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Modern vacuum tube devices dominate the field of high power and high fre-

quency electronics. Among them, the Traveling Wave Tube Amplifier (TWTA) has

broad bandwidth and consequently a wide range of applications. In this thesis, a

planar sheath-like slow wave structure with rectangular geometry is studied and

considered for use in a TWTA driven by a sheet electron beam. Although use of a

wide sheet beam promises high power, the large transverse dimension of the struc-

ture risks interaction of the beam with multiple backward wave modes. Both the

operating mode and the parasitic modes are analyzed using field theories with the

planar sheath approximation. These solutions are then compared with finite ele-

ment computations. Suppression of backward waves is then considered by designing

the structure to preferentially absorb these waves. The results show good control of

mode competition and high primary mode gain.
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Chapter 1

Introduction

1.1 The Traveling Wave Tube

When the term “vacuum tube technology” is mentioned, most of us reminisce

about the old, bulky, familiar television set of the last century. Although such de-

vices have disappeared from our everyday routines, demands for high-power (hun-

dreds of watts) and high-frequency (higher than 10 GHz) amplifiers still require the

design and production of vacuum tube devices. The range of power and operating

frequencies of different amplifying technologies are shown on Fig. 1.1, indicating

the ability of vacuum amplifiers to work in region of high power and high frequency.

Several applications are reported on Fig. 1.2, ranging from commercial communica-

tion to fusion heating. Well-known modern types of tubes are the magnetron, the

klystron, the gyrotron, the traveling wave tube (TWT), phototubes, and flourescent

lamps [1], [2], [3].

Historically, the first generation of vacuum amplifiers were designed to operate
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Figure 1.1: Range of power and frequency of different amplifying technologies [4]

Figure 1.2: Application domain of various amplifiers, ranging from commercial telecommuni-
cations to fusion heating [2]

with three metal electrodes: two at the different ends of a tube to generate and

collect the electron beams, one in the middle to provide control mechanism. The

tube can be vacuum or gas-filled. These were known as vacuum tube triodes.

The working principle of a modern vacuum tube lies in the interaction between

an electron beam and electric wave. Typically, two differently-charged electrodes are
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used to generate the beam inside a vacuum tube or a tube filled with ionized gas

at low pressure. Inside the tube, the beam of electrons is controlled by applying an

electric field and/or magnetic field. [1]. At the same time, an electric wave is gener-

ated, which couples with the electron beam inside the tube, providing an amplifying

mechanism. Fundamentally, the beam-wave interaction works as a conversion of

spontaneous electromagnetic radiation to coherent radiation, which requires both

synchronism condition and a condition for electron bunching [2].

Electron bunching mechanism is the core concept among the working principles

of vacuum tubes and is the primary theory regarding slow-wave structure (SWS).

It is illustrated in Fig. 1.3 [5]. As the velocity of the electron beam is slightly

above the phase velocity of the RF wave, one group of electrons may slow down

while another group may speed up. Together, if more electrons are decelerated than

accelerated, they transfer their kinetic energy to the wave, thus amplify it. Bunching

can be M-type or O-type. If bunching occurs by manipulating electrons’ positions,

it is classified as M-type. If it occurs by modulating electron momenta then it is

O-type. M-type bunching is utilized in magnetron and cross-field amplifier while

O-type devices include TWTAs and klystron [2].

Much research is being done to improve the performance of vacuum devices,

each targeting specific component of the tube, such as designing better electrons

emission and/or collection, attempting different fields manipulation techniques, and

investigating beam-wave coupling [2]. Recent advances in computer simulation

power and hardware fabrication techniques further drive the field of vacuum elec-

tronics forward, prompting new designs and novel concepts [3]. Among the different
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types of vacuum tube amplifiers, the TWTA is a device of special interest due to

its broad bandwidth, which results in its many applications in RF communication

systems. A traditional TWTA is shown in Fig. 1.4. It primarily consists of the elec-

tron gun, RF input-output, the helix SWS, and the collector. Among the different

components being researched on, the SWS is considered to have highest potential

on the device’s improvement.

Figure 1.3: Electron bunching mechanism [5]
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Figure 1.4: Classical Traveling Wave Tube Amplifier model with its main components [1].
Traditionally, the circularly wounded conducting wire, or helix, is used as the SWS

1.2 The Slow-Wave Structure

Slow-Wave structures are integral components in the operation of TWTA.

The structure slows down the traveling wave’s velocity to approximately that of the

electron beam passing through the structure. This enables interaction between the

beam and the wave to be amplified [6]. A fundamental feature of SWSs is that

the beam must be placed near the structure, within a distance that is a fraction

of the slow-wave length, to have a strong coupling. Thus, to increase beam power

at fixed current density, extended or multiple beams must be considered. Recent

advances in technology have made available sheet electron beams with large aspect

ratios, which can provide higher beam power [3]. Furthermore, recent fabrication

techniques provide methods to construct novel SWSs structure at small scales to

accommodate high-frequency operation. A general difficulty in developing devices

using sheet beams is that the large transverse size of the interaction region gives

rise to unwanted modes that can interact with the beam [7], [8]. This is particularly

true, as will be shown, for planar versions of helix structures. Thus, while planar

versions of helix structures have been considered previously [9], [10], [11], [12], [13],
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the fundamental problem posed by mode competition in large aspect ratio structures

using sheet beams has not been addressed. The research work that embodies this

thesis focuses on this issue. The goal is to design a structure that can provide wide

bandwidth, accommodate a large aspect ratio sheet beam, and provide high gain

while being immune to backward-wave instability.

A preliminary analysis and simulation of a sheath-like structure that can ac-

commodate a sheet electron beam of the type generated at the Naval Research

Laboratory (NRL) and used with a coupled cavity [7], [8], [14] was reported in [15]

and [16]. Chapter 2 serves to summarize these results. Further investigation and

designs with the goal to suppress parasitic modes were conducted and the findings

were very successful. Chapter 3 describes the principles and implementation of mode

control mechanism while chapter 4 and 5 envision the future development of this

novel structure. The appendices give the reader a general idea of how the research is

done analytically and computationally, in a way that future researchers can depend

on these reports to further enhance the structure’s operation with ease.
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Chapter 2

Sheath Structure

2.1 Simple Model

A cut-away view of the central portion of the structure is shown in Fig. 2.1. It

consists of two arrays of conducting wires backed by dielectric layers and conductors

and separated by a vacuum region through which the electron beam will pass. The

wire arrays have opposite pitches on the top and bottom layers. Here we take the

z-axis to lie in the direction of the electron beam and the y-axis is in the long

transverse direction. We first consider the properties of a doubly periodic portion

of this structure. The example in Fig. 2.1 has ten periods in the y-direction and

one period in z-direction. The lateral termination of the structure in the y-direction

will be considered in chapter 3.

The field structure and dispersive properties of this configuration can be cal-

culated approximately by replacing the periodic array of wires with an anisotropic

conducting sheath that allows current to flow unimpeded in the direction of the

wires and blocks the flow of current transverse to the direction of the wires. The

fields in each of the three regions can be assigned common spatial wavenumbers in

the z− and y− directions (kz and ky) and the dependences of the fields on x (the
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short transverse direction) expressed in terms of hyperbolic trigonometric functions.

Satisfying boundary conditions on the conducting surfaces and at the two sheaths

then results in a transcendental dispersion relation giving frequency ω(kz, ky) as a

function of the two wavenumbers and the parameters of the structure [15], [16]. A

mathematical description of the dispersion relation can be found in Appendix A.

Fig. 2.2 shows a numerically generated dispersion plot for this model (fre-

quency in GHz versus kz in rad/cm) for two values of transverse wave number (ky

= 0 and 19.47 rad/cm) using the parameters listed in Table 2.1. The dimensions of

the structure are chosen to be similar to the coupled cavity SWS recently built at

NRL [7], [8], [14]. For the purpose of these calculations we choose a material with

relative dielectric constant ε = 2.1 and conductor pitch α = 0.362 giving a phase

velocity that matches the velocity of a 19.5 kV beam.

Parameter [mm]

Period
In z 0.23356
In y 0.6452

Tunnel height 0.7
Dielectric thickness 0.35

Conducting slab
Width 0.12
Thickness 0.04

Table 2.1: Main Sheath Parameters

For the ky = 0 case, which is characteristic of the operating mode, three

solutions propagate down to zero frequency, one having even parity (in blue) and two

having odd parity (in green). The even parity mode has a longitudinal electric field
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(a)

(b)

Figure 2.1: (a) Cut-away isometric view of a main sheath with one period in longitudinal
direction and ten periods in transverse direction. (b) Cut-views design of the main
structure

(Ez) that is symmetric with respect to x (the short transverse direction), whereas

the longitudinal field for the odd parity modes is antisymmetric with respect to x.

The even mode will interact strongly with the beam, and is considered to be the

primary or operating mode.
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Figure 2.2: Dispersion plot based on analysis described in Appendix A

Also, shown in Fig. 2.2 is a dispersion curve for a mode with ky = 19.47

rad/cm. It also propagates to zero frequency, but at a nonzero value of kz = 53.78

rad/cm ≈ ky/α. This solution represents modes with transverse variations that are

potential competitors with the operating mode. We note that once variations in

the y−direction are allowed (ky 6=0) then the modes no longer have even or odd

symmetry. Furthermore, these solutions tend to be localized near either the top or

bottom sheath. Therefore, for example, a low-frequency mode localized near the

bottom sheath has the approximate dispersion relation ω = νφ|αkz−ky|/(1+α2)1/2,

where νφ is close to the speed of light. Localization near one of the sheaths has two

consequences. First, since the mode is localized near a sheath, the fields available

to interact with the beam are reduced. Second, the mode has a large group velocity

(vgy = ∂ω/∂ky) in the long transverse direction. These two effects will be used to
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reduce the danger of competition from these modes. The Pierce impedance [6]:

Zp =

∣∣∫ dzEz(x, y)e−ikzz/p
∣∣2

2k2z
∫
dxdyRe

(
ẑ · ~E × ~H∗

) (2.1)

characterizes the strength of the beam-wave coupling. Here, p is the longitudinal

period of the structure, and the integral of the Poynting flux is carried out over the

cross section. For our simple model the period in the z−direction is arbitrary, and

the impedance does not depend on this value. For definiteness, we take the structure

to have a long transverse length of Ly = 6.452 mm to calculate the impedance.

Values of impedance for the operating mode as a function of frequency are shown

in Fig. 2.3(a). Also shown are values of impedance for a competing backward-wave

mode at the same frequency. For this plot, ky is varied to produce an intersection

with the operating mode dispersion relation at each frequency.

If we assume representative values for the beam voltage (V = 19.5 kV) and

current (I = 3.5 A), shown in Table 2.2, the Pierce gain parameter C can be calcu-

lated. The results for the operating and competing modes are plotted also in Fig.

2.3(b).

Measurement Value

Voltage 19.5 kV
Current 3.5 A

Table 2.2: Beam parameters of interest
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(a)

(b)

Figure 2.3: (a) Pierce impedance and (b) Pierce gain parameter of operating mode and a
representative parasitic mode based on the analysis in Appendix A

2.2 Periodic Model

To test our simple model we have used the commercial software HFSS to calcu-

late the eigenmodes of the doubly periodic structure shown in Fig. 2.1. Master-slave
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boundary conditions in both longitudinal and transverse directions were applied.

We specified periodic boundary conditions in the transverse direction and varied

the phase advance in the longitudinal direction. The results are displayed as a se-

quence of points on Fig. 2.4. Also shown in Fig. 2.4 are solutions from the sheath

model plotted for several values of ky = 2nπ/Ly, confirming our prediction that par-

asitic backward-waves arise due to the presence of modes with variations in the long

transverse direction [15], [16]. As can be seen, the simple model agrees well with

the HFSS solutions. We also note that in the HFSS calculation the conductors had

a thickness of 0.04 mm, whereas in the analytical model, the thickness was taken to

be zero, so the dimensions of the conducting slabs have no effect on the dispersion

property of the structure. Thus, our understanding of the structure based on the

simple model can be used to design a planar slow-wave device.

Figure 2.4: Dispersion plot for the structure in Fig. 2.1 from HFSS (dots) and from analysis
based on equations in Appendix A (solid line)
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Chapter 3

Mode Suppression

3.1 Principles

Our approach to suppression of the competing backward-waves is based on

the observation that in the doubly periodic structure of Fig. 2.1, these waves have

large group velocities in the long transverse direction, whereas the operating mode

has zero group velocity in this direction. This difference will be exploited as follows.

We construct a structure with a central region having one spacing (sheath height)

between the two wire arrays where the beam will propagate. Connected to this

region, on either side, are side tunnels with a smaller spacing (side tunnel height).

At the edges of the side tunnels the conductors on the upper and lower sheaths are

joined to close the current paths. The dielectric supporting the conductors in the

side regions is made to be more lossy than that in the beam tunnel region. The

whole structure is then enclosed in a conducting rectangular waveguide. This situ-

ation is shown in Fig. 3.1, where the dielectrics and conductors are shown but not

the enclosing waveguides. The darkened dielectric indicates where the loss is high.

The difference in sheath spacing will exclude the fields of the operating mode from

the side tunnel regions. The beam and the operating mode will occupy the central
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region. The competing backward-wave modes, which have large group velocities in

the long transverse direction, and which tend to be localized near a sheath, will

freely extend into the side regions. This will act to reduce the Pierce impedance

for the competing modes relative to the operating mode, because the power in the

denominator of Eq. (2.1) is extended over a larger area for the competing modes.

In addition the higher value of loss in the dielectric in the side regions will serve to

increase the attenuation of the competing modes relative to the operating modes.

The dimensions and parameters of our composite structure are given in Table 3.1.

The model is shown in Fig. 3.1.

Figure 3.1: Composite connected sheath structure showing beam region, side region, and lossy
dielectric in dark
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Measurement [mm]

Period
In z 0.23356
In y 0.6659

Tunnel height 0.24
Dielectric thickness 0.58

Conducting slab
Width 0.12
Thickness 0.04

Table 3.1: Side Parameters - Connected Sheath

3.2 Implementation

The dispersion relation for the modes of the structure in Fig. 3.1 is displayed

in Fig. 3.2. The properties of the modes are similar to those of the doubly periodic

structure. Specifically, there is an operating mode, which has a relatively linear de-

pendence of frequency on wave number, and can be expected to yield amplification

over a broad band of frequencies. In addition there are competing backward wave

modes that can be associated with variations of the fields in the long transverse

direction. We have labeled two modes in the vicinity of 35 GHz on Fig. 3.2. The

mode labeled a) is an operating mode and the mode labeled b) is a backward wave

competitor. The structure of the modes is illustrated in Fig. 3.3 where we have

plotted the y-dependence of the Pierce impedance Zp(x = 0, y) defined in Eq. (1) .

It can be seen that for the operating mode a) the fields reside mainly in the central

region, are relatively uniform in y, and give rise to a coupling impedance that is

about 3.63 Ohms in the sheath region. For the competing mode b) the fields ex-
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tend into the side region and exhibit a standing wave pattern in the central region.

The average parasitic coupling impedance in the central region is 1.23 Ohm. The

extension of the parasitic mode fields into the side regions allows these modes to be

preferentially damped. We have given the dark colored dielectric in Fig. 3.1 a loss

tangent value of 0.75 and adjusted the voltage value to 30.6 kV and current to 4 A,

shown in Table 3.2, to facilitate good coupling between the beam and the primary

mode. These parameters result in attenuation values for the operating mode of 0.71

dB/cm and values for the backward wave mode of 5.97 dB/cm. These values, in

conjunction with the computed coupling impedances, can be used to estimate the

maximum stable length for our structure. We find, based on the analysis of [17],

that the maximum stable length is 3.8 cm. From [18], [17], analyzing the amplitudes

of three waves corresponding to the operating mode using the length above gives a

primary gain of 20dB. The three-mode approach for gain calculation is explained

in Appendix A. HFSS technique to collect and analyze data is summarized in Ap-

pendix B.

Parameter Value

Voltage 30.6 kV
Current 4 A

Table 3.2: Beam parameters used for the connected sheath structure.

To investigate the bandwidth property of the structure, we have applied the

dispersion data obtain in Fig. 3.2 of the primary mode to our Pierce analysis and
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Figure 3.2: Dispersion plot from HFSS data for composite connected sheath structure of Fig.
3.1 with (a) representing primary interaction between beam and operating mode
and (b) representing parasitic interaction between beam and backward-wave mode

Figure 3.3: Pierce impedance profile of operating and parasitic modes (labeled(a) and (b) in
Fig. 3.2) of connected sheath structure

also obtained the simulated coupling impedance from HFSS. The results are plotted

in Fig. 3.4 with blue line representing the analytical and red crosses representing

18



the simulated impedance. This shows that the simulation results are in the range of

our analysis. We then calculated and plotted the small signal gain of the structure

over a wide range of frequencies in Fig. 3.5. The result shows a high and steady

gain from 35GHz to 50GHz.

Figure 3.4: Pierce impedance of operating mode for connected sheath structure; analysis result
is shown as solid line. HFSS results are shown as crosses
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Figure 3.5: Small signal gain of the connected structure shown in Fig. 3.1, based on analytical
model of Pierce impedance (solid line) and HFSS calculation of impedance (dashed
line)
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Chapter 4

Prologue to the Future

The structure proposed in chapter 3 gives rise to two intriguing issues that

require further consideration. Firstly, since the pitch and dielectric thickness of

the side regions are different from the initial design, the dispersion characteristic

of the structure is now different (Fig. 3.2 vs Fig. 2.4). The primary wave doesn’t

have strong interaction with the beam of interest (with voltage source equal to 19.5

kV) anymore, resulting in the need to tune the source voltage to more than 30 kV.

Secondly, we speculated that the parasitic starting length can be made longer by

adding more lossy material on the side, particularly by widening the structure in

transverse direction with lossy material. These considerations leaded to the new

design as proposed below.

In this structure (Fig. 4.1), the pitches in both the central and side regions are

tuned, in a ratio that is approximately 2/1, to values lower than those in chapter 3.

Pitches equal to 0.31 for the central region and 0.315 for the side regions, resulting

in the dimensions shown in Table 4.1. Additionally, the sides are made to be twice

as large. The added volume is made of the same lossy meta material (in dark color)

from chapter 3.
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Figure 4.1: Proposed disconnected sheath structure with wider sides which consist of higher
volume of lossy material

Parameter in mm Central region Side regions

Period
In z 0.2 0.2
In y 0.6452 0.6349

Tunnel height 0.7 0.24
Dielectric thickness 0.35 0.58

Conducting slab
Width 0.12 0.12
Thickness 0.04 0.04

Table 4.1: Disconnected sheath structure’s parameters

Another novel feature of this structure is the open-ended sides: the conduc-

tors on the top and bottom do not make electrical contact. Since the wavelength

of interest is larger than the height of the sheath, the open sides act as a conduct-

ing connection between the top and bottom sheets. This phenomenon allows the

structure to be fabricated easily and efficiently. We call it the disconnected sheath

structure.

The dispersion relation for this new structure is shown in Fig. 4.2. The
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operating mode (blue line) has a similar slope to that of Fig. 2.4, implying that

its phase velocity is approximately the same. This results in a strong interaction

between the primary even wave and the electron beam which has relatively low

source voltage (≤ 19.5 kV). This dispersion characteristic is similar to that of a

structure with side connection, confirming our conclusion regarding the open sheath

feature. The Pierce impedance profile in the transverse direction is presented in Fig.

4.3. Blue solid line represents primary mode at 35 GHz. Red dashed line represents

a parasitic mode at 36 GHz. The result shows a strong primary interaction in the

central region, where the beam is present, while the parasitic waves are kept to the

lossy regions on the sides. This is similar, but clearly an improvement, to the profile

plotted in Fig. 3.3.

Figure 4.2: Dispersion relation for the disconnected sheath structure. HFSS simulation result
is shown in purple dots. The blue line is a fitted-curve representing the primary
mode
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Figure 4.3: Pierce impedance across transverse direction for the disconnected sheath structure.
Blue solid line represents primary mode at 35GHz. Red dashed line represents a
parasitic mode at 36GHz

The added volume of lossy material results in significant parasitic waves’ at-

tenuation. The loss rate for them are shown in Fig. 4.4. While the loss rate for the

primary mode stays at 5 dB/cm, the one for parasitic modes increases almost lin-

early with frequency. Using the analysis from [18] and [17], summarized in Appendix

A, the starting length was computed to be infinity.

Assuming a source voltage of 18.5 kV and beam current of 4 A, the Pierce

gain parameter for primary mode is computed and plotted in Fig. 4.5. The result

from our simple model analysis is shown as the blue line while the HFSS data is

curve-fitted and presented as the dash red line. This reflects the proximity between

them, proving the success of the field theory approach in studying the structure.

The corresponding primary gain is calculated and plotted in Fig. 4.6 using

a representative length Lz = 4 cm. The gain characteristic of the structure can
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Figure 4.4: Loss rate of parasitic modes at different frequencies for the disconnected sheath
structure

Measurement Value

Voltage 18.5 kV
Current 4 A

Table 4.2: Beam parameters used for the disconnected sheath structure.

be modified at ease by varying the source voltage or changing the structure’s total

length. Different applications with various demands on gain and bandwidth can

utilize the same SWS.
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Figure 4.5: Pierce gain parameter for the disconnected sheath structure. Result from analysis
is represented in blue solid line. HFSS data is marked as purple crosses, and the
fitted curve is in red dashed line

Figure 4.6: Bandwidth of the disconnected sheath structure
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Chapter 5

Summary

This thesis introduces the novel planar slow-wave structure to be used with

a sheet electrons beam, which promises high power output. The geometry of this

structure allows it to be treated analytically using field theory (Appendix A, [18]), as

opposed to circuit theory developed previously ( [6], [17]). It is also easy to fabricate

such a rectangular device at sub-millimeter scale using current technology. Chapter 2

demonstrated that the structure’s parameters can be tuned to allow operation within

the desired range of frequency. The theory also described the potentially unstable

parasitic modes and suggested a means to suppress them. Chapter 3 investigated

an approach to control parasitic waves. Chapter 4 followed up by proving that such

a method can be used to increase the parasitic starting length to infinity, which

guarantees stable operation. Moreover, the disconnected structure as proposed in

chapter 4 shows a potential for high gain and broad bandwidth. It is a strong

candidate to be used in future generations of radar and satellite communication

systems.

An other type of slow-wave structure that is compatible with the sheet elec-

trons beam is the coupled cavity, investigated previously in [8]. The cavity proposed
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there has a parasitic starting length equal to 6.6 cm, while a 3.2 cm long structure

of its kind has a gain of 10.2 dB. The planar sheath slow-wave structure is obviously

an improvement.

With the theory well-developed and the principles of the structure studied, the

task at hand is to investigate an input-output waves coupling scheme. Additionally,

thermal heating from the high power input, together with techniques to limit it, will

be explored.
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Appendix A: Theoretical Derivations

This appendix presents the derivation of the analytic wave solutions and modes

of the planar structure. The most important result is the dispersive behavior of the

waves because it affects how strong the beam-wave coupling we can achieve and how

waves propagate inside. It is then followed by formulation of the Pierce impedance

and the gain calculation utilizing the three-wave theory.

Although a pedagogical approach should start with a simple case in which

there is no wave propagation in the transverse direction (see [15], for instance),

I prefer a full description treatment. The physical model is analyzed with wave

propagation in both directions. The single cell case is then described as a special

case by letting ky = 0.

In the Pierce impedance derivation, we note that the dispersion relation can

also be derived using admittance matrices. This approach is more convenient to work

with if one has a computational software package that is based on linear algebra such

as MATLAB, though less intuitive.
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A.1 Dispersion Characteristics

A.1.1 Formalation

Define ẑ to be the longitudinal direction and ŷ to be the long transverse di-

rection. The geometry of the structure then depends only on x. Define the pitch of

the conducting sheaths on the planar surfaces of the sheath as α, where

α =
dz

dy

on top, x = xh and

α = −dz
dy

on bottom, x = −xh. At this point, we assume the sheath extends infinitely in the

ŷ and ẑ directions. Geometrically, let pz and py be the period of the sheaths in

longitudinal and transverse directions respectively, then

α =
pz
py

Define a Cartesian coordinate system with the origin at the center of the x-y

surface of the structure, as depicted in Fig. A.1. The geometry of the structure

with respect to x̂ is defined as follows:

xh dielectric region begins

xv vanes region begins

xw conducting wall

Dielectric layers (xw > |x| > xh) serve to support the conducting sheaths that

surround the vacuum region where the beam passes. We also allow the possibility
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Figure A.1: Simple geometry of structure without the vanes

that conducting vanes are embedded in the dielectrics for (xw > |x| > xv). The

vanes are modeled by setting the parallel component of the electric field to zero

at their boundaries, Ez(±xv) = 0. The perpendicular component of the field is

unaffected.

We proceed to write Maxwell’s equations, which are fundamental in describing

electromagnetic waves. For a more detailed explanation, the reader can refer to [19]

or [20].

∇× ~H = ~J + ε
∂ ~E

∂t
,

∇× ~E = −µ∂
~H

∂t
.

We then separate the gradient operator ∇ = ∇t +∇z, where

∇t =
∂

∂x
+

∂

∂y
,

∇z =
∂

∂z
.

31



Current exists on the surface of the sheath, where conducting slabs run along the

structure

~J = ~J+
s δ(x− xh) + ~J−s δ(x+ xh)

The surface currents can be decomposed into y and z components:

~J+
s = ~J+

sy + ~J+
sz,

and

~J−s = ~J−sy + ~J−sz.

Since fields propagate with phase ei(kzz+kyy−ωt), Maxwell’s equations result in:

iωε ~E = −∇t × ~H − ikz ẑ × ~H,

iωµ ~H = ∇t × ~H + ikz ẑ × ~H,

On the transverse plane, we have:

iωε ~Et = −∇t × ~Hz − ikz ẑ × ~Ht, (A.1)

iωµ ~Ht = ∇t × ~Ez + ikz ẑ × ~Et. (A.2)

Perform cross product on both sides of equations (A.1) and (A.2) with ẑ×

iωεẑ × ~Et = −∇t
~Hz + ikz ~Ht, (A.3)

and

iωµẑ × ~Ht = ∇t
~Ez − ikz ~Et. (A.4)

We assume non-magnetic material throughout, µ = µo. We define a quantity γ such

that:

γ2 = k2z − ω2µε = k2z − εr
ω2

c2
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Combining (A.1) and (A.4), (A.2) and (A.3), we have:

~Et =
1

γ2

(
−iωµ∇t × ~Hz − ikz∇t

~Ez

)
, (A.5)

and

~Ht =
1

γ2

(
iωε∇t × ~Ez + ikz∇t

~Hz

)
. (A.6)

On ŷ, the long transverse direction, (A.5) and (A.6) take the form

Ey =
1

γ2

(
iωµ

∂Hz

∂x
+ kzkyEz

)
, (A.7)

and

Hy =
1

γ2

(
−iωε∂Ez

∂x
+ kzkyHz

)
. (A.8)

Here, (A.7) and (A.8) serve to define the relation between the transverse and lon-

gitudinal fields. The task at hand is to determine the boundary conditions across

different regions.

A.1.2 Boundary conditions:

Electromagnetic field theory dictates that the electric field tangent to conduct-

ing walls vanishes. As mentioned, we replace this by the conditions Ez(±xv) = 0 and

Ey(±xw). The conditions at the conducting sheaths will be considered separately.

We define vectors ~t to run tangent to the sheaths at x = ±xh. These vectors

are on the y − z plane, ~t± = ẑtz± + ŷty±. The pitch of each sheaths can be related

to ~t±. The boundary condition for the electric field requires its component tangent

to the sheaths to vanish. Or in other words, ~t±. ~E(±xh) = 0. The pitch α defined

before can be related as:

t+z
t+y

= α, and
t−z
t−y

= −α.
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which results in

Ey(xh)

Ez(xh)
= −α, and

Ey(−xh)
Ez(−xh)

= α.

From now on, we denote (+) for the top boundary and (−) for the bottom boundary,

which translates to

E+
y

E+
z

= −α, and
E−y
E−z

= α. (A.9)

Current runs along the conducting sheaths. From Maxwell’s equations, we

arrive at the boundary conditions for ~J :

J+
sz = Hy(x

+
h )−Hy(x

−
h ) ≡ H++

y −H+−
y ,

J−sz = Hy(−x+h )−Hy(−x−h ) ≡ H−+y −H−−y ,

J+
sy = −Hz(x

+
h ) +Hz(x

−
h ) ≡ −H++

z +H+−
z ,

and

J−sy = −Hz(−x+h ) +Hz(−x−h ) ≡ −H−+z +H−−z .

where the first sign in the sequence represents top/bottom boundary and the latter

represents the side that the term represents. For example, +− means below the

upper boundary. Note that ~J is directed along the sheaths, so it can be represented

by the vector ~t defined above. Specifically,

Jsz+

Jsy+
= α, and

Jsz−

Jsy−
= −α.

The boundary conditions on the magnetic fields are then derived from the relations

above as

H++
y + αH++

z = H+−
y + αH+−

z , (A.10)
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and

H−−y − αH−−z = H−+y − αH−+z . (A.11)

A.1.3 Field Equations:

From Maxwell’s equations, a general wave equation can be derived. For a

formal treatment, the reader can refer to [19] or [17]. We define a quantity ψ2 such

that:

ψ2 = k2z + k2y − ω2µε = k2y + γ2

The waves equations for the longitudinal fields are then

(
∂2

∂x2
− ψ2

)
Ez = 0, and

(
∂2

∂x2
− ψ2

)
Hz = 0. (A.12)

a) In the Top Dielectric:

The boundary conditions for fields in this region include Ez(xv) = 0 and

Ey(xw) = 0, which implies ∂Hz

∂x
(xw) = 0.

In general, the phase velocity is less than the speed of light, ψ2 > 0, so the

longitudinal field solutions in this region take the form

Ez(x) = E+
z

sinhψ(xv − x)

sinhψ(xv − xh)
,

Hz(x) = H++
z

coshψ(xv − x)

coshψ(xw − xh)
.

It is easier to examine the equations when we introduce the following:

Tw = tanhψ(xw − xh),

Tv = tanhψ(xv − xh),
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and

To = tanhψoxh.

where the subscript “o” means free space parameters are used.

From (A.7) and (A.9), the magnetic field amplitude at boundary xh relates to the

electric field amplitude at xh as

H++
z =

αγ2 + kzky
iωµTwψ

E+
z . (A.13)

From (A.8) and (A.13) the transverse magnetic field at the boundary for this region

is then

H++
y = E+

z

iωεψ

γ2

[
1

Tv
− kzky

αγ2 + kzky
ω2µεψ2Tw

]
. (A.14)

b) In the Bottom Dielectric:

Similarly, the field solutions take the form

Ez(x) = E−z
sinhψ(xv + x)

sinhψ(xv − xh)
,

and

Hz(x) = H−−z
coshψ(xv + x)

coshψ(xw − xh)
.

From (A.7), we get

H−−z =
αγ2 − kzky
iωµTwψ

E−z . (A.15)

From (A.8) and (A.15), we find:

H−−y = −E−z
iωεψ

γ2

[
1

Tv
+ kzky

αγ2 − kzky
ω2µεψ2Tw

]
. (A.16)
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c) Vacuum region between the sheaths:

The general solutions are superpositions of even and odd functions:

Ez(x) = Essinhψox+ Eccoshψox,

and

Hz(x) = Hssinhψox+Hccoshψox.

At the sheath boundaries, we have:

Ez(xh) = Essinhψoxh + Eccoshψoxh,

and

Ez(x) = −Essinhψoxh + Eccoshψoxh.

Thus we can write:

Ec =
E+
z + E−z

2coshψoxh
, and Es =

E+
z − E−z

2sinhψoxh
. (A.17)

From (A.7),(A.9), and (A.17) at x = xh, top boundary, we have:

H+−
z ≡ Hz(x

−
h ) = Hssinhψoxh +Hccoshψoxh = −E+

z

αγ2o + kzky
iωµψo

, (A.18)

and at x = −xh, bottom boundary, we have:

H−+z ≡ Hz(−x+h ) = −Hssinhψoxh +Hccoshψoxh = E−z
αγ2o − kzky
iωµψo

. (A.19)

From (A.18) and (A.19):

Hs =
1

2iωµψocoshψoxh

[
−(αγ2o + kzky)E

+
z + (αγ2o − kzky)E−z

]
,
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and

Hc =
1

2iωµψosishψoxh

[
−(αγ2o + kzky)E

+
z − (αγ2o − kzky)E−z

]
.

The magnetic field on the upper and lower sheaths can be expressed by replacing

Hs and Hc into the general solutions:

H+−
z = − 1

2iωµψo

[(
To +

1

To

)
(αγ2o + kzky)E

+
z −

(
To −

1

To

)
(αγ2o − kzky)E−z

]
,

(A.20)

and

H+−
z =

1

2iωµψo

[(
To −

1

To

)
(αγ2o + kzky)E

+
z −

(
To +

1

To

)
(αγ2o − kzky)E−z

]
.

(A.21)

We can then proceed to find the transverse magnetic field solutions by referring to

(A.8). First, we write down the spatial derivative of Ez at the boundaries:

∂Ez
∂x

(x = xh) =
ψo
2

(
To +

1

To

)
E+
z +

ψo
2

(
To −

1

To

)
E−z ,

and

∂Ez
∂x

(x = xh) = −ψo
2

(
To −

1

To

)
E+
z −

ψo
2

(
To +

1

To

)
E−z .

Combining these expressions together with Hz solutions found above in (A.20) and

(A.21) with (A.8), we have:

H+−
y = −iωεoψo

2γ2o

[
E+
z

(
To +

1

To

)(
1− kzky

αγ2o + kzky
ω2µoεoψ2

o

)
+E−z

(
To −

1

To

)(
1 + kzky

αγ2o − kzky
ω2µoεoψ2

o

)]
,

(A.22)

and

H−+y = iωεoψoE
+
z

(
To −

1

To

)(
1− kzky

αγ2o + kzky
ω2µoεoψ2

o

)
+
iωεoψo

2γ2o
E−z

(
To +

1

To

)(
1 + kzky

αγ2o − kzky
ω2µoεo

)
.

(A.23)
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A.1.4 Dispersion Relation:

From the boundary conditions (A.10), (A.11), and the magnetic field solu-

tions in the top dielectric (A.13), (A.14), the bottom dielectric (A.15), (A.16), the

vacuum region between the sheaths (A.20), (A.21), (A.22), (A.23), we can derive

the dispersion equation for the planar structure. Again, non-magnetic material is

assumed, and µ = µo.

At x+h , in top dielectric:

H++
y

α
+H++

z =
iωεψ

αγ2

[
1

Tv
− (αγ2 + kzky)

2

ω2µεψ2Tw

]
E+
z ≡ B++E

+
z . (A.24)

At −x−h , in bottom dielectric:

H−−y
α
−H−−z = −iωεψ

αγ2

[
1

Tv
− (αγ2 − kzky)2

ω2µεψ2Tw

]
E−z ≡ −B−−E−z . (A.25)

At x−h , in vacuum region at the top boundary:

H+−
y

α
+H+−

z = −iωεoψo
2αγ2o

{
E+
z

(
To +

1

To

)[
1− (αγ2o + kzky)

2

ω2µεoψ2
o

]

+E−z

(
To −

1

To

)[
1 +

(αγ2o)
2 − k2zk2y

ω2µεoψ2
o

]}

≡ −
(
Bo+E

+
z +B×E

−
z

)
.

(A.26)

At −x+h , in vacuum region at the bottom boundary:

H−+y
α
−H−+z =

iωεoψo
2αγ2o

{
E+
z

(
To −

1

To

)[
1 +

(αγ2o)
2 − k2zk2y

ω2µεoψ2
o

]

+E−z

(
To +

1

To

)[
1− (αγ2o − kzky)

2

ω2µεoψ2
o

]}

≡ B×E
+
z +Bo−E

−
z .

(A.27)
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Matching (A.24) with (A.26) as in (A.10 ), and (A.25) with (A.27) as in (A.11), we

have the dispersion equation for the structure:

(B++ +Bo+) (B−− +Bo−) = B2
×. (A.28)

The simplified terms are:

B++ =
εrψ

γ2

[
1

Tv
− (αγ2 + kzky)

2

ω2µεψ2Tw

]
,

B−− =
εrψ

γ2

[
1

Tv
− (αγ2 − kzky)2

ω2µεψ2Tw

]
,

Bo+ =
ψo
2γ2o

(
To +

1

To

)[
1− (αγ2o + kzky)

2

ω2µεoψ2
o

]
,

Bo− =
ψo
2γ2o

(
To +

1

To

)[
1− (αγ2o − kzky)

2

ω2µεoψ2
o

]
,

and B× =
ψo
2γ2o

(
To −

1

To

)[
1 +

(αγ2o)
2 − k2zk2y

ω2µεoψ2
o

]
.

A.1.5 Simple Model

When ky = 0, ψ = γ, waves propagate between the sheaths either as odd

mode (∝ sinh) or even mode (∝ cosh). This phenomenon arises from the relation

between transverse mode and longitudinal mode (A.7) and (A.8). The dispersion is

now:

B++ +Bo+ = ±B×. (A.29)
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where the (+) and (−) signs in front of B× represent odd and even mode respectively.

The reduced terms are:

B++ = B−− =
iωε

αγ

[
1

Tv
− α2γ2

ω2µεTw

]
,

Bo+ = Bo− =
iωεo
2αγo

(
To +

1

To

)[
1− α2γ2o

ω2µεo

]
,

and B× =
iωεo
2αγo

(
To −

1

To

)[
1 +

α2γ2o
ω2µεo

]
.
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A.2 Pierce Impedance

The Pierce impedance is a quantity of interest for characterizing the coupling

strength between the electron beam and the electromagnetic wave. In SI units, it is

defined as

Zp =
|Ez(x = 0)|2

2k2zP
, (A.30)

where

P ≡ Powerflux = Re

[∫
S

dxdyẑ.( ~E × ~H∗)

]
, (A.31)

and the surface S defines the cross section of the structure.

A.2.1 Matrix Formulation of Dispersion

Dispersion relation can be derived via manipulating matrices, specifically ad-

mittance matrices. It is analogous to wave mechanics vs matrix formalism in quan-

tum mechanics. Working with wave equations gives us a good intuition of the modes

of the system, but putting up matrices provides an easier analytic and computa-

tional strategy. Moreover, the matrices derived can be used to formulate Pierce

impedance.

First, define the admittance terms via the boundary conditions from A.1.2:

J+
sz = H++

y −H+−
y = Y 11

z E+
z + Y 12

z Ez−,

J−sz = H−+y −H−−y = Y 21
z E+

z + Y 22
z Ez−,

J+
sy = −H++

z +H+−
z = Y 11

y E+
y + Y 12

y Ey−,

J−sy = −H−+z +H−−z = Y 21
y E+

y + Y 22
y Ey−.
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In matrix form: J+
sz

J−sz

 =

Y 11
z Y 12

z

Y 21
z Y 22

z


E+

z

E−z

 ≡ Yz

E+
z

E−z

 , (A.32)

and J+
sy

J−sy

 =

Y 11
y Y 12

y

Y 21
y Y 22

y


E+

y

E−y

 ≡ Yy

E+
y

E−y

 . (A.33)

The matrices’ admittance entries can be found by plugging in magnetic field solu-

tions from A.1.3:

Y 11
z =

iωεψ

γ2

[
1

Tv
− kzky

αγ2 + kzky
ω2µεψ2Tw

]
+
iωεoψo

2γ2o

(
To +

1

To

)[
1− kzky

αγ2 + kzky
ω2µεoψ2

o

]
,

(A.34)

Y 12
z =

iωεoψo
2γ2o

(
To −

1

To

)[
1 + kzky

αγ2 − kzky
ω2µεoψ2

o

]
, (A.35)

Y 21
z =

iωεoψo
2γ2o

(
To −

1

To

)[
1− kzky

αγ2 + kzky
ω2µεoψ2

o

]
, (A.36)

Y 22
z =

iωεψ

γ2

[
1

Tv
+ kzky

αγ2 − kzky
ω2µεψ2Tw

]
+
iωεoψo

2γ2o

(
To +

1

To

)[
1 + kzky

αγ2 − kzky
ω2µεoψ2

o

]
,

(A.37)

Y 11
y =

αγ2 + kzky
iωµψTwα

+

(
To +

1

To

)
αγ2o + kzky
2iωµψoα

, (A.38)

Y 12
y =

(
To −

1

To

)
αγ2o − kzky
2iωµψoα

, (A.39)

Y 21
y =

(
To −

1

To

)
αγ2o + kzky
2iωµψoα

, (A.40)

Y 22
y =

αγ2 − kzky
iωµψTwα

+

(
To +

1

To

)
αγ2o − kzky
2iωµψoα

. (A.41)
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The boundary conditions for surface current densities in matrix notation can

be written as:

J+
sz

J−sz

 =

α 0

0 −α


J+

sy

J+
sy

 , (A.42)

which, with relations (A.32) and (A.33), is equivalent to:

Yz

E+
z

E+
z

 = α

1 0

0 −1

Yy

E+
y

E+
y

 . (A.43)

The boundary condition for electric fields (A.9) in matrix notation is:

E+
y

E−y

 = α

−1 0

0 1


E+

z

E+
z

 . (A.44)

Combining (A.43) and (A.44), the dispersion relation can be written in matrix

notation as:

Yz = α2

1 0

0 −1

Yy

−1 0

0 1

 (A.45)

Both forms of the dispersion relation are valid and can be used to cross check each

other. The previous derivation is preferable for determining propagation modes

inside the structure while the matrix notation with its admittance matrices is pre-

dominantly used in formulating Pierce impedance for those modes.
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A.2.2 Power Flux

Linear perturbation technique can be applied to Maxwell’s equations to deter-

mine the power flux in (A.31). Let ~E = ~Eo+δ ~E, ~H = ~Ho+δ ~H and k = ko+δk where

δ represents a small linear perturbation. Maxwell’s equations can be linearized as:

−iωεδ ~E = ∇t × δ ~H + ikoẑ × δ ~H + iδkẑ × ~Ho, (A.46)

ωµδ ~H = ∇t × δ ~E + ikoẑ × δ ~E + iδkẑ × ~Eo. (A.47)

We multiply and integrate: ∫
S

(A.46). ~E∗odS,∫
S

(A.47). ~H∗odS.

After some algebra, we have the equivalent equations:

−iωε
∫
d2x ~E∗o .δ ~E = −iωµ

∫
d2x δ ~H. ~H∗o + iδk

∫
d2x ~E∗o .ẑ × ~Ho,

iωµ

∫
d2x ~H∗o .δ

~H = iωε

∫
d2x δ ~E. ~E∗o + iδk

∫
d2x ~H∗o .ẑ × ~Eo

+

∫
d2x δ ~E. ~J∗so.

Combining these equations gives:

iδk

∫
d2x ẑ.

(
~Eo × ~H∗o + ~E∗o × ~Ho

)
+

∫
d2x δ ~E. ~J∗so = 0.

From (A.31), the equation above is equivalent to:

2iδkP = −
∫
d2x δ ~E. ~J∗so. (A.48)

Equation (A.48) fundamentally establishes the relation between power flux in

longitudinal direction and surface current.
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A.2.3 Pierce Impedance Formulation

The linear electric field perturbations can be referred from (A.32) and (A.33).

Define Zz = Yz
−1

and Zy = Yy
−1

, we have:

δE+
z

δE−z

 = δZz

J+
sz

J−sz

 and

δE+
y

δE−y

 = δZy

J+
sy

J−sy


Relation (A.48) in matrix and tensor notation can be interpreted as

P =
i

2

∫
d2x

δE

δk
J∗s

=
iLy
2

∑
i

dEi
dk

J∗si.

⇔ P =
iLy
2


(
J+∗
sz J−∗sz

)
dZz
dkz

J+
sz

J−sz

+

(
J+∗
sy J−∗sy

)
dZy
dkz

J+
sy

J−sy


 .

With boundary condition (A.42), we have the equation for power flux as

P =
iLy
2
Jsz
∗


dZz
dkz

+
1

α2

1 0

0 −1

 dZy
dkz

1 0

0 −1


 Jsz. (A.49)

Again, Jsz =

J+
sz

J−sz

 = Yz Ez and Jsz
∗

=

(
J+∗
sz J−∗sz

)
= Ez

∗
Yz
†
.
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In (A.30), we can write

Ez(x = 0) =
E+
z + E−z

2coshψoxh
,

and define a ratio between E+
z and E−z as

R =
E−z
E+
z

.

The formula for Pierce impedance that we can use is then:

Zp = |1+R|2/ 4ik2zcosh
2ψoxhLy

(
1 R

)
Yz
†


dZz
dkz

+
1

α2

1 0

0 −1

 dZy
dkz

1 0

0 −1


Yz

1

R

 .

(A.50)

Denote frequently used matrix

1 0

0 −1

 as σ and

1

R

 as η, the final and

convenient form of Zp can be written as:

Zp =
|1 +R|2

4ik2zcosh
2ψoxhLyη

†Yz
† {

dZz

dkz
+ 1

α2σ
dZy

dkz
σ
}
Yzη

. (A.51)
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A.3 Gain Analysis

For a more rigorous treatment of gain analysis, the reader can refer to [18].

The formulation provided here is partially based on [18] and [17].

A.3.1 Adding Beam Current

Let ~ks be the wavevector for structure without beam: ~ks = ksz ẑ + ksyŷ

Let ~e and ~h be the basis vectors for our modes.

From Maxwell’s equations, we have:

iωµ~h =
d

dx
x̂× ~e+ i~ks × ~e,

−iωµ ~h∗ =
d

dx
x̂× ~e∗ − i~ks × ~e∗,

−iωε~e =
d

dx
x̂× ~h+ i~ks × ~h,

and

iωε~e∗ =
d

dx
x̂× ~h∗ − i~ks × ~h∗.

Add beam current ~Jb. We define ~E = A~e and ~H = A~h.

iωµ ~H =
d

dx
x̂× ~E + i~k × ~E, (A.52)

and

~Jb − iωε ~E =
d

dx
x̂× ~H + i~k × ~H. (A.53)

We dot (A.52) with ~h∗ and integrate from −xw to xw. After some algebra, we

have:
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iωµ

xw∫
−xw

dx ~H. ~h∗ − iωε
xw∫

−xw

dx~E.~e∗ = ~e∗.x̂× ~H −xw→xw + i
(
~k − ~ks

) xw∫
−xw

dx~E × ~h∗.

(A.54)

Similarly, we dot (A.53) with ~e∗ and integrate from −xw to xw:

xw∫
−xw

dx~e∗. ~Jb − iωε
xw∫

−xw

dx~E.~e∗ + iωµ

xw∫
−xw

dx ~H. ~h∗ = ~e∗.x̂× ~H −xw→xw+i
(
~k − ~ks

) xw∫
−xw

dx ~H×~e∗.

(A.55)

We subtract (A.54) from (A.55), assuming surface terms are zero:

xw∫
−xw

dx~Jb.~e∗ = i
(
~k − ~ks

) xw∫
−xw

dx
(
~H × ~e∗ + ~h∗ × ~E

)
.

~Jb varries with phase φ = kz − wt. Let ~Jbz = u(x) (Ibo)
〈
e−iφ

〉
. We have:

A
(
~k − ~ks

)
. ~P = iIbo

〈
e−iφ

〉
~e∗z, (A.56)

where P = 4
xw∫
−xw

dx
(
~e× ~h∗ + ~e∗ × ~h

)
.

A.3.2 Equation of Motion

Again, we define wave phase as φ = kz − wt, then:

dφ

dz
= k − ω dt

dz
= k − ω

vz
≡ k − kv,

and

d2φ

dz2
=
ω

v2z

dvz
dz

.
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In non-relativistic regime:

dvz
dt

= vz
dvz
dz

dvz
dt

=
q

m

(
Aẑeiφ + c.c.

)
so

d2φ

dz2
=
ω

v3z

q

m

(
Aẑeiφ + c.c.

)
Linearizing: let φ = φi + δφi. We introduce space charge parameter kb as

k2b =

√
µ

ε

Iψ tanh(ψxh)

4V pzLy
, (A.57)

where

ψ =

√
k2z + k2y −

ω2

c2
.

Writing δφi = δ̂φeiφi + c.c., linearized equation of motion is of the form

(
d2

dz2
+ k2b

)
δ̂φ =

ω

v3z

q

m
Aẑ.

We define

a ≡ ωq

v3zm
A,

and examine the power flux:

~P ≡ |Pz| (σẑ + µŷ) ,

where σ = (+) for forward wave, = (−) for backward wave, and

µ ≡ ∂ω/∂ky
|∂ω/∂kz|

.
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W define parameter kg as

kg ≡ kszC =

(
Ib|ez|3ωq
mv3z |Pz|

)1/3

,

where C is the Pierce parameter, defined as C = (IZp/V )1/3.

⇒ [(kz − ksz)σ + (ky − ksy)µ] a = k3g δ̂φ.

Noting that a and δ̂φ vary as eiφ, and φ ≡ φ(z, t), we have:

−ida
dz

= (kz − ksz)a.

Let σ = −1 for backward wave and define

K ≡ µ(ky − ksy) =
ω

vb
− ksz −

iωi
vg
,

we have: (
d2

dz2
+ k2b

)
δ̂φ = a, (A.58)

ida

dz
+Ka = k3g δ̂φ. (A.59)

On the other hand, if we let σ = 1 for forward wave, equation (A.59) becomes

−ida
dz

+Ka = k3g δ̂φ. (A.60)

Equations (A.58) and (A.59)(or (A.60)) represent the motion of electrons in beam

upon interaction with backward wave (or forward wave) inside the sheath.

A.3.3 Computation Method

For backward waves, the boundary conditions are:

δ̂φ(0) = 0,
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δ̂φ

dz
(0) = 0,

and

a(Lz) = 0.

Let a and δ̂φ vary as a =
∑3

1 ame
−iφm and δ̂φ =

∑3
1 δ̂φme

−iφm .. Noting that d/

dz = ikm, combining (A.58) and (A.59) gives us

(
k2b − k2m

)
(K − km) = k3g . (A.61)

Or, in dimensionless case:

(
k2bL

2
z − k2mL2

z

)
(KLz − kmLz) = k3gL

3
z. (A.62)

km in equation (A.61) or (A.62) represents the mode of interest and there are three

modes since the equation is of third order. The boundary equations stated earlier

can now be written as

δφ1 + δφ2 + δφ3 = 0,

k1Lzδφ1 + k2Lzδφ2 + k3Lzδφ3 = 0,

and (k2bL
2
z − k21L2

z) e
ik1Lzδφ1 + (k2bL

2
z − k22L2

z) e
ik2Lzδφ2 + (k2bL

2
z − k23L2

z) e
ik3Lzδφ3 = 0.

They can be combined to give

δφ1 = 1,

δφ2 =
k1 − k3
k3 − k2

,

δφ3 =
k2 − k1
k3 − k2

,
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leading to

(
k2bL

2
z − k21L2

z

)
eik1Lz+

(
k2bL

2
z − k22L2

z

)
eik2Lz

k1 − k3
k3 − k2

+
(
k2bL

2
z − k23L2

z

)
eik3Lz

k2 − k1
k3 − k2

= 0.

(A.63)

Assume all but one parameters in (A.62) are known, we can vary that pa-

rameter and solve for the wavenumber km’s then verify the solutions with (A.63) to

find the correct value (for that parameter). Comparing our derivation and values

for parameters using the technique described with the numerical analysis in [17], we

have the relations between the parameters presented in [17] and ours:

Johnson’s parameters Parameters used

CN kgLz

2π

(β − βe)l krLz

Loss 20 log10 e
−kiLz

QC
(
kb
2kg

)2
With ki formulated as

ki =
ωi

∂ω/∂kz

, we can analyze the Loss Rate as

LossRate = 20 log10(−ki) = −8.868ki (dB/m).

Comparing this result with one given in [17], the unstable starting length can be

calculated.

For forward wave, σ = 1 and using the same notation convention, from (A.58)

and (A.60) we have:

(
k2bL

2
z − k2mL2

z

)
(KLz + kmLz) = k3gL

3
z, (A.64)

53



which is only different from (A.62) by the after KLz term. Finding the roots of

(A.64) and define the gain as a(Lz)/a(0), we have the equation for total operating

mode’s total gain:

Gain =

∑
(k2b − k2m)δφme

ikmLz∑
(k2b − k2m)δφm

. (A.65)

Again, the boundary conditions give the relations between phase amplitudes δφm
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Appendix B: High Frequency Structure Simulator (HFSS)

Simulation Techniques

HFSS is a complex and comprehensive software package, capable of simulating

various structures under different conditions. This thesis only attempts to give a

guide on analyzing the structure of interest and achieve the data required. The first

simulation of importance is the one that gives dispersion characteristic of the struc-

ture. Then we would want to know about the waves’ amplitudes and power flux

associated with various modes. These data combined can be sufficient for under-

standing the physical properties of a slow-wave structure. For a more comprehensive

guide, the reader can refer to HFSS’s content by choosing Help → Content or press-

ing F1.

B.1 Dispersion Data

For the purpose of analyzing the waves’ behavior with different modes, eigen-

modes solver is the option that we want to choose here. The step-by-step approach

is:

1. Initialize the master-slave boundary. For the simple model, specify the bound-

ary conditions on both longitudinal and transverse directions. This is done

through the HFSS menu
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2. Initialize analysis set up. Different options affect the density and accuracy of

the finite element method simulation, and the simulation time. For a good

understanding of these options, the reader can refer to the Help’s Content

This is done via HFSS → Analysis Setup

3. Initialize the sweeping-option where the software will sweep through the phase

advance specified and fine the resonance frequencies in the range initialized. If

the boundary on the side is considered as conducting surface, we only have the

master-slave boundary in the ẑ and need to sweep the phase in longitudinal

direction. In order to test the simple model, we can specify the phase advance

in the transverse direction to be 0. This is done via HFSS → Opmetric

Analysis

4. After the simulation, we can view and export the result via HFSS → Results

→ Create Eigenmode Parameters Report→ Rectangular Plot and choose all

the modes.

5. Upon exporting and analyzing the data, the phase advance in degrees can be

translated to wave vector in via the relation below. Unit of kz depends on the

unit chosen for the period.

kz =
π

180o
phase in ẑ

period in ẑ
. (B.1)
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B.2 Fields Data

In order to calculate the Pierce impedance using the data from HFSS, the

term is written as

Zp =

∣∣∣∣ 1pz pz∫
0

(Ez real + iEz imag) e
−ikzzdz

∣∣∣∣2
2k2z × Power F lux

. (B.2)

where pz is the period of the structure in longitudinal direction.

As for the fields, the reader is encouraged to read the Fields Calculator Cook-

book in the HFSS’s Contents. See Fig. (B.1). Field calculator can be accessed via

HFSS → Fields→ Calculator.

After defining/formulating the field terms that HFSS should extract, the last

task is to achieve the desired result with different options. First option of interest

should be Source because there are many eigenmodes being analyzed. This can be

accomplished via HFSS → Fields → Edit source. The second option is to choose

the correct phase advance. This can be done either inside the Calculator (as for

power flux) or in the Results→ Create Field Report → Rectangular Plot window (as

for electric field), depending on what field attribute the user is analyzing.
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Figure B.1: View of the Field Calculator Cookbook
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