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In this dissertation, we address the problem of workload characterization in a wireless LAN
(WLAN). Workload is generated by applications and users trying to carry out some of their func-
tions. We attempt to capture such application- and user-level characteristics from the information
gathered at the MAC level. Developing an understandable description of the workload requires
making some abstractions at the application- and user-level. Our approach is to consider the work-
load in terms of “sessions”, where a session is an application- and user-level sequence of exchanges.
We attempt to capture the session by considering an inactive duration in the activities between a
wireless end-point and the network.

We consider workload to consist of a population of sessions for which a probability distribu-
tion function can be defined. Considering this distribution function to be a mixture distribution,
we attempt to find the components by using non-parametric clustering technique. As the number
of types of user level activities is not likely to be very large, we expect that we can associate a
distinct activity with each such component. In this work, we identify such components and analyze
the traffic and protocol characteristics of each component. Moreover, we empirically show that the
identified workload components can effectively represent the actual WLAN workload and its daily

variations.
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Chapter 1

Introduction

With the popularity of the IEEE 802.11 [1] based wireless networks, it has become increas-
ingly important to understand the characteristics of the wireless traffic. Many measurement studies
2, 3,4, 5,6, 7,8, 9, 10] have examined traffic characteristics in wireless networks. Most of the
studies have focused on characterizing wireless LAN (WLAN) usage patterns and performances,
which are useful for WLAN deployment and management, and workload generation.

The goal of this work is to characterize application- and user-level WLAN workload from
the actual WLAN measurement. Most of the previous measurement studies have exploited packet-
[9, 10], (TCP) connection- [2, 5, 7, 8], and host-level [4, 5, 7, 8, 9] information to obtain WLAN
usage characteristics. Those usage characteristics can be used for generating the workload at each
corresponding level. However, those levels do not properly describe such high level characteristics
as the characteristics of some related tasks that applications and users will carry out through the
network. As such application/user task-level characteristics are easy to understand, we can more
clearly understand the WLAN workload than at other levels. In this dissertation, we attempt to
identify distinct application-level tasks from measurement traces. Distinct user-level tasks can be
inferred from the distinct application-level tasks. Then, we attempt to provide the descriptions of
identified tasks to understand the WLAN workload.

To describe the workload at the application/user task-level, we need some abstractions of
the network activities. Our approach is to consider the workload in terms of “sessions”, where
a session is a sequence of exchanges which may be carried out for achieving some specific task.
Note that the session is different from the 802.11 session that is the duration between association
and disassociation for an AP. To be more precise, a session is defined to be a bi-directional traffic
unit with the same wireless end-point (host) as source or destination, that is separated from other

sessions by at least some timeout of inactive duration. By considering an inactive duration in the



activities of applications and users, we can identify a session of similar activities.

Modeling at the session-level gives several advantages over those at the packet- or connection-
levels: First, because a session attempts to describe similar application/user activities, it can better
represent distinct traffic characteristics. Second, distinct sessions (i.e., distinct application/user-
level tasks) may have different demands for the networking resources, such as bandwidth and CPU
consumption. Therefore, session-level modeling can also better represent the resource demands.
Finally, it can model the network workload of any protocol traffic. For example, connection-level
modeling can represent only the network activities using TCP protocol, whereas session-level can
model all protocols.

As a basic building block for workload characterization, we represent a session as a multidi-
mensional feature vector, where each feature is chosen to capture the basic resource usage charac-
teristics of the session. The population of the session is considered to be defined by a probability
distribution in the feature space. Further, we expect this probability distribution to be a mixture
distribution such that each component of the mixture represents one type of user level activity.
To identify each component of the mixture, we adopt a non-parametric clustering methodology.
We developed a clustering technique, called Adaptive Mahalanobis-distance Algorithm (AMA, in
short), and applied it on the sessions. As a result, we characterized two-week campus WLAN
traffic of one AP (Access Point) to identify several components that represent different workload
types.

In a session, an application or a user can generate a workload for a service at a specific layer,
e.g., a layer among MAC-TCP/UDP. For example, as shown in Figure 1.1, a human user using
a web search engine can generate a workload at the TCP layer for HT'TP service. User mobility
can also generate a workload at the MAC layer for the service of probing the APs with the best
signal condition. Since we exploit MAC-layer measurements, we can identify various components
(represented as different clusters) that are specific to a layer among MAC-TCP /UDP. For example,
from the measurement traces we identified excessive MAC Probe cluster at the MAC layer, port

scanning cluster at the IP layer, and broadcast traffic cluster at the TCP/UDP layer.
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Figure 1.1: WLAN workload at a wireless host

We believe that our characterization results can be effectively used for analytical or simula-
tion studies. Simulation studies can exploit our results by generating realistic workload according
to the workload structure we empirically found. Moreover, the clustering methodology can also be
used for WLAN deployment and management. WLAN administrators can better understand the

way the user population is using the network resources.

1.1 Contributions

The contributions of my thesis work can be summarized as follows: we designed and im-
plemented an accurate wireless monitoring technique [10, 12], and measured two weeks of WLAN
traffic at the wireless MAC layer. From the measured data, we generated sessions as basic building
blocks for workload characterization. We then developed a clustering algorithm (AMA), which
classified the sessions into several clusters in non-parametric, unsupervised manner. We showed
that the algorithm successfully identified several clusters and produced stable clustering results
regardless of the order of input data. For characterizing the WLAN workload, we provided an
understandable description of each identified cluster. Using different measurement data, we empir-

ically showed that the identified workload components can effectively represent the actual WLAN



workload and its daily variations.

The remainder of this dissertation is organized as follows. We summarize related work in
Chapter 2 and describe our WLAN workload model and sessions in Chapter 3. We present the
description of characterized workload types and their uses in characterizing daily workload varia-
tions in Chapter 4. In Chapter 5, we conclude this dissertation. We also attach the descriptions

of our WLAN measurement technique and clustering technique, in Appendix A and Appendix B.



Chapter 2

Related Work

There have been several measurement studies of 802.11 WLANSs, and in particular, university
WLANSs. One of the earliest was by Tang and Baker [9], who performed a twelve-week trace of
the Stanford Computer Science Department WLAN. Chinchilla et al. [3] traced user associations
and web usage on the University of North Carolina WLAN over one month. In another recent
study, Schwab and Bunt [6] characterized one-week’s usage and traffic patterns on the University of
Saskatchewan’s WLAN. A significantly larger scale experiment in terms of duration and coverage
area was conducted on the Dartmouth campus WLAN by Kotz and Essien [8]. They characterized
the typical usage and traffic patterns in a university WLAN over eleven weeks.

One of the few non-academic WLANs was studied by Balachandran et al. , who collected
traces from a well-attended ACM conference [7]. They characterized not only WLAN usage pat-
terns, but also the workloads of user arrivals and session durations with parameterized models.
Balazinska and Castro traced the WLAN of a corporate research campus over the course of four
weeks [4]. They characterized user mobility and traffic loads across different access points.

Similar to many of these studies, our characterization is performed in a typical university
WLAN environment: a Computer Science Department network. Rather than characterize usage
patterns and performance variability at IP and the above layers, we characterize typical WLAN
workload structure that consists of different workload types describing application/user-level re-
quests.

Meng et al. [2] statistically characterized network flows in a large campus wireless network
using a trace. They characterized the flow arrivals as a Weibull regression model. While their
workload model can describe the dynamic behavior, e.g., flow arrivals, our current model focuses
on the static structure of the workload. We also plan to work on the dynamic workload model for

each workload type in the static structure.



Clustering has been widely used for characterizing the workload for batch and interactive
computer systems in early days, e.g., [13]. More recently, McGregor et al. [14] applied the para-
metric EM clustering algorithm to classify TCP flows, which were extracted from a university
(non-wireless) IP traces following Claffy’s model [11]. Even though they took similar approach
to ours, we note several important differences. First, our target workload is for wireless network
on all the wireless networking layers. Second, we carefully model the session and its features,
taking into account temporal locality (i.e., timeout), resource demands and traffic characteristics.
Finally, along with the well-defined session model, our non-parametric clustering algorithm clearly

discriminates among the clusters with different traffic characteristics and resource demands.



Chapter 3

WLAN Workload

In this chapter, we first describe our WLAN workload model, where the workload consists of
sessions as basic building blocks. We then describe how we can generate the sessions from WLAN
measurement, traces. Finally, we discuss the selection of session features for discriminating the

workload.

3.1 WLAN Workload Model

In general, network workload consists of the requests for the services at each networking
layer [15, 16]. Applications or users can make requests for the service at specific layers for carrying
out their functions. Figure 1.1 shows how applications and users can generate different types of
workload (requests) in a wireless host. A human user using a web search engine can make requests
for HTTP service and the requests are then propagated to the lower layers. A mobile user can
generate requests at the MAC layer for the service of probing for the AP with the best signal
condition. Some applications can make requests at the IP layer for ICMP echo service. Requests
can also be generated by other hosts. For example, an ARP (Address Resolution Protocol) query
packet that is broadcast by host can make requests at the LLC (Logical Link Control) layer for
ARP responses.

To describe such application- and user-level request, we define a session to capture similar
requests with which applications and users can carry out a task. In this dissertation, we define a
session in similar way to how Claffy et al. defined a flow in [11]. Claffy et al. introduced a flow as a
traffic unit that has temporal (occurring closely in time) and spatial locality (occurring between the
same end-points) [11]. Similarly, we define a session in WLAN as a bi-directional traffic unit with
the same wireless end-point (host) as source or destination, that is separated from other sessions by

at least a predefined timeout of inactive duration. (Selection of the timeout value will be discussed
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Figure 3.1: Session definition (figure slightly revised from [11])

in the next section). Since we want to model similar requests for wireless network service, we
choose a wireless host as the end-point entity. Figure 3.1 illustrates the session definition. Here,
we do not include the timeout in the session duration. Session duration is defined as the duration
between the time of the first packet observed and the time of the last packet observed in a session.

We consider a session to be a basic building block for workload characterization, such that
each session can describe the workload in terms of traffic characteristics and resource demands. For
this purpose, we represent a session as a p-dimensional feature vector, where each feature captures
the basic characteristics of a session. Note that as the users use the sessions for carrying out several
types of functions, we expect that the characteristics captured by the features for similar functions
to be similar.

If a session is represented as an i.i.d. (independent, identically distributed) random vector
X € RP, we want to model the distribution of X as a multimodal distribution, and therefore as a

mixture of k¥ components. The PDF (Probability Distribution Function) of X is given as follows:

k
p(X=2) = 3 p(X = ale) Per), (3.1)
i=1

where ¢; is the i’th component of the mixture, p(X = z|¢;) is the PDF of the i’th component, and

P(c;) is the probability of the 4’th component such that 0 < P(¢;) <1, Zle P(c;) =1.
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Figure 3.2: Number of sessions vs. timeout values

Instead of determining the parameters of the distribution, e.g., k, {P(c;)}f;, we use a
non-parametric clustering technique to identify the components without making any assumptions
about those parameters. We apply a clustering technique, called Adaptive Mahalanobis-distance
Algorithm (AMA), which combines Mahalanobis distance with several adaptive operations. Using
Mahalanobis distance, we can identify the clusters of ellipsoidal shape as well as those of spherical
shape in feature space. Moreover, combining the distance with several adaptive operations (e.g.,
creating and removing clusters dynamically to determine a proper number of clusters) enables us
to effectively find the mixture components in the session data. We will describe the clustering

technique in more detail in Appendix B.

3.2 Session Generation

In this chapter, we describe how to generate sessions from WLAN measurement traces. Note
that the workload model introduced in the previous section makes two assumptions: the sessions
are i.i.d. and the sessions represent similar requests for the WLAN network services. We generate
the sessions according to the definition described in the previous section and attempt to justify

these two assumptions by selecting a proper timeout value.



CDF

3 4 5 6 7 8 9 10 11 12 13 14
Number of Distinct Protocols in a Session

Figure 3.3: Distribution of number of protocols in each session generated with 30 minute timeout.

As shown in Figure 3.1, we generate a session for a wireless host that is identified by its
wireless MAC address. For each wireless MAC address, a session for the MAC address continuously
includes the packets with the MAC address as source or destination, until the wireless host of the
address neither sends nor receives any packets for more than a predefined timeout.

To determine a proper timeout value, with the timeout varying over 1, 2, 4, 8, 15, 30 and
60 minutes, we generated the sessions from our two-week traffic trace according to the session
definition. The result is shown in Figure 3.2. From the figure, we observe that for timeout values
of 15 minutes or larger, number of sessions have become stable. We consider the sessions with the
timeout values in such stable ranges to be well separated, and therefore to satisfy the independence
assumption.

Among the stable timeout ranges (> 15 minutes), we choose 30 minutes as the session
timeout, because 30 minutes corresponds to the default web session timeout that is typically
used [17, 18]. Because the web is one of the most popular applications and http traffic amounts to
significant portion in wireless traffic [8, 7], 30 minute timeout can properly represent the typical
inactive duration between the requests. Figure 3.3 shows the distribution of distinct number of

protocols in a session that was generated with 30 minute timeout. We observe that about 90% of
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the sessions consist of only one protocol. This is another piece of evidence that 30 minute timeout
is proper for representing similar requests.

30 minute timeout, however, may not be proper (e.g., too long) for capturing some similar
application/user-level tasks. We can identify such tasks by examining the clusters which are found
from the sessions with 30 minute timeout. If some cluster has too large session duration (e.g.,
several hours), then we may apply smaller timeout (e.g., 15 minutes) to the data in that cluster

to generate new sessions.

3.3 Session Features

To use a session as a characterization building block, we need to select proper features for
the workload characterization. Desirable features should properly distinguish among the sessions
in terms of the traffic characteristics and resource demands.

For this purpose, we do not select any protocol information as features because the network
protocol by itself does not imply the resource demands nor the traffic characteristics. For example,
even different protocols (e.g., HTTP and FTP) can generate the similar traffic (e.g., large file
transfer). On the other hand, the same protocol (e.g., ICMP) can generate traffic with different
characteristics (e.g., echo and router solicitation). We also would not select protocol-dependent
features, because we want to characterize the workload of any protocol. Even though we do not
consider any protocol information for selecting the features, we note that the clusters generated by
our approach to workload characterization resulted in sessions in a cluster using similar protocols.

Considering the above discussion, we select the following features: number of packets and
bytes, number of MAC errors (retransmissions), number of distinct peers, and session duration. We
select these simple features because they can be easily calculated but properly represent resource
demands, such as MAC bandwidth and computing resources (CPU and memory). Moreover, they
are free of protocol information and available in any protocol. Note that even though using those
features we successfully characterized WLAN workload, we can add any features that can even

better characterize the workload.
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Here, we define these features in detail and discuss how they can discriminate among the

sessions, in terms of the traffic characteristics and resource demands.

o Number of packets and bytes represent traffic volume of a session. A session with high value
in these features consumes substantial bandwidth, and therefore those features distinguish
the sessions with high bandwidth demands. Moreover, sessions with high traffic volume may
indicate that the sessions exchange high user/application-generated traffic, rather than small
machine-generated traffic. Because we notice that the two features, number of packets and
bytes, are highly correlated, we use only one of them as a session feature. We choose the

number of packets for its simplicity of calculation and representation.

o Number of MAC errors is obtained as the number of MAC retransmissions. MAC-level
retransmissions occur when the destination host does not send a MAC ACK packet for
ACK-ing the original packet, mainly due to bad signal condition or packet collisions in 802.11
WLAN. Significant MAC errors incur the waste of bandwidth and extra MAC processing,

and therefore this feature can discriminate among the sessions on demands of those resources.

o Number of distinct peers is the number of distinct remote hosts (identified by their MAC
addresses). This feature indicates how many distinct remote hosts a wireless host communi-
cates with within a session. A session with high value in this feature may consume a large
amount of memory in the wireless host for keeping the information for each peer host. More-
over, this feature can distinguish unicast traffic and broadcast traffic. For example, a wireless
host typically exchanges unicast traffic with a few peers, while the traffic that is broadcast
from outside the AP to the wireless side may have many distinct (source) peers because the

broadcast address is shared by all hosts.

e Session duration is defined as the duration between the time of the first packet observed and
the time of the last packet observed in a session (Figure 3.1). Excessively long session duration
may lead to the overhead for reserving the memory in the wireless host for a long time.

Session duration can also qualitatively distinguish the sessions. For example, sessions with

12



very long duration, e.g., for several days, may represent housekeeping networking tasks, while

short-duration sessions may represent network probing tasks, such as ICMP ping messages.

We also consider bi-directional features because due to the traffic exchange patterns a feature
in different direction may have different values. We selected six features as follows: From-AP
number of packets, From-AP number of MAC errors, To-AP number of packets, To-AP number of
MAC errors, number of distinct peers, and session duration. Here, From-AP means the direction

from the AP to the wireless host, and To-AP means the reverse direction.

3.4 Summary

In this chapter, we discussed WLAN workload model for capturing similar application/user-
level tasks. For this purpose, we introduced sessions as the basic building blocks for the workload
characterization. With a proper timeout value, a session can represent similar application/user-
level tasks. Moreover, by selecting proper features we can distinguish the sessions in terms of

traffic characteristics and resource demands.
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Chapter 4

Characterizing WLAN Workload

In this chapter, we characterize the WLAN workload using the clusters obtained by the
clustering techniques described in Appendix B. We identified 10 clusters from 3884 sessions of one
AP over two weeks during Feb. 9 — Feb. 22, 2004. Each identified cluster represents a different
workload type (type, in short) in terms of traffic characteristics and resource demands.

We first describe the session data and its overall characteristics in Section 4.1. We then
analyze the characteristics of 10 identified workload types in Section 4.2. Next, we give a concise
description in Section 4.3. Finally, in Section 4.4 we use the sessions from a two-day measurement,
which were not included in the original sessions for clustering, to show that the identified workload
types can characterize the workload for different measurement data. Moreover, we empirically show
that the identified workload components can be effectively used for representing daily variations

of WLAN workload.

4.1 Session Data

In this section, we describe the session data obtained from the two-week WLAN measure-
ment and its overall characteristics. Our traffic trace contains per-packet information spanning all
networking layers, from 802.11 MAC to TCP/UDP, as we exploited wireless monitoring techniques
[12] for measurement. Detailed description on measurement set-up and methodology can be found
in Appendix A.

Here, we describe our session data. From the 2-week traces, we generated 3884 sessions.
We did not include 802.11 Beacon traffic in the sessions, because the request for Beacon (synchro-
nization) service occurs at constant rate (typically 10 per second) and therefore its workload is
constant. Neither did we include 802.11 Control traffic, e.g., 802.11 ACK packets, because the

volume of this traffic is highly correlated with that of 802.11 Data/Management traffic. On the
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Table 4.1: Statistics of Raw Session Data

From-AP To-AP
Features | # Packets | # Errors | # Packets | # Errors | # Peers | Duration (in sec)
Mean 2738 131 505 56 7.2 3234
STD 40305 1188 6948 911 57.9 14637
Median 3 0 0 0 1 6.6
Min 1 0 0 0 1 0
Moz 1877377 25416 279550 35383 2548 271174

other hand, we included 802.11 Management traffic such as MAC Probe traffic. The request for
MAC Probe service is typically made on user mobility and bad signal conditions, and therefore its
workload can represent WLAN-specific characteristics.

The overall statistics of the 3884 sessions are presented in Table 4.1. For each feature,
sessions have significantly small mean and median values compared to the maximum, and the

range of values spans several orders of magnitude. This indicates that the distribution of each

feature has a long right tail, which we confirmed by examining the distributions (not shown here).

4.2 Characteristics of Identified Workload Types

In this section, we analyze traffic and protocol characteristics of 10 identified workload types.
The statistics of each workload type on sessions and the features are shown in Table 4.2. From the
table we can make the following observations on the traffic characteristics and resource demands

of the identified types:

e The workload of type 2, 5, and 6 represent significant and unique resource demands, while the
other types distinguish different traffic characteristics. Type 2 and type 6 incur significant
bandwidth overhead, while type 6 leads to computing overhead for handling the excessive

€rrors.
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Table 4.2: Statistics of Identified Workload Types (we bold-face the types of significant resource

demands)
Session Statistics Feature Means (in original scale)
From-AP To-AP

Type | Pkt % | Bytes % | Session % | # Pkts | # Errs | # Pkts | # Errs | # Peers | Duration
1 0.02 0.002 4.7 10.3 4.4 0 0 1 0.9 sec
2 55.8 23.6 17.8 10177 0 0 0 30.3 3.2 hr
3 0.04 0.01 39.8 3.2 0 0 0 1.003 7.6 sec
4 0.003 0.0008 10.1 1 0 0 0 1 0
5 2.2 0.3 14.8 473.7 187 0 0 1 75 min
6 40.6 75.8 3.0 26824 2862 16553 1838 30.0 4.2 hr
7 0.002 0.0003 3.6 2 1 0 0 1 0.002 sec
8 1.3 0.3 2.0 2000 795 98.2 15.9 4.2 82 min
9 0.002 0.0005 1.1 5 0 0 0 1 7 sec
10 0.002 0.0005 3.0 2 0 0 0 1 2 sec
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Table 4.3: Protocols by Layers for Identified Workload Types

Types TCP/UDP iy LLC MAC
1 PROBE
2 | NB-NS, NB-DGM ARP, IAPP, STP
3 SRVLOC ICMP IPv6
4 APP-others IGMP IPv6 PROBE
5 PROBE

6 | IMAP, HTTP, SSH | ESP

7 PROBE
8 HTTP, SSH PROBE
9 NB-NS ICMP
10 ICMP

e A significant fraction (about 70%) of WLAN sessions have short duration less than 10 seconds.
e Most sessions, other than those in type 6 and 8, are From-AP only.

Table 4.3 and Table 4.4 show the protocol composition of each workload type, where we
break down the protocols by networking layers (Table 4.3) and protocol categories (Table 4.4). We

consider three protocol categories as follows:

1. User protocols: IMAP (Internet Message Access Protocol), HTTP, SSH, HTTP, ESP (En-

capsulated Security Payloads), APP-others (unidentified or minor APP protocols).

2. Broadcast protocols: NB-NS (NetBios Name Service), NB-DGM (NetBios Datagram), ARP

(Address Resolution Protocol), and (MAC) PROBE.

3. Multicast protocols: SRVLOC (Service Location Protocol), IGMP (Internet Group Manage-
ment Protocol), ICMP (Internet Control Message Protocol), IPv6, IAPP (Inter-AP Proto-

col), and STP (Spanning Tree Protocol).

17



Table 4.4: Protocol by Category for Identified Workload Types

Types User Broadcast Multicast
1 PROBE
2 NB-NS, NB-DGM, ARP IAPP, STP
3 PROBE IPv6, ICMP, SRVLOC
4 APP-others PROBE IGMP, IPv6
5 PROBE

6 | IMAP, HTTP, SSH, ESP

7 PROBE
8 HTTP, SSH PROBE
9 NB-NS ICMP
10 ICMP

User protocols are those, such as HT'TP, SSH, FTP, etc, used for popular user applications. Broad-
cast, protocols are basically used for “query-to-all, response-from-any” purpose through the MAC
broadcast address “fI:ff:ff:fT:fF:ff”. Multicast protocols are used for “query-to-some, response-from-
any(-of them)” purpose through the multicast addresses, e.g., the MAC addresses starting with
“01:00:5E” for IP multicasting. In the following analysis, we will show that the identified 10
workload types are properly distinguished by those three protocol categories.

Based on the information in Table 4.3 and 4.4, we observe the following:

e Because we extracted the sessions from MAC-layer measurement data, our clustering tech-
nique can identify various layer-specific workload types. In the protocol composition by layers
in Table 4.3, workload of types 6 and 8 is TCP/UDP-specific, and workload of type 10 is
TP-specific, respectively. We also observe that workload types 1, 5, and 7 are MAC-specific

workload.

e Type 1, 5, and 7 are MAC Probe Response traffic. They do not contain corresponding MAC
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Probe Request traffic. This indicates that the destination hosts of those Response packets
were located far from the current AP. Because typically Probe Request from a wireless host
has weaker signal than Probe Response from an AP, those Probe Request packets were not
captured by our sniffers (monitoring devices). On the other hand, workload of type 8 includes
both MAC Probe Request and Response, which indicates that the wireless hosts are located

close to the AP and our sniffers.

e Type 6 and 8 both consist of user protocol traffic, i.e., well-known application traffic. The
only difference is that type 8 has the user protocol traffic mixed with Probe traffic. This
means that the difference is in the channel condition; type 6 is the user protocol traffic in a

good channel condition, while the traffic of type 8 is in a slightly bad channel condition.

e Type 2 consists of broadcast and multicast traffic that use some “well-known” addresses. For
example, broadcast traffic commonly uses MAC address “ff:AT:AT:AF:f:f” and TAPP commonly
uses MAC multicast address “01:40:96:fF:f:ff’. On the other hand, the multicast traffic of
Type 3 and 4 mostly uses “obscure” (i.e., not well-known) addresses. For example, IPv6 and
ICMP traffic in those types uses obscure multicast addresses for neighbor discovery. IGMP

traffic in those types also uses obscure multicast addresses for managing each multicast group.

4.3 Workload Description

Based on the analyses in Section 4.2, we give a concise description of each workload type.

Table 4.5 summarizes these workload types.

4.3.1 Type MP [Medium-Duration MAC Probe traffic]

This workload type contains an average of a one second duration Probe Response traffic
from the AP. In the sessions of this type, the wireless hosts were not in a good channel condition

and had to broadcast Probe Request repeatedly (during 1 second) until they found a better AP.
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Table 4.5: Summary of Identified Workload Types

Label | Pkt % | Bytes % | Session % Description

MP 0.02 0.002 4.7 Medium-Duration MAC Probe Response Traffic
BM 55.8 23.6 17.8 Long-Duration Broadcast/Multicast Traffic
SM 0.04 0.01 39.8 Short-Duration Multicast Traffic

IT 0.003 | 0.0008 10.1 Isolated (one-packet) Traffic

EP 2.2 0.3 14.8 Excessive MAC Probe Response Traffic

UG 40.6 75.8 3.0 User Protocol Traffic in Good Channel Condition
SP 0.002 | 0.0003 3.6 Short-Duration MAC Probe Response Traffic
UB 1.3 0.3 2.0 User Protocol Traffic in Bad Channel Condition
PT | 0.002 | 0.0005 1.1 137 Port Scan

PG | 0.002 | 0.0005 3.0 ICMP Ping Scan

4.3.2 Type BM [Long-Duration Broadcast/Multicast Traffic]

The workload of this type contains broadcast/multicast traffic that uses some well-known
addresses. The protocols of broadcast traffic include Net-Bios (NB-NS and NB-DGM) and ARP,
which query to all hosts through MAC broadcast address “ff:ff:ff:Af:fF:ff”. The multicast protocols
of this type include IAPP and STP, which are used for communication between APs and switches
through well-known multicast addresses, such as “01:40:96:L:f:ff” (IAPP) and “01:80:¢2:00:00:00”
(STP)!. Because these broadcast/multicast addresses are used by many hosts, the sessions of this
type contain high traffic volume (10000 packets), a large number of peers (30), and long duration
(3.2 hours). Therefore, the traffic in this type demands significant networking resources, such as

bandwidth and memory.

! Because such TAPP/STP traffic is for inter-AP communications, APs do not have to forward such IAPP/STP
traffic to the wireless side. We believe that due to proprietary AP implementation or misconfiguration, the traffic

was visible to our sniffers.
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4.3.3 Type SM [Short-Duration Multicast traffic]

This type contains an average of 10 second multicast traffic consisting of IPv6, ICMP, and
SRVLOC protocols. IPv6 and ICMP traffic in this workload type is used for neighbor discovery
through obscure (i.e., not well-known) multicast addresses. For example, if a host wants to know
the link layer address of a neighbor host, it multicasts IPv6 neighbor solicitation message through
the multicast address for that neighbor host. SRVLOC (Service Location Protocol) is used for
automatic discovery of IP network service. For example, if a host wants to find a specific service,
it sends a packet to a specific multicast address. For the multicast traffic in this workload type
exploits obscure multicast addresses, the number of distinct peers, i.e., the number of distinct hosts
using those addresses, is very small (nearly 1 in a session on average). Also, the sessions have low

traffic volume (3.2 packets on average) and short duration (7.6 seconds on average).

4.3.4 Type IT [Isolated (One Packet) Multicast sessions]

The sessions in this workload have only one packet, and therefore we call them isolated
sessions. Like workload type SM, this workload type contains the traffic using obscure multicast
addresses. The protocols include IPv6 and IGMP. The IPv6 traffic in this workload type is for
address resolution, a part of neighbor discovery. For example, if hosts want to send IPv6 packets,
they query (solicit) the link layer address of the target host. The IPv6 traffic in this type consists
of such neighbor solicitation packets, which were not responded by any neighbor hosts. Hosts
use IGMP (Internet Group Management Protocol) packets to report their IP multicast group
memberships, guery the members of a group, and notify their leave from the group. The IGMP
traffic in this workload type mostly consists of the “leave group” messages, which do not need

follow-up packets.

4.3.5 Type EP [Excessive MAC Probe traffic]

This workload type contains an average of a 1 hour duration Probe Response traffic from

the AP. In the sessions of this type, the wireless hosts had consistently sent out a large amount
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of Probe Request packets and received corresponding Probe Response packets (470 packets on
average) for longer than 1 hour. These hosts are inferred to have been in significantly bad signal

condition and therefore, had to repeatedly perform active searching for better APs.

4.3.6 Type UG [User Protocol Traffic in Good Channel Condition]

The workload of popular application protocols, such as IMAP, HT'TP, SSH, esp, etc. The
traffic is not mixed with MAC Probe traffic, and therefore the wireless hosts are inferred to have
been in a very good channel condition. This traffic has high volume (27000 packets on average),
very long duration (4.2 hours on average), and many distinct peers (30 on average), and therefore
may significantly demand networking resources, such as bandwidth and memory. This traffic has
From-AP and To-AP volumes well balanced, which shows typical two-way handshake patterns of

popular user applications.

4.3.7 Type SP [Short-Duration MAC Probe traffic]

This workload type consists of short duration MAC Probe Response traffic with 2 packets
and duration of 0.002 seconds, on average respectively. In these sessions, the wireless hosts had
quickly responded to the Probe Responses from the AP. This strongly indicates that the wireless

hosts may have associated with the AP.

4.3.8 Type UB [User Protocol Traffic in Bad Channel Condition]

This type of workload consists of user protocol traffic by popular applications, such as
HTTP, SSH. The user traffic is mixed with MAC Probe Request/Response traffic. Those Probe
traffic amounts to more than 80% in packet. Typically, the wireless STAs in bad channel condition
perform active scanning searching for better APs if necessary. Therefore, the traffic of this types

may come from some wireless hosts in slightly bad channel condition.
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4.3.9 Type PT [137 Port Scan]

In the sessions of this type, some remote host sent exactly 5 NetBios-NS packets to port 137
during 2 seconds. These sessions are potentially malicious scanning activities, called port 137 scan,
which aim to collect node information, e.g., a listing of any NetBios names known to that node [19].

This information may be used for the spread of Internet worm known as network.vbs [19].

4.3.10 Type PG [ICMP Ping Scan]

This type contains average 2-second duration ICMP echo request traffic. The destinations
of those ICMP packets are multicast addresses, which we believe were intentionally forged. The
purpose of this (potentially) malicious traffic is to discover active STAs in the network. This
traffic is the evidence of a network scanning activity, called “Ping Scan”. Ping Scan can be easily
performed using some freely-available software, e.g., nmap.

In summary, we identified three workload types with high resource demands (BM, EP, and
UG), four types of short From-AP sessions (MP, SM, IT, and SP), and two types of anomalous

scanning traffic (PT and PQG).

4.4 Characterization of Daily Workload Variations

In this section, we raise the question “are these workload types also able to characterize the
sessions of different measurement data?’ The characterized workload, called two-week workload,
was obtained from the session data measured during Feb. 9 - Feb. 22, 2004 (two weeks). In this
section, using the two-week workload we characterize the measurement data of the next two days,
Feb. 23 (Monday) and Feb. 24 (Tuesday), 2004.

We first extracted “new” sessions from the measurement data of each of the two days.
We then applied the same transformation and scaling described in Appendix B. To examine the
deviations of the workload of new data from the two-week workload, we measured the Mahalanobis
distance from each data point (session) to the identified clusters. Distribution of the Mahalanobis

distances is shown in Figure 4.1. We observe that all the data points on both days have a closest
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cluster within 7, which is the value of d used in clustering. This indicates that there is no need
for a “new” workload types to describe the “new” sessions. Moreover, the data points are as close
to the clusters as one on average. This confirms that the two-week workload types can correctly
characterize the workload of the two days.

Next, using the two-week workload types, we examined the workload variations over the
two days. Figure 4.2 shows daily change in number of sessions in each workload type. For daily
reference value, we present daily averaged number of sessions of the two-week workload for each
type. From the figure, we observe that Feb. 23 and 24 both have more sessions than daily reference
values in any workload type. The reason is that the two-week workload includes the workload on
Saturdays and Sundays, and therefore the daily reference values are relatively small. In all workload
types, Feb. 23 has more sessions than Feb. 24, because typically Monday has the highest traffic
among weekdays. Finally, we note that there is no sessions for type PT and PG, on both days.
This indicates that PT and PG represent the workload of anomalous traffic and therefore are not

typical for every day traffic.

4.5 Summary

In this chapter, we presented 10 workload types which were found using our clustering
technique. We analyzed identified different workload types in terms of traffic and protocol char-
acteristics and provided an understandable description of each type. We also showed that these

workload types can be effectively used for characterizing daily workload variations.
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Chapter 5

Conclusion

In this dissertation, we addressed the problem of workload characterization in a wireless LAN
(WLAN). Workload is generated by applications and users trying to carry out some of their tasks.
For capturing such application/user-level tasks, we introduced “sessions” as the basic building
blocks for the workload characterization. We considered the workload to consist of sessions, where
a session is a sequence of exchanges for a application/user-level task. Considering the distribution
of sessions to be a mixture distribution, we identified mixture components (clusters) by using non-
parametric clustering technique, called AMA (Adaptive Mahalanobis distance Algorithm), and
associated those clusters with distinct workload types.

From the MAC-level traces which we obtained with an accurate wireless monitoring tech-
nique [10, 12], we generated 3884 sessions. By applying the clustering technique on those sessions,
we identified 10 workload types. We analyzed those workload types in terms of traffic and protocol
characteristics, and provided an understandable description of each type. As a result, we identified
three workload types with high resource demands, four types of short From-AP sessions, and two
types of anomalous scanning traffic. Moreover, we empirically showed that the identified workload
components can effectively represent the actual WLAN workload and its daily variations. We be-
lieve that our characterization results can be effectively used for analytical or simulation studies.
Moreover, the clustering methodology can be used for WLAN deployment and management for
exhibiting the way the user population is using the network resources.

There are several directions for future research on WLAN workload characterization. First,
we can examine the temporal workload change, i.e., how the workload types change daily, weekly,
and monthly. We can characterize the impacts of such changes on traffic characteristics and
resource demands in a WLAN. Second, workload may depend on the measurement locations. We

can characterize the workload at different measurement locations, to obtain a set of standard
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WLAN workload types. We expect that the standard workload types can be useful for comparing
the WLAN workloads at different WLAN environments. Finally, we can model dynamic behaviors
of WLAN workload, such as the behaviors of packet or session arrivals. Modeling such dynamic
behaviors is useful for repetitively generating different workloads as needed by the evaluation

experiments.
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Appendix A

The Wireless Monitoring (WM) Technique

In this section we describe our methodology, in which we use multiple sniffer devices and merge

multiple datasets to improve the capture performance of the WM technique.

A.1 WM Setup

To capture wireless frames, we used three network sniffers, each comprising a PC running Linux
with the 2.4.19 kernel. Each sniffer had a Prism2 chipset-based wireless network interface card; two sniffers
had Demarctech DT-RWZ0-200mW-WC cards, and the third had a Linksys WPC11v3 card. To measure
traffic, we used the Ethereal protocol analyzer (version 0.9.6) with the libpcap library (version 0.7). Each
card was placed into ‘monitor mode’, which allowed the card to capture 802.11 frame information on a
target channel.

The sniffers captured the first 256 bytes of each observed 802.11 frame, recording the complete view
of 