
ABSTRACT

Title of dissertation: SATISFIABILITY-BASED PROGRAM
REASONING AND PROGRAM SYNTHESIS

Saurabh Srivastava, Doctor of Philosophy, 2010

Dissertation directed by: Professor Jeffrey S. Foster
Department of Computer Science

Program reasoning consists of the tasks of automatically and statically ver-
ifying correctness and inferring properties of programs. Program synthesis is the
task of automatically generating programs. Both program reasoning and synthesis
are theoretically undecidable, but the results in this dissertation show that they are
practically tractable. We show that there is enough structure in programs written
by human developers to make program reasoning feasible, and additionally we can
leverage program reasoning technology for automatic program synthesis.

This dissertation describes expressive and efficient techniques for program rea-
soning and program synthesis. Our techniques work by encoding the underlying
inference tasks as solutions to satisfiability instances. A core ingredient in the re-
duction of these problems to finite satisfiability instances is the assumption of tem-
plates. Templates are user-provided hints about the structural form of the desired
artifact, e.g., invariant, pre- and postcondition templates for reasoning; or program
templates for synthesis. We propose novel algorithms, parameterized by suitable
templates, that reduce the inference of these artifacts to satisfiability.

We show that fixed-point computation—the key technical challenge in program
reasoning—is encodable as SAT instances. We also show that program synthesis
can be viewed as generalized verification, facilitating the use of program reasoning
tools as synthesizers. Lastly, we show that program reasoning tools augmented
with symbolic testing can be used to build powerful synthesizers with approximate
guarantees.

We implemented the techniques developed in this dissertation in the form of
the VS3—Verification and Synthesis using SMT Solvers—suite of tools. Using the
VS3 tools, we were able to verify and infer expressive properties of programs, and
synthesize difficult benchmarks from specifications. These prototype tools demon-
strate that we can exploit the engineering advances in current SAT/SMT solvers to
do automatic program reasoning and synthesis. We propose building future auto-
matic program reasoning and synthesis tools based on the ideas presented in this
dissertation.
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Chapter 1

Introduction

“If I have a thousand ideas and
only one turns out to be good, I
am satisfied.”

— Alfred Bernhard Nobel1

We invest lots of time and money in software development, and despite ma-

jor advances in software engineering practice, software development is still tedious,

costly, and error-prone. Despite building software being inefficient, more and more

of our personal devices are leveraging the flexibility that software provides, and soft-

ware is increasingly being used to control critical systems; such as automotive and

flight control, and financial and medical services. Hence, there is an increasing need

to build certifiably correct software, and to do it in a cost-efficient way.

This dissertation addresses two aspects of this problem: program reasoning

and program synthesis. Program reasoning consists of proof inference (verification)

and specification inference, and program synthesis consists of program inference.

Verification is the task of proving that a program meets its specification. Speci-

fication inference is the task of inferring properties that hold of a given program.

1Swedish Chemist, Engineer and Inventor of dynamite, who used his enormous fortune to
institute the Nobel Prizes. 1833-1896. In context, the idea in this dissertation will be to generate
constraints, for which if a solver finds any good solution that is satisfying, then that correspond to
solutions to the original programming language problem.
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Program synthesis is the task of inferring a program that matches a given specifica-

tion.

There has been a lot of work on program reasoning and less so on synthesis.

Despite significant work on formal methods [164, 72, 98], tools for reasoning about

software programs are not commonplace. This is partly because of the inability

of currents tools to automatically infer formal descriptions of commonly occurring

program constructs, e.g., formulae that quantify over all elements of a data struc-

ture. We need to develop techniques that can infer arbitrarily expressive formulae,

required for program reasoning in practice. We find that enabling inference of ex-

pressive properties will also enable automatic program synthesis. In fact, we show

that program reasoning tools can be used to directly build program synthesizers.

However, the lack of expressivity in current tools is not surprising, as even checking

formulae in the presence of quantification is theoretically undecidable. In this disser-

tation, we show how with minimal help from the user we can build techniques that

infer arbitrarily expressive program properties, and indeed also synthesize programs.

The thesis we explore in this dissertation is the following: We can build ex-

pressive and efficient techniques for program reasoning and program synthesis by

encoding the underlying inference tasks as solutions to satisfiability instances.

The key technical tools we apply towards this thesis are solvers for satisfiability.

Significant engineering effort has led to powerful solvers for propositional satisfia-

bility (SAT) and satisfiability modulo theories (SMT). However, program reasoning

and synthesis are not directly encodable as SAT or SMT instances. Therefore, we

have to develop the theoretical underpinnings of a satisfiability-based approach to
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program reasoning and synthesis. While SAT/SMT solvers have previously been

used to validate guesses about program properties [17, 255, 15, 3], we instead en-

code the program property (for reasoning) and even the program (for synthesis)

as models of a satisfiability instances. This finite encoding is facilitated by hints

provided by the user. Thus solving the satisfiability instance directly solves the

programming languages problem.

1.1 Satisfiability- and Template-based Program

Reasoning and Synthesis

Propositional satisfiability, specifically 3SAT, is arguably the most studied NP-

complete problem. Propositional satisfiability is the problem of finding a boolean

assignment to the atomic boolean variables in a formula such that the formula

evaluates to true. The 3SAT version, in which the formulae are in CNF form

with at least 3 disjuncts in each clause, is NP-Complete. Satisfiability modulo

theories (SMT) addresses the satisfiability problem in which the atoms are facts from

particular theories instead of propositional variables. So, (b1∨b2∨b3)∧(b1∨b5∨b6) is

an example SAT formula, while (x = y∨x > z∨y < z)∧(x = y∨x > z−10∨y < z)

is an example SMT formula with atoms from the theory of linear arithmetic.

While 3SAT is NP-complete, in recent years researchers have developed many

tools that can efficiently solve even very large SAT instances arising in practice.

Even further, due to the development of fast decision procedures for particular
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theories, and their integration into the core SAT solving techniques, has resulted in

SMT solvers that are capable of solving large SMT instances, from domains such as

hardware and software verification [20]. These tools can solve difficult benchmarks

from program verification in the order of a couple of seconds [18].

In this dissertation, we apply SAT and SMT solvers to problems they have not

been used in before, e.g., invariant and pre-/postcondition inference and program

synthesis. While they have been engineered to be fast on verification benchmarks

where the proof of correctness is provided by the user, our experiments in this dis-

sertation show that the solvers are also efficient on instances arising out of proof

inference, i.e., for program reasoning, and program inference, i.e., for program syn-

thesis.

1.1.1 Satisfiability for Reasoning

Webster’s dictionary defines “reasoning” as inference of a statement offered

in explanation or justification. Our view of reasoning about programs consists

of offering justifications for specific properties such as correctness or termination,

i.e., verification, and inferring descriptions of their input-output characteristics and

the associated justification for why the properties hold, i.e., specification inference.

These formal justifications come in the form of program invariants that we infer.

Invariants are tricky to infer for loops.

The key difficulty in automatic program verification is in inferring inductive

loop invariants. We treat specification inference as an extension of the verification
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problem in which one infers invariants about the pre- or postcondition in addition

to inferring loop invariants. We desire that the facts we infer about the precondition

be the weakest possible and the postcondition be the strongest possible. Inferring

weakest preconditions ensures that any other valid precondition is a specialization of

the inferred precondition. Analogously, inferring the strongest postcondition ensures

that any other valid postcondition is a specialization of the inferred postcondition.

Background: The difficulty in program reasoning The key difficulty in automatic

program reasoning is the task of inferring suitable invariants. At a particular pro-

gram location an assertion over the program state is an invariant if it always holds

whenever control reaches that location. A program state, σ, is a mapping of pro-

gram variables to values, e.g., σ0 = {x 7→ 0, y 7→ 2, k 7→ 0} is a state that maps the

program variables x, y and k to 0, 2 and 0, respectively. An assertion holds in a state

σ, if the assertion evaluated at the program state is true. For example x = 2k|σ0

evaluates to true, where p|σ is notation for evaluating a predicate p under the map

σ.

Loop invariants are assertions at loop header locations, i.e., invariants that

hold when entering a loop and in each iteration through the loop. A loop invariant

is inductive if it can be shown to hold after an iteration assuming it holds at the

beginning of the iteration.

Example 1.1 Given the following program:

x := 0; k := 0; y := 2; while(∗){x := x + y; k := k + 1; } (1.1)
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For the loop, the assertion x = 2k is a loop invariant but is not inductive. It is not

inductive because if we assume that x = 2k holds at the beginning of the loop and

calculate the effect of the statements x := x + y; k := k + 1; we cannot derive that

x = 2k afterwards, as we do not have enough information about the value of y in

the assumption. On the other hand, x = 2k ∧ y = 2 is an inductive loop invariant.

A note on notation

Throughout this dissertation, we will use “:=” to denote the imperative state up-

dating assignment, while we will use “=” to denote mathematical equality. The

sequencing operator will be “;”, and “∗” will denote non-deterministic choice.

Non-deterministic choice is frequently used in program reasoning as a safe ap-

proximation to conditional guards that cannot be precisely analyzed, in which

case, we assume that both branches can be taken.

It is straightforward to observe that a given assertion can be checked/validated

to be a correct inductive loop invariant using SMT solving. For instance, we can

check whether the candidate assertions x = 2k and x = 2k∧y = 2 are valid invariants

I for the loop. To do that, we simply encode the definition of an inductive loop

invariant as formal constraints. One way to formally reason about an assignment

x := e is to treat it as an equality between the output value of x, notated as

x′, and the expression e computed over the inputs. Thus, a set of assignments

constitute a transition that takes input values to output values of the variables. In

our example, there are two paths of sequences of statements that start and end at
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either an invariant or program entry or exit points. One starts at the beginning

of the program (with assertion true) and leads up to the loop (with assertion I),

and another goes around the loop (starting and ending with assertion I). For these

paths, we get the following constraints:

true ∧ x′ = 0 ∧ k′ = 0 ∧ y′ = 2 ⇒ I ′

I ∧ k′ = k + 1 ∧ x′ = x+ y ⇒ I ′
(1.2)

Notice how the consequents are also raised to the output, primed, values. This for-

wards reasoning approach is similarly used in SSA [5] or symbolic execution [165].

Alternatively, Hoare’s rule for assignments [149] can be used for backwards reason-

ing, and is plausible for the case of verification (Chapter 2). The SSA-style forward

approach additionally works for program synthesis where the statements are un-

known, and alleviates problems with attempting to substitute into unknowns (as in

Chapters 3, 4, and 5).

While checking that a given assertion is an inductive loop invariant is reducible

to SMT queries, as we have seen, it is not obvious how SAT/SMT solving can be

used to infer loop invariants. Inference using SAT/SMT solving is one of the key

technical contributions of this dissertation.

Encoding invariant inference as SAT/SMT solving For a given SAT/SMT instance

a satisfiability solver computes two values: a binary decision about whether the in-

stance is “sat” or “unsat”, and an optional model in the case of satisfiable instances.

A model is a value assignment to the unknown variables that leads to the instance

evaluating to true, e.g., for the case of a SAT instance the model is a assignment
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of boolean truth values to the propositional variables in the formula. Previous

uses of SAT/SMT solvers in invariant validation only use the binary “sat/unsat”

decision to check the correctness of the guess for the invariant. More broadly, in

program analysis the models from SAT solvers have been used previously to derive

counterexamples that explain faults [222, 200, 51, 269, 27, 188, 122].

Our approach is different in that we encode all valid invariants as solutions

to the satisfiability instance. The model generated by the SAT/SMT solver can

then be directly translated to an invariant. The key to doing this is to assume a

structural form—i.e., a template, which we discuss in detail later—for the invariant.

Then each component in the chosen structure of the invariant is associated with

a indicator boolean variable. Values, true or false, for the variables indicate the

presence or absence of the component, respectively. Constraints, i.e., clauses in the

satisfiability instance, are generated over these boolean indicators from the program

being verified. Solving the satisfiability instance gives us the model, i.e., values

of the boolean indicators, which are used to reconstruct the actual invariant of

the assumed structure. Notice that a model only exists if the instance generated

is actually satisfiable. If the instance is unsatisfiable, it implies that no invariant

exists of the chosen structural form, i.e., one which is an instantiation of the given

template.

A characteristic of a satisfiability-based invariant inference approach is that

if there are multiple invariants, the solver finds one valid solution that corresponds

to one valid invariant. This suffices for program verification, as any inductive in-

variant proves the required properties, but not for specification inference where we
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want the best, i.e., weakest or strongest, restrictions on the input or output, respec-

tively. Next, we describe how we can augment the basic approach to generate the

weakest/strongest invariants and pre/postconditions for specification inference.

Extending to specification inference Once we have the ability to encode inference

as a satisfiability query, it opens the door to inferring properties of programs. We

can infer preconditions that ensure desired properties of the program’s execution,

or preclude bad executions. Similarly, we can infer postconditions that hold of

program executions. This application highlights a key difference between the mode

of use of SMT solvers in this dissertation from that of previous approaches. We can

encode pre- and postcondition generation as the inference of an additional invariant

at the beginning or end of the program, respectively. The technical developments

for invariant inference are correspondingly put to use in deriving specifications, i.e,

pre- and postconditions.

Not only that, we can even encode that the desired facts are maximally best,

i.e., preconditions are maximally weak and postconditions are maximally strong,

which ensures that any other valid pre- or postcondition can be derived from them.

This is a non-intuitive application of solvers that have a binary output, and it

requires the introduction of other key ideas, namely templates and local encodings,

which we describe later (Section 1.1.4).

Automatically deriving pre-/postconditions or specifications is useful as it gives

insights into the behavior, good or bad, of the program. For instance, our tool can

automatically analyze Binary Search to infer it is only functionally correct if given
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a sorted input array. It can also analyze Selection Sort to infer that the worst-case

number of swaps happen when it is given an array that is almost completely sorted,

except that the last element is smaller than the rest. We derive descriptions of

behavior that are provably correct (because they are formal and have corresponding

invariants associated with them) yet readable (because we infer the least restrictions

conditions). Such a tool that is automated, infers expressive properties that are

proven formally correct, and outputs readable descriptions has the potentially to

significantly help the developer in debugging and interface design.

1.1.2 Satisfiability for Synthesis

Program synthesis is the task of automatically generating a program that

matches a given specification. We consider specifications that are mathematical

descriptions of the input-output behavior, and also alternative specifications, e.g.,

as the relationship of a program to another program or as input-output examples.

Program synthesis and program reasoning are in intimately related. If a tech-

nique cannot reason about a program specification, given the program, there is no

hope of synthesizing a program that meets the specification. Additionally, the pro-

vided specification has to be relatively complete so that the synthesizer generates

only relevant programs. Such full functional specifications are typically expressed

using quantifiers, and therefore we need an expressive reasoning technique, such as

the one we develop in this dissertation, to build our synthesizer on top of.

We use two forms of program reasoning techniques, which lead to synthe-
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sizers with differing characteristics. Our first technique, proof-theoretic synthesis,

builds directly off program verification tools and therefore provides formal guaran-

tees about the synthesized program. Our second technique, path-based inductive

synthesis (PINS), leverages symbolic testing—which can be seen as an approxima-

tion to formal verification—for synthesizing programs that are correct up to the

guarantees that testing provides.

Advantages of a satisfiability-based framework for synthesis As we will see, one of

the key requirements of a synthesizer is the need to simultaneously reason about

program structure, correctness, and termination. In a satisfiability-based frame-

work, these just correspond to additional clauses in the SAT instances. One can

even add clauses corresponding to performance, restrictions on environment inter-

action (e.g., messages exchanged, information leaked, or locks acquired), resource

(e.g., CPU, memory) utilization, and other defining characteristics of the desired

program. In this dissertation though, we restrict attention to the core requirements

(structure, correctness, and termination). Such combinations are not feasible in

traditional approaches to verification and hence we feel that a satisfiability-based

reasoning framework is a key facilitator for automatic program synthesis.

1.1.3 Templates

In this section, we elaborate on the key role played by templates in our

satisfiability-based approach. Templates restrict attention to a relevant space, be

it the space of invariants in reasoning or the space of programs for synthesis. Such
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restrictions are essential, as the space of all possible proofs/programs is likely to

remain intractable no matter how sophisticated our theorem proving technology

becomes.

Templates provide the form of the desired entities we wish to mechanically

infer. For instance, in the case of verification, we intend to infer invariants that pro-

vide the proof of correctness of programs. In this case, the technique takes as input

a template form (i.e., an expression with holes “[−]”) for the expected invariants.

For example, a template ∨2(∧3[−]) indicates that the invariants contain at most

three conjuncts inside each disjunct, of which there can be at most two. A template

∀(∧3[−] ⇒ ∧3[−]) can be used to infer quantified invariants. Similar templates are

used to specify the desired form of inferred preconditions and postconditions. In the

case of synthesis, scaffolds are templates for desired programs.

Note that templates do not describe specific structures (invariants or pro-

grams), but rather their class. In this regard, they are analogous to abstract do-

mains, which have been used in earlier approaches to program reasoning, e.g. in

abstract interpretation [72, 33, 74], and model checking [98]. Templates can be

viewed as an optimized approach to lifting domains to more expressive relations.

For instance, while a template ∀(∧3[−] ⇒ ∧3[−]) can be very efficiently handled

in our system because of its restricted structure (that the user guessed), it can be

viewed as a specialization of the domain for the holes, lifted to disjunction, and ad-

ditionally quantification. Such a general domain will be very inefficient, if at all the

theoretical machinery can be built, and consequently not practical. Additionally,

we find that the expressivity afforded by templates facilitates not only reasoning
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but also program synthesis.

For example, a widely used domain is the octagon domain [202], which can

specify facts between two variables, x and y, of the form ∧i(±x ± y ≤ c). On the

other hand, templates allow us to specify not just conjunctions, but also atomic facts

such as c0+c1x+c2y+c3z . . ≥ 0, wrapped inside arbitrary boolean connectives, e.g.,

disjunctions and even quantifiers. The difference in the expressivity of an octagon

domain and a linear arithmetic template is illustrated in Figure 1.1.
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Figure 1.1: The expressivity of the octagon domain vs. linear arithmetic templates.

While strictly more expressive for given facts, in general templates are in-

comparable to domains because for templates the outerlevel form is more strictly

specified. For instance, an octagon domain can represent any arbitrary finite num-

ber of conjuncts of a limited form, while a template requires a finite upper bound

on the number of conjuncts (in each disjunct, and an upper bound on the number

of total disjuncts in the DNF representation). In practice though, the finite bounds

can be chosen to be large enough to capture all expected facts.

The use of templates parameterized with finite bounds introduces tradeoffs

between expressivity and efficiency, which the user can tune. While a template with
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larger bounds allows for more expressive invariants, the corresponding satisfiability

instances that need to be solved are proportionally bigger, which in some cases also

means that they are harder to solve. With the current state-of-art it is most prudent

to have the user guess the template parameters. In the future we expect it will be

feasible iteratively explore the space of the parameters automatically.

1.1.4 Maximally Best Solutions using Satisfiability

The use of templates enables us to compute optimal, i.e., maximally best,

values required for certain problems in a satisfiability-based framework. The key

insight is based on local reasoning (in the proof) and finite satisfiability encoding (of

local constraints). For instance, we can compute maximally weak preconditions and

maximally strong postconditions using a finite encoding into satisfiability.

This is a novel application of satisfiability solvers whose search for a satisfying

solutions does not have any particular monotonicity property and may output any

satisfying solution. To get optimal solutions we need to ensure through appropriate

constraints that every satisfying solution is a local maxima.

Example 1.2 Figure 1.2 shows a lattice whose elements are two linear inequalities,

over variables x and y, conjuncted together. We concentrate on the lattice point

x− y ≥ 0∧ x+ y ≤ t. If we assume a template that can only represent constants of

a certain maximum size, say c, then it tells us what the smallest possible deviation

(shifting or rotation) can be. In particular it will be related to the smallest possible

constant, i.e., 1/c, expressible under this assumption. We can finitely enumerate the
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x

y

(a)

x− y − 1
c
(x+ y) ≥ − t

c
∧ x+ y ≤ t

false or ⊥

true or >

x− y ≥ 0 ∧ x+ y ≤ t

x− y ≥ 0 ∧ x+ y ≤ t+ 1
c

x− y ≥ 0 ∧ x+ y − 1
c
(x− y) ≤ t

x− y ≥ −1
c
∧ x+ y ≤ t

(b)

Figure 1.2: Templates facilitate enumerating local neighbors (dashed lines). Shown
here is the case of facts of the form a ∧ b, where a and b are linear inequalities over
variables x and y. (a) Each fact (lattice point) induces an area in the x, y-graph.
The shaded area denotes the lattice point x−y ≥ 0∧x+y ≤ t, with each inequality
being the bold line at the boundary of the area. Four lattice points immediately
weaker than this fact exist, as shown by the dotted lines. We get two local (weaker)
neighbors by shifting one of the inequalities by a small amount. We get another
two local (weaker) neighbors by rotating one of the inequalities by a small angle.
(b) Partial order lattice, with elements that are conjunctions of linear inequalities,
ordered by the implication relation. We expand out the original fact, and its four
immediately weaker neighbors in the lattice that can be enumerated because of
restrictions on the maximum constant c representable in the system.
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local neighbors (only because of the presence of a template) and therefore construct a

finite encoding of maximal/minimal optimality. For instance, in the example above,

we can constrain the system to say that each immediately weaker neighbor is not

“valid” while the current lattice point is “valid”—whatever the notion of validity is.

Then just by solving the satisfiability instance, we will generate points in the lattice

that are maximal, i.e., they are valid while any immediate weaker points are not.

This would not have been possible without a template, as we would not know what

the least weakening is.

1.2 Program reasoning with linear arithmetic

While linear arithmetic expressions are relatively simple to reason about me-

chanically, they have many applications in program reasoning and—as we see in this

dissertation—in program synthesis. Linear arithmetic can be used to reason about

a wide variety of program properties through suitable modeling. For instance, not

only does it suffice for a fair majority of interesting invariants required for proving

memory safety or termination, but we can also reason about the size of data struc-

tures with insert/delete operations, or array bounds checks using linear arithmetic.

Templates over linear arithmetic are atomic linear relations wrapped within an

arbitrary boolean structure. In this dissertation, for linear arithmetic we consider

only the boolean structures without quantification, i.e., limited to conjunctions and

disjunctions. Quantification is handled for predicate abstraction, described later.

Negation is at the innermost level, and is encoded by suitably modifying the atomic
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inequality. Without loss of generality, we assume that the atomic linear relations

are of the form c0+c1x+c2y+c3z . . ≥ 0, where x, y, z are program variables, ci’s are

integer coefficients, and the boolean structure is described using disjunctive normal

form (DNF).

Our linear arithmetic templates are parameterized by two integer values: the

maximum number of disjuncts in the outermost disjunction, and the maximum

number of conjuncts in each disjunct. For example, a template with 2 disjuncts and

3 conjuncts can model the formula (x = y ∧ x > 10) ∨ (x > y ∧ y ≤ z ∧ x ≤ 0).

Example 1.3 For inferring an invariant for the program in Example 1.1, a plau-

sible template could be conjunctions, let us say five in number, of linear inequalities

between the variables, c0 + c1x+ c2y+ c3k ≥ 0. Here ci’s are the unknown (integer)

variables. Notice that the invariant x = 2k∧ y = 2 can be embedded in this template

as (x − 2k ≥ 0) ∧ (−x + 2k ≥ 0) ∧ (y − 2 ≥ 0) ∧ (−y + 2 ≥ 0) ∧ (1 ≥ 0). The last

term is one way to encode true as a linear relation. Using Eq. (1.2), we generate

(integer) constraints over the ci’s. We then assume a bit-vector representation of a

suitably large size for each of the integer unknowns, and generate a SAT instance

over boolean indicator variables. We can directly read off the invariant, from the

solution to this instance.

Notice that a template with at least four inequalities can express the inductive

invariant x = 2k ∧ y = 2. On the other hand, if the template had fewer inequalities

then the SAT instance generated would be unsatisfiable. Two inequalities can encode

x = 2k, but this fact is not inductive and therefore the boolean clauses generated for
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the second constraint in Eq. (1.2) will make the SAT instance unsatisfiable.

1.3 Program reasoning with predicate abstraction

While linear arithmetic is good for certain classes of properties, in some cases

reasoning and synthesis is best described by more expressive predicates. For in-

stance, consider reasoning about the contents of arrays or linked data structures

(lists, trees). A standard approach to modeling array reads and writes is through

McCarthy’s select/update predicates. Linked data structures can be modeled using

reachability predicates. Such functional modeling of programming constructs using

predicates lends itself well to mechanization through SMT solvers. Predicate ab-

straction [128] is an approach that can reason using arbitrary predicates, as long as

the underlying theorem prover/SMT solver knows how to interpret the operators

used. In this dissertation, we show how to do satisfiability-based reasoning and

synthesis over predicate abstraction.

Let us elaborate more on the use of predicates for encoding the semantics

of programming constructs. For arrays, the standard approach uses McCarthy’s

sel/upd predicates. For array A, location i, and value v, the predicate sel(A, i)

returns the contents at i, and upd(A, i, v) returns a new array with the contents at

i updated to be v. These predicates are related by the axiom:

∀A, i, j, v : sel(upd(A, i, v), j) = if (i = j) then v else sel(A, i)

A version of this axiom originally appeared in McCarthy’s paper [198], and solvers
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implement decision procedures that efficiently check the validity of formulae under

this axiom, e.g., Z3’s implementation uses additional combinators [87].

Templates over predicate abstraction consist of a boolean structure (poten-

tially with quantifiers) that contain holes. Each hole is populated with a subset,

representing conjunction, of predicates from a given universe Πp. Recall that predi-

cate abstraction represents the abstract states of a program as subsets of the pred-

icates that hold in the state, and the predicates come from Πp = {q1, q2, . . , qn}.

Each qi can be arbitrarily expressive as long as the underlying theorem prover/SMT

solver understands the operators used. An example of a predicate set is Πp = {(x =

sel(A, i)), (i ≥ z + 1), (A′ = upd(A, z, v))}.

In this dissertation, templates over predicate abstraction are specified as the

outer boolean structure. For example, ∀([−] ⇒ [−]) is a generic, fairly expressive,

template that we use frequently. Each of the holes [−] are populated by the system

with appropriate conjunctions of predicates from subsets of Πp.

Not only does our approach to program reasoning leverage the engineering

advances made in SAT/SMT solving, through the use of appropriate templates it

also allows us to infer expressive invariants that were beyond the reach of previous

approaches. For instance, we can use this approach to infer quantified invariants that

are facts with universal or existential quantification. Quantified invariants are very

useful in expressing properties of programs manipulating unbounded data structures

where we need to quantify over all elements. Examples of such data structures that

could be of unbounded sizes are arrays, lists, and trees.
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Example 1.4 Using predicate abstraction, we can prove selection sort correct by

inferring the following invariant:

i < j ∧ i < n− 1 ∧

∀k : i ≤ k < n− 1 ⇒ A[n− 1] < A[k] ∧

∀k : i ≤ k < j ⇒ A[min] ≤ A[k] ∧

∀k, k′ : i ≤ k < k′ < n− 1 ⇒ A[k] ≤ A[k′]

where n is the size of the array A being sorted, i and j are the loop counters for

the nested loops, and min is the index location of relevant minimum element. The

templates used are [−], ∀k : [−] ⇒ [−], and ∀k, k′ : [−] ⇒ [−], and the predicates

are α < β and sel(A,α) < sel(A, β) (and ≤’s), where α and β are instantiated

with programs variables (i, j, n and min), quantifier bound variables (k and k′), and

their offsets (±1).

1.4 Verification-inspired synthesis

Given a formal specification and constraints on the structure of the desired

program, proof-theoretic synthesis, inspired by verification, simultaneously generates

not only a program but also the corresponding proof of correctness. The proof is a

witness to the fact that the program meets its specification.

The key observation that enables building synthesizers out of verifiers is that

when reasoning using the transition system representation, statements are just equal-

ity predicates. So if our verifier can reason using this representation with known
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equalities (for the statements), we can potentially use it to infer not only the invari-

ant facts, but also the equality facts corresponding to the statements!

Example 1.5 Let us revisit the program from Example 1.1 and constrain its output.

Specifically, let us say that we expect the program to terminate in a state in which

x = 2n, where n is some input to the program. If the loop guard is x ≤ n instead

of non-deterministic choice then the program does indeed compute x = 2n. Written

using a transition system representation, the program constraints are:

true ∧ S1 ⇒ I

I ∧G ∧ S2 ⇒ I

I ∧ ¬G ⇒ x = 2n

(1.3)

where

S1
.
= x = 0 ∧ k = 0 ∧ y = 2

S2
.
= x′ = x+ y ∧ k′ = k + 1

G
.
= x ≤ n

(1.4)

During invariant inference (for reasoning about the given program), each of these

constraints had unknown I and known S1, S2, and G as shown. In this represen-

tation, S1, S2, and G are logical facts that can potentially also be inferred by the

program reasoning tool, along with I, i.e., the proof. So our hope is to send the

constraints Eq. (1.3) to existing solvers and get a solution for S1, S2, G and I, such

as Eq. (1.4).

Our optimism may be premature because not all solutions to this undercon-

strained system of constraints will be valid programs. The first concern is that the
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semantics of statement and guard unknowns are not enforced. Notice that an as-

signment of S1 = S2 = I
.
= false is a valid solution, but it does not correspond to

any valid assignments. Transitions S1 and S2, which are conjunctions of equalities

between outputs and expressions over inputs, can never be false, and therefore this

solution cannot be translated to any assignments of the form x := e. Correspond-

ingly, constraints are needed for guard unknowns such that solutions translate to

valid control flow. We call these constraints, which ensure that solutions correspond

to valid imperative programs the well-formedness constraints.

Solving safety constraints (Eq. (1.3)) together with well-formedness constraints

indeed yields valid imperative programs, but it does not preclude trivial solutions.

For instance, a solution G = I
.
= true satisfies the constraints. In fact, G

.
= true

corresponds to a non-terminating loop. We need to eliminate such uninteresting

programs, and we therefore also assert termination constraints.

Solving safety, termination, and well-formedness constraints, together called

synthesis conditions, yield valid imperative terminating programs that meet the

specification and have a corresponding correctness proof. In this dissertation, we

show that these constraints can be written in a form amenable to solving by current

verifiers, thereby bringing engineering advances in verification to synthesis. We show

that satisfiability-based verifiers can be used unmodified as program synthesizers.

The input to our synthesizer is a scaffold of the desired computation. The

scaffold provides the looping structure (e.g., does the program contain a nested loop,

or two loops in a sequence), constraints on resources (e.g., number of variables), and

domain of core operations (e.g., operators, or function calls available). For example,
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we may wish to preclude multiplication as one of the operators in the previous

program, because otherwise the synthesizer may generate x := 2n and terminate

immediately. With only linear operators, the synthesizer will be forced to generate

a loop. From the scaffold we generate synthesis conditions, which we solve using

satisfiability-based program verifiers. We have been able to synthesize programs such

as Strassen’s matrix multiplication, Bresenham’s line drawing algorithm, dynamic

programming examples, and all major sorting algorithms just from their scaffold

specifications.

Proof-theoretic synthesis leverages the connections between automatic pro-

gram verification and automatic program synthesis. If we have a verifier that can

reason about programs over a particular domain, then it can be used as a correspond-

ing synthesizer for that domain, taking as input a scaffold, and solving additional

constraints described by synthesis conditions.

1.5 Testing-inspired synthesis

Given a functional specification, path-based inductive synthesis (PINS), inspired

by testing, leverages symbolic testing to synthesize programs. PINS is a more prag-

matic synthesis approach since it does away with (potentially complicated and ex-

pensive) formal invariants, and instead uses program paths to reason about behavior

and to synthesize. Additionally, the functional behavior of certain programs can be

specified as their relation to another program, which alleviates the need for formal

descriptions of the functional specification.
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The key observation that enables building synthesizers out of testing tools is

that if a program is functionally correct on a set of paths through it, then it is

either correct or at least “close to” correct for all paths. We apply this intuition to

program synthesis by ensuring that the synthesized program meets the specification

on some set of paths. By increasing the number of paths, we are able to eliminate

invalid programs, until only one valid solution remains that is correct for all paths

explored. Additionally, we impose stronger constraints on the program statements

by testing the paths symbolically, as opposed to with concrete values. For instance,

for a program that takes x as input, instead of constraining the behavior on x =

1, x = 2, x = 3, x = 4, and so on, we instead run the program with a symbolic value

α for x, with the side condition that α > 0. Thus, a path explored with symbolic

inputs captures the behavior of the program over multiple concrete inputs that take

the same path.

Let us first describe the input to the PINS algorithm. Suppose first that

we have a structure for the unknown program and its expected specification. A

structure for an unknown program is a description of its control flow, with unknown

conditional and loop guards and statements. For the program in Example 1.5,

S1; while(G){S2} is a potential structure with S1, S2, and G as unknowns, and its

expected specification is x = 2n. Not everything is required to be unknown. Another

potential template is S1; while(x ≤ n){S2}. That is, a template is a partial program

in which the synthesizer fills in the unknown holes.

We now describe the core technique behind PINS. For a given partial program,

we can choose certain paths through it and constrain that the specification is met
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on each of those paths.

Example 1.6 For the partial program S1; while(G){S2} we can write down con-

straints for three paths, one that does not enter the loop, and two that go through

the loop once and twice, as follows:

true ∧ S1 ∧ ¬G′ ⇒ x′ = 2n′

true ∧ S1 ∧G′ ∧ S ′2 ∧ ¬G′′ ⇒ x′′ = 2n′′

true ∧ S1 ∧G′ ∧ S ′2 ∧G′′ ∧ S ′′2 ∧ ¬G′′′ ⇒ x′′′ = 2n′′′

(1.5)

Notice that every time control passes through a statement block, S1 or S2, every

subsequent read uses more primes—in line with the transition system semantics.

Notice that if we had used concrete execution, each one of these constraints would

have been expanded to multiple constraints for particular values of the input variables

that follow those paths.

The advantage of using paths to generate safety constraints is that the system

need not reason about invariants, which can potentially be very complicated. The

disadvantage is that, in the presence of loops, the number of paths is unbounded. So

the approach can only be complete up to a certain confidence level, which rises with

the number of paths. With these constraints as proxies for invariant-based safety

constraints, we can use the technology already developed to solve for the unknowns

and synthesize programs.

As with any testing-based approach, we need to worry about which paths to

explore. Notice that there could be multiple programs that satisfy the constraints

for a limited set of paths. For example, the first constraint in Eq. (1.5) imposes
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no restrictions on S2, and therefore if we were to only consider that constraint

then all values for S2 are valid. So we need to explore more paths to eliminate

invalid programs. A naive approach would be to explore random paths, but this

fails as expected, due to combinatorial explosion. The situation is exacerbated in

the presence of unknown guards and statements.

We devise a directed path exploration scheme that infers relevant paths. A

path is relevant if it eliminates specific invalid programs from the space of solutions.

The path exploration scheme picks one solution program (which satisfies the safety

constraints on paths explored until that point) and instantiates the partial program

with that solution. It then finds a path in the partial program such that it is

feasible for the instantiated program. If the chosen solution does not correspond

to a program that meets the specification, adding this new path to the system

eliminates the solution with high probability. This is the case because the path is

feasible with respect to the solution and therefore it is unlikely that the instantiated

program will meet the specification if it is invalid. On the other hand, if the chosen

solution corresponds to a program that meets the specification, then adding this

new path will only reinforce the solution. Thus by iteratively selecting a solution

from the space remaining and using directed path exploration to prune out invalid

programs, we eventually narrow the space down to only the valid programs.

PINS is a general synthesis technique that works without referring to formal

invariants, but does need a formal specification. We consider its application to

cases where the specification is trivial or mechanically derivable. Consider the case

of program inversion. In program inversion, the sequential composition of a known
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program with its (unknown) inverse has the trivial identity specification. Also,

typically the structure of the inverse, but not the exact computations, is similar to

the given program. Therefore, we mine the template for the inverse and apply PINS

to automatically synthesize the precise operations of the inverse. Additionally, we

also consider parallel composition and apply PINS to automatically generate clients

from servers.

Path-based inductive synthesis (PINS) shows how testing can be viable ap-

proach to program synthesis. Intuitively, it exploits the pigeonhole principle by

exploring more paths than can be individually explained by the template, i.e., par-

tial program. While the core approach shows that synthesis is feasible using testing

random paths, for it to be efficient in practice, a direct approach to path exploration

is required.

1.6 Engineering Verifiers and Synthesizers

In the previous sections we have gave an overview of the theoretical insights

that go into using a satisfiability-based approach (along with templates) to do ex-

pressive program verification and even to synthesize programs. We have built the

VS3—Verification and Synthesis using SMT solvers—suite of tools that implement

these ideas. While the core satisfiability-based approach is itself novel, due to the

non-traditional analysis mechanism employed this approach opens up avenues for

engineering optimization that were previously not present. We have been able to

build tools that meet, if not consistently outperform, previous tools in terms of
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efficiency, while being able to handle much more expressive reasoning. We have

demonstrated the proof-of-concept by employing the VS3 tools to verify standard

difficult benchmarks in verification; and for the first time automatically synthesize

programs from high level specifications.

1.7 Key Contributions and Organization

This dissertation makes the following contributions:

• We present an approach for encoding proofs for program correctness, i.e., in-

variants, as (arbitrary) solutions to propositional satisfiability instances. This

facilitates finding these proofs using off-the-shelf SAT solvers. We also present

extensions that allow us to encode specification inference in the same frame-

work.

• We show how program synthesis can be viewed as generalized program veri-

fication, thereby allowing the use of certain automatic verifiers as automatic

synthesizers. Thus, if we have a verifier with specific properties, that can

prove programs correct in a particular domain, by this approach we have a

corresponding synthesizer that can automatically generate programs in that

domain as well.

• We extend the idea of template-based analyses to expressive program reasoning

and program synthesis. Templates have two benefits. One, they make the task

of the automatic tool tractable by limiting the search for proofs, specifications,
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and programs to particular forms. Note that these forms are not specific to

the programs being reasoned about or synthesized, but concern a category of

programs. Two, they serve as a specification mechanism by which the user

can limit the types of proofs, specifications, or programs desired.

• We show that in the context of a template-based approach, we can synthesize

programs without formal specifications or proofs. As testing can be viewed

as a means of approximate verification, in a similar vein this approach can be

viewed as a means of approximate synthesis.

Chapter dependencies While the developments in this dissertation follow an almost

linear progression, each chapter starts with an overview of the key results presented

therein. The dependencies across chapters are as follows:

Reasoning: Linear Arithmetic

(Chapter 7)

(Chapter 8)

(Chapter 6)
Engineering Verifiers/Synthesiziers

Future Work

Related Work

(this chapter)

(Chapter 2)

(Chapter 4)

(Chapter 3)

(Chapter 5)

Introduction

Reasoning: Predicate Abstraction

Testing-inspired SynthesisVerification-inspired Synthesis
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Chapter 2

Program Reasoning over Linear
Arithmetic

“Our path is not going to be linear
or smooth. It’s still early days.”

— Mark Fields1

In this chapter we present a satisfiability-based approach for modeling a wide

spectrum of program analyses in an expressive domain containing disjunctions and

conjunctions of linear inequalities. In particular, we show how to model the problem

of context-sensitive interprocedural program verification. We also present the first

satisfiability-based approach to maximally weak precondition and maximally strong

postcondition inference. The constraints we generate are boolean combinations of

quadratic inequalities over integer variables. We reduce these constraints to SAT

formulae using bit-vector modeling and use off-the-shelf SAT solvers to solve them.

Furthermore, we present interesting applications of the above analyses, namely

bounds analysis and generation of most-general counterexamples for both safety

and termination properties. We also present encouraging preliminary experimental

results demonstrating the feasibility of our technique on a variety of challenging

examples.

1American Footballer, 1972–.
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2.1 Using SAT Solvers for Invariant Inference

Program reasoning consists of verifying the correctness of programs or inferring

pre- and postconditions (which are semantic descriptions of program properties).

The key difficulty in program verification is the task of inferring appropriate program

invariants, i.e., facts that hold at program points whenever control reaches those

points. Inferring program properties can be seen as an extension of verification,

where in addition to the invariants, the pre- or postconditions are also inferred.

Discovering inductive program invariants is critical for both proving program

correctness and finding bugs. Traditionally, iterative fixed-point computation based

techniques like data-flow analyses [164], abstract interpretation [72] or model check-

ing [98] have been used for discovering these invariants. An alternative is to use

a constraint-based invariant generation [62, 75, 42, 219] approach that translates

the second-order constraints that a program induces into first-order quantifier-free

constraints that can be solved using off-the-shelf solvers. While previous constraint-

based approaches employed mathematical solvers for finding solutions to the re-

sulting constraints [62, 75], in this chapter we propose using SAT solvers, i.e., a

satisfiability-based invariant generation approach. The last decade has witnessed a

revolution in SAT/SMT based methods enabling solving of industrial sized satisfi-

ability instances. This presents a real opportunity to leverage these advances for

solving hard program analysis problems.

Constraint/satisfiability-based techniques offer two other advantages over fixed-

point computation based techniques. First, they are goal-directed and hence have
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the potential to be more efficient. Second, they do not require the use of widening

heuristics that are used by fixed-point based techniques and lead to loss of precision

that is often hard to control.

Here, we describe satisfiability-based techniques over linear arithmetic for three

classical program analysis problems, namely program verification, maximally weak

precondition generation and maximally strong postcondition generation. Using this

core framework of analyses we further show interesting applications to bounds anal-

ysis and finding most-general counterexamples to safety and termination properties.

The key contributions are in the uniform satisfiability-based approach to core pro-

gram analyses (Sections 2.2–2.5) and their novel applications (Section 2.7). We have

also implemented these ideas in a tool that we call VS3
LIA. A distinguishing feature

of VS3
LIA is that it can uniformly handle a large variety of challenging examples that

otherwise require many different specialized techniques for analysis.

The goal of program verification is to discover invariants that are strong enough

to verify given assertions in a program. We present a satisfiability-based technique

that can generate linear arithmetic invariants with arbitrary boolean structure (Sec-

tion 2.2), which also allows us to extend our approach to a context-sensitive inter-

procedural setting (Section 2.3). A key idea of our approach is a scheme for reducing

second-order constraints to SAT constraints; this can be regarded as an independent

contribution to solving a special class of second order formulas. Another key idea

concerns an appropriate choice of cut-set which, surprisingly, has until now been

overlooked. VS3
LIA can verify safety properties, provided as assertions, in benchmark

programs that require disjunctive invariants and sophisticated procedure summaries.
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These programs have appeared as benchmarks for alternative state-of-the-art tech-

niques. We also show how satisfiability-based invariant generation can be applied

to verifying termination properties as well as the harder problem of bounds analysis

(Section 2.7.1).

The goal of strongest postcondition generation is to infer the most descrip-

tive/precise postcondition that characterizes the set of reachable states of the pro-

gram. Current constraint-based invariant generation techniques work well only in

a program verification setting, where the problem enforces the constraint that the

invariant should be strong enough to verify the assertions. But in absence of asser-

tions in programs, there is no guarantee of the precision of invariants. We describe

a satisfiability-based technique that can be used to discover strongest, or more pre-

cisely maximally strong, invariants (Section 2.5). Some previous techniques generate

precise invariants using widening heuristics that are tailored to specific classes of pro-

grams [264, 132, 125, 126]. VS3
LIA can uniformly discover precise invariants for all

such programs.

The goal of weakest precondition generation is to infer the least restrictive

precondition that ensures validity of all assertions in the given program. We present

a satisfiability-based technique for discovering weakest, or more precisely maximally

weak, preconditions (Section 2.4). VS3
LIA can generate maximally weak preconditions

of safety as well as termination properties for difficult benchmark programs. We do

not know of any previous tool that can infer these properties for the programs we

consider.

We also describe an interesting application of maximally weak precondition
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generation: generating most-general counterexamples for both safety (Section 2.7.2)

and termination (Section 2.7.3) properties. The appeal of generating most-general

counterexamples (as opposed to generating any counterexample) lies in characteriz-

ing all counterexamples in a succinct specification that provides better intuition to

the programmer. For example, if a program has a bug when n > 200 ∧ 9 > y > 0,

then this information is more useful than simply generating any particular coun-

terexample, say n = 356 ∧ y = 7 (Figure 2.11). We have also successfully applied

VS3
LIA to generate counterexamples to termination of programs (taken from recent

work [142]).

2.2 Program Verification

Given a program with some assertions, the program verification problem is to

verify whether the assertions are valid. The challenge in program verification is to

discover the appropriate invariants at different program points, especially inductive

loop invariants, that can be used to prove the validity of the given assertions. (The

issue of discovering counterexamples, in case the assertions are not valid, is addressed

in Section 2.7.2).

Program model In this chapter, we consider programs that have linear assignments,

i.e., assignments x := e where e is a linear expression, or non-deterministic assign-

ments x :=?. We also allow for assume and assert statements of the form assume(p)

and assert(p), where p is some boolean combination of linear inequalities e ≥ 0.
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Here x denotes some program variable that takes integral values, and e denotes some

linear arithmetic expression. Since we allow for assume statements, without loss of

generality, we assume that all conditionals in the program are non-deterministic.

2.2.1 Verification Conditions: Program semantics as con-

straints

In this section, we describe encoding the semantics of programs as logical

constraints. The problem of program verification can be reduced to the problem

of finding solutions to a second-order constraint. The second-order unknowns in

this constraint are the unknown program invariants that are inductive and strong

enough to prove the desired assertions. In this section we describe the conversion of

programs to constraints.

Consider the program in Figure 2.1(a) with its control flow graph in Fig-

ure 2.1(b). The program precondition is true and postcondition is y > 0. To prove

the postcondition, at some point in the loop such as the one shown, we need to find

an invariant I. There are three paths in this system that constrain I. The first is the

entry case meaning the path from true to I. The second is the inductive case mean-

ing the path that starts and ends at I and goes around the loop. The third is the

exit case meaning the path from I to y > 0. Figure 2.1(c) shows the corresponding

constraints. We now show how to construct these constraints formally.

The first step is to choose a cut-set. A cut-set is a set of program locations

(called cut-points) such that each cycle in the control flow graph passes through some
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PV2 () {
x := −50;
while (x < 0) {

x := x+ y;
y++;

}
assert(y > 0)

}
y > 0

true

x < 0

x := x+ y
y++

Y
N

I

x := −50

(a) (b)

∀x,yφ(I):
true ⇒ I[−50/x]

I ∧ x < 0 ⇒ I[(y+1)/y, (x+y)/x]
I ∧ x ≥ 0 ⇒ y > 0

(c)

Figure 2.1: Illustrating program reasoning over linear arithmetic using an example.
(a) Simple example with loop invariant (at the header node) I (b) the control flow
graph and (c) the corresponding constraint. The satisfying solution (x < 0∨ y > 0)
to the constraint is disjunctive.

program location in the cut-set. One simple way to choose a cut-set is to include

all targets of back-edges in any depth first traversal of the control-flow graph. (In

case of structured programs, where all loops are natural loops, this corresponds to

choosing the header node of each loop.) However, as we will discuss in Section 2.2.4,

some other choices of cut-set might be more desirable from an efficiency/precision

viewpoint. For notational convenience, we assume that the cut-set always includes

the program entry location πentry and exit location πexit.

We then associate each cut-point π with a relation Iπ over program variables

that are live at π. The relations Iπentry
and Iπexit

at program’s entry and exit locations,

respectively, are set to true, while the relations at all other cut-points are unknown

relations that we seek to discover. Two cut-points are adjacent if there is a path in
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the control flow graph from one to the other that does not pass through any other

cut-point. We establish constraints between the relations at adjacent cut-points π1

and π2 as follows. Let Paths(π1, π2) denote the set of paths between π1 and π2

that do not pass through any other cut-point. We use the notation VC(π1, π2) to

denote the constraint that the relations Iπ1 and Iπ2 at adjacent cut-points π1 and

π2 respectively are consistent with respect to each other:

VC(π1, π2) = ∀X

 ∧
p∈Paths(π1,π2)

(Iπ1 ⇒ ω(p, Iπ2))


Above, X denotes the set of program and fresh variables that occur in Iπ1 and

ω(p, Iπ2). The notation ω(p, I) denotes the weakest liberal precondition [92, 130] of

path p (which is a sequence of program instructions) with respect to I:

ω(skip, I) = I ω(assume p, I) = p⇒ I

ω(x := e, I) = I[e/x] ω(assert p, I) = p ∧ I

ω(x :=?, I) = I[r/x] ω(S1;S2, I) = ω(S1, ω(S2, I))

where r is a fresh variable and the notation [e/x] denotes substitution of x by e.

Until the step where the invariant is instantiated as a template, the substitutions

need to be accumulated and deferred.
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Alternatives to substitution

Here, we present substitution as the means of backwards reasoning, i.e., applying

Hoare’s axiom for assignment [149]. It is instructive to note that substitution

is not a logical primitive, and consequently, invariant inference using theorem

provers (that work over a specific logic) can potentially be complicated by the

presence substitution. Fortunately, by assuming a template for the invariants,

substitution into them is feasible.

Using substitution is not critical to the developments in this dissertation. For

the rest of the chapter, we will be agnostic to the mechanism used for reasoning

about assignment, either backwards using Hoare’s assignment rule and templates

to substitute into, or forwards using equality predicates (with variable versions,

like in single static assignment (SSA)—developed for compiler optimizations by

Wegman, Zadeck, Alpern, Rosen [4, 230]—or symbolic execution [165]). In fact,

in all subsequent chapters, we will use equality predicates because of two reasons.

First, it alleviate the inconvenience of substituting into unknowns, and second, for

the case of synthesis the variable being assigned to is also unknown. We describe

this approach in more detail in Chapter 3, Section 3.3.3.

Let π1, π2 range over pairs of adjacent cut-points. Then any solution to the

unknown relations Iπ in the following verification constraint (which may also have

substitutions) yields a valid proof of correctness.
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∧
π1,π2

VC(π1, π2) (2.1)

This constraint is implicitly universally quantified over the program variables and

is a function of ~I (the vector of relations Iπ at all cut-points including Iπentry , Iπexit
).

We therefore write it as the verification condition ∀X.φ(~I). For program verification

Iπentry and Iπexit
are set to true. Going back to the example, the second-order

constraints corresponding to the program in Figure 2.1(a) are shown in Figure 2.1(c)

and correspond to the entry, inductive, and exit constraints for the loop.

2.2.2 Template specification T

We define the notion of a template specification T over linear arithmetic in-

equalities inside arbitrary boolean conjunctions and disjunctions. For the sake of

simplicity and without loss of generality, we assume that the template is expressed

in disjunctive normal form (DNF) and negations are at the innermost level, and can

therefore be encoded in the linear term by appropriate manipulations. In later chap-

ters, we will use a more expressive template, e.g., containing quantifiers (Chapter 3),

and even templates for control flow of programs (Chapter 4).

For the purposes of this chapter, a template specification consists of two el-

ements. The first is the boolean DNF structure, indicated by template(T ), and is

just a pair of integers (d, c) that indicate there are d disjuncts in the formula with c

conjuncts each. The second is the maximum size of constants represented in binary

format, indicated by bvsize(T ).

39



Example 2.1 Consider the template specification T with template(T ) = (3, 2) and

bvsize(T ) = 11 for a program with program variables x, y. In this case the general

form of invariants for this template specification is:

∨
j=1..3

(cj0 + cj1x+ cj3y ≥ 0) ∧ (cj4 + cj5x+ cj6y ≥ 0)

where the cj0..6’s are the constants in the jth disjunct and can represent integers

between −1024 and 1023 with a two’s complement representation using 11 bits.

2.2.3 Constraint solving

In this section we show how to solve the second-order constraint from Eq. 2.1

that represents the verification condition of unknown relations at cut-points. The

key idea is to reduce the second-order constraint into a boolean formula such that a

satisfying assignment to the formula maps to a satisfying assignment for the second-

order constraints. Throughout this section, we will illustrate the reductions for the

constraints in Figure 2.1(c).

For simple examples, fixed-point based techniques like abstract interpretation

can be used to discover the unknown invariants Iπ. Recently, for the case of conjunc-

tive invariants, use of Farkas’ Lemma has been proposed [62] to remove universal

quantifiers from the verification condition in Eq. 2.1 to yield a tractable system of

constraints. From basic linear programming we know:

Lemma 2.1 (Farkas’ Lemma [105, 237]) A satisfiable system of linear inequal-

ities ∧iei ≥ 0 implies an inequality e ≥ 0 if and only if there exists a non-negative

λ0 and λi’s such that λ0 +
∑

i λiei = e.
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The novelty of our constraint solving approach is three-fold. We first assume

invariant templates (possibly disjunctive) and then we reduce the program verifica-

tion condition (possibly involving disjunctions) to unsatisfiability constraints over

the parameters of the templates (Step 1). We restate and apply Farkas’ Lemma in

a form suitable for handling unsatisfiability constraints (Step 2). Instead of using

specialized mathematical solvers [62, 75], we use bit-vector modeling to reduce the

constraints to SAT formulae that can be solved using off-the-shelf SAT solvers (Step

3). Despite having disjunctive templates, the constraint formulae generated for pro-

gram verification are conjunctive. This will not be the case for more sophisticated

analyses, as we will see later.

Step 1 First, we convert second-order unknowns to first-order unknowns. Instead of

searching for a solution to unknown relations (which are second-order entities)

from an arbitrary domain, we restrict the search to a template that is some

boolean combination of linear inequalities among program variables. For ex-

ample, an unknown relation can have the template (
∑
i

aixi ≥ 0 ∧
∑
i

bixi ≥

0)∨ (
∑
i

cixi ≥ 0∧
∑
i

dixi ≥ 0), where ai, bi, ci, di are all unknown integer con-

stants and xi are the program variables. The template can either be provided

by the user (for example, by specifying the maximum number of conjuncts and

disjuncts in DNF representation of any unknown relation), or we can have an

iterative scheme in which we progressively increase the size of the template un-

til a solution is found. Given such templates, we replace the unknown relations

in the constraint in Eq. 2.1 by the templates and then apply any substitutions
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present in the verification condition, to obtain a first-order logic formula with

unknowns that range over integers.

For the example in Figure 2.1(a), a relevant invariant template is a1x+ a2y+

a3 ≥ 0 ∨ a4x + a5y + a6 ≥ 0, where the ai’s are (integer) unknowns to be

discovered. If the chosen domain for the template is not expressive enough then

the constraints will be unsatisfiable. On the other hand if there is redundancy

then redundant templates can always be instantiated with true or false as

required. This step of the reduction translates the verification condition in

Figure 2.1(c) with unknown I to unknowns ai’s, e.g. the first constraint in

Figure 2.1(c) after Step 1 is true⇒ (−50a1 +a2y+a3 ≥ 0)∨ (−50a4 +a5y+

a6 ≥ 0).

Step 2 Next, we translate first-order universal to first-order existential quantification

using Farkas’ Lemma (at the cost of doing away with some integral reasoning).

Farkas’ Lemma implies that a conjunction of linear inequalities ei ≥ 0 (with

integral coefficients) is unsatisfiable over reals iff some non-negative (integral)

linear combination of ei yields a negative quantity, i.e.,

∀X

(
¬(
∧
i

ei ≥ 0)

)
⇐⇒ ∃λ > 0, λi ≥ 0

[
∀X

(∑
i

λiei ≡ −λ

)]

The reverse direction of the above lemma is easy to see since it is not possible

for a non-negative linear combination of non-negative expressions ei to yield

a negative quantity. The forward direction also holds since the only way to

reason about linear inequalities over reals is to add them, multiply them by a

non-negative quantity, or add a non-negative quantity.
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The universal quantification in the right hand side of the above equivalence is

over a polynomial equality, and hence can be eliminated by equating the coef-

ficients of the program variables X on both sides of the polynomial equality.

We can convert any universally quantified linear arithmetic formula ∀X(φ) into

an existentially quantified formula using Farkas’ Lemma as follows. We convert

φ to conjunctive normal form
∧
i

φi, where each conjunct φi is a disjunction of

inequalities
∨
j

ej
i ≥ 0. Observe that ∀X(φ) =

∧
i

∀X(φi) and that φi can be

rewritten as ¬
∧
j

(−ej
i − 1 ≥ 0). Hence, Farkas’ Lemma, as stated above, can

be applied to each ∀X(φi).

We illustrate the application of this step over the first constraint from Fig-

ure 2.1(c), which we obtained after Step 1. After Step 1 we have true ⇒

e1 ≥ 0∨e2 ≥ 0 (where e1 ≡ −50a1+a2y+a3 ≥ 0 and e2 ≡ −50a4+a5y+a6 ≥ 0

as obtained earlier). After expanding the implication we get a constraint that

is already in CNF form, and therefore the corresponding unsatisfiability con-

straint is ¬((−e1 − 1 ≥ 0) ∧ (−e2 − 1 ≥ 0)). Farkas’ Lemma can now be

applied to yield ∃λ1, λ2 ≥ 0, λ > 0(∀x,yλ1(−e1 − 1) + λ2(−e2 − 1) ≡ −λ).

Now we can collect the coefficients for x, y to get a first-order existential con-

straint. Notice that λ1 (respectively λ2) is multiplied with the coefficients

inside e1 (respectively e2), and therefore this is a multi-linear quadratic con-

straint over integers. Equating the coefficients of x, y and the constant term

we get the constraints: (50a1λ1− a3λ1−λ1) + (50a4λ2− a6λ2−λ2) = −λ and

a2λ1 + a5λ2 = 0.
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Farkas’ Lemma applies to reals and its application leads to a loss of com-

pleteness as we do away with integral reasoning. For example, Farkas’ Lemma

cannot help us prove unsatisfiability of 3x ≥ 1 ∧ 2x ≤ 1 with x ranging over

integers. Farkas’ Lemma would check that there exist satisfying values for x,

namely 1
3
≤ x ≤ 1

2
. While there is a discrete version of Farkas’ Lemma [181],

it involves solving an explicit linear programming problem of fixed dimension,

and we find the added complexity too expensive. We find that this loss of

completeness in using the real version of Farkas’ Lemma is not a hindrance in

any of our examples.

Step 3 Next, we convert first-order existential (or quantifier-free) to SAT. The for-

mulas that we obtain from the above step are (multi-linear quadratic polyno-

mials) over integer variables. We convert these formulas into SAT formulas

by modeling integer variables as bit vectors and encode integer operations

like arithmetic, multiplication, and comparison as boolean operations over bit

vectors.

Properties of satisfiability-based invariant generation Our approach to constraint

solving is sound in the sense that any satisfying solution to the SAT formula yields a

valid proof of correctness. However, it is not complete, i.e., there might exist a valid

proof of correctness but the SAT formula might not be satisfiable. This is expected

since program verification in general is an undecidable problem, and no algorithm

can be both sound and complete. These properties are formalized by the following

theorem.
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Theorem 2.1 (Soundness and Relative Completeness) Let an inductive in-

variant exist that proves the program assertions, and let φT (vc) be the SAT formula

generated using Steps 1,2, and 3 over the verification condition vc using a template

specification T (defined in Section 2.2.2). Then, any satisfying solution to φT (vc)

corresponds to an inductive invariant (soundness), and φT (vc) is satisfiable (relative

completeness) as long as:

1. An inductive invariant exists as an instantiation of the template specification

T , i.e., we can get the invariant by instantiating the coefficients in template(T )

using integers representable using bit vectors of maximum size bvsize(T ).

2. Every implication in vc can be discharged without using properties of integers,

i.e., without integral reasoning.

Proof: From the soundness and completeness (up to termination) of verifica-

tion condition generation [92, 266] we know that if an inductive invariant exists,

it will be a solution to the verification condition vc constructed using Eq. 2.1.

We just need to ensure that φT (vc) has the same solutions, up to difference in

representation, as vc. We prove each direction in turn:

• Soundness If φT (vc) has a satisfying boolean solution, then from the soundness

of the bit-vector encoding in Step 3, we know that it corresponds to an integral

solution to the linear equations after Step 2. By Farkas’ Lemma, we know

that a satisfying solution to λ0, λi’s, and the invariants exists only if the vc

implications are satisfied when we substitute the invariant in them. Given
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that we have a satisfying solution it means that the solution is also a solution

to vc.

• Relative completeness If an inductive invariant exists then it has to be a so-

lution to vc. By assumption 1 above, the invariant is an instantiation of

template(T ). Therefore after the substitution in Step 1 the constraints have

the same set of satisfying solutions as vc. By Farkas’ Lemma, we know that

the integer constraints after Step 2 have a satisfying solution if vc has a sat-

isfying solution, i.e., the invariant. By assumption 2 above, we also know that

no property of integers over reals is required and consequently, Step 2 retains

all satisfying solutions. By assumption 1 above, we know that each integer

coefficient in the invariant can be represented using bvsize(T ) bits and con-

sequently the bit-vector encoding of Step 3 retains all solutions as well. (We

assume that the λ’s required are sufficiently small, i.e., their absolute values

are less than 2bvsize(T )−1, so that they can be encoded safely too. If this as-

sumption is not valid then they can be chosen to be of arbitrarily large size.)

Thus vc is satisfiable only if φT (vc) is satisfiable under the assumption 1 and

2 above.

�

We have found that the completeness assumptions do not hinder invariant in-

ference in practice. The right templates are easily found by iterative guessing, easily

mechanized if required, and most programs stick to reasoning that is equally valid

over reals as over integers. The real challenge instead lies in finding the satisfiability
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assignment for the SAT formula, for which the recent engineering advances in SAT

solvers seem to stand up to the task.

2.2.4 Choice of cut-set

The choice of a cut-set affects the precision and efficiency of our algorithm—

and in fact, of any other technique with similar objectives. We find that the choice of

a cut-set has significant bearing on expressivity but has been seriously under-studied.

A recent proposal [30] performs fixed-point computation on top of a constraint-based

technique to regain precision, which we claim was lost in the first place because of

a non-optimal choice of cut-set. In this section, we describe a strategy for choosing

a cut-set that strikes a good balance between precision and efficiency.

From the definition of a cut-set, we know that we need to include some program

locations from each loop into the cut-set. A simple choice for the cut-set includes all

header nodes (or targets of back-edges) as cut-points, and is the typical approach.

This cut-set, which we will refer to as Chead, necessitates searching/solving for un-

known relations over disjunctive relations when the proof of correctness involves a

disjunctive loop invariant. It is interesting to note that for several programs that

require disjunctive loop invariants, there is another choice for cut-set that requires

searching for unknown relations with fewer disjuncts, or even only conjunctive.

This expressive cut-set Cprecise that minimizes disjunctive relations corresponds

to choosing one cut-point on each disjoint path inside the loop. Notice that such

a choice may not correspond to any assignment of cut-points to syntactic program
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locations. Consider the case of multiple conditionals in sequence inside a loop, in

which case in the proof, which refers to the cut-points, we need to expand the con-

trol flow inside the loop. For example, two conditionals in sequence give rise to four

cut-points corresponding to the four disjoint paths, but only when the control flow

is expanded can these four points be identified. This cut-set leads to the greatest

precision in the following sense.

Theorem 2.2 (Best cut-set) Let Cprecise be a cut-set that includes a cut-point

on each acyclic path inside a loop (after expansion of control flow into disjoint

paths). For invariants within a given template specification T (with arbitrarily large

coefficients as required), if there exists a solution for some cut-set, then there exists

a solution for Cprecise.

Proof: Suppose there exists a solution to the relations (of a specified boolean

structure) in some cut-set C ′. We show that a solution will exist in the cut-set

Cprecise. Let pi be the disjoint paths inside the loop (for the cut-set Cprecise) and

p′i be the disjoint paths on which the unknown relations I ′i are found for cut-set

C ′. Notice that in C ′ there may be more than one cut-point on each path. As

mentioned earlier, for an acyclic path, a relation at any point on the path can be

easily translated to any other point, and therefore we ignore multiple relations

on the same path. Also, by the definition of a cut-set each path through the loop

has to have a cut-point.

We construct a solution to the relations in Cprecise as follows: For each disjoint

path pi which has a relation I ′i in C ′ we assign the relation I ′i. For paths pi and
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pj that are disjoint in Cprecise but treated as a single path pij with invariant I ′ij

in C ′ we assign the same relation I ′ij to both paths. It is trivial to see that this

invariant will be a valid one. Therefore, there exists a solution for the cut-set

Cprecise.

�

Furthermore, there are several examples that show that the reverse direction in

Theorem 2.2 is not true, i.e., for a given template structure for the unknown rela-

tions, there exists a solution with cut-set Cprecise but there is no solution with other

choices of cut-sets. This is illustrated by the example in Figure 2.2 and discussed

in Section 2.2.5.

While choosing Cprecise does give us the most expressivity for a given template

specification, it also inserts the most number of unknown relations, which can be

expensive to infer. The cut-set Chead is at the other end least expensive and least

expressive in this regard. Therefore we balance expressivity and expensiveness by

picking cut-sets between the two extremes of Cprecise and Chead, experimentally.

Experimental heuristic strategy for choosing cut-set If the loop body has few condi-

tionals in sequence, then we choose the strategy which has the best chance of yielding

a proof of correctness over a fixed unknown invariant template, as described in The-

orem 2.2. However, this scheme can be costly if the loop body has several sequential

conditionals since the number of acyclic paths inside the loop is exponential in the

number of sequential conditionals inside the loop. Hence, in such a case we choose
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PV1() {
1 x := 0; y := 0;
2 while (true) {
3 if (x ≤ 50)
4 y++;
5 else

6 y--;
7 if (y < 0)
8 break;

9 x++;
10 }
11 assert(x = 102)
}

Figure 2.2: Program verification example, from work on widening techniques by
Gopan and Reps [125], that requires a disjunctive invariant at the loop header. But
a clever choice of cut-set leads to conjunctive invariants.

multiple join points inside the loop, each separated by a few conditionals, as the

cut-points.

2.2.5 Examples

Consider the example shown in Figure 2.2. Let πi denote the program point

that immediately precedes the statement at line i in the program. The simplest

choice of cutpoint corresponds to the loop header at π2. The inductive invariant

that is needed, and is discovered by our tool, is the disjunction (0 ≤ x ≤ 51 ∧ x =

y)∨(x ≥ 51∧y ≥ 0∧x+y = 102). Typically programs work in phases [125] and the

disjunctions in the invariants have predicates from the conditionals that split the

phases. Notice that they are also syntactically differentiable in terms of the disjoint

paths inside the loop.

Conjunctive invariants are easier to discover, and we now show how such pro-

grams can be handled more efficiently by discovering a set of conjunctive invariants
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instead of a single disjunctive one. In particular, if the cut-set was chosen to be

{π4, π6} then the inductive invariant map is indeed conjunctive. Our algorithm dis-

covers the inductive invariant map {π4 7→ (y ≥ 0 ∧ x ≤ 50 ∧ x = y), π6 7→ (y ≥

0 ∧ x ≥ 50 ∧ x+ y = 102)}. We can verify that this invariant map is indeed induc-

tive. The interesting cases are for paths starting from π4 and ending at {π4, π6}. It

is trivial to verify the path that ends at the same location. The path from π4 to

π6 is non-trivial only for the case during the transition between the phases, which

happens when x = y = 50 at π4 and therefore x = y = 51 at π6. For this program

the meaningful paths starting from π6 only end at the same location because the

program does not alternate between phases. But if it did then a case similar to π4

would arise.

A wide variety of techniques based on fixed point computation and CFG elab-

oration [125, 30, 232] exist for the programs whose invariants lend themselves to

such partitioning, and therefore it is no surprise that they can be efficiently han-

dled using our cut-set optimization. We go further by not committing ourselves to

conjunctive invariants for the individual phases. If some phase of the program was

more complicated, possibly requiring disjunctions itself, then even the best choice of

the cut-set would leave some disjunctive invariants to be discovered. Our technique

is not constrained to handle just conjunctive invariants. Disjunctive invariants,

which are very difficult to discover using previous approaches, are easily found in

our framework.

The example in Figure 2.1(a) has no phases and no conditionals inside the loop,

and the only inductive invariant describing the loop, x < 0∨y > 0, is disjunctive and
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is discovered by our technique. Heuristic proposals for handling disjunction [232, 30]

will fail to efficiently discover invariants for such programs.

2.3 Interprocedural Analysis

The ω computation described in previous section is applicable only in an in-

traprocedural setting. In this section, we show how to extend our satisfiability-based

technique to precise (i.e., context-sensitive) interprocedural analysis.

Precise interprocedural analysis is challenging because the behavior of the pro-

cedures needs to be analyzed in a potentially unbounded number of calling contexts.

Procedure inlining is one way to do precise interprocedural analysis. However, there

are two problems with this approach. First, procedure inlining may not be possible

at all in presence of recursive procedures. Second, even if there are no recursive

procedures, procedure inlining may result in an exponential blowup of the program.

For example, if procedure P1 calls procedure P2 twice and procedure P2 calls proce-

dure P3 twice, then procedure inlining would result in four copies of procedure P3

inside procedure P1. In general, leaf procedures can be replicated an exponential

number of times.

A more standard way to do precise interprocedural analysis is to compute pro-

cedure summaries, which are relations between procedure inputs and outputs. More

specifically, these summaries are usually structured as sets of pre/postcondition pairs

(Ai, Bi), where Ai is some relation over procedure inputs and Bi is some relation

over procedure inputs and outputs. The pre/postcondition pair (Ai, Bi) denotes
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that whenever the procedure is invoked in a calling context that satisfies constraint

Ai, the procedure ensures that the outputs will satisfy the constraint Bi. However,

there is no automatic recipe to efficiently construct or even represent these procedure

summaries, and abstraction-specific techniques may be required. Data structures

and algorithms for representing and computing procedure summaries have been de-

scribed over the abstractions of linear constants [231] and linear equalities [204].

Recently, some heuristics have been described for the abstraction of linear inequal-

ities [238].

In this section, we show the satisfiability-based approach is particularly suited

to discovering such useful pre/postcondition (Ai, Bi) pairs. The key idea is to observe

that the desired behavior of most procedures can be captured by a small number

of such (unknown) pre/postcondition pairs. We then replace the procedure calls by

these unknown behaviors and assert that the procedure has such behaviors, as in

assume-guarantee style reasoning. Assume-guarantee reasoning has been used for

modular reasoning [159, 216] about components of a program under assumptions

that the components make about their environment. These assumptions are then

discharged when modularly reasoning about other components that use it.

For ease of presentation and without loss of generality, let us assume that a

procedure does not read/modify any global variables; instead all global variables

that are read by the procedure are passed in as inputs, and all global variables that

are modified by the procedure are returned as outputs. Our tool VS3
LIA does this

automatically and can handle globals seamlessly. We now describe the steps of our

interprocedural analysis algorithm.
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We first assume that there are q interesting calling contexts for procedure

P (~x){S; return ~y; } with the vector of formal arguments ~x and vector of return

values ~y. The value of q can be iteratively increased until invariants are found that

make the constraint system satisfiable. Then, we summarize the behavior of each

procedure using q tuples (Ai, Bi) for 1 ≤ i ≤ q, where Ai is some relation over

procedure inputs ~x, while Bi is some relation over procedure inputs and outputs ~x

and ~y. We assert that this is indeed the case by generating constraints for each i as

below and asserting their conjunction:

assume(Ai); S; assert(Bi) (2.2)

We compile away procedure calls ~v := P (~u) on any simple path by replacing them

with the following code fragment:

~v :=?; assume

(∧
i

(Ai[~u/~x] ⇒ Bi[~u/~x,~v/~y])

)
; (2.3)

The correctness of this encoding follows directly from the correctness of tabula-

tion-based procedure summary computation [73], i.e., summaries that explicitly

state an abstract relations on the inputs as output, as studied for dataflow analysis

over finite lattices [241], and even for some infinite domains [226]. In this section, we

have considered abstract, but explicit, pre- and postcondition facts, unlike some pre-

vious approaches [134, 271] that use symbolic constants to generalize the summaries.

The advantage of our approach here is that it is goal-oriented, and computes only

those facts in the summary that are required for the analysis of call locations. Such

a luxury was not afforded by previous dataflow approximation techniques, which

had to compute the most precise facts because they either analyzed in a forwards
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or backwards direction, but not both. We will revisit summary computation again

in Section 2.6 where we attempt to compute the most precise summaries possible.

Observe that in our approach, there is no need, in theory, to have q different

pre/postcondition pairs. In fact, the summary of a procedure can also be represented

as some formula φ(~x, ~y) (with arbitrary Boolean structure) that represents a relation

between procedure inputs ~x and outputs ~y. In such a case, we assert that φ indeed is

the summary of procedure P by generating constraint for {S; assert(φ(~x, ~y))}, and

we compile away a procedure call ~v := P (~u) by replacing it by the code fragment

~v :=?; assume(φ[~u/~x,~v/~y]).

However, in practice, our approach of maintaining symbolic pre/post pairs

(which is also inspired by the data structures used by the traditional fixed-point

computation algorithms) is more efficient since it enforces more structure on the

assume-guarantee proof and leads to fewer unknown quantities and simpler con-

straints. In particular, by assuming a template for Ai that is only in terms of the

procedure inputs, we ensure that the solver cannot prove ¬Ai at the beginning of

the procedure. (Otherwise along-with assume(Ai) in Equation (2.2) it could prove

false, and any arbitrary consequence Bi would follow.)

Optimization If there are a small number qsmall of static procedure calls, then we

can replace the ith procedure call ~v := P (~u) by

assert(Ai[~u/~x]);~v :=?; assume(Bi[~u/~x,~v/~y])

where 1 ≤ i ≤ qsmall. This approach is somewhat akin to inlining, as each ith calling

context’s behavior is encoded by a separate (Ai, Bi), while being able to handle
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IP1() {
x := 5; y := 3;
result := Add(x, y);
assert(result = 8);

}
Add(int i, j) {
if i ≤ 0

ret := j;
else

b := i− 1;
c := j + 1;
ret := Add(b, c);

return ret;

}

IP2() {
result :=M(19)+M(119);

assert(result = 200);
}
M(int n) {
if(n > 100)

return n− 10;
else

return M(M(n+ 11));
}

(a) (b)

Figure 2.3: Interprocedural analysis examples (a) taken from previous approaches to
summary computation [238, 205] (b) McCarthy 91 function [193, 192, 189] requires
multiple summaries.

recursion (if the recursive call can be succinctly described using some (Ak, Bk)).

Also, note that there is loss of context-sensitivity in this approach, as syntactic

call locations are assumed to be describable using a single summary. For instance,

consider a call inside a loop whose behavior is dependent on the loop iterator. This

optimization will fail to verify such behavior, while the unoptimized encoding will

work. So while this approach may be more efficient for certain cases, in general, we

do not use it.

Examples Consider the example shown in Figure 2.3(a). Our algorithm verifies the

assertion by generating the summary i ≥ 0 ⇒ ret = i + j for procedure Add. This

example illustrates that only relevant summaries are computed for each procedure.

In addition to serving as the base case of the recursion the true branch of the

condition inside Add has the concrete effect i < 0 ⇒ ret = j. But this behavior
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is not needed to prove any assertion in the program and is therefore automatically

suppressed (in that the tool proves the assertions without it) by our goal-oriented

summary computation. This example illustrates that our tool finds any summary,

not necessarily the weakest, for a procedure that is useful for proving program

assertions.

The procedure M(int n) in Figure 2.3(b) is the McCarthy91 function—proposed

by McCarthy, Manna and Pnueli [192, 193, 191] as a challenge problem in re-

cursive program verification—which can be precisely described by the summaries

n > 100 ⇒ ret = n − 10 and n ≤ 100 ⇒ ret = 91. The function has often been

used as a benchmark test for automated program verification. The goal-directed na-

ture of the verification problem allows our analyzer to derive n = 119 ⇒ ret = n−10

and n ≤ 100 ⇒ ret = 91 as the summary, which proves the program assertion. As

such, the tool discovers only as much as is required for the proof. For the summary

with the antecedent n ≤ 100 no such simplification exists, and the tool discovers

the most precise consequence such that the invariant is inductive.

Consider the example shown in Figure 2.4(a). The assertion in the program

needs to be verified for timing/bounds analysis of the quicksort procedure (Sec-

tion 2.7.1). G is a global variable that is incremented every time the function is

called. For each procedure call, Gin and Gout refer to the value of the global before

and after the procedure call, respectively. Our algorithm generates the summary

l − r ≤ 1 ⇒ Gout −Gin ≤ 2(r − l) + 3 for the procedure QSort.

Consider the example shown in Figure 2.4(b), which contains a potential in-

finite recursive call inside F, and also swaps the value stored in y2 and y3 between
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int G;
IP3(int n) {
assume(n ≥ 1);
G := 0;
QSort(0, n);
assert(G ≤ 2n+ 3);

}
QSort(int l, r) {
G++;
if (r > l)

assume(l ≤ m ≤ r);
QSort(l,m− 1);
QSort(m+ 1, r);

}

IP4(int x1, x2) {
x3 := 3× x2 − 2;
x1 := F (x1, x2, x3);
assert(x1 = 3x2 − 2);

}
F(int y1, y2, y3) {
if (*)

ret := 3× y2 − 2;
else

ret := F (y1, y3, y2);
return ret;

}

(a) (b)

Figure 2.4: Context-sensitive interprocedural analysis examples (a) over recursive
functions [238] and (b) possibly non-terminating function [205].

calls. Thus an iterative refinement scheme that recursively analyses sub-procedures

may not terminate. On the other hand, our algorithm verifies that if the procedure

terminates, then it output values that satisfy the program assertions. (If the pro-

cedure does not terminate then the assertion is trivially satisfied.) Our tool VS3
LIA

generates the summary y3 = 3y2 − 2 ⇒ ret = y3 for procedure F which verifies the

assertion.

Corollary 2.1 If there exist q summaries (Ai, Bi)i=1..q with which the assertions in

the program are verified, then our encoding generates a SAT instance whose solution

corresponds to the q summaries.

Proof: The proof is a direct consequence of the soundness of our constraint

encoding (Theorem 2.1) and the soundness of our interprocedural tabulation-

based summary computation [73, 241, 226].

�
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2.4 Maximally weak Precondition

Given a program along with some assertions, the problem of weakest precondi-

tion generation is to infer the weakest precondition Iπentry
that ensures that whenever

the program is run in a state that satisfies Iπentry
, the assertions in the program hold.

In Section 2.7 we show that a solution to this problem will be a powerful tool for a

wide range of applications.

In this section, we present a satisfiability-based approach for inferring an ap-

proximation to weakest preconditions under a given template. Since a precise so-

lution to this problem is undecidable, we work with a relaxed notion of weakest

precondition, namely maximally weak precondition. For a given template structure

T (as described in Section 2.2.3 for invariants), we say that A is a maximally weak

precondition if A is an instantiation of T , and there is no valid precondition proving

the program assertions that is comparable to and weaker than A within the same

template.

The first step to a satisfiability-based approach to maximally weak precondi-

tions is to treat the precondition Iπentry
as an unknown relation in Eq. 2.1. This is

unlike program verification, where we set Iπentry
to be true. However, this change

merely encodes that any consistent assignment to Iπentry
is a valid precondition, not

necessarily the weakest or maximally weak one. In fact, when we run our tool with

this change, it returns false, which is always a valid precondition, as a solution for

Iπentry
.

One approach to finding the maximally weak precondition may be to search
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for a precondition that is strictly weaker than the current solution (by adding a

weakness constraint to Eq. 2.1) and to iterate until no such precondition exists.

However, in practice this approach make slow progress. For Figure 2.5(a), which

we discuss below, this technique iteratively produced i ≥ j + 127, i ≥ j + 126, . . . ,

i ≥ j as preconditions, under a modeling that used 8-bit two’s-complement integers.

In general this näıve iterative technique will be infeasible. We need to augment the

constraint system to encode the notion of a maximally weak relation.

We can encode that Iπentry
is a maximally weak precondition as follows. The

verification condition in Eq. 2.1 can be regarded as function of two arguments Iπentry

and Ir, where Ir denotes the relations at all cut-points except at the program entry

location, and can thus be written as ∀X.φ(Iπentry
, Ir). Now, for any other relation

I ′ that is strictly weaker than Iπentry
, it should be the case that I ′ is not a valid

precondition. This can be stated as the following constraint.

∀X.φ(Iπentry
, Ir) ∧

∀I ′, I ′r
(
weaker(Iπentry

, I ′) ⇒ ¬∀X.φ(I ′, I ′r)
)

where weaker(Iπentry
, I ′)

def
= (∀X.(Iπentry

⇒ I ′) ∧ ∃X.(I ′ ∧ ¬Iπentry
)).

The trick of using Farkas’ Lemma to get rid of universal quantification (Step

2 in Section 2.2.3) cannot be applied here because there is existential quantification

nested inside universal quantification. We now consider examples of maximally weak

preconditions that we expect to—and indeed do—infer. In the following section we

will describe our novel iterative approach to maximally weak precondition inference.
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WP1(int i, j) {
x := y := 0;
while (x ≤ 100) {

x := x+ i;
y := y + j;

}
assert(x ≥ y)

}

Merge(int m1,m2,m3) {
assert(m1,m2 ≥ 0)
k := i := 0;
while (i < m1) {

assert(0 ≤ k < m3)
A[k++] = B[i++];

}
i := 0;
while (i < m2) {

assert(0 ≤ k < m3)
A[k++] = C[i++];

}
}

(a) (b)

Figure 2.5: Maximally weak precondition examples.

Examples For the procedure in Figure 2.5(a), our algorithm generates two different

preconditions that individually ensure that the program assertion holds: (i) (i ≥ j)

ensures that if the loop terminates then x ≥ y, and (ii) (i ≤ 0) ensures that the loop

never terminates making the assertion unreachable and therefore trivially true.

Notice how each of these preconditions is maximally weak by themselves. For

instance, while i ≥ j is a valid precondition, i ≥ j − 1, which is strictly weaker, is

not. Additionally, i ≥ j and i ≤ 0 are incomparable to each other. The true weakest

precondition is the disjunction of all incomparable maximally weak preconditions.

Figure 2.5(b) shows an array merge function that is called to merge two arrays

B and C of sizes m1 and m2, respectively, into a third one A of size m3. The

program is correct if no invalid array accesses are made (stated as the assertions

inside the loops) when it is run in an environment where the input arrays are proper

(m1,m2 ≥ 0). Our algorithm generates maximally weak preconditionsm3 ≥ m1+m2

and m1 = 0 ∧m2 = 0—which are orthogonal to each other.
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Notice that we have specified m1,m2 ≥ 0 as an assertion instead of an as-

sumption. This is required because otherwise the tool generates preconditions (e.g.,

m1 < 0) that, along with the assumption, imply false at the beginning of the

procedure. To circumvent these trivial cases we need to ensure that all our required

assumes appear in the generated precondition, which occurs if they are asserted.

2.4.1 Locally pointwise-weakest strategy

For simplicity of presentation, we assume that each non-trivial maximal strongly

connected component in the control flow graph has exactly one cut-point—an as-

sumption that can also be ensured by simple transformations2. However, the results

in this section can be extended to the general setting without this assumption.

Towards a technique for maximally weak preconditions, we define two charac-

terizations of relations. First is a pointwise-weakest relation that connects a relation

to relations “spatially” adjacent to it in the control flow graph. The second is a lo-

cally pointwise-weakest relation that connects a relation to relations “semantically”

adjacent to it in the proof lattice. The notion of nearby relations is in different realms

for pointwise-weakest and for locally pointwise-weakest. For pointwise-weakest, the

2First, merge the targets of back-edges of each maximally strongly-connected component and

introduce a special control variable to direct the control flow appropriately. This ensures that it

is appropriate to choose the target of the new back-edge as the only cut-point for the entire SCC.

Second, map the templates at the original choice of cut-points in the original strongly connected

component to one new template at the target of the new single back-edge using backward symbolic

execution.
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concept of a neighboring relation is a relation at a neighboring, specifically successor,

cut-point in the control flow graph. On the other hand, for locally pointwise-weakest,

it is the neighbors in a poset lattice ordered by the implication relation.

Definition 2.1 (Pointwise-weakest relations) A relation I at any cut-point is

pointwise-weakest if it is a weakest relation that is consistent with respect to the

relations at its successor cut-points.

Pointwise-weakest relations ensure that when going from one cut-point to an-

other the relations are as maximally weak as possible. Next, we define a notion of

weakness with respect to the proof lattice and which ensures that we always consider

the weakest relation amongst relations in the “proof neighborhood” of each other.

Later, we define a suitable neighborhood N in the lattice of linear relations.

Definition 2.2 (Locally pointwise-weakest relations) A relation I is a locally

pointwise-weakest with respect to a neighborhood N if it is a weakest relation among

its neighbors that is consistent with respect to the relations at its neighboring—

successor—cut-points.

Our technique for maximally weak preconditions will consist of reducing the

problem to finding pointwise-weakest relations, which will in turn reduce to finding

locally pointwise-weakest relations. Pointwise weakest relations ensure that (spatial)

neighbors are optimally assigned, while locally pointwise-weakest relations ensure

that the values at each cut-point are the (semantically) weakest. First, the weakest

precondition can be derived from pointwise-weakest relations at each cut-point in
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...

Iπentry

I1
I2

In

I3

S1

S2
S3

Figure 2.6: Maximally weak preconditions as pointwise-weakest relations.

reverse topological order of the control dependences between different cut-points.

Note that since we assume that each maximal SCC has at most one cut-point,

there are no cyclic control dependencies between different cut-points. Second, a

pointwise-weakest relation can be derived from locally pointwise-weakest relation

and repeating the process to obtain a weaker locally pointwise-weakest relation if

one exists. Intuitively, this second iteration steps through local minimas to reach

the global minima.

Theorem 2.3 (Maximally weak preconditions) A precondition is maximally

weak if it is a pointwise-weakest relation at the program entry point, and every

other relation in the program is also pointwise-weakest.

Proof: Suppose otherwise that a precondition Iπentry
is not maximally weak

while it is the case that all relations, including the precondition, are pointwise-

weakest. Since Iπentry
is not maximally weak, we can construct another I ′ such

that it is comparable and strictly weaker than it, i.e., weaker(Iπentry
, I ′) holds.

Consider the set of relation {Ii}i=1..n at the successor cut-points to the precondi-

tion. Figure 2.6 shows the scenario. We know from Iπentry
being pointwise-weakest

that Iπentry
is the weakest fact that satisfies Iπentry

⇒ X for all X ∈ {Ii[Si]}. Since
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I ′ is weaker that Iπentry
it implies that some X is weaker, and the corresponding

Ii is weaker (since Si remain identical). Since the original intermediate relations

were pointwise-weakest, now at least one of the successors of Ii will have to be

correspondingly weaker. Transitively, at least one relation will be required to

be weaker, that is also a user provided assertion—which cannot be weaker than

specified, hence a contradiction.

�

We now define the proof neighborhood that Definition 2.2 uses.

Definition 2.3 (Neighborhood Structure Nc) We define a set of relations that

are in the neighborhood Nc of a conjunctive relation (in which, without loss of gener-

ality, all inequalities are independent of each other), with c being the largest constant

we allow, as follows:

Nc(
∧
i

ei ≥ 0) = {ej + 1
c
≥ 0 ∧

∧
i6=j

ei ≥ 0 | j} ∪

{ej + 1
c
e` ≥ 0 ∧

∧
i6=j

ei ≥ 0 | j 6= `}
(2.4)

Neighborhood structure is computable Notice how a neighborhood structure helps

template-based invariant inference by ensuring that Nc is computable even for un-

known (template) relations. The unknown relations ej are of a template form

cj,0 + cj,1x + cj,2y + cj,3z . . ≥ 0, where cj,i’s are constant coefficients less than c,

and x, y, z are program variables. Then each term in the set comprehensions in

Eq. (2.4) can be obtained as another linear relation, with appropriate unknown

linear coefficients obtained by collecting terms. For example, ej + 1
c
el is another
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linear relation with combinations of the coefficients of ej and el and expands to

(cj,0 + 1
c
cl,0) + (cj,1 + 1

c
cl,1)x+ (cj,2 + 1

c
cl,2)y + (cj,3 + 1

c
cl,3)z . . ≥ 0.

Geometric Interpretation The neighborhood structure Nc has a nice geometric in-

terpretation. The neighbors of a convex region
∧
i

ei ≥ 0 are obtained by slightly

moving any of the hyper-planes ej ≥ 0 parallel to itself, or by slightly rotating any

of the hyper-planes ej ≥ 0 along its intersection with any other hyper-plane e` ≥ 0.

We extend the neighborhood structure to relations in DNF form (in which,

without loss of generality, all disjuncts are disjoint with each other) as:

Nc(
∨
i

Ii) = {I ′j ∨
∨
i6=j

Ii | I ′j ∈ Nc(Ij)}

Intuitively, Nc(I) defines the set of all immediate weaker neighbors of I in the poset

of all linear arithmetic formulas involving constants less than c and ordered by

implication. This is formalized by the the following lemma:

Lemma 2.2 (Nc = Immediately weaker neighbors) For all relations I ′ that are

weaker than I, there is some relation I ′′ ∈ Nc(I) such that I ⇒ I ′′ ⇒ I ′.

The proof of the this lemma is given in Appendix A, Section A.1, and is used

to subsequently prove the following theorem:

Theorem 2.4 Let π be a program point that does not lie inside any loop. Then,

any locally pointwise-weakest relation (with respect to the neighborhood structure Nc)

at π is also a pointwise-weakest relation at π.

Theorem 2.4 tells us that pointwise-weakest relations may be directly obtained

from locally pointwise-weakest relations for the case of program points outside of
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Swap(int x) {
while (∗)

if (x = 1)
x := 2;

else if (x = 2)
x := 1;

assert(x ≤ 8);
}

Figure 2.7: Illustrating the need for iteration in maximally weak precondition infer-
ence. Example that has two local minima x < 1 and x ≤ 8 of which only the latter
is the maximally weak precondition.

loops. However, for a program point π inside a loop, a locally pointwise-weakest

relation may not be a pointwise-weakest relation, as we illustrate by the following

example.

Example 2.2 Let c be the maximum constant allowed in the system. Then in Fig-

ure 2.8(a) the locally pointwise-weakest relation x ≤ 1− 1
c

is not pointwise-weakest.

Of the relations expressible in the system, the closest weaker relation (x ≤ 1) is not

consistent, and therefore x ≤ 1 − 1
c

is locally pointwise-weakest but not pointwise-

weakest, as indicated by the the presence of x ≤ 8. Notice that other relations,

e.g., x ≤ 3, are not locally pointwise-weakest, since their neighborhood contains a

consistent relation x ≤ 3 + 1
c
.

Computing maximally weak preconditions in practice In practice, we need to com-

pute maximally weak preconditions for programs that have loops in addition to

straight-line fragments. So while Theorem 2.4 allows precise derivation of maxi-

mally weak relations for loop free fragments, we may need to iterate over the locally

pointwise-weakest relations inside loops. Notice that by ensuring we stick to locally

pointwise-weakest relation, in each iteration we will make the largest step to the
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next point of discontinuity. For instance, for Example 2.2, we will take at most two

steps in the iterations, in stepping from x < 1 to the final solutions x ≤ 8. Since

the solver’s decision is not directed by approximate refinement, it may be the case

that it outputs the pointwise-weakest relation in the first iteration, terminating in

fewer steps.

Notice that even for cases where the pointwise-weakest relations are discov-

ered without iteration, it is instructive to ask the solve for additional (orthogonal)

solutions to ensure that the resulting precondition is as close to the weakest pre-

condition as possible. For instance, suppose the weakest precondition is Ī ∨ I1 ∨ I2,

and suppose Ī is not expressible in the template while I1 and I2 are. Also, let I1

and I2 be orthogonal to each other. In this case, we may get I1 directly, or through

iterations over locally pointwise-weakest to eventually get the pointwise-weakest, if

a loop is involved. We would still prefer to iterate to get other orthogonal solutions.

The solve will be able to generate I2 and subsequently claim that no other solutions

are in the template. At that point we will output I1 ∨ I2 as the approximation to

the weakest precondition.

2.5 Maximally strong Postcondition

Given a program with a precondition, typically true, the problem of strongest

postcondition inference is to generate the most precise invariants at all, or a given

set of, cut-points. Typically, we are interested in the strongest postcondition Iπexit
at

the program exit. Just as in the weakest precondition case, we work with a relaxed
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notion of strongest postcondition, namely maximally strong postconditions. For a

given template structure T (as described in Section 2.2.3 for invariants) we say that

A is a maximally strong postcondition if A is an instantiation of T , and there is no

postcondition comparable to, and stronger than, A within template T .

We can encode that Iπexit
is a maximally strong postcondition as follows. The

verification condition in Eq. 2.1 can be regarded as function of two arguments Iπexit

and Ir, where Ir denote the relations at all cut-points except at the program exit

location, and can thus be written as ∀X.φ(Iπexit
, Ir). Now, for any other relation

I ′ that is strictly stronger than Iπexit
, it should not be the case that I ′ is a valid

postcondition. This can be stated as the following constraint.

∀X.φ(Iπexit
, Ir) ∧

∀I ′, I ′r (stronger(Iπexit
, I ′) ⇒ ¬∀X.φ(I ′, I ′r))

where stronger(Iπexit
, I ′)

def
= (∀X.(I ′ ⇒ Iπexit

) ∧ ∃X.(¬I ′ ∧ Iπexit
)).

Our technique for generating maximally strong postcondition is very similar

to the maximally weak precondition technique described in Section 2.4. The key

idea is to replace occurrences of constant c in the locally pointwise-weakest strategy

(Eq. 2.4) for maximally weak precondition by −c to obtain corresponding strategies

for generating maximally strong postconditions. The corresponding neighborhood

structure is defined to be:

Nc(
∧
i

ei ≥ 0) = {ej − 1
c
≥ 0 ∧

∧
i6=j

ei ≥ 0 | j} ∪

{ej − 1
c
e` ≥ 0 ∧

∧
i6=j

ei ≥ 0 | j 6= `}
(2.5)
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SP2() {
d := t := s := 0;
while(1)

if (*)

t++; s := 0;
else if (*)

if (s < 5)
d++; s++;

}

Figure 2.8: Maximally strong postcondition examples taken from sophisticated
widening approaches [125, 126].

Examples To infer the maximally strong postconditions for the example in Fig-

ure 2.2 we remove the assertion on line 11 and for generality abstract away the

constant (50) as m. Our algorithm generates the postcondition x = 2m+ 2.

For the procedure in Figure 2.8, our algorithm generates two orthogonal so-

lutions in two iterations: s + d + t ≥ 0 and d ≤ s + 5t. Iteratively solving for

additional solutions allows us to generate such orthogonal solutions. In each subse-

quent iteration we augment the original formula with a constraint that ensures the

orthogonality of new solutions with respect to already generated ones.

2.6 Specification Inference = Interprocedural +

maximally weak preconditions + maximally

strong postconditions

With a maximally weak precondition and maximally strong postcondition in-

ference technique at hand, we now revisit the interprocedural analysis from Sec-

tion 2.3 to define specification inference as augmented summary computation. Given
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a procedure P , a summary3 set {(Ai, Bi)}1≤i≤q is called precise and concise as follows

(formalization of the informal definition proposed earlier [271]):

Definition 2.4 (Precise and concise summaries) S = {(Ai, Bi)}1≤i≤q, a sum-

mary set for P , is

• Precise if for any valid summary (A′, B′) for P there exists some (Ak, Bk) ∈ S

such that A′ ⇒ Ak and A′ ⇒ (Bk ⇒ B′)4. That is, for every valid summary

there exists a summary in S that is at least as good (weaker in the assumptions

and stronger in the assurance).

• Concise if for any (A′, B′) that satisfies Ak ⇒ A′ ∧A′ 6⇒ Ak and Ak ⇒ (B′ ⇒

Bk) for some (Ak, Bk) ∈ S, it is the case that (A′, B′) is not a valid summary

for P . Similarly, if Ak ⇒ A′ and Ak ⇒ (B′ ⇒ Bk ∧ Bk 6⇒ B′) for some

(Ak, Bk) ∈ S, it is the case that (A′, B′) is not a valid summary for P . That

is, any summary that is strictly better (either strictly weaker in the assumption

or strictly stronger in the assurance) than some summary in S is not a valid

summary.

Example 2.3 Consider the simple program P (x, y){r := 0; while(x > y){r :=

r + 1;x := x − 1}; return r; Then a concise and precise summary set is {(x ≥

y, ret = x− y), (x < y, ret = 0)}.
3As noted before, it is entirely a matter of efficiency that we treat the summary as a pair.

(A,B) may very well be treated as a single formula—with a better summary being the one that is

stronger.
4Notice that the check on the assurance, i.e., B1 ⇒ B2, is made under the current context, i.e.,

A, and hence the extra assumption, i.e., A ⇒ (B1 ⇒ B2).
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A summary set that is precise and concise is correspondingly relevant and

efficient. It is relevant because analyzing a call location ~v := P (~u) using a precise

summary yields the same outcome as with any other valid summary. It is efficient

because a concise summary does not contain any redundant facts. For example,

for the case of conjunctive pre- and postconditions in summary (A,B), removing

any (independent) conjunct from A, and correspondingly adding any (non-implied)

conjunct to B, invalidates the summary. If we can generate concise summaries then

they can be extended by iteratively enumerating them to get a precise summary set.

The notion of a concise summary is essentially a combination of maximally weak

preconditions and maximally strong postconditions.

We can encode that (Iπentry
, Iπexit

) is a concise summary as follows. The ver-

ification condition in Eq. 2.1 can now be regarded as function of three arguments

Iπentry
, Iπexit

and Ir, where Ir denote the relations at all cut-points except at the

program entry and exit locations, and can thus be written as ∀X.φ(Iπentry
, Iπexit

, Ir).

Now, for any other relation I ′πentry
that is strictly weaker than Iπentry

, it should not be

the case that I ′πentry
is a valid precondition, for a fixed Iπexit

. Similarly, for any other

relation I ′πexit
that is strictly stronger than Iπexit

, it should not be the case that I ′πexit

is a valid postcondition, for any fixed Iπentry
. This can be stated as the following

constraint.

∀X.φ(Iπentry
, Iπexit

, Ir)

∧ ∀I ′πentry
, I ′r

(
weaker(Iπentry

, I ′πentry
) ⇒ ¬∀X.φ(I ′πentry

, Iπexit
, I ′r)

)
∧ ∀I ′πexit

, I ′r
(
stronger(Iπexit

, I ′πexit
) ⇒ ¬∀X.φ(Iπentry

, I ′πexit
, I ′r)

)
72



where as before,

weaker(Iπentry
, I ′πentry

)
def
= (∀X.(Iπentry

⇒ I ′πentry
) ∧ ∃X.(I ′πentry

∧ ¬Iπentry
))

stronger(Iπexit
, I ′πexit

)
def
= (∀X.(I ′πexit

⇒ Iπexit
) ∧ ∃X.(¬I ′πexit

∧ Iπexit
))

As before, for maximally weak/strong relations, we cannot directly encode

this formula as a SAT instance because of the nested quantification. The situation

is additionally complicated because we do not have any assertions (for which we

computed the maximally weak preconditions) or any preconditions (for which we

computed the maximally strong postconditions) to propagate. In fact, there will be

potentially infinite families of summaries that are individually concise, yet incompa-

rable: Intuitively, given a concise summary (A,B), if we use a weaker precondition

A′ instead of A, then it may be possible to derive another B′ that is weaker than

B such that (A′, B′) is a valid concise summary. Note that (A,B) and (A′, B′) are

incomparable.

Example 2.4 Consider the simple program:

P (x, y){if(x ≤ y) then fail; else return x− y; }

Suppose the template only permits a single linear inequality. Then one concise sum-

mary is (x > y, ret > x− y), but so is (x > y + 10, ret > x− y + 10). Notice that

the summaries are incomparable.

Parameterized summaries To express a family of summaries, we discuss the notion

of a parametrized summary. Notice that the free variables in a standard summary
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(A,B) are the formal parameters of the function for A and additionally the return

variables for B. In a parametrized summary we also allow a set of free variables

that take integral values. Therefore for a function with input x and return value

ret, instead of a summary (x > 2, ret > 3) we may have a parametrized summary

(x > c, ret > c + 1), where c is the additional free variable representing an arbi-

trary constant. Notice that this allows us to specify an infinite family of summaries,

since the new variables are implicitly universally quantified over the domain of inte-

gers. Such symbolic summaries have appeared in previous proposals [134, 271] for

interprocedural analysis as well.

Parameterized summaries for loop-free programs Parameterized summaries may

be trivially obtained for loop-free programs by symbolically executing [165, 120]

all paths through a loop free program. Symbolic execution consists of treating the

input parameters as symbolic unknowns and then running an interpreter over the

program. The interpreter makes calls to a theorem prover when it needs to decide

which branch of a conditional to take, and if both branches are feasible given the

symbolic constraints then it branches to explore both paths. Summaries generated

using symbolic execution may be aggregated by combining pre- and postconditions,

if possible. Two summaries can be combined without loss of information, if a new

summary can be found that is weaker (respectively, stronger) than both the original

summaries in the precondition (respectively, postcondition). In fact, this process

can also approximate summary computation for certain well-behaved loops, as has

been proposed in the past [12]. Notice that this process will not yield concise
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summaries by itself, as the input preconditions are constrained to be of the form

~x = ~α, i.e., a vector of equalities, where ~α are the initial symbolic values for the

formals ~x. Thus, the summaries will not be concise unless a complicated semantic

merging step is used for postprocessing. For example, for a program P (x, y){if(x >

y) then return 2 ∗ x − y; else {if(x = y) return y; else fail; }} symbolic

execution will generate two summaries (x > y, ret = 2x− y) and (x = y, ret = y),

both of which are not concise as their exists a single concise summary (x ≥ y, 2x−y)

that is better than them.

Concise parameterized summaries for programs with loops For programs with loops

that cannot be approximated using symbolic execution, it may be possible to use

an encoding similar to our maximally weak and maximally strong local encodings

to generate conciseness constraints.

The key to generating parametrized summaries is to treat the input precon-

dition Iπentry
and output postcondition Iπexit

as unknowns (as before), but to write

the output relation’s coefficient as a function of the input coefficients. For instance,

if Iπentry
is of the form C0 + C1x+ C2y . . ≥ 0 then the output relation has the form

D0 +D1x+D2y . . ≥ 0, but where each Di is a function of the Ci’s, i.e., each Di is

ci0 + ci1C1 + ci2C2 + . . ≥ 0, where cij are the coefficients that the system infers values

for. Essentially we are treating the input coefficients Ci’s as variables in their own

right (thus implicitly universally quantifying them), and the output coefficient Di’s

as being a function of the input coefficients.

We then assert that Iπentry
is locally pointwise-weakest and Iπexit

is locally
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pointwise-strongest. This ensures the (local) conciseness of the summary at the

endpoints. Additionally, we need to ensure that the endpoints are consistently

connected to each other through intermediate relations for which we assert locally

pointwise-weakest/strongest constraints on the intermediate relations. (We conjec-

ture, but have not proven that because of symmetry in this case, that asserting lo-

cally pointwise-weakest has the same effect as asserting locally pointwise-strongest.

Therefore we can assert either.) Locally pointwise-weakest/strongest constraints

ensure that intermediate facts are extremal. Lastly, we iterate to ensure that each

summary computed is concise, and additionally once a concise summary is obtained

we assert its negation and iterate to compute a summary set that is also precise.

Notice that this encoding will result in quadratic terms, i.e., quadratic in

the variables that are universally quantified, which now includes the Ci’s, in the

resulting formula. We employ a trick of renaming each quadratic term a ∗ b to

a new variable a b to get a constraint system that is linear. This translation is

sound but incomplete as it ignores correlations between variables that represent

quadratic terms. For example, it may find a constraint system unsatisfiable that

relies on implications such as a = b ⇒ a ∗ a = b ∗ b. While it is incomplete

we have found that most programs require little quadratic reasoning, and missing

facts can be manually assumed if required, e.g., for the previous example, adding

assume(a = b ⇒ a a = b b) at appropriate locations would suffice. We discuss this

translation more in Chapter 6.2.2.2.
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2.7 Applications

In earlier sections, we have described satisfiability-based techniques for verifi-

cation of safety properties. In this section, we show how to apply those techniques

for finding counterexamples to safety properties, verification of termination (an in-

stance of a liveness property), and finding counterexamples to termination.

2.7.1 Termination and Bounds Analysis

The termination problem involves checking whether the given procedure ter-

minates under all inputs. In this section, we show how to use the satisfiability-based

approach to solve a harder problem, namely bounds analysis. The problem of bounds

analysis is to find a worst-case bound on the running time of a procedure, say in

terms of the number of instructions executed, as a function its inputs.

We build on earlier techniques that reduce the bounds analysis problem to

discovering invariants of a specific kind [135, 138]. We compute bounds on loop

iterations and the number of recursive procedure call invocations. Each of these

can be bounded by appropriately instrumenting counter variables and estimating

bounds on counter variables. We instrument loops “while c do S” by adding a

counter i to get “i := 0; while c do { i++; S; }”. The number of loop iterations

are then bounded by computing an upper bound on the value of i. We instrument

recursive procedures “P (x) { S }” by adding a counter i to get “P (x) { i := 0;P ′(x);

}; P ′(x′) { i++; S[x′/x]; }”. the number of invocations of the procedure are then

bounded by computing an upper bound of the value of the global variable i.
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Claim 2.1 Let P be a given program. Let P ′ be the transformed program obtained

after instrumenting counters that keep track of loop iterations and recursive call

invocations and introducing partial assertions that the counters are bounded above

by some function of the inputs. The program P terminates iff the assert statements

in P ′ are satisfied.

Invariant generation tools based on abstract interpretation have been proposed

for computing bounds on the counter variables [138, 135]. We show instead that

a satisfiability-based approach is particularly suited for discovering these invariants

since they have a specified form and involve linear arithmetic. We introduce assert

statements with templates i <
∑

k akxk (at the instrumented site i++ for loops

and at the end of the procedure for recursive procedures) for bounding the counter

value. Observe that the bounds templates that we have introduced are linear. In-

strumentation can be used to compute non-linear bounds as a composition of linear

bounds on multiple counters [138, 135].

Additionally, the satisfiability-based approach solves an even harder problem,

namely inferring preconditions under which the procedure terminates and inferring

a bound under that precondition. For this, we introduce the bound templates on

instrumented counter variables as described above and infer maximally weak pre-

conditions. This is significant for procedures that only terminate under certain

preconditions and not for all inputs. We are not aware of any other technique that

can compute such conditional bounds.
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Loop(int n, m) {
x := x0; y := y0;

while (x < y)
x := x+ n;
y := y +m;

}

Loop(int n, m) {
x := x0; y := y0; i := 0;
while (x < y)

i++;
x := x+ n;
y := y +m;

}
Original Program Instrumented Program

Figure 2.9: Discovering maximally weak preconditions for termination.

Fib(int n) {
if(n = 0)

return 1;

else

return Fib(n− 1);
}

Fib(int n) {
i := 0
return Fib′(n)

}
Fib′(int n′) {
i++;
if(n′ = 0)

return 1;

else

return Fib′(n′ − 1);
}

Original Program Instrumented Program

Figure 2.10: Termination in the presence of recursion

Example In Figure 2.9 we compute three relations: the maximally weak precondi-

tion at the beginning of the procedure, the bound on the instrumentation counter at

the counter increment site, and the loop invariant at the header. Our tool computes

the precondition n ≥ m+ 1 and the bound y0 − x0. The latter requires discovering

the inductive loop invariant i < (x− x0)− (y − y0).

Example Consider the recursive procedure shown in Figure 2.10. The instrumen-

tation introduces an auxiliary function Fib′, and we compute three relations: the

maximally weak precondition at the beginning of Fib, the procedure summary for

Fib′, and the invariant i < a0 + a1n at the counter instrumentation point. Our tool
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computes the precondition n ≥ 0 at the entry to Fib(n), and the bound i ≤ n inside

Fib. The latter requires discovering the summary pair (n′ > 0, iout − iin ≤ n′). This

example illustrates interprocedural maximally weak precondition inference.

2.7.2 Counterexamples for Safety Properties

Since program analysis is an undecidable problem, tools cannot prove the cor-

rectness of arbitrary correct programs or find bugs in arbitrary incorrect programs.

Hence, to maximize the practical success rate of verification tools, it is desirable to

search in parallel for both proofs of correctness as well as counterexamples. Earlier,

we showed how to find proofs of correctness of safety and termination properties.

In this section, we show how to find most-general counterexamples to safety proper-

ties. A safety property is stated as set of safety assertions. A violation of the safety

property occurs if the negation of a safety assertion holds and is reachable.

The problem of most general counterexample for safety involves finding the

most general characterization of inputs that leads to the violation of some reachable

safety assertion. We show how to find such a characterization using the techniques

discussed in Section 2.4 and Section 2.7.1.

The basic idea is to reduce the problem to that of finding the maximally weak

precondition for some safety property. This reduction involves constructing another

program from the given program P using the following transformations:

B1 Instrumentation of program with an error variable We introduce a new error

variable that is set to 0 at the beginning of the program. Whenever violation of
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the given safety property occurs (the negation of the safety assertions holds),

we set the error variable to 1 and jump to the end of the program, where

we assert that the error variable is equal to 1. We remove the original safety

assertion.

B2 Instrumentation to ensure termination of all loops For this we use the strategy

described in Section 2.7.1, wherein we instrument the program with counter

variables and assert that the counter variable is upper bounded by some func-

tion of loop inputs or procedure inputs. The function is modeled using a linear

arithmetic template for which we infer the coefficients.

Claim 2.2 Let P be a program with some safety assertions. Let P ′ be the program

obtained from program P by using the transformation B1 and B2 above. Then, P

has an assertion violation iff the assertions in program P ′ hold.

Claim 2.2 is significant as we can now use maximally weak precondition infer-

ence (Section 2.4) on the transformed program to discover most-general characteri-

zation of inputs under which there is a safety violation in the original program.

Example The program shown in Figure 2.11(a) is instrumented using transforms

B1 and B2, and the resulting program is shown in Figure 2.11(b). Our tool discovers

the precondition (n > 200)∧(9 > y > 0). The loop invariant that asserts termination

of the relevant loop on line 3 is (n > 200)∧(i ≤ x)∧(9 > y > 0)∧(x ≤ 200). A loop

bound using the function i < n + 1 proves that the loop terminates. On the other
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Bug1(int y, n) {
1 x := 0;
2 if(y < 9)
3 while (x < n)
4 assert(x < 200);
5 x := x+ y;
6 else

7 while (x ≥ 0)
8 x++;
}

Bug1(int y, n) {
1 x := err := i1 := i2 := 0;
2 if(y < 9)
3 while (x < n)
4 i1++;
5 assert(i1 < f1(n, y));
6 if(x ≥ 200)
7 err := 1; goto L;
8 x := x+ y;
9 else

10 while (x ≥ 0)
11 i2++;
12 assert(i2 < f2(n, y));
13 x++;
14 L: assert(err = 1);
}

Original Program Instrumented Program

Figure 2.11: The most general counterexample that leads to violation of the safety
assertion in the original program is (n > 200)∧ (0 < y < 9). Our tool discovers this
by instrumenting the program appropriately and then running our maximally weak
precondition algorithm.

hand, since the loop on line 10 is unreachable under the discovered preconditions

an arbitrary f2 suffices.

Observe the importance of transformation B1. An alternative to transforma-

tion B1 that one might consider is to simply negate the original safety assertion

instead of introducing an error variable. This is incorrect for two reasons: (a) It

is too stringent a criterion because it insists that in each iteration of the loop the

original assertion does not hold, and (b) It does not ensure reachability and allows

for those preconditions under which the assert statement is never executed at all.

In fact, when we run our tool with such a naive transformation that simply negates

the safety assertion, we obtain n ≤ 0 as the maximally weak precondition.

Also, observe the importance of transformation B2. If we do not perform
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NT1(int x, y) {
while (x ≥ 0)

x := x+ y;
y++;

}

NT2(int i) {
even := 0;
while (i ≥ 0)

if (even = 0)
i--;

else

i++;
even := 1− even;

}
(a) (b)

Figure 2.12: Non-termination examples from an alternative approach [142].

transformation B2, then the tool discovers y ≤ 0 as the maximally weak precondi-

tion. Note that under this precondition, the assertion at the end of the program

always holds since that location is unreachable. Observe that the transformation B2

does not require termination of every loop in the original program. In fact, violation

of safety properties can also occur in non-terminating programs. The transforma-

tion B2 ensures termination of all loops that are reachable under the precondition

that the tool discovers and in the program obtained after transformation B1, which

introduces extra control-flow that breaks loops on any violation of a safety property.

This is the case for the loop on line 10, which is unreachable under the discovered

preconditions and therefore any arbitrary function f2 suffices.

2.7.3 Counterexamples for Termination Properties

The problem of inferring most-general counterexamples for termination prop-

erties involves finding the most-general characterization of inputs that leads to non-

termination of the program. Without loss of generality we assume that the program

has at most one exit point.
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Claim 2.3 Let P be a given program with a single exit point. Let P ′ be the program

obtained from P by adding the assert statement “assert(false)” at the end of the

program. Then, P is non-terminating iff the assert statement in P ′ is satisfied.

By Claim 2.3, we can use maximally weak precondition inference (Section 2.4)

on the transformed program to discover preconditions for non-termination.

Examples Consider the example shown in Figure 2.12(a). If we instrument the

program to add a assert(false) at the end, then our maximally weak precondition

algorithm generates the constraint x ≥ 0 ∧ y ≥ 0, which is the maximally weak

condition under which the program is non-terminating.

Consider program shown in Figure 2.12(b). If we instrument assert(false) at

the end of this program, then our maximally weak precondition inference generates

the condition i ≥ 1. Notice that the loop guard i ≥ 0 is not sufficient to guaran-

tee non-termination. A recent proposal [142] for proving non-termination searches

for recurrent sets of states and will have to unroll the loop to reason about the

value of even. We never unroll loops and additionally discover the maximally weak

preconditions that ensure non-termination.

2.8 Experiments

In previous sections, we have shown how to model various program analysis

problems as the problem of solving SAT constraints. We now present encouraging

experimental results illustrating that SAT solvers can in fact efficiently solve the
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SAT instances generated using our technique. Our examples come directly from

benchmarks used in state-of-the-art alternative techniques. We employ an incre-

mental strategy for choosing the template. We progressively increased the number

of bits in the bit-vector modeling and the number conjuncts and disjuncts if the

SAT solver proves the initial instances UNSAT, until the solver found a SAT so-

lution, and thus inferred the invariants. In practice, we never had to go beyond

two iterations. In Tables 2.1, 2.2, 2.3, and 2.4 we present the programs, the time

taken in seconds for constraint generation and constraint solving, and the number

of clauses in the CNF formula. We provide sources and/or figure references from

previous sections for most examples and explain the remainder.

We ran the experiments on a two processor machine running Windows VistaTM

and used Z3 [86] as our SAT/SMT solver. We experimented with various other

solvers (ZChaff [203] and its variants, Minisat [99] etc) but found Z3 to be the most

efficient at solving the constraints generated for the benchmark programs. We have

noticed that symmetry in the satisfiability problem, seen for instance in the case

of discovering disjunctive invariants, causes significant degradation of performance.

The solver could potentially use the symmetry information to prune its search space.

In future work, we expect to modify the solver to use this higher level domain infor-

mation. More details about engineering a satisfiability-based invariant generation

tool are presented in Chapter 6.

Even with our unoptimized prototype implementation the constraint gener-

ation phase takes from between 0.09 − 0.30 seconds across all benchmarks. This

includes the overhead of reading and parsing the program from disk and CFG gen-
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Name Constraint Solving Number
Gen. Time (s) Time (s) Clauses

cegar1 [133] 0.09 0.08 5 K
cegar2 [133] 0.10 0.80 50 K
barbr [132] 0.15 0.41 76 K
berkeley [132] 0.13 3.00 441 K
bk-nat [132] 0.15 5.30 174 K
ex1 [132] 0.10 0.10 10 K
ex2 [132] 0.10 0.75 92 K
fig1a [132] 0.10 0.14 20 K
fig2 [132] 0.10 0.56 239 K
fig3 [132] 0.14 16.60 547 K
w1 [34], pg12 0.10 0.14 25 K
w2 [34], pg12 0.10 1.80 165 K

Table 2.1: Program verification over linear arithmetic.

eration and the time to write the constraints to disk. Many of these phases can be

optimized—e.g., by eliminating writing intermediate phases to disk—but we leave

that to future work. This illustrates the scalability of our reductions. The constraint

solving phase is listed separately because it depends on the particular solver being

used and its current version, Z3 v1.0 for our case. The total time for constraint

solving varies from 0.08 to 72.00 seconds. Improvements in solver technology will

directly translate to decrease in these numbers.

Table 2.1 presents program verification analysis on examples taken from ab-

straction refinement-based techniques [133, 132] and programs for which standard

widening/narrowing fails [34]. We ran our tool on benchmarks considered in state-of-

the-art alternative verification techniques [133, 132] because they provide exhaustive

comparison against techniques similar to theirs. w1 is a simple loop iteration but

with x ≤ n replaced with x 6= n while w2 is a loop with the guard moved inside a

non-deterministic conditional. Standard narrowing is unable to capture the preci-
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Name Constraint Solving Number
Gen. Time (s) Time (s) Clauses

Fig 2.3(a), [238] 0.09 0.57 63 K
a1 [206], pg9 0.11 9.90 174 K
a2 [204], pg2 0.15 0.50 75 K
mergesort 0.09 0.19 43 K
quicksort 0.09 0.45 133 K
fibonacci 0.10 11.00 90 K
Fig 2.3(b) 0.20 72.00 558 K

Table 2.2: Interprocedural analysis over linear arithmetic.

Name Constraint Solving Number
Gen. Time (s) Time(s) Clauses

Fig 2.2 [125, 126] 0.20 0.70× 2 107 K
Fig 2.8 0.20 5.70× 3 273 K
w1 [34], pg 12 0.10 0.30× 2 60 K
burner [124], pg 14 0.20 1.50× 1 100 K
speed [126], pg 10 0.20 9.10× 2 41 K
merge [125], pg 11 0.20 1.30× 3 128 K

Table 2.3: Maximally strong postcondition inference over linear arithmetic.

sion lost due to widening in these instances. Our solution times compare favorably

against previous techniques.

Table 2.2 presents interprocedural analysis results on benchmarks from al-

ternate proposals [204, 206, 238]. The first benchmark is the recursive add from

Figure 2.3(a). The second a1 and third a2 programs rely on discover linear equality

relations for recursive procedures. The fourth and fifth are recursive sorting pro-

grams and the sixth is the Fibonacci program. The last benchmark in the set is the

McCarthy91 function from Figure 2.3(b), for which we compute two summaries.

Table 2.3 presents maximally strong postconditions generation results on bench-

marks from papers on sophisticated widening techniques [34, 124, 125, 126]. For our

iterative algorithm we present the times taken for each iteration and the number of
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Name Constraint Solving Number
Gen. Time (s) Time (s) Clauses

[142], pg3 0.15 0.80× 1 42 K
Fig 2.12(b) [142], pg5 0.19 0.40× 1 57 K
Fig 2.12(a) [142], pg5 0.16 0.60× 1 43 K
loop 0.14 0.12× 1 15 K
Fig 2.5(a) 0.18 3.80× 4 119 K
Fig 2.5(b) 0.27 40.00× 2 221 K
Fig 2.7 0.23 0.50× 1 50 K
Fig 2.9 0.15 11.60× 1 118 K
Fig 2.11 0.30 34.00× 2 135 K

Table 2.4: Weakest precondition inference over linear arithmetic (including non-
termination and bug-finding examples).

iterations in the timings column. This provides finer insight into the time taken for

generating each maximally strong postcondition, as opposed to just the total. w1,

burner, speed and merge model hybrid automaton for real systems and even our

prototype timings are encouraging, so we are confident that our technique will be

practical.

For maximally weak precondition generation (as in maximally strong post-

condition) we present, as before, the time for each iteration times the number of

iterations. The first set in Table 2.4 presents results on analysis of non-termination

programs nt1/nt2/nt3 [142] and shown in Figures 2.12(a) and 2.12(b). Our tech-

nique also facilitates maximally weak precondition generation for examples such as

array increment and array copy and swap (Figures 2.5(a), 2.5(b) and 2.8(a)) which

our tool analyzes in reasonable time. We also find the maximally weak preconditions

for termination for Figure 2.9. Lastly, generating maximally weak precondition for

our most intriguing example (Figure 2.11) takes 68 seconds.
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2.9 Summary

This chapter described how to model a wide spectrum of program analysis

problems as SAT instances that can be solved using off-the-shelf constraint (SAT)

solvers. We showed how to model the problem of discovering invariants, both con-

junctive and disjunctive, that involve linear inequalities. We applied it to intra- and

interprocedural checking of safety properties and timing analysis of programs. We

also showed how to model the problem of discovering maximally weak preconditions

and maximally strong postconditions. We applied pre- and postcondition inference

towards generating most-general counterexamples for both safety and termination

properties.

The constraints that we generate are boolean combinations of quadratic in-

equalities over integer variables, which we reduce to SAT formulas using bit-vector

modeling. We showed experimentally that the SAT solver can efficiently solve such

constraints generated from hard benchmarks.

2.10 Further Reading

Contrast with tradition It is important to compare the benefits and limitations of a

satisfiability-based approach against traditional iterative fixed-point approximation

techniques, such as data-flow analyses, abstract interpretation and model checking.

The key difference between a satisfiability-based approach and traditional tech-

niques is the lack of iterative approximations. By encoding the problem as a solution

to a SAT instance, we are able to delegate fixed-point solving to the SAT solver,
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and verification is non-iterative. Only when we deal with the more sophisticated

problem of weakest precondition/strongest postcondition inference do we have to

resort to iteration, and that too only when enumerating orthogonal solutions, or

when dealing with programs with local minimas.

Additionally, we note two advantages of a satisfiability-based approach. First,

a satisfiability-based approach is goal-directed and hence has the potential to be

more efficient. The data-flow analyses or abstract interpreters typically work either

in a forward direction or in a backward direction, and hence are not goal-directed.

Some efforts to incorporate goal-directedness involve repeatedly performing a for-

ward (or backward) analysis over refined abstractions obtained using counterexam-

ple guidance, or by repeatedly iterating between forward and backward analyses [77].

However, each forward or backward analysis attempts to compute the most precise

information over the underlying domain, disregarding what might really be needed.

On the other hand, the satisfiability-based approach is fully goal-directed; it ab-

stracts away the control-flow of the program and incorporates information from

both the precondition as well as the postcondition in the constraints. Second, a

satisfiability-based approach does not require widening heuristics, that can lead

to uncontrolled loss of precision, but are required for termination of iterative fixed-

point techniques. Abstract interpreters iteratively compute approximations to fixed-

points and use domain-specific extrapolation operators (widening) when operating

over infinite height lattices (e.g., lattice of linear inequalities) to ensure termina-

tion. Use of widening leads to an uncontrolled loss of precision. This has led to

development of several widening heuristics that are tailored to specific classes of
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programs [264, 132, 125, 126]. We show that the satisfiability-based approach can

uniformly discover invariants for all such programs.

We now note some disadvantages of a satisfiability-based approach. First,

the execution time of analyses in this framework is less deterministic as it is de-

pendent on the efficiency of the underlying SAT solver. In preliminary tests, we

found competitive efficiency but only further experiments will demonstrate the true

limitations of this approach. Second, a domain-specific technique, namely Farkas’

Lemma, enabled the reduction of program constraints to satisfiability constraints.

In the next chapter, we will see an algorithm for a predicate abstraction of pro-

grams that reduces the problem to satisfiability constraints. Such domain specific

reductions are necessarily required for our approach and for earlier ones (e.g., join,

widen, and transfer functions in abstract interpretation). The key to successfully

exploiting the power of a satisfiability-based framework for program analysis will be

the development of novel domain specific reductions.

Using satisfiability-based approaches Ideas similar to the ones presented here, have

been explored by others in developing efficient program analysis solutions. InvGen

generates SAT instances that are simpler to solve by augmenting the core con-

straints with constraints over a set of symbolic paths (e.g., from tests) [143, 144].

Constraint-based solutions find applications in hardware synthesis [68]. For in-

ferring dependent types, specifically, ML types refined by linear relations, liquid

types [229, 161] generates and solves constraints over the refinements, and can ben-

efit from a satisfiability-based approach.
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Chapter 3

Program Reasoning over Predicate
Abstraction

“Besides black art, there is only
automation and mechanization.”

— Federico Garcia Lorca1

In this chapter, we augment the expressivity of the invariant generation ap-

proach of the previous chapter by inferring invariants over predicate abstraction.

We describe how a satisfiability-based approach over predicate abstraction can dis-

cover invariants with quantified and arbitrary boolean structure. These then help us

prove the validity of given assertions or generating pre-conditions under which the

assertions are valid. We present three novel algorithms, having different strengths,

that combine template-and predicate abstraction-based formalisms to discover so-

phisticated program invariants using SMT solvers.

Two of these algorithms use an iterative approach to compute least and great-

est fixed-points, while the third algorithm uses a non-iterative satisfiability-based

approach that is similar in spirit to the approach for linear arithmetic. The key idea

for predicate abstraction in all these algorithms is to reduce the problem of invariant

discovery to that of finding optimal solutions, over conjunctions of some predicates

1Spanish poet, dramatist and theater director, 1898-1936.
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from a given set, for unknowns in a template formula.

We have implemented the algorithms presented in this chapter in a tool that

we call VS3
PA. Preliminary experiments using VS3

PA show encouraging results over

a benchmark of small but complicated programs. Our algorithms can verify pro-

gram properties that, to our knowledge, have not been automatically verified before.

In particular, our algorithms can generate full correctness proofs for sorting algo-

rithms by inferring nested universally-existentially quantified invariants, and can

also generate preconditions required to establish worst-case upper bounds of sorting

algorithms. Furthermore, for properties that can be verified by previous approaches,

our tool is more efficient.

3.1 Using SMT Solvers for Program Reasoning

In this chapter, we continue our discussion on template-based program anal-

ysis that shows promise in discovering invariants that are beyond the reach of fully

automated techniques. The programmer provides hints in the form of a set of in-

variant templates with holes/unknowns that are then automatically filled in by the

analysis. However, in the previous chapter we discussed quantifier-free numerical

invariants, also considered in previous work [233, 234, 62, 160, 28, 137]). In con-

trast, in this chapter we consider invariants with arbitrary but pre-specified logical

structure—involving disjunctions and universal and existential quantifiers—over a

given set of predicates. One of the key features of our template-based approach

is that it uses the standard interface to an SMT solver, allowing it to go beyond
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numerical properties and leverage ongoing advances in SMT solving.

Our templates consist of formulae with arbitrary logical structure (quantifiers,

boolean connectives) and unknowns that take values over some conjunction of a

given set of predicates (Section 3.3). Such a choice of templates puts our work in an

unexplored space in the area of predicate abstraction, which has been highly success-

ful in expressing useful non-numerical and disjunctive properties of programs. The

area was pioneered by Graf and Seidl [128], who showed how to compute quantifier-

free invariants over a given set of predicates. Later, strategies were proposed to

discover universally quantified invariants [112, 176, 154] and disjunctions of univer-

sally quantified invariants in the context of shape analysis [220]. Our work extends

the field by discovering invariants that involve an arbitrary (but pre-specified quan-

tified structure) over a given set of predicates. Since the domain is finite, one can

potentially search over all possible solutions, but this naive approach would be too

computationally expensive to be feasible.

We therefore present three novel algorithms for efficiently discovering inductive

loop invariants that prove the validity of assertions in a program, given a suitable set

of invariant templates and a set of predicates. Two of these algorithms use iterative

techniques, unlike the SAT-based approach presented in the previous chapter, for

computing fixed-point as in data-flow analysis or abstract interpretation. One of

them performs a forward propagation of facts and computes a least fixed-point, and

then checks whether the facts discovered imply the assertion or not (Section 3.5.1).

The other algorithm performs a backward propagation of facts starting from the

given assertion and checks whether the precondition discovered is true or not (Sec-
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tion 3.5.2). The third algorithm uses a satisfiability-based approach, akin to the

approach in the previous chapter, to encode the fixed-point as a SAT formula such

that a satisfying assignment to the SAT formula maps back to a proof of validity

for the assertion (Section 3.6). The worst-case complexity of these algorithms is

exponential only in the maximum number of unknowns at two neighboring points

as opposed to being exponential in the total number of unknowns at all program

points for the naive approach. Additionally, in practice we have found them to be

efficient and having different strengths (Section 3.8).

The key operation in these algorithms is that of finding optimal solutions

for unknowns in a template formula such that the formula is valid (Section 3.4).

The unknowns take values that are conjunctions of some predicates from a given

set of predicates, and can be classified as either positive or negative depending

on whether replacing them by a stronger or weaker set of predicates makes the

formula stronger or weaker respectively. We describe an efficient, systematic, search

process for finding optimal solutions to these unknowns. Our search process uses the

observation that a solution for a positive (or negative) unknown remains a solution

upon addition (or deletion) of more predicates.

One of the key aspects of our algorithms is that they can be easily extended

to discover maximally weak preconditions. This is unlike most invariant generation

tools that cannot be easily extended to generate pre-conditions, especially those

that are maximally weak. Automatic precondition generation not only reduces the

annotation burden on the programmer in the usual case, but can also help identify

preconditions that are not otherwise intuitive.
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3.2 Motivating Examples

Inferring invariants for checking assertions Consider the in-place InsertionSort

routine in Figure 3.1 that sorts an array A of length n. The assertion at Line 9

asserts that no elements in array A are lost, i.e., the array A at the end of the

procedure contains all elements from array Ã, where Ã refers to the state of array

A at the beginning of the procedure. The assertion as well as the loop invariants

required to prove it are ∀∃ quantified, and we do not know of any other automated

tool that can automatically discover such invariants for array programs.

In this case, the user can easily guess that the loop invariants would require a

∀∃ structure to prove the assertion on Line 9. Additionally, the user needs to guess

that an inductive loop invariant may require a ∀ fact (to capture properties of array

elements) and a quantifier-free fact relating non-array variables. The quantified

facts contain an implication as in the final assertion. The user also needs to provide

the set of predicates. In this case, the set consisting of inequality and disequality

comparisons between terms (variables and array elements that are indexed by some

variable) of appropriate types suffices. This choice of predicates has been used

successfully in previous work on predicate abstraction [15, 11, 175, 176]. Given these

user inputs, our tool then automatically discovers the non-trivial loop invariants

mentioned in the figure.

As a second example, consider the program shown in Fig. 3.2, which checks

whether all elements of A are contained in B. The loop invariant required contains

∀∃ quantification, which our tool can infer. We do not know of any other tool that
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can automatically discover such invariants. Note how the conjuncts in the invariant

template in this case follow the schematic of the given assertion and therefore are

∀∃-quantified. We discovered the appropriate number of conjuncts by iteratively

guessing templates.

Our tool eases the task of validating the assertion by requiring the user to

only provide a template in which the logical structure has been made explicit, and

provide some over-approximation of the set of predicates. Guessing the template

is a much easier task than providing the precise loop invariants, primarily because

these templates are usually uniform across the program and depend on the kind of

properties to be proved.

Precondition Generation Consider the in-place SelectionSort routine in Figure 3.3.

This routine sorts an array A of length n. Suppose we want to verify that the worst-

case number of array swaps is indeed n − 1. This problem can be reduced to the

problem of validating the assertion at Line 7. If the assertion holds then the swap

on Line 8 is always executed, n−1 times [135]. However, this assertion is not valid

without an appropriate precondition, e.g., consider a fully sorted array for which

no swaps happen. We want to find a precondition that does not impose any con-

straints on n while allowing the assertion to be valid. This would provide a proof

that SelectionSort indeed admits a worst-case of n− 1 memory writes.

In this case, the user can easily guess that a quantified fact—∀k1, k2 that

compares the elements at locations k1 and k2—will capture the sortedness property

that is required. However, this alone does not yield the correct invariants. The user
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InsertionSort(Array A, int n)
1 i := 1;
2 while (i < n)
3 j := i− 1; val := A[i];
4 while (j ≥ 0 ∧ A[j] > val)
5 A[j + 1] := A[j];
6 j := j − 1;
7 A[j + 1] := val;

8 i := i+ 1;

9 Assert(∀y∃x : (0 ≤ y < n) ⇒ (Ã[y] = A[x] ∧ 0 ≤ x < n))

User Input:
Invariant Template: v1 ∧ (∀y : v2 ⇒ v3) ∧ (∀y∃x : v4 ⇒ v5)

Predicate Set:
AllPreds({x, y, i, j, n}, {0,±1}, {≤,≥, 6=}) ∪
AllPreds({val, A[t], Ã[t] | t ∈ {i, j, x, y, n}}, {0}, {=})

Tool Output:
(Proof of validity of assertion)

Outer Loop Invariant:

(
∀y : (i ≤ y < n) ⇒ (Ã[y] = A[y]) ∧
∀y∃x : (0 ≤ y < i) ⇒ (Ã[y] = A[x] ∧ 0 ≤ x < i)

)

Inner Loop Invariant:


val = Ã[i] ∧ −1 ≤ j < i ∧
∀y : (i < y < n) ⇒ Ã[y] = A[y] ∧
∀y∃x : (0 ≤ y < i)

⇒ (Ã[y] = A[x] ∧ 0 ≤ x ≤ i ∧ x 6= j + 1)


Figure 3.1: Verifying that insertion sort preserves all its input elements
AllPreds(Z,C,R) denotes the set of predicates {z − z′ op c, z op c | z, z′ ∈
Z, c ∈ C, op ∈ R}.
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SetInclusion(Array A, int n, Array B, int m)
1 for (i = 0; i < n; i++)
2 exists := false;
3 for (j = 0; j < m; j++)
4 if (A[i] = B[j])
5 exists := true; break;

6 if (¬exists) return false;

7 Assert (∀y∃x : (0 ≤ y < n)
8 ⇒ (A[y] = B[x] ∧ 0 ≤ x < m))
9 return true;

User Input:
Invariant Template: v1 ∧ (∀y∃x : v2 ⇒ v3) ∧ (∀y∃x : v4 ⇒ v5)

Predicate Set:
AllPreds′({x, y, i, j,m}, {0}, {≤, <}) ∪
AllPreds′({exists}, {true, false}, {=}) ∪
AllPreds′({A[t], B[t] | t ∈ {x, y}}, {0}, {=})

Tool Output:
(Proof of validity of assertion)
Outer loop invariant:

(
∀y∃x : (0 ≤ y < i) ⇒ (A[y] = B[x] ∧ 0 ≤ x < m)

)
Inner loop invariant:


j ≥ 0
∀y∃x : (0 ≤ y < i) ⇒ (A[y] = B[x] ∧ 0 ≤ x < m)
∀y∃x : (y = i ∧ exists = true)

⇒ (A[y] = B[x] ∧ 0 ≤ x < m)


Figure 3.2: Verifying that a program that checks set inclusion is functionally
correct. VS3 computes the ∀∃ invariants required to prove the correctness.
AllPreds′(Z,C,R) denotes the set of predicates {z op z′ | z, z′ ∈ Z ∪ C, op ∈ R}.
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then iteratively guesses and adds templates until a precondition is discovered. Two

additional quantified facts and an unquantified fact suffice in this case. While right

now this process is manual, in the future it we can expect it can be automated. The

user also supplies a predicate set consisting of inequalities and disequalities between

terms of comparable types. The non-trivial output of our tool is shown in the figure.

Our tool automatically infers the maximally weak precondition that the input

array should be sorted from A[0] to A[n−2], while the last entry A[n−1] contains the

smallest element. Other sorting programs usually exhibit their worst-case behaviors

when the array is reverse-sorted. For selection sort, a reverse sorted array is not

the worst case; it incurs only n
2

swaps. By automatically generating this maximally

weak precondition our tool provides significant insight about the algorithm, reducing

programmer burden.

As another example, consider the program shown in Fig. 3.4, which implements

a binary search for the element e in an array A. The functional specification of the

program is given as the assertion on Line 9, which states that if the procedure

returns false, then A indeed does not contain e. Our tool allows the user to specify

assertions and assumptions with arbitrary logical structure up to those expressible

in the underlying SMT solver. Assumptions may be required to model expressions

not handled by the solver. For instance, since SMT solvers currently do not handle

division, the assignment on Line 3 is modeled as Assume(low ≤ mid ≤ high).

For this function, our tool automatically infers the maximally weak precondi-

tion for functional correctness, shown in Fig. 3.4, which is that the input array is

sorted. It also infers the loop invariant, also shown in Fig. 3.4, encoding the seman-
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SelectionSort(int* A, int n)
1 i := 0;
2 while (i < n− 1)
3 min := i; j := i+ 1;
4 while (j < n)
5 if (A[j] < A[min]) min := j;
6 j := j + 1;
7 Assert(i 6= min);
8 if (i 6= min) swap A[i] and A[min];
9 i := i+ 1;

User Input:
Template:

(
v0 ∧ (∀k : v1 ⇒ v2) ∧ (∀k : v3 ⇒ v4) ∧ (∀k1, k2 : v5 ⇒ v6)

)
Predicate Set:

(
AllPreds({k, k1, k2, i, j, min, n}, {0, 1}, {≤,≥, >}) ∪
AllPreds({A[t] | t ∈ {k, k1, k2, i, j, min, n}}, {0, 1}, {≤,≥})

)

Tool Output:
(Assertion valid under following precondition)

Precondition Required:

(
∀k : (0 ≤ k < n− 1) ⇒ A[n− 1] < A[k]
∀k1, k2 : (0 ≤ k1 < k2 < n− 1) ⇒ A[k1] < A[k2]

)
Outer Loop Invariant:

(
∀k1, k2 : (i ≤ k1 < k2 < n− 1) ⇒ A[k1] < A[k2]
∀k : i ≤ k < n− 1 ⇒ A[n− 1] < A[k]

)

Inner Loop Invariant:


∀k1, k2 : (i ≤ k1 < k2 < n− 1) ⇒ A[k1] < A[k2]
∀k : (i ≤ k < n− 1) ⇒ A[n− 1] < A[k]
∀k : (i ≤ k < j) ⇒ A[min] ≤ A[k]
j > i ∧ i < n− 1


Figure 3.3: Generating the weakest precondition under which Selection Sort exhibits
its worst-case number of swaps.

tics of binary search (that the array elements between low and high are sorted and

those outside do not equal e).

In the following sections, we develop the theory over predicate abstraction that

helps us build tools that can analyze and infer the expressive properties illustrated

here.
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BinarySearch(Array A, int e, int n)
1 low := 0;high := n− 1;
2 while (low ≤ high)
3 mid := d(low + high)/2e;
4 if (A[mid] < e)
5 low := mid+ 1;
6 else if (A[mid] > e)
7 high := mid− 1;
8 else return true;

9 Assert (∀j : (0 ≤ j < n) ⇒ A[j] 6= e)
10 return false;

User Input:
Invariant Template: v1 ∧ (∀j : v2 ⇒ v3) ∧ (∀j : v4 ⇒ v5) ∧ (∀j : v6 ⇒ v7)

Predicate Set:
AllPreds′({j, n, low, high}, {0}, {≤, <}) ∪
AllPreds′({A[t] | t ∈ {j, j ± 1}} ∪ {e}, {0}, {≤, 6=})

Tool Output:
(Assertion valid under the following precondition)
Precondition:

(
∀j : (0 ≤ j < n) ⇒ A[j] ≤ A[j + 1]

)
Loop Invariant:


0 ≤ low ∧ high < n
∀j : (low ≤ j ≤ high) ⇒ A[j] ≤ A[j + 1]
∀j : (0 ≤ j < low) ⇒ A[j] 6= e
∀j : (high < j < n) ⇒ A[j] 6= e


Figure 3.4: Generating the weakest precondition for the functional correctness of
binary search.
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3.3 Notation

We often use a set of predicates in place of a formula to mean the conjunction

of the predicates in the set. In our examples, we often use predicates that are

inequalities between a given set of variables or constants. We use the notation QV

to denote the set of predicates {v1 ≤ v2 | v1, v2 ∈ V }. We use the notation Qj,V to

denote the set of predicates {j < v, j ≤ v, j > v, j ≥ v | v ∈ V }. Also, we will use

the notation {xi}i as an abbreviation to a set of indexed variables {xi | xi ∈ X}, if

the domain/universe X of the elements xi’s is explicit from their type.

3.3.1 Templates for Predicate Abstraction

A template τ is a formula over unknown variables vi that take values over

(conjunctions of predicates in) some subset of a given set of predicates. We consider

the following language of templates:

τ ::= v | ¬τ | τ1 ∨ τ2 | τ1 ∧ τ2 | ∃x : τ | ∀x : τ

We denote the set of unknown variables in a template τ by Unk(τ). We say that

an unknown v ∈ Unk(τ) in template τ is a positive (or negative) unknown if τ is

monotonically stronger (or weaker respectively) in v. More formally, let v be some

unknown variable in Unk(τ). Let σv be any substitution that maps all unknown

variables v′ in Unk(τ) that are different from v to some set of predicates. Let

Q1, Q2 ⊆ Q(v). Then, v is a positive unknown if

∀σv, Q1, Q2 : (Q1 ⇒ Q2) ⇒ (τσv[v 7→ Q1] ⇒ τσv[v 7→ Q2])
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Similarly, v is a negative unknown if

∀σv, Q1, Q2 : (Q1 ⇒ Q2) ⇒ (τσv[v 7→ Q2] ⇒ τσv[v 7→ Q1])

Example 3.1 Consider the template τ
.
= v1 ⇒ v2. Let us see how v1 is a negative

unknown while v2 is a positive unknown in τ . Let σv be some arbitrary map, e.g.,

σv = {v1 7→ x > 0}. Then τσv evaluates to x > 0 ⇒ v2. For v2 to be a positive

variable in τ , then it must satisfy

∀Q1, Q2 : (Q1 ⇒ Q2) ⇒ ((x > 0 ⇒ v2)[v2 7→ Q1] ⇒ (x > 0 ⇒ v2)[v2 7→ Q2])

or equivalently,

∀Q1, Q2 : (Q1 ⇒ Q2) ⇒ ((x > 0 ⇒ Q1) ⇒ (x > 0 ⇒ Q2))

The consequent simplifies to (x > 0 ∧ ¬Q1) ∨ (¬(x > 0) ∨ Q2). By distributing the

disjunction over the conjunction in the first term and simplifying, this reduces to

¬(x > 0)∨¬Q1∨Q2. This is the same as x > 0 ⇒ (Q1 ⇒ Q2), which trivially holds

under the antecedent Q1 ⇒ Q2. An analogous argument shows that v1 is a negative

unknown.

If each unknown variable in a template/formula occurs only once, then it is

easy to see each unknown is either positive or negative. We use the notation Unk+(τ)

and Unk−(τ) to denote the set of all positive unknowns and negative unknowns

respectively in τ . The sets Unk+(τ) and Unk−(τ) can be computed using structural

decomposition of τ as shown in Figure 3.5.
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Unk+(v) = {v}
Unk+(¬τ) = Unk−(τ)

Unk+(τ1 ∧ τ2) = Unk+(τ1) ∪ Unk+(τ2)

Unk+(τ1 ∨ τ2) = Unk+(τ1) ∪ Unk+(τ2)

Unk+(∀X : τ) = Unk+(τ)

Unk+(∃X : τ) = Unk+(τ)

Unk−(v) = ∅
Unk−(¬τ) = Unk+(τ)

Unk−(τ1 ∧ τ2) = Unk−(τ1) ∪ Unk−(τ2)

Unk−(τ1 ∨ τ2) = Unk−(τ1) ∪ Unk−(τ2)

Unk−(∀X : τ) = Unk−(τ)

Unk−(∃X : τ) = Unk−(τ)

Figure 3.5: Structural decomposition of a formula τ to compute the set of positive
(Unk+(τ)) and negative (Unk−(τ)) unknowns.

Example 3.2 Consider the following template τ with unknown variables v1, . . , v5.

(v1 ∧ (∀j : v2 ⇒ sel(A, j) ≤ sel(B, j)) ∧

(∀j : v3 ⇒ sel(B, j) ≤ sel(C, j))) ⇒

(v4 ∧ (∀j : v5 ⇒ sel(A, j) ≤ sel(C, j)))

Then, Unk+(τ) = {v2, v3, v4} and Unk−(τ) = {v1, v5}. Note our modeling of arrays

using select (sel) predicates as described in the next section.

3.3.2 Program Model

We assume that a program Prog consists of the following kind of statements

s (besides the control-flow).

s ::= x := e | assert(φ) | assume(φ)

In the above, x denotes a variable and e denotes some expression. Memory reads

and writes can be modeled using memory variables, e.g., variables denoting arrays,

and using McCarthy’s select (sel) and update (upd) predicates [198]. Since we

allow for assume statements, without loss of generality we can treat all conditionals

in the program as non-deterministic.
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We now give a formalism in which different templates can be associated with

different program points, and different unknowns in templates can take values from

different sets of predicates. Recall from Chapter 2 that a cut-set C of a program

Prog is a set of program points, called cut-points, such that any cyclic path in Prog

passes through some cut-point. Every cut-point in C is labeled with an invariant

template. For simplicity, we assume that C also consists of program entry and exit

locations, which are labeled with an invariant template that is simply true. Let

Paths(Prog) denote the set of all tuples (δ, τ1, τ2, σt), where δ is some straight-line

path between two cut-points from C that are labeled with invariant templates τ1 and

τ2 respectively. Without loss of any generality, we assume that each program path

δ is in static single assignment (SSA) form. The variables that are live at start of

path δ are the original program variables, and the SSA versions of the variables that

are live at the end of δ are given by a map σt
.
= {vi 7→ v′i}i, while σ−1

t
.
= {v′i 7→ vi}i

denotes the reverse map, where vi and v′i are the corresponding variables live at the

beginning and end, respectively.

Notice that in the previous chapter we did not make this assumption about

the program being in SSA form. We will see later that SSA form allows us to treat

predicates opaquely, as is required here, while in the previous chapter we could

inspect, and substitute into, the linear relations.

We use the notation Unk(Prog) to denote the set of unknown variables in the

invariant templates at all cut-points of Prog.

Example 3.3 Consider as a running example the program ArrayInit below, which
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initializes all array elements to 0. Consider for this program, a cut-set C that

ArrayInit(int* A, int n)
1 i := 0;
2 while (i < n)
3 A[i] := 0;
4 i := i+ 1;
5 Assert(∀j : 0 ≤ j < n⇒ sel(A, j) = 0);

consists of only the program location 2, besides the entry location and the exit lo-

cation. Let the program location 2 be labeled with the invariant template ∀j : v ⇒

sel(A, j) = 0, which has one negative unknown v. Then, Paths(ArrayInit) con-

sists of the following tuples.

Entry Case (i := 0, true,∀j : v ⇒ sel(A, j) = 0, σt), where σt is the identity map.

Exit Case (assume(i ≥ n),∀j : v ⇒ sel(A, j) = 0,∀j : 0 ≤ j < n ⇒ sel(A, j) =

0, σt), where σt is the identity map.

Inductive Case (assume(i < n);A′ := upd(A, i, 0); i′ := i+ 1,∀j : v ⇒ sel(A, j) =

0,∀j : v ⇒ sel(A′, j) = 0, σt), where σt(i) = i′, σt(A) = A′.

3.3.3 Invariant Solution

In Section 2.2.1, we reviewed verification conditions. We will use the same

framework in this chapter, but it is important to revisit the definition as we will use

a slightly different mechanism for reasoning about assignments (as hinted earlier).

We will now define a verification condition as parameterized by the straight-

line path δ (a sequence of statements s) in SSA form between two program points
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and by the invariant templates τ1 and τ2 at those points, as follows:

VC(〈τ1, δ, τ2〉) = τ1 ⇒ WP(δ, τ2)

The weakest liberal precondition WP(δ, φ) of formula φ with respect to path δ is

almost as before, restated in Table 3.1, except for the difference in the handling of

assignment. An assignment is now translated to an equality predicate. Observe

WP(skip, φ) = φ
WP(s1; s2, φ) = WP(s1, WP(s2, φ))

WP(assert(φ′), φ) = φ′ ∧ φ
WP(assume(φ′), φ) = φ′ ⇒ φ

WP(x := e, φ) = (x = e) ⇒ φ

Table 3.1: Weakest precondition transformer.

that the correctness of the assignment rule in Table 3.1 relies on the fact that

the statements on path δ are in SSA form. This is important since otherwise we

will have to address the issue of substitution in templates, as the only choice for

WP(x := e, φ) when the path δ is in non-SSA form would be φ[e/x]. In this chapter,

our algorithms treat predicates opaquely (as long as the SMT solver understands

their interpretation), and consequently substitution is not a viable option.

Definition 3.1 (Invariant Solution) Let Q be a predicate-map that maps each

unknown v in any template invariant in program Prog to some set of predicates

Q(v). Let σ map each unknown v in any template invariant in program Prog to

some subset of Q(v). We say that σ is an invariant solution for Prog over Q if

the following formula VC(Prog, σ), which denotes the verification condition of the
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program Prog w.r.t. σ, is valid.

VC(Prog, σ)
def
=

∧
(δ,τ1,τ2,σt)∈Paths(Prog)

VC(〈τ1σ, δ, τ2σσt〉)

Example 3.4 Consider the program ArrayInit described in Example 3.3. Let Q

map unknown v in the invariant template at cut-point location 2 to Qj,{0,i,j}. Let

σ map v to Q0 = {0 ≤ j, j < i}. Then, σ is an invariant solution for ArrayInit

over Q since the verification condition VC(ArrayInit, σ) of the program ArrayInit,

which is given by the conjunction of the following formulas, is valid.

• i = 0 ⇒ (∀j : Q0 ⇒ sel(A, j) = 0)

• (i ≥ n ∧ (∀j : Q0 ⇒ sel(A, j) = 0)) ⇒ (∀j : 0 ≤ j ≤ n⇒ sel(A, j) = 0)

• (i < n ∧ A′ = upd(A, i, 0) ∧ i′ = i+ 1 ∧

(∀j : Q0 ⇒ sel(A, j) = 0)) ⇒(∀j : Q0σt ⇒ sel(A′, j) = 0)

where σt(i) = i′ and σt(A) = A′.

Sections 3.5 and 3.6 describe algorithms for generating an invariant solution

given program Prog and an appropriate predicate-map Q.

3.4 Optimal Solutions

In this section, we present the core operation of generating an optimal solution

that is used by our algorithm to perform local reasoning about program paths, which

are encoded as formulae. Separating local reasoning from fixed-point computation is

essential because the semantics of a program with loops cannot be exactly encoded

as an SMT constraint.
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OptimalSolutions(φ,Q)
1 Let Unk+(φ) be {ρ1, . . , ρa}.
2 Let Unk−(φ) be {η1, . . , ηb}.
3 S := ∅;
4 foreach 〈q1, . . , qa〉 ∈ Q(ρ1)× . .×Q(ρa):
5 φ′ := φ[ρi 7→ {qi}]i;
6 T := OptimalNegativeSolutions(φ′, Q);
7 S := S ∪ {σ | σ(ρi) = {qi}, σ(ηi) = t(ηi), t ∈ T};
8 R := {MakeOptimal(σ, S) | σ ∈ S};
9 R := Saturate(R,S);

10 return R;

Saturate(R,S)
1 while any change in R:
2 foreach σ1, σ2 ∈ R
3 σ := Merge(σ1, σ2, S); if (σ = ⊥) continue;

4 if 6 ∃σ′ ∈ R :
a∧

i=1

σ′(ρi) ⇒ σ(ρi) ∧
b∧

i=1

σ(ηi) ⇒ σ′(ηi)

5 R := R ∪ {MakeOptimal(σ, S)};
6 return R;

MakeOptimal(σ, S)

1 T := {σ′ | σ′ ∈ S ∧
b∧

i=1

σ(ηi) ⇒ σ′(ηi)}

2 foreach σ′ ∈ T:
3 σ′′ := Merge(σ, σ′, S)
4 if (σ′′ 6= ⊥) σ := σ′′;
5 return σ

Merge(σ1, σ2, S)
1 Let σ be s.t. σ(ρi) = σ1(ρi) ∪ σ2(ρi) for i = 1 to a
2 and σ(ηi) = σ1(ηi) ∪ σ2(ηi) for i = 1 to b

3 T := {σ′ | σ′ ∈ S ∧
b∧

i=1

σ(ηi) ⇒ σ′(ηi)}

4 if
∧

q1∈σ(ρ1),..,qa∈σ(ρa)

∃σ′ ∈ T s.t.
a∧

i=1

σ′(ρi) = {qi} return σ

5 else return ⊥

Figure 3.6: Procedure for generating optimal solutions given a template formula φ
and a predicate-map Q.
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Semantics of loopy programs as opposed to SMT

Encoding the semantics of programs with loops would mean being able to solve

for the invariant solution from Definition 3.1; which is the implicitly quantified

formula ∃σ∀X : VC(Prog, σ), where X is the set of program variables that appear

in the verification condition. On the other hand an SMT formula φ that we have

solvers for are implicitly quantified as ∃X ′ : φ, where X ′ is the set of variables

that appear in φ. Notice, that because of the quantifier alternation in the first

formula, it cannot be manipulated such that it is directly an SMT query, which

has no quantifier alternation. However, the results in this chapter, demonstrate

that SMT queries can be used to gather enough information such that we can

infer the required σ using an efficient algorithm.

We will discuss fixed-point computation using the information derived from

the local reasoning technique developed here in Sections 3.5 and 3.6.

Definition 3.2 (Optimal Solution) Let φ be a formula with unknowns {vi}i where

each vi is either positive or negative. Let Q map each unknown vi to some set of

predicates Q(vi). A map {vi 7→ Qi}i is a solution (for φ over domain Q) if the

formula φ is valid after each vi is replaced by Qi, and Qi ⊆ Q(vi). A solution

{vi 7→ Qi}i is optimal if replacing Qi by a strictly weaker or stronger subset of pred-

icates from Q(vi), for the case where vi is negative or positive, respectively, results

in a map that is no longer a solution.
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Example 3.5 Consider the following formula φ with one negative unknown η.

i = 0 ⇒ (∀j : η ⇒ sel(A, j) = 0)

Let Q(η) be Qj,{0,i,n}. There are four optimal solutions for φ over Q. These map

the negative unknown variable η to {0 < j ≤ i}, {0 ≤ j < i}, {i < j ≤ 0}, and

{i ≤ j < 0} respectively.

Since the naive exponential search for optimal solutions to a formula would be

too expensive, we next present a systematic search that we found to be efficient in

practice.

The procedure described in Figure 3.6 returns the set of all optimal solutions

for an input formula φ over domain Q. The procedure OptimalSolutions uses an

operation OptimalNegativeSolutions(φ,Q) (discussed later), which returns the

set of all optimal solutions for the special case when φ consists of only negative

unknowns. To understand how the procedure OptimalSolutions operates, it is

illustrative to think of the simple case when there is only one positive variable ρ.

In this case, the algorithm simply returns the conjunction of all those predicates

q ∈ Q(ρ) such that φ[ρ 7→ {q}] is valid. Observe that such a solution is an opti-

mal solution, and this procedure is much more efficient than naively trying out all

possible subsets and picking the maximal ones.

Example 3.6 Consider the following formula φ with one positive unknown ρ.

(i ≥ n) ∧ (∀j : ρ⇒ sel(A, j) = 0)) ⇒

(∀j : 0 ≤ j < n⇒ sel(A, j) = 0)
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Let Q(ρ) be Qj,{0,i,n}. There is one optimal solution for φ over Q, namely

ρ 7→ {0 ≤ j, j < n, j < i}

This is computed by the algorithm in Figure 3.6 as follows. At the end of the first

loop (Lines 4-7), the set S contains three solutions:

1: ρ 7→ {0 ≤ j}

2: ρ 7→ {j < n}

3: ρ 7→ {j < i}

The set R at the end of line 8 contains only one optimal solution:

ρ 7→ {0 ≤ j, j < n, j < i}

The set R is unchanged after the Saturate call, simply because it contains only one

optimal solution, while any change to R would require R to contain at least two

optimal solutions.

Now, consider the case of one positive and one negative variable. In this

case, the algorithm invokes OptimalNegativeSolutions to find an optimal set of

negative solutions for the negative variable η, for each choice of predicate q ∈ Q(ρ)

for the positive variable ρ, and stores these solutions in set S (Lines 4-7). After

this, it groups together all those solutions in S that match on the negative variable

to generate a set R of optimal solutions (Line 8). (Recall, from Definition 3.2, that

in an optimal solution a positive variable is mapped to a maximal set of predicates,

while a negative variable is mapped to a minimal set.) It then attempts to generate

more optimal solutions by merging the solutions for both the positive and negative

variables of the optimal solutions in R through the call to Saturate (Line 9).
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Example 3.7 Consider the following formula φ with one positive unknown ρ and

one negative unknown η.

(η ∧ (i ≥ n) ∧ (∀j : ρ⇒ sel(A, j) = 0)) ⇒

(∀j : j ≤ m⇒ sel(A, j) = 0)

Let Q(η) and Q(ρ) both be Q{i,j,n,m}. There are three optimal solutions for φ over

Q, namely

1: ρ 7→ {j ≤ m} , η 7→ ∅

2: ρ 7→ {j ≤ n, j ≤ m, j ≤ i}, η 7→ {m ≤ n}

3: ρ 7→ {j ≤ i, j ≤ m} , η 7→ {m ≤ i}

These are computed by the algorithm in Figure 3.6 as follows. At the end of the first

loop (Lines 4-7), the set S contains the following four solutions:

1: ρ 7→ {j ≤ m}, η 7→ ∅

2: ρ 7→ {j ≤ n} , η 7→ {m ≤ n}

3: ρ 7→ {j ≤ i} , η 7→ {m ≤ i}

4: ρ 7→ {j ≤ i} , η 7→ {m ≤ n}

The set R at the end of line 8 contains the following three optimal solutions:

1: ρ 7→ {j ≤ m} , η 7→ ∅

2: ρ 7→ {j ≤ n, j ≤ m, j ≤ i}, η 7→ {m ≤ n}

3: ρ 7→ {j ≤ i, j ≤ m} , η 7→ {m ≤ i}

The set R is unchanged by the call to Saturate (Line 9).

The extension to multiple positive variables involves considering a choice of all tuples

of predicates of appropriate size (Line 4), while the extension to multiple negative

variables is not very different.
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The proof of correctness of the OptimalSolutions procedure described here

is given in Appendix A.3, and we encourage the reader to go through it to get a

better understanding of the working of the procedure.

The OptimalNegativeSolutions operation This operation requires reasoning over

the theories that are used in the predicates, e.g., the theory of arrays, the bit vector

theory, or linear arithmetic. We use an SMT solver as a black box for such theory

reasoning. Of several ways to implement OptimalNegativeSolutions, we found it

effective to implement OptimalNegativeSolutions(φ,Q) as a breadth-first search

on the lattice of subsets ordered by implication, with > and ⊥ being ∅ and the set

of all predicates, respectively. We start at > and keep deleting the subtree of every

solution discovered until no more elements remain to be searched. Furthermore, to

achieve efficiency, one can truncate the search at a certain depth. (We observed that

the number of predicates mapped to a negative variable in any optimal solution in

our experiments was never greater than 4.) To achieve completeness, the bounding

depth can be increased iteratively after a failed attempt.

OptimalNegativeSolutions and predicate cover The operation OptimalNegative-

Solutions as we define above is a generalization of the predicate cover operation

from standard predicate abstraction literature [128, 177]. Given a set of predicates

Q0 and a formula φ, the predicate cover operation finds the weakest conjunction

of predicates from Q0 that implies it. This is illustrated pictorially in Figure 3.7.

Predicate cover is a fundamental operation used in the abstract transformers while
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Figure 3.7: The predicate cover operation. The lines indicate predicates and their
negations. Pictorially, a predicate specifies one half-space and its negation the other
half-space. For a given formula—the light gray area—the predicate cover computed
is the set of predicates corresponding to the bold lines. The enclosed space by the
predicate cover—the dark gray area—lies completely within area for the formula,
indicating that the predicate cover implies the formula. Notice that the computed
predicate cover is the maximally weak possible over these predicates: leaving out
any predicate/line from the cover will merge areas outside of the formula. Notice
that in general there may be multiple maximally weak formulas and it is expected
that the predicate cover/OptimalNegativeSolutions procedure will output all in-
comparable ones.

performing abstract interpretation over predicate abstraction [128]. The weakest

conjunction corresponds to the least number of predicates.

Note that this is exactly the output of OptimalNegativeSolutions((η ⇒

φ), {Q0}). Since we deal with more general templates, i.e., with arbitrary boolean

structure as opposed to just conjunctive facts as in previous predicate abstraction

literature, we need to generalize through OptimalNegativeSolutions the notion of

predicate cover to handle multiple negative unknowns. Additionally, we also need

to build another operation OptimalSolutions to handle positive unknowns as well.

The proof of correctness of the OptimalNegativeSolutions procedure de-

scribed here is again given in Appendix A.3, and we encourage the reader to go
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through it to get a better understanding of the design here.

In the following sections we use this OptimalSolutions interface to the SMT

solver to build fixed-point computation algorithms, two that iteratively approximate

the solution (Section 3.5) similar to traditional dataflow approaches and one that

uses an encoding of the fixed-point as a SAT formula (Section 3.6) similar to the

approach in the previous chapter.

3.5 Iterative Propagation Based Algorithms

In this section, we present two iterative propagation based algorithms for dis-

covering an inductive invariant that establishes the validity of assertions in a given

program.

The key insight behind these algorithms is as follows. Observe that the set

of elements that are instantiations of a given template with respect to a given set

of predicates, ordered by implication, forms a pre-order, but not a lattice. Our

algorithms perform a standard data-flow analysis over the powerset extension of

this abstract domain (which forms a lattice) to ensure that it does not miss any

solution. Experimental evidence shows that the number of elements in this powerset

extension never gets beyond 6. Each step in the algorithm involves updating a

fact at a cut-point by using the facts at the neighboring cut-points (preceding or

succeeding cut-points in case of forward or backward data-flow, respectively). The

update is done by generating the verification condition that relates the facts at the

neighboring cut-points with the template at the current cut-point, and updating
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LeastFixedPoint(Prog, Q)
1 Let σ0 be s.t. σ0(v) 7→ ∅, if v is negative

σ0(v) 7→ Q(v), if v is positive

2 S := {σ0};
3 while S 6= ∅ ∧ ∀σ ∈ S : ¬Valid(VC(Prog, σ))
4 Choose σ ∈ S, (δ, τ1, τ2, σt) ∈ Paths(Prog) s.t.

¬Valid(VC(〈τ1σ, δ, τ2σσt〉))
5 S := S − {σ};
6 Let σp = σ | Unk(Prog)−Unk(τ2) and θ := τ2σ ⇒ τ2.
7 S := S ∪ {σ′σ−1

t ∪ σp |
∧

σ′′∈S

τ2σ
′′ 6⇒ τ2σ

′σ−1
t ∧

σ′ ∈ OptimalSolutions(VC(〈τ1σ, δ, τ2〉) ∧ θ,Qσt)}
8 if S = ∅ return ‘‘No solution’’

9 else return σ ∈ S s.t. Valid(VC(Prog, σ))

(a) Least Fixed-Point Computation

GreatestFixedPoint(Prog)
1 Let σ0 be s.t. σ0(v) 7→ Q(v), if v is negative

σ0(v) 7→ ∅, if v is positive

2 S := {σ0};
3 while S 6= ∅ ∧ ∀σ ∈ S : ¬Valid(VC(Prog, σ))
4 Choose σ ∈ S, (δ, τ1, τ2, σt) ∈ Paths(Prog) s.t.

¬Valid(VC(〈τ1σ, δ, τ2σσt〉))
5 S := S − {σ};
6 Let σp = σ | Unk(Prog)−Unk(τ1) and θ := τ1 ⇒ τ1σ.
7 S := S ∪ {σ′ ∪ σp |

∧
σ′′∈S

τ1σ
′ 6⇒ τ1σ

′′ ∧

σ′ ∈ OptimalSolutions(VC(〈τ1, δ, τ2σσt〉) ∧ θ,Q)}
8 if S = ∅ return ‘‘No solution’’

9 else return σ ∈ S s.t. Valid(VC(Prog, σ))

(b) Greatest Fixed-Point Computation

Figure 3.8: Iterative algorithms for generating an invariant solution given program
Prog and predicate-map Q.
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using the solutions obtained from a call to OptimalSolutions.

The two algorithms differ in whether they perform a forward or backward

dataflow and accordingly end up computing a least or greatest fixed point, respec-

tively, but they both have the following property.

Theorem 3.1 (Correctness of Iterative Fixed-point Computation) Given a

program Prog and a predicate map Q, the algorithms in Figure 3.8 output an in-

variant solution, if there exists one.

For notational convenience, we present the algorithms slightly differently. Each

of these algorithms (described in Figure 3.8) involve maintaining a set of candidate

solutions at each step. A candidate solution σ is a map of the unknowns v in all

templates to some subset of Q(v), where Q is the given predicate-map. The algo-

rithms make progress by choosing a candidate solution and replacing it by a set

of weaker or stronger candidate solutions (depending on whether a forward/least

fixed-point or backward/greatest fixed-point technique is used) using the operation

OptimalSolutions defined in Section 3.4. The algorithms return an invariant so-

lution whenever any candidate solution σ satisfies the verification condition, i.e.,

Valid(VC(Prog, σ)), or fail when the set of candidate solutions becomes empty.

The proof of Theorem 3.1 follows directly from the correctness of dataflow

analyses [164]. The procedure OptimalSolutions serves as both the forward and

backwards transfer function by computing the optimal change that is required to

the invariant at the endpoint of a path (Theorem A.3). The fixed-point algorithms

(Figure 3.8) implement a iterative work-list dataflow computation. The lattice is
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the finite height lattice of maps ordered by the partial order v as defined below.

Line 7 in Figure 3.8(a) and Line 7 in Figure 3.8(b) implement the join operation.

Definition 3.3 (Ordering v of solutions) Given a template τ , two solutions σ1

and σ2 are ordered as σ1 v σ2 iff ∀ρ ∈ Unk+(τ) : σ1[ρ] ⇒ σ2[ρ] and ∀η ∈ Unk−(τ) :

σ2[η] ⇒ σ1[η].

We next discuss the two variants for computing least and greatest fixed-points,

along with an example.

3.5.1 Least Fixed-point

We now describe a least fixed-point approach that starts at the bottom of the

lattice, and refines the invariants to a weaker one in each iteration. It iterates until

the candidate solution is weak enough to be valid for given the precondition.

This algorithm (Figure 3.8(a)) starts with the singleton set containing the

candidate solution that maps each negative unknown to the empty set (i.e., true)

and each positive unknown to the set of all predicates. In each step, the algorithm

chooses a σ that is not an invariant solution. Since it is not an invariant solution, it

must be the case that it does not satisfy at least one verification condition. There

must exist a (δ, τ1, τ2, σt) ∈ Paths(Prog) such that VC(〈τ1σ, δ, τ2σσt〉) is not valid,

because τ2σ is a too strong an instantiation for τ2. (This is because the loop on Line 3

in the algorithm maintains the invariant that any assignment to τ2 at the end of a

verification condition is at least as strong as it can be given the verification condition

and the assignment to τ1 at its beginning.) The algorithm replaces the candidate
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solution σ by the solutions {σ′σ−1
t ∪ σp | σ′ ∈ OptimalSolutions(VC(〈τ1σ, δ, τ2〉) ∧

θ,Qσt)}, where σp is the projection of the map σ onto the unknowns in the set

Unk(Prog)−Unk(τ2) and θ (defined as τ2σ ⇒ τ2) ensures that only stronger solutions

are considered.

Example 3.8 Consider the ArrayInit program from Example 3.3. Let Q(v) =

Qj,{0,i,n}. In the first iteration of the while loop, S is initialized to σ0, and in Line 4

there is only one triple in Paths(ArrayInit) whose corresponding verification con-

dition is inconsistent, namely (i := 0, true,∀j : v ⇒ sel(A, j) = 0, σt), where σt

is the identity map. Line 7 results in a call to OptimalSolutions on the formula

φ = (i = 0) ⇒ (∀j : v ⇒ sel(A, j) = 0), the result of which has already been shown

in Example 3.5. The set S now contains the following candidate solutions after the

first iteration of the while loop.

1: v 7→ {0 < j ≤ i}

2: v 7→ {0 ≤ j < i}

3: v 7→ {i < j ≤ 0}

4: v 7→ {i ≤ j < 0}

Of these, the candidate solution v 7→ {0 ≤ j < i} is a valid solution, and hence the

while loop terminates after one iteration.

3.5.2 Greatest Fixed-point

Similar to the least fixed-point computation in the previous section, we now

present a greatest fixed-point approach. The key difference is that instead of starting
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the iteration from the bottom of the lattice, we instead start at the top and refine

the invariants to a stronger one in each iteration. It iterates until the candidate

solution is strong enough to imply the postconditions. We detail the approach here

for completeness.

This algorithm (Figure 3.8(b)) starts with the singleton set containing the

candidate solution that maps each positive unknown to the empty set (i.e., true)

and each negative unknown to the set of all predicates. As above, in each step the

algorithm chooses a σ that is not an invariant solution. Since it is not an invariant so-

lution, it must be the case that it does not satisfy at least one verification condition.

There must exist a (δ, τ1, τ2, σt) ∈ Paths(Prog) such that VC(〈τ1σ, δ, τ2σσt〉) is not

valid, because τ1σ is a too weak an instantiation for τ1. (This is because the loop on

Line 3 in the algorithm maintains the invariant that any assignment to τ1 at the be-

ginning of a verification condition is at least as weak as it can be given the verification

condition and the assignment to τ2 at its end.) The algorithm replaces the candidate

solution σ by the solutions {σ′ ∪ σp | σ′ ∈ OptimalSolutions(VC(〈τ1, δ, τ2σσt〉) ∧

θ,Q)}, where σp is the projection of the map σ onto the unknowns in the set

Unk(Prog) − Unk(τ1) and θ (defined as τ1 ⇒ τ1σ) ensures that only weaker solu-

tions are considered.

Example 3.9 Consider the ArrayInit program from Example 3.3. Let Q(v) =

Qj,{0,i,n}. In the first iteration of the while loop, S is initialized to σ0, and in Line 4

there is only one triple in Paths(ArrayInit) whose corresponding verification con-

dition is inconsistent, namely (assume(i ≥ n),∀j : v ⇒ sel(A, j) = 0,∀j : 0 ≤ j <
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n ⇒ sel(A, j) = 0, σt), where σt is the identity map. Line 7 results in a call to

OptimalSolutions on the formula φ = (i ≥ n) ∧ (∀j : v ⇒ sel(A, j) = 0) ⇒ (∀j :

0 ≤ j < n ⇒ sel(A, j) = 0), whose output is shown in Example 3.6. This results

in S containing only the following candidate solution after the first iteration of the

while loop:

v 7→ {0 ≤ j, j < n, j < i}

The candidate solution v 7→ {0 ≤ j, j < n, j < i} is a valid solution, and hence the

while loop terminates after one iteration.

3.6 Satisfiability-based Algorithm

In this section, we show how to encode the verification condition of the pro-

gram as a boolean formula such that a satisfying assignment to the boolean formula

corresponds to an inductive invariant that establishes the validity of assertions in a

given program. We describe how verification conditions can be reduced to proposi-

tional constraints in two steps. We first describe the simpler case of just conjunctive

invariants (or k disjuncts each being conjunctive) in Section 3.6.1 and then step up

to an efficient reduction for arbitrary templates using OptimalNegativeSolutions

in Section 3.6.2.

3.6.1 SAT Encoding for Simple Templates

We first illustrate our approach by means of a simple example that discovers

a single conjunctive fact I and later extend that to boolean constraint generation
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for DNF formulae with k disjuncts each, i.e., k-DNF.

Example Consider the program in Figure 3.9(a). The program loop iterates us-

ing the loop counter x and increments an auxiliary variable y as well. Its control

flow graph (CFG) is shown in Figure 3.9(b), and its equivalent using only non-

deterministic branches, assumes, asserts, and assignments is shown in Figure 3.9(c).

There are three simple paths going from program entry to loop header ( 1 → 2 ),

around the loop ( 2 → 2 ), and loop header to program exit ( 2 → 3 ), and the ver-

ification conditions they generate are shown in Figure 3.9(d). The set of predicates

Q(I) over which we seek to discover our inductive invariant is shown in Figure 3.9(e).

The first step is to associate with each predicate p ∈ Q(I) a boolean indicator

variable bp indicating p’s presence or absence in I. Then we consider each verification

condition for each path in turn and generate constraints on the indicator variables:

• Loop entry ( 1 → 2 ): The verification condition is m > 0 ⇒ I[y → 0, x→ 0],

for which we generate the constraint

¬bx<y ∧ ¬bx≥m ∧ ¬by≥m (Ex-1)

denoting that the predicates x < y and x ≥ m and y ≥ m cannot be in I since

they are not implied by the verification condition for loop entry.

• Loop exit ( 2 → 3 ): The verification condition is I ∧ x ≥ m ⇒ y = m, for

which we generate the constraint

(by≥m ∧ by≤m) ∨ bx<m ∨ (bx≤y ∧ by≤m) (Ex-2)
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loop (int m) {
1 assume(m > 0);
2 x := 0; y := 0;
3 while (x < m) {
4 x++;
5 y++;
6 }
7 assert(y = m)
}

assert(y = m)

y
n

I

x := 0; y := 0

assume(m > 0)

x++; y++

x < m

(a) (b)

x++; y++

I

y n

assume(m > 0)

assert(y = m)

assume(x < m) assume(x ≥ m)

1

3

2

x := 0; y := 0

∗

(c)

1 → 2 : m > 0 ⇒ I[y → 0, x → 0]
2 → 3 : I ∧ x ≥ m ⇒ y = m
2 → 2 : I ∧ x < m ⇒ I[y → y + 1, x → x + 1]

Q(I) =


x ≤ y, x ≥ y, x < y,

x ≤ m, x ≥ m, x < m
y ≤ m, y ≥ m, y < m


(d) (e)

Figure 3.9: Illustrative example for satisfiability-based reduction. (a) Iteration over
x with an auxiliary variable y (b) The control flow graph (CFG) with the loop
invariant marked as I (c) The CFG as modeled in our system. (d) Verification
condition corresponding to each simple path. (e) The set of predicates Q.
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denoting that either both y ≥ m and y ≤ m belong to I, or x < m belongs

to I, or both x ≤ y and y ≤ m belong to I. Observe that these are the

only three (maximally-weak) ways in which we can prove y = m under the

assumption x ≥ m. Traditionally, these different ways are computed by using

the predicate cover operation (which we commented on in Section 3.2).

• Inductive ( 2 → 2 ): The verification condition is I ∧ x < m ⇒ I[y →

y + 1, x→ x+ 1], for which we generate the constraint

(by≤m ⇒ (by<m ∨ by≤x)) ∧ ¬bx<m ∧ ¬by<m (Ex-3)

denoting that if y ≤ m belongs to I, then either y < m or x ≤ y ∧ y ≤ x

should also belong to I, and that the predicates x < m and y < m cannot be

in I. The reader can easily check that this verification condition allows any

other predicate p to be in I because p ∧ x < m⇒ p[y → y + 1, x→ x+ 1].

These constraints are generated by considering each predicate p, finding the

weakest conditions, as boolean constraints bcp, over the set of predicates under

which p∧x < m⇒ p[y → y+1, x→ x+1] and then generating the constraint

that bp ⇒ bcp. For the predicates x < m and y < m, the weakest boolean

constraint is in fact false, and hence we generate the constraints ¬bx<m and

¬by<m. For the predicate y ≤ m, the weakest boolean constraint is by<m∨by≤x.

For all other predicates, it is true.

Putting Eq. (Ex-1), (Ex-2), and (Ex-3) together we get a SAT formula over the

boolean indicator variables that encodes the verification condition of the program.
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The reader can verify that bx≥y = bx≤y = by≤m = true (and all others false) is a

satisfying solution. This corresponds to I being (x = y ∧ y ≤ m).

3.6.1.1 Encoding VCs as SAT for Simple Templates

We now describe a SAT encoding for discovering inductive invariants Iπ that

can be described using a relatively simple k-DNF formula over a given predicate

map Q. In the next section, we will describe a reduction for general templates

(and we will have to use the more general OptimalNegativeSolutions procedure

instead of just predicate cover). In the k-DNF case, we can represent an invariant I

at program point π by k×s boolean indicator variables bπi,p (where 1≤i≤k, p ∈ Q(I),

s = |Q(I)|). The boolean variable bπi,p denotes whether predicate p is present in the

ith disjunct of the invariant I at program point π, which we indicate as Iπ here. We

show how to encode the verification condition of the program as a boolean formula ψ

over the boolean indicator variables bπi,p. The boolean formula ψProg is satisfiable iff

there exist inductive invariants (in k-DNF form) strong enough to prove the validity

of the assertions.

We first show how to encode the verification condition of any simple path δ

as a boolean formula ψδ. But first, let us observe that the verification condition for

any simple path δ between π1 and π2 simplifies to the following form:

Iπ1 ⇒ (G⇒ Iπ2) (3.1)

where and G are known formulas obtained from the predicates that occur on the
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path δ. For reducing verification condition, the following three cases arise, which

we consider in increasing order of difficulty:

Case 1 (Path between program entry and a cut-point) The verification condition in

Eq. 3.1 simplifies to the following form after substituting Iπ1 = true and

expanding Iπ2 as
k∨

j=1

Iπ2
j , where each Iπ1

j is conjunction of some predicates

from Q(Iπ1).

G⇒

(
k∨

j=1

Iπ2
j

)
The above constraint restricts how strong Iπ2 can be. Essentially, if some

selection of predicates q1, . . , qk are present in each of the disjuncts (i.e., their

corresponding indicators bπ2
1,q1
, . . , bπ2

1,q1
are true), then it better be the case that

their disjunction is implied by G. Formally, if q1 ∈ Iπ2
1 , . . . , qk ∈ Iπ2

k , then it

must be the case that G⇒
k∨

j=1

qj. Hence, we can rewrite the above constraint

as:

∧
p1,..,pk∈Q(Iπ2 )

(
(

k∧
j=1

bπ2
j,pj

) ⇒ (G⇒
k∨

j=1

pj)

)
(3.2)

This can be encoded as the following boolean constraint ψ(δ) over boolean

indicator variables bπ2
i,p.

ψδ =
∧

p1,..,pk∈Q

(
(

k∧
j=1

bπ2
j,pj

) ⇒ bval(G,
k∨

j=1

pj)

)
(3.3)

where bval(A,B) is an indicator function that output the truth value (true or

false) of A⇒ B.

Case 2 (Path between a cut-point and program exit) The verification condition in

Eq. 3.1 simplifies to the following form after substituting Iπ2 = true and
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expanding Iπ1 as
k∨

j=1

Iπ1
j , where each Iπ1

j is conjunction of some predicates

from Q(Iπ1). (
k∨

i=1

Iπ1
i

)
⇒ G or, equivalently,

k∧
i=1

(Iπ1
i ⇒ G)

The above constraint restricts how weak Iπ1
i can be. We can encode the

above constraint as a boolean formula over the variables bπi,p by considering the

predicate cover of G. To recall, the predicate cover, denoted by pred cover(F ),

of a formula F over a set of predicates is the weakest conjunctive formula

over the predicates that implies F . Let φ(F, preds, i, π) denote the boolean

formula over boolean variables bπi,p obtained after replacing each predicate p

in pred cover(F ) by bπi,p. For example, if the predicate cover is x ≤ y ∧ y ≤

m, then this boolean function is bπi,x≤y ∧ bπi,y≤m. The verification condition

above can now be encoded as the following boolean constraint ψδ over boolean

indicator variables bπ1
i,p.

ψδ =
k∧

i=1

φ(G,Q(Iπ1), i, π1) (3.4)

Case 3 (Path between two adjacent cut-points) We now combine the key ideas that we

used in the above two cases to handle this more general case. The verification

condition in Eq. 3.1 has the following form (after expanding Iπ1 as
k∨

i=1

Iπ1
i and

Iπ2 as
k∨

j=1

Iπ2
j , where each Iπ1

i and Iπ2
j is a conjunction of some predicates from
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Q(Iπ1) and Q(Iπ2), respectively).(
k∨

i=1

Iπ1
i

)
⇒

(
G⇒

k∨
j=1

Iπ2
j

)

or, equivalently,
k∧

i=1

(
Iπ1
i ⇒

(
G⇒

k∨
j=1

Iπ2
j

))
(3.5)

Using the same argument as in Case 1, the above constraint can be rewritten

as:

k∧
i=1

∧
p1,..,pk∈Q(Iπ2 )

(
(

k∧
j=1

bπ2
j,pj

) ⇒

(
Iπ1
i ⇒ (G⇒

k∨
j=1

pj)

))

Now, using the argument as in Case 2, the verification condition above can be

encoded as the following boolean constraint ψδ over boolean indicator variables

bπ1
i,p and bπ2

i,p:

ψδ =
k∧

i=1

∧
p1,..,pk∈Q

(
(

k∧
j=1

bπ2
j,pj

) ⇒ φ

(
(G⇒

k∨
j=1

pj), Q(Iπ1), i, π1

))
(3.6)

The desired boolean formula ψProg is now given by the conjunction of formulas ψδ

for all simple paths δ in the program.

Observe that the constraints are generated locally from the verification condi-

tion of each simple path. Hence, the satisfiability-based technique has the potential

for efficient incremental verification, i.e., verification of a modified version of an

already verified program, with support of an incremental SAT solver.

The next section describes a generalization of the reduction here to work over

templates with arbitrary boolean structure, as opposed to just DNF, and will there-

fore use OptimalNegativeSolutions as opposed to predicate cover as we did here.
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3.6.2 SAT Encoding for General Templates

For every unknown variable v and any predicate q ∈ Q(v), we introduce a

boolean variable bvq to denote whether the predicate q is present in the solution for

v. We show how to encode the verification condition of the program Prog using a

boolean formula ψProg over the boolean variables bvq . The boolean formula ψProg is

constructed by making calls to OptimalNegativeSolutions, which is our theorem

proving interface, and the constructed formula has the property that if it is satisfiable

if and only if the program has invariants that are instantiations of the template using

the predicate map Q (as we show in Theorem 3.2).

Notation Given a mapping {vi 7→ Qi}i (where Qi ⊆ Q(vi)), let BC({vi 7→ Qi}i)

denote the boolean formula that constrains the unknown variable vi to contain all

predicates from Qi.

BC({vi 7→ Qi}i) =
∧

i,q∈Qi

bvi
q

3.6.2.1 Encoding VCs as SAT using OptimalNegativeSolutions

We first show how to generate the boolean constraint ψδ,τ1,τ2 that encodes the

verification condition corresponding to any tuple (δ, τ1, τ2, σt) ∈ Paths(Prog). Let τ ′2

be the template that is obtained from τ2 as follows. If τ2 is different from τ1, then τ ′2

is same as τ2, otherwise τ ′2 is obtained from τ2 by renaming all the unknown variables

to fresh unknown variables with orig denoting the reverse mapping that maps the

fresh unknown variables back to the original. This renaming is important to ensure

that each occurrence of an unknown variable in the formula VC(〈τ1, δ, τ ′2〉) is unique.
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Note that each occurrence of an unknown variable in the formula VC(〈τ1, δ, τ2〉) may

not be unique when τ1 and τ2 refer to the same template, which is the case when

the path δ goes around a loop.

A simple approach would be to use OptimalSolutions to compute all valid so-

lutions for VC(〈τ1, δ, τ ′2〉) and encode their disjunction. But because both τ1 and τ ′2 are

uninstantiated unknowns, the number of optimal solutions explodes. We describe

below an efficient construction that involves invoking OptimalNegativeSolutions

only over formulae with a smaller number of unknowns (the negative) for a small

choice of predicates for the positive variables. The reduction is a generalization of

the construction presented in the previous section.

Let ρ1, . . , ρa be the set of positive variables and let η1, . . , ηb be the set of nega-

tive variables in VC(〈τ1, δ, τ ′2〉). Consider any positive variable ρi and any qj ∈ Q′(ρi),

where Q′ is the map that maps an unknown v that occurs in τ1 to Q(v) and an un-

known v that occurs in τ2 to Q(v)σt. We require the predicate maps for the positive

unknowns contain a predicate true. Consider the partial map σ{ρi,qj}i,j
that maps ρi

to {qj}, i.e., maps all positive variables in the formula to some single predicate from

their possible set. Let S
{ρi,qj}i,j

δ,τ1,τ2
be the set of optimal solutions returned after invok-

ing the procedure OptimalNegativeSolutions on the formula VC(〈τ1, δ, τ ′2〉)σ{ρi,qj}i,j

as below:

S
{ρi,qj}i,j

δ,τ1,τ2
= OptimalNegativeSolutions(VC(〈τ1, δ, τ ′2〉)σ{ρi,qj}i,j

, Q′)

The following Boolean formula ψδ,τ1,τ2,σt encodes the verification condition cor-
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responding to (δ, τ1, τ2, σt).

ψδ,τ1,τ2,σt =
∧

ρi,qj∈Q′(ρi)


(∧

ρi

b
orig(ρi)

qjσ−1
t

)
⇒

∨
{ηk 7→Qk}k∈S

{ρi,qj}i,j
δ,τ1,τ2

BC({orig(ηk) 7→ Qkσ
−1
t }k)

(3.7)

This encoding makes use of the fact that there is an indicator variable for the empty

set, corresponding to the predicate true, which is semantically identical to the empty

set. Consequently, the antecedent will always be non-trivial.

The verification condition of the entire program is now given by the following

boolean formula ψProg, which is the conjunction of the verification conditions of all

tuples (δ, τ1, τ2, σt) ∈ Paths(Prog).

ψProg =
∧

(δ,τ1,τ2,σt)∈Paths(Prog)

ψδ,τ1,τ2,σt (3.8)

Example 3.10 Consider the ArrayInit program from Example 3.3. Let Q(v) =

Qj,{0,i,n}. The above procedure leads to generation of the following constraints.

Entry Case The verification condition corresponding to this case contains one neg-

ative variable v and no positive variable. The set Sδ,τ1,τ2 is same as the set S in

Example 3.8, which contains 4 optimal solutions. The following boolean formula

encodes this verification condition.

(bv0≤j ∧ bvj<i) ∨ (bv0<j ∧ bvj≤i) ∨ (bvi≤j ∧ bvj<0) ∨ (bvi<j ∧ bvj≤0) (3.9)

Exit Case The verification condition corresponding to this case contains one pos-

itive variable v and no negative variable. We now consider the set Sv,q
δ,τ1,τ2

for each

q ∈ Q(v). Let P = {0 ≤ j, j < i, j ≤ i, j < n, j ≤ n}. If v ∈ P , the set Sv,q
δ,τ1,τ2
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contains the empty mapping (i.e., the resultant formula when v is replaced by q is

valid). If v ∈ Q(v) − P , the set Sv,q
δ,τ1,τ2

is the empty set (i.e., the resultant formula

when v is replaced by q is not valid). The following boolean formula encodes this

verification condition.

∧
q∈P

(bvq ⇒ true) ∧
∧

q∈Q(v)−P

(bvq ⇒ false)

which is equivalent to the following formula

¬bv0<j ∧ ¬bvi<j ∧ ¬bvi≤j ∧ ¬bvn<j ∧ ¬bvn≤j ∧ ¬bvj<0 ∧ ¬bvj≤0 (3.10)

Inductive Case The verification condition corresponding to this case contains one

positive variable v and one negative variable v′ obtained by renaming one of the

occurrences of v. Note that Sδ,τ1,τ2 contains a singleton mapping that maps v′ to the

empty set. Also, note that Sv,j≤i
δ,τ1,τ2

is the empty set, and for any q ∈ Q(v′)−{j ≤ i},

Sv,q
δ,τ1,τ2

contains at least one mapping that maps v′ to the singleton {qσt}. Hence,

the following boolean formula encodes this verification condition.

(bvj≤i ⇒ false) ∧
∧

q∈Q(v′)−{j≤i}

(
bvq ⇒ (bvq ∨ . . .)

)
which is equivalent to the formula

¬bvj≤i (3.11)

The boolean assignment where bv0≤j and bvj<i are set to true, and all other

boolean variables are set to false satisfies the conjunction of the boolean constraints

in Eq. 3.9,3.10, and 3.11. This implies the solution {0 ≤ j, j < i} for the unknown

v in the invariant template.

134



The construction of the boolean constraint defined above satisfies the following

property.

Theorem 3.2 The boolean formula ψProg (Eq. 3.8) is satisfiable iff there exists an

invariant solution for program Prog over predicate-map Q.

In the interest of continuity, we present the proof of this theorem in Section A.4

(Appendix A.3).

3.7 Specification Inference

In this section, we address the problem of discovering maximally weak precon-

ditions and maximally strong postconditions that fit a given template and ensure

that all assertions in a program are valid.

3.7.1 Maximally Weak Pre- and Maximally Strong Postcon-

ditions

We first recap the definitions of maximally weak preconditions and maximally

strong postconditions from the previous chapter by stating them formally.

Definition 3.4 (Maximally Weak Precondition) Given a program Prog with

assertions, invariant templates at each cutpoint, and a template τe at the program

entry, we seek to infer a solution(s) σ to the unknowns in the templates such that

• σ is a valid solution, i.e. Valid(VC(Prog, σ)).
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GreatestFixedPointAll(Prog)
1 Let σ0 be s.t. σ0(v) 7→ Q(v), if v is negative

σ0(v) 7→ ∅, if v is positive

2 S := {σ0};
3 while S 6= ∅ ∧ ∃σ ∈ S : ¬Valid(VC(Prog, σ))
4 Choose σ ∈ S, (δ, τ1, τ2, σt) ∈ Paths(Prog) s.t.

¬Valid(VC(〈τ1σ, δ, τ2σσt〉))}
5 S := S − {σ};
6 Let σp = σ | Unk(Prog)−Unk(τ1).

7 S := S ∪ {σ′ ∪ σp |
∧

σ′′∈S

τ1σ
′ 6⇒ τ1σ

′′ ∧

σ′ ∈ OptimalSolutions(VC(〈τ1, δ, τ2σσt〉), Q)
8 return S;

(a) Iterative Greatest Fixed-Point Computation

OptimallyWeakSolutions(Prog)
1 φ := φProg;
2 S := ∅;
3 while SAT(φ)
4 φ′ := φ;
5 while SAT(φ′)
6 s := SAT(φ′);
7 weak := (τe s⇒ τe) ∧ ¬(τe ⇒ τe s);
8 φ′ := φ ∧ Boolify(weak)
9 S := S ∪ {s};

10 φ := φ ∧ ¬Boolify(τe ⇒ τe s)
11 return S;

(b) Satisfiability-based Weakest Precondition Inference

Figure 3.10: Weakest precondition inference algorithms (a) using an iterative
approach (described in terms of the procedure OptimalSolutions) (b) using a
satisfiability-based approach that iteratively generates an increasingly weaker so-
lution from a starting candidate.
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LeastFixedPointAll(Prog, Q)
1 Let σ0 be s.t. σ0(v) 7→ ∅, if v is negative

σ0(v) 7→ Q(v), if v is positive

2 S := {σ0};
3 while S 6= ∅ ∧ ∃σ ∈ S : ¬Valid(VC(Prog, σ))
4 Choose σ ∈ S, (δ, τ1, τ2, σt) ∈ Paths(Prog) s.t.

¬Valid(VC(〈τ1σ, δ, τ2σσt〉))
5 S := S − {σ};
6 Let σp = σ | Unk(Prog)−Unk(τ2).

7 S := S ∪ {σ′σ−1
t ∪ σp |

∧
σ′′∈S

τ2σ
′′ 6⇒ τ2σ

′σ−1
t ∧

σ′ ∈ OptimalSolutions(VC(〈τ1σ, δ, τ2〉), Qσt)}
8 return S;

(a) Iterative Least Fixed-Point Computation

OptimallyStrongSolutions(Prog)
1 φ := φProg;
2 S := ∅;
3 while SAT(φ)
4 φ′ := φ;
5 while SAT(φ′)
6 s := SAT(φ′);
7 strong := (τe ⇒ τe s) ∧ ¬(τe s⇒ τe)
8 φ′ := φ ∧ Boolify(strong)
9 S := S ∪ {s};

10 φ := φ ∧ ¬Boolify(τe s⇒ τe)
11 return S;

(b) Satisfiability-based Strongest Postcondition Inference

Figure 3.11: Strongest postcondition inference algorithms (a) using an iterative
approach (described in terms of the procedure OptimalSolutions) (b) using a
satisfiability-based approach that iteratively generates an increasingly stronger so-
lution from a starting candidate.
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• For any solution σ′, it is not the case that τeσ
′ is strictly weaker than τeσ, i.e.,

∀σ′ : (τeσ ⇒ τeσ
′ ∧ τeσ′ 6⇒ τeσ) ⇒ ¬Valid(VC(Prog, σ′))

Definition 3.5 (Maximally Strong Postcondition) Given a program Prog, in-

variant templates at each cutpoint, and a template τe at program exit, we seek to

infer a solution(s) σ to the unknowns in the templates such that

• σ is a valid solution, i.e. Valid(VC(Prog, σ)).

• For any solution σ′, it is not the case that τeσ
′ is strictly stronger than τeσ,

i.e.,

∀σ′ : (τeσ
′ ⇒ τeσ ∧ τeσ 6⇒ τeσ

′) ⇒ ¬Valid(VC(Prog, σ′))

We now discuss how the iterative greatest and least fixed-point approaches

can be extended to generate maximally weak preconditions and maximally strong

postconditions, respectively.

Greatest fixed-points for maximally weak preconditions The greatest fixed-point

based iterative technique described in Section 3.5.2 can be extended to generate

maximally weak solutions as described in Figure 3.10(a). The only difference is

that instead of generating only one maximally weak solution, we generate all maxi-

mally weak solutions (as is illustrated by the change in the while-loop condition in

Figure 3.10(a) compared to that in Figure 3.8(b)).

Least fixed-points for maximally strong postconditions The least fixed-point based

iterative technique described in Section 3.5.1 can be extended to generate maximally
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strong solutions as described in Figure 3.11(a). The only difference is that instead

of generating only one maximally strong solution, we generate all maximally strong

solutions (as is illustrated by the change in the while-loop condition in Figure 3.11(a)

compared to that in Figure 3.8(a)).

The satisfiability-based approach can also be extended to compute solutions

is based on a finite encoding that is similar to the approach for linear arithmetic

(Section 2.4).

Satisfiability-based technique for maximally weak pre- and maximally strong postcon-

ditions The satisfiability-based technique described in Section 3.6 can be extended

to generate maximally weak and maximally strong solutions as described in Fig-

ure 3.10(b) and Figure 3.11(b), respectively. The key idea is to first generate a

boolean formula φ that encodes the verification condition of the program (Line 1)

with the additional constraint that φ is not stronger than any of the maximally weak

solutions already found (Line 10); or not weaker than any of the maximally strong

solutions already found, respectively. Then, we construct a boolean formula φ′ that

encodes the additional constraint that the precondition τe should be strictly weaker

or stronger than τe s (Line 8), where s is the last satisfying solution. If the formula

φ′ is satisfiable, we update s to the new satisfying solution (Line 6). We repeat this

process in the inner loop (Lines 5-8) until the satisfying assignment s can be made

weaker (for maximally weak precondition inference) and can be made stronger (for

maximally strong postcondition inference).
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3.8 Evaluation

We built a tool, called VS3
PA, that implements the algorithms described in

this chapter. We used the tool to verify and infer properties of various difficult

benchmarks in our experiments.

We ran our experiments on a 2.5GHz Intel Core 2 Duo machine with 4GB of

memory. We evaluated the performance of our algorithms over two sets of bench-

mark analyses. The first set consists of analyses that have been previously considered

using alternative techniques. This serves to compare our technique based on SMT

solvers against more traditional approaches. The second set consists of analyses

that have not been feasible before.

3.8.1 Templates and Predicates

VS3
PA takes as input a program and a global set of templates and predicates.

The global template is associated with each loop header (cut-point) and the global

set of predicates with each unknown in the templates. We use a global set to reduce

annotation burden, possibly at the cost of efficiency. The tool could potentially

find solutions faster if different predicate sets were used for each invariant location,

but the additional annotation burden would have been too cumbersome. For each

benchmark program, we supplied the tool with a set of templates, whose structure is

very similar to the program assertions (usually containing one unquantified unknown

and a few quantified unknowns, as in Figures 3.1, 3.2, 3.3, and 3.4) and a set of

predicates consisting of inequality relations between relevant program and bound
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Benchmark Assertion proved

Consumer Producer ∀k : 0 ≤ k < n⇒ C[k] = P [k]

Partition Array
∀k : 0 ≤ k < j ⇒ B[k] 6= 0
∀k : 0 ≤ k < l⇒ A[k] = 0

List Init, Del, Insert ∀k : x ; k ∧ k 6= ⊥ ⇒ k → val = 0

Table 3.2: The assertions proved for verifying simple array/list programs.

Benchmark LFP GFP CFP Previous

Consumer Producer 0.45 2.27 4.54 45.00 [154]
Partition Array 2.28 0.15 0.76 7.96 [154], 2.4 [31]

List Init 0.15 0.06 0.15 24.5 [137]
List Delete 0.10 0.03 0.19 20.5 [137]
List Insert 0.12 0.30 0.25 23.9 [137]

Table 3.3: Time taken for verification of data-sensitive array and list programs.

variables.

3.8.2 Verifying standard benchmarks

We consider small but complicated programs that manipulate unbounded data

structures. These programs have been considered in state-of-the-art alternative

techniques that infer data-sensitive properties of programs.

Simple array/list manipulation: We present the performance of our algorithms on

small but difficult programs manipulating arrays and lists. These benchmarks were

culled from papers on state-of-the-art alternative techniques for verification. Ta-

ble 3.2 presents the assertions that are proved by our algorithm. By adding ax-

iomatic support for reachability, we were able to verify simple list programs illus-

trating our extensibility. Table 3.3 presents the benchmark examples, the time in
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Benchmark Assertion proved

Selection Sort
Bubble Sort (n2)

∀k1, k2 : 0 ≤ k1 < k2 < n⇒ A[k1] ≤ A[k2]

Insertion Sort
Bubble Sort (flag)

∀k : 0 ≤ k < n⇒ A[k] ≤ A[k+1]

Table 3.4: The assertions proving that sorting programs output sorted arrays.

seconds taken by each of our algorithm (least fixed-point, greatest fixed-point and

satisfiability-based) and the time reported by previous techniques2.

Consumer Producer [154] is a loop that non-deterministically writes (produces)

a new value into buffer at the head or reads (consumes) a value at the tail; we verify

that the values read by the consumer are exactly those that are written by the

producer. Partition Array [31, 154] splits an array into two separate arrays, one

containing the zero entries and the other the non-zero; we verify that the resulting

arrays indeed contain zero and non-zero entries. List Init [137] initializes the val

fields of a list to 0; we verify that every node reachable from the head has been

initialized. List Delete [137] (respectively, List Insert [137]) assumes a properly

initialized list and deletes (respectively inserts) a properly initialized node; we verify

that the resulting lists still have val fields as 0.

2We present the running times for previous techniques with the caveat that these numbers

are potentially incomparable because of the differences in experimental setups and because some

techniques infer predicates, possibly using hints. However, these comparisons substantiate the

robustness of our approach in being able to infer invariants for all benchmarks, which individually

required specialized theories earlier.

142



Time (s)
Benchmark LFP GFP CFP Previous

Selection Sort 1.32 6.79 12.66 na3

Insertion Sort 14.16 2.90 6.82 5.38 [145]3

Bubble Sort (n2) 0.47 0.78 1.21 na
Bubble Sort (flag) 0.22 0.16 0.55 na
Quick Sort (inner) 0.43 4.28 1.10 42.2 [137]
Merge Sort (inner) 2.91 2.19 4.92 334.1 [137]

Table 3.5: Time in seconds to verify sortedness for sorting programs.

Sortedness property: We choose sorting for our benchmark comparisons because

these are some of the hardest verification instances for array programs that have

been attempted by previous techniques. We verify sortedness for all major sorting

procedures. Table 3.4 presents the assertions that we proved for these procedures.

Table 3.5 presents the benchmark examples, the time taken in seconds by our

algorithms (least fixed-point, greatest fixed-point and satisfiability-based) to verify

that they indeed output a sorted array and previously reported timings. We evaluate

over selection, insertion and bubble sort (one that iterates n2 times irrespective of

array contents, and one that maintains a flag indicating whether the inner loop

swapped any element or not, and breaks if it did not). For quick sort and merge

sort we consider their partitioning and merge steps, respectively.

We do not know of a single technique that can uniformly verify all sorting

benchmarks as is possible here. In fact, the missing results indicate that previous

techniques are not robust and are specialized to the reasoning required for particular

programs. In contrast, our tool successfully verified all programs that we attempted.

Also, on time, we outperform the current state-of-the-art.

3[137] and [154] present timing numbers for the inner loops that are incomparable to the numbers
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3.8.3 Proving ∀∃, worst-case bounds, functional correctness

We now present analyses for which no previous techniques are known. We

handle three new analyses: ∀∃ properties verifying that sorting programs preserve

the input elements, generating maximally weak preconditions for worst case upper

bounds and functional correctness.

There are two key features of our algorithms that facilitate new and expres-

sive analyses. The first is the ability to handle templates with arbitrary quan-

tification to allow ∀∃ reasoning. Using this we verify preservation properties of

sorting algorithms. The second, and arguably the more important characteristic, is

the generation of greatest and least fixed-point solutions. We generate worst case

upper bounds and maximally weak preconditions for functional correctness. Our

experiments have shown that a satisfiability-based approach to generating least and

greatest fixed-points gets stuck in the iterative process of making a solution optimal

(inner loop of the algorithm in Figure 3.10(b)). We therefore restrict the use of the

satisfiability-based approach to verification problems with the understanding that

for maximally weak precondition it results in a time out.

∀∃ properties: Under the assumption that the elements of the input array are

distinct, we prove the sorting algorithms do not lose any elements of the input. The

for the entire sorting procedure that we report here. For the inner loops of selection sort and

insertion sort, our algorithms run in time 0.34(LFP), 0.16(GFP), 0.37(CFP) for selection sort

compared to 59.2 [137] and in time 0.51(LFP), 1.96(GFP), 1.04(CFP) for insertion sort compared

to 35.9 [137] and 91.22 [154].
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Benchmark Assertion proved

Selection, Insertion,
Bubble (n2, flag),
Quick (inner) Sort

∀y∃x : 0 ≤ y < n⇒ Ã[y] = A[x] ∧ 0 ≤ x < n

Merge Sort (inner)
∀y∃x : 0 ≤ y < m⇒ A[y] = C[x] ∧ 0 ≤ x < t
∀y∃x : 0 ≤ y < n⇒ B[y] = C[x] ∧ 0 ≤ x < t

Table 3.6: The assertions proved for verifying that sorting programs preserve the
elements of the input. Ã is the array A at the entry to the program.

Time (s)
Benchmark LFP GFP CFP

Selection Sort 22.69 17.02 timeout
Insertion Sort 2.62 94.42 19.66
Bubble Sort (n2) 5.49 1.10 13.74
Bubble Sort (flag) 1.98 1.56 10.44
Quick Sort (inner) 1.89 4.36 1.83
Merge Sort (inner) timeout 7.00 23.75

Table 3.7: Time in seconds to verify preservation (∀∃) for sorting programs.

proof requires discovering ∀∃ invariants (Table 3.6). The running times are shown

in Table 3.7. Except for two runs that timeout, all three algorithms efficiently verify

all instances.

Worst-case upper bounds: We have already seen that the worst-case input for Se-

lection Sort involves a non-trivial precondition that ensures that a swap occurs every

time it is possible (line 7 of Figure 3.3). For Insertion Sort we assert that the copy

operation in the inner loop is always executed. For the termination checking ver-

sion of Bubble Sort we assert that after the inner loop concludes the swapped flag

is always set. For the partitioning procedure in Quick Sort (that deterministically

chooses the leftmost element as the pivot), we assert that the pivot ends up at the

rightmost location. All of these assertions ensure the respective worst-case runs
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Benchmark Precondition inferred

Selection Sort
∀k : 0 ≤ k < n−1 ⇒ A[n−1] < A[k]
∀k1, k2 : 0≤k1<k2<n−1 ⇒ A[k1] < A[k2]

Insertion Sort ∀k : 0 ≤ k < n−1 ⇒ A[k] > A[k+1]

Bubble Sort (flag) ∀k : 0 ≤ k < n−1 ⇒ A[k] > A[k+1]

Quick Sort (inner) ∀k1, k2 : 0 ≤ k1 < k2 ≤ n⇒ A[k1] ≤ A[k2]

Table 3.8: The preconditions inferred by our algorithms for worst case upper bounds
runs of sorting programs.

Benchmark Time (s)

Selection Sort 16.62
Insertion Sort 39.59
Bubble Sort (n2) 0.00
Bubble Sort (flag) 9.04
Quick Sort (inner) 1.68
Merge Sort (inner) 0.00

Table 3.9: Time in seconds to infer preconditions for worst-case upper bounds of
sorting programs.

occur.

We generate the maximally weak preconditions for each of the sorting examples

as shown in Table 3.8. Notice that the inner loop of merge sort and the n2 version of

bubble sort always perform the same number of writes, and therefore no assertions

are present and the precondition is true. The time taken is shown in Table 3.9, and

is reasonable for all instances.

Functional correctness: Often, procedures expect conditions to hold on the input

for functional correctness. These can be met by initialization, or by just assuming

facts at entry. We consider the synthesis of the maximally weak such conditions.

Table 3.10 lists our programs, the interesting non-trivial preconditions (pre) we
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Benchmark Preconditions inferred under given postcondition

Partial Init
pre:

(a) m ≤ n
(b) ∀k : n ≤ k < m⇒ A[k] = 0

post: ∀k : 0 ≤ k < m⇒ A[k] = 0

Init Synthesis
pre:

(a) i = 1 ∧max = 0
(b) i = 0

post: ∀k : 0 ≤ k < n⇒ A[max] ≥ A[k]

Binary Search
pre: ∀k1, k2 : 0 ≤ k1 < k2 < n⇒ A[k1] ≤ A[k2]
post: ∀k : 0 ≤ k < n⇒ A[k] 6= e

Merge
pre:

∀k : 0 ≤ k < n⇒ A[k] ≤ A[k+1]
∀k : 0 ≤ k < m⇒ B[k] ≤ B[k+1]

post: ∀k : 0 ≤ k < t⇒ C[k] ≤ C[k+1]

Table 3.10: Given a functional specification (post), the maximally weak precondi-
tions (pre) inferred by our algorithms for functional correctness.

Benchmark GFP

Partial Array Init 0.50
Init Synthesis 0.72
Binary Search 13.48
Merge Sort (inner) 3.37

Table 3.11: Time taken for maximally weak preconditions for functional correctness.
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compute under the functional specification (post) supplied as postconditions. (We

omit other non-interesting preconditions that do not give us more insights into the

program but are generated by the tool nonetheless while enumerating maximally

weak preconditions.) Table 3.11 lists the time taken to compute the preconditions.

Array Init initializes the locations 0 . . . n while the functional specification

expects initialization from 0 . . .m. Our algorithms, interestingly, generate two al-

ternative preconditions, one that makes the specification expect less, while the other

expects locations outside the range to be pre-initialized. Init Synthesis computes the

index of the maximum array value. Restricting to equality predicates we compute

two incomparable preconditions that correspond to the missing initializers. Notice

that the second precondition is indeed maximally weak for the specification, even

though max could be initialized out of bounds. If we expected to strictly output an

array index and not just the location of the maximum, then the specification should

have contained 0 ≤ max < n. Binary Search is the standard binary search for the

element e with the correctness specification that if the element was not found in the

array, then the array does not contain the element. We generate the precondition

that the input array must have been sorted. Merge Sort (inner) outputs a sorted

array. We infer that the input arrays must have been sorted for the procedure to be

functionally correct.
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3.8.4 Properties of our algorithms

Statistical properties: We statistically examined the practical behavior our algo-

rithms to explain why they work well despite the theoretical bottlenecks. We ac-

cumulated the statistics over all analyses and for all relevant modes (iterative and

satisfiability-based).

First, we measured if the SMT queries generated by our system were efficiently

decidable. Figure 3.12(a) shows that almost all of our queries take less than 10ms.

By separating fixed-point computation from reasoning about local verification con-

ditions, we have brought the theorem proving burden down to the realm of current

solvers.

Second, because our algorithms rely on the procedures OptimalSolutions and

OptimalNegativeSolutions, it is therefore important that in practice they return

a small number of optimal solutions. In fact, we found that on most calls they

return a single optimal solution (Figure 3.12(b) and 3.12(c)) and never more than

6. Therefore there are indeed a small number of possibilities to consider when they

are called (on line 7 of Figures 3.6 and 3.8 and Eq. 3.7). This explains the efficiency

of our local reasoning in computing the best abstract transformer.

Third, we examine the efficiency of the fixed-point computation (iterative)

or encoding (satisfiability-based) built from the core procedures. For the iterative

approaches, we reached a fixed-point in a median of 4 steps with the number of

candidates remaining small, at around 8 (Figure 3.12(d)). This indicates that our

algorithms perform a very directed search for the fixed-point. For the satisfiability-
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Figure 3.13: Robustness of invariant inference algorithms as we increase the number
of redundant predicates. The x-axis denotes the extra predicates over the base set
of predicates that prove the assertions, and the y-axis denotes the factor slowdown.

based approach, the number of clauses in the SAT formula never exceeds 500 (Fig-

ure 3.12(e)) with a median size of 5 variables. This explains the efficiency of our

fixed-point computation.

Robustness: Our algorithms use a global set of user specified predicates. We eval-

uated the robustness of our algorithms over the sortedness analysis by adding ir-

relevant predicates. Figure 3.13 shows how the performance degrades, as a factor

of the base performance and averaged over all sorting examples, as irrelevant pred-

icates are introduced. The satisfiability-based approach is much more robust than

the iterative schemes and, remarkably, only shows degradation past 35 irrelevant

predicates. On the other hand, greatest fixed-point cannot handle more than 15 ir-

relevant predicates and least fixed-point shows steady decrease in performance with

increasing number of irrelevant predicates.
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3.8.5 Discussion

Our benchmark programs pose a spectrum of analysis challenges. The exper-

iments corroborate the intuition that a universal panacea capable of addressing all

these challenges probably does not exist. No single technique (forward or backward

iterative, or bi-directional satisfiability-based) addresses all the challenges, but be-

tween them they cover the space of reasoning required. Therefore in practice, a

combination will probably be required for handling real world instances.

We have also identified the different strengths that each algorithm demon-

strates in practice. We found that for maximally weak precondition inference, the

iterative greatest fixed-point approach is more efficient than the satisfiability-based

approach. In a similar setting of computing maximally strong postcondition, the

iterative least fixed-point is expected to be more efficient, as is indicated by its

performance in our experiments. A satisfiability-based encoding is not suitable in

an unconstrained problem where the number of possibilities grows uncontrollably.

On the other hand, when the system is sufficiently constrained, for example when

verifying sortedness or preservation, the satisfiability-based approach is significantly

more robust to irrelevant predicates, followed by least fixed-point and lastly greatest

fixed-point.

3.9 Summary

In this chapter, we have addressed the problem of inferring expressive program

invariants over predicate abstraction for verification and also for inferring maximally
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weak preconditions. We presented the first technique that infers ∀ and ∀∃ quantified

invariants for proving the full functional correctness of all major sorting algorithms.

Additionally, we presented the first technique that infers maximally weak precondi-

tions for worst-case upper bounds and for functional correctness.

We presented three fixed-point computing algorithms (two iterative and one

satisfiability-based) that use a common basic interface to SMT solvers to construct

invariants that are instantiations of templates with arbitrary quantification and

boolean structure. Our algorithms can compute greatest and least fixed-point solu-

tions that induce maximally weak precondition and maximally strong postcondition

analyses.

We have implemented our algorithms in a tool that uses off-the-shelf SMT

solvers. Our tool uniformly and efficiently verifies sortedness and preservation prop-

erties of all major sorting algorithms, and we have also used it for establishing

worst-case bounds and maximally weak preconditions for functional correctness.

We are unaware of any other technique that is able to perform these analyses.

3.10 Further Reading

Predicate abstraction Predicate abstraction was popularized by the model check-

ing community, and in particular the BLAST [29, 148, 147] and SLAM [15, 14]

model checkers. The success of these tools in automatically abstracting program

states over a set of predicates (that could be arbitrarily complicated) allowed them

to analyze complicated production C code [11, 13]. Subsequently, improvements
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such as symbolic predicate abstraction greatly improved the state-of-art in predi-

cate abstraction-based model checking [177, 173].

Abstraction refinement An issue that we omit in this chapter is the construction

of the abstraction, i.e., inferring the set of predicates to abstract over. A standard

approach in the model checking community is to start with trivial approximations

(e.g., with the single predicate true) and then iteratively refine it as verification fails.

Each failed verification attempt yields a counterexample corresponding to which a

refinement is constructed [10, 147, 133, 59]. It would be instructive to consider the

application of these techniques to satisfiability-based invariant inference.

Use of templates for invariant inference The use of templates for restricting the

space of invariants is not entirely new—although defining them as explicitly as we

do here is. With the undecidability of program verification, such assumptions are to

be expected. In fact, domains in abstract interpretation [72] are templates of sorts,

just not as structured as we use in this dissertation. Abstraction refinement tech-

niques have also used template to instantiate proof terms [147]. Lately, refinement

templates have been used for inferring limited forms of dependent types [229].

Quantified invariants Quantification in invariants is critical for verifying important

properties of programs. In fact, sorting programs are the staple benchmarks for

the verification community precisely because they require complicated quantified

invariants. Quantification imposes theoretical limitations in general, therefore we

are limited to making our tools as robust as possible in practice. Previous approaches
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attempted to handle quantification at the analysis level, resulting in complicated

decision procedures [137], or the full literal specification of quantified predicates [81],

or use implicit quantification through free variables for limited properties [174, 176,

175, 112]. Our approaches area more robust for two reasons. First, we delegate

the concern of reasoning about quantification to SMT solvers, which have been well

engineered to handle quantified queries that arise in practice [85]. Thus as the

handling of quantification gets more robust in these solvers, our tools will benefit.

Even with the current technology, we found the handling of quantification robust

for even the most difficult verification examples. Second, the queries generated by

our system, through OptimalNegativeSolutions, which instantiates the templates

with single predicates and uses OptimalSolutions to aggregate the information,

are at the low end of the difficulty that current solvers can handle.

Axiomatization of reachability, transitive closure, types and further We model linked

data structures using a simple axiomization of reachability. The reachability predi-

cate ;(u, v), or the more readable infix u ; v, relates heap locations u and v if v

is reachable from u by following appropriate pointers [208] (or a ternary reachabil-

ity predicate with a “between” element [172]). A typical axiom for reachability—

parameterized by a function f that follows the appropriate pointer, e.g., the next

field—is:

∀ : u ;f v ⇐⇒ u = v ∨ (f(u) 6= ⊥ ∧ f(u) ;f v)

A key technical detail is that first-order logic provers cannot handle transitivity

required by reachability, because adding transitive closure to even simple decidable
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fragments of first order logic makes them undecidable [127, 151]. Therefore, suitable

incomplete axiomatizations limit the scope of the predicates while being complete

enough for most real programs [185, 151, 178, 53, 201].

Predicates have even been used to encode low-level types, e.g., using a HasType

predicate [64], with appropriate axioms. This approach of defining an operator (e.g.,

sel, upd, ;, HasType) and axioms stating its semantics generalizes beyond specific

programming constructs and can be used for user-defined operators. For instance,

in Chapter 4, we show how such an approach can define the semantics of examples

such as Fibonacci and shortest path to verify or synthesize them. For Fibonacci, we

define an operator Fib and its semantics using axioms:

Fib(0) = 0 ∧ Fib(1) = 1 ∧ ∀k : Fib(k) = Fib(k − 1) + Fib(k − 2)

We also imagine using such axiomatization for bottom-up modular reasoning and

synthesis.

SMT Technology We briefly mention the basics of efficient backtracking algorithms

for finding solutions to SAT and algorithms for combining these with decision

procedures for solving SMT problems. The core backtracking algorithm, which

is the basis of all modern SAT solvers, is the Davis-Putnam-Logemann-Loveland

(DPLL) [84, 83] procedure. A basic backtracking process picks a literal and recur-

sively checks if the two subproblems induced by assigning the literal true or false

are satisfiable. The solver outputs an assignment if the choices lead to the formula

being satisfiable. Otherwise, it backtracks until all assignments have been explored

and found unsatisfiable. DPLL adds two enhancements: (1) unit propagation, which
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checks for clauses with single literals and assigns the only satisfying choice to the

literal, and (2) pure literal elimination, which checks for variables that occur only

with one polarity (either negated or not) in the entire formula and assigns them

such that their clauses are satisfied. Incredible engineering advances that work well

in practice have been made to the original algorithm, such as two-watched liter-

als, backjumping (non-clausal backtracking), conflict-driven lemma learning, and

restarts. The reader is referred to literature [211, 169, 123] on this topic for detailed

discussions.

SMT solvers extend the basic SAT solving engine by efficiently combining

them with solvers SolverT for satellite theories T, using an efficient DPLL(T ) proce-

dure [211, 117]. DPLL(T ) is more efficient than both the eager and lazy approaches

to augmenting DPLL with theories. In the eager approach an equi-satisfiable SAT

formula is constructed from the SMT formula, using a theory-specific translation to

SAT, e.g., for equality with uninterpreted function (EUF) [48]. The eager approach

requires such a translation for each theory, which may not exist. An alternative

lazy approach assigns a propositional variable to all atoms in the SMT formula and

generates a satisfying model for the resulting SAT. The model is then checked by

the theory solvers and new clauses are added if the theory solvers find the boolean

assignments to the atoms inconsistent. For instance, if the DPLL procedure gen-

erates a model with x < y as true and x < y + 10 as false, the linear arithmetic

solver will find this model inconsistent. The lazy approach suffers from the inability

of the theory solvers to direct the search—they only participate as validators.

The key to DPLL(T ) is the way it overcomes the drawbacks of both the eager
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and the lazy approaches. Like the lazy approach, SolverT validates the choices made

by the DPLL core, but additionally, it propagates literals of the SAT formula that

are consequences in the theory T back to the SAT solver, thus guiding the search

like the eager approach.
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Chapter 4

Proof-theoretic Synthesis:
Verification-inspired Program
Synthesis

“Get the habit of analysis—
analysis will in time enable syn-
thesis to become your habit of
mind.”

— Frank Lloyd Wright1

This chapter describes a novel technique for the synthesis of imperative pro-

grams. Automated program synthesis has the potential to make the programming

and design of systems easier by allowing the programs to be specified at a higher-level

than executable code. In our approach, which we call proof-theoretic synthesis, the

user provides an input-output functional specification, a description of the atomic

operations in the programming language, and resource constraints. Our technique

synthesizes a program, if there exists one, that meets the input-output specification

and uses only the given resources.

The insight behind our approach is to interpret program synthesis as general-

ized program verification, which allows us to bring verification tools and techniques,

1American Architect and Writer, the most abundantly creative genius of American architecture.
His Prairie style became the basis of 20th century residential design in the United States, 1867-1959.
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such as those described in Chapters 2 and 3 to program synthesis. Our synthesis

algorithm works by creating a program with unknown statements, unknown guards,

unknown inductive invariants (proof certificate for safety), and unknown ranking

functions (proof certificate for termination). It then generates constraints that re-

late the unknowns, which we show can be solved using existing verifiers.

We demonstrate the feasibility of the proposed approach by synthesizing pro-

grams in three different domains: arithmetic, sorting, and dynamic programming.

Using verification tools from previous chapters, we are able to synthesize programs

for complicated arithmetic algorithms including Strassen’s matrix multiplication and

Bresenham’s line drawing; several sorting algorithms; and several dynamic program-

ming algorithms. For these programs, the median time for synthesis is 14 seconds,

and the ratio of synthesis to verification time ranges between 1× to 92× (with an

median of 7×).

4.1 Program Synthesis as GeneralizedVerification

Automated program synthesis, despite holding the promise for significantly

easing the task of programming, has received little attention due to its difficulty.

Being able to mechanically construct programs has wide-ranging implications. Me-

chanical synthesis yields programs that are correct-by-construction. It relieves the

tedium and error associated with programming low-level details, can aid in auto-

mated debugging, and in general leaves the human programmer free to deal with

the high-level design of the system. Additionally, synthesis could discover new non-
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trivial programs that are difficult for programmers to build.

In this chapter, we present an approach to program synthesis that takes the

correct-by-construction philosophy of program design [92, 130, 267] and shows how it

can be automated. In the previous chapters, we described verification tools that can

infer inductive invariants for partial correctness and ranking functions for termina-

tion. They do this by solving a system of implications (verification condition), with

unknown invariants. In this chapter we show that it is possible to treat synthesis

as a verification problem by encoding program guards and statements as additional

logical facts that we trick the verifier into discovering—enabling use of existing ver-

ification tools for synthesis. The verification tool infers the invariants and ranking

functions as usual, but in addition infers the program statements, yielding auto-

mated program synthesis. We call our approach proof-theoretic synthesis because

the proof is synthesized alongside the program.

We use a novel definition of the synthesis task as requirements on the output

program: functional requirements, requirements on the form of program expressions

and guards, and requirements on the resources used (Section 4.2). The key to our

synthesis algorithm is to treat synthesis as generalized verification by defining a re-

duction from the synthesis task to three sets of constraints. The first set are safety

conditions that ensure the partial correctness of the loops in the program. The

second set are well-formedness conditions on the program guards and statements,

such that the output from the verification tool (facts corresponding to program

guards and statements) correspond to valid guards and statements in an impera-

tive language. The third set are progress conditions that ensure that the program
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terminates. We call these synthesis conditions and solve them using off-the-shelf

verifiers (Section 4.3), such as the ones built in the previous chapters. We also

present requirements that program verification tools must meet in order to be used

for synthesis of program statements and guards (Section 4.4).

We build synthesizers using verifiers VS3
LIA and VS3

PA from previous chapters, and

present synthesis results for the three domains of arithmetic, sorting and dynamic

programming (Section 4.5). This approach not only synthesizes the program, but

additionally the proof of correctness and termination alongside. To our knowledge,

our approach is the first that automatically synthesizes programs and their proofs,

while previous approaches have either used given proofs to extract programs [195]

or not attempted to provide correctness guarantees at all [245].

4.1.1 Motivating Example: Bresenham’s Line Drawing

To illustrate our approach, we next show how to synthesize Bresenham’s line

drawing algorithm. This example is ideal for automated synthesis because, while the

program’s requirements are simple to specify, the actual program is quite involved.

Bresenham’s line drawing algorithm is shown in Figure 4.1(a). The algorithm

computes (and writes to the output array out) the discrete best-fit line from (0, 0)

to (X, Y ), where the point (X, Y ) is in the NE half-quadrant, i.e., 0 < Y ≤ X.

The best-fit line is one that does not deviate more than half a pixel away from the

real line, i.e., |y − (Y/X)x| ≤ 1/2. For efficiency, the algorithm computes the pixel

values (x, y) of this best-fit line using only linear operations, but the computation
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is non-trivial and the correctness of the algorithm is also not evident.

An important idea underlying our approach is that we can write program state-

ments as equality predicates, as we discussed in Chapter 3, and acyclic fragments

as transition systems. We define transition systems formally in Section 4.3.1, and

they essentially correspond to a set of guarded commands [88]. For example, we can

write x := e as x′ = e, where x′ is the output value of x. We will write statements as

equalities between the output, primed, versions of the variables and the expression

(over the unprimed versions of the variables). Also, guards that direct control flow

in an imperative program can now be seen as guards for statement facts in a transi-

tion system. Figure 4.1(c) shows our example written in transition system form. To

prove partial correctness, one can write down the inductive invariant for the loop

and check that the verification condition for the program is in fact valid. The verifi-

cation condition consists of four implications for the four paths corresponding to the

entry, exit, and one each for the branches in the loop. Using standard verification

condition generation, and writing the renamed version of invariant τ as τ ′, these are

(0 < Y ≤ X) ∧ sentry ⇒ τ ′

τ ∧ ¬gloop ⇒ ∀k : 0≤k≤X ⇒

|2.out[k]−2.(Y/X)k|≤1

τ ∧ gloop ∧ gbody1 ∧ sbody1 ⇒ τ ′

τ ∧ gloop ∧ gbody2 ∧ sbody2 ⇒ τ ′

(4.1)
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(a)
Bresenhams(int X, Y ) {
v1:=2Y −X;y:=0;x:=0;
while (x ≤ X)

out[x]:=y;
if (v1 < 0)
v1:=v1+2Y ;

else

v1:=v1+2(Y -X);y++;
x++;

return out;
}

(b)
Precondition:
0 < Y ≤ X

Postcondition:
∀k : 0 ≤ k ≤ X ⇒ |2.out[k]−2.(Y/X)k|≤1

Invariant τ :
0 < Y ≤ X
v1 = 2(x+1)Y −(2y+1)X
2(Y −X) ≤ v1 ≤ 2Y
∀k : 0 ≤ k < x⇒ |2.out[k]−2.(Y/X)k|≤1


Ranking function ϕ:
X − x

(c)

Bresenhams(int X, Y ) {
true→ v′1 = 2Y −X ∧ y′ = 0∧x′ = 0

while (x ≤ X)

v1 < 0 →out′=upd(out, x, y) ∧ v′1 = v1 + 2Y ∧ x′ = x+ 1

v1 ≥ 0 →out′=upd(out, x, y) ∧ v′1 = v1 + 2(Y−X) ∧ y′ = y + 1 ∧ x′ = x+ 1

return out;

}

Figure 4.1: Motivating proof-theoretic synthesis. (a) Bresenham’s line drawing
algorithm (b) The invariant and ranking function that prove partial correctness and
termination, respectively. (c) The algorithm written in transition system form, with
statements as equality predicates, guarded appropriately (array writes are modeled
using standard upd predicates).
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where we use symbols for the various parts of the program:

gbody1 : v1 < 0

gbody2 : v1 ≥ 0

gloop : x ≤ X

sentry : v′1 = 2Y −X ∧ y′=0 ∧ x′=0

sbody1 : out′ = upd(out, x, y) ∧ v′1 =v1+2Y ∧ x′=x+1

sbody2 : out′ = upd(out, x, y) ∧ v′1 =v1+2(Y −X) ∧ y′=y+1 ∧ x′=x+1

(4.2)

As before we reason about arrays using McCarthy’s select/update predicates [198],

i.e., out′ = upd(out, x, y) corresponds to the assignment out[x] := y.

With a little bit of work, one can validate that the invariant τ shown in Fig-

ure 4.1(b) satisfies Eq. (4.1). Checking the validity of given invariants can be au-

tomated using SMT solvers [86]. In fact, powerful program verification tools such

as VS3
LIA and VS3

PA can generate fixed-point solutions—inductive invariants such as

τ—automatically. Aside from the satisfiability-based techniques we described in

the previous chapters, other approaches such as constraint-based invariant genera-

tion [62], abstract interpretation [72], or model checking [58] can also be used for

invariant inference.

The insight behind the technique in this chapter is to ask the question, if we can

infer τ in Eq. (4.1), then is it possible to infer the guards gi’s or the statements si’s

at the same time? We have the found the answer to be yes, we can infer guards and

statements as well, by suitably encoding programs as transition systems, asserting

appropriate constraints, and then leveraging program verification techniques to do

a systematic (lattice) search for unknowns in the constraints. Here the unknowns
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now represent both the invariants and the statements and guards. It turns out that

a direct solution to the unknown guards and statements may be uninteresting, i.e.,

it may not correspond to real programs, so we need well-formedness constraints.

Additionally, even if we synthesize valid programs, it may be that the programs are

non-terminating, so we need progress constraints as well.

Suppose that the statements sentry, sbody1, and sbody2, are unknown. A trivial

satisfying solution to Eq. (4.1) may set all these unknowns to false. If we use

a typical program verification tool that computes least fixed-points starting from

⊥, then indeed, it will output this solution. On the other hand, let us make the

conditional guards gbody1 and gbody2 unknown. Again, gbody1 = gbody2 = false is

a satisfying solution. We get uninteresting solutions because the unknowns are

not constrained enough to ensure valid statements and control-flow. Statement

blocks are modeled as
∧

i x
′
i = ei with one equality for each output variable x′i and

expressions ei are over input variables. Therefore, false does not correspond to

any valid block. Similarly gbody1 = gbody2 = false does not correspond to any

valid conditional with two branches. For example, consider if (g) S1 else S2 with

two branches. Note how S1 and S2 are guarded by g and ¬g, respectively, and

g ∨ ¬g holds. For every valid conditional, the disjunction of the guards is always

a tautology. In verification, the program syntax and semantics ensure the well-

formedness of acyclic fragments. In synthesis, we will need to explicitly constrain

well-formedness of acyclic fragments (Section 4.3.4).

Next, suppose that the loop guard gloop is unknown. In this case if we

attempt to solve for the unknowns τ and gloop, then one valid solution assigns
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τ = gloop = true, which corresponds to an non-terminating loop. In verification,

we were only concerned with partial correctness and assumed that the program

was terminating. In synthesis, we will need to explicitly encode progress by in-

ferring appropriate ranking functions to prevent the synthesizer from generating

non-terminating programs (Section 4.3.5).

Note that our aim is not to solve the completely general synthesis problem for

a given functional specification. Guards and statements are unknowns but they take

values from given domains, specified by the user as domain constraints, so that a

lattice-theoretic search can be performed by existing program verification tools. Also

notice that we did not attempt to change the number of invariants or the invariant

position in the constraints. This means that we assume a given looping or flowgraph

structure, e.g., one loop for our example. Lastly, as opposed to verification, the set

of program variables is not known, and therefore we need a specification of the stack

space available and also a bound on the type of computations allowed.

We use the specifications to construct an expansion, which is a program with

unknown symbols and construct safety conditions over the unknowns. We then

impose the additional well-formedness and progress constraints. We call the new

constraints synthesis conditions and hope to find solutions to them using program

verification tools such as VS3
LIA and VS3

PA. The constraints generated are non-standard

and therefore to solve them we need verification tools that satisfy certain proper-

ties. Our verification tools from the previous chapters do possess those properties.

Indeed, satisfiability-based program verification tools can efficiently solve the syn-

thesis conditions to synthesize programs (with a very acceptable slowdown over
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verification).

The guards, statements and proof terms for the example in this section come

from the domain of arithmetic. Therefore, a verification tool for arithmetic such

as VS3
LIA would be appropriate. For programs whose guards and statements are

more easily expressed in other domains, a corresponding verification tool for that

domain, such as VS3
PA for predicate abstraction, should be used. In fact, we have

employed tools for the domains of arithmetic and predicate abstraction for proof-

theoretic synthesis with great success. Our objective is to reuse existing verifica-

tion technology—that started with invariant validation and progressed to invariant

inference—and push it further to program inference.

4.2 The Synthesis Scaffold and Task

We now elaborate on the specifications that a proof-theoretic approach to

synthesis requires and how these also allow the user to specify the space of interesting

programs.

The following triple, called a scaffold, describes the synthesis problem:

〈F,D,R〉

The components of this triple are:

1. Functional Specification The first component F of a scaffold describes the de-

sired precondition and postcondition of the synthesized program. Let ~vin and ~vout

be the vectors containing the input and output variables, respectively. Then a func-
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tional specification F = (Fpre( ~vin), Fpost( ~vin, ~vout)) is a tuple containing the formulae

that hold at the entry and exit program locations. For example, for the program in

Figure 4.1, Fpre(X, Y )
.
= (0 < Y ≤ X and Fpost(X, Y, out)

.
= ∀k : 0 ≤ k ≤ X ⇒

2.(Y/X)k − 1 ≤ 2.out[k] ≤ 2.(Y/X)k + 1.

2. Domain Constraints The second component D = (Dexp, Dgrd) of the scaffold

describes the domains for expressions and guards in the synthesized program.

2a. Program Expressions: The expressions come from Dexp.

2b. Program Guards: The conditional and loop guards (boolean expressions) come

from Dgrd.

For example, for the program in Figure 4.1, the domains Dexp and Dgrd are both

linear arithmetic.

3. Resource Constraints The third component R of the scaffold describes the

resources that the synthesized program can use. The resource specification R =

(Rflow, Rstack, Rcomp) is a triple of resource templates that the user must specify for

the flowgraph, stack and computation, respectively:

3a. Flowgraph Template We restrict attention to structured (or goto-less) pro-

grams, i.e., programs whose flowgraphs are reducible [146]. The structured

nature of such flowgraphs allows us to describe them using simple strings.

The user specifies Rflow as a string from the following grammar:

T ::= ◦ | ∗(T ) | T ;T
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Here ◦ denotes an acyclic fragment of the flow graph, ∗(T ) denotes a loop

containing the body T , and T ;T denotes the sequential composition of two

flow graphs. For example, for the program in Figure 4.1, Rflow = ◦;∗(◦).

3b. Stack Template The program is only allowed to manipulate a bounded number

of variables, specified by means of a map Rstack : type → int indicating

the number of extra temporary variables of each type. For example, for the

program in Figure 4.1, Rstack = (int, 1).

3c. Computation Template At times it may be important to put an upper bound

on the number of times an operation is performed inside a procedure. A map

Rcomp : op→ int of operations op to the upper bound specifies this constraint.

For example, for the program in Figure 4.1, Rcomp = ∅, which indicates that

there are no constraints on computation.

While the resource templates make synthesis tractable by enabling a system-

atic lattice-theoretic search, they additionally allow the user to specify the space

of interesting programs. While human programmers have a tendency to develop

the simplest solutions, mechanical synthesizers do not. The resource templates for-

mally enforce a suitability metric on the space of programs by allowing the user

to restrict attention to desirable programs. For instance, the user may wish to re-

duce memory consumption at the expense of a more complex flowgraph and still

meet the functional specification. If the user does not care, then the resource tem-

plates can be considered optional and left unspecified. In this case, the synthesizer
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can iteratively enumerate possibilities for each resource and attempt synthesis with

increasing resources.

4.2.1 Picking a proof domain and a solver for the domain

Our synthesis approach is proof-theoretic, meaning we synthesize the proof

terms, i.e., invariants and ranking functions, alongside the program. These proof

terms will take values from a suitably chosen proof domain Dprf. Note that Dprf

must be at least as expressive as Dgrd and Dexp. The user chooses an appropriate

proof domain and also picks a solver capable of handling that domain. We will use

program verification tools, VS3
LIA and VS3

PA, as solvers and typically, the user will pick

the most powerful verification tool available for the chosen proof domain.

4.2.2 Synthesis Task

Given a scaffold 〈F,D,R〉, we call an executable program valid with respect

to the scaffold if it meets the following conditions.

• When called with inputs ~vin that satisfy Fpre( ~vin) the program terminates,

and the resulting outputs ~vout satisfy Fpost( ~vin, ~vout). There are associated

invariants and ranking functions that provide a proof of this fact.

• There is a program loop (with an associated loop guard g) corresponding to

each loop annotation (specified by “∗”) in the flowgraph template Rflow. The

program contains statements from the following imperative language IML for
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each acyclic fragment (specified by “◦”).

S ::= skip | S;S | x := e | if g then S else S

Where x denotes a variable and e denotes some expression. (Memory reads and

writes are modeled using memory variables and select/update expressions.)

The domain of expressions and guards is as specified by the scaffold, i.e.,

e ∈ Dexp and g ∈ Dgrd.

• The program uses only as many local variables as specified byRstack in addition

to the input and output variables ~vin, ~vout.

• Each elementary operation only appears as many times as specified in Rcomp.

Example 4.1 (Square Root) Let us consider a scaffold with functional specifica-

tion F = (x ≥ 1, (i − 1)2 ≤ x < i2), which states that the program computes the

integral square root of the input x , i.e., i − 1 = b
√
xc. Also, let the domain con-

straints Dexp, Dgrd be limited to linear arithmetic expressions, which means that the

program cannot use any native square root or squaring operations. Lastly, let Rflow,

Rstack and Rcomp be ◦;∗(◦);◦, {(int, 1)} and ∅, respectively. A program that is valid

with respect to this scaffold is the following:
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IntSqrt(int x) {

v:=1;i:=1;

whileτ,ϕ(v ≤ x)

v:=v+2i+1;i++;

return i−1;

}

Invariant τ :

v=i2∧x≥(i−1)2∧i ≥ 1

Ranking function ϕ:

x− (i−1)2

where v, i are the additional stack variable and loop iteration counter (and reused in

the output), respectively. Also, the loop is annotated with the invariant τ and ranking

function ϕ as shown, which prove partial correctness and termination, respectively.

We emphasize the notion of validity with respect to scaffolds of the synthesized

programs:

Definition 4.1 (Validity with respect to a scaffold) A terminating program P

is valid with respect to a scaffold 〈F,D,R〉, if it satisfies the Hoare triple {Fpre}P{Fpost},

is in the language IML, has expressions and guards from the domains in D, and uses

only the resources as specified by R.

In the next two sections, we formally describe the steps of our synthesis al-

gorithm. We first generate synthesis conditions (Section 4.3), which are constraints

over unknowns for statements, guards, loop invariants and ranking functions. We

then observe that they resemble verification conditions, and we can employ verifi-

cation tools, if they have certain properties, to solve them (Section 4.4).
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4.3 Synthesis Conditions

In this section, we define and construct synthesis conditions for an input scaf-

fold 〈F,D,R〉. Using the resource specification R, we first generate a program with

unknowns corresponding to the fragments we wish to synthesize. Synthesis con-

ditions then specify constraints on these unknowns and ensure partial correctness,

loop termination, and well-formedness of control-flow. We begin our discussion by

motivating the representation we use for acyclic fragments in the synthesized pro-

gram.

4.3.1 Using Transition Systems to Represent Acyclic Code

Suppose we want to infer a set of (straight-line) statements that transform

a precondition φpre to a postcondition φpost, where the relevant program variables

are x and y. One approach might be to generate statements that assigns unknown

expressions ex and ey to x and y, respectively:

{φpre}x := ex; y := ey{φpost}

Then we can use Hoare’s axiom for assignment to generate the verification condition

φpre ⇒ (φpost[y 7→ ey])[x 7→ ex]. However, this verification condition is hard to

automatically reason about because it contains substitution into unknowns. Even

worse, we have restricted the search space by requiring the assignment to y to follow

the assignment to x, and by specifying exactly two assignments.

Instead we will represent the computation as a transition system, which pro-

vides a much cleaner mechanism for reasoning when program statements are un-
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known. A transition in a transition system is a (possibly parallel) mapping of the

input variables to the output variables. Variables have an input version and an

output version (indicated by primed names), which allows them to change state.

For our example, we can write a single transition:

{φpre} 〈x′, y′〉 = 〈ex, ey〉 {φ′post}

Here φ′post is the postcondition, written in terms of the output variables, and ex, ey

are expressions over the input variables. The verification condition corresponding

to this tuple is φpre ∧ x′ = ex ∧ y′ = ey ⇒ φ′post. Note that every state update

(assignment) can always be written as a transition.

We can extend this approach to arbitrary acyclic program fragments. A

guarded transition (written []g → s) contains a statement s that is executed only if

the quantifier-free guard g holds. A transition system consists of a set {[]gi → si}i

of guarded transitions. It is easy to see that a transition system can represent any

arbitrary acyclic program fragment by suitably enumerating the paths through the

acyclic fragment. The verification condition for {φpre}{[]gi → si}i{φ′post} is simply∧
i(φpre ∧ gi ∧ si ⇒ φ′post).

In addition to the simplicity afforded by the lack of any ordering, the con-

straints from transition systems are attractive for synthesis as the program state-

ments si and guards gi are formulae just like the pre- and postconditions φpre and

φ′post. Given the lack of differentiation, any (or all) can be unknowns in these syn-

thesis conditions. This distinguishes them from verification conditions, which can

at most have unknown invariants. Verification conditions are written with unknown
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invariants are used for invariant inference and with user-supplied invariants for in-

variant validation.

Synthesis conditions can thus be viewed as generalizations of verification con-

ditions. Program verification tools routinely infer fixed-point solutions (invariants)

that satisfy the verification conditions with known statements and guards. With

our formulation of statements and guards as just additional facts in the constraints,

it is possible to use sufficiently powerful verifiers such as VS3
LIA and VS3

PA to infer

invariants and program statements and guards. Synthesis conditions serve an anal-

ogous purpose to synthesis as verification conditions do to verification. If a program

is correct (verifiable), then its verification condition is valid. Similarly, if a valid

program exists for a scaffold, then its synthesis condition has a satisfying solution.

4.3.2 Expanding a flowgraph

We synthesize code fragments for each acyclic fragment and loop annotation

in the flowgraph template as follows:

• Acyclic fragments For each acyclic fragment annotation “◦”, we infer a transi-

tion system {gi → si}i, i.e., a set of assignments si, stated as conjunctions of

equality predicates, guarded by quantifier-free first-order-logic (FOL) guards

gi such that the disjunction of the guards is a tautology. Suitably constructed

equality predicates and quantifier-free FOL guards are later translated to exe-

cutable code—assignment statements and conditional guards, respectively—in

the language IML.
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• Loops For each loop annotation “∗” we infer three elements. The first is the

inductive loop invariant τ , which establishes partial correctness of each loop

iteration. The second is the ranking function ϕ, which proves the termination

of the loop. Both the invariant and ranking function take values from the

proof domain, i.e., τ, ϕ ∈ Dprf. Third, we infer a quantifier-free FOL loop

guard g.

Formally, the output of expanding flowgraphs will be a program in the transi-

tion system language TSL (note the correspondence to the flowgraph grammar):

p ::= choose {[]gi → si}i | whileτ,ϕ(g) do {p} | p;p

Here each si is a conjunction of equality predicates, i.e.,
∧

j (xj = ej). We will use

~p to denote a sequence of program statements in TSL. Note that we model memory

read and updates using select/update predicates. Therefore, in x = e the variable x

could be a memory variable and e could be a memory select or update expression.

Given a string for a flowgraph template, we define an expansion function

Expand : int×Dprf×R×D×Rflow → TSL that introduces fresh unknowns for missing

guards, statements and invariants that are to be synthesized. Expand
n,Dprf

D,R (Rflow)

expands a flowgraph Rflow and is parametrized by an integer n that indicates the

number of transition each acyclic fragment will be expanded to, the proof domain,

and the resource and domain constraints. The expansion outputs a program in the
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language TSL.

Expand
n,Dprf

D,R (◦) = choose {[]gi→si}i=1..n gi, si fresh unknowns

Expand
n,Dprf

D,R (∗(T )) = whileτ,ϕ (g) { τ, ϕ, g fresh unknowns

Expand
n,Dprf

D,R (T );

}

Expand
n,Dprf

D,R (T1;T2) = Expand
n,Dprf

D,R (T1);Expand
n,Dprf

D,R (T2)

Each unknown g, s, τ generated during the expansion has the following domain in-

clusion constraints.

τ ∈ Dprf|V

g ∈ Dgrd|V

s ∈
∧

i xi = ei where xi ∈ V, ei ∈ Dexp|V

Here V = ~vin ∪ ~vout ∪ T ∪ L is the set of variables: the input ~vin and output ~vout

variables, the set of temporaries (local variables) T as specified by Rstack, and the set

of iteration counters and ranking function tracker variables is L (which we elaborate

on later), one for each loop in the expansion. The restriction of the domains by the

variable set V indicates that we are interested in the fragment of the domain over

the variables in V . Also, the set of operations in ei is bounded by Rcomp.

The expansion has some similarities to the notion of a user-specified sketch in

previous approaches [247, 245]. However, the unknowns in the expansion here are

more expressive than the integer unknowns considered in these prior approaches, and

this allows us to perform a lattice search as opposed to the combinatorial approaches

proposed earlier.
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Example 4.2 Let us revisit the integral square root computation from Example 4.1.

Expanding the flowgraph template ◦;∗(◦);◦ with n = 1 yields expsqrt:

choose {[]g1 → s1} ;

whileτ,ϕ (g0) {

choose {[]g2 → s2} ;

};

choose {[]g3 → s3}

τ ∈ Dprf|V

g1, g2, g3 ∈ Dgrd|V

s1, s2, s3 ∈
∧

i xi = ei

xi ∈ V, ei ∈ Dexp|V

where V = {x, i, r, v}. The variables i and r are the loop iteration counter and

ranking function tracker variable, respectively, and v is the additional local variable.

Also, the chosen domains for proofs Dprf, guards Dgrd, and expressions Dexp are

FOL facts over quadratic expressions, FOL facts over linear arithmetic, and linear

arithmetic, respectively.

Notice that the expansion encodes everything specified by the domain and resource

constraints and the chosen proof domain. The only remaining specification is F,

which we will use in the next section to construct safety conditions over the expanded

scaffold.

4.3.3 Encoding Partial Correctness: Safety Conditions

Now that we have the expanded scaffold we need to collect the constraints

(safety conditions) for partial correctness implied by the simple paths in the expan-

sion. Simple paths (straight-line sequence of statements) start at a loop header Fpre

and end at a loop header or program exit. The loop headers, program entry, and
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program exit are annotated with invariants, precondition Fpre, and postcondition

Fpost, respectively.

Let φ denote formulae that represent pre- and postconditions and constraints.

Then we define PathC : φ × TSL × φ → φ as a function that takes a precondition,

a sequence of statements, and a postcondition and outputs safety constraints that

encode the validity of the Hoare triple. Let us first describe the simple cases of

constraints from a single acyclic fragment and loop:

PathC(φpre, (choose {[]gi → si}i ), φpost) =∧
i(φpre ∧ gi ∧ si ⇒ φpost

′)

PathC(φpre, (while
τ,ϕ (g) {~pl}), φpost) =

φpre ⇒ τ ′ ∧ PathC(τ ∧ g, ~pl, τ) ∧ (τ ∧ ¬g ⇒ φpost
′)

Here φpost
′ and τ ′ are the postcondition φpost and invariant τ but with all variables

renamed to their output (primed) versions. Since the constraints need to refer to

output postconditions and invariants the rule for a sequence of statements is a bit

complicated. For simplicity of presentation, we assume that acyclic annotations do

not appear in succession. This assumption holds without loss of generality because

it is always possible to collapse consecutive acyclic fragments, e.g., two consecutive

acyclic fragments with n transitions each can be collapsed into a single acyclic frag-

ment with n2 transitions. For efficiency, it is prudent not to make this assumption in

practice, but the construction here generalizes easily. For a sequence of statements

in TSL, under the above assumptions, there are three cases to consider. First, a
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loop followed by statements ~p, whose reduction is as follows:

PathC(φpre, (while
τ,ϕ (g) {~pl};~p), φpost) =

(φpre ⇒ τ ′) ∧ PathC(τ ∧ g, ~pl, τ) ∧ PathC(τ ∧ ¬g, ~p, φpost)

Second, an acyclic fragment followed by just a loop, whose reduction is as follows:

PathC(φpre, (choose {[]gi → si}i ;whileτ,ϕ (g) {~pl}), φpost) =∧
i(φpre ∧ gi ∧ si ⇒ τ ′) ∧ PathC(τ ∧ g, ~pl, τ) ∧ (τ ∧ ¬g ⇒ φpost

′)

Third, an acyclic fragment, followed by a loop, followed by statements ~p, whose

reduction is as follows:

PathC(φpre, (choose {[]gi → si}i ;whileτ,ϕ (g) {~pl};~p), φpost) =∧
i(φpre ∧ gi ∧ si ⇒ τ ′) ∧ PathC(τ ∧ g, ~pl, τ) ∧ PathC(τ ∧ ¬g, ~p, φpost)

The safety condition for a scaffold with functional specification F = (Fpre, Fpost),

flowgraph template Rflow and expansion exp = Expand
D,R
n,Dprf

(Rflow) is then given by:

SafetyCond(exp,F) = PathC(Fpre, exp, Fpost) (4.3)

Example 4.3 Consider the expanded scaffold (from Example 4.2) and the func-

tional specification F (from Example 4.1) for integral square root. The loop divides

the program into three simple paths, which results in SafetyCond(expsqrt,F):

x ≥ 1 ∧ g1 ∧ s1 ⇒ τ ′ ∧

τ ∧ g0 ∧ g2 ∧ s2 ⇒ τ ′ ∧

τ ∧ ¬g0 ∧ g3 ∧ s3 ⇒ (i′ − 1)2 ≤ x′ ∧ x′ < i′2

Notice that gi, si, τ are all unknown placeholder symbols.
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4.3.4 Encoding Valid Control: Well-formedness Conditions

We next construct constraints to ensure the well-formedness of choose state-

ments. In the preceding development, we treated each path through the choose

statement as independent. In any executable program control will always flow

through at least one branch/transition of the statement, and each transition will

contain well-formed assignment statements. We first describe a constraint that en-

codes this directly and then discuss an alternative way of ensuring well-formedness

of transition guards.

Non-iterative upper bounded search We can parameterize the expansion of a scaf-

fold by an integer n greater than the number of transitions expected in any acyclic

fragment. The expanded scaffold can then represent any program that requires at

most n-way branching in any acyclic fragment. Any excess transitions will have

their guards instantiated to false. For any statement choose {[]gi → si} in the

expansion, we impose the well-formedness constraint:

WellFormTS({[]gi → si}i)
.
=(
∧

i valid(si)) Valid transition

∧ (
∨

i gi) Covers space

(4.4)

Here the predicate valid(si) ensures one and only one equality assignment to each

variable in si. This condition ensures that each si corresponds to a well-formed

transition that can be translated to executable statements. The second term con-

strains the combination of the guards to be a tautology. Note that this is impor-

tant to ensure that each transition system is well-formed and can be converted to

a valid executable conditional. For example, consider the executable conditional
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if (G) then x := E1 else x := E2. The corresponding transition system is

{[]g1 → (x′ = E1), []g2 → (x′ = E2)}, where g1 = G and g2 = ¬G and g1 ∨ g2

holds. In every well-formed executable conditional the disjunction of the guards will

be a tautology. This is that constraint imposed by the second term.

Notice that this construction does not constrain the guards to be disjoint. This

is not required, as without loss of generality, the branches can be arbitrarily ordered

(hence mutually exclusive) in the output to get a valid imperative program.

Iterative lower bounded search Notice that Eq. (4.4) is non-standard, i.e., it is not

an implication constraint like typical verification conditions; and we will elaborate

on this in Section 4.4. Program verification tools may or may not be able to handle

such non-standard constraints. For example, the iterative approach from Chap-

ter 3 cannot handle such non-standard constraints, while the satisfiability-based

approaches from Chapters 2 and 3 can. Therefore, to enable use of a wider class

verifiers, we discuss a technique for ensuring well-formedness of transitions without

asserting Eq. (4.4).

We first assume that valid(si) holds, and we will show in Section 4.4.3 the

conditions under which it does. Then all we need to ensure well-formedness is

that ∨igi is a tautology. Since the transitions of a choose statement represent

independent execution paths, we can perform an iterative search for the guards gi.

We start by finding any satisfying guard (and corresponding transition)—which can

even be false. We then iteratively ask for another guard (and transition) such that

the space defined by the new guard is not entirely contained in the space defined

183



by the disjunction of the guards already generated. If we ensure that at each step

the newly discovered guard covers some more space that was not covered by earlier

guards, then eventually the disjunction of all will be a tautology.

More formally, suppose n such calls result in the transition system {[]gi →

si}i=1..n, and ∨i=1..ngi is not already a tautology. Then for the n+1st transition, we

assert the constraint ¬(gn+1 ⇒ (∨i=1..ngi)). This constraint ensures that gn+1 will

cover some space not covered by ∨i=1..ngi. We repeat until ∨igi holds. This iterative

search for the transitions also eliminates the need to guess the value of n.

Well-formedness of an Expanded Scaffold We constrain the well-formedness of each

transition system in the expanded scaffold exp = Expand
D,R
n,Dprf

(Rflow) using Eq. (4.4).

WellFormCond(exp) =
∧

choose {[]gi→si}i ∈cond(exp)

WellFormTS({[]gi → si}i) (4.5)

where cond(exp) recursively examines the expanded scaffold exp and returns the set

of all choose statements in it.

Example 4.4 For the expanded scaffold in Example 4.2, since each acyclic fragment

only contains one guarded transition, the well-formedness constraints are simple and

state that each of g1, g2, g3 = true and valid(s1) ∧ valid(s2) ∧ valid(s3) holds.

4.3.5 Encoding Progress: Ranking functions

Until now our encoding has focused on safety conditions that, by themselves,

only ensure partial correctness but not termination. Next, we add progress con-

straints to ensure that the synthesized programs terminate.
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To encode progress for a loop l = whileτ,ϕl(g) do {~p}, we assert the existence

of a ranking function as an unknown (numerical) expression ϕl that is lower bounded

and decreases with each iteration of the loop. Because ϕl is an unknown expression

it is difficult to encode directly that it decreases. Therefore, we introduce a tracking

variable rl, such that rl = ϕl. We use rl to remember the value of the ranking

function at the head of the loop, and because it is a proof variable no assignments

to it can appear in the body of the loop. On the other hand, ϕl changes due to

the loop body, and at the end of the iteration we can then check if the new value

is strictly less than the old value, i.e., rl > ϕl. Without loss of generality, we pick

a lower bound of 0 for the tracking variable and conservatively assume that the

termination argument is implied by the loop invariant τ , i.e, τ ⇒ rl ≥ 0.

Now that we have asserted the lower bound, what remains is to assert that

ϕl decreases in each iteration. Assume, for the time being, that the body does not

contain any nested loops. Then we can capture the effect of the loop body using

PathC as defined earlier, with precondition τ ∧ g and postcondition rl > ϕ. Then,

the progress constraint for loop l without any inner loop is:

prog(l)
.
= rl = ϕl ∧ (τ ⇒ rl ≥ 0) ∧ PathC(τ ∧ g, ~p, rl > ϕl)

Using the above definition of progress we define the progress constraint for the

entire expanded scaffold exp = Expand
D,R
n,Dprf

(Rflow):

RankCond(exp) =
∧

l∈loops(exp)

prog(l) (4.6)

where loops(exp) recursively examines the expanded scaffold exp and returns the

set of all loops in it.
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Example 4.5 In the expanded scaffold of Example 4.2 there is only one loop, whose

ranking function we denote by ϕl and with tracker rl. Then we generate the following

progress constraint:

rl = ϕl ∧ (τ ⇒ rl ≥ 0) ∧ (τ ∧ g0 ∧ g2 ∧ s2 ⇒ r′l > ϕ′l)

To relax the assumption we made earlier about no nesting of loops, we need

a simple modification to the progress constraint prog(l). Instead of considering the

effect of the entire body ~p (which now contains inner loops), we instead consider the

fragment end(l) after the last inner loop in ~p. Also, let τend denote the invariant for

the last inner loop. Then, the progress constraint for loop l is:

prog(l)
.
= rl = ϕl ∧ (τ ⇒ rl ≥ 0) ∧ PathC(τend, end(l), rl > ϕl)

Notice that because the loop invariants are not decided a priori, i.e., we are not doing

program extraction, we may assert that the invariants should be strong enough to

satisfy the progress constraints. Specifically, we have imposed the requirement that

the intermediate loop invariants carry enough information such that it suffices to

consider only the last loop invariant τend in the assertion.

4.3.6 Entire Synthesis Condition

Finally, we combine the constraints from the preceding sections to yield the

entire synthesis condition for an expanded scaffold exp = Expand
D,R
n,Dprf

(Rflow). The

constraint SafetyCond(exp,F) (Eq. 4.3) ensures partial correctness of the program

with respect to the functional specification. The constraint WellFormCond(exp)
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(Eq. 4.5) restricts the space to programs with valid control-flow. The constraint

RankCond(exp) (Eq. 4.6) restricts the space to terminating programs. The entire

synthesis condition is given by

sc = SafetyCond(exp,F) ∧ WellFormCond(exp) ∧ RankCond(exp)

Notice that we have omitted the implicit quantifiers for the sake of clarity. The

actual form is ∃U∀V : sc. The set V denotes the program variables, ~vin∪ ~vout∪T ∪L

where T is the set of temporaries (additional local variables) as specified by the

scaffold and L is the set of iteration counters and ranking function trackers. Also,

U is the set of all unknowns of various types instantiated during the expansion

of scaffold. This includes unknowns for the invariants τ , the guards g and the

statements s.

Example 4.6 Accumulating the partial correctness, well-formedness of branching

and progress constraints we get the following synthesis condition (where we have

removed the trivial guards g1, g2, g3 as discussed in Example 4.4):

x ≥ 1 ∧ s1 ⇒ τ ′ ∧

τ ∧ g0 ∧ s2 ⇒ τ ′ ∧

τ ∧ ¬g0 ∧ s3 ⇒ (i′ − 1)2 ≤ x′ ∧ x′ < i′2 ∧

valid(s1) ∧ valid(s2) ∧ valid(s3) ∧

rl = ϕl ∧ (τ ⇒ rl ≥ 0) ∧ (τ ∧ g0 ∧ s2 ⇒ r′l > ϕ′l)
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Input: Scaffold 〈F,D,R〉, maximum transitions n, proof domain Dprf

Output: Executable program or FAIL
begin

exp := Expand
n,Dprf

D,R (Rflow);
sc := SafetyCond(exp,F) ∧

WellFormCond(exp) ∧
RankCond(exp);

π := Solver(sc);

if (unsat(π)) then
return FAIL;

return Exeπ(exp);
end

Figure 4.2: The proof-theoretic synthesis algorithm.

Here is a valid solution to the above constraints:

τ : v = i2 ∧ x ≥ (i− 1)2 ∧ i ≥ 1

g0 : v ≤ x

ϕl : x− (i− 1)2

s1 : v′ = 1 ∧ i′ = 1 ∧ x′ = x ∧ r′l = rl

s2 : v′ = v + 2i+ 1 ∧ i′ = i+ 1 ∧ x′ = x ∧ r′l = rl

s3 : v′ = v ∧ i′ = i ∧ x′ = x ∧ r′l = rl

(4.7)

Notice how each of the unknowns satisfy their domain constraints, i.e., τ is from

FOL over quadratic relations, ϕl is a quadratic expression, s1, s2, and s3 are con-

junctions of linear equalities and g0 is from quantifier-free FOL over linear relations.

In the next section we show how such solutions can be computed using existing tools,

e.g., the ones we developed in Chapters 2 and 3.

Under the assumption [90] that every loop with a pre- and postcondition has

an inductive proof of correctness, and every terminating loop has a ranking function,
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and that the domains chosen are expressive enough, we can prove that the synthesis

conditions, for the case of non-iterative upper bounded well-formedness, model the

program faithfully:

Theorem 4.1 (Soundness and Completeness) The synthesis conditions corre-

sponding to a scaffold are satisfiable iff there exists a program (with a maximum of

n transitions in each acyclic fragment where n is the parameter to the expansion)

that is valid with respect to the scaffold.

Additionally, for the alternative approach to discovering guards (Section 4.3.4),

we can prove soundness and relative completeness:

Theorem 4.2 (Soundness and Relative Completeness) (a) Soundness: If there

exists a program that is valid with respect to the scaffold then at each step of the it-

eration the synthesis conditions generated are satisfiable. (b) Relative completeness:

If the iterative search for guards terminates then it finds a program that is valid with

respect to the scaffold.

Corollary 4.1 (Completeness of Synthesis) If there exists a program that is

valid with respect to the scaffold, then the constraints generated are satisfiable and

every satisfying solution corresponds to a program that is valid with respect to the

scaffold.
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4.4 Solving Synthesis Conditions

In this section we describe how the synthesis conditions for an expanded scaf-

fold can be solved using already existing fixed-point computation tools (program ver-

ifiers). We described two such tool, VS3
LIA and VS3

PA in the previous chapters. While

our experiments were with these tools, we can employ any verifier, Solver(sc), long

as it meets certain requirements that we describe.

Suppose we have a procedure Solver(sc) that can generate solutions to a

synthesis condition sc. Figure 4.2 shows our synthesis algorithm, which expands

the given scaffold to exp, constructs synthesis conditions sc, uses Solver(sc) to

generate a solution π to the unknowns that appear in the constraints, and finally

generates concrete programs (whose acyclic fragments are from the language IML

from Section 4.2) using the postprocessor Exeπ(exp).

The concretization function Exeπ(exp) takes the solution π that is computed

by Solver(sc) and the expanded scaffold exp, and outputs a program whose acyclic

fragments are from the language IML. The function defines a concretization for

each statement in TSL and annotates each loop with its loop invariant and ranking
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function:

Exeπ(p;~p) = Exeπ(p);Exeπ(~p)

Exeπ(whileτ,ϕ(g) do {~p}) = whileπ(τ),π(ϕl)(π(g)) { Exeπ(~p) }

Exeπ(choose {[]g → s}) = if (π(g)) {Stmt(π(s))} else {skip}

Exeπ(choose {[]gi → si}i=1..n) = (where n > 1)

if (π(g1)) {Stmt(π(s1))}

else {Exeπ(choose {[]gi → si}i=2..n)}

where π maps each s to a conjunction of equalities and the concretization function

Stmt(s) expands the equality predicates to their corresponding state updates:

Stmt(
∧

i=1..n

xi = ei)
.
= (t1 := e1; . . ;tn := en);(x1 := t1; . . ;xn := tn)

The above is a simple translation that uses additional fresh temporary variables

t1 . . tn to simulate parallel assignment. Alternatively, one can use data dependency

analysis to generate code that uses fewer temporary variables.

4.4.1 Basic Requirement for Solver(sc)

Our objective is to use off-the-shelf verification tools to implement Solver(sc),

but we realize that not all tools are powerful enough. For use as a solver for synthesis

conditions, verification tools require certain properties.

Let us first recall the notion of the polarity, positive or negative, of unknowns

in a formula from Figure 3.5 in Chapter 3. Let φ be a FOL formula with unknowns

whose occurrences are unique. Notice that all the constraints we generate have

unique occurrences as we rename appropriately. An unknown is positive if strength-
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ening it makes φ stronger. Analogously, an unknown is negative if weakening it

makes the formula stronger. Also, recall that structurally, the nesting depth un-

der negation defines whether an unknown is positive (even depth) or negative (odd

depth). For example, the formula (a∨¬b)∧¬(¬c∨ d) has positive unknowns {a, c}

and negative unknowns {b, d}.

In program verification we infer loop invariants given verification conditions

with known program statements. Let us reconsider the verification condition in

Eq. (4.1) with known program statements and guards. Notice that the implication

constraints can be categorized into three forms; those with unknowns on both sides

τ ∧ f1 ⇒ τ ′, those with unknowns only in the antecedent τ ∧ f2 ⇒ f3, and those

with unknowns only in the consequent f4 ⇒ τ ′; where fi’s denote known formulae.

Also, observe that these three are the only forms in which constraints in verifica-

tion conditions can occur. From these, we can see that the verification conditions

contain at most one positive and one negative unknown, depending on whether the

corresponding path ends or starts at an invariant. Program verification tools imple-

menting typical fixed-point computation algorithms are specialized to work solely

with constraints with one positive and one negative unknown because there is no

need to be more general.

In fact, traditional iterative fixed-point computation is even more specialized

in that it requires support for either just one positive unknown or just one negative

unknown. Traditional verifiers work either in a forward (computing least fixed-

point) or backwards (computing greatest-fixed point) direction starting with the

approximation ⊥ or >, respectively, and iteratively refining it.
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A backwards iterative data flow analyzer always instantiates the positive un-

known to the current approximation and uses the resulting constraint (with only

one negative unknown) to improve the approximation. For example, suppose the

current approximation to the invariant τ is f5. Then a backwards analyzer may

instantiate τ ′ in the constraint τ ∧ f1 ⇒ τ ′ to get the formula τ ∧ f1 ⇒ f ′5 (with one

negative unknown τ). It will then use the formula to improve the approximation by

computing a new value for τ that makes this formula satisfiable.

On the other hand, a typical forwards iterative data flow analyzer instantiates

the negative unknown to the current approximation and uses the resulting constraint

(with only one positive unknown) to improve the approximation. For example,

suppose the current approximation to the invariant τ is f6, then a forwards analyzer

may instantiate τ in the constraint τ ∧f1 ⇒ τ ′ to get the formula f6∧f1 ⇒ τ ′ (with

one positive unknown τ ′). It will then use the formula to improve the approximation

by computing a new value for τ ′ that makes this formula satisfiable.

In contrast, let us consider the components (from Section 4.3) of the syn-

thesis condition. The component SafetyCond(exp) (Eq. (4.3)), in addition to the

unknowns due to the invariants τ , contains unknowns for the program guards g

and program statements s. These unknowns appear exclusively as negative un-

knowns, and there can be multiple such unknowns in each constraint. For example,

in Eq. (4.1), the guards and statement unknowns appear as negative unknowns. On

the other hand, the component WellFormCond(exp) (Eq. (4.5)) contains the well-

formedness condition on the guards ∨igi that is a constraint with multiple positive

unknowns. Therefore we need a verifier that satisfies the following.
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Requirement 4.1 Support for multiple positive and multiple negative unknowns.

Notice this requirement is more general than that supported by typical verifiers

we discussed above.

Now consider, an example safety constraint such as τ ∧ g ∧ s ⇒ τ ′ with

unknowns τ , g and s. This constraint can be rewritten as τ ⇒ τ ′ ∨ ¬g ∨ ¬s.

Also, let us rewrite an example well-formedness constraint ∨gi as true⇒ ∨gi. This

view presents an alternative explanation for Requirement 4.1 in that we need a tool

that can infer the right case split, which in most cases would not be unique and

would require maintaining multiple orthogonal solutions. Intuitively, this is related

to a tool’s ability to infer disjunctive facts.

In the above we implicitly assumed the invariant to be a conjunction of pred-

icates. In the general case, we may wish to infer more expressive (disjunctive)

invariants, e.g., of the form u1 ⇒ u2 or ∀k : u3 ⇒ u4, where ui’s are unknowns. In

this case, multiple negative and positive unknowns appear even in the verification

condition, and therefore the verification tool must satisfy Requirement 4.1, which

matches the intuition that disjunctive inference is required.

4.4.2 Satisfiability-based Verifiers as Solver(sc)

Satisfiability-based fixed-point computation is a relatively recent approach to

program verification that has been successfully used for difficult analyses. In pre-

vious chapters, we designed efficient satisfiability-based verification tools VS3
LIA and

194



VS3
PA for predicate abstraction (Chapter 3) and linear arithmetic (Chapter 2), re-

spectively. Both VS3
LIA and VS3

PA satisfy Requirement 4.1.

Satisfiability-based verification tools reduce a verification condition vc (with

invariant unknowns) to a boolean constraint ψ(vc) such that a satisfying solution to

the boolean constraint corresponds to valid invariants. Working with either linear

arithmetic or predicate abstraction, the following is a restatement of results from

previous chapters (Theorem 2.1 from Chapter 2, and Theorem 3.2 from Chapter 3)

for satisfiability-based fixed-point computation:

Corollary 4.2 The boolean constraint ψ(vc) is satisfiable iff there exists a fixed-

point solution for the unknowns corresponding to the invariants.

The reduction can also be applied to synthesis condition sc to get boolean constraints

ψ(sc) and a similar property holds. The boolean constraint is satisfiable iff there

exist satisfying statements, guards and invariants to the synthesis condition.

4.4.3 Iterative Verifiers as Solver(sc)

Let us now consider the case where the verification tool cannot handle non-

standard constraints, such as Eq. (4.4). This is the case for typical iterative program

verification tools that compute increasingly better approximations to invariants.

We show that despite this lack of expressivity it is still possible to solve synthesis

conditions as long as the tool satisfies an additional requirement.

The only constraint in the synthesis condition sc that is not an implication is

WellFormCond(sc). In Section 4.3.4, we discussed how an iterative lower-bounded
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search can discover the transitions {[]gi → si}i without asserting Eq. (4.5). There

we had left the question of ensuring valid(si) unanswered. Consider now the case

where a valid solution gi, si exists (i.e., si is not false or that valid(si) holds) that

satisfies the constraint set. As an instance, in Example 4.6, we have a synthesis

condition for which a valid solution exists as shown by Eq. (4.7). Notice that this

solution is strictly weaker than another solution that assigns identical values to other

unknowns but assigns false to any of s2, s2, or s3. In fact, we can observe that if

the tool only generates maximally weak solutions then between these two solutions

(which are comparable as we saw), it will always pick the one in which it does not

assign false to statement unknowns. Therefore, it will always generate si such that

valid(si) holds unless no such si exists. As a result, if the program verification tool

satisfies the following requirement, then we can omit Eq. (4.5) from the synthesis

condition and still solve it using the tool.

Requirement 4.2 Solutions are maximally weak.

This requirement corresponds to the tool’s ability to compute weakest pre-

conditions. The typical approach to weakest preconditions (greatest fixed-point)

computation propagates facts backwards, but this is considered difficult and there-

fore not many tools exist that do this. However, although traditional iterative data

flow verifiers fail to meet Requirements 4.1 and 4.2, our iterative fixed-point compu-

tation approach from Chapter 3 computes maximally weak solutions and therefore

satisfies the requirements.

In addition to ensuring valid(si), maximally weak solutions also ensure that
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in each step of the iterative lower bounded search (Section 4.3.4), the algorithm will

make maximal progress and converge faster. If the tool did not generate maximally

weak solutions, then the iterative search for guards could take many more iterations

to converge to a tautology. The downside is that the tool does more work than

required. We require maximally weak solutions only for the statement unknowns,

but instead the tool will generate maximally weak solutions for guards and invari-

ants as well. This is not needed for synthesis as we are interested in any solution

that satisfies the synthesis condition. Thus, the satisfiability-based scheme (which

computes any fixed-point in the lattice rather than the greatest fixed-point) out-

performs the iterative scheme in our experiments. In fact, tools based on iterative

approximations do not terminate for most benchmarks, and we therefore perform

the experiments using satisfiability-based tools.

4.5 Experimental Case Studies

To evaluate our approach, we synthesized examples in three categories: First,

easy to specify but tricky to program arithmetic programs; second, sorting programs

which all have the same specification but yield different sorting strategies depending

on the resource constraints; third, dynamic programming programs for which naive

solutions yield exponential runtimes, but which can be computed in polynomial time

by suitable memoization.
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4.5.1 Implementation

We implement our synthesis algorithm using existing satisfiability-based ver-

ifiers VS3
LIA and VS3

PA, but which we augment as described below. Also, to simplify

user input, we expanded user specified flowgraphs to be more expressive for certain

cases.

Verification Tools Our synthesis technique relies on an underlying program verifi-

cation tool. We took our VS3
LIA and VS3

PA verifiers and used them as synthesis solvers.

These tools are state-of-the-art and can infer expressive invariants such as those

requiring quantification and disjunction. However, for some of the benchmarks, the

reasoning required was beyond even these their capabilities. We therefore extended

the base verifiers with the following features.

• Quadratic expressions for arithmetic For handling quadratic expressions in

the proofs, we implemented a sound but incomplete technique that renames

quadratic expressions to fresh variables and then uses linear arithmetic rea-

soning of VS3
LIA. We will discuss this encoding in detail in Section 6.2.2.2. This

encoding suffices for most of our benchmarks except for one (integral square

root), which we handle by explicitly encoding an assumption. We call this

augmented solver VS3
QA.

• Axiomatization Proposals exist for extending verification tools with axioms

for theories they do not natively support, e.g., the theory of reachability for

lists [172]. We take such axiomatization a step further and allow the user
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to specify axioms over uninterpreted symbols that define computations. We

implement this in VS3
PA to specify the meaning of dynamic programming pro-

grams, e.g., the definition of Fibonacci. We call this augmented solver VS3
AX.

Note that these extensions are to facilitate verification and not synthesis. The

synthesis solver is exactly the same as the verification tool. The details of these

extensions are presented in Chapter 6.

Flowgraphs with Init/Final Phases In practice a fair number of loops have charac-

teristic initialization and finalization phases that exhibit behavior different from the

rest of the loop. In theory, verifiers should be able to infer loop invariants that cap-

ture such semantically different phases. However, this requires disjunctive reasoning,

which is fairly expensive if at all supported by the verifier. In particular, while our

tools VS3
LIA and VS3

PA do support disjunctions, it is more expensive to handle than

just conjunctive facts. On the other hand, other tools require non-trivial work to

be lifted to disjunctive reasoning. For instance, abstract interpretation-based tools

require expensive disjunction completions of domains [76, 118].

We use an alternate expansion Expand
n
(T ) that introduces acyclic fragments

for the initialization and finalization if synthesis without them fails. For instance,

for Example 4.1, the the user only needs to specify the flowgraph ∗(◦) instead of

the more complicated ◦;∗(◦);◦. Except for the expansion of loops, Expand
n
(T )

expands all other statements exactly like Expandn(T ) does. For loops, it builds an
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initialization and finalization phase as follows.

Expand
n
(∗(T ))=Expandn(◦); → Added initialization

whileτ (g) {Expand n
(T );}

Expandn(◦); → Added finalization

4.5.2 Algorithms that use arithmetic

For this category, we pick Dprf to be quadratic arithmetic and use as our

solver the VS3
QA tool. We chose a set of arithmetic benchmarks with simple-to-

state functional specifications but each containing some tricky insight that human

programmers may miss.

Swapping without Temporaries Consider a program that swaps two integer-valued

variables without using a temporary. The precondition and postcondition to the

program are specified as Fpost
.
= (x = c2 ∧ y = c1) and Fpre

.
= (x = c1 ∧ y = c2),

respectively. We specify an acyclic flowgraph template Rflow
.
= ◦ and a computation

template Rcomp
.
= ∅ that imposes no constraints. To ensure that no temporaries

are used we specify Rstack
.
= ∅. The synthesizer generates various versions of the

program, e.g.,

Swap(int x, y){x := x+ y; y := x− y;x := x− y; }

The synthesizer also finds numerous other alternative programs that are semantically

equivalent, e.g.,

Swap(int x, y){x := x− y; y := x+ y;x := −x+ y; }
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Since we allow for non-trivial sized bit vectors for the coefficients, the total number

of alternative solutions enumerated is of the order of thousands.

Strassen’s 2 × 2 Matrix Multiplication Consider Strassen’s matrix multiplication,

which computes the product of two n × n matrices in Θ(n2.81) time instead of

Θ(n3). The key to this algorithm is an acyclic fragment that computes the product

of two 2 × 2 input matrices {aij, bij}i,j=1,2 using 7 multiplications instead of the

expected 8. Used recursively, this results in asymptotic savings. The key insight

of the algorithm lies in this core. Recursive block multiplication was well known,

and Strassen augmented it with an efficient core. We synthesize the crucial acyclic

fragment, which is shown in Figure 4.3. Here the precondition Fpre is true and

the postcondition Fpost is the conjunction of four equalities as (over the outputs

{cij}i,j=1,2):  c11 c12

c21 c22

 =

 a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22


The synthesizer also generates many alternate versions that are functionally equiv-

alent to Figure 4.3.

As a side note, we also attempted synthesis using 6 multiplications, which

failed. This suggests that possibly no asymptotically faster solution exists using

simple quadratic computations—theoretical results up to n2.376 are known [70], but

use products that cannot be easily be captured in the simple domains considered

here.
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Strassens(int aij, bij) {
v1:=(a11+a22)(b11+b22)
v2:=(a21+a22)b11
v3:=a11(b12-b22)
v4:=a22(b21-b11)
v5:=(a11+a12)b22
v6:=(a21-a11)(b11+b12)
v7:=(a12-a22)(b21+b22)
c11:=v1+v4-v5+v7

c12:=v3+v5

c21:=v2+v4

c22:=v1+v3-v2+v6

return cij;
}

Figure 4.3: Synthesis result for Strassen’s Matrix Multiplication using the arithmetic
solver.

Integral Square Root Consider computing the integral square root b
√
xc of a posi-

tive number x using only linear or quadratic operations. The precondition is Fpre
.
=

x ≥ 1 and the postcondition, involving the output i, is Fpost
.
= (i−1)2 ≤ x < i2. We

provide a single loop flowgraph template Rflow
.
= ∗(◦) and an empty computation

template Rcomp
.
= ∅. The synthesizer generates different programs depending on the

domain constraints and the stack template:

• Rstack
.
= {(int, 0)} and we allow quadratic expressions in Dexp and Dgrd. The

synthesized program does a sequential search downwards starting from i = x

by continuously recomputing and checking (i− 1)2 against x.

• Rstack
.
= {(int, 1)} and we only allow linear expressions in Dexp and Dgrd.

The synthesized program does a sequential search but uses the additional

local variable (rather surprisingly) to track the value of (i − 1)2 using only

linear updates. The synthesized program is Example 4.1, from earlier.
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• Rstack
.
= {(int, 2)} and we allow quadratic expressions in Dexp and Dgrd. The

synthesized program does a binary search for the value of i and uses the two

additional local variables to hold the low and high end of the binary search

space.

Notice that the stack template only specifies an upper bound. As such, for succes-

sively higher number of variables programs that use fewer variables are also valid

solutions. The synthesizer generates all solutions, in particular, including those that

use fewer variables than what the stack template specifies. We use the enumera-

tion facility in satisfiability-based verifiers to enumerate all valid solutions. In the

above description, for higher number of variables, we mention that programs that

are generated in addition to the ones before.

Bresenham’s Line Drawing Algorithm Consider Bresenham’s line drawing algo-

rithm, as we discussed in Section 4.1.1. For efficiency, the algorithm only uses linear

updates, which are non-trivial to verify [107] or even understand (let alone discover

from scratch).

We specify the precondition Fpre
.
= 0 < Y ≤ X. The postcondition (as

presented in Section 4.1.1) is quantified, but VS3
QA does not support quantification.

Therefore we provide a facility to annotate the flowgraph template with the assertion

|2y − 2(Y/X)x| ≤ 1 at the loop header and specify that the loop iterates over

x = 0 . . X. This indicates the tradeoffs we can make in our technique. The user

can offset the limitations of the available verification tool by indicating extra known

values in the scaffold. We specify a single loop flowgraph Rflow
.
= ∗(◦) and empty
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stack and computation templates Rstack
.
= ∅, Rcomp

.
= ∅. The synthesizer generates

multiple versions, one of which is shown in Figure 4.1(a).

4.5.3 Sorting Algorithms

For this category, we pick Dprf to be predicate abstraction and use as our

solver the VS3
PA tool.

The sortedness specification consists of the precondition Fpre
.
= true and the

postcondition Fpost
.
= ∀k : 0 ≤ k < n⇒ A[k] ≤ A[k + 1]. The full functional speci-

fication would also ensure that the output array is a permutation of the input, but

verifying—and thus, synthesizing—the full specification is outside the capabilities

of most automated tools today.

We therefore use a mechanism to limit the space of programs to desirable sort-

ing algorithms, while still only using Fpost. We limit Dexp to include only those oper-

ations that maintain elements—for example, swapping elements or moving elements

to unoccupied locations. Using this mechanism, we ensure that invalid algorithms

(that replicate or lose array elements) are not considered.

Non-recursive sorting algorithms Consider comparison-based sorting programs that

are composed of nested loops. We specify a flowgraph template Rflow
.
= ∗(∗(◦)) and

a computation template Rcomp that limits the operations to swapping of array values.

• Rstack
.
= ∅: The synthesizer produces two sorting programs that are valid with

respect to the scaffold. One corresponds to Bubble Sort and the other is a

non-standard version of Insertion Sort. The standard version of Insertion Sort
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SelSort(int A[], n) {
i1:=0;
whileτ1,ϕ1(i1 < n− 1)
v1:=i1;
i2:=i1+1;
whileτ2,ϕ2(i2 < n)

if (A[i2]<A[v1])
v1:=i2;

i2++;
swap(A[i1], A[v1]);
i1++;

return A;
}

Ranking functions:
ϕ1 : n− i1 − 2
ϕ2 : n− i2 − 1

Invariant τ1:
∀k1, k2 : 0 ≤ k1 < k2 < n ∧ k1 < i1 ⇒ A[k1] ≤ A[k2]

Invariant τ1:
i1 < i2 ∧ i1 ≤ v1 < n
∀k1, k2 : 0 ≤ k1 < k2 < n ∧ k1 < i1 ⇒ A[k1] ≤ A[k2]
∀k : i1 ≤ k < i2 ∧ k ≥ 0 ⇒ A[v1] ≤ A[k]

Figure 4.4: Synthesis result for Selection Sort. For ease of presentation, we omit de-
generate conditional branches, i.e. true/false guards, We name the loop iteration
counters L = {i1, i2, . .} and the temporary stack variables T = {v1, v2, . .}.

uses a temporary variable to hold the inserted object. Since we do not provide

a temporary variable, the synthesized program moves the inserted element

by swapping it with its neighbor, while still performing operations similar to

Insertion Sort.

• Rstack
.
= {(int, 1)}: The synthesizer produces another sorting program that

uses the temporary variable to hold an array index. This program corresponds

to Selection Sort and is shown in Figure 4.4. Notice the non-trivial invariants

and ranking functions that are synthesized alongside for each of the loops.
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Recursive divide-and-conquer sorting Consider comparison-based sorting programs

that use recursion. We make a few simple modifications to the system to specify re-

cursive programs. First, we introduce a terminal string ~ to the flowgraph template

language, representing a recursive call.2 Let (Fpre( ~vin), Fpost( ~vout)) denote the func-

tional specification. Then we augment the expansion to handle the new flowgraph

string as follows:

Expandn(~) = choose{[]true→ srecur}

where srecur = sargs ∧ (Fpre( ~vin
′) ⇒ Fpost( ~vout

′′))∧ sret sets values to the arguments

of the recursive call (using sargs), assumes the effect of the recursive call (using

Fpre( ~vin
′) ⇒ Fpost( ~vout

′′), with the input arguments renamed to ~vin
′ and the return

variables renamed to ~vout
′′) and lastly, outputs the returned values into program

variables (using sret). The statements sargs, sret take the form:

sargs =
∧

i xi = ei where xi ∈ ~vin
′, ei ∈ Dexp|Vars

sret =
∧

i xi = ei where xi ∈ Vars, ei ∈ Dexp| ~vout
′′

Here Vars denote the variables of the procedure (the input, output and local stack

variables). We also tweak the statement concretization function to output a recursive

call statement rec:

Stmt(Fpre( ~vin
′)⇒Fpost( ~vout

′′)) = ~vout
′′ := rec( ~vin

′)

We specify a computation template that allows only swapping or moving of elements.

We then try different values of the flowgraph and stack templates:

2Our notation has agreeable symmetry in that it denotes implicit iteration using acyclic

fragments—hence the combination of ◦ and ∗.
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• Rflow
.
= ~;~;◦ (two recursive calls followed by an acyclic fragment) and

Rstack
.
= ∅: The synthesizer produces a program that recursively sorts sub-

parts and then combines the results. This corresponds to Merge Sort.

• Rflow
.
= ◦;~;~ (an acyclic fragment followed by two recursive calls) and

Rstack
.
= {(int, 1)}: The synthesizer produces a program that partitions the

elements and then recursively sorts the subparts. This corresponds to Quick

Sort.

4.5.4 Dynamic Programming Algorithms

For this category, we pickDprf to be predicate abstraction and use as our solver

the VS3
AX tool. We choose all the textbook dynamic programming examples [71] and

attempt to synthesize them from their functional specifications.

The first hurdle (even for verification) for these algorithms is that the meaning

of the computation is not easily specified. To address this issue, we need support

for axioms, which are typically recursive definitions.

Definitional Axioms Our tool VS3
AX allows the user to define the meaning of a com-

putation as an uninterpreted symbol, with (recursive) quantified facts defining the

semantics of the symbol axiomatically. For example, the semantics of Fibonacci are

defined in terms of the symbol Fib and the axioms:

Fib(0) = 0

Fib(1) = 1

∀k : k ≥ 0 ⇒ Fib(k + 2) = Fib(k + 1) + Fib(k)
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The tool passes the given symbol and its definitional axioms to the underlying

theorem prover (Z3 [86]), which assumes the axioms before every theorem proving

query. This allows the tool to verify dynamic programming programs.

Even with verification in place, automatic synthesis of these programs involves

three non-trivial tasks for the synthesizer. First, the synthesizer needs to automati-

cally discover a strategy for translating the recursion (in the functional specification)

to non-recursive iteration (for the actual computation). The functional specifica-

tions do not contain this information, e.g., in the specification for Fibonacci above,

the iteration strategy for the computation is not evident. Second, the synthesizer

needs to take the (non-directional) equalities in the specifications and impose di-

rectionality such that elements are computed in the right order. For example, for

Fibonacci the synthesizer needs to automatically discover that Fib(k) and Fib(k+1)

should be computed before Fib(k + 2). Third, the synthesizer needs to discover an

efficient memoization strategy for only those results needed for future computations,

to fit the computation in the space provided—which is one of the benefits of dy-

namic programming algorithms. A naive hashmap-based strategy for memoization

wastes space. On the other hand, if the synthesizer is able to infer the pieces of the

computation required in the future, just from the recursive functional definition,

then it can selectively overwrite old results and optimize the space required. For

example, Fibonacci can be computed using only two additional memory locations by

suitable memoization. Fortunately, just by specifying the resource constraints and

using our proof-theoretic approach the synthesizer is able to perform these tasks

and synthesize dynamic programming algorithms from their recursive functional
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specifications.

Also, as in the case of sorting, we want to disallow completely arbitrary com-

putations. In sorting, we could uniformly restrict the expression language to only

swap and move operations. For dynamic programming, the specification of the op-

erations is problem-specific. For instance, for shortest path, we only want to allow

the path matrix updates that correspond to valid paths, e.g., disallow arbitrary

multiplication of path weights. Rcomp specifies these constraints by only permitting

updates through certain predicates.

Dynamic programming solutions typically have an initialization phase (init-

loop) and then a phase (work-loop) that fills the appropriate entries in the table.

Therefore, we chose a Rflow with an init-loop (∗(◦)) followed by a work-loop.

By specifying a flowgraph template Rflow
.
= ∗(◦);∗(◦) and a stack template

with no additional variables (except for the case of Fibonacci, where the synthesizer

requiredRstack
.
= {(int, 2)}), we were able to synthesize the following four examples:

Fibonacci Consider computing the nth Fibonacci number from the functional spec-

ification as above. Our synthesizer generates a program that memoizes the solutions

to the two subproblems Fib(i1) and Fib(i1 + 1) in the i1th iteration. It maintains a

sliding window for the two subproblems and stores their solutions in the two addi-

tional stack variables. The synthesized program along with its invariant and ranking

function is shown in Figure 4.5.
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Fib(int n) {
v1:=0;v1:=1;i1:=0;
whileτ,ϕ(i1 ≤ n)
v1:=v1+v2;swap(v1, v2);
i1++;

return v1;
}

Ranking function ϕ:
x− s

Invariant τ :
v1 = Fib(i1) ∧ v2 = Fib(i1+1)

Figure 4.5: Synthesis results for a dynamic programming program, Fibonnaci. Here,
we name the loop iteration counters L = {i1, i2, . .} and the temporary stack variables
T = {v1, v2, . .}.

Checkerboard Consider computing the least-cost path in a rectangular grid (with

costs at each grid location), from the bottom row to the top row. The functional

specification states the path cost for a grid location in terms of the path costs for

possible previous locations (i.e., below left, below, or below right). Our synthesizer

generates a program that finds the minimum cost paths.

Longest Common Subsequence (LCS) Consider computing the longest common

substring that appears in the same order in two given input strings (as arrays of

characters). The recursive functional specification relates the cost of a substring

against the cost of substrings with one fewer character. Our synthesizer generates

a program for LCS.

Single Source Shortest Path Consider computing the least-cost path from a desig-

nated source to all other nodes where the weight of edges is given as a cost function

for each source and destination pair. The recursive functional specification states
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the cost structure for all nodes in terms of the cost structure of all nodes if one fewer

hop is allowed. Our synthesizer generates a program for the single source shortest

path problem.

For the following two examples, synthesis failed with the simpler work-loop,

but we synthesize the examples by specifying a flowgraph template ∗(◦);∗(∗(◦)) and

no additional stack variables:

All-pairs Shortest Path Consider computing all-pairs shortest paths using a recur-

sive functional specification similar to the one we used for single source shortest

path. Our synthesizer times out for this example. We therefore attempt synthesis

by (i) specifying the acyclic fragments and synthesizing the guards, and (ii) specify-

ing the guards and synthesizing the acyclic fragments. In each case, our synthesizer

generates the other component, corresponding to Floyd-Warshall’s algorithm.

Matrix Chain Multiply Consider computing the optimal way to multiply a matrix

chain. Depending on the bracketing, the total number of multiplications varies. We

wish to find the bracketing that minimizes the number of multiplications. E.g., if

we use the simple n3 multiplication for two matrices, then A10×100B100×1C1×50 can

either takes 1,500 multiplications for (AB)C or 55,000 multiplications for A(BC).

The functional specification defines the cost of multiplying a particular chain of

matrices in terms of the cost of a chain with one fewer element. Our synthesizer

generates a program that computes the optimal matrix bracketing.
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4.5.5 Performance

Table 4.1 presents the performance of a satisfiability-based synthesizer over

arithmetic, sorting and dynamic programming benchmarks. All runtimes are median

of three runs, measured in seconds. We measure the time for verification and the

time for synthesis using the same tool. The total synthesis time varies between 0.12

and 9658.52 seconds, depending on the difficulty of the benchmark, with a median

runtime of 14.23 seconds. The factor slowdown for synthesis varies between 1.09

and 92.28, with a median of 6.68.

The benchmarks we used are considered difficult even for verification. Conse-

quently the low average runtimes for proof-theoretic synthesis are encouraging. Also,

the slowdown for synthesis compared to verification is acceptable, and shows that

we can indeed exploit the advances in verification to our advantage for synthesis.

4.5.6 Discussion

The synthesis of the expressive programs reported in this chapter is made

feasible by the use of some simplifying ideas that we discuss here.

Array flattening Two (and higher) dimensional arrays, while making it easier for

human programmers to reason about data, and indices into it, have little semantic

benefit over one dimensional arrays. E.g., instead of indexing an 2D-array using

3These timings are for separately (i) synthesizing the loop guards, and (ii) synthesizing the

acyclic fragments. We fail to synthesize the entire program, but with these hints provided by the

user, our synthesizer can produce the remaining program.
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Benchmark Verif. Synthesis Ratio

A
ri

th
.
(V
S
3 Q
A
) Swap two 0.11 0.12 1.09

Strassen’s 0.11 4.98 45.27
Sqrt (linear search) 0.84 9.96 11.86
Sqrt (binary search) 0.63 1.83 2.90
Bresenham’s 166.54 9658.52 58.00

S
o
rt

in
g

(V
S
3 P
A
) Bubble Sort 1.27 3.19 2.51

Insertion Sort 2.49 5.41 2.17
Selection Sort 23.77 164.57 6.92
Merge Sort 18.86 50.00 2.65
Quick Sort 1.74 160.57 92.28

D
y
n
a
m

ic
P

ro
g
.
(V
S
3 A
X
) Fibonacci 0.37 5.90 15.95

Checkerboard 0.39 0.96 2.46
Longest Common Subseq. 0.53 14.23 26.85
Matrix Chain Multiply 6.85 88.35 12.90
Single-Src Shortest Path 46.58 124.01 2.66

All-pairs Shortest Path3 112.28
(i) 226.71
(ii) 750.11

(i) 2.02
(ii) 6.68

Table 4.1: Experimental results for proof-theoretic synthesis over different domain.
(a) Arithmetic (b) Sorting (c) Dynamic Programming. For each category, we indi-
cate the tool used to solve the verification conditions and the synthesis conditions.
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a pair (i, j), a semantically identical 1D-array can be used, indexed by an integer

i ∗ rowsize + j. To the synthesizer, or in pseudocode, these representations are

essentially identical, and we can arbitrarily pick the one more convenient. The

theory of arrays is more conveniently defined over flatted arrays and therefore our

synthesized programs are in that representation. This also removes some arbitrary

non-determinism (in the space of programs) and simplifies control flow (instead of

nested iteration counters, a single iteration counter suffices). Array flattening also

facilitates abstracting layout non-determinism for dynamic programming examples

as described below.

Abstracting layout Most benchmarks for dynamic programming memoize results

to subproblems by filling a table. Aside from some causal constraints there is little

definedness in the order in which entries are filled out. Thus there is no one unique

way of laying out the entries in the table.

For programs that manipulate a two (or higher) dimensional table, we realize

that the layout of the entries is immaterial as long as some ordering constraints are

maintained amongst the entries. For example, a program that traverses the top-left

half-triangle of a square matrix using diagonals can be rewritten as a program that

traverses the bottom-left half-triangle using row-wise traversals. Both of these can

in turn be rewritten as straight-line traversal over a one-dimensional array as well,

i.e. the layout can be flattened.

We let the user specify the layout constraints again over uninterpreted layout

functions and synthesize the program over these abstract layout functions. Note
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that now, the definitional axioms also have to be defined using the layout functions.

The constraints over the layout functions can later be used to synthesize arbitrary

concrete layouts to get executable programs. For example, the layout constraint

for a program that does a diagonal traversal of the top-left triangle of a square

matrix is defined in terms of functions up, left and the constraints up(x) < x ∧

left(x) < x ∧ up(left(x)) < x ∧ left(up(x)) < x. Once a program has been

synthesized in terms of these functions, a simple theorem proving query can find

a satisfying concretization to the functions and the program can be rewritten as a

two dimensional traversal. This theorem proving query is a simple ∃ query to find

a satisfying solution for the layout constraints. One way to formulate the ∃ query

would be to use templates for the abstract functions and solve for coefficients similar

to our approach in Chapter 2. For example, if n is the dimension of the matrix then

left(x)
.
= x− 1, up(x)

.
= x− n would be the natural concretization, but any other

concretization satisfying the constraints would be valid too. For instance, one that

traverses the bottom-left triangle in row-order.

Computational templates We now discuss how computational templates help re-

strict program operations to a desired space, alleviating the massive undertaking of

verifying termination, and full functional correctness in a single step.

To synthesize programs that meet a given functional behavior, this chapter

argues that, at least, one must be capable of verifying that behavior. Not only

that, to be useful for synthesis the full functional verification needs to be done in

one step, and cannot be done piecewise. While piecewise verification can verify
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partial programs properties by considering them in turn, piecewise synthesis may

yield solutions that are mutually inconsistent and therefore irreconcilable. That

said, there might be a way out.

While functional specifications define the computation theoretically, the results

in this chapter indicate that other information, e.g., domain and resource restriction,

can make the synthesis task practical. The use of resource constraints, specifically,

the computational restrictions, removes the need to assert part of functional specifi-

cations in certain cases. For instance, for the case of sorting, while the full functional

specification asserts that the output array is a permutation of the input, using the

computational template we restrict array writes to swaps, eliminating the need to

assert a permutation constraint. Similarly, for the case of dynamic programming

benchmarks, we ensure that updating to the memoization table are through limited

operations that do not violate core soundness, eliminating a need to assert part of

the functional specification.

Choosing good programs The system described in this chapter does not attempt

to attach a preferability metric to programs—except of course it prefers correct,

well-formed, and terminating programs.

Theoretically, functional specifications capture the desired computation. But

in practice, programmers also care about the resources (space and time) used by their

programs and of the average case performance. There might be other concerns, such

as particular memory access patterns, or ordered computations etc., that certain

programmers, for instance, security aware developers, may care about.
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There are three possibilities for synthesizing such good programs. First, we

may leave it up to the programmer and have the automated tool just enumerate all

valid solutions. This is the approach we currently follow. Second, we may encode

domain specific constraints, e.g., limiting network communication, in addition to

safety, termination, and well-formedness, to ensure the synthesizer only generates

good programs. This is, in spirit, similar to our core technique presented in this

chapter, and we will potentially pursue this next. Lastly, we may use an iterative

mechanism on top of the core synthesizer to filter the good candidates which the

tool enumerates. This is, in spirit, similar to previous work on Sketching [245] that

enumerates candidate programs and uses a model checker to eliminate bad programs,

where in their case, the bad programs are those that do not meet the safety criteria.

This approach may indeed be the only plausible one for complicated performance

issues such as optimizing cache performance that are hard to model as constraints.

Modular synthesis Our use of swap operations in sorting, layout functions in dy-

namic programming, and in general synthesizing programs over a given set of pred-

icates, is an instance of synthesis with respect to an abstraction. Albeit, an ab-

straction that is user provided. Other authors have also explored the use of such

provided abstractions to design compositional synthesis systems [152, 153].

In the future, we wish to design a synthesis system that automatically infers

a suitable abstraction boundary and synthesizes functions in terms of the interface

thus defined. [257]
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4.6 Summary

This chapter presented a principled approach to synthesis that treats synthesis

as a generalized verification problem. The novelty of this approach lies in generat-

ing synthesis conditions, which are composed of safety conditions, well-formedness

conditions, and progress conditions, such that a satisfying solution to the synthesis

conditions corresponds to a synthesized program. We used verification tools VS3
LIA

and VS3
PA from previous chapters to synthesize programs, and, simultaneously, their

proof (invariants, ranking functions). We demonstrated the viability of our approach

by synthesizing difficult examples in the three domains of arithmetic, sorting, and

dynamic programming, all in very reasonable time.

4.7 Further Reading

Deductive Synthesis Deductive synthesis is an approach to synthesis that gener-

ates programs through iterative refinement of the specification. At each step of the

refinement, well-defined proof rules are used, each of which corresponds to the intro-

duction of a programming construct. For instance, case splits in the proof leads to a

conditionals in the program, induction in the program leads to loops in the program.

Deductive synthesis was explored in work by Manna, Waldinger and others in the

1960’s and 1970’s [195]. The core idea was to extract the program from the proof

of realizability of the formula ∀~x : ∃~y : pre(~x) ⇒ post(~x, ~y), where ~x and ~y are the

input and output vectors, respectively [129, 263].

The approach presented here can be seen as automating deductive synthesis.
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Additionally, the technical insight added by this dissertation is the realization that

while human-guided proof-refinement implicitly steers away from pathological cases,

when automating the process, a critical requirement is to ensure well-formedness and

termination, in addition to refining the safety proof.

Alternative exciting directions The interested reader is also advised to follow the

developments by other independent groups of techniques that are similar in spirit,

i.e., are automatic and deductive, but differ in technical content. Of particular

interest is the work by Vechev, Yahav and Yorsh [258] on iterative refinement of the

proof and program. Another exciting direction is the work by Kuncak’s group on

decision procedures for program synthesis [171, 197] to be incorporated into custom

solvers.
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Chapter 5

Path-based Inductive Synthesis:
Testing-inspired Program
Synthesis

“I don’t know what my path is yet.
I’m just walking on it.”

— Olivia Newton-John1

This chapter describes a novel technique that synthesizes programs using an

approach inspired by, and providing approximate guarantees as in, testing. Our

approach combines ideas from symbolic execution-based testing and satisfiability-

based program analysis.

We describe the technique as working over a template of the program to be

synthesized. For the applications we consider we find that we can automatically

mine this template. The mined template finitizes the space of programs, but the

space is still exponential. To efficiently find a solution, we propose a technique that

iteratively prunes away invalid programs from the search space. We pick a candidate

solution to the synthesis and identify a feasible path for the candidate through the

template. Using ideas from satisfiability-based analysis we find potential solutions

1English-born, Australian raised singer/actress and an environmental, animal rights, and breast
cancer activist.
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that satisfy the specification for the set of paths accumulated. We continue this

Path-based Inductive Synthesis (PINS) procedure until the space contains only valid

inverses.

We apply PINS to the problem of automatically generating program inverses,

i.e., of synthesizing a program P−1 that negates the computation of a given pro-

gram P . This problem arises naturally in paired computations such as compression-

decompression, serialization-deserialization, transactional memory rollback, and bidi-

rectional programming. Automatic program inversion can alleviate the cost asso-

ciated with maintaining two closely related programs, and ensure correctness and

maintainability. We make two observations. First, we observe that the control flow

structure of the inverse is very similar to the original program. Therefore we can

automatically mining the flowgraph, expression and predicate sets from the origi-

nal program. Our approach limits user effort to simple modifications of the mined

template, if at all required. Second, we observe that the specification of inversion

is trivial (identity) when we consider the concatenation (sequential composition) of

the original program with its inverse. We apply PINS to the template formed by the

concatenation of the original known program with the mined unknown program to

synthesize inverses.

We also apply PINS to the problem of automatically generating paired network

programs, such as clients from servers or vice versa. We exploit the observation that

for these paired programs, the desired program has a control flow structure very

related to its pair, and the expressions and guards are related as well. From the

original program, we syntactically mine the control flow structure, expression and

221



guard sets for its pair—that we intend to synthesize—finitizing the problem and

then apply PINS to synthesize valid solutions.

Using PINS, we show we can synthesize inverses for compressors (e.g., LZ77),

packers (e.g., UUEncode), and arithmetic transformers (e.g., image rotations). Ad-

ditionally, we use PINS to synthesize a TFTP client from its server. These programs

(and their corresponding pairs) range from 5 to 20 lines of code, and PINS syn-

thesizes them in a median time of 40 seconds, demonstrating the viability of our

synthesis approach.

5.1 Using Symbolic Testing to Synthesize Pro-

grams

Testing can be considered as an approximation to formal verification. In a sim-

ilar vein, we intend to develop a synthesis technique with approximate guarantees.

While the approach in the previous chapter provides formal guarantees, it does so

by inferring program invariants, which may be complicated. The approach in this

chapter does not provide formal guarantees, but can synthesize programs without

reference to invariants. The added expense of inferring proofs may be justified when

synthesizing critical software, but in this chapter we consider the case where the

proof is only of auxiliary importance, and we wish the technique to automatically

generate complicated, hard to maintain, programs.

The approach in this chapter does not rely on formal verifiers, unlike proof-
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theoretic synthesis and as some other previous approaches do [245]. Formal verifiers

are hard to build, are domain specific, and for the programs we target in this chapter,

we do not know of any tools that can formally verify them correct. On the other

hand, testing, and in our case symbolic testing [165] (Section 5.3), has been shown to

be a good (approximate) verification strategy—perhaps the only one in the absence

of formal verifiers—and therefore can potentially be employed for synthesis. Our

technique, called PINS, consists of the following steps:

Step 1 (Finitize the problem) We finitize the problem by constructing a flowgraph

template with placeholders for guards and expressions, and a set of potential

expression and predicate sets for those placeholders. While PINS is a general

synthesis technique that works over a given template flowgraph and expressions

and predicate sets, for the case of our application, i.e., inversion, we will be able

to mine the program Prog to get the flowgraph and expression and predicate

sets for P−1.

Step 2 (Encode correctness constraints using paths) We use symbolic execution to

generate correctness (safety and termination) constraints over a set of paths

through the template program. We then use SMT reasoning to convert these

constraints into concise SAT constraints which we solve for candidate solutions.

These candidate solutions satisfy all the correctness constraints for those paths.

Step 3 (Refine solution space) We generate new feasible paths for some candidate

solution that we generated in Step 2. Note that a candidate program may

not be a valid program for the synthesis task as it is only correct up to the
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set of paths explored until that point. Therefore, we generate a new path

parameterized by this candidate solution. Our novel path construction works

without a formal verifier, and instead of attempting to find a counterexample

it generates paths that reinforce valid solutions and are likely to eliminate

invalid solutions.

Step 4 (Repeat 2,3 until stabilized) We iteratively use Steps 2 and 3 to refine the space

of candidate solutions until only valid ones remain.

The distinguishing feature of our approach is that at no point do we try to

formally prove that a candidate solution is actually a valid synthesis solution. In-

stead, our approach is more like symbolic testing: we try to find a set of paths that

provide sufficient witness that our candidates are indeed valid. More precisely, let

sols be the set of solutions we output after stabilization. Then for each S ∈ sols,

the corresponding candidate program is indeed valid on every path explored, i.e., it

met the specification on each of the explored paths. Analogously, for every S 6∈ sols

that the algorithm discarded during iteration, at least one path was explored that

shows that S violates the specification. Once we have sufficient coverage, there is

only a small chance that the resulting solution is not a true solution to the synthesis

problem—and in our experience, PINS is able to refine the search space down to a

single valid program most of the time (Section 5.4).

We apply PINS to the problem of automatic program inversion [89, 130, 54,

101, 119] (Section 5.5). Specifically, we consider inverting an injective program Prog

by finding another program P−1 that is its left inverse.
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Prog

in(A,n)
assume(n ≥ 0);
i:=0; j:=0;
while (i < n)

r:=0;
while (A[i] = 0)

r++; i++;
if (r = 0)

B[j++]:=A[i++];
else

B[j++]:=−r;
out(B, j)

Input Output
Stream Stream

0
0
0 −3
1 1
1 1
2 2
0 −1
3 4
0 −2
0 1
1

(a) (b)

Figure 5.1: Illustrating PINS using an example. (a) A program that compresses runs
of a special integer “0” in an array with non-negative integers (b) An input array
with its corresponding compressed output.

5.2 Motivating Example and Technical Overview

In this section, we illustrate PINS using an example. Consider the program

Prog shown in Figure 5.1(a). Prog compresses a particular frequently occurring in-

teger designated by 0. This is in fact a simplified version of a full run-length encoder,

which our technique can also invert (Section 5.6). In the outer loop the program

processes the integers of the input array A, of length n, and in each iteration Prog

counts the number of occurrences r of the special integer. If the count is non-zero

then it outputs the count (negated to distinguish it from the other positive integers)

to the output array B. If the count is zero it copies the non-zero integer as-is to

the output array B. Figure 5.1(b) shows an example input array and corresponding

output array.

Now suppose, for the moment, that the user specifies a flowgraph template

fg, shown in Figure 5.2(a), for the inverse. A flowgraph template consists of con-
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fg

in(B, j)
〈i′, j′ := ε1, ε2〉
while (ρ1)

〈r′ := ε3〉
if (ρ2)

〈A′, i′, j′ := ε4, ε5, ε6〉
else

〈r′, j′ := ε7, ε8〉
while (ρ3)

〈A′, r′, i′ := ε9, ε10, ε11〉
out(A′, i′)

Πe
0, r′ − 1,−sel(B, j′),
upd(A′, i′,sel(B, j′)),

i′ + 1, j′ + 1,−1


Πp{

B[j′] > 0, j′ < j,

r′ > 0, i′ > 0

}

P−1

in(B, j)
i′:=0; j′:=0;
while (j′ < j)

r′:=0;
if (B[j′] > 0)

A′[i′++]:=B[j′++];
else

r′:=−B[j′++];
while (r′ > 0)

A′[i′++]:=0; r′--;
out(A′, i′)

(a) (b) (c)

Figure 5.2: Ilustrating PINS using an example: (a) The flowgraph template fg
for synthesis (b) The expression set Πe and predicate set Πp for synthesis (c) The
synthesized inverse, which is fg instantiated with a solution S = {ε1 7→ 0, ε2 7→
0, ρ1 7→ {j′ < j}, ε3 7→ 0 . .}.

trol flow structures, guarded with unknown predicates ρi’s, and parallel assignment

blocks 〈x1, x2 . . := ε1, ε2, . .〉, indicating that the variables x1, x2, . . are assigned the

unknown expression ε1, ε2, . ., respectively. Parallel assignment ensures that we can

ignore the order in which the variables are assigned in a basic block (as described in

Chapter 4). Also suppose, for the moment, that the user specifies a candidate predi-

cate set Πp and expression set Πe (Figure 5.2(b)) that can be used to instantiate the

ρ’s and ε’s, respectively. Such user-provided sets are standard, as in the previous

chapter and in other approaches to synthesis [245] and predicate abstraction-based

verification [128]. We shall see later that for program inversion the sets can almost

entirely be mined from the original program, alleviating the human effort involved

in guessing these sets.

Notice that the above only finitizes the solution space, but efficiency solving

for an inverse is still not easy. Even for this small flowgraph, with 10 holes that
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range over 7 expressions and 3 holes that range over subsets (conjunctions) of 4

predicates, the space of possible inverses has 710 × (3× 24) ≈ 234 solutions if types

are ignored and 69 × (3× 24) ≈ 229 otherwise. Therefore a naive exhaustive search

for a solution will not work, and so we describe a strategy that implicitly categories

solutions and constructs symbolic paths that prune invalid categories of solutions

iteratively.

Solving for the inverse using directed symbolic testing Given the flowgraph fg,

predicate set Πp, and expression set Πe, we now describe a path-based approach

that can synthesize the inverse P−1.

We use symbolic execution to generate safety and termination constraints

through the composition Prog◦fg of the original and the template flowgraph. Sym-

bolic testing allows us to generate the constraints without needing complicated loop

invariants. We reduce these constraints to SAT constraints using techniques that

we described in Chapter 3. We then solve the SAT instance to get candidate in-

verses. For instance, one path, through Prog◦fg is n ≥ 0; i := 0; j := 0; i ≥

n; 〈i′, j′ := ε1, ε2〉;¬ρ1. This path generates the safety constraint:

∃E∀X :

 n0 ≥ 0 ∧ i1 = 0 ∧ j1 = 0 ∧ i1 ≥ n0 ∧

i′2 = ε1
V1 ∧ j′2 = ε2

V1 ∧ ¬ρ1
V2

⇒ id

with id
.= (n0 = i′2) ∧ (∀k : 0 ≤ k < n0 ⇒ A0[k] = A′0[k])

where E and X are the set of unknowns {ε1, ε2, ρ1} and the set of program variables

{n0, i1, j1, i′2, j′2}, respectively. The integer superscripts denote the version numbers

of the program variables. Each assignment to a program variable increments its
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version number. Unknowns are superscripted with version maps from program

variables to their latest version. When an unknown is instantiated, the variables in

the substitution are lifted to the versions specified by the map. For example, for

ε1
V1 the version map is V1 = {n 7→ 0, i 7→ 1, . . .}. So if ε1

V1 is instantiated with the

expression i−n+1, the result is i1−n0 +1 Also, the identity fact id is syntactically

generated from the annotations in(A, n) and out(A′, i′) with the fact that A and A′

are arrays with lengths n and i′, respectively.

Notice that from the first line in the antecedent we get n0 ≥ 0∧ (i1 = 0 ≥ n0),

which implies n0 = 0. Therefore the quantified fact in id is trivially satisfied, but to

prove n0 = i′2 we need εV1
1 to be 0. The only expression from Πe that we can assign

to ε1 to ensure this is 0 (and then εV1
1 will be 0 too).

PINS solves such constraints using the technique described in Section 3.6.2 that

converts the above SMT constraints into SAT constraints over boolean indicator

variables bε7→ε̄ (i.e., Eq. 3.7). That indicator variable being assigned to true in a

solution corresponds to unknown ε having the expression ε̄ ∈ Πe. Thus, the SAT

instance generated from the current path will contain the clause with the sole literal:

(bε1 7→0) (5.1)

i.e., saying “unknown ε1 must map to 0.”

But notice that given our expression and predicate sets, this is not the only

way to satisfy the safety constraint above. We could also make the antecedent

false, which happens under the assignment ε2 7→ −1 and ρ1 7→ {j′ < j}. (Note

that expressions map to single values while predicates map to subsets indicating
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conjunction.) Under these assignments the antecedent contains j1 = 0 ∧ j′2 =

−1 ∧ ¬(j′2 < j1), which simplifies to false and therefore satisfies the constraint

trivially. Thus, the SAT instance PINS solves will actually have the above clause

disjuncted with the following (and others cases that result in false):

(bε2 7→−1 ∧ bρ1 7→j′<j) (5.2)

Clause (5.2) does not constrain ε1 at all. If the solution map from these is used

to instantiate fg, we see that clause (5.2) allows solutions that correspond to in-

valid inverses. On the other hand, ε0 7→ 0 is part of the solution for a true valid

inverse. Therefore the next step is to add paths to constrain the indicators further

to eliminate Eq. 5.2 while leaving Eq. 5.1 as the only possibility.

We could use random path exploration to find new paths, but in practice we

have found that approach fails to converge in a reasonable amount of time. PINS

therefore uses a novel path construction algorithm that, given a solution S, finds a

path that is expected to be relevant to S.

Let [[fg]]S stand for the instantiation of fg with S. Given S, we use symbolic

execution to find a new, feasible path through Prog◦([[fg]]S), meaning one such that

the antecedent of the safety constraint is not false. By forcing the path to be feasible,

we constrain the search space so that any remaining solutions have a reasonable

number of feasible paths over which they satisfy the specification. In contrast,

random path exploration tends to generate paths that are infeasible. (Notice that

we are solving for the inverse program as part of this process, so we cannot a priori

identify the feasibility of a path without fixing a particular S.)
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For example, consider an invalid solution SEq.5.2 = {ε2 7→ −1, ρ1 7→ {j′ <

j}} ∪ S ′ that is allowed by Eq. 5.2, where S ′ assigns any value to the remaining

unknowns, lets say, S ′
.
= {ε1 7→ 0, ε3 7→ 0, ε4 7→ upd(A′, i′, sel(B, j′)), ε5 7→ i′ +

1, ε6 7→ j′ + 1, ρ2 7→ {B[j′] > 0}, ρ3 7→ {r′ > 0}, . .} . Since j ≥ 0 at the end

of the original program, all feasible paths will enter the outer loop of the inverse

at least once for this solution. Specifically, one path is n ≥ 0; i := 0; j := 0; i ≥

n; 〈i′, j′ := ε1, ε2〉; ρ1; r
′ := ε3; ρ2; 〈A′, i′, j′ := ε4, ε5, ε6〉;¬ρ3;¬ρ1. If we substitute

SEq.5.2 into the constraint generated we find that i′ = 1 and n = 0 at the end of the

path, and so the safety assertion requiring their equality is violated. Additionally,

the antecedent of the constraint does not imply false by construction. Therefore,

adding the constraint corresponding to this path eliminates SEq.5.2. Notice that this

path is only feasible with respect to this solution, and in particular, infeasible for any

valid inverse. So in synthesis even infeasible paths (with respect to valid inverses)

help prune the search space, as long as they are chosen carefully.

Iteratively refining the space using directed path generation as above yields a

constraint satisfied by solutions with a reasonable number, typically less than 15-

20, of feasible paths for each. In our example, this iterative process yields the valid

inverse P−1, shown in Figure 5.2(c).

Mining the template of the inverse For the kind of non-trivial inverses we intend to

synthesize, we find that the flowgraph, expression, and predicate sets are difficult for

the user to guess from scratch. On the other hand, the often-mentioned approach of

enumerating all possible predicates and expressions between program variables does
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not scale due to the large solution space in synthesis. Previous approaches (even

our approach in the previous chapter and others [245]) do not provide any concrete

suggestions about where to get the predicates from. Fortunately, we can exploit

the structure of the inversion problem to mine these from the given program Prog.

Our approach is inspired by Dijkstra’s observation that at times, inverses are just

the original program read backwards (the edges are reversed, variables read in Prog

are assigned to in P−1, and expressions in Prog are replaced by their “inverses”

in P−1). We find that not all inverses work this way. Occasionally, the flow of

control in P−1 is in the same direction as in Prog (edges are not reversed, variables

assigned are the same, and expressions have the same form), and at times blocks of

statements need to be omitted. Instead of guessing the entire flowgraph, expression

and predicate sets, we ask the user to just guess these forwards ↓, backwards ↑, or

deletion × tags on the main control flow structures (loops, conditionals, and main

entry point)—typically starting with all ↑ tags. For example, with tags of ↓, ↑, ↑, on

the entry and two nested loops in Figure 5.1(a), we can mine values for fg, Πe, and

Πp. If synthesis fails with the initial values the user makes minor tweaks (guided by

the paths PINS explored for eliminating all solutions). Our mining heuristic yielded

Figure 5.2(a,b)—with the minor user tweaks underlined. Notice that because of the

↑ tag on the outer loop, the order of the enclosed conditional and loop are correctly

reversed.
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5.3 Preliminaries

We now define the language of programs and our formalism for symbolic exe-

cution.

Language of Statements Our algorithm operates over programs with statements

given by the following language:

stmt ::= x := e | assume(p) | stmt; stmt

e ::= ε̄ | ε

p ::= ρ̄ | ρ

The language consists of assignments x := e between a variable x and an expression

e, assume statements assume(p) that take a predicate p, and the sequencing operator

‘;’. Expressions are either known ε̄ or unknown symbols ε. Similarly, predicates are

either known ρ̄ or unknown symbols ρ. Known expressions come from a standard

language ε̄ ::= x | ufs(x) | ε̄ op ε̄ | sel(ε̄, ε̄) | upd(ε̄, ε̄, ε̄) with variables x, arithmetic

operations op, array operators sel and upd, and uninterpreted function symbols ufs.

Known predicates are pairs of known expressions separated by relational operators.

For notational convenience, we may use the skip statement as well, which can be

modeled in the language as assume(true).

We will use Prog and P̂rog to denote the known program and the unknown

template program, respectively, and use fg to denote the unknown flowgraph for

P̂rog. In our formalism this means that Prog and P̂rog are in terms of known

ε̄ and ρ̄ and fg is in terms of unknown ε and ρ. This formalism also allows us to

freely mix statements of either form, in ways used by previous approaches to general
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synthesis [246]. Thus, even though we only apply PINS to inversion and client-server

synthesis for demonstration, the idea of symbolic testing-based synthesis is generally

applicable to automatically completing any partial program.

Programs and their composition Programs in our system consist of statements as

above and control flow edges. We assume that the program is structured and does

not contain arbitrary jumps, i.e., loops are well-formed and can be easily identified

from the control flow graph. Our language contains assume statements and so,

without loss of generality, we treat all branches as non-deterministic.

Aside from the language of statements and control flow structure, we need

three other components to define the synthesis task:

~vin, ~vout : Vector of input and output variables, respectively

◦ : The compose operator: sequential ‘ ; ’ or parallel ‘ || ’

spec : Specification of the composed program, typically identity

The operator ◦ will be used to compose the known and the unknown programs.

Sequential composition (Prog ; P̂rog) indicates that Prog executes first with input

values for ~vin, producing values for ~vout, followed by the execution of P̂rog, which

takes values for ~vout as input and in turn produces values for ~vin. Parallel compo-

sition (Prog || P̂rog) indicates that Prog and P̂rog together take input values for

~vin and execute simultaneously, interacting using messaging primitives to produce

values for ~vout.

Definition 5.1 (Synthesis task) Given an known (terminating) program Prog,

the synthesis task is to find another (terminating) program P̂rog such that the fol-
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lowing Hoare triple is valid:

{true} Prog ◦ P̂rog {spec} (5.3)

Notice that for inversion—with sequential composition and with spec equal to

identity—this definition is analogous to the left inverses of mathematical functions,

i.e., P−1(Prog(x)) = x. For parallel composition, the Hoare triple means that when

simultaneously started with precondition true, both programs terminate in a com-

bined state that satisfies spec.

Versioned variables and expressions We associate an integer version with each

variable. The versions denote the different values taken by the variables at different

points in time. A versioned variable xv denotes the variable x at version v. This

notion is extended to versioned predicates and expressions. A versioned expression

eV is the expression e with each variable x in it replaced with the versioned variable

xV [x] at the version as given by the map V . This is straightforward for known

expressions ε̄, and for unknown expressions ε we delay assigning versions to variables

until the unknown has been replaced with a known. Similarly, we define a versioned

predicate pV for a predicate p and version map V . We will use Vinit to denote an

initial version map with Vinit[x] = 0 for all variables x in the program.

Paths, Path Constraints and (In)feasibility A path in the program is a sequence of

assignments or assume statements seen while following the control flow edges from

the beginning to the end of the program. A path constraint or trace τ correspond-

ing to a path is a conjunction of predicates that are either equality predicates for
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assignment statements, or boolean predicates for assume statements. Paths con-

tain unversioned variables and expressions while path constraints contain versioned

variables and expressions. Assume statements assume(p) on a path give rise to ver-

sioned predicates pV in the corresponding path constraint. Assignment statements

x := e on the path give rise to an equality xv = eV between the next version v of

the variable x and the versioned expression eV in the corresponding path constraint.

We call a path feasible if its path constraint does not imply false and infeasible

otherwise.

Solution Maps A solution map S is an assignment of unknown expressions ε and

predicates ρ to known expressions ε̄ and subset of predicates {ρ̄i}i, respectively. (A

subset of predicates {ρ̄i}i stands for their conjunction ∧iρ̄i.) We define the notion of

an interpretation [[fg]]S of an unknown program fg with respect to a solution map S

as the program with its unknown expressions and predicates instantiated according

to the map. We define a similar notion for unknown expressions [[ε]]S, predicates

[[ρ]]S (versioned or otherwise), and path constraints [[τ ]]S. A solution map need not

assign to all unknowns, in which case the unassigned unknowns remain unchanged.

Symbolic execution Given a program path we generate its path constraint using

the operational semantics of a symbolic executor SymEx shown in Figure 5.3. For

each statement in our language, the symbolic executor takes the path constraint τ

and version map V up to that point and returns the updated path constraint and

version map. The symbolic executor is parameterized by a solution map S and by
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a set of path constraints {τi}. We will later use S to ensure that the path is feasible

for that solution and use {τi} to indicate the set of paths that are to be avoided. For

now, we can assume that the solution map S is empty, and therefore the predicate

interpretation [[pV ]]S evaluates to pV .

We extend the notion of symbolic execution from paths as defined in Fig-

ure 5.3 to programs by considering a function paths that, given a program, lazily

generates paths through it. At non-deterministic branches, it forks and generates

two separate paths for each of the branches. Unlike traditional symbolic execution,

we do not specify a predetermined heuristic for selecting which direction to take at

branches. Instead we let the symbolic executor generate any feasible paths. Later in

Section 5.4.3, we will use particular solutions to guide the symbolic executor through

the unknown program.

Theorem 5.1 (No infeasible paths) The symbolic executor only generates path

constraints for feasible paths.

Proof: To prove that only feasible paths are explored, it suffices to prove that

no path constraint generated through symbolic execution implies false. First,

notice that the assignment rule only adds an equality for a versioned variable that

does not already appear in the path constraint (as we increment its version), and

therefore the trace remains feasible if it was before the application of the rule.

Second, the premise for assume ensures that the addition of the predicate will

not make the path constraint infeasible, and therefore applications of this rule

also cannot result in an infeasible path constraint. Notice that the absence of
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τ ∧ [[pV ]]S 6⇒ false τ ′ = τ ∧ pV τ ′ 6∈ {τi}

SymExS
{τi}(τ, V, assume(p)) = τ ′, V

v = V [x] + 1 τ ′ = τ ∧ (xv = eV ) τ ′ 6∈ {τi}

SymExS
{τi}(τ, V, x := e) = τ ′, V [x 7→ v]

SymExS
{τi}(τ, V, st1) = τ1, V1

SymExS
{τi}(τ, V, st1; st2) = SymExS

{τi}(τ1, V1, st2)

Figure 5.3: The formalism for the symbolic executor.

a rule for when it does imply false ensures that these rules will be stuck for

those paths. Lastly, by simple induction, the rule for sequence ensures that if

each subsequence of a path is feasible then its combination is feasible. It is easy

to verify that the parameters S and {τi} do not invalidate the soundness of the

symbolic execution.

�

5.4 PINS: Synthesizing programs using symbolic

testing

In this section, we describe the steps: safety and termination constraint gen-

eration (Section 5.4.1), SMT reduction (Section 5.4.2), and path generation (Sec-
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tion 5.4.3) that make up our PINS algorithm (Section 5.4.4).

5.4.1 Safety and Termination Constraints

We now describe how we approximate safety and termination constraints using

symbolic path constraints over Prog◦fg.

Safety constraints using path constraints First, let us consider the task of verifying

whether a known P̂rog, i.e., an instantiation of P̂rog with values for its unknowns,

satisfies Eq. (5.3), given Prog and spec. One way to approach this problem is to look

for approximate guarantees, as in concrete or symbolic execution-based testing, and

to ensure that the specification is met on some carefully chosen set of paths through

the program. As the set of paths explored becomes larger, the guarantee becomes

stronger. To check safety, we can generate path constraints τ over the composed

program Prog ◦ P̂rog using the empty solution map S = ∅, path constraint set

{τi} = ∅, and initial version map Vinit:

SymExS
∅ (true, Vinit, t) = τ, V where t ∈ paths(Prog ◦ P̂rog) (5.4)

For each path constraint τ (and version map V ) generated above we can check if

the safety constraint for the specification holds:

∀X : τ ⇒ specV (5.5)

whereX is the set of all program variables in τ and spec, and we lift the specification

to the version map at the end of the path because it specifies a relation at the end.

238



Notice that in the presence of loops this process will very rarely be complete,

as even a single loop can potentially yield an infinite number of unique finite paths.

Still, the larger the number of paths checked the better the assurance will be.

The following simple lemma states that symbolic execution is sound and com-

plete with respect to concrete executions:

Lemma 5.1 (Soundness, Completeness of SymEx) There exists an input, i.e.,

concrete values for ~vin, for which execution of Prog ◦ P̂rog ends in a state that

does not satisfy spec, if and only if SymEx generates a path constraint that does not

satisfy Eq. 5.5. On the other hand, for all inputs the execution of Prog ◦ P̂rog ends

in a state that satisfies spec, if and only if every path constraint generated by SymEx

satisfies Eq. 5.5.

Next, let us consider the task of synthesizing values for the unknowns in P̂rog—

or more briefly synthesizing P̂rog—such that it satisfies Eq. (5.3), given Prog and

spec. We assume that we have a flowgraph template fg for P̂rog that consists of

assignments of the form x := ε (the assigned expression is unknown), and assumes of

the form assume(ρ) (the assumed predicate is also unknown). The path constraint

τ generated for some path t ∈ paths(Prog◦fg) will now have unknown expressions

and predicates (lifted to the appropriate versions), and the safety constraint is as

before:

safepath((τ, V ), spec)
.
= ∀X : τ ⇒ specV

However, safepath is implicitly quantified with ∃E,K where E is the set of all
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unknown expression symbols ε, and K is the set of all unknown predicate symbols

ρ. that appear in τ and spec.

Notice that with this existential over unknowns and universal over program

variables, the constraint has exactly the form that a verification condition used for

invariant inference has. Typical invariant inference tools, such as those described

in Chapters 2 and 3, solve for I from verification conditions of the form ∃I∀X : vc,

where I is an unknown invariant. We can therefore borrow techniques (suitably

modified to take care of variables version numbers) that are devised for invariant

inference and apply them to expression and predicate inference, as we will show in

Section 5.4.2. The greater the number of paths for which the above constraint is

asserted, the greater the safety ensured.

We can then define the safety constraint for the entire program as:

safety(Prog ◦ P̂rog)
.
=

∧
t∈paths(Prog ◦ P̂rog)

safepath(t)

where again the constraint is implicitly quantified with ∃E,K. Greater assurance

can be had by considering more and more conjuncts, each corresponding to a dif-

ferent path t in the program.

Termination constraints using path constraints We now add constraints that ensure

termination of the synthesized program. Since loops can be easily identified in the

structured programs we consider, we prove each loop terminates by discovering its

ranking function, and the entire program terminates if all loops terminate. Our

approach for discovering ranking functions is based on assumptions that have been

shown reasonable in practice [69, 67, 24]. First, we assume that the loop guard
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implies an (upper or lower) bound on the ranking function. For example, if x < y is

the loop guard then y−x−1 is a candidate ranking function (bounded from below by

0 and implied by the loop guard, i.e., x < y ⇒ y−x−1 ≥ 0). Second, we assume that

the ranking function, if lower bounded, does not increase in any of the inner loops,

and if upper bounded, does not decrease in any of the inner loops. Then we can just

check the statements immediately in the body of the loop without worrying about

the inner loops modifying its termination argument. The inner loops are proved

terminating using their own ranking functions. Consider a loop l = while(ρl){Bl}

with loop guard ρl and body Bl. We assume that the ranking function for a loop

l is an unknown expression ηl on which we impose constraints for boundedness and

strictly decreasing, and whose proof may require dynamic invariants—in the spirit

of trace-based invariant generation tools [102, 103].

Boundedness Under our assumption about the relation of the (unknown) loop

guard ρl to the ranking function ηl, we impose the following constraints:

bounded(l)
.
= ∀X : ρl ⇒ ηl ≥ 0

Note that here the loop guard and ranking function are not versioned and the

constraint is implicitly quantified with ∃ρl, ηl.

Strictly decreasing We assume that the inner loops do not affect the termina-

tion argument for their enclosing loops2. In this case, we can use the path constraints

for all paths through Bl—always taking the exit branch for inner loops—to ensure
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that the ranking function strictly decreases:

decrease(l)
.
=

∧
τ,V ∈exec

∀X : τ ⇒ ηl
V < ηl

0

where exec is the set of path constraints for all paths through Bl. Notice that we can

enumerate all paths through Bl because it is necessarily acyclic after we discount

the inner loops.

Dynamic Invariants There are cases in which just the path constraint through

the body of the loop may not be sufficient to prove that the ranking function de-

creases in a loop iteration. In these cases, we observe that two additional facts are

known when traversing the body of the loop. First, the (unknown) loop guard holds

at the entry to the loop, i.e., ρ0
l can be assumed in the proof. Second, there exists

an (unknown) invariant φl that can be assumed in the proof, which holds on every

path through the loop and holds at the end of every path that leads up to the loop.

Incorporating the loop invariant and loop guard into the constraint we get:

decrease− inv(l)
.
=

∧
τ ′,V ′∈init ∀X ′ : τ ′ ⇒ φV ′

l ∧∧
τ,V ∈exec ∀X : τ ∧ φ0

l ⇒ φV
l ∧∧

τ,V ∈exec ∀X : τ ∧ ρ0
l ∧ φ0

l ⇒ ηl
V < ηl

0

where exec are path constraints for paths through the body of the loop as before,

while init are path constraints for paths leading up to the loop entry. Notice that

2If the assumptions do not hold in some case, then because of the particular strategy we use

for exploring addition paths (Section 5.4.3), the path exploration will go into an infinite loop,

indicating this scenario to the user. In our benchmarks we never encountered this case.
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we cannot enumerate all of init, so we pick the ones for paths that were explored

for the safety constraint.

The termination constraints for the entire unknown program is:

terminate(P−1)
.
=

∧
l∈loops(P−1)

decrease(l) ∧ bounded(l)

where again the constraint is implicitly quantified with ∃E,K, but in addition also

with existentials over ranking functions and invariants, i.e., ∃ηlφl. The function

loops(P̂rog) returns all such syntactically identified loops in P̂rog, which is pos-

sible because the program is structured. Notice that again the constraint has the

alternating quantification as found in invariant generation constraints.

5.4.2 Satisfiability-based Reduction

We now describe how the safety and termination constraints we generate can

be efficiently solved using the techniques developed in Chapter 3. We have noted that

the constraints are ∃∀ quantified exactly like the constraints for invariant generation.

Tools for verification solve constraints with “there exist” invariant unknown. We

use these tools for invariant inference to solve for the “there exists” expressions,

predicates and ranking functions. This is similar to our approach in Chapter 4,

but different in that now the constraints do not mention invariants at all. Yet, the

tools from Chapters 2 and 3 work well for inferring the expressions, predicates and

ranking functions that we require. As described in previous chapters, this solving

strategy consists of reducing termination and safety constraints to SAT instances

that we can solve using off-the-shelf solvers.
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We summarize the functionality of the satisfiability-based invariant generation

tool, VS3
PA, we employ. VS3

PA takes as input a set of (∃∀-quantified) constraints cnstr

and a predicate set Πp and an expression set Πe. The key idea in the reduction is to

associate with each unknown predicate ρ and ρ̄ pair a boolean indicator bρ 7→ρ̄ that if

assigned true indicates that ρ contains the predicate ρ̄ and if assigned false that

it does not. Similar indicators are associated with unknown and known expression

pairs. Then the tool makes SMT queries (which for us also need to reason about

version numbers) over cnstr to generate boolean constraints over the indicators.

From the queries it generates a SAT instance, which is then solved using standard

SAT solvers. The tool infers subsets, and therefore for each unknown expression ε

we assert a constraint to ensure that it maps to singleton sets.

The solution strategy consists of reducing the problem to a SAT instance, and

so we can ask it to enumerate solutions to the SAT instance. We use the wrapper

satReduceAndSolve(cnstr,Πp,Πe,m)

to denote these calls to VS3
PA. The parameter m indicates that the wrapper enumer-

ates m solutions (or less if less than m exist), each satisfying cnstr. Each of these

m solutions provides an assignment of unknowns in cnstr to single expressions from

Πe (for unknown expressions) or subsets from Πp (for unknown predicates).

5.4.3 Directed path exploration using solution maps

We now describe a technique for exploring paths relevant to a particular so-

lution map and directed towards refining the space of solutions for P̂rog. We first
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introduce the notion of spurious and valid solution maps:

Definition 5.2 (Spurious and valid solution maps) We call a solution map S

spurious if there exists a path t ∈ paths(Prog ◦ fg) whose path constraint τ and

version map V are such that [[τ ]]S 6⇒ specV . If no such path constraint exists then

we call the solution valid.

In conjunction with Lemma 5.1, this definition implies that for spurious solution

maps S there exist concrete input values for which the execution of Prog◦[[P̂rog]]S

violates the specification while for valid candidates no such inputs exist.

Note that computing whether a solution S is spurious or valid is in general

intractable3 using symbolic execution, as that may require exploring an infinite

number of paths. In the absence of this knowledge suppose we still wanted to

explore a new path t (in Prog◦P̂rog) that would be “relevant” to S, i.e. if S were

valid then the constraints generated for t should not exclude S from the space, while

if S were spurious then the constraints generated for t should be likely to eliminate

S from the space. To describe such relevant paths we need the notion of infeasibility

of paths with respect to S:

Definition 5.3 ((In)feasibility with respect to a solution map) A path is fea-

sible with respect to a solution map S if [[τ ]]S 6⇒ false, where τ is the path constraint

corresponding to the path. A path is infeasible with respect to the S otherwise.

3Note that here we differ from previous techniques that use formal verifiers [245], as they assume

that a verifier exists that classifies solution maps as spurious or valid. They use the counterexample

to spurious solution maps to refine the space, or the proof for the valid solutions to terminate. On

the other hand, we do not have that luxury.
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Now note that a path t′ that is infeasible with respect to S will not be rele-

vant to S. If t′ is infeasible with respect to S then [[τ ]]S ⇒ false and the safety

constraint corresponding to t′ (of the form ∀X : τ ⇒ specV ) is trivially satisfied by

S because its antecedent evaluates to false. Therefore adding the safety constraint

corresponding to t′ will never eliminate S (and the class of solutions it represents)

from the solution space.

Therefore, our objective is to add new paths such that each solution map

satisfies as many path constraints non-trivially as possible. A plausible but im-

practical approach to generating feasible paths is to randomly add paths from

paths(Prog ◦ fg). Consider a program and inverse with a nested loop each. Even if

we were to consider only 3 unrollings, then for each unrolling of the outer loop the

inner loop can be unrolled 0 . . 3 times, resulting in 40 + 41 + 42 + 43 = 85 possible

paths in each of Prog and fg and consequently 7225 paths through both. We have

found that attempts to refine the space using random exploration does not terminate

even for the simplest programs.

Instead our directed path exploration, parametrized by S, constructs paths

feasible with respect to S. By precluding infeasibility, we force the candidate to

satisfy the constraint generated from this new path non-trivially. Consequently, if

S is spurious, it is likely that it will fail to satisfy the safety constraint for the new

path. If on the other hand, the solution is valid then it will satisfy the new safety

and termination constraints by definition (and do so non-trivially). Fortunately, we

have the machinery already in place to do this. Instead of running the symbolic

executor with an empty solution map, as in Section 5.4.1, we instead run it with the
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solution map S. This changes the behavior of symbolic execution on assumes with

unknown predicates ρ if ρ ∈ dom(S). In the rule for assume in Figure 5.3, instead

of checking τ ∧ ρV 6⇒ false the executor will now check τ ∧ ρ̄V 6⇒ false, where

ρ̄ = S[ρ]. Notice that it is important that we assert termination constraints before

attempting to run symbolic execution using S. If termination is not asserted and

S corresponds to an infinite loop, then the parametrized symbolic execution will

never reach the end of the program. The following theorem holds for parametrized

symbolic execution:

Theorem 5.2 For any path constraint τ that is the output of symbolic execution

with solution map S, the path corresponding to τ is feasible with respect to S.

Our path generation strategy, for the case of valid and spurious solutions,

affects the solutions space as follows:

Paths feasible with respect to valid solutions Let S be a valid solution map and

let t be a path that satisfies Theorem 5.2 with with respect to S. Then the con-

straints from t will not eliminate S because S, being valid, by definition satisfies the

specification on all paths. On the other hand, the constraints may eliminate other

spurious solutions.

Paths feasible with respect to spurious solutions A path that satisfies Theorem 5.2,

is only guaranteed to be feasible with respect to S, which may be spurious. It is

important to assert the corresponding constraint because it is likely to eliminate

the spurious S (and other solutions that are similar to it) despite the fact that
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Input: Original program Prog,
Specification spec,
Number of solutions from SAT solver m.

Output: Inverted Program P−1 or “No Solution”.
begin

fg := fg(Prog); preds := preds(Prog); exprs := exprs(Prog);
prog := Prog ◦ fg;
pc := SymEx∅∅(true, Vinit, t); with t ∈ paths(prog);
pcset := {pc};
cnstr := terminate(fg);
while (∗) do

cnstr := cnstr ∧ safepath(pc, spec);
sols := satReduceAndSolve(cnstr, preds, exprs,m);
if sols = ∅ then

return “No Solution”; /* Refine abstraction */

if stabilized(sols) then
return [[fg]]sols[0];

S := pickOne(sols);
pc := SymExS

pcset(true, Vinit, t); with t∈paths(prog);
pcset := pcset ∪ {pc};

end

Figure 5.4: The PINS semi-algorithm.

the path may be infeasible for every other valid solution S ′. This is in contrast

to a traditional symbolic executor where infeasible paths only add overhead. With

unknown expressions and predicates, paths that are feasible with respect to spurious

solutions (but may be infeasible with respect to valid solutions) yield constraints

that are likely to eliminate the spurious solutions and are therefore useful.

5.4.4 PINS: Path-based Inductive Synthesis

Figure 5.4 shows our iterative path-based synthesis algorithm. We mine from

the original input program Prog a flowgraph template fg(Prog) and predicate and

expression sets preds(Prog) and exprs(Prog) (Section 5.5.1). We compose the flow-

graph template with Prog to get the program prog over which we run the symbolic
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executor. The symbolic executor explores some path t and generates the correspond-

ing path constraint pc, which we log in the set of explored paths pcset. We maintain

a constraint cnstr that we initialize to the termination constraint and then in each

iteration add an additional safety constraint from safepath. In each iteration we

query the SAT solver for solutions to the current constraint cnstr under the predi-

cate and expression sets mined earlier and ask for m solution maps. We pick one of

those solutions using pickOne, which returns the solution with the fewest feasible

paths with respect to it.

pickOne ensures that we preferentially add paths for solutions that currently

have fewer feasible paths. This process prunes the space by ensuring that only those

solutions remain that satisfy the specification over many paths. Typically, we have

found that the algorithm converges to the valid solutions in a few iterations.

The algorithm terminates when stabilized holds. The choice of this function

depends on the guarantees required from PINS, and we omit a precise definition here

to permit flexibility. In our implementation, we terminate when only one solution

remains. Alternatively, we can imagine terminating whenever the set of candidates

has fewer than m elements and then use other, more lightweight mechanisms (e.g.,

concrete testing) to eliminate any remaining spurious solutions.

Notice that the constraints generated are implicitly existentially quantified

at the outermost level as ∃E,K, {ηl}l. The constraint solving technique assigns

appropriate known values to these from the given expression and predicate sets

(with the candidates for ranking functions constructed from the predicates).
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Runs of PINS We now describe the result of running PINS when the inverse exists

and when it does not exist under the given fg, Πp, and Πe. When the inverse does

not exist then PINS eventually finds paths whose constraints are unsatisfiable, and

therefore the solution set is empty. At that point, the user is asked to modify the

input. If, on the other hand an inverse exists, then PINS finds paths such that

the solution space only contains valid inverses. In such cases it degenerates to a

symbolic execution-based verifier, continuously attempting to find paths to narrow

the search space further, but failing to eliminate any of the valid solutions, until

terminated by the stabilized function.

Notice that the algorithm ensures (using pcset) that no paths are revisited.

On the other hand additional paths are only added if they are feasible with respect

to a given solution S. Consider the case where no paths exist that are feasible with

respect to S but whose path constraint is not already in pcset. In this particular

case, we have exhaustively validated that S satisfies the specification on all paths

through the program.

5.5 PINS in practice

In this section we describe our approach to mining the template (Section 5.5.1)

and our support for axioms (Sections 5.5.2) and recursion (Section 5.5.3) We then

describe how we instantiate PINS for sequential and parallel composition to handle

inversion (Section 5.5.4) and client-server synthesis (Section 5.5.5), respectively.
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5.5.1 Mining the flowgraph, predicates and expressions

In this section, we describe how to mine the flowgraph template, expression

and predicate sets used in the PINS algorithm (Figure 5.4). It is most convenient to

consider Prog written in a language that makes the structured control flow explicit:

K ::= x := ε̄ | aF | K;K

F ::= if(ρ̄) K else K | while(ρ̄) K | main K

a ::= ↓ | ↑ | ×

The language consists of sequences of known statements K and structured control

flow elements F that the user annotates with tags a. The annotation is either

a forward ↓, a backwards ↑, or a deletion × tag. Tags indicate the direction of

statements in the inverse P−1 with respect to the original program.

Note that, ignoring the tags a, a program in the language K can be translated

to the language stmt in a standard manner. To translate if(ρ̄) K1 K2, we output

a non-deterministic branch with assume(ρ̄) followed by the translation for K1 and

assume(¬ρ̄) followed by the translation for K2. To translate while(ρ̄) K1, we output

a non-deterministic branch with assume(ρ̄) followed by the translation for K1 and

going back to the loop on one branch, and assume(¬ρ̄) on the other. The only

non-standard construct is main, which we use to indicate the entry point of the

program. The presence of main allows us to associate a tag with the outermost set

of statements.

By allowing the user to specify the ↓, ↑, or × tag, we provide the user with

the flexibility to influence the template mining, while by limiting it to one tag at
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the head of each control flow structure, we minimize the annotation burden.

Given a tagged program Prog in the language K, we define functions fg,

pred, and expr that mine using structural induction the flowgraph, predicate set,

and expression set for the inverse P−1. The key idea behind fg is to translate an

assignment x := ε̄ to either x := ε0 (if the tag is ↓) or to 〈v1, v2 . . := ε1, ε2 . .〉 (if

the tag ↑), where v1, v2 . . ∈ vars(ε̄) and εi are fresh unknown expression symbols.

pred recursively extracts predicate guards from the original program and also gen-

erates predicates from some commonly occurring patterns in program-inverse pairs.

expr also recursively extracts expressions from the original program, but applies a

heuristic expression inverter, converting − to + etc., when the tag is ↑ and returns

the expressions as is when the tag is ↓.

The functions fg, pred, and expr are just the corresponding ones shown in

Figure 5.5 with a postprocessing step that renames variables so that the variables

of Prog do not interfere with the variables of P−1. The renaming is assumed to be

consistent, e.g., v is always renamed to to v′. This is required because our technique

for synthesis composes the two programs together, and we do not want extraneous

values at the end of the first program to flow into the second program. Renaming

ensures that this does not happen.

5.5.2 Axiomatization for handling Abstract Data Types

A major concern for modular synthesis is proper handling of abstract data

types (ADTs). A key feature of our symbolic executor, and consequently of PINS,
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fga(x := ε̄) =

{
{x := ε} a =↓
〈v1, v2 . .〉 := 〈ε1, ε2, . .〉∀vi ∈ vars(ε̄) a =↑

fga(K1;K2) =

{
fga(K1); fga(K2) a =↓
fga(K2); fga(K1) a =↑

fg(aif(ρ̄) K1 else K2) =

{
if(ρ) fga(K1) else fga(K2) a 6= ×
skip otherwise

fg(awhile(ρ̄) K1) =


while(ρ) fga(K1) a 6= ×
fga′(K1) otherwise (a′: annotation

on the enclosing block)
fg(amain K1) = main fga(K1) a 6= ×

preds(x := ε̄) = ∅
preds(K1;K2) = preds(K1) ∪ preds(K2)

preds(aif(ρ̄) K1 else K2) =


{ρ̄} ∪ preds(K1) a 6= ×

∪ preds(K2)
∅ otherwise

preds(awhile(ρ̄) K1) =

{
{ρ̄} ∪ preds(K1) a 6= ×
∅ otherwise

preds(amain K1) =

{
preds(K1) a 6= ×
∅ otherwise

expr↓(x := ε̄) = {ε̄}
expr↑(x := ε̄) = {invop(ε̄)}
expra(K1;K2) = expra(K1) ∪ expra(K2) a 6= ×

expr(aif(ρ̄) K1 else K2) =

{
expra(K1) ∪ expra(K2) a 6= ×
∅ otherwise

expr(awhile(ρ̄) K1) =

{
expra(K1) a 6= ×
∅ otherwise

expr(amain K1) =

{
expra(K1) a 6= ×
∅ otherwise

invop(x) = x
invop(f) = g where (f, g), (g, f) ∈ {(+,−), (∗, /)}

invop(f · g) = invop(g) · invop(f)
invop(upd(A, i, fn(sel(B, j)))) = upd(B, j, invop(fn)(sel(A, i)))

Figure 5.5: Automatically mining flowgraphs, predicate and expression sets.
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~Vr = ~V [i+ 1 7→ Vinit(i+ 1)]

τentry = ( ~vin
(i+1,0) = ~vargs

~V [i]) SymExS
{τi}(τ ∧ τentry, ~Vr, i+ 1, Prog) = τ ′, ~V ′

~V ′′ = ~V [i][v 7→ ~V [i][v] + 1] ∀v ∈ ~vret τexit = ( ~vret
~V ′′[i] = ~vout

~V ′[i+1])

SymExS
{τi}(τ,

~V , i, ~vret := rec( ~vargs)) = τ ′ ∧ τexit, ~V ′′

Figure 5.6: Handling recursion in PINS. Vinit(k) indicates the initial version map
for stack depth k and is maps all variables in Prog to the version number (k, 0).
Also, we use the notation (k, j) + 1 to denote (k, j + 1).

is its extensibility by means of axioms that is borrows from the use of VS3
AX (which

builds on top of VS3
PA) from Chapter 4. For an ADT, we assert quantified axioms

about its interface functions in the SMT solver. For instance, consider the String

ADT. Suppose a program uses its interface functions append, strlen, and empty.

Then, among others, we assert the following in the SMT solver:

strlen(empty()) = 0

∀x, y: strlen(append(x, y)) = strlen(x) + strlen(y)

∀x, c: strlen(append(x,‘c’)) = strlen(x) + 1

We employ this facility to reason about operations that are difficult for SMT solvers.

For instance, we assert an axiom ∀x 6= 0 : x × (1/x) = 1 because reasoning about

multiplication and division in general is hard for SMT solvers. Additionally, we will

use this in the next section to enforce that for communicating programs composed

in parallel, each message send is matched with a corresponding receive.
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5.5.3 Recursion

To handle recursive calls, we augment our language with the statement ~vret :=

rec( ~vargs)
4. Additionally, the symbolic executor now maintains a stack of version

maps ~V and a current stack depth i. The top of the stack ~V [i] contains the version

map for the current stack depth. Also, variables now have versions that are tuples

(d, i), where d denotes the stack depth and i denotes the version number at that

depth.

We add a symbolic execution rule, shown in Figure 5.6, to interpret the re-

cursive call. The rule, for a recursive call at depth i, pushes on the stack an initial

version map Vinit(i + 1). The initial version map Vinit(i + 1) is a map that as-

signes all variables to default initial version 0 at stack depth i + 1. It then runs

the symbolic executor over the program Prog corresponding to the recursion, with

an initial trace τ ∧ τentry, the new stack of version maps, and the stack depth, to

yield the output path constraint τ ′. (We ignore the stack of version maps ~V ′ that

results after the recursion bottoms out because the local variables go out of scope

then.) τentry and τexit take care of the passing the function arguments and return

values by asserting appropriate equalities between variables (arguments and formal

parameters; return values and assigned variables) at different stack depths. Lastly,

because they are assigned to, the versions of variables getting the return values (at

depth i) are incremented.

An almost identical rule suffices for handling arbitrary procedure calls. While

4This construct does not allow mutually recursive functions, but it can trivially be extended.
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straight-forward, we have not yet experimented with arbitrary interprocedural syn-

thesis.

5.5.4 Sequential composition: Synthesizing Inverses

In our modeling of sequential composition, we instantiate the compose operator

“◦” as the sequencing operator “ ; ”. We may need to be careful about ensuring

that there is only one exit point to the first program.

For program inversion, we consider concatenating the original program fol-

lowed by the template unknown inverse. This leads to a definition of inversion that

is mathematically similar to that of a left inverse of a function. If we concatenate the

template unknown inverse followed by the inverse, we will generate right inverses.

In fact, for efficiency, for the case that both the left and right inverse exist and

are the same for a particular program—which is the case for paired computation,

such as compression, formatting etc.—we can even generate paths over both types

of concatenation. For the experiments in this chapter, though, we generate inverses

that technically are left inverses.

5.5.5 Parallel composition: Synthesizing Network Programs

In our modeling of parallel composition, we instantiate the compose operator

“◦” as the operator “ || ”. For us, programs composed in parallel run simultaneously

while only interacting through message passing. We augment our symbolic executor

in two ways to handle parallel composition. First, under the assumption that the
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composed programs do not share common variables, we define paths(Prog1 || Prog2)

as {t1; t2 | t1 ∈ paths(Prog1), t2 ∈ paths(t2)}. Notice that in contrast to the

traditional approach of interleaving the executions of programs, we concatenate

the path constraints, and we leave it up to the axiomatization of message passing

primitives to generate appropriate equalities that connect the two path constraints.

This is sound because we assume that the programs do not share variables. Second,

we add the premise τ ∧ (xv = eV ) 6⇒ false to the rule for handling assignments. In

the case of parallel composition, in addition to assumptions leading to infeasibility,

assignments may do so too when messages are received that result in additional

facts being generated.

Logical clocks for ensuring in-order communication Our approach to modeling

communication under parallel composition is inspired by the notion of logical clocks

by Lamport [180]. Lamport’s clocks ensure that for two distributed processes A and

B with two event a and b such that a “happens-before”, notated as a→ b, it is the

case that CA(a) < CB(b). If this consistency constraint is maintained then a total

ordering can be imposed on the events of the system.

We ensure such distributed consistency by maintaining logical clocks at each

node and updating them, as in Lamport’s proposal. For each communicating entity,

we associate a clock variable clk. This logical clock is incremented every time the

entity sends or receives a message. The increment is encoded as part of the axiom

that matches up a send with a receive, and which may cause a buffer equality to

be generated, as we show later. (The variable clk is a proof term, and no program
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statement exists that can manually update the clock.) At the end of each path, in

addition to asserting the specification, we now additionally assert that the logical

clocks of all entities are equal—ensuring that only in-order communication is allowed

and that each send has a corresponding receive and vice versa.

Axioms for buffer equality on message sends and receives We assert buffer equality

axioms that generate an equality between the message buffer sent and the buffer

received. This allows the system to synthesize statements that call the send and

receive functions without worrying about their communicating semantics, as this

reasoning gets integrated into the SMT solver through the axioms.

Example 5.1 Consider programs that use uninterpreted functions send and recv

for communication. An axiom that relates send and recv could be the following

(essentially providing an abstract semantics for the communication):

∀

x, y, y′

clk1, clk
′
1,

clk2, clk
′
2

:


clk1 = clk2∧

(y′, clk′1) = send(x, clk1)∧

(y, clk′2) = recv(clk2)

⇒


clk′1 = clk1 + 1∧

clk′2 = clk2 + 1∧

x = y


Consider a known client program

in(v); (v, clkc) := send(v, clkc); (v
′, clkc) := recv(clkc);

with postcondition v′ = v+1. Suppose we wish to synthesize the corresponding (echo-

increment) server with the template (n, clks) := ε1; (n
′, clks) := ε2. (We generate

such templates by augmenting each assignment in the original mined template n :=

ε′1;n
′ := ε′2 to simultaneously update the clock variable as well.)
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The logical clock preconditions clks = clkc = 0 and postcondition clks = clkc

are asserted automatically by the system at the start and end of each path, respec-

tively. Then, given the above buffer equality axiom, the only solution that satis-

fies the clock postcondition and v′ = v + 1 for the composed program is {ε1 7→

recv(clks), ε2 7→ send(n+ 1, clks)}.

Notice how the use of logical clocks and axioms for buffer equality allows us to

seamlessly deal with the problem of synthesis. Logical clocks ensure that no out-of-

order communication is possible (soundness) and ensuring buffer equality on message

transfers allows us to reason across the communicating entities (completeness). By

encoding communication this way we can synthesize communicating programs using

our algorithm from before.

5.6 Experiments

We implemented a symbolic executor based directly on rules in Figure 5.3

and 5.6, and used it to implement the PINS algorithm (Figure 5.4).

Number of solutions (m) and prioritizing them (pickOne) PINS (Figure 5.4) is

parametrized by the number of solutions m and pickOne. We use the SAT solver

to enumerate m solutions in each step. The objective is to get a fair sampling of

solutions on which we apply our prioritization heuristic, while at the same time

not spending too much time in the solver. The extremes m = 1 and m = ∞ are

therefore undesirable: m = 1 does not allow us to compare solutions, while m = ∞
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wastes too much time in the SAT solver. In our experiments we chose m = 10,

which worked well.

Second, we prioritize the m solutions according to a heuristic pickOne. Our

approach is again based on the observation that spurious solutions typically satisfy

the safety and termination constraints by ensuring (through suitable assignments of

the unknowns) that a large fractions of the paths are infeasible. Our implemented

pickOne first counts the number of infeasible paths for each solution map S:

infeasible(S) = |{τ | τ, V ∈ pcset ∧ [[τ ]]S ⇒ false}|

and then picks a solution map S with a high infeasible(S) value. We experimen-

tally validated this heuristic for pickOne against another that randomly picks any

solution from the m available. In our experiments random selection yields runtimes

that are 20% more than with infeasible, and therefore we use infeasible. We

did observe that random selection is better in the initial few iterations but then

takes longer to identify the paths that eliminate the last few solutions, as expected,

and therefore takes more time overall. This suggests that the ideal strategy would

be a hybrid that starts with random selection and then switches to the infeasible

metric when the number of solutions is small.

The process of synthesis using PINS The user annotates the conditionals, loops,

and main entry point, with the tags appropriately as described in Section 5.5.1.

From the annotated program, we extract the flowgraph, predicate, and expression

sets, using the functions shown in Figure 5.5. Currently, we run the extraction

functions by hand, but they are trivial to automate. When the synthesis attempt

260



fails for the initial mined values, we modify them suitably using the paths that

PINS explores. We will report the number of such changes that we had to do

for our experiments later. Our path-based approach is very helpful in identifying

the cause of imprecision/inaccuracy in the predicates, expressions, and flowgraph

template. On the one hand, if a valid inverse does not exist in our template, then

PINS generates paths that eliminate all solutions. In this case, we examine the paths

and change either the predicates, expressions, or flowgraph. This is very similar to

abstraction refinement in CEGAR [148], and therefore we expect the process can be

made completely automatic. On the other hand, if a valid inverse does exist in our

template, then PINS eliminates all but the valid ones. At that point, we manually

inspect each synthesized inverse to confirm that it indeed is valid.

5.6.1 Benchmarks

We synthesized programs in two categories: program inversion, illustrating

our technique for sequential composition, and client-server synthesis, illustrating

our technique for parallel composition.

5.6.1.1 Program Inversion: Sequential Composition

To demonstrate the feasibility of synthesizing programs that are sequentially

composed, we consider three different synthesis tasks: decoders for compression pro-

grams, finding the inverses for format conversion programs, and finding the inverses

for arithmetic programs.
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For all the benchmarks in these domains the specification spec is identity, i.e.,

for all variables v with primitive types we assert v = v′, and for all variables A with

aggregate types (e.g., arrays, strings) with bounds n we assert n = n′ ∧ ∀0 ≤ i <

n⇒ A[i] = A′[i], where the primed variables are those at the end of the execution.

Compressors Our first compression benchmark is run length encoding, which scans

the input for sequences of consecutive characters and outputs characters and their

counts (a more complex variant of Figure 5.1(a)). The decoder, which we synthesize,

expands each (character, count) pair into the original sequence. Though simple, this

example illustrates the need to provide the flexibility of annotating control structures

with directions. Of the three structures in the program (the entry point and two

loops that are nested), the outer loop is annotated as ↓ to allow processing the

stream in the direction it was encoded.

Our second compression benchmark is the LZ77 encoding algorithm [272],

which is the basis of the popular Deflate algorithm used in gzip, zip, and PNG

images. LZ77 compresses data by outputting pointers to identical sequences seen in

the past. Therefore, an entry in the output may indicate “copy 5 characters starting

from 9 characters behind this point,” or more interestingly “copy 7 characters start-

ing from 1 character behind this point.” The algorithm takes care of bootstrapping

the process by outputting the next unmatched character along with each (pointer,

count) pair. The decoder, which we synthesize, reconstructs the original stream

from the (pointer, count) pairs and the characters in the encoded stream. Again,

we annotated the outer loop with a ↓ tag, and one of the two inner loops with a ×
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tag. This was easy to guess since the loop searches for the best match in the input

stream, which the decoder would not need to do.

Our last compression benchmark in this category is the Lempel-Ziv-Welch

(LZW) encoding [265], which is the basis of GIF compression. The algorithm builds

an online dictionary using the input data and outputs dictionary indices. The boot-

strapping process implicit in the encoder leads to a corner case when the encoder

adds a dictionary entry and then immediately outputs its index [265]. The decoder

builds an dictionary identical to what the encoder constructed earlier to reconstruct

the original stream. The decoder is tricky because the corner case that requires it to

construct the next dictionary entry and the output string simultaneously. Our tech-

nique automatically synthesizes the decoder with this corner case after we annotate

some of the inner control structures with ×. As in LZ77, the inner loop searches for

the longest dictionary sequence, which the decoder need not do, so guessing the ×

was easy.

Formatters Our first formatter benchmark is a program for Base64 MIME encoding

that converts its binary input to base 64 encoding with ASCII characters that are

both common and printable. We synthesize the inverse program that converts the

ASCII printable characters to the original binary stream. The encoder has a non-

trivial control structure with an outer loop containing a sequence of two inner loops.

We synthesize the inverse using a ↓ tag on each loop.

Our second formatter benchmark is a program for UUEncode binary-to-text

encoding that outputs four printable characters for every three bytes of input and
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adds a header and footer to the output. We synthesize the inverse program to

convert the printable text back to the original binary stream.

Our third formatter benchmark wraps data into a variable length packet data

format by adding a preamble (the length of the field) to the data bytes for the field.

We synthesize the inverse program, which reads the length and appropriate bytes

of the data fields to reconstruct the input data.

Our fourth formatter benchmark is a recursive function that takes a description

of objects and writes out their XML representation, e.g., for serialization. We syn-

thesize the inverse program, which reads the XML representation and reconstructs

the object.

Arithmetic Our first arithmetic benchmark is a simple iterative computation of∑
i that in the ith iteration adds i to the sum. This is another program where it

may not be feasible to derive the inverse just by reading the program backwards.

In this case, reading backwards one would need to solve for n from n(n+ 1)/2, i.e.,

solve a quadratic, which is hard to automate. Using a ↓ tag for the loop, our tool

automatically synthesized the inverse that in the ith iteration subtracts i from the

sum until it reaches 0.

Our next three arithmetic benchmarks are vector manipulation programs for

shifting, scaling, and rotating a set of points on the Euclidean plane. These prim-

itives are used frequently in graphics programming and image manipulation. For

each operation we synthesize the corresponding inverse.

Our fifth arithmetic benchmark is Dijkstra’s permutation program from his
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original note on program inversion [89]. He considered a program that, given a

permutation π, computes for the ith element of π the number of elements between

0 . . i that are less that π(i). The inverse program computes the permutation from

an array of these counts. Dijkstra manually derived it from the original program,

while we automatically synthesize the inverse.

Our last arithmetic benchmark is a program for in-place computation of the

LU-decomposition of a matrix using the Doolittle algorithm [223]. The inverse, which

has been manually derived before [54] and which we synthesize automatically, is a

program that multiplies the lower triangular and upper triangular matrices in-place.

5.6.1.2 Client-Server: Parallel Composition

To demonstrate the feasibility of synthesizing programs that are composed

in parallel, we synthesize the client functions from the corresponding functions in

a Trivial File Transport Protocol (TFTP) server. We use an open source imple-

mentation of a TFTP server as the starting point. The send functions have retry

mechanisms to account for network errors with no corresponding code when receiv-

ing and therefore we abstract them out into macros.

For all functions we synthesize here, we assert a given specification spec for the

parallel combination, typically that values (files, counters, data buffers, etc.) on the

server end up in corresponding variables on the client or vice-versa. Additionally,

we assert that the logical clocks (Section 5.5.5) on both the client and server are

identical at the end of the execution. This ensures that all send and receive functions
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were paired up, and in the right order.

The first function in the server is the main body5 which picks whether the

transfer mode is from the server to the client or the other way around, i.e., the

command is “get file” or “put file.” It then calls the appropriate transfer func-

tions, reading or writing to disk as required. We synthesize the corresponding client

function using a ↓ tag on the entry point and ↑ on an inner block.

The second function in the server takes a file and sends it out into packets or

reads packets and outputs a file. We synthesize the corresponding inverse using a ↑

tag on the loop for the transfer.

The third set of functions send or get an acknowledgment or a data packet.

We synthesize the corresponding client functions using ↑ tags.

The last function in the server takes the fields for acknowledgment or data and

wraps it into a packet and sends it. We synthesize the corresponding client function

using a ↓ tag.

5.6.2 Experience and Performance

Table 5.1 shows the result of running PINS over our benchmarks. For each

benchmark, we present numbers for three aspects of the experiment (1) the bench-

mark characteristics, (2) the runs of our mining heuristic, and, (3) the runs of PINS.

For the benchmark characteristics we list the lines of code and the number of ax-

ioms about the uninterpreted functions used in the program. For the runs of our

5We simplify the main body of the server by only considering one client accept instead of the

infinite loop, so that it corresponds to one client that we are interested in synthesizing.
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mining heuristic we report the sizes of the flowgraph in lines of code, the sizes of the

expression and predicate sets, and the total changes that the user had to make to

those mined templates. For the runs of PINS, we report the number of iterations it

took for the algorithm to converge to a stable set (mostly just one valid inverse that

we inspected to be correct). Then we report the fraction of the total time spent in

each of the four subparts of the algorithm (symbolic execution, SMT reduction to

SAT and SAT solving, and prioritization, i.e., pickOne) and the total time taken in

seconds to stabilize and generate the inverse. Lastly, we report the size of the total

SAT instance that constrains the system to the stabilized set.

There were three programs in which the stabilized set contained more than one

solution before our tool exhausted memory or time. In LZW and LZ77 the solution

set contained two solutions each, and for LZW both were valid. There were four

solutions left for Base64. For both LZ77 and Base64 only one solution was valid

while the rest spurious but the tool ran out of time trying to add new paths.

Our mining heuristics were very accurate in inferring the right flowgraphs,

expression, and predicate sets. Of the total 328 non-trivial lines that the user would

have had to guess otherwise, our heuristics reduces the burden to modifications in

48 of those, i.e., 15%. Typically these were very simple, e.g., changing ‘+’ to ‘-’

or swapping variables in an expression. Additionally, with the path available from

PINS, the modifications were very trivial to infer. We note that PINS stabilizes and

synthesizes the inverse for these realistic programs in a few iterations (under 14 at

most, and with a median of 3) within very reasonable time (under 30 minutes at

most, and with a median of 40 seconds), and the entire SAT constraint is concise
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and small (at most 3k clauses). We also see from the fraction of time spent in

each subpart that symbolic execution and constraint reduction take the most time.

Therefore improvements to these will automatically benefit our synthesis technique.

5.7 Summary

In this chapter, we presented PINS, an approach to program synthesis that uses

symbolic execution to approximate the correctness constraints and satisfiability-

based tools, from the previous chapters, to solve them. We applied the technique to

program inversion and client-server synthesis. We showed that PINS can successfully

synthesize a wide variety of realistic programs.

5.8 Further Reading

Inductive and Deductive Synthesis Program synthesis techniques can be classified

as belonging to a spectrum that stretches from inductive synthesis on the one end

and deductive synthesis on the other. Inductive synthesis is an approach that gen-

eralizes from finite instances to yield an infinite state program. One example of this

approach is Sketching [245], which uses a model-checker to generate counterexample

traces that are used to refine the space of candidate programs. Deductive synthesis,

in contrast, refines a specification to derive the program [195], as discussed in the

previous chapter.

While our approach is similar to inductive synthesis, technically it lies midway
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between inductive and deductive synthesis. We use paths instead of concrete traces

and thus are able to capture more of the behavior with each explored “example”

path. This is better than concrete inductive synthesis, and leads to practical tools

as compared to deductive synthesis. At the same time, it can never reach the formal

guarantees provided by deductive synthesis approach. An additional difference is

that while previous approaches only refine the space either constructively, through

positive reinforcing examples, or destructively, through negative counterexamples,

we refine using both positive and negative examples.

Synthesis without formal verifiers Sketching (CEGIS) [245, 246] and even proof-

theoretic synthesis described in the previous chapter, rely heavily on formal verifiers.

Sketching uses formal verifiers to explain why invalid candidates are not correct and

uses the counterexample for invalid candidates to refine the space. Proof-theoretic

synthesis encodes the synthesis problem as a search for inductive invariants and

therefore needs to infer complicated invariants (and requires a formal verifier with

support for such reasoning). In contrast, PINS uses symbolic execution and therefore

does not require reasoning about complicated invariants.

More on Sketching In terms of the solution strategy, our technique differs from

Sketching in four other key aspects. First, the SKETCH compiler uses novel do-

main specific reductions to finitize loops for stencil [245], concurrent [246], or bit-

streaming [247] programs, and is engineered to solve the resulting loop-finitized

problem. On the other hand, we finitize the solution space using templates but

270



never finitize loops. Second, we refine at the granularity of paths, while sketching

refines using concrete executions and since multiple concrete executions may follow

a single path, we are able to cover the space of inputs in fewer iterations. Third, we

use SMT reasoning over the correctness constraints to generate concise and small

SAT instances that can be efficiently solved, as shown by our experiments, while

Sketching uses bit-blasting, which generates formulas that may be difficult, as has

been seen by other authors [136]. Lastly, the verification process in Sketching can

potentially be testing-based, but it would need to be exhaustive to find the coun-

terexample. On the other hand, we only need to find one feasible path when doing

directed symbolic execution to refine the search space. These differences point to

important complementary strengths that we intend to exploit in a future SKETCH-

PINS hybrid tool.
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Chapter 6

Engineering Satisfiability-based
Program Reasoning/Synthesis
Tools

“Truth is what works.”

— William James1

In this chapter, we describe the architecture and implementation of our tool

set VS3(Verification and Synthesis using SMT Solvers). This tool set includes the

tools VS3
LIA and VS3

PA that implement the theory presented in Chapters 2, and 3. We

also use these tools for synthesis, as described in Chapters 4 and 5.

6.1 Using off-the-shelf SAT/SMT solvers

Our invariant inference technique over linear arithmetic (Chapter 2) requires a

SAT solver for fixed point computation, while over predicate abstraction (Section 3),

we additionally use the theory decision procedures of SMT solvers and their built-in

SAT solver. Our approaches to synthesis, proof-theoretic synthesis (Chapter 4) and

1American Philosopher and Psychologist, leader of the philosophical movement of Pragmatism,
1842-1910.
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PINS (Chapter 5), reuse the verifiers built in previous chapters and so use both SAT

and SMT solvers.

During the development of the work reported in Chapter 2 we benchmarked

various solvers. These included Z3’s internal SAT solver [86], MiniSAT [99], ZChaff

variants [203], Boolector [45], MathSAT [46, 40, 39], and even a variant that we

implemented ourself, based on MiniSAT. While some performed better over certain

instances, we found that the heuristics engineered within popular solvers, such as

Z3 and CVC3, yielded most predictable results and consistently outperformed most

solvers. For the most part, we confirmed that for the instances we were generating

the efficiency of the solvers correlated to their performance on the SMTCOMP

benchmarks [18]. So while it might be useful in extreme cases to engineer the

satisfiability instances at the top-level, for the most part it is sufficient to just rely

on the solving capabilities of the best performing solver available in public domain.

For SMT solvers, the results in this dissertation are from runs that use Z3 [86].

We are aware of other comparable solvers, namely CVC3 [21, 19] and Yices [97, 224],

which we intend to try in future work.

6.2 Tool Architecture

Both VS3
LIA and VS3

PA use Microsoft’s Phoenix compiler framework [1] as a front

end parser for ANSI-C programs. Our implementation for each is approximately

15K non-blank, non-comment lines of C# code.

The tool architecture is shown in Figure 6.1. We use Phoenix to give us
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Figure 6.1: The architecture of the VS3
LIA and VS3

PA tools. In addition to the ANSI-C
program (which is replaced with the scaffold when running in synthesis mode), the
user provides the templates, the predicate sets, and optionally a cut-set. The user
chooses between an iterative and a satisfiability-based fixed-point computation.

the intermediate representation, from which we reconstruct the control flow graph

(CFG) of the program. The CFG is then split into simple paths using a cut-set

(either generated automatically with a cut-point at each loop header or specified

by the user). We then generate a verification condition (VC) corresponding to each

simple path. For fixed-point computation the tool provides two alternatives:

• Iterative fixed-point (Chapter 3) The iterative scheme performs a variant of a

standard dataflow analysis. It maintains a set of candidate solutions, and by

using the SMT solver to compute the best transformer it iteratively improves

them until a solution is found.

• Satisfiability-based fixed-point (Chapters 2, and 3) In the satisfiability-based

scheme, a predicate p at location l is identified by a boolean indicator variables

bp,l. For verification condition vc, we generate the minimal set of constraints

over the indicator variables that ensure that vc is satisfiable. These constraints

are accumulated and solved using a SAT solver, which yields a fixed-point

solution.
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For proof-theoretic synthesis (Chapter 4) instead of taking a program as in-

put, the tool takes a scaffold, and instead of using Phoenix to generate the CFG if

generates a template CFG that is used by the rest of the system. For PINS (Chap-

ter 5), the core tool is just used to find candidate solutions that are valid for all the

constraints generated over some paths. The actual PINS algorithm that iteratively

refines the space is implemented as a wrapper around the core solver.

6.2.1 Tool Interface

In automatic cutpoint mode, VS3 searches for inductive program invariants at

loop headers. Alternatively, in some cases the invariants are simpler if inferred at

specific locations, which should form a valid cut-set such that each cycle in the CFG

contains at least one location. VS3 also supports a manual mode for user-specified

cut-sets.

The user also specifies the global invariant template and global predicate set

for predicate abstraction, as shown. The template is used for invariants at each

cut-point, and the predicate set specifies the candidate predicates for the unknowns

in the template. We specify the template and predicate set globally to reduce the

annotation burden. Specifying them separately for individual cut-points could po-

tentially be more efficient but would add significant overhead for the programmer.

We typically we used a predicate set consisting of inequality relations between rele-

vant program and bound variables, and if required, refined it iteratively after failed

attempts. In our experience, over the difficult benchmark programs described in
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previous chapters, coming up with the templates and predicate set is typically easy

for the programmer.

6.2.2 Solver Interface

SMT solvers typically provide an API interface that calls the solver to directly

manipulate the stack of asserted facts (directly pushing and poping assertions). We

currently use the API exported by Z3. We also provide an alternative mode in which

all queries are sent to the solver through the SMT-LIB interface, which is a format

supported by all major solvers [20].

While Z3 is fairly robust at handling most of the queries we generate, but it has

specific limitations that we had to alleviate through mechanisms at the analysis stage

before passing the query to Z3. We describe these limitations and our workarounds

next. Other solvers have similar limitations.

6.2.2.1 Compensating for limitations of SMT solvers

The generic primitives provided by SMT solvers are expressive but are lacking

in some aspects that are needed for our application. We augment the solver by

providing a wrapper interface that preprocesses the SMT queries and adds hints for

the solver.

Patterns for quantifier instantiation. The current state-of-art for reasoning over

quantified facts uses the now commonly known technique of E-matching for quanti-

fier instantiation [85]. E-matching requires patterns to match against ground terms.
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Because individual SMT queries in our system are over simple quantified terms, a

simple heuristic to automatically generate patterns suffices. Given a quantified fact

with bound variables k̄ and bound boolean term F , we recursively parse F and re-

turn valid patterns from F ’s subterms. A subterm f is a valid pattern if it contains

all the bound variables and at least one subterm of f does not contain all the vari-

ables. For example, for the fact ∀k : k > 10 ⇒ A[k] < A[k + 1], we compute the set

of patterns {{k > 10}, {A[k]}, {A[k+1]}}, and for ∀k : k ≥ 0∧k < v ⇒ A[k] < min

we compute the set {{k ≥ 0}, {k < v}, {A[k] < min}}. This simple heuristic is po-

tentially expensive, but allows for automatic and, in practice, fast proofs or disproofs

of the implications we generate.

Saturating inductive facts. SMT solvers have difficulty instantiating relevant facts

from inductive assumptions. For instance, in our experiments, we encountered as-

sumptions of the form kn ≥ k0 ∧ ∀k : k ≥ k0 ⇒ A[k] ≤ A[k + 1], from which

A[k0] ≤ A[kn + 1] was needed for the proof. Z3 times out without finding a proof

or disproof of whether A[k0] ≤ A[kn + 1] follows from this assumption. Notice that

the pattern k ≥ k0 will only allow the prover to instantiate A[kn] ≤ A[kn + 1] from

the ground fact, which does not suffice to prove A[k0] ≤ A[kn + 1].

We therefore syntactically isolate inductive facts and saturate them. We pat-

tern match quantified assumptions such as the above (consisting of a base case in the

antecedent and the induction step in the consequent of the implication) and assert

the quantified inductive result. For example, for the case above, the saturated fact

consists of ∀k2, k1 : k2 ≥ k1 ≥ k0 ⇒ A[k1] ≤ A[k2 + 1]. This, along with the ground
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term kn ≥ k0, provides the proof.

Theoretically, our approach for saturating inductive facts here is similar to the

proposals for axiomatizing reachability using axioms [172, 151, 178, 53]. All these

approaches are efficient in practice, but necessarily incomplete, as it is well-known

that complete first order axiomatization of transitive closure is impossible [186]. Also

related are proposals for simulating transitive closure in first order logic [185]. More

details on these approaches can be found in the related work section of a recent paper

by Bjo/rner and Hendrix [32]. In the paper, Bjo/rner and Hendrix isolate a decidable

fragments of a logic that can encode certain forms of transitive closure (appropriate

for linked structures, such as lists, and trees) by integrating an LTL checker with

an SMT solver. The corresponding combination is a promising direction for future

handling of heap structures in our framework.

Explicit Skolemization for ∀∃. Z3 v1.0 does not correctly instantiate global skolem-

ization functions for existentials under a quantifier, and so we must infer these func-

tions from the program2. An approach that suffices for all our benchmark examples

is to rename the skolemization functions at the endpoints of a verification condition

and to insert axioms (inferred automatically) relating the two functions. VS3 can

infer appropriate skolemization functions for the two cases of the verification condi-

tion containing array updates and assumptions equating array values. Suppose in

the quantified formulae at the beginning and end of a simple path, the skolemization

2We are aware of work being pursued in the solving community that will eliminate this restric-

tion. Therefore in the future we will not need to infer skolemization functions.
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functions are skl and skl′, respectively. For the case of array updates, suppose that

locations {l1, l2, . . . , ln} are overwritten with values from locations {r1, r2, . . . , rn}.

Then we introduce two axioms. The first axiom states that the skolemization re-

mains unchanged for locations that are not modified (Eq. 6.1), and the second axiom

defines the (local) changes to the skolemization function for the array locations that

are modified (Eq. 6.2):

∀y : (∧i(skl(y) 6= ri ∧ skl(y) 6= li)) ⇒ skl′(y) = skl(y) (6.1)∧
i∀y : skl(y) = li ⇒ skl′(y) = ri (6.2)

For the case of assumptions equating array values, we assert the corresponding facts

on skl′, e.g., if Assume(A[i] = B[j]) occurs and skl′ indexes the array B then we

add the axiom skl′(i) = j.

6.2.2.2 Axiomatic support for additional theories

Modeling quadratics For most of this dissertation we have restricted our constraints

to be linear (with propositional connectives) but at times quadratic constraints

are critically required. Such is the case for some programs we synthesize (and

verify) in Chapter 4, such as a program that computes the integral square root and

Bresenham’s line drawing algorithm. In this case we provide an incomplete support

for handling quadratic expressions.

Our approach consists of allowing the system to contain quadratic expressions,

and manipulating them appropriately, e.g., by applying distributing multiplication

over addition where required, until the very end when the constraints are required
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to be solved. At that stage, we provide a sound but incomplete translation of the

quadratic constraints to linear constraints.

We rename each quadratic term a∗ b into a new variable a b in the constraints

to get a linear system from a quadratic system. This modeling is sound because

if a solution exists in the new system, it only uses the axiom of equality between

quadratic terms. It is incomplete because a quadratic system may have a solution,

e.g., using the axiom a = b ⇒ a ∗ a = b ∗ b, but the corresponding linear system

with the renaming, may not have a satisfying solution.

We have found that this sound but incomplete modeling suffices for our pro-

grams for the most part. In cases where it does not, we add appropriate assumptions,

e.g., assume(a = b⇒ a a = b b), to get consistent solutions on top of the incomplete

modeling.

Reachability Some program verification tasks require support for non-standard ex-

pressions, e.g., reachability in linked-list or tree data structures. SMT solvers, and

in particular Z3, support the addition of axioms to support these kind of predicates.

There are two extra steps in the verification of such programs. First, we define

the semantics of field accesses and updates on record datatypes using sel and upd.

A field access s→ f is encoded as sel(f, s), and an update s→ f := e is encoded

as upd(f, s, e). Second, by asserting axioms in the solver, we define the semantics of

higher level predicates, such as reachability, in terms of the constructs that appear in

the program. Let x ; y denote that y can be reached by following pointers starting

at x. Then for the case of reasoning about singly linked lists connected through
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next fields, we augment the SMT solver with the following reachability axioms:

∀x . x ; x Reflexivity
∀x, y, z . x ; y ∧ y ; z ⇒ x ; z Transitivity

∀x . x 6= ⊥ ⇒ x ; (x→ next) Step: Head
∀x, y . x ; y ⇒ x = y ∨ (x→ next) ; y Step: Tail
∀x . ⊥ ; x ⇒ x = ⊥ End

For example, using these axioms the solver can prove that head ; tail∧tail ;

n ∧ n 6= ⊥ ⇒ head ; (n→ next).

6.3 Concurrent reduction

Our algorithms exhibit an embarrassingly parallel structure. For the case of

the iterative technique, each individual candidate can be improved in parallel, and

for the case of a satisfiability-based technique each verification condition can be re-

duced to its boolean constraint in parallel. Therefore, we developed a multithreaded

implementation of each algorithm. Multithreading is especially natural and useful

for the bi-directional satisfiability-based fixed-point computation, which is not re-

stricted to analyzing verification conditions in any particular order.

6.3.1 Super-linear speedup

Our multithreaded implementation achieves super-linear speedup, because it is

able to reduce the amount of information computed, using a novel technique which

we call partial solution computation. This approach generates an equi-satisfiable

formula that has the same solution but is significantly smaller. By being equi-

satisfiable it ensures that the invariant/program solutions computed are identical to
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what would be computed using the larger formula. To illustrate the redundancy,

consider the case of program verification, where an invariant is constrained in similar

ways by multiple verification conditions (that start or end at that invariant). A

reduction to boolean constraints that is oblivious of this fact computes a significantly

larger formula than one that discovers and eliminates redundant clauses. To discover

redundancy, we use the notion of partial solution computation.

Partial solution computation The satisfiability-based technique needs to reduce

verification conditions into a boolean formula that captures the semantic content

of the verification condition. Our multithreaded implementation interleaves these

reductions for different verification conditions.

We build on the insight that we can compute partial solutions for subformulae,

for the case of the final boolean SAT formula being satisfiable, and infer unsatisfia-

bility otherwise. Recall that for the satisfiability-based encoding of VCs in Chapter 3

(Eq. 3.7), we are incrementally computing a SAT instance that is typically small

in overall size, but the computation of each individual clause (the second term of

Eq. 3.7) involves queries to the SMT solver, and is therefore expensive. We elim-

inate redundant clauses by using information computed by other threads (working

on different reductions) about which indicator boolean variables have been decided

to be either true or false based on the sub-formula computed so far.

We compute partial solutions for a boolean formula F by checking, for indi-

vidual boolean variables b ∈ vars(F ), if the formula assigns a truth value to b. We

do this by separately checking the satisfiability of F ⇒ b and F ⇒ ¬b. Both of
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these implications will hold iff the final formula (whose clauses are a superset of the

clauses in F ) is unsatisfiable. If we find this, we can terminate right away. If, on the

other hand, both implications do not hold then we have a consistent sub-formula for

which we compute the variables whose values have been decided. We remove from

consideration all those variables for which neither implication is satisfiable. The

partial solution is then the assignment of truth values to the remaining variables as

indicated by the satisfiability of F ⇒ b (true) or F ⇒ ¬b (false). The correctness

of this optimization is due to the following theorem.

Theorem 6.1 (Partial Solution Computation) Let φ be a boolean formula and

let φ⊆ be a subset of the clauses from φ. Then:

(a) If φ⊆ is unsatisfiable then φ is unsatisfiable.

(b) If φ⊆ ⇒ b then any satisfying assignment to φ assigns true to b. Correspond-

ingly, if φ⊆ ⇒ ¬b then any satisfying assignment to φ assigns false to b.

(c) If φ⊆ ⇒ b ∧ φ⊆ ⇒ ¬b for any b that appears in φ⊆, then φ⊆ is unsatisfiable.

Proof:

(a) If φ⊆ is unsatisfiable, then no assignment to a superset of the clauses, i.e., φ,

can assign satisfying values to the clauses that make up φ⊆.

(b) Suppose otherwise, i.e., let φ⊆ ⇒ b and let some satisfying assignment to

φ assigns false to b. Since φ⊆ ⇒ b (implicitly quantified over all variables

in the formula) holds, and in particular holds for b
.
= false, it implies that
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φ⊆
.
= false for all other assignments to the remaining variables. That is φ⊆ is

unsatisfiable with b assigned false if φ⊆ ⇒ b. By Part (a) we know that φ is

unsatisfiable—contradiction. Therefore, b has to be assigned true if φ⊆ ⇒ b.

A similar argument shows that b has to be assigned false if φ⊆ ⇒ ¬b.

(c) First observe that Part (b) applies to the degenerate case of φ being φ⊆ as

φ⊆ ⊆ φ⊆. Now if φ⊆ ⇒ b ∧ φ⊆ ⇒ ¬b then by Part (b), we know that any

satisfying assignment to φ⊆ will assign true to b (by the first implication) and

it will assign false to b (by the second implication). Both statements cannot

be valid together, and consequently we have a contradiction. Therefore, it

must be the case that φ⊆ is unsatisfiable.

�

The partial solution computation significantly speeds up the reduction process,

when the different threads working on different verification conditions propagate

their reductions. The true or false assignments for variables whose values have

been decided are directly substituted, which typically results in part of the formula

being simplified.

Computing maximal solutions using partial solutions The partial solution to the

final SAT instance can be used to compute the greatest or the least fixed-point

solution. For the boolean variables that are not in the partial solution any truth as-

signment corresponds to a valid invariant. Therefore, by assigning false to the vari-

ables of a negative unknown and true to the variables of a positive unknown we get a
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least fixed-point. The opposite assignment yields a greatest fixed-point. In practice,

we do not care about the optimality of the solution generated by the satisfiability-

based approach and therefore have not implemented this last greatest/least-fixed

point optimization.

6.4 Summary

Building on the theory described in Chapters 2—5, in this chapter we described

the implementation challenges of building a tool for program reasoning and program

synthesis. The tool can infer expressive properties of programs using minimal an-

notations in the form of invariant templates, and can also synthesize programs with

minimal descriptions, given by the user.
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Chapter 7

Extensions and Future Work

“Heavier-than-air flying ma-
chines are impossible.”

— Lord Kelvin1

This dissertation focuses on program reasoning and program synthesis for the

case of sequential, imperative programs. There are three sets of extensions that we

plan to address in the future. The first set consists of augmenting the expressive-

ness of our schemes for reasoning and synthesis while still remaining in the domain

of sequential, imperative programs. The second set consists of applying and de-

veloping techniques for reasoning about and synthesizing programs and proofs in

non-(sequential, imperative) domains. The third set consists of treating synthesis

as augmenting compilation, where we attempt to synthesize modules that plug into

legacy code such that the new program meets desired specifications.

1President of the Royal Society, 1895.
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7.1 Expressiveness

Linear Arithmetic The work described in Chapter 2 can be extended in at least

two directions. The first one is to extend these techniques to discover a richer class

of invariants involving arrays, pointers, and even quantifiers. The technical details

of these extensions have already been worked out, and we are currently in the

process of implementing these ideas in our tool. Second, we are investigating use of

new constraint solving techniques, in particular QBF (Quantified Boolean Formula)

solvers. This would alleviate the need for applying Farkas’ lemma to compile away

universal quantification, leading to smaller sized SAT formulas, but with alternating

quantification. While in general QBF is PSPACE-complete, and therefore we would

expect these instances to be fairly difficult to solve, it may be that for limited

classes of instances the QBF formulae are efficiently solvable, similarly to the use of

SAT/SMT solvers in this dissertation.

Predicate Abstraction In Chapter 3 we restricted ourselves to simple theories sup-

ported by SMT solvers. In particular, we most extensively use the theory of arrays

(that too without extensionality, which states that ∀A,B : ∀i : (A[i] = B[i] ⇒ A =

B) [44, 250]), uninterpreted functions, and linear arithmetic, which are all basic

theories supported by all solvers. Today, SMT solvers in fact support many more

theories efficiently. For instance, we added incomplete support for reachability and

were able to verify small linked-list programs. There have been recent proposals,

that incorporate a logical theory for unbounded reachability within an SMT solver,

which can potentially be used directly to verify heap manipulating programs [224].
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In particular, we intend to try verifying the full functional correctness of list/tree

and other data structure operations (e.g. insertion in AVL/Red-Black trees) within

our satisfiability-based framework for reasoning. Additionally, such extensions will

also allow the synthesis of heap manipulating programs.

Another important consider is that of abstraction refinement [59]. Ideas from

counterexample guided refinement can be incorporated in our framework to build

a system that supports automatic predicate discovery. More interestingly, instead

of traditional iterative approaches to predicate inference (e.g., the maximal solution

computation in Chapter 2), it should be feasible to encode the synthesis of predicates

as solutions to a satisfiability instance.

Modular Synthesis Program synthesis as we have considered synthesizes the entire

program corresponding to a given functional specification (Chapter 4) or related

program (Chapter 5). In fact, even previous approaches take a similar end-to-end

approach to synthesis [245]. However, the eventual success of automated synthesis

will lie in its ability to synthesis programs in terms of an abstract interface corre-

sponding to lower level functions.

We implicitly explored this issue through the use of predicates over uninter-

preted functions (with externally defined semantics) in proof-theoretic synthesis.

An instance of this was the use of definitional functions (and axioms) for the case

of dynamic programming programs; or the use of uninterpreted functions modeling

the layout of two dimensional arrays; or the use of the swap predicate for sorting

programs. While these demonstrate the feasibility of synthesis over an abstract in-
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terface to lower level functions, they are not modular synthesis. In particular, a

defining feature of modular synthesis is the ability of the system to automatically

infer what functions implement which functionality, i.e., the interface boundary. For

the discussion in this dissertation, we had the interface boundary manually specified

by the user. Inferring the interface boundary is a key technical challenge that needs

to be addressed.

7.2 Applications to non-(sequential, imperative)

models

Cross-synthesis: Architecture-specific synthesis In Chapter 4 we proposed the use

of resource constraints to restrict the space of candidate programs. We envision using

resource constraints to focus attention to certain classes of computations, instruction

sets, and memory access patterns, such as those allowed by peculiar architectures,

e.g., Cell Broadband Architecture [104], GPUs [213] for which the CUDA [209]

and OpenCL [248] programming models have been proposed. We would define the

synthesis problem as taking a program in an standard unrestricted programming

model, and the synthesizer would generate the corresponding semantically equivalent

program in the restricted programming model.

Concurrency Recent work on local reasoning for concurrency [256, 94, 106] has

the flavor of interprocedural summary computation, but instead of computing sum-

maries for procedures computes summaries of interference behavior of threads. Our
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goal-oriented satisfiability-based invariant inference approach is particularly suit-

able for interprocedural summary computation and therefore has potential to be

useful for thread interference summary computation as well. Using precise interfer-

ence summaries, thread modular reasoning can facilitate verification and synthesis

of concurrent programs.

Synthesizing functional programs A inference technique for dependent types can

be used to synthesize functional programs in the same way program verifiers can

synthesize imperative programs. For it to be useful for synthesis, inference is neces-

sarily required to be annotation-less as annotations tag given programs. Proposals

for limited-annotation limited dependent-type inference [229, 161, 252] have the

potential to be used for synthesis of functional programs.

Additionally, Appel described how Single Static Assignment (SSA [230, 4])

style is essentially functional programming [6], and we know that continuation pass-

ing style (CPS)—the intermediate representation of choice for functional program

compilers—and SSA are formally equivalent, and optimizations formulated for one

are directly applicable to the other [162]. Hence it may be possible to use the tech-

niques we developed here directly for synthesizing functional programs by suitable

representational translation.

Synthesizing proofs of progress and preservation A more radical application of syn-

thesis could be to the domain of “proof-synthesis.” When designing a type-system,

the method of choice for proving its correctness is to use an operational semantics
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approach and prove progress and preservation [214]. The key difficulty in such proofs

is the inference of a suitable induction hypothesis. With a correct hypothesis the

proof typically is mostly mechanical with case splits based on the structure of the

language. We can pose the problem of induction hypothesis inference as invariant

inference and the proof cases as imperative paths that need to be synthesized.

7.3 Synthesis as augmenting compilation

Program reasoning and synthesis may be defined over a fragment of the total

program. We comment on such possibilities here.

Synthesizing correctness wrappers We propose synthesizing only fragments of code

that serve as wrappers around otherwise potentially incorrect programs. Given

a specification of correctness (lack of crashes, no information leaks, etc.), and a

program that potentially does not meet the specification, the task would be to

synthesize a wrapper that calls into the raw programs and modifies its behavior at

appropriate locations such that it meets the specification.

One application may be to information flow security. Consider a browser

that can potentially leak information through Javascript. For every location in the

browser source code where a call is made into the Javascript engine, we synthesize

and insert a sanitization function that ensures that only low security data passes

through. Another application may be in making distributed computation robust. In

this case, the wrapper would serve as a monitoring state machine that terminates,
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starts, or restarts computation on detecting anomalous behavior. Another potential

application is to proof-carrying code (PCC) [207]. In traditional PCC, the client has

a specification and the developer is responsible for sending a certificate along with

the program, and the client verifies the certificate to check if it meets the security

policy. We can imagine the client sending a (sanitized) version of his policy to the

developer such that the developer only writes a partial program, and the synthesizer

fills out the remainder such that the resulting program is guaranteed to meet the

specification.

Synthesizing aspects (cross-cutting concerns) Aspect-oriented programming [163]

defines a programming model in which the program’s functionality is divided not by

lexical boundaries but by semantic similarities of various fragments. For instance,

authorization and logging are typical cross-cutting concern [109]. While aspects

can lead to cleaner software if used well, they can also leads to fragmentation of

code away from the data, e.g., code manipulating a variable could be in multiple

aspects that are scattered all throughout the codebase, possibly far away from the

class owning the variable. We can imagine a programming model in which the only

allowable aspects are the ones that the synthesizer generates. In such a scenario

the only codebase available to the developer is the one that is localized, removing

any maintainability concerns of aspects. The aspects would be suitably synthesized

(and be correct) for any change to the codebase made by the developer as the code

corresponding to the aspect will never be directly modified.
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Synthesizing “failsafe”s Programs are rarely reliable or robust. While we can verify

their correctness, or lack thereof, using the reasoning techniques developed in this

dissertation, we can potentially also synthesize bypass mechanisms that ensure that

failing programs are sandboxed. Similar to failure-oblivious computing [228], but

more semantically aware, such a wrapper would keep track of out-of-bounds reads

and writes and instead of indiscriminately allowing them, would consider the changes

in program behavior from a given baseline and suitably change values to match

statistically more probable program states.

Synthesizing attackers An interesting application to security verification may be

to model the attacker as an unknown state machine (potentially with an unbounded

state space). Then using the techniques described in this thesis, we can imagine

defining a specification of a bad state, i.e., defining the existence of an attack.

We then synthesize an attacker such that its combination with the program under

consideration meets the specification, i.e., shows the existence of an attacker and

corresponding attack.
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Chapter 8

Related Work

“The history of mankind is the
history of ideas.”

— Luigi Pirandello1

The work in this dissertation builds on significant advances in programming

languages theory in the last few decades. We review a tiny fraction of that related

literature in this chapter.

8.1 Program Reasoning

The desire to do precise program reasoning is not new. Foundational and

widely accepted frameworks in which program analyses can be formulated include

Kildall’s data-flow analysis [164], Cousot and Cousot’s abstract interpretation [72],

and Clarke, Emerson, and Sifakis’ model checking [98]—all of which perform iterate

approximations of program properties. This dissertation builds on a relatively more

1Italian short-story Playwright, Writer, Dramatist and Novelist, who was awarded the Nobel
Prize in Literature in 1934 for his “bold and brilliant renovation of the drama and the stage,”
1867-1936.
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recent non-iterative constraint-based framework proposed by Manna et. al. [62, 235].

A constraint-based framework allows building analyses that assume templates to

encode program semantics as finite constraints.

The history of program reasoning—verification and property inference—is vast

and varied, and we will necessarily be unable to cover all related work. We discuss

the ones most relevant to our work in this dissertation.

8.1.1 Program Verification

For program verification, we consider a somewhat linear progression based on

the technical difficulty of techniques based on invariants.

8.1.1.1 Invariant validation using SMT solvers

The first towards formally verified software does not even talk of invariant

inference. Even without inference, the task of just validating user-provided invari-

ants is non-trivial. The difficulty in invariant validation comes from discharging

complicated invariants, which could be quantified, making the verification condition

discharging process undecidable in general. Before the advent of SMT solvers, ei-

ther custom theorem provers were used, or domain-specific decision procedures for

limited forms of invariants were used.

With the increase in size of software, resulting in a more significant need

for formally correct components, invariant modeling languages have gained pop-

ularity. Microsoft’s Spec# [17] and Dafny [182], the Java Modeling Language
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(JML) [50], ESC/Java [111] are examples of such languages. Similar user-provided

invariant checking approaches exist that validate very expressive program prop-

erties by exploiting the power of SMT solvers. In particular, they leverage the

ability of these solvers to reason about formulae over combinations of different the-

ories. These approaches essentially treat SMT solvers as limited forms of theorem

provers. Approaches in this domain include checkers for loop optimization [150],

arbitrary C assertions [240], low-level systems code [64], and even concurrency

properties [179]. There are also larger frameworks in which analyses can be writ-

ten, e.g., the Why/Krakatoa/Caduceus deductive verification system [108], or Boo-

gie/PL [183, 16].

Verifiers of this form work with the assumption that an external oracle exists

that generates the difficult parts, i.e., invariants, in the proof required for verifi-

cation. This external oracle could be a human programmer or a proof-generating

compilation step. The system then generates constraints over the invariants using

the program, and the SMT solver is used to discharge these constraints, validat-

ing the externally provided invariants. These projects address a question that is

complementary to this dissertation. We talk of invariant and program inference,

while these validation approaches use the result of inference (from techniques such

as ours) and verify much larger codebases.
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8.1.1.2 Invariant Inference over Linear Arithmetic

While invariant validation techniques are directed towards scalability, invariant

inference targets expressivity. The guiding objective for invariant inference technol-

ogy is the dream of fully automatic full functional verification. So while it may be

possible with invariant validation to formally prove a particular piece of software

correct, when moving to the next piece of software, we have to start from scratch.

On the other hand, if we succeed in building automatic inference techniques for

expressive invariants, then each successive piece of software does not require pro-

portional human effort. Therefore the benchmarks in this field consist of small but

complicated programs that require inference techniques for very expressive invari-

ants. The hope is that if the techniques work for these programs, then for larger

programs the reasoning required will still be within the reach of the tool. Linear

arithmetic is one tractable, yet expressive domain for which inference techniques

have been designed.

Techniques based on abstract interpretation Cousot’s abstract interpretation is a

foundational framework for specifying program property inference as iterative ap-

proximations over a suitable domain (a lattice of facts in which the invariants are

expected to lie) [72]. Using abstract interpretation, sophisticated widening tech-

niques [125, 126], abstraction refinement [264, 132], and specialized extensions (using

acceleration [124], trace partitioning, and loop unrolling [34]) have been proposed

for discovering conjunctive linear inequality invariants in an intraprocedural setting.

Leino and Logozzo also propose introducing a widening step inside SMT solvers to
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generate loop invariants [184]. For disjunctive domains, powerset extensions over lin-

ear inequalities have been proposed [118, 133]. There are also alternative approaches

that exploit the structural correlations between the disjunctive invariant and the

control flow structure for disjunctive invariant inference [232, 30]. All these are

specialized to work for specific classes of programs. In contrast, the satisfiability-

based approach we propose in Chapter 2 can uniformly discover precise invariants

in all such classes of programs with arbitrary boolean structure, if required. While

an iterative approach can be advantageous for weakest precondition and strongest

postcondition inference, where we desire to compute the extremum of the sub-lattice

making up the fixed-points, for the case of verification where any fixed-point suffices,

a satisfiability-based approach offers significant advantages: It is goal-oriented and

thus does not compute facts that are redundant to the assertions being proved.

In the interprocedural setting, there has been work on discovering linear equal-

ity relationships for interprocedural verification [231, 204]; however the problem of

discovering linear inequalities is considered difficult. Very recently, some heuristics

for linear equality relationships have been proposed by extending earlier work on

transition matrices and postponing conditional evaluation [238]. The precision of

these techniques is unclear in the presence of conditionals. The approach in Chap-

ter 2 handles disjunctive reasoning seamlessly, and it can discover linear inequalities

interprocedurally as precisely as it can intraprocedurally. The approach is goal-

oriented and so the system only discovers relevant summaries that are required for

verification of call sites. Additionally, abstract interpretation based summary com-

putation needs to iterate multiple times to ensure the summary is as weak in the
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pre- and as strong in the postcondition as required. We have not experimented

with interprocedural benchmarks over predicate abstraction, but we believe the

satisfiability-based technique should possess the same theoretical benefits as over

linear arithmetic.

Techniques based on constraint solving Theoretical expositions of program analysis

techniques frequently formulate them as constraints (constraint-based CFA [210],

type inference [221], reachable states in abstract interpretation [72], and model

checking [98] among others) and typically solve them using fixed-point computa-

tion. We are not concerned with techniques such as those here, but instead with

techniques that use a constraint solver at the core of the analysis, i.e., those that re-

duce the analysis problem to constraints to be solved by either mathematical, SAT,

or SMT solvers. Constraint-based techniques using mathematical solvers, have been

successfully used to discover conjunctive linear arithmetic invariants by Manna et.

al. [62, 234, 233, 235] and by Cousot [75]. The satisfiability-based approach pre-

sented here can be seen as an extension of these constraint-based techniques and

can handle invariants with arbitrary, but pre-specified, boolean structure and also

in a context-sensitive interprocedural setting—partly because we use a SAT solver

at the core instead of mathematical linear programming solvers.

Constraint-based techniques have also been extended for discovering non-linear

polynomial invariants [160] and invariants in the combined theory of linear arith-

metic and uninterpreted functions [28], but again in a conjunctive and intraproce-

dural setting. It is possible to combine these techniques with our formulation to lift
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them to disjunctive and context-sensitive interprocedural settings.

Constraint-based techniques, being goal-directed, work naturally in program

verification mode where the task is to discover inductive loop invariants for the

verification of assertions. Otherwise, there is no guarantee on the precision of the

generated invariants. Simple iterative strategies of rerunning the solver with the ad-

ditional constraint that the new solution should be stronger, as proposed by Bradley

and Manna [41], can have extremely slow progress, as we discovered in our experi-

ments. Our approach for strongest postcondition provides a more efficient solution.

Additionally, we present a methodology for generating weakest preconditions.

Other approaches can also be viewed as being constraint-based, e.g., SAT-

URN [269], which unrolls program loops a bounded number of times, essentially

reducing the program analysis problem to a circuit analysis problem that has a

direct translation to SAT. SATURN has been successfully used for bug finding in

large programs [93]. In contrast, the approach in Chapter 2 can potentially find the

most-general counterexample and can also find bugs in programs that require an

unbounded or a large number of loop iterations for the bug to manifest.

Proofs and counterexamples to termination Termination analysis is an important

problem with the potential for significant practical impact. The primary approach to

proving termination properties in imperative programs is through ranking functions

for each loop. Ranking functions impose a well-founded relation on the iterations

of a loop, proving its termination. Work by Colon and Sipma [63], Podelski and

Rybalchenko [219], Bradley et. al. [42, 43], Cousot [75], and Balaban et. al. [9] made
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key strides in inferring linear ranking functions. The Terminator project incorpo-

rates many of these ideas and others into a usable system for proving termination

of systems code [24]. The SPEED project attempts to tackle a harder problem,

that of computing symbolic bounds for loops and recursive functions [138]. Such

an analysis can be used to bound resource usage, including time, space, and com-

munication. On the flip side, techniques can attempt to find counterexamples to

termination, i.e., evidence of non-termination, such as the approach by Gupta et.

al. [142]. Their technique finds counterexamples to termination properties by iden-

tifying lassos (linear program paths that end in a non-terminating cycle) and using

a constraint solving approach to find recurring sets of states.

The approach for bounds analysis in Chapter 2 is one solving technology that

can be applied towards bounds, termination and non-termination analysis. Addi-

tionally, by inferring maximally weak preconditions, the approach can also be used

for conditional termination analysis, where we infer preconditions under which the

program terminates. Our scheme for proving non-termination is more direct than

previous proposals and can potentially find the most-general counterexample to ter-

mination.

8.1.1.3 Invariant Inference over Predicate Abstraction

Template-based analyses The template-based approach used in this work is moti-

vated by recent work on using templates to discover precise program properties, such

as numerical invariants by Manna et. al. using mathematical solvers [233, 234, 62],
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Kapur using quantifier elimination [160], Beyer et. al. for the combination with

uninterpreted functions [28], Gulwani et. al.’s use of templates for quantified in-

variants in an abstract interpretation framework [137]. All these techniques differ

in expressivity of the templates, as well as the algorithm and underlying technology

used to solve for the unknowns in the templates.

Except for Gulwani et. al.’s work, all the other techniques employ a constraint-

based approach to encode fixed point, reducing invariant generation to the task of

solving a constraint. However, these techniques use specialized non-linear solvers.

On the other hand, we use SAT/SMT as our core solving mechanism. We perceive

that mathematical solvers are an overkill for the discrete constraint solving task

at hand. Gulwani et. al. use an iterative least-fixed point approach; however, it

requires novel but complicated under-approximation techniques.

Predicate abstraction Predicate abstraction was introduced in the seminal paper

by Graf and Saidi showing how quantifier-free invariants can be inferred over a given

set of predicates [128]. Since then the model checking community, e.g., in the SLAM

model checker [15], in the MAGIC checker [2], and Das and Dill’s work [82, 80], made

significant strides in the use of predicate abstraction as a very successful means of

verifying properties of infinite state systems.

Our templates in Chapter 3 range over conjunctions of predicates wrapped

in an arbitrary boolean structure. This is in contrast to the integer coefficients we

discover in Chapter 2 for a linear arithmetic template. Our predicate abstraction

template is inspired by important work on predicate abstraction in the model check-
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ing community [112]. Efforts to improve the expressivity of predicates used by these

systems included Lahiri’s indexed predicates, which contain free variables that are

implicitly quantified and so can express limited sets of quantified properties [176].

Podelski and Wies applied the idea of indexing to predicates over the heap to rea-

son about heap manipulating programs in the context of predicate abstraction [220].

Our work extends those ideas to include an arbitrarily expressive, explicitly indexed,

boolean structure over the predicates. Additionally, since our transfer functions are

direction-agnostic, and in particular not necessarily forward, we can define weak-

est precondition analyses as well, which is not straightforward for previous abstract

interpretation-based definitions of the forward transfer functions.

In this dissertation, we have not considered the orthogonal problem of com-

puting a set of predicates that is precise enough to prove the desired property. Au-

tomatic abstraction refinement, i.e., predicate discovery, has been critical in making

predicate abstraction based model checking mainstream. Counterexample guided

abstraction refinement (CEGAR) by Clarke et. al. is one core iterative approach

that facilitates predicate discovery [59, 57]. In CEGAR, the model checker attempts

verification using the given abstraction, and if it fails a counterexample is produced

that helps infer predicates that refine the abstraction. Craig interpolation has been

applied to the counterexample path to discover appropriate predicates [147, 154].

Improvements to the core interpolant scheme have since been developed [95], and

approaches for doing it lazily are known [148]. We currently do not address this

issue and instead assume that the set of predicates is provided. As future work,

it would be interesting to see how our technique can be combined with predicate
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discovery techniques.

Computing optimal transformers Our iterative fixed-point algorithms in Chapter 3

can be seen as computing the best transformer in each step of the algorithm. These

abstract transformers are over a lattice defined by the predicates and template. For

the case of domains other than predicates, Reps, Sagiv, and Yorsh designed decision

procedures for such best abstract transformers [227].

Dependent types for assertion checking Types are coarse invariants, as they rep-

resent facts that hold of the values stored in the typed variables. Types start re-

sembling specifications and invariants when we introduce the notion of dependent

typing [8]. In dependent typing, the types of variables can be qualified by arbitrary

expressions. In typical proposals the dependent types are provided by the user (and

can possibly be validated by the type-checker) [23, 268, 65], which is similar to the

scenario of validating user-provided invariants.

One form of this qualification is using refinement types [116] where the stan-

dard ML type, e.g., int, is refined by a predicate, e.g. a refinement indicating

positive integers may be {ν : int|ν > 0}. For refinement types, which are restricted

dependent types, inference proposals exist by Knowles and Flanagan [168], by Ron-

don, Kawaguchi, and Jhala [229, 161], and by Terauchi [252]. These proposals can

be viewed as alternative type-based proposals for invariant inference.

Symbolic model checking McMillan made a fundamental breakthrough in model

checking by introducing the notion of symbolic model checking [60, 49]. Symbolic
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model checking uses ordered BDDs to represent transitions implicitly and without

explicitly expanding the state graph [47]. Symbolic model checking is able to explore

on order of 1020 states. The implicit symbolic representation also means that pro-

gram states are abstracted and fixed-point iteration is required to infer properties

of infinite state systems.

8.1.1.4 Verification without invariant inference

Model checking Traditional model checking [98, 56], i.e., non-symbolic model check-

ing, checks whether a system meets its specification by writing the system as a

Kripke structure, i.e., a transition system with property labels on the states, the

specification as temporal logic formula, and checking that the Kripke structure is a

model of the temporal logic formula. The last step, model checking, is done through

explicit state exploration that labels the states with properties. While model check-

ing typically encounters a space explosion problem, various algorithmic techniques

have been designed to efficiently explore the space, and significant engineering effort

has helped realize practical verification systems using this approach. Notice that

the only formal statement required is the specification formula (given in a suitable

logic, such as LTL or CTL), and thus potentially any specification that is express-

ible is checkable. This is not the case when we attempt to infer invariants, which

are from limited domains and thus failure to infer invariants indicates either that

the domain is not expressive enough or that the program is faulty. While using

invariants introduces the possibility of restricting the class of verifiable programs,
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the benefits significantly outweigh the costs, as was realized by the model checking

community with the advent of symbolic model checking, which requires fixed-point

computations.

Approximate verification Program testing, be it concrete, symbolic [165], or a com-

bination such as concolic [239, 121], can be viewed as an approximation to formal

verification. These techniques do not infer invariants and are necessarily incomplete

in the presence of loops. Testing attempts to explore as many paths through the pro-

gram as possible and ensure that on each path the specification is met. While more

practical for software developers that are unwilling to deal with formal specifica-

tions, they lack formal guarantees, but have the advantage of being less demanding

on theorem proving resources. In fact, our synthesis approach in Chapter 5 inherits

both the advantages and disadvantages of an invariant-less technique.

Random interpretation combines ideas from testing with abstract interpreta-

tion to yield a technique that may be unsound in addition to being incomplete, but

the unsoundness is probabilistically bounded [139, 140, 141]. Random interpreta-

tion alleviates the tension of exploring multiple different paths, by combining/joining

them using ideas from abstract interpretation. The join is probabilistic (unlike tra-

ditional abstract interpreters whose join function is deterministic) and is inspired

by ideas from randomized algorithms. Using the novel join functions, random inter-

pretation yields probabilistic sound analyses.
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8.1.2 Specification Inference

Strongest postcondition and weakest precondition inference Abstract interpretation

works by iteratively generating a better and better approximation to the desired in-

variants [72]. Theoretically, the core operators on the domains can be defined such

that they either compute the strongest or weakest invariants. In practice, strongest

postcondition inference is tractable to compute and thus most verification tech-

niques defined using abstract interpretation compute the strongest postcondition

and then check if the assertions in the program hold under that postconditions.

Weakest precondition inference typically generates too many uninteresting precon-

ditions, making its use troublesome. In our work here, the use of templates restricts

attention to preconditions of desired forms.

Chandra, Fink, and Sridharan do propose a scalable heuristic technique for

generating useful preconditions in Java programs, but get past the difficulty of

handling loops by using user-annotations [52].

Precise summary computation Precise specification inference has the potential to

facilitate modular analyses but is relatively unexplored. Yorsh, Yahav, and Chandra

propose an approach that combines abstract micro-transformers [271], while Gul-

wani and Tewari propose an abstract interpretation-based framework for computing

symbolic summaries [134]. Yorsh et. al.’s approach is compositional, and Gulwani

and Tewari’s approach computes weakest preconditions for generic (symbolic) as-

sertions and then unifies them. Both show the applicability to specific abstract

domains; Yorsh et. al. consider the typestate domain and Gulwani et. al. consider
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uninterpreted functions and linear arithmetic. Both attempt to compute the most

precise summaries for procedures, and this may be too expensive. Our techniques on

the other hand, are goal-oriented in that they do global interprocedural analysis and

compute only the summaries that are required for the verification of the call sites

and additionally works over any domain for which a satisfiability-based analysis is

available.

8.2 Program Synthesis

The desire to automatic synthesize programs is also not new, although much

less research effort has been directed towards synthesis as compared to program

reasoning. While the problem was called a “dream” by Manna and Waldinger in

1979 [190], and defined in the context of model realizability by Pnueli and Rosner

in 1989 [218], the worst-case complexity of program synthesis hampered progress.

Statements such as “one of the most central problems in the theory of programming”

and “programming is among the most demanding of human activities, and is among

the last tasks that computers will do well” in the above papers, served both to

promote and relegate program synthesis to being an unachievable dreams. It is 2010,

and our view of automatic program verification has changed from being intractable

to being realizable. Correspondingly, it is time to revise our view of automatic

program synthesis from being impossible to being plausible. While we are not

claiming program synthesis is theoretically any easier now, the advent of powerful

program reasoning techniques gives us hope that this technology can be used for
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program synthesis—as we do directly in Chapter 4 and indirectly in Chapter 5.

The primary reason for the skepticism towards program synthesis is that an

automated tool is unlikely to discover the “intuition” behind solving a problem.

Human developers find these insights and encode them in programs that meet a

certain specification. What we argue in this dissertation is that automatic program

synthesis tools need not discover “intuition” but instead need to find just one solu-

tion that meets the specification—one that is formally correct but may not be the

elegant solution a human developer may design. This is similar in spirit to program

verification, where the human developer may find an insightful proof while an au-

tomated tool finds any valid proof that suffices, and this proof may not be elegant

or even readable.

In the alternative perspective of providing the tool with the insight and having

it fill out the details, significant work has been done. Previous approaches can

be categorized as either deductive or inductive. We refer the reader to a recent

survey describing the various categorization of synthesis approaches as deductive

(constructive), schema-guided, or inductive [22].

8.2.1 Deductive Synthesis

Deductive synthesis is the approach of successively refining a given specifica-

tion using proof steps, each of which corresponds to a programming construct. By

having the human developer guide the proof refinement, the synthesizer is able to

extract the insight behind the program from the proof.
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Most of the work in deductive synthesis stems from the seminal work of

Manna and Waldinger [194, 195]. Successful systems developed based on this ap-

proach include Bates and Constable’s NuPRL [66] system, and Smith’s KIDS [243],

Specware [199], and Designware [244] systems. In these systems, the synthesizer

is seen as a compiler from a high-level (possibly non-algorithmic) language to an

executable (algorithmic) language, guided by the human. To quote Smith, “the

whole history of computer science has been toward increasingly high-level languages-

-machine language, assembler, macros, Fortran, Java and so on—and we are working

at the extreme end of that.”

While such systems have been successfully applied in practice, they require

significant human effort, which is only justified for the case of safety/mission-critical

software [100]. As such, these systems can be viewed as programming aids for these

difficult software development tasks, somewhat related to the idea of domain-specific

synthesizers such as AutoBayes for data-analysis problems [110], StreamIt for signal-

processing kernels [253], or Simulink for hardware synthesis [26].

We categorize proof-theoretic synthesis from Chapter 4 as midway between de-

ductive and schema-guided synthesis. Schema-guided synthesis takes a template of

the desired computations and generates a program using a deductive approach [114].

Some heuristic techniques for automating schema-guided synthesis have been pro-

posed, but they cater to a very limited schematic of programs, and thus are limited

in their applicability [96]. Schema-guided synthesis specialized to the arithmetic

domain has been proposed using a constraint-based solving methodology [61]. Our

technique in Chapter 4, if viewed as a schema-guided approach, formalizes the re-
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quirements for it to work over any domain, as opposed to particular instances, e.g.,

linear arithmetic as considered previously [61]. Additionally, while the specification

of the program synthesis task is comparable to these approaches, the satisfiability-

based efficient solving methodology is novel in our approach.

8.2.2 Inductive Synthesis

Inductive synthesis is the approach of generalizing from instances to generate a

program that explains all instances or traces that meet a specification. The instances

could be positive ones that define valid behavior or counterexamples that eliminate

invalid behavior.

Of particular note in this category is the work by Bodik and Solar-Lezama et.

al. on the Sketch system, which synthesizes from partial programs [245]. Their work

has helped revive interest in practical synthesis in recent years, while still having

the human programmer provide the insight behind the program in the shape of

a “sketch” of the desired computation. The Sketch system fills out integer holes,

whose values may be difficult for the programmer, in a partial program and as such

is also a programming aid. Bodik, Solar-Lezama et. al. deserve significant credit

for designing a synthesis interface that software developers will be comfortable with.

The approaches we present in this dissertation derive much inspiration from their

work and, in fact, both proof-theoretic synthesis and PINS go through intermediate

representations that resemble a sketch of the desired program, albeit with holes that

are filled in by full expressions rather than just integers.
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Combinatorial sketching does not use a mathematical formulation, but instead

uses another, unoptimized program as the specification of the desired computa-

tion [245, 246, 247]. A model checker eliminates invalid candidate programs—by

matching the candidates behavior against the that of the unoptimized program—

that the synthesizer enumerates heuristically using a guided search. Loops are han-

dled incompletely, by unrolling or by using a predefined skeleton. Arguably, software

developers are more comfortable with partial programs with holes than with formal

specifications, and this was the motivating factor behind the design of the Sketch

system. While such a design choice makes program synthesis accessible, which is

very important, but at the same time, it limits the technical machinery that can be

applied to “resolve” the sketch. In particular, the lack of a formal specification of

the intended behavior means that proof-theoretic synthesis cannot directly be ap-

plied to solving sketches. On the other hand, PINS can certainly be used to resolve

sketches—possibly more efficiently than using a counterexample generating model

checker or even combined with the existing solution strategy.

Recently, a novel approach for synthesis of bit vector programs using input-

output examples has been proposed [152]. The techniques assumes the presence of

an oracle, e.g., a human user, that is queried by the system for the validity of an

input-output pair. The information from the oracle is used to guide the search and

prune it appropriately until only a single solution remains. In the context of using

traces to prune the search space, this approach is similar to Sketching (that uses

concrete counterexample traces), and to a lesser degree to PINS (that uses symbolic

traces). It is different from Sketching in that it can use both positive and negative
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instances to prune the search space. It is different from PINS in that it works for

acyclic program fragments while PINS automatically decides which traces to explore

in a program with loops.

8.2.3 A Liberal View of Synthesis

Deriving programs with proofs Dijkstra [92], Gries [130], and Wirth [267] advocated

that programmers write programs that are correct by construction by manually

developing the proof of correctness alongside the program. Because techniques for

efficient invariant inference were unavailable in the past, synthesis was considered

intractable. For instance, Dijkstra wrote, “I should [sic] like to stress that by using

the verb ‘to derive’ I do not intend to suggest any form of automatism [sic], nor

to underestimate the amount of mathematical invention involved in all non-trivial

programming. (On the contrary!) But I do suggest the constructive approach

sketched in this paper as an accompanying justification of his inventions, as a tool

to check during the process of invention that he is not led astray, as a reliable

and inspiring guide.” [91] While automation was unavailable when Dijkstra wrote

this, theoretical and engineering developments since then indicate that synthesizing

programs and proofs simultaneously may be possible.

Extracting program from proofs The semantics of program loops is related to math-

ematical induction. Therefore, an inductive proof of the theorem induced by a pro-

gram specification can be used to extract a program [195]. Using significant human

input, theorems proved interactively in the Coq have a computational analog that
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can be extracted [25]. The difficulty is that the theorem is of the whole program,

and proves that an output exists for the specification. Such a theorem is much more

difficult than the simple theorem proving queries generated by the verification tool.

Additionally, it is hard to generate good code since the notion of a good proof is

hard to define.

Model checking-based synthesis of reactive systems Perhaps the most directly re-

lated work on fully automatic program synthesis are the proposals from the model

checking community for automatic synthesis of reactive systems. See Moshe Vardi’s

slides for an overview [257]. Here synthesis is interpreted as the realizability of an

linear time logic (LTL) specification of the system. While it has been shown that

synthesis in this manner is decidable, the complexity is doubly exponential [217].

(One exponent comes from the translation of the specification to a Büchi automata,

and the second comes from determinization.) Since these results were discovered,

significant effort has been spent on optimizing constructions [156]. For limited

classes of systems, e.g., supervisory controller synthesis [225], and controller synthe-

sis to timed systems [7], linear time results were shown. While these results show

promise for the case of circuit synthesis (the synchronous case), they do not directly

translate to programs (the asynchronous case). A reduction from the asynchronous

to the synchronous case incurs unacceptable exponential blowup [218]. Recent work

in the domain attempts to both over-approximate and at the same time heuristically

underapproximate to infer the realizability of the specification.
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Hardware synthesis Synthesizing circuits is a theoretically easier, but still very

challenging, task compared to program synthesis. Circuit synthesis has also been

explored more deeply. First described as Church’s problem [55], it has more recently

been addressed in the model checking community with mixed success [35, 37]. Prac-

tical tools that can synthesize Verilog descriptions from specifications have been

built [157, 196]. Due the lack of loops, the hardware synthesis problem does not

encounter the hurdles that we had to overcome. The work presented in this dis-

sertation has different technical challenges and so we defer giving a more detailed

account of work on hardware synthesis, but refer the reader to discussions elsewhere

on Church’s problem [254], and on hardware synthesis [170, 78, 242].

Program repair and game-based synthesis Synthesis can be viewed as a game. The

idea is to define to a game between the environment and the synthesizer where the

winning strategy for the synthesizer corresponds to the synthesized program [158].

Henzinger et. al. have explored quantitative synthesis, where instead of asking only

whether a program meets the specification, they also ask how close is its behavior

to the specification [36]. Such an approach has been applied to the synthesis of

robust systems [38], for fault-localization and fixing [155], and to C programs using

predicate abstraction [131].

Deriving inverses as domain-specific synthesis Previous strategies for deriving pro-

gram inverses can be categorized into two classes. The first are strategies that

require the complete proof for the original program (conceptually a proof of in-
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jectivity), from which they provide proof rules to syntactically construct the in-

verse [89, 54, 130, 101]. However, this approach was proposed in the context of

manually deriving the inverse for small programs, and we believe it is unlikely to

scale to larger programs or to be amenable to automation. The second are grammar-

based strategies that show that if the output of the original can be parsed using a

deterministic grammar, then that approximates the original computation and can

be used to derive the inverse [119, 270]. The limitation of this technique is that

grammar-based approaches need to work with unambiguous, decidable grammars,

which for all but the most trivial benchmarks is not possible.

Automatic programming The artificial intelligence community has explored auto-

matic programming which resembles program synthesis. Approaches to automatic

programming typically do not attempt to generate the program, but rather assem-

ble it intelligently using already-existing components. Systems that follow a deduc-

tive methodology to such assembly include a genetic programming-based approach

for composing abstract components using views (mappings between concrete types

and abstract types) [212], an approach constructing astronomical data-manipulating

programs [249], and even question answering [262], all reusing underlying domain-

specific components. Systems also exist that follow a more inductive approach

by generalizing from input-output examples [187, 79]. These are a natural fit for

the kinds of techniques, e.g., those that infer explanations for a given set of data

points, available in machine learning and the artificial intelligence community. Sys-

tems in this category include tools that can synthesize certain LISP programs [251],

316



language-independent extensions [167, 236, 166], and logic programs [115, 113].

Simultaneous proof and program refinement When we fail to prove a property for

a given program under a given abstraction, we refine the abstraction and try again,

e.g., in model checking using counterexample guided abstraction refinement (CE-

GAR) [59, 57], or the same done lazily [148], or in an abstract interpretation frame-

work [133]. Vechev, Yahav, and Yorsh propose an approach that refines the program

in addition to the proof to synthesize both simultaneously [258]. They address the

problem in the context of synthesizing synchronization, but the idea has applicability

to general synthesis as well. While promising, refining the program simultaneously

has the disadvantage of removing the monotonic progression that proof refinement

implicitly contains. A careful choice is required in picking whether to refine the

abstraction or the program when the verification fails for the current program and

abstraction.

Synthesizing concurrency Concurrent programs are notoriously hard to design, and

thus are a very promising target for automatic synthesis. Clarke and Emerson’s

seminal work on model checking was in fact proposed as a means of synthesizing

synchronization skeletons [58]. From the same community, Pnueli and Rosner also

addressed the problem of synthesizing distributed reactive systems from LTL spec-

ifications [215].

Vechev et. al. developed CGCExplorer [260, 261] for automatically exploring

the space of concurrent garbage collectors and automatically synthesizing provably
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correct versions. They later extended it to a system called Paraglide for general syn-

thesis [259]. Paraglide utilizes a model checker to validate candidate programs, much

like the counterexample-guided inductive synthesis solution strategy for Sketching

by Solar-Lezama et. al. [246]. Notably, Solar-Lezama’s work also addresses the

problem of synthesizing concurrent data structures.
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Chapter 9

Conclusion

“What is the use of a new-born
infant?”

— Benjamin Franklin1

We set out to show that we can build expressive and efficient techniques for

program reasoning and program synthesis by encoding the underlying inference tasks

as solutions to satisfiability instances. Reducing these problems to satisfiability

allows us to leverage the engineering advances in current SAT and SMT solvers to

build powerful program reasoning and synthesis tools. We have shown that it is

possible to restrict attention to particular classes of proofs and programs (through

templates) and to be able to automatically reason about and synthesize programs

in those restricted classes.

We described algorithms that can reduce programming analysis problems to

satisfiability instances over linear arithmetic and predicate abstraction. We have

shown that using a satisfiability-based approach we can infer not only expressive

1When asked what was the use of a balloon, while he was the American Plenipotentiary to
France; early 1780s.
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invariants for verification, but also weakest pre- and strongest postconditions. Being

able to infer expressive invariants will allow developers to build certifiably correct

software. Being able to infer pre- and postconditions will allow developers to able

to use and provide formal specifications of their software.

We have also shown how program synthesis can be viewed as generalized ver-

ification, allowing us to use the verifiers we developed for reasoning as synthesizers.

We introduced the notion of a scaffold as a synthesis specification from which novel

programs can be synthesized. A scaffold specifies a program as a template of its

control flow, domain of expressions that appear in the program, and constraints on

resources available. Using this approach, we envision that developers can delegate

the task of building critical fragments of their codebases to a synthesizer that will

automatically generate verified fragments that are guaranteed to be correct.

Lastly, we also showed how to construct a synthesizer that is inspired by

testing. We leverage the core solving technology we developed for reasoning, and

using symbolic traces as proxies for verification conditions, we show that we can

synthesize programs by exploring a sufficient number of relevant paths through a

template program. Just as we can view testing as an approximation to formal

verification, this pragmatic synthesis approach can be viewed as using symbolic

testing to generate programs with approximate guarantees.

Going forward, we envision that we can build on the foundations laid in this

dissertation to develop techniques that can make programming easier, if not virtually

redundant. Programming will be made easier by automatic and mechanized rea-

soning about programs. Tools will be able to automatically verify the correctness of
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programs, and for erroneous programs give the programmer the weakest conditions

under which it fails. These tools will be able to automatically infer relevant pre- and

postconditions that can be used as specifications or interfaces against which other

components can be built. The task of programming will be reduced through auto-

matic program synthesis. Programmers will write only part of the software, while

the system will generate the provably-correct completion. Additionally, automatic

program synthesis also holds the potential to generate new and novel algorithms.
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Appendix A

Correctness of Satisfiability-based
Algorithms

A.1 Linear Arithmetic: Correctness of Precondi-

tion Inference

Lemma A.1 (Nc = Immediately weaker neighbors) For all relations I ′ that

are weaker than I, there is some relation I ′′ ∈ Nc(I) such that I ⇒ I ′′ ⇒ I ′.

Proof: Suppose not, i.e., ∃I ′ weaker than I such that 6 ∃I ′′ ∈ Nc(I) such that

I ⇒ I ′′ ⇒ I ′. We first assume that the number of non-redundant conjuncts in

both I and I ′ is the same. This assumption is valid because only a finite number

e1

e2
e4

e1 + 1
c
e2

e1 + 1
c
e3

e3

Figure A.1: Importance of staying within templates
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of conjuncts (specified by the template) are permitted for the relations in the

system. Otherwise it is possible to go a more expressive domain of relations and

obtain weaker relations. Such an example is shown in Figure A.1: If both e1+ 1
c
e3

and e1 + 1
c
e2 can be added to the system then certainly a weaker relation can be

constructed for which there is no element in Nc that is strictly stronger.

Then, without loss of generality, we can assume that I ′ is weaker only in the first

conjunct (because such a relation is stronger than others with more conjuncts

weaker than the corresponding conjunct in I). Thus I ′′ is obtained by weakening

the first conjunct e1 ≥ 0 in I by a small amount. This can be done in two ways:

either by adding an infinitesimally small constant δ to e1 or by rotating e1 by an

infinitesimally small amount δ along the intersection of e1 and el. By assumption

we know that 6 ∃I ′′ ∈ Nc(I) such that I ′′ ⇒ I ′, and if I ′ is obtained by adding a

small constant, then δ < 1
c
, which leads to a contradiction since 1

c
is the smallest

constant expressible in the system. On the other hand, if I ′ is obtained by an

infinitesimally small rotation then the smallest rotation possible is lim
ε→0

e1 + εel,

which we approximate by e1 + 1
c
el. Again, if the rotation by δ is smaller, then

δ < 1
c
, which again leads to a contradiction.

�

Using the proof neighborhood N we will prove that, for program points not

inside loops, the maximally weak preconditions (i.e., pointwise-weakest relations) for

straight line fragments can be computed without iteration using locally pointwise-

weakest relations. The proof makes use of a notion of the consistency of a relation
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with respect to certain others, as we defined below.

Definition A.1 ((I1, . . . , Ik)-consistent) A relation I, which is a conjunction of

inequalities, is called (I1, . . . , Ik)-consistent if I ⇒ Ii (or equivalently, I ∧ ¬Ii is

unsatisfiable) for all 1 ≤ i ≤ k.

Now we relate the definition above to the proof neighborhood Nc in the follow-

ing lemma, and use it to connect pointwise-weakest relations and locally pointwise-

relations in the theorem that follows.

Lemma A.2 Let I1, . . . , Im be some given conjunctions of inequalities. Let I be

some conjunction of inequalities that is (I1, . . . , Im)-consistent. I is the weakest

conjunctive relation that is (I1, . . . , Im)-consistent iff for all I ′′ ∈ Nc(I), it is the

case that I ′′ ∧ ¬Ij is satisfiable for some 1 ≤ j ≤ m.

Proof: The forward direction of the lemma is trivial. If I is the weakest relation

that is (I1, . . . , Im)-consistent then there cannot exist a strictly weaker relation

I ′′ that is (I1, . . . , Im)-consistent. Since all I ′′ ∈ Nc(I) are strictly weaker it has

to be the case that I ′′ ∧ ¬Ij is satisfiable for some 1 ≤ j ≤ m.

We now show the reverse the direction of the lemma. From Lemma A.1 we know

that for all relations I ′ weaker than I it is the case that ∃I ′′ ∈ Nc(I) such that

I ⇒ I ′′ ⇒ I ′. Let I ′ be the given weaker relation under consideration, and let

I ′′ be a relation in Nc(I) such that I ′′ ⇒ I ′. Also, let u be the index for which

I ′′ ∧ ¬Iu is satisfiable. Since I ′′ ⇒ I ′ it has to be the case that I ′ ∧ ¬Iu is also
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satisfiable. And therefore the weaker relation I ′ is not (I1, . . . , Im)-consistent.

�

The neighborhood structure Nc has the following interesting property, which

implies that no iteration is required for obtaining a weakest relation at a cut-point

that lies outside any loop.

Theorem A.1 Let π be a program point that does not lie inside any loop. Then,

any locally pointwise-weakest relation (with respect to the neighborhood structure Nc)

at π is also a pointwise-weakest relation at π.

Proof: Let I be a locally pointwise-weakest relation with respect to Nc at π.

Let m be the number of paths to successor cut-points of π and let the weakest

preconditions of the paths (as defined in Section 2.2.1 for paths) corresponding

to them be I1, . . . , Im (i.e., ω(pi,j, Iπj
), where πj is the jth successor cut-point

and pi,j is the ith path connecting π and πj). The program verification condition

(Eq. 2.1) dictates that I ⇒ Ii for all 1 ≤ i ≤ m, i.e., I is (I1, . . . , Im)-consistent.

If I is also locally pointwise-weakest then that means that for all I ′′ ∈ Nc(I) it is

the case that I ′′∧¬Ij for some 1 ≤ j ≤ m. Therefore, from Lemma A.2, we know

that I is also the weakest relation that is (I1, . . . , Im)-consistent, which implies

that I is a pointwise-weakest relation at π.

�

Geometric Interpretation Lemma A.2 and Theorem A.1, and their proofs, have a

nice geometric interpretation. The task of finding a pointwise-weakest relation I at
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a program point outside any loop can be shown equivalent to the task of finding the

union of disjoint maximal convex regions that do not intersect with a given set of

convex regions. Lemma A.2 implies that any convex region that does not intersect

with a given set of convex regions is maximal iff moving any of its hyper-planes leads

to an intersection with one of the convex regions from the given set. The interesting

moves of a hyperplane involve either translation parallel to itself, or rotation along

the intersection with another hyper-plane.

A.2 Linear Arithmetic: Refined neighborhood

structure Nc,π

The neighborhood structure Nc defined in Section 2.4.1, and used above, works

well in practice. For sake of completeness we describe below a refined neighborhood

structure Nc,π that works better in some cases.

Refined neighborhood structure Nc,π The neighborhood structure Nc defined above

works well for two cases: (a) deducing pointwise-weakest relations at cut-points that

are not inside any loop (b) deducing pointwise-weakest relations in which the in-

equalities are independent of each other, i.e., a small change in one of the inequalities

does not require a change in any other inequality for the relation to remain con-

sistent. The two cases described above cover the majority of cases in practice. In

particular, they apply to the difficult benchmarks we experimented over, and also to

the independently inductive inequalities addressed in previous work (e.g., [62, 219]).
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However, for sake of completeness, we describe another neighborhood structure Nc,π

that works better for cases other than (a) or (b).

We have already seen an example that violates (a) in Figure 2.7. The presence

of the local minima forces us to iterate to obtain the global weakest precondition. An

example of case (b) requires that the relation have inequalities that are dependent on

each other. For instance, this would be the case when an equality expression x = c

is represented in terms of two inequalities (x ≤ c) ∧ (x ≥ c). The neighborhood

structure Nc,π is a refinement of Nc, i.e., Nc,π reduces to Nc for the two cases described

above.

For any relation I, Nc(I) includes all relations that are obtained from I by a

small weakening of one of its inequalities. In contrast, the Nc,π(I) includes all those

inequalities that are obtained from I by a small weakening of one of the independent

inequalities and an appropriate weakening of the dependent inequalities. Since we do

not know what these dependences are, one way to construct such neighbors is to find

a satisfying solution to the original system of constraints in which the independent

inequality is weakened slightly, and the independent unknown constants are forced to

be same as before. An unknown constant d in a template relation I is dependent on

an inequality in I at a program point π if changing the inequality in (any consistent

solution to) I requires changing the constant d to obtain another consistent solution.

In practice, use of neighborhood structure Nc,π requires a small constant num-

ber of iterations to obtain a pointwise-weakest relation by iterating over locally

pointwise-weakest relations.
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A.3 Predicate Abstraction: Correctness of Opti-

mal Solution Computation

Definition A.2 (Negatively-optimal solution) Let φ be a formula with both

positive and negative unknowns. Let P and N denote the set of positive and neg-

ative variables in φ, respectively, and let S|P and S|N denote the restriction of

the solution to the positive and negative maps, respectively. Then a solution S is

negatively-optimal if S|N is an optimal solution for φ[S|P ].

Lemma A.3 (Modifying solutions (A)) If S is a solution to a formula φ, then

so is S ′, where S ′ is obtained from S by either taking a subsets of the positive

assignments, or supersets of the negative assignments. Formally, let V be the set of

all unknown in φ, and let S be a solution to φ. Then S ′ is also a solution if it is the

case that ∀ρi∈V S ′[ρi] ⊆ S[ρi] ∧ ∀ηi∈V S ′[ηi] ⊇ S[ηi].

Proof: The proof follows directly from the definition of positive and negative

variables in a formula φ. In particular, recall that if v is a positive unknown in φ

and let Q1, Q2 ⊆ Q(v), then

∀S,Q1, Q2 : (Q1 ⇒ Q2) ⇒ (φS[v 7→ Q1] ⇒ φS[v 7→ Q2])

For the purposes of this lemma, we have Q1 is S[ρ] and Q2 is S ′[ρ], i.e., we have

S ′[ρ] ⊆ S[ρ] and so Q1 ⇒ Q2. Therefore, we know that φX[S[ρ]] ⇒ φX[S ′[ρ]]

for any positive unknown ρ, and where X is an assignment to the remaining

unknowns. By a similar argument, we know that φX ′[S[η]] ⇒ φX ′[S ′[η]] for any
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negative unknown η. This means that φ[S] ⇒ φ[S ′]. Since S and S ′ map each

unknown variable to a predicate set, and from the definition of S being a solution,

we know that φ[S] is true. Then for the implication to hold, we have φ[S ′] is true

too.

�

Lemma A.4 (Modifying solutions (B)) Let S− be a negatively-optimal solution

for φ. Let S−extra be identical to S− except that S−[ρ] ⊆ S−extra[ρ] for some positive

unknown ρ. Then if S−extra is also a solution to φ, then S−extra is negatively-optimal

too.

Proof: Again, from the definition of a positive variable ρ, we know that for

Q1, Q2 ⊆ Q(v)

∀S,Q1, Q2 : (Q1 ⇒ Q2) ⇒ (φS[v 7→ Q1] ⇒ φS[v 7→ Q2])

For the purposes of this lemma, we have Q1 is S−extra[ρ] and Q2 is S−[ρ]. Therefore,

we know that φX[S−extra[ρ]] ⇒ φX[S−[ρ]], where X is an assignment to the re-

maining unknowns as before. Since all the other positive unknowns are identically

assigned, we have that φX ′[S−extra|P ] ⇒ φX ′[S−|P ], where X ′ is some assignment

to the negative unknowns. But we know that S− is negatively-optimal for φ, i.e.,

X ′ is optimal for φ[S−|P ], which by definition means that removing any predicate

from any of the maps in X ′ makes S− not a solution. (Note that S− is X ′∪S−|P .)

It may very well be that S−extra is not a solution, but if it is then for any X ′′ that

is strictly weaker than X ′ leads to φX ′′[S−|P ] being false. Then because of the
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implication we just derived, it also means that X ′′ is not a solution for φ[S−extra|P ].

Consequently, S−extra (= X ′ ∪ S−extra|N) is also negatively-optimal.

�

We first prove a few auxiliary lemmas about the properties of Merge and

MakeOptimal. Implicit in the definitions of Merge and MakeOptimal is the assump-

tion that right before returning the sanitize their solutions, i.e., add any predicate

from Q(ρ) that is implied by σ[ρ] and removing any predicate from σ[η] that is

implied by the remaining. This allows us to treat superset as the implication re-

lation, and treat predicates as independent of each other. We assume that the

predicate sets contain at least one true for positives, essentially the empty set, and

they contain false for the negatives, or some set of predicates that can imply false.

Consider a formula φ and its positive and negative unknowns. Each of the pos-

itive unknowns defines its own space, and each predicate assignment to the unknown

defines a half-hyperplane in that space. The set S (Line 8 in OptimalSolutions)

as constructed, contains for all possible single hyperplane combinations (one from

each space) the weakest assignments to the negatives (i.e, negatively optimal). Let

us call each of the elements of S a basis.

Definition A.3 (Basis set) Given a map σ = {ρi 7→ Qi}i=1..n ∪ {ηi 7→ Qi}i=1..m,

let us call σ|+ve as the first set of maps (for the positive unknowns) and σ|−ve the

second set of maps (for the negative unknowns).

Let C = σ[ρ1] × σ[ρ2] × . . × σ[ρn] denote the set of all combinations of the

positive maps. We call a collection of basis elements X(⊂ S) a basis set for σ, if
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for each c ∈ C, the map formed by c augmented with σ|−ve has an element in x ∈ X

such that (1) x|+ve = c|+ve, and (2) c|−ve ⇒ x|−ve.

Lemma A.5 Every solution has a basis set.

Proof: Let σ be the solution. Consider the combinations {ci}i of the positives

σ|+ve. Since each is a pointwise subset of σ|+ve, by Lemma A.3, we know that each

combination (with identical negatives), i.e., σi(= ci ∪ σ|−ve), is also a solution.

Now consider an individual σi and its positives σi|+ve. From the property of

OptimalNegativeSolutions (Corollary A.1) in constructing negatively-optimal

solutions, we know that the negatives σi|−ve of the solution have to be strictly

stronger, i.e., a superset, of the basis with the positives equal to σ|+ve. Therefore,

σ has a basis set.

�

The reverse, that a set of basis elements can be lifted to a solution, also holds.

Lemma A.6 (Lifting basis elements) A map σ is a solution if it has a basis set.

Proof: Let X(⊆ S) be a set of basis elements. We will show that σ′
.
= ]x∈Xx

is a solution. Then if X is a basis set for σ, then by Lemma A.5 we know that

σ is just σ′ with additional elements in the negatives. Then, by Lemma A.3 we

know that if σ′ is a solution, then so is σ.

To show that σ′
.
= ]x∈Xx is a solution, we present a geometric proof. Con-

sider the assignment pos1
.
= {ρ1 7→ {q}, ρ2 7→ {q′}, . . , ρn 7→ {q′′}}, where
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q ∈ Q(ρ1), q
′ ∈ Q(ρ2), . . , q

′′ ∈ Q(ρn) to the positive unknowns in a basis ele-

ment x. This assignment defines a half-space in an n-dimensional space. Each

positive unknown defines a dimension and a predicate induces a half-space. Let

us say that pos2 is another assignment to the positives. Their disjoint union

pos1 ] pos2 corresponds to the intersection of the half-spaces. Corresponding to

each of pos1 and pos2 we have negatively-optimal solutions neg1 and neg2, re-

spectively, that themselves define half-spaces in the dimensions defined by the

negative unknowns. We now compare the negative solutions for the formulae

φ[pos1] and φ[pos1 ] pos2], where φ is the original formula. It has to be the case

that for comparable solutions the negatively-optimal solutions to φ[pos1 ] pos2]

are strictly stronger than φ[pos1] (and also φ[pos2]). In particular, one solution

to the negatives in φ[pos1 ] pos2] would be neg1 ] neg2. By induction, this ar-

gument generalizes to disjoint unions of multiple solutions the result of which is

guaranteed to be a solution.

�

Lemma A.7 (Merge) The procedure Merge returns the join σ1]σ2 of two maps σ1

and σ2, if the join is a valid solution, else it indicates failure by returning ⊥. Here

] indicates the piecewise union of two maps.

Proof: The first part, i.e, it return the join ] if it does not fail, is trivial from

the definition of the procedure. We just need to show that if it does not fail, then

the returned value is a valid solution.
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A corollary to Lemma A.3 is that, compared to a solution X, any X ′ that is

weaker in the positive or stronger in the negatives is also a solution. (By simple

translation of the superset relation to implication.) The set T is a restriction of

the basis set to those whose negatives are weaker than the current join. Thus

since T contains only those basis whose negatives are weaker, the X ′ we have is

stronger and will be a solution if the positives are kept unchanged.

Lastly, checking individually for positives, within T (which guarantees solutions

consistent for the negatives), we make sure that every combination of positives

had a valid negative map, ensuring that their accumulation is also a valid solution

(Lemma A.5).

�

Lemma A.8 Let σ′ be in S with σ′|+ve = {ρk 7→ p} ∪ {ρi 7→ {true}}i6=k and

σ ] {ρk 7→ {p}} is a solution, and σ|−ve ⇒ σ′|−ve, then calling the procedure Merge

with σ, σ′ and S does not fail.

Proof: From σ|−ve ⇒ σ′|−ve we know that (σ ] σ′)|−ve ⇒ σ′|−ve. We also have

from assumption that σ′ ∈ S and therefore σ′ is in T (Line 3). In the join, the

positives are σ|+ve ] {ρk 7→ {p} and the negatives are exactly as strong as σ|−ve.

Because σ ] {ρk 7→ {p}} is a solution, we know that some basis set exists for the

enumerated combinations of the positives, and hence the conditional on Line 4

evaluates to true. Therefore the procedure does not fail (Lemma A.5).

�
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Lemma A.9 If σ ] {ρk 7→ {p}} is a solution to φ (whose negative unknowns are

N), then the negatively-optimal solution to φ[ρk 7→ {p}][ρi 7→ {true}]i6=k is a subset

of σ|N .

Proof: Again, from the definition of a positive variable ρ, we know that for

Q1, Q2 ⊆ Q(ρ)

∀S,Q1, Q2 : (Q1 ⇒ Q2) ⇒ (φS[ρ 7→ Q1] ⇒ φS[ρ 7→ Q2])

For the purposes of this lemma, we have Q1 is σ|P ] {ρk 7→ {p}} and Q2 is

{ρi 7→ {true}}i6=k ∪ {ρk 7→ {p}}. Therefore, we know that φX[σ|P ] {ρk 7→

{p}}] ⇒ φX[{ρi 7→ {true}}i6=k ∪ {ρk 7→ {p}}], where X is an assignment to the

remaining (negative) unknowns. If X is the negatively-optimal solution, then the

consequent of the implication is true under it and for every X ′ ⊂ X (pairwise

subset) is it false. That implies that for every X ′ that is a subset the antecedent

also has to be false, i.e., it would not form a valid solution. Therefore σ|N has

to be a superset of the negatively-optimal solution X.

�

Lemma A.10 (MakeOptimal) The MakeOptimal procedure has the property that

corresponding to a negatively-optimal σ, the procedure returns an optimal solution.

Proof: We will show that three invariants hold about the loop from Lines 2–4 in

MakeOptimal: (1) no extraneous predicates are added to the negative solutions,

i.e., the negative solutions remain maximally-weak, (2) σ is a solution in every
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iteration, and (3) on termination, there is no predicate that can be added to

σ while still ensuring that it is a solution. Using invariants (1) and (2) and

Lemma A.4 we get the additional invariant that the solution σ is negatively-

optimal in every iteration. Adding (3), we get that, at termination, the solution

is also optimal.

We now show that the three properties hold of the loop. For (1), notice that the

loop only calls Merge with an element from set T , which in turn only contains

solutions that are pointwise, at all negative unknowns, weaker than σ. There-

fore, the join ] of a set weaker than itself, yields the same set, and therefore

the negatives remain maximally-weak. For (2), notice that the loop leaves σ un-

changed if the merge failed, which happens if the merged result is not a solution

(Lemma A.7), and therefore σ is only updated with valid solutions.

For (3), we need a little bit more effort. Suppose there exists a predicate p, not

already there, that can be added to some positive unknown ρk’s map, while the

result σ]{ρk 7→ {p}} still being a solution. If that is the case, then by Lemma A.3

we know that N]P is also a solution, where P is {ρk 7→ {p}}]{ρi 7→ {true}}i6=k,

and N is σ but restricted to the negative unknowns. (true is equivalent to the

empty set, i.e., a subset of every set.) Also, let Nstart be σ at the start of the

loop restricted to the negative unknowns. Note that by (1), N is neither weaker

or stronger than Nstart.

Now notice that the negatively-optimal map N ′ corresponding to φ[P ] has to be

a subset of N or else σ]{ρk 7→ {p}} cannot be a solution (by Lemma A.9). Being
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a subset of N means that it is at least as weak as N . From the above observation

about Nstart it also means that N ′ is at least as weak as Nstart too. If that is the

case, then N ′ ] P must have been in T and therefore must have been merged

with σ at some point. Since the map for ρk does not contain p, it implies that

the merge did not yield a valid solution. But this contradicts Lemma A.8, which

states that a merge over σ′ (= N ′ ] P and ∈ S) and σ does not fail. Therefore,

no such predicate can exist.

�

Before proving the general lemma about the correctness of OptimalSolutions

(Lemma A.3), we prove a restricted version first. The theorems make use of the

correctness of OptimalNegativeSolutions as described by Theorem A.13.

Theorem A.2 (Correctness of OptimalSolutions for restricted formulae) Let

φ be a formula with positive and negative unknowns with the positive and negative

unknowns uncorrelated in the following manner. If S is an optimal solution to φ,

then any S ′ with positive variables assigned subsets (compared to S’s positives) is

only a solution if the negatives are assigned supersets (as compared S’s negatives).

Let {vi}i is the set of all unknown variables in φ and let S be the set of

all possible assignments to vi’s, i.e., 2Q(v1) × 2Q(v2) × 2Q(vn). Then the procedure

OptimalSolutions(φ,Q) returns the set

{S | S ∈ S and S is an optimal solution for φ with respect to Q}

Proof: For the sake of brevity in the proof, we assume that φ contains one
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positive ρ and one negative unknown η. The proof works exactly as is for the

case of multiples, with required conjunctions, unions, added in appropriate places.

Also, let us use the notation


p1 . . pn

q1 . . qm

 to denote the solution map {ρ 7→

{p1 . . pn}, η 7→ {q1 . . qm}}, where each pi ∈ Q(ρ) and each qi ∈ Q(η). We prove

that for a solution S is in the output set of OptimalSolutions iff it is optimal.

We prove each direction in turn:

“⇒” From Corollary A.1 (described later), we know that the calls to the procedure

OptimalNegativeSolutions produce negatively-optimal solutions. From the

optimality of the output values of MakeOptimal (Lemma A.10), all solutions

in R after Line 8 are optimal. The only other additions to R are again out-

puts of MakeOptimal (added through the call to Saturate on Line 9), and

consequently, at the end R only contains solutions that are optimal.

“⇐” Let


p1 . . pn

q1 . . qm

 be the optimal solution to φ. Then we know from Lemma A.3

that


p1

q1 . . qm, . . , q
′
m

,


p2

q1 . . qm, . . , q
′′
m

, . . ,


pn

q1 . . qm, . . , q
′′′
m

 are there-

fore all solution too (not optimal though), where each set of assignments to

the negatives is a superset as indicated by the q′m, q
′′
m, . . , q

′′′
m. Line 6 in the

procedure accumulates optimal negative solutions for individual predicates

p1, p2, . . , pn. From Lemma A.13 (correctness of OptimalNegativeSolutions),

we know that the outputs will be the minimal sets to the negative unknown.
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By virtue of


p1 . . pn

q1 . . qm

 being an optimal solution and the uncorrelated φ we

consider in this theorem, this means that the output at Line 6 will be exactly
pi

q1 . . qm

.

That means that all of


p1

q1 . . qm

,


p2

q1 . . qm

, . . ,


pn

q1 . . qm

 are in the

solution set S right before line 8 in OptimalSolutions. From Lemma A.10,

this implies that each one of these elements in S will be lifted to


p1 . . pn

q1 . . qm

.

Therefore the set R will contain


p1 . . pn

q1 . . qm

 after Line 8. Since the procedure

Saturate (called on Line 9) does not delete elements from R, this solution will

be in the output of the procedure.

�

Lemma A.11 Let S, S ′ be optimal solutions. The following hold separately: (a) if

S|+ve ⊇ S ′|+ve, then S|−ve 6⊆ S ′|−ve; (b) if S|−ve ⊆ S ′|−ve, then S|+ve 6⊇ S ′|+ve;

Proof: Both cases are similar and straightforward:

(a) Suppose not, i.e., S|−ve ⊆ S ′|−ve. From Lemma A.3 we know that S|+ve∪S ′|−ve

is a solution (as we are just adding some predicates to some negative assign-

ment in the solution S = S|+ve ∪ S|−ve). But this contradicts the optimality

of S ′|+ve ∪ S ′|−ve, i.e., that S ′|+ve contains as many predicates as possible.
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(b) Suppose not, i.e., S|+ve ⊇ S ′|+ve. From Lemma A.3 we know that S ′|+ve∪S|−ve

is a solution (as we are just removing some predicates from some positive as-

signment in the solution S = S|+ve∪S|−ve). But this contradicts the optimality

of S ′|+ve ∪ S ′|−ve, i.e., that S ′|−ve contains as few predicates as possible.

�

Claim A.1 (Every solution can be split on the negatives) If σ is a solution

then there exist σ1, σ2 solutions that are decompositions of σ, i.e., σ1|−ve ∪ σ2|−ve =

σ|−ve and σ1|+ve ∪ σ2|+ve ⊇ σ|+ve.

Proof: We present a geometric proof as we did for Lemma A.6. Consider the

assignment neg1
.
= {η1 7→ {q11, q12, . .}, η2 7→ {q21, q22, . .}, . . , ηn 7→ {qn1, qn2, . .}},

where qij ∈ Q(ηi), to the negative unknowns. This assignment defines an inter-

section of half-spaces in an n-dimensional space. Each negative unknown defines

a dimension and a predicate induces a half-space. Multiple predicates induces

an intersection of half-spaces. Let neg2 is the other assignment to the negatives.

Their disjoint union neg1]neg2 corresponds to the intersection of the half-spaces.

Corresponding to each of neg1 and neg2 we have optimal solutions pos1 and pos2,

respectively, that themselves define half-spaces in the dimensions defined by the

positive unknowns.

We now compare the optimal positive solutions for the formulae φ[neg1] and

φ[neg1 ] neg2], where φ is the original formula. It has to be the case that for

comparable solutions the optimal solutions to φ[neg1 ]neg2] are strictly stronger
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σ2

σ1

Figure A.2: Illustrating the decomposition of the negative solution.

than φ[neg1] (and also φ[neg2]). In particular, one solution to the negatives in

φ[neg1]neg2] would be pos1]pos2. Additionally, since any subset of the positives

is also a solution, by Lemma A.3, we have that σ1|+ve ] σ2|+ve ⊇ σ|+ve.

�

Example A.1 It is instructive to consider an example formula φ
.
= η ⇒ ρ. The

one negative unknown η defines a dimension and assignments of predicates define

subspaces in that dimension, as shown in Figure A.2. Now consider partial solution

σ
.
= {η 7→ {−10 < x, x < 10,−5 < y, y < 5}}, σ1

.
= {η 7→ {−10 < x,−5 < y}} and

σ2
.
= {η 7→ {x < 10, y < 5}}. Notice that the (ρ) solutions to φ[σ|−ve] can include

predicates implied by −10 < x < 10 ∧ −5 < y < 5, while those to φ[σ1|−ve] can only

include those implied by −10 < x ∧ −5 < y. This entails that the former predicate

map can be stronger than the latter.

Lemma A.12 Let


p1 . . ps1

q1 . . qt1

,


p1 . . ps2

q1 . . qt2

,. . be optimal solutions in R, with

∀i : {q1, . . , qti} ⊆ {q1, . . , qm} and ∀i : {p1, . . , psi
} ⊆ {p1, . . , pn}. Let X =

p1 . . pn

q1 . . qm

 also be an optimal solution, and let {p1, . . , pn} = ∪i{p1, . . , psi
}. Then

X ∈ Saturate(R,S).
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Proof: From Lemma A.7 we know that the procedure Merge returns the disjoint

union σ1 ] σ2 of its argument solutions σ1 and σ2, if σ1 ] σ2 is indeed a valid

solution. Therefore, we just need to show that there exists a decomposition of

X as (((σ1 ] σ2) ] σ3) . . ] σn), such that each subexpression is a valid solution.

(Technically, the decomposition is lift(lift(lift(σ1 ] σ2) ] σ3) . . ] σn), where

lift indicates the augmenting of the positives in some σ to the optimal through

a call to MakeOptimal(σ, S). Additionally, we would need to worry about early

termination of the outermost loop in Saturate on Line 1 and the conditional

on Line 4. We defer these concerns until later.) This decomposition essentially

means that there is a binary tree (of two way splits, on both the positives and

negatives) such that every node in the tree is a valid solution.

We prove that such a binary tree exists by showing that every optimal solution

can be decomposed into two solutions that are themselves optimal, i.e., for every

σ there exists σ1, σ2 such that σ = σ1]σ2 and all three are optimal. Suppose such

a decomposition is not possible. Since for the negatives any superset if always

a solution, we consider the disjoint split of the predicates in σ−ve into Na and

Nb. If a decomposition is not possible then that implies that the optimal positive

solutions (which will have the maximal number of predicates they can have),

corresponding to every set of Na and Nb will not union up to σ+ve. For that to

be the case, all splits of σ−ve into Na and Nb, can have optimal positive solutions

that at max union up to a subset of σ+ve. But by Claim A.1, this means that σ

cannot be a solution—contradiction.
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�

Theorem A.3 (Correctness of OptimalSolutions) Let {vi}i is the set of all un-

known variables in φ and let S be the set of all possible assignments to vi’s, i.e.,

2Q(v1)×2Q(v2)×2Q(vn). Then the procedure OptimalSolutions(φ,Q) returns the set

{S | S ∈ S and S is an optimal solution for φ with respect to Q}

Proof: We build on the proof for the restricted case (Theorem A.2). The

proof of the forward “⇒” direction remains identical to the restricted case. The

reverse “⇐” direction needs more work, since now the output at Line 6 may have

solutions of the form


pi

q1 . . qt

, and the following cases arise

• {q1, . . , qt} ⊆ {q1, . . , qm}: From Lemma A.10, we know that for each of the

elements after Line 6, MakeOptimal returns an optimal solutions with the

same negatives and augmented positives. Since


pi

q1 . . qt

 is optimally-

negative, from Lemma A.10, we know that MakeOptimal will lift each pi to

the maximal number of predicates {p1 . . ps} that can occur. Now, because

both


p1 . . ps

q1 . . qt

 and


p1 . . pn

q1 . . qm

 are optimal solutions, by Lemma A.11

that {p1 . . ps} ⊆ {p1 . . pn}. Then by Lemma A.12, the theorem follows.

• {q1, . . , qm} ⊆ {q1, . . , qt}: By Lemma A.11 this case cannot arise as both
pi

q1 . . qt

 and


p1 . . pn

q1 . . qm

 are optimal solutions.
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• {q1, . . , qt} is orthogonal to {q1, . . , qm}: We leave this case as an exercise to

the reader.

�

Lemma A.13 (Correctness of OptimalNegativeSolutions) Let {ηi}i is the set

of all unknown variables in φ−, a formula that contains only negative unknowns, and

let S− be the set of all possible assignments to ηi’s, i.e., 2Q(η1)×2Q(η2)×2Q(ηn). Then

the procedure OptimalNegativeSolutions(φ−, Q) returns the set S−opt = {S− | S− ∈

S− and S− is an optimal solution for φ− with respect to Q}.

Proof: The procedure OptimalNegativeSolutions searches top to bottom in

a lattice ordered by the subset relation, i.e., with S1 v S2 ⇐⇒ S1 ⊇ S2.

(This ordering is more intuitive using the implication relation, i.e. S1 v S2 ⇐⇒(∧
s1∈S1

s1

)
⇒
(∧

s2∈S2
s2

)
) We prove that a solution S− is in the returned set for

the procedure iff it is in S−opt.

“⇒” By the enumeration over the lattice, i.e., construction, we know that the so-

lution S− output by the procedure has to be in S−. We just need to prove

that it is optimal too. Suppose not, then a solution S−1 with assignments one

of which is a strict subset is also a solution. Such a solution would be ordered

above S− in the lattice, i.e. S− v S−1 . But since the procedure does a top

to bottom search, it would have encountered S−1 and deleted its subtree if S−1

was found to be a solution. But since the subtree was not deleted (because
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an element, S−, from the subtree was output), we conclude that S−1 is not a

solution. Contradiction.

“⇐” Since S− is in S−opt we know that it is in S− and is also optimal. It will be in the

output of the procedure if every element on every path from it to the root (>,

i.e., the empty set) is not a solution, i.e., every element that is a strict subset

is not a solution. From the definition of optimality, and that S− is optimal,

we know that to be true. Hence S− is in the output of the procedure.

�

The following is a direct corollary of the above lemma.

Corollary A.1 (Producing negatively-optimal solutions) A solution is in the

output of OptimalNegativeSolutions iff it is negatively-optimal.

A.4 Predicate Abstraction: Correctness of the

Reduction to SAT

We first show the boolean encoding for each individual verification condition

is sound. The proof relies on Lemma A.6 concerning the lifting of basis elements to

solutions.

Lemma A.14 (Correctness of VC encoding) An assignment that satisfies the

boolean formula ψδ,τ1,τ2,σt (Eq. (3.7)) induces a map that is a solution to the verifi-

cation condition corresponding to δ, τ1, τ2, σt.
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Proof: Let Sbool be some satisfying assignment to the variables bvi
q that appear

in ψδ,τ1,τ2,σt . Then we show that S = {vi 7→ {q | q ∈ Q(vi), Sbool[b
vi
q ] = true}}i is a

solution to, i.e., it satisfies, the corresponding VC formulae. From the assumption

that the predicate map for every positive ρi contains the predicate true, the

boolean assignment has at least one boolean bρi
q assigned true for some q. Since

Eq. (3.7) is satisfied, we know that for each of the combinations of the positives,

the assignment has at least as many elements in the negatives such that the

corresponding basis element is a solution. This means that the corresponding

map has a basis set, and by Lemma A.6 we infer that the map is a solution to

the verification condition.

�

Theorem A.4 (Correctness of SAT encoding) The boolean formula ψProg (from

Eq. (3.8)) is satisfiable iff there exists an invariant solution for program Prog over

predicate-map Q.

Proof: We prove each direction, of ψProg is satisfiable ⇔ invariant solution

exists, in turn:

⇒ If ψProg is satisfiable that implies that each conjunct in Eq. (3.8) is satisfied

by some assignment which in turn means that each conjunct in Eq. (3.7) is

satisfied by the assignment. Let Sbool be some satisfying assignment to the

variables bvi
q that appear in ψProg. Then we show that S = {vi 7→ {q | q ∈

Q(vi), Sbool[b
vi
q ] = true}}i is an invariant solution, i.e., it satisfies each of the VC
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formulae. By Lemma A.14, we know that any satisfying solution to Eq. (3.7)

induces a solution to the corresponding VC. Since Sbool simultaneously satisfies

all clauses generated through Eq. 3.7, it induces a map that simultaneously a

solution all VCs—therefore an invariant solution.

⇐ Let S = {vi 7→ Qi}i be the invariant solution. Then we show that the map

Sbool = {bvi
q 7→ true | q ∈ Qi}i ∪ {bvi

q 7→ false | q ∈ Q(vi) \Qi}i is a satisfying

assignment to ψProg. We show that S individually satisfies each conjunct in

Eq. (3.8) which in turn means that it satisfies each conjunct in Eq. (3.7). From

the presence of the predicate true in the predicate sets, we know that each

positive is assigned some predicate by the invariant solution.

Since S is an invariant solution, it satisfies each of the verification conditions

of the program. Consider the formula VC(〈τ1, δ, τ ′2〉). By Lemma A.5, we

know that the solution S to the formula has a basis set. By Definition A.3

we have that the basis set contains elements whose positives are the (single-

element) enumerations and the negatives are weaker than those of S. Each

element of the basis set satisfies the VC formula as well. The implications in

Eq. (3.7) encode exactly this basis set. It states that for each enumeration of

the positives (antecedent), at least one of the optimally-negative solutions be

valid (consequent). Thus for all positive enumerations in S the corresponding

boolean indicators will be set to true and we know that at least one disjunct

in the consequent will be true for the induced assignment.

�
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X. Rival. The ASTRÉE analyzer. In Proc. of the European Symposium on
Programming (ESOP’05), volume 3444 of Lecture Notes in Computer Science,
pages 21–30, Edinburgh, Scotland, April 2005. Springer.

[75] Patrick Cousot. Proving program invariance and termination by parametric
abstraction, lagrangian relaxation and semidefinite programming. In VMCAI,
pages 1–24, 2005.

[76] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In POPL ’79: Proceedings of the 6th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 269–282, New
York, NY, USA, 1979. ACM.

[77] Patrick Cousot and Radhia Cousot. Abstract interpretation and application
to logic programs. J. Log. Program., 13(2&3):103–179, 1992.

[78] Philippe Coussy and Adam Morawiec. High-Level Synthesis: from Algorithm
to Digital Circuit. Springer Publishing Company, Incorporated, 2008.

[79] Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David
Maulsby, Brad A. Myers, and Alan Turransky, editors. Watch what I do:
programming by demonstration. MIT Press, Cambridge, MA, USA, 1993.

[80] Satyaki Das and David L. Dill. Successive approximation of abstract transition
relations. In LICS ’01: Proceedings of the 16th Annual IEEE Symposium
on Logic in Computer Science, page 51, Washington, DC, USA, 2001. IEEE
Computer Society.

[81] Satyaki Das and David L. Dill. Counter-example based predicate discovery in
predicate abstraction. In FMCAD, pages 19–32, 2002.

[82] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate
abstraction. In CAV ’99: Proceedings of the 11th International Conference

353



on Computer Aided Verification, pages 160–171, London, UK, 1999. Springer-
Verlag.

[83] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[84] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7(3):201–215, 1960.

[85] Leonardo de Moura and Nikolaj Bjørner. Efficient E-matching for smt solvers.
In CADE-21, pages 183–198, 2007.

[86] Leonardo de Moura and Nikolaj Bjørner. Z3, 2008. http://research.

microsoft.com/projects/Z3/.

[87] Leonardo Mendonça de Moura and Nikolaj Bjørner. Generalized, efficient
array decision procedures. In FMCAD, pages 45–52, 2009.

[88] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal deriva-
tion of programs. Communications of the ACM, 18(8):453–457, 1975.

[89] Edsger W. Dijkstra. Program inversion. In Program Construction, http://
www.cs.utexas.edu/~EWD/ewd06xx/EWD671.PDF, pages 54–57, London, UK,
1979. Springer-Verlag.

[90] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program
Semantics. Texts and Monographs in CS. Springer-Verlag, 1990.

[91] Edsger Wybe Dijkstra. A constructive approach to the program of program
correctness. BIT Numerical Mathematics, 8(3):174–186, Sep 1968.

[92] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR,
1976.

[93] Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, complete and scalable
path-sensitive analysis. In PLDI ’08: Proceedings of the 2008 ACM SIGPLAN
conference on Programming language design and implementation, pages 270–
280, New York, NY, USA, 2008. ACM.

[94] Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. Deny-
guarantee reasoning. In ESOP ’09: Proceedings of the 18th European Sympo-
sium on Programming Languages and Systems, pages 363–377, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[95] Vijay D’Silva, Daniel Kroening, Mitra Purandare, and Georg Weissenbacher.
Interpolant strength. In Gilles Barthe and Manuel V. Hermenegildo, editors,
VMCAI, volume 5944 of Lecture Notes in Computer Science, pages 129–145.
Springer, 2010.

354



[96] Joe W. Duran. Heuristics for program synthesis using loop invariants. In
ACM ’78: Proceedings of the 1978 annual conference, pages 891–900, New
York, NY, USA, 1978. ACM.

[97] Bruno Dutertre and Leonardo De Moura. The Yices SMT solver. Technical
report, SRI, 2006.

[98] Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.
MIT Press, Cambridge, MA, USA, 1999.
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