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Fatigue damage is one of the primary safety concerns for steel bridges reaching 

the end of their design life.  Currently, federal requirements mandate regular 

inspection of steel bridges for fatigue cracks with evaluative reporting to bridge 

management systems.  The quality of the inspection is subjective and time delayed 

due to inspection cycles, which are scheduled for every two years.  However, 

structural health monitoring (SHM) data collected between inspection-intervals can 

provide supplementary information on structural condition that ameliorates some 

drawbacks of current inspection methods.  Through the use of SHM and finite 

element models, fatigue performance assessments can be utilized throughout the 

service life of fatigue sensitive bridge elements for mitigating fatigue damage and 

preventing sudden fatigue failure.  These assessments will additionally be useful to 



 

 

inspectors when reporting bridge condition evaluations to bridge management 

systems.   

The main goal of this study is to develop a fatigue life assessment method used 

for determining the remaining useful life of steel bridges and to map these results to 

existing bridge management systems.  In order to achieve this goal, the current 

practices and methodologies associated with fatigue life of bridge elements and the 

use of bridge management systems are investigated.   

For analyses of fatigue damage, the fatigue life is split into two different periods 

of analyses: a crack initiation period and crack growth period.  In order to quantify 

the effects of fatigue damage, each period of the fatigue life is associated with a 

unique assessment method, an empirical correlation assessment and a fracture 

mechanics assessment.  Structural health monitoring techniques are employed to 

monitor the behavior of the bridge components and bridge elements.  These two 

assessment methods are combined to form a damage accumulation model to estimate 

the fatigue life.  The proposed damage accumulation model uses the acquired data 

from structural health monitoring alongside finite element modeling to derive a 

damage prognosis of bridge elements.  The damage prognosis attempts to forecast the 

structure’s performance by measuring the cumulative fatigue damage, estimating 

future loads, and ultimately determining the remaining useful life of the bridge 

element.  A technique for mapping the results of the damage prognosis into condition 

state classifications is proposed.     

The suitability and applicability of the proposed damage accumulation model is 

illustrated on an existing highway bridge.  This bridge was selected as a good 



 

 

candidate for fatigue monitoring due to the average daily truck traffic and the 

identification of existing and active fatigue cracks.  The application of the damage 

accumulation model is demonstrated and a damage prognosis is derived.  Finally, the 

damage accumulation results are integrated with current condition state classifications 

used in bridge management systems.   
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: Introduction and Overview Chapter One

 Problem Statement 1.1

 As a large number of aging bridges are approaching the end of their design life and 

are continuously requiring more maintenance, there is increasing demand to assure their 

long term health.  These aging bridges are increasingly experiencing damages and 

approaching failure when confronted with high traffic volume and weight, deteriorating 

components, as well as a large number of stress cycles.  In 2013, the American Society 

for Civil Engineers (ASCE) released an updated Infrastructure Report Card that found 

nearly 25% of the nation’s bridges to be either structurally deficient or functionally 

obsolete.  A bridge is considered structurally deficient when it is in need of significant 

maintenance, rehabilitation or replacement due to deteriorated physical conditions and is 

considered functionally obsolete when it does not meet current standards, such as vertical 

clearances or lane widths.  To make these condition assessments, the Federal Highway 

Administration uses information from inspection reports that are hosted by state and 

federal bridge management systems (BMS).  Bridge management systems are heavily 

dependent on field inspectors, who are to collect information on bridge elements and 

bridge components, evaluate their condition, and enter this data into the BMS database. 

Among the various tasks of bridge management, field inspection is the most essential in 

evaluating the current condition of a bridge, which is continuously subjected to damaging 

loads from traffic.   

Structurally deficient and functionally obsolete bridges are still open to daily traffic 

and continue to experience increasing traffic volumes.  These effects of these loadings are 

most pertinent on steel bridges which are vulnerable to fatigue-induced damage: the 
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process of material degradation caused by repeated loads.  Fatigue damage occurs over a 

long period of time and is the primary failure mechanism in steel bridges reaching their 

original design life (FHWA, 2011).  Fatigue damage is largely dependent on the size of 

the traffic loadings, the frequency of the loads, and structural detailing in critical regions 

of a component or structure (Haldipur, et al., 2010).  The process of metal fatigue begins 

with tiny material imperfections, or defects, that are amplified and enlarged into cracks 

from the dynamic loadings on bridges.  These defects usually initiate at the fatigue prone 

areas of the bridge: the bridge connections, attachments, and details, such as welds 

connecting connection plates to steel girders.  The defects begin to grow under repetitive 

loads until an unacceptable crack size is reached and eventually cause structural failure.  

Fatigue failure is particularly dangerous because it can sometimes occur without any 

obvious prior warnings (FHWA, 2011).  The implementation of sensing instrumentation 

on a structure can be used in order to provide information on structural damage and 

structural performance.  This is more often characterized as structural health monitoring.   

Structural health monitoring (SHM) systems installed on aging bridges can increase 

their safety and reliability by replacing scheduled maintenance with condition-based 

maintenance based on the feedback from the SHM system (Rabiei, 2011).  When SHM is 

performed in coordination with existing offline non-destructive inspection practices, the 

structural health monitoring data collected in between current inspection intervals can 

provide supplementary information of the structures condition that potentially alleviates 

some drawbacks associated with conventional offline inspection practices.  For instance, 

while current federal requirements mandate bridges to be inspected regularly for fatigue 

cracks, these inspections are termed routine inspections, and are typically carried out by 
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the bridge owners every two years (NBIS, 2011).  Further, these inspections may lack 

accuracy since they rely heavily on visual inspection, which are subjective to the 

inspector’s experience and physically inherent limitations.   

It has become evident that sound infrastructure management decisions can be 

supplemented through damage accumulation models developed from accurate condition 

data in the field (Hu, et al., 2005).  Damage accumulation models can be used for the 

damage prognosis of bridge elements.  Reporting the damage prognosis into bridge 

management systems is also a significant contribution to a strong bridge inspection 

program.  The success of any bridge inspection program is dependent on its reporting 

system (FHWA, 2012).   

 Research Objective 1.2

The primary goal of this research is to quantify fatigue damage that is currently 

overlooked by inspection methods and to develop a damage accumulation model used for 

the damage prognosis of existing highway bridge elements.  The resulting damage 

prognosis is then tied to bridge management systems, which are used to effectively 

manage the information related to bridge conditions, by integrating the damage prognoses 

with bridge management condition states.  The following specific objects are defined to 

accomplish the main goal: 

(1) To outline the factors that characterize a structure’s fatigue life and to formulate a 

procedure for fatigue life assessment; an empirical correlation approach and fracture 

mechanics approach are combined for the formulation.  
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(2) To provide a thorough review of bridge management systems; condition ratings used 

at the state and federal level must be clearly established in order to properly map the 

fatigue damage into relevant ratings.   

(3) To implement a structural health monitoring system on a particular element of an 

existing highway bridge.  The SHM system will monitor and collect data that is 

representative of the bridge’s response to every-day traffic loadings.  The acquired 

data is then used in the damage accumulation model which can predict the remaining 

useful life (RUL) at the structural component level. 

(4) To develop and experimentally verify a fatigue damage accumulation model that uses 

the acquired data from structural health monitoring alongside finite element modeling 

of an existing highway bridge with an active crack.  The damage accumulation model 

is used to derive the damage prognosis of the bridge element.   

(5) To devise a translator-tool that will integrate the damage prognosis into the condition 

ratings used by state and federal bridge management systems.   

 Organization of Dissertation 1.3

This dissertation consists of seven chapters, including the introduction to this 

research in Chapter One and the conclusions summarized in Chapter Seven.  The 

remaining chapters are organized as follows, 

 Chapter 2 offers an extensive review of current bridge management systems, 

on both the federal and state levels along their corresponding methods for 

bridge condition ratings.  Further, an overview of fatigue life concepts and 

definitions of failure mechanics is provided in this chapter.   

 Chapter 3 provides background of the fatigue-crack initiation period.  The 

analyses for acquisition and processing of data from fatigue loads; along 



5 

 

with the extrapolation of load histories is described. Further, the analysis for 

damage prognosis for the crack initiation period is discussed in detail.   

 Chapter 4 provides background of the fatigue-crack propagation period.  A 

review of crack growth behavior is provided.  The use of linear elastic 

fracture mechanics and finite element models to evaluate and analyze crack 

growth is justified.  A description on how fatigue crack growth can be paired 

with acoustic emission sensors is also provided.  The chapter concludes with 

a damage prognosis that is compared with the fracture toughness of the 

material.  

 Chapter 5 proposes how the fatigue life prediction model can be integrated 

with current condition ratings.  This integration depends on many features, 

including the type of the structural detail, the condition of the structural 

detail, and the redundancy of the detail or the structure itself.  Review of 

these features is provided.  The features are mapped into a flow diagram that 

illustrates how a quantitative fatigue damage prognosis is derived and how it 

fits into the bridge management condition states.     

 Chapter 6 provides a case study that demonstrates the configuration of the 

SHM system on an existing steel I-girder bridge in Maryland.  This chapter 

shows the acquired sensor data, the results from data processing techniques, 

and how the SHM data was used to quantify fatigue damage assessments 

using the theories put forward in Chapter 3.  Further, a local finite element 

model is developed and used to find information about the fatigue crack 

growth using the theories put forward in Chapter 4.  Ultimately, the damage 

accumulation approach is used to derive the damage prognosis.  These 

quantitative assessments are then tied to condition states, as put forth in 

Chapter 5.   
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: Literature Review Chapter Two

The first signs of the fatigue failure became evident in the 19
th

 century on structures 

experiencing fracture, e.g. steam engines, locomotives, and pumps.  This unknown 

fracture phenomenon was initially studied by August Wöhler who recognized that a 

single load application, far below the static strength of a structure, did not do any damage 

and that repeated load cycles of the same magnitude could cause failure.  Wöhler’s 

research also revealed that fatigue occurs by crack growth from surface defects until the 

material/structure can no longer support the applied loads (Schijve, 2009).  While fatigue 

as a technical problem was investigated in the 19
th

 century, the most substantial research 

contributing to fatigue occurred in the second half of the 20
th

 century.   

The first signs of fatigue cracks on bridges were discovered in the 1960’s.  Although 

localized fatigue failures have been widespread, only a few bridges in the United States 

have collapsed as a result of fatigue damage (FHWA, 2012).   

The first bridge collapse due to fatigue failure was the Silver Bridge, an eyebar-

chain link suspension bridge with a 700′-span across the Ohio River, connecting Point 

Pleasant, West Virginia and Gallipolis, Ohio.  The Silver Bridge collapsed on December 

15, 1967 during rush-hour traffic and resulted in the death of 46 people.  While chain link 

suspension bridges are usually built with eyebar links combed together to form a highly 

redundant structure, the Silver Bridge was built as a low-redundant bridge with high-

strength steel eyebar links and composed of only two bars each.  At the time of its 

collapse and almost forty years after its construction in 1928, the weight of the average 

automobile doubled and the large truck weight limit tripled, causing the bridge to carry 

much heavier loads than it had been initially designed for.  The increase of traffic loads 
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caused the eyebar links to experience higher stress concentrations and ultimately develop 

stress corrosion cracking: the growth of cracks through the simultaneous action of a 

tensile stress and corrosive environment.  The induced stress corrosion to the bridge 

triggered an existing microscopic crack (formed during casting) to propagate to 

approximately 0.1 inch (FHWA, 2012).  With only two bars, once the first eyebar broke, 

other members of the bridge experienced higher stress, and the remaining steel buckled 

resulting in total failure of the bridge.  It was the collapse of the Silver Bridge in 1967 

that resulted in the development of the bridge inspection and reporting programs that 

remain in place today (Chen, et al., 2005 pp. 36-9). 

 The second bridge collapse due to fatigue failure occurred on June 28, 1983, 

when the Mianus River Bridge, a two girder span bridge, in Greenwich, Connecticut fell 

into the Mianus River.  The collapse of the bridge was caused by a two pin and hangar 

assembly that held the bridge deck in place.  The bridge first experienced problems when 

one of the pin bearings rusted over and exerted force on a hangar beyond its design limits 

and then off of the pin.  The bridge load was shifted to the only other pin joint, causing 

higher stress levels which developed into a fatigue crack at the corner of the pin.  On the 

night of collapse, the vulnerable bridge section fell under the load of two heavy trucks 

and a car, causing the remaining expansion joint to fail and the non-redundant bridge to 

crash into the river below.     

 The Silver Bridge and the Mianus River Bridge are both examples of fatigue 

cracking to the point of failure of fracture-critical members.  In order for a bridge 

member to be classified as fracture-critical, the failure of one member will result in 

partial or total collapse of the bridge.  At the time of failure, both the Silver Bridge and 
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Mianus River Bridge were lacking redundancy: a structural condition where there are 

more elements of support than necessary for stability.  In cases of structural redundancy, 

the additional members have the capacity to carry the additional load and avoid the 

collapse of the structure (FHWA, 2012).   

 National Bridge Inspection Program 2.1

The collapse of the Silver Bridge in 1967 aroused national interest in the safety 

inspection and maintenance of bridges.  As a result, Congress issued the Federal-Aid 

Highway Act of 1968, which confronted the need of periodic and consistent bridge 

inspections.  Upon the creation of Federal-Aid Highway Act of 1968, all bridges 

constructed with federal funds, or bridges that carried a federally funded road, were 

lawfully required to be inspected.  To fulfill these requirements, a National Bridge 

Inspection Program (NBIP) was established in 1971 to ensure the safety of the nation’s 

bridges through regular inspection and maintenance.  Additionally, the Federal-Aid 

Highway Act of 1968 continues to serve as the foundation for the stream of legislation 

funding highway bridge replacement and rehabilitation in federal programs over the last 

45 years (Chamberlin, 1999).   

The NBIP provided a platform to develop a national policy of bridge inspection 

standards, which became known as the National Bridge Inspection Standards.  The 

National Bridge Inspection Standards (NBIS) are federal regulations establishing 

requirements for:  

 Inspection and rating procedures 

 Inspection frequency 

 Inspector qualifications 

 Inspection reports formats 
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 Maintenance of state bridge inventory 

Three manuals are currently used to guide state agencies with definitive guidelines 

for compliance with the NBIS.  The first manual, Bridge Inspectors Reference Manual 

(BIRM) 2012, provides comprehensive information on programs, procedures, and 

techniques for inspecting and evaluating a variety of in-service highway bridges.  The 

second manual, Manual for Bridge Evaluation (AASHTO Manual 2010 with 2011, 2013 

and 2014 Interim Revisions) serves as a standard to provide uniformity in the procedures 

and policies for determining the physical condition, maintenance needs and load capacity 

of highway bridges.  The third manual, FHWA Recording and Coding Guide for the 

Structure Inventory and Appraisal of the Nation’s Bridges (Coding Guide 1995) provides 

detail and guidance in evaluating and coding specific bridge data.  This manual is the 

basis behind the component condition rating method that makes up the National Bridge 

Inventory.   Relationships between the National Bridge Inspection Program (NBIP), the 

National Bridge Inspection Standards (NBIS), and the National Bridge Inventory (NBI) 

are shown in Figure 2.1.   
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Figure 2.1 Relationships of aspects in the National Bridge Inspection Program 

 

2.1.1 National Bridge Inventory 

The success of any bridge inspection program is dependent on its bridge 

management system, which heavily relies on accurate and consistent bridge inspection 

data.  Bridge management systems are used by transportation departments to effectively 

manage the information of bridges, including the regular inspection and maintenance 

activities.  Bridge management systems consist of inventory database information of the 

bridge (e.g. previous repairs or replacement of components) and field evaluation 

assessments (e.g. assessment of condition and strength).  Among the various tasks of 

bridge management, field inspection is the most essential in evaluating the current 

condition of a bridge.  Thus, current bridge management systems are heavily dependent 

on field inspectors to collect information on all the individual elements of a bridge, to 

evaluate their condition, and to enter this data in to a BMS database.   
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In order to meet the demands of constructing a nationwide bridge management 

system, a National Bridge Inventory (NBI) was developed as part of the NBIP in order to 

establishing maintenance priorities and replacement priorities.  The NBI unifies the 

nation’s bridges into an aggregated database containing detailed technical and 

engineering information of the bridge (Ryan P.E., et al., 2012).  This information is based 

on the most up-to-date condition of the bridge that has been evaluated by accredited 

inspectors.  The NBI contains information on a bridge’s characteristics, the existing in-

place condition of the bridge, the bridges capacity, the estimated maintenance costs, and 

the current condition compared with current standards.  Federal rating guidelines have 

been developed in order to provide continuity for the inspection of superstructures. The 

two major rating guideline systems currently in use are the FHWA's Recording and 

Coding Guide for the Structural Inventory and Appraisal of the Nation's Bridges used for 

the National Bridge Inventory component rating method and the element level condition 

state assessment method using the AASHTO Guide Manual for Bridge Element 

Inspection (FHWA, 2012).  However, these element level condition assessments are 

integrated into the NBI ratings with instruction from the AASHTO Guide Manual.   

2.1.1.1 NBI Condition Ratings 

Condition ratings are used to describe the existing, in-place bridge as compared to 

the as-built condition.  These ratings are based on on-site inspections of each bridge 

structure/substructure and highly consider the structures age and the environmental 

conditions the structure has been subjected to.  In the National Bridge Inventory, 

condition ratings are applied to the major parts of the bridge, i.e. the deck, the 

superstructure, and the substructure.  These items are summarized in Table 2.1 below.   
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Table 2.1 Items considered in NBI component condition ratings 

Component Description 

Deck The bridge deck is the supporting surface of the bridge. It may or may 

not be covered with a wear surface such as asphalt. The bridge deck is 

often steel-reinforced concrete and is supported by the Superstructure 

(Svirsky, 2014). The condition rating describes the overall condition 

rating of the deck. This condition of the surface/protective systems, 

joints, expansion devices, curbs, sidewalks, parapets, fascia’s, bridge 

rail and scuppers is not included in the rating, but the condition will 

be noted in the inspection form. Decks that are integral with the 

superstructure will be rated as a deck only and not influence the 

superstructure rating. 

Superstructure The superstructure includes all the structural members that support 

the bridge deck. These may include steel beams, a concrete frame or 

culvert, steel cables and a floorbeam system as used in a suspension 

bridge, or a steel truss (Svirsky, 2014). The condition rating describes 

the physical condition of all the structural members. The condition of 

the bearings, joints, paint system, etc. will not be included in the 

rating except for extreme situations, but the condition will be noted in 

the inspection form. Superstructures that are integral with the deck 

will be rated as a superstructure only and not influence the deck 

rating. 

Substructure The substructure is essentially the bridge's foundation supporting the 

superstructure (Svirsky, 2014). The condition rating describes the 

physical condition of the substructure; which may be piers, 

abutments, piles, fenders, footings or other components. 

 

Depending on the amount of deterioration, the bridge components are categorized 

into ten condition ratings which were developed by the National Bridge Inspection 

Standards.  Using NBI component condition rating guidelines, component condition 

rating codes range from 0 to 9, where 9 is the best possible rating. Table 2.2 outlines 

these Structure Inventory and Appraisal (SI&A) component condition ratings.  The one-

digit structure codes are reported by bridge inspectors and state DOTs to the NBI on a 

Federal SI&A forms.  These forms are not inspection forms, but just summarize the 
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bridge data required by the FHWA to meet the requirements of the National Bridge 

Program.   

Table 2.2 General component condition ratings guidelines from FHWA’s Coding Guide 

Rating Condition Description 

9 Excellent condition 

8 Very good condition – no problems noted 

7 Good condition – some minor problems 

6 Satisfactory condition – structural elements show some minor deterioration 

5 
Fair condition – all primary structural elements are sound, but may have 

minor section loss, racking, spalling or scour 

4 Poor condition – advanced section loss, deterioration, spalling or scour 

3 

Serious condition – loss of section, deterioration, spalling or scour have 

seriously affected primary structural components.  Local failures are possible.  

Fatigue cracks in steel or shear cracks in concrete may be present. 

2 

Critical condition – advanced deterioration of primary structural elements.  

Fatigue cracks in steel or shear cracks in concrete may be present or scour 

may have removed substructure support.  Unless closely monitored, it may be 

necessary to close the bridge until corrective action is taken. 

1 

―Imminent‖ failure condition – major deterioration or section loss present in 

critical structural components or obvious vertical or horizontal movement 

affecting structure stability.  Bridge is closed to traffic but corrective action 

may put back in light service. 

0 Failed condition – out of service – beyond corrective action 

 

While the range of the ratings is from 0 to 9, a couple of these ratings hold more 

significance over the others.  For instance, from ratings 5-9, the structure is not in need of 

any immediate repair, and in the worst case scenario (a rating of 5), the components are 

just selected to receive careful attention in the next inspection.  However, when a primary 

component of a structure has a rating of 4 or lower, then the structure is then considered 

to be structurally deficient (FHWA, 2010).  A rating description of structurally deficient 
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is used to classify a bridge whose structural elements are composed of deteriorated 

physical conditions and consequently the load capacity is reduced.  A structurally 

deficient classification does not imply the bridge is unsafe.  In most cases, when an 

inspection reports a bridge as structurally deficient then the bridge is posted for reduced 

loads and scheduled for repairs. In other cases, the bridge may be temporarily closed until 

repairs can be completed (ODOT, 2013).  A bridge can also receive a functionally 

obsolete classification. A rating description of functionally obsolete is reserved for 

bridges that do not meet current standards, primarily geometric standards.  For instance, a 

functionally obsolete bridge may not have adequate lane widths, shoulder widths, vertical 

clearances, or design loads to serve traffic demands.  This term is also used to describe 

bridges that are occasionally flooded (ODOT, 2013).  A functionally obsolete bridge is 

not bounded by any particular rating.    

Component condition ratings are determined from condition descriptions, which are 

broad in nature; covering a large variety of bridge elements and materials types. The 

inspector is responsible for accurately mapping the structural deficiencies and condition 

descriptions into the appropriate condition ratings. The following list illustrates several 

common deficiency terms found in condition descriptions and their associated material 

types (FHWA, 2012):  

 Section loss usually applies to steel members or reinforcing steel  

 Fatigue crack applies to steel members  

 Cracking/spalling usually are used to describe concrete  

 Shear crack usually applies to concrete but may apply to timber as well  

 Checks/splits applies to timber members  

 Scour can apply to substructure  
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Guidelines set forth in the Coding Guide helpfully clarify how each component 

evaluation and structural deficiency affects the condition rating it receives.  The 

following method for determining the proper condition rating has been found to help 

inspectors derive to a suitable rating (FHWA, 2012): 

 Identify phrases that describe the component  

 Read through the rating scale until encountering phrases that describe 

conditions that are more severe than what actually exists  

 Be sure to read down the ratings list far enough  

 Correct rating number then is one number higher  

Proper assignment of the condition ratings is best achieved when bridge components 

are broken down into individual elements and then evaluated.  Bridge elements are the 

individual members that are connected together to construct the bridge components.  

Bridge elements include components of bridges such as stringers, cables, girders, 

columns, piles, piers and other systems that are typically managed by agencies utilizing 

state bridge management systems (AASHTO, 2010).  Bridge elements are categorized at 

different levels, i.e. National Bridge Elements and Bridge Management Elements, as seen 

in Figure 2.2.  The National Bridge Elements (NBE) represent the primary structural 

elements of bridges that are a national concern for safety, while Bridge Management 

Elements (BME) include other bridge elements that state agencies have chosen to pay 

particular attention to.   



16 

 

 

 

Figure 2.2 Categorization of bridge elements 

 

Figure 2.3 displays the breakdown of various NBEs that correspond with the bridge 

components and material types.  Since the NBI only considers ratings of bridge 

components, the national bridge element condition assessments should be translated into 

the component format used in the NBI.  Processes to convert from NBE condition ratings 

to the component condition ratings are found in AASHTO’s Bridge Element Inspection 

Manual 20l0. 
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Figure 2.3 National bridge elements corresponding with bridge component (AASHTO, 2010) 
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While the NBE rating system offers a more detailed description of bridge damage 

by considering bridge elements, it is still largely generic in order to maintain 

compatibility of condition assessments between agencies and states.  Diaphragms, cross 

bracing, and connection plates are not considered in the breakdown of national bridge 

elements (AASHTO, 2010).  However these items are often assessed on a smaller scale 

by state agencies using their own BME system, broken down in Figure 2.4.   

 
Figure 2.4 Bridge management elements corresponding with bridge component (AASHTO, 2010) 
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AASHTO’s Bridge Element Inspection Manual 2012 compiles information of all 

Bridge Management Elements and their sub-sets, known as Commonly Recognized 

Elements (CoRe) for Bridge Inspection.  The purpose of adopting CoRe elements for 

bridge inspection was to standardize element-level condition data collection in the United 

States.  The AASHTO manual defines each bridge element, provides definitions of the 

elements condition state, and provides a table of feasible actions for the condition state.  

In cases where the agency defined BME is also a NBE, the agency developed element 

condition states must have capability to be aggregated back with NBE for submission 

with the NBI.   

Currently, many states use the Pontis system to assist inspectors with the on-site 

evaluations of bridge.  Pontis is a bridge management software tool, which was 

developed under a FHWA contract with Cambridge Systematics and Optima, Inc. and 

California DOT, and then later sponsored by the FHWA for cross development amongst 

state DOTs (FHWA, 2013).  The system is currently owned by AASHTO, who has 

licensed Pontis to over 45 state DOTs, including the Maryland State Highway 

Administration.  There is no federal requirement for states to use the Pontis system, 

however, many states use the system because it can be more specific to categorize and 

describe the types of defects in the bridge elements.  Bridges are presented by the CoRe 

elements in Pontis, and percentage condition states for bridge elements are inspected and 

stored in the database.  The AASHTO Bridge Element Inspection Manual 2010, provides 

detailed information on how to map defects from the Pontis system into the correct 

condition states for National Bridge Elements.  
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The Pontis system stores more detailed information of the elemental defects than 

is required from the National Bridge Inventory.  The system provides quantitative data 

bout the physical condition and performance of bridge elements.  For instance, Smart 

Flags (Defect Flags) are used by some agencies to identify the predominant defect for 

that condition state.  These flags describe the level of deterioration on the structural 

element.  They are prescribed their own condition states, which are later mapped into the 

Bridge Management Element component condition ratings.  In cases where the Bridge 

Management Element is also a pre-defined National Bridge Element, then the defect flag 

condition state is also considered in the NBI.  These smart flags are listed as: 

Table 2.3 Smart Flags found in Pontis bridge management systems 

Steel Cracking/Fatigue Settlement 
Steel Out-of-plane 

Compression Members 

Pack Rust Scour Deck Traffic Impact 

Concrete Cracking 
Superstructure Traffic 

Impact 

Substructure Traffic 

Impact 

Concrete Efflorescence Steel Section Loss Barrel Distortion 

 

The smart flags of particular interest in this paper are Steel Cracking/Fatigue.  

This flag is only used for elements that are already showing fatigue damage and is not 

applicable to bridges where fatigue damage is not present.  Table 2.4 lists the three 

condition states associated with the Steel Cracking/Fatigue defect flag and their 

corresponding descriptions.   

Table 2.4 Pontis System condition state definitions for steel fatigue 

Condition 

State 1 

Fatigue 

Damage 

Fatigue damage exists, but has been repaired or 

arrested.  The element may still be fatigue prone.   

Condition 

State 2 

Analysis 

warranted 

Fatigue damage exists which is not arrested 

(normally, this condition state would be used the first 

time the element is identified and at any other time 

when additional fatigue damage occurs).   

Condition 

State 3 

Severe Fatigue 

Damage 

Fatigue damage exists which warrants [structural] 

analysis of the element to ascertain the serviceability 

of the element or bridge.   
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Additionally, the Steel Section Loss flag is often used alongside the Steel 

Cracking/Fatigue flag in order to identify the severity of section loss in steel members.   

Section loss occurs when a structural member experiences corrosion due to high chloride 

content or carbonation.  The corrosion causes a section loss in an area of the members 

design section, which causes the physical properties of the member to change.  

Ultimately the structural integrity becomes compromised and resulting in reduced 

capabilities of the structure to perform its original function. Table 2.5 lists the four 

condition states associated with the Section Loss defect flag and their corresponding 

descriptions. 

Table 2.5 Condition state definitions for CoRe section loss (DelDOT, 2008) (VDOT, 2007) 

Condition 

State 1 

Corrosion has 

been arrested 

Section loss has been repaired or cleaned and coated 

over.  No effect on the strength and/or serviceability 

of the bridge. 

Condition 

State 2 

Corrosion has 

not been 

arrested 

Section loss exhibits active corrosion. No effect on 

strength and/or serviceability of the bridge.  

Structural analysis is not yet warranted. 

Condition 

State 3 

Analysis 

Warranted 

Measurable section loss exists that warrants analysis 

to determine the serviceability of the element or 

bridge.  Check to ensure there is no reduction in 

posted capacity.     

Condition 

State 4 

Load Capacity 

or 

serviceability 

affected 

Section loss has affected the load carrying capacity or 

the ability of the bridge to function as intended.  

Code this condition state after structural analysis.  

 

For agency defined sub-sets of National Bridge Elements, the agency must be able 

to combine the BMEs back into NBE form, in order to maintain compatibility for 

submission with the NBI.  The following diagram shows how the smart flags and 

elemental condition ratings are mapped into the National Bridge Elements.   
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Since the NBI condition ratings are assigned values on the 0-9 scale, the National 

Bridge Elements, which are assigned on a scale of 1-3 or 1-4, must be translated back to 

this 0-9 scale.  In an effort to reduce the amount of time agencies spend in this 

translation, a computer programming tool known as the NBI translator or BMSNBI, is 

used to aggregate the element inspection data to the NBI scale.  This tool is built into the 

Pontis systems, so is automatically computed for Pontis licensed states.  Otherwise, state 

agencies should read the descriptions between element condition ratings and national 
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Figure 2.5 Mapping of bridge management elements into National Bridge Elements 
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condition ratings in order to identify where the structures condition is best described and 

to choose the appropriate rating.   

To assess fatigue deterioration of connection plates on a national scale, it is 

helpful to look how gusset plates are evaluated in the national bridge elements.  Gusset 

plates are thick plates of steel used to connect beams and girders to columns or to connect 

truss members.  Because a gusset plate and a connection plate have similarities in 

application, it is reasonable to assume the condition states of a gusset plate would closely 

resemble the condition states of a connection plate.  In the hierarchy of national bridge 

elements (Figure 2.3), it is seen that gusset plates are an element that should be inspected 

as part of the bridge superstructure.  The condition states for the gusset plate are 

summarized in Table 2.6.    

Table 2.6 Bridge element condition state definitions (AASHTO, 2010) 

Defect 

Condition State 

1 

(good) 

Condition State 

2 

(fair) 

Condition State 

3 

(poor) 

Condition State 4 

(severe) 

Corrosion None Freckled Rust Section Loss 
The condition is 

beyond the limits 

established in the 

condition state 

three (3) and/or 

warrants a 

structural review to 

determine the 

strength or 

serviceability of 

the element or 

bridge. 

Cracking/ 

Fatigue 
None 

Arrested Cracks 

Exist 

Moderate Cracks 

Exist 

Connections Sound Sound Isolated Failures 

Load Capacity No Reduction No Reduction No Reduction 

 

Cracking/Fatigue is a major consideration in the inspection and evaluation of gusset 

plates.  Specifically, arrested cracks, cracks with arrest holes and are no longer growing, 

are observed to be in fair condition, while moderate cracks, cracks that have not been 

addressed, are observed to be in poor condition.  Using Table 2.6 in parallel with Table 



24 

 

2.7, arrested cracks are considered condition state 2, where protective action may be 

required, and moderate cracks are considered condition state 3, which may require 

immediate repair or rehabilitation.   

Table 2.7 Actions associated with bridge element condition states (AASHTO, 2010) 

Condition State 1 Condition State 2 Condition State 3 Condition State 4 

Do Nothing 

Protect 

Do Nothing 

Protect 

Do Nothing 

Protect 

Repair 

Rehab 

Do Nothing 

Rehab 

Replace 

 

 Fatigue Failure Mechanics 2.2

Failure mechanics describes the process a member fails at when subjected to fatigue 

(FHWA, 2012).  In engineering terms, failure has been traditionally defined as the 

condition when an element exceeds or falls below a predefined limit state (Sarja, et al., 

1996).  This limit state defines a boundary that once surpassed; a structure would no 

longer fulfill its design criteria.   In general, limit states may be set as three types: 

serviceability limit state (e.g. large deflection and exceeding a code requirement), damage 

limit state (e.g. excessive cracking) and ultimate limit state (e.g. collapse and fracture) 

(Massarelli, et al., 2001).  The serviceability limit state corresponds to the boundary 

beyond which specified service requirements for a structure or structural element are no 

longer met.  Thus, if a structure has not reached its serviceability limit state, the structural 

behavior is in compliance with standard criteria values and remains functional to 

withhold routine loadings.  The damage limit state describes the boundary beyond which 

the structure has experienced an intolerable amount of damage.  In many instances a 

crack on a structure may not have an impact on the safety or performance of a structure.  

These cracks may be inactive or growing at a slow rate on secondary components.  The 
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damage limit state sets a boundary for that sets limits for crack sizes and locations.  The 

ultimate limit state describes the boundary beyond which excessive deformation and/or 

collapse may occur.  The damage and ultimate limit states are most relevant to the stages 

of degradation associated with a structure’s fatigue life.   

2.2.1 Fatigue Life 

A structure has reached the end of its fatigue life when the number of load cycles it 

is subjected to initiate and propagate a fatigue crack to critical size; confronting the 

structures limit state.  Within a structure’s fatigue life, a structure is considered to 

experience two different stages over two different periods in time: 

 Crack initiation 

 Crack Propagation (Fracture Mechanics) 

The crack initiation stage describes the time when cracks are just beginning to 

initiate from points of stress concentrations in structural details.  Once a fatigue crack has 

initiated, applied repeated stresses cause propagation, or growth, of a crack across the 

section of the member until the member is capable of fracture.  Fracture of a member is 

the separation of the member into two parts.  The fracture of a ―fracture- critical‖ member 

may cause a total or partial bridge collapse.  It is technically significant to consider the 

crack initiation and crack propagation stages separately because the practical conditions 

that have a large influence on the crack initiation period, are different from the conditions 

that will influence the crack propagation period (Schijve, 2009).   



26 

 

 

Figure 2.6 Illustration of fatigue life concepts 

 

The crack initiation and propagation stages are associated with a moment in time 

when the structure is undergoing some form of deterioration.  In the crack initiation stage, 

the term failure is used to describe a damage limit state, i.e. the moment of transition 

from crack initiation to crack propagation.  For this stage, failure occurs when an existing 

crack reaches a predefined critical crack size, typically a microscopic crack that has just 

become visible in size.  The number of cycles required to initiate a fatigue crack to this 

critical crack size is known as the fatigue-crack-initiation life.  In the crack propagation 

stage, failure also describes the moment in time when a crack has reached a critical size, 

which is more associated with the ultimate limit state.  At this stage, the number of cycles 

to propagate a specific initial crack size to a final crack size is called the fatigue-crack-

propagation life.  The final crack size can be determined from the material fracture 

toughness.  When a structure has experienced a crack size at the end of the propagation 

life the structure is capable of fracture and is also considered to be at the end of its total 

fatigue life; the sum of the initiation and propagation lives.  Bridge engineers use 

estimations of total fatigue life in predicting the performance of steel bridge members 
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(FHWA, 2012).  Figure 2.6 illustrates the difference between the initiation period and 

propagation periods within a structures fatigue life.  Details regarding the fatigue crack 

initiation period are discussed in Chapter Three: Theoretical Development of Fatigue 

Crack Initiation Period and the details regarding the fatigue crack propagation period and 

the corresponding three regions are discussed in Chapter Four: Theoretical Development 

of Fatigue Crack Growth Period.    

2.2.2 Fatigue Life Prediction 

There are two major numerical damage accumulation approaches that can be 

integrated together to predict the fatigue life of a structure: an empirical correlation 

approach, and fracture mechanics approach (Chen, et al., 2005).  The empirical 

correlation approach uses a damage parameter that correlates with laboratory fatigue test 

results, and the fatigue life calculation is generally performed with respect to crack 

initiation.  The application of fracture mechanics is best fit for crack propagation life, 

since it deals with crack growth.   

The basis of the empirical correlation approach is to use a proposed empirical 

damage parameter, D, that correlates the fatigue life (number of stress cycles to failure, 

Nf), with the number of stress cycles the structure has endured.  The empirical 

correlations approach is generally divided into three categories: the stress-based method, 

the strain-based method, and the energy-based method, when stress, strain, or energy is 

used as the damage parameter, respectively (Chen, et al., 2005).  For any one of these 

methods, the damage parameter to fatigue life functions generally takes the form of: 

 
       (  )

 
 (Equation 2.1) 
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where,   < 0, F > 0 and as     ⟶  , D ⟶    (   is the corresponding value at the 

fatigue limit).  Coefficients F and   are evaluated by a best fit technique from experiment 

data.  Figure 2.7 displays a schematic representation of the damage function in Equation 

3.2.   Since the mid-1800s a standard approach to fatigue analysis and design has been 

through the stress-based method, and is the method used for fatigue assessments of 

structural details in AASHTO LRFD Bridge Design Specifications 2012.     

 

Figure 2.7 Schematic plot of damage parameter versus fatigue life curve (Chen, et al., 2005) 
 

2.2.2.1 Stress-Based Method 

The stress-based method currently underlies many fatigue specifications and 

remains to be the most widely used method in fatigue analysis (Chen, et al., 2005).  

Stress-based fatigue analysis is used to estimate initiation of a fatigue crack in a 

component under loading due to the uniaxial applied stress.  The crack initiation is 

characterized by the S-N curve, also known as the Wöhler curve in honor of August 

Wöhler who was first to conclude that cyclic stress ranges are the governing parameter on 
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fatigue life. S-N curves are used to relate the stress range (S) vs. number of loading 

cycles (ni) and ultimately define the fatigue life of the material.  S-N curves comprise the 

influence of material, the geometry of the local structure, and the surface condition.  The 

stress-based method is most applicable to cases of high cycle fatigue where material 

response is mostly elastic.   

2.2.2.2 Fracture Mechanics 

For many engineering structures, the most significant portion of its fatigue life falls 

within the crack propagation stage, which is governed by fracture mechanics.  Fracture 

mechanics deals with the specific concept within solid mechanics: that a crack is present 

in the structure.  For this reason, fracture calculations are typically not performed in 

design but are often used in service to assess a particular defect (Chen, et al., 2014). 

Analyses within fracture mechanics seek to find quantitative relations between the crack 

length, the crack growth rate through the material type, and the stress at which the crack 

propagates to cause structural failure (Roylance, 2001).  The use of fracture mechanics in 

crack propagation life prediction has become widespread when it became obvious that the 

fluctuation of the stress field at the crack tip should control the rate of crack growth 

(Paris, 1998).   

The parameter describing the stress field around the advancing crack tip is an 

important component in the fracture mechanics approach.  This parameter is referred to 

as the stress intensity factor.  The stress intensity factor, K, is used in linear-elastic 

fracture mechanics (LEFM) when the nominal stress versus strain response is essentially 

elastic.  High-strength structural materials very often have a low ductility, but this doesn’t 

mean they are necessarily brittle.  At the microscopic level, the ductility of these 
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materials means a small plastic zone is created at the crack tip (Schijve, 2009).  When 

plasticity effects are considered, crack growth parameters are conducted through an 

elastic-plastic fracture mechanics (EPFM) analysis, such as the energy release rate by the 

J-integral or the Crack Opening Displacement method.  Since EPFM analyses account for 

plasticity and where the crack tip zone is large, then EPFM analysis may be better suited 

for highly ductile materials.  However, for small-scale plasticity conditions, such as those 

found in engineering steel, LEFM analysis that is corrected for the effect of the small 

plastic zone effect offers the greatest advantages regarding the correlation of crack 

growth data (Chen, et al., 2005).   

From the quick review on fatigue life prediction models, the integration of an 

empirical correlation approach together with a fracture mechanics approach serves as an 

appropriate method to predict the fatigue life of a structural detail; the former for crack 

initiation life and the latter for crack propagation life.  Because of the small stresses 

generally present in fatigue problems, the plastic zone at the tip of cracks is limited and 

LEFM is therefore a useful tool for fatigue crack propagation life prediction (Chen, et al., 

2005).  By using these two methods, analyses of fatigue damage assess the onset of 

fatigue cracks, the amount of fatigue cracking, the crack length, and crack growth rates 

until the ultimate limit state is reached.   
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 Role of Structural Health Monitoring in Failure Mechanics 2.3

Various approaches for obtaining reliable information on fatigue loading have been 

developed through the use of structural health monitoring.  Structural health monitoring 

(SHM) uses sensing instrumentation to observe and monitor the response of a system 

over a period of time using sampled dynamic measurements from a sensor or from an 

array of sensors.  A SHM system serves the role of detecting damage in civil 

infrastructure and statistical analysis of these features determines the operational 

condition and durability.  Numerous SHM methodologies, techniques, hardware and 

software have been developed and are utilized to achieve different bridge management 

goals, such as to increase safety (Alampallia, et al., 2008).     

SHM technologies used in bridges provide accurate field measurements because no 

assumptions need to be made for uncertainties.  Thus, the most accurate method for 

assessing the dynamic effects from traffic loads on the bridge is to use sensors to measure 

the stress in identified fatigue-critical members.  The effects of varying vehicle weights 

and their sporadic combinations are reflected in the sensor data.  This data is used to 

perform assessments of the structure’s remaining useful life.   

 SHM Paired with Condition Assessments 2.4

For accurate condition assessment, AASHTO’s Bride Element Inspection Manual 

2010 encourages non-destructive testing results to be taken into consideration in the 

condition assessments.  Many states currently use some non-destructive evaluation 

(NDE) methods in their condition rating assessments.  The NDE methods are limited to a 

short-term SHM system that is temporarily installed, records live load responses, and is 

then removed (BDI, 2014).    The primary purpose of short-term monitoring is to obtain 
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quick and valuable assessments of a structure’s structural integrity and load-carrying 

capacity.  However, the methods used are not long-term structural health monitoring 

methods and provide only limited insight into a structure’s condition.  While short-term 

testing can be used to assess the performance of structural components under applied 

loading, structural damage is rarely caused by the stresses exceeding those predicted by 

design.  Damage from fatigue occurs from the repetition of repeated loads that are far 

below the strength of the structure.  Furthermore, the fracturing of materials before 

plastic deformation is visible (aka brittle fracture), due to fatigue cracking, is one of the 

most common causes of steel bridge components failures (Xia, et al., 2005).  In order to 

observe continuously stressed bridges that are subject to fatigue loads, long-term 

monitoring should be used.  Long-term monitoring refers to the installation of a SHM 

system that will remain in place for weeks, months, or years and automatically collects 

and stores data (BDI, 2014).  Thus, a long-term SHM system gathers real-time and 

accurate measurements of a structures behavior under various environmental and loading 

conditions and provides a much needed insight into the cumulative damage and 

degradation of strength within a structure.  This insight can be used with element 

condition evaluations.   
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: Theoretical Development of Fatigue Crack Initiation Chapter Three

Period 

The crack initiation periods describes the time when cracks are just beginning to 

initiate from points of stress concentrations in structural details.  The occurrence of 

fatigue cracks within the crack initiation period is most often described as a ―material 

surface phenomena‖ (Schijve, 2009).  An initial microscopic crack grows a 

microscopically small amount in size each time a load is applied.  Starting with an 

inclusion in the material, the crack growth rate is slow and the initiation period may cover 

a significant part of the fatigue life.  Crack growth occurs at the crack front and the 

failure point in the fatigue-crack-initiation life occurs when a fatigue crack becomes large 

enough in size that it is considered a macro crack; often visible to the human eye.  Figure 

3.1 displays an illustration of the fatigue-crack-initiation life.  Ultimately, the fatigue-

crack-initiation life of a steel structure is governed by three factors (Mertz, 2012): 

1) The number of loading cycles to which the member is subjected 

2) The type of detail under examination  

3) The stress range at the location of the detail 

 

Figure 3.1 Illustration of fatigue-crack-initiation life 
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 Crack Initiation 3.1

Fatigue crack initiation and crack growth are consequences of cyclic slip.  Cyclic 

slip occurs with dislocation activities, which is a type of plastic deformation.  Because 

material fatigue transpires at stress amplitudes below the yield stress, the cyclic slip 

develops at grains in the material surface.  The surface is more susceptible to damage 

because it is exposed to the environment it is less constrained by surrounding material; as 

opposed to subsurface grains.  Therefore, much lower stress amplitudes are needed for 

cyclic slip to occur at the surface than anywhere else in the material (Schijve, 2009).   

 

Figure 3.2 Development of cyclic slip bands and a microcrack (Schijve, 2009) 

 

A surface crack that is just beginning to develop as a result of cyclic slip is also 

known as a microcrack.  A microcrack can occur from a single load cycle that creates a 

tiny imperfection in the material.  As the material continues to experience reoccurring 

load cycles the crack grows; typically a crack grows perpendicular to the tensile stresses 

or load direction.  The crack growth rate is measured as the crack length increment per 

loading cycle.  Initially, the crack growth rate will be dictated by the surrounding grain 

boundary.  For instance, the penetration growth rate of the crack in the material decreases 
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when the crack tip approaches the first grain boundary.  After penetrating through the 

first grain boundary the crack growth rate increased throughout the next grain, but it 

decreased when approaching the second grain boundary (Schijve, 2009).  The illustration 

of a crack penetrating a material is provided in Figure 3.3.   

 

Figure 3.3 Surface crack penetrating grain boundaries (Schijve, 2009) 

 

Once the crack has penetrated through a substantial number of grains, the crack 

growth is a different picture.  The crack can no longer grow in each grain in an arbitrary 

direction and cannot continue to grow at any rate independent of crack growth in adjacent 

grains.  Rather, as the number of grains becomes sufficiently large, crack growth occurs 

as a continuous process along the crack front.  The crack growth is then approximated as 

a continuous line with semi-elliptical shape (illustrated in Figure 3.4).  The surface 

aspects are no longer relevant and the crack growth rate will be dependent on the crack 

growth resistance of the material; the crack growth is no longer a surface phenomenon.  

This portion of crack growth behavior is discussed further in Chapter Four.   
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Figure 3.4 Elliptical crack front as crack passes through multiple grains 

 

3.1.1 Defects in Fabricated Steel Structures 

Cracks not only occur on a material surface from repeated loads, but they also 

develop from material defects which should not be present, such as defects in a welded 

joint.  Figure 3.5 provides an illustration and nomenclature of a typical fillet weld, where 

the structure’s geometry is positioned with a transverse gusset and longitudinal plate.  

This geometry is characteristic for connections plates, gussets, web stiffeners, and other 

similar elements on bridges.  There are five main parts to each fillet weld, the face, root, 

toe, leg and throat.  The face of the weld is the outer portion of the weld that you see 

when looking at a fillet weld.  The root of the weld is the point of deepest penetration that 

is the opposite angle from the face.   The legs are the width and height of the fillet weld.   

The throat is the distance from the center of the face to the root of the weld.  
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Figure 3.5 Nomenclature of fillet welds 

 

Fillet weld sizes determine the theoretical throat of the weld, labeled ―Theor.‖ in Figure 

3.5.  However, due to conservative design approaches, full penetrations at the weld root is 

has become typical design for fillet welded assemblies, and the actual throat is measured 

by the distance from the depth of penetration to the face of the weld convexity (Janosch, 

1993).  Penetration requirements for a fillet weld can be as high as 25 to 50 percent of the 

thickness of the base metal (FAA, 2008).   

With a transverse gusset welded to a longitudinal plate, the toe of the weld forms a 

sharp angle at the weld periphery between the weld and the face of the gusset.  This 

creates a line of elevated tension where fatigue cracking can start from the small, sharp 

discontinuities (Mertz, 2012).   Nonetheless, the preferred crack-initiation sites are at the 

toe and the root of the welds, labeled as, I, II, and III in Figure 3.5.  More detail about the 

cracking with fillet welds is provided in section 4.1.2 Cracks on Welded Structures.   
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The quality of the weld is determined by the weld defects.  Test data on welded 

details have shown that all fatigue cracks begin at the weld periphery or from some initial 

discontinuity in the weld.  The kinds of defects that may occur in a welded joint include 

partial penetration,  undercut or micro flaws at the weld toe, lack of fusion, porosity  

(gases in the unfused area expanding and getting trapped in the solidifying weld), 

inclusions such as slag, and start-stop locations from welding repair or arc strikes (Mertz, 

2012).  While fabricators attempt to minimize these defects, due to the welding process 

itself, it is impractical and not economically possible to eliminate them.  Figure 3.6 

displays an illustration the typical defects in a welded joint.  The lack of penetration of a 

weld is the most serious weld defect, especially under tension loads.  The defect can grow 

relatively large in size and acts similar to a surface crack.  A weld undercut is another 

serious defect, especially if the profile is sharp at the bottom of the undercut.  Since 

cracks begin at sharp profiles, these undercuts can be hotspots for crack initiation 

(Schijve, 2009).  Even if an undercut is not present, the transition of the excess weld 

material to the base material still provides an area for stress concentration at the weld toe.  

Porosity and slag inclusions can also cause serious defects for crack initiation.  Slag 

inclusions are usually more damaging than porosity, because the shape of these 

inclusions can create sharp profiles in the weld.   
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Figure 3.6 Illustration and terms of possible weld defects 

 

The most critical conditions for crack initiation at structural details are those 

combining, high stress concentrations due to flaws, high stress concentrations due to 

connection details, and high stress concentrations due to out-of-plane distortions.  The 

welding process itself introduces high stress concentrations due to thermal transformation 

from the melting temperature of the weld material when the weld is first applied and it 

cools to outside temperature.  While the welding material attempts to contract, it is 

restrained by the steel plates, introducing residual stresses with residual tensile stresses in 

the weld direction.  Upon loading, the residual stresses are more likely to induce fatigue 

crack initiation either at the ripples of the weld or related defects.   

Figure 3.7 and Figure 3.8 show the establishment of fatigue cracks due to porosity 

in the welds.  In cases with external defects, data shows that as much as 80% of the 

fatigue life has been consumed from crack initiation to an observable crack size at the 

surface (Mertz, 2012).   
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Figure 3.7 Fatigue crack forming from internal porosity in web-flange connection (Mertz, 2012) 

 

 

 

Figure 3.8 Fatigue crack enlarged to three –ended crack from internal porosity (Mertz, 2012) 
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Figure 3.9 Fracture surface of cross section  (Mertz, 2012) 

 

Steel structures that are fabricated by welding contain "residual" or "locked-in" 

stresses that are a consequence of the welding process.  These have considerable 

influence on the initiation and expansion of fatigue cracks.   

 Load-Induced Fatigue from Variable-Amplitude Loading 3.2

When evaluating bridges for fatigue damage, the loading conditions are essential 

impacts on the structures service life, so it is necessary to accurately determine the effects 

from traffic loads.  The most accurate method for assessing these effects is to directly 

measure the loads in identified fatigue critical members using structural health 

monitoring (SHM).  A SHM system that is set up for long-term monitoring gathers real-

time measurements of a structures behavior under various environmental and loading 

conditions.  Compared with analytical methods for damage assessments, field strain 
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measurement is most accurate since no assumptions need to be made for uncertainties in 

load distribution such as unintended composite action between structural components, 

contribution of nonstructural members, stiffness of carious connections, and behavior of 

concrete deck in tension (Zhou, 2006).  Implementation of strain gauges captures the 

effects of varying vehicle weights and their random combinations in multiple lanes.   

3.2.1 Strain Gage Analysis 

The electrical resistance strain gage is the most frequently used sensor for acquiring 

strain data and conducting strain analyses (Pilkey, 2005).  An electrical resistance strain 

gage is a strain-sensing element made of multiple metal foil loops that are calibrated to 

measure strain along the axis of the strain gage, i.e. axial strain.  The gage operates on the 

principle that the electrical resistance of metal wire varies with strain.  The fractional 

change in resistance (R) per strain ( ), where       , is known as the sensitivity, (SA) 

of the metal that the strain gage is made from.  In order for a strain gage to be used as a 

practical instrument, a strain gage should have the sensitivity to measure extremely small 

changes in the resistance of a wire with high accuracy (Kuphaldt, 2006).   

The strain measurements are made by bonding the strain gage to the surface of the 

specimen under test and by sensing voltage changes that occur when the resistance of the 

metal foil loops change.  The circuitry used to measure the voltage changes across the 

resistance gages is known as a Wheatstone bridge.  The circuit of a basic Wheatstone 

bridge is displayed in Figure 3.10, where    is the current across ABC,     is the current 

across ADC, and   ,   ,   , and    are the four resistors that make up a full-bridge 

configuration. 
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Figure 3.10 Circuit of Wheatstone Bridge 

 

The changes in resistance of the sensing elements in the Wheatstone bridge result in 

a bridge output voltage that is proportional to the strain the material is experiencing.  That 

is, the measured output voltage (  ) of the bridge scales with the excitation voltage.  The 

voltage difference across the Wheatstone bridge solved from: 

 
   

         

              
 Volts (Equation 3.1) 

 

The measured strains reflect the actual load distribution in the particular member of 

the structure where the strain gauge is placed.   

3.2.2 Strain Data Acquisition 

The acquired strain data on bridge elements is referred to as the load spectrum.  The 

load spectrum gives information about the load-time history of the specific structural 

element that is being monitored.  The load spectrum is made up of multiple stress cycles 

that correspond to the loading that is applied.  The fatigue-crack-initiation life is defined 



44 

 

as the number of stress cycles (N) within a load history to grow a crack to a specific crack 

size (acrit).  The number of stress cycles is proportional to the number of trucks that cross 

the bridge during its service life.  Heavier vehicles, typically trucks, create the largest 

stress cycles.  The number of stress cycles a bridge experiences is relative to the age, 

location and span configuration of the structure (FHWA, 2012).  

The most significant points in a stress cycle are the maximums and minimums, 

which are characterized by the stress range.  At large stress ranges, cyclic slip occurs in 

the material, either at the material surface of in the crack tip plastic zone (Schijve, 2009).  

Thus, the accumulation of larger stress ranges at a faster rate of occurrence will result in a 

shorter fatigue life.  Every stress cycle in a load history can be described by several 

parameters, including the stress amplitude (  ), the mean stress (  ), the maximum 

stress (    ), the minimum stress (    ), and more commonly the stress range (  ).  

Stress range is defined as the algebraic difference between the maximum stress and the 

minimum stress:  

              (Equation 3.2) 

 

From a fatigue mechanistic point of view,      and      are the more important 

parameters because they will describe the stress levels at which the loading is reversed; 

which means cyclic slip is also reversed (Schijve, 2009).  These parameters are illustrated 

in Figure 3.11 and Figure 3.12 for two different loading types: constant amplitude 

loading and variable amplitude loading.   
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Figure 3.11 Illustration of stress range and associated variables for CAFL 

 

A load spectrum for fatigue outputs two different patterns of load history: constant 

amplitude fatigue loading (CAFL) and variable amplitude fatigue loading (VAFL).  

Constant amplitude fatigue loading is associated with structures that are subjected to a 

cyclic loading and have a constant amplitude response and constant mean load.  A 

sinusoidal curve, such as the one in Figure 3.11, is a typical example of a constant 

amplitude fatigue load.  Variable amplitude fatigue loadings possess a more complicated 

load spectrum than constant amplitude loadings.  The loading is sporadic and one stress 

cycle may be composed of different maximum and minimums.   

 

Figure 3.12 Illustration of stress range and associated variables within VAFL 
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In order to accurately characterize load histories, the content of a measured signal 

should be summarized and quantified in a meaningful way.  Methods to help summarize 

the data and identify the fatigue relevant events within a complex load history are 

referred to as counting methods.  Counting methods rely on the materials stress and strain 

response to applied loads.  In order to illustrate the fundamental concepts behind counting 

methods, the stress-strain relationships for a specimen undergoing tensile and 

compression tests are illustrated in 3.2.3Stress-Strain Relationships.   

3.2.3 Stress-Strain Relationships 

Stress-strain curves are derived from loading tests and provide insight into a 

specimen’s mechanical properties.  The stress-strain curve is found by applying an 

increasing uniaxial load to a specimen, while simultaneously recording the elongation.  

Thus, stress-strain curves display the amount of deformation (strain) at distinct intervals 

of loading (stress).  A typical stress-strain curve for an engineering tension test is 

provided in Figure 3.13.     

 

Figure 3.13 Engineering stress-strain curve 
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The stress-strain curve is divided into three regions, broken up by points 1, 2, and 3.  

Point 1 represents the proportional limit, also referred to as the elastic limit.  From the 

origin to point 1, the specimen experiences uniform straining, where stress and strain are 

linearly related.  This linear relation is known as Hooke’s Law: a first order linear 

approximation of an elastic body’s real response to an applied force: 

      (Equation 3.3) 

 

Where,   is stress,   is strain and E is the modulus of elasticity.  Upon reaching the 

elastic limit, the material will no longer go back to its original shape once a load is 

removed.  From point 1 to point 2 the curve the material is partly elastic and partly plastic 

in behavior.  While this is still considered uniform straining, the stress and strain are no 

longer linearly related.  Point 2 represents the offset yield strength, the point where 

plastic deformation begins, i.e. permanent strain.  Since it is often difficult to pinpoint the 

exact stress at which plastic deformation begins, the yield stress is often taken to be the 

stress needed to induce a specified amount of permanent strain, typically 0.2% strain 

(Roylance, 2001). To find the corresponding offset yield stress, a line with slope E is 

drawn from the strain axis (at       ) and runs parallel to the initial elastic loading 

line.  The intersection point (Point 2) of this line and the stress-strain curve is the offset 

yield stress.  Point 3 corresponds to the maximum tensile stress the specimen can 

withstand. Beyond this point, the specimen experiences non-uniform straining, i.e. plastic 

deformation, until it ultimately fractures; the end point of the graph.    

The stress-strain curve in Figure 3.13 displays the relationship between stress and 

strain for a specimen under the loading of tensile stress.  When the tension load is 
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released from the specimen and then reapplied, the specimen once again experiences 

elastic behavior before entering any region of plasticity; illustrated in Figure 3.14.   

 

Figure 3.14  Loading and unloading on a stress strain specimen 

 

In this figure, 0-A represents the elastic behavior of the material, the same behavior 

illustrated in the generic engineering stress-strain curve, Figure 3.13.  The material is 

loaded to point B, at which point the specimen is unloaded until point C where it no 

longer has an applied load.  The unloading from points B-C follows the same slope as 0-

A, revealing that the specimen has retained its mechanical properties.  The specimen is 

reloaded from point C, and experiences both elastic deformation and elastic-plastic 

deformation until it reaches point B’, where it rejoins the original curve.  The specimen 

rejoins the original curve because it had already experienced some permanent strain at 

point C.  From B’ the specimen continues to be loaded in tension until it surpasses its 

ultimate tensile strength and fracture occurs.   



49 

 

 

Figure 3.15 Tension and compression loading 

on specimen  

 

 Figure 3.16 Complete stress-strain 

hysteresis

 

Figure 3.13 and Figure 3.14 illustrate the stress-strain behavior of a specimen under 

tension loads.  However, a specimen subjected to fatigue loads would undergo both 

tension and compression loadings.  Figure 3.15 illustrates the stress-strain curve a 

specimen that was subjected to tension loads, was unloaded, and then subjected to a 

compression load of the same magnitude as the tension load.  When the specimen is 

subjected to a complete cycle of loading and unloading with both tension and 

compression forces the result is a stress-strain hysteresis.  The loading and unloading 

effect demonstrated through the stress-strain hysteresis is a linear problem and the 

relationship between stress and strain is demonstrated through Hooke’s law, Equation 

3.3.  As seen in the hysteresis in (Figure 3.16), the material properties, i.e. Youngs 

Modulus E, will be consistent even though some deformation is understood to have taken 

place.  A stress-strain hysteresis is also associated with energy dissipation and fatigue 

damage (Lee, et al., 2012), where the enclosed area of the hysteresis corresponds to the 

energy dissipated in the loading cycle.   
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3.2.4 Rainflow Cycle Counting 

There are various methods for counting the stress cycles within a loading history.  

However, the rainflow cycle counting method is recognized as the most accurate and 

substantial way of representing variable amplitude loading (Shantz, 2010) and is 

preferred for statistical analysis of load-time histories.  In the rainflow counting method, 

each cycle in the load spectrum is associated with a closed stress-strain hysteresis.  

Consider the stress and strain time histories (Figure 3.17 and Figure 3.18) and the 

corresponding hysteresis response (Figure 3.19).  In Figure 3.17 and Figure 3.18, the blue 

line represents the loading of the applied stress and the red line represents the unloading 

of the applied stress.  The stress-strain hysteresis is formed by plotting the stress and 

strain points on the same graph.   

 

Figure 3.17 Sample of variable amplitude strain 

data 

 

Figure 3.18 Sample of variable amplitude stress 

data 
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Figure 3.19 Hysteresis loop to stress data  (Lee, et al., 2012) 

 

The rainflow counting method is used to identify these hysteresis cycles within the 

load spectrum.  The ―rainflow‖ analogy is derived from a comparison of this method to 

the flow of rain falling on a pagoda and running down the edges of the roof.  The analysis 

is started by rotating a time history of strain clockwise by 90
o
 so the resulting shape is 

imaged to form a series of rooftops of the pagoda (Figure 3.20).  Next, a raindrop will 

drop from one rooftop to the next, being limited by only two restrictions: 

1. A raindrop must stop flowing when it passes an peak of the same sense 

(pointing in a different direction) unless it is od equal or greater amplitude 

than the peak from which the drop originated 

2. A raindrop may not flow in any section of a rooftop where a previous 

raindrop had flowed (Manson, et al., 2006) 
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Figure 3.20 Rainflow cycle counting on the load history 

 

For the example in Figure 3.20, begin by identifying the first largest reversal, AD.  

Starting with point A in the rain flows to B and falls along segment CD where it drops 

and stops (Rule #1). Next, a raindrop is started at B and flows towards C, falls onto 

segment DE where it drops and stops (Rule #1). Then, a raindrop is started from C and 

flows toward D, but is stopped because it encounters a previous flow (Rule #2).  To 

resume, the flow begins at D and falls to E, however this is also stopped because it 

encounters a previous flow (Rule #2).  The rain then flows from E to F where it drops 

onto GH and drops and stops (Rule #1).  Next, the raindrop starts at F and falls to G, 

where it drops to segment HI and then drops and stops again (Rule #1).  Finally a 

raindrop starting at G and falling to H encounters a previous flow; and the same with a 

raindrop starting at H and falling to I (Rule #2).   

Rainflow counting method is advantageous to other range counting methods 

because it offers realistic counting results while preserving the amplitudes of the acquired 
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stress ranges.  Since fatigue damage is related to these stress ranges, maintaining their 

amplitudes is significant; especially the larger ranges where there is likely to be greater 

fatigue damage.  The rainflow counting method maintains these larger stress ranges by 

counting the intermediate smaller ranges separately.  For instance, in Figure 3.21, a small 

load variation, BC, occurs within the larger range, AD. Range AD is counted as a 

separate cycle and then removed from the major load.   

 

Figure 3.21 Illustration of rainflow counting on stress cycle (Schijve, 2009) 

 

The rainflow counting continues to remove the smaller cycles, until only larger 

ranges are left.  These remaining ranges are known as the ―residue.‖  This removal of 

cycles is found in Figure 3.22.  The successive graphs from (a) to (d) illustrate the 

removal of smaller load cycles in a load-time history.  In each step, the cycles of a certain 

range are counted and then removed from the load-time history from a straight line that 

connects the gap.  In an ascending load range, the algorithm for counting and removing a 

small range from a larger range is (Schijve, 2009): 

             and           (Equation 3.4) 
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Likewise, in a descending load range, the algorithm for counting and removing a 

small range from a larger range is (Schijve, 2009): 

             and           (Equation 3.5) 

 

 

Figure 3.22 Successive rainflow counts (Schijve, 2009) 

 

Ultimately the rainflow counts are stored into a matrix where the data is later used 

to make histograms and/or other statistical representations.   

3.2.5 Stress Range Histograms 

After cycle counting methods are applied, the stress range cycles are stored into a 

histogram, where the individual bins that reflect the number of cycles for the relative 

stress range.  A measured histogram is shown in Figure 3.23.   
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Figure 3.23 Histogram that reflects the frequency of measured stress ranges 

 

Histograms provide graphical representation of the distribution of data.  They can be 

used to estimate the probability density function, i.e. the likelihood that a variable will 

take on a given value.   Histograms are often considered to be simple kernel density 

estimations, and can be fit with a kernel function to smooth frequencies over the bins, as 

shown in Figure 3.24.  Since the kernel function will smooth the frequencies over the 

bins, it will usually more accurately reflect the distribution.     
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Figure 3.24 Kernel density fit to histogram 

3.2.6 Extrapolation of Load Histories 

The variable amplitude loads acquired from the traffic data are also referred to as 

stochastic loads or random loads.  They are statistical in nature and cannot be predicted to 

occur within a certain magnitude at any given moment.  A description of stochastic loads 

can be achieved using statistical distributions that assign a probability that a particular 

load will occur.  In many cases the statistical properties of stochastic loads are not very 

well known, although long-term measurements provide useful data for fatigue analysis 

(Schijve, 2009).   

The data acquired from long term monitoring is the most accurate way of obtaining 

information about a bridge since no assumptions need to be made for uncertainties in the 

load distribution.  While long-term monitoring may be the optimal solution to acquiring 
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data that accurately reflects to bridge behavior, it remains difficult to continuously 

acquire accurate data.  This interruption in the continuous acquisition generates 

uncertainties in future traffic loads.  Acquisition of data may be disrupted when sensors 

experience temperature fluctuations causing them to operate incorrectly and data 

acquisition systems may require large amounts of power and would stop functioning 

during instances of power outages.  Furthermore, the permissions from bridge owners to 

implement instrumentation may only be temporary and not a long enough time period to 

capture changes in behavior and conditions.  While the service life of a structure is 

approximately 75 years, structural health monitoring instrumentation is not designed to 

―set it and forget it.‖  To account for these short time signals or interruptions, it has been 

customary in traditional methods to use a measured load history and simply repeat the 

load block.  However, this method has the drawback that only the cycles in the measured 

signal will appear in the extrapolation, even though other cycles are possible 

(Johannesson, 2006).   

Nevertheless, long-term monitoring provides a long load-time history with 

stationary character; resembled in the histogram of the stress ranges vs. the number of 

cycles.  This data can be fit with exceeding probability curve that also has a stationary 

character.  In statistical terms, the curve that fits the histogram distribution becomes an 

estimate of the probability function of the occurrence of peak values.  Statistical methods 

can be used to extrapolate the measured load history and can also account for load 

variability by capturing more extreme cycles than the observed cycles while remaining 

within a reasonable range of possibly measured loads.   
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3.2.6.1 Statistical Extreme Value Theory 

The statistical extreme value theory can be used to make statistical inferences about 

extreme values in a population or a random process (Davison, et al., 1990).  Thus, the 

method can be used to randomly generate extrapolated load blocks by modifying the 

highest maxima and lowest minima in previously measured load blocks.  Only the 

extreme values over previously defined max threshold and min threshold levels are 

modeled.  By only considering the excesses over these threshold levels, then under 

certain conditions these excesses approximately follow an exponential distribution that is 

representative of the measured the data.  This method of extrapolation is applicable to 

fatigue data and can be done in the rainflow domain.  While metal fatigue analysis is 

sometimes characterized in the time domain since it identifies occurrences of specific 

―events‖ in a load-time sequence, (Shantz, 2010), the rainflow domain method is well 

adopted for really long extrapolations of the spectrum, whereas the time domain method 

is computationally more demanding.  Both types of extrapolations have proven to give 

similar results for fatigue loading examples (Johannesson, 2006). 

In order to calculate the number of stress cycles the structural component has 

experienced, the acquired strain measurements from structural health monitoring are 

processed and analyzed through the rainflow cycle method.  These strain measurements 

are often discretized to a certain number of load levels, which enables well-organized 

storage of the density of rainflow cycles in the form of a rainflow matrix.  Each bin of the 

rainflow matrix contains the number of cycles for that relative range.   

Using the theory of statistical extreme values, the rainflow matrix is extrapolated to 

estimate data that was not captured in the observed data.   To obtain the results for the 
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rainflow matrix, the equivalence between counting rainflow cycles and counting 

crossings of intervals is used (Johannesson, 2006).   Since, the number of peaks         

is equal to the number of peaks at the preceding interval              minus the number 

of positive level crossings          about that level (Equation 3.6), the rainflow matrix 

can be derived from a peak counting result (Potter, et al., 1989).   

                              (Equation 3.6) 

 

The technique used for extrapolating the rainflow matrix is the Peak Over 

Threshold (POT) technique.  In this method, only the extreme excesses over a threshold 

level, u, are modeled.  In accordance with this technique, when a high enough threshold 

level is set in place, then under certain conditions these excesses approximately follow an 

exponential distribution (Johannesson, 2005).  Exponential distributions are based on the 

Poisson process, which describes the occurrence of some random events that occur 

continuously in time or space (Ayyub, 2003).   The approximation of for the excess is 

described as                 where   = mean excesses over u, and the 

cumulative distribution function for an exponential distribution: 

 
           ( 

 

 
) (Equation 3.7) 

 

The estimation of the parameter (mean excesses) in the exponential distribution is 

the mean of the excesses in the measured data: 

 

  
 

 
∑  

 

   

 (Equation 3.8) 

 



60 

 

The mean of each hour, m, across the measured weekdays was used for the 

exponential probability density.  where N = Number of cycles in that specific hour, z = 

corresponding stress range affiliated with the each stress cycle.   

3.2.6.2 Analytical procedure for extrapolation 

The algorithm for extrapolating the rainflow matrix is described below, with additional 

details in the subsequent sections. 

Algorithm 

 

The generation of the extrapolated data was performed using the following steps: 

 

1) Start with a time signal of raw data acquired from strain gauge 

2) Convert data to stress and detrend the data if necessary 

3)  Extract the turning points of the time signal  

4) Count the number of stress cycles using rainflow counting method, and remove 

small (considered negligible) cycles with rainflow filter.  As discussed earlier, a 

value of 1ksi is used.   

5) Choose threshold levels umin and umax for the extrapolation.  These choice are 

defined later. 

6) Choose interval values for splitting exponential distribution.  This is discussed 

later. 

7) Count the number of measured stress cycles within each interval. 

8) Average the number of stress ranges across each hour of the day for the measured 

data.  Do this for each interval.  

9) Estimate the mean excesses mmin and mmax under and over the thresholds umin and 

umax, respectively. Can also be considered as estimating the mean stress ranges.   

10) Generate the extrapolated load block by simulating stress ranges as exponential 

random numbers. Replace each measured stress range with a simulated stress 

range for each load block.   

11)  Repeat step 9 for the computed average number of stress ranges for each hour of 

the day (Step 7) until the number of load blocks desired is extrapolated. 

12)  Repeat steps 9 and 10 for each defined interval 
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The completed extrapolated signal is obtained by concatenating the rainflow cycles 

and creating a rainflow matrix.  These cycles are then used with the AASHTO S-N 

diagrams.   

Threshold Levels 

It is customary to remove small oscillations that do not contribute to fatigue 

damage.  Further, the stress ranges caused from smaller vehicles are often considered 

negligible compared to trucks.  This is not only established in AASHTO design guideline 

(AASHTO, 2002), but the NCHRP Report, Fatigue Evaluation of Steel Bridges, also 

pays distinct attention to truck loads when estimating fatigue life, mentioning that, ―the 

effective stress range shall be estimated as either the measured stress range or a 

calculated stress range value determined by using a fatigue truck as specified in the 

AASHTO LRFD Bridge Design Specification 2012 (NCHRP, 2012).‖  Because of the 

significance of truck loads compared with smaller vehicular passages, it has been the 

rational for neglecting stress cycles below 1 ksi (Massarelli, et al., 2001).  This rationale 

has also been adopted for this analysis and the minimum threshold level is set to 1 ksi.   

The maximum stress range of the measured data is useful for determining the max 

threshold level.  This value is not taken verbatim as the max threshold value because it is 

believed that other stress ranges may occur on the structure and the monitoring was only 

done for a finite time period of the structures life.  Therefore, a default choice is to set the 

threshold range to 5% of the total range of the signal (Johannesson, 2006) 

 
           (       ) (Equation 3.9) 

 

This range is observed to be reasonable after empirical investigation shows it agrees 

well with the measured load spectrums.   
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Interval Values 

Interval values are chosen in order to separate the disparity between the stress 

cycles caused by smaller traffic loads (e.g. vehicular passage) and the stress cycles 

caused between the medium and large truck loads.  Figure 3.25 illustrates how the stress 

cycles are allocated to different interval levels.  Each interval of stress ranges 

approximately follows an exponential distribution.   

 

Figure 3.25 Allocation of stress ranges into specific intervals 

 

It is important to verify the exponential assumptions are fulfilled for the interval 

levels.  At the beginning of the extrapolation process, careful consideration is given to 

determining where the extrapolation of exponential random numbers will begin for each 

interval level.  These levels should be chosen to account for relative stress ranges of 

measured data and should be visually inspected with histograms in order to assure the 

statistical extreme value theory provides reasonable results.  As seen in Figure 3.26, the 

interval levels are cut off where there is large disparity in the exponential plots.  The 
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intervals chosen from the measured data were configured to stress ranges starting at 3ksi 

and stress ranges starting at 10.4 ksi.   

 

Figure 3.26 Traffic load distribution as histogram 

 

The measured rainflow histogram is fitted by three probability density functions.  

Each density function is assigned to a vehicle type.  Density function 1 describes the 

probability of occurrence of cars, function 2 of light or empty trucks and function 3 

represents ordinary and heavy trucks (Peil, 2005).  Figure 3.27 illustrates how the 

exponential distribution functions are fit to the histograms.   
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Figure 3.27 Exponential distribution fit to histogram 

 

 Crack-Initiation Life Prediction 3.3

The S-N curve is typically generated in the laboratory on test specimens, where a 

testing machine applies a constant sinusoidal stress (constant amplitude), S, and counts 

the number of cycles, ni, until failure, Nf.  As discussed in Chapter Two, failure is defined 

at the initiation of a crack that is of a critical size.  Until the onset of this fatigue crack, 

the specimen can be characterized by the amount of current fatigue damage in terms of its 

fatigue life.  So the specimen may be at x% of its fatigue life, or the specimen can be 

classified to have (100-x)% remaining useful life.  This damage may not be visible upon 

inspection, but is definitely still present in the material.     

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

H
is

to
g
ra

m
 D

e
n
s
it
y
 F

u
n
c
ti
o
n

Stress Ranges (ksi)



65 

 

3.3.1 Linear Cumulative Damage Rule 

A specimen’s fatigue life is based on the laboratory test specimens that are used to 

develop the S-N curves.  Thus, the fatigue damage is defined as the cycle ratio, n/Nf, seen 

in Equation 3.10: 

 
∑

 

  
   (Equation 3.10) 

 

The simplicity of this linear cumulative damage model, which is more generally 

known as the Miner rule, works best under constant amplitude loading, since it was 

derived from test specimens exposed to constant amplitude loads.  For variable amplitude 

loadings, the Miner rule is still applied, but is modified to account for the variance in 

stress amplitudes and the number of cycles corresponding to these amplitudes.  Consider 

the simple variable amplitude load made up of two load blocks, presented in Figure 3.28. 

This load block is commonly referred to as a ―HiLo‖ load sequence since it transitions 

from a higher stress range to a smaller one.   

 

Figure 3.28 Variable amplitude loading with two blocks of load cycles (Schijve, 2009) 

 

From the two load blocks, the Miner rule implies crack initiation failure occurs at, 
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      (Equation 3.11) 

 

Where    is the number of cycles at     and    is the number of cycles at    .     

and    represent the fatigue lifes at the correspond stress amplitudes.  For multiple load 

blocks (i), the equation is written as, 

 
∑

  

  
   (Equation 3.12) 

 

Since the hypothesis that the Miner rule can be applied to variable amplitude 

(VA) loads, numerous VA fatigue tests were carried out to check the hypothesis.  In 

many cases, significant discrepancies were found and new theories and hypotheses were 

published.  However, these proceeding hypotheses were found to have their own 

discrepancies as well and lacked sufficient credibility.  Miner did his own VA load tests 

and found cycle ratio values (    ) varying from 0.61 to 1.45; reasonably close to an 

average of 1.0 (Schijve, 2009).  Thus, the Miner rule has remained the most widely used 

tool for fatigue life estimates with variable amplitude loads.  Nonetheless, due to the 

inconsistencies and variation of results from variable amplitude tests, the shortcomings of 

the rule should be understood in order to arrive at a reasonable fatigue life estimates.   

3.3.1.1 Shortcomings of the Miner Rule 

When fatigue life predictions are made using a variable amplitude load spectrum 

with the Miner rule, it should be realized that the results have inherent assumptions and 

only provide a rough estimate of a structures fatigue life.  The fundamental shortcoming 

of the Miner rule is that fatigue damage is indicated by a single parameter only, i.e.    , 

which accumulates from zero (pristine specimen) to 1 (failure) (Schijve, 2009).  The 
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Miner rule can be broken into three different topics that are not recognized in the Miner 

rule and are the largest deficiencies of the model: 

 Small cycles (with an amplitude below the fatigue limit) are not damaging 

 Sequencing of stress cycles is not accounted for 

 The crack length at failure 

 

The Miner rule does not account for cycles below the fatigue limit 

 

This first assumption of the Miner rule is inconsistent with the definition of fatigue, 

i.e. the initiation and propagation of microscopic cracks into macro cracks by the 

repeated application of loading (Fisher, et al., 1998).  The inconsistency relies in the fact 

that the S-N curves were not developed based on the existence of crack.  These curves 

were developed to understand the number of cycles a structure can withstand before a 

crack of critical size will develop in the material; focusing on what has become known as 

just the fatigue-crack-initiation life.   

Consider the load spectrum in Figure 3.28.  In accordance with the miner rule, if     

is below the fatigue limit, then    is infinite and (       ).  The specimen will never 

fail because the condition      =1 (Equation 3.1) cannot be satisfied.  The inherent 

assumption of the rule is that the cycles with an amplitude of     cannot propagate a 

growing crack.  This assumption was first made when the Miner rule was developed for 

constant amplitude loading.  With CA loads, the small load cycles below the fatigue limit 

will not be enough to create a crack, which means there won’t be a crack to grow.  

However, due to the sporadic nature of variable amplitude loads, a structure may have a 

much different response.  For variable amplitude loads, once a crack exists, any loading 

or stress ranges will have an impact on the damage, even if they are below a predefined 
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fatigue limit.  This leads into the next shortcoming of the Miner rule, which is the effect 

the sequence of loads will have on a structure.   

Miner rule does not account for the sequence effect  

 

The significance of the fatigue damage contribution is highly dependent on the type 

of load spectrum.  Consider the scenario where a microcrack does not initially exist in a 

structure.  For the first load spectrum, the structure experiences a LoHi VA load sequence 

illustrated in Figure 3.29a.  If the first load block of smaller stress loads falls below the 

fatigue limit, then these cycles will not create a crack, nonetheless contribute to the crack 

growth at the microcrack level.   

 

Figure 3.29 Sequence in loadings, each with two different size load blocks (Schijve, 2009) 
 

However, if the large loads are then followed by smaller loads, (consider the HiLo 

VA load sequence in Figure 3.29b) then the small loads may also affect the structure, 

even if they are still below the fatigue limit.  The initial large loads may be large enough 

in size to introduce residual stresses, introduce plasticity into the structure or may even 

create an initial crack.  Therefore, the subsequent smaller loads will contribute to the 

stress field at the crack tip, and will consequently affect the crack growth (Schijve, 2009).  

For this scenario, the LoHi sequence will lead to a larger fatigue life than the HiLo 
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sequence, which will experience residual stresses from the initial loading.  The next 

scenario with an initial crack size leads to the next shortcoming of the Miner rule.   

Miner rule does not account for the length of the crack at failure 

 

Consider the scenario where a microcrack exists in a structure with an initial crack 

size of .5 mm (a = .5mm).  Using the LoHi sequence in Figure 3.29a, assume that the 

lower stress amplitude no longer falls below the fatigue limit.  At the load stress 

amplitude, the microcrack may have the capability to grow until a = 10mm, which could 

be the point of failure.  However, if this small load block is interrupted by a larger load 

block, as Figure 3.29a suggests, then the high-amplitude block could lead to immediate 

failure because a small crack is more fragile at higher stress level (Schijve, 2009).  For 

this half of the scenario, a load sequence of 
  

 
 < 1 should be expected. In the reversed 

sequence, Figure 3.29b, the structure experiences a larger load first.  The end of the first 

load block may leave a crack in the structure that would be considered near failure, i.e. 

n/N is close to 1.  After the transition to the smaller load block, substantial crack growth 

is still possible, but the structure is capable of withstanding more cycles.  For this half of 

the scenario, a load sequence of 
  

 
 > 1 should be expected.  Opposite to scenario of no 

existing microcrack, in this scenario, the LoHi sequence will lead to a shorter fatigue life 

than the HiLo sequence.    

3.3.1.2 Nonlinear Damage Accumulation 

Along with the linear damage accumulation model, non-linear models for damage 

estimations are also proposed in literature.  Non-linear models were initially comprised 

from the assumption that fatigue damage should be quantified by the size of the crack.  

However, the non-linear models do not omit the crack initiation period but are intended 



70 

 

to account for the crack initiation and crack growth periods.  Since the rate of crack 

growth is an exponential function, the corresponding amount of fatigue damage would 

also follow an exponential curve, Figure 3.31b.  Fatigue damage as a non-linear, 

exponential function can be written as: 

 

  ∑(
  

  
)
  

 

   

 (Equation 3.13) 

 

Where Cj is a material parameter related to the ith loading level, a value that should 

be experimentally obtained (Manson, et al., 2006).   

 

Figure 3.30 Illustration of linear damage 

accumulation (Modified from (Schijve, 2009)) 

 

 

Figure 3.31 Illustration of non-linear damage 

accumulation (Modified from (Schijve, 2009)) 

The accumulation of damage as a non-linear function poses some difficulties.    

Consider the load block in Figure 3.28 or Figure 3.29b (both illustrate a HiLo VA 

sequence).  As discussed previously, the sequence effects in VA loadings are a significant 

shortcoming of linear damage models and continue to be shortcomings of the non-linear 

damage accumulations.  This is shown in Figure 3.33.  As the figure shows, the damage 

will accumulate along the first curve for the first set of cycles with stress amplitude,    , 

and then transition to the second curve for the second set of cycles with stress amplitude, 
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   , until failure at D=1.  The problem with this assumption is that the sum of       and 

      will be smaller than 1.0 because N1 and N2 will represent two different curves.  

The reversed sequence, with LoHi stress amplitudes, will lead to a similar dilemma, i.e. 

the value ―1.0‖ will not accurately describe the failure point.  For a LoHi sequence, the 

non-linear damage analysis will conclude        +       > 1.  The results of non-linear 

damage models showed that damage does not need to be defined to any particular 

physical manifestation.  Any family of damage curves would obtain the same answers, as 

long as they are in proper relations with each other (Manson, et al., 2006).  Lastly, it 

should be stated that like linear damage models, the non-linear models also ignore 

interaction effects, acquiring some of the similar assumptions that are made in the Miner 

rule.   

 

Figure 3.32 Non-linear damage curve 

 from HiLo VA sequence 

(Modified from (Schijve, 2009)) 

 

Figure 3.33 Non-linear damage curve 

 approximated by double linear functions  

(Modified from (Schijve, 2009)) 

 

It is worth mentioning that non-linear damage accumulation models can be 

approximated by double linear functions, Figure 3.33, with the linear damage 

accumulation rule applied (Zhang, et al., 2013).  The importance with the double linear 
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models is the ―kneepoint‖ or ―breakpoint‖ from the transition of one linear segment into 

the next.  This value depends only on the fraction of life from the first load segment.  For 

two-block loading problems, these values should be experimentally determined.  

Nonetheless, these simplifications have been successfully applied to two-block loading 

problems, but the parameters are too complicated for the multi-block loading or complex 

VA loading, such as traffic loads.   

3.3.1.3 Linear vs. Nonlinear Damage Accumulation 

There is a variance in the calculated damage results between the double linear 

damage rule and the linear damage rule.  The DLDR is useful when attempting to 

understand the fatigue life of a specimen subjected to known loading-order effects, where 

―breakpoint‖ values are predetermined.  Due to the need to derive values experimentally, 

the DLDR is not a good fit for the analysis on steel bridges.  Each variable load the 

bridge will experience is highly dependent on the large erraticism of traffic loads (i.e. 

frequency and size) the bridge will experience.  This is especially true at the location of 

welded joints, where the Miner rule is generally considered to be the only calculation rule 

available (Schijve, 2009).  Because both models have shortcomings and provide rough 

estimates, results show that a preponderant number of cases require no more than the 

Miner rule to get satisfactory results (Manson, et al., 2006).  While the limitations of the 

Miner rule still exist, the Miner rule continues to be the preferred method, provided it is 

used cautiously.   

3.3.2 Application of S-N Curve 

The purpose of the S-N curve is to illustrate the stress and life relationship by 

plotting the cyclic stress (S) against the number of cycles to failure (Nf).  An S-N curve is 
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typically constructed as a piecewise-continuous curve consisting of two distinct linear 

regimes when plotted on log-log coordinates, as seen in Figure 3.34.  For steel specimens, 

fatigue strength values are typically, N2 = 10
3
, and N1 = 10

6
 define an S-N curve.  The 

corresponding fatigue stress values are referred to as, S2 and S1, respectively.   

 

Figure 3.34 Schematic constant amplitude S-N curve of a steel component  (Lee, et al., 2005) 

 

In the curve, the two sloped linear segments represent the low-cycle fatigue (LCF) 

and high-cycle fatigue (HCF) regions, and the horizontal segment represents the bending 

fatigue limit.  LCF applies to structures that experience high amplitudes, low amount of 

cycles, and have a short fatigue life.  HCF accounts for structures that are exposed to a 

large number of cycles.  The more relevant difference between the two conditions is that 

low-cycle fatigue is associated with macro plastic deformation in every cycle and high-

cycle fatigue is more related to an elastic behavior of the material.  In summary, cases 

with high cycle fatigue conditions endure: 

 High number of cycles to failure 

 Little plastic deformation due to cyclic loading 
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Thus, high-cycle fatigue is more common in applications and low-cycle fatigue is 

associated with a more specific load spectrum.   

Due to the cyclic operating stresses from constant amplitude loading, a microcrack 

will develop and nucleate within a grain of the material.  The microcrack will grow to the 

size of about the order of a grain width until the grain boundary barrier impedes its 

growth.  The grain barrier is a much stronger part of the steel, causing crack growth to 

slow and may become arrested.  The minimum stress amplitude to overcome the crack 

growth barrier for further crack propagation is referred to as the fatigue limit.  Upon 

reaching and/or surpassing the fatigue limit the microcrack will eventually propagate to a 

macro crack and lead to failure, i.e. the end of the fatigue-crack-initiation life.   

The S-N curves displayed in Figure 3.34 are used for estimating fatigue life of a 

specimen for applied constant amplitude stresses.  However, when the specimen is 

exposed to variable amplitude loading, some of the subsequent stress amplitudes could 

exceed the fatigue limit and influence the crack to propagate.  Thus, under variable 

amplitude loadings, the fatigue limit should be modified.  As discussed in section 3.3.1, 

the Miner Rule is a proposed method to include the effect of these variable amplitude 

overloads with low stress amplitudes.   
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Figure 3.35 CA S-N curve for a steel component subjected to VA loads 

 

As illustrated in Figure 3.35, the Miner rule extends the HCF region of the S-N 

curve with the same slope factor, k, to approach zero stress amplitude.  The slope of the 

S-N curve in the HCF regime is denoted as, b (the height-to-base ratio) or as, k (the 

negative base-to-height ratio).  The slopes are related through the following expression: 

 
   

 

 
 (Equation 3.14) 

 

where the parameter k is nothing more than a slope factor.  In general, if fatigue behavior 

is dominated by the crack propagation mechanism, e.g. welded joints, the S-N curve 

often has a steep slope (          ) (Lee, et al., 2005).  Any two S-N data points in 

the HCF regime are related by the slope or the slope factor in the following equation.   

 
  

  
 (

  

  
)
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)   

 
 (Equation 3.15) 
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Therefore, any point between (S2, N2) and (S1, N2) can be obtained by a known 

slope and a known reference point, such as (S2, N2) or (S1, N2).  The HCF region of the S-

N curve is commonly expressed as: 

 
     

 
 (Equation 3.16) 

 

3.3.2.1 Fatigue Prone Details 

The fatigue strength of bridge components are based on the same experimental data 

that correlate the magnitudes of stress ranges with the number of cycles to fatigue failure 

for various types of details (Zhou, 2006).  Fatigue damage often occurs at the element 

level of bridge components and more specifically occurs at welded, riveted, or bolted 

locations with large stress concentrations and construction defects; essentially where the 

rigidity of the structural member changes.  Fatigue resistance at an element location 

depends on the direction and variation of the live loads, the member sizes, fastener and 

weld characteristics, and quality assurance processes (Sobanjo, et al., 2013).  Laboratory 

experiments were conducted on the following types of structural details in order to 

characterize their susceptibility to fatigue damage, 

1) Plain Material away from Any Welding 

2) Connected Material in Mechanically Fastened Joints 

3) Welded Joints Joining Components of Built-Up Members 

4) Welded Stiffener Connections 

5) Welded Joints Transverse to the Direction of Primary Stress 

6) Transversely Loaded Welded Attachments 

7) Longitudinally Loaded Welded Attachments 

8) Miscellaneous 
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These laboratory experiments were conducted by placing the structural details under 

fatigue loads in order to correlate the magnitudes of stress ranges with the number of 

cycles to fatigue failure (Zhou, 2006).  The geometry of the details and location of the 

applied load on these details have had the greatest impact on their susceptibility to fatigue 

damage.  AASHTO LRFD Bridge Design Specifications 2012, describes the fatigue 

categories in full detail for load induced fatigue details.  The details are grouped into 

eight categories, called detail categories, based on their ability to withstand fatigue loads.  

Bridge details (welded, bolted and riveted) are categorized as A, B, B′, C, C′, D, E, or E′ 

based on their fatigue strengths.  Category A is for the base material steel and has the 

highest fatigue strength.  Category E′ represents the poorest welded details that have the 

lowest fatigue strength.  Experience and past data both indicate that in the design process 

the fatigue considerations for Detail categories A through B′ will rarely govern; they are 

included in LRFD Bridge Design Specifications 2012 for completeness (AASHTO, 

2012).  All federal and state agencies are encouraged to teach their bridge inspectors to 

locate and identify the category E and E’ details.  While failure of these structural details 

is not always significant to the whole structure, their failure is extremely significant in 

structural members that are lacking redundancy.  Table 3.1 shows category E and E’ 

details, which are more prone to fatigue.   
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Table 3.1 Sample of details that are considered fatigue prone  (Oregon DOT, 1996) 

 

The number of cycles to failure for bridge details in the S-N curve is expressed as: 

       
  

 (Equation 3.17) 

 

where Nf is the number of stress cycles to fatigue failure,    is the nominal stress range at 

a fatigue detail and A=detail category constant, varying with the type of detail.  The 

AASHTO S-N curve is shown in Figure 3.36.  The S-N curve shows high cycle linear 

regime that bends into the constant amplitude allowable fatigue stress range, or constant 

amplitude fatigue limit (CAFL), represented by a horizontal dashed line.  
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Figure 3.36 AASHTO fatigue strength S-N curves 

 

The CAFL varies for the fatigue prone categories depending on the number of stress 

cycles a component is exposed to.  Table 3.2 displays the variance in the CAFL for the 

fatigue categories based on the number of cycles (AASHTO, 2002).  However, a bridge 

experiences millions of cycles per year and the more relevant CAFL for most bridge 

structures applies to categories over 2,000,000 cycles.    

Table 3.2 Allowable Fatigue Stress Range for CAFL  

  CAFL Allowable Range of Stress, Fsr (ksi)
b
 

  For For For For over 

  100,000 500,000 2,000,000 2,000,000 

Category Cycles Cycles Cycles Cycles 

A  63.0 37.0 24.0 24.0 

B 49.0 29.0 18.0 16.0 

B′ 39.0 23.0 14.5 12.0 

C 35.5 21.0 13.0 10.0 

D 28.0 16.0 10.0 7.0 

E 22.0 13.0 8.0 4.5 

E′ 16.0 9.2 5.8 2.6 

F 15.0 12.0 9.0 8.0 
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The CAFL category constants for all fatigue categories are summarized in Table 

3.3.  These values represent the constant amplitude fatigue limits on the AASHTO S-N 

curve.  The values for this table are found in the AASHTO LRFD Bridge Design 

Specifications 2012 (AASHTO, 2012) and are used alongside the AASHTO S-N curve 

Figure 3.36.   

Table 3.3 Constant A and CAFL of AASHTO Fatigue Categories 

  Constant A  CAFL 

Category  x10
8
 ksi

3
  x10

11
 MPa

3
 ksi MPa 

A 250.0 (82.0) 24.0 (165.5) 

B 120.0 (39.3) 16.0 (110.3) 

B′ 61.0 (20.0) 12.0 (82.7) 

C 44.0 (14.4) 10.0 (68.9) 

C′ 44.0 (14.4) 12.0 (82.7) 

D 22.0 (7.21) 7.0 (48.3) 

E 11.0 (3.61) 4.5 (31.0) 

E′ 3.9 (1.28) 2.6 (17.9) 

 

3.3.2.2 Effective Stress Range 

Since the data in S-N curves were developed under constant-amplitude cyclic 

loading, an effective stress range should be calculated to equivalently represent the 

variable-amplitude cyclic loading on bridge structures.  The effective stress range for a 

variable-amplitude spectrum is defined as the constant-amplitude stress range that would 

result in the same fatigue life as the variable-amplitude spectrum.  Variable amplitude 

load spectrum can be defined by the Rayleigh distribution, with most cycles occurring 

below the constant amplitude fatigue limit.  Rayleigh distribution is schematically 

represented in Figure 3.37.   
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Figure 3.37 Rayleigh-type stress range histogram (Fisher, et al., 1983) 
 

For steel structures, the root-mean cube stress range (Equation 3.18) calculated from 

a variable amplitude stress range histogram and is used with the constant amplitude S-N 

curves for fatigue life analyses (Zhou, 2006).  The summation of stress ranges in the 

histogram is an acceptable way of approximating the area under the Rayleigh 

distribution.   

 

     (∑     
 )

   

 (Equation 3.18) 

 

where Sri is the mid-width of the ith bar, or interval, in the frequency-of-occurrence 

histogram, 3 is the reciprocal of the slope in the constant S-N curve, and    is the fraction 

of stress ranges in that same interval (Keating, et al., 1986).   
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3.3.2.3 Truncation Stress Range for Fatigue Details 

A fatigue detail is most affected by the largest stress ranges that exceed the constant 

amplitude fatigue limit (CAFL).  For most bridge components, only a small fraction of 

the stress range histogram is greater than the CAFL while the majority of the measured 

stress cycles will fall below the fatigue limit.  Thus, calculations for the effective stress 

range are distorted by the large amount of smaller cycles which lowers the effective stress 

range value.  It has been proposed that a lower truncation stress range, or cutoff, be 

established, which would calculate an effective stress range that emphasizes the effects of 

the large cycles (Zhou, 2006).  The higher the truncated stress range, the higher the 

calculated effective stress range.   

Based on research results of variable amplitude fatigue in the United States and 

Europe, the magnitude of the truncation stress range was decided as a fraction of the 

CAFL of the detail.  A truncation value of 0.5CAFL was found to be reasonable yet 

conservative (Zhou, 2006).  Therefore, all stress ranges lower than 0.5CAFL are excluded 

in the effective stress range calculation.  While the 0.5CAFL value provides reasonable 

results for most cases, case-specific factors should also be considered in the 

determination of the truncation stress range.  These factors include: (1) the level of 

ambient noise if signals from sensing equipment are not filtered, (2) stress cycles due to 

light vehicles based on results of a calibration test, which correlates the strain response 

with a control vehicle of known weight, and (3) traffic information such as the average 

daily truck traffic (ADTT).   
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 Remaining Useful Life – Crack Initiation Period 3.4

Finally, the damage prognosis is calculated for the fatigue-crack-initiation period.  

The remaining useful life is calculated by comparing the current life of a specimen to the 

predefined laboratory values of specimens.  Figure 3.38 illustrates how the effective 

stress range can fit into the AASHTO S-N curves.  As shown, the hypothetical data is 

extended below the fatigue limit to accommodate VA loading with the Miner rule.   

 

Figure 3.38 Effective stress range fits into S-N curves 

 

The number of stress cycles to fatigue failure is found from the S-N curve that 

corresponds with the effective stress range.   Thus the cumulative damage from the 

fatigue crack initiation life is written as a percentage of the fatigue life by dividing the 

number of current cycles at the effective stress range,   , by the number of stress cycles 

to fatigue failure,   .   

 
            

  
  

⁄      % damage (Equation 3.19) 
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Further, subtracting the current number of cycles at the effective stress range from the 

number of cycles that defines the fatigue life, provides the remaining useful life of the 

crack initiation period in terms of cycles,  

 

                cycles (Equation 3.20) 

 

Or the remaining useful life of the crack initiation period in terms of years as, 

 

 
      

  
  

⁄      years (Equation 3.21) 

 

 Uncertainties in Crack-Initiation Life Modeling 3.5

There is a diverse number of factors that contribute to the fatigue performance of a 

structure and uncertainties have proved impossible to capture through accurate 

quantitative methods or rational arguments (Schijve, 2009).  This is especially difficult 

from structures in service, since fatigue properties largely come from laboratory tests that 

don’t represent the real life statistical distributions.   Rather than attempting to quantify 

the uncertainties in fatigue assessments, it is conventional to use safety factors or other 

similar methods.  The choice of safety factors is a matter of experience and engineering 

judgment (Schijve, 2009).   

The most common reasons for uncertainties involved with fatigue performance are: 

 Uncertainties within the load spectrum or the extrapolation 

 Uncertainties about the fatigue properties of the structure 

 Uncertainties about the reliability of predictions 

Variations in the load spectrum were discussed in detail in section 3.2 Load-Induced 

Fatigue from Variable-Amplitude Loading.  The essence of this section described the 
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stochastic nature of variable amplitude loads, which results in large variation between the 

stochastic loads and deterministic loads applied in the laboratory.  Even if a bridge was 

built with the same design and construction at a different location, the bridge will not 

experience the same traffic loadings.  For instance, if a bridge is built in a location that is 

not traveled by a lot of trucks, the bridge will not experience as high of stress ranges than 

the bridge in a high truck volume location.  Further, a bridge in a different location may 

even be subjected to different weather conditions.  A bridge in a marine environment is 

more susceptible to corrosion damage, which would accelerate the fatigue effects on a 

bridge.   

The next reason for uncertainties is associated with the fatigue properties of the 

structure.  Since cracking will almost always begin at a material imperfection or defect, 

the time to initiate a crack will vary across the structure.  While material properties for a 

standardized composition may be obtained from data banks, it cannot be guaranteed that 

these properties are always the same; statistical variations are related with material 

properties and production quality.  Further, fatigue damage more often occurs on the 

connections between steel members, because the welded, riveted, or bolted details are 

often associated with high stress concentrations and construction defects (Sobanjo, et al., 

2013).   

The last reason often associated with uncertainties is the reliability and accuracy of 

fatigue-crack initiation prediction model.  The remaining useful life is obtained from S-N 

curves and corresponding fatigue limits that were derived from constant amplitude loads.  

However, for high-cycle fatigue regimes, scatter of fatigue lives is not the most important 

issue.  The scatter is more concerned around the fatigue limit.  The section, 3.3.1.1 
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Shortcomings of the Miner Rule, provided insight into the drawbacks of using the linear-

damage accumulation model (which are well suited for constant amplitude loads) with 

variable amplitude loadings.  This section provided the necessary insight that with 

variable amplitude loads, stress ranges below the fatigue limit may also contribute to the 

fatigue failure.   
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 Summary 3.6

 Figure 3.39 presents the flowchart that summarizes the method to fatigue-crack-

initiation life analysis.  The flowchart begins with the measured strain-time history and 

ends in the damage prognosis for the bridge detail in question.  The flowchart presents 

the method of fatigue analysis presented here, in 0.   

 

Figure 3.39 Approach to fatigue crack-initiation life analysis 
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: Theoretical Development of Fatigue Crack Growth Chapter Four

Period 

Once a fatigue crack has initiated, applied repeated stresses cause propagation of a 

crack across the section of the member until the crack grows to a size where the member 

is capable of fracture. This period of crack growth is known as the propagation period. 

The crack initiation period (0) dealt mostly with microcrack development and trivial 

crack growth at the material surface.  Microcracks usually have negligible effect on the 

ultimate strength of a structure.  However, once the crack becomes larger in size, i.e. a 

macrocrack, the static strength of the structure is substantially reduced.  In the crack 

propagation period, the crack is considered to be a macrocrack and is now growing 

through the material.  Thus, the crack propagation period is based around the rate of 

crack growth.  As illustrated in Figure 4.1, crack growth transitions from the end of the 

crack initiation period and ends once the structure has fractured: the separation of the 

member into two parts.  The crack propagation period can be separated by three regions 

of crack growth, further discussed in section 4.2.1 Crack Growth Behavior.   

 
Figure 4.1 Illustration of fatigue-crack-propagation life 
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 Crack Types 4.1

Since a structure contains a crack throughout the entire propagation period, then it is 

clear that some macrocrack sizes are deemed acceptable.  Cracks may be acceptable for 

different reasons, for instance the crack may have negligible effect on the function of the 

structure.  Depending on the size of the crack and the rate of crack growth, cracks may 

not have significant safety or economic consequences.   

Two well-known examples of crack types where the crack growth is important 

include: 

I. A crack in sheet metal, where the crack is growing through the full thickness 

of the material.  These cracks are more often referred to as through thickness 

cracks.  An example where these cracks occur often is within the skin of an 

aircraft structure.   

II. Part through cracks, where a corner crack or a surface crack starts at a hole 

in the structure.  These cracks may also occur as surface cracks in welded 

structures at the toe of the weld.  A surface crack with a curved crack front 

has 3D character, as seen in Figure 4.2.   

 

Figure 4.2 Different types of cracking starting from a hole (Schijve, 2009) 

 

Fatigue cracks are distinguished by three modes of loading, illustrated in Figure 4.3.  

The first mode describes tensile loading where the crack surfaces move directly apart and 
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a fatigue cracks grows in a direction that is perpendicular to the main principle stress.  

This mode is the cause of most fatigue cracks for structures in service.  The second mode 

describes in-plane shear where crack surfaces slide over one another in a direction 

perpendicular to the leading edge of the crack.  The third mode is a tearing mode where 

the crack surfaces move relative to one another and parallel to the leading edge of the 

crack.  Modes II and II will occur under cyclic shear stress.  While experience shows that 

small cracks may nucleate under pure shear loading, these cracks will quickly exhibit a 

transition to fatigue crack growth in the tensile mode, i.e. mode I.  Mode I is the 

dominant mode and mode of interest for fatigue cracks.  Tensile stresses that open the 

crack will influence the conversion of cyclic plastic deformation into crack extension.   

 
Figure 4.3 Three modes of loading used in fracture mechanics 

 

The crack-tip stress equations (Equation 4.1, Equation 4.2, Equation 4.3) are very 

similar for reach of the modes.  Consequently, the fracture and crack growth analysis 

procedures for each of the modes turn out to be identical.  Therefore, if analysis can be 

completed for mode I, then analysis can be performed for the additional modes as well.   

 
      

   
√             (Equation 4.1) 
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√             (Equation 4.2) 

 

 
        

   
√             (Equation 4.3) 

 

In practice, most cracking occurs from mode I loading.  The other two modes do not 

occur individually, but they may occur in combination with mode I.  However, if the 

loading of these modes is in phase, cracks will rapidly choose a direction of growth and 

mode I will dictate (Broek, 1989).  Thus, due to the nature of crack growth, the majority 

of apparent combined mode cases are reduced to mode I.  There are also instances where 

material strength or properties may dictate the mode path, and should not be simplified to 

a mode I.  These occur in mode I and mode II combinations where the crack may be 

directed to a different part of the material that is less resistant to cracking and fracture 

(Broek, 1989).   

4.1.1 Crack Detection 

Since fatigue cracks initiate on a microscopic scale then there is no specific crack 

size that occurs and is titled to be a fatigue crack.  Instead, micro cracks begin at the 

microstructure scale in the slip planes and progress at different rates through the fatigue 

life of the crack.  The term ―initial crack size‖ is reserved for crack sizes that are 

detectable.  Various methods have been used for the detection of cracks: visual, dye 

penetrant, magnetic particles, x-ray, ultrasonic, eddy current, acoustic emission.  Each of 

these methods is capable of detecting crack sizes at different lengths.  Table 4.1 lists these 

inspection methods, a brief overview of the method, and approximate crack sizes these 

methods have been able to detect.   
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Table 4.1 Compilation of non-destructive testing methods and the detectable crack size 

Inspection 

Method 
Principle (Broek, 1989) 

Detectable Crack 

Size (Miki, 2004) 

Visual Naked eye, assisted by magnifying glass, lamps 

and mirrors.   
1-5mm 

Penetrant 

Colored liquid is brushed on to penetrate into 

crack, then washed off.  Quickly-drying 

suspension of chalk is applied (developer).  

Penetrant in crack is extracted by developer to 

give colored line.   

10mm  

6mm (after paint 

removal) 

Magnetic 

Particles 

Liquid containing iron powder. Part placed in 

magnetic field and observed under ultra-violet 

light.  Magnetic field lines indicate cracks.   

~ 5mm 

2mm (after paint 

removal) 

X-ray 
X-rays pass through structure are caught on film.  

Cracks are delineated by black line on film.   
unknown 

Ultrasonic 

Probe (piezo-electric crystal) transmits high 

frequency wave into material.  The wave is 

reflected by crack. Time between pulse and 

reflection indicates position of crack.   

5mm 

6mm (after paint 

removal) 

Eddy Current 
Coil induces eddy current in the metal.  In turn 

this induces a current in the coil.  Under the 

presence of a crack the induction changes.   

5mm 

5mm (after paint 

removal) 

Acoustic 

Emission 

Measurement of the intensity of waves emitted in 

the material due to plastic deformation at crack 

tip.   

unknown 

 

Visual inspection is the only inspection method that is required by the FHWA.  

Visual inspection would only be supplemented by these other inspection methods.  

Currently, the approximate value of the initial crack size is normally taken as an 

engineering size crack that is easily visible with the naked eye, approximately 1-5mm 

(Chen, et al., 2005).  Most steel bridges are coated with paint in order to protect them 

from weathering corrosion.  Discontinuities of paint films, which are easy to detect, are 

the sign that cracks are present (Miki, 2004).   
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4.1.2 Cracks on Welded Structures 

Once a crack is visible and detected, the type of crack can provide more information 

about the structure, i.e. the direction of internal forces, or the bending of the member.  As 

mentioned in Chapter 3, welded joints may be especially prone to cracking because 

defects in the material create a vulnerable spot for crack initiation when subjected to 

bending and tension loads.   

 

Figure 4.4 Transverse gusset on a plate - types of crack in a weld 

 

Figure 4.4 displays typical types of cracks that may occur on a welded structure, 

where the structure’s geometry is positioned with a transverse and longitudinal plate; a 

typical geometry found on bridge elements such as cover plates, gussets, or stiffeners.  

Transverse cracks are perpendicular to the direction of the weld.  These are generally the 

result of longitudinal stresses acting on weld metal of low ductility.  An underbead crack, 
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also known as an undercut crack, is often the result of internal stresses that arise in the 

welding process from unequal contraction between the base metal and the weld metal. 

While transverse cracks and underbead cracks have occurred on welded structures, they 

can be alleviated through proper design and welding processes.  However, a root crack 

and a toe crack are more likely to develop from applied tension loads on the transverse 

connection plate, illustrated in Figure 4.9.  Thus, a crack that forms at the root or toe are 

the more common types of cracks found on bridge elements.  A root crack forms at the 

root of the weld and between the joint of the steel plates and usually occurs from a 

horizontal applied load, as shown in Figure 4.5 (AISC, 2005).   

 

Figure 4.5 Initiation of root crack 

 

A toe crack begins at the toe of the weld and the steel plate, and forms perpendicular to 

the applied load.  With a transverse gusset welded to a longitudinal plate, the toe of the 

weld forms a sharp angle at the weld periphery between the weld and the face of the 

gusset.  This creates a line of elevated tension where fatigue cracking can start from the 
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small, sharp discontinuities (Mertz, 2012).   An illustration of a toe crack and a root crack 

is shown in Figure 4.6.   

 

Figure 4.6 Simultaneous propagation of cracks from toe and root of weld (Janosch, 1993) 

 

 Linear Elastic Fracture Mechanics 4.2

A crack in a structure can grow under repeated applications of stress that are large 

enough in range.  The rate of this crack growth is high dependent on the material type.  

While the nature of the material cracking is a non-elastic deformation, the region beyond 

the crack (at the crack tip) experiences a linear elastic stress field under load.   

Because the stresses at the crack tip are so small in fatigue problems, the plastic 

zone is limited and linear elastic fracture mechanics (LEFM) is therefore a useful tool for 

fatigue crack propagation life prediction.  Paris model is most widely used model in 

linear elastic fracture mechanics for the prediction of crack growth.  In this model, the 

range of the stress intensity factor (  ) is the main factor driving the crack growth with 

two parameters C and m that reflect the material properties. 

   

  
        (Equation 4.4) 
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Where a is the initial crack size, N is the number of fatigue loading cycles, C and m 

are material properties, and    is the stress intensification factor.  For a given initial 

crack size, once the crack growth rate is determined, then the existing crack size can be 

easily calculated through a summation over crack size increments starting from the 

known size.   

4.2.1 Stress Intensity Factors 

The stress in the local crack tip is described as a function of the applied stress in the 

form of stress intensity factors.  Stress intensity factors are used to describe the severity 

of a stress distribution around a crack tip, the rate of crack growth and the onset of 

fracture (Zafosnik, et al., 2002).  Even at relatively low loads, there will be a high 

concentration of stress at the crack tip, and plastic deformation can occur (Mertz, 2012).  

The simplest form to describe the ―intensity‖ of a stress distribution around a crack tip 

can be written as, 

 
    √   (Equation 4.5) 

 

Where,   is the remote loading stress,   is the crack length, and   is a dimensionless 

factor depending on the geometry of the specimen or structural component.  One 

important feature this equation illustrates is that the stress distribution around the crack 

tip can be described as a linear function.   

4.2.2 Stress Intensity Factor and Similarity Factor 

From Equation 4.5 it is shown that the stress intensity factor, K, and the remote 

loading stress are linearly proportional.  Therefore, if the cyclic stress varies between Smin 

and Smax then the corresponding stress intensity factor will vary between Kmin and Kmax.  
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The stress ratio is the same for the cyclic stress and the cyclic K-value, shown in 

Equation 4.5 and illustrated in Figure 4.7.   

 
  

    

    
  

    

    
 (Equation 4.6) 

 

 
Figure 4.7 Variation of stress intensity factor related to the variation in stress cycle (Schijve, 2009) 

 

To exemplify the similarity principle, two specimens with different size cracks and 

loadings are compared against each other, seen in Figure 4.8.  The one specimen with a 

large crack is loaded by a low cyclic stress.  The other specimen has a small crack and is 

loaded by a high cyclic stress.  Each of these specimens should experience the same 

stress intensity factor, and in accordance with the similarity principle, the amount of 

damage, or propagation in the crack, should also be the same in each specimen.  The 

results are that the crack growth rate must be a function of   , which is a function of the 

stress ratio, seen in Equation 4.7, 

   

  
          (Equation 4.7) 

 

 =  K 

time 
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Figure 4.8 Example of similarity principle (Schijve, 2009) 

4.2.3 Crack Growth Behavior 

The stress intensity factor is the driving force for fatigue crack growth (     ) 

results.  The relationship between the stress intensity factor and the crack growth curve is 

a sigmoidal curve, illustrated in Figure 4.9.  When da/dN is plotted as a function of    

on a double log scale, the function               can be divided into three regions 

that describe the behavior of crack growth.  The corresponding regions are referred to as 

the threshold region, the Paris region, and the stable tearing crack growth region.   
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Figure 4.9 Schematic of crack growth curve showing crack growth regions (Schijve, 2009) 

 

In the first region, the threshold region, the cracking behavior is associated with 

threshold effects, i.e. the transition from microcrack to macrocracks.  Thus, the threshold 

value,     , is concerned with fatigue cracks that have grown to a macroscopic size at a 

   level above     .  If    is then decreased below     , then crack growth slows 

down to a point where it is assumed that no further growth occurs (Schijve, 2009).  

However, the determination of the     -value has a problematic character. This value is 

obtained in experiments with a decreasing crack growth rate until the crack driving force 

can no longer surpasses the crack growth resistance.   However, these threshold 

conditions are not a true representative for crack growth under variable amplitude 

loading; cycles in VA loads may be preceded by some erratic crack growth mechanism 

that is not captured in threshold experiments. As described earlier in 3.3.1.1 
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Shortcomings of the Miner Rule, stress ranges that occur below the fatigue limit may 

actually influence fatigue damage.  Then in accordance with the similarity principle, it 

should be expected that cycles with          can still contribute to crack growth.   In 

the same way that the high cycle fatigue slope is extended on the S-N curves, it is 

recommended to extrapolate the          data in the Paris region to lower   -values 

in the threshold region. 

The second region of the crack growth curve shows a log-linear relationship 

between da/dN and   . Most current crack growth models are fit to this region and 

utilize linear elastic fracture mechanics to describe the crack growth behavior.  While 

many ―curve fits‖ in this region have been suggested, the Paris equation, Equation 4.4, is 

the most widely accepted.   

In the third and last region of crack growth, crack growth rates are extremely high 

and little fatigue life is involved.  This region is often referred to as the stable-tearing 

crack growth region.  Much like the threshold region, the crack growth life spent in this 

region is short, which implies that its engineering significance is limited.  As seen in 

Figure 4.9, the asymptote that ends this region also completes the sigmoidal curve that 

describes crack growth.  The asymptote describes a    cycle that has reached a critical 

value,   , which describes complete failure of the specimen, i.e.        .   

Figure 4.10 illustrates how the crack growth curve fits into the fatigue life curve.  

The crack growth curve is superimposed onto the fatigue life curve, so the vertical and 

horizontal axes of the crack growth curve are still scaled logarithmically, while the axis 

of the fatigue life curve is a linear scale.  The first region is part of the initiation period 

since it deals with remedial crack growth that is not yet visible for inspection.  The crack 
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becomes of macroscopic size at the end of the initiation period where the propagation 

period begins.   The stable (linear) crack growth region governs the crack growth sigmoid 

curve, which is how linear elastic fracture mechanics is used to model the growth rate in 

the propagation period.   

 

Figure 4.10 Crack growth curve fits into fatigue life curve 

 

 Fracture Toughness 4.3

When the value of the stress intensification factor surpasses      and is no longer 

in a stable region of cracking, the stresses at the crack tip are too high for the material to 

endure and fracture takes place.  This critical stress intensity value is more often referred 

to as the fracture toughness,    , where I denotes opening mode, and c represents critical.   

Fracture toughness is a measured material property, just like Poisons ratio or Young’s 

Modulus, and is usually measured through standard compact specimens.  The fracture 
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toughness is used to describe the ability of an already cracked material to resist fracture.  

The fracture toughness can also be used to indicate the sensitivity of the material and the 

materials susceptibility to experiencing cracks under loading (Schijve, 2009). Thus, stress 

intensity factors can be compared with the fracture toughness variables to determine if 

the crack will propagate (CAE Associates, 2013).  The relationship between the stress 

intensity factors and the fracture toughness is similar to that between tensile stress and 

tensile strength: 

       (Equation 4.8) 

 

When the applied stress intensity equals or exceeds the material fracture resistance, 

   , fracture is predicted.   

4.3.1 Charpy V-Notch Test 

The Charpy V-Notch (CVN) test is commonly utilized to measure the fracture 

toughness for structural steel (Wright, 2012).  In the CVN test a small 10x10x55mm 

rectangular bar with a broached notch on one face is mounted on a fixture.  A weighted 

pendulum or hammer, strikes the test specimen and the energy required to initiate fracture 

is measured.  This provides a relative measure of material toughness.   

The CVN test was not enough by itself to give accurate predictions of the fracture 

toughness.  It was also found in the CVN tests that the amount of energy absorbed by a 

particular steel specimen varies as a function of the material temperature and loading rate.  

The consideration of these factors has led to a two-step transition-temperature approach 

to prevent fracture.  This two-step procedure correlates the CVN tests and temperature 

was developed in order to more accurately predict the fracture toughness.  The first step 

is to calculate the toughness of the material as if it had just underwent the CVN test:   
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     √        (Equation 4.9) 

 

Where CVN is the Charpy V-notch energy (ft-lb) and E is modulus of elasticity 

(psi) and     is    √  .  Since, the CVN test is performed at dynamic impact loading 

rates that are much higher than the loading rate experienced by bridges due to live load.  

The next step is to calculate a temperature shift between the static and CVN test curve.  

                    (Equation 4.10) 

 

Figure 4.11 displays the relationship between the dynamic impact loading and the 

fracture toughness at bridge loading rates.   

 

Figure 4.11 CVN transition curve relating temperature with fracture toughness 

(White, November 2012) 
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4.3.2 Computations of Stress Intensity Factors 

For many ordinary cases of cracking, the calculations of stress intensification factors 

for various crack geometries and loading cases have already been computed and can be 

obtained from previously published literature, e.g. elliptical cracks embedded in very 

large bodies (Schijve, 2009).  These results to these configurations are often referred to as 

K solutions.  The K solutions are presented as a function of the geometric correction 

factor   and are displayed in graphs that show how   depends on geometric ratios.  The 

graphs can then be used to estimate unknown stress intensification factors by evaluating 

the available data for ―similar‖ geometries.  While there is extensive literature on K-

values, these pre-computed solutions are limited to a special few configurations and 

many practical cases for K solutions for cracks are not available (Schijve, 2009).  To 

compensate for this, sometimes the values are approximated by available solutions for 

less complicated geometries.  Furthermore, for cases with more complex geometries, 

more accurate K values should be independently calculated.  Finite element modeling has 

proven to offer satisfactory results for the stress intensification factors (Schijve, 2009).   

4.3.3 Modeling Stress Intensification Factors 

Finite element (FE) modeling offers a variety of techniques and efficient 

computation to the derivation of stress intensity factors (SIF).  In finite element models, 

the crack is treated as an integral part of the structure, and can be modeled in as much 

detail as necessary to accurately reflect the structural load paths, both near and far from 

the crack tip.  Thus, finite element models have been shown to provide acceptable 

accuracy, which has made the finite element method the most popular tool in computing 

SIF (Jia, et al., 2004).  Further, finite element models offer large enough computation 
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capacity to capture multiple load effects (Figure 4.3).  The most common FE methods for 

determining stress intensity factors include, the energy release rate by using the complex 

J integral and the displacement extrapolation method (Zafosnik, et al., 2002).   

Accurate modeling of the crack proves to be a difficult challenge.  Even if it is 

known where the crack location is, modeling the crack in a FEM is not trivial, especially 

in cases of modeling crack propagation.  Under crack propagation, the crack geometry 

will affect how the load is redistributed around the crack, and multiple models will be 

needed to implement the new crack geometry, crack direction or change the meshing 

around the crack tip (CAE Associates, 2013).   

4.3.3.1 Displacement extrapolation method 

The stress intensity factors can be determined using displacement correlation near 

the crack tip.  The displacement extrapolation method uses the nodal displacements 

around the crack tip to determine the stress intensity factor.  Within the FE model, a very 

fine mesh is required around the crack tip in order to account for the large gradients of 

stress and strain.  The formula for the stress intensification relating to tensile stress (mode 

I),   , can be written as: 

 

      
 √  

 ⁄

        
 

(Equation 4.11) 

 

The formula for the stress intensification relating to in-plane shear stress (mode II),    ,  

can be written as:  

 

       
 √  

 ⁄

        
 (Equation 4.12) 
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Where,   = Poisson’s ratio,    = displacements in the y-direction of a local coordinate 

system,    and    = displacements in the x-direction and y-direction of a local 

coordinate system, respectively,   is the distance of a node on the crack surface in a local 

polar-coordinate system, and   is Young’s Modulus.  The displacement correlation 

method is computed in ANSYS using the KCALC command.  The displacement 

extrapolation method is a more traditional analysis method and is a post processing 

activity, only valid for linear elastic problems. The employment of the displacement 

extrapolation method is described in the following section, Validating FEM Models with 

a simple LEFM model.   

 Validating FEM Models with a simple LEFM model 4.4

When a through thickness crack is subjected to fatigue loads in cyclic tension only, 

the crack front is perpendicular to the material surface.  A through crack with a straight 

crack front is usually treated as a two-dimensional problem.  A two-dimensional problem 

is the easiest to model and to calculate results.  Under the assumptions of this being a 

plain strain problem where linear elastic fracture mechanics is applicable, then an 

analytical solution can be determined through the following equation: 

 
    √   (Equation 4.13) 

 

Where the equation for this specific geometry (Pilkey, 2005): 
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 (Equation 4.14) 
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Modeling of structures takes place in a global Cartesian coordinate system.  Because 

cracks are such a small geometry as opposed to the entire system, the crack is modeled 

with its own coordinate system that is defined at the crack tip, shown in Figure 4.12.  

This coordinate system is useful for expressing the displacements at the crack tip in terms 

of crack tip movement.   

 

Figure 4.12 Stress field at the crack tip 

 

4.4.1 Stress Intensity Factor with 2D Geometry in ANSYS 

An example of a 2D problem was adopted from Dr. Anh-Vu Phan at the University 

of Alabama (Phan, 2005). A steel plate with dimensions:        ,         , 

          and properties: Young’s modulus           and Poisson’s ratio 

     .  From Equation 4.14, the analytical solution yields,   
                √ .   

To demonstrate the accuracy of the KCALC command in ANSYS, the stress 

intensity factor was computed for a finite plate in tension, with a mode I through 

thickness crack.  Firstly, the equation for a mode I stress intensification factor, Equation 
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4.11, was rearranged in a different form and is described by the shear modulus; for 

reasons that will become clear in the following section.  The relationship between the 

shear modulus and elasticity modulus is: 

 
   

 

       
 (Equation 4.15) 

 

The equation for a mode I stress intensity factor becomes: 

 
    √  

 

       

  

√ 
 (Equation 4.16) 

 

Where    is the motion of one crack face with respect to another and r is some location 

on the crack face defined by the local coordinate system.  In Equation 4.16,   √ ⁄  is the 

only term that doesn’t remain constant and is evaluated based on the nodal displacements 

and their location in the local coordinate system.  There is an approximate linear 

relationship between the variables    and √ .   

   

√ 
      (Equation 4.17) 

 

By using the displacements at known nodal locations along the crack path, constants A 

and B can be solved for with a simple linear regression model.   
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Figure 4.13 Elements and nodes of 2D full crack model  

 

For a full crack model, the selected crack path in ANSYS requires at least five 

nodes to be evaluated on the crack face; two nodes on the top of the crack face, two 

nodes on the bottom of the crack face, and the node at the crack tip.  Figure 4.13 displays 

the elements and numbering along the crack face and crack tip.  In accordance with 

Figure 4.13, the selected crack path would consist of some combination between nodes 5, 

4, 3, 10, 9 and 8 along with the node at the crack tip, node 0.  The solved displacements 

and coordinates of these nodes are outlined in Table 4.2.    
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Table 4.2 Coordinates and displacements of nodes on crack face 

 Undeformed 
Coordinates 

Nodal  
Displacements 

Deformed  
Coordinates 

 u v ∆u ∆v udef = u + ∆u vdef = v + ∆v 

Node 5 -1.21E-02 5.00E-05 -3.84E-06 1.77E-05 -1.22E-02 6.77E-05 

Node 4 -7.62E-03 5.00E-05 -6.05E-06 1.51E-05 -7.62E-03 6.51E-05 

Node 3 -5.00E-03 5.00E-05 -7.32E-06 1.28E-05 -5.01E-03 6.28E-05 

Node 2 -3.75E-03 3.75E-05 -7.97E-06 1.12E-05 -3.76E-03 4.87E-05 

Node 1 -2.50E-03 2.50E-05 -8.59E-06 9.33E-06 -2.51E-03 3.43E-05 

Node 0 
Crack Tip 

0.00E+00 0.00E+00 -4.93E-10 -4.93E-10 -4.93E-10 -4.93E-10 

Node 6 -2.50E-03 -2.50E-05 8.59E-06 -9.33E-06 -2.49E-03 -3.43E-05 

Node 7 -3.75E-03 -3.75E-05 7.97E-06 -1.12E-05 -3.74E-03 -4.87E-05 

Node 8 -5.00E-03 -5.00E-05 7.32E-06 -1.28E-05 -4.99E-03 -6.28E-05 

Node 9 -7.62E-03 -5.00E-05 6.05E-06 -1.51E-05 -7.61E-03 -6.51E-05 

Node 10 -1.21E-02 -5.00E-05 3.84E-06 -1.77E-05 -1.21E-02 -6.77E-05 

 

Figure 4.14 illustrates how the nodal variables and terms are defined within the deformed 

and undeformed shapes on the crack face.  The values associated with the motion of one 

crack face with respect to another,   , are outlined in Table 4.3.    

 

Figure 4.14 Deformed and undeformed shape of crack tip 
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Table 4.3 Motion of one crack face with 

respect to another,    

Total Displacements,    

Δv5+Δv10 3.55E-05 

Δv4+Δv9 3.03E-05 

Δv3+Δv8 2.55E-05 

Table 4.4 Local coordinates and final factor, 

   √  

 
  √    

      
    √ ⁄  

Node 5 0.01215352912 0.00032193 

Node 4 0.00762333257 0.00034667 

Node 3 0.00500771480 0.00036063 

 

For the nodal coordinates and nodal displacements on the crack face, the values for 

  √ ⁄  can be solved, displayed in Table 4.4.  Linear regression between these three 

values yields the following linear relationship: 

   

√ 
                                  (Equation 4.18) 

 

Since r is some location on the crack face in the local coordinate system, then as r 

approaches 0 (the crack tip), then the linear relationship in Equation 4.18 can be used 

to solve for the stress intensification factor.  Therefore, when moving closer to the 

crack tip, the displacements get smaller, and the stress intensification factor converges 

to a known value, as seen in Figure 4.15.   

 

Figure 4.15 Relationship between crack face displacements and stress intensity factor 
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Figure 4.16 SIF results of the FEM analysis on full crack model with 2D geometry 

 

After the FEM analysis, the stress intensity factor for mode I is computed to be 

  
                 √ .  Figure 4.16 displays the ANSYS dialogue box.  This 

result is compared to the analytical solution for verification.  The error between the 

two methods can be computed as: 

 

   
  

        
    

  
     

             

      
        (Equation 4.19) 

 

Conclusively, the displacement extrapolation method used with finite elements 

can effectively compute the stress intensity factor at the crack tip with minimal error.   

4.4.2 Stress Intensity Factor with 3D Geometry in ANSYS 

The example of solving for the stress intensity factor on a 2D plate (4.4.1 Stress 

Intensity Factor with 2D Geometry in ANSYS) is expanded upon for a plate with 3D 

geometry.  The 3D plate is configured with the same material properties and loading, 

i.e. Young’s modulus          , Poisson’s ratio       and ,          .  The 

same geometry is used, with dimensions:        ,          and additional 

thickness of          is applied.   



 

113 

 

Figure 4.17 Elements of 3D full crack model 

 

The 3D model was created by extruding the geometry and meshed area from the 

2D plate. For areas that are pre-meshed in 2D, the ANSYS command VOFFST allows 

the volume and mesh to be extruded; provided the default number of divisions in the 

along the thickness of the shape is predefined; done through the ESIZE command.  For 

a 3D solid, it is best to use a 20 node brick element for the element type.  As seen in 

Figure 4.17, the 3D plate was set to be divided into eight divisions.  The displacement 

extrapolation method was used to solve for the stress intensity factor.  Calculations 

were proceeded in the same way as a 2-dimensional plate, and the crack path is chosen 

by selecting 5 nodes along the crack face.    
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Figure 4.18 Crack zone for mode I loading (Pilkey, 2005) 

(a) plastic zone at crack tip; (b) plane strain state; (c) plane stress state 

 

When considering the plate thickness, the crack zone can be identified as two different 

zones along the plate thickness.  The first zone is at the free surface,     , where the 

plane stress state exists.  The second zone occurs midway through the plate thickness, 

where the strain is constrained and plane strain exists.   

Figure 4.18 displays the plastic zone at the crack tip for a through thickness 

crack, where a represents the original crack length and aeff is the effective crack 

length, i.e. accounts for the plasticity zone beyond the actual crack tip.   If the size of 

the plastic zone (in x and y direction) is large, or within the magnitude of the plate 

thickness, then the crack can be modeled as plane stress.  If the size of the plastic zone 

is much smaller than the plate thickness, the inner zone will dominate and the crack 



 

115 

can be considered in plane strain (Pilkey, 2005).  For most cases, the plastic zone will 

be smaller than the plate thickness and plain strain will govern.  Figure 4.19 displays 

the plane strain results around the crack tip for the geometry modeled in Figure 4.17.   

 

 

Figure 4.19 Elastic strain in the Y-direction at the crack tip 

 

After the FEM analysis, the stress intensity factor for mode I is computed to be 

  
                 √ .  Figure 4.20 displays the ANSYS dialogue box for the 

computed stress intensity factors.  This result is compared to the analytical solution for 

verification.  The error between the two methods can be computed as: 

 

   
  

        
    

  
     

             

      
        (Equation 4.20) 
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The stress intensity factor for a mode I crack once again is close to the actual 

value with only 2.005% error.   

 

Figure 4.20 SIF results of the FEM analysis on full crack model with 3D geometry 

 

 Crack Growth Models and AE sensors 4.5

Fatigue cracks typically grow intermittently and the ability to track this change 

using non-destructive evaluation (NDE) technologies can be a practical piece of 

information for structural engineers (Haldipur, et al., 2010).  Acoustic emission (AE) 

sensors, which are a type of NDE technology, have been used to monitor fatigue crack 

propagation; a well-known source of acoustic emission.  AE sensors are used for real 

time monitoring of defect formations and failures of structural materials.  Under 

loading conditions, materials experience internal stress distributions within their 

internal structure and emit energy in the form of elastic waves (Huang, et al., 1998).  

These waves, which can be thought of as a ―naturally generated ultrasound‖ are picked 

up by AE sensors attached to the surface of the material (NDT Resource Center, 

2012).  Mainstream AE sensors are designed implemented only on flat surfaces of the 

material.  In order to determine the location AE event source, simple geometry can be 

used with the difference in the arrival times from the recorded AE events.  However, it 
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has more recently been shown that piezoelectric film sensors (a type of AE sensor) 

offer the benefit of adaptability to eccentrically shaped surfaces, including being 

applied directly onto a weld (Zhou, 2013).   

The frequency of acoustic emission waves may range from tens of kHz to tens of 

MHz, depending on their source.  Within this broad spectrum of frequencies lies the 

captured waveform that represents the internal stress distributions from crack growth 

or other spurious sources of acoustic emission, e.g. friction between crack surfaces.  

Nonetheless, when crack-related AE signals are isolated from other sources of 

acoustic emission, then the information extracted from the signals can be used to 

monitor crack growth (Rabiei, 2011).   

In order to capture only the relevant signals related to crack growth, data 

acquisition systems are set to only record AE amplitudes that rise above a predefined 

threshold value.  Figure 4.21 shows a burst AE signal and the commonly used 

parameters of AE techniques.  When the AE sensor receives a signal above the 

threshold limit than an AE event is captured and stored.  The number of times the AE 

signal passes the established threshold is the count of the AE event, known as the AE 

count.   
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Figure 4.21 AE signal with labeled parameters (Zhou, 2013) 

 

Certain features of acoustic emission signals are stochastically correlated with 

crack growth model variables, such as stress intensity factor,   , and crack growth 

rate      .  Two of the more commonly used AE parameters that are associated with 

crack growth are the AE count, c, and its derivative, count rate,       (Rabiei, 2011).  

The following formulation is proposed for the relationship between the AE count rate, 

      and the stress intensity factor, ∆K (Bassim, et al., 1994): 

   

  
          (Equation 4.21) 

 

Where c is defined as the number of times that a signal amplitude exceeds a 

predefined threshold value, and A1 and A2 are the model parameters and mainly 

depend on material properties.  Rearranging this equation and solving for ∆K: 

 

   
  

  

    

  
      (Equation 4.22) 

 

Taking the log of both sides to yield a linear relationship between variables: 
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           (

  

  
)     (Equation 4.23) 

 

Where      
      and         are the new model constants to be 

determined experimentally from data.  Thus, Equation 4.23 uses data from AE sensors 

to estimate and solve for the stress intensity factor, the driving force in crack growth 

modeling.   

The stress intensity factor displays the same log-linear behavior with the AE 

count rate,      , as it does with the crack growth, ,      .  Therefore, substituting 

Equation 4.23 into the Paris equation (Equation 4.4), gives the following relationship: 

 
   

  

  
      (

  

  
)     (Equation 4.24) 

 

Where    and    are the model parameters that describe the log-linear 

relationship between AE count rate and crack growth.   

The estimation of    through the use of acoustic emission signals removes the 

need for complex modeling that is typically used in fracture mechanics to calculate 

stress intensity factors.  These computations become especially difficult for 3-

dimensional cases with curved crack fronts.  While calculations are possible, extensive 

computer capacity and experience is often required.  Nonetheless, the relationship 

between the AE events and crack growth rate means that the rate of crack growth can 

be estimated solely on features of the AE signals.   
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 Crack Propagation Period Cumulative Damage  4.7

Prediction models are often used to obtain information about the crack growth.  

Models that predict fatigue crack growth propagation emphasize that crack growth is 

largely dependent on the cycle-by-cycle process.  Thus, the accumulation of damage 

for fatigue crack growth models is consequent of the change in crack size, a, shown in 

Equation 4.25, where    is the initial crack size,     is the change in crack size per 

cycle, and    is the updated crack size (Schijve, 2009).   

 

       ∑   

   

   

 (Equation 4.25) 

 

Prediction models are referred to as interaction models and non-interaction 

models.  Interaction effects imply that the crack growth rate in a particular cycle is 

also dependent on the load history of the preceding cycles, rather than an independent 

effect from one cycle.  An interaction prediction model is more often used for 

assessment of fatigue crack growth under variable amplitude loads, where the cyclic 

load history may result in growth retardations and accelerations.  Types of interaction 

effects include the sequence effects of loading cycles, the thickness effect of the 

material, and the effect of overload cycles.  Fatigue testing that analyzes the 

consequences from interaction prediction models have shown that interaction effects 

more often result in crack growth retardations, as opposed to crack growth 

accelerations (Schijve, 2009).   

A non-interaction prediction model is used if the interaction effects in the 

variable amplitude history are assumed to be absent.  Since the type of material and 

the thickness of the material will be constant under regardless of the loading type, then 
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the basic crack growth data under constant amplitude load should still be 

representative for the conditions of the structure.  Thus, a non-interaction crack growth 

prediction will then give a first indication about the possible duration of the crack 

growth period before complete failure.  In a non-interaction model, crack growth in 

each cycle is assumed to be dependent on the severity of the current cycle only and not 

on the load history in the preceding cycles.  It is expected that a non-interaction model 

will lead to a more conservative life prediction than models that account for 

interaction effects, considering interaction effects account for retardation in crack 

growth (Schijve, 2009).  A non-interaction model can be used to provide quick and 

useful information about fatigue crack growth behavior, particularly crack growth 

rates.   

The non-interaction prediction model leads to a simple numerical summation 

with Equation 4.25 and values         , where stress ranges are obtained from 

variable amplitude tests and the stress intensity factor from finite element models.  

Thus, crack growth data is a function of K and the stress ratio effect R from the 

similarity principle.   

 

              (Equation 4.26) 

 

where    is the crack length after n cycles,    is the initial crack length, and     is the 

crack extension    in cycle number i.  The crack size at any given time is a function 

of the stress intensity factor, as portrayed in Equation 4.27,  

 

   
 

     
 (Equation 4.27) 
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 Remaining Useful Life – Crack Propagation Period 4.8

The remaining useful life is calculated by comparing the current crack size of a 

specimen to the critical crack size that defines failure of the crack propagation period.  

The critical crack size can be solved for using the value of the stress intensity factor at 

failure.  This was found from the Charpy V-Notch Test, detailed in section 4.3.1 

Charpy V-Notch Test.  Therefore, the critical crack size results in, 

 
       

   

     
 (Equation 4.28) 

 

The estimate for the fatigue-crack-propagation life is significantly influenced by 

the initial crack size and is less sensitive to the critical crack size.  Assume          , 

since the definition of the critical crack size is the crack size at failure.  As shown in 

Figure 4.22, large changes in values    will result in small changes of    (Total 

Materia, 2015).  

 

 
Figure 4.22 Propagation-life curve with final crack sizes 
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Using the initial crack size and the critical crack size, the crack growth equation, 

Equation 4.4, can be rearranged to solve for the number of cycles to failure   .   

 
    ∫

  

 (      √  )
 

     

  

 (Equation 4.29) 

 

Equation 4.29 after integration yields, 

 

   
 
    

  
 
     

  
 
 

 (  
 
 ) (      √ )

  (Equation 4.30) 

 

The crack size, after any amount of stress cycles, N, can be solved for with the 

following, 
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(Equation 4.31) 

 

Thus the cumulative damage from the fatigue crack propagation life is written as 

a percentage of the fatigue life by dividing the current crack size,     by the critical 

crack size at failure,       . 

 

              
  

     
⁄  

(Equation 4.32) 

 

The remaining useful life is calculated by subtracting the initial crack size,    from the 

critical crack size at failure that corresponds to the critical crack size at failure.  

Dividing by the change in crack size using an effective stress range and the number of 

cycles,      solves the remaining useful life of the structure in terms of years,  

 
                

       

  
     years (Equation 4.33) 
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: System Failure due to Fatigue Chapter Five

The design of a steel bridge can potentially increase the susceptibility to fatigue 

damage and ultimately affect an inspector’s assessment of the damage.  Specifically, 

aspects of the bridge design that influence damage include: the bridge geometry and 

the configuration of the bridge components.  The configuration of bridge components 

is crucial to properly distributing the applied loads throughout the structure in order to 

maintain its durability.  Along with the configuration of these components, special 

scrutiny should be given to transverse members, i.e. the vertical steel plates that are 

welded to the longitudinal members and are used to either stiffen the longitudinal 

members or used as connection plates to cross braces.  Further, the structural details 

that are used to combine structural members are considered hot spots for fatigue 

damage.  Using the damage estimations for fatigue prone details in Chapter 3 and the 

fracture mechanics analyses in Chapter 4, these quantitative fatigue assessments can 

be structured into bridge management systems.   

 Geometry of the Bridge 5.1

Due to geometric constraints caused by intersecting roadways or the terrain of 

the construction site, a bridge may be built to accommodate these constraints.  In some 

cases, the substructure supports are often set at a skew angle, seen in Figure 5.1.  The 

skew angle is the angle between the centerline of a support and a line normal to the 

roadway centerline (AASHTO, 2012).   
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Figure 5.1 Plan view of bridge with skewed supports  (Helwig, et al., 2012) 

 

The cross braces on the bridge can be built to be parallel to the skewed abutment 

or built perpendicular to the girder lines.  For skew angles greater than 20 degrees, 

AASHTO LRFD Bridge Design Specifications 2012 require the cross bracing to be 

built perpendicular to the girder line.  Otherwise, for skew angles less than 20 degrees, 

cross braces can be built parallel to the skewed abutment.  Actually, if the skewed 

cross frame is properly sized for the stiffness and strength requirements for the 

expected loading, then there is no technical reason why a cross frame cannot be 

oriented parallel to the skew for angles for angles larger than 20 degrees (Helwig, et 

al., 2012).  Under these circumstances, the most important factor to consider is the 

length of the cross brace.  As the skew angles become larger in size, the cross brace 

becomes longer in length, so the stiffness of the cross frame is affected by the skew.    

Due to the geometry, the behavior of a bridge with skewed supports is more 

complicated than one with normal supports, because the skew angles increase the 

interaction between the steel girders and the braces.  This interaction often results in 

large live load forces in the cross-frames or diaphragms, which can lead to fatigue 
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problems around the brace locations (Helwig, et al., 2012).  Although, the skewed 

bracing creates a more susceptible location for fatigue damage, the severity of the 

fatigue damage is dependent on the details and connections that are used for the 

bracing.   

 Bridge Configuration 5.2

A bridge is designed to withstand an applied load over a certain period of time.  

The configuration of a bridge allows the transfer and distribution of applied loads from 

the superstructure components to the substructure components.  For bridge inspectors 

the redundancy of bridge components plays an important role in evaluating the bridge 

condition, while nonredundant bridge configurations contain fracture-critical 

members.   

5.2.1 Redundancy of Bridges 

Redundancy in a bridge provides additional load paths or elements of support in 

order to maintain stability.  The FHWA Bridge Design Handbook 2012 puts together 

three types of redundancies that may exist on a bridge structure (Mertz, 2012). These 

classifications are found in Table 5.1.   

Table 5.1 Redundancy classifications  (Fu, et al., 2014) 

Load Path 

Redundancy 

A member is considered load path redundant if an alternative and 

sufficient load path is determined to exist. Load path redundancy is 

the type of redundancy that designers consider when they count 

parallel girders or load paths. However, merely determining that 

alternate load paths exist is not enough. The alternative load paths 

must have sufficient capacity to carry the load redistributed to them 

from an adjacent failed member. If the additional redistributed load 

fails the alternative load path, progressive failure occurs, and the 

members could in fact, be fracture-critical. In determining the 

sufficiency of alternative load paths, all elements present (primary 
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and secondary members) should be considered. 

Structural 

Redundancy 

A member is considered structurally redundant if its boundary 

conditions or supports are such that failure of the member merely 

changes the boundary or support conditions but does not result in the 

collapse of the superstructure. Again, the member with modified 

support conditions must be sufficient to carry loads in its new 

configuration.  For example, the failure of the negative–moment 

region of a two span continuous girder is not critical to the survival of 

the superstructure if the positive-moment region is sufficient to carry 

the load as a simply supported girder. 

Internal 

Redundancy 

A member is considered internally redundant if alternative and 

sufficient load paths exist within the member itself such as the 

strands in a wire cable.   

  

When fatigue cracks occurs in a known location a determination can be made 

about the consequences of the crack in terms of any of the three types of redundancy.  

However, the location of future cracks is unknown so it is impossible to be certain 

whether a future crack would be protected by a structural or internal redundancy 

(Sobanjo, et al., 2013).  Bridge inspectors are concerned primarily with load path 

redundancy and can neglect structural and internal redundancy when identifying 

fracture-critical members. 

5.2.1.1 Fracture-critical structures 

A fracture-critical structure is a structure that lacks alternative load paths, 

meaning the failure of a single primary load carrying member would interrupt the load 

flow causing other members to carry more load than which they were designed to 

withstand; resulting in the failure of the entire structure (Fu, et al., 2014).  Of all 

bridge construction materials, only steel bridge members are designated as fracture-

critical.  A bridge is considered fracture-critical if it contains at least one fracture-

critical member in tension or if portions of the flexural member are subject to tension 
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stress.  A member is fracture-critical if its failure (brittle fracture) would cause a 

collapse of a bridge, i.e. at a minimum the bridge geometry would be rendered as unfit 

for use due to partial collapse or total bridge collapse (Sobanjo, et al., 2013).  While 

most modern bridges are built with additional load paths to transfer loads in the event 

of bridge element failures (Sobanjo, et al., 2013), nearly 20,000 bridges currently in 

service in the United States are fracture-critical (Transportation for America, 2013).  

Of these 20,000 fracture-critical bridges, an Associated Press analysis found 7,800 

have been ranked as structural deficient; a bridge in need of repair or replacement due 

to poor conditions (Lowy, et al., 2013).  Most fracture-critical bridges were built 

around World War II and are nearing the end of their design life; if not having already 

surpassed it.  Fracture-critical bridges often raise public concern because some of the 

worst bridge collapses in U.S. history happened on them, e.g. the collapse of the I-

35W Bridge over the Mississippi River in 2007 and the collapse of the I-5 Skagit 

River Bridge in 2013.  Due to the collapse of these bridges, further inspection 

requirements have been added to state agencies to assist with more stringent 

inspection.  The primary difference between a fracture-critical member and a member 

that contains a fatigue prone detail is redundancy.   

5.2.1.2 Determination of fracture-critical members 

Bridge plans and shop drawings for bridges designed after about 1980 are to have 

FCMs clearly identified (FHWA, 2012).  For bridges built before 1980, it has been the 

responsibility of the inspector to determine which components are fracture-critical 

members.  Thus, inspection reports from previous inspections are particularly useful in 

identifying specific locations that require special attention during an inspection.  These 
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reports have chronological inspection records that include the date and type of 

inspection. The records should indicate the critical inspection findings relevant, but 

not limited, to: earthquake data, fracture-critical member information, deck 

evaluations, and corrosion studies when available (FHWA, 2012).  In cases where a 

crack has been detected in previous inspections on a fracture-critical member, the 

location of the crack and fracture-critical members are clearly outlined in previous 

inspection reports to receive special attention (FHWA, 2012).  Information from 

earlier inspections can be compared against current conditions to estimate rates of 

deterioration and to help determine the seriousness of the degradation and the 

anticipated remaining life of the structure.  

In the event that fracture-critical members are not clearly identified then finite 

element methods can also be used to determine redundancy.  A three-dimensional 

finite element structural analysis for fracture-criticality can be used to determine the 

exact consequences to the bridge if member fails (FHWA, 2012).  

5.2.1.3 Fracture-critical members in failure mechanics 

The primary members of a bridge are those necessary for the bridge to efficiently 

operate under normal operating conditions.  Secondary members are additional 

components that may not be part of the main structural system.  All primary bridge 

members are now required by AASHTO Bridge Design Specifications 2012 to have a 

minimum level of fracture toughness.  The Charpy V-notch test, discussed in chapter 

4, provides an acceptable measure of fracture toughness.  Charpy V-notch testing is 

required for all primary longitudinal superstructure components and connections 

sustaining tensile stress (AASHTO, 2012).  These primary components are classified 
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as either fracture-critical or non-fracture-critical.  Due to the sensitivity of fracture-

critical members, they are required to have higher levels of fracture toughness 

compared to the non-fracture-critical members.  Table 5.2 and Table 5.3 display the 

Charpy V-notch requirements for the appropriate temperature zones.   

Table 5.2 AASHTO CVN impact energy requirements for fracture-critical members 

  Fracture-Critical 

  Min. Test    

Grade Thickness Value 
Energy Zone 1 Zone 2 Zone 3 

(Y.P./Y.S.) (in.) (ft-lbs.) (ft-lbs. @ °F) (ft-lbs. @ °F) (ft-lbs. @ °F) 

36 t ≤ 4 20 25 @ 70 25 @ 40 25 @ 10 

50/50S/50W t ≤ 2 20 25 @ 70 25 @ 40 25 @ 10 

2 < t ≤ 4 24 30 @ 70 30 @ 40 30 @ 10 

HPS 50W t ≤ 4 24 30 @ 10 30 @ 10 30 @ 10 

HPS 70W t ≤ 4 28 35 @ -10 35 @ -10 35 @ -10 

HPS 100W t ≤ 2-1/2 28 35 @ -30 35 @ -30 35 @ -30 

2-1/2 < t ≤ 4 36 not permitted not permitted not permitted 

 

Table 5.3 AASHTO CVN impact energy requirements for nonfracture-critical members 

   Nonfracture-Critical 

     

Grade Thickness Zone 1 Zone 2 Zone 3 

(Y.P./Y.S.) (in.) (ft-lbs. @ °F) (ft-lbs. @ °F) (ft-lbs. @ °F) 

36 t ≤ 4 15 @ 70 15 @ 40 15 @ 10 

50/50S/50W t ≤ 2 15 @ 70 15 @ 40 15 @ 10 

2 < t ≤ 4 20 @ 70 20 @ 40 20 @ 10 

HPS 50W t ≤ 4 20 @ 10 20 @ 10 20 @ 10 

HPS 70W t ≤ 4 25 @ -10 25 @ -10 25 @ -10 

HPS 100W t ≤ 2-1/2 25 @ -30 25 @ -30 25 @ -30 

2-1/2 < t ≤ 4 35 @ -30 35 @ -30 35 @ -30 

 

5.2.1.4 Evaluating Fracture-critical Members and Fatigue Prone Details 

Fatigue prone details can be located on fracture-critical members, but not all 

members that have fatigue prone details are fracture-critical.  If a redundant steel 
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member is in tension and contains at least one of the accepted fatigue sensitive details, 

it can be classified as Fatigue Prone (Oregon DOT, 1996).  If a steel member is a non-

redundant tension member, it is classified as a fracture-critical member.  

5.2.2 Distortion-Induced Fatigue 

There are two types of fatigue cases in steel bridges: load-induced fatigue and 

distortion-induced fatigue.  Until this section, the fatigue assessments described in 

chapter three have been for the case of load-induced fatigue.  Load-induced fatigue is 

the fatigue damage on a bridge detail caused from the directly repeated cyclic live load 

stress ranges.  Normally, load-induced fatigue occurs in main members of the steel 

bridge because of relatively high stress ranges, or fatigue-prone details with large weld 

defects.  Load-induced fatigue is normally caused by global and in-plane stress ranges 

and prevention against fatigue is controlled by the stress ranges at the specific detail 

(Chen, et al., 2014).   

Distortion-induced fatigue, also known as secondary-stress-induced fatigue is 

caused from local relative distortion between bridge members and attached elements.  

Distortion-induced fatigue often occurs at the gap between a girder top flange and the 

connection plate for a cross-frame where a continuous load path is interrupted and 

cannot properly transmit forces from the connection plate to the flange.  Figure 5.2 

provides an illustration of a connection plate that is welded to the web of the girder 

and not connected to the top flange.  A floor beam is attached to the connection plate 

with a bolted connection.  For this illustration, distortion-induced fatigue will occur 

under the passage of traffic when the floor beam begins to rotate as shown.  Under this 

rotation, the bottom flange of the floor beam lengthens under tension and the top 
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flange shortens under compression.  Lengthening of the bottom flange will not be 

restrained because it is pushing into the web of the girder, which is ductile enough 

withstand some flexibility.  Since the top flange of the girder is restrained by the deck 

slab, the shortening of the top flange can only be accommodated by deformation 

within the gap at the top of the connection plate.  This deformation is also shown in 

Figure 5.2, with the label, ―Detail at gap.‖  For this situation, studies have shown that 

fatigue cracks could develop either at the weld at the top of the connection plate or at 

the web-to-flange fillet weld at the girder, or both (Mertz, 2012).  Cracks caused by 

out of plane distortion are not covered in AASHTO fatigue categories A – E′ (FHWA, 

2012).   

 

 

Figure 5.2 Distortion induced fatigue at floor beam-to-girder connection (Mertz, 2012) 

 

Cutting the transverse stiffeners short of the flange was standard practice for 

many years.  The purpose was to eliminate welds on the flange that would be 

perpendicular to the direction of the stress; a hotspot for fatigue damage.  However, 

data in the last 20 years has shown that the fatigue life of the detail is independent on 
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whether the stiffener terminates in the web or is extended down to the flange.  

According to AASHTO LRFD Bridge Design Specifications 2012, connection plates 

should be welded or bolted to both the compression and tension flanges of the cross-

section where ―connection diaphragms or cross-frames are attached to transverse 

connection plates or to transverse stiffeners function as connection plates‖ (AASHTO, 

2012).  While distortion-induced fatigue will be eliminated by design in modern 

bridges, it should be on the radar for inspectors who are looking for fatigue damage on 

steel bridges.   

 Damage Prognosis of Fatigue Life 5.3

Damage prognosis is the estimate of a system’s remaining useful life.  Chapter 3 

and Chapter 4 presented the damage accumulation models that result in the damage 

prognoses for the fatigue-crack initiation life and fatigue-crack propagation life, 

respectively.  For structures with existing cracks, these damage accumulation models 

are not exclusive to each other, but actually link together to form a complete fatigue 

life-damage prognosis.  Thus, for structural elements in question, a fatigue-damage 

prognosis can be computed for its entire fatigue life.  Figure 5.3 displays the various 

aspects of fatigue analyses that are considered in the derivation of a fatigue-damage 

prognosis.   
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Figure 5.3 Fatigue damage prognosis with structural health monitoring 

 

The damage prognosis is based on the output of damage accumulation models, 

which are compared with the outputs from damage prediction models.  Damage 

accumulation models are created by coupling information from simulation modeling 

and structural health monitoring.  Likewise, damage prediction models are created by 

coupling material property information with the construction and design of the 

structural element.  Therefore, a complete damage prognosis attempts to forecast 

system performance by measuring the current state of the system, estimating future 
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loads for that system and ultimately determining the remaining useful life of the 

system (Farrar, et al., 2003).   

 Integration of Damage Prognosis with Condition States 5.4

State Departments of Transportation (DOTs) report their bridge inspection 

findings using AASHTO Pontis software, which poses the guidelines for capturing 

damage of bridge elements.  As discussed heavily in Chapter Two, the conditions of 

bridge elements are categorized into element condition states to reflect these damages.  

The AASHTO Pontis software is most useful for state DOTs, since it provides an 

internal tool for mapping the element condition states back into the national condition 

ratings; federal law requires all states are required to report the condition of their 

bridges in terms of the national bridge condition ratings.  The AASHTO Pontis system 

considers fatigue damage as a Commonly Recognized Elements (CoRe).  Fatigue 

damage as an AASHTO CoRe is translated into the national bridge management 

element (NBE), as displayed in Figure 5.4 

 

 

Figure 5.4 CoRe fatigue elements mapped into national bridge elements 
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After the translation of the fatigue smart flags into the national bridge element 

condition states, a more intricate description fatigue damage at each condition state is 

established, as seen in Table 5.4.   

Table 5.4 Fatigue condition states translated into national bridge element (MDSHA, 2003) 

Defect 

Condition State 

1 

(good) 

Condition State 

2 

(fair) 

Condition State 

3 

(poor) 

Condition State 

4 

(severe) 

Cracking/ 

Fatigue 
None 

Fatigue Damage 
Analysis 

Warranted 

Severe Fatigue 

Damage 

 

Fatigue damage 

exists but has 

been repaired or 

arrested.  The 

element may still 

be fatigue prone. 

Fatigue damage 

exists which is 

not arrested.  

Condition State 

used for first 

time element is 

identified with 

crack 

Fatigue damage 

exists which 

warrants 

analysis of the 

element to 

ascertain the 

serviceability of 

the element or 

bridge  

 

The condition states in Table 5.4 can be used with the fatigue life curve in order 

to gather quantitative information of the fatigue life.  An element in condition state 

one (CS1) is considered a new element or in ―like new‖ condition; it has no fatigue 

damage present.  This element falls within the early stages of the crack life-initiation 

period.  Condition state two (CS2) recognizes fatigue damage.  This damage could be 

found from a stress-cycle analysis that showed the structure was nearing the end of the 

crack initiation life or could be the result of a visual inspection from of a small crack 

that is considered by inspectors to not be in immediate need of repair.  An element in 

condition state two will be approaching the critical crack size of the crack initiation 

period and is merging into the crack propagation period. Thus fatigue damage in 

condition state three (CS3) is midway through the propagation life.  Condition state 

three explicitly calls for additional analyses.  In many state DOT’s, it is suggested that 
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deterioration modeling be used for fatigue damage in order to assess the damage and 

evaluate the probability of transitioning from condition states (MDSHA, 2003).  A 

stress-cycle history can be used to obtain information about the daily or yearly cycle 

count and stress ranges on the structure.  In the even there is enough information about 

the crack, crack growth models can be used to obtain information about the crack 

growth rate.  This is particularly important information to obtain if the fatigue damage 

is on a primary component of the structure.  Finally, an element in condition state four 

(CS4) is in need of immediate rehabilitation or replacement.  Analysis should still be 

used to understand the problem with this section of the bridge in order to make 

appropriate changes and to increase the bridge life.   

 

Figure 5.5 BME condition states integrated into fatigue life curve 

 

A description of the national bridge element condition states are described in 

Table 5.4 and is used in parallel with Table 5.5, which hosts the commonly employed 

feasible actions that inspectors and state DOT’s should take, given the condition state 

of their bridge.  These feasible actions were put together by the FHWA Bridge 
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Preservation Guide, which provides a framework for a preventive maintenance 

program for bridge owners or agencies.   

Table 5.5 Actions associated with bridge element condition states (FHWA, 2011) 

Condition State 1 Condition State 2 Condition State 3 Condition State 4 

Do Nothing 

 

Preventive 

Maintenance 

 

Rehabilitation Rehabilitation or  

Replacement 

 

5.4.1 Calculation of Total Damage from Stress Cycles and Fracture 

Recall from Equation 3.19, now rewritten in Equation 5.1, the cumulative 

damage for the crack initiation period     was assessed using Miner’s rule with an 

effective stress range.   

 

    
  

  
⁄  (Equation 5.1) 

 

From Equation 4.32, now rewritten in Equation 5.2, the cumulative damage for 

the crack propagation period     was assessed using Paris Law based on the stress 

intensity factor.   

 
       ⁄  (Equation 5.2) 

 

The damage in the initiation period and the damage in the propagation period can be 

combined to assess the total cumulative fatigue damage on a specific component: 

 
       {

                           

           
 (Equation 5.3) 

 

where    is obtained from Equation 5.1 and    is obtained from Equation 5.2.  

However, each period does not occur over equal lengths of time.  In order to more 

appropriately characterize the cumulative damage with the rate of damage, coefficients 
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   and    can be used to represent the relative impact of the stress-cycle damage and 

crack growth damage, respectively.   

 
       {

                                  

               
 (Equation 5.4) 

 

Testing data has shown that the fatigue life spends the majority of time in the crack 

initiation period.  For instance, since    and    represent the amount of fatigue 

damage (% damage) at certain stages, a value of 0.70 for    and a value of 0.30 for    

may approximate the proportion of    and   .  These coefficients can be altered from 

the results of additional testing, in order to reflect the rate of damage.  Altering these 

coefficients should not alter the condition state.  Instead, altering the coefficient would 

mean altering the percentages for       , shown in Table 5.6.   

Table 5.6 Mapping of damage calculations into condition states 

Condition  

State 
             , % 

CS1   
 

 
   0 35% 

CS2 
 

 
      35 70% 

CS3    
 

 
   70 85% 

CS4 
 

 
   (     ) 85 100% 
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 Integration of Damage Prognosis into Federal Condition Ratings 5.5

In the paper, Effect of Local Damage Caused by Overweight Trucks on the 

Durability of Steel Bridges, that studied the durability of deteriorating steel bridge 

components, a finite element model was used to quantify the damage on bridge 

elements from traffic loads and environmental factors (Cha, et al., 2015).  The total 

cumulative damage of the bridge was taken to be an average of the damage of each 

bridge element.   To map the total cumulative damage with the condition ratings in the 

National Bridge Inventory, the following linear relationships was used: 

 

          
 

   
∑       

   

   

  (
    

   
) (Equation 5.5) 

 

where     is the total number of elements in the FE model and        
 is the total 

damage (loading and environmental) for the particular element and          is the 

total cumulative damage index for the entire bridge.  This relationship maps the NBI 

condition ratings, CR (9 for excellent down to 2 for extremely critical), into the scale 

for the for the damage index (0 for no damage to 1 for complete damage) with an 

appropriate factor of proportionality,  .  In accordance with the study, the 

proportionality factor was assigned a value of 0.7.  This value was assigned after 

careful deliberation over what factor would constitute a realistic match between the 

observed damage in the FE model and the one reported by a bridge inspector (Cha, et 

al., 2015).   

 In a similar fashion, the damage accumulation from fatigue, Equation 5.3, can 

be mapped into the NBI condition ratings.  A good way to see how the damage 

accumulation models should fit into the federal condition ratings is to look at the 



 

141 

―commonly employed feasible actions‖ put forth in the Bridge Preservation Guide.  

The feasible actions for the condition ratings are the same feasible actions for the 

condition states (Table 5.5).  Therefore, it is useful to use the actions from the Bridge 

Preservation Guide to correlate the condition states with the condition ratings.  A 

description of the condition ratings is provided in Table 2.2.   

Table 5.7 Actions associated with NBI condition ratings (FHWA, 2011) 

Condition 

Ratings 

Condition Ratings 

9,8,7 

Condition Ratings 

6,5 

Condition 

Ratings 

4,3,2,1 

Commonly 

Employed 

Feasible Actions 

Do Nothing 

Preventive 

Maintenance 

 

Preventive 

Maintenance; 

and/or repairs 

Rehabilitation or  

Replacement 

 
   

Condition States Condition State 1 & 2 Condition State 3 Condition State 4 
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: Validation of Fatigue-Damage Accumulation Model Chapter Six

by Field Test and Data Processing 

The fatigue analysis in this paper was conducted as part of the University of 

Maryland project to design and implement an integrated structural health monitoring 

system that is particularly suited for fatigue detection on highway bridges.  Data for 

the analyses was acquired from a highway bridge carrying traffic from interstate 270 

(I-270) over Middlebrook Road in Germantown, MD, seen in Figure 6.1.  This bridge 

is referred to as the Middlebrook Bridge.   

 

Figure 6.1 Maryland bridge carrying I-270 over Middlebrook Road 

 

The Middlebrook Road Bridge was built in 1980 and at the time of testing the 

bridge was 32 years old.  With help from Maryland bridge inspectors, this bridge was 

selected as a good candidate for fatigue monitoring due to the average daily truck 

traffic, the bridge’s maintenance history, the geometric configuration, and the 

identification of existing fatigue cracks on the connection plates.   
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The Middlebrook Bridge is a composite steel I-girder bridge consisting of 17 

welded steel plate girders with a span length of 140 ft.  The bridge has three traffic 

lanes in the southbound roadway and five traffic lanes in the northbound; i.e. a high 

occupancy vehicle lane, an exit lane, and three travel lanes.  Five fatigue cracks were 

reported in the Maryland State Highway June 2011 Bridge Inspection Report.  These 

five cracks were all found in the welded connections between the lower end of the 

cross brace connection plate and the girder bottom flange.  The framing plan in Figure 

6.2 shows the five identified crack locations.  All are in the Southbound Roadway and 

are near the center of the simple span; where the largest deflection will take place.   

 
Figure 6.2 I-270 Bridge framing plan and cross section 

 

The I-270 Bridge is built with skewed supports, in order to accommodate the 

intersecting roadway, Middlebrook Road, below the bridge.  Due to the skewed 
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supports, the corresponding cross frames are also built with skewed angles.  The 

Middlebrook Bridge was built with K-brace cross frame, seen in Figure 6.3.   

 

Figure 6.3 K-type cross brace on Middlebrook Bridge 

 

The skew angle of the cross frames are built to code and are in accordance with 

AASHTO LRFD Bridge Design Specifications 2012; so long as the skew angle is less 

than 20 degrees.  As previously mentioned in section 5.1 Geometry of the Bridge, a 

bridge with skewed cross braces is more prone to fatigue damages because its 

geometric configuration enhances the live load effects.  The connections of the skewed 

cross braces are bent at an angle in order to connect with the transverse stiffeners of 

the bridge girders.  When the bridge girders deflect, this angle introduces a bending 

effect into the transverse stiffeners.  The load direction on the connection plates is 

illustrated in Figure 6.4.   
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Figure 6.4 Magnified plan view of cross frame and angle of attachment 

 

 Structural Health Monitoring 6.1

The monitoring and testing for this project was done in part of a larger project: to 

develop an integrated structural health monitoring system (ISHM) to monitor the 

health of steel highway bridges.  For this project, the goal of an ISHM system was to 

specifically integrate various technologies and sensing instrumentation that are used 

for fatigue monitoring, i.e. crack detection and crack growth.  This instrumentation 

provides condition-based feedback of a structures response to various loadings, which 

can ultimately reduce uncertainties in bridge health conditions.  An ISHM requires 

proper selection of sensor types, the correct number of sensors, sensor locations, and a 

G1 
G2 

G3 
G4 

G5 
G6  



 

146 

suitable data acquisition (DAQ) system that meets the data management demands. 

Pilot testing as performed sing acoustic emission (AE) sensors, accelerometers, 

displacement sensors and strain sensors for bridge information collection.     

 Data Acquisition Selection 6.2

The selected DAQ system was configured to meet the requirements of the ISHM 

system; to read and record data from strain gauges as well as acoustic emission 

sensors.  The selection of the data acquisition system was primarily based on the 

hardware requirements of the AE sensors, which require a high sampling rate.  To 

meet this requirement, National Instruments (NI) PXI-5105 Digitizer/Oscilloscope 

module was selected because of its high sampling rate of 60 MS/s and has the 

capability of recording eight simultaneously sampled channels (NI, 2010).  The DAQ 

system was also composed of National Instruments PXIe-4330-bridge input module, 

which takes signals from bridge-based sensors or bridge circuits (strain gauges and 

string potentiometers) and converts the signals into a form the instrumentation can 

process.  National Instrument’s bridge input module has the capability of working with 

8 channels, provides signal conditioning, contains internal analog-to-digital 

conversion and internal filters to remove noise (NI, 2011).  To complete the DAQ, the 

PXI system functions from an embedded controller, which cuts out the need for an 

external PC.  The embedded controller features the functionality of a typical PC, such 

as an integrated CPU, hard drive, memory, Ethernet, USB, video, serial (NI, 2012).  

The PXI system was a good fit for our application because during field testing it was 

necessary to have durable equipment and NI’s PXI systems have previous undergone 

shockwave testing and have the ability to function in high temperatures. 
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6.2.1 Preliminary Monitoring 

Short-term testing was done with the sensors to first gather some fundamental 

understanding of the structures local behavior.  Axial strain gages were placed in the 

vertical direction on both sides of the connection plates, where cracks were previously 

detected by bridge inspectors.  Figure 6.5 displays the relative location of the sensors 

in the plan view along with a cross section of the sensor locations, which defined by a 

circle. The circles with a bold (red) outline are the crack locations.   

 
Figure 6.5 Location of sensors for preliminary testing 

 

Figure 6.6 shows the recorded stresses corresponding to the crack locations.  The 

color of the circle corresponds with the color of the recorded data.  The data showed 

the maximum measured stress in the connection plates to be 16.1 ksi in tension for 

BDI 1641 on Girder 15 and 16.1 ksi in tension for Girder 14.   In comparison, the 
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maximum stress measured on the connection plates on the opposite side measured -4.4 

ksi in compression for Girder 15 and -3.9 ksi in compression for Girder 14.  It is clear 

the cause of the crack is due to the high tension force that is experienced by the 

connection plate.   

 

Figure 6.6 Stress data on web stiffeners to illustrate compression and tension 
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 Long-Term Monitoring and Data Processing 6.3

 

Figure 6.7 Connection plate with known crack Girder 15 

 

A connection plate of a steel girder highway bridge is considered for long-term 

monitoring, shown in Figure 6.7.  This connection plate was identified from Maryland 

State Bridge inspectors to have an existing active crack, i.e. a crack that is growing in 

size.  The crack was found in the weld that connects the connection plate to the top of 

the lower flange and was described in inspection reports as, ―…very fine, crack in the 

top of the south side weld‖ (MDSHA, 2013).     

 

Crack 
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Figure 6.8 Placement of strain gauge on high tension web stiffener 

 

Only one strain transducer was used to continue monitoring the bridge in a long-

term monitoring evaluation.  The strain transducer was placed on one of the stiffeners 

that showed to high tension stress (location of sensor BDI 1641) and was also reported 

by the Maryland State Inspectors to have an existing crack, shown in Figure 6.7.   The 

bridge itself is loaded in bending by the dynamic effects caused from the vehicle 

passage.  Specifically, Figure 6.9 displays a sample of the acquired stress data as a 

function of time that was taken from a connection plate.  The variation in loading of 

the load spectrum on the connection plate is dependent on the number of vehicles 

passing the bridge and the weight of the vehicle.  Given that the traffic volumes and 

patterns are sporadic, the bridge loads are considered to be sporadic.     
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Figure 6.9 Illustration of variable amplitude loading  

 

6.3.1 Data Detrending 

Figure 6.10 shows 4.5 days of collected data where drift occurred in the data.  

Because the drift behaves the same way over the course of 24 hours, it is conceivable 

that it is the result of daily temperature fluctuation.  This data can be detrended to 

remove the drift from the data.  The process of detrending removes the linear best-fit 

line from the data.  By removing the drift from the analysis, the fatigue analysis can 

concentrate on the variable amplitude fluctuations, which would otherwise be skewed 

from the drift.     
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Figure 6.10 Illustration of drift that occurred in acquired data 

 

The process of data detrending is shown in Figure 6.11.  The first plot displays 

raw strain data where there is a downward drift in the data that is visible at about 3000 

seconds.  This plot also displays the multiple linear trendlines where the acquired data 

is broken up into sections that are to be detrended.  The second plot displays the strain 

data after it has been detrended.  As the plot displays the drift is removed and the 

strain data more accurately represents the strain values the connection is experiencing.   

The last plot shows a conversion from strain to stress measurements.  It is often 

helpful to convert strain measurements to stress; this is convenient for comparative 

purposes since units of stress are a more common way of representing fatigue data.   
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Figure 6.11 Detrending on a segment of strain data 

 

 Fatigue Analysis 6.4

After detrending, the strain data is converted to stress for linear damage 

accumulation models, where stress ranges are the main contribution to fatigue damage.     

6.4.1 Rainflow Counting 

With variable amplitude stress history, there is a need to associate the variable 

stress cycles within a particular stress range.  Rainflow method is the most popular and 

considered the best method of cycle counting and is described in the standard of the 

American Society for Testing and Materials.   
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Figure 6.12 Rainflow cycle counting implemented on variable amplitude stress 

 

6.4.2 Extrapolation Results 

The purpose of the extrapolation was to fill in the missing days of acquired data, 

which are represented in Figure 6.13.  The extrapolation was done using the algorithm 

put forth in section, 3.2.6 Extrapolation of Load Histories.  The method of 

extrapolation that has been applied to the fatigue data is done in the rainflow domain.  

The results of the extrapolated rainflow matrix were modeled from a measured 

rainflow history, where the density of rainflow cycles was calculated.  The calculation 

of this density provided the number of stress cycles and stress ranges that were to be 

estimated for certain hours of the day.    
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Figure 6.13 Days of captured data (blue) and extrapolated data (red) 
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6.4.3 Effective Stress Range 

Using the histogram for one-year of measured and extrapolated data points, the 

effective stress range was calculated: 

 

     (∑     
 )

   

 (Equation 6.1) 

 

The fatigue prone details that fit the loading and geometry of the bridge 

component are listed in Table 6.1.  The table displays the constant amplitude and 

threshold for Category C details; welded joints that are transverse to the direction of 

primary stress.     

Table 6.1 Selected detail categories for load-induced fatigue (AASHTO, 2012) 

 

The number of cycles to failure for a category C detail in the S-N curve is was 

calculated: 
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 (Equation 6.2) 

 

The number of cycles to failure is based on the effective stress range.  The histograms 

show that an un-proportionally large amount of cycles occurs at smaller stress ranges.  

Therefore the stress ranges are truncated and an effective stress range is solved for.  

For this case study, a truncation stress of .5CAFL was used, which amounted to the 

effective stress range of     = 7.228 ksi.  At different levels of truncation stresses the 

effective stress range will be different, where the relationship is shown in Figure 6.14.   

 

Figure 6.14 Relationship between the truncation stress and the effective stress range 

 

Section 3.3.2.3 Truncation Stress Range for Fatigue Details provides a description of 

the optional truncation stress.  Nevertheless, fatigue theory tells us that a larger stress 

range will mean a fewer number of cycles to failure, illustrated in Figure 6.15.   
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Figure 6.15 Number of cycles to failure based on effective stress range 

 

6.4.4 Remaining Useful Life for Crack Initiation 

The S-N curve is used to make predictions of the fatigue life based on the fatigue 

prone categories, described in 3.3.2 Application of S-N Curve.  The AASHTO S-N 

curve is provided in Figure 6.16.  An additional point is plotted on this curve to 

display the amount of fatigue damage after one year.  

 The length (years) of the crack initiation period is defined by Equation 3.21, 

rewritten here as Equation 6.4.   

 
      

  
  

⁄      years (Equation 6.3) 
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Figure 6.16 AASHTO S-N curve with point of 1-year damage plotted 

 

 

In accordance with the histograms for this case study, as the effective stress 

range increases, the number of stress cycles decreases dramatically.  For this reason, 

the fatigue life of the specimen actually increases with the effective stress range, 

displayed in Figure 6.17.  Without including an increase in traffic volumes, the 

effective stress range and number of cycles are assumed consistent for each year.  

From Equation 6.3, the estimated fatigue live for the crack initiation period was 18.0 

years.  Figure 6.18 displays the yearly accumulation until failure is reached on the S-N 

curve.   
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Figure 6.17 Years to failure based on effective stress range 

 

Figure 6.18 AASHTO S-N curve with cumulative points plotted until failure 
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 Fracture Analysis 6.5

6.5.1 Finite Element Modeling 

As discussed in Chapter Four, the finite element method is the most accurate 

method for determining the stress intensity factor.  The ability of finite element 

models to create a very finite mesh at the crack tip provides a much needed insight 

into the localized stress field.  In order to investigate stresses in these smaller bridge 

components or structural details, a smaller sub-model, i.e. a local model, should be 

extracted from a larger global model.   

 

Figure 6.19 Global model of Middlebrook Bridge (Fu, et al., 2014) 

 

A three-dimensional global model of the southbound direction, seen in Figure 

6.1, was created in CSiBridge; an analysis and design software tool used to evaluate a 

bridge’s response.  The concrete deck, eight I-girders, and connection plates were 
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modeled by shell elements, whereas all the diaphragms were modeled by truss 

elements.  The global model contains only the main components of the bridge and is 

mainly used for modal analysis, finding the displacement output of the whole bridge, 

and critical fatigue location determination known as hotspots, i.e. the locations of 

known high tensile strength.  For the purpose of analysis, the global model used a 

refined mesh around the fatigue hot spots (Fu, et al., 2014). The refined mesh is 

depicted in the bottom of the connection plates in Figure 6.20.  However, since the 

interest is to obtain a stress intensity factor; the global model cannot be any more 

refined and a local model of this critical region was created for the purpose of 

understanding the stress field around the crack.   

 

Figure 6.20 K-brace, connection plate and girder on global model (Fu, et al., 2014) 

 

It is crucial when modeling a local refined model to ensure the boundary 

conditions are set up to correctly reflect its mechanical connections to the global 

model.  The following guidelines are typically followed when going from a global to 

local model (Fu, et al., 2014):   
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 The boundary nodes should apply the same displacements obtained from the 

global model. 

 The boundary nodes should apply the same external forces obtained from the 

global model as internal forces. 

In accordance with the guidelines, the resulting deflections (displacements) of the 

global model were applied to the perimeter of the local model as enforced 

displacements.  Since the deflections are a result of the loading, applying the 

deflections simulates the loads transferred across a free-body section of the global 

model where the local model resides.  Further the stress loads at the location of the 

strain gage were applied to the local model at the corresponding perimeter location.  

Figure 6.21 displays the location of the local model on the global structure.  This 

location is described with white lines that outline the local model geometry.   

 

Figure 6.21 Location of local model within the global model 
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Figure 6.22 displays the three dimensional local finite element model that has been 

meshed.  This model shows how the elements were defined and broken down across 

the local geometry.    

 

Figure 6.22 Three Dimensional local finite element model meshed into elements 

 

Since the purpose of the local model is to find the stress intensity factor, the 

problem can be treated in two-dimensions, as discussed in 4.4Validating FEM Models 

with a simple LEFM model.  Figure 6.23 displays the two-dimensional local model 

with applied displacements and forces.  An orange rectangle outlines the location of 

the existing crack, which is magnified in Figure 6.24.   
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Figure 6.23 Finite element local model with applied displacements and forces 

 

As seen in Figure 6.24, a fine mesh is created around the previously-identified 

existing crack.  The crack was modeled with an assumed depth of 1/10 inch; which is 

approximately the length of the penetration of the fusion in a fillet weld.  So the crack 

was assumed to occur at the depth of penetration.   
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Figure 6.24 Radial elements at the crack tip 

 

Figure 6.25 and Figure 6.26 display the stress contour of the y-component of the 

cross section.  Figure 6.25 shows the front of the local model.  The contour legend at 

the bottom represents the stress in units of psi.  The deformed shape shows the 

bending in the connection plate, which is from the load of the bottom diagonal.  The 

bending in the illustration is magnified by about 2.5% of the actual bending 

experienced.  Figure 6.26 shows a magnified view of Figure 6.25 at the location of the 

crack.  The plastic zone at the crack tip is more apparent in this graphic.  Since the 

stress field at the crack tip is smaller than the connection plate thickness, then plane 

strain governs.  The displacement extrapolation for solving the stress intensity factor 

was also based on plane strain conditions.   
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Figure 6.25 Stress contour (Y-Component) of connection between stiffener and flange 

 

Figure 6.26 Stress contour (Y-Component) of crack between stiffener and flange 

 

6.5.1.1 Stress Intensity Factor 

The crack path was defined using four nodes along the crack face and one node 

at the crack tip, where the radial elements were configured.   
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Figure 6.27 SIF for two-dimensional crack modeled at toe of weld 

 

Rearranging the equation for the stress intensity factor, the shape factor is solved 

for with the known input values.   

 
  

 

     √   

 (Equation 6.4) 

 

Under the parameters,              √  ,         ,  and                , 

then the geometric shape factor is solved to be: 

 

        (Equation 6.5) 

 

6.5.2 Damage Tolerance and Fracture Toughness 

The specifications of the American Society for Testing and Materials (ASTM) 

for A572 Grade 50 steel requires a minimum yield strength value of 50 ksi.  The 

fracture toughness equation, as discussed in section 4.3 Fracture Toughness.   

 
     √        (Equation 6.6) 
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For zone 2 temperature, i.e. (-1
o
F to -30

o
F), the fracture toughness of a non-

fracture-critical Grade 50 steel is 20 ft-lb @ 
o
F.  Therefore, the fracture toughness for 

this steel is computed to be,               √  .  The critical crack length that 

corresponds to the fracture toughness comes from the fracture mechanics equation for 

critical stress intensity factor.  Under the parameters that fit the Middlebrook Bridge, 

              √  ,       ,  and                , then the geometric factor is 

solved to be: 

 
       

   

     
         (Equation 6.7) 

  

The relationship between the critical crack size and the change in effective stress 

range is shown in Figure 6.28.   

 

Figure 6.28 Change in critical crack size based on effective stress range 
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6.5.3 Crack Growth Rate 

The crack growth rate, seen in Equation 4.4 and rewritten in Equation 6.8 is 

dependent on the range of the stress intensity factor.  C and m are parameters that 

depend on the material, environment, frequency, temperature and stress ratio.   

   

  
        (Equation 6.8) 

 

Since the interest here is a steel material, the values are chosen as m = 3 and C = 

10
-11

.  Using a week of measured data from the bridge, the stress intensity factor varies 

with the stress ranges due to the similarity principle, described in 4.2.2 Stress Intensity 

Factor and Similarity Factor.  The relationship between the crack growth rate and the 

stress intensity factor is portrayed in Figure 6.29.   

 
Figure 6.29 Paris Law for fatigue crack growth rates 
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Paris law is more often plotted on a logarithmic scale, to show a linear 

relationship between the stress intensity factor can the crack growth rate.  This plot is 

shown in Figure 6.30.   

 

Figure 6.30 Paris Law for fatigue crack growth rates, log-log 

 

6.5.1 Remaining Useful Life for Crack Propagation 

The accumulation of damage for fatigue crack growth models is consequent of 

the change in crack size, a, shown in Equation 4.25, where    is the initial crack size, 

    is the change in crack size per cycle, and    is the updated crack size (Schijve, 

2009).   

 

       ∑   

   

   

 (Equation 6.9) 
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The crack size at any given time is a function of the stress intensity factor, as 

portrayed in Equation 4.27,  

 

   
 

     
 (Equation 6.10) 

 

The relationship between the crack size and the change in effective stress range is 

shown in Figure 6.31.   

 

Figure 6.31 Variation in crack size changes with the effective stress range 

 

Using the critical crack size in Figure 6.28 and the incremental crack size in 

Figure 6.31, the two plots can be plotted on the same graph to show the relationships 

with each other; Figure 6.32.  This figure also plots the critical crack size for the case 

where a fracture critical member exists.   
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Figure 6.32 Relationship of crack size to critical crack size 

 

The remaining useful life is calculated by subtracting the initial crack size,    

from the critical crack size at failure that corresponds to the critical crack size at 

failure.  Dividing by the change in crack size using an effective stress range and the 

number of cycles,      solves the remaining useful life of the structure in terms of 

years,  

 
      

       

  
     years (Equation 6.11) 

 

Figure 6.33 shows the relationship between the number of years to failure and the 

effective stress range, based on the crack properties.  Accordingly, under the effective 

stress range for the Middlebrook Bridge, the number of years until a critical crack size 

is reached in the propagation period is 9.6 years.   
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Figure 6.33 Number of Years to failure based on the crack growth rate 

 

Since the bridge inspectors first noticed the bridge cracking in 2011, at the time of 

testing, (2012-2013), the crack had been present for 1-2 years.  In 2014, when the 

crack was repaired, the remaining useful life for this bridge element was calculated to 

be 6.6 years to failure.   
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 Total Cumulative Damage 6.6

The damage in the initiation period and the damage in the propagation period can 

be combined to assess the total cumulative fatigue damage on a specific component: 

 
       {

                                  

               
 (Equation 6.12) 

 

Since    and    represent the amount of fatigue damage (% damage) at certain stages, 

for this case study, a value of 0.70 for    and a value of 0.30 for    would 

approximate the proportion of   , which was estimated to be approximately 18.0 years  

and    which was approximated to be 9.6 years.   

Table 6.2 Mapping of damage calculations into condition states 

Condition  

State 
             , % 

CS1   
 

 
   0 35% 

CS2 
 

 
      35 70% 

CS3    
 

 
   70 85% 

CS4 
 

 
   (     ) 85 100% 

 

During the 2011 bridge inspection report, the crack was first visible.  With an 

initial crack size of 0.05 inches, the calculated percent damage was approximately 

83.3%.  This would define the bridge element as condition state 3, which corresponds 

to a condition state description, ―fatigue damage exists which is not arrested.‖   In 

2014, when the crack was repaired, the calculated percent damage was 87.2%, 

correlating to condition state 4, ―Fatigue damage exists which warrants analysis of the 

element to ascertain the serviceability of the element or bridge.‖   These condition 
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state descriptions are outlines in Table 5.4, which is also below in Table 6.3 for 

reference.   

Table 6.3 Fatigue condition states translated into national bridge element (MDSHA, 2003) 

Defect 

Condition State 

1 

(good) 

Condition State 

2 

(fair) 

Condition State 

3 

(poor) 

Condition State 

4 

(severe) 

Cracking/ 

Fatigue 
None 

Fatigue Damage 
Analysis 

Warranted 

Severe Fatigue 

Damage 

 

Fatigue damage 

exists but has 

been repaired or 

arrested.  The 

element may still 

be fatigue prone. 

Fatigue damage 

exists which is 

not arrested.  

Condition State 

used for first 

time element is 

identified with 

crack 

Fatigue damage 

exists which 

warrants 

analysis of the 

element to 

ascertain the 

serviceability of 

the element or 

bridge  
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: Conclusions and Future Research Chapter Seven

 Conclusions 7.1

As aging steel bridges continue to experience increasing traffic volumes and are 

progressively more vulnerable to fatigue deterioration, there is increasing demand to 

assure their long term health.  Due to the dynamic nature of the loads, fatigue-induced 

damage remains to be a primary failure mechanism.  The ability to assess the 

cumulative fatigue damage is critical to ensuring the structural integrity of these 

aging-steel bridges.   

This dissertation research aims to establish a damage accumulation model used 

for the damage prognoses of steel highway bridges through the use of existing fatigue 

analyses methods and fracture mechanics.  The proposed damage accumulation model 

goes beyond the current fatigue assessments put forth in AASHTO LRFD Bridge 

Design Specifications.  Further, this dissertation provides a means for mapping the 

fatigue damage prognoses into the condition states assessments within bridge 

management systems.  To verify the damage accumulation model, fatigue damage was 

collected on an existing highway bridge and the data was processed to determine a 

damage prognoses.  Specifically the major findings of this research are summarized as 

follows, 

 Fatigue life can be more accurately characterized with two different methods 

of analysis that define the exponential form of a fatigue life curve; using the 

empirical correlation approach and fracture mechanics approach.   

 The fatigue damage assessments put forth in AASHTO LRFD Bridge Design 

Specifications can be supplemented with a fracture mechanics analysis.  
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Currently, there is no defined method for fracture mechanics in AASHTO 

specifications.   

 Structural health monitoring has a significant contribution in damage 

prognosis.  Sensing instrumentation can be used to acquire information about a 

bridge’s response to loads.  This information can be used in linear damage 

accumulation models and also used in fracture mechanics to understand crack 

growth.   

 Utility programs for data collection and analysis need to be used alongside 

structural health monitoring instrumentation in order to acquire the pertinent 

information relative to fatigue-damage.  These utility programs include: data-

detrending, rainflow-cycle counting, extrapolation, and damage estimations.     

 Extrapolation of data can be achieved in the rainflow domain, which outputs an 

extrapolated rainflow matrix.  Extrapolation in the rainflow domain offers the 

most computationally friendly approach and can estimate the rainflow matrix 

for an infinite number of cycles.  Extrapolation converts short-term monitoring 

into long-term monitoring, with the capability to account for even higher loads 

than what was measured.   

 The linear-damage accumulation rule, aka the Miner Rule, should only be used 

for fatigue-crack-initiation life assessments, rather than for total fatigue life 

estimates.  The multiple shortcomings of the Miner Rule, described in 3.3.1.1 

Shortcomings of the Miner Rule, should be realized.  There are currently no 

fatigue analysis methods used by bridge inspectors that account for these 

shortcomings.    
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 The displacement extrapolation used in finite element modeling, is capable of 

providing accurate information about fatigue cracks on stressed bridge 

elements with complex geometries.  Specifically, the displacement 

extrapolation method computes the stress intensity factor for a crack of a 

known size.   

 The initial crack size will dictate the accuracy and effectiveness of finite 

element modeling.  Since the main purpose of the finite element modeling is to 

solve for the stress intensity factor, having an accurate crack size is the most 

important parameter; assuming the remote loading stress was measured and 

acquired from sensors.   

 Damage accumulation models can be used for the evaluation of bridge 

elements.  The damage accumulation models are useful for estimating both the 

cumulative number of cycles and the damage prognosis, i.e. remaining useful 

life. 

 Bridge management systems can be supported with damage accumulation 

models.  These models, which are highly influenced from the feedback of 

structural health monitoring technologies, can be mapped into AASHTO 

condition states with a linear translator tool.  In the event that all bridge 

elements are being monitored then their cumulative damage prognosis can be 

integrated in to the federal highway condition ratings.   
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 Recommendation of Future Research 7.3

This dissertation provided a lengthy review of bridge management systems and 

how the condition assessments are translated into condition ratings.  This section, not 

only contains the suggestions for next steps to be taken on this research topic, but also 

provides recommendations on how to fulfill a more organized federal bridge 

management system.  Furthermore, an additional section is provided that discusses the 

impact of structural health monitoring on the future of bridge management systems.   

The following research topics are recommended for future work: 

 Verification of crack growth prediction models is limited in literature; it was 

previously assumed the crack growth period was relatively short and could be 

disregarded.  Additional testing should be conducted to obtain empirical 

information on crack growth lives.  This information would be particularly 

useful on structures with an existing and active crack.   

 Damage accumulation models contain high levels of uncertainty and 

variability.  Uncertainty exists as physical uncertainty or model uncertainty.  In 

order to account for the uncertainties, stochastic damage accumulation models 

should be used alongside deterministic models.  Probabilistic models can be 

used to account for the inherent scatter in fatigue data.   

 Reliability models can also be used for determination of failure probabilities 

and estimating the fatigue life.  It may be particularly useful to describe the 

initial crack size using a probability density function.  

 Further experimental validation is needed for use of damage accumulation 

models with condition states.   
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7.3.1 Condition Ratings Modifications 

Bridge element condition assessments should be modified to one uniform 

assessment process and should be used by the National Bridge Inventory.   This is a 

feasible task since vast majority of agencies are already doing element inspections, 

based on the Pontis system criteria, and have adopted the condition assessments for 

CoRe elements.  Furthermore, using element condition assessments as the National 

Bridge Ratings would also eliminate the need for the NBI translation tool, which has 

been found to have many shortcomings and should be modified.  For instance, some 

bridge engineers have reported concerns regarding the efficiency of the Translator.  

Under analyses to measure the fit between the NBI generated ratings and real bridge 

ratings, the coefficient of determination was found to be 25%; indicating a poor fit 

between them (Aldemir-Bektas, et al., 2007).  Furthermore, it has also been shown 

that the NBI translator consistently estimates lower ratings than should be designated 

(Aldemir-Bektas, et al., 2007).  These results have also been reinforced by the 

National Cooperative Highway Research Program (NCHRP), which has stated 

(NCHRP, 2007),  

“[The NBI Translator]…is not able to make effective distinctions in the highest (6 to 

9) and lowest (0 to 3) NBI condition ranges. While this might not seriously jeopardize 

federal funding eligibility of deteriorated bridges, it seriously impacts the accuracy of 

condition prediction for bridges in very good condition, which most state bridge 

inventories have.” 

 

The NCHRP also criticizes the NBI translator as overly sensitive to a small 

fraction of elements in poor condition states.  Meaning, once deterioration has been 
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recognized on a component, the deterioration rate is expedited to the worse condition 

state in as little as 4 years (NCHRP, 2007).  This is usually not a true reflection of the 

realistically slower deterioration process.  Nonetheless, a modified NBI that captures 

ratings at the bridge element level would provide better data at the national level that 

more descriptively detail bridge conditions across the nation.   

7.3.2 Future Role of Technology in Bridge Management Systems 

Current bridge management systems can be supplemented with structural health 

monitoring technologies in order to gather real-time results of a structures condition.  

As technology exponentially advances in the 21
st
 century, sensing technologies will 

revolutionize the way we design, analyze, and maintain structures.  Currently, these 

sensing technologies are already being implemented on bridges and infrastructure in 

post-construction analyses.  It is foreseeable in the near future that bridges will be 

constructed with sensor networks that will continuously gather information about car 

movements, bridge vibrations, and structural integrity.  The information and data 

gathered from these technologies are not very meaningful unless it can be paired with 

inspection processes and condition ratings.  Since many SHM technologies are 

currently within research and development stages, it is more beneficial if these 

technologies are implemented at the state level through inspectors and agencies that 

are knowledgeable of the technologies. 
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