Quasi-concave Function
A function V defined on a nonempty convex domain is said to be quasi-concave

[Bazaraa et al., 1993] [Mangasarian, 1969] if

? In this dissertation, we use the terms fixed, deterministic, and crisp interchangeably.
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V[9X1 + (l-e)Xz] > mm[V(X]),V(Xz)] (21)

for all X, X, that belong to the domain of V and 0€[0,1] (see Figure 2.1 for examples).

A A A
Vl
V, 2 min(V,,V,)
V2
\'% \"% \'%
> X > X > X
X Xo X,

@

Figure 2.1: Examples of (a) quasi-concave, (b) non-decreasing quasi-concave, and
(c) non quasi-concave functions for one variable, and (d) quasi-concave function for
two variables

Note that a concave function is always quasi-concave, but the converse might not
hold [Takayama, 1993]. For other properties of quasi-concave function refer to the
literature e.g., [Avriel et al., 1988] [Crouzeix and Lindberg, 1986]
[Greenberg and Pierskalla, 1971] [Schaible and Ziemba, 1981]. In this dissertation we
assume that the DM’s implicit value function is non-decreasing, differentiable and

quasi-concave. However, the assumption that the value function is non-decreasing is not
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required for the applicability of our deterministic selection method (Research

Component 1, see Chapter 3 for details).

2.2.3. Trial Design Dy
The trial design Dr is a particular design under consideration from the original set

of design alternatives.

2.2.4. Marginal Rate of Substitution (MRS)

At trial design Dr, let Aa; be the amount the DM will compromise in attribute a; in
order to gain an amount Aa; in attribute a; while maintaining constant value (i.e., the DM
remains indifferent [Keeney and Raiffa, 1976] with respect to Dr) according to his/her
preferences. The MRS, S;ir, between attributes a; and a; at Dr is the ratio -Aa;j / Aa;.

Figure 2.2 illustrates the definition of MRS.

Constant value curve

Figure 2.2: Illustration of marginal rate of substitution between attributes
Note that when the attributes are not normalized, S;r has a dimension that is equal
to the ratio of the dimensions of a; and a;. For example, in the selection of a cordless

electric drill, if a; is the attribute “cost” measured in dollars and a, is the attribute
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“weight” measured in pounds, then MRS, S;,r, between a; and a, at Dr has a dimension
pound per dollar.
When there is no variability in preferences, both Aa; and S;t would be exact (or

crisp). However, if there is variability in preferences, the DM would give a range for Aa;

(for a fixed Aa;) thus leading to a range of MRS. We use the symbol SiT to represent the
lower bound, the symbol S};T to represent the upper bound, and the symbol S;r to

represent the range [SLTT,S}J.JT] of MRS when there is preference variability. We use the

symbol s;jjr to represent a variable MRS that belongs to the range S;r. (In short, S+ could
have a range or be crisp depending on whether or not MRS has variability.)

In Chapter 3 to Chapter 7, in the description, demonstration, and discussion of the
proposed method for each research component, when we use the word preference we
mean the DM’s MRS preferences. However, the word preference might refer to other
kind of preferences (e.g., relative importance of attribute) in the introduction and
overview of the proposed method for each research component (see Chapter 3 to

Chapter 6).

2.2.5. Gradient Cut

The gradient cut [Malakooti, 1988] is the half space Cs bounded by the normal to
the gradient of a value function V at a point D, VVr, with the gradient pointing in the
outward direction from Cg; see Figure 2.3. Cg does not include the boundary line Hy in

Figure 2.3.
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Design alternatives in Cg (shaded
region) have lower value than Dy

Figure 2.3: Illustration of gradient cut
For a general m-dimensional case, the boundary is a hyper-plane passing through
Dt and perpendicular to the gradient at Dr. It can be shown that for a differentiable
quasi-concave value function all design alternatives belonging to Cg have a lower value
than Dy [Bazaraa et al., 1993] [Sundaram, 1996]. However, design alternatives that are
not in Cg might have higher or lower or equal value with respect to Dr

[Bazaraa et al., 1993].

2.2.6. Set of Non-eliminated Trial Designs (Dntp)

Dnrp is a subset of the original designs. Each member of Dnrp has been a trial
design. No member of Dnrp lies in the gradient cut(s) of any other trial design, and so can
not be eliminated by any other trial design, including the other members of Dnrp. (See

Chapter 3 and Chapter 5 for further explanation.)

2.2.7. Dominated Design
When there is no attribute variability, but there is variability in MRS preferences,

a design D is said to be dominated by another design Dr, if D: has lower value than Dt
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(i.e., V(Ds) < V(D)) for the whole range of MRS preferences, Sir, at Dr. If there is
attribute variability also, then Dy is said to be dominated by Dr if V(D,) < V(Dr) for the
whole range of Sjir and the whole range of attribute levels A;:. and Ajr (where 1 =1 to m,

m is the number of attributes).

2.2.8. Potentially Optimal Design

When there is no attribute variability, but there is variability in MRS preferences,
a design D is said to be potentially optimal if D, has the highest value among all design
alternatives for some subset of S;r. For example, in Figure 2.4, D; has highest value for
some part of the MRS range and D, has the highest value for some other part of the MRS
range. Hence D; and D, are potentially optimal. On the other hand, D; is dominated by
D; and D, because it has lower value than D; and D, for the whole range of MRS
preference.

Value

D, and D, are potentially optimal

D2 ><Dl

~— 5

D, 5 is dominated by D,

and D,
T T > Syr

L 18]
SijT SijT
N v
v
Range of MRS

Figure 2.4: Illustration of potentially optimal and dominated designs
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If there is attribute variability also, then D. is potentially optimal if D. is the
highest valued design alternative for some subsets of Sjjt, Aj+ and Ajq(whered=1ton,n
is the number of design alternatives).

Note that, from the above definition, a design which is not potentially optimal
cannot be most preferred for any realization of MRS that belongs to the range of
preferences and/or for any realization of attribute that belongs to the range of attributes.

Eum et al., [Eum et al., 2001] gave similar definitions for dominated design and
potentially optimal design when the value function is assumed to be additive. In this
dissertation, we have extended their definitions for the more general case of an implicit
value function.

Note that dominance and potential optimality defined here are different from the

component-wise dominance and Pareto optimality [Eum et al., 2001].

2.3. OVERVIEW OF PREVIOUS WORK

Multi-Attribute Decision Making (MADM) is a popular technique that is used for
engineering design selection [Li, 2001] [Neufville, 1990]. MADM methods for product
design selection in literature can be categorized into five main groups: methods for (1)
deterministic selection, (ii) sensitivity analysis, (ii1) selection with attribute variability
alone, (iv) selection with preference variability alone, and (v) selection with preference
and attribute variability. The third group, methods for selection with attribute variability
alone, is not the focus of this dissertation and is not reviewed here. However, the
interested reader can refer to the literature, e.g., [Bradley and Agogino, 1994]

[Jaffray, 1989] [Keeney and Raiffa, 1976] [Li and Azarm, 2002]
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[Marston and Mistree, 1998] [Wan and Krishnamurthy, 2001]
[Wassenaar and Chen, 2003], for more details. In the next four sections, we provide the

literature review of existing methods in the first, second, fourth, and fifth groups.

2.3.1. Literature Review on Deterministic Selection

Existing methods for deterministic selection assume that the DM has an intuitive
value function that he/she maximizes to make the selection [Fishburn, 1970]
[Keeney and Raiffa, 1976] [Yu, 1985] [Zeleny, 1982]. So, product design selection
problem can be viewed as a discrete optimization problem with an implicit (or
unexpressed) objective function. Existing deterministic selection methods in the literature
try to find the implicit objective function (or the value function) by obtaining from the
DM information about quantitative preferences which reflect the value function
[Olson, 1996] [Triantaphyllou, 2000]. Various selection methods take the preferences in
various forms, e.g., relative importance of attributes
[Lootsma, 1999] [Saaty, 1980], comparison of design alternatives
[Koksalan et al., 1984] [Malakooti, 1988] [See and Lewis, 2002] [Toubia et al., 2003], or
marginal rate of substitution between attributes [Keeney and Raiffa, 1976] [Yu, 1985].

Some MADM methods for deterministic selection estimate the value function
completely by presuming its form (e.g., linear, multiplicative) [Barzilai, 1997b]
[Saaty, 1980] [Thurston et al., 1994] [Zeleny, 1982]. These methods have two
shortcomings. First, presuming a form for the value function is restrictive and is
applicable only for some special cases (e.g., preferential independence between

attributes) [Keeney and Raiffa, 1976] [Thurston, 2001]. Second, the presumed form can
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differ significantly from the DM’s unexpressed value function, leading to an erroneous
selection.

To address those shortcomings, interactive methods have been developed to
estimate the value function partially, and to use that information at a series of trial
designs (recall Definition in Section 2.2.3) for eliminating lower value design
alternatives [Korhonen et al., 1984] [Malakooti, 1988]. Rather than assuming a specific
form for the value function, partial estimation methods allow for broad classes of
functions (e.g., monotonic, concave). The most generalized value function that has been
discussed in the literature is a quasi-concave value function [Koksalan et al., 1984]
[Malakooti, 1989a].

There are two components in the partial estimation methods. First is the
elimination of lower value design alternatives at a trial design. Second is the search for a
better design alternative to use as a new trial design. For the first component, some
methods in the literature ask the DM for the pair-wise comparisons of “adjacent” design
alternatives [Karwan et al., 1989] [Malakooti, 1989a]. The response to these comparisons
is used to construct convex cones and then eliminate lower value designs. These methods
become inefficient (i.e., the number of designs eliminated by the convex cones decreases)
if the value function is not non-decreasing with respect to the attributes (or cannot be
converted to non-decreasing) [Korhonen et al., 1984] [Malakooti, 1988].

Another approach [Malakooti, 1988] for eliminating lower value design
alternatives is to find the gradient of the value function at a trial design, and use the
gradient cut (recall Definition in Section 2.2.5). The number of designs eliminated by this

approach does not depend on the value function being non-decreasing.
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Malakooti [Malakooti, 1989a] uses pair-wise comparisons of the adjacent design
alternatives to find the gradient of value function. Unfortunately, Malakooti’s approach
works well only if, for an m-dimensional design attribute space, there are at least m+1
design alternatives in the vicinity of the trial design. In addition, Malakooti’s approach of
pair-wise comparison of design alternatives to find the gradient has two problems. First,
pair-wise comparison of alternatives by the DM might lead to intransitive preferences
[Yu, 1985] (which have to be accounted for). Second, comparison of alternatives that are
either “far off” or “close by” in the design space is difficult for the DM. Both of these
problems are well known in the literature [Yu, 1985]. Also, Malakooti’s approach needs
“strength of preference” for the comparisons [Malakooti, 1989a] to get a good estimate of
the gradient of value function, adding burden to the DM.

To overcome the above shortcomings, in our deterministic selection method we
use the DM’s Marginal Rate of Substitution (MRS) between attributes (see Chapter 3) to
find the gradient of value function at a trial design. MRS captures any nonlinearity,
non-monotonicity and coupling (i.e., interdependence between attributes) in the DM’s
value function [Barzilai, 1998] [Keeney and Raiffa, 1976]. It is generally easier for the
DM to provide MRS than to do a pair-wise comparison of alternatives because each MRS
involves only trading off between two attributes, rather than comparing two m-attribute
designs.

For the second component of the partial estimation methods, finding a design
alternative with higher value for the new trial design,
Geoffrion et al. [Geoffrion et al., 1972] and Musselman and Talavage

[Musselman and Talavage, 1980] have approaches that are applicable only for continuous
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design alternatives. Koksolan et al. [Koksalan et al., 1984] propose to approximate the
value function as linear or quadratic and then to choose the design that has the maximum
value as the new trial design. Malakooti [Malakooti, 1988] uses a one-dimensional search
approach, which again is dependent on the spread and clustering of the design
alternatives. In our deterministic selection method (see Chapter 3) we present a new
approach for finding a new trial design that makes efficient use of the gradient
information already obtained from the DM at all the previous trial designs. As with the
approaches in the literature, our approach requires only that the value function be
differentiable and quasi-concave with respect to the attributes. The approach does not

depend on the distribution of the design alternatives in the attribute space.

2.3.2. Literature Review on Sensitivity Analysis

Existing literature in sensitivity analysis addresses cases where the DM’s value
function is presumed to be explicitly known (e.g., known polynomial function of
attributes with unknown parameters like weights, utilities [Keeney and Raifta, 1976]).
Sage [Sage, 1981] studied and formalized the allowed errors in the estimation and
elicitation of probabilities and utilities before which the preferred design is affected.
Barron and Schmidt [Barron and Schmidt, 1987] proposed two procedures:
entropy-based and least square (i.e., L,-metric) to calculate the minimum variation
required between the actual weights and the estimates of weights for changing the most
preferred design when the value function is linear. Ringuest [Ringuest, 1997] later
extended the L,-metric of Barron and Schmidt [Barron and Schmidt, 1987] to an

Lp-metric. Mareschal [Mareschal, 1988] proposed an approach for finding the “weight
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stability interval”, which consists of all possible weights that maintain the rank order
obtained using the original estimates of weights.

Insua and French [Insua and French, 1991] proposed some distance based tools to
identify the possible competitors to the current most preferred design when the DM’s
preferences change. Antunes and Climaco [Antunes and Climaco, 1992] proposed a
sensitivity analysis approach for their TRIMAP method. However, this approach is
applicable only when the number of attributes is three or less, which is a significant
limitation [Antunes and Climaco, 1992]. Triantaphyllou and Sanchez
[Triantaphyllou and Sanchez, 1997] proposed a sensitivity analysis approach and applied
it to popular MADM methods like weighted sum model, weighted product model, and
analytical hierarchy process [Saaty, 1980]. Ma et al. [Ma et al., 2001] presented a method
for finding the “weight-set” that contains all possible ranges of weights of an additive
value function when the rank order of alternatives is given. Triantaphyllou and Shu
[Triantaphyllou and Shu, 2001] studied the number of feasible rankings that are possible,
assuming an additive value function, for the given set of design alternatives, when the
weights of the criteria are allowed to change.

Although the MADM literature describes significant research on sensitivity
analysis when the value function is presumed, it is well known that presuming a form for
the value function is restrictive and  applicable only to  special
cases [Keeney and Raiffa, 1976] [Thurston, 2001]. In Chapter 4, we present a concept for

sensitivity analysis that is applicable for an implicit value function.
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2.3.3. Literature Review on Selection with Preference Variability

The literature reports of two ways to account for preference variability in
selection. One way is to assume different probability distributions for preferences and
then study the affect of these distributions on the most preferred design. Scott
[Scott, 2002] studied analytical hierarchy process [Saaty, 1980], assuming uniform
distributions for the DM’s preferences, and proposed some indices to quantify the
changes in the most preferred design. Reeves and Macloed [Reeves and Macloed, 1999]
used the Interactive Weighted Tchebycheft [Steuer and Choo, 1983] procedure to study
the robustness of the preferred design for various distributions of the preferences.
However, the preferred design found by assuming some probability distributions for the
preferences might be erroneous if the actual distributions differ from the assumed
distributions.

Another way (also popular in the literature) for accounting preference variability
in selection is to ask the DM to provide some constraints on the preferences
[Claessens et al., 1991] [Insua and French, 1991] [White et al., 1984]. Typical constraints
could be some ranges on the preferences, like relative importance of attribute a; is
between 0.3 and 0.4. The constraints on preferences are then used in finding the
non-dominated and potentially optimal designs (see Definition in Section 2.2.8)
[Hazen, 1986]. Some people refer to selection with preference variability as selection
with partial information [Athanassopoulos and Podinovski, 1997]. Note that it is
generally easy for the DM to give some constraints on the preferences than the

probability distributions governing the variability in the preferences.
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Existing literature in selection with partial information addresses the case when
the DM’s value function is presumed to be explicitly known (e.g., additive with unknown
attribute weights, multiplicative with unknown scaling constants). Hazen [Hazen, 1986]
derived a relation between dominance and potential optimality when the value function is
explicitly known (additive or multiplicative) with unknown scaling constants or weights.
Malakooti [Malakooti, 1989b] proposed the concepts of convex non-dominancy and
trade-off non-dominancy and identified their relation to dominance for additive value
functions.

Insua and French [Insua and French, 1991] proposed some formal definitions and
methods to identify the non-dominated and potentially optimal designs when there is
variability in the weights of an additive value function. In their methods,
Insua and French [Insua and French, 1991] proposed linear programming problems for
checking the dominance and potential optimality of a design. Athanassopoulos and
Podinovski [Athanassopoulos and Podinovski, 1997] later developed a dual linear
programming method to identify the dominated and potentially optimal designs when
there is variability in the weights of an additive value function. Malakooti
[Malakooti, 2000] developed a method that can identify a number of dominated designs
by solving a single linear programming problem. Carrizosa et al., [Carrizosa et al., 1995]
proposed a method for ranking a set of design alternatives with partial information about
weights of the additive value function. In their method, Carrizosa et al.,
[Carrizosa et al., 1995] do not solve any linear programming problem. Instead they use

some “quasiorders” for ranking the design alternatives.
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Although the MADM literature describes significant research on selection with
preference variability when the value function is presumed, it is well known that
presuming a form for the value function is restrictive and applicable only to special
cases [Keeney and Raiffa, 1976] [Thurston, 2001]. In Chapter 5, we present a method for

selection with preference variability for an implicit value function.

2.3.4. Literature Review on Selection with Preference and Attribute Variability
Existing literature in selection with preference and attribute variability addresses
the case when the DM’s value function is presumed to be explicitly known (e.g., additive
with unknown attribute weights, multiplicative with unknown scaling constants).
White et al., [White et al., 1984] developed a method for identifying the dominated
alternatives when the constraints on the attribute weights, scores of the attributes, and the
relative importance between some alternatives are given. They assume that the DM’s
value function 1is additive with respect to the attributes. Sage and White
[Sage and White, 1984] proposed an interactive decision support system, based on the
method proposed by White et al., for selection with preference and attribute variability.
Weber [Weber, 1987] proposed a framework for decision making with preference
and attribute variability when the value function is presumed. Weber [Weber, 1987] also
surveyed existing methods based on that framework. Moskowitz et al,
[Moskowitz et al., 1992] proposed a method called Multi-Criteria Robust Interactive
Decision Analysis (MCRID) for eliminating dominated designs when there is preference

and attribute variability. In their method, Moskowitz et al., [Moskowitz et al., 1992]
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expect the DM to give some partial information about the probability distributions
governing preference and attribute variability.

Anandalingam and White [Anandalingam and White, 1993] extended the method
of White et al., [White et al., 1984] by proposing a penalty function approach for finding
the potentially optimal designs. Park and Kim [Park and Kim, 1997] developed a
nonlinear programming formulation for finding the dominated and potentially optimal
designs when the ranges quantifying the preference and attribute variability are known
and when the value function is presumed. Eum et al., [Eum et al., 2001] and Lee et al.,
[Lee etal.,2001] later proposed linear programming equivalents of the nonlinear
programming problems required for checking the dominance and potential optimality of
designs. Jimenez et al. [Jimenez et al., 2003] proposed a decision support system that
finds the sensitivity of the preferred design to variations in the weights and the attribute
for the ranges given by the DM.

Although some research has been reported in the MADM literature on selection
with preference and attribute variability when the value function is presumed, it is well
known that presuming a form for the value function is restrictive and applicable only to
special cases [Keeney and Raiffa, 1976] [Thurston, 2001]. In Chapter 6, we present a
method for selection with preference and attribute variability for an implicit value

function.

2.4. SUMMARY
In this chapter, we gave important definitions and terminologies that will be used

throughout this dissertation. We also provided a detailed literature review for each of our
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four research components. The shortcomings of the literature related to each of our

research components are summarized below.

In deterministic selection, methods exist in the literature for selection with an
implicit value function [Korhonen etal., 1984] [Malakooti, 1988]. These
methods ask the DM for the pair-wise comparison of adjacent design
alternatives. However, pair-wise comparison of design alternatives can lead to
intransitive preferences and it is generally difficult to compare design
alternatives that are either far off or close by in the design attribute space. To
overcome this shortcoming we ask the DM to provide the marginal rate of
substitution between the attributes in our deterministic selection method.

In sensitivity analysis, existing methods in the literature presume a form for
the value function, additive being the most popular [Insua and French, 1991].
However, presuming a form for the value function is restrictive and applicable
only in special cases. To overcome this shortcoming, we present a concept for
sensitivity analysis that is applicable for an implicit value function.

In selection with preference variability, some methods [Scott, 2002] assume
probability distributions for the preferences and study the affect of the
distributions on the most preferred design. However, it is generally difficult to
make a good assumption of the actual distributions. Some other methods ask
the DM to provide constraints on the preferences [Claessens et al, 1991]
[White et al., 1984] and then find the potentially optimal designs for the given
constraints. However, existing methods that ask for the constraints on the

preferences are applicable only when the DM’s value function is presumed
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explicitly. We propose a selection method for preference variability that is
applicable for an implicit value function to overcome this shortcoming.

e In selection with preference and attribute variability, methods exist in the
literature when there is partial information about the probability distributions
governing the variability n preferences and attributes
[Moskowitz et al., 1992]. Methods for finding the potentially optimal designs,
when the ranges quantifying the preference and attribute variability are
known, also exist in the literature. However, all of the existing methods
presume a form for the DM’s value function. To overcome this shortcoming,
we propose a selection method for an implicit value function, when the ranges

quantifying the preference and attribute variability are known.

In the next chapter, we present the development of the method for our first

research component, deterministic selection.
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CHAPTER 3

DETERMINISTIC SELECTION

3.1. INTRODUCTION

The amount a DM is willing to give up in one attribute to gain a certain amount in
another attribute, for maintaining constant value is, in many instances, dependent on the
attribute levels of a design alternative. For example, in the selection of an automobile, if
the DM is asked for the preferences at a design point that has the attribute levels of
20,000 dollars of cost and 9 seconds of 0-60 time, the DM might say: “I would allow an
increase in the cost of the automobile by 5000 dollars if the 0-60 time is decreased by two
seconds”. If the DM is asked the same question at a design point that has the attribute
levels of 30,000 dollars of cost and 7 seconds of 0-60 time, the DM might say: “I would
allow an increase in the cost of the automobile by 1000 dollars if the 0-60 time is
decreased by two seconds”. Similarly, the number of operations per battery charge that a
DM would give up to reduce the weight of a cordless electric drill is dependent on the
attribute levels of the number of operations per battery charge and the weight of the drill.
This kind of nonlinear preference structure is common for a designer acting as the DM in
engineering design selection. It is generally difficult to represent such a nonlinear
preference structure a priori by presuming an explicitly known value function (e.g.,
additive, multiplicative, quadratic). Also, if the presumed form differs significantly from
the DM’s unexpressed value function, the resulting solution would be erroneous. One

might argue that, the DM could be asked for the values of some sample design
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alternatives and a curve be then fit through the sample values for approximating the
DM’s value function. There are two problems with such an approach. First, it is
extremely difficult for the DM to consistently state the values of some sample design
alternatives. Second, one does not know what kind of curve (e.g., polynomial,
exponential, multiplicative) to fit through the values of the sample design alternatives.

The purpose of this chapter is to present a deterministic selection method that aids
the DM in selecting the preferred design(s) from a set of design alternatives. Our
deterministic selection method does not presume any explicit form for the DM’s value
function, thus allowing the DM’s preference structure to be more general.

The organization of this chapter is as follows. We begin this chapter with an
overview of our deterministic selection method in Section 3.2. We then present the
details of our method in Section 3.3 and present our algorithm for deterministic selection
in Section 3.4. Next we give two engineering examples to demonstrate our deterministic
selection method in Section 3.5. We present some experimental results to verify our
deterministic selection method in Section 3.6 and finally conclude the chapter with a

summary in Section 3.7.

3.2. OVERVIEW OF DETERMINISTIC SELECTION METHOD

Figure 3.1 shows the flowchart of our interactive deterministic selection method.
This method is iterative and assumes that the DM’s preferences reflect an implicit value
function that is differentiable and quasi-concave. In this method, we start by picking a
trial design, D, from the set of design alternatives. If the DM cannot make an informed

guess of the highest valued design to use as Dr, we use either the alternative that would
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have maximum value if the value function were linear with equal importance to the
attributes, or a random pick.

As shown in Figure 3.1, in a small region Or around Dt we approximate the value
function to be linear with respect to the attributes. The gradient of V at Dr is
VVr=[Wir,...,Wnr]. The general form for the linear approximation of V(D;) in Or

would be (considering only the differences between V for design alternatives near Dr):

m
V(D) = Y Wy -a, (3.1)
i=1
. . a, 01, REIGON OF
% SET OF DESIGNS glclf a trDlal SMALL REGION, O; . LINEAR V"
% esign Dy °Di\ ~
‘ . > AROUND TRIAL DESIGN » ‘DS V(D) ;Wﬂau
> - oy =
a D, ]
4 ay

DECISION MAKER A
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T OBTAIN GRADIENT
Proforonces COEFFICIENTS (W, )
Update Dy
y
Yes FIND A NEW USE GRADIENT CUT TO
TRIAL ELIMINATE LOWER
DESIGN? VALUE DESIGNS

SET OF NON-
ELIMINATED TRIAL
DESIGNS, Dy,

Gradient

T Most fi i 1t ti
adjacency ost preferred design alternative

Figure 3.1: Flowchart of our deterministic selection method
Next, we find the gradient coefficients, Wir (i=1,...,m), at Dr by obtaining
preference information from the DM interactively (see Section 3.3.1 for details). Then we
use the gradient cut for eliminating (to be explained in Section 3.3.2) some of the design

alternatives which have a lower value than Dr. Next, we try to find a new trial design
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from the non-eliminated design alternatives (see Section 3.3.3 for our proposed approach
to find a new trial design). If a new trial design is found, we repeat the above steps (recall
Figure 3.1), referred to as “an” ‘iteration’ from here on in this chapter. Otherwise (i.e., if
a new trial design is not found), we stop the process and collect the non-eliminated trial
designs in a set, designated by Dntp. If the set Dnrp has a single design then that design
alternative would be the most preferred design alternative. If Dyrp has more than one
design we use a novel approach, called gradient adjacency elimination, (to be explained
in Section 3.3.4) for finding the most preferred design alternative from Dnp.

The DM has the option of stopping the process anytime he/she is satisfied that the
currently identified new trial design is the most preferred design alternative, even if all
the other design alternatives are not eliminated.

Note that our method does not perform a “piecewise linear approximation” of the
value function at a series of trial designs. The linear approximation is used to obtain the

gradient of the value function at a trial design, and the gradient is used to eliminate lower

value designs with respect to the trial design (see Section 3.3.2 for details).

3.3. DESCRIPTION OF DETERMINISTIC SELECTION METHOD

In this section, the individual parts of the deterministic selection method briefly
described in Section 3.2 are explained in detail. First, in Section 3.3.1, we present our
approach for obtaining the gradient of the value function at a trial design Dr. Then, in
Section 3.3.2, we describe how to eliminate lower value design alternatives using the
gradient cut. Then we present our approach to find a new trial design in Section 3.3.3.

Finally, we discuss gradient adjacency elimination in Section 3.3.4.
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3.3.1. Obtaining the Gradient of V at a Trial Design

We ask the DM questions regarding his/her MRS (recall Definition in
Section 2.2.4 of Chapter 2) to find the gradient (VVt = [Wir,...,Wnr]) of the value
function. Note that the location of the design alternative in the design attribute space can
influence the DM’s MRS [Keeney and Raiffa, 1976]. MRS captures any non-linearity,
non-monotonicity and coupling in the DM’s value function [Barzilai, 1998]
[Keeney and Raiffa, 1976]. From the definition of MRS, it can be readily shown that the

MRS S;jr between attributes a; and a; at Dr is

N
0Oa,
Sir = oV (3.2)
0a, :
Using Eq. (3.1) as the linear approximation of the value function in Or
N w, (3.3)
0Oa,
and
W,
Sir = W'T (3.4)

j
Accordingly, MRS wvalues when they exist are consistent [Barzilai, 1997b]
[Barzilai, 1998]. L.e.,

Siit * Skt = SikT- (3.5)
Because of this, only MRS values between ‘m-1" pairs of attributes are independent when

there are ‘m’ attributes. So, querying the DM for the MRS values gives only ‘m-1’
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independent equations to solve for ‘m’ gradient coefficients, Wir’s, which means that
Wir’s, might not be unique.

Further, the solvability of the set of equations depends on the MRS values
obtained from the DM being exact and consistent. These conditions are not likely to be
met in the responses of a human DM, who is estimating an unexpressed multi-attribute
constant-value function. To address these factors, we obtain excess information from the
DM by asking for an m-th MRS value. In our method, we ask the DM to provide the
MRS between attributes a; and aj; (i=1,...,°‘m-1") and the MRS between attribute a,, and
attribute a; (if m>2), which is the m-th MRS value. (Another source of excess
information would be to ask for reciprocal MRS values as well, i.e., Sjr in addition to
Sijt.)

When the DM’s value function is differentiable and when there is no information
for determining whether or not the DM’s value function is non-decreasing, we use the

formulation in Eq. (3.6) to solve for the Wir’s.

2
W i
Minimize : z S, ——‘T]-(—IJ (3.6a)
i K R CYAR

2
subject to: z HSM “Sier —&} ( i H < g, where ¢ is arbitrarily small (3.6b)

ijk KT "

W20, j=L...,p(p<m) and W, <0; for therest (3.6¢)
Eq. (3.6a) is for finding the Wir’s that are as close to the given Sjr’s as possible.
Eq. (3.6b) is to account for inconsistency in the MRS values. Eq. (3.6¢) is to account for

the sign of the gradient coefficients, i.e., Wjr would be positive if the value function is

increasing with respect to attribute a; at Dt and negative otherwise. It is possible to obtain
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ambiguous results for the sign of Wit if we assign them directly from MRS values Sjjr.
So, we ask the DM to provide the sign of any one of the Wir’s at the trial design Dr. The

W

signs of the others follow directly from the MRS values: W, =

i

The term r; in Eq.(3.6a) and Eq. (3.6b) is the scale (recall Definition in
Section 2.2.1 of Chapter 2) of the i™ attribute. Recall from the definition of MRS
(Section 2.2.4 of Chapter 2) that St has a dimension which is equal to the ratio of the

dimensions of a; and a;. Also, from Eq. (3.1) and Eq. (3.3), Wir has a dimension that is

the inverse of the dimension of a;. So, the term LSUT —&} in Eq. (3.6a) has a dimension
jT

that is equal to the ratio of dimensions of a; and a;. Similarly, the term

{SUT “Sir —&] in Eq. (3.6b) has a dimension that is equal to the ratio of dimensions of
WkT

ax and a;. So, the terms {SUT —%} and [SUT Syt —%j must be converted to
T kT

dimensionless quantities before the summation in Eq. (3.6a) and Eq. (3.6b) respectively.
Hence, we multiply each term by the ratio of the scales of the attributes to make the term
dimensionless.

The solution to the optimization problem in Eq. (3.6) is not unique. Recall we
mentioned earlier that the Wir’s are not unique as there are only ‘m-1" independent MRS
preferences for ‘m’ attributes (refer Eq. (3.5)). However, as stated in the next lemma, any

solution of Eq. (3.6) is a scalar transformation of some other solution.
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Lemma: Let VVtbe a solution of Eq. (3.6). Any other VV'r will be a solution of Eq. (3.6)

if and only if VV'r is a positive scalar transformation of VVr, 1.e., VV'r=pn-VV_, where

pn>0.

Proof: 1t is trivial to see that VV'r will be a solution of the optimization problem in
Eq. (3.6) if it is a scalar transformation of VVrt. To prove that if VV'y is a solution then it
is a scalar transformation of VVr, let VVr=[Wir,...,Wur] and VV'r=[W'i1,...,W'nt].

Assuming, with out loss of generality, that Wi is not equal to zero we can rewrite VVr

and VV'ras
VV. =W, -{l, Wor ,...,h} (3.72)
WIT WlT
VV', =W'1T-{1,W'2T,...,WTT] (3.7b)
W 1T W 1T

But the elements of the VVrand VV'rin Eq. (3.7) are the MRS values between attribute

aj j=2,...,m) and attribute a; and hence are equal, i.e.,

gi = gi =S5 j=2,...m. (3.8)

So we can rewrite VVrand VV'ras
VV. =W, [LS, 75,5, 7] (3.92)
V' = W' [LS,15S, 0] (3.9b)

From Eq. (3.9) we can see that VVrand VV'r are positive scalar transformations of the

other because W;r and W';r have the same sign (depending on whether V is increasing
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with respect to a; or decreasing with respect to a;). This completes the proof of the

lemma. O

It might be suggested that the solution to the optimization problem in Eq. (3.6)

can be made unique by adding a normalization constraint (a typical constraint could

1

beng -1, =1, if Wir’s are non-negative). The reason we do not normalize the gradient
i=1

coefficients in Eq. (3.6) is that our method needs only the direction of the gradient for
eliminating lower value designs (see Section 3.3.2 for details). Since each solution of
Eq. (3.6) is a positive scalar transformation of another solution, all the solutions have the
same direction. So in our method, adding a normalization constraint might result only in
an increase in the complexity of Eq. (3.6).

The gradient, VVr, at a trial design, Dr, gives the increasing direction of the value
function at Dr. But, in practice a human DM might have difficulty understanding the
significance of the gradient coefficient Wir. However, the DM can usually interpret the
relative importance (i.e., the weights) of the attributes [Lootsma, 1999] [Saaty, 1980].
Note that the weights of the attributes are different from the gradient coefficients, Wir’s.
Unlike the gradient coefficients, the weights of the attributes are dimensionless and lie
between zero and one. In our method, we can easily convert the gradient coefficients,
Wit’s, into weights by multiplying each Wit by the corresponding attribute scale, r;, and
then normalizing such that the sum of the weights is one (if Wjr’s are non-negative) or
the sum of the squares of the weights is one (if Wir’s could be negative).

When the DM’s value function is non-decreasing and differentiable (refer

Figure 2.1(b)), and when the attributes are normalized between zero and one (with one
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being the more preferred), our formulation in Eq.(3.6) for finding the gradient
coefficients reduces to the formulation in Eq. (3.10).

2
Minimize: )| Hsm—%ﬂ (3.10a)

Lj T

2
subject to: z KSUT “Spr — %ﬂ < g, where ¢ is arbitrarily small (3.10b)

i,j.k KT

D W,=1, 0<W, <1 (3.10c)
i=1

Eq. (3.10a) and Eq. (3.10b) are similar to Eq. (3.6a) and Eq. (3.6b) respectively, with r;,
1j, and ry all equal to one. Eq. (3.10c) is a normalization constraint imposed on gradient
coefficients Wir. We use Eq. (3.10c) to normalize Wir in Eq. (3.10) because, Wit is
dimensionless when the attributes are normalized and Wit represents the weight of the
attributes (which by convention in the literature lies between zero and one). Also Wir is
non-negative in Eq. (3.10) because, the formulation in Eq. (3.10) is applicable only when
the value function is non-decreasing with respect to the attributes.

The formulations in Eq.(3.6) and Eq.(3.10) can be solved with existing
commercial optimization software (e.g., “fmincon” of the MATLAB® optimization
toolbox). If one of the MRS values, say S;ir, 1s zero, then the corresponding Wit would be
zero for any non-zero Wir. This would cause a divide-by-zero in attempting to solve
Eq. (3.6) and Eq. (3.10). We avoid this difficulty by discarding an attribute if its MRS
value is zero, converting to a problem with ‘m-1" attributes.

If a feasible solution for Eq. (3.6) or Eq. (3.10) does not exist (for a given g), it
means that the inconsistency in MRS values given by the DM is more than what we

allowed for. In such a case, the DM can either change the MRS values or increase the
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constant €. However, it should be noted that increasing & might result in erroneous
gradient coefficients. The idea of checking the consistency of the DM’s MRS preferences
using ¢ is similar to the idea of consistency index proposed by Saaty for the analytical
hierarchy process (AHP) [Saaty, 1980]. However, in AHP, consistency of DM’s
preferences is checked after finding the weights of the attributes whereas in our approach
consistency of DM’s MRS preferences is checked while finding the gradient coefficients.

In the next section, we present an approach that efficiently uses the gradient of the
value function at a trial design, obtained from the MRS preferences given by the DM, for

eliminating lower value designs.

3.3.2. Eliminating Lower Value Designs Using Gradient Cut

If the value function, V, is differentiable and quasi-concave, and if Cg is the
gradient cut (recall Definition in Section 2.2.5 of Chapter 2) at Dr (see Figure 3.2), then
for all D € Cg, V(D) < V(Dr) [Bazaraa et al., 1993] [Malakooti, 1988]. That is, any
design alternative in Cg has lower value than Dy, and hence can be eliminated. Applying
the property that the gradient of V at Dyis VVt = [Wr,...,Wur], and the attributes at Dt

are [ar,...,amr], then a design D, with attributes [a;,...,am] is in Cg if [Bazaraa et al.,

1993]
ZWT'(aH_ aiT)<0 . (3.11)
i=1

Figure 3.2 illustrates gradient cut elimination in two dimensions. Note that design
alternatives that are not in Cg might have higher or lower or equal value with respect to

Dr[Bazaraa etal., 1993] [Sundaram, 1996]. So, gradient cut does not eliminate all
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designs that have lower value than Dr. From Figure 3.2, we can see that a design Dy is in
Cg if the angle between VVr and the vector joining Dr to Dy is greater than ninety
degrees. Recall Section 3.3.1 (see lemma), wherein we stated that VVy found using
Eq. (3.6) is unique up to a positive scalar transformation. Clearly this does not affect the
design alternatives eliminated using gradient cut because the angle between the gradient
vector and the vector joining Dr to D, remains the same even if VVr is changed by a
positive transformation. (Note that using Eq. (3.10), when applicable, we get unique

gradient coefficients because of the normalization constraint for gradient coefficients.)

% VV. =W, Wyl

VV, (D, -D;) <0
If ¢ >90°

Design alternatives in Cg
(shaded region) are eliminated

Figure 3.2: Illustration of gradient cut elimination
Our approach for eliminating lower value designs using gradient cut is similar to
Malakooti’s [Malakooti, 1988]. The difference is that we obtain the gradient of the value
function using MRS preferences whereas Malakooti [Malakooti, 1988] uses comparisons
of alternatives to obtain the gradient. Also, Malakooti’s approach for finding the gradient
involves many heuristic components, because of which the gradient cut has to be applied

conservatively [Malakooti, 1988].
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In the next section, we discuss our approach for finding a new trial design. This
approach makes efficient use of the gradient of the value function at all the previous trial

designs.

3.3.3. Finding a New Trial Design

An important step in our deterministic selection method (and in its extensions,
e.g., see Chapter 5 and Chapter 6) is to find a new trial design for continuing the iterative
process shown in Figure 3.1. In order to find the most preferred design in few iterations, a
new trial design, Dnr, should be chosen, from the set of non-eliminated designs, such that
it has higher value than the previous trial designs and it eliminates a large number of
design alternatives using gradient cut elimination (recall
Section 3.3.2) [Koksalan et al., 1984]. For this, we need to obtain a good estimate of the
gradient of the DM’s value function at the non-eliminated designs. To reduce the burden
on the DM, the estimate of the gradient of the value function should be obtained (in real
time) without actually interacting with the DM. In this section, we discuss an approach,
which makes good use of the available information about the gradient of the value
function at the previous trial designs to estimate the gradient of the value function at a
non-eliminated design.

Consider the set of all design alternatives that are not eliminated at the current
step in the iterative process described in Figure 3.1. Let the current iteration number be
‘q’. Let Dri,..., Drq be the trial designs from the first iteration to the current iteration. Let

VVrti = [WiTj,...,Wntj] be the gradient of the value function at the trial design

DTjI [alTj,. . .,amTj] (jzl,. . .,q).
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Having no information about the behavior of the DM’s implicit value function at
a non-eliminated design (that has not been a trial design), we presume that the value
function is non-decreasing, differentiable and quasi-concave (refer Figure 2.1(b)) with
respect to the attributes at a non-eliminated design. Note that we make this presumption
only for the purpose of finding a new trial design. The actual value function at a
non-eliminated design could be a general differentiable quasi-concave function. With
this presumption, the resulting formulation for estimating the gradient at a non-eliminated
design D;: [aj4,...,am], EqQ. (3.12), becomes a linear programming problem which can be
solved without much computational burden. We use the vector [A}4,...,An:] to represent
the estimate of the gradient of the value function at D;.

Fori=1,..., mand j=1,...,q

z}‘w ) (aiTj - ai+) <0 (3.12a)
]

A, S Wyyifa, >ay, (3.12b)
Ay 2 W ifa, <ap '

A 20; Wy, 20 (3.12¢)

Eq. (3.12a) is used to check that each Drj lies within the gradient cut of D, for the
estimated gradient (recall Eq. (3.11)). Eq. (3.12b) states the constraints imposed on A+
based on the gradient, VVrj, at each Drj. Eq. (3.12c¢) is the constraint on the sign of Aj+.
Since we assume that the value function is non-decreasing, the estimate of the gradient at
D, Ai+, should be less than Wir; if ai+ > aj1j and vice versa. Also, if any of the Wir;’s are
negative, then we impose only the constraint that the corresponding Ai; is non-negative

(Eq. (3.12¢)), 1.e., we consider only the Wir; that are non-negative in Eq. (3.12b).
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Each D; for which A;;’s can be found has then at least one possible value function
that eliminates all the previous trial designs Drj (j=1....,q) by gradient cut, the gradient

being [A,,...,A_ . ]. Each such D, then becomes an element of the set of candidate new

trial designs, Dent. (Note that these Ai+’s do not constitute the actual gradient of the value
function that the DM has in mind at D;.) We apply the gradient cut approach at each D,

belonging to Denr, using [A,,...,A . ] as the gradient of V, and then choose as the new

trial design, Dnr, the D: which eliminates the greatest number of the original design
alternatives. If there is no non-eliminated design, D, for which Ai;’s exist, then we relax
the constraints in Eq. (3.12), corresponding to the oldest Drj (i.e., smallest )
successively until a D, for which A;;’s exist is found.

If more than one D¢yt has the maximum number of alternatives eliminated, we
choose as Dyt the alternative whose vector from Dr is closest to (i.e., makes the smallest
angle with) the gradient, VVr,, at the current trial design, Drq.

We mentioned earlier that gradient cut can eliminate only some of the designs that
have lower value than Dy (recall Section 3.3.2). Because of this property, it is possible
that after applying gradient cut elimination at a series of Dr’s, each time finding a new
Dr, we are left with a set of trial designs that cannot eliminate each other. We call this set
of non-eliminated trial designs as Dnrp (recall Definition in Section 2.2.6 of Chapter 2).
Note that Dntp always contains the most preferred design irrespective of the starting trial
design. Otherwise, the most preferred design would have been eliminated by the gradient
cut of some trial design, contradicting the property of quasi-concave value function

(recall Section 3.3.2). In the next section we discuss a new approach, gradient adjacency

47



elimination, to eliminate between trial designs that belong to Dxrp (When it has more than

one member).

3.3.4. Gradient Adjacency Elimination

Figure 3.3 illustrates the proposed approach for gradient adjacency elimination for
the case of two trial designs Dr; and Dr,. Lines Hr; and Hr, pass through Dty and Dry,
respectively, and are perpendicular to the gradient of the value function at those points.
Ori1, Or; are the regions around Drj, D1y, respectively, in which we approximate the
value function to be linear (recall Figure 3.1). Note that each Dy; (1=1, 2) is above the
corresponding line Hrj (j = 1, 2) of the other, so neither eliminates the other by gradient

cut (recall Section 3.3.2).

H T2 VVTZ

Dy, has lower value than all
the design alternatives in

Design alternatives in this region
have lower value with respect to
D, but Dy, has lower value than all
design alternatives in this region A prt

————

Figure 3.3: Illustration of gradient adjacency elimination
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Note that all points in the region Or; above Hr; have higher value than Dr
because VVr represents the increasing direction of V at Dr; and Or; is the region in
which the linear approximation of value function is valid. For the case here, Ht, passes
through that part of Or; which is above Ht;. Hence, Dr; has higher value than some
points in Or; above Hyp (recall gradient cut elimination, Section 3.3.2). Therefore, Dr;
has higher value than Dry. That is, D, eliminates Dr; by transitivity.

For the m-dimensional case Ht; and Hy, are hyper-planes. We may, for
simplicity, take each region Ori to be a hyper-sphere. We assign Or; the radius
R = n - min(ry,12,...,rm), where n is a small positive constant and r; is the scale (recall
Definition in Section 2.2.1 of Chapter 2) of the i™ attribute. Figure 3.4 illustrates (in two

dimensions, for three cases) the relevant geometry and some definitions for determining

if Dr; has lower value than Dr,. The perpendicular distance from Dr; to Hr, we call p,?z .

It can be seen in Figure 3.4 that Hy, passes through the region Or; if
pry < R (3.13)

The perpendicular distance from Dr; to the intersection of Hry and Hr, we call p;l,,.

Hr, passes through the region of Or; if

P < R (3.14)

Thus, D1, will eliminate Dy if Eq. (3.13) and Eq. (3.14) are satisfied. In Figure 3.4(a),
Eq. (3.13) is not satisfied; in Figure 3.4(b), Eq. (3.14) is not satisfied. In these two cases it
cannot be determined if Dt has lower value than Dr,. In Figure 3.4(c), both equations
are satisfied, and D, eliminates Dr;.

If there are more than two non-eliminated trial designs in the set Dntp, we apply

the tests of Eq. (3.13) and Eq. (3.14) to all ordered pairs of non-eliminated trial designs
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(‘all ordered pairs’ means testing Dr; against Dy as well as testing Drj against Dr;) and
eliminate the lower value trial designs. The trial design that remains non-eliminated after

testing all the ordered pairs of trial designs would then be the most preferred design.

& a

Figure 3.4: Test to find if a trial design is eliminated using gradient adjacency

elimination (a) D1 cannot be eliminated with respect to Dr; because, p;} >R, (b)
D11 cannot be eliminated with respect to Dt because, p;, <Rbut p;\,, >R, and

(c) Dty has lower value than Dr; because, p,, <Randp,',, <R

Gradient adjacency elimination is a heuristic approach and is based on the linear
approximation of value function in a small region Or around Dr. Note that region Or is
not arbitrary; it signifies the region around Dy in which the MRS values at any design

point are the same as the MRS values at Dr. This follows from a theorem given by
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Barzilai [Barzilai, 1998], which states that MRS values are constant if and only if the
value function is linear. So, the DM can choose as the region Or, the region around Dr
where he/she feels that the MRS’s are constant. Note that, Eq. (3.13) and Eq. (3.14)
involves finding the distances in the attribute space and so this part of our deterministic
selection method needs the attributes to be normalized.

If gradient adjacency elimination does not find the most preferred design using
the region Or given by the DM, we increase 1, hence the radius of Or, in small steps
(say, 0.02) until a singleton most preferred design is found or the linear approximation of
value function is no longer valid. At each step in n} we apply the tests of Eq. (3.13) and
Eq. (3.14) to all ordered pairs of non-eliminated trial designs.

In the next section, we discuss our algorithm for deterministic selection from a set

of discrete design alternatives using the concepts discussed in Section 3.3.

3.4. ALGORITHM FOR DETERMINISTIC SELECTION

Our algorithm for finding the most preferred design alternative for deterministic
selection has the following steps.

Step 1: Set the iteration number to one (i.e., q = 1) and pick a starting trial design,
Dr), from the set of design alternatives. We choose Dr; either as an alternative that would
have maximum value if the value function were linear with equal importance to the
attributes, or as a random pick.

Step 2: Query the DM for the MRS preferences between attributes at the current

trial design Dr.
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Step 3: Find the gradient of the value function at Dtq using the MRS preferences
(recall Section 3.3.1).

Step 4: Eliminate lower value designs using the gradient cut at Drq (recall
Section 3.3.2).

Step 5: If all designs except one are eliminated or if the DM is satisfied with the
current trial design Drq, define Dnrp to be the singleton set containing Drg, set total
number of iterations to current iteration number (i.e., ¢ = q), and go to Step 7. Otherwise,
go to Step 6.

Step 6: Find a new trial design from the non-eliminated design alternatives (recall
Section 3.3.3). If a new trial design cannot be found, collect all the non-eliminated trial
designs in the set Dnrp, set total number of iterations to current iteration number
(i.e.,c=q), and go to Step 7. Otherwise, increase the iteration number by one (i.e.,
q = qt1), set the new trial design as Dtq and go to Step 2.

Step 7: If Dnp 1s a singleton then that design is the most preferred design
alternative. Otherwise, use gradient adjacency elimination (recall Section 3.3.4) for
finding the most preferred design alternative from among the Dnrp. Increase the radius
(R) of the hyper-sphere around the trial designs in steps until all the design alternatives
except one are eliminated. Stop.

In the next section, we demonstrate our deterministic selection method by

applying the algorithm discussed above to two engineering examples.
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3.5. DEMONSTRATION EXAMPLES

As a demonstration, we tested our deterministic selection method by applying our
algorithm to two engineering examples. The first example is a two-attribute problem and
involves the selection of a payload design for an undersea autonomous vehicle. The
second example is a three-attribute problem and involves the selection of a cordless
electric drill. The payload design selection example graphically demonstrates the working
of our algorithm for deterministic selection. The cordless electric drill selection example
demonstrates the applicability of our method to a problem where the attributes are not

normalized between zero and one.

3.5.1. Deterministic Selection of Payload Design for Undersea Autonomous Vehicle
Typically, the payload must be effective in several different uses, called
“scenarios”. Effectiveness in a scenario is measured by a probability of success Ps in that
scenario. The design goal is to simultaneously maximize individual Pg’s for all scenarios.
The payload design is constrained by upper limits on the weight and radiated noise of the
payload (see Appendix-I for the description of the payload design optimization problem).
For our example, we maximized Ps; and Ps, for two different scenarios using a
Multi-Objective Genetic Algorithm (refer [Gunawan, 2004] for details). Table 3.1 (see
Column 2) shows the resulting ten Pareto (see [Gunawan et al., 2003] for definition of
Pareto) optimum design alternatives from which we select, with the Psi’s being the

attributes.
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To verify that our deterministic selection method indeed finds the most preferred
design, we use a simulated DM in this example. We constructed the DM’s implicit value
function to be of the form

V = -[(1-Ps))*+(1-Ps2)*]. (3.15)

We emphasize that the simulant value function given by Egq. (3.15) is not a
presumed value function. Rather, it simulates a human DM who is supposedly being
queried by our deterministic selection method, providing MRS preferences. The only
reason we use this simulant value function is to verify that the most preferred design
obtained by our method is indeed accurate. Note in Eq. (3.15), V is non-decreasing,
differentiable, and concave.

Table 3.1: Design alternatives for payload design selection

Desigx‘l Attributes [Psy, Ps,] Values of de.signs
alternative . . calculated using Eq.

number of design alternatives 3.15)

1 [0.016,0.695] -1.062

2 [0.016,0.693] -1.062

3 [0.134,0.684] -0.849

4 [0.139,0.675] -0.848

5 [0.274, 0.541] -0.738

6 [0.275,0.114] -1.310

7 [0.343,0.093] -1.254

8 [0.346,0.091] -1.254

9 [0.355,0.090] -1.244

10 [0.357,0.075] -1.267

In the next section, Section 3.5.1.1, we describe the application of our algorithm
for deterministic selection (recall Section 3.4) to the payload design selection example,

and then discuss the results in Section 3.5.1.2.
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3.5.1.1. Application of Algorithm for Deterministic Selection to Payload Design

Following our algorithm in Section 3.4, we set the iteration number to one (i.e.,
q=1) and randomly pick Ds; as the starting trial design, i.e.,
Dri: [Psi, Ps2] =[0.134, 0.684] (Step 1). Since this is a two attribute problem, we ask the
DM to provide only one MRS preference, i.e., MRS preference between Pg; (attribute 1)
and Pg; (attribute 2). Our simulated DM, Eq. (3.15), responds by saying that the MRS
preference is, Siori: 2.74 (Step 2).

Using Eq. (3.10), the gradient of the value function at Dty is VV1; =[0.73, 0.27]
(Step 3). We use Eq. (3.10) for finding the gradient because the value function of the
simulated DM, Eq. (3.15) is increasing and the attributes Ps; are normalized between zero
and one. We use an ¢ value of 0.01 for allowable inconsistency in the MRS values at Dr;.
Gradient cut at Dr; (Sfep 4) eliminates five lower value designs (shown by small
rectangles in Figure 3.5(a)).

O  Eliminated (i.e., lower value) designs

¢ Trial Design
+ Non-eliminated designs

P H PSZ .
52 MRS at Dy, is 2.74 4 MRS at D, is 1.59
0.9 0.9
VV;,=[0.73,0.27]
0.75 0.75 VV.,=[0.61,0.39]
o
0.5 0.5
0.25 025
H
HTI T2
0 > Py, 0 > Py,
0 0.15 0.3 0.45 0.6 0 0.15 03 0.45 0.6
@ ®)

Figure 3.5: Gradient cut at (a) Dr;: [0.134, 0.684] and (b) Dr,: [0.274, 0.541]
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The DM is not satisfied that Dy is the most preferred design, and there are four
non-eliminated designs: D4, Ds, Dy and Djy (shown by ‘+’ in Figure 3.5(a)). So we skip
Step 5 and find a new trial design (Step 6). For D4, Ds, Dy and Do we find the gradient
estimates Ai:’s in accordance with Eq. (3.12), and apply gradient cut elimination to the
other ten members of the original set of alternatives. Table 3.2 lists the number
eliminated and A;+’s for D4, Ds, Dy and Djy. Since, Ds eliminates more designs with
gradient estimates Ajs’s, it is the new trial design for the second iteration (i.e., q =2),
D: [0.274, 0.541].

At the second trial design Dy, our simulated DM, Eq. (3.15), gives the MRS
preference as, Sioro: 1.59 (Step 2). Using Eq. (3.10), with € again 0.01, the gradient of the
value function at Dr, is VVy, =[0.61, 0.39] (Step 3). Gradient cut at Dr, (Step 4)
eliminates all of the non-eliminated designs (shown by small rectangles in Figure 3.5(b)).
Since all designs except one are eliminated, Dnrp is the singleton set with Ds as its
member (Step 5) and Ds: [0.274, 0.541] is the most preferred design alternative (Step 7).

Table 3.2: Candidate new trial designs, A;+’s and number of original designs

eliminated for payload design selection

Candidate new trial Number of original

designs Gradient estimates A;.'s design alternatives
eliminated
D4: [0.139,0.675] [0.715,0.285] 8
Ds: [0.274,0.541] [0.696,0.304] 9
Dy: [0.355,0.090] [0.733,0.267] 8
Dyo: [0.357,0.075] [0.733,0.267] 7
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3.5.1.2. Discussion

To verify the result obtained by our deterministic selection method we obtained
the values of all design alternatives using the simulant value function of Eq. (3.15). Note
that the maximum of Eq. (3.15) (which is zero), is obtained when both Ps; and Pg, are
equal to one. Column 3 of Table 3.1 shows the values of each design alternative. From
Column 3 of Table 3.1, we can clearly see that Ds is the most preferred design alternative

as found by our deterministic selection method.

3.5.2. Deterministic Selection of Cordless Electric Drill

For cordless electric drill selection, we consider three design attributes: a;, the
number of operations achievable with one charge of a battery pack; a,, the cost of the
drill; and a3, the weight of the drill. Table 3.3 presents the eighteen design alternatives
from which the DM wishes to select the most preferred. The scales (recall Definition in
Section 2.2.1 of Chapter 2) of the attributes are 350 to 630 operations; $70 to $100; and
5.5 to 7.8 pounds. We emphasize that for the application of our deterministic selection, it
does not matter how the design alternatives are obtained.

We made one simplification for this example. The DM’s value function would
naturally increase with the number of operations, and decrease with cost and weight. We
converted the attributes so that the value function is monotonically increasing in all three
attributes. For cost and for weight we use

(modified attribute) = (max value in scale of attribute) - (original attribute).
This makes the gradient coefficients, Wir, non-negative. For the convenience of the DM,

the MRS questions are asked in terms of the original attributes. (Section 3.6 describes an
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application of our method to a more general case where in the value function is
quasi-concave and non-decreasing.)

Table 3.3: Design alternatives for cordless electric drill selection

Design alternative =~ Number of Cost (in Weight (in
number Operations dollars) pounds)
1 350 70 6
2 370 80 5.7
3 380 85 5.5
4 400 72 6.5
5 420 82 6.1
6 430 88 5.8
7 450 74 6.9
8 470 85 6.5
9 480 91 6.1
10 500 79 7.2
11 520 89 6.9
12 530 94 6.4
13 550 84 7.5
14 570 93 7.2
15 580 97 6.7
16 600 90 7.8
17 620 98 7.5
18 630 100 7

We applied our deterministic selection method to three cases of the cordless
electric drill example with a different DM in each case. We present in detail the case
where the DM is a casual user. We then present in lesser detail the cases for a
professional user and for a moderate (i.e., in between a casual and a professional) user.

We then discuss the results for all three cases.

3.5.2.1. Application of Algorithm for Deterministic Selection to Cordless Electric Drill
Selection by a Casual User
Having no informed guess from the DM for picking the starting trial design, we

select randomly the design alternative D7 as the trial design for the first iteration (i.e.,
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q=1), Dri: [450 operations, 74 dollars, 6.9 pounds] (Step 1). We ask the DM for three
MRS preferences at the current trial design: number of operations for cost; cost for
weight; and weight for number of operations. We allow the DM to provide the marginal
change in both attributes for each MRS (e.g., what change in number of operations for
what change in cost). At Drj, the casual user provided the responses in the third column
of Table 3.4 (Step 2).

Table 3.4: MRS between attributes for DM (a casual user)

Trade-offs for constant value Trade-offs for constant value
MRS Attributes  designs at Dr;: [450 operations, 74 designs at Dr;: [350 operations, 70
dollars, 6.9 pounds] dollars, 6 pounds]
Si» Operations 50 operations 50 operations
Cost 4 dollars 3 dollars
S5s Cost 5 dollars 2 dollars
) Weight 0.5 pounds 0.5 pounds
Sy Weight 0.4 pounds 0.5 pounds
Operations 50 operations 40 operations

With these data and € of 0.01 for allowable inconsistency in the MRS values,
Eq. (3.6) gives the gradient coefficients (Wir;) at Dri: Wit =0.004 operation’l;
Waor = 0.045 dollar'l; Wit =0.443 pound'1 (Step 3). We use Eq. (3.6) for finding the
gradient coefficients because the attributes are not normalized in this example. Using the
scale of the attributes to convert the gradient coefficients (recall Section 3.3.1), we get the
relative importance (i.e., the weights) of the attributes as [0.30, 0.40, and 0.30]. Note that
the relative importance of the attributes obtained is consistent with the preferences of a
casual user, i.e., the cost of the drill is more important than the number of operations and

the weight of the drill.
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VV.,=[0.004 operation!, 0.045 dollar’!, 0.443 pound-']

Gradient cut at D, is the half
space below this plane

O Dy [450 operations,74 dollars,6.9 pounds]

O Eliminated designs

Weight

+ Non-eliminated designs

Figure 3.6: Gradient cut at Dy;: [450 operations, 74 dollars, 6.9 pounds] in the
modified attribute space

Using gradient cut elimination (Step 4), fifteen design alternatives are eliminated
as shown in Figure 3.6. Figure 3.6 shows the design alternatives in the modified attribute
space (recall Section 3.5.2). The DM is not satisfied that Dy is the most preferred design,
and there are two non-eliminated designs: D; and D4 (shown by ‘+’ in Figure 3.6). So we
skip Step 5 and proceed to finding a new trial design (Step 6).

For D; and D4 we find the gradient estimates Aj;’s and Ai’s (i=1, 2 and 3) in
accordance with Eq. (3.12), and apply gradient cut elimination to the other seventeen
members of the original set of alternatives. Table 3.5 lists the number eliminated and
Air’s and Aig’s for Dy and D4. Since, D, eliminates more design with gradient estimates
Air’s, it is the new trial design for the second iteration (i.e., g=2),

Dr,: [350 operations, 70 dollars, 6 pounds].
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Table 3.5: Candidate new trial designs, Ai+’s and number of original designs

eliminated for cordless electric drill selection

Number of original

Candidate new trial designs Gradient estimates A;.'s design alternatives
eliminated
D;: [350 operations, 70 dollars, 6 [0.004 operation™, 0.028 dollar”', 0.331 17
pounds] pound'l]
Dy: [400 operations, 72 dollars, [0.004 operation_], 0.029 dollar’l, 0.340 16
6.5 pOundS] pound_l]

Beginning the second iteration, we ask the DM for MRS preferences at D, and
receive the data in the fourth column of Table 3.4 (Step 2). The gradient coefficients
(Wir2) at Drp are: Wi, = 0.004 operation’l; Wor = 0.069 dollar'l; Wit = 0.248 pound'1
(Step 3, ¢ for allowable inconsistency in the MRS values is again 0.01). Using the scale
of the attributes to convert the gradient coefficients, we get the relative importance (i.e.,
the weights) of the attributes as [0.27, 0.57, and 0.16].

VV1,=[0.004 operation’!, 0.069 dollar-!, 0.248 pound-']

Gradient cut at D, is the half
space below this plane

O Dy, [350 operations,70 dollars,6 pounds]

0 Eliminated designs

Weight

Figure 3.7: Gradient cut at Dr,: [350 operations, 70 dollars, 6 pounds] in the

modified attribute
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We apply gradient cut elimination at D, (see Figure 3.7) and find that all other
design alternatives can be eliminated (Sfep 4). Since all designs except one are
eliminated, Dnrp is the singleton set with D; as its member (Step5) and
D;: [350 operations, 70 dollars, 6 pounds] is the most preferred design alternative

(Step 7).

3.5.2.2. Application of Algorithm for Deterministic Selection to Cordless Electric Drill
Selection by a Professional and Moderate User

In the case where the DM is a professional user, our deterministic selection
method found the most preferred design alternative as,
Dg: [630 operations, 100 dollars, 7 pounds], in one iteration. Table 3.6 shows the MRS
preferences given by the professional user. In the case where the DM is a moderate user,
the method found the most preferred design alternative as,
Di3: [550 operations, 84 dollars, 7.5 pounds], in three iterations. Table 3.7 shows the
MRS preferences given by the moderate user. In each case, the first trial design was
picked randomly.

Table 3.6: MRS between attributes for DM (a professional user)

Trade-offs for constant value
MRS Attributes designs at Dyy: [630 operations, 100
dollars, 7 pounds]

S Operations 50 operations
Cost 10 dollars
Sys C(?st 5 dollars
Weight 0.5 pounds
Ssy Weight 0.5 pounds
Operations 30 operations
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Table 3.7: MRS between attributes for DM (a moderate user)

Trade-offs for constant Trade-offs for constant Trade-offs for constant

MRS Attributes value design.s at Dy value design's at Dpp: value design.s at Dr3:
[580 operations, 97 [450 operations, 74 [S50 operations, 84
dollars, 6.7 pounds] dollars, 6.9 pounds] dollars, 7.5 pounds]

S Operations 50 operations 50 operations 50 operations
12
Cost 7 dollars 12 dollars 9 dollars
S Cost 10 dollars 10 dollars 10 dollars
> Weight 1 pound 1 pound 2 pounds
Weight 1 pound 1 pound 1 pound
S . ) . .
Operations 60 operations 50 operations 40 operations

3.5.2.3. Discussion

We applied the deterministic selection method two times for all three users, each
time picking a different starting trial design. We found that for all three users, the most
preferred design (i.e. D; for casual user, D;g for professional user, and D3 for moderate
user) was not affected by the starting trial design. However, the number of iterations
required to reach the most preferred design depended on the starting trial design.

Our method selected the design which might have been selected intuitively by the
casual user and the professional user. The casual user’s MRS preferences (recall
Table 3.4) indicate that cost is most important; number of operations and weight are
moderately important. Indeed, our method selected the lowest cost alternative. The
professional user’s MRS preferences (recall Table 3.6) indicate that number of operations
is most important; cost is least important; and weight is moderately important. Our
method selected the option having the highest number of operations, highest cost, and
relatively high weight. However, for the moderate user the intuitive choice is not clear.

The MRS preferences (recall Table 3.7) indicate only that weight is of little concern. Our
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method selected an alternative having middle values of number of operations and of cost,
but relatively high weight.

Next we provide some experimental results that verify our selection method and
also support our claim that, within the limit of our experimentation, the most preferred

design alternative can be found in just a few iterations.

3.6. VERIFICATION: SOME EXPERIMENTAL RESULTS
In this section, we provide some experimental results to verify our deterministic

selection method. We describe the experiments in Section 3.6.1 and discuss the results in

Section 3.6.2.

3.6.1. Description of Experiments for Verifying the Deterministic Selection Method

To verify the proposed deterministic selection method, we conducted simulations
with fourteen different problem sizes, i.e., (number of attributes) x (number of design
alternatives), ranging from two attributes and 50 alternatives to six attributes and 200
alternatives. We generated ten sets of design alternatives for each problem size. For
simplicity, the alternatives are uniformly distributed between 0 (worst) and 1 (best) in
each attribute.

We used a variety of simulant value functions to produce the answers to the MRS
questions that our method needs. We tested our method by comparing the most preferred
design alternative obtained by our method, with the alternative that has the maximum
value according to the simulant value function. We emphasize here that the role of the

simulant value functions is just to represent the preference structure of the human DM
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and to verify the results of our method. In reality (and in our proposed method), the DM
does not have any idea about the explicit form of the value function except that it must be
differentiable and quasi-concave. We also recorded some statistical indicators which are
based on “value efficiency”, Vegr. For any simulant value function V, and for each set of

design alternatives, we define V. for a design D;

V(DJ ) - Vmin
\Y

max min

V. (D;)=100 (3.16)

where Vi 1S the minimum value and V. 1S the maximum value of V in the set of
design alternatives. For each problem size, we found the average number (over the ten
sets of alternatives) of iterations and queries needed to find a design alternative that has
Vs of at least 95% (i.e., stopping when Vg of a new trial design is greater than 95%),
and also the number of iterations and queries needed to find an alternative with 100%
V.. Another statistical indicator is the average V. of the selected design alternative
when the stopping criterion is Vg > 95%.

For each of the ten sets of design alternatives in each of the problem sizes we
conducted five simulations, each using one of the following simulant value functions to

represent the DM’s preferences.

Vi(D) =[-) (a;-1)’];p=2 (3.17)
i=1

Va(Dj) = —; Y e Y, = Al ;m is the number of attributes (3.18)

V3(Dy) = 1;[ ag; o, = %n; m is the number of attributes (3.19)
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m [(a,—1)*; ifiisodd
Vi) =31 (3.20)

2' . ..
1 |(a;—0.5)7;1f iis even

m-1

Vs(D) = 2. i 33y (3.21)

i=1 k=i+l

Note that V| is increasing for each attribute. (Malakooti [Malakooti, 1988], used the same
value function V; for his verification.) V; is concave and is exponentially increasing in
each attribute. V3 is the Cobb-Douglas function [Takayama, 1993], which is concave and
increasing with respect to the attributes and has inter-dependence between attributes. V4
is concave and increasing for the odd numbered attributes and uni-modal for the even
numbered attributes. Finally, Vs is the second elementary symmetric function
[Greenberg and Pierskalla, 1971], which is quasi-concave with respect to the attributes
and has inter-dependence between attributes. We chose these functions to demonstrate
that our method works with different forms of the value function as long as it is
quasi-concave. However, the highest order polynomial function that we considered in
these simulant value functions is two. We use a polynomial of order greater than two
(specifically f>2 in Eq. (3.17)) in the verification of our methods in Chapter 5 and
Chapter 6. Also we use a modification of Eq. (3.19) that is quasi-concave but not concave
in the verification of our methods in Chapter 5 and Chapter 6.

For the starting trial design in each simulation, we chose from the set of
alternatives a design that has less than 40% Vg In the next section, we present the

results of our experiments.
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3.6.2. Results of Experiments for the Verification of Deterministic Selection Method

For each problem size and each simulant value function in our experiment,
Table 3.8 shows the statistical indicators described in Section 3.6.1. Our experiments
show that our method can, indeed, find the DM’s most preferred design, the one which
has the highest value among the alternatives. From Table 3.8, we observe that when
stopping at Vg > 95%, the selected designs had Vg ranging from 97.2% to 100%, with
an average (over the problem sizes) of 99.1%. It took on average 2.9 iterations to reach
95% and 4 iterations to reach 100% value efficient design alternatives. For the simulant
value function V), the results shown in Table 3.8 are comparable to the results published
by Malakooti [Malakooti, 1988]. However, an exact comparison cannot be made because
we do not know the design alternatives used in his verification study. Recall also that our
method asks the DM for the comparison of attributes whereas Malakooti’s method asks
the DM for the comparison of alternatives.

An interesting observation from Table 3.8, is that the number of iterations
required for our deterministic selection method depends more on the number of attributes
than on the number of designs. For example, we can see that for the simulant value
function V3 given by Eq. (3.19), the average number of iterations required in finding a
design alternative with 100% Vg is: ‘2.5 iterations’ when the problem size is 5
attributes’ x ‘50 designs’; ‘3.1 iterations’ when the problem size is ‘5 attributes’ x ‘100
designs’; and ‘4.2 iterations’ when the problem size is 5 attributes’ x ‘200 designs’. The
reason for this is that, gradient cut eliminates all the designs that are in the half space

bounded by the gradient at a trial design. So, the number of iterations required by our
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deterministic selection method will not change if the additional designs lie in the gradient
cut of a trial design.

Table 3.8: Results of the verification study for deterministic selection method

Avg Virof best

(:)fr:tl:i'ei::l:;z;#":f Value Avg # of queries iter:t:ogni ?: get design after  Avg # of queries iter:t:ogn#: :: get
designs" function to get 95% Vg 95% Ve reach\i;lg 95% to get 100% Vegr 100% V.
off
\ 1.9 1.9 99.9 2.3 2.3
V, 2.1 2.1 99.8 23 23
2 x50 V3 2.5 2.5 91.9 32 32
V4 2.9 2.9 98.7 6.2 6.2
Vs 3 3 99.9 3.1 3.1
\ 1.9 1.9 99.6 2.9 2.9
Vs 2.1 2.1 99.9 2.5 2.5
2 %100 V3 34 34 94.0 3.8 3.8
V, 2.7 2.7 98.7 7.1 7.1
Vs 3 3 99.1 3.7 3.7
Vi 10.2 34 99.6 11.1 3.7
A\ 7.8 2.6 99.6 8.4 2.8
3 x50 V3 6.6 22 99.0 10.2 34
V4 54 1.8 99.2 7.5 2.5
Vs 8.4 2.8 99.4 10.5 3.5
Vi 9.6 32 99.4 11.7 39
\% 7.2 2.4 99.6 7.8 2.6
3x100 V3 114 3.8 99.1 14.7 4.9
V4 8.1 2.7 98.7 13.2 4.4
Vs 6.3 2.1 99.0 7.8 2.6
Vi 8.1 2.7 99.3 9.9 33
V, 6.6 2.2 99.5 8.7 29
3x200 V3 13.8 4.6 99.4 153 5.1
V, 9.3 3.1 98.5 16.8 5.6
Vs 54 1.8 99.4 7.2 2.4
Vi 11.2 2.8 99.0 17.6 4.4
V, 12 3 98.6 16 4
4X50 V3 12 3 99.7 14 35
V, 16.4 4.1 99.3 232 5.8
Vs 7.6 1.9 99.1 8.4 2.1

Continued on the next page
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Continued from the last page

Problem size: "# . Avg # of Avg Ym of best . Avg # of
. Value Avg # of queries | . design after ~ Avg # of queries .
of attrlb.utesx# of function to get 95% Ve iterations to get reaching 95%  to get 100% Ve iterations to get
designs" 95% Vi Ver 100% Vg
Vi 12 3 98.6 20.4 5.1
\'% 11.6 29 98.8 14 35
4X100 V3 21.2 53 99.0 27.6 6.9
Vy 14.4 3.6 98.2 21.2 53
Vs 9.2 2.3 99.6 10.8 2.7
Vi 14.8 3.7 98.5 19.6 4.9
\'% 10.8 2.7 98.7 14 35
4X200 V3 18.8 4.7 99.7 19.6 4.9
Vy 19.6 4.9 98.7 28.4 7.1
Vs 15.2 3.8 99.0 17.6 4.4
Vi 8 1.6 98.9 12.5 2.5
V, 11 2.2 99.3 13 2.6
5%50 V3 12.5 2.5 100.0 12.5 2.5
V4 18 3.6 99.3 25.5 5.1
Vs 11 2.2 99.6 11.5 2.3
Vi 15.5 3.1 99.2 19 3.8
V, 9.5 1.9 98.9 12.5 2.5
5%x100 V3 11.5 23 99.2 15.5 3.1
Vy 13 2.6 98.3 325 6.5
Vs 11 2.2 99.6 11.5 2.3
\ 14.5 2.9 98.9 19.5 39
\'% 15 3 99.1 18.5 3.7
5%200 V3 16.5 33 98.9 21 4.2
\2 17 34 98.3 46 9.2
Vs 12.5 2.5 99.4 14 2.8
Vi 14.4 2.4 99.7 15.6 2.6
\'% 15 2.5 98.7 17.4 2.9
6x50 V3 14.4 2.4 98.3 21.6 3.6
Vy 27.6 4.6 98.9 37.2 6.2
Vs 13.2 2.2 99.5 14.4 2.4
Vi 15 25 99.2 19.8 33
V, 15 2.5 98.6 18 3
6x100 V3 14.4 2.4 99.3 16.2 2.7
V4 25.2 4.2 98.3 42.6 7.1
Vs 14.4 2.4 99.5 15 2.5
Vi 222 3.7 98.9 33.6 5.6
V, 15.6 2.6 98.3 22.8 3.8
6x200 V3 24 4 99.4 30 5
Vy 27.6 4.6 97.2 55.8 9.3
Vs 20.4 3.4 99.1 24 4

We also conducted an experiment to verify that our approach for finding a new

trial design is better than some simplistic approach. In this experiment, we conducted a
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simulation similar to the simulations discussed in Section 3.6.1. We used the function
given by Eq. (3.20) as the simulant value function representing the DM’s preference
structure. However for finding the new trial design, we used a simplistic approach rather
than our approach (recall Section 3.3.3). In this simplistic approach, we use the
non-eliminated design alternative which would have maximum value if the value
function were linear with equal importance to the attributes as the new trial design. In the
simulation, we found the number of iterations required to reach a 95% V. design
alternative.

Table 3.9: Results for the verification of our approach for finding a new trial design

Problem size 2x50 2x100 3x50 3x100 4x50 4x100 5%50 5x100

No ofiterations to find 95%
Vegr design using our

29 2.7 1.8 2.7 4.1 3.6 3.6 2.6
approach for finding a new
trial design
No of iterations to find 95%
Vgr design using simplistic 54 97 34 43 43 43 3 32

approach for finding a new
trial design

Table 3.9 above shows the number of iterations required to find a design with
at least 95% V. using our approach for finding a new trial design in the first row for
different problem sizes (i.e., (number of attributes) x (number of alternatives)). The
number of iterations required for finding a design with atleast 95% V. using the
simplistic approach is presented in the second row. From Table 3.9, we can see that our
approach for finding the new trial design performs much better (for most of the problem
sizes) than the simplistic approach. Also our approach for finding the new trial design is a

linear programming problem and can be solved quickly.
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3.7. SUMMARY

In this chapter, we presented an interactive method for deterministic product
design selection with an implicit value function. The method required that the DM state
his/her preferences in the form of MRS between attributes at each trial design. We
presented an approach for finding the gradient of the DM’s value function at a trial
design using the DM’s response to MRS questions. If the DM’s MRS preferences are
inconsistent beyond a certain limit (given by ¢), our formulation for finding the gradient
coefficients becomes infeasible thus alerting the DM about the inconsistency. The
deterministic selection method used gradient cut to eliminate lower value designs. We
presented an approach that makes good use of the gradient information at all the previous
trial designs for finding a better new trial design. We presented a new approach, gradient
adjacency elimination, which is useful for eliminating designs that are not eliminated by
gradient cut. Finally, we presented an algorithm for deterministic selection using the
concepts mentioned above. We demonstrated our deterministic selection with two
engineering examples, namely, selection of a payload design for undersea autonomous
vehicle and selection of a cordless electric drill. We also presented some experimental
results to verify our deterministic selection method.

Our deterministic selection method is applicable when the DM’s implicit value
function is differentiable and quasi-concave. The main difference between our
deterministic selection method and other selection methods for an implicit value function
(e.g., [Malakooti, 1988]) is that in our deterministic selection method we query the DM
for the marginal rate of substitution (MRS) between the attributes while other methods

query the DM for the pair-wise comparison of design alternatives. However, as
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mentioned in Section 2.3.1 of Chapter 2, pair-wise comparisons of design alternatives are
difficult because they involve comparing two m-attribute designs, and, hence, might lead
to intransitive preferences.

Our deterministic selection method is iterative and requires the DM to state the
MRS preferences at a series of trial designs. Since the method queries the DM for the
MRS between attributes, it is presumed that the DM has the requisite level of expertise
and consistent judgment to make the trade-offs. Because of its iterative nature, our
method might come across as tedious. However, since we have no idea about the DM’s
implicit value function there is no better way (without explicitly assuming a function) for
finding the most preferred design other than eliminating lower value designs with respect
to a series of trial designs.

Our deterministic selection method guarantees that the set of non-eliminated trial
designs, Dnrp, always contains the most preferred design irrespective of the starting trial
design. Otherwise, the most preferred design would have been eliminated by the gradient
cut of some trial design, contradicting the property of quasi-concave value function
(recall Section 3.3.2). However, if Dntp, is not a singleton, the uniqueness of the most
preferred design is not guaranteed because the gradient adjacency elimination approach
which is used to select from Dnrp is a heuristic approach.

For the verification of our deterministic selection method, we used simulant value
functions, replacing a human DM, for obtaining the MRS preferences at the trial designs.
Although such a numerical approach is mathematically valid, in reality there is no
practical way for checking whether the DM gives the MRS preferences consistent with a

value function as we move from one trial design to other trial design. But, unfortunately,
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there are no benchmark problems for validating product design selection methods
because of the subjectivity involved with human preferences.

Also in our verification study, we stopped the deterministic selection method after
obtaining a design with a value efficiency of 95% and 100%. We could do this in our
verification study because we used a simulated DM. In reality, such a stopping criterion
cannot be used because of the implicit nature of the DM’s value function and the only
stopping criterion is that a new trial design cannot be found. However, our experiments
showed that, on an average, irrespective of the problem size (for at least up to ‘six
attributes’ x ‘200 designs’) our method finds the most preferred design alternative (i.e.,
design with value efficiency of 100%) as the new trial design in five to six iterations. So
the DM can stop the iterative process after five to six iterations and make a selection from
the set of non-eliminated trial designs, Dnrp, at that stage

In the next chapter, we present the development of the method for our second
research component, sensitivity analysis for deterministic selection. This method is used
to find the allowed preference variation for which the set of non-eliminated trial designs,

found using the deterministic selection does not change.
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CHAPTER 4

SENSITIVITY ANALYSIS FOR DETERMINISTIC SELECTION

4.1. INTRODUCTION

In making a selection from a set of product design alternatives, the DM tries to
meet the requirements of the end users of the product. Since, in general, the DM does not
have complete information about the end users’ needs, he/she may want to know how the
preferred design(s) is (are) affected if the preferences vary. For example in automobile
design selection, the DM conducts market survey and says that: “I would allow the cost
of the automobile to increase around 5000 dollars, if the 0-60 time is decreased by two
seconds”. The DM gives an estimate of his/her actual preference in such a response and
he/she cannot state his/her actual preference with certainty. So the DM would like to
know how much variation the preferred design(s) can absorb before it is replaced by
some other design(s). We call as robustness, the amount of change (or variation) allowed
between the actual preferences and the preference estimates before the preferred
design(s) is (are) changed. Finding the degree of robustness (or robustness index) of the
preferred design(s) to preference variation is generally referred to as sensitivity analysis
in the literature [Insua and French, 1991].

The purpose of this chapter is to present a concept for sensitivity analysis for
deterministic selection. This concept can be used with any iterative selection scheme that
chooses a trial design for each iteration, and uses the DM’s estimates of preference

parameters at that trial design to eliminate some design options which have lower value
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than the trial design [Maddulapalli et al., 2002] [Malakooti, 1988]. Such schemes, like
our deterministic selection method (recall Chapter 3), are in general applicable to the
cases where the DM’s value function is implicit.

The organization of this chapter is as follows. In Section 4.2 we present an
overview of our concept for sensitivity analysis. Section 4.3 describes an implementation
of the concept using our deterministic selection method (recall Chapter 3). Next, in
Section 4.4 we discuss our algorithm for sensitivity analysis. In Section 4.5, we
demonstrate the application of our sensitivity analysis method with the help of two
engineering examples. Then we present some experimental results to verify our
sensitivity analysis method in Section 4.6 and finally conclude the chapter with a

summary in Section 4.7.

4.2. OVERVIEW OF CONCEPT FOR SENSITIVITY ANALYSIS

Our concept for sensitivity analysis is applicable to iterative selection methods,
which choose a trial design D at each iteration, and examine every other design D; in the
original set of design alternatives to eliminate designs having lower value than Dr, e.g.,
[Malakooti, 1988], our deterministic selection method of Chapter 3. The output of such a
method is a set of non-eliminated trial designs Dntp, which could be a singleton.
Figure 4.1 shows the flowchart of our concept for calculating three successive metrics,
culminating in the “robustness index” of Dxp.

For each D, originally eliminated by Dr, and for each preference (e.g., relative
importance or MRS between attributes) estimate, there is a certain variation (i.e., a

difference) between the estimate and the actual preference for which D, becomes
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non-eliminated. Our first metric 3.1, which we call elimination robustness of design D
with respect to trial design Dr, 1s defined as the smallest of those variations, where they
are considered in magnitude, expressed as fractions of their estimates. Thus, so long as
the variation in every preference is less than &.1, D+ will always be eliminated by Dr. If
D, is originally non-eliminated, d:1 can conveniently be taken as zero (i.e., no preference
variation is needed to make it non-eliminated). For each Dr, &7 is calculated for each

design D in the original set of design alternatives.

ITERATIVE SELECTION METHOD

—> X | 1
ELIMINATED DESIGNS ! 8,7~ ELIMINATION !
AT EACH TRIAL DESIGN |, | ROBUSTNESS WITH !
Dy ' RESPECT TO D !
8, 115---» Oy fOr €ach
eliminated design D,
[ 1
2, SET OF DESIGNS SET OF NON- ' 8.max — OVERALL !
. ELIMINATED TRIAL ' ELIMINATION !
° 1
a DESIGNS, Dypp i____ROBUSTNESS _:

=~ : 3-- ROBUSTNESS INDEX
. i 1
) OF Dyy;, AND CRITICAL
AW :
1

DESIGNS
DECISIONMAKER e e emem e m e e e —————
NEXT ACTION

Figure 4.1: Flowchart of the concept for sensitivity analysis
The second metric, dimax, 1S the overall elimination robustness of a design D..
O+max 18 the largest of the d.1’s for D; over all Dy’s. Thus, so long as the variation in
every preference is less than &:max at all trial designs, D+ will be eliminated by at least one

trial design.
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The final metric is robustness index, &, which is the minimum of all the &.+max’s.
All designs not in the set of non-eliminated trial designs, Dnrp, remain eliminated so long
as the variation in every preference is less than o.

Table 4.1: Overall elimination robustness of design alternatives

Design alternative

3 4 1 2 9 10 8 7 6
number

Overall elimination
0.35 0.38 0.97 0.97 2.52 2.52 2.95 3.08 223.14
robustness 0. max

To explain the usefulness of our robustness index, we present the results of one of
our examples in Table 4.1 (see Section 4.5.1.1 for details). In this example, we selected
from ten designs. The set Dnyp consists of a single element, Ds. Table 4.1 shows the
overall elimination robustness, the &:max’s, of the other nine designs in an ascending
order. The minimum J&.max Occurs for D3, and this value becomes the robustness index of
Dnrp: 6 = 0.35. Thus, as long as all actual preferences differ from their estimates by less
than 35%, Ds will be the most preferred design. Any design for which &;m.x = 0 we call a
“critical design”; it becomes a member of Dyp if the preference variation is 6 or more. In
the example, Ds is a singleton critical design. The DM can consider the robustness index
O and the identified critical designs to choose what action to take next. If the DM feels
that the robustness index is acceptable or that the critical designs are not important, then
he/she can make a selection from the set Dnrp. Otherwise, he/she can give ranges for the
preferences and then find the potentially optimal designs for those ranges (see Chapter 5
for our method to find the potentially optimal designs for a range of MRS preferences).

Note that 3.m.x for each design is the preference variation at the trial designs that

would cause that design to become a member of Dntp. Arranging the designs in the
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ascending order of dimax (as in Table 4.1) lets the DM see which designs (other than the
critical designs) are next nearest to becoming members of Dnrtp, and what amount of
preference variation would cause that to happen. In the above example, D4 is next nearest
to becoming a member of Dyrp and that will happen if the preference variation is 38%.
Also, the DM can give ranges of preferences symmetric about the preference estimates
(i.e., preference estimate is the mid point of the range) at the trial designs to account for
the preference variability and then find the set of non-eliminated designs for those ranges
directly using &:max. However, if the ranges of preferences are not symmetric about the
preference estimates then the DM should use selection with preference variability for
finding the set of non-eliminated trial designs (see Chapter 5 for our method for selection
with preference variability).

The robustness index also gives the bounds or intervals within which the actual
preferences at all trial designs must lie in order to not affect Dnp: {estimated preference
value}-{1+6}. The bounds on the preferences are similar to the weight stability intervals
proposed by Mareschal [Mareschal, 1988]. However, Mareschal’s approach is applicable
only for an additive value function (with unknown weights). In contrast, our concept for

sensitivity analysis is applicable to selection with an implicit value function.

4.3. SENSITIVITY ANALYSIS IMPLEMENTATION

In this section, we describe the implementation of the concept for sensitivity
analysis (recall Figure 4.1) in our deterministic selection method (recall Chapter 3). In
this implementation, we assume that the DM’s implicit value function is differentiable,

quasi-concave and non-decreasing with respect to the attributes. (Note that the
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assumption that the DM’s value function is non-decreasing with respect to the attributes
is not necessary for the application of the method developed in Chapter 3.) Because the
DM’s value function is assumed non-decreasing with respect to attributes, for selection, it
is enough to consider only those designs that are Pareto optimal from the original set of

design alternatives [Malakooti, 1988]. Figure 4.2 shows the flowchart of the

implementation.
DETERMINISTIC SELECTION METHOD
USE GRADIENT CUT
OBTAIN GRADIENT TO ELIMINATE
I COEFFICIENTS (W, ) LOWER-
VALUE DESIGNS
Preference Queties
estimates | u mTTT T T T s s T T s 1
| 8. ELIMINATION !
! 1
Update i ROBUSTNESS WITH |
' Dy : RESPECT TO D; !
Picka DECISIONMAKER _-~"~_ | |  ~======77r~====77°
trial

design Dy FIND A NEW S.15- -, Oy, for each

TRIAL DESIGN ? eliminated design D,
No st T T T T T T 1
' 8.max — OVERALL !
! ' ELIMINATION !
a, -S.E-T OF DESIGNS SET OF NON- : ROBUSTNESS :

° e ELIMINATED TRIAL
2 DESIGNS, Dyyp

DECISION MAKER |

| 8- ROBUSTNESS INDEX
A 1 OF Dy, AND CRITICAL
' DESIGNS

NEXT ACTION
Figure 4.2: Flowchart of the concept for sensitivity analysis applied to our
deterministic selection method
The flowchart in Figure 4.2 is similar to that of Figure 4.1 except that the box
titled “Iterative Selection Method” in Figure 4.1 is replaced by the flowchart of our
deterministic selection method (recall Figure 3.1) in Figure 4.2. Recall from Chapter 3

that, in our deterministic selection method, we start by picking a trial design Dr from the
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set of design alternatives. Next, we capture the DM’s preferences by querying about the
MRS between attributes. We use the DM’s response to these MRS queries as the
preference (or MRS) estimates in the implementation of our sensitivity analysis concept.

In our deterministic selection method, after eliminating lower value designs using
the gradient coefficients at a series of trial designs, we collect the non-eliminated trial
designs in the set, designated by Dnrp. We then use the gradient adjacency elimination
approach for eliminating more designs from Dnrtp. However, in the implementation of the
concept of sensitivity analysis in our deterministic selection method, the robustness index
that we find is the robustness of the set Dntp and not of the most preferred design.

In the next two sections we describe the individual components of the
implementation shown in Figure 4.2. In Section 4.3.1, we explain our approach for
finding o1, followed in Section 4.3.2 by our approach for finding 8. Refer to Chapter 3,
for our approaches for: finding the gradient coefficients, eliminating lower value designs

using gradient cut and finding a new trial design. Note, from here on in this chapter, d.r,

d+max, and O represent the preference variation between actual MRS preferences and their

estimates.

4.3.1. Finding Elimination Robustness of a Design with respect to a Trial Design

Let Sjir be the MRS estimate between attributes a; and a; given by the DM at the
current trial design Dt in our deterministic selection method (recall Figure 4.2), and let
VVr be the corresponding gradient of the value function. Also, let D; be an arbitrary
design that belongs to the original set of design alternatives and that lies in the gradient

cut Cg corresponding to VVrt at Dr (therefore Dy eliminates Dy).
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) Preference (MRS) variation
\ vV, affects the gradient at D

Gradient cut for
preference variation

4

Figure 4.3: Illustration of threshold gradient of D, with respect to Dy

As illustrated in Figure 4.3, if the actual preferences (stated when there is
complete information about end users’ needs) at Dr are such that the gradient

isVV: :[W,..,W! ], then D; would not be eliminated. We call VV;" the threshold

gradient of D, with respect to Dr. d:t, the elimination robustness of D, with respect to
Dr, is the smallest of the ‘m-1" preference variations at D for which the gradient reaches
the threshold gradient. Note from Eq. (3.11) (recall Section 3.3.2 of Chapter 3) that

Eq. (4.1) holds at VV;" (where the terms air and a;; are the attributes of Dr and D-,

respectively).

m

> Wi-(a,-a;)= 0. 4.1)

i=1
We use the symbol st to represent the actual MRS values between attributes a;
and ajat Dr and Vvt = [wir,...,Wnt] to represent the gradient corresponding to sjr. As
long as all sjjr’s lie in the range given by Eq. (4.2), their corresponding gradient will not

reach the threshold gradientVV,".

(1 - 6+T) ’ SijT < sijT < (1 + 6+T) : SijT (4~2)
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In the next section, we present our formulation for finding 8.1 when D; lies in the
gradient cut of VVr. Recall from Section 4.2 that for convenience we set 0.1 of a design

D. not in the gradient cut of VVrto zero.

4.3.1.1. Formulation for Finding the Elimination Robustness of a Design with respect to
a Trial Design

We use the formulation in Eq. (4.3) for finding 8.1 of a design D.: [aj4,...,am]
with respect to a trial design Dr: [a;r,...,amr] treating 6.1 and the wir as the variables that

are to be found. In Eq. (4.3), ajT and a;: are fixed (or deterministic).

Minimize 9, (4.3a)
subject to: iZml:wiT-(aH—aiT)Z 0 (4.3b)
: w, =1 w;20 (4.3¢)
(1-8,1) Sy < Wi < (1+8.7) - Syr; 'm-1'such constraints (4.3d)

i
0, =20 (4.3¢)

Eq. (4.3b) is used to check that D is not in the gradient cut corresponding to the gradient
coefficients, wir, at Dt (recall Eq. (4.1)). Note that, in the formulation of Eq. (4.3), we are
looking for preference variations that would make D, not eliminated.

Eq. (4.3c) is a normalization constraint on the gradient coefficients, wir. We
impose the constraint that the gradient coefficients, wir, are non-negative because we
assume that the value function is non-decreasing with respect to the attributes. We use

Eq. (4.3c) to normalize wir because, we assume that the attributes are normalized in
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Eq. (4.3). When the attributes are normalized, wir is dimensionless and represents the
relative importance or weight of the attribute (which by convention in the literature lies

between zero and one). However, if the attributes are not normalized we neglect

Eq. (4.3¢) in the above formulation. One could also modify Eq. (4.3¢c) aSZWiT T =1,

i=1

where r; is the scale of the i attribute (recall Definition in Section 2.2.1 of Chapter 2).

Eq. (4.3d) is to check that s;r (recall from Eq. (3.4) that s, = Wir ) are within the

Wi
bounds, given by &.1, of the MRS estimates, Sjjt. Also, if the lower bound in Eq. (4.3d)
becomes negative, we set it equal to zero because s;jr cannot be negative. Eq. (4.3e) is a
constraint imposed on J.r.

In Eq. (4.3d), we assume that the actual MRS values can lie in either direction of
(i.e., greater or lesser than) the MRS estimate S;r. L.e., we assume the preference
variation to be symmetric about the MRS estimates. We make this assumption because
we do not have any information about where the DM’s actual MRS preference is.
However, we can readily modify Eq. (4.3d) if the DM says that the actual preference is in
a particular direction of Sjjr.

Note that it is important to obtain the global optimum of d;r when using the
formulation in Eq. (4.3). A local optimum could differ significantly from the global
optimum giving misleading conclusions about the allowed preference variation at Dy for
which D is always eliminated.

Note that in Eq. (4.3) we assume the sjjv’s are exact and consistent. By exact and

consistent we mean that Eq. (4.4) is satisfied (recall Eq. (3.4) and Eq. (3.9)).
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W,
_ iT _ iT

Sir = T and SirSpr = (4.4)
Wi W,

Since only ‘m-1" MRS values are independent when they are consistent, we use only

< 2

m-1" constraints for the bounds on sjjr (recall Eq. (4.3d)), even though we obtain ‘m’
MRS estimates from the DM. However, if one feels that the exactness and consistency
assumption is not appropriate then, the formulation in Eq. (4.3) can be easily modified by

adding two more constraints as given by Eq. (4.5) or Eq. (4.6) depending on whether or

not the attributes are normalized. In Eq. (4.6), ; is the scale of the i attribute.

- 2
W, ) L

Z Syt — —L | < g, where ¢ is arbitrarily small (4.5a)
| Wir

- 2

W.

z Syt " Sj __IT} < g (4.5b)
ijk | Wir

22
> SijT—hNi] <e (4.62)
i | Wir )

3 (sﬂ-sjﬂ—&) iﬂ <g (4.6b)

ik |

Eq. (4.5a) or Eq. (4.6a) would be used to check how close the s;t’s are to the wir’s (recall
Eq. (3.6a) and Eq. (3.10a)) and Eq. (4.5b) or Eq. (4.6b) would be used to check that s;jr
are consistent (recall Eq.(3.6b) and Eq.(3.10b)). However, note that adding the
constraints in Eq. (4.5) or Eq.(4.6) (which are nonlinear and non-convex) to the
formulation in Eq. (4.3) would increase the computational burden for finding J.r.

The Eq. (4.3) formulation (with or without additional constraints of Eq. (4.5) or

Eq. (4.6)) can be solved with existing commercial optimization software (e.g., “fmincon”
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from the MATLAB® optimization toolbox). One might argue that the bounds on sjr,

hence 8.1, could be obtained more easily by finding the threshold gradient VV;" (see

Figure 4.3) analytically. VV " :[W/

s, W T could be found by minimizing the angle

between VVrandVV," subject to the constraint of Eq. (4.1), where VV1 = [WiT,...,Wr]

is the gradient of the value function at Dt obtained from the MRS estimates S;r. Once

VV;" is found, the corresponding threshold MRS, S, can be found using Eq. (3.4). The

threshold MRS can then be used in finding the bounds on MRS values, s;r, as given by

Eq. (4.7a) or Eq. (4.7b) as the case may be, and the bounds can then be used in finding
O4.

. Wt+
Wi < sy < (4.7a)
Wi W

W_t+ W
Wl:— ijT Wi (47b)

Even though the above discussed approach looks tempting, it is not applicable for
problems with more than two attributes, as is proven in the lemma in Appendix-II.
In the next section, we present our approach for finding the robustness index & of

Dnrp.

4.3.2. Finding Robustness Index of Dntp
Let D, be any arbitrary design alternative that does not belong to the set of
non-eliminated trial designs Dnrp. Let Oi11,..., &1 be the elimination robustness of D+

with respect to trial designs Dry,..., D1, respectively (c is the total number of iterations).
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The overall elimination robustness of D+, d:max (recall Section 4.2), is then the maximum
of all 8:1i’s j =1, ..., ¢). And the robustness index & of Dnrp is then the minimum of all
Otmax”S-

Our definition of robustness index 0 is conservative because it restricts the
variation between the actual MRS and its estimate to be the same for all pairs of attributes
at all the trial designs. However, if we find the allowed preference variation for each pair
of attributes at each trial design, the resulting amount of information is likely to
overwhelm the DM. Note that we can readily modify our approach if the DM is interested
in the robustness of Dnrp with respect to a particular pair of attributes and/or a particular
trial design.

We mentioned earlier that our robustness index can be used for finding the critical
designs — those that become non-eliminated if the variation between the actual MRS
preferences and the estimates at the trial designs is & or more. If the intermediate data (the
O+17’s and the Oimax’s) are retained, they can be traced back as follows to identify a
“critical pair” -- the two attributes whose MRS variation has the largest influence in
determining the critical designs. First, find the D; whose &:max €quals & (the minimum of
all :+max’s). For that D4, find the trial design Dt whose 3.7 equals its d.4max (maximum of
the 8.7’s for that D;). Next, for that Dr and D, find which constraint(s) out of the ‘m-1’
constraints on the bounds of MRS (recall Eq.(4.3d)) are active. The attributes
corresponding to that constraint(s) are the critical pair(s). Improving the MRS estimate
for the critical pair would give the largest increase in the robustness index, so knowing

the critical pair can help the DM. The DM can also assign various ranges for the MRS
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preference between the critical pair and see how the potentially optimal designs change
using our method for selection with preference variability (see Chapter 5 for details).
In the next section, we present the algorithm we developed for finding the

robustness index of Dnrp using the concepts developed in the earlier sections.

4.4. ALGORITHM FOR SENSITIVITY ANALYSIS

Our algorithm for finding the robustness index has the following steps. In this
algorithm, Step 1 to Step 6 are similar to the algorithm we presented for our deterministic
selection method in Section 3.4 of Chapter 3.

Step 1: Set the iteration number to one (i.e., q = 1) and pick a starting trial design,
D), from the set of design alternatives. We choose Dr; either as an alternative that would
have maximum value if the value function were linear with equal importance to the
attributes, or as a random pick.

Step 2: Query the DM for the preference (MRS) estimates at the current trial
design Dr.

Step 3: Find the gradient of the value function at Dtq using the preference (MRS)
estimates (recall Section 3.3.1 of Chapter 3).

Step 4: Eliminate lower value designs using the gradient cut at Drq (recall
Section 3.3.2 of Chapter 3). Store the designs that are eliminated by Dr.

Step 5: If all designs except one are eliminated, define Dnrp to be the singleton set
containing the non-eliminated design, set total number of iterations to current iteration

number (i.e., ¢ = q), and go to Step 7. Otherwise, go to Step 6.
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Step 6: Find a new trial design from the non-eliminated design alternatives (recall
Section 3.3.3 of Chapter 3). If a new trial design cannot be found, collect all the
non-eliminated trial designs in the set Dnrp, set total number of iterations to current
iteration number (i.e., ¢ = q), and go to Step 7. Otherwise, increase the iteration number
by one (i.e., q = q+1), set the new trial design as Drq and go to Step 2.

Step 7: For each D, that does not belong to Dnrp, find 8+q (q=1,...,c). If D. is
eliminated by Drq, use Eq. (4.3) (recall Section 4.3.1.1) for finding 6.1q otherwise, set
d+1q to zero.

Step 8: For each D, that does not belong to Dnrp, find &imax, the overall
elimination robustness of D., by finding the maximum of the d.1¢’s (q=1,...,c).

Step 9: Find 9, the robustness index of Dntp, by finding the minimum of all
d+max S and present this & and the corresponding critical design(s) to the DM. Stop.

In the next section, we demonstrate our sensitivity analysis method by applying

the algorithm discussed above to two engineering examples.

4.5. DEMONSTRATION EXAMPLES

As a demonstration, we tested our sensitivity analysis concept by applying our
algorithm to two engineering examples. These examples are same as the examples in
Section 3.5 of Chapter 3. The first example is a two-attribute problem and involves the
selection of a payload design for an undersea autonomous vehicle. The second example is
a three-attribute problem and involves the selection of a cordless electric drill. The
payload design selection example graphically demonstrates the working of our algorithm

for sensitivity analysis. The cordless electric drill selection example demonstrates the
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applicability of our method to a problem where the attributes are not normalized between

zero and one.

4.5.1. Sensitivity Analysis for Deterministic Selection of Payload Design for
Undersea Autonomous Vehicle

For the payload design selection example, we set the ten Pareto optimum design
alternatives, shown in Table 3.1 (reproduced in Column 2 of Table 4.2), as the design
alternatives from which we select, with the Pg;’s being the attributes. We again use the
simulant value function given by Eq. (3.15) as the simulated DM for this example (recall
Section 3.5.1 of Chapter 3).

In the next section, Section 4.5.1.1, we describe the application of our algorithm
for sensitivity analysis (recall Section 4.4) to the payload design selection example, and
then discuss the results in Section 4.5.1.2. Some of the steps we describe in

Section 4.5.1.1 are similar to the steps in Section 3.5.1.1 of Chapter 3.

4.5.1.1. Application of Algorithm for Sensitivity Analysis to Payload Design Selection
Following our algorithm in Section 4.4., we set the iteration number to one (i.e.,
q=1) and randomly pick D; as the starting trial design, i.e.,
Dri: [Psi1, Ps2] =[0.134, 0.684] (Step 1). The simulated DM of Eq. (3.15) responds with
the MRS estimate as, Sio7i: 2.74 (Step 2). The gradient of the value function at Dr; is
then VV1; =[0.73, 0.27] (Step 3). Gradient cut at Dr; (Step 4) eliminates five lower value
designs; i.e., D;, D,, D¢, D7, and Dg (shown by small rectangles in Figure 4.4(a)). Since

more than one design is non-eliminated we skip Step 5 and find a new trial design
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(Step 6). Using our approach for finding a new trial design (recall Section 3.3.3), we find
Ds as the new trial design. We increase the iteration number by one (i.e., q = 2), set Ds as
Dr,: [0.274, 0.541] and go to Step 2.

The simulated DM of Eq. (3.15) gives the MRS estimate at D, as, Sioma: 1.59
(Step 2). The gradient of the value function at Dr, is then VV1, =[0.61, 0.39] (Step 3).
Gradient cut at Dr; (Step 4) eliminates all other designs (shown by small rectangles in
Figure 4.5(a)). Since all designs except one are eliminated, Dntp is the singleton set with

Ds as its member (Step 5) and we set the total number of iterations to two, i.e., ¢ =2 and

go to Step 7.
O Eliminated design ¢ Trial Design + Non-eliminated designs
Threshold gradient for D,.
Pg, i i Py, . ! .
MRS estimate at Dy, is 2.74 4 Corresponding threshold MRS is 0.09
0.9 0.9 A
VV.,=[0.73,0.27] AN vV,
075 075 Preference (MRS) variation
e R affects the gradient at Dy,
D, _—
0.5 0.5
0.25 0.25
H. H
0 I > P, 0 I > P,
0 0.15 0.3 0.45 0.6 0 0.15 0.3 0.45 0.6
(a) (b)

Figure 4.4: Payload design selection (a) gradient cut at Dy, and (b) threshold
gradient of D; with respect to Dy
We then find the elimination robustness of each eliminated design D, with respect
to Dry, i.e., 8411’s and Dy, i.e., :12’s (Step 7). Column 3 of Table 4.2 shows the &.1;’s of

all designs. For example, using Eq. (4.3), the elimination robustness of D; with respect to
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Dr;is 0.97. From Eq. (4.2), we can then say that D; will be eliminated by Dy as long as
the actual MRS value at Dry, i.e.,81271, 1S in the range

0.09 < s,,;, < 540. (4.8)
When solving Eq. (4.3) for 011, the inequality sjor; > 0.09 is active, so the threshold
MRS, Sflm , 18 0.09 (see Figure 4.4(b)). The elimination robustness of D3, D4, D9, and D¢

is zero because these designs are not eliminated by Dr;. The elimination robustness of Ds
is not listed in Table 4.2 because Ds is the most preferred design and belongs to Dxp.

Table 4.2: Elimination robustness of eliminated payload design alternatives

Design Attributes [Ps,, Psy] of 8.+11’s elimination 8.412’s elimination 8 +max , Overall
alternative A . robustness of D. with  robustness of D, with elimination robustness
design alternatives
number respect to Dy respect to D, of D,
3 [0.134,0.684] 0.00 0.35 0.35
4 [0.139,0.675] 0.00 0.38 0.38
1 [0.016,0.695] 0.97 0.62 0.97
2 [0.016,0.693] 0.97 0.63 0.97
9 [0.355,0.090] 0.00 2.52 2.52
10 [0.357,0.075] 0.00 2.52 2.52
8 [0.346,0.091] 0.02 2.95 2.95
7 [0.343,0.093] 0.03 3.08 3.08
6 [0.275,0.114] 0.47 223.14 223.14

Column 4 of Table 4.2 shows the d:12’s of all designs. Figure 4.5(b) illustrates the
threshold gradients of D; and D5 (recall D3 was trial design for first iteration) with respect
to Dr. Also, from Eq. (4.2), D, and D; will be eliminated by Dr, so long as the actual
MRS value at D, si212, 1s in the range given by Eq. (4.9a) and Eq. (4.9b), respectively.

0.59 < S5, < 2.57 (4.92)

1.02 < s, < 2.13 (4.9b)
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When solving Eq. (4.3) for &1z, the inequality sjor2 > 0.59 is active, so the threshold

MRS of D; at Dpy, Sflm, is 0.59 (see Figure 4.5(b)). Also the inequality sjor2 > 1.02 is

active when solving Eq. (4.3) for 8312, so the threshold MRS for D; at Dra, S5y, , is 1.02.

O Eliminated design ¢ Trial Design

p P Threshold gradient for D,.
s2 MRS estimate at D, is 1.59 S2 Corres'pondmg threshold
MRS is 0.59
0.9 09 ~t
;1 Threshold gradient for D;.
VV,,=[0.61,0.39 R 15 Corresponding threshold
0.75 ] = ] 0.75 S MRS is 1.02
L ) y
0.5 0.5
0.25 0.25
T2 T2
0 Py, 0 Pg,
0 0.15 0.3 0.45 0.6 0 0.15 0.3 045 0.6
@ ®)

Figure 4.5: Payload design selection (a) gradient cut at Dr; and (b) threshold
gradient of D; and D; with respect to Dy

Column 5 of Table 4.2 shows the overall elimination robustness, &+max’S, for all
eliminated designs (Step 8). Finally we find the robustness index of Ds, 8, by finding the
minimum of all 8:max’s (Step 9).

From Table 4.2, it can be seen that o is 0.35, which implies that Ds will be the
most preferred design as long as the difference between the actual MRS value and its
estimate is less than 35%. From Table 4.2, we also see that Ds is the singleton critical
design alternative, i.e., D3 will not be eliminated if the actual MRS value differs by 35%
from the MRS estimate. Also, from Table 4.2, we observe that the actual MRS value at
the trial designs can change by 38% from the MRS estimate before a design alternative

other than D3 becomes non-eliminated.
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In the next section, we discuss the verification of the results for payload design

selection.

4.5.1.2. Discussion
Since, the payload design selection problem has only two attributes, it is possible
to find analytically, the threshold MRS at which an eliminated design D: is not
eliminated by a trial design Dr. Recall that Eq. (4.1) gives the necessary condition for the
threshold gradient of D, with respect to Dr. Assuming that the MRS values are
consistent, Eq. (4.1) can be modified to
St - (B - Pgyp) + (P - Pyyp) 2 0, (4.10)

where, [P, ,P,, ]and [P, P, ]are the attributes of the designs D and Dr respectively

and S|, is the threshold MRS. Solving Eq. (4.10) then gives the threshold MRS at which

D; is no longer eliminated by Dr.

Table 4.3: Verification of threshold MRS for payload selection

Desigl'l Threshold MRS with respect Threshold MRS with respect Threshold MRS with respect Threshold MRS wi‘th respect
alternative . . to D1 found using our . . to D1, found using our
to D1y found using Eq. (4.10) to D1, found using Eq. (4.10)
number approach, Eq.(4.3) approach, Eq.(4.3)
1 0.09 0.09 0.60 0.60
2 0.07 0.07 0.59 0.59
3 - - 1.03 1.03
4 - - 0.99 0.99
6 4.04 4.04 354.31 354.34
7 2.82 2.82 6.45 6.45
8 2.80 2.80 6.25 6.25
9 - - 5.56 5.56
10 5.56 5.56

To verify the results in Section 4.5.1.1, we found the threshold MRS of each
design with respect to both trial designs (i.e., D3 and Ds) using Eq. (4.10) and then

compared them with the threshold MRS found by our approach, i.e., Eq. (4.3). Table 4.3
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shows the results. The second and fourth columns of Table 4.3 show the threshold MRS
for each D, with respect to Dr; and Dy, respectively, found using Eq. (4.10). The third
and fifth columns in Table 4.3 show the threshold MRS obtained using our approach (i.e.,
Eq. (4.3)). It can be seen that these results match closely, thus verifying our sensitivity

analysis method.

4.5.2. Sensitivity Analysis for Deterministic Selection of Cordless Electric Drill

In this section, we present the cordless electric drill selection example to
demonstrate our algorithm for a problem where the attributes are not normalized. This
example is similar to the example in Section 3.5.2 of Chapter 3. We use the eighteen
design alternatives shown in Table 3.3 (reproduced in Column 2 of Table 4.4), as the
design alternatives for selection. We consider three design attributes: a;, the number of
operations achievable with one charge of a battery pack; a,, the cost of the drill; and as,
the weight of the drill. We present, in Section 4.5.2.1, the application of our algorithm for
sensitivity analysis to cordless electric drill selection by a casual user. Some of the steps
we describe in Section 4.5.2.1 are similar to the steps in Section 3.5.2.1 of Chapter 3 and

so are discussed briefly.

4.5.2.1. Application of Algorithm for Sensitivity Analysis to Cordless Electric Drill
Selection by a Casual User

Having no informed guess from the DM for picking the starting trial design, we
select randomly the design alternative D7 as the trial design for the first iteration (i.e.,

q=1) Dr;: [450 operations, 74 dollars, 6.9 pounds] (Step 1). The DM, a casual user,

94



provides the MRS estimates as shown in the third column of Table 3.4 (Step 2). The
gradient  coefficients (Wir;)) at Dy are then: Wi =0.004 operation'l;
War = 0.045 dollar’; Wir, =0.443 pound” (Step 3). Gradient cut at Dr; (Step 4)
eliminates fifteen lower value designs (only D; and D4 are not eliminated). Since more
than one design is non-eliminated we skip Step 5 and find a new trial design (Step 6).
Using our approach for finding a new trial design (recall Section 3.3.3), we find D, as the
new trial design. We increase the iteration number by one (i.e., q=2), set D; as
Dr,: [350 operations, 70 dollars, 6 pounds] and go to Step 2.

Table 4.4: Elimination robustness of cordless electric drill designs

. ) +T1's elimination robustness of d,72's elimination robustness of
ltDeSIg:: At;rlbult)es 01; desngntalterncatl\:es 5 s
3 neurmn:e:e [Number o“(l)epiegll’latllons, 08t D. with respect to Dyy D, with respect to Dz
1 [350 operation, 70 dollars, 6.0 } }
pounds]
5 [370 operation, 80 dollars, 5.7 0.02 085
pounds]
3 [380 operation, 80 dollars, 5.5 012 083
pounds]
4 [400 operation, 72 dollars, 6.5 0.00 022
pounds]
5 [420 operation, 82 dollars, 6.1 0.19 1.89
pounds]
6 [430 operation, 88 dollars, 5.8 027 091
pounds]
7 [450 operation, 74 dollars, 6.9 0.00 0.18
pounds]
8 [470 operation, 85 dollars, 6.5 053 121
pounds]
9 [480 operation, 91 dollars, 6.1 041 171
pounds]
10 [500 operation, 79 dollars, 7.2 0.69 039
pounds]
1 [520 operation, 89 dollars, 6.9 1.68 1.04
pounds]
12 [530 operation, 94 dollars, 6.4 051 129
pounds]
13 [550 operation, 84 dollars, 7.5 0.69 0.50
pounds]
14 [570 operation, 93 dollars, 7.2 13 093
pounds]
15 [580 operation, 97 dollars, 6.7 0.65 1.06
pounds]
16 [600 operation, 90 dollars, 7.8 076 0.63
pounds]
17 [620 operation, 98 dollars, 7.5 0.99 092
pounds]
[630 operation, 100 dollars,
18 0.84 0.91
7.0 pounds]
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The casual user of the cordless electric drill gives the MRS estimates as shown in
the fourth column of Table 3.4 (Step 2). The gradient coefficients (Wir,) at D, are then:
Witz = 0.004 operation™; Wy, = 0.069 dollar™'; W3, = 0.248 pound™ (Step 3). Gradient
cut at D1, (Step 4) eliminates all of the non-eliminated designs. Since all designs except
one are eliminated, Dnrp is the singleton set with D; as its member (Step 5) and we set

the total number of iterations to two, i.e., ¢ = 2 and go to Step 7.

+max

1.8
1.5
1.2
0.9 —
0.6

0.3

, LU ;

1 3 5 7 9 11 13 15 17
Design alternative number

Figure 4.6: Overall elimination robustness of cordless electric drill designs

We then find the elimination robustness of each eliminated design D, with respect
to Dry, i.e., O+11’s and Dy, i.e., 8:12’s (Step 7). Column 3 of Table 4.4 shows the &.1’s
and Column 4 of Table 4.4 shows the d.t1,’s of all designs. d71; is zero because, D7 is the
trial design for the first iteration. 41 is zero because, Dy is not eliminated by the first

trial design. Also 0;1; and 01, are empty because D; is the most preferred design and
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belongs to the set Dnrp. While calculating the d.ti’s of eliminated designs, we neglect
Eq. (4.3c) because the attributes are not normalized for the cordless electric drill
selection.

Figure 4.6 shows the overall elimination robustness, &:max’s, for all designs
(Step 8). Finally we find the robustness index of Dj, 9, by finding the minimum of all
O+max S (Step 9).

From Figure 4.6, it can be seen that d is 0.18 (shown by a black bar), meaning that
D; will be the most preferred design as long as the difference between the actual MRS
values and their estimates is less than 18%. From Figure 4.6, we also see that D7 is the
singleton critical design alternative, i.e., D; will not be eliminated if the actual MRS
values differ by 18% from the MRS estimates. Also, from Figure 4.6, we observe that the
actual MRS values at the trial designs can change by 22% from the MRS estimates before
a design alternative other than D7 becomes non-eliminated. As described in Section 4.3.2,
we traced back through the data about the 6.1’s and the 0.1, s and found that the critical
pair of attributes for this example is, cost of the drill and weight of the drill.

Next we provide some experimental results that verify our sensitivity analysis

method.

4.6. VERIFICATION: SOME EXPERIMENTAL RESULTS

To verify the proposed sensitivity analysis method, we conducted simulations
with four different problem sizes i.e., (number of attributes) x (number of design
alternatives), ranging from three attributes and fifty alternatives to six attributes and fifty

alternatives. For each problem size, we used MATLAB® to generate the fifty random
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Pareto design points. For simplicity, the alternatives are uniformly distributed between 0
(worst) and 1 (best) in each attribute. We chose the four different problem sizes to
demonstrate the applicability of our method to problems with high number of attributes.
Appendix-11I shows the design alternatives that we used for each problem size.

For each problem size, we conducted three simulations, each using a different
simulant value function to produce the MRS preference estimates that our method needs.
The simulant value functions we used are given by Eq. (3.17), Eq. (3.18), and Eq. (3.19)
(recall Section 3.6 of Chapter 3). Note that these simulant value functions are
non-decreasing, differentiable, and quasi-concave.

In each simulation for a problem size, we applied our algorithm for sensitivity
analysis and found the overall elimination robustness &.max of the designs. We then found
the robustness index o of the set of non-eliminated trial designs Dnrp by finding the
minimum of the overall elimination robustness of all eliminated designs. Figure 4.7
shows, as an example, the overall elimination robustness O:max Of the designs for the
simulation with problem size ‘three attributes’ x ‘fifty designs’ and Eq. (3.17) as the
simulant value function. From Figure 4.7, we can see that the set of non-eliminated trial
designs Dntp for this simulation consists of designs Dj3,, D3s, and D49 and that Dys is the
critical design. The robustness index of Dntp for this simulation is 2.8% (shown by a
black bar in Figure 4.7). The &:imax values of D3y, Dsg and D4y are zero in Figure 4.7
because they are members of Dnrp.

Since each simulation has more than two attributes, we cannot do an analytic

verification as we did with the payload selection example (recall Section 4.5.1.2).
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Instead, we used a numerical approach to verify the results obtained from each

simulation. This numerical approach is explained below.

8+ma3(

1.8 4

1.5

12

0.9

0.6 Dyrp: [D3p, Dyg, Dyl

Critical design is D,

0.3

1 9 17 25 33 41 T 49
Design alternative number

Figure 4.7: 81 max of design alternatives for the experiment with
‘three attributes’ x ‘fifty designs’ with Eq. (3.17) as the simulant value function
Once the robustness index 6 of Dntp is found, we can define bounds on the
variation in the MRS between attributes a; and a; at a trial design Dy (k=1,...c; ¢ is the
number of iterations), sijtk, as shown in Eq. (4.11a) if & is less than one and as shown in
Eq. (4.11b) if & is greater than or equal to one. In Eq. (4.11) S;jrx is the MRS estimate

between a; and a; at Dry.
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(1_8)'Siﬂk < Sime < (1+8)'Sika (4.11a)
0 < sy < (1+498)-Syp (4.11b)

We set the lower bound on s;jri to zero if & is greater than or equal to one because, MRS
values cannot be negative if the value function is non-decreasing with respect to the
attributes. Since we assume that the MRS values are consistent, it is enough to state the
bounds on ‘m-1° MRS values. Also we can define the bounds on the gradient

coefficients, wiry, corresponding to stk as shown in Eq. (4.12a) if  is less than one and

as shown in Eq. (4.12b) if d is greater than or equal to one.

(1-8)-Syp < % < (14+8)-Syn (4.12a)

Tk

0 < S < (148)-S,y, (4.12b)

Tk

If the 6 of Dn1p found by our approach is accurate, then every design D that does
not belong to Dxrp will be eliminated by at least one trial design Dy for a gradient Vvry
whose coefficients, wirk, satisfy either Eq. (4.12a) or Eq. (4.12b) (as appropriate). To
check this, we first solve the optimization formulation shown in Eq. (4.13).

For k=1,..., ¢ (c is the total number if iterations)

Maximize G, = ZWiTk “(a,—ag) (4.13a)

i=1

subjectto: » wy =1 w0 (4.13b)

i=1

(1-8)-Sp, < Wine < (1+8)-S;p; 'm-1'such constraints; if 5 <0
I (4.13¢)
0< itk < (1+8)-S;p,; 'm-1"such constraints;if 6 > 0
Tk
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Next, we find the minimum of Gy, which we call Gy, over all trial designs Dry
(k=1,...,c). Eq.(4.13a) is used to check whether or not D, is in the gradient cut
corresponding to wirx at Dy (recall Eq. (3.11)). If G.+ is negative, then it means that D,
lies in the gradient cut of all the gradients that satisfy either Eq. (4.12a) or Eq. (4.12b) for
at least one Dry. L.e., D; will remain eliminated by at least one Dry.

Eq. (4.13b) is the normalization constraint for the gradient coefficients.
Eq. (4.13¢) is the constraints imposed on wirx using Eq. (4.12). The formulation in
Eq. (4.13) is similar to the formulation we use for eliminating dominated designs when
the DM gives a range of MRS preferences in selection with preference variability (see
Chapter 5 for more details).

To verify the robustness index found in each simulation, we solved the
optimization problem in Eq. (4.13) for all eliminated design alternatives for each trial
design in each simulation. In each simulation, we then found that the G.+ values are
negative for all eliminated designs. This means that in each simulation, Dnrp is not
affected for all possible gradients whose coefficients satisfy Eq. (4.12). This verifies our
sensitivity analysis approach.

Figure 4.8 shows, as an example, the G+ values of the designs for the simulation
with problem size ‘three attributes’ x ‘fifty designs’ and Eq. (3.17) as the simulant value
function. From Figure 4.8, we can see that G.« values of all designs except D3,, Dsg, Das,
and D49 are negative. The G+ values of Dj,, Dss, and D4y are zero because they are
members of Dnrp (recall Figure 4.7), and so their G+ values are not calculated. G« value
of Dys is zero because it is the critical design. Recall, from Section 4.2, that robustness

index corresponds to the Oimax Of the critical design and &imax corresponds to the
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threshold gradient of the critical design. G+ of the critical design Dys is zero because it
lies on the plane perpendicular to the threshold gradient (recall Figure 4.3). For all the
simulations we conducted, we found that the G.+ value of the critical design is zero.

Design alternative number
1 9 17 25 33 41 49

-0.05

-0.15

G, of critical
design D, is zero

-0.25

03§
G_p:

Figure 4.8: G.+ values of design alternatives for the experiment with

‘three attributes’ x ‘fifty designs’ with Eq. (3.17) as the simulant value function

4.7. SUMMARY
In this chapter, we presented a concept for sensitivity analysis in product design

selection when the DM gives only estimates of the actual preferences. Our concept is
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applicable to the class of iterative selection methods which eliminate some design options
at the trial design chosen for the current iteration. Such methods are generally used when
the DM’s value function is implicit rather than known.

In our concept, we calculate three successive metrics, culminating in the
robustness index for the set of non-eliminated trial designs Dntp, and we identify the
critical design(s). The robustness index defines the bounds (or an interval) on the actual
preferences at all trial designs for which Dntp does not change. The DM can use the
robustness index and the critical design(s) as guidance for further actions (e.g., select
from the present Dnrp, assign ranges for preferences and find the potentially optimal
designs). Also using the overall elimination robustness O:max of designs, the DM can find
the designs that will be members of Dntp for ranges of preferences symmetric about the
preference estimates given at the trial designs. However, if the ranges of preferences are
not symmetric about the preference estimates, the DM has to use selection with
preference variability (see Chapter 5) for finding Dnrp.

We showed an implementation of our concept, using our deterministic selection
method. In this implementation, we presented an approach for finding 8.1, elimination
robustness of a design D; with respect to a trial design Dr. Our formulation finds 8.t in
real time (i.e., not much computational burden) when the MRS values are assumed to be
consistent. Also we introduced the concept of critical pair, i.e., the two attributes whose
MRS variation has the largest influence in determining the critical design(s). Critical pair
tells the DM the MRS estimate that needs to be improved, if necessary. Also the DM can
analyze how the potentially optimal designs (see Chapter 5 for details) are affected by

assigning various ranges to the MRS preference between the critical pair.

103



We presented an algorithm for sensitivity analysis for our deterministic selection
and demonstrated the algorithm with two engineering examples: payload design selection
and cordless electric drill selection. We also provided some experimental results that
numerically verified our sensitivity analysis method. Our results show that the set of
non-eliminated trial designs Dntp does not change if the DM’s actual MRS preferences
lie within the bounds given by our robustness index.

In sensitivity analysis for deterministic selection, we find the robustness of the set
of non-eliminated designs Dnrp. However the DM might be interested in the robustness
of the most preferred design found from Dnrp (i.e., when Dnrp is not a singleton), which
cannot be handled by our sensitivity analysis concept. Our approach for finding the
robustness index is a worst case approach and restricts the variation in the MRS between
all pairs of attributes at all trial designs to be the same and symmetric about the
preference estimates. However, we can readily modify our approach if the DM is
interested in the robustness of the set of non-eliminated trial designs with respect to a
particular pair of attributes and/or a particular trial design and/or in a particular direction
of (i.e., greater or less than) the preference estimates.

Note that for finding &.t, elimination robustness of a design D, with respect to a
trial design Dr, using Eq. (4.3), it is important to obtain the global optimum. However, in
our simulations and examples, we used “fmincon” from the MATLAB® optimization
toolbox, which might converge to a local optimum, as the optimizer. We used
MATLAB® to maintain uniformity with the methods developed in the other chapters.
But our experimental results indicate that the set of non-eliminated trial designs Dnrp

remains unaffected as long as the DM’s actual MRS preferences lie within the bounds
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given by our robustness index. This could be due to the conservative nature of our
approach for finding the robustness index (recall Section 4.3.2). However to be sure that
the robustness index is accurate, one should use a global optimizer (e.g., genetic
algorithm) or use different starting points to converge to the global optimum using a local
optimizer (e.g., “fmincon” from the MATLAB® optimization toolbox) in solving the
optimization problem of Eq. (4.3). A better approach (and an area for future research)
would be to modify the formulation in Eq. (4.3) so that it becomes convex optimization
problem.

In the next chapter, we present the development of the method for our third
research component, selection with preference variability. This method is used for
finding the potentially optimal designs when a range of preferences (instead of preference

estimates), due to preference variability, are given by the DM.
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CHAPTER 5

SELECTION WITH PREFERENCE VARIABILITY

5.1. INTRODUCTION

We mentioned earlier that when the DM does not have enough information about
the end users’ needs, he/she may provide ranges of the actual preferences. In this chapter,
we present a method for selection when the DM gives ranges for the actual preferences.
We call such a selection process: selection with preference variability.

When the DM gives ranges of the preferences, often, it is likely that for a
particular subset of ranges some design is preferred (i.e., has highest value) and for
another subset of ranges some other design is preferred. For example, in the automobile
design selection, consider that the DM says: “I would allow the cost of the automobile to
increase between 4000 dollars and 5000 dollars, if the 0-60 time is decreased by two
seconds”. If the DM’s actual preference is to allow an increase of 4000 dollars for the
desired reduction in the 0-60 time, then one design alternative might be preferred and if
the DM’s actual preference is to allow an increase of 5000 dollars, then some other
design alternative might be preferred. Since the DM cannot say with certainty what
his/her actual preference is, both design alternatives have a chance to be the most
preferred for the given range of preference. Such designs are referred to as “potentially
optimal designs” (recall Definition in Section 2.2.8 of Chapter 2) in the literature
[Eum et al., 2001]. In selection with preference variability, the task is to find the set of

designs that are potentially optimal from the original set of designs. Note that some
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people refer to selection with preference variability as selection with partial information
[Eum et al., 2001].

The purpose of this chapter is to present a method for selection with preference
variability. Our method for selection with preference variability is applicable when the
DM’s value function is implicit. In our method, we expect the DM to give ranges for the
MRS preferences at a series of trial designs.

The organization of the rest of this chapter is as follows. We give an overview of
our method for selection with preference variability in Section 5.2. We then present the
details of our method in Section 5.3 and present an algorithm for selection with
preference variability in Section 5.4. Next in Section 5.5, we give two engineering
examples to demonstrate our method for selection with preference variability. Then we
present some experimental results to verify our method for selection with preference
variability in Section 5.6, and finally we conclude the chapter with a summary in

Section 5.7.

5.2. OVERVIEW OF METHOD FOR SELECTION WITH PREFERENCE
VARIABILITY

Figure 5.1 shows the flowchart of our method for selection with preference
variability. This method is iterative and assumes that the DM’s value function is
differentiable, non-decreasing and quasi-concave with respect to the attributes. Since we
assume the DM’s value function to be non-decreasing with respect to the attributes, for
selection it is enough to consider only those designs that are Pareto optimal from the

original set of design alternatives [Malakooti, 1988].
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Figure 5.1: Flowchart of our method for selection with preference variability

In this method (see Figure 5.1), similar to our deterministic selection method
(recall Figure 3.1), we start by picking an initial trial design, Dr, from the set of design
alternatives. In a small region Or around Dt we then approximate the value function to be
linear with respect to the attributes. Next, we query the DM for the MRS preferences at
Dr. Due to variability, the DM gives a range of MRS preferences. For example, in the
selection of a cordless electric drill, the DM might say: “I would give up between 40 and
50 operations per battery charge to reduce the weight by 0.1 pounds”.

When the DM gives a range for MRS preferences, the gradient coefficients, which
are a function of MRS preferences (recall Eq. (3.4)), also have a range. Because of this,
the gradient cut approach we used for deterministic selection (recall Figure 3.2) is not

applicable for eliminating dominated designs. So, we use a modified version of the
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gradient cut for eliminating dominated designs based on the range of MRS preferences
(see Section 5.3.1 for details).

Next, we try to find a new trial design (see Section 5.3.2 for details) from the
non-eliminated design alternatives. If a new trial design is found, we repeat the above

2 ¢

steps (recall Figure 5.1), referred to as “an” ‘iteration’ from here on in this chapter.
Otherwise, we stop the process and collect the non-eliminated trial designs in a set,
designated by Dntp. All the designs that are not in Dnyp are dominated (recall Definition
in Section 2.2.7 of Chapter 2) by at least one design in the original set of designs.
However, it is possible that the elements of the set Dyrp are not all potentially
optimal (i.e., they might be dominated by some designs belonging to Dnrp, see
Section 5.3.1 for a detailed explanation). So, we present a heuristic approach to test
whether or not the elements of Dntp are potentially optimal. This heuristic approach (see

Section 5.3.3 for details) is based on the gradient adjacency elimination approach of our

deterministic selection method (recall Section 3.3.4 of Chapter 3).

5.3. DESCRIPTION OF METHOD FOR SELECTION WITH PREFERENCE
VARIABILITY

In this section, we discuss in detail the individual parts of our method for
selection with preference variability. In Section 5.3.1, we describe our approach for
eliminating dominated designs based on the range of MRS preferences. Next, we present
our approach for finding a new trial design in Section 5.3.2. Finally we discuss the
heuristic approach for finding potentially optimal designs from the set of non-eliminated

trial designs in Section 5.3.3.
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5.3.1. Eliminating Dominated Designs based on the Range of MRS Preferences

As mentioned earlier, when the DM gives a range of MRS preferences at a trial
design Dr, the corresponding gradient coefficients at D also have a range. Due to this,
some designs might lie only in the gradient cuts of some part of the range and not lie in
the gradient cuts of some other part of the range, e.g., D« in Figure 5.2. L.e., D« is
guaranteed to have a lower value than Dt only for some part of the range of MRS
preferences. So, we adopt a conservative approach and eliminate, as dominated designs,
those designs that lie in all possible gradient cuts for the entire range of MRS preferences
(e.g., Dg in Figure 5.2).

Range of MRS
) preference results in a
range of gradient at D

Designs in these regions lie only
in the gradient cuts of some part
of the gradient range

Designs in this region are dominated

Figure 5.2: Illustration of our approach for finding dominated designs based on the
range of MRS preferences

Based on Figure 5.2, a simple way to check whether or not a design is dominated

by Dr is to find the extremes of the range of gradient and then use Eq. (3.11) (recall

Section 3.2 of Chapter 3) to check if that design lies in the gradient cut for the extremes
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of the range of gradient. A design is dominated by Dr if Eq. (3.11) is satisfied for both
extremes of the range of the gradient, otherwise that design is not dominated. However,
there is no easy (and general) way to find the extremes of the range of gradients from the

range of MRS preferences. We observed that, the extremes of the range of gradients

correspond to the upper and lower bounds (i.e., S and SET, respectively, recall

ij
Definition in Section 2.2.4 of Chapter 2) of MRS preferences at Dt only when the
number of attributes is two. Unfortunately, this might not hold when the number of
attributes exceeds two.

Below, we present a formulation that uses the range of MRS preferences, Sjr,
directly (i.e., without mapping them to a range of gradient coefficients) for checking
whether or not a design D.: [a;4,...,am+] 1S dominated by Dr: [air,...,amr]. This linear
programming (LP) problem is simple to solve by any LP solver (e.g., “linprog” from the

MATLAB® optimization toolbox). In this formulation, wir (i=1,...,m) are the variables

and [a;+,...,am+], [a1T,...,amT] are fixed (or deterministic).

Maximize Z' = ZwiT “(a, —a;) (5.1a)
i=1
subject to: ZwiT =1, w;20 (5.1b)
i=1
W, L .
SET <—L< Si[jjT; 'm -1'such constraints (5.1¢)

jT
The objective function Z" in the above formulation, Eq. (5.1a), is used for checking
whether or not D, is dominated by Dy (recall Figure 5.2). If there exists a vector
Vvr: [WiT,...,Wnr] from the possible range of gradient at Dt for which D, does not lie in

the corresponding gradient cut, then the value of Z" in Eq. (5.1a) will be non-negative
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(recall Eq. (3.11)) otherwise Z~ will be negative. So, if the maximum value of Z~ is
negative then we can conclude that Dy lies in the gradient cuts of all the gradients for the
given range of MRS preferences at Dr. Hence D- is dominated by Dr.

Eq. (5.1b) is a normalization constraint on the gradient coefficients, wir. We
impose the constraint that the gradient coefficients, wir, are non-negative because we
assume that the value function is non-decreasing with respect to the attributes. We use
Eq. (5.1b) to normalize w;ir because, we assume that the attributes are normalized in
Eq. (5.1). When the attributes are normalized, wir is dimensionless and represents the
relative importance or weight of the attribute (which by convention in the literature lies
between zero and one). However, if the attributes are not normalized we neglect

Eq. (5.1b) in the above formulation, i.e., wir (i=1,..,m) are not normalized. One could also

modify Eq. (5.1b) asZwiT-rizl, where 1; is the scale of the i attribute (recall

i=1

Definition in Section 2.2.1 of Chapter 2).

Eq. (5.1c) imposes the constraint that the variable MRS values s;; = Wit should
W.
iT

belong to the range of MRS Sjr: [S.L SST] given by the DM at Dr. Note that the

ijT?

. w, .
condition s;; =—" holds when the MRS values are assumed to be exact and consistent
w.
iT

(recall Eq.(4.4)). Since only ‘m-1° MRS values are independent when they are

consistent, we use ‘m-1" constraints for the bounds on s, =—T (recall Eq. (5.1c)).
jT

However, if one feels that the exactness and consistency assumption is not appropriate

then Eq. (5.1) can be easily modified by adding two more constraints as given by
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Eq. (4.5) if the attributes are normalized and by Eq. (4.6) if the attributes are not
normalized. However, note that adding the constraints in Eq. (4.5) or Eq. (4.6) (which are
nonlinear and non-convex) to the formulation in Eq.(5.1) would increase the
computational burden in eliminating the dominated designs.

Note that Eq. (5.1) should be applied to each design D, (that belongs to the
original set of design alternatives and is not already eliminated) to check whether or not
that design is dominated by Dr. Based on the definition of dominated design (recall
Definition in Section 2.2.7 of Chapter 2), for a design D, if Z" in Eq. (5.1) is negative
then it is guaranteed that D, is dominated by the trial design Dr. However, it is possible
that D+ might be dominated by Dr even if Z is positive. Recall that for a differentiable
quasi-concave value function, design alternatives not in the gradient cut Cg, i.e., above
the hyper-plane, Hr, (recall Figure 3.2) might have higher or lower or equal value with
respect to Dr. L.e., gradient cut does not necessarily eliminate all designs that have lower
value than Dr. Added to that, for eliminating dominated designs when the MRS
preferences have a range, we use a worst case (i.e., conservative) approach and eliminate
only those designs that are in all possible gradient cuts (recall Figure 5.2).

Because Eq. (5.1) cannot guarantee that all dominated designs with respect to a
trial design are eliminated, it is possible that some designs in the set of non-eliminated
designs Dnrp are dominated. We present, in Section 5.3.3, a heuristic approach to
identify dominated designs from Dyrp.

In the next section, we present our approach for finding a new trial design.
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5.3.2. Finding a New Trial Design

An important step in our method for selection with preference variability is to find
a new trial design for continuing the iterative process shown in Figure 5.1. Ideally the
new trial design should be such that it eliminates a large number of dominated designs
from the original set of designs. To check this, we need to approximate the range of MRS
preferences at the candidate new trial designs and then choose as a new trial design the
candidate new trial design that eliminates the maximum number of dominated designs
from the original set of designs with the estimated range of MRS. But there is no easy
way for approximating the range of MRS preferences at a candidate new trial design
without interacting with the DM. So we use the same approach we presented for finding a
new trial design in deterministic selection (recall Section 3.3.3 of Chapter 3) even when
there is preference variability.

In order to find a new trial design using the approach discussed in Section 3.3.3 of
Chapter 3, we need the deterministic gradient of the value function at the previous trial
designs. Since there is variability in the MRS preferences, for simplicity, we take the
gradient corresponding to the mid-point of the range of MRS preferences at a previous
trial design as the nominal (or deterministic) gradient for that trial design.

In the next section, we present our heuristic approach for identifying dominated

designs from Dnrp, and hence find the set of potentially optimal designs.

5.3.3. Heuristic Approach for Finding Potentially Optimal Designs

In deterministic selection, we use the gradient adjacency elimination approach for

finding the most preferred design alternative(s) from the set of non-eliminated trial
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designs (recall Section 3.3.4 of Chapter 3). In this section, we extend the gradient
adjacency elimination approach to the case when MRS preferences at a trial design Dr

have a range.

2,
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Figure 5.3: Illustration of our heuristic approach for eliminating dominated designs

Let D1 and Dr; be two non-eliminated trial designs (i.e., they belong to Dnrp).
Let Siri: [SETI,SSTJ and Sir2: [SETZ,SETQJ be the range of MRS preference between

attributes a; and a; at D11 and Dy, respectively. Recall that since MRS preferences at Dr;

and D, have a range, the corresponding gradients at Dr; and Dr; also have a range. Let

VVy,and VV;, be the extremes of the range of gradient at Dy (note that the extremes of
the range of gradient might not necessarily correspond to S1JT1 and S;},) and VVr, and

VV;, be the extremes of the range of gradient at Dr,. Figure 5.3 illustrates our heuristic

approach for checking if Dr; is dominated by Dr; in a two attribute space.
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Lines Hy, and H;, pass through Dy and are perpendicular to the extremes of the
range of gradient, VVy, and VV},, respectively. Lines Hy, and Hy, pass through Dr

and are perpendicular to the extremes of the range of gradient, VV), and VVp,

respectively. Or is the region around Dr; in which we approximate the value function to
be linear (recall Figure 5.1). L.e., at every point inside Orj, the range of MRS preferences
is the same as the range of MRS preferences given by the DM at Dr; [Barzilai, 1998].
Note that neither of the two trial designs (Dr; or Dr;) is dominated by the other (recall
Figure 5.2) for the ranges of gradient.

As shown in Figure 5.3, all points in the shaded region of Or; have a higher value

than Dt for the entire range of gradient at Dr; (i.e., those points dominate Dr;). For the

case shown in Figure 5.3, all the lines that lie between the extremes Hy, and Hp, at Dy

pass through the shaded region of Or;. Hence D1, dominates some points (recall
Figure 5.2) in the shaded region of Or; that have higher value than Dr;. Hence D

dominates Dr; by transitivity.

For an m-dimensional case, Hy,, Hy,, Hy,, and Hp, are hyper-planes. Note that
in Figure 5.3, Dr; lies in the gradient cuts of the gradients perpendicular to the
hyper-planes in the range H}, and Hp,. So it is enough to check that Dt, dominates Dr;
for the other part of the range, i.c., Hy, and H},. Let hr; be a hyper-plane that lies
between Hy, and H;, at Dry. Let At be a hyper-plane that lies between Hy, and H), at
Dr. Also, let p,,,, be the perpendicular distance from Dry to the intersection of /1| and

hty. Assigning the radius R (typical value of R is 0.1) to Or;, we can use Eq. (5.2) to

geometrically check that D, dominates Dr;.
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{ [ maximum ]le'hZ}SR (5.2)
hrie

H'II:I’H'}'Jl]’hTZE[H'II:Z’H%
It can be seen that for the case shown in Figure 5.3, the maximum distance from Dr; to

the intersection of Ar; and hry (i.e., maximum p,;,,) corresponds to p} o (€.,

intersection of the hyper-planes Hy,and Hry,). Also p};\, . is less than R, the radius of

Or1. So we can say that D, dominates Dr; for the case shown in Figure 5.3.
The case shown in Figure 5.3 is simple in that any hyper-plane Ar; that lies

between Hy, and Hy, at Dryis not parallel to any hyper-plane /At that lies between Hp,

and H,, at Dr. But, this might not hold for some cases in the given range of MRS

. L U . [oL U . .
preferences Sri: [SijTl,SijTl] and Sjjra: [Sisz,Sm] at Dty and Dr, respectively, resulting
in the maximum p,,,, to be infinity.

However, for the case where At is parallel to A, it is implied that Vv is equal
to Vvry; where Vvt and Vv, are the gradients perpendicular to 4r; and Ar; at Dt and
D1y, respectively. When Vvr; is equal to Vvy,, we can find the value of the designs
directly by using Eq. (3.1) based on a linear approximation of value function. In such a
case, Eq. (5.3) can be used to check that Dta: [a;12,...,amT2] dominates Dri: [ajT1,...,amT1]

(here [a112,...,amT2], [a1T1,-...,amT1 ] are fixed or deterministic).

{ maximum W (@, — am)} <0 (5.3)

VVT2:VVT1:[W|T1’--merl i=1

In our heuristic approach, to mathematically check that a trial design Dr;
dominates another trial design Dr;, we need to conduct two tests. First test, Eq. (5.2), is

for the case in which any hyper-plane A1) at Dr; is not parallel to any hyper-plane /1, at
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D, (see Section 5.3.3.1 for the formulation). Second test, Eq. (5.3), is for the case in

which some of the hyper-planes at Dry, i.e., it/ s, are parallel to some of the hyper-planes

at D, 1.e., h12’s (see Section 5.3.2.2 for the formulation).

In the next section we discuss the formulation for the first test, Eq. (5.2).

5.3.3.1. First test to Check whether Dr; Dominates Dr;

Let Vvt be any gradient that lies between the extremes of the range of gradient,

1e., VVTLl and VVTU1 at Dr;. Let Vv, be any gradient that lies between the extremes of the

range of gradient VVTL2 and VVTU2 at Dry. Let wit; and wir, (i=1 to m) be the gradient

coefficients corresponding to Vvt and Vvr,, respectively. Also, let A, and Ar, be the

hyper-planes perpendicular to Vv, and Vv, at Dr; and Drp, respectively. The

perpendicular distance from Dr; to the intersection of /) and A1, we call pzllhz .

T1

The maximum p,,,,that is required to conduct the test of Eq.(5.2) can be

calculated from Eq.(5.4). In this formulation, wir (i=1,...,m) are the variables and

[a14,...,am+], [A1T,. . .,amT] are fixed (or deterministic).

. . T1
Maximize p,,;,

i=1

subjectto: ——= —
(Z Wile )(Z W?sz
i=1 i=1

Zwm =L w20

2
m
|:Z Wity WiT2:|

<1

W, :
L <Sip; 'm-1'such constraints

jT1

(5.4a)

(5.4b)

(5.4¢)

(5.4d)
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ZWiTZ =L w20 (5.4e)

w, :
Sir, S —T=<S,; 'm-1'such constraints (5.41)

iT2
ZWiTz (a1, —2;,) 20 (5.4g)
P

Eq. (5.4b) is a constraint for checking that the angle between Vvr; and Vvr, is greater
than zero (hence At is not parallel to 41;). Note that the angle between the vectors Vv
and Vvr; is zero only when the cosine of the angle (given by the square root of LHS of

Eq. (5.4b)) is one. Eq. (5.4¢c) to Eq. (5.4f) imposes the normalization constraint on wir

and wir; and the constraints that MRS preferences s, =—" and s, =—" should

jT1 T2

belong to the range of MRS preferences given by the DM at Dy, and Dr;, respectively.

Eq. (5.4g) is a constraint for checking that Vvr, belongs to the range of the gradients that
are perpendicular to the hyper-planes belonging to the range Hy, and H}, (recall

Section 5.3.3).

In the next section we discuss the formulation for the second test, Eq. (5.3).

5.3.3.2. Second test to Check whether D, Dominates Dr;

The formulation required for conducting the test of Eq. (5.3) is given by Eq. (5.5).
As mentioned earlier, when Vvr; is equal to Vvr; (i.e., At 1s parallel to A1), we can find
the values of the designs directly by using Eq. (3.1) (recall Section 3.2 of Chapter 3)
based on a linear approximation of the value function. So, if the maximum of the

difference between the values of Dt; and Dr; (i.e., objective function of Eq. (5.5)) is
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negative, then we can conclude that Dr, dominates D for the case where 4t is parallel
to hry. Eq. (5.5b) is a constraint for checking that Vvr is equal to Vvy, (hence At is
parallel to A12). Eq. (5.5¢) to Eq. (5.5f) are similar to Eq. (5.4c) to Eq. (5.5f). In the
formulation of Eq. (5.5), wir (i=1,...,m) are the variables and [a;+,...,am+], [aiT,...,amT]

are fixed (or deterministic).

Maximize Zwm (A, —aypy) (5.5a)

i=1

2
m

|:Zwm 'WiT2:|
il

subjectto: ——=— — =1 (5.5b)
(Zwilej(zWiszj
=1 =l
W =1L w20 (5.5¢)
i=1
Si < Win < Sir; 'm-1'such constraints (5.5d)
jT1
zwiTZ = Wy, 20 (5.5¢)
i=1
ng < Wi ¢ S};Tz; 'm -1'such constraints (5.5)
iT2

Using our heuristic approach, we can say that a trial design Dr, dominates Dr;
only when the tests of Eq. (5.2) (i.e., objective function of Eq. (5.4) is less than or equal
to R, the radius of Or;) and Eq. (5.3) (i.e., objective function of Eq. (5.5) is non-positive)
are both satisfied. However, it is possible that Eq. (5.4) or Eq. (5.5) is infeasible. If
Eq. (5.4) is infeasible, the test of Eq.(5.3) alone is enough to conclude that Dr;
dominates Drj. Similarly, the test of Eq.(5.2) alone is enough to conclude that Dr;

dominates Dr; if Eq. (5.5) is infeasible. Note that Eq. (5.5) becomes infeasible only when
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no hr is parallel to any A1, and Eq. (5.4) becomes infeasible only when any /7, is parallel
to some /i, (hence Eq. (5.4) and Eq. (5.5) cannot be infeasible simultaneously).
If there are more than two non-eliminated trial designs in the set Dntp, we apply

the heuristic approach to all ordered pairs of non-eliminated trial designs (recall

Section 3.3.4 of Chapter 3). Also note that the maximum of p,,,, (i.e., perpendicular

distance from Dr; to the intersection of At and /r;) might not be the same as the

maximum pihz (i.e., perpendicular distance from Dr; to the intersection of /r; and Ary).
If it so happens that the maximum values of both p,/,,and p,,,,are less than the given

radius R of Or; (i=1,2), it means that R is too large for the linear approximation to be
valid. The designs that are not eliminated after the application of heuristic approach will
be denoted as the potentially optimal designs. Note however, it is possible that some
dominated designs are not eliminated even after applying our heuristic approach. Also,
Eq. (5.4) and Eq.(5.5) involve finding the distances in the attribute space, so the
attributes should be normalized before the application of our heuristic approach.

In the next section, we discuss our algorithm for selection with preference

variability using the concepts discussed in Section 5.3.

5.4. ALGORITHM FOR SELECTION WITH PREFERENCE VARIABILITY
Our algorithm for selection with preference variability has the following steps.
Step 1: Set the iteration number to one (i.e., q = 1) and pick a starting trial design,
D), from the set of design alternatives. We choose Dr; either as an alternative that would
have maximum value if the value function were linear with equal importance to the

attributes, or as a random pick.
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Step 2: Query the DM for the MRS preferences between attributes at the current
trial design Drq. Due to variability, DM responds with a range of preferences.

Step 3: Eliminate dominated designs based on the range of MRS preferences at
Drq (recall Section 5.3.1).

Step 4: 1f all designs except one are eliminated, define Dnrp to be the singleton set
containing Drg, set total number of iterations to current iteration number (i.e., ¢ = q), and
go to Step 6. Otherwise, go to Step 5.

Step 5: Find a new trial design from the non-eliminated design alternatives (recall
Section 5.3.2). If a new trial design cannot be found, collect all the non-eliminated trial
designs in the set Dnrp, set total number of iterations to current iteration number
(i.e.,c=q), and go to Step 6. Otherwise, increase the iteration number by one (i.e.,
q = qt1), set the new trial design as Drq and go to Step 2.

Step 6: If Dnp is a singleton then that design is the most preferred design
alternative. Otherwise, use our heuristic approach (recall Section 5.3.3) for finding the

potentially optimal design alternatives from among the Dnrp. Stop.

5.5. DEMONSTRATION EXAMPLES

As a demonstration, we tested our method for selection with preference variability
by applying our algorithm to two engineering examples. These examples are the same as
the examples in Section 3.5 of Chapter 3. The first example, selection of a payload design
for undersea autonomous vehicle, graphically demonstrates the working of our algorithm

for selection with preference variability. The second example, selection of a cordless
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electric drill, demonstrates the applicability of our method to a problem where the

attributes are not normalized between zero and one.

5.5.1. Selection of Payload Design for Undersea Autonomous Vehicle with
Preference Variability

For the payload design selection example, we set the ten Pareto optimum design
alternatives, shown in Table 3.1 (reproduced in Column 2 of Table 5.1), as the design
alternatives from which we select, with the Pg;’s being the attributes. Since it is difficult
for a human DM to verify that the potentially optimal designs found by our method for
selection with preference variability are indeed accurate (i.e., the designs are indeed most
preferred for some subset of the original range of preferences), we again use a simulated
DM in this example. We constructed the DM’s implicit value function to be of the form

V = -[(1-Ps)+(1-Ps2)’]. (5.6)

Eq. (5.6) is similar to Eq. (3.15) except that we have a parameter 8 in Eq. (5.6) for
creating variability in MRS preferences between the attributes. We assign a range to 3
(note that in Eq. (5.6), V is non-decreasing, differentiable, and quasi-concave for any f3
greater than or equal to one). As [ varies in its specified range, the MRS preference
between attributes also varies. As the range of B increases, the variability in the MRS
preference also increases. We again emphasize that the variability construct of Eq. (5.6)
is not a presumed value function. Rather, it simulates a human DM who is supposedly
being queried by our selection method, providing a range of MRS preference. The only
reason we use this variability construct is to verify that the potentially optimal designs

obtained by our method are indeed accurate.
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We applied our method to three cases with different ranges for  in each case. We
discuss in detail the case where variability in B is large (thus resulting in large variability
in MRS preference) in Section 5.5.1.1. Next, in Section 5.5.1.2 we present briefly the
results for the other two cases, where in the variability in B is moderate. Finally, we

discuss the results of all three cases in Section 5.5.1.3.

5.5.1.1. Payload Design Selection with Large Variability in MRS Preference
For this case, we fix the range of B to be “11 to 18”. We choose this range
because according to Eq. (5.6) different designs will have the highest value for different
values of B in this range (see Section 5.5.1.3 for details). The range of MRS preference at
a trial design corresponding to a range of B can be found from Eq. (5.6) by solving a
simple optimization problem (see Appendix-1V for details).
Table 5.1: Z" values of payload design alternatives for selection with preference

variability

Z* values at Dy, Z* values at D, Z* values at D3,

Design alternative Attributes [Ps;, Psz] of
& [Ps1, Pzl objective function in objective function in objective function in

number design alternatives "< 1), of designs  Eq. (5.1), of designs  Eq. (5.1), of designs
1 [0.016, 0.695] 0.0812
2 [0.016, 0.693] 0.0814
3 [0.134, 0.684] 0 0.1215 ~0.0001
4 [0.139, 0.675] 0.0018 0.1127 0
5 [0.274,0.541] 0.0847 0 0.0792
6 [0.275, 0.114] 0.0024 20.2866
7 [0.343, 0.093] 0.0532 20.2786
8 [0.346, 0.091] 0.0549 20.2792
9 [0.355, 0.090] 0.062 202768
10 [0.357,0.075] 0.0612 -0.2858

Following our algorithm in Section 5.4., we set the iteration number to one (i.e.,
q=1) and randomly pick D; as the starting trial design, i.e.,

Dr1: [Psi1, Ps2] =[0.134, 0.684] (Step 1). Since this is a two attribute problem, we ask the
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DM to provide the range of only one MRS preference, i.e., MRS preference between P
(attribute 1) and Ps; (attribute 2). Our simulated DM, Eq. (5.6), responds by saying that
the range of MRS preference is, Siori: [2.46, 4.13] (Step 2).

We then use Eq. (5.1) with the given MRS range to eliminate some dominated
designs (Step 3). Table 5.1 (Column 3) shows the Z" values (objective function in
Eq. (5.1)) at D for the payload design alternatives. We can see that VART negative for
D, D, (hence dominated by Dr;) and non-negative for the rest of the design alternatives

except Ds. 7" of Ds is zero because it is the trial design for this iteration.

PSZ
-~
0.9 I A
’\/: #VVi, B lies between 11 and 18
0.75 MRS Range S,,1,: [2.46, 4.13]
9 R f gradient at D.
D,,D, ) ange of gradient at Dy,
0.5

Designs in this
region are
0.25 | dominated by Dy,

m]

Eliminated (i.e., dominated) designs

<

Trial Design

+  Non-eliminated (i.e., not dominated) designs

Hy . p
~ +S1
0 0.15 0.3 0.45 0.6

Figure 5.4: Dominated designs at Dr; when J lies between 11 and 18 for payload

design selection

Since this is a two attribute example, the upper bound, S}Jm , and the lower bound,

Sty » of the range of MRS preference correspond to the extremes, VV, and VVY,

of the

range of gradient at Dr;. So we can visualize the attribute space with the range of

gradients as shown in Figure 5.4. From Figure 5.4, we can see that only D; and D, lie in
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all the possible gradient cuts that belong to the range of gradient at Dt;. Hence, only D;
and D, are dominated by Dr; and can be eliminated.

Since more than one design is not eliminated, we skip Step 4 and find a new trial
design (Step 5). Using our approach for finding a new trial design, we find Ds as the new
trial design. So we increase the iteration number by one (i.e., q=2), set Ds as

Dr,: [0.274, 0.541] and go to Step 2.

O Eliminated (i.e., dominated) designs
¢ Trial Design
+  Non-eliminated (i.e., not dominated) designs

MRS Range S,,p,: [0.09, 0.49]

PSZ PSZ MRS Range S;,13: [2.18, 3.79]
U
05 | Ve gy 09 5 JALE
D;, D, are not Fﬂ' WVVTLz
0.75| dominated by Dy, / 0.75
+ p Range of =D, Range of gradient at D3
A} gradient at D, 3
P
05 0.5 Dy is not
o D.,=Dy HTUZ o dominated by Dy
Designs in this N Designs in this
region are Hy, region are
025 dominated by D, 025 dominated by D3
o u
= Hr;
0 PS 1 0 i PS 1
0 0.15 0.3 0.45 0.6 0 0.15 0.3 0.45 0.6
@) (b)

Figure 5.5: Dominated designs at (a) Dy, and (b) D3 when J lies between 11 and 18
for payload design selection

Our simulated DM, Eq. (5.6), gives the range of MRS preference at Dr; as,

Si212: [0.09, 0.49] (Step 2). We then use Eq. (5.1) for eliminating dominated designs

based on the given range of MRS, Si,12 (Step 3). Table 5.1 (Column 4) shows the z

values at D, for the payload design alternatives. We can see that Z" is negative for De,

D7 Dg Do and Dy (hence dominated by Dr,) and positive for D3 and Da. 7" of Ds is zero
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because it is the trial design for this iteration. Z" is empty for D; and D, because they are
already eliminated by Dr.

We can see from Figure 5.5(a) also that D1, does not dominate D3 and D, because
Dj; and D4 do not lie in any of the gradient cuts that belong to the range of gradient at Dr».
Since more than one design is not eliminated (recall D3, D4 and Ds are not eliminated),
we skip Step 4 and find a new trial design. Perforce, Dy is the new trial design because it
is the only non-eliminated design which has not been a trial design (Step 5). So we
increase the iteration number by one (i.e., q = 3), set D4 as Dr3: [0.139, 0.675] and go to
Step 2.

Our simulated DM, Eq. (5.6), gives the range of MRS preference at Dr; as,
Siors: [2.18, 3.79] (Step 2). We then use Eq. (5.1) for eliminating dominated designs
based on the given range of MRS, Si>r3 (Step 3). Table 5.1 (Column 5) shows the z
values at Dr; for the payload design alternatives. We can see that Z" is negative for Ds
(hence dominated by Dr3) and positive for Ds. We can see from Figure 5.5(b) also that
D13 does not dominate Ds and D3 is dominated by Drs;. D4y and Ds are the only
non-eliminated designs at this stage. Since both of them have already been trial designs
we stop the iterative process and collect the two designs in the set Dnrp (Step 4) and go to
Step 6.

We then apply our heuristic approach to see if any of the two trial designs can be
eliminated (Step 6). We fix the radius of the region, Oy (i=2, 3), around Dr; (i=2, 3)
where the linear approximation of value function is estimated to be valid as: R = 0.12 (the

R value is chosen arbitrarily). Using the formulation in Eq. (5.4), we then find the

maximum p,;,, for Dy, as 0.13 and the maximum p,},,for Dr; as 0.14. Since the
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maximum values of both p,>,,and p,;,, are greater than R neither design dominates the

other. So we conclude that D4 and Ds are potentially optimal for the case when 3 lies
between 11 and 18.
In the next section, we present briefly our results for the selection of payload

design when the variability in 3 (hence the variability in MRS preference) is moderate.

5.5.1.2. Payload Design Selection with Moderate Variability in MRS Preference

We applied our method for selection with preference variability for different 3
ranges. In the case where B lies between 11 and 14.4, the method found Ds and D4 as the
members of the set of non-eliminated trial designs Dnrp in three iterations starting with
Ds as the initial trial design (Ds was the second trial design, Dt,, and D4 was the third
trial design, Dt3). We then applied our heuristic approach to see if any of the two trial
designs can be eliminated (Step 6). We fixed the radius of the region, Or; (i=2, 3), around
Dr; (i=2, 3) where the linear approximation of value function is estimated to be valid as:
R = 0.12. Using the formulation in Eq. (5.4), we then found the maximum p,, for Dr, as
T3

0.13 and the maximum p,;,, for D3 as 0.11. Since the maximum value p,3,, is less than

R, the first test (recall Eq. (5.2)) for checking whether Ds dominates Dj is satisfied. So we
conducted the second test by solving the formulation in Eq. (5.5). We found that the

formulation in Eq. (5.5) is infeasible meaning that there is no hyper-plane Ar, that lies

between H,, and Hy, at Dr,that is parallel to any hyper-plane /13 that lies between H,

and H, at Dr3. Since the test of Eq. (5.2) alone is enough when Eq. (5.5) is infeasible
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(recall Section 5.3.3.2), we conclude that for the case when [ lies between 11 and 14.4,
Ds is the singleton potentially optimal (hence the most preferred) design.

In the case where 3 lies between 14.6 and 18, the method again found Ds and D4
as the members of the set Dnrp in three iterations starting with D; as the initial trial
design (again Ds was the second trial design, Dr,, and D4 was the third trial design, Dr3).
We then applied our heuristic approach to see if any of the two trial designs can be
eliminated (Step 6). We again fixed the radius of the region, Oy (i=1, 2) as: R=0.12.
Using the formulation in Eq. (5.4), we then found the maximum p,;,, for Dr; as 0.10 and

the maximum p,;,, for Dr3 as 0.14. Since the maximum value p,;,,is less than R, the

first test (recall Eq. (5.2)) for checking whether D4 dominates Ds is satisfied. So we
conducted the second test by solving the formulation in Eq. (5.5). We found that the

formulation in Eq. (5.5) is infeasible meaning that there is no hyper-plane Ar, that lies

between H;, and Hy, at Dr,that is parallel to any hyper-plane /13 that lies between Hr,
and H,, at Drs. Since the test of Eq. (5.2) alone is enough when Eq. (5.5) is infeasible,

we conclude that for the case when [ lies between 14.6 and 18, D4 is the singleton
potentially optimal (hence the most preferred) design.
In the next section, we discuss the verification of the results for payload design

selection with preference variability.

5.5.1.3. Discussion
To verify the results obtained by our method we use the variability construct

shown in Eq. (5.6). Substituting different values for B in Eq. (5.6), we can obtain the
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values of the design alternatives for that B (see Figure 5.6). Note that the maximum of
Eq. (5.6) (which is zero), for each [, is obtained when both Pg; and Ps; are equal to one.
From Figure 5.6 we can see that when [ lies between 11 and 14.4, Ds has the
highest value. When [ is equal to 14.5, both Ds and D4 have the highest value. When 3
lies between 14.6 and 18, D4 alone has the highest value. Even though we showed in
Figure 5.6 the values of the design alternatives for only some discrete 3 in the range 11 to
18, it can be verified that Ds has highest value when [ lies between 11 and 14.5 and D4
has highest value when 3 lies between 14.5 and 18 (see Section 5.6 for an approach for

finding the potentially optimal design alternatives according to a simulant value

function).
Design alternative number
1 2 3 4 5 6 7 8 9 10
2020 D, has highest value when
B lies between 14.5 and 18
035 Dj; has highest value when 4+ B=18
p lies between 11 and 14.5
o B=16
-0.50
A P =145
-0.65
m pB=13
-0.80 ¢ p=11

-0.95

\4

Value of designs

Figure 5.6: Value of payload design alternatives for different 3’s
Recall that using our method we obtained D4 and Ds as the potentially optimal

designs when B lies between 11 and 18. From Figure 5.6 this is expected because D4 has
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the highest value for some part of the 3 range and Ds has the highest value for some other
part of the B range. When [ lies between 11 and 14.4, our method obtained a single most
preferred design Ds and when 3 lies between 14.6 and 18, our method again obtained a

single most preferred design Dg, as expected from Figure 5.6. This verifies the results of

our method for selection with preference variability for payload design selection.

5.5.2. Selection of Cordless Electric Drill with Preference Variability

In this section, we present the cordless electric drill selection example to
demonstrate our algorithm for selection with preference variability to a problem where
the attributes are not normalized. This example is similar to the example in Section 3.5.2
of Chapter 3. We use the eighteen design alternatives shown in Table 3.3 (reproduced in
Column 2 of Table 5.4), as the design alternatives for selection. We consider three design
attributes: a;, the number of operations achievable with one charge of a battery pack; a,,
the cost of the drill; and a3, the weight of the drill. We present, in Section 5.5.2.1, the
application of our algorithm for selection with preference variability to cordless electric

drill selection by a casual user. Next, in Section 5.5.2.2, we discuss our results.

5.5.2.1. Cordless Electric Drill Selection with Preference Variability by a Casual User
Having no informed guess from the DM for picking the starting trial design, we
select randomly the design alternative D; as the first trial design
Dry: [450 operations, 74 dollars, 6.9 pounds] (Step 1). The DM, a casual user, provides
the trade-offs as shown in the third column of Table 5.2 (Step 2) and says that the range

of MRS preferences is £25% around these trade-offs. For example, from the third column
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of Table 5.2, the trade-off between attributes a; and a, at Dr; is 4 dollars per 50
operations. The range of MRS between attributes a; and a, at Dy, Sio71, for a £25%
variability is then: [0.06 dollar operation™, 0.1 dollar operation] (recall the MRS has a
dimension equal to the ratio of attributes). Table 5.3 (Column 3) shows the range of MRS
preferences at Dr;.

Table 5.2: Casual user’s trade-offs between attributes of cordless electric drill

Trade-offs for constant value
designs at Dy3: [400

Trade-offs for constant value
designs at Dr3: [350

Trade-offs for constant value
designs at Dry: [450

MRS Adtributes operations, 74 dollars, 6.9 operations, 70 dollars, 6 operations, 72 dollars, 6.5
pounds] pounds] pounds]
Operations 50 operations 50 operations 50 operations
Si2
Cost 4 dollars 3 dollars 3 dollars
Cost 5 dollars 2 dollars 2 dollars
Sa3
Weight 0.5 pounds 0.5 pounds 0.5 pounds
Weight 0.4 pounds 0.5 pounds 0.5 pounds
Ssi
Operations 50 operations 40 operations 45 operations

Table 5.3: Range of MRS preferences with £25% variability around the trade-offs

of Table 5.2 for a casual user

Range of MRS at Dr;: [450 Range of MRS at Dp;: [350 Range of MRS at Dq3: [400

MRS Attributes operations, 74 dollars, 6.9 operations, 70 dollars, 6 operations, 72 dollars, 6.5
pounds] pounds] pounds]
S Operations [0.06 dollar operation’l, 0.1 [0.045 dollar operation’l, [0.045 dollar operation'l,
12
Cost dollar operation'l] 0.075 dollar operation'l] 0.075 dollar operation'l]
S Cost [0.075 pound dollar”, 0.125  [0.188 pound dollar’,0.313  [0.188 pound dollar’, 0.313
23
Weight pound dollar'l] pound dollar’l] pound dollar'l]
Weight 193 75 i d! 60.0 i J 67.5 i J!
Si; [93.75 operation pound ', [60.0 operation pound ', [67.5 operation pound ',
' Operations 156.25 operation pound']] 100.0 operation pound'l] 112.5 operation pound’l]

Using Eq. (5.1) with the MRS range shown in third column of Table 5.3, we
eliminate some dominated designs (Step 3). Table 5.4 (Column 3) shows the Z* values

(objective function in Eq. (5.1)) at Dt for the cordless electric drill design alternatives.
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We can see that Z~ is non-negative for D;, D,, D3, D4 and Ds and negative (hence
dominated by Dr;) for the rest of the design alternatives except Ds. Z" of D5 is zero
because it is the trial design for this iteration. Since the attributes of cordless electric drill
are not normalized, we neglect the constraint of Eq. (5.1b) in eliminating dominated
designs for this example.

Table 5.4: Z~ values of cordless electric drill design alternatives for selection with

preference variability

Design Attributes of design Z* values at Dyy, objective Z* values at Dz, objective Z” values at D3, objective
alternative alternatives [Number of function of Eq. (5.1), of function of Eq. (5.1), of function of Eq. (5.1), of
number operations, Cost, Weight] designs designs designs
I [350 operation, 70 dollars, 13554997538 0.00 107085597.49
6.0 pounds]
2 [370 operation, 80 dollars, 45029242.11 20.09
5.7 pounds] i i
3 [380 operation, 80 dollars, 12234502.72 013
5.5 pounds] ) )
4 [400 operation, 72 dollars, 27953942.30 1204143.97 0.00
6.5 pounds]
5 [420 operation, 82 dollars, 1239183.05 -0.09
6.1 pounds]
[430 operation, 88 dollars, .
6 5.8 pounds] 0.01
7 [450 operation, 74 dollars, 0.00 17568139.55 7088283.62
6.9 pounds]
[470 operation, 85 dollars, )
8 6.5 pounds] 0.04
[480 operation, 91 dollars,
9 -0.
6.1 pounds] 0.03
[500 operation, 79 dollars, .
10 7.2 pounds] 0.02
[520 operation, 89 dollars,
11 -0.08
6.9 pounds]
530 operation, 94 dollars.
12 [ . g -0.05
6.4 pounds]
[550 operation, 84 dollars,
1 -0.
3 7.5 pounds] 0.05
[570 operation, 93 dollars,
14 -0.09
7.2 pounds]
[580 operation, 97 dollars,
15 -0.07
6.7 pounds]
600 operation, 90 dollars.
16 [ . g -0.08
7.8 pounds]
[620 operation, 98 dollars,
1 -0.12
7 7.5 pounds] 0
18 [630 operation, 100 dollars, 0.09

7.0 pounds]

Since more than one design is not eliminated, we skip Step 4 and find a new trial

design (Step 5). Using our approach for finding a new trial design, we find D, as the new
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trial design. So we increase the iteration number by one (i.e., q=2), set D; as
Dr,: [350 operations, 70 dollars, 6 pounds] and go to Step 2.

The DM, a casual user, gives the range of MRS between attributes as shown in
the fourth column of Table 5.3 (Step 2). Again, the range of MRS is obtained with £25%
variability around the trade-offs shown in the fourth column of Table 5.2. Using
Eq. (5.1), Dy, D3, and Ds are then eliminated as dominated designs by Dr; (Step 3).
Table 5.4 (Column 4) shows the Z" values at Dro. Since more than one design is not
eliminated (recall D;, D4 and D are not eliminated), we skip Step 4 and find a new trial
design. Perforce, D4 is the new trial design because it is the only non-eliminated design
which has not been a trial design (Step 5). So we increase the iteration number by one
(i.e., g =3), set D4 as Dr3: [400 operations, 72 dollars, 6.5 pounds] and go to Step 2.

Table 5.3 (Column 5) shows the range of MRS between attributes given by the
casual user (Step 2). Once again the range of MRS is obtained with +25% variability
around the trade-offs shown in the fifth column of Table 5.2. Using Eq. (5.1), the z
values (Step 3) of both D; and D7 are non-negative (see fifth column of Table 5.4). D;, Dy
and D7 are the only non-eliminated designs at this stage. Since all of them have already
been trial designs we stop the iterative process and collect the three designs in the set
Dnrp (Step 4) and go to Step 6.

We then apply our heuristic approach to see if any of the three trial designs can be
eliminated (Step 6). For the application of our heuristic approach, we normalize the
attributes using the scale of the attributes (recall Section 5.3.3). We fix the radius of the
region, Or; (i=1, 2, 3), around Dry; (i=1, 2, 3) where the linear approximation of value

function is estimated to be valid as: R =0.12 (the R value is chosen arbitrarily). Our
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approach eliminates D7 using the test of Eq. (5.2) and Eq. (5.3). So, we conclude that D,
and D4 are the potentially optimal designs for the ranges of MRS preferences given by
the casual user.

In the next section, we discuss the results of cordless electric drill selection with

preference variability.

5.5.2.2. Discussion

The trade-offs at Dr; and Dr, shown in Table 5.2 are the same as the trade-offs
(or MRS estimates) given by the casual user for deterministic selection (recall Table 3.4)
and for sensitivity analysis for deterministic selection (recall Section4.5.2.1 of
Chapter 4). Recall that in deterministic selection we found the most preferred design as
D;: [350 operations, 70 dollars, 6 pounds] in two iterations, so there was no need for a
third iteration. However, the trade-offs at D13 shown in Column 5 of Table 5.2 are
consistent with the casual user’s preferences at other trial designs.

Recall from Figure 4.6, that the overall elimination robustness is 0.18 for D7, 0.22
for D; and greater than 0.25 for the rest of the design alternatives. This shows that if the
difference between the actual MRS values and their estimates is greater than or equal to
18%, D7 will not be eliminated using gradient cut. Also, D4 will not be eliminated using
gradient cut if the difference between the actual MRS values and their estimates is greater
than or equal to 22%. Stated otherwise, D7 will be eliminated if the range of MRS

preferences at D; is within £18% around the trade-offs of Table 5.2 and D4 will be

eliminated if the range of MRS preferences at D; is within £22% around the trade-offs of

Table 5.2.
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When the DM gives the range of MRS preferences as £25% around the trade-offs
of Table 5.2, our method for selection with preference variability, as expected, found Dy,
D4 and D7 as the non-eliminated trial designs. But D7 is eliminated as dominated design
using the heuristic approach.

We applied our method for selection with preference variability to two more cases
with different MRS ranges. In the first case, the range of MRS preferences was £20%
around the trade-offs of Table 5.2 and in the second case, the range of MRS preferences
was +15% around the trade-offs of Table 5.2. As expected, in the first case, our method
for selection with preference variability found D;, D7 as the non-eliminated trial designs
(D7 was again eliminated using the heuristic approach). In the second case, our method
found D, as the singleton non-eliminated trial design.

Next we provide some experimental results that verify our method for selection

with preference variability.

5.6. VERIFICATION: SOME EXPERIMENTAL RESULTS

To verify the proposed method for selection with preference variability, we
conducted simulations with four different problem sizes ie.,
(number of attributes) x (number of design alternatives), ranging from three attributes
and fifty alternatives to six attributes and fifty alternatives. For each problem size, we
used MATLAB® to generate the fifty random Pareto design points. For simplicity, the
alternatives are uniformly distributed between 0 (worst) and 1 (best) in each attribute. We

chose the four different problem sizes to demonstrate the applicability of our method to
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problems with high number of attributes. Appendix-III shows the design alternatives that
we used for each problem size.
We used three simulant value functions given by Eq. (5.7), Eq. (5.8), and Eq. (5.9)

to produce the range of MRS preferences that our method needs.

Ay 1-a.)
Vi(Dy) = [Z( a”)} (5.7)
2<B<25

zm (1-a)

—a.

— fyi .e y
i=1

V(D) ={ 2% =1 (5.8)

0-9(%11)3% su(%n)

m is the number of attributes

[T
Vy(Dy) = 2 =2 (5.9)

i=1

L8V <o <22( Y )

m is the number of attributes

—_

These simulant value functions are similar to the simulant value functions of
Eq. (3.17), Eq. (3.18), and Eq. (3.19), respectively, that we used for the verification of
our deterministic selection method (recall Section 3.6 of Chapter 3). The only difference
is that the parameters,  in Eq. (5.7), yi in Eq. (5.8), and a in Eq. (5.9), have an assigned
range and thus create variability in the MRS preferences. Note that the simulant value
function of Eq. (5.9) is quasi-concave but not concave [Avriel et al., 1988] whereas the
simulant value functions of Eq. (5.7) and Eq. (5.8) are concave. All three simulant value

functions are non-decreasing and differentiable with respect to the attributes. The range
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of MRS preferences at a trial design corresponding to the range of parameters can be
found from Eq. (5.7), Eq. (5.8), and Eq. (5.9) by solving a simple optimization problem
(see Appendix-IV for details).

We tested our method for selection with preference variability by comparing the
potentially optimal design alternatives obtained by our method with the potentially
optimal design alternatives according to the simulant value function. A design D; would
be potentially optimal according to a simulant value function if D; has the highest value
for some value of the parameter in the assigned parameter range. l.e., Eq. (5.10) is
satisfied for some parameter (i.e., B in V; of Eq. (5.7), yi in V; of Eq. (5.8), and a; in V3
of Eq. (5.9)) value, in the assigned parameter range, for all designs Dy (k=1,...,n; k #j;
n is the number of other designs) other than D;.

Vi(Dy) — Vi(D;) <0; 'n-1"such constraints (5.10)

For each problem size we conducted three simulations, each using a different
simulant value function to represent the DM’s preferences. For each problem size and
each simulant value function, Table 5.5 shows the non-eliminated trial designs Dnrp
(recall Figure 5.1) in the third column, potentially optimal designs after applying our
heuristic approach (with R, radius of the region where the linear approximation of value
function is estimated to be valid, equal to 0.05) in the fourth column, and the potentially
optimal designs according to the simulant value function in the fifth column.

From Table 5.5, we can see that the set of non-eliminated designs Dnrp, always
includes the potentially optimal designs according to the simulant value function
(Column 5 of Table 5.5). However, Dnyp contains a number of design alternatives that

are not potentially optimal according to the simulant value function. This is expected
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because we use a conservative approach for eliminating dominated designs (recall
Section 5.3.1).

Table 5.5: Results of verification study for selection with preference variability

Problem size: "# N ted trial P ially optimal Po-tentlally opt.lmal
. . . N . . designs according to
of attributesx# of Value functi designs, s of designs after applying .
. . the simulant value
designs" Do heuristic with R=0.05 .
functions
Vi D12, D32, D3, Dus D2, D3z, Ds3s, Das D3
3x50 V) Di2, D32 D3 D3,
Vi Di2, D32 Di2, D3 Ds>
Dis, D19, D2y, Doy,
Vi Das, Dag, D35, D3, - D37
Dss
4x50
V2 D7, D19, D3s, D37 Dss, D37 Dss, D37
Dis, Dig, D2y, Do,
Vs Dig, Dss, D37 Dss, D37
Dy9, Dss, D37
Dy, D12, D14, Dys,
Dy, D2o, D21, D2,
Vi D2 D2
Da6, D2, D31, D33,
Dss, D36, Da3, Dao
5%50 D2, Dyg, D2y, D33
V. ? ? T Dy, D D
? Dss, Da3, Dys, Dag 12 2
Di2, D16, D2g, D2y,
Di2, Di6, D26, D3,
V; D22, Do, D33, D35, D Dz
49
Da3, Das, Dag
Dy, D21, D32, D3,
Vi D39, D4o, D4y, Dag, D39, Dy1, Das, Dag D39
Dus, Dao
6x50 Dsg, D32, D3o, D.
20, D32, D39, Dai,
Va D20, D39, Daa, Das Dsg
Dua, Dys, Dag
Dy, D32, D39, Dag, D2, D32, D3o, Dao,
Vs D29, D3y

Dai, Daa, Dag, Do

Dua, Das, Dag

For example, consider the experiment with ‘three attributes’ x ‘fifty designs’ with
Vs, Eq. (5.9), as the simulant value function. Our method for selection with preference
variability found D;; and D3, as the members of the set of non-eliminated trial designs
and only D3, was the potentially optimal design according to the simulant value function.
Figure 5.7, shows the value range (i.e., minimum and the maximum value) for each

design alternative found using Eq. (5.9). From Figure 5.7, we can see that value ranges of
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no design overlaps with the value range of D3,. So we can clearly see that D3, dominates
other designs. However, note that, if there is overlap between value ranges of two
designs, it does not necessarily mean that those designs are potentially optimal.

Value

r
0.5 D,,, D;, are not eliminated even after

applying our heuristic approach

optimal design
} according to Eq. (5.9)

D, is the potentially
0.4 l

03 }

02 S

or| 1

1 5 9 13 17 21 25 29 33 37 41 45 49

Design alternative number

Figure 5.7: Value ranges of design alternatives for the experiment with ‘three

attributes’ x ‘fifty designs’ with Eq. (5.9) as the simulant value function

Our heuristic approach is successful in most of the experiments in reducing the
size of Dntp. However, the potentially optimal designs that remain after applying the
heuristic approach (Column 4 of Table 5.5) still contain design alternatives that are not
potentially optimal according to the simulant value function (Column 5 of Table 5.5).
This supports our earlier statement that some designs that are actually dominated might
not be eliminated even after applying our heuristic approach. In Table 5.5, Column 4 data

for ‘four attributes’ x ‘fifty designs’ is empty because our heuristic approach returned an
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error saying that the radius R of the region where the linear approximation of value

function is estimated to be valid is too large for that experiment (recall Section 5.3.3.2).

5.7. SUMMARY

In this chapter, we presented a method for product design selection with
preference variability for an implicit value function. Our method assumed that the DM’s
implicit value function is differentiable, quasi-concave and non-decreasing with respect
to the attributes. This assumption is more general and less restrictive than other popular
assumptions as reported in the literature (e.g., additive value function)
[Athanassopoulos and Podinovski, 1997] [Insua and French, 1991].

Our method for selection with preference variability is iterative and requires that
the DM give a range for MRS preference between attributes at a series of trial designs.
We presented an approach for eliminating dominated designs using the range of MRS
preferences directly. The mathematical formulation of this approach under certain
conditions becomes a linear programming problem and can be solved quickly to obtain
the set of non-eliminated trial designs. We also presented a heuristic for identifying the
dominated designs from the set of non-eliminated trial designs. Finally, we presented an
algorithm for selection with preference variability and demonstrated the algorithm with
two engineering examples: payload design selection and cordless electric drill selection.
We also provided some experimental results that numerically verified our method for
selection with preference variability. Our experiments showed that the potentially optimal
designs found using our method always include the actual potentially optimal designs

according to the simulant value functions.
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Our approach for eliminating dominated designs is conservative and does not
always eliminate all the dominated designs. But on the bright side, our approach does not
eliminate a design that is actually potentially optimal. So the set of non-eliminated trial
designs always includes the actual potentially optimal designs. Also our method does not
need presumed probability distributions governing the variability in MRS preferences
since our approach for eliminating dominated designs is a worst case approach. Even
though we assumed that in our method for selection with preference variability the DM
gives a range of MRS, our formulation for eliminating dominated designs can
accommodate other constraints on the MRS preferences (see Section 7.4.2 of Chapter 7
for details).

Our heuristic approach (recall Section 5.3.3) does not necessarily eliminate all
dominated designs from the set of non-eliminated trial designs Dnrp. The formulation for
our heuristic approach is non-convex and is computationally expensive. Also, as the
variability in preferences becomes large, the number of iterations required for finding
Dnrp might increase. This might be tedious for the DM. One way to reduce the number
of iterations is to improve the approach for finding the new trial design. Recall, from
Section 5.3.2, that the approach we use for finding a new trial design does not account for
the range of preferences at the trial designs.

In the next chapter, we present the development of the method for our fourth
research component, selection with preference and attribute variability. This method is
used for finding the set of non-eliminated trial designs when the DM gives a range of
preferences and a range of attributes for design alternatives because of preference and

attribute variability.
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CHAPTER 6

SELECTION WITH PREFERENCE AND ATTRIBUTE VARIABILITY

6.1. INTRODUCTION

In Chapter 5 we presented a method for selection with preference variability. In
that method and also in the methods of Chapter 3 and Chapter 4, we assumed that there is
no attribute variability. However, it is quite common in engineering design to have
variability in the attributes of the design alternatives as well. Uncontrollable parameter
variations during the design process (e.g., manufacturing errors, use conditions) are the
source for attribute variability. For example, in the automobile design selection, an
automobile that is designed to have an attribute level of six seconds for the 0-60 time
might in reality have the 0-60 time between five and eight seconds due to manufacturing
errors, use conditions, modeling errors and so on.

The purpose of this chapter is to present a method for selection with both
preference and attribute variability. Specifically, we extend our method for selection with
preference variability (described in Chapter 5) to account for attribute variability also. In
this chapter, we assume that the attribute variability can be quantified with a known range
for each attribute of a design alternative.

The organization of the rest of this chapter is as follows. We give an overview of
our method for selection with preference and attribute variability in Section 6.2. We then
present the details of our method in Section 6.3, and present an algorithm for selection

with preference and attribute variability in Section 6.4. Next in Section 6.5, we give two
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engineering examples to demonstrate our method for selection with preference and
attribute variability. Then we present some experimental results to verify our method for
selection with preference and attribute variability in Section 6.6, and finally we conclude

the chapter with a summary in Section 6.7.

6.2. OVERVIEW OF METHOD FOR SELECTION WITH PREFERENCE AND
ATTRIBUTE VARIABILITY

Figure 6.1 shows the flowchart of our method for selection with preference and
attribute variability. This method is iterative and assumes that the DM’s value function is
differentiable, non-decreasing, and quasi-concave with respect to the attributes. Because
of this assumption, for selection it is enough to consider only those designs that are
Pareto optimal from the original set of design alternatives [Malakooti, 1988]. The
individual components of the method shown in Figure 6.1 are similar to the method for
selection with preference variability (recall Figure 5.1) except for the dashed boxes.

In our method for selection with preference and attribute variability, we assume
that the ranges of the attributes (shown by dotted rectangles in Figure 6.1) quantifying the
variability in the attributes of the design alternatives are known. The black dot in the
middle of small dashed rectangles represents the nominal attribute levels of the design
alternatives. By nominal attribute levels we mean the attribute levels that would occur if
there were no variability.

With the range of MRS preferences (obtained by querying the DM at a trial
design) and the range of the attributes of design alternatives, we use a modified version of

gradient cut (recall Section 3.3.2 of Chapter 3) for eliminating some of the dominated
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designs with respect to a trial design (see Section 6.3.1 for details). We assume that the
DM gives the range of MRS preferences at a trial design keeping in mind the range of
attributes at that trial design. In other words, the given range of MRS preferences should
include the range of MRS preferences at any attribute levels belonging to the range of

attributes at a trial design.

.
| NOMINAL ! o
| $ ATTRIBUTE LEVEL T " PESIENS ! 2 LINEAR V
1
| RANGE OF ATTRIBUTES :
1 DUE TO VARIABILITY
e I p: .
! Ted, Z ; Pickatrial | SMALL REGION AROUND A
ore r————
! R  design Dy TRIAL DESIGN, D
[ R !
! el 1
! o 1
1 1 1
[ e e e e e e e I T TR
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{-’; Queries | ELIMINATE DOMINATED |
A et 1
Undate D N ‘g_f > DESIGNS BASED ON RANGE |
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. Range of preferences ! OF MRS AND ATTRIBUTES |
Rangeof Aaj = == = - = - - - — e ——— 1
Range of MRS = T
Yes FIND A NEW
TRIAL <
DESIGN?
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SET OF NON-ELIMINATED
TRIAL DESIGNS, Dy,

Y

Figure 6.1: Flowchart of our method for selection with preference and attribute
variability
Next, we try to find a new trial design (see Section 6.3.2 for details) from the
non-eliminated design alternatives. If a new trial design is found, we repeat the above
steps (see Figure 6.1), referred to as “an” ‘iteration’ from here on in this chapter.
Otherwise, we stop the process and collect the non-eliminated trial designs in a set,

designated by Dntp. Ideally none of the designs in the set Dxtp should be dominated. But
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due to the properties of quasi-concave function (to be explained in Section 6.3.1), it is

possible that some dominated designs belong to Dxp.

6.3. DESCRIPTION OF METHOD FOR SELECTION WITH PREFERENCE
AND ATTRIBUTE VARIABILITY

In this section, we discuss in detail the individual parts of our method for
selection with preference and attribute variability. In Section 6.3.1, we describe our
approach for eliminating dominated designs based on the range of MRS preferences and
the range of attributes of design alternatives. Next, we present our approach for finding a

new trial design in Section 6.3.2.

6.3.1. Eliminating Dominated Designs based on the Range of MRS Preferences and
the Range of Attributes

Figure 6.2 illustrates, in two attribute space, our approach for eliminating
dominated designs based on the range of MRS preferences and the range of attributes.
Let Dt be the current trial design with the solid rectangle as the known range of attributes
and the black dot in the middle as the nominal design with the given attribute levels.
Because the DM gives a range of MRS (due to variability) at Dr, the corresponding
gradient coefficients at Dralso have a range as shown in Figure 6.2.

Because of the variability in the MRS preferences and the attributes, a number of
gradient cuts are possible at Dr, the union of which is shown by the dotted region in
Figure 6.2. The shaded area in Figure 6.2 is the intersection of all the possible gradient

cuts at Dr. We eliminate as dominated designs, those designs (e.g., Dy in Figure 6.2)
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whose range of attributes lie completely inside the shaded area of Figure 6.2. Due to this
reason, in our approach, if there is overlap between the ranges of attributes for two
designs (i.e., the rectangles intersect), then those two designs will not dominate one

another irrespective of the ranges of MRS preferences.

>
>

Range of MRS preferences
results in a range of gradient

Range of attributes at D

Shift in range of gradient due
.. to variability in attributes

// — - I = Designs whose attribute
N - range falls in this region are
> R T — dominated (i.e., eliminated)
/,{A7’ ...............................................

Figure 6.2: Illustration of our approach for eliminating dominated designs based on
the range of MRS preferences and the range of attributes of design alternatives
However, visualizing the range of the gradient corresponding to the range of MRS
preferences and the range of attributes as shown in Figure 6.2 is easy in two dimensions
but is difficult for higher dimensions. So, we present a mathematical formulation in
Eq. (6.1) for checking whether or not a design D; is dominated by a trial design Dr. In

this formulation, wir, a;+ and a;jr (i=1,...,m) are the variables.

Maximize Z = ZWiT “(a, —a;) (6.1a)

i=1

subject to: ZWiT =1, w,;20 (6.1b)
i=1
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W. .
SiﬁT <L < SL.JT; 'm -1'such constraints (6.1c)

iT

Al <a, <AJ; 'm'such constraints (6.1d)
Al <a, <Al; 'm'such constraints (6.1e)

The formulation in Eq. (6.1) is similar to the formulation in Eq. (5.1) except that two new
sets of constraints are added to account for the variability in attributes. Eq. (6.1d) is to
check that the variable attributes of Dy, ai;, belong to the range of attributes at D..
Eq. (6.1¢) imposes a similar constraint on the variable attributes of Dr, ajr.

If there exists a vector Vvr: [wWiT,...,Wnr] 1n the range of gradient at Dy, and
vectors [ai+,...am+] and [a;r,...,amr] in the ranges of attributes at D, and Dr respectively,
for which D, does not lie in the corresponding gradient cut, then the value of Z in
Eq. (6.1a) will be non-negative (recall Eq. (3.11)) otherwise Z" will be negative. So, if the
maximum value of Z" is negative then we can conclude that D lies in the gradient cuts of
all the gradients at Dt. Hence D is dominated by Dr.

The formulation is Eq. (6.1) has a nonlinear objective function with linear
constraints and can be solved by existing commercial software (e.g., “fmincon” of the
MATLAB® optimization toolbox). Note that in Eq. (6.1) we impose a normalization
constraint on gradient coefficients wir. However, if the attributes are not normalized then

we neglect the normalization constraint of Eq. (6.1b). One could also modify Eq. (6.1b)

m

as ZWiT .. =1, where r; is the scale of the i attribute (recall Definition in Section 2.2.1
i=1

of Chapter 2). Also, in Eq. (6.1), we assume that the MRS preferences s;jr are exact and
consistent (recall Eq. (4.4)). However, if one feels that the exactness and consistency

assumption is not appropriate then Eq. (6.1) can be easily modified by adding two more
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constraints, as given by Eq. (4.5) if the attributes are normalized and by Eq. (4.6) if the
attributes are not normalized.

Note that Eq. (6.1) should be applied to each design D, (that belongs to the
original set of design alternatives and is not already eliminated) for checking whether or
not that design is dominated by Dr. Based on the definition of dominated design (recall
Section 2.2.7 of Chapter 2), for a design D, if Z in Eq. (6.1) is negative then it is
guaranteed that D, is dominated by the trial design Dt. However, it is possible that D,
might be dominated by Dr even if Z* is positive. This is because, gradient cut does not
eliminate all lower value designs with respect to Dr, and we use a conservative approach
and eliminate only those designs whose attribute ranges lie completely in all possible
gradient cuts (recall Figure 6.2).

In the next section, we present our approach for finding a new trial design.

6.3.2. Finding a New Trial Design

For finding a new trial design in our method for selection with preference and
attribute variability, we again use the same approach we presented for finding a new trial
design in deterministic selection (recall Section 3.3.3 of Chapter 3). In order to find a new
trial design using the approach discussed in Section 3.3.3 of Chapter 3, we need the
deterministic gradient of the value function at previous trial designs and the deterministic
attributes for the design alternatives. Since there is preference and attribute variability, for
simplicity, we take the gradient corresponding to the mid-point of the range of MRS

preferences at the a previous trial design as the nominal (or deterministic) gradient for
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that trial design and the nominal attribute levels of the design alternatives as the
deterministic attributes.
In the next section, we discuss our algorithm for selection with preference and

attribute variability using the concepts discussed in Section 6.3.

6.4. ALGORITHM FOR SELECTION WITH PREFERENCE AND ATTRIBUTE
VARIABILITY

Our algorithm for selection with preference and attribute variability has the
following steps.

Step 1: Obtain the ranges of attributes and the nominal attribute levels for the
design alternatives.

Step 2: Set the iteration number to one (i.e., q = 1) and pick a starting trial design,
D), from the set of design alternatives. We choose Dy, either as an alternative (with the
nominal attribute levels) that would have the maximum value if the value function were
linear with equal importance to the attributes, or as a random pick.

Step 3: Query the DM for the MRS preferences between attributes at the current
trial design Drq. Due to variability, DM responds with a range of preferences.

Step 4: Eliminate dominated designs based on the range of MRS preferences at
Drq and the range of attributes for design alternatives (recall Section 6.3.1).

Step 5: If all designs except one are eliminated, define Dnrp to be the singleton set
containing Drg, set total number of iterations to current iteration number (i.e., ¢ = q), and

go to Step 7. Otherwise, go to Step 6.
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Step 6: Find a new trial design from the non-eliminated design alternatives (recall
Section 6.3.2). If a new trial design cannot be found, collect all the non-eliminated trial
designs in the set Dnrp, set total number of iterations to current iteration number
(i.e.,c=q), and go to Step 7. Otherwise, increase the iteration number by one (i.e.,
q = qt1), set the new trial design as Dtq and go to Step 3.

Step 7: Stop.

6.5. DEMONSTRATION EXAMPLES

As a demonstration, we tested our method for selection with preference and
attribute variability by applying our algorithm to two engineering examples. These
examples are the same as the examples in Section 3.5 of Chapter 3. The first example
involves the selection of a payload design for undersea autonomous vehicle and the

second example involves the selection of a cordless electric drill.

6.5.1. Selection of Payload Design for Undersea Autonomous Vehicle with
Preference and Attribute Variability

For the payload design selection example, we once again set the ten Pareto
optimum design alternatives, shown in Table 3.1 (reproduced in Column 2 of Table 6.1),
as the design alternatives from which we select, with the Pg;’s being the attributes. The
attribute levels in the second column of Table 6.1 are the nominal attribute levels of the
payload design alternatives. Once again we use the simulated DM given by Eq. (5.6) for

verifying the results obtained by our method. However for this example, in Eq. (5.6), in
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addition to the parameter B, the attributes Ps; and P, also have variability quantified by a
known range.

In the next section, Section 6.5.1.1, we describe the application of our algorithm
for selection with preference and attribute variability (recall Section 6.4) to the payload

design selection example, and then discuss the results in Section 6.5.1.2.

6.5.1.1. Application of Algorithm for Selection with Preference and Attribute Variability
to Payload Design Selection

We fix the range of B in Eq. (5.6) to be “I11 to 18” (recall Section 5.5.1.1 of
Chapter 5). Also, we fix the range of attribute levels Ps; and Ps; to be £5% around the
nominal attribute levels (Step 1). L.e., if the nominal attribute level of a design alternative,
say D, for the attribute, say Pgj, is 0.016, then the variability in the attribute Pg; for D; is
quantified by the range [0.015, 0.017]. Also, for all the designs, we ensure that the lower
bound on the range of an attribute does not become less than zero and that the upper
bound on the range of an attribute does not become greater than one. The range of MRS
preferences at a trial design for the given ranges of 3, Ps; and Ps; can be found from
Eq. (5.6) by solving a simple optimization problem (see Appendix-IV for details).

Following our algorithm in Section 6.4., we set the iteration number to one (i.e.,
q = 1) and randomly pick Ds as the starting trial design, i.e., Dr; (Step 2). Since this is a
two attribute problem, we ask the DM to provide the range of only one MRS preference,
i.e., MRS preference between Pg; (attribute 1) and Pg, (attribute 2). Our simulated DM,
Eq. (5.6), responds by saying that the range of MRS preferences is, Siori: [1.95, 5.00]

(Step 3).
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Table 6.1: Z" values of payload design alternatives for selection with preference and

attribute variability

Design alternative Nominal attribute levels Z* values at Dy, Z* values at D, Z* values at D3,
number [Ps1, Ps2] of design objective function in objective function in objective function in
alternatives Eq. (6.1), of designs Eq. (6.1), of designs Eq. (6.1), of designs
1 [0.016,0.695] -0.0463
2 [0.016,0.693] -0.0467
3 [0.134,0.684] 0 0.1871 0.0343
4 [0.139,0.675] 0.0318 0.1776 0
5 [0.274,0.541] 0.12 0 0.115
6 [0.275,0.114] 0.0464 -0.2316
7 [0.343,0.093] 0.1024 -0.2179
8 [0.346,0.091] 0.1043 -0.2182
9 [0.355,0.090] 0.112 -0.2151
10 [0.357,0.075] 0.1117 -0.2236

We then use Eq. (6.1) with the given MRS range and the ranges of attributes for
eliminating some dominated designs (Step 4). Table 6.1 (Column 3) shows the Z" values
(objective function in Eq. (6.1)) at Dr; for the payload design alternatives. We can see
that Z" is negative for D;, D, (hence dominated by Dr;) and non-negative for the rest of
the design alternatives except Ds. Z~ of Dj is zero because it is the trial design for this
iteration.

Since more than one design is not eliminated, we skip Step 5 and find a new trial
design (Step 6). Using our approach for finding a new trial design, we find Ds as the new
trial design. So we increase the iteration number by one (i.e., ¢ = 2), set Ds as D, and go
to Step 3.

Our simulated DM, Eq. (5.6), gives the range of MRS preference at Dy, as,
Siom: [0.06, 0.62] (Step 3). We then use Eq. (6.1) for eliminating dominated designs
based on the given range of MRS preference, Si»r», and the ranges of attributes (Step 4).
Table 6.1 (Column 4) shows the Z" values at Dr, for the payload design alternatives. We

can see that Z is negative for D¢, D7, Dg D9 and Djo (hence dominated by Dr;) and
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positive for D3 and Dy. 7" of Ds is zero because it is the trial design for this iteration. 7 is
empty for D; and D, because they are already eliminated by Dr.

Since more than one design is not eliminated (recall Ds;, D4 and Ds are not
eliminated), we skip Step 5 and find a new trial design. Perforce, D4 is the new trial
design because it is the only non-eliminated design which has not been a trial design
(Step 6). So we increase the iteration number by one (i.e., q = 3), set D4 as Dr3; and go to
Step 3.

Our simulated DM, Eq. (5.6), gives the range of MRS preference at Dr; as,
Siors: [1.72, 4.58] (Step 3). We then use Eq. (6.1) for eliminating dominated designs
based on the given range of MRS, Si,13, and the ranges of attributes (Step 4). Table 6.1
(Column 5) shows the Z" values at Dr3 for the payload design alternatives. We can see
that Z~ is positive for D3 and Ds. D3, D4 and Ds are the only non-eliminated designs at
this stage. Since all of them have already been trial designs we stop the iterative process
and collect the three designs in the set Dntp (Step 6) and stop the selection process
(Step 7).

In the next section, we discuss the verification of the results for payload design

selection with preference and attribute variability.

6.5.1.2. Discussion

Figure 6.3 shows the value range (i.e., minimum and the maximum value) for
each design alternative found using Eq. (5.6), and the assigned ranges for 3, Ps;, and Ps;.
We can see from Figure 6.3 that designs D;, D,, D¢, D7, Ds, Do, and Dy are clearly

dominated by D3, D4 and Ds and the value ranges of D3, D4, and Ds have some overlap.
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Using Eq. (5.10) (recall Section 5.6 of Chapter 5), we found that only D3, D4 and Ds are
potentially optimal for the given ranges of B, Ps;, and Ps,. (Note that, if there is an
overlap between value ranges of two designs, it does not necessarily mean that those
designs are potentially optimal, recall Section 5.6 of Chapter 5.)

Design alternative number
1 2 3 4 5 6 7 8 9 10

0.00 >
-0.25
Value ranges of
-0.50 D,, D,, Ds overlap
-0.75
} } I I ]
i
-1.00
v

Value of designs

Figure 6.3: Value ranges of payload design alternatives for the simulant value
function of Eq. (5.6) with 11 <3 <18 and £5% variability in Pg; and Ps;

We applied our method for selection with preference and attribute variability to
another case of payload design selection problem with different ranges for the attributes
Ps; and Ps;. In this case, we fixed the range of attributes Pg; and Ps; to be +15% around
the nominal attribute levels. Also, for all the designs, we ensure that the lower bound on
the range of an attribute does not become less than zero and that the upper bound on the
range of an attribute does not become greater than one. Starting with an initial trial design

of D3, our method found designs D;, D,, D3, D4 and Ds to be the elements of Dxtp.
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However, using Eq. (5.10), we found that only D3, D4 and Ds are the potentially optimal
designs for this case also.

These results support our earlier statement that, in our method for selection with
preference and attribute variability some designs that are actually dominated might be

included in the set of non-eliminated trial designs Dxrp.

6.5.2. Selection of Cordless Electric Drill with Preference and Attribute Variability
In this section, we present the cordless electric drill selection example to
demonstrate our algorithm for selection with preference and attribute variability to a
problem where the attributes are not normalized. This example is similar to the example
in Section 3.5.2 of Chapter 3. We use the eighteen design alternatives shown in Table 3.3
(reproduced in Column 2 of Table 6.3), as the design alternatives for selection. The
attribute levels in the second column of Table 6.3 are the nominal attribute levels of the
cordless electric drill design alternatives. We consider three design attributes: a;, the
number of operations achievable with one charge of a battery pack; a,, the cost of the
drill; and a3, the weight of the drill. We present, in Section 6.5.2.1, the application of our
algorithm for selection with preference and attribute variability to cordless electric drill

selection by a casual user.

6.5.2.1. Cordless Electric Drill Selection with Preference and Attribute Variability by a
Casual User
We fix the range of attributes to be £1% around the nominal attribute levels given

in the second column of Table 6.3 (Step 1). Le., for a design alternative, say D, if the
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nominal attribute level for the attribute, say number of operations, is 350, then the
variability in the attribute, number of operations, for D; is quantified by the range
[346.5, 353.5]. Following our algorithm in Section 6.4., we set the iteration number to
one (i.e., q = 1) and randomly pick D7 as the starting trial design, i.e., Dr; (Step 2). The
DM, a casual user, provides the range of MRS as shown in the third column of Table 6.2
(Step 3). Note that the ranges of MRS shown in Table 6.2 are obtained with £20%
variability around the trade-offs shown in Table 5.2 of Section 5.5.2.1 in Chapter 5.

Table 6.2: Ranges of MRS given by a casual user for cordless electric drill selection

with preference and attribute variability

Ranges of MRS at D1y with Ranges of MRS at Dy, with Ranges of MRS at D3 with

. nominal attributes: [450 nominal attributes: [350 nominal attributes: [400
MRS Attributes A . .
operations, 74 dollars, 6.9 operations, 70 dollars, 6 operations, 72 dollars, 6.5
pounds] pounds] pounds]

Operations 0.06 dollar operation", 0.1 [0.05 dollar operation'l, 0.07 [0.05 dollar operation'l, 0.07
S
12
Cost dollar operation'l] dollar operation']] dollar operation'l]
Cost 0.08 pound dollar'l, 0.12 0.20 pound dollar’l, 0.30 0.20 pound dollar", 0.30
S
23
Weight pound dollar'l] pound dollar'l] pound dollar']]
Weight . -1 . -1 . -1
S [100.0 operation pound ',  [64.0 operation pound , 96.0 [72.0 operation pound ',
31
Operations 150.0 operation pound'l] operation pound'l] 108.0 operation pound'l]

Using Eq. (6.1) with the MRS ranges shown in third column of Table 6.2, we
eliminate some dominated designs (Step 4). Table 6.3 (Column 3) shows the Z" values
(objective function in Eq. (6.1)) at D1, for the cordless electric drill design alternatives.
We can see that Z~ is non-negative for D;, D,, D3, D4 and Ds and negative (hence
dominated by Dry) for the rest of the design alternatives except D7. Z~ of Dy is zero

because it is the trial design for this iteration. Since the attributes of cordless electric drill
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are not normalized, we neglect the constraint of Eq. (6.1b) in eliminating dominated

designs for this example.

Since more than one design is not eliminated, we skip Step 5 and find a new trial

design (Step 6). Using our approach for finding a new trial design, we find D, as the new

trial design. So we increase the iteration number by one (i.e., q = 2), set D; as D1, and go

to Step 3.

Table 6.3: Z~ values of cordless electric drill design alternatives for selection with

preference and attribute variability

Design Nominal attribute levels of design Z"* values at Dy, objective  Z* values at Dyy, objective ~ Z* values at D13, objective
alternative alternatives [Number of operations, function of Eq. (6.1), of function of Eq. (6.1), of function of Eq. (6.1), of
number Cost, Weight] designs designs designs
1 [350 operation, 70 dollars, 6.0 26494.080 0.000 17272.60
pounds]
5 [370 operation, 80 dollars, 5.7 6913.779 -0.081
pounds]
3 [380 operation, 80 dollars, 5.5 2844.758 -0.127
pounds]
4 [400 operation, 72 dollars, 6.5 6703.409 4337.930 0.00
pounds]
5 [420 operation, 82 dollars, 6.1 494.789 -0.085
pounds]
6 [430 operation, 88 dollars, 5.8 -0.004
pounds]
7 [450 operation, 74 dollars, 6.9 0.000 6589.772 7218.79
pounds]
3 [470 operation, 85 dollars, 6.5 20.026
pounds]
9 [480 operation, 91 dollars, 6.1 20.027
pounds]
10 [500 operation, 79 dollars, 7.2 20012
pounds]
n [520 operation, 89 dollars, 6.9 20.070
pounds]
L [530 operation, 94 dollars, 6.4 20.047
pounds]
13 [550 operation, 84 dollars, 7.5 -0.041
pounds]
14 [570 operation, 93 dollars, 7.2 -0.089
pounds]
15 [580 operation, 97 dollars, 6.7 0.068
pounds]
16 [600 operation, 90 dollars, 7.8 -0.080
pounds]
17 [620 operation, 98 dollars, 7.5 0.117
pounds]
[630 operation, 100 dollars, 7.0
18 pounds] 0085

The DM, a casual user, gives the ranges of MRS between attributes as shown in

fourth column of Table 6.2 (Step 3). Using Eq. (6.1), D,, D3, and Ds are then eliminated

as dominated designs by Dr, (Step 4). Table 6.3 (Column 4) shows the Z" values at Dr».
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Since more than one design is not eliminated (recall D;, D4 and D7 are not eliminated),
we skip Step 5 and find a new trial design. Perforce, D4 is the new trial design because it
is the only non-eliminated design which has not been a trial design (Step 6). So we
increase the iteration number by one (i.e., q = 3), set D4 as D3 and go to Step 3.

Table 6.2 (Column 5) shows the range of MRS between attributes given by the
casual user (Step 3). Using Eq. (6.1), the Z" values (Step 4) of both D; and D; are
non-negative (see fifth column of Table 6.3). Dy, D4 and D7 are the only non-eliminated
designs at this stage. Since all of them have already been trial designs we stop the
iterative process and collect the three designs in the set Dnp (Step 6) and stop the
selection process (Step 7).

We applied our method for selection with preference variability to another case of
cordless electric drill selection problem with different ranges for the attributes. In this
case, we fixed the range of attributes to be £5% around the nominal attribute levels.
However, we used the same ranges of MRS preferences given in Table 6.2 for this case
also. Starting with an initial trial design of D7, our method found designs D, D4, D7, Dy
and D4 to be the elements of Dyrp. This shows that, as expected, increasing the
variability in attributes increases the number of designs in the set Dxtp.

Next we provide some experimental results that verify our method for selection

with preference and attribute variability.

6.6. VERIFICATION: SOME EXPERIMENTAL RESULTS

To verify the proposed method for selection with preference and attribute

variability, we conducted simulations with four different problem sizes i.e.,
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(number of attributes) x (number of design alternatives), ranging from three attributes
and fifty alternatives to six attributes and fifty alternatives. For each problem size, we
used MATLAB® to generate the fifty random Pareto design points. For simplicity, the
alternatives are uniformly distributed between 0 (worst) and 1 (best) in each attribute. We
chose the four different problem sizes to demonstrate the applicability of our method to
higher attribute problems. Appendix-III shows the nominal attribute levels of the design
alternatives that we used for each problem size.

For each problem size we conducted three simulations, each using a different
simulant value function for producing the range of MRS preferences that our method
needs. The simulant value functions we used are given by Eq. (5.7), Eq. (5.8), and
Eq. (5.9) (recall Section 5.6 of Chapter 5). In addition, for each simulation, we fix the
range of attributes of the random design alternatives to be +5% around the nominal
attribute levels given in Appendix-III. Also, for all the designs, we ensure that the lower
bound on the range of an attribute does not become less than zero and that the upper
bound on the range of an attribute does not become greater than one. The range of MRS
preferences at a trial design corresponding to the range of parameters and the range of
attributes can be found from Eq. (5.7), Eq. (5.8), and Eq. (5.9) by solving a simple
optimization problem (see Appendix-IV for details). Note that these three simulant value
functions are non-decreasing, differentiable and quasi-concave even with variability in
the parameters and the attributes.

To test our method for selection with preference and attribute variability, we
found the designs that are potentially optimal according to the simulant value function. A

design D; would be potentially optimal according to a simulant value function if, D; has
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the highest value for some value of the parameter in the assigned parameter range and for
some attribute levels of design alternatives in the assigned ranges of attributes. L.e.,
Eq. (5.10) is satisfied for some parameter (i.e., B in V; of Eq. (5.7), y; in V; of Eq. (5.8),
and a; in V3 of Eq. (5.9)) value in the assigned parameter range and for some attribute
levels of design alternatives in the assigned ranges of attributes, for all designs Dy
(k=1,...,n; k #J; n is the number of other designs) other than D;.

If the results of our method are accurate then the set of non-eliminated designs,
Dnrp, should be a super set of the set of potentially optimal designs according to the
simulant value function. Table 6.4 shows the non-eliminated trial designs Dnrp in the
third column and the potentially optimal designs according to the simulant value function
in the fourth column. From Table 6.4, we can see that the set of non-eliminated designs
Dnrp, always includes the potentially optimal designs according to the simulant value
function, thus verifying our method for selection with preference and attribute variability.

From Table 6.4, we can see that the set Dytp contains a number of design
alternatives that are not potentially optimal according to the simulant value function. This
shows that our method for selection with preference and attribute variability is very

conservative in eliminating dominated designs as mentioned before (recall Section 6.3.1).
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Table 6.4: Results of verification study for selection with preference and attribute

variability

Problem size: "# of

attributes x # of Value function

designs"

Potentially optimal designs
according to the simulant
value functions for £0.05%
attribute variability

Non-eliminated trial designs,
members of Dyyp for £0.05%
attribute variability

3x50

D12, Dis, Dig, Dis, D19, D2z, Dos,

Day, Di, D
D31, D3, D34, Dss, D3o, Das, Das 31, D32, D3g

Do, D12, D1s, Dig, Dis, Dio, D2, Dos,
D27, D29, D31, D32, Dsg, Dsg, Das, Di2, Dis, Dig, D22, D31, D3z, D3
Das, Dag

Di2, Dis, Dig, D17, Dis, Dio, Daa,
D23, D27, Dag, D29, D3y, D32, Dsa, Di2, Dis, Dig, D22, D31, D3z, D3
Dss, D3, Das, Da7

Vi

4x50 V2

Vs

Da, Dg, D7, Dis, D19, D21, D23, Dag,
D2s D29, D3y, Dss, Dsg, D37, D, Dis, D21, Das, Dag, Dss, D37
Du2Da3, Daa, Das

Dy, Ds, D7, D14, Dis, Dis, D19, D21,
D24, Dag, D29, D31, Dss, Dsg, D37,
D33, Dai, Daz, Daa, Das

Dis, D21, Dag, Dss, Dsg, D3, Das,
Dai, Dag

D4, D7, D14, Dis, D16, Dis, Dig, D2y,
D24, D2s, D29, D31, Dss, Dsg, D37, Dis, D21, D24, D29, D3s, Dy7
Dsg, D42, Dya, Dy

Vi

5%50 V2

Da, D7, Do, Dig, D11, D12, Dia, Dis,
Dy, Dao, D21, D22, Dag, D27, Dag,
D3y, D33, Dss, D3g, D37, D39, Day,

Daz, Da3, Daa, Das, Dao

D12, D14, D16, D22, Dag

Da, Dg, D7, D11, D12, D14, Dis, Die,
D19, D29, D21, D22, Dag, D3y, D3,
: ’ D2, Dis, D6, D21, Doz, D2
Dss, D6, Dss, D39, Daz, Das, Daa, 15 e, Faz T
Das, Dag

D4, D7, D11, D12, Dis, Dis, Dig, Dio,
D20, D21, D22, D26, D29, D31, D33,
. D12, D14, Di6, Do,
Dss, Dsg, Dsg, D3g, Dai, Daz, Das, B He T
Daa, Das, Dag

Das

Vi

6%50

Vs

Dis, D17, D1o, Dao, D21, D22, Dag,

D27, D29, D30, D31, D32, D33, Das,

Dse, D3g, D39, Dao, D41, Das, Daa,
Dus, Das, Dag

Dao, D3o

D9, Do, D21, D32, D3g, Dao, Dai,

Das, Dag Das D20, D39, Daa, Dag

Dig, D2g, D21, D32, D33, Dsg, Dso,

D2, D
Dao, Da1, Daa, Dus, Dag, Dao 0
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We conducted the simulations (with Eq. (5.7), Eq. (5.8), and Eq. (5.9) as simulant
value functions) for each problem size one more time for another case. In this case, for
each simulation, we fix the range of attributes of the random design alternatives to be
+1% around the nominal attribute levels given in Appendix-III. We found that the size of
Dnrp (i.e., number of designs in the set) for this case is on average about half the size of
Dnrp (see Column 3 of Table 6.4) for the case when there is £5% variability in attributes.
This indicates that in our method for selection with preference and attribute variability,
the number of designs eliminated as dominated designs decrease significantly with

increases in the attribute variability.

6.7. SUMMARY

In this chapter, we presented a method for product design selection with
preference and attribute variability for an implicit value function. Our method assumed
that the DM’s implicit value function is differentiable, quasi-concave and non-decreasing
with respect to the attributes. This assumption is more general and less restrictive than
other popular assumptions as reported in the literature (e.g., additive value function)
[Eum et al., 2001] [Lee et al., 2001].

Our method for selection with preference and attribute variability requires that the
range of attributes of design alternatives be known in addition to the range of MRS
preferences. We presented a mathematical formulation for eliminating dominated designs
using the ranges of attributes and MRS preferences. When the MRS values are assumed
consistent, this formulation can be solved without much computational burden. We

presented an algorithm for selection with preference and attribute variability and

163



demonstrated the algorithm with two engineering examples: payload design selection and
cordless electric drill selection. We also provided some experimental results that
numerically verified that the set of non-eliminated trial designs found by our method
always includes the set of potentially optimal designs.

Our method for selection with preference and attribute variability is conservative
and does not always eliminate all the dominated designs. But on the bright side, our
approach does not eliminate a design that is actually potentially optimal. Also our method
does not need presumed probability distributions governing the variability in MRS
preferences and attributes of design alternatives since our approach for eliminating
dominated designs is a worst case approach.

Note that for eliminating dominated designs using Eq. (6.1), it is important to
obtain the global optimum. A local optimum for Eq. (6.1) could be negative while the
global optimum is positive leading to erroneous conclusions. However, in our simulations
and examples, we used “fmincon” from the MATLAB® optimization toolbox, which
might converge to a local optimum, as the optimizer. We used MATLAB® to maintain
uniformity with the methods developed in the previous chapters. But our experimental
results indicate (recall Table 6.4) that our method never eliminated as dominated design a
design that is potentially optimal according to a simulant value function. This could be
due to the conservative nature of our approach for eliminating dominated designs (recall
Section 6.3.1). However to be sure that only the actual dominated designs are eliminated
using Eq. (6.1) one should use a global optimizer (e.g., genetic algorithm) or use different
starting points to converge to the global optimum using a local optimizer (e.g., “fmincon”

from the MATLAB® optimization toolbox). A better approach (and an area for future
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research) would be to modify the formulation in Eq. (6.1) so that it becomes a convex
optimization problem.

In the next chapter we provide the conclusions for this dissertation.
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CHAPTER 7

CONCLUSIONS

7.1. INTRODUCTION

This dissertation has four research components in the context of engineering
product design selection with an implicit value function. In our first research component,
Deterministic Selection (Chapter 3), we developed a new method that uses the DM’s
marginal rate of substitution (MRS) between the attributes for finding the preferred
design alternative(s). In the second research component, Sensitivity Analysis for
Deterministic Selection (Chapter 4), we developed a concept for finding the robustness of
a set of non-eliminated trial designs to variations in DM’s preference estimates. Our third
research component, Selection with Preference Variability (Chapter 5), helped us produce
a new method for identifying dominated designs and potentially optimal designs for the
given ranges of MRS preferences. Finally, in our fourth research component, Selection
with Preference and Attribute Variability (Chapter 6), we extended our method for
selection with preference variability to account for variability in the attributes of design
alternatives.

We presented the objectives of our research components in Chapter 1 and
reviewed the previous works in Chapter 2. In Chapters 3-6, we demonstrated the
application of the proposed method for each research component to a couple of
engineering examples. Also in Chapter 3-6, we provided numerical experimental results

to verify our proposed method for each research component.
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The purpose of this chapter is to conclude this dissertation. In Section 7.2 we give
concluding remarks for each research component. Next, in Section 7.3 we highlight the
contributions of this research. Finally, in Section 7.4 we provide specific ideas and

extensions concerning future research directions.

7.2. CONCLUDING REMARKS

In Section 7.2.1 to Section 7.2.4, we provide the concluding remarks for each of
the four research components. Next, in Section 7.2.5 we give a common advantage and
the common disadvantages for all of our research components. Finally, in Section 7.2.6
we give some remarks about the computational cost for the methods of each research

component.

7.2.1. Research Component 1: Deterministic Selection

Our deterministic selection is iterative and requires the DM to give the marginal
rate of substitution (MRS) between the attributes at a series of trial designs. The MRS
preferences are used in finding the gradient of the value function at the trial designs. The
gradient is then used for eliminating some lower value designs with respect to the trial
designs. Our proposed deterministic selection method has the following advantages and

disadvantages.

7.2.1.1. Advantages

Our deterministic selection method has the following advantages.
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Captures the DM’s preferences in the form of MRS between attributes at a
series of trial designs. Capturing the MRS preferences accounts for any
non-monotonicity and coupling (i.e., interdependence between attributes) in
the DM’s value function. Such a nonlinear preference structure is common for
a designer acting as a DM in engineering design selection (recall Section 3.1
of Chapter 3). Our formulation for finding the gradient coefficients allows for
some inconsistency in the DM’s MRS preferences and alerts the DM if the
inconsistency is more than a threshold that is allowed for (recall Section 3.3.1
of Chapter 3). Also our formulation for finding the gradient coefficients does
not require normalization of the attributes (see Lemma in Section 3.3.1 of
Chapter 3).

Eliminates only those designs that have lower value than the trial designs thus
ensuring that the set of non-eliminated trial designs, Dxrp, (Which is usually
small) always includes the most preferred design irrespective of the starting
trial design. So it will be much easier for the DM to identify (e.g., using our
gradient adjacency elimination, recall Section 3.3.4 of Chapter 3, or using
his/her judgment/expertise) the most preferred design from the usually small
set Dnp than identifying the most preferred design from the original set of
design alternatives.

Uses gradient information at all the previous trial designs in finding a new
trial design. Such an effective usage of information reduces the number of
iterations required in finding the most preferred design alternative as the new

trial design (recall Section 3.6.2 of Chapter 3).
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7.2.1.2. Disadvantages

Our deterministic selection method has the following disadvantages.

Because of its iterative nature, our deterministic selection method might come
across as tedious to a DM. Also our deterministic selection method presumes
that the DM has the requisite level of expertise and consistent judgment to
state the MRS preferences between attributes. Because of this presumption,
our deterministic selection method, in its current state, cannot be applied to a
common man’s selection problem (e.g., a consumer who wants to buy a laptop
but does not know much about laptops).

The most preferred design found using our heuristic gradient adjacency
elimination (when the set of non-eliminated trial designs Dnrp is not a
singleton) might be sub-optimal (recall Section 3.3.4 of Chapter 3). lL.e., our
gradient adjacency elimination might eliminate as lower value design, a
design which is actually the most preferred.

In our deterministic selection method, we cannot check if the DM is giving the
MRS preferences consistent with a quasi-concave value function as we move
from one trial design to the other. Note, however, that one need to obtain
additional information, form the DM, about the actual values of the design
alternatives in order to check whether or not the DM’s preferences are

consistent with a quasi-concave value function.
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In the next section, we give the concluding remarks of our second research

component.

7.2.2. Research Component 2: Sensitivity Analysis for Deterministic Selection

Our concept for sensitivity analysis is applicable to the class of iterative selection
methods that eliminate some design options at the trial design chosen for the current
iteration. Such methods are generally used when the DM’s value function is implicit
rather than known. In our sensitivity analysis concept, we calculate three successive
metrics, culminating in the robustness index for the set of non-eliminated trial designs
Db, and we identify the critical design(s). Our proposed concept for sensitivity analysis
as applied to our deterministic selection method has the following advantages and

disadvantages.

7.2.2.1. Advantages

Our method for sensitivity analysis for deterministic selection has the following

advantages.

e Identifies critical design(s) and critical pair of attributes (recall Section 4.3.2
of Chapter 4). If the DM thinks that the critical design(s) is (are) not
important, he/she can decide to make a selection from the set of
non-eliminated trial designs. Otherwise, the DM can find the potentially
optimal designs by assigning a range for MRS preferences. In particular, the
DM can analyze how the potentially optimal designs change by assigning

different ranges to the MRS preference between the critical pair of attributes.
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e Identifies, using the overall elimination robustness metric, the amount of
preference variation (for the given preference estimates) that would cause
each eliminated design to become a member of the set of non-eliminated trial
designs. Using this information, the DM can directly find the set of
non-eliminated designs (i.e., without using our method for selection with
preference variability) for ranges of MRS preferences that are symmetric
about the preference estimates given at the trial designs in deterministic
selection.

¢ Finds elimination robustness of a design with respect to a trial design without
much computational burden when the MRS values are consistent
(recall Eq. (4.4)). Thus the DM can make judgments about the robustness of
the set of non-eliminated trial designs and decide what action to take in real

time.

7.2.2.2. Disadvantages

Our method for sensitivity analysis for deterministic selection has the following

disadvantages.

e The robustness index found by our sensitivity analysis method is the allowed
preference variation for which the set of non-eliminated trial designs is not
affected. However, the DM might actually want to know the robustness index
of the most preferred design alternative. This is a drawback of our sensitivity

analysis method and requires future research.
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e Our approach for finding the robustness index is a worst case approach and
restricts the variation in the MRS between all pairs of attributes at all trial
designs to be the same. Also, the bounds given by the robustness index are
always symmetric about the preference estimates given at the trial designs.
But in reality, the ranges of preferences that the DM has in mind might not be

symmetric about the preference estimates.

In the next section, we give the concluding remarks of our third research

component.

7.2.3. Research Component 3: Selection with Preference Variability

Our method for selection with preference variability is iterative and requires that
the DM give some constraints (e.g., ranges) on the marginal rate of substitution (MRS)
between the attributes at a series of trial designs. The constraints on the MRS preferences
at the trial designs are then used in eliminating some dominated designs. Our proposed
method for selection with preference variability has the following advantages and

disadvantages.

7.2.3.1. Advantages

Our method for selection with preference variability has the following

advantages.
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e Queries the DM for constraints (e.g., ranges) on the preferences which are
easier to state than giving the probability distributions governing the
preference variability.

e Finds the dominated designs without much computational burden. Our
formulation for finding the dominated designs is a linear programming
problem when, the MRS values are consistent (recall Eq. (4.4)) and the DM
gives linear constraints on the MRS. Hence the DM can be presented with the
set of non-eliminated trial designs in real time.

e Eliminates only those designs that are dominated with respect to the trial
designs thus ensuring that the set of non-eliminated trial designs, Drp,
always includes the potentially optimal designs. Hence, the DM can be sure
that the most preferred design for a subset of the given ranges of preferences
is always in Dntp. So, the DM can make a selection directly from Dytp
(instead of the original set of designs) once he/she improves the preference
estimates by obtaining more information about the end users’ needs (recall

Section 1.2.5 of Chapter 1).

7.2.3.2. Disadvantages
Our method for selection with preference variability has the following
disadvantages.
e Our approach for eliminating dominated designs is conservative. Because of
which, the set of non-eliminated trial designs might contain some designs that

are actually dominated.

173



e Our heuristic approach (recall Section 5.3.3 of Chapter 5) does not eliminate
all dominated designs from the set of non-eliminated trial designs. Also, the
formulation for our heuristic approach is non-convex and is computationally
expensive.

e As the variability in DM’s preferences increase, the number of designs
dominated by a trial design might decrease thus resulting in an increase in the
number of iterations to find the set of non-eliminated trial designs. This might

become tedious for the DM.

In the next section, we give the concluding remarks of our fourth research

component.

7.2.4. Research Component 4: Selection with Preference and Attribute Variability
Our method for selection with preference and attribute variability is iterative and
requires that the range of attributes of design alternatives be known in addition to the
range of MRS preferences between the attributes at a series of trial designs. The range of
MRS preferences and the range of attributes are then used in eliminating some dominated
designs. Our proposed method for selection with preference and attribute variability has

the following advantages and disadvantages.

7.2.4.1. Advantages

Our method for selection with preference and attribute variability has the

following advantages.
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e Queries the DM for ranges of preferences and ranges of attributes which are
easier to state than giving the probability distributions governing the
preference variability and attribute variability.

e Finds the dominated designs without much computational burden. Our
formulation for finding the dominated designs has a nonlinear objective
function with linear constrains when the MRS values are consistent
(recall Eq. (4.4)). Hence the DM can be presented with the set of
non-eliminated trial designs in real time.

e Eliminates only those designs that are dominated with respect to the trial
designs thus ensuring that the set of non-eliminated trial designs, Drp,
always includes the potentially optimal designs. Hence, the DM can be sure
that the most preferred design for a subset of the given ranges of preferences
and the given ranges of attributes is always in Dyrp. So, the DM can make a
selection directly from Dnrp (instead of the original set of designs) once
he/she improves the preference estimates and the attribute estimates by

obtaining more information (recall Section 1.2.5 of Chapter 1).

7.2.4.2. Disadvantages
Our method for selection with preference and attribute variability has the
following disadvantages.
e Our approach for eliminating dominated designs is conservative. Because of
which, the set of non-eliminated trial designs might contain some designs that

are actually dominated.
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e As the variability in DM’s preferences or variability in attributes increase, the
number of designs dominated by a trial design might decrease thus resulting in
an increase in the number of iterations to find the set of non-eliminated trial

designs. This might become tedious for the DM.

In the next section, we give a common advantage and the common disadvantages

of all our research components.

7.2.5. Common Advantage and Disadvantages of All Research Components

Our research components have the following common advantage.

e Our methods in each research component account for an implicit value
function that is non-decreasing, differentiable, and quasi-concave with respect
to the attributes. An implicit quasi-concave value function is more general
[Malakooti, 1988] and less restrictive than other popular assumptions for the
DM’s value function as reported in the literature (e.g., additive value
function). Our first research component, Deterministic Selection, is applicable

even when the DM’s value function is non-decreasing.

Our research components have the following common disadvantages.
e Because we assume that the DM’s implicit value function is differentiable, our
methods in each research component cannot be applied when the attributes are

discrete or when then the DM’s value function is not differentiable. However,
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it is not uncommon in engineering design selection to have discrete attributes,
e.g., color of an automobile.

Even though assuming that the DM’s value function is non-decreasing,
differentiable, and quasi-concave, is more general than other popular
assumptions, there is no evidence to suggest that, in practice, the DM’s value
function is always quasi-concave. If the DM’s wvalue function is not
quasi-concave, then the preferred design(s) found by our methods in each

research component might be erroneous.

In the next section, we give some remarks about the computational cost of the

methods in each research component.

7.2.6. Remarks on the Computational Cost of the Research Components

In this section, we provide some remarks about how the computational cost of the

methods in each research component depends on the number of design alternatives ‘n’.

In deterministic selection, at each iteration, we need to solve the optimization
problem in Eq. (3.6) or Eq. (3.10) for finding the gradient coefficients at the
trial design for that iteration. Once the gradient coefficients are found,
gradient cut elimination and gradient adjacency elimination can be applied
with out much computational burden irrespective of the number of design
alternatives. Computational time taken for solving Eq. (3.6) or Eq. (3.10)
depends on the number of attributes and the consistency of the DM’s MRS

preferences.
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In sensitivity analysis for deterministic selection, at each iteration, we need to
solve the optimization problem in Eq. (4.3) for each eliminated design to find
the elimination robustness of that design. l.e., if ‘c’ is total number of
iterations and ‘t’ is the average number of designs eliminated at each iteration
(t<n), we need to solve Eq. (4.3) ‘ct’ times. So the computational burden
increases linearly with the number of design alternatives in sensitivity
analysis.

In selection with preference variability, at each iteration, we need to solve the
optimization problem in Eq. (5.1) for checking whether or not a design
alternative is dominated by the trial design for that iteration. l.e., for the first
iteration, Eq. (5.1) has to be solved ‘n-1’. For the subsequent iterations,
Eq. (5.1) has to be solved for less than or equal to ‘n-1’ times because some
designs might be eliminated in the previous iterations. So, at most, Eq. (5.1)
has to be solved ‘c:(n-1)’ times, where ‘¢’ is total number of iterations. Hence
the computational cost for finding the set of non-eliminated trial designs,
Dnrp, increases linearly with the number of design alternatives in selection
with preference variability. However, our heuristic approach (recall Eq. (5.4)
and Eq. (5.5)) is computationally expensive because it involves solving
non-convex optimization problems. Also in our heuristic approach we apply
the tests of Eq. (5.2) and Eq. (5.3) to all ordered pairs (recall Section 5.3.3) of
non-eliminated trial designs. Because of this the computational burden in
applying the heuristic approach increases quadratically with the number of

designs in Dnp.
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In selection with preference and attribute variability, at each iteration, we need
to solve the optimization problem in Eq. (6.1) for checking whether or not a
design alternative is dominated by the trial design for that iteration. l.e., for
the first iteration, Eq. (6.1) has to be solved ‘n-1’ times. For the subsequent
iterations, Eq. (6.1) has to be solved for less than or equal to ‘n-1° times
because some designs might be eliminated in the previous iterations. So, at
most, Eq. (6.1) has to be solved ‘c-(n-1)’ times, where ‘c’ is total number of
iterations. Hence the computational cost for finding the set of non-eliminated
trial designs, Dxtp, increases linearly with the number of design alternatives

in selection with preference and attribute variability.

In the next section, we discuss the contributions of this dissertation.

7.3. CONTRIBUTIONS

The contributions of the research presented in this dissertation are summarized

below.

Developed a first of its kind formal decision making framework for product
design selection in that the DM’s value function is not presumed explicitly
and both preference and attribute variability are accounted for. This decision
making framework 1is applicable when the DM’s value function is
non-decreasing, differentiable and quasi-concave with respect to the attributes.
Developed a new mathematical formulation that does not need normalization

of attributes for finding the gradient of the DM’s implicit value function using
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marginal rate of substitution (MRS) between attributes. We showed that
normalization of attributes, hence the normalization of gradient coefficients, is
not necessary for eliminating lower value designs using the gradient cut.

e Developed novel heuristic approaches in Chapter 3 and Chapter 5 that make
use of already existing gradient information at the trial designs for eliminating
more designs from the set of non-eliminated trial designs.

e Introduced the concept of a robustness index for measuring the allowed
variation in the preference estimates for which the set of non-eliminated trial
designs is not affected when the DM’s value function is implicit. Such a
concept for robustness index exists in the literature when the DM’s value
function is presumed explicitly. Our concept for robustness index is the first
such concept when the DM’s value function is implicit.

e Developed a novel approach, based on the gradient cut notion, for eliminating
dominated designs when the DM’s value function is implicit and when there is
preference variability or both preference and attribute variability. We
presented mathematical formulation for identifying the dominated designs
without finding the actual gradient range for the given range of preferences

(and attributes when attribute variability is also present).

In the next section, we give suggestions for future research.
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7.4. FUTURE RESEARCH DIRECTIONS

The research presented in this dissertation addresses a variety of situations for
product design selection with an implicit value function. However, there are many
important research issues left unresolved. In this section, we briefly discuss some of these
issues and provide some general research directions to address them. Some of the
discussions presented here are based on currently known shortcomings of our proposed

methods (summarized in Section 7.2).

7.4.1. Robustness Index of the Set of Non-eliminated Trial Designs to Variations in
the Attribute Levels of Design Alternatives

In Chapter 4, we proposed a concept for sensitivity analysis for deterministic
selection. In that concept, we find the robustness index of the set of non-eliminated trial
designs, Dnrp, to variations in the preference estimates given by the DM. However, as
mentioned in Chapter 6, in addition to preference variability, it is quite common in
engineering design selection to have attribute variability. In this section, we suggest a
method for finding the robustness index of Dntp to variation in the attribute levels of
design alternatives.

For finding the robustness index of Dnrp to variations in the attribute levels of
design alternatives, we propose to calculate three successive metrics culminating in the
robustness index.

Let D, be an arbitrary design belonging to the original set of designs. Let Dt be
the current trial design in our deterministic selection method (recall Figure 3.1), and let

VVr be the gradient of the value function at Dr (see Figure 7.1(a)). In Figure 7.1(a), for
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the estimated attribute levels of D;: [Aj+, Az:] and Dr: [Air, Aar], Dy lies in the gradient

t
149009

cut of Dy. However, if the actual attribute levels of D+ become [A AIHJ (assume for

simplicity that the attributes of Dt do not vary) then D, no longer lies in the gradient cut

at Dt (see Figure7.1(a)). Also, if the actual attribute levels of Dr

become [A}T,...,A;T]then D (even with the estimated attribute levels) will no longer

lie in the gradient cut at D (see Figure 7.1(b)).

Due to variability, actual

Due to variability, actual

attribute levels at D, [A{+,A'z+:|

attribute levels at D [A:T,A;T

Gradient cut for
attribute variation

3

D, does not lie in the D, does not lie in the
gradient cut for this gradient cut for this
attribute variation attribute variation

Figure 7.1: Illustration of attribute elimination robustness of D. with respect to Dy

Our first metric &1, which we call attribute elimination robustness of design D
with respect to trial design Dr, is defined as the smallest variation in the attribute levels
of D; and Dt for which Dt does not eliminate D;. By variation we mean difference
between the estimated attribute level and the actual attribute level. Here, &1 is
dimensionless and is expressed as a fraction of the estimated attribute levels. We propose
to use the formulation in Eq. (7.1) for finding &:r. In Eq. (7.1), aj+ and a;jr are the
variables, Wit (i=1,...,m) are the gradient coefficients corresponding to VVr, and A;; and

Ajr are the estimated attribute values at D, and Dr respectively.
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Minimize &,; (7.1a)

subject to : ZWiT ‘(a,-a,;)=2 0 (7.1b)
)
(1-&.;) Ay <a; <(1+&,;)- A, 'm'such constraints (7.1¢c)
(1-&.;)-A, <a, <(1+&,;)-A,.;'m'such constraints (7.1d)

R

0<E,, S(ﬁ] (7.1¢)

Eq. (7.1b) is used to check that D, is not in the gradient cut of Dt corresponding to the
attribute levels, aj; and ajr, of Dy and Dr respectively. Eq. (7.1c) is to check that
air (1i=1,...,m) are within the bounds, given by &.r, of the estimated attribute levels at Dr.
Eq. (7.1d) imposes a similar constraint on aj;. Also, if the lower bound in Eq. (7.1¢) and
in Eq. (7.1d) becomes negative, we set it equal to zero. Eq. (7.1e) is a constraint imposed
on &:r1. In Eq. (7.1e), R is the radius of region Or around Dr in which the value function
is approximated to be linear. Recall (see Section 3.3.4 of Chapter 3) that the MRS
preferences given at Dt are valid only in the region Or. The upper bound on &t in

Eq. (7.1) ensures that the attribute variations at Dt are within the region Or. If a feasible

solution for Eq. (7.1) does not exist then we propose to set &t as (%j Note that for

each Dr (i.e., at each iteration), &t is calculated for each design D in the input set.

The second metric &;max We call the overall attribute elimination robustness of a
design D.. Eimax 1s the largest of the &.1’s for Dy over all Dy’s. Thus, so long as the
variation in every attribute level is less than &.max at a/l trial designs and D,, Dy will be

eliminated by at least one trial design.

183



The final metric is attribute robustness index, &, which is the minimum of all the
E+max S. All designs not in Dytp remain eliminated so long as the variation in every
attribute level is less than & at all design alternatives.

Using the attribute robustness index, the DM can then decide whether to make a
selection from Dnrp (e.g., using gradient adjacency elimination, recall Section 3.3.4 of
Chapter 3) or take some other step (e.g., finding potentially optimal designs with a range
of attributes for design alternatives).

In the next section, we discuss our next future research direction.

7.4.2. Extensions to Our Method for Selection with Preference Variability

In Section 5.7 of Chapter 5, we mentioned that our formulation for eliminating
dominated designs in selection with preference variability can accommodate constraints
other than the ranges on the MRS preferences. In this section, we suggest an extension to
the formulation in Eq. (5.1) for accommodating other type of constraints on the MRS
preferences.

It is not necessary that the DM can always state a range of preferences to account
for preference variability. Sometimes (due to lack of information) the DM might give
some other type of constraints on the MRS preferences. For example, in payload design
selection, the DM might say: “I would give up more in the probability of success of
scenario 2, Ps;, than in the probability of success of scenario 3, Ps3, to gain an increase of
0.1 in the probability of success of scenario 1, Ps;”. Such a response means that the DM’s
MRS preference between Pg; and Ps; (i.e., Si2) is greater than his/her MRS preference

between Pg; and Ps; (i.e., Si3). Also, it is possible that the DM can provide a crisp (or
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deterministic) MRS between some attributes and give some constraints for the MRS
between other attributes. Next, we provide an example for modifying the formulation in

Eq. (5.1) for different types of constraints on the MRS.

Example: Consider the payload design selection problem with the probability of success,
Ps, in five scenarios as the attributes, i.e., Ps; (i= 1 to 5) are the attributes. Due to lack of
information on futuristic scenarios the DM can only give the MRS between Pgs and Pg;,
i.e., Ss;, with certainty as 0.2. For Pg; and Ps,, the DM says that the MRS S, is between
0.12 and 0.18. For Pg, and Ps3, the DM says that MRS Sj; is between 0.08 and 0.10. The
DM also says the MRS between Pgs; and Psy, i.e., Si4, is always greater than the MRS
between Pg4 and Pss, i.e., S4s. With these preferences, modify the formulation in Eq. (5.1)

for eliminating dominated designs.

Solution: Let wir (i=1,...,5) be the coefficients of the variable gradient at a trial design
Drt: [Psit,...,Psst]. Let Di: [Psi+,...,Pssi] be an arbitrary design that belongs to the
original set of designs. Assuming that the MRS values, s;r, are consistent (recall
Eq. (4.4)), if the maximum value of Z in Eq. (7.2) is negative then we can conclude that

design D is dominated by Dr. In Eq. (7.2), wir, (i=1,...,5) are the variables.

5
Maximize Z' =) w; - (P, —Py;) (7.2a)
i=1
subject to: ZwiT =1, w;20 (7.2b)
i=1
0.12< T <018 (7.2¢)
Wor
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0.08< Y21 <10 (7.2d)

Wir
War > War (7.2¢)
W4T WST
War 0.2 (7.2f)
W

Eq. (7.2) is a simple extension of Eq. (5.1). However, for the given constraints on MRS
preferences, the formulation in Eq. (7.2) is no longer linear (see Eq. (7.2¢)). Note that,
similar extensions can be done to the formulation in Eq. (6.1) for eliminating dominated
designs in selection with preference and attribute variability.

We mentioned earlier (recall Section 5.7) that our method for selection with
preference variability does not need probability distributions governing the MRS
preferences. However, in addition to the range of MRS preferences, if the DM can
provide the probability distributions (with in the given range) of the MRS preferences,
our method can be extended as follows for finding the preferred design(s). Since the
designs not in the set of non-eliminated trial designs Dnrtp are dominated irrespective of
the probability distributions for the given ranges of MRS preferences, Dnrp can be used
as the set of designs from which the selection has to be made. Pick a design D, from
Dnrp and then conduct Monte Carlo runs. At the beginning of the Monte Carlo runs,
assign a number called likelihood of elimination to each design belonging to Dxtp and set
it to zero. In each Monte Carlo run, sample the MRS preferences at D from the given
probability distributions and then find the gradient corresponding to the sampled MRS
preferences. If a design belonging to Dnrp lies in the gradient cut corresponding to the

sampled MRS preferences at D, then increase the likelihood of elimination of that design
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by one. After completing the stipulated Monte Carlo runs, compare the likelihood of
elimination of a design belonging to Dnrtp with the threshold likelihood (a percentage of
the number of simulation runs) specified by the DM and eliminate that design if the
likelihood is greater than the threshold. The design(s) that are not eliminated after
conducting the Monte Carlo runs at all members of Dntp would then be the preferred
design(s).

In the next section, we discuss our next future research direction.

7.4.3. Bayesian Statistics for Predicting the Actual Values of Design Alternatives

We mentioned earlier (recall Section 7.3.1.2) that our heuristic gradient adjacency
elimination approach, which is used for selecting from the set of non-eliminated trial
designs, Dnrtp, might sometimes result in a sub-optimal most preferred design. An
interesting research issue is to consider using Bayesian statistics for predicting the actual
values of the designs in Dnrp and then pick the design with the highest predicted value as
the most preferred design. Using gradient cut elimination, at each iteration of our
deterministic selection method (recall Section 3.3.2 of Chapter 3), we obtain some
information about the relative ranking of the designs. If this information can be used to
predict the actual value using Bayesian statistics then heuristics like gradient adjacency
elimination can be avoided.

In the next section, we discuss our next future research direction.
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7.4.4. Heuristic for Selection with Preference and Attribute Variability

The output of our method for selection with preference and attribute variability
contains a number of designs that are actually dominated. The possibility of developing a
heuristic to reduce the set of non-eliminated trial designs to the set of potentially optimal
designs should be investigated.

In the next section, we discuss our next future research direction.

7.4.5. Selection with Multiple Decision Makers

An important issue that has been not addressed in this dissertation is that product
design selection often involves multiple decision makers (DMs) instead of a single DM.
In selection with multiple DMs, researchers acknowledge that it is difficult to find a
design that satisfies the preferences of all the DMs. So the task in selection with multiple
DMs is to find a compromise solution. Our deterministic selection method can be readily
extended for eliminating those designs that have lower value according to all the DMs
(see Figure 7.2). The challenge, however, is to reduce the set of non-eliminated designs to

the compromise solution and this challenge requires future investigation.

Gradient obtained from the
first DM’s MRS preferences

% l
vV
~ : 2 VV; <— Gradient obtained from the
/ second DM’s MRS preferences

Designs in this region have lower
value according to all the DMs

Figure 7.2: Illustration of eliminating lower value designs according to all DMs
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In the next section, we discuss our next future research direction.

7.4.6. Multi-Attribute Multi-Disciplinary Selection

In our deterministic selection method, we assume that the DM can state the MRS
between any two attributes. However it might be difficult for the DM to state the
preferences if the two attributes belong to separate disciplines. For example, in
automobile design selection, it would be extremely difficult for the DM to compare
between the gear ratio of the transmission and the passenger leg room inside the
automobile. Stating the MRS preferences would be considerably simpler for the DM if
the attributes with some similarities were grouped into disciplines. For instance, in
automobile design selection, attributes like passenger leg room and dashboard display can
be grouped into an interior of the automobile discipline. Grouping similar attributes into
disciplines will result in a two-level selection (disciplines in the upper-level and attributes
of a discipline in the lower-level) rather than a single-level selection. We call such a
two-level selection problem: Multi-Attribute Multi-Disciplinary Selection. Some methods
exist in the literature for two-level selection when the DM’s value function is explicitly
known (e.g., analytical hierarchy process [Saaty, 1980]). However, to the best of our
knowledge, no method exists in the literature for two-level selection with an implicit

value function.
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APPENDIX-I

DESCRIPTION OF PAYLOAD DESIGN OPTIMIZATION PROBLEM AND

DEMONSTRATION OF SOFTWARE FOR DETERMINISTIC SELECTION

In this appendix, we first provide the description of the optimization problem for
payload design of an undersea autonomous vehicle in Section A.I-1 and then discuss the
software we developed for payload design optimization and deterministic selection in

Section A.I-2.

A.I-1. DESCRIPTION OF THE OPTIMIZATION PROBLEM FOR PAYLOAD
DESIGN OF AN UNDERSEA AUTONOMOUS VEHICLE (UAYV)

The original formulation for the payload design optimization problem can be
found in [Gunawan, 2004]. Typically, the payload of a UAV must be effective in several
different uses, called “scenarios”. Effectiveness in a scenario is measured by the
probability of success, Ps, of payload delivery in that scenario. The design goal is to
simultaneously maximize the individual Pgs’s for all scenarios. The payload design is
constrained by upper limits on the weight of the payload and on the radiated noise
generated by the payload.

There are six design variables: the payload length (PL), the hull diameter (DH),
the material of the hull (HM), the payload type (PT), the first inner material type (I1), and
the second inner material type (12). Four of the variables are discrete: HM, PT, 11, and 12.

The choices for HM, PT and I1 are [6061AL, 7075AL], [BULK, MULTI MISS], and
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[TYPE 1A, TYPE 1B], respectively. For the discrete variable 12, the options available
are [TYPE 2A, TYPE 2B, TYPE 1B], but I2 can be TYPE 1B only if the variable I1 is
TYPE 1B also. The other two variables are continuous and they are bounded as:
6.0 <DH < 12.75 and 1.0(DH) < PL <5.0(DH). In addition to the six design variables,
there is a fixed continuous design parameter, the maximum depth (= 3000 ft), at which
the payload operates. There are no closed-form relationships to map the design variables
to the constraints and to the Ps’s. Rather, we are provided with a design analyzer (a
computer program) that maps the design variables to the payload weight, the radiated
noise, and the Pg’s for the scenarios.

For the example in Section 3.5.1 of Chapter 3, we address a two objective payload
design optimization with two constraints. The two objectives are to maximize Pg; and Ps;
for two different scenarios (typical names of the scenarios are ASW Small,
ASW Medium, ASW Large, ATT Small, ATT Medium, and ATT Large). The two
constraints are an 85 Ib upper bound on the payload weight and a 0.16 Watt/m* upper

bound on the radiated noise generated. The problem is then mathematically formulated as

follows.
Maximize Py, (PL, DH, HM, PT, 11, I2) (Al-1a)
Maximize P, (PL, DH, HM, PT, 11, 12) (A.I-1b)
subject to: Weight(PL, DH, HM, PT,11,12)-85<0 (A.I-1c)
Noise (PL, DH, HM, PT, I1,12)-0.16 <0 (A.I-1d)

The Pareto optima obtained by solving the formulation in Eq. (A.I-1) using a

Multi Objective Genetic Algorithm (refer [Gunawan et al., 2003] for details) is then used
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as the set of design alternatives, with Pg; as the attributes, for selection in Section 3.5.10f
Chapter 3.
In the next section, we discuss the software we developed for payload design

optimization and deterministic selection.

A.I-2. SOFTWARE FOR PAYLOAD DESIGN OPTIMIZATION AND
DETERMINISTIC SELECTION

Figure A.I-1 shows the flowchart of the software we developed in MATLAB®
for payload design optimization and selection. The software has interfaces for various
stages of the optimization and selection process. In our software, the DM first chooses the
scenarios for optimization. Next, the DM chooses the optimizer that he/she wants to use
for the optimization. Then the DM sets the objectives, constraints, and other parameters
for the optimizer. The optimizer then generates the Pareto optima which are used as the
design alternatives for selection, with the objectives as attributes. The DM then starts the

selection process by invoking our deterministic selection method (recall Chapter 3).

DM SETS THE OBJECTIVES,
DM CHOOSES THE

DM CHOOSES THE CONSTRAINTS AND OTHER

SCENARIOS FOR

OPTIMIZER PARAMETERS FOR
OPTIMIZATION
OPTIMIZATION
Set of design

alternatives is
generated by
the optimizer

DETERMINISTIC
Most preferred SELECTION METHOD DM STARTS THE
design alternative SELECTION PROCESS
INTERACTS WITH THE DM

Figure A.I-1: Flowchart of our software for payload design optimization and

deterministic selection
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At present, our software has interfaces only for the deterministic selection
method. The interface development for our other research components, sensitivity
analysis method (recall Chapter 4), selection with preference variability (recall
Chapter 5), and selection with preference and attribute variability (recall Chapter 6) are
left out for future work. Dr. Gunawan [Gunawan, 200] has developed the background
codes (i.e., not the interfaces) for the optimization part of the payload design.

In the next section, we demonstrate our software with a simple example.

A.I-2.1. Demonstration of Software with an Example

In this section, we demonstrate our software with an example. Specifically, we
provide some snapshots of the interfaces for payload design optimization and selection
using the software we developed.

Bl [t ¥ew [nsst ok [esitop Window leb

WELCOME TO PAYLOAD DESIGN OPTIMIZATION AND SELECTION SOFTWARE

PLEASE CHOOSE THE SCENARIOS FOR OPTIMIZATION

FIASW SMALL . View Scenario Figure
CASW MEDIUM View Scenario Figure
CASW LARGE View Scenario Figure
SATT SMALL | | View Scenarlo Figure
CATT MEDIUM . View Scenario Figure
CATT LARGE . View Scenario Figure

Press enter after choosing the scenarios

Figure A.I-2: Interface for choosing the scenarios
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As mentioned earlier, in our software, the DM first chooses the scenarios for
optimization. Figure A.I-2, shows the interface with list of scenarios available for the
DM. The button, “View Scenario Figure” corresponding to each scenario name, when
clicked on shows the DM the figure of that scenario. In our example, the DM chooses
scenarios ASW Small and ATT Small as the scenarios to optimize for and presses the

button “Enter”.

Figure A.I-3: Interface for optimizer selection

Our software then generates the interface with the chosen scenarios on the left
hand side and the list of available optimizers on the right hand side (see Figure A.I-3). In
our example, the DM chooses ASW Small and ATT Small as the scenarios. The left hand
side of Figure A.I-3 shows the scenario names and the corresponding figures. The DM
has different choices of optimizers to choose from. The choices are: a baseline

Multi-Objective Genetic Algorithm (MOGA) with no uncertainty handling capability; a

194



Robust Multi-Objective  Genetic Algorithm (RMOGA) with capability to handle
uncertainty; a Multi-Objective Multi-Disciplinary Genetic Algorithm (M-MGA) for
optimization with multiple disciplines; and selection from existing set of design
alternatives with no optimization (NO-OPT). Currently, only the option of baseline
MOGA is in working condition. So perforce, for our example, the DM chooses MOGA

as the optimizer.

Figuee 1: Get The MIGA Inpurts fromm (v Dacislan Maker

P [ Yew jrewt Jook (wstop Wndow e
Select the Objectives and Constrainis Select the Varlables to Use for Optimizing
Scenario Objective Constraint
Hull Diamter
ASW Small Payload 1
Hull Material
ATT Small
Mudmum Depth
Payload Type
Payload Weight :
—‘ First Inner Material Type
Second Inner Material Type
P e e e G et * Payload Noise
LB
FITI

MaxLimit &

<) |Optimizer Running,

oK
MOGA s rurning the Optimization... Please Wait

Figure A.I-4: Interface for choosing the parameters of optimization
Next our software generates the interface for obtaining the inputs to the optimizer,
MOGA (see Figure A.I-4). Using this interface, the DM can select the objectives, the
constraints, and the design variables for optimization. In this interface, the left hand side
provides the DM with the options for the objectives and constraints. In payload design
selection, the probability of success (Ps) in a scenario is usually an objective. However,

the DM has an option to set the Ps in a scenario as a constraint also. The DM can also
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choose whether, the weight of the payload and the noise generated by the payload, are
objectives or constraints or both. For our example, the DM chooses the Ps of ASW Small
and the Ps of ATT Small as the objectives by checking the boxes (with a v' mark, see
Figure A.I-4). The DM then chooses the weight of the payload as a constraint. Our
software then generates an interface (see Figure A.I-4) for the DM to enter the maximum
limit on the weight of the payload. The DM enters 65 lbs in our example. In our example,
the DM also chooses the noise generated by the payload as a constraint and enters the
maximum allowable noise as 0.16 Watt/m”.

The right hand side of Figure A.I-4 provides the DM with the options for the
variables of optimization. As mentioned in Section A.I-1, in payload design selection, the
hull diameter (DH), the payload length (PL), the material of the hull (HM), the payload
type (PT), the first inner material type (I1), and the second inner material type (I2) are
typically the variables. So our software checks the boxes (with a v' mark) corresponding
to DH, PL, HM, PT, I1, and 12 by default, thus considering them as variables. The DM
can uncheck any of the boxes if he/she does not want to consider the corresponding
property as a variable. Also, as mentioned in Section A.I-1, the property maximum depth
at which the payload operates is a parameter and usually set to 3000 ft. However, the DM
can choose the maximum depth as a variable by checking the box corresponding to it. In
our example, the DM opts to leave maximum depth as a parameter thus choosing DH,
PL, HM, PT, I1, and 12 as variables.

The DM then presses the button “Enter”. Our software invokes the optimizer
MOGA for generating the Pareto optimum designs for the inputs given by the DM. Since

MOGA takes a few minutes for generating the Pareto optima, our software generates a
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message box saying that: “MOGA is running the Optimization... Please Wait” (see
Figure A.I-4).

After MOGA finishes generating the Pareto optimum designs, our software
displays the design alternatives in the attribute space (recall that probability of success in
the scenarios, Pg;, are the attributes in payload design selection). If the attributes are more
than two, our software uses bar charts to display the designs. However, in our example,
the DM chooses only two scenarios. Hence the number of attributes is two and our
software shows the Pareto optimum design alternatives in the two attribute space as
shown in Figure A.I-5. In our example, MOGA generate 31 designs as the Pareto

optimum designs.

Fgure 1: Design aliernatives for selection
B & Sew juet lok Qedtw Wedoe leo

DeEd K Ran® < 08 =0

B D W feen Tk Codtip Wrdm Heb

08 Press START to begin selection

START

0.6

ATT Small
i

04 %

| |
0 0.2 0.4 0.6 0.8 1
ASW Small

Figure A.I-5: Interface to display Pareto optimum designs in the attribute space
Our software then asks the DM to start the process of selecting from the Pareto

optimum design alternatives by pressing the button “Start” (see Figure A.I-5). Once the
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DM presses the “Start” button, our software invokes our deterministic selection method
(recall Chapter 3).

Recall that Step 1 of our algorithm for deterministic selection is to choose a trial
design for the first iteration from the set of design alternatives (recall Section 3.4 of
Chapter 3). Our software, displays the current trial design on the left hand side of the next
interface (see Figure A.I-6). The trial design is displayed in the attribute space using a bar
chart. However, the DM can see the values for the variables of the trial design by
pressing the button “ViewDes” just below the bar chart (see Figure A.I-6). Note the
scenarios are numbered in the order displayed in the list provided in Figure A.I-2. For our

example, ASW Small is Scenario 1, and ATT Small is Scenario 2.

-} Figura 2: Get the MES frem DM a1 the current trial design
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3 0.01 0.03 View Sce
8 |
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1 F] ASW SMALL ATT SMALL

} Figave 3: Denign variablen of the trial devign
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o

Figure A.I-6: Interface for obtaining MRS preferences at the first trial design
The right hand side of the interface in Figure A.I-6 asks the DM to enter the

marginal rate of substitution (MRS) between the attributes (i.e., Ps in a scenario). Recall
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that in our deterministic selection method (Chapter 3), we ask the DM for ‘m” MRS
questions when there are ‘m>2’ number of attributes. However, when there are only two
attributes, as in our example, we ask for only one MRS. Using the interface in
Figure A.I-6, the DM can provide the trade-offs in both the attributes while stating the
MRS. When the DM presses the button “View Sce”, our software generates an interface
with the pictures of the attributes (i.e., the scenarios for payload design) the DM is
comparing. The DM can see the definition of MRS by pressing the button “MRS
definition” (above the button “View Sce” in Figure A.I-6). For our example, the DM
says: “I would give up 0.03 in the Ps of ATT Small to gain 0.01 in the Ps of ASW Small”
(see Figure A.I-6). L.e., the MRS between the attributes at the first trial design Dr; is,

Sio11=3 (Step 3 of our algorithm, recall Section 3.4 of Chapter 3).

Figure A.I-7: Interface for obtaining the MRS preferences at the current trial

design
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Our algorithm for deterministic selection then finds the gradient at the first trial
design (i.e., Dr1) and eliminates lower value designs using gradient cut (recall Section 3.4
of Chapter 3). If all the designs except one are eliminated then the non-eliminated trial
design would be the most preferred design. Otherwise, our algorithm for deterministic
selection finds a new trial design for the next iteration. In our example, gradient at Dr; is
VV1i:[0.75, 0.25] and eleven design alternatives are eliminated using the gradient cut.
Our software shows these data and also the new trial design Dr; on the left hand side of
the next interface (see Figure A.I-7).

In Figure A.I-7, the bar chart on the top is the new trial design in the attribute
space and the chart on the bottom is the illustration of the gradient cut at the previous trial
design (i.e., D1;). Note that gradient cut at a trial design is displayed only when the
number of attributes is two. If the number of attributes is more than two it is difficult to
visualize the gradient cut. The right hand side of Figure A.I-7 queries the DM for the
MRS at the current trial design (i.e., D). For our example, the DM says that at Dyp: “I
would give up 0.02 in the Ps of ATT Small to gain 0.01 in the Ps of ASW Small” (see
Figure A.I-7).

Our algorithm for deterministic selection then finds the gradient at the current trial
design (i.e., D17) and eliminates lower value designs using gradient cut. In our example,
gradient at D, is VV1;: [0.67, 0.33] and eighteen design alternatives are eliminated using
the gradient cut. Only two design alternatives are non-eliminated at this stage and both of
them have been trial designs already. Our gradient adjacency elimination approach (recall
Section 3.3.4 of Chapter 3) finds the most preferred design as the design shown on the

top of the left hand side of Figure A.I-8.
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Our software generates the interface shown in Figure A.I-8 for displaying the
most preferred design alternative using our deterministic selection. The top half of the left
hand side shows the most preferred design in the attribute space using a bar chart. The
bottom half of the left hand side shows the gradient cut (when the number of attributes is
two) at the previous trial design. The right hand side of Figure A.I-8 shows the values of

the variables for the most preferred design alternative.

Figure A.I-8: Interface for displaying the most preferred design alternative
The button “Sensitivity Analysis” when pressed should invoke our method for
sensitivity analysis for deterministic selection. However, as we mentioned earlier, the
interfaces for our research components other than deterministic selection are not yet

available.
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APPENDIX-IT

PROOF OF LEMMA IN SECTION 4.3.1.1 OF CHAPTER 4

Lemma: Let VV1:[W,,,...,W_.] be the gradient of the value function corresponding to

the MRS estimate, S;r, at Dr. Let D+ be a design that lies in the gradient cut Cg at Dr

corresponding to VVr. Let VV :[W]

1T >**

., W' ]be the threshold gradient at which D. no

longer lies in the gradient cut. Let sjjr be an MRS satisfying either —+ < s, < —L or
jT jT

t+
we W,
Wt+ ijT W
it it

. The design D, does not necessarily lie in the gradient cut for the

gradient Vv: [Wir,...,Wnt] corresponding to st at Dr.

(We prove the lemma for ‘m=3" attributes. The lemma can be proved in a similar
way if the number of attributes is greater than three.)
Proof: Without loss of generality, assume that the MRS values s;r are consistent
(1.e., siT- sjkr = sikt), and let: s;or be the MRS between attributes a; and as; sy3t be the
MRS between attributes a, and as; and s3;t be the MRS between attributes as; and a;. Let
Vvr: [Wit, Wor, WaT] be the gradient corresponding to sijr. Assuming that w;r (i=1, 2, and

3) are normalized according to Eq. (4.3¢), we can find w;r from s using

S-S
W = ST (AIl-1a)
1+s,. +8,.-S
23T 12T 23T

W, = St (A.II-1b)
1+ Sosr t 8107 Sosp
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= ! (AIl-1c)

14830 +81r *Sysr

Wir

Since Dy lies in the gradient cut corresponding to VVr, Eq. (A.II-2) is satisfied (recall
Eq. (3.11)).
D Wy (@ -ay) <0 (ATI-2)
i=1
Since, Wit are assumed to be non-negative, Eq. (A.II-2) is satisfied if and only if at least

one of (ais - ajr) is negative. Without loss of generality, assume that (a;+ - a;t) is negative.

Now, sio71, S231, and szt satisfy either Eq. (A.II-3a) or Eq. (A.II-3b) (from hypothesis of

lemma).
t+
Wi < syp < Wl; (A.II-3a)
Wi, Wi
t+
Wiy < s < W, (A.II-3b)

t+ ijT
Wi, W,

It is easy to see that both Eq. (A.II-3a) and Eq. (A.II-3b) are satisfied by at least one sjjr.

The third s;r can satisfy either of Eq. (A.II-3a) or Eq. (A.II-3b) depending on VVt and

VVTt . Let us consider the case when sj>1 and sy37 satisty Eq. (A.Il-3a), i.e.,

t+
Wiy < Spp < Wl; (A.1l-4a)
WZT WZT

t+
Wor < Syp < Wﬁ (A.I1-4b)
WST WST

Using Eq. (A.II-1) and Eq. (A.II-4) and some simple algebra we obtain the following
inequalities (see Eq. (A.II-5)) for Vvt: [wir,wor,W3T].

t+ t+
WlT 'W3T < WlT 'W3T

<w . (A.I1-52)
WST " W3tT
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W2T ’ W;; < W2t¥ ’ W3T (A H-Sb)
2T t+ .
W3T WST
Wo < wy < Wy, (A.II-5c¢)

From Eq. (A.II-5¢) and Eq. (A.II-5a), we can see that, for w;t, Eq. (A.1I-6) holds.

‘h’ .‘)]H—
1T 3T t+
< W, <w, < Wy <

i Tar (A.I1-6)
WST W;T

Now, if D; lies in the gradient corresponding to Vvt then Eq. (A.II-7) should be satisfied.
D W@, -ag) <0 (AI1-7)
i=1

Since (aj+ - ajr) is negative and w;t can be less thanWr (thus resulting in w, or wit to
be more than W,r or W3t respectively), there is no guarantee that Eq. (A.II-7) is always
satisfied. So it is possible that D, might not lie in the gradient cut corresponding to a
gradient that satisfy the bounds on MRS given by Eq. (A.II-3). This proves the lemma for

three attributes. O
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APPENDIX-III

RANDOMLY GENERATED DESIGN ALTERNATIVES FOR VERIFICATION

STUDY IN CHAPTERS 4,5 AND 6

Table A.III-1 to Table A.III-4 shows the design alternatives for various problem

sizes that are randomly generated using MATLAB® for the verification study of

Chapters 4, 5 and 6.

Table A.III-1: Design alternatives for problem size ‘three attributes’ x ‘fifty designs’

Design Design
alternative  Attribute: a; Attribute: a, Attribute: aj3 alternative Attribute: a; Attribute: a, Attribute: a3
number number
1 0.393 0.640 0.725 26 0.433 0.902 0.553
2 0.635 0.150 0.474 27 0.595 0.570 0.622
3 0.094 0.996 0.398 28 0.013 0.973 0.469
4 0.502 0.914 0.400 29 0.425 0.136 0.958
5 0.213 0.305 0.902 30 0.866 0.074 0.531
6 0.639 0.695 0.111 31 0.499 0.076 0.929
7 0.666 0.370 0.085 32 0.963 0.023 0.664
8 0.279 0.967 0.566 33 0.882 0.042 0.273
9 0.367 0.927 0.660 34 0.882 0.144 0.486
10 0.301 0.351 0.893 35 0.088 0.425 0.996
11 0.425 0.408 0.686 36 0.563 0.821 0.078
12 0.989 0.013 0.169 37 0.087 0.854 0.743
13 0.564 0.571 0.644 38 0.443 0.320 0.868
14 0.719 0.369 0.436 39 0.670 0.092 0.918
15 0.585 0.793 0.609 40 0.395 0.354 0.867
16 0.413 0.581 0.783 41 0.835 0.148 0.121
17 0.509 0.120 0.917 42 0.331 0.980 0.157
18 0.725 0.150 0.007 43 0.267 0.984 0.328
19 0.242 0.234 0.902 44 0.539 0.798 0.459
20 0.321 0.719 0.886 45 0.853 0.084 0.690
21 0.586 0.725 0.078 46 0.489 0.181 0.717
22 0.785 0.034 0.864 47 0.682 0.913 0.069
23 0.153 0.440 0.913 48 0.395 0.756 0.687
24 0.468 0.091 0.936 49 0.691 0.442 0.053
25 0.319 0.969 0.402 50 0.337 0.311 0.895

Continued at right
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Table A.III-2: Design alternatives for problem size ‘four attributes’ x ‘fifty designs’

Design Design
alternative Attribute: a; Attribute: a, Attribute: a3 Attribute: a4 alternative Attribute: a; Attribute: a, Attribute: a; Attribute: a4
number number
1 0.393 0.640 0.725 0.695 26 0.197 0.366 0.797 0.586
2 0.906 0.943 0.635 0.150 27 0.819 0.310 0.864 0.546
3 0.996 0.398 0.093 0.060 28 0.982 0.194 0.119 0.345
4 0.647 0.502 0.914 0.400 29 0.468 0.091 0.936 0.319
5 0.806 0.364 0.706 0.956 30 0.057 0.827 0.213 0.653
6 0.684 0.957 0.213 0.305 31 0.147 0.816 0.693 0.721
7 0.902 0.639 0.695 0.111 32 0.077 0.901 0.124 0.770
8 0.666 0.370 0.085 0.524 33 0.342 0.959 0.534 0.027
9 0.307 0.550 0.985 0.416 34 0.310 0.564 0.842 0.546
10 0.279 0.967 0.566 0.065 35 0.106 0.937 0.525 0.617
11 0.475 0.494 0.367 0.927 36 0.493 0.388 0.968 0.275
12 0.786 0.140 0.923 0.999 37 0.428 0.663 0.584 0.769
13 0.987 0.169 0.805 0.271 38 0.322 0.607 0.440 0.866
14 0.402 0.987 0.418 0.628 39 0.499 0.076 0.929 0.115
15 0.303 0.895 0.338 0.638 40 0.947 0.130 0.025 0.474
16 0.895 0.576 0.349 0.472 41 0.531 0.375 0.279 0.656
17 0.989 0.013 0.169 0.126 42 0.775 0.372 0.963 0.023
18 0.569 0.564 0.571 0.644 43 0.949 0.866 0.490 0.135
19 0.416 0.719 0.369 0.436 44 0.845 0.225 0.468 0.319
20 0.246 0.173 0.788 0.622 45 0.277 0.982 0.925 0.169
21 0.128 0.254 0.925 0.999 46 0.767 0.388 0.049 0.500
22 0.485 0.585 0.793 0.609 47 0.678 0.445 0.811 0.355
23 0.783 0.874 0.728 0.339 48 0.025 0.724 0.442 0.997
24 0.887 0.074 0.980 0.773 49 0.832 0.652 0.654 0.008
25 0.264 0.321 0.719 0.886 50 0.088 0.425 0.996 0.933

Continued at right

Table A.III-3a: Design alternatives for problem size ‘five attributes’ x ‘fifty designs’

Design
alternative Attribute: a; Attribute: a, Attribute: a3 Attribute: a;, Attribute: as
number
1 0.393 0.640 0.725 0.695 0.906
2 0.943 0.635 0.150 0.474 0.966
3 0.778 0.696 0.025 0.190 0.700
4 0.094 0.996 0.398 0.093 0.060
5 0.647 0.502 0.914 0.400 0.806
6 0.364 0.706 0.956 0.684 0.957
7 0.550 0.985 0.416 0.279 0.967
8 0.566 0.065 0.475 0.494 0.367
9 0.927 0.660 0.301 0.351 0.893
10 0.140 0.923 0.999 0.987 0.169
11 0.796 0.402 0.987 0.418 0.628
12 0.303 0.895 0.338 0.638 0.895
13 0.576 0.349 0.472 0.492 0.035
14 0.686 0.989 0.013 0.169 0.126
15 0.564 0.571 0.644 0.546 0.987
16 0.914 0.393 0.219 0.502 0.513
17 0.254 0.925 0.999 0.485 0.585
18 0.793 0.609 0.215 0.402 0.218
19 0.783 0.874 0.728 0.339 0.305
20 0.515 0.958 0.141 0.379 0.177

Continued in the next page
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Table A.III-3b: Design alternatives for problem size ‘five attributes’ x ‘fifty designs’

Continued from the last page

Design
alternative Attribute: a; Attribute: a, Attribute: a3 Attribute: a;, Attribute: as
number
21 0.452 0.774 0.495 0.996 0.625
22 0.673 0.509 0.120 0.917 0.536
23 0.667 0.788 0.004 0.071 0.741
24 0.902 0.395 0.887 0.074 0.980
25 0.773 0.264 0.321 0.719 0.886
26 0.078 0.833 0.533 0.819 0.310
27 0.864 0.546 0.785 0.034 0.864
28 0.452 0.767 0.733 0.477 0.624
29 0.936 0.319 0.969 0.402 0.433
30 0.902 0.553 0.330 0.111 0.219
31 0.921 0.230 0.817 0.709 0.088
32 0.173 0.838 0.994 0.470 0.897
33 0.978 0.479 0.476 0.066 0.223
34 0.147 0.816 0.693 0.721 0.077
35 0.870 0.534 0.312 0.371 0.342
36 0.959 0.534 0.027 0.290 0.347
37 0.562 0.958 0.981 0.106 0.937
38 0.525 0.617 0.493 0.388 0.968
39 0.136 0.958 0.149 0.291 0.540
40 0.964 0.238 0.668 0.793 0.326
41 0.609 0.186 0.363 0.597 0.536
42 0.472 0.135 0.300 0.803 0.531
43 0.375 0.279 0.656 0.775 0.372
44 0.963 0.023 0.664 0.882 0.042
45 0.273 0.949 0.866 0.490 0.135
46 0.319 0.277 0.982 0.925 0.169
47 0.889 0.119 0.262 0.719 0.998
48 0.662 0.487 0.152 0.674 0.243
49 0.355 0.667 0.510 0.843 0.841
50 0.956 0.289 0.423 0.577 0.025

Table A.IlI-4a: Design alternatives for problem size ‘six attributes’ x ‘fifty designs’

Design

alternative Attribute: a; Attribute: a, Attribute: a3 Attribute: ay Attribute: as Attribute: ag

number

1 0.393 0.640 0.725 0.695 0.906 0.943
2 0.635 0.150 0.474 0.966 0.778 0.696
3 0.025 0.190 0.700 0.094 0.996 0.398
4 0.093 0.060 0.647 0.502 0.914 0.400
5 0.806 0.364 0.706 0.956 0.684 0.957
6 0.213 0.305 0.902 0.639 0.695 0.111
7 0.666 0.370 0.085 0.524 0.624 0.030
8 0.087 0.395 0.307 0.550 0.985 0.416
9 0.279 0.967 0.566 0.065 0.475 0.494
10 0.367 0.927 0.660 0.301 0.351 0.893
11 0.881 0.707 0.982 0.458 0.786 0.140
12 0.923 0.999 0.987 0.169 0.805 0.271
13 0.113 0.344 0.114 0.796 0.402 0.987
14 0.418 0.628 0.303 0.895 0.338 0.638
15 0.895 0.576 0.349 0.472 0.492 0.035
16 0.989 0.013 0.169 0.126 0.099 0.736
17 0.546 0.987 0.914 0.393 0.219 0.502
18 0.246 0.173 0.788 0.622 0.128 0.254
19 0.413 0.581 0.783 0.874 0.728 0.339
20 0.509 0.120 0.917 0.536 0.667 0.788

Continued in the next page
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Table A.Il1-4b: Design alternatives for problem size ‘six attributes’ x ‘fifty designs’

Continued from the last page

Design
alternagtive Attribute: a; Attribute: a; Attribute: a; Attribute: a4 Attribute: as Attribute: ag
number
21 0.242 0.234 0.902 0.395 0.887 0.074
22 0.980 0.773 0.264 0.321 0.719 0.886
23 0.197 0.366 0.797 0.586 0.725 0.078
24 0.833 0.533 0.819 0.310 0.864 0.546
25 0.785 0.034 0.864 0.452 0.767 0.733
26 0.477 0.624 0.444 0.540 0.711 0.280
27 0.755 0.658 0.244 0.983 0.316 0.466
28 0.449 0.318 0.982 0.194 0.119 0.345
29 0.468 0.091 0.936 0.319 0.969 0.402
30 0.921 0.230 0.817 0.709 0.088 0.173
31 0.213 0.653 0.147 0.816 0.693 0.721
32 0.077 0.901 0.124 0.770 0.877 0.844
33 0.312 0.371 0.342 0.959 0.534 0.027
34 0.290 0.347 0.090 0.013 0.973 0.469
35 0.310 0.564 0.842 0.546 0.781 0.562
36 0.958 0.981 0.106 0.937 0.525 0.617
37 0.493 0.388 0.968 0.275 0.428 0.663
38 0.584 0.769 0.553 0.165 0.112 0.863
39 0.964 0.238 0.668 0.793 0.326 0.540
40 0.322 0.607 0.440 0.866 0.074 0.531
41 0.116 0.277 0.885 0.283 0.952 0.003
42 0.499 0.076 0.929 0.115 0.440 0.698
43 0.363 0.597 0.536 0.015 0.947 0.130
44 0.531 0.375 0.279 0.656 0.775 0.372
45 0.963 0.023 0.664 0.882 0.042 0.273
46 0.949 0.866 0.490 0.135 0.077 0.547
47 0.518 0.404 0.460 0.377 0.845 0.225
48 0.468 0.319 0.277 0.982 0.925 0.169
49 0.767 0.388 0.049 0.500 0.118 0.889
50 0.119 0.262 0.719 0.998 0.662 0.487
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APPENDIX-IV

FORMULATIONS FOR FINDING THE RANGE OF MRS PREFERENCES FOR

THE SIMULANT VALUE FUNCTIONS

A.IV-1. SIMULANT VALUE FUNCTION V;
The simulant value function V; at a trial design Dr is given by Eq. (A.IV-1)

(recall Eq. (5.7)).

N i
Vi(Dr) = {ZI: (1-2n) } (AIV-1)
2<B<2.5

From Eq. (A.IV-1), the partial derivative of V| with respect to attributes a; is

MO g (1-a, . (AIV-2)
0Oa,
From Eq. (3.2), the MRS between attributes a; and a;, i.e., Sjr, for V; is then

B-1
Sir _(an) a”)ﬁ_l : (A.IV-3)
(l_aﬂ)

We use the formulation in Eq. (A.IV-4) for finding the range of MRS, S;r, between

attributes a; and a;. We minimize Syt for the lower bound, S;T , and maximize Sjr, S;J.JT ,

for the upper bound.
e .. (1 - aiT )B 1
Minimize/Maximize: S;; =-———57 (A.IV-4a)
(1-a;)
subjectto:2<B<2.5 (A.IV-4b)
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If there is attribute variability also, we add the constraints of Eq. (A.IV-4c) and

Eq. (A.IV-4d) to the formulation for finding the range of MRS preference.

Aj <a; <Aj (A.IV-4c)
A <a; <A (A.IV-4d)

A.IV-2. SIMULANT VALUE FUNCTION V,
The simulant value function V; at a trial design Dy is given by Eq. (A.IV-5)

(recall Eq. (5.8)).

m
_z Y, .e(l_a‘lT)
i=1

V(Dr) = ;Vi =1 (A.IV-5)

09( ¥ )<y <11( )

m is the number of attributes

From Eq. (A.IV-5), the partial derivative of V, with respect to attributes a; is

NOy) _, gt (A.IV-6)
Oa,

1

From Eq. (3.2), the MRS between attributes a; and a;, i.e., Sjr, for V, is then

(I-aiy)

S :’Yi'e

it y (A.IV-7)
i

. e(l-ajT) ’

We use the formulation in Eq. (A.IV-8) for finding the range of MRS, S;r, between

L

. . U
iT > and maximize Sjit, S

attributes a; and a;. We minimize St for the lower bound, S 4T >

for the upper bound.

y, -em)
1

y. e
j

Minimize/Maximize : S;; = (A.IV-8a)
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subject to: 09( v ) ( v ) (A.IV-8b)
0.9(%11) <y, < 1.1(%11) (A.IV-8¢)

If there is attribute variability also, we add the constraints of Eq. (A.IV-8d) and

Eq. (A.IV-8e) to the formulation for finding the range of MRS preference.

Al <a <A} (A.IV-8d)
AL <a; <AL (A.IV-8e)

A.IV-3. SIMULANT VALUE FUNCTION V3
The simulant value function V3 at a trial design Dr is given by Eq. (A.IV-9)

(recall Eq. (5.9)).

Vi(Dr) = Z% =2 (A.IV-9)

1.8(%{1)@(i <22 (%n)

m is the number of attributes

From Eq. (A.IV-9), the partial derivative of V3 with respect to attributes a; is

N.Oy) _ (a—jﬁ% , (A.IV-10)

0a, a7

From Eq. (3.2), the MRS between attributes a; and a;, 1.e., Sjjr, for V, is then

o. a.
Sir = (—J[i] : (AIV-11)
a;r (Xj
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We use the formulation in Eq. (A.IV-12) for finding the range of MRS, Sj, between

L

. . U
jr» and maximize Syr, S

attributes a; and a;. We minimize St for the lower bound, S §T >

for the upper bound.

. a.
Minimize/Maximize : S, = (i] : (i] (A.IV-12a)
a;r (lj

subject to: 1.8(%1) <a < 2.2(%11) (A.IV-12b)

1.8(%11) <a< 2.2(%n) (A.IV-12¢)

If there is attribute variability also, we add the constraints of Eq. (A.IV-12d) and

Eq. (A.IV-12e) to the formulation for finding the range of MRS preference.
AL <a <A} (A.IV-12d)

AL <a; <An (A.IV-12¢)
A.IV-4. SIMULANT VALUE FUNCTION V FOR PAYLOAD SELECTION
The simulant value function V at a trial design D for payload design selection is
given by Eq. (A.IV-13) (recall Eq. (5.6)).
V = -[(1-Ps;1)+(1-Pso1)’] (A.IV-13)
From Eq. (A.IV-13), the partial derivative of V with respect to attributes Pg; is

M=[3-(1-1>SIT)“. (A.IV-14)
OP,
From Eq. (A.IV-13), the partial derivative of V with respect to attributes Ps; is

V(D) _

2-(1-Py,). AIV-15
8Psz ( SZT) ( )
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From Eq. (3.2), the MRS between attributes Ps; and Ps;, i.e., Sia1, for V is then

. B '(1 - PSlT )B_l

S = : AIV-16
12T 2'(1_P52T) ( )

We use the formulation in Eq. (A.IV-17) for finding the range of MRS, Si,r, between Pg;

and Ps,. We minimize Si,t for the lower bound, SleT , and maximize Si,T, SBT , for the

upper bound. In Eq. (A.IV-17), p“and B"are the lower bound and upper bound,

respectively, on f.

(1-Py,, )"

Minimize/Maximize : S, = B-(1=Ru) (A.IV-172)
2 (1 —Por )

subject to: B* <B <p” (A.IV-17b)

If there is attribute variability also, we add the constraints of Eq. (A.IV-17¢) and

Eq. (A.IV-17d) to the formulation for finding the range of MRS preference.

Pl <P, <Py, (A.IV-17¢)
P5, <P, <Py, (A.IV-17d)

213



REFERENCES

1. Anandalingam, G., and White, C.C.III, 1993, “A Penalty Function Approach to
Alternative Pairwise Comparison in ISMAUT”, IEEE Transactions on Systems, Man,
and Cybernetics, vol. 23, no. 1, pp. 330-333.

2. Antunes, C.H., and Climaco, J.N., 1992, “Sensitivity Analysis in MCDM using the
Weight Space”, Operations Research Letters, vol. 12, pp. 187-196.

3. Athanassopoulos, A.D., and Podinovski, V.V.,; 1997, “Dominance and potential
Optimality in Multiple Criteria Decision Analysis with Imprecise Information”,
Journal of the Operational Research Society, vol. 48, pp. 142-150.

4. Avriel, M., Diewert, W.E., Schaible, S., and Zang, 1., 1988, Generalized Concavity,
Plenum Press, NY.

5. Barron, H., and Schmidt, C.P., 1987, “Sensitivity Analysis of Additive
Multi-Attribute Value Models”, Operations Research, vol. 36, no. 1, pp. 122-127.

6. Barzilai, J., 1997a, “A New Methodology for Dealing with Conflicting Engineering
Design Criteria”, Proceedings of the 18" Annual Meeting of the American Society for
Engineering Management, pp. 73-79.

7. Barzilai, J., 1997b, “Deriving Weights from Pair wise Comparison Matrices”, Journal
of the Operational Research Society, vol. 48, pp. 1226-1232.

8. Barzilai, J., 1998, “On the Decomposition of Value Functions”, Operations Research
Letters, vol. 22, pp. 159-170.

9. Bazaraa, M.S., Sherali, H.D., and Shetty, C.M., 1993, Nonlinear Programming:

Theory and Algorithms, John Wiley & Sons, New York, NY.

214



10.

11.

12.

13.

14.

15.

16.

17.

Bradley, S.R., and Agogino, A.M., 1994, “An Intelligent Real Time Design
Methodology for Component Selection: An Approach to Managing Uncertainty”,
Transactions of the ASME, Journal of Mechanical Design, vol. 116, pp. 980-988.
Carrizosa, E., Conde, E., Fernandez, F.R., and Puerto, J., 1995, “Multi-criteria
Analysis with Partial Information about the Weighting Coefficients”, European
Journal of Operational Research, vol. 81, pp. 291-301.

Claessens, M.N.A.J., Lootsma, F.A., and Vogt, F.J., 1991, “An Elementary Proof of
Paelinck’s Theorem on the Convex hull of Ranked Criterion Weights”, European
Journal of Operational Research, vol. 52, pp. 255-258.

Crouzeix, J.P., and Lindberg, P.O., 1986, “Additively Decomposed Quasiconvex
Functions”, Mathematical Programming, vol. 35, pp. 42-57.

Eum, Y.S., Park, K.S., and Kim, S.H., 2001, “Establishing Dominance and Potential
Optimality in Multi-Criteria Analysis with Imprecise Weight and Value”, Computers
and Operations Research, vol. 28, pp. 397-409.

Fishburn, P.C., 1970, Utility theory for Decision Making, John Wiley & Sons, New
York, NY.

Geoffrion, A.M., Dyer, J.S., and Feinberg, A., 1972, “An Interactive Approach for
Multi-Criterion Optimization with an Application to the Operation of an Academic
Department”, Management Science, vol. 19, no. 4, pp. 357-368.

Greenberg, H.J., and Pierskalla, W., 1971, “A Review of Quasi-Convex Functions”,

Operations Research, vol. 19, pp. 1553-1570.

215



18.

19.

20.

21

22.

23.

24.

25.

26.

Gunawan, S., Azarm, S., Wu, J., and Boyars, A., 2003, “Quality Assisted
Multiobjective Multidisciplinary Genetic Algorithms”, 4IAA Journal, vol. 41, no. 9,
pp. 1752-1762.

Gunawan, S., 2004, “Parameter Sensitivity Measure for Single Objective,
Multi-Objective, and Feasibility Robust Design Optimization”, PhD Dissertation,
University of Maryland, College Park, MD.

Haimes, Y.Y., 1983, Multi-objective Decision Making: Theory and Methodology,

John Wiley & Sons, New York, NY.

. Haimes, Y.Y., 1998, Risk modeling, Assessment, and Management, John Wiley &

Sons, New York, NY.

Hannan, E.L., 1981, “Obtaining Non dominated Priority Vectors for Multiple
Objective Decision Making Problems with Different Combinations of Cardinal and
Ordinal Information”, [EEE Transactions on Systems, Man, and Cybernetics,
vol. SMC-11, no. 8, pp. 538-543.

Hazelrigg, G.A., 1996, Systems Engineering: An Approach to Information-Based
Design, Prentice Hall, Upper Saddle River, NJ.

Hazelrigg, G.A., 1998, “A Framework for Decision-Based Design”, Transactions of
the ASME, Journal of Mechanical Design, vol. 120, pp. 653-658.

Hazen, G.B., 1986, “Partial Information, Dominance, and Potential Optimality in
MultiAttribute Utility Theory”, Operations Research, vol. 34, no. 2, pp. 296-310.
Insua, D.R., and French, S., 1991, “A Framework for Sensitivity Analysis in Discrete
Multi-Objective Decision-Making”, European Journal of Operational Research,

vol. 54, pp. 176-190.

216



27.

28.

29.

30.

31.

32.

33.

34.

35.

Jaffray, J.Y., 1989, “Some Experimental Finding on Decision Making under Risk and
their Implications”, European Journal of Operational Research, vol. 28, pp. 301-306.
Jimenez, A., Insua, S.R., and Mateos, A., 2003, “A Decision Support System for
Multi-Attribute Utility Evaluation Based on Imprecise Assignments”, Decision
Support Systems, vol. 36, pp. 65-79.

Karwan, M.H., Ramesh, R., and Zionts, S., 1989, “Preference Structure
Representation Using Convex Cones in Multi-Criteria Integer Programming”,
Management Science, vol. 35, no. 9, pp. 1092-1105.

Keeney, R.A., and Raiffa, H., 1976, Decision with Multiple Objectives Preferences
and Value Tradeoffs, John Wiley & Sons, New York, NY.

Kirkwood, C.W., and Sarin, R.K., 1985, “Ranking with Partial Information: A
Method and an Application”, Operations Research, vol. 33, no. 1, pp. 38-48.
Koksalan, M., Karwan, M.H., and Zionts, S., 1984, “An Improved Method for
Solving Multiple Criteria Problems Involving Discrete Alternatives”, IEEE
Transactions on Systems, Man, and Cybernetics, vol. 14, no. 1, pp. 24-34.

Korhonen, P., Wallenius, J., and Zionts, S., 1984, “Solving the Discrete Multiple
Criteria Problem Using Convex Cones”, Management Science, vol. 30, no. 11,
pp. 1336-1345.

Korhonen, P., Moskowitz, H., and Wallenius, J., 1992, “Multiple Criteria Decision
Support-A  Review”, European Journal of Operational Research, vol. 63,
pp. 361-375.

Law, W.L., 1996, “Evaluation Imprecision in Engineering Design”, PhD

Dissertation, California Institute of Technology, Pasadena, CA.

217



36.

37.

38.

39.

40.

41

42.

Lee, K.S., Park, K.S., Eum, Y.S., and Park, K., 2001, “Extended Methods for
Identifying Dominance and Potential Optimality in Multi-Criteria Analysis with
Imprecise Information”, European Journal of Operational Research, vol. 134,
pp. 557-563.

Li, H., 2001, “Product Design Selection Under Uncertainty and With Competitive
Advantage”, PhD Dissertation, University of Maryland, College Park, MD.

Li, H., and Azarm, S., 2000, “Product Design Selection under Uncertainty and with
Competitive Advantage”, Transactions of the ASME, Journal of Mechanical Design,
vol. 122, no. 4, pp. 411-418.

Li, H., and Azarm, S., 2002, “An Approach for Product Line Design Selection Under
Uncertainty and Competition”, Transactions of the ASME, Journal of Mechanical
Design, vol. 124, no. 3, pp. 385-392

Lootsma, F.A., 1999, Multi-Criteria Decision Analysis via Ratio and Difference

Judgment, Kluwer Academic Publishers, Norwell, MA.

.Ma, J., Fan, Z., and Wei, Q., 2001, “Existence and Construction of Weight-Set for

Satisfying Preference Orders of Alternatives Based on Additive Multi-Attribute
Value Model”, IEEE Transactions on Systems, Man, and Cybernetics — Part A:
Systems and Humans, vol. 31, no. 1, pp. 66-72.

Maddulapalli, K., Azarm, S., and Boyars, A., 2002, “Interactive Product Design
Selection with an Implicit Value Function”, CD-ROM Proceedings of the ASME

IDETC, Montreal, Canada.

218



43.

44,

45.

46.

47.

48.

49.

50.

51.

Malakooti, B., 1988, “A Decision Support System and A Heuristic Interactive
Approach for Solving Discrete Multiple Criteria Problems”, IEEE Transactions on
Systems, Man, and Cybernetics, vol. 18, no. 2, pp. 273-284.

Malakooti, B., 1989a, “Theories and An Exact Interactive Paired-Comparison
Approach for Discrete Multiple-Criteria Problems”, IEEE Transactions on Systems,
Man, and Cybernetics, vol. 19, no. 2, pp. 365-378.

Malakooti, B., 1989b, “Identifying Nondominated Alternatives with Partial
Information for Multiple-Objective Discrete and Linear Programming Problems”,
IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, no. 1, pp. 95-107.
Malakooti, B., 2000, “Ranking and Screening Multiple Criteria Alternatives with
Partial Information and Use of Ordinal and Cardinal Strength of Preferences”, IEEE
Transactions on Systems, Man, and Cybernetics, vol. 30, no. 3, pp. 355-368.
Mangasarian, O.L., 1969, Nonlinear Programming, Mc-Graw Hill, New York, NY.
Mareschal, B., 1988, “Weight Stability Intervals in Multicriteria Decision Aid”,
European Journal of Operations Research, vol. 33, pp. 54-64.

Marston, M., and Mistree, F., 1998, “An Implementation of Expected Utility Theory
in Decision Based Design”, CD-ROM Proceedings of the ASME IDETC, Atlanta,
GA.

Moskowitz, H., Preckel, P.V., and Yang, A., 1992, “Multiple-criteria Robust
Interactive Decision Analysis (MCRID) for Optimizing Public Policies”, European
Journal of Operational Research, vol. 52, pp. 219-236.

Musselman, K., and Talavage, J., 1980, “A Tradeoff Cut Approach to Multiple

Objective Optimization”, Operations Research, vol. 28, no. 6, pp. 1424-1435.

219



52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Neufville, R.D., 1990, Applied Systems Analysis: Engineering Planning and
Technology Management, Mc-Graw Hill, New York, NY.

Olson, D.L., 1996, Decision Aids for Selection Problems, Springer-Verlag, New
York, NY.

Park, K.S., and Kim, S.H., 1997, “Tools for Interactive Multiattribute
Decisionmaking with Incompletely Identified Information”, European Journal of
Operational Research, vol. 98, pp. 111-123.

Pomerol, J.C., and Romero, S.B., 2000, MultiCriterion Decision in Management:
Principles and Practice, Kluwer Academic Publishers, MA.

Reeves, G.R., and Macleod, K.R., 1999, “Robustness of the Interactive Weighted
Tchebycheff Procedure to Inaccurate Preference Information”, Journal of
Multi-Criteria Decision Analysis, vol. 8, no. 3, pp. 128-132.

Ringuest, J.L., 1997, “Lp-metric Sensitivity Analysis for Single and Multi-Attribute
Decision Analysis”, European Journal of Operations Research, vol. 98, pp. 563-570.
Saaty, T., 1980, Analytical Hierarchical Process, McGraw-Hill, New York, NY.
Sage, A.P., 1981, “Sensitivity Analysis in Systems for Planning and Decision
Support”, Journal of Franklin Institute, vol. 312, pp. 265-291.

Sage, A., and White, C.C., 1984, “ARIADNE: A Knowledge-Based Interactive
System for Planning and Decision Support”, IEEE Transactions on Systems, Man,
and Cybernetics, vol. SMC-14, no. 1, pp. 35-47.

Schaible, S., and Ziemba, W., (editors), 1981, Generalized Concavity In Optimization

and Economics, Academic Press, NY.

220



62.

63.

64.

65.

66.

67.

68.

69.

70.

Scott, M.J., 2002, “Quantifying Certainty in Design Decisions: Examining AHP”,
CD-ROM Proceedings of the ASME IDETC, Montreal, Canada.

See, T.K., and Lewis, K., 2002, “Multi-Attribute Decision Making Using
Hypothetical Equivalents”, CD-ROM Proceedings of the ASME IDETC, Montreal,
Canada.

Steuer, R.E., and Choo, E.U., 1983, “An Interactive Weighted Tchebycheff Procedure
for Multiple Objective Programming”, Mathematical Programming, vol. 26,
pp. 326-344.

Sundaram, R.K., 1996, A First Course In Optimization Theory, Cambridge University
Press, UK.

Takayama, A., 1993, Analytical Methods in Economics, The University of Michigan
Press, Ann Arbor, MI.

Thurston, D.L., 2001, “Real and Misconceived Limitations to Decision Based Design
with Utility Analysis”, Transactions of the ASME, Journal of Mechanical Design,
vol. 123, pp. 176-182.

Thurston, D.L., Carnahan, J.V., and Liu, T., 1994, “Optimization of Design Utility”,
Transactions of the ASME, Journal of Mechanical Design, vol. 116, pp. 801-808.
Toubia, O., Simester, D.I., Hauser, J.R., and Dahan, E., 2003, “Fast Polyhedral
Adaptive Conjoint Estimation”, Marketing Science, vol. 22, no. 3, pp. 273-303.
Triantaphyllou, E., 2000, Multi-Criteria Decision Making Methods: A Comparative

Study, Kluwer Academic Publisher, Norwell, MA.

221



71.

72.

73.

74.

75.

76.

77.

78.

79.

Triantaphyllou, E., and Sanchez, A., 1997, “A Sensitivity Analysis Approach for
Some Deterministic Multi-Criteria Decision-Making Methods”, Decision Sciences,
vol. 28, no. 1, pp. 151-194.

Triantaphyllou, E., and Shu, B., 2001, “On the Maximum Number of Feasible
Ranking Sequences in Multi-Criteria Decision Making Problems”, European Journal
of Operational Research, vol. 130, pp. 665-678.

Urban, G.L., and Hauser, J.R., 1993, Design and Marketing of New Products, nd
edition, Prentice Hall, NJ.

Wan, J., and Krishnamurty, S., 2001, “Learning-Based Preference Modeling in
Engineering Design Decision-Making”, Transactions of the ASME, Journal of
Mechanical Design, vol. 123, no. 2, pp. 191-198.

Wassenaar, H.J., and Chen, W., 2003, “An Approach to Decision-Based Design With
Discrete Choice Analysis for Demand Modeling”, Transactions of the ASME, Journal
of Mechanical Design, vol. 125, no. 3, pp. 490-497.

Weber, M., 1987, “Decision Making with Incomplete Information”, European
Journal of Operational Research, vol. 28, pp. 44-57.

White, D.J., 1972, “Uncertain Value Functions”, Management Science, vol. 19, no. 1,
pp. 31-41.

White, C.C.III, Sage, A.P., and Dozono, S., 1984, “A Model for Multiattribute
Decisionmaking and Trade-off Weight Determination under Uncertainty”, [EEE
Transactions on Systems, Man, and Cybernetics, vol. SMC-14, no. 2, pp. 223-229.
Yu, P.L., 1985, Multiple Criteria Decision Making: Concepts, Techniques and

Extensions, Plenum Press, New York, NY.

222



80. Zeleny, M., 1982, Multiple Criteria Decision Making, Mc Graw-Hill, New York, NY.

223



