
 

 
 

 

ABSTRACT 

 

Title of Document:   BAYESIAN BELIEF NETWORK AND FUZZY 

LOGIC ADAPTIVE MODELING OF DYNAMIC 

SYSTEM: EXTENSION AND COMPARISON 

    Ping Danny Cheng, M.S., 2010 

Directed by:  Professor Mohammad Modarres, Mechanical 

Engineering Department  

 

The purpose of this thesis is to develop, expand, compare and contrast two 

methodologies, namely BBN and FLM, which are used in the modeling of the 

dynamics of physical system behavior and are instrumental in a better understanding 

on the POF. The paper begins with an introduction of the proposed approaches in the 

modeling of complex physical systems, followed by a quick literature review of FLM 

and BBN. This thesis  uses an existing pump system [3] as a case study, where the 

resulting NPSHA data obtained from the applications of BBN and FLM are compared 

with the outputs derived from the implementation of a Mathematical Model. Based on 

these findings, discussions and analyses are made, including the identification of the 

respective strengths and weaknesses posed by the two methodologies.  Last but not 

least, further extensions and improvements towards this research are discussed at the 

end of this paper. 
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Chapter 1: Introduction 

 

Uncertainties within data or information are inherent in complex dynamic 

systems, underscoring the challenges faced in the development of dynamic models. 

Empirical information may be non-existent or are not easily available in physical 

systems; therefore it is not uncommon to fall back on expert opinions as the main 

source of information. With respect to these issues, there is a need to identify more 

simplified methodologies to model complex physical system behaviors, in particular, 

the dynamics of systems that support the POF. In this regard, two methodologies have 

been identified: FLM and BBN.  

Probability theory is synonymous with the modeling of stochastic uncertainty, 

which deals with the uncertainty of the occurrence of a specific event. BBN which is 

also known as causal belief network [1] prescribes to the probabilistic model. It is a 

powerful tool that can be used to model a wide variety of domains, which includes 

diagnosis of electronic/mechanical systems, ecosystem and organizational factors. 

On the other hand, fuzzy logic involves a tradeoff between precision and 

significance. It represents uncertainty via fuzzy sets and membership function [2]. 

Fuzzy logic and probabilistic logic are mathematically similar where both have truth 

values ranging between 0 and 1. One significant difference is that fuzzy logic focuses 

on the degrees of truth, while probabilistic logic revolves around probability and 

likelihood.  

The fuzzy set theory explains day-to-day realities better than the probability 

theory because not all phenomena and observations assume only two definite states. 
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However, the modern and methodical science of fuzzy logic is still in its budding 

stage and warrants further research before more definitive conclusion can be provided 

[2]. 

  In light of this, this thesis attempts to adopt the FLM and the BBN model into 

the analyses of complex physical systems. The objective of this thesis is to develop, 

expand, compare and contrast these two methodologies. An application of the use of 

these two methods is also developed to better understand their strengths and 

weaknesses. The application that was used in this thesis was adapted from the pump 

system example of an earlier PhD. research conducted by S.H. Hu at the University of 

Maryland [3].  

Proposed BBN and FLM approaches in modeling complex physical system are 

discussed in Chapter 2. Theoretical background studies on FLM and BBN are 

presented in Chapter 3 and 4. Chapter 5 describes the implementation of the BBN and 

FLM models on the pump system, where the procedure to obtain the NPSHA output is 

also clearly defined. For this comparison study, NPSHA is estimated based on the 

assumption that Z0 is equal to zero. Chapter 6 reports on the results obtained from 

both the BBN and FLM, followed by an in-depth discussion on the advantages and 

disadvantages of the two models. Chapter 7 looks into possible extensions of the two 

methodologies on more complex systems, suggests future research that could be 

conducted, and rounds up the thesis in the conclusion. 

The main contributions of this thesis are: 1) to propose a methodology 

applicable to BBN in estimating behavior of complex physical systems; 2) to adopt 

tools to compute complex BBN based on the proposed methodology; 3) to automate 

the solution of S.H. Hu’s [3] FLM approach in modeling complex physical system 
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behavior; and 4) to compare, contrast and assess the accuracy and uncertainty of the 

two methods. 
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Chapter 2: Proposed Approaches in Modeling Complex Physical 
System 

 

 There are several different methods to define complex physical systems. 

According to Marashi and Davis, a complex physical system contains many 

components and layers of subsystems with multiple non linear interconnections that 

are difficult to recognize, manage and predict [4]. Solidova and Johnson also 

highlighted that it is difficult to predict complex time dependent changes within 

interactions of components or subsystems, in response to rapidly changing properties 

of both systems and environment [5].  

 Due to the complex nature of dynamic systems, mathematical models are often 

used to produce numerical results that represent some observable aspects of system 

behaviour in the physical sciences or engineering disciplines [6]. It would be ideal if 

such methodologies are readily available to model complex physical systems 

behaviors, or are straightforward and easy to work on. However in reality, this is 

rarely the case. Mathematical models are usually based on complicated concepts such 

as higher order/partial differentiation which can be time consuming, and the intricate 

computations required may pose great difficulties for novices in solving complex 

system problems. Therefore, the use of mathematical models in the industrial context 

may be constrained by limited resources available, as the complexities involved in 

these models require hiring of mathematical experts or purchasing of relevant 

software programs tailored to the specific needs of the mathematical model, which 

could be non-economical for most practitioners.  
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Another reason for advocating the use of simplified methodologies in place of 

mathematical models was mentioned in Chapter 1, where empirical information may 

be non- existent or not easily available in physical complex systems. In such cases, 

expert opinions comprising of uncertainties, variations and subjective judgments will 

form the best alternative source of information, reinforcing the strengths of using 

BBN and FLM to solve complex system problems. . On the other hand, mathematical 

models tend to be more rigid and inflexible, as they are unable to account for such 

uncertainty and variability. Any variation or change to the data might result in 

disproportionate changes in the computations of results by the mathematical models, 

which may not reflect the actual impact of the changes.  

Instead of turning to complex mathematical models, there is therefore a need 

to search for more simplified methodologies that require lesser time and resources to 

model complex physical system behavior. In the context of this thesis, two 

methodologies, FLM and BBN have been identified as simpler alternatives to 

mathematical models, where both can be represented graphically in providing more 

direct platforms for analyses, as opposed to working with complicated mathematical 

equations. FLM and BBN are reliable and yet more time-efficient methods, as they do 

not require exact historical data or evidence to produce convincing results. Both 

proposed models are also able to account for variability and uncertainty of input and 

output data, where such flexibility is lacking in conventional mathematical models. 

To recap on the concepts of the proposed methodologies, FLM represents uncertainty 

via fuzzy sets and membership function [2], while BBN epitomizes probabilistic 

dependency models that represent random stochastic uncertainty via its nodes [7].  

This chapter first discusses the logic based illustration of generic physical 

systems and how it can be represented in the form of matrices. This is followed by a 
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discussion on the frameworks and use of FLM and BBN in solving the dynamics of 

these complex physical systems. In essence, this chapter explains the core 

fundamentals for the implementation of both methodologies on generic physical 

systems before the thesis focuses on a specific example of a complex system, the 

pump system case study.  

 

2.1 Logic Based Illustration of Physical Systems  
 

 The interaction between the inputs and outputs of physical systems can be 

represented by matrices that are made up of dependent and independent 

variables/parameters. These variables and parameters may be divided into distinct 

ranges that have their own unique features and functions. These ranges are not 

arbitrary and can be represented either quantitatively or qualitatively. The division of 

each range has physical meaning and could result in phenomenal changes or a shift in 

the rate of change of dependent variables i.e., A shift from a gradual slope to a steep 

slope.  For a more explicit illustration of a physical system, refer to Figure 1 below: 

 

Figure 1: Logic Based Illustration of Physical Systems 
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Figure 1 shows a logic based illustration of physical systems that is made up 

of multiple equations. The general mathematical model of the physical system can be 

represented by Y = f (θ, X, Z), where Y is a matrix of discrete vector input parameters 

θ and variables X and Z.  

 

θ , X , Y and Z may be divided into distinct ranges and can be represented as follows: 

θ = {θଵ , θଶ , θଷ , θସ … , θ୬ሽ 

X = {X1, X2 …, Xn} 

Y = {Y1, Y2, Y3, Y4, Y5 …, Yn} 

Z = {Z1, Z2 …, Zn} 

 

The lattice is made up of a system of equations:  

Y2 = f (θ2, X2), Y3 = f (θ3, X2, Z2), Y4 = f (θ4), Y5 = f (θ3, Z1), Yn = f (θn, Xn, Zn) 

Note that Z1 is an input to X1, which is an input to Y2; and Z2 is an input to θ3 which 

is an input to Y3 and Y5. 

In the event that mathematical models are not available, or require too much 

resource to solve the relevant system problems, the interaction between the lattices 

can be developed by expert judgment either through FLM or BBN, as a more 

effective alternative. The implementation of the two models on complex physical 

systems will be discussed shortly in the following sections.  
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2.2 Illustration of Fuzzy Logic Model 
 

 

 

 

 

 

 

 

Figure 2: Fuzzy Logic Control Analysis Method [8] 

 

 Figure 2 shows an overview of how a complex physical system can be 

represented as a FLM. The ranges of the input and output parameters/variables are 

represented by membership functions and fuzzy sets. In addition, the interactions 

between input and output variables/parameters are represented by fuzzy rules. In a 

nutshell, system input parameters and variables are encoded into fuzzy representations 

using well defined “If/Then” rules which are converted into their mathematical 

equivalents.  These rules would then determine actions to be taken based on 

Implication Operators such as Zadeh Min/Max, or Mamdani Min. The fuzzified data 

is then put through a defuzzification process via Center of Area, Center of Sum or 

Mean of Maxima methods to obtain a crisp output value. 

 In order to better explain how FLM can be implemented into a complex 

physical system; refer back to the illustration of physical systems as shown in Figure 

1. The input and output parameters/ variables of the physical system, θ, X, Y, and Z 

go through a fuzzification process (Refer to Figure 2).  

Input 

Measurement 
or assessment 
of system 
parameters and 
variables 

i.e., θ, X, Y, Z 

Fuzzification 

Using human determined 
fuzzy “If/Then” rules to 
determine actions to be 
taken based on 
Implication Operator 

I.e. Mamdani min 

Defuzzification 

Methods: COA, 
COS or MOM.    
Goal is to determine 
the centre of mass 
for all system 
conditions 
(Averaging) 

Output 

Crisp Behavior 
Data 
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Figure 3 shows a simple graphical illustration of the membership function of 

the input parameter θ. The fuzzy sets determine the different grades of the 

membership function that is made up of distinct ranges of θ1, θ2, θ3 … θn. Therefore, 

the fuzzy set of θ1 can be set between the interval θ1min and θ1max; the fuzzy set for 

θ2 can be set between the interval θ2min and θ2max; and the fuzzy sets for the 

remaining membership functions can be assigned accordingly. The input parameters θ 

take the form of triangular shaped membership functions. Note that the membership 

functions allow overlaps between the members which accounts for the approximations 

and uncertainties between the parameters/variables. The same steps can be taken to 

fuzzify variables X, Z and output Y. 

 

 

 

  

 

 

Figure 3: Membership function of Input parameter θ with overlaps 

 

The fuzzy rules of the physical system as shown in Figure 1 can be 

represented via the “If/Then” rules as follows: 

if  θ = θ2 and X = X1         then Y = Y2   ELSE  

            if  θ = θ3 and X = X2 and Z = Z2  then Y= Y3          ELSE 

if  θ = θ4           then Y= Y4          ELSE 

1 

 

 

 

 

0 
        θ1min          θ2min         θ1max         θ3min  θ2max      θ4min     θ3max              θ4max

   θ1                   θ2                          θ3                     θn

 Input θ 
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if  θ = θ2 and Z = Z1          then Y = Y2   ELSE  

            if  θ = θn and X = Xn and Z = Zn  then Y= Yn          ELSE 

if  Z = Z1           then X= X1          ELSE 

if  Z = Z2           then θ = θ3          ELSE 

 For this example, the implication operator, ϕ is Mamdani min. 

ΦሾµAሺxሻ, µBሺyሻሿ ൌ µAሺxሻٿ µBሺyሻ, where μA and μB are membership functions of A 

and B, and its interpretation for ELSE is AND (ٿ). Section 3.1 would further discuss 

some of the other fuzzy implication operators that can be used. 

 The defuzzification method uses COA to determine the centre of mass for all 

system conditions in order to obtain crisp output data. The COA methodology can be 

found in section 3.2.1 and would be further explained. Section 3.2 would look into 

some other defuzzification methods that can be used to obtain a crisp output data. 

 

 

2.3 Illustration of Proposed Bayesian Belief Network Model  

 
This section illustrates how complex physical system can be represented by 

the proposed BBN model. Either discrete probability or continuous probability 

method can be employed to estimate the output Y.  However, the latter method is a 

better option to solve the proposed BBN modelling as there is a need to account for 

the uncertainties and overlaps between input/output intervals of a system.  
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Figure 4: Illustration of Proposed BBN Method 

 

Refer to Figure 4 where the focus of this illustration is on output Y. Assume 

that parameter θ1 and variable X1 would lead to an output YA represented by a right 

truncated normal distribution labelled “A” that ranges between the interval Y1min and 

Y3max. EY1 is the probability that the output Y falls within the interval Y1, which is 

between limits Y1min and Y1max. Similarly, assume that the input θ2 and X1 would lead 

to an output YB represented by a normal distribution labelled “B” that ranges between 

θ X

Y 
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the interval Y1min and Y3max. EY2 is the probability that the output Y falls within 

interval Y2 which ranges between Y2min and Y2max.  

The truncated normal distribution “A” can be represented within the intervals 

Y1, Y2 and Y3. The probability of the output YA falling within the three intervals are 

shown below. The summation of Pr (YA1), Pr (YA2) and Pr (YA3) must add up to one. 

Pr (YA1) = Pr (Y1min < YA < Y1max) 

Pr (YA2) = Pr (Y2min < YA < Y2max) 

Pr (YA3) = Pr (Y3min < YA < Y3max) 

In the same vein, the normal distribution “B” can be represented within the 

intervals Y1, Y2 and Y3. The probability of the output YB falling within the three 

intervals are shown below. The summation of Pr (YB1), Pr (YB2) and Pr (YB3) must 

add up to one. 

Pr (YB1) = Pr (Y1min < YB < Y1max) 

Pr (YB2) = Pr (Y2min < YB < Y2max) 

Pr (YB3) = Pr (Y3min < YB < Y3max) 

EY1 can then be calculated based on the sum of all the distribution overlaps 

between Y1min and Y1max. The generalized equation can be represented by: 

EYଵ ൌ PrሺYଵ | ሺθଵ୫୧୬ ൏  θଵ ൏  θଵ୫ୟ୶ሻ ת ሺXଵ୫୧୬ ൏ Xଵ ൏ Xଵ୫ୟ୶ሻሻ ൅  

              PrሺYଵ | ሺθଶ୫୧୬ ൏  θଶ ൏  θଶ୫ୟ୶ሻ ת ሺXଵ୫୧୬ ൏ Xଵ ൏ Xଵ୫ୟ୶ሻሻ  

 

 Similarly, EY2 is calculated based on the sum of all the distribution overlaps 

between Y2min and Y2max. The generalized equation can be represented by: 
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EYଶ ൌ PrሺYଶ | ሺθଵ୫୧୬ ൏  θଵ ൏  θଵ୫ୟ୶ሻ ת ሺXଵ୫୧୬ ൏ Xଵ ൏ Xଵ୫ୟ୶ሻሻ ൅  

              PrሺYଶ | ሺθଶ୫୧୬ ൏  θଶ ൏  θଶ୫ୟ୶ሻ ת ሺXଵ୫୧୬ ൏ Xଵ ൏ Xଵ୫ୟ୶ሻሻ ൅  

             PrሺYଶ | ሺθ୬୫୧୬ ൏  θ୬ ൏  θ୬୫ୟ୶ሻ ת ሺXଵ୫୧୬ ൏ Xଵ ൏ Xଵ୫ୟ୶ሻሻ 

 

Note that the summation of EY1, EY2 … EYo must add up to one. Table 1 

shows a generalized representation of the CPT of output Y: 

 

Table 1: Generalized representation of CPT of output Y 

 

 

                                                                                                            

 The methodologies of the proposed approaches in modeling complex physical 

system that was described in this chapter would be further discussed in the next 

chapter. 
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Chapter 3: Fuzzy Logic Modeling 

 

Fuzzy systems represent a unique approach to represent uncertainties that 

usually arise from complex systems. As quoted by Lotfi A. Zadeh, “As the complexity 

of a system increases, it becomes more difficult and eventually impossible to make a 

precise statement about its behavior, eventually arriving at a point of complexity 

where the fuzzy logic method born in humans is the only way to get at the 

problem.” [8]. 

A fuzzy system is deterministic and time invariant where the input and output 

parameters are encoded in fuzzy representations and the interrelationships between 

the fuzziness take the form of well defined if/then rules. The fuzzy system then 

converts these rules to their mathematical equivalents, which would simplify the 

interaction between the human and computer. This in turn offers a more realistic and 

accurate representation of system behavior in the real world. 

Fuzzy logic deals with reasoning that hinges on approximation rather than 

precision. This presents a stark contrast to crisp logic where binary sets have binary 

logic and the logic variables have a membership value of either 0 or 1. 

The Fuzzy Logic Toolbox [2] can be used to create a fuzzy logic system. This 

toolbox is a collection of functions built on the MATLAB numeric computing 

environment which enables one to create and edit fuzzy inference system within the 

MATLAB interface. The implementation of this function with an existing application 

will be discussed in Chapter 5 of this paper.  
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Several definitions relating to the fuzzy logic modeling are given as follows:  

(1) Membership Function: A characteristic function pertaining to a simple and 

versatile mathematical tool for indicating flexible membership to a set. [9] 

(2) Fuzzy Set: Any set that allows its members to have different grades of 

membership function in the interval [0, 1].              [10] 

(3) Universe of Discourse: A range of all possible values of an input into a fuzzy 

control system.                          [10] 

Properties of Fuzzy Sets [9]: 

Double Negation Law ሺܣҧሻ ൌ  ܣ

Idempotency ܣ ׫ ܣ ൌ  ܣ

ܣ ת ܣ ൌ  ܣ

Commutativity ܣ ת ܤ ൌ ܤ ת  ܣ

ܣ ׫ ܤ ൌ ܤ ׫  ܣ

Associative Property ሺܣ ׫ ሻܤ ׫ ܥ ൌ ܣ ׫ ሺܤ  ׫  ሻܥ

ሺܣ ת ሻܤ ת ܥ ൌ ܣ ת ሺܤ  ת  ሻܥ

Distributive Property ܣ ׫ ሺܤ ת ሻܥ ൌ ሺܣ ׫ ሻܤ ת  ሺܣ ׫  ሻܥ

ܣ ת ሺܤ ׫ ሻܥ ൌ ሺܣ ת ሻܤ ׫  ሺܣ ת  ሻܥ

Absorption ܣ ת ሺܣ ׫ ሻܤ ൌ  ܣ

ܣ ׫ ሺܣ ת ሻܤ ൌ  ܣ

De Morgen’s Laws ܣ ת ҧܣ = തതതതതതതതതܤ ת തܤ  

 ܣ ׫ ҧܣ = തതതതതതതതത ܤ ׫  തܤ   
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3.1 Fuzzification  

 

Fuzzy if/then rules are conditional statements that describe the dependence of 

one or more linguistic variables on another. The underlying analytical form of the 

fuzzy if/then rule is called the implication relation [9]. These relations are obtained 

through different fuzzy implication operator Φ. Information from the LHS and RHS 

of a rule is imputed to Φ, and it outputs an implication relation. Note that μ୬ 

represents the membership function of n [9]. 

For example [9], consider an if/then rule involving two linguistic variables: 

       if x is ܣଵ then y is ܤଵ ELSE 

      if x is ܣଶ then y is ܤଶ       ELSE … 

     if x is ܣ௡ then y is ܤ௡ 

where the linguistic variable x (LHS) and y (RHS) takes the value ܣ௡ and ܤ௡ 

respectively. 

Table 2: Some Fuzzy Implication Operators [9]  

Name Implication Operator 

,ሻ࢞ሺ࡭ࣆሾࢶ ሻሿ࢟ሺ࡮ࣆ ൌ 

ٿሻݔ஺ሺߤ௠, Zadeh Max-Min ሺߔ ሺ 1ڀሻሻݕ஻ሺߤ െ ሻሻݔ஺ሺߤ  

 ሻݕ஻ሺߤ ٿሻݔ஺ሺߤ ௖, Mamdani minߔ

.ሻݔ஺ሺߤ ௉,Larsen Productߔ  ሻݕ஻ሺߤ

ሺ1ٿ ௔, Arithmetic 1ߔ െ ሻݔ஺ሺߤ ൅ ߤ஻ሺݕሻሻ 

௕, Boolean ሺ1ߔ െ  ሻݕ஻ሺߤ ڀሻሻݔ஺ሺߤ
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௕௣, Bounded Product 0ߔ ሻݔ஺ሺߤሺڀ ൅ ߤ஻ሺݕሻ െ  1ሻ 

 

 

Table 3: Interpretation of ELSE under some Implication [9] 

Implication Interpretation of ELSE 

 (ٿ) ௠, Zadeh Max-Min ANDߔ

 (ڀ) ௖, Mamdani min ORߔ

 (ڀ) ௉,Larsen Product ORߔ

 (ٿ) ௔, Arithmetic ANDߔ

 (ٿ) ௕, Boolean ANDߔ

 (ڀ) ௕௣, Bounded Product ORߔ

 

 

3.2 Defuzzification Methods  
 

Defuzzification [9] is a process of selecting a crisp number u* representation 

from the membership function output µ୭୳୲. This step takes place after the inputs to the 

controller has been processed by the fuzzy algorithm.  The most commonly used 

defuzzification methods are COA, COS, and MOM. 

 

3.2.1 Center of Area Defuzzification 
 The crisp value u* is taken to be the 

geometrical center of the output fuzzy 

value μ୭୳୲ , where μ୭୳୲ is the union of all 

the contributions of rules whose DOF > 
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0.  

u ൌ כ
∑ u୧μ୭୳୲
N
୧ୀଵ ሺu୧ሻ
∑ μ୭୳୲
N
୧ୀଵ ሺu୧ሻ

 

Where ݑ௜ is the universe of discourse and 

N is the number of samples. It is a 

commonly used defuzzification method, 

and is also known as Centroid. 

 
 

3.2.2 Center of Sums Defuzzification 
 

 

Easy to implement, and has fast 

inference cycle. COS takes into 

account the overlapped areas of 

multiple rules more than once. 

COS takes the sum of the outputs 

from each contributing rule and not 

just the union. 

ݑ ൌ כ
∑ ௜ேݑ
௜ୀଵ ∑ ஻ೖߤ

′௡
௞ୀଵ ሺݑ௜ሻ

∑ ∑ ஻ೖߤ
′௡

௞ୀଵ ሺݑ௜ሻே
௜ୀଵ

 

Where ߤ஻ೖ
′ ሺݑ௜ሻ is the membership 

function resulting from firing the kth 

rule. 
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3.2.3 Mean of Maxima Defuzzification 
 

 

Takes the crisp value with the highest 

degree of membership in ߤ௢௨௧(u). 

ݑ ൌ כ   ෍
௠ݑ
ܯ

ெ

௠ୀଵ

 

 ெ is the mth element in the universeݑ

of discourse where membership 

function  is at the maximum value, 

and M is the total number of such 

elements. 

Faster than COA and allows controller 

to reach values near the edges of the 

universe of discourse. 
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Chapter 4: Bayesian Belief Network  
 

Bayesian belief network is a powerful tool for modeling causes and effects in 

systems and is sometimes described as a marriage between probability theory and 

graphical theory [11]. BBN represents compact networks of probabilities that capture 

the probabilistic relationships between variables, as well as historical information on 

their relationships. From another perspective, BBN is a combination of Bayesian 

probability theory and the notion of conditional independence [12]. BBN is also 

known as belief network, causal graph, causal network, probabilistic network, or 

influence diagram.  

Bayesian belief network allows for clear graphical representation of causes 

and effect; and are effective for modeling scenarios where some prior information is 

already known but input data is uncertain, vague, conflicting or partially unavailable.  

BBNs are defined as: 1) DAG that represent probabilistic dependency models; 2) 

DAG with nodes representing random stochastic/uncertain variables [7]; and 3) the 

arcs that represent the Bayesian probabilistic relationships/influences between these 

variables. BBN uses Bayes theorem to express conditional probability between each 

event/alternative. It is also known as a network of nodes of influences based on 

reasoning.  

 

Some advantages [11] of BBN are listed as follows: 

• Exact historical data or evidence is not necessary to produce convincing 

results. 

• The ability to provide effective output despite of uncertainties in the input 

information. 
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• Able to display variables in a model as nodes in a network, and causes and 

effects as links between the nodes. 

• Able to diagnose current situation based on past data. 

 

An example of a BBN extracted from Adnan Darwiche’s paper [7] is shown below: 

 

 

Figure 5: Bayesian Network over five propositional variables [7] 

 

Figure 5 shows a BN with five nodes, Z = {A, B, C, D, E}. The five tables are 

known as CPT ΘB|A  where it denotes the CPT for variable B, and its parent A.  θୠ|ୟ is 

used to denote the value assigned by the CPT ΘB|A  to the conditional probability Pr 
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(b|a). Note that the sum of  θୠ|ୟ must add up to one. In addition, conditional 

probabilities represent the likelihoods based on prior or historical information.  

 

Based on the above BN, the probability of winter being true given the 

conditions that sprinkler is on; there is no rain; grass is wet; and road is not slippery is 

as follows: 

Pr ሺܽ, ܾ, ܿҧ, ݀, ҧ݁) =   θୟ θୠ|ୟ  θୡത|ୟ  θୢ|ୠ,ୡത  θതୣ|ୡത  

   = (0.6) * (0.2) * (0.2) * (0.9) * (1) = 0.0216 

 

Similarly, the probability that winter is false, given the conditions that 

sprinkler is off, there is no rain, grass is not wet and road is not slippery is as follows: 

Pr ሺ തܽ, തܾ, ܿҧ, ҧ݀ , ҧ݁) =   θ௔ത θ௕ത|௔ത  θୡത|௔ത  θௗത|௕ത,ୡത  θതୣ|ୡത 

    = (0.4) * (0.25) * (0.9) * (1) * (1) = 0.09 

 

Further explanations on the terminology of the BBN can be found in Appendix B. 
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Chapter 5: Applications of Proposed Bayesian Belief 
Network and Fuzzy Logic Models  

 

A pump system application is used to illustrate the employment of the 

proposed BBN method and FLM in dynamic systems. This application is adapted 

from previous research done by Y.S. Hu [3], where it demonstrates the modeling 

dynamic behavior of a pump to avoid cavitation from occurring at the suction head. 

One important parameter for measuring pump cavitation at the inlet is the NPSHA, 

which is the difference between the sum of the velocity and the pressure heads, and 

the vapor pressure head. Studying the POF of this application is accomplished by 

obtaining the optimal values of three input parameters ܼ଴, GPM and Temperature as 

shown in Figure 7, such that NPSHA will not reach negative, which would otherwise 

cause the pump suction head to break. In this application, it should be noted that ܼ଴ 

represents the distance below the pump that extends to the free water surface of the 

reservoir; ‘GPM’ is proportional to the speed of the pump; and ‘Temperature’ is the 

temperature of the free water surface of the reservoir. 

This application involves implementing the proposed BBN model and FLM 

respectively to estimate the NPSHA results based on the three input parameters. 

Results obtained from the two methodologies are then compared with a reference 

NPSHA data obtained via the implementation of a mathematical model [3]. The 

advantages and disadvantages of the BBN and FLM would be discussed in detail at 

the end of this thesis.  

To better understand how the DMLD works in Figure 7, refer to Appendix A 

for the Notations of DMLD based on time dependent fuzzy logic. 
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Figure 6: A Pumping System [3] 

 

 

Figure 7: DMLD for simulating NPSHA [3] 

NPSHA1
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5.1 Mathematical Model 
 

Consider the system where ܼଵ ൌ  .and the pipe is 4 inches in diameter ݐ݂ 100

For a given relative installation location of a pump-sink set, the NPSHA can be 

expressed as: 

NPSHA ൌ 35.18 ൅ Z଴ െ  6.4 כ 10ିହ כ ሺGPMሻଶ െ  0.085 כ ሺTemperature Ԗ ͦ Fሻ [3] 

The pump GPM ranges between 0 and 480 and temperature falls in the range 

of 0 to 200 ͦ F. Note that Z଴ = 0 would give the worst case scenario for NPSHA at any 

given GPM and Temperature data. Thus to simplify this application, Z଴ is assumed to 

be zero. 

 

Figure 8: Numerical representation of NPSHA vs. GPM 

 

NPSHA’s output calculation of six different temperature ranges was based on 

the physical model. These data is used as the reference data for comparison between 

the FLM and the proposed BBN Model. Figure 8 captures the plot of GPM vs. 
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NPSHA when ܼ଴ = 0. As the distance between pump and water surface increases, 

NPSHA adjusts according to the increase in ܼ଴.  

 

5.2 Fuzzy Logic Model  
 

 The first step of developing the FLM is to define the rules (Figure 9) based on 

the input conditions mapped by the DMLD as shown in Figure 7. The fuzzy logic 

illustration of the Pump System when ܼ଴ = 0 is shown in Figure 10. 

  

GPM 

HI MH MD ML LW ZE 

TEMP 
HI A B C D E F 

LW G H I J K L 

Figure 9: Rules based between Temperature and GPM 

 

 

 

 

 

 

 

 

Figure 10: Fuzzy logic illustration of Pump System at ࢆ૙= 0  

 

 G1 G2 G3 G4 G5 G6 

T1 A B C D E F 

T2 G H I J K L 

NPSHA1 

Temp  GPM 
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Assumptions made in the application of this model are shown in Table 4. 

Table 4: Temperature and GPM Category breakdown 

Temperature Range Category Symbol 

0 to 100 deg F Low TempLW 

101 to 200 deg F High TempHI 

 

GPM Range Category Symbol 

-40 to 40 Zero ZE 

0 to 120 Low LW 

80 to 200 Mid Low ML 

160 320 Mid MD 

280 to 400 Mid High MH 

360 to 480 High HI 

 

 

MATLAB’s FLT function was used in this instance where the FIS structure is 

a MATLAB object that contains all the fuzzy inference system information.  

 



 

28 
 

 
Figure 11: FIS interface with 2 input and 1 output parameter 

 

 

 
Figure 12: Membership function of Temperature 

 

The input Temperature is made up of a Z-shaped and S-shaped membership 

function. 
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Figure 13: Membership function of GPM 

 

The GPM inputs are made up of triangular-shaped membership functions, and 

the Z/S shaped membership functions at the extreme ends. 

 
Figure 14: Membership function of output NPSHA1 
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The fuzzy output of NPSHA1 is represented by letters A to L. These fuzzy 

modes are made up of triangular-shaped membership function as shown in Figure 14. 

The implication operator that was used to work out the fuzzy algorithm is the 

Mamdani Min, as discussed in Section 3.1 

 

 

Figure 15: Rules conditions between input and output parameters 

 

Note that the rules as shown in Figure 15 are defined based on the DMLD 

(Figure 7). The fuzzy NPSHA1 output goes through a defuzzification process via 

COA method, as discussed in Section 3.2.1 so as to obtain crisp values for the output.  
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The surface view of the crisp NPSHA1 is shown in the figure below.  

 

 
 
Figure 16: 3D Surface view of NPSHA1 

 
 

 
 
Figure 17: 2D Surface view of NPSHA1 with respect to GPM 
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Figure 18: Pump GPM vs. NPSHA1 

 

Figure 18 shows the visualization of the NPSHA1 output with respect to 

Temperature and GPM. From the surface view of NPSHA1, GPM vs. NPSHA (ܼ଴=0) 

is plotted and compared with the reference plot obtained via the mathematical model. 

The trends of the graphs at all 6 temperature points are consistent with the reference 

plot as shown in Figure 8. It is not possible to obtain precise output solution as FLM 

is based on approximation given limited input and output data. In order to obtain a 

smoother curve with higher resolution, the membership functions of the input/output 

parameters needs to be broken down into more defined categories, and fuzzy rules 

need to be defined with greater accuracy. 
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The output of NPSHA can be estimated by incorporating ܼ଴ with NPSHA1 

using the FIS controller as shown in Figure 19. NPSHA output can be estimated by 

using the same methodology to estimate the initial NPSHA1. 

 

 
Figure 19: FIS of NPSHA with ܈૙ parameter 

 

 
Figure 20: Membership function of ܈૙ 
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The membership function of ܼ଴ is grouped into either positive or negative 

category. Similarly, the membership function of NPSHA1 at individual temperature is 

grouped according to five categories: NE, SN, NT, SP and PT. For this application, 

the area of focus would be on NPSHA1 when temperature is zero. The fuzzy 

NPSHA1 output range is shown in Figure 21, when T=0 is between 21 and 36, and 

the triangular membership function is distributed across the output range.  

 
Figure 21: Membership function of NPSHA1 at Temp = 0 

 

 
Figure 22: Membership function of NPSHA at Temp =0 
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The fuzzy output of NPSHA is then represented by the triangular membership 

function labeled M to V as shown in Figure 22 

 
Figure 23: Surface view of NPSHA at T=0 with respect to NPSHA1 and Z0 

 

Referring to the surface view of output in Figure 23, the trend reveals that 

NPSHA increases proportionally with Z0 increase. This estimated result is reasonable 

given that the result obtained from the mathematical model in Section 5.1 is similar, 

where NPSHA also exhibits a proportional increase when Z0 increases. 

The same steps were repeated to obtain the corresponding fuzzy outputs of 

NPSHA at temperatures of 40 ͦ F, 80 ͦ F, 120 ͦ F, 160 ͦ F and 200 ͦ F respectively. 

 

5.3 Proposed Bayesian Belief Network Model  
 

Similar to the fuzzy logic method, BBN methodology adopts a probabilistic 

approach to estimate the output NPSHA. Consider the case where inputs of the system 

follow a normal distribution. To solve NPSHA1, ܼ଴ is assumed to be zero. Using 

Monte Carlo simulation for a sample size of 5000, both the inputs Temperature 
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(0degF to 200degF) and GPM (0 to 480) were randomly sampled to form a normal 

distribution as shown in Figure 24.  

  
Mean = 100, Standard Deviation = 80 
 
 

 
 
Mean = 250, Standard Deviation = 30 

Figure 24: Normal distribution for input Temperature and GPM 

 

  
   

 
Figure 25: PDF and CDF of NPSHA1output 

 

Assumptions made were based on expert opinions that suggested a NPSHA1 

output range of 6.5 to 35. Monte Carlo simulation was used to generate this output 

assuming a normal distribution of mean 23 and standard deviation of 3.6. (Refer to 

Figure 25). 
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Note that if the mathematical model were available, the two input distributions 

can be fitted into the equation to generate a NPSHA1 output which follows a normal 

distribution. The equation of NPSHA1 is the same as the NPSHA equation [3] in 

section 5.1, except that the ܼ଴ parameter is removed since it is considered to be zero. 

In reality, it is more often than not that the mathematical Model of a system is 

usually not available, and this is especially true for new systems which still lack 

established model testing. BBN is therefore a useful tool to estimate the output of the 

system.  

 

Figure 26: Histogram of NPSHA1 to estimate the probability of A to L 

 

The normal distribution of NPSHA1 is divided equally into 12 columns as 

shown in the histogram of Figure 26. The histogram is aligned to the state A to L of 

the DMLD as shown in Figure 7 assuming no overlap and uncertainty between the 

states. The probabilities of A to L estimated based on the CDF of NPSHA1 (Figure 

25) are tabulated in Table 5: 
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Table 5: Probability data and value of A to L based on the CDF of NPSHA1 

Gmax 23.06 2.28E-01 

Hmax 25.414 2.53E-01 

Imax 27.767 1.86E-01 

Jmax 30.12 9.06E-02 

Kmax 32.473 2.91E-02 

Lmax 34.826 6.19E-03 

NPSHA1 min 6.59 
 

The probabilities of GPM and Temperature inputs as shown in Table 6 are 

estimated based on the CDF of inputs GPM and Temperature. 

Table 6: Probability data of GPM and Temperature inputs 

Input  Symbol Range Probability 

GPM HIGH GHI 391-480 2.79E-02

GPM MID HIGH GMH 301-390 1.95E-01

GPM MID GMD 181-300 5.51E-01

GPM MID LOW GML 91-180 1.96E-01

GPM LOW GLW 1 – 90 2.81E-02

GPM ZERO GZE 0 1.29E-03

TEMP LOW TLW 0 – 100 4.82E-01

TEMP HIGH THI 100 - 200 5.18E-01

 

In the real world, uncertainties are inevitable, and it is not realistic to represent 

the output of GPM and Temperature based on the NPSHA’s DMLD structure. 

Instead, it is more feasible to spread the outputs of GPM and Temperature over a 

range of values represented by a distribution. 

  NPSHA1 Probability

Amax 8.9431 2.12E-05

Bmax 11.296 2.70E-04

Cmax 13.649 2.38E-03

Dmax 16.002 1.39E-02

Emax 18.355 5.34E-02

Fmax 20.708 1.36E-01
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To prove that overlaps do exist over the A to L states of  NPSHA1 output, the 

two extreme ends of each GPM and Temperature category are substituted into the 

physical equation of NPSHA1. The minimum/maximum GPM and Temperature 

values are then tabulated in Table 7: 

Table 7: Representation of GPM and Temperature variables 

Symbol  Temp  TEMP 

THI2  HI_max  200

THI1  HI_min  101

TLW2  LW_max 100

TLW1  LW_min  0

 

 

The minimum/maximum values of A to L  tabulated in Table 8 are computed 

by subsituting minimum/maximum GPM and Temperature into the mathematical 

model. 

For example, based on the DMLD structure: 

 A1 ൌ 35.18 െ  6.4 כ 10ିହ כ ሺGHI1ሻଶ െ  0.085 כ ሺTHI2ሻ  

A1 ൌ 35.18 െ  6.4 כ 10ିହ כ ሺ480ሻଶ െ  0.085 כ ሺ200ሻ ൌ  3.4344  

Symbol  GPM  Value 

GHI1  HI_max  480

GHI2  HI_min  391

GMH1  MH_max  390

GMH2  MH_min  301

GMD1  MD_max  300

GMD2  MD_min  181

GML1  ML_max  180

GML2  ML_min  91

GLW1  LW_max  90

GLW2  LW_min  1

GZE  ZE  0
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A2 ൌ 35.18 െ  6.4 כ 10ିହ כ ሺGHI2ሻଶ െ  0.085 כ ሺTHI1ሻ  

A2 ൌ 35.18 െ  6.4 כ 10ିହ כ ሺ391ሻଶ െ  0.085 כ ሺ101ሻ ൌ  16.8106  

 
 

Symbol  NPSHA1  Value 

A1  A_min  3.4344

A2  A_max  16.81062

B1  B_min  8.4456

B2  B_max  20.79654

C1  C_min  12.42

C2  C_max  24.4983

D1  D_min  16.1064

D2  D_max  26.06502

E1  E_min  17.6616

E2  E_max  26.59494

F1  F_min  18.18

F2  F_max  26.595

Symbol NPSHA1 Value 

G1  G_min  11.9344 

G2  G_max  25.39562 

H1  H_min  16.9456 

H2  H_max  29.38154 

I1  I_min  20.92 

I2  I_max  33.0833 

J1  J_min  24.6064 

J2  J_max  34.65002 

K1  K_min  26.1616 

K2  K_max  35.17994 

L1  L_min  26.68 

L2  L_max  35.18 

 

From Table 8, note that the overlaps between A and L imply that uncertainties 

do exist between the A to L states. 

The DMLD of the pump system can be illustrated by a BBN as shown in 

Figure 27. For this particular example, the area of focus would be on the comparison 

of NPSHA1 (highlighted in red). The software used to develop the BBN is IRIS [13]. 

Table 8: Numerical values of A to L
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Figure 27: BBN interpretation of the pump system 

 

In the perfect world, NPSHA1 can be represented based on the following 

Bayesian model: 

Prሺܣ௠௜௡ ൏ 1ܣܪܵܲܰ ൏ ଵܫܪܩ௠௔௫| ሺܣ ൏ ܯܲܩ ൏ ଶሻܫܪܩ ת ሺܶܫܪଵ ൏ ݌݉݁ܶ ൏ ଶሻሻܫܪܶ ൌ

Pr ሺܣሻ    

Prሺܤ௠௜௡ ൏ 1ܣܪܵܲܰ ൏ ଵܪܯܩ௠௔௫| ሺܤ ൏ ܯܲܩ ൏ ଶሻܪܯܩ ת ሺܶ1ܫܪ ൏ ݌݉݁ܶ ൏ 2ሻሻܫܪܶ ൌ

Pr ሺܤሻ  … 

Prሺܭ௠௜௡ ൏ 1ܣܪܵܲܰ ൏ ܮܩ௠௔௫| ሺܭ ଵܹ ൏ ܯܲܩ ൏ ܮܩ ଶܹሻ ת ሺܶ1ܹܮ ൏ ݌݉݁ܶ ൏ 2ሻሻܹܮܶ ൌ

Pr ሺܭሻ   

Prሺܮ௠௜௡ ൏ 1ܣܪܵܲܰ ൏ |௠௔௫ܮ  ܧܼܩ ת ሺܶܮ ଵܹ ൏ ݌݉݁ܶ ൏ ܮܶ ଶܹሻሻ ൌ Pr ሺܮሻ      
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This computation assumes no uncertainty between A and L. The probability 

data of GPM and Temperature as shown in Table 6 would be entered into the GPM 

and Temp node respectively. The conditional probability of A to L entered into the 

NPSHA1 node is shown in Figure 28. Interpretations based on these conditions are 

incorrect as there are overlaps in the NPSHA1 output data.  

 

Figure 28: Conditional Probability table assuming no uncertainty between A to L 

 

On the other hand, consider the case where the outputs of GPM and 

Temperature are spread over a range of NPSHA1 distribution. The 12 output 

combinations of GPM and Temperature are listed as follows: 

Set1 represents the NPSHA1 output when GPM is HI and Temp is HI 

Set2 represents the NPSHA1 output when GPM is MH and Temp is HI 

Set3 represents the NPSHA1 output when GPM is MD and Temp is HI 

Set4 represents the NPSHA1 output when GPM is ML and Temp is HI 

Set5 represents the NPSHA1 output when GPM is LW and Temp is HI 

Set6 represents the NPSHA1 output when GPM is ZE and Temp is HI 

Set7 represents the NPSHA1 output when GPM is HI and Temp is LW 

Set8 represents the NPSHA1 output when GPM is MH and Temp is LW 
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Set9 represents the NPSHA1 output when GPM is MD and Temp is LW 

Set10 represents the NPSHA1 output when GPM is ML and Temp is LW 

Set11 represents the NPSHA1 output when GPM is LW and Temp is LW 

Set12 represents the NPSHA1 output when GPM is ZE and Temp is LW 

 

Assume that all 12 sets follow a normal distribution with the corresponding 

estimated means and standard deviations that are listed in Table 9. The distributions 

between these sets have overlaps where more specifically, set 1 follows a left sided 

truncated normal distribution, and set 12 follows a right sided truncated normal 

distribution. The overlapped areas for each set would be summed up according to the 

NPSHA1 groups. 

Table 9: Mean and Standard Deviation of 12 sets 

Sets  Mean  SD 

1  10  2

2  14  2

3  18  2

4  21  1.5

5  22  1.2

6  23  1.2
 

Sets  Mean  SD 

7 19 2 

8 23 2 

9 27 2 

10 29 2 

11 30 2 

12 31 1.5 
 

 

MATLAB was used to compute the weights for the states A to L for each set. 

To illustrate this method, the derivation of Sets 1 and 2 would be explained in greater 

depth as follows. 

 

Truncated normal distribution  

The PDF of the truncated normal distribution is represented by the equation: 

݂ሺߤ |ݔ, ,ߪ ܽ, ܾሻ ൌ
1
ߪ ߶ ቀ

ݔ െ ߤ
ߪ ቁ

ߔ ቀܾ െ ߤ
ߪ ቁ െ ሺܽߔ  െ ߤ

ߪ ሻ
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Where X ~ N (μ,σ2), X ϵ (a,b), -∞ ≤ a < b ≤ ∞. If b → ∞, then ߔ ቀ௕ିఓ
ఙ
ቁ = 1; and if a → 

-∞, then ߔሺ௔ିఓ
ఙ
ሻ = 0. 

 

The CDF of the truncated normal distribution is represented by the equation: 

,ߤ |ݔሺܨ ,ߪ ܽ, ܾሻ ൌ
ߔ ቀݔ െ ߤ

ߪ ቁ െ ሺܽߔ  െ ߤ
ߪ ሻ

ߔ ቀܾ െ ߤ
ߪ ቁ െ ሺܽߔ  െ ߤ

ߪ ሻ
 

Similarly, if b → ∞, then ߔ ቀ௕ିఓ
ఙ
ቁ = 1; and if a → -∞, then ߔሺ௔ିఓ

ఙ
ሻ = 0. 

 

The range of set 1 is first estimated, which is approximately between 3 and 17; 

and represented by a normal distribution. Since set 1 is left truncated at a = 6.59 and b 

→ ∞, the PDF of set 1 is given by: 

݂ሺߤ |ݔ, ,ߪ 6.59,∞ሻ ൌ
1
߶ߪ ቀ

ݔ െ ߤ
ߪ ቁ

1 െ ሺ6.59ߔ  െ ߤ
ߪ ሻ

 

Similarly, the CDF of this set is given by:  

,ߤ |ݔሺܨ ,ߪ 6.59,∞ሻ ൌ
ߔ ቀݔ െ ߤ

ߪ ቁ െ ሺ6.59ߔ  െ ߤ
ߪ ሻ

1 െ ሺ6.59ߔ  െ ߤ
ߪ ሻ

 

where the respective μ and σ values can be obtained from Table 9. 

The PDF plot of set 1 is shown in Figure 29. The blue plot represents the 

normal distribution while the red line represents the truncated normal distribution.  
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Figure 29: PDF of Set 1 which represents the GPM_HI and Temp_HI 

 

 

 

Figure 30: CDF of Set 1 which represents the GPM_HI and Temp_HI 

 

6.59 

6.59 
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The CDF of set 1 is shown in Figure 30. The blue plot represents the normal 

distribution while the red line represents the truncated normal distribution. In addition, 

set 1 assumes the range of A to E (referring to Table 5) which is represented by A1 to 

A5 respectively. The probabilities of A1 to A5 are given as follows: 

 

Pr (A1) = 2.63E-01 

Pr (A2) = 4.66E-01 

Pr (A3) = 2.35E-01 

Pr (A4) = 3.34E-02 

Pr (A5) = 1.30E-03 

 

 

Working out the probabilities of set 2, the PDF and CDF graphs are plotted in 

Figures 31 and 32 respectively: 

 

Figure 31: PDF of set 2 which represents the GPM_MH and Temp_HI 
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Figure 32: CDF of set 2 which represents the GPM_MH and Temp_HI 

 

The range of set 2 takes on parameters A to G (referring to Table 4), and is 

represented by B1 to B7 respectively. The probabilities of B1 to B7 are as follows: 

 

Pr (B1) = 5.55E-03 

Pr (B2) = 8.66E-02 

Pr (B3) = 3.42E-01 

Pr (B4) = 4.06E-01 

Pr (B5) = 1.44E-01 

Pr (B6) = 1.49E-02 

Pr (B7) = 4.46E-4 

 

The same method is then used to estimate sets 3 to 11. Set 12 follows a similar 

methodology as set 1, except that this time it is represented by a truncated normal 

distribution that is right truncated at b = 34.826 and a → -∞.  

The PDF of set 12 is given by the equation: 
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݂ሺߤ |ݔ, ,ߪ െ∞, 34.38ሻ ൌ
1
ߪ ߶ ቀ

ݔ െ ߤ
ߪ ቁ

ሺ34.38ߔ െ ߤ
ߪ ሻ

 

Similarly, the CDF of set 12 is given by: 

,ߤ |ݔሺܨ ,ߪ െ∞, 34.38ሻ ൌ
ߔ ቀݔ െ ߤ

ߪ ቁ

ሺ34.38ߔ െ ߤ
ߪ ሻ

 

where the respective μ and σ values can be obtained from Table 8. 

 

 

Figure 33: PDF of set 1 which represents the GPM_ZE and Temp_LW 

 

Figure 33 illustrates the graphical representation of PDF of set 12. The blue 

plot represents the normal distribution while the red line represents the truncated 

normal distribution. Note that there is only a slight truncation to the right that results 

in a small change in the PDF. 
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Figure 34: CDF of set 12 which represents the GPM_ZE and Temp_LW 

 

The CDF of set 12 is represented by the graph in Figure 34. The blue plot 

represents the normal distribution while the red line represents the truncated normal 

distribution. After computing the probability distributions for all 12 sets, the 

probability of the weights of each set can be estimated. The results are entered into the 

CPT as shown in Figure 35. 

 

Figure 35: Conditional probabilities of A to L 

0 0 0 0 0 0 0 0 



 

50 
 

 S1 = Pr (GHI) ∩ Pr (THI)   

S2 = Pr (GMH) ∩ Pr (THI) 

S3 = Pr (GMD) ∩ Pr (THI) 

S4 = Pr (GML) ∩ Pr (THI) 

S5 = Pr (GLW) ∩ Pr (THI) 

S6 = Pr (GZE) ∩ Pr (TLW)  

S7 = Pr (GHI) ∩ Pr (TLW)  

S8 = Pr (GMH) ∩ Pr (TLW)  

S9 = Pr (GMD) ∩ Pr (TLW)  

S10 = Pr (GML) ∩ Pr (TLW)  

S11 = Pr (GLW) ∩ Pr (TLW)  

S12 = Pr (GZE) ∩ Pr (TLW)   

 

 Note that the probability values of GPM and Temp can be found in Table 6.  

 

The probabilities of A to L can be estimated by adding up the overlaps. For example, 

Pr (A) = A1 * S1 + B1 * S2  

    = 2.63E-01 * 1.44E-02 + 5.55E-03 * 1.01E-01 = 4.37 E -3 

Pr (B) = A2 * S1 + B2 * S2 + C2 * S3 + G2 * S7 

= 4.66E-01 * 1.44E-02 + 8.66E-02 * 1.01E-01 + 3.44E-04 * 2.85E-01 + 4.43E-5 *   

   1.34E-02 = 1.56E-02 

 

Applying the same calculations to the rest of the parameters, Table 10 lists the 

estimated probabilities of A to L using the BBN structure shown in Figure 27.  

 

Symbol Value 
S1 1.44E-02
S2 1.01E-01
S3 2.85E-01
S4 1.01E-01
S5 1.45E-02
S6 6.71E-04
S7 1.34E-02
S8 9.39E-02
S9 2.65E-01
S10 9.43E-02
S11 1.35E-02
S12 6.24E-04
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Table 10: Probability of A to L 

Symbols  Probability  Cumulative 

A  4.37E‐03  4.37E‐03

B  1.56E‐02  2.00E‐02

C  4.18E‐02  6.18E‐02

D  8.25E‐02  1.44E‐01

E  1.42E‐01  2.86E‐01

F  1.58E‐01  4.44E‐01

G  1.28E‐01  5.72E‐01

H  1.03E‐01  6.75E‐01

I  1.50E‐01  8.25E‐01

J  1.26E‐01  9.51E‐01

K  4.32E‐02  9.94E‐01

L  6.16E‐03  1.00E+00

 

 

The following chapter will compare and analyze the results obtained via the 

two methodologies. The respective pros and cons of both BBN and FLM will also be 

discussed.   
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Chapter 6: Findings and Discussion 
 

This section discusses the probability data of NPSHA1 obtained from the 

BBN model based on the assumption of whether uncertainty is incorporated into 

constructing the BBN. The probability data and NPSHA1 data are tabulated in Table 

10. 

Comparisons will also be made on both BBN model and FLM with respect to 

the reference model which for this case is the mathematical model. The criteria for 

comparisons are as follows: 

• Accuracy of results* 

• Resolution of data* 

• Flexibility in model adjustment 

• Ease of building the model 

• Ability to update the model 

• Requirement for precise data 

• Mathematical strength 

• Areas of application 

The strengths and weaknesses of the two methodologies are also discussed as 

a follow up to the comparisons.  

 

* Note that some of the comparisons are made in the context of the pump system 

application. 
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6.1 Discussion on Bayesian Belief Network Probability Data 
 

  In the comparison of the probability data of NPSHA1, the assumption of 

whether uncertainty is incorporated gives rise to the following two scenarios (Refer to 

Table 11 for the comparisons of probability data of NPSHA1 based on the two 

scenarios): 

Scenario 1: Bayesian Belief Network with no uncertainty 

Bayesian Belief Network methodology as discussed in section 5.3 was used to 

estimate the NPSHA1 output, with no physical equation available.  The input 

parameters mapped to the NPSHA1 output range from A to L via a DMLD as shown 

in Figure 7. IRIS [13] was used to model the BBN representation of the pump system. 

The CPT as shown in Figure 28 was set up with the assumption of no uncertainty 

between the outputs, given the GPM and Temperature input conditions. 

Analyzing the “Probability with No Uncertainty” column in Table 11, the 

probabilities of F and L are very low, suggesting that it is unlikely that the range of 

NPSHA will fall in state F and state L. Further observation of the expected NPSHA1 

output (refer to “Midpoint of NPSHA1a Interval” column) between D and G reveals 

that the data are very close to each other which might raise some concern over the 

credibility of the results obtained.  

Since no uncertainty is assumed, the midpoint of NPSHA1 interval outputs for 

each state from A to L are point estimates. This interpretation is not realistic as data 

sources often lack precision, and consequently rarely produces point estimate results. 

Given that there are uncertainties within the input parameters, one should also expect 

uncertainties in the outputs of A to L. This issue is addressed in scenario 2. 
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Scenario 2: Bayesian Belief Network considering uncertainty 

Using BBN methodology can incorporate uncertainties for each of the output 

A to L. This method assumes a normal distribution with estimated means and standard 

deviations for A to L (refer to Table 9). The CPT, obtained in Figure 32 shows a 

distribution for each GPM/Temp alternative. The summation of the overlaps between 

the distributions of the input alternatives provides a good estimate of the probabilities 

of A to L. 

Analyzing the “Probability with Uncertainty” column in Table 11, the 

probabilities of A to L are considerably evenly distributed, with the two ends of the 

tail, A and L having smaller probabilities as compared to the rest. The range of 

NPSHA1 between A to L are well spread out, indicating uncertainties between each 

range. The results obtained from the assumption of uncertainty are more realistic and 

would be used for further discussion in section 6.2. 
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Table 11: Comparison of probability data of NPSHA1 based on 2 scenarios 

  Temp GPM 

Probability 

with No 

Uncertainty Cumulative

Midpoint+ of  

NPSHA1a 

Interval 

Probability 

with 

Uncertainty Cumulative 

Midpoint+ of 

NPSHA1b* 

Interval 

A 100-200 391-480 1.64E-02 1.64E-02 8.96 4.37E-03 4.37E-03 8.07 

B 100-200 301-390 1.03E-01 1.19E-01 16.64 1.56E-02 2.00E-02 14.16 

C 100-200 181-300 2.76E-01 3.95E-01 20.00 4.18E-02 6.18E-02 16.08 

D 100-200 91-180 1.00E-01 4.95E-01 22.10 8.25E-02 1.44E-01 17.85 

E 100-200 1 to 90 1.66E-02 5.11E-01 22.64 1.42E-01 2.86E-01 19.59 

F 100-200 0 8.43E-04 5.12E-01 22.71 1.58E-01 4.44E-01 21.24 

G 0-100 391-480 1.56E-02 5.28E-01 22.79 1.28E-01 5.72E-01 22.57 

H 0-100 301-390 9.77E-02 6.26E-01 23.31 1.03E-01 6.75E-01 23.63 

I 0-100 181-300 2.62E-01 8.88E-01 25.37 1.50E-01 8.25E-01 24.98 

J 0-100 91-180 9.54E-02 9.83E-01 28.64 1.26E-01 9.51E-01 27.12 

K 0-100 1 to 90 1.58E-02 9.99E-01 32.16 4.32E-02 9.94E-01 29.94 

L 0-100 0 8.02E-04 1.00E+00 34.72 6.16E-03 9.98E-01 32.18 

* NPSHA1b is normally distributed over the expected data.  + Midpoint estimates used as the closest estimation for the mean of NPSHA1
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6.2 Comparison of NPSHA1 Data with Reference Data  
 

NPSHA1 output obtained via the BBN and FLM were compared to the 

NPSHA1 output of the reference model over four different temperatures of 40, 80, 

120 and 160 ͦ F. The results are tabulated in Tables 12 and 13. 

  

6.2.1 Bayesian Belief Network Model Comparison and Discussion 
 

Accuracy of results 

The NPSHA1 estimated via BBN gives expected values over a range of 

uncertainties. For example, given the assumption that GPM is zero and temperature is 

low, NPSHA output is distributed across H to L. There is a 61% probability of being 

in state K, which is estimated to be between the range of 26 and 36; and a 27% 

probability of being in state J, which is estimated to be between 24 and 35 (As shown 

in Figure 36). Note that the probability of state K dominates the other states. 

  

Figure 36: Distribution of NPSHA given GPM and Temperature evidence 

Pr (0<NPSHA1≤23 | GPM=0 ∩ 0<T≤100) =0 

Pr (17<NPSHA1≤29 | GPM=0 ∩ 0<T≤100) =1.08E-4 

Pr (20<NPSHA1≤33 | GPM=0 ∩ 0<T≤100) = 1.63E-2 

Pr (24<NPSHA1≤35 | GPM=0 ∩ 0<T≤100) = 2.70E-1 

Pr (26<NPSHA1≤36 | GPM=0 ∩ 0<T≤100) = 6.10E-1 

Pr (27<NPSHA1≤36 | GPM=0 ∩ 0<T≤100) = 1.04E-1 

Pr (0<T≤100) =1 

Pr (GPM=0) =1 
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Referring to Table 12 (highlighted in red), when GPM=0 and Temperature 

=40 ͦ F, the midpoint of NPSHA1 output interval via BBN is 32.18, and has an 

uncertainty range of 26 to 36. Compare this result with the reference NPSHA of 

31.78. One would notice that there is no uncertainty in the GPM input when GPM 

equals to zero while on the other hand, uncertainty exists in the input Temperature 

parameter. Comparing the two results, there is a difference of approximately 1.26%, 

which provides a reasonable estimate. 

Consider another scenario where uncertainties exist for both inputs GPM and 

Temperature. Using the same methodology, this time given that GPM is mid low and 

temperature is high, NPSHA1 output is distributed across D to I. There is a 38% 

probability of being in state F, which is estimated to be between the range of 18 and 

27; and a 49% probability of being in state G, which is estimated to be between 12 

and 27. Note that the probabilities of NPSHA1 falling in state F and G are relatively 

higher as compared to the previous scenario. 

Referring to Table 12 (highlighted in red), when GPM = 120 and T = 160 ͦ F, 

the midpoint of NPSHA1 output interval via BBN is approximately 17.85, and has an 

uncertainty range of 12 to 27. Compare this result with the reference NPSHA of 

20.6584. Notice that the uncertainty range is larger, and the difference between the 

expected NPSHA1 and the reference NPSHA1 is approximately 13.59%. 

Total absolute error of the NPSHA1 data at Temperature = 40deg ͦF is 

calculated to be 38.17, which was derived by aggregating all absolute error terms 

within the temperature range as listed in Table 12. The total percentage error is 

therefore given by S୳୫ ୭୤ ୟୠୱ୭୪୳୲ୣ ୣ୰୰୭୰
S୳୫ ୭୤ ୰ୣ୤ୣ୰ୣ୬ୡୣ ୢୟ୲ୟ

כ  100 ൌ ଷ଼.ଵ଻
ସଷ଴.ସହ

כ 100 ൌ 8.87%. Using the same 
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computations for all error terms at Temperature = 160deg ͦF, the total percentage error 

is found to be:   ଶଽ.଴ଽ
ଶ଺଻.ଶହ

כ 100 ൌ 10.89%.   

The relatively low percentage errors at the two temperature points suggest  

that the results obtained via BBN on the two scenarios do provide a satisfactory 

estimate of NPSHA1, although the extent of the errors are still dependent on the 

degree of uncertainty of the input variables. In this particular application, the data 

obtained from the reference model all falls within the uncertainty range specified by 

the BBN model for every scenario. The important question is: what is the range that 

would be considered acceptable? In order to have more precise results, the input 

parameters need to be better defined such that uncertainties can be reduced.    
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Table 12: Comparison of NPSHA1data between BBN model and Reference model at T = 40, 80, 120 and 160 ͦ F 

GPM 
T = 40 T = 80 T = 120 T = 160 

REF BBN Error REF BBN Error REF BBN Error REF BBN Error

0 31.78 32.18 0.40 28.38 32.18 3.80 24.98 21.24 3.74 21.58 21.24 0.34

20 31.75 29.94 1.81 28.35 29.94 1.59 24.95 19.59 5.36 21.55 19.59 1.96

40 31.68 29.94 1.74 28.28 29.94 1.66 24.88 19.59 5.29 21.48 19.59 1.89

80 31.37 29.94 1.43 27.97 29.94 1.97 24.57 19.59 4.98 21.17 19.59 1.58

120 30.86 27.12 3.74 27.46 27.12 0.34 24.06 17.85 6.21 20.66 17.85 2.81

160 30.14 27.12 3.02 26.74 27.12 0.38 23.34 17.85 5.49 19.94 17.85 2.09

200 29.22 24.98 4.24 25.82 24.98 0.84 22.42 16.08 6.34 19.02 16.08 2.94

220 28.68 24.98 3.70 25.28 24.98 0.30 21.88 16.08 5.80 18.48 16.08 2.40

240 28.09 24.98 3.11 24.69 24.98 0.29 21.29 16.08 5.21 17.89 16.08 1.81

280 26.76 24.98 1.78 23.36 24.98 1.62 19.96 16.08 3.88 16.56 16.08 0.48

320 25.23 23.63 1.60 21.83 23.63 1.80 18.43 14.16 4.27 15.03 14.16 0.87

340 24.38 23.63 0.75 20.98 23.63 2.65 17.58 14.16 3.42 14.18 14.16 0.02

380 22.54 23.63 1.09 19.14 23.63 4.49 15.74 8.07 7.67 12.34 8.07 4.27

400 21.54 22.57 1.03 18.14 22.57 4.43 14.74 8.07 6.67 11.34 8.07 3.27

440 19.39 22.57 3.18 15.99 22.57 6.58 12.59 8.07 4.52 9.19 8.07 1.12

480 17.03 22.57 5.54 13.63 22.57 8.94 10.23 8.07 2.16 6.83 8.07 1.24
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Resolution of data 

In this pump system example, the Temperature input parameter only assumes 

dichotomous categories, namely: low (0-100 ͦ F) and high (101-200 ͦ F). Referring to 

Table 12, the expected NPSHA1 outputs estimated via BBN are the same for 

Temperature input 0 to 100 ͦ F; and 101 to 200 ͦ F respectively.  

Similarly, GPM input is divided into 6 categories such that NPSHA1 output is 

the same for every GPM input that falls within each category. Referring to Table 12, 

GPM = 20, 40 and 80 all falls within GML category where this results in the same 

expected NPSHA1 output of 31.469 with an uncertainty range between 20 to 32. 

Therefore, such categorical classifications of parameters would reduce the sensitivity 

of output results, and may fail to distinguish output values that correspond to the 

different values of the same input category. Plotting GPM with respect to NPSHA1 

would result in a discrete graph that represents a loss of resolution, instead of a 

smooth curve as shown in Figure 8.  

In order to improve the resolution, more conditions would need to be defined 

in the input parameter nodes. This can be achieved by obtaining more information on 

the input parameters As the CPT increases in size and complexity, more time would 

be required to build the BBN model. In short, there is a corresponding increase in the 

resolution of the output data with larger number of conditions defined for each input 

node. 

Flexibility in model adjustment 

Representing the pump system as a BBN is a more flexible approach to solve 

system problems. Consider a case where the NPSHA output is known and estimations 
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are necessary for the input parameters. In this instance, expert opinion estimates that 

the NPSHA output is approximately between 13 and 17, which falls within state D. 

Setting the evidence of NPSHA node of the BBN to D, the input parameters can be 

estimated based on the graphical representation of BBN as shown in Figure 37. 

  

 

 

 

Figure 37: BBN of pump system given evidence that NPSHA1 is D 

 

In order to achieve NPSHA1 output that falls within state D, there is a 51% 

probability that GPM is in the mid high range and 47% probability of being in the mid 

range. There is a 98.8% probability that temperature would fall in the high region. 

Ease of building the model 

 Although building the structure of a BBN model is not difficult, the process of 

understanding, identifying and estimating the probability data for each condition of 

Pr (100< T≤200 | 13<NPSHA1<17) = 9.88E-01 

Pr (0< T≤100 | 13<NPSHA1<17) = 1.16E-02 

Pr (390< GPM≤480 | 13<NPSHA1<17) = 1.80E-02 

Pr (300< GPM≤390 | 13<NPSHA1<17) = 5.09E-01 

Pr (180< GPM≤300 | 13<NPSHA1<17) = 4.72E-01 

Pr (90< GPM≤180 | 13<NPSHA1<17) = 6.33E-04 

Pr (0< GPM≤90 | 13<NPSHA1<17) = 8.25E-08 

Pr (GPM=0 | 13<NPSHA1<17) = 1.89E-11  

Pr (13<NPSHA1<17) 
= 1 
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every node makes the modeling challenging and tedious. The model becomes 

complicated when many uncertainties are being considered in the input parameters, 

and overlapping data are expected within the output parameters.  

Currently, there is no established method to incorporate BBN into a system 

with cyclic network. This proves to be a major problem as many complex real life 

systems consist of cyclic networks. To counter this limitation, Tang, Liu and Qian 

[14] proposed using DBN model to solve complex real life system with feedback 

loops. 

To elaborate further, DBN is based on temporal time series data. Consider a 

simple example [14] with a feedback loop A→B→C→A, where node C at time t has 

an influence on node A at time t+1 (Refer to Figure 38).  

 

Figure 38: Dynamic Bayesian Network with feedback loop [11] 

 

Dynamic Bayesian Network can construct a cyclic regulation by dividing the 

states of a variable by time slices [15]. Node A at time t has an influence on itself at 

t+1, i.e. ܣ௧ ՜  ௧ାଵ as shown in the dotted lines in Figure 39. Node C in this case isܣ

primary time dependent where ܥ௧ ՜  .௧ାଵܣ
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One recommendation is to implement DBN on a primary feedback loop if it 

satisfies the primary time dependency requirements, i.e. Node C and ignore all trivial 

time dependencies, i.e. Node A. 

 

 

Figure 39: Time expansion of the dynamic network in Figure 34 [11] 

 

In another paper, Z. Mohaghegh, R. Kazemi, and A. Mosleh [16] proposed 

using hybrid modeling to address dynamic complex system with feedback loops. They 

use simulation based techniques such as ABM [17] and SD [18] to model complex 

model with impossible analytical solutions. 

System Dynamics technique represents dynamic deterministic relations in 

hybrid modeling environment and provides dynamic integration among various 

modules/subsystems. These subsystems which can be modeled via various techniques 

such as BBN would have their own inputs and outputs to the SD module. 

Consequently, the entire hybrid model would have the relevant capability to capture 

feedback loops and delays. The SD software used in this paper [16] was STELLA.  
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For example, the hybrid model allows the targeted subsystem that is modeled 

via BBN to be imported and processed inside SD which has delays and feedback 

loops. The estimated value calculated from SD would then be exported back into the 

BBN environment. Such integrated processes would pose as a good alternative to 

resolve the challenges that arise from integrating BBN into systems with feedback 

loops. Figure 40 shows a demonstration on how BBN can be integrated into a system 

with feedback loops. 

 
Figure 40: Training module within a SD environment [16] 

 

This thesis implements the use of BBN on a simple two inputs - one output 

system, to demonstrate that it is possible to model a dynamic system probabilistically. 

However, incorporating uncertainty into a complex system using BBN is highly 

challenging as uncertainty has to be considered in every parameter and condition. 

Building a BBN on multiple hierarchies of complex systems would require much 

more computational effort and time. Therefore such applications are often subjected 

to constraints posed by the limited resources in the industrial context. 
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Ability to update model 

Bayesian Belief Network is a powerful tool for reasoning and learning with 

uncertainty. Therefore the capability of Bayesian updating is a major advantage of 

learning via BBN. For example, in the face of uncertainty in the NPSHA1 output 

range, one can only approximate the mean and standard deviation over a certain form 

of distribution. Assuming that the expected values of NPSHA1 follow a normal 

distribution, and the likelihood model also follows a normal distribution with known 

standard deviation, one can use conjugate priors to estimate the posterior mean of 

NPSHA1, given that the initial estimates for mean and standard deviation are the prior 

parameters. 

Posterior mean is given by  ߤ ൌ
ഋబ
഑బమ 

ା
 ∑ ೟೔

ಷ೙ಷ
೔సభ
ೡ

భ
഑బ
మା

೙ಷ
ೡ

  [19] 

Where the evidence is ݊ி failures at times ݐ௜, ߤ଴ is the prior mean, ߪ଴ is the prior 

standard deviation, and ߪଶ = v 

 Posterior variance is given by  2ߪ ൌ 1
1
0ߪ
2൅

ܨ݊
ݒ

   [19] 

Requirement for precise data 

The findings reinforce the notion that the BBN model does not require exact 

historical data or evidence to produce convincing results. As demonstrated in the 

pump system application in section 5.3, precise evidences of the two input parameters 

are not necessary to produce an accurate NPSHA1 output, even when the physical 

equation is not available.  
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However accuracy of the output will be limited to the certainty of the input 

parameters. Therefore, highly uncertain inputs are often accompanied by more 

ambiguous outputs. Further research can look into the determination of the level of 

uncertainties within the data that is deemed as acceptable.  

 

Mathematical strength 

Bayesian Belief Network is modeled after Bayes’ theorem which is a proven 

and established mathematical model. As a result, BBN methodology is also well 

documented and widely accepted among scholars and practitioners. 

 

Areas of application 
 

 One rule of thumb in using BBN is that it is highly effective for modeling 

applications where some information is already known and incoming data is uncertain 

or partially unavailable. It is especially useful when historical or current information 

is vague, incomplete, conflicting and uncertain [11].  

 However, there is a flip side to every coin as BBN is not adapted to work in 

applications with time delays and feedback loops. Tang, Liu and Qian [14], and Z. 

Mohaghegh, R. Kazemi, and A. Mosleh [16] have proposed DBN and Hybrid 

modeling respectively to counter these problems. BBN is also useful in applications 

where the exact mathematical model is difficult or impossible to be determined. 

 

6.2.2 Fuzzy Logic Comparison and Discussion  
 

Accuracy of results 
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Using the FLM methodology as discussed in section 5.2, the NPSHA1 fuzzy 

data can be estimated via the plot as shown in Figure 18. From the results obtained 

from Table 13, Figure 41 illustrates the comparison of NPSHA1 between reference 

and FLM data at Temperature = 40 ͦ F.  

   

Figure 41: Comparison of NPSHA at T=40 between Reference model and FLM 

 

With reference to Figure 41, at Temperature = 40 ͦ F, the trend of fuzzy logic 

line is consistent with the physical model line. It is not possible to obtain precise 

results produced by the reference model due to the fuzziness or uncertainty defined 

for the input and output parameters. The fuzzy output is more accurate towards the 

two extreme ends of plot and less accurate in the middle. Referring to Table 13 

(highlighted in red), at Temperature =40 ͦ F and GPM = 120, the NPSHA1 Fuzzy 

output is 27.67 as compared to the reference NPSHA1 of 30.86, where the difference 

is approximately 10.3%. Referring to Table 13(highlighted in red), at Temperature 

Ref
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=160 ͦ F and GPM=120, the NPSHA1 Fuzzy output is 14.33 as compared to the 

reference NPSHA1 of 20.66, which translates into approximately 30% difference. 

 The total absolute error for NPSHA1 data at Temperature = 40deg ͦ F is 35.63, 

which is obtained by summing up all absolute error terms at this temperature found in 

Table 13.. The total percentage error is therefore calculated as S୳୫ ୭୤ ୟୠୱ୭୪୳୲ୣ ୣ୰୰୭୰
S୳୫ ୭୤ ୰ୣ୤ୣ୰ୣ୬ୡୣ ୢୟ୲ୟ

כ 

100 ൌ ଷହ.଺ଷ
ସଷ଴.ସହ

כ 100 ൌ 8.28%. Similarly for Temperature = 160deg ͦ F, the total 

percentage error is .   

Assuming a fixed input GPM, as the temperature increases, the variation 

between the fuzzy NPSHA1 and reference NPSHA1 becomes larger. Such inaccuracy 

is due to the fact that input temperature has only two membership functions, resulting 

in fuzzier outputs. 

In a nutshell, fuzzy logic is tolerant of imprecise data. Fuzzy reasoning builds 

this understanding into the process rather than tacking it at the end [2]. 
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Table 13: Comparison of NPSHA1data between Fuzzy Logic model and Reference Model at T = 40, 80, 120 and 160 ͦ F 

GPM 
T = 40 T = 80 T = 120 T = 160 

REF FUZZY Error REF FUZZY Error REF FUZZY Error REF FUZZY Error

0 31.78 33.69 1.91 28.38 29.60 1.22 24.98 24.40 0.58 21.58 20.31 1.27

20 31.75 31.24 0.51 28.35 26.35 2.01 24.95 24.64 0.31 21.55 19.77 1.78

40 31.68 30.59 1.09 28.28 26.78 1.50 24.88 22.23 2.65 21.48 18.57 2.91

80 31.37 30.81 0.56 27.97 26.57 1.40 24.57 21.43 3.14 21.17 17.19 3.98

120 30.86 27.67 3.19 27.46 23.60 3.86 24.06 18.40 5.66 20.66 14.33 6.33

160 30.14 27.67 2.47 26.74 23.60 3.14 23.34 18.40 4.94 19.94 14.33 5.61

200 29.22 24.45 4.77 25.82 20.15 5.67 22.42 15.85 6.57 19.02 11.55 7.47

220 28.68 24.90 3.78 25.28 20.57 4.71 21.88 15.43 6.45 18.48 11.10 7.38

240 28.09 24.98 3.12 24.69 20.57 4.13 21.29 15.43 5.86 17.89 11.02 6.87

280 26.76 24.45 2.32 23.36 20.15 3.21 19.96 15.85 4.11 16.56 11.55 5.01

320 25.23 21.12 4.11 21.83 16.83 5.00 18.43 13.17 5.26 15.03 8.88 6.14

340 24.38 21.67 2.71 20.98 17.60 3.38 17.58 12.40 5.18 14.18 8.33 5.85

380 22.54 20.71 1.83 19.14 16.70 2.44 15.74 12.17 3.56 12.34 8.20 4.13

400 21.54 20.41 1.13 18.14 15.89 2.25 14.74 12.00 2.74 11.34 7.77 3.57

440 19.39 19.22 0.17 15.99 14.98 1.01 12.59 11.18 1.41 9.19 6.76 2.42

480 17.03 18.98 1.94 13.63 14.57 0.93 10.23 9.43 0.80 6.83 5.02 1.81
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Resolution of data 

Fuzzy data has better resolution as compared to the BBN model. Referring to 

Figure 41, note that there is a decreasing trend in the fuzzy plot which is noticeably 

consistent with the reference plot. In order to improve the resolution, the membership 

functions for the input and output parameters should be broken down further into finer 

details. As such, more if/then rules between the inputs and outputs would need to be 

defined.    

Flexibility in model adjustment 

Fuzzy Logic Modeling offers higher flexibility in its ability to adjust and 

change the boundaries and membership functions of both input and output parameters 

with little effort. However, application is limited in situations where the designers 

only have information regarding the output parameters, and will need to estimate an 

unknown input parameter.  

Ease of building the model 

 The process of adapting FLM into a complex system is relatively easy and 

straightforward. FIS greatly depends on a number of conditional “if-then” rules in 

order to model the system output. Although these rules are easy to write, if the 

designers do not understand the system well, they would not be able to provide 

sufficient rules to accurately describe the system. 

 Fuzzy logic can be adapted onto multiple hierarchies of complex systems by 

using SIMULINK [20], which is a dynamic system simulator for MATLAB. It 

supports linear and non linear systems, and can be modeled in continuous time, 

sampled discrete time, or a hybrid of both. Using the graphical user interface 
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provided, one can build multiple hierarchies of FIS controllers in complex systems 

using top down or bottom up approach; integrate them via logic gates and connectors; 

and simulate the defuzzified data at the allocated output.  

Ability to update model 

Updating of model can be done manually by adjusting the boundaries of the 

input and output parameters, or changing the shape of the membership functions. 

There is no mathematical model that can be used to update FLM, and analysts are 

required to manually update the models.  

Requirement for precise data 

Fuzzy logic addresses incomplete/uncertain input and output parameters 

directly by defining them with fuzzy sets that can be expressed in linguistic terms. 

When implementing FLM using the pump system, the only information available is 

the approximate range of the two input and one output parameters. The rules are 

formulated based on the mappings of the DMLD between the input and output 

variables. 

The model does not require historical data, but prior knowledge of the system 

is necessary. If there is insufficient information, the fuzzy logic controller would not 

be able to accurately model the system output [2]. 

For the pump system example, the prior knowledge about the system is based 

on the DMLD, which is sufficient to generate the basic rules for the fuzzy controller 

to process and generate a reasonable consistent output. 
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When historical data is not available, FLM can be built on expert opinions. 

This allows one to draw on the experience of experts in the relevant fields who are 

already familiar with the associated systems [2]. 

Mathematical strength 

The interrelationship between the fuzziness within a system is represented by 

simple if/then rules, which allows simple representations of fuzzy descriptions [8]. 

The rules and conditions for the pump system are generated based on the 

DMLD which maps the input variables to the output variable. These rules are easy to 

understand as compared to analyzing the DMLD maps.  

There is little complicated mathematics when describing the if/then rules. This 

methodology is relatively new and not widely documented to-date [2]. As such, FLM 

is still not widely implemented into controllers to solve system problems. 

Areas of application 

Fuzzy logic is able to model non linear functions of complex system such that 

a fuzzy system can be created to match any set of input-output data. It is useful in 

complex applications, system controls and analysis designs where the exact 

mathematical model is hard or impossible to be determined [8]. 

Fuzzy logic is an effective modeling application for systems laden with 

ambiguities and uncertainties during the decision-making process. In the pump system 

example, the uncertainty of the input Temperature, input GPM, and output NPSHA1 

are estimated and translated into the boundaries of their membership functions. The 

range for each category of the two input parameters is tabulated in Table 4. 
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6.2.3 Comparison between Bayesian Belief Network and Fuzzy Logic Model 
 

This section summarizes the respective discussions made on the Fuzzy Logic 

and BBN models relative to the reference model and evaluates the two methodologies 

against each other. The comparison is shown in Table 14. 

Figure 42 shows a graphical representation of NPSHA1 output at Temperature 

= 40 ͦ F for the BBN, FLM and the reference model. Note that the fuzzy model has 

better resolution than the BBN model. As calculated earlier in section 6.2.1 and 6.2.2, 

at Temperature = 40 ͦ F, the BBN model has an error percentage of 8.87% as 

compared to Fuzzy Logic Model which has an error percentage of 8.28%. This shows 

that FLM has slightly better accuracy than the BBN model at Temperature = 40 ͦ F.  

 

 

Figure 42: NPSHA1 comparison based on the reference model, FLM and BBN at Temp = 40. 

   

Ref 
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Figure 43 shows a graphical representation of NPSHA1 output at Temperature 

= 160 ͦ F for the BBN, FLM and the reference model. Again, it can be observed that 

the fuzzy model has better resolution than the BBN model. As calculated earlier in 

sections 6.2.1 and 6.2.2, at Temperature = 160 ͦ F, the BBN model has an error 

percentage of 10.89% as compared to FLM which has an error percentage of 27.14%. 

The significantly smaller error percentage derived by the BBN demonstrates that at 

Temperature = 160 ͦ F, this model produces more accurate NPSHA1 data than the 

FLM. 

  

 

Figure 43: NPSHA1 comparison based on the reference model, FLM and BBN at Temp = 160 

 

  As a round up to our comparisons made between the BBN and FLM, Table 14 

summarizes the respective strengths and weaknesses of each methodology based on 

the comparison criteria as outlined in Chapter 6.

Ref
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Table 14: Table of Comparison between BBN and Fuzzy Logic Models 

Comparison Criteria Bayesian Belief Network Fuzzy Logic Modeling 

1. Accuracy of results* 

 

 

 

 

 

 

*Note that this criterion is 

compared in the context of the 

pump system application and may 

not be generalized. Different 

applications would produce 

different results.   

• The expected value of the output is more 

accurate when there is less uncertainty in the 

input parameters.  

• The output is distributed over a range of 

uncertainties.  

• The output from the reference model falls 

within the uncertainty range, thus satisfying 

the criteria.  

• Smaller percentage change in error at high 

temperature as compared to the FLM output, 

suggesting that BBN yields better accuracy at 

Temperature = 160 ͦ F.  

 

• Output data are point estimates that 

follow a consistent trend when 

compared to a reference data. 

• Slightly smaller percentage change in 

error at Temperature = 0 ͦ F as compared 

to the BBN output, which concluded 

that FLM produces slightly more 

accurate results than BBN at 

Temperature = 0 ͦ F. 
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2. Resolution of data* 

 

*Note that this criterion is 

compared in the context of the 

pump system application and may 

not be generalized. Different 

applications would produce 

different results. 

• Relatively poor resolution that greatly 

depends on the number of conditions being 

defined in each input nodes.   

• Unable to accurately estimate output data 

when several inputs fall within a categorical 

range as specified by the conditions.  This 

reduces sensitivity of the output results. 

 

• Better resolution as compared to the 

BBN model.  

• Increases the number of membership 

functions so as to reduce the fuzziness, 

and as a result, improve the resolution.  

 

3. Flexibility in model 

adjustment 

 

• Given that the evidence is known for certain 

nodes, one would be able to estimate the 

probability output of another node. This 

would provide flexibility in estimating 

required data. 

 

• Less flexibility over estimating required 

data given that some data are unknown.  

• Designers must have a good knowledge 

of the system in order to effectively use 

FLM. 
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4. Ease of building the model • BBNs are easy to build, but estimating and 

assigning probabilities to every condition 

within the node is tedious and time 

consuming. 

• Difficult to implement BBN in multiple 

hierarchies of complex system. 

• Hybrid modeling/SD could be used to 

incorporate BBN into a system with time 

delays, cyclic network and multiple 

hierarchies of complex systems.  

 

 

• Straightforward and easy to implement 

Fuzzy Logic into a complex system, but 

FIS greatly depends on a number of 

conditional “if-then” rules in order to 

model the system output. 

• SIMULINK can be use to integrate 

multiple FIS controller into a system 

with time delays, cyclic network and 

multiple hierarchies of complex 

systems.  

 

5. Ability to update 

 

• The model has the ability to use Bayesian 

 

• Updating of model can be done 
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updating methodology to learn and train data. 

This is a more formal methodology and has a 

stronger mathematics basis for using it. 

manually by adjusting the fuzzy sets of 

the input and output parameters, or 

changing the shape of the membership 

functions.  

• In case of new information, Fuzzy rules 

need to be changed. Updating can only 

be done by analyst. 

6. Requirement for precise 

data 

• The model does not require exact historical 

data or evidence to produce convincing 

results.  

• Accuracy of the output will be limited to the 

certainty of the input parameters. Therefore, 

highly uncertain inputs are often accompanied 

by more ambiguous outputs.  

• There is no need for precise data, but 

designers need to understand how the 

system operates in order to generate 

sufficient if/then rules for the FIS 

controller to produce an accurate 

output. 
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7. Mathematical strength 

 

• Follows Bayes theorem which is an 

established and proven model. 

• Methodology has been used widely used in 

many applications and is well documented.  

 

• Fuzzy algorithm follows the if/then 

rules, which uses basic mathematics. 

• Methodology is relatively new, and is 

not well accepted yet.  

8. Areas of application • Effective for modeling applications where 

some information is already known and 

incoming data is uncertain or partially 

unavailable.  

• Useful in applications where the 

mathematical model is hard or impossible to 

be determined. 

• Appropriate for diagnostic applications where 

frequent updating of data is necessary. 

• Effective for modeling applications 

with ambiguities and uncertainties.  

• Effective for modeling non linear 

functions of complex system.  

• Useful in complex applications, system 

controls and analysis designs where the 

mathematical model is hard or 

impossible to be determined. 
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Chapter 7: Conclusion and Recommendation 
 

7.1 Conclusion 
 

Bayesian Belief Network and FLM both present a systematic approach to 

account for uncertainties in a dynamic system.  BBN represents uncertainties in a 

probabilistic manner, while FLM represents uncertainties as fuzzy set membership 

functions.  A brief literature review on both methods has shown that BBN adopts a 

probabilistic approach to deal with reasoning, which is distinct from the FLM that 

deals with reasoning from its fuzzy sets. Following the implementation of both 

methodologies on the pump system example, this thesis has shown that the two 

methodologies generally yield consistent estimates as compared to the results 

calculated from the mathematical model.  

Based on the results obtained, the strengths and weaknesses of both BBN and 

FLM were identified, and limitations of the methodologies were also discussed. In 

particular, incorporating uncertainties within BBN is tedious and time consuming as 

overlapping data has to be taken into account for all input/output states, therefore 

implementing a BBN into multiple hierarchies of complex systems would be highly 

challenging. In addition, the poor resolution of output by both FLM and BBN is 

another limitation that may undermine the accuracy of the results; this inadequacy can 

be addressed by further defining the input parameters in finer details when time and 

resources permit. In order to overcome weaknesses that are inherent in the  individual 

application of each model, future research can explore how BBN and FLM can be 

integrated into more complex systems with the function of timing delays and feedback 

loops. 



 

81 
 

7.2 Recommendations 
 

In this paper, BBN and FLM were implemented on a simple mono- hierarchy 

system. Future studies should attempt to model these two methodologies on multiple 

hierarchies of complex systems, which are more realistic and applicable to the real 

world. 

As proposed by Z. Mohaghegh, R. Kazemi, and A. Mosleh [16], Hybrid 

modeling via SD environment is an ideal method to resolve the challenges that arise 

from integrating BBN into systems with feedback loops. They have introduced the 

use of STELLA to integrate BBN, ESD, and FT into a SD module that allows for 

feedback and delays. However, their researches have a stronger focus on human 

reliability and organizational risk management. Therefore, future research can explore 

integrating BBN into an SD environment that models a mechanical or electronic 

system with delays and feedbacks loop features. 

Since both BBN and FLM have their pros and cons, one could also look into 

integrating FLM and BBN in an SD environment to solve system problems. There are 

possibilities that both methodologies can be combined to achieve synergies that are 

not possible from applying each method individually in the SD environment. 

Weaknesses of each model may even be offset by each other. Alternatively, 

optimization of the problem could be examined to determine the acceptable limits of 

uncertainty in data, so that the accuracy of the output is not compromised. 

One of the disadvantages of BBN as mentioned in chapter 6 is the poor 

resolution of output given the limited conditions specified for the input. Breaking 

down the input temperatures into only two conditions would result in more “discrete” 

rather than continuous outputs. In view of this, extension of this thesis research should 
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strive for continuous BBN data, where the input nodes take the form of a continuous 

distribution instead of discrete numbers. However, there will be limitations when 

using IRIS to model BBNs with continuous data as it only allows discrete inputs to be 

entered into the CPT. 

A recommended software that possesses the capability to build continuous 

BBNs using continuous chance nodes (as illustrated in Figure 44) is HUGIN LITE. 

Obtaining continuous data in this way might solve the poor resolution problem 

without having to specify many conditions.  

 

 

Figure 44: Example of Continuous BBN where each node is a continuous chance node 

 

 

  Another area that deserves further attention is to consider other types of 

distributions that can be used for the input and output parameters apart from the 

normal distribution. One limitation in using the normal distribution is that the two 

extreme ends of the curve have infinite values, which might undermine the accuracy 
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of the results. One alternative is to use triangular or uniform distributions which have 

fixed values on the extreme ends for the input and output parameters. It may also be 

useful to conduct a pilot study that compares output data obtained via various types of 

distributions so as to gain a better understanding on any consistency and variations 

obtained from the various distributions.   
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Appendix A 
 

Acronyms 

ABM  Agent Based Modeling 

BBN  Bayesian Belief Network 

BN  Bayesian Network 

CDF  Cumulative Distribution Function 

COA  Centroid/Center of Area 

COS  Centre Of Sum 

CPT  Conditional Probability Table 

DAG  Directed Acyclic Graphs 

DBN  Dynamic Bayesian Network 

DMLD  Dynamic Master Logic Diagram 

DOF  Degree Of Freedom 

ESD  Event Sequence Diagram 

FIS  Fuzzy Inference System 

FLM  Fuzzy Logic Modeling 

FLT  Fuzzy Logic Toolbox 

FT  Fault Tree 

GPM  Gallons Per Minute 

GHI  GPM High 

GLW  GPM Low 

GMD  GPM Midpoint 

GMH  GPM Mid High 

GML  GPM Mid Low 

GZE  GPM Zero 

LHS  Left Hand Side 
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MOM  Mean Of Maxima 

NE  Negative 

NPSHA Net Pump Suction Head 

NPSHA1 Net Pump Suction Head when  = 0 

NT  Neutral 

PDF  Probability Distribution Function 

POF  Physics of Failure 

PT  Positive 

RHS  Right Hand Side 

SD  System Dynamics 

SN  Slight Negative 

SP  Slight Positive 

THI  Temperature High 

TLW  Temperature Low 

 

 

Notations of DMLD based on time dependent fuzzy logic [5] 

Notation Description 

 

 

Fuzzy Sets of a state: The location of the name of the state addresses 

the direction of the fuzzification and defuzzification. 

 AND gate: The minimum value of inputs will be the output value 
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OR gate: The maximum value of inputs will be the output value 

 

 

AND transition gate: The minimum value of inputs will be the output 

value with a delay, dt 

 

 

OR transition gate: The maximum value of inputs will be the output 

value with a delay, dt 

 

Uncertain Node: The number inside the node represents the 

uncertainty of relationship. The minimum between the input degree of 

membership function (dmf) and the uncertainty is selected as the 

output. 

 

 

Certain Node: Represents a certain relationship that directly 

propagates the input dmf to the output dmf. 

 
NOT Node: Represents certain negation in which the output dmf is (1- 

input dmf). 
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Uncertain Negation Node: A hollow node with a bar above the 

degree of certainty inside. The output dmf is the minimum between the 

uncertainty and (1- input dmf). 

 

 

Independent Node: Represents no relationship 

 

 

Dependent Node: Represents that more DMLD hierarchies are 

required to model the system behavior in details. 
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Appendix B 

 

Definitions of Bayesian Belief Network [8] 

Acyclic Graph A graph that contains no cycles. At most one path 

exists between each pair of nodes in the graph 

Anticipatory node A leaf node that has not been instantiated. It is a node 

awaiting evidence. 

Arc A link or edge joining between 2 nodes. 

Bayesian 

Probabilities 

Probabilities that are based on a person’s belief/expert 

judgment of the likelihood of an event. 

Belief The probability that a variable will be in a certain 

state based on additional evidence in a current 

situation of each possible state of a variable after 

considering all available evidence. 

A-priori beliefs are special case of beliefs that are 

based only on prior information. A-priori beliefs are 

determined only by the information stored in the 

belief networks’ CPT [6] 

 

Belief Network A graphical representation of a model that captures 

the relationships between the model’s variables. 

Binary variable A variable that has only two possible states. 

Child A descendent variable whose state is directly 

influenced by the parent variable.  
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Clique A set of variables that are all pairwise linked. 

Cluster tree A tree in which each node is a cluster of variables 

from the domain of interest and each variable in the 

domain appears in at least one node of the cluster 

tree. 

Clustering A technique where variables are grouped into clusters 

to form singly connected network/trees. 

Conditional 

Probabilities 

Conditional probabilities represent likelihoods based   
 
on prior information or past experience. [6] 

Cyclic graph A graph that contains at least one cycle. This means 

that multiple paths must exist between at least two of 

the nodes in the graph. 

D-Separation The blocking of the flow of evidence between nodes 

or set of nodes in a network. It is used to represent 

independence in causal belief network. 

Decomposable model A probability model with a minimal independency 

map. 

Dependency map A graph in which all connected nodes correspond to 

dependent variables in the model that is represented 

Directed Acyclic 

Graph 

A graph that has direct arcs and no cycles. 

Directed graph A graph containing directed arcs between nodes. 

Dummy node A node representing evidence that bears upon another 

node of interest. 

Evidence It  is information about a current situation [6] 
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Evidence node A node with a single value that has been observed 

with probability one. 

Graph A set of nodes or vertices connected by a set of arcs 

or edges. 

Hypothesis node A node whose state represents one of a number of 

alternative hypotheses 

Inference The calculation of posterior marginal distributions for 

variables of interests given a set of observations or 

evidence. 

Intermediate node A node inserted before a hypothesis variable to allow 

uncertainty to be modeled. 

Join tree A tree structure in which the nodes are the cliques of 

the graph that it represents. 

Leaf node A node whose arcs are directed towards it. 

Likelihood How often a particular event is expected to occur. 

Markov networks Graphical networks that are represented by undirected 

graphs. 

Marginal 

distribution [5] 

This distribution can be viewed as a projection of the 

joint distribution on the smaller set of variables X1... 

Xm. 

Where  

Maximal clique A maximal set of variables that are all pairwise 

linked. 

Neighbors Nodes that are directly connected to a node 
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Parent A parent of a variable is any other variable that 

directly influences the state of that variable. 

Probabilistic Model An encoding of probabilistic information that allows 

computation of every well formed 

sentence/proposition in accordance with axioms of 

the probability language. 

Root node A node whose arcs are directed away from it. 

Stochastic simulation A technique for computing probabilities by 

measuring how frequently specific events occur 

during simulation runs. 

Uncertain evidence Specific evidence that do not directly identify the 

state of a variable. 

Undirected graph A graph that has arcs with no direction. i.e. Arcs that 

exhibit bidirectional influence between nodes 

Universe The set of all variables in a model representing all 

knowledge in the domain of interest. 
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Appendix C 

 

MATLAB source code1: Pump System Model Application 

 

function PumpSystem() 

clc                      

clear all 

close all 

format long    

  

%Defining input and output parameter range 

  

x_GPM = 0:1:480;    %Estimated Pump GPM range 

  

x_Temp = 0:1:200;   %Estimated Temperature range 

  

x_Zo = 0:0.1:5;     %Estmated Height of Pump range 

  

x_NPSHA1 = 0:0.1:40;    %Estimated NPSHA(Zo=0)range 

  

x_NPSHA = 0:0.1:45;     % Estimated NPSHA output 

  

  

GPMmax = 480; 

TempMax = 200; 
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ZoMax = 10; 

GPM_mu1 = 240;  %Estimated GPM mean 

GPM_sd1 = 80;   %GPM standard deviation 

Temp_mu1 = 100; %Estimated Temperature mean 

Temp_sd1 = 30;  %Temperature standard deviation 

Zo_mu1 = 2.5;   %Estimated Zo mean 

Zo_sd1 = 0.8;   %Zo standard deviation 

  

N = 5000;   %Sample Size 

%Consider Monte Carlo Sampling based on a Uniform Distribution (Not used in 

%Thesis example) 

for i = 1:N 

     

    U_GPM(i) = GPMmax * rand(1);     %Based on a uniform distribution input  

    U_Temp(i) = TempMax * rand(1);   %Based on a uniform distribution input 

    U_Zo(i) = ZoMax * rand(1);       %Based on a uniform distribution input 

     

    U_NPSHA1 = 35.18 - 6.4*10^-5 * U_GPM.^2 - 0.085 * U_Temp;   %for Zo = 0 

     

    U_NPSHA = 35.18 + U_Zo - 6.4*10^-5 * U_GPM.^2 - 0.085 * U_Temp; % 

NPSHA inclusive of Zo component. 

   

end 
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figure(1) 

hist(U_NPSHA1,100)             % Histogram of Uniform NPSHA1 

xlabel('NPSHA1')               % X Axis Label 

ylabel('Number of Samples')    % Y Axis Label 

title('Histogram Plot of Uniform NPSHA') 

  

[U_NPSHA1_mu U_NPSHA1_sd] = normfit(U_NPSHA1,0.05)           %Calculate 

mean and standard deviation of NPSHA1 

U_NPSHA1_pdf = normpdf(x_NPSHA1,U_NPSHA1_mu, U_NPSHA1_sd);   %pdf 

of Uniform NPSHA1 

U_NPSHA1_cdf = normcdf(x_NPSHA1,U_NPSHA1_mu, U_NPSHA1_sd);   %cdf 

of Uniform NPSHA1 

  

figure(2) 

plot(x_NPSHA1, U_NPSHA1_pdf, 'b')   %Plot pdf of Uniform NPSHA1 

xlabel('NPSHA1')                    % X Axis Label 

ylabel('probability')               % Y Axis Label 

title('PDF Plot of U_NPSHA') 

  

figure(3) 

plot(x_NPSHA1, U_NPSHA1_cdf, 'r')   %Plot cdf of Uniform NPSHA1 

xlabel('NPSHA1')                    % X Axis Label 

ylabel('probability')               % Y Axis Label 

title('CDF Plot of U_NPSHA') 
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%Consider Monte Carlo Sampling for a normal distribution 

for j = 1:N 

    N_GPM(j) = normrnd(GPM_mu1,GPM_sd1);        %Based on a normal 

distribution input 

    N_Temp(j) = normrnd(Temp_mu1,Temp_sd1);     %Based on a normal distribution 

input 

    N_Zo(j) = normrnd(Zo_mu1,Zo_sd1);           %Based on a normal distribution input 

  

    N_NPSHA1 = 35.18 - 6.4*10^-5 * N_GPM.^2 - 0.085 * N_Temp;   %For Zo = 0 

    N_NPSHA = 35.18 + N_Zo - 6.4*10^-5 * N_GPM.^2 - 0.085 * N_Temp; % 

NPSHA inclusive of Zo component. 

end 

  

figure(4) 

hist(N_NPSHA1,100)             % Histogram for normal NPSHA1 

xlabel('NPSHA1')               % X Axis Label 

ylabel('Number of Samples')    % Y Axis Label 

title('Histogram Plot of N_NPSHA') 

  

[N_NPSHA1_mu N_NPSHA1_sd] = normfit(N_NPSHA1,0.05)          %Calculate 

mean and standard deviation of NPSHA1 

N_NPSHA1_pdf = normpdf(x_NPSHA1,N_NPSHA1_mu, N_NPSHA1_sd);  %pdf 

of Normal NPSHA1 
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N_NPSHA1_cdf = normcdf(x_NPSHA1,N_NPSHA1_mu, N_NPSHA1_sd);  %cdf of 

normal NPSHA1 

   

[N_NPSHA_mu N_NPSHA_sd] = normfit(N_NPSHA,0.05)             %Calculate mean 

and standard deviation of NPSHA 

N_NPSHA_pdf = normpdf(x_NPSHA,N_NPSHA_mu, N_NPSHA_sd);      %pdf of 

Normal NPSHA 

N_NPSHA_cdf = normcdf(x_NPSHA,N_NPSHA_mu, N_NPSHA_sd);      %cdf of 

Normal NPSHA 

  

[N_Temp_mu, N_Temp_sd] = normfit (N_Temp,0.05);             %Calculate mean and 

standard deviation of Temperature      

N_Temp_pdf = normpdf(x_Temp,N_Temp_mu,N_Temp_sd);           %pdf of Normal 

Temperature 

N_Temp_cdf = normcdf(x_Temp,N_Temp_mu,N_Temp_sd);           %cdf of Normal 

Temperature 

  

LWTempdata = N_Temp_cdf(100)        %Estimating the probabililty of Low 

Temperature data 

 

HITempdata = N_Temp_cdf(200) - N_Temp_cdf(100)  %Estimating the probability 

of High Temperature data 
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figure(5) 

plot(x_NPSHA1, N_NPSHA1_pdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('frequency')             % Y Axis Label 

title('PDF Plot of N_NPSHA1') 

  

figure(6) 

plot(x_NPSHA1, N_NPSHA1_cdf, 'r') 

xlabel('NPSHA1')               % X Axis Label 

ylabel('probability')          % Y Axis Label 

title('CDF Plot of N_NPSHA1') 

   

[n1,xout1] = hist(N_NPSHA1,12);     %breaking down the normal distribution into 12 

parts 

norm_den1 = sum(n1)* (max(N_NPSHA1)-min(N_NPSHA1))/12; 

  

figure(7); 

bar(xout1,n1/norm_den1,'hist');hold on;  

plot(x_NPSHA1, N_NPSHA1_pdf, 'r') 

xlabel('NPSHA1')               % X Axis Label 

ylabel('frequency')          % Y Axis Label 

title('PDF Plot of N_NPSHA1 with Histogram') 

  

I = 12; 

max_Xout1 = max(N_NPSHA1)   %estimating the maximum NPSHA1 
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min_Xout1 = min(N_NPSHA1)   %estimating the minimum NPSHA1 

Interval1 = (max_Xout1 - min_Xout1)/I; 

  

Amax = min_Xout1 + Interval1      

Bmax = Amax + Interval1             

Cmax = Bmax + Interval1             

Dmax = Cmax + Interval1            

Emax = Dmax + Interval1            

Fmax = Emax + Interval1            

Gmax = Fmax + Interval1            

Hmax = Gmax + Interval1             

Imax = Hmax + Interval1          

Jmax = Imax + Interval1         

Kmax = Jmax + Interval1          

Lmax = Kmax + Interval1    

  

%Obtaining Probability Data from Physical Model assuming no overlaps 

  

Aact = normcdf(Amax, N_NPSHA1_mu, N_NPSHA1_sd) 

Bact = normcdf(Bmax, N_NPSHA1_mu, N_NPSHA1_sd) - normcdf(Amax, 

N_NPSHA1_mu, N_NPSHA1_sd) 

Cact = normcdf(Cmax, N_NPSHA1_mu, N_NPSHA1_sd) - normcdf(Bmax, 

N_NPSHA1_mu, N_NPSHA1_sd) 

Dact = normcdf(Dmax, N_NPSHA1_mu, N_NPSHA1_sd) - normcdf(Cmax, 

N_NPSHA1_mu, N_NPSHA1_sd) 
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Eact = normcdf(Emax, N_NPSHA1_mu, N_NPSHA1_sd) - normcdf(Dmax, 

N_NPSHA1_mu, N_NPSHA1_sd) 

Fact = normcdf(Fmax, N_NPSHA1_mu, N_NPSHA1_sd) - normcdf(Emax, 

N_NPSHA1_mu, N_NPSHA1_sd) 

Gact = normcdf(Gmax, N_NPSHA1_mu, N_NPSHA1_sd) - normcdf(Fmax, 

N_NPSHA1_mu, N_NPSHA1_sd) 

Hact = normcdf(Hmax, N_NPSHA1_mu, N_NPSHA1_sd) - normcdf(Gmax, 

N_NPSHA1_mu, N_NPSHA1_sd) 

Iact = normcdf(Imax, N_NPSHA1_mu, N_NPSHA1_sd) - normcdf(Hmax, 

N_NPSHA1_mu, N_NPSHA1_sd) 

Jact = normcdf(Jmax, N_NPSHA1_mu, N_NPSHA1_sd) - normcdf(Imax, 

N_NPSHA1_mu, N_NPSHA1_sd) 

Kact = normcdf(Kmax, N_NPSHA1_mu, N_NPSHA1_sd) - normcdf(Jmax, 

N_NPSHA1_mu, N_NPSHA1_sd) 

Lact = normcdf(Lmax, N_NPSHA1_mu, N_NPSHA1_sd) - normcdf(Kmax, 

N_NPSHA1_mu, N_NPSHA1_sd) 

[n,xout] = hist(N_NPSHA,4); 

norm_den = sum(n)* (max(N_NPSHA)-min(N_NPSHA))/4; 

 

figure(8); 

bar(xout,n/norm_den,'hist');hold on;  

plot(x_NPSHA, N_NPSHA_pdf, 'r') 

xlabel('NPSHA')               % X Axis Label 

ylabel('frequency')          % Y Axis Label 

title('PDF Plot of N_NPSHA with Histogram') 
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I = 4; 

max_Xout = max(N_NPSHA); 

min_Xout = min(N_NPSHA); 

Interval1 = (max_Xout-min_Xout)/I; 

  

Mmax = min_Xout + Interval1; 

Nmax = Mmax + Interval1;  

Omax = Nmax + Interval1; 

Pmax = Omax + Interval1; 

  

%Estimating the probability of M, N, O, P 

M = normcdf(Mmax, N_NPSHA_mu, N_NPSHA_sd) 

N = normcdf(Nmax, N_NPSHA_mu, N_NPSHA_sd) - normcdf(Mmax, 

N_NPSHA_mu, N_NPSHA_sd) 

O = normcdf(Omax, N_NPSHA_mu, N_NPSHA_sd) - normcdf(Nmax, 

N_NPSHA_mu, N_NPSHA_sd) 

P = normcdf(Pmax, N_NPSHA_mu, N_NPSHA_sd) - normcdf(Omax, 

N_NPSHA_mu, N_NPSHA_sd) 

  

  

  

[N_GPM_mu ,N_GPM_sd] = normfit (N_GPM,0.05);    %Calculating the mean and 

standard deviation of GPM 

N_GPM_pdf = normpdf(x_GPM ,N_GPM_mu,N_GPM_sd);  %pdf of GPM  

N_GPM_cdf = normcdf(x_GPM ,N_GPM_mu,N_GPM_sd);  %cdf of GPM 
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[N_Zo_mu, N_Zo_sd] = normfit (N_Zo,0.05);       %Calculating the mean and 

standard deviation of Zo 

N_Zo_pdf = normpdf(x_Zo,N_Zo_mu,N_Zo_sd);       %pdf of Zo 

N_Zo_cdf = normcdf(x_Zo,N_Zo_mu,N_Zo_sd);       %cdf of Zo 

   

figure(9) 

plot(x_GPM, N_GPM_pdf, 'r') 

xlabel('GPM')                % X Axis Label 

ylabel('frequency')          % Y Axis Label 

title('PDF Plot of GPM') 

 

figure(10) 

plot(x_Temp, N_Temp_pdf, 'b') 

xlabel('Temp')               % X Axis Label 

ylabel('frequency')          % Y Axis Label 

title('PDF Plot of Temp') 

  

figure(11) 

plot(x_Zo, N_Zo_pdf, 'b') 

xlabel('Zo')                 % X Axis Label 

ylabel('frequency')          % Y Axis Label 

title('PDF Plot of Zo') 
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figure(12) 

plot(x_Temp, N_Temp_cdf, 'b') 

xlabel('Temp')                 % X Axis Label 

ylabel('Probability')          % Y Axis Label 

title('CDF Plot of Temp') 

  

figure(13) 

plot(x_GPM, N_GPM_cdf, 'r') 

xlabel('GPM')                  % X Axis Label 

ylabel('probability')          % Y Axis Label 

title('CDF Plot of GPM') 

  

figure(14) 

plot(x_Zo, N_Zo_cdf, 'r') 

xlabel('Zo')                  % X Axis Label 

ylabel('probability')          % Y Axis Label 

title('CDF Plot of Zo') 

   

%Estimating the probability of individual Temperature states 

LWTempdata = N_Temp_cdf(100) 

HITempdata = N_Temp_cdf(200) - N_Temp_cdf(100) 

 

%Estimating the probability of individual GPM states 

ZE_GPMdata = normcdf(1, N_GPM_mu,N_GPM_sd)  
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LW_GPMdata = normcdf(90, N_GPM_mu,N_GPM_sd)  - normcdf(1, 

N_GPM_mu,N_GPM_sd)  

ML_GPMdata = normcdf(180, N_GPM_mu,N_GPM_sd)  - normcdf(90, 

N_GPM_mu,N_GPM_sd) 

MD_GPMdata = normcdf(300, N_GPM_mu,N_GPM_sd)  - normcdf(180, 

N_GPM_mu,N_GPM_sd) 

MH_GPMdata = normcdf(390, N_GPM_mu,N_GPM_sd)  - normcdf(300, 

N_GPM_mu,N_GPM_sd)  

HI_GPMdata = normcdf(480, N_GPM_mu,N_GPM_sd)  - normcdf(390, 

N_GPM_mu,N_GPM_sd)  

  

%Estimating the probability of individual Zo states 

N_ZoNE = normcdf(2.5,N_Zo_mu,N_Zo_sd) 

N_ZoPT = normcdf(5,N_Zo_mu,N_Zo_sd) - normcdf(2.5,N_Zo_mu,N_Zo_sd) 

   

% Bayesian Belief Network Methodology  

S1 = HI_GPMdata * HITempdata 

S2 = MH_GPMdata * HITempdata 

S3 = MD_GPMdata * HITempdata 

S4 = ML_GPMdata * HITempdata 

S5 = LW_GPMdata * HITempdata 

S6 = ZE_GPMdata * HITempdata 

S7 = HI_GPMdata * LWTempdata 

S8 = MH_GPMdata * LWTempdata 

S9 = MD_GPMdata * LWTempdata 
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S10 = ML_GPMdata * LWTempdata 

S11 = LW_GPMdata * LWTempdata 

S12 = ZE_GPMdata * LWTempdata 

  

SUM = S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 + S9 + S10 + S11 + S12  

  

end 

  
 
 
 
MATLAB Source Code 2: Comparison of NPSHA1 data between Physical and Fuzzy 
Logic Model  

 

%Comparison of NPSHA data between physical model and Fuzzy Logic Model 

%Fuzzy Interface System was used to generate the Fuzzy output. 

  

clc                      % clears all input and output from command window 

clear all                % clears the values stored in all variables 

%close all               % closes all MatLab figures open in Windows 

  

fis = readfis('Pump System2');  

surfview(fis)   %Surface view of NPSHA with respect to Temperature and Pump 

GPM 
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%Estimating NPSHA output at Temperature = 0degF between GPM 0 to 480 

out0deg = evalfis([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ;0 20 40 60 80 100 

120 140 160 180 ... 

    200 220 240 260 280 300 320 340 360 380 400 420 440 460 480],fis) 

  

%Estimating NPSHA output at Temperature = 40degF between GPM 0 to 480 

out40deg = evalfis([40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 

40 40 40 40 ;0 20 40 60 80 100 120 140 160 180 ... 

    200 220 240 260 280 300 320 340 360 380 400 420 440 460 480],fis) 

  

%Estimating NPSHA output at Temperature = 80degF between GPM 0 to 480 

out80deg = evalfis([80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 

80 80 80 80 ;0 20 40 60 80 100 120 140 160 180 ... 

    200 220 240 260 280 300 320 340 360 380 400 420 440 460 480],fis) 

  

%Estimating NPSHA output at Temperature = 120degF between GPM 0 to 480 

out120deg = evalfis([120 120 120 120 120 120 120 120 120 120 120 120 120 120 

120 120 120 120 120 120 120 120 120 120 120 ;0 ...  

    20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 

420 440 460 480],fis) 

  

%Estimating NPSHA output at Temperature = 160degF between GPM 0 to 480 

out160deg = evalfis([160 160 160 160 160 160 160 160 160 160 160 160 160 160 

160 160 160 160 160 160 160 160 160 160 160 ;0 ...  
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    20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 

420 440 460 480],fis) 

  

%Estimating NPSHA output at Temperature = 2000degF between GPM 0 to 480 

out200deg = evalfis([200 200 200 200 200 200 200 200 200 200 200 200 200 200 

200 200 200 200 200 200 200 200 200 200 200 ;0 ...  

    20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 

420 440 460 480],fis)  

  

%Plotting Fuzzy NPSHA output vs Pump GPM at 6 different temperatures  

  

GPM = 0 :20: 480; 

figure(10) 

hold on; 

plot(GPM, out0deg, 'r') 

plot(GPM, out40deg, 'b') 

plot(GPM, out80deg, 'g') 

plot(GPM, out120deg, 'k') 

plot(GPM, out160deg, 'm') 

plot(GPM, out200deg, 'c') 

title('Fuzzy NPSHA Vs Fuzzy PUMP GPM (Zo=0)') 

legend('fT=0', 'fT=40', 'fT=80', 'fT=120', 'fT=160', 'fT=200') 

xlabel('PUMP GPM')      %X axis 

ylabel('NPSHA1')        %Y axis 
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%Plotting Physical NPSHA output vs Pump GPM at 6 different temperatures  

for Z0 = 0 

GPM =  0: 1 : 480; 

%figure(11) 

TEMP=0; 

plot(GPM, 35.18 + Z0 - 6.4*10^-5 * GPM.^2 - 0.085 * TEMP,'-- r') 

hold on; 

TEMP = 40; 

plot(GPM, 35.18 + Z0 - 6.4*10^-5 * GPM.^2 - 0.085 * TEMP,'-- b') 

TEMP = 80; 

plot(GPM, 35.18 + Z0 - 6.4*10^-5 * GPM.^2 - 0.085 * TEMP,'-- g') 

TEMP = 120; 

plot(GPM, 35.18 + Z0 - 6.4*10^-5 * GPM.^2 - 0.085 * TEMP,'-- k') 

TEMP = 160; 

plot(GPM, 35.18 + Z0 - 6.4*10^-5 * GPM.^2 - 0.085 * TEMP,'-- m' ) 

TEMP = 200; 

plot(GPM, 35.18 + Z0 - 6.4*10^-5 * GPM.^2 - 0.085 * TEMP,'-- c') 

title('NPSHA Vs PUMP GPM (Zo=0)') 

legend('T=0', 'T=40', 'T=80', 'T=120', 'T=160', 'T=200') 

xlabel('PUMP GPM')  %X axis 

ylabel('NPSHA')     %Y axis 

hold off 

 

end 
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MATLAB Source Code 3: Distribution of NPSHA1 output 
 

%Distribution of NPSHA1 at various GPM and Temperature range 

%S1 to S2 is assumed to be normally distributed across the A to L range 

%Overlaps between the normal distributions would be accounted for 

  

function NPSHA1output() 

clc                      

clear all 

close all 

format long    

  

%Initial estimated ranges of A to L  

x_A = 2:0.1:17; 

x_B = 7:0.1: 22; 

x_C = 11:0.1:26; 

x_D = 15:0.1:27; 

x_E = 16:0.1:28; 

x_F = 17:0.1:28; 

x_G = 10:0.1:27; 

x_H = 15:0.1:31; 

x_I = 19:0.1:34; 

x_J = 24:0.1:35; 

x_K = 25:0.1:37; 

x_L = 25: 0.1:37;  
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%Set1 = Represents the NPSHA output when GPM is HI and Temp is HI 

%Set2 = Represents the NPSHA output when GPM is MH and Temp is HI 

%Set3 = Represents the NPSHA output when GPM is MD and Temp is HI 

%Set4 = Represents the NPSHA output when GPM is ML and Temp is HI 

%Set5 = Represents the NPSHA output when GPM is LW and Temp is HI 

%Set6 = Represents the NPSHA output when GPM is ZE and Temp is HI 

%Set7 = Represents the NPSHA output when GPM is HI and Temp is LW 

%Set8 = Represents the NPSHA output when GPM is MH and Temp is LW 

%Set9 = Represents the NPSHA output when GPM is MD and Temp is LW 

%Set10 = Represents the NPSHA output when GPM is ML and Temp is LW 

%Set11 = Represents the NPSHA output when GPM is LW and Temp is LW 

%Set12 = Represents the NPSHA output when GPM is ZE and Temp is LW 

 

%Estimating the mean and standard deviation for all 12 sets 

Set1_mean = 10;         Set7_mean = 19; 

Set1_SD = 2;            Set7_SD = 2; 

Set2_mean = 14;         Set8_mean = 23; 

Set2_SD = 2;            Set8_SD = 2; 

Set3_mean = 18;         Set9_mean = 27; 

Set3_SD = 2;            Set9_SD = 2; 

Set4_mean = 21;         Set10_mean = 29; 

Set4_SD = 1.5;            Set10_SD = 2; 

Set5_mean = 22;         Set11_mean = 30; 

Set5_SD = 1.2;            Set11_SD = 2; 

Set6_mean = 23;         Set12_mean = 31; 
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Set6_SD = 1.2;            Set12_SD = 1.5; 

   

N = 5000; 

%Normal Random Sampling of A to L based on 5000 samples 

for j = 1:N 

    A(j) = normrnd(Set1_mean,Set1_SD);         

    B(j) = normrnd(Set2_mean,Set2_SD); 

    C(j) = normrnd(Set3_mean,Set3_SD); 

    D(j) = normrnd(Set4_mean,Set4_SD); 

    E(j) = normrnd(Set5_mean,Set5_SD); 

    F(j) = normrnd(Set6_mean,Set6_SD); 

    G(j) = normrnd(Set7_mean,Set7_SD); 

    H(j) = normrnd(Set8_mean,Set8_SD); 

    I(j) = normrnd(Set9_mean,Set9_SD); 

    J(j) = normrnd(Set10_mean,Set10_SD); 

    K(j) = normrnd(Set11_mean,Set11_SD); 

    L(j) = normrnd(Set12_mean,Set12_SD); 

     

end 

  

%Defining Probability Input Paramenters obtained from PumpSystemFinal.m  

LWTempdata = 0.491593887090371; 

HITempdata = 0.507981643183724; 
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HI_GPMdata = 0.030244034122316; 

MH_GPMdata = 0.199614391751596; 

MD_GPMdata = 0.545470490189395; 

ML_GPMdata = 0.193391376667252; 

LW_GPMdata = 0.028448548042403; 

ZE_GPMdata = 0.001382396691117; 

   

S1 = HI_GPMdata * HITempdata; 

S2 = MH_GPMdata * HITempdata; 

S3 = MD_GPMdata * HITempdata; 

S4 = ML_GPMdata * HITempdata; 

S5 = LW_GPMdata * HITempdata; 

S6 = ZE_GPMdata * HITempdata; 

S7 = HI_GPMdata * LWTempdata; 

S8 = MH_GPMdata * LWTempdata; 

S9 = MD_GPMdata * LWTempdata; 

S10 = ML_GPMdata * LWTempdata; 

S11 = LW_GPMdata * LWTempdata; 

S12 = ZE_GPMdata * LWTempdata; 

  

[A_mu A_sd] = normfit(A,0.05);       

A_pdf = normpdf(x_A,A_mu, A_sd); 

A_cdf = normcdf(x_A,A_mu, A_sd); 
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%Left Side Truncated Normal Distribution of A at 6.59 

  

AT_pdf = normpdf(x_A,A_mu, A_sd)/(1-normcdf(6.59,A_mu,A_sd)); 

  

AT_cdf = (normcdf(x_A,A_mu, A_sd) - normcdf(6.59,A_mu, A_sd))/(1-

normcdf(6.59,A_mu,A_sd));  

  

figure(1) 

plot(x_A, A_pdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('frequency')           % Y Axis Label 

title('PDF Plot of Set1') 

hold on; 

plot(x_A, AT_pdf, 'r') 

hold off; 

  

figure(2) 

plot(x_A, A_cdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('probability')           % Y Axis Label 

title('CDF Plot of Set1') 

hold on; 

plot(x_A, AT_cdf, 'r') 

hold off; 
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A1 = (normcdf(8.94312,A_mu, A_sd) - normcdf(6.59,A_mu, A_sd))/(1-

normcdf(6.59,A_mu,A_sd)) - ... 

(normcdf(6.59,A_mu, A_sd) - normcdf(6.59,A_mu, A_sd))/(1-

normcdf(6.59,A_mu,A_sd)) 

  

A2 = (normcdf(11.29611,A_mu, A_sd) - normcdf(6.59,A_mu, A_sd))/(1-

normcdf(6.59,A_mu,A_sd)) - ... 

(normcdf(8.94312,A_mu, A_sd) - normcdf(6.59,A_mu, A_sd))/(1-

normcdf(6.59,A_mu,A_sd)) 

  

A3 = (normcdf(13.6491,A_mu, A_sd) - normcdf(6.59,A_mu, A_sd))/(1-

normcdf(6.59,A_mu,A_sd)) - ... 

(normcdf(11.29611,A_mu, A_sd) - normcdf(6.59,A_mu, A_sd))/(1-

normcdf(6.59,A_mu,A_sd)) 

  

A4 = (normcdf(16.002,A_mu, A_sd) - normcdf(6.59,A_mu, A_sd))/(1-

normcdf(6.59,A_mu,A_sd)) - ... 

(normcdf(13.6491,A_mu, A_sd) - normcdf(6.59,A_mu, A_sd))/(1-

normcdf(6.59,A_mu,A_sd)) 

  

A5 =  1 - (normcdf(16.002,A_mu, A_sd) - normcdf(6.59,A_mu, A_sd))/(1-

normcdf(6.59,A_mu,A_sd)) 

  

SUMA =A1+A2+A3+A4+A5 
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[B_mu B_sd] = normfit(B,0.05); 

B_pdf = normpdf(x_B,B_mu, B_sd); 

B_cdf = normcdf(x_B,B_mu, B_sd); 

  

figure(3) 

plot(x_B, B_pdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('frequency')           % Y Axis Label 

title('PDF Plot of Set2') 

  

figure(4) 

plot(x_B, B_cdf, 'r') 

xlabel('NPSHA1')               % X Axis Label 

ylabel('probability')          % Y Axis Label 

title('CDF Plot of Set2') 

  

B1 = normcdf(8.84312,B_mu, B_sd) 

  

B2 = normcdf(11.2961,B_mu, B_sd) - normcdf(8.84312,B_mu, B_sd) 

  

B3 = normcdf(13.6491,B_mu, B_sd) - normcdf(11.2961,B_mu, B_sd) 

  

B4 = normcdf(16.002,B_mu, B_sd) - normcdf(13.6491,B_mu, B_sd) 

  

B5 = normcdf(18.3551,B_mu, B_sd) - normcdf(16.002,B_mu, B_sd) 
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B6 = normcdf(20.708,B_mu, B_sd) - normcdf(18.3551,B_mu, B_sd) 

  

B7 = 1- normcdf(20.708,B_mu, B_sd) 

  

SUMB = B1+B2+B3+B4+B5+B6+B7 

  

[C_mu C_sd] = normfit(C,0.05); 

C_pdf = normpdf(x_C,C_mu, C_sd); 

C_cdf = normcdf(x_C,C_mu, C_sd); 

  

figure(5) 

plot(x_C, C_pdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('frequency')           % Y Axis Label 

title('PDF Plot of Set3') 

  

figure(6) 

plot(x_C, C_cdf, 'r') 

xlabel('NPSHA1')               % X Axis Label 

ylabel('probability')          % Y Axis Label 

title('CDF Plot of Set3') 
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C2 = normcdf(11.2961,C_mu, C_sd) 

  

C3 = normcdf(13.6491,C_mu, C_sd) - normcdf(11.2961,C_mu, C_sd) 

  

C4 = normcdf(16.002,C_mu, C_sd) - normcdf(13.6491,C_mu, C_sd) 

  

C5 = normcdf(18.3551,C_mu, C_sd) - normcdf(16.002,C_mu, C_sd) 

  

C6 = normcdf(20.708,C_mu, C_sd) - normcdf(18.3551,C_mu, C_sd) 

  

C7 = normcdf(23.061,C_mu, C_sd) - normcdf(20.708,C_mu, C_sd) 

  

C8 = 1- normcdf(23.061,C_mu, C_sd) 

  

SUMC = C2+C3+C4+C5+C6+C7+C8 

  

[D_mu D_sd] = normfit(D,0.05); 

D_pdf = normpdf(x_D,D_mu, D_sd); 

D_cdf = normcdf(x_D,D_mu, D_sd); 

  

figure(7) 

plot(x_D, D_pdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('frequency')           % Y Axis Label 

title('PDF Plot of Set4') 
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figure(8) 

plot(x_D, D_cdf, 'r') 

xlabel('NPSHA1')               % X Axis Label 

ylabel('probability')          % Y Axis Label 

title('CDF Plot of Set4') 

  

D4 = normcdf(16.002,D_mu, D_sd) 

  

D5 = normcdf(18.3551,D_mu, D_sd) - normcdf(16.002,D_mu, D_sd) 

  

D6 = normcdf(20.708,D_mu, D_sd) - normcdf(18.3551,D_mu, D_sd) 

  

D7 = normcdf(23.061,D_mu, D_sd) - normcdf(20.708,D_mu, D_sd) 

  

D8 = normcdf(25.41407,D_mu, D_sd) - normcdf(23.061,D_mu, D_sd)  

  

D9 = 1- normcdf(25.41407,D_mu, D_sd) 

  

SUMD =D4+D5+D6+D7+D8+D9 

  

 

 

  

[E_mu E_sd] = normfit(E,0.05); 
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E_pdf = normpdf(x_E,E_mu, E_sd); 

E_cdf = normcdf(x_E,E_mu, E_sd); 

  

figure(9) 

plot(x_E, E_pdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('frequency')           % Y Axis Label 

title('PDF Plot of Set5') 

  

figure(10) 

plot(x_E, E_cdf, 'r') 

xlabel('NPSHA1')               % X Axis Label 

ylabel('probability')          % Y Axis Label 

title('CDF Plot of Set5') 

  

E4 = normcdf(16.002,E_mu, E_sd) 

  

E5 = normcdf(18.3551,E_mu, E_sd) - normcdf(16.002,E_mu, E_sd) 

  

E6 = normcdf(20.708,E_mu, E_sd) - normcdf(18.3551,E_mu, E_sd) 

  

E7 = normcdf(23.061,E_mu, E_sd) - normcdf(20.708,E_mu, E_sd) 

  

E8 = normcdf(25.41407,E_mu, E_sd) - normcdf(23.061,E_mu, E_sd)  
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E9 = 1- normcdf(25.41407,E_mu, E_sd) 

  

SUME = E4+E5+E6+E7+E8+E9 

   

[F_mu F_sd] = normfit(F,0.05); 

F_pdf = normpdf(x_F,F_mu, F_sd); 

F_cdf = normcdf(x_F,F_mu, F_sd); 

  

figure(11) 

plot(x_F, F_pdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('frequency')           % Y Axis Label 

title('PDF Plot of Set6') 

  

figure(12) 

plot(x_F, F_cdf, 'r') 

xlabel('NPSHA1')               % X Axis Label 

ylabel('probability')          % Y Axis Label 

title('CDF Plot of Set6') 

  

F4 = normcdf(16.002,F_mu, F_sd) 

  

F5 = normcdf(18.3551,F_mu, F_sd) - normcdf(16.002,F_mu, F_sd) 

  

F6 = normcdf(20.708,F_mu, F_sd) - normcdf(18.3551,F_mu, F_sd) 
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F7 = normcdf(23.061,F_mu, F_sd) - normcdf(20.708,F_mu, F_sd) 

  

F8 = normcdf(25.41407,F_mu, F_sd) - normcdf(23.061,F_mu, F_sd)  

  

F9 = 1- normcdf(25.41407,F_mu, F_sd) 

  

SUMF = F4+F5+F6+F7+F8+F9 

  

[G_mu G_sd] = normfit(G,0.05); 

G_pdf = normpdf(x_G,G_mu, G_sd); 

G_cdf = normcdf(x_G,G_mu, G_sd); 

  

figure(13) 

plot(x_G, G_pdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('frequency')           % Y Axis Label 

title('PDF Plot of Set7') 

  

figure(14) 

plot(x_G, G_cdf, 'r') 

xlabel('NPSHA1')               % X Axis Label 

ylabel('probability')          % Y Axis Label 

title('CDF Plot of Set7') 
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G2 = normcdf(11.2961,G_mu, G_sd) 

  

G3 = normcdf(13.6491,G_mu, G_sd) - normcdf(11.2961,G_mu, G_sd) 

  

G4 = normcdf(16.002,G_mu, G_sd) - normcdf(13.6491,G_mu, G_sd) 

  

G5 = normcdf(18.3551,G_mu, G_sd) - normcdf(16.002,G_mu, G_sd) 

  

G6 = normcdf(20.708,G_mu, G_sd) - normcdf(18.3551,G_mu, G_sd) 

  

G7 = normcdf(23.061,G_mu, G_sd) - normcdf(20.708,G_mu, G_sd) 

  

G8 = 1- normcdf(23.061,G_mu, G_sd) 

  

SUMG = G2+G3+G4+G5+G6+G7+G8 

  

[H_mu H_sd] = normfit(H,0.05); 

H_pdf = normpdf(x_H,H_mu, H_sd); 

H_cdf = normcdf(x_H,H_mu, H_sd); 

  

figure(15) 

plot(x_H, H_pdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('frequency')           % Y Axis Label 

title('PDF Plot of Set8') 
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figure(16) 

plot(x_H, H_cdf, 'r') 

xlabel('NPSHA1')               % X Axis Label 

ylabel('probability')          % Y Axis Label 

title('CDF Plot of Set8') 

  

H4 = normcdf(16.002,H_mu, H_sd) 

  

H5 = normcdf(18.3551,H_mu, H_sd) - normcdf(16.002,H_mu, H_sd) 

  

H6 = normcdf(20.708,H_mu, H_sd) - normcdf(18.3551,H_mu, H_sd) 

  

H7 = normcdf(23.061,H_mu, H_sd) - normcdf(20.708,H_mu, H_sd) 

  

H8 = normcdf(25.41407,H_mu, H_sd) - normcdf(23.061,H_mu, H_sd)  

  

H9 = normcdf(27.767,H_mu, H_sd) - normcdf(25.41407,H_mu, H_sd) 

  

H10 = 1- normcdf(27.767,H_mu, H_sd) 

  

SUMH = H4+H5+H6+H7+H8+H9+H10 

  

[I_mu I_sd] = normfit(I,0.05); 

I_pdf = normpdf(x_I,I_mu, I_sd); 



 

123 
 

I_cdf = normcdf(x_I,I_mu, I_sd); 

  

figure(17) 

plot(x_I, I_pdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('frequency')           % Y Axis Label 

title('PDF Plot of Set9') 

  

figure(18) 

plot(x_I, I_cdf, 'r') 

xlabel('NPSHA1')               % X Axis Label 

ylabel('probability')          % Y Axis Label 

title('CDF Plot of Set9') 

  

I6 = normcdf(20.708,I_mu, I_sd) - normcdf(18.3551,I_mu, I_sd) 

  

I7 = normcdf(23.061,I_mu, I_sd) - normcdf(20.708,I_mu, I_sd) 

  

I8 = normcdf(25.41407,I_mu, I_sd) - normcdf(23.061,I_mu, I_sd)  

  

I9 = normcdf(27.767,I_mu, I_sd) - normcdf(25.41407,I_mu, I_sd) 

  

I10 = normcdf(30.12,I_mu, I_sd) - normcdf(27.767,I_mu, I_sd) 

  

I11 = normcdf(32.473,I_mu, I_sd) - normcdf(30.12,I_mu, I_sd) 
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I12 = 1- normcdf(32.473,I_mu, I_sd)  

  

SUMI = I6+I7+I8+I9+I10+I11+I12 

  

[J_mu J_sd] = normfit(J,0.05); 

J_pdf = normpdf(x_J,J_mu, J_sd); 

J_cdf = normcdf(x_J,J_mu, J_sd); 

  

figure(19) 

plot(x_J, J_pdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('frequency')           % Y Axis Label 

title('PDF Plot of Set10') 

  

figure(20) 

plot(x_J, J_cdf, 'r') 

xlabel('NPSHA1')               % X Axis Label 

ylabel('probability')          % Y Axis Label 

title('CDF Plot of Set10') 

  

J7 = normcdf(23.061,J_mu, J_sd) - normcdf(20.708,J_mu, J_sd) 

  

J8 = normcdf(25.41407,J_mu, J_sd) - normcdf(23.061,J_mu, J_sd)  

  

J9 = normcdf(27.767,J_mu, J_sd) - normcdf(25.41407,J_mu, J_sd) 
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J10 = normcdf(30.12,J_mu, J_sd) - normcdf(27.767,J_mu, J_sd) 

  

J11 = normcdf(32.473,J_mu, J_sd) - normcdf(30.12,J_mu, J_sd) 

  

J12 = 1- normcdf(32.473,J_mu, J_sd)  

  

SUMJ = J7+J8+J9+J10+J11+J12 

  

[K_mu K_sd] = normfit(K,0.05); 

K_pdf = normpdf(x_K,K_mu, K_sd); 

K_cdf = normcdf(x_K,K_mu, K_sd); 

  

figure(21) 

plot(x_K, K_pdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('frequency')           % Y Axis Label 

title('PDF Plot of Set11') 

  

figure(22) 

plot(x_K, K_cdf, 'r') 

xlabel('NPSHA1')               % X Axis Label 

ylabel('probability')          % Y Axis Label 

title('CDF Plot of Set11') 
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K8 = normcdf(25.41407,K_mu, K_sd) - normcdf(23.061,K_mu, K_sd)  

  

K9 = normcdf(27.767,K_mu, K_sd) - normcdf(25.41407,K_mu, K_sd) 

  

K10 = normcdf(30.12,K_mu, K_sd) - normcdf(27.767,K_mu, K_sd) 

  

K11 = normcdf(32.473,K_mu, K_sd) - normcdf(30.12,K_mu, K_sd) 

  

K12 = 1- normcdf(32.473,K_mu, K_sd)  

  

SUMK = K8+K9+K10+K11+K12 

  

[L_mu L_sd] = normfit(L,0.05); 

L_pdf = normpdf(x_L,L_mu, L_sd); 

L_cdf = normcdf(x_L,L_mu, L_sd); 

  

%Right Side Truncated Normal Distribution of L at 34.826 

  

LT_pdf = normpdf(x_L,L_mu, L_sd)/normcdf(34.826,L_mu,L_sd); 

  

LT_cdf = normcdf(x_L,L_mu, L_sd)/normcdf(34.826,L_mu,L_sd);  

  

figure(23) 

plot(x_L, L_pdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 
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ylabel('frequency')           % Y Axis Label 

title('PDF Plot of Set12') 

hold on; 

plot(x_L, LT_pdf, 'r') 

hold off; 

  

figure(24) 

plot(x_L, L_cdf, 'b') 

xlabel('NPSHA1')                % X Axis Label 

ylabel('probability')           % Y Axis Label 

title('CDF Plot of Set12') 

hold on; 

plot(x_L, LT_cdf, 'r') 

hold off; 

  

L8 = normcdf(25.414 ,L_mu, L_sd)/normcdf(34.826,L_mu,L_sd)  

  

L9 = normcdf(27.767 ,L_mu, L_sd)/normcdf(34.826,L_mu,L_sd)  - normcdf(25.414 

,L_mu, L_sd)/normcdf(34.826,L_mu,L_sd)  

  

L10 = normcdf(30.12 ,L_mu, L_sd)/normcdf(34.826,L_mu,L_sd) - normcdf(27.767 

,L_mu, L_sd)/normcdf(34.826,L_mu,L_sd)  

  

L11 = normcdf(32.826 ,L_mu, L_sd)/normcdf(34.826,L_mu,L_sd) - normcdf(30.12 

,L_mu, L_sd)/normcdf(34.826,L_mu,L_sd) 
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L12 = 1 - normcdf(32.826 ,L_mu, L_sd)/normcdf(34.826,L_mu,L_sd) 

  

SUML = L8+L9+L10+L11+L12 

  

%Sum of all the categories 

  

A  = A1*S1 + B1*S2  

B  = A2*S1 + B2*S2 + C2*S3 + G2*S7 

C  = A3*S1 + B3*S2 + C3*S3 + G3*S7 

D  = A4*S1 + B4*S2 + C4*S3 + D4*S4 + E4*S5 + F4*S6 + G4*S7 + H4*S8 

E  = A5*S1 + B5*S2 + C5*S3 + D5*S4 + E5*S5 + F5*S6 + G5*S7 + H5*S8 

F  = B6*S2 + C6*S3 + D6*S4 + E6*S5 + F6*S6 + G6*S7 + H6*S8 + I6*S9 

G  = B7*S2 + C7*S3 + D7*S4 + E7*S5 + F7*S6 + G7*S7 + H7*S8 + I7*S9  + 

J7*S10 

H  = C8*S3 + D8*S4 + E8*S5 + F8*S6 + G8*S7 + H8*S8 + I8*S9  + J8*S10  + 

K8*S11  + L8*S12 

I  = D9*S4 + E9*S5 + F9*S6 +  H9*S8 + I9*S9  + J9*S10  + K9*S11  + L9*S12  

J  =  H10*S8+ I10*S9 + J10*S10 + K10*S11 + L10*S12 

K  = I11*S9 + J11*S10 + K11*S11 + L11*S12 

L  = I12*S9 + J12*S10 + K12*S11 + L12*S12 

  

SumTotal = A+B+C+D+E+F+G+H+I+J+K+L 

  

end 
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