
ABSTRACT

Title of dissertation: QUALITY-AWARE
DATA SOURCE MANAGEMENT

Theodoros Rekatsinas,
Doctor of Philosophy, 2015

Dissertation directed by: Professor Amol Deshpande and
Professor Lise Getoor
Department of Computer Science

Data is becoming a commodity of tremendous value in many domains. The ease of col-

lecting and publishing data has led to an upsurge in the number of available data sources

— sources that are highly heterogeneous in the domains they cover, the quality of data

they provide, and the fees they charge for accessing their data. However, most existing

data integration approaches, for combining information from a collection of sources, fo-

cus on facilitating integration itself but are agnostic to the actual utility or the quality of

the integration result. These approaches do not optimize for the trade-off between the

utility and the cost of integration to determine which sources are worth integrating.

In this dissertation, I introduce a framework for quality-aware data source manage-

ment. I define a collection of formal quality metrics for different types of data sources,

including sources that provide both structured and unstructured data. I develop tech-

niques to efficiently detect the content focus of a large number of diverse sources, to

reason about their content changes over time and to formally compute the utility obtained

when integrating subsets of them. I also design efficient algorithms with constant factor

approximation guarantees for finding a set of sources that maximizes the utility of the

integration result given a cost budget. Finally, I develop a prototype quality-aware data

source management system and demonstrate the effectiveness of the developed techniques

on real-world applications.

QUALITY-AWARE DATA SOURCE MANAGEMENT

by

Theodoros Rekatsinas

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:

Professor Amol Deshpande Chair/Co-Advisor
Professor Lise Getoor Co-Advisor
Professor Douglas Oard Dean’s Representative
Professor Mihai Pop Committee Member
Dr. Divesh Srivastava Committee Member

c© Copyright by
Theodoros Rekatsinas

2015

This thesis is dedicated to my parents Eleni and Yiannis.

Their love will always be the strongest driving force in life.

ii

Acknowledgments

My journey as a student may have come to an end but I am sure I have so much more to
learn from my four great mentors, Amol Deshpande, Lise Getoor, Xin Luna Dong and
Divesh Srivastava. I will forever be indebted to them for their support in my research
career and every other aspect of academic life.

First and foremost, I owe a special thank you to my advisors Amol and Lise. They
were the first people to truly believe in my half-baked research ideas and the ones that
taught me how to do research and think critically. Amol and Lise taught me how important
it is to have faith in your work and be able to crisply communicate it to others. They also
gave me the freedom and necessary encouragement to pursue my own research ideas and
generously offered me their advice at every step along the way. I will always be grateful
to them for shaping me into a researcher.

Next, I would like to express my deepest gratitude to Luna and Divesh. I feel truly
privileged for having the opportunity to work with them. Luna and Divesh are not only
absolutely brilliant researchers but they are amongst the nicest people I have ever met.
They were the first to treat me as a peer rather than a student and the ones that introduced
me to the amazing world of data quality. This thesis would have never been accomplished
without them. They taught me how to make no compromises, not only, on the quality
of research but life in general. Divesh’s limitless knowledge and Luna’s inexhaustible
passion will always be an inspiration for me.

At this point I’d like to thank my fellow students in the database and LINQS group
as well as the Computer Science department. They made my graduate studies both intel-
lectually stimulating and incredibly enjoyable. Special thanks go to Ioana Bercea, Rajesh
Chitnis, Sameh Khamis, Udayan Khurana, and Ben London for making my life more
colorful and helping me go through the daily grinds of graduate life.

I would also like to thank the College Park gang, Alex Tzannes, Evripidis Paraskevas,
Jason Filippou, Jason Papanikolaou, Kostas Zampogiannis, Nasos Papanikolaou, Vassilis
Lekakis and Vassilis Zikas, for turning the last five years into a magical experience. In
particular, Vassilis Z., Jason P. and Alex offered me some of the most enjoyable times
during this journey. I am looking forward to those that are yet to come. Also, special
thanks go to Kostas Nikolopoulos. Kostas is a great friend and the first person that taught
me what it means to be a researcher.

I also want to thank someone very close to my heart. Lida, I am grateful you
were there for me for the toughest part of this journey, for your patience, and for all the
moments we shared. I will always treasure your love; even if it’s only a memory now.

Finally, there are not enough words to express my gratitude, love and respect to my
parents. They always offered me their unconditional love and support throughout my life,
and were always there for all the ups and downs during the last five years.

iii

Table of Contents

1 Introduction 1
1.1 Challenges in Determining the Quality and Utility of Data Sources 3
1.2 Dissertation Overview and Contributions 10

1.2.1 Reasoning About the Content and Quality of Data Sources 11
1.2.2 Enriching Structured Domain Indexes 13
1.2.3 Selecting Valuable Data Sources for Integration 15
1.2.4 Data Source Management Applications 17

2 Background 19
2.1 Data Integration . 19
2.2 Data Source Management . 21
2.3 Knowledge Bases and Uncertain Data 24

3 Analyzing the Content and Quality of Data Sources 27
3.1 Introduction . 28
3.2 Preliminaries . 30
3.3 Modeling Changes in the Overall Data Domain 33

3.3.1 Structured Data Entries . 33
3.3.2 Unstructured Data Entries . 36

3.4 Modeling Changes in Data Sources . 42
3.4.1 Structured Data Entries . 42
3.4.2 Unstructured Data Entries . 46

3.5 Quality of Integrated Data . 48
3.5.1 Defining Quality . 48
3.5.2 Estimating Quality . 52

3.5.2.1 Content Changes Under Union Semantics 53
3.5.2.2 Quality Estimation at Future Time Points 55

3.6 Reasoning about Diverse Data Domains 60
3.7 Experimental Evaluation . 63

3.7.1 Structured Data Entries . 63
3.7.2 Unstructured Data Entries . 67

3.8 Related Work . 73
3.9 Summary . 74

iv

4 Enriching Structured Domain Indexes 76
4.1 Introduction . 77

4.1.1 A Real-World Scenario . 81
4.2 Preliminaries . 83

4.2.1 Structured Data Domain . 84
4.2.2 Entities and Entity Extraction Queries 85
4.2.3 Crowdsourced Entity Extraction 88
4.2.4 Underlying Query Response Model 89
4.2.5 Framework Overview . 92

4.3 Estimating the Gain of Extraction Queries 93
4.3.1 Previous Estimators . 94
4.3.2 Exclude Lists and Negative Answers 95
4.3.3 Direct Gain Estimation . 96

4.4 Discovering Querying Policies . 99
4.4.1 Balancing Exploration and Exploitation 100
4.4.2 A Multi-Round Querying Policy Algorithm 101
4.4.3 Updating the Set of Actions . 102

4.5 Experimental Evaluation . 104
4.5.1 Experimental Setup . 105
4.5.2 Experimental Results . 109

4.6 Related Work . 116
4.7 Summary . 118

5 Selecting Valuable Sources for Integration 119
5.1 Preliminaries . 120
5.2 Selecting Dynamic Data Sources . 122
5.3 Source Selection Algorithms . 126

5.3.1 Submodular Objective Functions 127
5.3.2 Arbitrary Objective Functions 131
5.3.3 Multiobjective Source Selection 132

5.4 Experimental Evaluation . 133
5.4.1 Experimental Setup . 134
5.4.2 Performance of Source Selection Algorithms 136
5.4.3 Scalability . 141
5.4.4 Main Results . 142

5.5 Related Work . 143
5.6 Summary . 144

6 Managing Source Dependencies with Probabilistic Databases 145
6.1 Introduction . 146
6.2 Preliminaries . 150

6.2.1 Probabilistic Databases . 150
6.2.2 Arithmetic Circuits . 158

6.3 Arithmetic circuits in Probabilistic Databases 161
6.3.1 Naive Approach . 162

v

6.3.2 Overview of the Proposed Framework 163
6.4 Annotated Arithmetic Circuits . 164

6.4.1 Definitions . 165
6.4.2 Compiling Factor Graphs into AACs 166
6.4.3 Compiling Lineage Formulas into AACs 167

6.5 Merging AACs . 174
6.6 Experiments . 181

6.6.1 Datasets and Queries . 182
6.6.2 Experimental Results . 183

6.7 Related Work . 187
6.8 Summary . 189

7 Quality-Aware Data Source Management Applications 190
7.1 Source Selection for Event Data . 190

7.1.1 Design Details . 191
7.1.2 SOURCESIGHT Functionalities 193

7.2 Forecasting Rare Disease Outbreaks with Multiple Sources 196
7.2.1 Expert Fusion with Sources as Experts 198
7.2.2 Evaluating Outbreak Forecasts 202

7.2.2.1 Predicting Disease Outbreaks 205
7.3 Summary . 209

8 Conclusion 210
8.1 Future Directions . 211

A Supplemental Derivations and Proofs 214
A.1 Derivation of Gibbs Sampling Equations 214
A.2 Proof of Theorem 1 . 218
A.3 Proof of Theorem 3 . 221
A.4 Proof of Lemma 1 . 224

Bibliography 226

vi

Chapter 1: Introduction

Today we are experiencing an unprecedented deluge of data sources available for inte-

gration and analysis. This is mainly because of the ease of publishing data on the Web,

the proliferation of services that facilitate the collection and sharing of data (e.g., Google

Fusion Tables [65]), and the adoption of open data access policies both in science and

government. Integrating data from multiple data sources can significantly enhance the

value of data. For example, with more sources, we can increase the coverage of inte-

grated data; In the presence of inconsistencies, we can improve correctness by leveraging

the collective wisdom. Reducing the effort to perform data integration, i.e., clean the data

provided by sources, resolve entity references, and construct schema mappings across

sources, has been one of the most challenging problems in the database community [41].

However, the ease of collecting and publishing data has also led to an increase in

the number of data sources providing data of bad or poor quality. This makes reasoning

about the data quality of sources of paramount importance. In many real-world scenarios,

integrating low-quality sources with noisy data may hurt the overall accuracy of integrated

data [47]. Furthermore, integrating every data available may incur a significant monetary

cost. To understand the effect of poor data quality, one only needs to consider a report by

the SAS Institute Inc.1, stating that poor data quality is estimated to cost U.S. businesses

1http://support.sas.com/resources/papers/proceedings13/079-2013.pdf

1

$600 billion annually. Despite that, most existing data integration approaches are still

agnostic to the quality of the available data sources.

Even in the presence of high-quality data sources, integrating data sources comes

with a significant computational cost [142]. A substantial effort must be spent in setting

up the overall integration pipeline for continuous ingest. Furthermore, acquiring data may

involve a monetary cost. Although much of the data is freely available, the number of data

sources that charge monetary fees for access is rapidly increasing. This trend is expected

to continue as data is further commoditized [9, 158]. The cost involved in integrating data

sources gives rise to the natural questions of how can one reason about the trade-off be-

tween the benefit and cost of integration, and how one can identify sources that are worth

integrating. For example, in the presence of redundancy among data sources, integrating

new sources may not necessarily increase the coverage of integrated data significantly, if

at all, but it increases the total cost.

Given the large number of available data sources and their heterogeneity in terms

of quality and integration cost, it is challenging for a user to identify sources that are truly

beneficial to her applications. The goal of this dissertation is to develop a formalism for

managing a large number of diverse and dynamic data sources, i.e., reasoning about their

content and quality; and algorithms for discovering valuable sources for integration, i.e.,

sources that maximize the user’s utility at the minimum cost.

2

1.1 Challenges in Determining the Quality and Utility of Data Sources

Assessing data quality has been a longstanding problem in many diverse disciplines rang-

ing from data mining and data curation to operations research and econometrics [175].

Traditionally, the data quality of a data source or a dataset has been measured via rea-

soning about its completeness and the amount of erroneous information in it. In the last

decade, however, there has been a growing interest in defining diverse metrics to assess

data quality [125]. In fact more than 200 quality metrics have been proposed to char-

acterize data quality [11]. Nevertheless, most of these metrics are hard to quantify and

calculate for arbitrary datasets and the most frequently mentioned data quality metrics in

the literature are: (i) accuracy (i.e., the degree to which data represents the values of corre-

sponding real-world constructs correctly), (ii) coverage (i.e., the percentage of real-world

constructs mentioned in the data) , (iii) timeliness (also called freshness, i.e., the degree

to which data represents reality as of a required point in time), and (iv) consistency (i.e.,

inter-source value conflicts across distinct instances for the same real-world construct).

Although it is possible to talk about the quality of a data source by itself, it is more

natural, useful, and accurate to talk about the quality of a source with respect to some

specific context. For example, “ESPN” has high coverage for “sport in the USA” but has

negligible coverage for “politics”. Trying to formalize the notion of context and char-

acterizing the quality of a source with respect to that context, raises several challenges.

We will use two real-world scenarios to illustrate these issues: (i) listings aggregation by

combining, e.g., business, job, or rental listings from a variety of sources, and (ii) event

detection and analysis by combining articles in social and news media [78, 57].

3

In the first scenario, aggregators offer a search service to end users by integrating

listings from multiple sources. Each source provides a set of listings and periodic updates

as new listings become available or existing listings get updated or removed. Specifically,

we consider the scenario of aggregating business listings (BL) from 43 different data

sources providing records for US businesses over a period of two years. This dataset was

extracted from Yellow Pages. Source entries correspond to listings for businesses from

various categories located in different states across the United States.

In the second scenario, an analyst integrates events mentioned in a diverse set of

news media sources and analyzes them collectively to detect patterns characterizing her

domain of interest. An example of such an event collection framework is the Global

Database of Events, Languages and Tone (GDELT) [96] where news articles from dif-

ferent sources are aggregated into a single repository. Here, we consider a snapshot of

GDELT containing news articles from 15,275 sources over a period of one month. The

extracted events come from different news portals (e.g., NY Times), correspond to differ-

ent event types from a predefined dictionary, and are associated with different locations.

Next, we illustrate some of the major challenges when analyzing the content and

quality of data sources. We study the quality of sources with respect to their average

coverage and average freshness. At a high-level, the coverage of a source is the probability

that a randomly chosen data entry from the data domain will be provided by the source.

Timeliness is the probability that a randomly chosen entry from the source will be up-

to-date, i.e., in agreement with the actual data domain. The averages for each source are

computed across all domain points covered by it considering a source snapshot over the

available time window.

4

The first challenge is that data sources may vary significantly in the portions of the

data domain they focus on and also exhibit large heterogeneity in their quality for different

parts of the domain. User tasks may focus on different parts of the data domain, thus, it is

important to consider both types of heterogeneity when assessing the quality of a source.

Example 1. Consider the business listings scenario described above. Figure 1.1(a) shows

the different sources and the number of different locations and business types mentioned in

the sources. The radius of each circle indicates the size of the source measured as the total

number of entries in it. As shown, there are many sources of varying sizes that provide

data for most of the available business types and locations. However, there are also

specialized sources that focus either on specific locations or specific business categories

and tend to be significantly smaller. Figure 1.1(b) shows the coverage of the largest source

in BL for all possible location and business-type combinations. The coverage values in

the figure are computed for a single time point within the two-year window. As we can

see, the quality of this source (i.e., the coverage) varies significantly depending on the

location or business type.

The utility of a source captures the actual value that a user extracts from using the

data provided by it. Certainly the utility of a data source is closely related to its quality,

but focusing attention only on the high-quality sources can be a mistake.

Example 2. Consider the business listings scenario presented above. Here, the utility of

a data source can be described using the number of unique entries the source provides,

while the quality of a source can be described by its average coverage. The bottom graph

in Figure 1.2 shows the percentage of unique entries provided by each source in BL with

5

#
 B

u
s
in

e
s
s
 T

y
p

e
s

0

500

1000

1500

Locations

0 20 40

Source Types In BL Domain

Figure 1.1: (a) The various data sources in the business listings dataset with respect to
the location and business types they focus on. The radius of each circle indicates the size
of each source. (b) The coverage of the largest source in the business listing dataset for
different locations and business types.

respect to its average coverage. The upper one shows the total size of each source. As

shown, there is a significant number of sources with low coverage for the overall data

domain that provide mostly unique items. While small in size, these specialized sources

can be of great utility to several users. Finally, there is a significant number of sources

with mid-range coverage (i.e., 0.25 to 0.4) that provide a small number of unique data

items. Considering these sources during integration does not promote the utility of a user.

As illustrated in the last example, the dimensions of utility and quality are conceptually

different. Thus, focusing integration efforts only on high-quality sources may incur a

significant loss of utility.

Finally, in many scenarios, sources are not static but rather their content changes

dynamically over time. This gives rise to additional challenges when reasoning about the

quality of sources. One challenge stems from the fact that sources that update their data

more frequently are not always more effective at capturing changes in a timely manner.

6

U
n

iq
u

e
 E

n
tr

ie
s
 (

%
)

0

0.5

1.0

T
o

ta
l
E

n
tr

ie
s

1

103

106

Avg. Coverage of Source

0 0.2 0.4 0.6 0.8

Source Avg. Quality and Source Size in BL

Figure 1.2: The average coverage of data sources in the business listing domain versus
the percentage of unique entries they provide and their size.

Example 3. Figure 1.3(a) shows the average update frequency and average freshness

for each source in BL over the two year time window. As shown, there is no clear

correspondence between the update frequency and freshness of a source; even sources

with high update frequencies may have low freshness, indicating that sources may add

to their content frequently but are ineffective at deleting stale data or capturing value

changes of older data items.

Even sources with similar update frequencies exhibit different levels of staleness, as ex-

emplified next in the second domain.

Example 4. This example examines how effective the 20 largest sources in GDELT are

at reporting events in a timely manner. Figure 1.4(a) shows the average delay with which

events are reported and the corresponding fraction of delayed events over the total content

of each source over one month. While all sources get updated daily, one can see that a

significant fraction of events are reported with delays.

7

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g
.
F

re
s
h
n
e
s
s
 (

1
/d

a
y
)

Avg. Update Frequency (1/day)

Source Avg. Upd. Freq. and Avg. Freshness in BL

(a) Average update frequencies and average freshness of data sources in BL.

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

1
1
/1

1
2
/1

1
/1

2
/1

3
/1

4
/1

5
/1

6
/1

7
/1

8
/1

9
/1

1
0
/1

1
1
/1

1
2
/1

1
/1

2
/1

3
/1

4
/1

C
o
v
e
ra

g
e

Date

Coverage Timelines in BL

Set1: 3 Srcs Set2: 5 Srcs

(b) Coverage evolution for two sets of sources in BL.

Figure 1.3: Characteristics of dynamic data sources in BL.

8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 1.1 1.2 1.3 1.4 1.5

F
ra

c
ti
o
n
 o

f
D

e
la

y
e
d
 I
te

m
s

Avg. Delay (# of days)

Source Avg. Delay and Fraction of Delays in GDELT

(a) Average delay and fraction of delayed event mentions for the 20 largest
sources in GDELT. All sources get updated every day.

 0.01

 0.015

 0.02

 0.025

 0.03

1
/0

1

1
/0

3

1
/0

5

1
/0

7

1
/0

9

1
/1

1

1
/1

3

1
/1

5

1
/1

7

1
/1

9

1
/2

1

1
/2

3

1
/2

5

1
/2

7

C
o
v
e
ra

g
e

Date

Coverage Timelines for US in GDELT

Set 1: 4 Srcs Set 2: 5 Srcs

(b) Coverage evolution for two sets of sources for GDELT corresponding to
events in the US.

Figure 1.4: Characteristics of dynamic data sources in GDELT.

9

1.2 Dissertation Overview and Contributions

Given the challenges described above, the primary goal of this dissertation is to develop

the techniques and algorithms needed to realize a quality-aware data source manage-

ment (QDSM) system that automatically assesses the quality of data sources and not only

allows users to discover sources relevant to their applications, but also enables them to

discover the most valuable sources for integration. That is, sources that maximize the

user’s utility extracted by the integrated data at the minimum cost. We propose a QDSM

system that follows the architecture shown in Figure 1.52. The techniques summarized

below serve as building blocks to this architecture. The main components of the proposed

architecture are (i) a source analysis engine, and (ii) a source exploration engine. The

source analysis engine analyzes the content of data sources and computes their quality

through a collective analysis process. It then constructs an index over the quality profiles

of the sources while taking into account the domain covered by each source.

The source exploration engine serves user integration tasks and enables users to

efficiently identify the most valuable sources for integration. User integration tasks corre-

spond to a free-text description of the data domain the user is interested in, accompanied

by a desired budget either on the number of sources to be integrated or the amount of

money the user can afford for acquiring data. Considering the business listings scenario,

an example user integration task would correspond to finding sources that report “Hotels

in Maryland” given a constraint that “up to 20 sources” should be used. Given such a task

a QDSM system needs to first detect which sources provide listings relevant to “Hotels in
2This architecture was first presented in Rekatsinas et al., Finding Quality in Quantity: The Challenge

of Discovering Valuable Sources for Integration, CIDR 2015

10

Frontend

Integration Task Builder

Solution Exploration
Specify

Integration
Task

View and
interact with

visualizations

User

Source Exporation Engine

Integration Task Parser

Source Analysis Engine

Content Analysis Quality Analysis

Task Optimizer

Source
Selection

Exploration
Module

Solution
Comparator

Raw Source Data Repository

Content - Quality Index

Figure 1.5: Quality-Aware Data Source Management System architecture.

Maryland” and then identify subsets of up to 20 sources maximize either the coverage or

the accuracy for the corresponding listings if integrated together.

The main part of the dissertation focuses on the main techniques required to realize

the aforementioned QDSM architecture. Subsequently, these techniques are used to de-

sign practical systems and develop to real-world applications, which are also described in

the dissertation. The main parts of the dissertation, as well as the associated chapters and

published papers, are summarized below.

1.2.1 Reasoning About the Content and Quality of Data Sources

In Chapter 3, we describe the techniques and algorithms used by the source analysis

engine of the QDSM architecture to analyze the content and to compute the quality of

data sources. We present a formalization for characterizing the content of sources. We

consider sources that provide both structured and unstructured data. We focus on dynamic

data sources and define a range of quality metrics for characterizing their content.

11

More precisely, for sources providing structured data, we define the coverage, fresh-

ness and accuracy of a dynamic source and also study the structural properties of these

quality metrics (e.g., we show that coverage exhibits submodular structure). We also in-

troduce a collection of statistical models that capture the change patterns of each source as

well as the overall data domain and allow us to estimate the quality of sources for future

time points. Our models for describing the update patters for the overall data domain build

upon well-known parametric approaches, such as Poisson processes. On the other hand,

our models for describing the change patterns of sources are based on non-parametric

empirical models. This provides us with the necessary flexibility to learn update models

for highly heterogeneous sources.

To analyze the content of sources that provide unstructured data, we introduce a

novel temporal statistical model that allows one to discover the abstract topics that occur

in the data entries of the sources. This model not only allows us to identify the domain

covered by each source but also enables us to find change patterns in the overall data

domain. We also show how one can use this model to estimate the coverage of data

sources with unstructured data entries for future time points.

We evaluate the effectiveness of the aforementioned models using a collection of

diverse real-world datasets. As shown in Section 3.7, our models are capable of detecting

and estimating data change patterns and source-quality changes with very small relative

errors. This work is presented in a series of papers [137, 138, 136].

The proposed models introduced in the beginning of Chapter 3 assume that all

sources provide data from a focused and not fully diverse data domain. This is a fairly

strong condition that prevents the proposed approaches from being used in a holistic ap-

12

proach supporting arbitrary domains with highly heterogeneous sources. An example of

such a domain is that of news media. If we treat a news portal as a source, it is easy

to see that different portals cover significantly different domains. For example, “ESPN”

focuses on sports mostly in the United States, while “Eurosport” covers sports in Europe

and “Techcrunch” focuses on technology news world-wide. Notice that even for sources

with similar topics, e.g., “ESPN” and “Euorsport”, the actual sports and real-world en-

tities prevalent in each portal can be different. For example, “ESPN” provides data for

NFL, NBA and college sports in the US while “Eurosport” provides entries on Cycling,

Wintersports, Formula One, etc.

To address this limitation, we introduce a novel multi-level source quality index

that enables us to effectively categorize the content and quality profiles of diverse data

sources. We refer to this index as a correspondence graph. The correspondence graph

extends traditional structured constructs such as ontologies or knowledge bases [68], used

to store and organize complex relationships across diverse real-world entities, concepts

and entity types. This index is introduced in [136] and is a core part of a prototype QDSM

system we describe in Section 7.1 and demonstrate in [133].

1.2.2 Enriching Structured Domain Indexes

While the correspondence graph is effective in organizing diverse data sources, many

times the structured indexes it builds upon (i.e., an ontology or a knowledge base) follow

a closed-world assumption. In other words, their scope is limited to the entries and con-

cepts already present in them. Moreover, such indexes usually focus on “head” data, i.e.,

13

popular entities and concepts. However, focusing exclusively on head data leaves behind

a considerable volume of “tail” data about less popular entities, non-current (historical)

facts and so on. Typically, the closed-world assumption can be relaxed by leveraging

the paradigm of crowdsourcing, i.e., using a crowd of people, usually online and with a

monetary cost, to fulfill a collection of small human-intelligence tasks (HITS).

In Chapter 4, we show how one can use the paradigm of crowdsourcing to enrich

such domains, thus relaxing the closed world assumption. More precisely, we show how

one can use the crowd to enrich structured domains effectively by asking crowd workers

to enumerate (i.e., extract) entities that belong to different parts of the domain. Never-

theless, worker answers tend to exhibit significant overlaps when reporting entities from

a domain and tend to focus only on the popular entities. Therefore, asking humans to

extract entities repeatedly may only incur a large monetary cost without increasing the

total number of extracted entities significantly. To address this limitation, we develop

a new adaptive crowd-querying policy that maximizes the total number of extracted en-

tities by crowd-workers while operating under a monetary budget. At a high-level, our

querying policy exploits the structure of the underlying data domain to diversify the entity

extraction queries (e.g., asks workers to enumerate different types of entities), and thus

maximizes the number of extracted entities by issuing queries for different subparts of the

data domain.

To design this adaptive querying policy, we develop new statistical tools that allow

us to reason about the gain of issuing additional queries and focus on the problem of bud-

geted entity extraction where we seek to maximize the number of extracted entities given

a monetary and latency budget. In Section 4.5, we present an empirical evaluation of our

14

proposed algorithms on both real-world and synthetic datasets, demonstrating a yield of

up to 4X over competing approaches for the same budget. Finally, data sources them-

selves can be viewed as entities, hence, the proposed techniques can be used to identify

new data sources in domains where only a limited number of sources is available. For

example, we can ask the crowd to provide us with data sources on “Mongolian Philos-

ophy” for which only limited information is provided by OpenLibray.org. This work is

described in [135].

1.2.3 Selecting Valuable Data Sources for Integration

In Chapter 5, we design algorithms for finding sets of sources that maximize the user

utility of the final integration result at the minimum cost. For instance, given the content

and quality profiles of the available sources, if a user is interested in retrieving business

listings for “Lawyers in Maryland” we want to detect which sources, if integrated to-

gether, will maximize the coverage of business listings for “Lawyers in Maryland” at the

minimum monetary cost. In Chapter 5, we show how the utility of integrated data can

be defined as a function of the overall quality of the integration result, using the quality

metrics introduced in Chapter 3. To estimate the quality of integrated data, we assume

an integration scheme across sources that follows the union semantics. For example, con-

sider integrating two sources at a time point t and a restaurant listing that is mentioned in

the first one but was never mentioned in the second. In this case, the restaurant entry will

be present in the integration result of the two sources. On the other hand, if the listing

was present in the second source for a time point prior to t but deleted by time t then this

15

entry will not be present in the integration result. This integration scheme is used in many

practical applications to form the integration result [76, 151]. The latter corresponds to

computing the OR-probability that a desired data entry will be reported by at least one

source in the selected sets of sources.

Following these semantics, we study this problem of source selection for dynamic

sources and introduce rigorous formalizations of the problem for various setups. More

specifically, we study the scenarios where users can choose to acquire all data (including

all updates) provided by a dynamic source or partial data either by acquiring specific time

snapshots of the source or data for a subset of the domain of the source. We show that all

these problem variations are NP-complete.

For sources that get updated independently (Chapter 5), we propose an efficient

local-search algorithm with rigorous theoretical guarantees on the quality of the retrieved

solution. The effectiveness and scalability of our proposed algorithm is evaluated on two

large-scale real-world datasets in Section 5.4. This work is presented in [137].

When source updates exhibit dependencies, computing the OR-probability that a

desired data entry will be reported by a set of sources is challenging due to the underlying

dependency structure. In Chapter 6, we present an framework for efficiently estimating

the probability of generic boolean formulas under the presence of variable dependencies.

During an offline phase, our algorithm compiles the dependencies into an efficient data

structure that is used afterwards to evaluate the probabilities of boolean formulas. We

evaluate the performance of our techniques in Section 6.6 and show speed-ups of at least

one order of magnitude compared to baselines. This work is described in [134].

16

1.2.4 Data Source Management Applications

In this part of the dissertation (Chapter 7), we design a quality-aware data source man-

agement system and introduce applications that use the source management techniques

described in previous chapters as building blocks, thereby demonstrating their utility. We

study the following applications:

SOURCESIGHT (Section 7.1). Here, our goal is to design a quality-aware data source

management system using the source management techniques reviewed above. This sys-

tem, called SOURCESIGHT, enables efficient and effective source selection over large

heterogeneous data domains [133] and allows users to not only explore and identify the

most valuable sources for their integration tasks but also understand the quality and cost

trade-off between different integration options. SOURCESIGHT introduces a collection

of visualizations that allow users to interactively perform source selection and evaluate

the integration solutions recommended by the system. We evaluate the system on diverse

news data sources reporting real-world events and extend the quality metrics described in

Chapter 3 to consider the position bias of news sources.

SOURCESEER (Section 7.2). Here, our goal is to improve the forecasting of rare disease

outbreaks, such as Hantavirus outbreaks, when analyzing news reports obtained from

diverse news portals. News portals in this correspond to data sources. We apply our tech-

niques described in Chapter 3 to identify the different quality characteristics and exploit

that to obtain more accurate forecasts. Our techniques, described in detail in Section 7.2

and introduced in [138], improve the quality of rare-disease forecasting significantly com-

17

pared to source-agnostic baselines. We evaluate them on forecasting Hantavirus outbreaks

in Latin America using real data from thousands of different data sources. We show that

our techniques can not only forecast outbreaks in a more timely manner but can also fore-

cast outbreaks at a finer spatial granularity, i.e., at the state level and not country level as

baseline techniques do.

18

Chapter 2: Background

This chapter serves as a primer on data integration and data source management as re-

lated to this dissertation. First, we review techniques developed to minimize the effort in

integrating data from multiple data sources into a single repository. Then, we focus on

approaches for managing the content of large numbers of heterogeneous data sources and

techniques for reasoning about their quality and integration costs.

2.1 Data Integration

Combining heterogeneous data sources has been a longstanding problem in the data man-

agement literature [97]. Traditionally, data integration was studied in the context of data

warehouses where multiple heterogeneous data sources (or databases) are combined into

a repository under a single schema so that data becomes compatible with each other [74].

Later, data integration research expanded to addressing the problems in providing a uni-

fied query interface to access real-time data over a mediated schema [97], which allows

information to be retrieved directly from the original data sources. This approach relies

on mappings between the mediated schema and the schema of the original sources, and

transforming a user query into specialized queries to match the schema of the original

databases. Such mappings can be divided mainly in three classes [40]: (i) Global-as-

19

View (GAV) mappings, where the mediated schema is defined as a set of views over the

data sources, (ii) Local-as-View (LAV) mappings, where data sources are described as

views over the mediated schema, and (iii) Global-and-Local-as-View (GLAV) mappings

that correspond to a combination of the two aforementioned approached. In general, data

integration systems require semantic integration before any services can be provided.

Hence, the data integration system needs to know the precise relationships between the

terms used in each data source schema and the mediated schema.

The schema mapping classes described above assume that whenever an expres-

sion in the mapping requires combining tuples from different sources, the corresponding

columns will have comparable values. In practice, sources not only exhibit structure het-

erogeneity but may also differ considerably in how they represent values and objects in

the world. These differences are referred to as data-level heterogeneity. Data level hetero-

geneity can be classified in broadly two classes: (i) differences of scale that occur when

there is some mathematical transformation between the values in one source and the other

(e.g., product prices in USD versus EUR) and (ii) multiple references to the same entity

that occur when there are multiple ways of referring to the same object in the real-world

(e.g., USA vs United States).

Scale differences are usually reconciled by adding transformation functions to the

schema mapping rules; many tools including Oracle XSL Mapper, MS Excel or the more

recent Data Wrangler [87] allow the user to manually specify such functions. On the other

hand, the problem of automatic reference reconciliation is significantly more challenging.

In fact, it has had a long history and has been studied under many different names in-

cluding record linkage, entity resolution, duplicate matching and many others. The early

20

works on record linkage originated in the statistics community. In 1959, Newcombe et

al. [111] introduced the record linkage problem and suggested many matching ideas: use

of Soundex to handle spelling errors, blocking to reduce the number of tuple comparisons,

multiple blocking rules to increase the number of matches found, and estimating match

probabilities using independence assumptions. In 1969 Fellegi and Sunter [53] proposed

an influential theory model for record linkage and later Winkler et al. [169, 170] extended

the Fellegi-Sunter model in substantial ways to capture additional domain knowledge.

Later, the problem of record linkage received increasing attention in the database, data

mining and AI communities where a multitude of different approaches and models were

introduced. We refer the reader to Getoor and Machanavajjhala [60] and Doan et al. [39]

for details on a variety of record linkage techniques.

2.2 Data Source Management

All data integration approaches described thus far require a human to put a considerable

amount of effort in setting up the data integration system. However, in many applications

putting this effort may not be practical or even possible. For example, schema mappings

may not exist, either because it is hard to create them, or because it is even impossible to

generate precise mappings. To overcome this shortcoming, later work on data integration

introduced the concept of dataspaces [70]. Dataspaces aim to reduce the effort required to

set up a data integration system by shifting the emphasis to a data co-existence approach

providing base functionalities over all data sources, regardless of how integrated they are.

For example, a dataspace support platform (DSSP) can provide keyword search over all its

21

Gene-to-Experiment

t1

gene id

Gene Information

Publications

Publication-to-

Experiment

name ... gene id exp_id exp_id pub_id

pub_id authors... title

Experiments

exp_id specs

CG10954
Actin-related

protein 2

Figure 2.1: A data graph for a set of relations in a biology domain. Nodes can rep-
resent relations (rounded rectangles), attribute labels(ellipses), tuples(t1), and attribute
values(rectangles). Edges represent membership links and foreign key relationships.

data sources. In general, given a query, a dataspace support platform generates best-effort

approximate answers from data sources where perfect mappings may not exist. When

a large number of operations (e.g., answering relational queries, data mining, etc.) over

certain sources are detected, it guides users to integrate those sources.

Keyword search has been recently adopted by many data integration systems to en-

able non-expert users to pose ad hoc queries over structured, integrated data. An overview

of the work in keyword search over databases was recently published by Yu, Lu and

Chang [172]. Keyword search in data integration systems is more complex than in a typ-

ical information retrieval system or search engine as it does not merely match against a

single document or object. Intuitively, the set of keywords describes a set of concepts in

which the user is interested. Given this set, the data integration system is tasked with the

job of finding a way of relating the data source content to these concepts, e.g., through

performing multiple joins.

22

The general approach to answering keyword queries over structured data sources

is to represent a collection of structured databases as a data graph relating data and/or

metadata items. Nodes in a data graph represent attribute values and potentially meta-

data items such as attribute labels or relations. Directed edges represent conceptual links

between the nodes, where the links in a traditional DBMS include foreign key, contain-

ment and “instance-of” relationships. An example of a data graph is shown in Figure 2.1.

The graph includes schema components from a biology setting with five tables (focusing

on genes, experiments and publications), indicated as rounded rectangles. The attribute

labels for each table are shown as ellipses and member tuples as rectangles. Edges in-

clude foreign keys and membership relationships. Such a graph typically corresponds to

a logical construct used for defining the semantics of query answering and for efficiency

reasons it is generally computed lazily. Finally, data graphs are commonly associated

with node-level and edge-level weights. Node weights usually represent authoritative-

ness, reliability, accuracy, or trustworthiness. Node weights are generally assigned using

one of the following approaches: (i) link-based analysis similar to PageRank, (ii) vot-

ing or expert rating, where an expert assigns scores to nodes, and (iii) query answer based

feedback, where the system takes feedback on the quality of specific query results to learn

the authoritativeness of nodes. Edge weights are assigned based on known relationships

such as integrity constraints (e.g., foreign keys) or compatibility across data values.

Queries correspond to a set of keyword terms. Given these terms and a data graph,

a keyword search system will match each keyword against the nodes in the graph and

compute a similarity score or weight. After these matches are formed, the actual query

processing computation finds a set of trees from the data graph - with keyword nodes as

23

leaf nodes - and returns the top-scoring trees. Several techniques have been proposed to

compute tree-scores and all of them are based on summing the weights of paths (con-

sidering both node and edge weights) within candidate trees [13, 86, 89]. Once the tree

scores are computed, a variety of top-k query processing algorithms can be used to re-

trieve the k most relevant answers. These include Fagin’s threshold algorithm [51] and

other algorithms for performing joins in a ranked model [55, 66, 80].

The approaches described thus far focus mainly on enabling users to discover sources

that are of interest to them and facilitate the actual integration. Recent work [47], showed

how, given a fixed data domain, the benefit of integration can be quantified using rigor-

ous data quality metrics, and introduced the paradigm of source selection that focuses on

characterizing the marginal benefit of integrating a new source. Finally, Kruse et al. [142]

proposed a collection of techniques for characterizing the cost of integration via reasoning

about the effort required to perform schema matching, data cleaning and data transforma-

tion when integrating multiple sources; however, these techniques do not reason about the

actual benefit of integrating multiple sources.

2.3 Knowledge Bases and Uncertain Data

Reasoning about the content of sources via a data graph is feasible when the structure

of sources is relatively simple. However, in most cases, data sources and their contents

lend themselves to rather complex modeling. Determining the relationships between data

sources, or between a data source and a mediated schema, often requires subtle reason-

ing. For these reasons researchers have considered applying knowledge representation

24

techniques to data integration. Knowledge representation systems, such as ontologies

and knowledge bases, act as information repositories that provide a means for complex

structured or unstructured information to be collected, organized, shared, searched and

utilized. A knowledge base can be viewed as a collection of facts that describe infor-

mation about entities and their properties, and concepts that describe information about

the entity types and their properties. Moreover, a knowledge base can be represented as

a graph where entities, facts and concepts correspond to nodes, while edges determine

the relationships among entities, facts and concepts. Knowledge bases are often asso-

ciated with description logics, i.e., formal knowledge representation languages [98] and

have been an important component of many artificial intelligence applications, such as

planners, robots, natural language processors, and game-playing systems.

Catarci and Lenzerini [22] were the first to articulate how description logics can

be used to model data sources, and reason about the relationships between them. They

proposed a structured representation language that allows one to express semantic inter-

dependencies between different database schemas and presented a method for reasoning

over such interdependencies. More recent work explored how, given an existing knowl-

edge base, one can reason about the content of different data sources by matching the con-

tent of source entries and any attributes accompanying them to the content of a knowledge

base [101, 160, 37, 153, 20]. Finally, a different line of work has explored the semantic

integration of knowledge bases using automated data matching and schema matching

techniques [42, 114, 72].

Recently, we have witnessed a proliferation of large-scale knowledge base sys-

tems, including Wikipedia, Freebase, YAGO [154], DBpedia [7] and Google’s Knowl-

25

edge Graph. However, most of these systems are curated by humans, and thus, have

limited scopes with respect to the entities and facts they cover. To increase the scale of

knowledge bases even further, recent work has focused on automated methods for con-

structing knowledge bases [21, 113, 161, 43, 128] that usually store millions of facts about

the world, such as information about people, places and other real-world entities.

Most of the automated knowledge base construction approaches focus on compiling

knowledge bases out of text-based extractions. During this compilation process multiple

extractions are joined to form the facts stored in the knowledge base. Text-based ex-

tractions are usually uncertain and associated with an accuracy value characterizing the

extractor’s confidence on the result [44]. The field of uncertain data management and the

paradigm of probabilistic databases [155] was introduced to enable the efficient manage-

ment and querying of uncertain data.

In a probabilistic database, each tuple is associated with a probability ∈ (0, 1], with

0 representing that the tuple is not present in the database, and 1 representing that the tuple

is certainly present in the database. Also, each attribute is associated with a probability

distribution over the potential values it may obtain. A probabilistic database could exist

in multiple states referred to as possible worlds. For example, if we are uncertain about

the correctness of a tuple then the database could be in two different states with respect to

that tuple - in the first state the tuple is correct and thus contained in the database, while

the second one does not. Recent work has shown how probabilistic reasoning techniques

that were used to enable efficient query processing in probabilistic databases can also be

used to construct knowledge bases out of uncertain data [112, 161, 48, 159].

26

Chapter 3: Analyzing the Content and Quality of Data Sources

In this chapter, we develop algorithms and techniques for analyzing the content of data

sources and computing their quality. We focus on dynamic data sources and consider

sources that provide either structured or unstructured data entries. This chapter, being

our first technical chapter, will also formalize the data source management scenarios we

focus on throughout the dissertation. In Section 3.1, we describe the setting we consider,

and in Section 3.2, we formalize the notion of dynamic sources, and define the content

of a source as well as the notion of a data domain. Subsequently, in Sections 3.3 and

3.4, we introduce a collection of statistical models describing the changes in data sources

and the underlying data domain, and in Section 3.5 we use these models to define a

range of quality metrics and provide efficient estimators for those. In Section 3.6, we

introduce a novel index that allows a quality-aware data source management system to

effectively organize the quality profiles of data sources for largely heterogeneous data

domains. Finally, in Section 3.7, we present an experimental evaluation of the techniques

described in this chapter, and in Section 3.8 we discuss related work.

27

3.1 Introduction

We consider a setting where we have access to the content of a set of sources provid-

ing data entries from a data domain (also referred to as the world), but, we assume no

ground-truth information is available about the content of that data domain. Under this

assumption, the data domain corresponds to a latent universe and data sources provide

their own, often partial, view of the universe. For example, if we consider the business

listings scenario described in Chapter 1, sources may correspond to listing providers, such

as Yelp, Yellow Pages, Foursquare, etc. While we can obtain information about the busi-

nesses listed in these sources, we assume that we do not have the means to verify the

actual information (e.g., phone number or open hours) provided for each listing. The

latter assumption applies in most real-world scenarios as obtaining ground-truth informa-

tion is a strenuous and labor-intensive task. Furthermore, for the most part, we follow a

closed-world assumption, considering that the world only contains information provided

by at least one of the available sources.

In the aforementioned setup, the only available information is the content of sources.

Our goal is to collectively analyze the source content to obtain information about the true

state of the underlying data domain. Once we have this information, we can compute the

quality of each source by comparing its individual content with the true content of the

data domain. For example, consider the three sources shown in Figure 3.1 providing list-

ings of fast food restaurants. If we integrate them, we get that the underlying data domain

contains four entries. We can now compute the coverage of each source by comparing

the integration result with each of the sources.

28

Source 1

(240)-582-0015
Chipotle

Mexican Grill
7332 Baltimore Ave,

College Park, MD, 20740

DP Dough
8145 Baltimore Ave,

College Park, MD, 20740
(301)-614-9663

Potbelly
Sandwich Shop

7422 Baltimore Ave,
College Park, MD, 20740

(301)-209-0635

Source 2

8145 Baltimore Ave,
College Park, MD, 20740

7422 Baltimore Ave,
College Park, MD, 20740

Potbelly
Sandwich Shop

Five Guys

Source 3

8145 Baltimore Ave,
College Park, MD, 20740

3017793003Five Guys

2405820015

3016149663

7332 Baltimore Ave,
College Park, MD, 20740

8145 Baltimore Ave,
College Park, MD, 20740

DP Dough

Chipotle
Mexican Grill

7422 Baltimore Ave,
College Park, MD, 20740

3012090635
Potbelly

Sandwich Shop

8145 Baltimore Ave,
College Park, MD, 20740

3017793003Five Guys

2405820015

3016149663

7332 Baltimore Ave,
College Park, MD, 20740

8145 Baltimore Ave,
College Park, MD, 20740

DP Dough

Chipotle
Mexican Grill

Overall Data Domain

Source 1 Coverage = 0.75

Source 2 Coverage = 0.5

Source 3 Coverage = 0.75

Analyze

Collectively

(Record Linkage)

Compare Sources

with Data Domain

Figure 3.1: An example of collectively analyzing sources to identify their coverage.

To determine the actual state of the underlying data domain, we need to identify

matching entries across data sources. When sources provide structured data entries, we

need to identify entries that refer to the same real-world entities. This is equivalent to

performing record linkage across sources, and, as discussed in Section 2.1 there has been

a great amount of work on this problem. Solving this problem is not the focus of this dis-

sertation but when record linkage is required by our techniques, we use existing method-

ologies described in the literature. Thus, we only provide the appropriate references for

the techniques used and do not discuss them in detail.

In many cases, sources may provide only unstructured data. Thus, record linkage

techniques are not applicable. To determine the actual state of the underlying data domain

in the presence of unstructured data, we introduce a novel topic modeling framework that

allows us to reason about the content of sources and identify the latent abstract “topics”

present in the underlying data domain.

29

Finally, the main focus of this dissertation is on dynamic data sources, i.e., sources

whose content changes over time. As described in Section 1.1, the quality of dynamic

data sources can change over time. To reason about the quality changes of sources, we

need to detect the content change patterns of each data source, and also detect the change

patterns of the underlying data domain. For instance, consider a source that provides

business listings for a state and updates its catalog only once per year. If new businesses

open every month due to economic development, it is easy to see that the coverage of this

source will keep deteriorating as time passes due to the changes in the real world.

At this point the reader may ask herself whether obtaining information about the

underlying data domain by collectively analyzing the available sources is equivalent to

performing the full integration across all sources. While we need to actually integrate

data across the available sources, for such collective analysis, it suffices to do so on small

samples of the sources as we discuss later in this chapter. Thus, we avoid paying the cost

of full integration across all sources.

3.2 Preliminaries

We consider a data domain D characterized by a set of discrete-valued attributes AD. We

also assume a fixed set of data sources S̄ providing objects fromD. In the remainder of the

dissertation we use the terms data domain and world interchangeably for convenience. A

closed domain [97] assumption is followed, stating that the data domain D contains only

objects stored in the sources in S̄.

30

The data domain D changes dynamically over time, i.e., new entries may appear,

or disappear or, in the case of structured data, the values of existing entries may change

over time. Dynamic sources update their content by capturing changes that occur in the

underlying data domain.

Definition 1. A data source S is dynamic when it updates its content with a frequency fS ,

reporting entry appearances, disappearances and value changes from a data domain D.

Given that we consider dynamic sources, we assume knowledge of a collection of

historical snapshots for sources in S̄ over a past time window T ending at time t0. For

structured domains, entries in the snapshots correspond to tuples with attributes obtained

from a superset ofAD. For unstructured domains, entries correspond to elemental units of

information, e.g., words or articles from a newspaper, associated with structured metadata

following the schema defined by AD.

The following assumptions are made in the remainder of this chapter:

• For both structured and unstructured data, non-numeric attributes in AD and their

values are obtained from a known dictionary VAD
.

• The majority of inaccuracies in data sources occur due to sources being ineffective at

capturing changes from the world and not erroneous insertions. As demonstrated in

Section 3.7, this assumption holds in several real-world domains including business

listings, news articles and health-related news listings, since stale data and source

delays dominate the mistakes.

• At any time point the entries in the world can be fully determined using an integration

scheme across sources that follows the union semantics. For example, consider inte-

31

grating two sources at a time point t and a restaurant listing that is mentioned in the

first one but was never mentioned in the second. In this case, the restaurant entry will

be present in the integration result of the two sources. On the other hand if the listing

was present in the second source for a time point prior to t but deleted by time t then

this entry will not be present in the integration result. This integration scheme is used

in many practical applications to form the integration result [76, 151].

• When sources provide structured entries, the changes in the underlying domain are

assumed to follow a Poisson random process; the lifespan of an entry and the time

interval between consecutive updates are assumed to follow an exponential distribu-

tion. In Section 3.3.1, we show that both assumptions hold for two diverse real-world

domains. No such assumptions are made for the domain changes when sources pro-

vide unstructured data or the content changes of sources in either the structured or

unstructured case. For these, generic statistical models are used, based on empirical

distributions in the case of structured domains and auto-regressive techniques in the

case of unstructured domains, that are capable of capturing complex change patterns

that depend on the update frequency of each source.

• Finally, we require that sufficient historical data are available to learn the statistical

models described next. This assumption is well suited for highly dynamic sources as

more training points are available and hence more accurate models can be learned.

32

3.3 Modeling Changes in the Overall Data Domain

In this section we describe a collection of statistical models for learning the change pat-

terns of the underlying data domain from the available historical source snapshots over

the time window T . We focus first on domains where data sources provide structured data

entries and then discuss domains with unstructured entries.

3.3.1 Structured Data Entries

To extract the change patterns of the underlying data domain from source-based snap-

shots, we first need to integrate the available snapshots by solving the history integration

problem [46, 118]. Namely, we need to unify the streams of the sources into a single

stream describing the evolution of the world. We rely on the techniques proposed by

Dong et al. [46] and Pal et al. [118] for doing this. Once we have a stream containing the

changes in the underlying data domain, we can use the models described next to learn its

change patterns.

Recall that for a data domain D, the following assumptions are adopted: (a) entry

appearances, disappearances and value changes follow a Poisson random process; and (b)

the lifespan of an entry and the time interval for which it does not get updated follow an

exponential distribution.

Appearances: The number of entry appearances Ni(·) during the time interval (t, t + τ]

follows a Poisson distribution with intensity parameter λi:

Pr[(Ni(t+ τ)−Ni(t)) = k] =
e−λiτ (λiτ)k

k!
(3.1)

33

The parameter λi is approximated by its maximum likelihood estimate (MLE) cor-

responding to the average rate of data appearances in D. To compute this, the time win-

dow T is divided into intervals of fixed length, and the average occurrence rate of entry

appearances is calculated over these intervals. The starting point of the Poisson process

is extracted by calculating the total number of entries in the world by the end of T .

Disappearances: The lifespan of an entry follows an exponential distribution with rate

parameter γd, i.e., the probability that the lifespan of an entry is at most τ is Fd(τ) =

1 − e−γdτ . The parameter γd is approximated by its MLE which is equal to the inverse

of the average entry lifespan observed over the time window T . Due to the fixed length

of the historical time window the available data contains incomplete observations, that

is, there are entries for which only a lower bound of their lifespan is known but not their

exact lifespan since they did not disappear until the end of T . These observations are

called right censored and the MLE of γd for right censored data is given by:

γ−1
d =

total lifespan of entries
number of disappeared entries

(3.2)

According to the superposition property of Poisson processes [59], if the appearances of

entries occur based on a Poisson process and the lifespan of each entry follows an expo-

nential distribution, the disappearances of entries should also occur based on a Poisson

random process with an intensity rate λd. Given a time window (t, t+τ] and with |D|x de-

noting the total number of entries in the world at time x one has that λd = 1
τ

∑t+τ
x=t γd·|D|x.

The intensity parameter λd can be estimated by its MLE which corresponds to the average

rate of disappearances over the time window T .

34

0 20 40 60 80
0

0.1

0.2

Data Appearances

D
e

n
s
it
y

Distribution of data appearances

Obs. appearances

Poisson fit

(a) Fitting a Poisson distribution to the appear-
ances of data items per time point in BL.

0 200 400 600
0

0.2

0.4

0.6

0.8

C
u

m
.

p
ro

b
a

b
ili

ty

Lifespan

Data item lifespan

Lifespan

Exp. Fit

(b) Fitting an exponential distribution to the
lifespan of data items in BL.

Figure 3.2: Fitting change models for the business listing dataset (BL).

Value Updates: Assume that the interval between consecutive value changes of an entry

follows an exponential distribution with parameter γu. This parameter can be learned

similarly to entry disappearances. Moreover, one can easily show that value updates in

the world occur based on a Poisson random process with intensity parameter λu, following

the same steps presented above.

The models described above can be used to predict the content of the underlying

data domain at future time points.

Discussion: The aforementioned modeling is presented considering the entire data do-

main D for ease of exposition. However, these techniques are directly generalizable

to heterogeneous data domains where different subdomains D<i> ⊆ D exhibit differ-

ent change patterns, such as the business listing and GDELT domains presented in Sec-

tion 1.1. In the case of heterogeneous data domains, a collection of separate models for

different homogeneous data subdomains is required. This enables capturing non-uniform

change patterns commonly observed in real-world domains.

35

0 5 10 15
0

0.05

0.1

0.15

Data Appearances

D
e
n
s
it
y

Distribution of data appearances

Observed Insertions
Poisson fit

Figure 3.3: Fitting a Poisson distribution to data appearances for GDELT.

Figures 3.2(a) and 3.3 present evidence that both BL and GDELT (Section 1.1) fit

these assumptions. Studying the distribution of observed appearances per day for various

domain points in BL and GDELT, one observes that indeed the number of updates per day

follows a Poisson distribution. The figures show show the fitted and exact distribution for

a domain point in BL and GDELT respectively. For BL, Figure 3.2(b) shows the observed

and fitted lifespan of data entries for the same domain point as before. Indeed the lifespan

of entries follows an exponential distribution. The observed cumulative distribution for

the lifespan presents a peak after 600 days which corresponds to censored data. Similar

results were observed for all points in both domains.

3.3.2 Unstructured Data Entries

In this section, we focus on domains where sources provide unstructured data entries.

Sources are assumed to provide entries with textual information that are associated with a

time stamp and a structured metadata tuple following the schema defined by AD. For ex-

ample, such a data domain can correspond to news articles associated with a news paper,

a time stamp, and potentially additional metadata such as the location corresponding to

36

the article. Let VAD
denote the union of all attribute values for attributes in AD. We now

need to find the hidden topics that best summarize the entries in the data domain, their

temporal patterns and prominence with respect to the metadata tuple values in VAD
.

Following the closed-world assumption, we obtain information about the evolu-

tion of the underlying data domain by collectively analyzing the source snapshots. We

view each source s ∈ S̄ as an evolving document containing Ns entries corresponding

to <word,time stamp, attribute value> tuples. Since we may have multiple attributes

for each <word, time stamp> combination in a source, we have |AD| entries. Let

{1, 2, . . . , T} be the time points associated with the available snapshots and assume that

the words in the documents come from a vocabulary V . To deal with the topic and pattern

discovery problem, we introduce a temporal topic model that explicitly models time and

each of the metadata attribute value in VAD
jointly with the word co-occurrence patterns

over the entries of the data sources. The output of this model can be used to characterize

the evolution of the content of the world.

Two topic models that are related to the proposed approach are the basic Latent

Dirichlet Allocation (LDA) model [15] and the Author-Topic (AT) model [139]. LDA is

a Bayesian network that generates a document using a mixture of topics. In its genera-

tive process, for each document d, a multinomial distribution θd over topics is randomly

sampled from a Dirichlet with parameter α, and then to generate each word, a topic zdi is

chosen from this topic distribution, and a word, wdi, is generated by randomly sampling

from a topic-specific multinomial distribution φzdi . Rosen-Zvi et al. [139], extended the

basic LDA model by explicitly modeling author’s interests as a mixture of topics and used

author and topic specific distributions to model the generation of words.

37

Table 3.1: Notation used in this section.
Symbol Description

K Number of topics
S̄ Number of sources
AD Metadata attributes
VAD

Metadata attribute values
V Number of words
T Number of discrete time-points
Ns Number of entries in each source s
θv Topic multinomial distr. for value v ∈ VAD

φz Word multinomial distr. for topic z
ξz Time point multinomial distr. for topic z
zsi Topic of the ith entry from source s
vsi Metadata attribute value of the ith entry from source s
wsi Word of the ith entry from source s
tsi Time point of the ith entry from source s

S̄

Ns

VAD

θ

α

β

φ ξ

γ

K

w

v

t

z

K

Figure 3.4: Plate notation for the proposed topic model.

38

In the proposed temporal topic model, values from VAD
play a similar role to that of

authors in the AT model. Topic discovery is influenced not only by word co-occurrences,

but also temporal information and information associated with the values from VAD
. The

notation used in the section is summarized in Table 3.1, and the graphical model repre-

sentation of the model is shown in Figure 3.4. The model’s generative process for the

word and time point of each source entry is:

Topic model generative process

• Draw K multinomials φz ∼ Dir(β) for each topic z

• Draw K multinomials ξz ∼ Dir(γ) for each topic z

• Draw |AD| multinomials θv ∼ Dir(α) for each metadata value v ∈ VAD

• For each source s ∈ S̄ and entry i ∈ Ns with vsi:

– Draw a topic zsi from the multinomial θvsi

– Draw a word wsi from multinomial φzsi

– Draw a time-point tsi from multinomial ξzsi

Each source entry is associated with an attribute value vsi ∈ VAD
. Consider a dis-

tribution θvsi over topics that is randomly sampled from a Dirichlet with parameter α. To

generate each entry i ∈ Ns for source s, first, a topic zsi is chosen from the topic distri-

bution θvsi , and then, a word wsi and time-point tsi are generated by randomly sampling

from the topic-specific multinomial distributions φzsi and ξzsi . A fixed number of topics

39

K is assumed. We use a Gibbs sampling algorithm to perform approximate inference. Us-

ing a Dirichlet conjugate prior for the multinomial distributions allows to easily integrate

out θ, φ and ξ. To estimate the model parameters, we calculate the conditional probability

distribution Pr(zsi|w, t,v, z−si, α, β, γ) where z−si represents the topic assignments for

all entries in s except the i-th entry.

Pr(zsi|w, t,v, z−si;α, β, γ)

=
Pr(zsi, wsi, tsi|w−si, t−si,v, z−si;α, β, γ)

Pr(wsi, tsi|w−si, t−si,v, z−si;α, β, γ)

∝ n
k,−(s,i)
wsi + βwsi∑V
r=1 n

k,−(s,i)
r + βr

· m
k,−(s,i)
tsi + γtsi∑T

t=1m
k,−(s,i)
t + γt

· o
k,−(s,i)
vsi + αvsi∑

v∈VAD
o
k,−(s,i)
v + αa

(3.3)

where nzr denotes the number of times word r was associated with topic z across all

sources and entries, mz
t denotes the number of times time-point t was associated with

topic z across all sources, ozv denotes the number of times value v was associated with

topic z across all sources and their entries, and −si in the superscript indicates that the

current example has been excluded by the count summations. The derivation of the Gibbs

sampling algorithm is deferred to Section A.1. Once the sampler has converged, the

parameters of the multinomials θ, φ, and ξ are estimated as:

θv,z =
ozv + αv∑K
z=1 o

z
v + αv

φz,w =
nzw + βw∑V
r=1 n

z
w + βw

(3.4)

ξz,t =
mz
t + γt∑T

t=1m
z
t + γt

40

Each entry in D is assigned a hidden topic z according to Equation 3.3, and update the

appropriate counts. After the sampling, the distributions θ, ξ and φ can be computed

using Equation 3.4.

The discovered topics together with the distributions ξt,z provide a concise descrip-

tion of the evolution of the underlying data domainD for the past time points {1, 2, . . . , T}.

The output of the topic model presented above can be used to predict the content of the

world at future time points. Consider a future time point Tf . Estimating the content of the

world at that time point requires estimating (a) the prominence of the different topics at

time Tf and (b) the expected word content of the world at time Tf for any value v ∈ VAD
.

Estimating the future prominence of a topic z ∈ {1, 2, . . . , K} is equivalent to estimating

the probability ξz,Tf . This can be done by using the values of distribution ξz correspond-

ing to past time points. In particular, we use an autoregressive model with lag p over the

values of topic z for p time points in the past giving:

ξz,Tf = c+

p∑
i=1

ai · ξz,Tf−i + ε (3.5)

where a1, a2,, ap are the regression coefficients, c is a constant and ε corresponds to

white noise. The word content of the world at future time points can be estimated as

follows. Let x̂w,v,Tf denote the future word count in the world at time Tf for a value

v ∈ VAD
. This is equal to:

x̂w,a,Tf = x̄w

K∑
z=1

θa,z · φz,w · ξz,Tf (3.6)

41

where x̄w denotes the average rate of occurrences of word w inD [107] over the available

historical time points, and φz,w, θv,z, and ξz,t, can be retrieved by the output of the topic

model and ξz,Tf is computed as in Equation 3.5.

3.4 Modeling Changes in Data Sources

In this section we provide a collection of statistical models for learning the change patterns

of data sources. To do so, we compare the changes in each source over time with the

changes in the unified stream corresponding to the underlying data domain. As before,

we distinguish between sources providing structured and unstructured data entries.

3.4.1 Structured Data Entries

The change patterns of a data source depend on its effectiveness in capturing changes from

the world. The effectiveness of a source S in capturing an entry appearance is defined as

the probability Gi(τ) that S will incorporate this entry appearance in its content in a

maximum of τ time units. Probabilities Gd and Gu are defined in a similar fashion for

entry disappearances and value changes.

These distributions can be learned using the available historical data. For ease of

exposition, we only present the learning procedure for Gi. The derivations of Gd and

Gu are similar. The distribution Gi is approximated by a Kaplan-Meier empirical distri-

bution [88] corresponding to the delay between the appearance of an entry in the world

and its insertion in a source S. Given the evolution of source S and the world over the

time-window T , one can extract two delay histograms characterizing the insertions in S:

42

(a) one corresponding to exact observations, that is, insertions of items that appeared in

the world and were also inserted in S before the end of the observed time window T ,

and (b) one corresponding to right-censored observation, that is, insertions of items that

appeared in the world during T but were not inserted in S until the end of T . These

two histograms are then combined to extract the empirical distribution Gi. For example,

consider the business listing domain. Figure 3.5 shows the two delay histograms corre-

sponding to exact and right-censored observations for a source in BL, together with the

learned effectiveness distribution Gi of the source.

The effectiveness distribution Gi assumes as input the duration of the time interval

t−tc between a time point t and the actual occurrence of an entry appearance tc. However,

data sources get updated with a fixed frequency, and hence, the time point t may not be

aligned with the latest update point of the source. The effectiveness distributions Gi, Gu

and Gd can be extended to account for the common case of fixed update frequencies of

the sources. Again, the discussion below focuses on Gi for ease of exposition. Given a

source S that gets updated with a frequency fS , define TS(t) to be a function that returns

the latest update time point of S until time t inclusive. In particular, define TS(t) as

TS(t) =
b(t−tS0)fSc

fS
+tS0 , where tS0 denotes the last time S was updated during the historical

time window T . Using this, the definition of Gi can be updated to:

Gi(t, tc) =


Gi(TS(t)− tc) if t ≥ TS(t) ≥ tc

0 otherwise
(3.7)

43

Figure 3.5: Exact and right censored insertion delay histograms with the effectiveness
distribution Gi for a source in BL.

Finally, the update frequency of a source S is computed: Consider that fS = 1
uS

,

where uS denotes the average update interval of S. Let MS = {t1, t2, . . . , tm} be the

timestamps of different content updates in S ordered by time, and let IS = {t2 − t1, t3 −

t2, . . . , tm − tm−1} be the set of observed time intervals for S. The parameter uS is

computed by taking the average over the elements of IS .

Given the effectiveness distributions Gi, Gu and Gd, we can now characterize the

content changes of a source as a function of the change patterns of the underlying data

domain. Recall that changes in the domain D correspond to appearances, disappearances

and value updates of entries. As a data source observes these changes it can perform one

of the three following operations: (i) insert newly appeared data entries to its content,

(ii) delete existing entries that disappeared from the world, and (iii) update the values of

existing entries that got updated in the world. To characterize the actual changes in the

content of a source we associate the three aforementioned operations with a probability

44

of success. We start with insertions. Let Pr(Ins(S, t, τ)) be the probability that a data

appearance at time τ in D is reflected in S by time t. This probability is defined as:

Pr(Ins(S, t, τ)) = GS
i (TS(t), τ) (3.8)

Next, we consider the deletions in S corresponding to disappeared items from D.

Let Pr(Del(S, t, τ)) be the probability that an entry disappearance in D at time τ is cap-

tured by F (SI) until time t. In order for source S to delete this entry, the entry must

already be present in S. As we discuss in Section 3.5, the probability of an entry being

mentioned in a source at a particular time point is equal to its coverage. Let Cov(S, τ)

denote the coverage of source S at time τ . We have that

Pr(Del(S, t, τ)) = Cov(S, τ)GS
d (TS(t), τ) (3.9)

Following a similar process, the probability of a value update being captured by S is:

Pr(Upd(S, t, τ)) = Cov(S, τ)GS
u(TS(t), τ) (3.10)

These source-specific probabilities can be combined with the evolution models for

the world to estimate the actual content of a source. However, we are not directly inter-

ested in the source’s content but rather its quality. We discuss how to use these models to

estimate the quality of arbitrary sets of sources in Section 3.5.

Discussion: Similarly to world changes, the above techniques are generalizable to sources

that exhibit varying effectiveness at capturing updates for different data subdomains. In

45

this case, a collection of separate models is required for the different homogeneous subdo-

mains to capture the complex change patterns commonly exhibited by real-world sources.

3.4.2 Unstructured Data Entries

Now we focus on sources providing unstructured data. To model the content changes for

such sources we reason about the relevance of a source’s content to the topics discovered

by the topic model introduced in Section 3.3.2. This problem is an instantiation of docu-

ment classification [152]. The relevance between the content of a source and a topic can

be instantiated using cosine similarity.

For each topic z ∈ K, the topic model outputs a distribution φz over all words V .

The occurrence rate x̄w for each word w ∈ V across all entries can be used to construct

an average representative document for each topic z ∈ Z, characterized by a vector Fz

that contains the expected occurrence frequency of each word w ∈ V given the topic. Let

the w-th entry of Fz corresponding to word w be defined as Fz[w] = x̄w · φz,w. Similarly,

given a source s, a metadata attribute value v and a time point t, the content of a source

is described with a word frequency vector Fs,v,t. Given the vectors Fz and Fs,v,t the

relevance of the content of source s for value v at time t to topic z can be defined as:

Relevance(s, z; v, t) = CosineSimilarity(Fs,v,t, Fz) (3.11)

where the cosine similarity of two vectors A and B is:

CosineSimilarity(A,B) = (A ·B)/(|A | |B |) (3.12)

46

However, since sources are dynamic, we need to estimate the content of each source

at future time points when it is not available. Therefore, given a source s, a value v and a

future time point Tf , one needs to estimate the entries of Fs,v,Tf considering the expected

frequency of each word in source s. Let F̂s,v,Tf [w] denote the expected frequency for word

w ∈ V when associated with the metadata value v in source s. To compute the expected

frequency F̂s,v,Tf [w], consider the conditional probability of source s mentioning word w

at a future time point Tf , denoted by Pr(Tf |s, w), the conditional probability of source s

publishing word w in an article related to the metadata value v, denoted by Pr(w|s, v),

and the probability of word w being generated by any topic z ∈ K, given the value v and

time point Tf . More precisely:

F̂s,v,Tf [w] = x̄w · Pr(Tf |s, w) · Pr(w|s, v) ·
∑
z∈K

φz,w · θv,z · ξz,Tf (3.13)

where x̄w denotes the average occurrence rate of word w over the past time points, and

φz,w, θv,z, and ξz,t, can be retrieved by the output of the topic model. Given the historical

data, the probability Pr(w|v, s) can be estimated by its maximum likelihood as:

Pr(w|s, v) =
nw,s,v∑
w∈V nw,s,v

(3.14)

where nw,s,v denotes the number of mentions of word w from source s associated with the

metadata value v. The probability ξz,Tf can be computed using the auto-regressive tech-

niques described in the previous section (Equation 3.5). Also the probability Pr(Tf |s, w)

corresponds to a future time point and needs to be estimated. According to the setup de-

47

scription presented above, the available historical data spans up to time point T . Thus,

the probability of the source mentioning a particular word w at a future time t can be

estimated considering the weighted average occurrence rate of word w in the source:

Pr(Tf |s, w) =

∑T
τ=1

1
Tf−τ

I(τ, s, w)∑T
τ=1

1
Tf−τ

(3.15)

where I(s, τ, w) is an indicator variable equal to one if source s mentioned word w at

least once at time τ , and zero otherwise. Eventually, the source-topic relevance for each

source, metadata attribute value and topic combination at future time points is computed

using the aforementioned techniques.

3.5 Quality of Integrated Data

We now provide time-dependent definitions of data quality metrics such as coverage,

freshness, and accuracy to characterize the data provided by a single source or by inte-

grating a set of sources. We mainly focus on sources providing structured data, but we

discuss how some of these metrics can be used for sources providing unstructured data.

Finally, we show how one can estimate these quality metrics for future time points using

the statistical models introduced in Sections 3.3 and 3.4.

3.5.1 Defining Quality

The entries in a source or the integration result at a time point t can be characterized

using three categories: (a) up-to-date, denoted by Up, corresponding to entries mentioned

in the source that also exist in the world and whose attribute values in the source are

48

in agreement with the world, (b) out-of-date, denoted by Out, corresponding to entries

mentioned in the source that are present in the world but whose latest value changes

are not captured by the source, and (c) non-deleted, denoted by NDel, corresponding to

entries mentioned by the source that have disappeared from the world. The quality of the

integration result can be defined using these categories.

Let SI be the selected set of sources to be integrated at time t, F an integration

model (e.g., majority voting), and F (SI) the integration result using model F . Coverage

of F (SI) at time t, denoted by Cov(F(SI), t), is defined as the probability that a random

entry from the world D at time t belongs to F (SI). This probability is expressed as:

Cov(F(SI), t) =
Up(F(SI), t) + Out(F(SI), t)

|D|t
(3.16)

where |D|t denotes the total entries in the world at time t.

A localized freshness measure for the integrated data at time t corresponds to the

probability that a randomly selected entry of F (SI) is up-to-date. This metric, referred to

as local freshness and denoted by LF, can be expressed as:

LF(F(SI), t) =
Up(F(SI), t)

|F(SI)|t
(3.17)

where |F (SI)|t denotes the total number of entries in the integration result at time t. The

coverage and local freshness are orthogonal, that is, a source with high-freshness does not

necessarily exhibit high coverage. Moreover, while the coverage is expected to increase

monotonically as more sources are integrated the same does not hold for freshness.

49

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40

C
o
v
e
ra

g
e

Source Index

Coverage for BL

 0.68

 0.681

 0.682

 0.683

 0.684

 0.685

 0.686

 0.687

 0 5 10 15 20 25 30 35 40

L
o
c
a
l
F

re
s
h
n
e
s
s

Source Index

Local Freshness for BL

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0 5 10 15 20 25 30 35 40

A
c
c
u
ra

c
y

Source Index

Accuracy for BL

Figure 3.6: (a) Coverage, (b) freshness, and (c) accuracy of integrated data for the BL sce-
nario introduced in Section 1.1; Sources processed in decreasing order of coverage.

50

Example 5. Consider the business listing scenario introduced in Section 1.1. We integrate

the available sources in decreasing order of coverage. Figure 3.6(a) shows the coverage

of the integration result. Local freshness is shown in Figure 3.6(b). While coverage

increases monotonically, local freshness decreases as more sources are integrated.

In many cases, one wishes to reason about coverage and local freshness collectively.

Coverage and local freshness are similar to recall and precision in information retrieval,

and hence, can be combined using an F-type measure. Thus, we define a measure of

accuracy of a source or the integration result as the match rate accuracy [110]. Defining

accuracy requires defining a global measure of freshness, namely global freshness, as

the probability that a randomly selected entry from Ω at time t belongs to F (SI) and its

reference is up-to-date:

GF(F(SI), t) =
Up(F(SI), t)

|D|t
(3.18)

Eventually, accuracy is defined as the percentage of correctly matched entries, cor-

responding to up-to-date entries in F (SI), to all entities in F (SI) together with entries

that are present in Ω and not mentioned in F (SI):

Acc(F(SI), t) =
Up(F(SI), t)

| F(SI) ∪ D |t
(3.19)

Using Equations 3.16, 3.17 and 3.18, accuracy can be computed by:

Acc(F(SI), t) =
GF(F(SI), t)

1− Cov(F(SI), t) + GF(F(SI),t)
LF(F(SI),t)

(3.20)

Figure 3.6(c) shows the accuracy corresponding to Example 5.

51

Unstructured Data Entries. When sources provide unstructured data entries, e.g., when

the sources are news portals and the entries correspond to news articles, it is not ap-

propriate to characterize entries as non-deleted or out-of-date. Therefore, our previous

quality definitions are not directly applicable. However, the topic relevance computation

presented in Section 3.4.2 is equivalent to the metric of coverage discussed above. In the

case of structured entries, coverage is defined as the probability that a random entry from a

source will be present in the world. Similarly, the source-topic relevance in Equation 3.11

corresponds to the probability that a source is covering a certain topic that is present in

the world. Therefore, the techniques introduced in Section 3.4.2, not only characterize the

change patterns of a source providing unstructured data but also characterize its quality

(i.e., coverage). Later, in Section 7.2, we discuss how these techniques can be used to

derive source quality metrics that are application specific.

3.5.2 Estimating Quality

Now, we discuss how coverage, freshness, and accuracy of the integration result for a set

of data sources SI can be estimated at a future time point t. The quality of the integration

result for SI is affected by the content changes of sources in SI . First, we extend the

techniques discussed in Section 3.4.1 to estimate the content changes in F (SI) and then

present how the different quality metrics can be estimated. We point out that this section

focuses on independent sources, i.e., sources that update their content independently. We

discuss source dependencies, e.g., sources copying from each other, in Chapter 6.

52

3.5.2.1 Content Changes Under Union Semantics

Given a set of sources SI one wants to estimate the content of integrated data F (SI) at

a future time point t. For this, one needs to characterize the content of F (SI), in terms

of up-to-date, out-of-date and non-deleted entries, at the end t0 of the available histori-

cal time window T and then examine how the content of F (SI) changes by estimating

how effectively the entry appearances, disappearances and value changes occurring in the

world up to time t � t0 are captured in F (SI).

To determine the content of F (SI) for a set SI at time t0, we consider the up-to-

date, out-of-date and non-deleted entries in each source S ∈ SI extracted by comparing

the content of S with the actual entries in the world. The set of up-to-date entries in

F (SI) is computed by taking the union of up-to-date entries across all sources in SI . The

set of out-of-date and non-deleted entries are extracted in a similar fashion. Conflicts

between entries that are up-to-date in one source and out-of-date in another are resolved

by considering only the reference with the most recent time-stamp.

Procedurally, we store three different signatures (bit arrays) for each source S ∈ S̄:

(a) a signature Bup
S for the up-to-date items, (b) a signature Bcov

S for the up-to-date and

out-of-date (i.e., the covered) items, and (c) a signature BS for all the items in the source.

All similar bit arrays have the same size across different sources. Using these signatures

the number of entries mentioned in F (SI) is |∨S∈SI
BS|, the number of up-to-date entries

is |∨S∈SI
Bup
S |, and the number of covered entries is |∨S∈SI

Bcov
S |.

To estimate the content changes in F (SI) at time t, the effectiveness of SI in cap-

turing changes in the world needs to be estimated. We follow a similar approach to that

53

described in Section 3.4.1 for a single source. We focus on insertions of new entries. Let

Pr(Ins(F (SI), t, τ)) be the probability that a data appearance at time τ was captured in

F (SI) by time t. Following the union semantics, this probability corresponds to the prob-

ability that at least one source in SI capturing the appearance of the new data item. Let

Ins(S, t, τ) be a boolean indicator variable taking the value true when a data appearance

at time τ was captured by source S until time t. The probability Pr(Ins(F (SI), t, τ)) is:

Pr(Ins(F (SI), t, τ)) = Pr(
∨
S∈SI

Ins(S, t, τ) = True) (3.21)

In the presence of arbitrary source correlations computing this equation is not efficient

as it corresponds to the inclusion-exclusion formula, thus, it may contain exponentially

many terms. However, when sources in SI are independent we have:

Pr(Ins(F (SI), t, τ)) =

(
1−

∏
S∈SI

(1− Pr(Ins(S, t, τ)))

)
(3.22)

=

(
1−

∏
S∈SI

(
1−GS

i (TS(t), τ)
))

We discuss how one can compute the probability of such boolean formulas evaluating to

true under the presence of source correlations in Chapter 6. For the remainder of this

chapter we focus on independent sources.

Next, consider deletions in F (SI) corresponding to disappeared items from the

world. Again, we adopt the union semantics of integration. Let Pr(Del(F (SI), t, τ))

be the probability that an entry disappearance at time τ was captured by F (SI) until

time t and Del(S, t, τ)) be the corresponding indicator variable for each source S ∈ SI .

54

This probability corresponds to the probability that at least one of the sources in SI that

mentioned this entry at time τ captured the disappearance event until time t. We consider

that sources are independent. According to Equation 3.16, the probability of an entry

being mentioned in a source at a particular time point is equal to its coverage.

Pr(Del(F (SI), t, τ)) = Pr(
∨
S∈SI

Del(s, t, τ) = True) (3.23)

= 1−
∏
S∈SI

(1− Cov(S, τ)GS
d(TS(t), τ))

Following a similar process, the probability of a value update getting captured is:

Pr(Upd(F (SI), t, τ)) = Pr(
∨
S∈SI

Upd(S, t, τ) = True) (3.24)

= 1−
∏
S∈SI

(1− Cov(S, τ)GS
u(TS(t), τ))

where Upd(S, t, τ)) is an indicator variable for a source S ∈ SI that is true if source S

captured an updated from the world at time τ by time t.

3.5.2.2 Quality Estimation at Future Time Points

We now describe how to estimate the coverage and freshness of the integrated data for a

future time point t � t0. Accuracy can be derived using Equation 3.20.

Coverage: Let E[|D|t] be the expected number of entries in the world at time t, E[Ins(F (SI), t)]

be the expected number of entries of newly appeared entries in the world that have not

been deleted until time t and were also insured inF (SI) up to time t, and E[OldCov(F (SI), t)]

55

the expected number of entries that were already covered by F (SI) at time t0 and have

not disappeared from the world until time t. The coverage is computed as follows:

Cov∗(F(SI), t) =
E[OldCov(F(SI), t)] + E[Ins(F(SI), t)]

E[|D|t]
(3.25)

To compute E[OldCov(F (SI), t)], consider the number of covered entries in F (SI) at t0,

i.e., the sum of up-to-date and out-of-date entries, and multiply that with the probability

of an entry not disappearing until time t. Using the memoryless property of the Poisson

process for data disappearances one obtains:

E[OldCov(F (SI), t)] = Cov(F(SI), t0) · |D|t0 · e−γd(t−t0) (3.26)

where Cov(F(SI), t0) and |D|t0 can be computed by the signatures and extracted statistics

described above. Since data appearances and disappearances occur based on a Poisson

process the quantity E[|D|t] is:

E[|D|t] = |D|t0 +
t∑

τ=t0

[λi − λd] (3.27)

One can compute E[Ins(F (SI), t)] using Equation 3.22 and the fact that data appear-

ances follow a Poisson random process and the entry lifespan is exponentially distributed:

E[Ins(F (SI), t)] =
t∑

τ=t0

λi · e−γd(t−τ) · Pr(Ins(F (SI), t, τ)) (3.28)

56

The coverage estimator corresponds to a non-decreasing submodular function. A

set function G : 2V → R mapping subsets A ⊆ V into the real numbers is submodu-

lar [52] if for all A ⊆ B ⊆ V , and v′ ∈ V \ B, it holds that G(A ∪ {v′}) − G(A) ≥

G(B ∪ {v′}) − G(B) (i.e., adding v′ to a set A increases G no less than adding v′ to a

superset B of A). Function G is nondecreasing, if for every A ⊆ B ⊆ V , it holds that

G(A) ≤ G(B).

Theorem 1 (Submodular Coverage). The coverage estimate Cov∗(·) for any set of inde-

pendent sources SI and time t is a non-decreasing submodular function.

Proof [Sketch] The coverage estimator (Equation 3.25) is a non-decreasing submodular

function as it is a non-negative linear combination of two monotonic submodular func-

tions. The first function referring to the coverage of F (SI) at time t0, can be shown to

be non-decreasing submodular as it is derived by the set union function. The second

function, corresponding to future time points, is also non-decreasing submodular as it is

derived from the probability inclusion exclusion formula for independent events. A de-

tailed proof is provided in Section A.2.

Freshness: Let E[Up(F(SI), t)] be the expected number of up-to-date entries in the inte-

gration F (SI) of SI at time t, E[|F (SI)|t] be the expected number of all entries in F (SI),

and E[|D|t] the expected number of entries in the world at time t. The local and global

freshness for SI are estimated as:

57

LF∗(F(SI), t) =
E[Up(F(SI), t)]

E[|F (SI)|t]
(3.29)

GF∗(F(SI), t) =
E[Up(F(SI), t)]

E[|D|t]
(3.30)

First, consider E[|F (SI)|t]. To compute this quantity, the number of newly inserted and

newly deleted entries in F (SI) until time t needs to be estimated. Let |F (SI)|t0 be the

number of entries in F (SI) at t0 computed by the signatures in Section 3.5.2.1:

E[|F (SI)|t] = |F (SI)|t0 + E[Ins(F (SI), t)]− E[Del(F (SI), t)] (3.31)

where E[Ins(F (SI), t)] is as in Equation 3.28 and E[Del(F (SI), t)] denotes the expected

number of deleted items from F (SI). To compute the expected number of deleted items

multiply the average number of data disappearances per time unit λd given by the Poisson

occurrence of data disappearances with the probability that an entry disappearance was

captured by the sources in SI . The probability Pr(Del(F (SI), t, τ)) is as in Equation 3.23:

E[Del(F (SI), t)] =
t∑

τ=t0

λd · Pr(Del, F (SI), t, τ)) (3.32)

The expected up-to-date items E[Up(F(SI), t)] can be expressed as the summation

of three quantities:

• E[OldUp]: the expected up-to-date entries already present inF (SI) that did not change

in the world until time t.

58

• E[InsUp]: the expected newly inserted entries in F (SI) that appeared in the world

during [t0, t] and their values were not updated until t.

• E[ExUp]: the expected entries that were present in both F (SI) and the world, their

latest update was captured in F (SI), and have not disappeared from the world by t.

Eventually, E[Up(F(SI), t)] = E[OldUp] + E[InsUp] + E[ExUp].

To compute the three aforementioned quantities one first needs to compute the prob-

ability of an entry not disappearing until t, denoted by Pr(In D at t) and the probability

of none of its values getting updated during [t0, t], denoted by Pr(Not Upd., t). Since the

lifespan and update intervals follow exponential distributions, Pr(In D at t) = e−γd(t−t0)

and Pr(Not Upd., t) = e−γu(t−t0). Finally, recall that the up-to-date entries in F (SI) are

Up(F(SI), t0) = |∨S∈SI Bup
S |. According to the Poisson arrival of changes:

E[OldUp] = Up(F(SI), t0) Pr(In world at t) Pr(Not upd., t)

E[InsUp] =
t∑

τ=t0

λi Pr(In D at t) Pr(Not upd., t) Pr(Ins(F (SI), t, τ))

E[ExUp] =
t∑

τ=t0

λu Pr(In D at t) Pr(Not upd., t) Pr(Upd(F (SI), t, τ))

where Pr(Ins(F (SI), t, τ)) and Pr(Upd(F (SI), t, τ)) are as in Equations 3.22 and 3.24.

The global freshness estimate is also a non-decreasing submodular function. How-

ever, the same does not hold for local freshness.

Theorem 2 (Submodular Global Freshness). The global freshness estimate GF∗(·) for

any set of independent sources SI and time t is a non-decreasing submodular function.

The proof of this theorem follows similar steps to the previous proof.

59

Estimator Complexity: Given a set of time points of interest Tf , one needs to estimate

the quality for each t ∈ Tf . The run time complexity is O(
∑

t∈Tf (t − t0) · |SI |), since

evaluating the estimators presented above requires O((t − t0) · |SI |) operations for each

t ∈ Tf .

Unstructured Data Entries. When sources provide unstructured data, the quality of the

integration result for a future time point can be estimated by adapting Equation 3.13 to

consider the union of selected sources for integration. The expected frequency of a word

w for a future time point Tf in the integration result of a set of sources SI is given by:

F̂SI ,v,Tf [w] = x̄w ·
∏
S∈SI

(1− Pr(Tf |S,w) · Pr(w|S, v)) ·
∑
z∈K

φz,w · θv,z · ξz,Tf (3.33)

3.6 Reasoning about Diverse Data Domains

The techniques introduced thus far, considered that all sources provide data from a data

domain described by a pre-specified set of attributes AD. This is a fairly strong condition

that prevents the proposed techniques from being used in a holistic approach supporting

arbitrary domains with highly heterogeneous sources. We now describe a technique for

relaxing this assumption.

As discussed in Section 3.2, we assume that both the non-numeric attributes in AD

and their values characterizing the entries of sources come from a dictionary VAD
. For

each entry we collapse all non-numeric attribute names and their corresponding values

characterizing the entry to a set of context literals. An example is shown in Figure 3.7.

Here, we have a source providing entries about the population of different country across

60

Raw Source Content

2

3

EntryID

1

United States 320,630,000

India

1,369,085,000

Country Population

China

1,269,420,00

...
...

Source Context Literal Sets

3
{Country, United States,

Population}

2

{Country, China, Population}

EntryId Context Literal Set

1

{Country, India, Population}

...
...

...

Figure 3.7: An example of a source and the context literal sets for its entries.

the world. We associate each entry of the source with a context-literal set. In particular

entry <China, 1,369,085,000> with schema <Country, Population> is associated with

the set {Country, China, Population}. We now discuss how one can use these context

literal sets to identify sets of sources that cover heterogeneous domains and build a content

and quality index for diverse sources.

The context literals described above focus on non-numeric attributes. In fact, these

literals often correspond to real-world entities and abstract concepts. Therefore, we can

use an knowledge base, such as YAGO, Freebase, DBPedia, etc. to represent VAD
. Es-

sentially, this serves as a backbone global relaxed schema for describing arbitrary data

domain. Figure 3.8 shows an example knowledge base with concept literals being hierar-

chically structured (e.g., “Country” is subsumed by “Location”) and entity literals being

semantically associated with concept literals (e.g., “USA” has a specific “Population”).

The dictionary VAD
allows one to identify the domains covered by each source by an-

alyzing the union of context-literal sets for the entries of the source. To reason about

the content and quality of different sources we augment VAD
, i.e., an existing knowledge

61

Root

People Location

Name
Gender

Country

ContinentR1

R2

USA

Source 1

Population

Concepts

Relations

Instances
Asia

C-Cluster 1

Source 2

Knowledge Base

Correspondence Graph

Coverage
Accuracy

Src 2

Coverage,
Accuracy

Src 1

Sports

Source 3

C-Cluster 2
Coverage,
Accuracy

Src 3

Figure 3.8: An example knowledge base extended with a correspondence graph.

base, with a correspondence graph. An example of a correspondence graph is shown in

Figure 3.8. The nodes in the correspondence graph are either data sources (source nodes)

or clusters of literals as dictated by the available sources (c-cluster nodes). The edges

in the correspondence graph connect each source node with c-cluster nodes and c-cluster

nodes with the corresponding literals in the knowledge base. In the example above, there

are two c-cluster nodes, one corresponding to the population of countries in Asia and one

to sports in the USA (i.e., “USA and Sports”). The edges connecting c-cluster nodes to

literals follow conjunctive semantics. Each edge from a source to a c-cluster node is an-

notated with a quality profile of that source for that specific c-cluster, and each c-cluster

node is associated with local information about the dependencies of the data sources that

are connected to it. Intuitively, each c-cluster corresponds to a single homogeneous part

of the data domain and corresponds to the world as discussed in Section 3.3.

62

The correspondence graph serves as a content and quality index for the available

sources. To construct it we first learn the latent c-cluster nodes and then compute the

quality profiles and data source dependencies for each c-cluster node. A canonical repre-

sentation of the literals associated with each source entry is obtained by mapping them to

entities and concepts from the available knowledge base. This is done by using semantic

matching techniques introduced in the literature [101, 72]. Given these canonical rep-

resentations, we construct the c-cluster nodes using a frequent pattern mining approach

based on the FP-growth algorithm [71]. This allows us to discover domains that are preva-

lent in multiple sources. After discovering the c-cluster nodes, we compute the quality

of each source, for each c-cluster node it is connected with, by using the techniques de-

scribed previously in this chapter.

3.7 Experimental Evaluation

In this section we experimentally evaluate the effectiveness of the statistical models de-

scribed in Section 3.3 and Section 3.4 at capturing the changes in the overall data domain

and the individual sources. Our evaluation is separated in two parts one focusing on

sources providing structured entries and one on sources providing unstructured entries.

3.7.1 Structured Data Entries

We describe the experimental setup used for evaluation and then discuss our findings.

Data. We use two real-world datasets. The first corresponds to the business listings

(BL) dataset from Section 1.1 containing daily snapshots from 43 data sources providing

63

business listings over a period of 23 months. Each data entry includes the source-id, a

description of the business (i.e., phone, address, category) and the timestamp of the last

insertion or update operation performed on it. A deletion timestamp is assigned to an entry

using the timestamp of the latest snapshot mentioning it. If that timestamp corresponds

to the end of the observed time window, the entry is assumed not to be deleted.

The evolution of the world is extracted by first detecting duplicates across the source

snapshots using standard canonicalization and format standardization techniques together

with an exact matching algorithm, and then applying an integration scheme following the

union semantics described earlier. The output was verified against a gold standard pro-

vided with BL containing a subset of businesses. The sources provide 84,791,789 listings

for 28,094,382 distinct businesses over 51 locations (i.e., states including Washington,

DC) for 1496 business types.

The second dataset is GDELT (Section 1.1). GDELT contains daily snapshots of

events extracted from articles published in 15,275 news sources over a period of 22 days.

All entries contain information about the source reporting the event, and characteristics

such as the actors associated with the event, the location and the type of the event. The

evolution of the world is extracted using similar techniques as for BL. In total the sources

provide 2,833,755 entries for 2,219,704 distinct events corresponding to 242 different

locations and 236 different event types.

Preprocessing. The statistical models that describe the changes in BL are trained using

the data corresponding to the first 10 months. The next 13 months are used for evaluation.

For GDELT, we use the first 15 days for training and the next seven days for evaluation.

64

 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 1 2 3 4 5 6 7 8 9 10 11 12 13
R

e
la

ti
v
e
 E

rr
o
r

Time Index

Relative Pred. Err. per State Group

St.Gr.1 (2)
St.Gr.2 (10)
St.Gr.3 (18)

St.Gr.4 (15)
St.Gr.5 (6)

(a) State predictions.

 0
 0.005
 0.01

 0.015
 0.02

 0.025
 0.03

 0.035
 0.04

 0.045
 0.05

 1 2 3 4 5 6 7 8 9 10 11 12 13

R
e
la

ti
v
e
 E

rr
o
r

Time Index

Relative Pred. Err. per Bus. Group

Bus.Gr.1 (2)
Bus.Gr.2 (2)

Bus.Gr.3 (2)
Bus.Gr.4 (4)

(b) Business-type predictions.

Figure 3.9: The relative error for predicting the total listings in BL for (a) five state groups
and (b) four business category groups over 13 future time points.

Experimental Results. We study the effectiveness of the proposed change models at

predicting the world and source changes both in BL and GDELT.

For BL, the predicted number of businesses for the 51 locations, and the ten largest

business categories is considered. The relative error between the actual and predicted

values is reported in Figure 3.9(a). The states are divided in five groups based on the

absolute value of their prediction error. The relative error for the representative state of

each group is shown. The size of each group is mentioned in the legend. The ten largest

business categories are divided in four error groups. Figure 3.9(b) shows the relative error

for the representative business category of each group. Similar behavior was observed

for the rest of the business categories. Our models can accurately predict the number of

listings as the average relative error is around 2%. The increase rate of the error is 0.001.

For GDELT, the predicted number of events for four event-location pairs over 7

days in the future is shown in Figure 3.11(a). The prediction error is relatively small,

considering that the amount of training data used in GDELT spanned over a time period

of only 15 days. The variation observed is due to the dynamic nature of this domain.

65

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014

 1 2 3 4 5 6 7 8 9 10 11 12 13

R
e

la
ti
v
e

 E
rr

o
r

Time Index

Relative Error in Quality Prediction
 (Largest Source in BL)

Cov. Frsh. Acc.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1 2 3 4 5 6 7 8 9 10 11 12 13

R
e

la
ti
v
e

 E
rr

o
r

Time Index

Relative Error in Quality Prediction
 (2nd Largest Source in BL)

Cov. Frsh. Acc.

Figure 3.10: The relative error for predicting the quality of the two largest sources in
BL for 13 consecutive future time points.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1 2 3 4 5 6 7

R
e
la

ti
v
e
 E

rr
o
r

Time Index

Relative Pred. Error (GDELT)

US-EvT 1

US-EvT 2

IN-EvT 1

IN-EvT 2

(a) Total-events prediction error.

 0.02

 0.04

 0.06

 0.08

 1 2 3 4 5 6 7

R
e

la
ti
v
e

 E
rr

o
r

Time Index

Relative Error in Coverage Prediction
 (GDELT)

WashPost
Chic.Tribune

Huff.Post

(b) Quality prediction error.

Figure 3.11: The relative error for predicting (a) the total events for four different event-
location pairs in GDELT and (b) the quality of three large US news sources from GDELT
for 7 consecutive future time points.

66

Next, we evaluate the proposed models on predicting the source quality over time.

Figure 3.10 shows the relative error for predicting the coverage, accuracy and local fresh-

ness of the two largest sources in BL for 13 months in the future. The maximum relative

error is less than 1.5% for the largest source and less than 2.5% for the other source. Fig-

ure 3.11(b) shows the relative error corresponding to the coverage of the four largest US

data sources in GDELT for 7 days in the future. Observe that the relative error is small.

3.7.2 Unstructured Data Entries

We now evaluate the model introduced inSection 3.3.2 detecting the actual topics in the

underlying domain, their temporal patterns and their patterns with respect to the metadata

attributes associated with the source entries.

Data. We use a dataset corresponding to a corpus of public health-related news arti-

cles and tweets extracted from HealthMap [57], a prominent online aggregator of news

articles and tweets for disease outbreak monitoring and real-time surveillance of emerg-

ing public health threats. The collected articles span from January 2013 to March 2014.

Articles in this dataset have only one metadata attribute corresponding to a location asso-

ciated with the article. The locations correspond to states in four Latin American coun-

tries. Therefore, the vocabulary used here consists of Spanish and Portuguese words

and does not contain only disease related words. Traditional IR pre-processing such as

stop-word removal and term frequency modeling is performed over a fixed vocabulary of

words. The dictionary contains words that are either commonly associated with diseases

(e.g.,“contagious”) or words associated with a specific disease (e.g.,“rodents”, “hanta”

67

for Hantavirus). Finally, each article is associated with a data source corresponding to an

online news media.

We extract data source snapshots on a weekly basis. Because of this, the size of the

input data varies over time, as new articles are added every week. The number of words

ranges from 20,908 to 48,700, the number of locations from 74 to 144 and the number of

data sources from 381 to 798.

Parameter Setup. The parameters of the Dirichlet priors are set to α = 2/K, β = 0.01

and γ = 0.01 where K is the number of topics. The topic model was evaluated with

K = {8, 12, 15} and setting K = 12 was found to provide the most meaningful topics.

How effective is the proposed topic model in identifying disease topics in the world

and their temporal patterns? The HealthMap corpus contains mentions to multiple

diseases, both common and rare, over multiple countries in Latin America. The most

prevalent diseases mentioned in the dataset are avian flu (i.e., type h5n1), dengue fever,

swine flu (i.e., h1n1 flu), the Hantavirus pulmonary syndrome (HPS) and the Hantavirus

hemorrhagic fever with renal syndrome (HFRS) [85].

While the first three diseases are widespread with a large number of incidences

throughout a calendar year, Hantavirus syndromes are rather rare with a small number of

incidences. To study the actual incidences for the six aforementioned diseases we used

a gold standard report that gives ground truth determinations of whether a disease inci-

dence (Hantavirus) happened in a given location. This report is determined by analysts

considering multiple news sources and studying bulletins issued by health reporting orga-

nizations such as ProMED [1]. Figure 3.12 shows the Hantavirus outbreaks over time for

each of the countries where outbreaks were reported. Most outbreaks occurred in Chile.

68

 0
 1
 2
 3
 4
 5
 6
 7
 8

0
1
/1

3

0
2
/1

3

0
3
/1

3

0
4
/1

3

0
5
/1

3

0
6
/1

3

0
7
/1

3

0
8
/1

3

0
9
/1

3

1
0
/1

3

1
1
/1

3

1
2
/1

3

0
1
/1

4

0
2
/1

4

0
3
/1

4

#
 o

f
O

u
tb

re
a
k
s

Date

Timeline of Hantavirus Incidences

Chile
Argentina

Brazil
Uruguay

Figure 3.12: Timeline of Hantavirus outbreaks from January 2013 to March 2014 for
Chile, Argentina, Brazil and Uruguay. No hantavirus outbreaks were reported for other
countries in Latin America.

Now we evaluate the the topics discovered by our topic model. Six out of the twelve

topics are related to the diseases mentioned above, while the rest are generic topics related

to non-disease aspects of the news articles including administrative information about the

reported incidents. We focus only on disease-related topics. To evaluate the disease

topics, a vocabulary of 184 health-related words is considered. For each topic, the most

likely words based on the health-related vocabulary and their prominence over time are

reported. Given a time point, the prominence of a topic is defined as the fraction of articles

of that topic over the total number of articles published at that time point.

Table 3.2 shows three topics related to Hantavirus, their most likely words based

on the health-related vocabulary and their prominence histograms over time. The first

topic refers to the HPS syndrome with words such as “pneumonia”, “sangre” (blood),

and “cardiopulmonar” being ranked higher. One can see that the proposed topic model

69

Table 3.2: Three discovered topics that are related to Hantavirus. The first two topics
are related to the two different Hantavirus syndromes (i.e., HPS and HFRS) and the third
topic is related to generic information about the transmission of the virus. Histograms
show the topic prominence over time; The top words with their probability in each topic
are shown.

 0.04

 0.08

 0.12

 0.16

0
1

/1
3

0
2

/1
3

0
3

/1
3

0
4

/1
3

0
5

/1
3

0
6

/1
3

0
7

/1
3

0
8

/1
3

0
9

/1
3

1
0

/1
3

1
1

/1
3

1
2

/1
3

0
1

/1
4

0
2

/1
4

0
3

/1
4

P
ro

m
in

e
n

c
e

Week Index

Hantavirus pulmonary syndrome

 0.04

 0.08

 0.12

 0.16

0
1

/1
3

0
2

/1
3

0
3

/1
3

0
4

/1
3

0
5

/1
3

0
6

/1
3

0
7

/1
3

0
8

/1
3

0
9

/1
3

1
0

/1
3

1
1

/1
3

1
2

/1
3

0
1

/1
4

0
2

/1
4

0
3

/1
4

P
ro

m
in

e
n

c
e

Week Index

Hantavirus fever with renal syndrome

 0.04

 0.08

 0.12

 0.16

0
1

/1
3

0
2

/1
3

0
3

/1
3

0
4

/1
3

0
5

/1
3

0
6

/1
3

0
7

/1
3

0
8

/1
3

0
9

/1
3

1
0

/1
3

1
1

/1
3

1
2

/1
3

0
1

/1
4

0
2

/1
4

0
3

/1
4

P
ro

m
in

e
n

c
e

Week Index

Hantavirus Transmission

virus 0.0468 vacuna 0.0057 paciente 0.0220
epidemia 0.0443 campos 0.0031 transmissor 0.0133
enfermos 0.0066 provincial 0.0028 lixo 0.0099
hanta 0.0068 hantavirus 0.0024 criaderos 0.0088
viral 0.0038 tosse 0.0022 respiratorias 0.0061
territorio 0.0027 nariz 0.0019 manos 0.0056
pneumonia 0.0014 estornudar 0.0011 boca 0.0047
sangre 0.0014 abdominal 0.0008 rural 0.0038
ratones 0.0006 lluvia 0.0008 musculares 0.0028
cardiopulmonar 0.0002 renal 0.0005 roedores 0.0022

70

is able to retrieve the correlation between words “hanta” and “ratones” (mice) success-

fully. The second topic focuses on the HFRS syndrome with words as “nariz” (nose),

“estornudar” (sneeze), “renal” being more prevalent. Finally, the third topic focuses on

the hantavirus transmission routes with words as “lixo” (garbage), “criaderos” (breed-

ing places), “manos” (hands) and “roedores” (rodents) being ranked higher than others.

According to Jonsson et al. [85] HPS is the main syndrome observed in the Americas

while HFRS cases are mainly observed in Eurasia. Thus, observing a topic focusing on

HFRS for Latin America seems unexpected. However, after analyzing the actual articles

in the corpus, we found that articles reporting Hantavirus incidents usually mention both

forms of Hantavirus syndromes for informational purposes. Focusing on the prominence

histograms, one can see that the HFRS and Hantavirus transmission topics show small

fluctuations across the different time points. However, one can observe that the HPS topic

follows a trend similar to that of the Hantavirus incidence time line. Observe that the

prominence of these topics peaks towards the end of May‘13 and from December‘13 to

March‘14 exactly during the months when the number of Hantavirus incidences increases.

Next, we focus on the remaining three topics focusing on diseases other than Han-

tavirus. Table 3.3 shows three topics related to avian flu, dengue and swine flu. Again,

their most likely words and their prominence histograms over time are reported. For

all three topics one can see that the corresponding disease keywords, i.e., “influenza”,

“dengue” and “gripe” (flu) are ranked first. For the avian influenza topic, the proposed

topic model is able to discover the correlation among words referring to both the causes,

i.e., “mosquito”, “larvas”, “zancudos” (mosquitos), and the symptoms, i.e., “fiebre” (fever),

of the disease. Regarding the dengue topic, the proposed approach is able to identify the

71

Table 3.3: Topics related to Avian Flu, Dengue and Swine Flu. Histograms show the topic
prominence over time; The top words with their probability in each topic are shown.

 0.04

 0.08

 0.12

 0.16

0
1

/1
3

0
2

/1
3

0
3

/1
3

0
4

/1
3

0
5

/1
3

0
6

/1
3

0
7

/1
3

0
8

/1
3

0
9

/1
3

1
0

/1
3

1
1

/1
3

1
2

/1
3

0
1

/1
4

0
2

/1
4

0
3

/1
4

P
ro

m
in

e
n

c
e

Week Index

Influenza

 0.04

 0.08

 0.12

 0.16

0
1

/1
3

0
2

/1
3

0
3

/1
3

0
4

/1
3

0
5

/1
3

0
6

/1
3

0
7

/1
3

0
8

/1
3

0
9

/1
3

1
0

/1
3

1
1

/1
3

1
2

/1
3

0
1

/1
4

0
2

/1
4

0
3

/1
4

P
ro

m
in

e
n

c
e

Week Index

Dengue

 0.04

 0.08

 0.12

 0.16

0
1

/1
3

0
2

/1
3

0
3

/1
3

0
4

/1
3

0
5

/1
3

0
6

/1
3

0
7

/1
3

0
8

/1
3

0
9

/1
3

1
0

/1
3

1
1

/1
3

1
2

/1
3

0
1

/1
4

0
2

/1
4

0
3

/1
4

P
ro

m
in

e
n

c
e

Week Index

Swine Flu

influenza 0.0567 dengue 0.2095 gripe 0.0522
mosquito 0.0495 aegypti 0.0166 h1n1 0.0351
pacientes 0.0258 agua 0.0137 infectadas 0.0043
aviar 0.0144 mosquitos 0.0058 flu 0.0024
larvas 0.0096 agricultura 0.0019 bacteria 0.0021
fiebre 0.0088 respiratoria 0.0018 enfermo 0.0008
surto 0.0061 rurales 0.0006 vacinas 0.0008
zancudos 0.0008 agropecuario 0.0006 nasal 0.0008
avian 0.0006 hemorragias 0.0005 paracetamol 0.0007
h5n1 0.0003 suero 0.0004 swine 0.0005

main transmission root of dengue which is via the aides aegypti mosquito, as well as,

the fact that dengue is more prominent in rural and agricultural areas. Finally, a similar

performance is observed for the swine flu topic. The proposed approach can identify the

correlation between the word “bacteria” and swine flu - bacteria co-infections play a key

role in swine flu deaths - and the correlation between “paracetamol” and swine flu, one of

indicated medication substances for the disease.

How effective is the proposed topic model in identifying spatial patterns? We ex-

amined the correlations between the prominence of each topic and the countries under

consideration (Figure 3.13). Our model was effective at determining that HPS and HFRS

are more prominent in Chile compared to other countries.

72

 0.05
 0.06
 0.07
 0.08
 0.09
 0.1

 0.11
 0.12
 0.13
 0.14

H
P

S

H
a
n
ta

 T
ra

n
s
.

In
fl
u
e
n
z
a

D
e
n
g
u
e

H
F

R
S

S
w

in
e
 F

lu

P
ro

m
in

e
n
c
e

Topic

Topic Prominence per Country

Brazil
Chile

Uruguay
Argentina

Figure 3.13: The topic prominence corresponding to the disease topics for Brazil, Chile,
Uruguay and Argentina. The numbers reported per country are averaged over all states.

3.8 Related Work

Reasoning About Data Sources. A large amount of work has focused on identifying

sources relevant to a given query or domain [108]. However, this work does not consider

the quality of sources. A different line of work has considered the problem of online

data integration [46, 118], however the proposed techniques are agnostic to the quality of

sources. Moreover, a fair amount of work has considered the problem of determining the

quality of multiple data sources and leveraging this information during data integration

to improve the quality of the outcome [100, 109, 129, 174]. However, this work does not

consider dynamic sources. Finally, Cho et al. [28], considered the problem of finding the

optimal data extraction frequency from web-pages, but the authors do not reason about

their quality as it is not of high importance in the web-page crawling scenario.

73

Topic Modeling. A number of methods have been proposed for analyzing the time evo-

lution of topics in document collections, such as the topics over time (TOT) model [165],

the dynamic topic model (DTM) [14], and TriMine model [107]. More precisely, TOT

handles time-windows of fixed size and uses a Beta distribution to model the evolution of

a topic over time. DTM also focuses on a time-window of fixed size but uses Kalman fil-

ters to align topics with different time points. Finally, TriMine is able to analyze windows

of variable size and unlike TOT and DTM is able to find cyclic time patterns with differ-

ent timescales, which enables predicting future events. While TOT and DTM focus on

the dimension of time alone, TriMine can associate the generation of different modalities

with topics, however is agnostic to correlations across the different modalities.

A different line of work [164] focuses on discovering spatial patterns jointly with

the word co-occurrences. In particular, the authors introduced the Spatial Latent Dirichlet

Allocation (SLDA), which better encodes spatial structure among words. While the model

focuses on computer vision applications where documents are comprised by visual words

the proposed techniques can be trivially extended to regular text documents. A similar

approach was introduced by Ramage et al. [131] for labeled documents where the labels

can correspond to multiple modalities, i.e., locations as well.

3.9 Summary

Most of the prior work on data source management has studied the problem of orga-

nizing heterogeneous data sources by introducing various schema-level or instance-level

indexes. However, none of the previous approaches put sufficient emphasis on the quality

74

of sources. In fact, reasoning about the content and the quality of data sources have been

studied as orthogonal problems by previous approaches. This chapter fills in this gap by

proposing a collection of statistical models, as well as a novel indexing technique, that

enable one to simultaneously reason about the content and quality of sources. Our exper-

imental results show the effectiveness of our approaches for diverse real-world datasets

containing sources providing both structured and unstructured data.

75

Chapter 4: Enriching Structured Domain Indexes

In the previous chapter, we described a series of techniques for analyzing the content of

heterogeneous sources and computing their quality. We also showed how these techniques

can be applied to large heterogeneous data domains by exploiting the presence of a gener-

alized structured domain index, such as an ontology or a knowledge base, and extending

it with a correspondence graph that groups together related sources and indexes their

quality. However, many knowledge bases follow a closed-world assumption, i.e., their

scope is limited to real-world entries and concepts already present in them. Moreover,

such indexes usually focus on the “head” of data, i.e., popular entities and concepts, leav-

ing behind a considerable volume of “tail” data about less popular entities, non-current

(historical) facts and so on.

In this chapter, we design an algorithmic framework for enriching structured do-

main indexes with new entities and thus relaxing the aforementioned closed world as-

sumption. Recently, researchers have used the paradigm of crowdsourcing to relax the

closed world assumption and operate in an open world setting [56]. In fact, crowdsouring

has been recently proven beneficial in extracting knowledge and acquiring data for many

application domains, including recommendation systems [3], knowledge base comple-

tion [93], entity extraction and structured data collection [122, 157]. Inspired by this

76

work we build our framework on top of crowdsourced information extraction techniques.

In fact, our goal is to design practical crowdsourced entity extraction techniques that ex-

ploit the structure of the existing index to minimize the monetary cost and latency incurred

by issuing queries to human workers. Therefore, in this chapter we study the problem of

budgeted crowdsourced entity extraction over structured domains.

The remainder of the chapter is organized as follows. First, in Section 4.1, we

provide the reader with a primer on the problem of crowdsourced entity extraction, the

challenges involved in it, and how in the presence of structured domains, one can design

algorithms to address these challenges. In Section 4.2, we formally define the problem

of budgeted crowdsourced entity extraction, and present the underlying query response

model. Then, in Section 4.3, we introduce a methodology for estimating the number

of new entities extracted from the crowd by issuing further extraction queries. In Sec-

tion 4.4, we introduce an algorithm for designing querying policies inspired by the multi-

armed bandits literature. Subsequently in Section 4.5 we evaluate the effectiveness of

our algorithms on extracting entities and discuss related work in Section 4.6. Finally, in

Section 4.7, we summarize the contributions of this chapter.

4.1 Introduction

A fundamental challenge in crowdsourced entity extraction is reasoning about the com-

pleteness of the extracted information. Given a task, e.g., “extract people from newspa-

pers”, that seeks to extract entities from a specific domain by asking human workers, it is

not easy to judge if we have extracted all entities due to the “open world” assumption [56].

77

Recent work [157] has considered the problem of crowdsourced entity extraction

using a single type of query that is asked to humans; for our people case, the query will

be “give me another person from New York Times”. That work determines how many

times this query must be asked to different human workers before we are sure we have

extracted most of the people mentioned in a newspaper. However, given the monetary

cost inherent in leveraging crowdsourcing, it is easy to see that just using this query

repeatedly will not be practical for real-world applications, for two coupled reasons: (a)

wasted cost: we will keep receiving the most popular entities (i.e., the “head” of data)

and will have to issue many additional queries before receiving new or unseen entities,

thus, increasing the cost; (b) lack of coverage: beyond a point all the entities we get

will already be present in our set of extracted entities — thus, we may never end up

receiving less popular entities (i.e., the “tail” of data) at all. To illustrate the effect of the

aforementioned reasons on crowd-sourced entity extraction we conducted a real-world

experiment using Amazon Mechanical Turk. We asked workers to provide us with people

from five popular newspapers. Figure 4.1 shows the number of times each entity was

provided by different workers. As shown, there is a small number of very popular entities

reported by multiple workers. However, there is a very long tail of unpopular entities that

only a single worker reported. It is easy to see that due to the skew in the underlying

popularity distribution of People, we spent a significant number of queries in extracting

the same popular entities over and over again.

Given the above, our main goal is to make crowdsourced entity extraction practical,

i.e., maximize the number of unique entities extracted and focus on the tail of data. To do

so, we focus on entity extraction over structured domains, i.e., a domain that can be fully

78

Figure 4.1: Number of times a Person was extracted by crowd workers from a collection
of newspapers.

described by a collection of attributes, each potentially being hierarchically structured.

For example, in our people extraction case, we could have one attribute about location,

one about occupation, and one about nationality. Often the structure of domains in prac-

tical applications is already known by design. We can then leverage this structure to use

a much richer space of queries asked to human workers, considering all combinations

of values for each of these attributes, e.g., “give me another Basketball player from the

United States that is of Greek origin”. In this manner, we can leverage these specific,

targeted queries to diversify entity extraction and obtain not-so-popular entities as well.

If we view the structured data domain as a partially ordered set (poset), then each

query can be mapped to a node in the graph describing its topology. Thus, our goal is to

traverse the graph corresponding to the input poset by issuing queries corresponding to

various nodes, often multiple times at each node. However, the poset describing the do-

main can be often large, leading to many additional challenges in deciding which queries

to issue at any node: (a) Sparsity: Many of the nodes in the poset are likely to be empty,

79

i.e., the queries corresponding to those nodes are likely to not have any answers; avoiding

asking queries corresponding to these nodes is essential to keep monetary cost low. (b)

Interrelationships: Many of the nodes in the poset are “coupled” with one another; for

example, the results from a few queries corresponding to “give me another Basketball

player” can inform whether issuing queries corresponding to “give me another Basketball

player in the United States” is useful or not. We elaborate more on these challenges in

Section 4.1.1 using examples from a real-world scenario.

Previously proposed techniques [157] do not directly apply to the scenario where

we are traversing a poset corresponding to this structured data domain, and new tech-

niques are needed. The main limitation of the aforementioned techniques is that they

focus on estimating the completeness of a specific query and are agnostic to cost. As a

consequence they do not address the problem of deciding which additional queries are

worth issuing. To mitigate these shortcomings, one needs to tune the queries that are

asked. However, deciding which queries to ask among a large number of possible queries

(exponential in the number of attributes describing the input domain) and when and how

many times to ask each query, are both critical challenges that need to be addressed. Fur-

thermore, unlike previous work, we focus on the budgeted case, where we are given a

budget and we want to maximize the number of retrieved entities; we believe this is a

more practical goal, instead of the goal of retrieving all entities.

80

4.1.1 A Real-World Scenario

To exemplify the aforementioned challenges we review a large-scale real-world scenario

where crowdsourcing is used to extract entities. We consider Eventbrite1, an online event

aggregator, that relies on crowdsourcing to compile a directory of events with detailed

information about the location, type, date and category of each event. Typically, event

aggregators are interested in collecting information about diverse events spanning from

conferences and music festivals to political rallies across different location, i.e., countries

or cities. In particular, Eventbrite collects information about events across different coun-

tries in the world. Each country is split into cities and areas across the country. Moreover,

events are organized according to their type and topic. The attributes and their corre-

sponding structure are known in advance and are given by the design of the application.

We collected a dataset from Eventbrite spanning over 63 countries that are divided into

1,709 subareas (e.g., states) and 10,739 cities, containing events of 19 different types,

such as rallies, tournaments, conferences, conventions, etc. and a time period of 31 days

spanning over the months of October and November.

Two of the three dimensions, i.e., location and time, describing the domain of col-

lected events are hierarchically structured. The poset characterizing the domain can be

fully specified if we consider the cross product across the possible values for location,

event type and time. For each of the location, time, type dimensions we also consider a

special wildcard value. Taking the cross-product across the possible values of these di-

mensions results in poset with a total of 8,508,160 nodes containing 57,805 distinct events

1www.eventbrite.com

81

www.eventbrite.com

10
0

10
1

10
2

10
3

10
4

10
5

0â�� 20â��40â��60â��80â��100â��120â��140â��160â��180â��N
u

m
b

e
r

o
f

E
v
e

n
ts

 i
n

 N
o

d
e

Poset Node Index (x 10
3
)

Eventbrite Domain Population

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35 40 45

J
a

c
c
a

rd
 I

n
d

e
x

Node-Pair Index

Pairwise Overlap
 for the 10 Largest Eventbrite Nodes

Figure 4.2: (a) The population of different nodes and (b) pairwise overlaps for the 10
most populous nodes in the Eventbrite domain.

overall. We point out that the events associated with a node in the poset overlap with the

events corresponding to its descendants. First, we demonstrate how the sparsity challenge

applies to Eventbrite.

Example 6. We plot the number of events for each node in the poset describing Eventbrite’s

domain. Out of 8,508,160 nodes only 175,068 nodes are associated with events and the

remaining are empty. Figure 4.2(a) shows the number of events per node (y-axis is in

log-scale). Most of the populated nodes have less than 100 events. Additionally, the

most populated nodes of the domain correspond to nodes at the higher levels of the poset.

When extracting events from such a sparse domain one needs to carefully decide on the

crowdsourced queries to be issued especially if operating under a monetary budget.

As mentioned before, a critical challenge in such large domains is deciding on the

queries to ask. However, the hierarchical structure of the data domain presents us with

an opportunity. One approach would be to perform a top-down traversal of the poset and

issue queries at the different nodes. Nevertheless, this gives rise to a series of challenges:

(i) how can one decide on the number of queries to be asked at each node, (ii) when should

82

one progress to deeper levels of the poset and (iii) which subareas should be explored.

We elaborate on these in Section 4.2. Next, we focus on the second challenge, i.e., the

interdependencies across poset nodes.

Example 7. We consider again the Eventbrite dataset and plot the pairwise overlaps of

the ten most populous nodes in the domain. Figure 4.2(b) shows the Jaccard index for the

corresponding node pairs. As shown the event populations corresponding to these nodes

overlap significantly. It is easy to see that when issuing queries at a certain node, we not

only obtain events corresponding to this node but to other nodes in the domain as well.

A critical issue that stems from the overlaps across nodes is being able to decide

how many answers to expect when issuing an additional query at a node whose underly-

ing population overlaps with nodes associated with previous queries. In Section 4.2, we

elaborate more on the dependencies across nodes of the poset.

4.2 Preliminaries

In this section we first define structured domains, then describe entities and entity ex-

traction queries or interfaces, along with the response and cost model for these queries.

Then, we define the problem of crowd entity extraction over structured domains that

seeks to maximize the number of extracted entities under budget constraints and present

an overview of our proposed framework.

83

Eventbrite Event Data Domain

Event Type

Location Country State City

Date Month Day

Figure 4.3: The attributes describing the Eventbrite domain and the hierarchical structure
of each attribute.

4.2.1 Structured Data Domain

Let D be a data domain described by a set of discrete attributes AD = {A1, A2, . . . , Ad}.

Let dom(Ai) denote the domain of each attribute Ai ∈ AD. We focus on domains where

each attribute Ai is hierarchically organized. For example, consider the Eventbrite do-

main introduced in Section 4.1.1. The data domain D corresponds to all events and the

attributes describing the entities in D are AD = {“Event Type”, “Location”, “Date”}.

Figure 4.3 shows the hierarchical organization of each attribute. Notice that this defini-

tion of a structured data domain matches the knowledge bases considered in Section 3.6.

The domain D can be viewed as a poset, i.e., a partially ordered set, corresponding

to the cross-product of all available hierarchies2. Part of the poset corresponding to the

previous example is shown in Figure 4.4. We denote this cross-product as HD. As can

be seen in Figure 4.4, there are nodes, such as {}, where no attributes are specified, and

nodes, such as {X1} and {C1} where just one of the attribute values is specified, as well

as nodes, such as {X2, ST2}, where multiple attribute values are specified.

2Note that D is not a lattice since there is no unique infimum.

84

{}

{EventType X1} {Country C1}

{State ST1} {State ST2}

{EventType X2}

{X1, C1} {X2, C1}

{X1, ST1} {X1, ST2} {X2, ST1} {X2, ST2}

Figure 4.4: Part of the poset defining the entity domain for Eventbrite.

4.2.2 Entities and Entity Extraction Queries

Entities. Our goal is to extract entities that belong to the domain D. We assume that

each entity e can be uniquely associated with one of the leaf nodes in the hierarchy HD;

that is, there is a unique set of “most-specific” values of A1, . . . , Ad for every entity. For

example, in Eventbrite, each entity (here, a local event) takes place in a specific city, and

on a specific day. Our techniques also work for the case when entities can be associated

only with “higher level” nodes, but we focus on the former case for simplicity.

Queries. Next, we describe queries for extracting entities from the crowd. First, a query

q is issued at a node v ∈ HD; that is, a query specifies zero or more attribute values from

A1, . . . , Ad that are derived from the corresponding values of v, implicitly requiring the

worker to find entities that match the specified attribute values.

Given a query issued at a node, there are three different configurations one can

use to extract entities from the crowd: The first configuration corresponds to single en-

tity queries where workers are required to provide “one more” entity that matches the

specified attribute values mentioned in the query. Considering the Eventbrite example

85

introduced in the previous section, an example of a single entity query would be ask-

ing a worker to provide “a concert in Manhattan, New York”. The second configuration

corresponds to queries of size k where workers are asked to provide up to k distinct en-

tities. Finally, the last configuration corresponds to exclude list queries. Here, workers

are additionally provided with a list E of l entities that have already been extracted and

are required to provide up to k distinct entities that are not present in the exclude list. It

is easy to see that the last configuration generalizes the previous two. Therefore, in the

remainder of the chapter, we will only consider queries using the third configuration. To

describe a query, we will use the notation q(k,E) denoting a query of size k accompanied

with an exclude list E of length l. We denote query configurations as (k, l).

Query Response. Given a query q(k,E) issued at a node v ∈ HD, a human worker gives

us k distinct entities that belong to the domain D, match the specified attribute values

mentioned in the query (derived from v), and are not present in E. Furthermore, the

human worker provides us the information for the attributes that are not specified in q

for each of the k entities. For example, if our query is “a concert in Manhattan, New

York”, with k = 1, E = ∅, the human worker gives us one concert in Manhattan, New

York, but also gives us the day on which the concert will take place (here, the missing,

unspecified attribute). If the query is “a concert in the US”, with k = 1, E = ∅, the human

worker gives us one concert in the US, but also gives the day on which the concert will

take place, as well as the specific city. If less than k entities are present in the underlying

population, workers have the flexibility to report either an empty answer or a smaller

number of entities (Section 4.3.2).

86

While the reader may wonder if getting additional attributes for entities is neces-

sary, note that this information allows us to reason about which all nodes inHD the entity

belongs to; without this, it is difficult to effectively traverse the poset. Furthermore, we

find that in most practical applications, it is useful to get the values of the missing at-

tributes to organize and categorize the extracted entities better. Similar interfaces that ask

users to fully specify the attributes of entities have been proposed in recently [130].

Finally, answers are expected to be duplicated across workers, who may also specify

or extract an entity incorrectly. Resolving duplicate entities during extraction is crucial

as this information is later used to estimate characterize the completeness of extracted

entities, and thus, reason about the gain of additional queries. Extraction errors can be re-

solved by leveraging the presence of duplicate information and by applying de-duplication

and entity resolution techniques. At a high-level one can use an entity resolution or string

similarity (e.g., Jaccard coefficient) algorithm to identify duplicate entities. Furthermore,

the additional attributes for each entity, can be used to further ascertain similarity of en-

tities. We refer the user to Getoor and Machanavajjhala [61] for an overview of entity

resolution techniques. Finally, standard truth discovery techniques can be used to identify

the correct attribute values for entities. Nevertheless entity resolution and truth discov-

ery are orthogonal problems and not the focus of this chapter. In our experiments on

real datasets, we found that there were no cases where humans introduced errors to the

attribute values of extracted entities. Only minor errors (e.g., misspelled entity names)

were detected and fixed manually.

87

Query Cost. In a typical crowdsourcing marketplace, tasks have different costs based on

their difficulty. Thus, crowdsourced queries of different difficulties should also exhibit

different costs. We assume we are provided with a cost function c(·) that obeys the fol-

lowing properties: (a) given a query with fixed size its cost should increase as the size of

its exclude list is increasing, and (b) given a query with a fixed exclude list size its cost

should increase as the number of requested answer increases. These are fixed upfront by

the interface-designer based on the amount of work involved.

4.2.3 Crowdsourced Entity Extraction

The basic version of crowdsourced entity extraction [157] seeks to extract entities that

belong to D, by simply using repeated queries at the root node, with k = 1, E = ∅.

When considering large entity domains, one may need to issue a series of entity extraction

queries at multiple nodes inHD — often overlapping with each other — so that the entire

domain is covered. Issuing queries at different nodes ensures that the coverage across the

domain will be maximized.

We let π denote a querying policy, i.e., a chain of queries at different nodes in HD.

Notice that multiple queries q(k,E) can be issued at the same node. Let C(π) denote the

overall cost, in terms of monetary cost of a querying policy π. We define the gain of a

querying policy π to be the total number of unique entities, denoted by E(π) extracted

when following policy π. Thus, there is a natural trade-off between the gain (i.e., the

number of extracted entities) and the cost of policies.

88

Here, we require that the user will only provide a monetary budget τc imposing a

constraint on the total cost of a selected querying policy, and optimize over all possible

querying policies across different nodes of HD. Our goal is to identify the policy that

maximizes the number of retrieved entities under the given budget constraint. We define

the problem of budgeted crowd entity extraction as follows:

Problem 1 (Budgeted Crowd Entity Extraction).

Let D be a given entity domain and τc a monetary budget on the total cost of issued

queries. The Budgeted Crowd Entity Extraction problem seeks to find a querying policy

π∗ using queries q(k,E) over nodes in HD that maximizes the number of unique entities

extracted E(π∗) under the constraint C(π∗) ≤ τc.

The optimal policy not only specifies the nodes at which queries will be executed

but also the size and exclude list of each query.

The cost of a querying policy π is defined as the total cost of all queries issued by

following π. We have that C(π) =
∑

q∈π c(q) where the cost of each query q is defined

according to a cost model specified by the user. Computing the total cost of a policy π is

easy. However, the gain E(π) of a policy π is unknown as we do not know in advance the

entities corresponding to each node inHD, and hence, needs to be estimated.

4.2.4 Underlying Query Response Model

To reason about the occurrence of entities as response to specific queries, we need an

underlying query response model. Our model is based on the notion of popularity.

89

Popularities. We assume that each underlying entity has a fixed, unknown popularity

value with respect to crowd workers. Given a query q(1, ∅), asking for one entity without

using an exclude list, the probability that we will get entity e that satisfies the constraints

specified by q is nothing but the popularity value of e divided by the popularity value of

all entities e′ that also satisfy the constraints in q. As an example, if there are only two

entities e1, e2 that satisfy the constraints specified by a given query q1, with popularity

values 3 and 2, then the probability that we get e1 on issuing a query q1(1, ∅) is 3/5.

If an exclude list E is specified, then the probability that we will get an entity e /∈ E

is the popularity value of e divided by the popularity values of all entities e′ /∈ E also

satisfying the constraints specified by q. We do not assume that all workers follow the

same popularity distribution. Rather the overall popularity distribution can be seen as

an average of the popularity distributions across all workers.

Thus, since workers are asked to provide a limited number of entities as response

to a query, each entity extraction query can be viewed as taking a random sample from an

unknown population of entities. In the rest of the chapter, we will refer to the distribution

characterizing the popularities of entities in a population of entities as the popularity

distribution of the population. This is equivalent to the underlying assumption in the

species estimation literature [23] (Section 4.3).

Then, estimating the gain of a query q(k,E) at a node v ∈ HD is equivalent to es-

timating the number of new entities extracted by taking additional samples from the pop-

ulation of v given all the retrieved entities by past samples associated with node v [157].

90

Samples for a Node. When extracting entities, the retrieved entities for a node v (i.e., the

running sample) may correspond to two different kinds of samples: (i) those that were

extracted by considering the entire population corresponding to node v (ii) and those

that we obtained by sampling only a part of the population corresponding to v. Samples

for a node v can be obtained either by querying node v or by indirect information flowing

to v by queries at other nodes. We refer to the latter case as dependencies across queries.

{}

{EventType X1} {Country C1}

{State ST1} {State ST2}

{EventType X2}

{X1, C1} {X2, C1}

{X1, ST1} {X1, ST2} {X2, ST1} {X2, ST2}

Querying node {EventType X1}

Figure 4.5: An example query that extract an entity sample from the red node. The nodes
marked with green correspond to the nodes for which indirect entity samples are retrieved.

We use an example considering the poset in Figure 4.4, to illustrate these two cases

(see Figure 4.5). Assume a query q(k, ∅) issued against node {EventType X1}. Assume

that the query result contains entities that correspond only to node {X1,ST2}. The green

nodes in Figure 4.5 are nodes for which samples are obtained indirectly without querying

them. All these nodes are ancestors of {X1,ST2}. We have:

• The samples corresponding to nodes {X1, C1} and {X1,ST2} were obtained by con-

sidering their entire population. The reason is that node {EventType X1} is an ances-

tor of both and the entity population corresponding to it fully contains the populations

of both {X1,C1} and {X1,ST1}.

91

• The samples corresponding to nodes { }, {Country C1} and {State ST2} were ob-

tained by considering only part of their population. The reason is that the population

of node {EventType X1} does not fully contain the populations of these nodes.

Samples belonging to both types need to be considered when estimating the gain

of a query at a node in v ∈ HD. To address this issue we merge the extracted entities

for each node in HD into a single sample and treat the unified sample as being extracted

from the entire underlying population of the node. As we discuss later in Section 4.4 we

develop querying strategies that traverse the posetHD in a top-down approach, hence, the

number of samples belonging in the first category, i.e., samples retrieved considering the

entire population of a node, dominates the number of samples retrieved by considering

only part of a node’s population. Moreover, it has been shown by Hortal et al. [77] that

several of the techniques that can be used to estimate the gain of a query (see Section 4.3)

are insensitive to differences in the way the samples are aggregated.

4.2.5 Framework Overview

The optimization problem in Section 4.2.3 can be viewed as a multi-round adaptive opti-

mization problem where at each round we solve the subproblems below:

• Estimating the Gain for a Query. For each node in v ∈ HD, consider the retrieved

entities associated with v and estimate the number of new unique entities that will be

retrieved if a new query q(k,E) is issued at v. This needs to be repeated for different

query configurations.

92

Estimate the gain for each candidate poset node:

use the retrieved entities and estimate the number

of new entities to be extracted for different

query sizes k and different exclude list sizes l

Using the gain estimates as input:

select the optimal poset node, query size k and

exclude list size l and execute a new crowd entity

extraction query

Iterate

until no

budget is left

Figure 4.6: Framework overview for budgeted entity extraction.

• Detecting the Optimal Querying Policy. Using the gain estimates from the previous

problem as input, identify the next (query configuration, node) combination so that the

total gain across all rounds is maximized with respect to the given budget constraint.

When identifying the next query we do not explicitly optimize for the exclude list to

be used. We rather optimize for the exclude list size l. Once the size is selected, the

exclude list is constructed in a randomized fashion. We elaborate more on this design

choice in Section 4.4.2.

Our proposed framework iteratively solves the aforementioned problems until the entire

budget is used. Figure 4.6 shows a high-level diagram of the framework.

4.3 Estimating the Gain of Extraction Queries

Previous work [157] has drawn connections between this problem and the species estima-

tion literature [23]. However, the proposed techniques therein do not work for queries that

specify an exclude list. Moreover, they rely on the presence of a relatively large sample

93

and tend to exhibit negative biases [79, 146], i.e., they underestimate the expected gain.

Negative biases can severely impact entity extraction over large domains since nodes that

contain entities that belong in the long tail of the popularity distribution may never be

queried as they may be deemed to have zero population. In this section, we first review

the existing methodology for estimating the gain of a query. Then we discuss how these

estimators can be extended to consider an exclude list. Finally, we propose a new gain

estimator for queries q(k,E) that exhibits lower biases, and thus, improved performance,

in the presence of little information than previous techniques (see Section 4.5).

4.3.1 Previous Estimators

Consider a specific node v ∈ HD. Prior work only considers samples retrieved from

the entire population associated with v and does not consider an exclude list. Let Q be

the set of all existing samples retrieved by issuing queries against v without an exclude

list. These samples can be combined into a single sample corresponding to multi-set of

size n =
∑

q∈Q size(q). Let fi denote the number of entities that appear i times in this

unified sample, and let f0 denote the number of unseen entities from the population under

consideration. Finally, let C be the population coverage of the unified sample. i.e., the

fraction of the population covered by the sample C = f1+f2+..
f0+f1+...

.

A new query q(k, ∅) at node v can be viewed as increasing the size of the unified

sample by k. Prior work used techniques from species estimation to estimate the expected

number of new entities returned in q(k, ∅). Shen et al. [146], derive an estimator for the

number of new species N̂Shen that would be found in an increased sample of size k. The

94

approach assumes that unobserved entities have equal relative popularity. An estimate of

the unique elements found in an increased sample of size k is given by:

N̂Shen = f0

(
1−

(
1− 1− C

f0

)k)
(4.1)

The second term of Shen’s formula corresponds to the probability that at least one unseen

entity will be present in a query asking for k more entities. Thus, multiplying this quantity

with the number of unseen entities f0 corresponds to the expected number of unseen

entities present in the result of a new query q(k, ∅).

The quantities f0 and C are unknown and thus need to be estimated considering

the entities in the running unified sample. The coverage can be estimated by considering

the Good-Turing estimator Ĉ = 1 − f1
n

for the existing retrieved sample. On the other

hand, multiple estimators have been proposed for estimating the number of unseen entities

f0. Trushkowsky et al. [157] proposed a variation of an estimator introduced by Chao et

al. [23] to estimate f0. Nevertheless, the authors argue that the original estimator proposed

by Chao performs similarly with their approach when estimating the gain of an additional

query q(k, ∅). Next, we discuss how one can estimate the return of a query q(k,E) in the

presence of an exclude list E of size l and potential negative answers.

4.3.2 Exclude Lists and Negative Answers

A query q(k,E) with E 6= ∅ issued at node v ∈ HD effectively limits the sampling to

a restricted subset of the entity population corresponding to node v. To estimate the ex-

pected return of such a query, we need to update the estimates f̂0 and Ĉ before applying

95

Equation 4.1, by removing the entities in E from the running sample for node v and up-

dating the frequency counts fi and sample size n. This approach requires that the exclude

list is known in advance. We discuss how we construct an exclude list in Section 4.4.2.

Next, we study the effect of negative answers on estimating the gain of future

queries. It is possible to issue a query at a specific node v ∈ HD and receive no enti-

ties, i.e., we receive a negative answer. This is an indication that the underlying entity

population of v is empty. In such a scenario, we assign the expected gain of future queries

at v and all its descendants to zero. Another type of negative answer corresponds to issu-

ing a query at an ancestor node u of v and receiving no entities for v. In this case, we do

not update our estimates for node u as entities from other descendants of u may be more

popular than entities associated with u.

4.3.3 Direct Gain Estimation

The techniques reviewed in Section 4.3.1 result in negative bias when the number of

observed entities from a population represents only a small fraction of the entire popula-

tion [79, 146]. This holds for the large and sparse domains we consider in this chapter.

To address this problem, Hwang and Shen [79] proposed a regression based technique to

estimate f0 and show that it results in smaller biases. However, estimating the total gain

of a query requires coupling this new estimator with Equation 4.1, thus, it may still ex-

hibit negative bias. To eliminate negative bias, we propose a direct estimator for the gain

of generalized queries q(k,E) without using Equation 4.1. We build upon the techniques

in [79] and use a regression based technique that captures the structural properties of the

96

expected gain function. The proofs for the results below are included in the Appendix of

this dissertation. Only, the appropriate section references are provided below.

Let S denote the total number of entities in the population under consideration and

pi the abundance probability (i.e., popularity) of entity i. Given a sample of size n from

the population, define K(n) to be K(n) =
∑S

i=1(1−pi)n∑S
i=1 pi(1−pi)n−1

. First, we focus on queries

without an exclude list. Later we relax this and discuss queries with exclude lists. We

have the following theorem on query gain:

Theorem 3. Given a node v ∈ HD and a corresponding entity sample of size n, let f1

and f2 denote the number of entities that appear exactly once (i.e., singletons) and exactly

twice respectively. Let G denote the number of new items retrieved by a query q(m, ∅).

We have that:

G =
1

(1 + K′

n+m
)
(K

f1

n
−K ′

f1(1− 1
n
2f2
f1

)m

n+m
) (4.2)

where K = K(n) and K ′ = K(n+m).

The proof of this theorem is deferred to Section A.3.

All quantities apart from K and K ′ in Equation 4.2 are known. The value of K can

be estimated using the regression approach introduced by Hwang and Shen [79]. From

the Cauchy-Schwarz inequality we have that:

K =

∑S
i=1(1− pi)n∑S

i=1 pi(1− pi)n−1
≥ (n− 1)f1

2f2

(4.3)

97

This can be generalized to:

K =
nf0

f1

≥ (n− 1)f1

2f2

≥ (n− 2)f2

3f3

≥ . . . (4.4)

Let g(i) = (n−i)fi
(i+1)fi+1

. From the above we have that the function g(x) is a smooth monotone

function for all x ≥ 0. Moreover, let yi denote a realization of g(i) mixed with a random

error. Hwang and Shen show how one can use an exponential regression model to estimate

K. The proposed model corresponds to:

yi = β0 exp(β1i
β2) + εi (4.5)

where i = 1, . . . , n− 1, β0 > 0, β1 < 0, β2 > 0 and εi denotes random errors. It follows

that K = β0. To estimate the value of K ′ for an increased sample of size n+m, we first

show that K increases monotonically as the size of the running sample increases.

Lemma 1. The function K(n) =
∑S

i=1(1−pi)n∑S
i=1 pi(1−pi)n−1

increases monotonically, i.e., K(n +

m) ≥ K(n),∀n,m > 0.

The proof of this lemma is presented in Section A.4.

Given the monotonicity of function K, we model K as a generalized logistic func-

tion of the form K(x) = A
1+exp(−G(x−D))

. As we observe samples of different sizes for

different queries we estimate K as described above and therefore we observe different

realizations of f(·). Thus, we can learn the parameters of f and use it to estimate K ′. In

the presence of an exclude list of size l we follow the approach described in Section 4.3.2

to update the quantities fi and n used in the analysis above.

98

4.4 Discovering Querying Policies

Next, we focus on the second component of our proposed algorithmic framework and

introduce a multi-round adaptive optimization algorithm for identifying querying strate-

gies that maximize the total gain across all rounds under the given budget constraints.

We build upon ideas from the multi-armed bandit literature [6, 50]. At each round, the

proposed algorithm uses as input the estimated gain or return for different generalized

queries q(k,E) at the different nodes inHD. Before presenting our framework we list the

main two challenges associated with this adaptive optimization problem.

• The first challenge is that the number of nodes in HD is exponential in the number

of attributes AD describing the domain of interest. Querying every possible node to

estimate its expected return for different queries q(k,E) is prohibitively expensive.

That said, typical budgets do not allow algorithms to query all nodes in the hierarchy,

so this intractability may not hurt us all that much. For example, we keep estimates

for each of the nodes for which at least one entity has been retrieved.

• The second challenge is balancing the trade-off between exploitation and exploration [6].

The first refers to querying nodes for which sufficient entities have been retrieved and

hence we have an accurate estimate for their expected return; the latter refers to ex-

ploring new nodes inHD to avoid locally optimal policies.

99

4.4.1 Balancing Exploration and Exploitation

While issuing queries q(k,E) at different nodes of HD we obtain a collection of entities

that can be assigned to different nodes in HD. For each node we can estimate the return

of a query q(k,E) using the estimators presented in Section 4.3. However, this estimate

is based on a rather small sample of the underlying population. Thus, exploiting this

information at every round may lead to suboptimal decisions. This is why we need to

balance the trade-off between exploiting nodes for which the estimated return is high and

nodes that have not been queried many times. This corresponds to upper-bounding the

expected return of each potential action with a confidence interval that depends on both

the variance of the expected return and the number of times an action has been evaluated.

Let r(α) denote the expected return of action α that is an estimate of the true return

r∗(α). Moreover, let σ(α) be an error component on the return of action α chosen such

that r(α) − σ(α) ≤ r∗(α) ≤ r(α) + σ(α) with high probability. The parameter σ(α)

should take into account both the empirical variance of the expected return as well as

our uncertainty if an action or similar actions (e.g., queries with different k,E but at the

same node) has been chosen few times. Let nα,t be the number of times we have chosen

action α by round t, and let vα,t denote the maximum value between some constant c (e.g.,

c = 0.01) and the empirical variance for action α at round t. The latter can be computed

using bootstrapping over the retrieved sample and applying the estimators presented in

Section 4.3.3 over these bootstrapped samples. Several techniques have been proposed

in the multi-armed bandits literature to compute the parameter σ(α) [156]. Teytaud et

al. [156] showed that techniques considering both the variance and the number of times

100

an action has been chosen tend to outperform other proposed methods. Based on this

observation, we choose to use the following formula for sigma:

σ(α) =
√

(vα,t · log(t))/(nα,t) (4.6)

4.4.2 A Multi-Round Querying Policy Algorithm

We now introduce a multi-round algorithm for solving the budgeted entity enumeration

problem. At a high-level, the algorithm proceeds as follows: Instead of considering all

potential queries q(k,E) that can be issued at the different nodes of HD, we consider all

potential query configurations (k, l). In particular, we do not optimize directly for the

exclude list to be used in a further query but rather for the size l of it. Once we decide

on l the exclude list E can be constructed following a randomized approach, where l of

the retrieved entities are included in the list uniformly at random. The generated list can

be used to update the frequency counts fi and sample size n and estimate the gain of the

query. Bootstrapping can also be used to obtain improved estimates.

We follow a randomized approach as a deterministic construction of E that picks

the l-most popular items in the running sample is very sensitive to the observed popularity

distribution. When the number of observed entities corresponds to a small portion of the

entire population - as in the scenarios we consider in this chapter - the individual entity

popularity estimates tend to be very noisy. We empirically observed that a deterministic

construction of a limited size exclude list, especially during early queries, leads to poor

popularity estimates. Thus, we choose to follow a randomized approach.

101

Let S denote the set of all potential query configurations (k, l) that can be issued

at the different nodes of HD during a round r. Moreover, let r(α) + σ(α) and c(α)

be the upper-bounded return (i.e., gain) and cost for an action α ∈ S. At each round

the algorithm identifies an action in S that maximizes the quantity r(α)+σ(α)
c(α)

under the

constraint that the cost of action α is less or equal to the remaining budget. Since we

are operating under a specified budget one can view the problem in hand as a variation

of the typical knapsack problem. If no such action exists then the algorithm terminates.

Otherwise the algorithm issues the query corresponding to action α, updates the set of

unique entities obtained from the queries, the remaining budget and updates the set of

potential queries that can be executed in the next round. An overview of this algorithm is

shown in Algorithm 1.

As discussed before, the size of HD is exponential to the values of attributes de-

scribing it, and thus, considering all the possible queries for the different nodes of HD

can be prohibitively expensive. Next, we discuss how one can initialize and update the set

of potential actions as the algorithm progresses based the structure of the poset HD and

the retrieved entities from previous rounds.

4.4.3 Updating the Set of Actions

Due to the exponential size of the poset HD, we need to limit the set of possible actions

Algorithm 1 considers by exploiting the structure the given domain HD. We propose an

algorithm that updates the set of actions by traversing the input poset in a top-down man-

ner and adds new actions that correspond to queries for nodes that are direct descendants

102

Algorithm 1 Overall Algorithm
1: Input: HD: the hierarchy describing the entity domain; r, σ: value oracle access to

gain upper bound; c: value oracle access to the query costs; βc: query budget;
2: Output: E : a set of extracted distinct entities;
3: E ← {}
4: RB ← βc /* Initialize remaining budget */
5: S ← UpdateActionSet(HD,NULL,∅)
6: while RB > 0 and S 6= {} do
7: α← arg maxα∈S

r(α)+σ(α)
c(α)

such that RB − c(α) > 0
8: if α is NULL then
9: break;

10: RB ← RB − c(α) /* Update budget */
11: Issue query corresponding to α
12: E ← entities from query
13: E ← E ∪ E /* Update unique entities */
14: S ← UpdateActionSet(HD, a, S)
15: return E

of already queried nodes. Due to the hierarchical structure of the poset nodes at higher

levels of the poset correspond to larger populations of entities. Therefore, issuing queries

at these nodes can potentially result in a larger number of extracted entities. Traversing

the poset in a top-down manner allows us to detect sparsely populated areas of the poset.

Our approach for updating the set of available actions (Alg. 2) proceeds as fol-

lows: If the set of available actions is empty start by considering all possible queries

that can be issued at the root of HD (Ln. 4-5). The set of possible queries corresponds

to queries q(k,E) for all combinations of the values of parameters k and l. Recall that

E is constructed in a randomized fashion once l is determined. Recall that these are

pre-specified by the designer of the querying interface. If the set of available actions is

not empty, we consider the node associated with the action selected in the last round and

populate the set of available actions with all the queries corresponding to its direct descen-

dants (Ln. 7-9), i.e., by traversing the input poset in a top-down fashion. As mentioned

103

Algorithm 2 UpdateActionSet
1: Input: HD: the hierarchy describing the entity domain; u: a node in HD associated

with the last selected action; Sold: the running set of actions; Vk: set of values for
query parameter k; Vl: set of values for query parameter l;

2: Output: Snew: the updated set of actions;
3: /* Extend Set of Actions*/
4: if Sold is empty then
5: return {Root ofHD}
6: Snew ← Sold
7: for all d ∈ Set of Direct Descendant Nodes of u do
8: Ad ← Set of queries at u for all configurations in Vk × Vl
9: Snew ← Snew ∪ Ad

10: /* Remove Bad Actions*/
11: /* Find maximum lower bound on gain over all actions in Snew*/
12: thres← maxα′∈Snew(r(α′)− σ(α′))
13: B ← All actions a in Snew with r(α) + σ(α) < thres
14: Snew ← Snew \ B
15: return Snew

above the number of nodes in HD can be prohibitively large, therefore we also remove

any bad actions from the running set of actions (Ln. 10-14). An action α is bad when

r(α) + σ(α) < maxα′∈S(r(α′) − σ(α′)). Intuitively, this states that we do not need to

consider an action as long as there exists another action such that the upper-bounded re-

turn of the former is lower than the lower bounded return of the latter. This is a standard

technique adopted in multi-armed bandits to limit the number of actions considered by

the algorithm [50].

4.5 Experimental Evaluation

We present an empirical evaluation of our proposed algorithmic framework using both

real and synthetic datasets. First, we discuss the experimental methodology, then we de-

scribe the data and results that demonstrate the effectiveness of our framework on crowd-

104

sourced entity extraction. The evaluation is performed on an Intel(R) Core(TM) i7 3.7

GHz 32GB machine; all algorithms are implemented in Python 2.7.

4.5.1 Experimental Setup

Gain Estimators. We evaluate the following gain estimators:

• Chao92Shen: This estimator combines the methodology proposed by Chao [23] for

estimating the number of unseen species with Shen’s formula, i.e., Equation 4.1.

• HwangShen: This estimator combines the regression-based approach by Hwang and

Shen [79] for estimating the number of unseen species with Shen’s formula.

• NewRegr: This estimator corresponds to our new technique proposed in Section 4.3.3.

All estimators were coupled with bootstrapping to estimate their variance to retrieve an

upper bound on the return of a query as shown in Section 4.4.1.

Entity Extraction Algorithms. We evaluate the following algorithms for crowdsourced

entity extraction:

• Rand: This algorithm executes random queries until all the available budget is used.

It selects a random node from the input poset HD and a random query configuration

(k, l) from a list of pre-specified k, l value combinations. We expect Rand to be

effective for extracting entities in small and dense data domains that do not have many

sparsely populated nodes.

• RandL: Same as Rand but only executes queries only at the lowest level nodes (i.e.,

leaf nodes) of the input poset HD until all the available budget is used. We expect

RandL to be effective for shallow data domains when the majority of nodes corre-

105

sponds to leaf nodes. Like Rand, the performance of RandL is expected to be reason-

able for small and dense data domains without sparsely populated nodes.

• BFS: This algorithm performs a breadth-first traversal of the input poset HD, execut-

ing one query at each node. The query configuration is randomly selected from a list

of pre-specified k, l value combinations. This algorithm promotes exploration of the

action space when extracting entities. It also takes into account the structure of the

input domain but is agnostic to sparsely populated nodes of the inputHD.

• RootChao: This algorithm corresponds to the entity extraction scheme of Trushkowsky

et al. [157] that utilizes the Chao92Shen estimator to measure the gain of an additional

query. The proposed scheme is agnostic to the structure of the input entity domain,

and thus, equivalent to issuing queries only at the root node of the posetHD. Since the

authors only propose a pay-as-you-go scheme, we coupled this algorithm with Alg. 1

to optimize for the input budget constraint. The algorithm considers different query

configurations (k, l) but restricts its queries to the root node.

• GSChao, GSHWang, GSNewR: Our proposed querying policy algorithm (Section 4.4.2)

using Chao92Shen, HwangShen and NewRegr respectively.

• GSExact: This algorithm is used as a near-optimal, omniscient baseline that allows

us to see how far off our algorithms are from an algorithm with perfect information.

In particular, we combine the algorithm proposed in Section 4.4.2 with an exact com-

putation of the return or gains from queries. More precisely, the algorithm proceeds

as follows: At each round we speculatively execute each of the available actions (i.e.,

all query configurations across all nodes) and select the one that results in the largest

106

number of return to cost ratio. Since the return of each query is known, the algorithm

is not coupled with any of the aforementioned estimators.

Rand, RandL and BFS promote exploration when extracting entities. The other algo-

rithms balance exploration with exploitation. For the results reported below, we run each

algorithm ten times and report the average gain achieved under the given budget.

Querying Interface. For all datasets we consider generalized queries of the type “Give

me k more entities that satisfy certain conditions and are not present in an exclude list of

size l”. The conditions correspond to matching the attribute values associated with a node

from the input poset. The configurations considered for (k, l) are {(5, 0), (10, 0), (20, 0),

(5, 2), (10, 5), (20, 5), (20, 10)}. Larger values of k or l were deemed unreasonable for

crowdsourced queries. The gain of a query is computed as the number of new entities

extracted. The cost of each query is computed using an additive model comprised by

three partial cost terms that depend on the characteristics of the query.

The three partial cost terms are: (i) CostK that depends on the number of responses

k requested from a user, (ii) CostL that depends on the size of the exclude list l used

in the query, and (iii) CostSpec that depends on the specificity of the query qs, e.g., we

assume that queries that require users to provide more specialized entities (e.g., “Give me

one concert for New York on the 17th of Nov”) cost more than more generic queries (e.g.,

“Give me one concert in New York”). More formally, we define the specificity of a query

to be equal to the number of attributes assigned non-wildcard values for the node u ∈ HD

the query corresponds to.

107

The overall cost for a query with configuration (k, l) with specificity s is computed

as: Cost(q) = α · k

max. query size + β · l

max. ex. list size + γ · s

max. specificity . The

cost of a query should be significantly increased when an exclude list is used, thus we

require that β is set to a larger value than α and γ. For the results reported below, we set

α = γ = 1 and β = 5. Similar results were observed for other settings.

Data. First, we evaluate the proposed framework on extracting entities from a large sparse

domain. We consider the event dataset collected from Eventbrite. As described in Sec-

tion 4.1, the poset corresponding to the Eventbrite domain contains 8,508,160 nodes with

57,805 distinct events overall. However, only 175,068 nodes are populated leading to

a rather sparsely populated domain. Due to lack of popularity proxies for the extracted

events, we assigned a random popularity value in (0, 10] to each event. These weights are

used during sampling to form the actual popularity distribution characterizing the popu-

lation of each node in the poset.

We further evaluate the performance of the extraction algorithms for a more dense

domain, that we constructed ourselves. We used Amazon’s Mechanical Turk [2] to col-

lect a real-world dataset, targeted at extracting “people in the news”. While different

from the event extraction domain studied before this new domain is still structured. We

asked workers to extract the names of people belonging to four different types from five

different news portals. The people types we considered are “Politicians”, “Athletes”,

“Actors/Singers” and “Industry People”. The news portals we considered are “New York

Times”, “Huffington Post”, “Washington Post”, “USA Today” and “The Wall Street Jour-

nal”. This data domain, referred to as the People’s domain, is essentially characterized

108

Table 4.1: The population characteristics for the People’s domain.

Person Type People
Industry People 743

Athletes 743
Politicians 748

Actors/Singers 744

News Portal People
WSJ 594

WashPost 597
NY Times 595
HuffPost 599

USA Today 593

by the type of the individual and the news portal. Workers were paid $0.20 per HIT. We

issued 20 HITS for each leaf node of the domain’s poset, resulting in 600 HITS in total.

After manually curating name misspelling’s, we extracted 1,245 unique people in total.

Table 4.1 shows the number of distinct entities for the different values of the people-type

and news portal attributes. Finally, the popularity value of each extracted entity was as-

signed to be equal to the number of times it appeared in the extraction result. The values

are normalized during sampling time to form a proper popularity distribution. Collect-

ing a large amount of data in advance from Mechanical Turk and then simulating the

responses of human workers by revealing portions of this dataset allows us to compare

different algorithms on an equal footing; this approach is often adopted in the evaluation

of crowdsourcing algorithms [120, 106, 157].

4.5.2 Experimental Results

Next, we evaluate different aspects of the aforementioned extraction techniques.

How does our querying policy algorithm compare against baselines? We evaluate the

performance of the different extraction algorithms in terms of number of entities extracted

for different budgets. The results for Eventbrite and the People’s domain are shown in

Figure 4.7(a) and Figure 4.7(b) respectively. As shown, our proposed algorithms, i.e.,

109

 0

 400

 800

 1300

 10 20 50 80 100

E
x
tr

a
c
te

d
 E

v
e

n
ts

Budget

Extraction Performance - Eventbrite

 0

 75

 150

 250

 350

 10 20 50 80 100

E
x
tr

a
c
te

d
 P

e
o

p
le

Budget

Extraction Performance - People’s Domain

 0
 75

 150
 250
 350

 10 20 50 80 100Ex
tra

ct
ed

 P
eo

pl
e

Budget

Extraction Performance - People’s Domain

Rand
RandL

BFS
RootChao

GSChao
GSHwang
GSNewR

Figure 4.7: A comparison of the proposed entity extraction techniques against several
baselines for (a) Eventbrite and (b) the People’s domain.

GSChao, GSHwang, GSNewR outperform all baselines for at least 30% across both

datasets. This behavior is expected as our techniques not only exploit the structure of

the domain to diversify entity extraction by targeting entities that belong to the tail of the

popularity distribution but also optimize the queries for the given budget.

When comparing again the naive baselines Rand, RandL, and BFS, we see that

GSChao, GSHwang and GSNewR extract at least 2X more entities for the sparse Eventbrite

domain and around 100% more entities for small budgets and 54% for larger ones when

considering the dense People’s domain. For example for Eventibrite and a budget of $50

all schemes coupled with our querying policy discovery algorithm (Section 4.4) extracted

more than 600 events while Rand and RandL extracted 1.1 and 0.2 events and BFS ex-

tracted 207.7 events, an improvement of over 180%.

Comparing against RootChao, we see that GSChao, GSHwang and GSNewR, are

able to retrieve up to 30% more entities for Eventbrite and 5X for the People’s domain.

110

This performance difference is due to the fact that the gain achieved by RootChao satu-

rates at a faster rate compared to GSChao, GSHwang and GSNewR as the cost increases.

This is because, RootChao focuses on issuing queries at the root of the input poset, and

hence, it is not able to extract entities belonging to the long tail of the popularity distri-

bution. Moreover, for the People’s domain we see that RootChao performs poorly even

compared to the naive baselines Rand, RandL and BFS. This is due to the popularity skew.

How do our techniques compare against a near-optimal policy discovery algorithm?

Next, we evaluate GSChao, GSHwang and GSNewR against the near-optimal querying

policy discovery algorithm GSExact. The results for Eventbrite and the People’s domain

are shown in Figure 4.8(a) and Figure 4.8(b) respectively. Regarding the dense domain

Eventbrite, we observe that for smaller budgets our proposed techniques perform compa-

rably to GSExact that has “perfect information” about the gain of each query, typically

demonstrating a performance gap of less than 10%. For larger budgets this gap increases

to 25%. Note that our estimators have access to few samples and sparse information; the

fact that we are able to get this close to GSExact is notable. Finally, for the People’s do-

main, our techniques present an increased performance gap compared to GSExact. Nev-

ertheless the performance drop is at most 50%.

How do the different techniques compare with respect to the total number of queries

issued during extraction? We compare the performance of RootChao (i.e., the extrac-

tion scheme proposed by Trushkowsky et al. [157]) against our algorithms GSChao,

GSHwang and GSNewR with respect to the total number of queries issued during ex-

traction. Notice that this new evaluation metric characterizes directly the overall latency

of the crowd-extraction process. Figure 4.9 shows the corresponding results for a run

111

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 50 80 100

E
x
tr

a
c
te

d
 E

v
e

n
ts

Budget

Extraction Performance - Eventbrite

 0

 100

 200

 300

 400

 500

 600

 0 10 20 50 80 100

E
x
tr

a
c
te

d
 P

e
o

p
le

Budget

Extraction Performance - People’s Domain

 0
 100
 200
 300
 400
 500
 600

 0 10 20 50 80 100

Ex
tra

ct
ed

 P
eo

pl
e

Budget

Extraction Performance - People’s Domain

GSChao
GSHwang

GSNewR
GSExact

Figure 4.8: A comparison of the proposed entity extraction techniques against a near-
optimal algorithm for (a) Eventbrite and (b) the People’s domain.

for Eventbrite and a budget of $80. As shown RootChao requires almost up to 3x more

queries to extract the same number of entities as our proposed techniques, thus, exhibiting

significantly larger latency compared to GSChao, GSHwang and GSNewR.

 0
 200
 400
 600
 800

 1000
 1200

 0 20 40 60 80 100 120 140 160T
o
ta

l
E

x
tr

a
c
te

d
 E

n
ti
ti
e
s

Total Queries

Total Gain vs. Number of Queries

RootChao
GSChao

GSHawng
GSNewR

Figure 4.9: The number of events extracted by different algorithms for the Eventbrite data
domain and the corresponding total number of queries.

How our different algorithms traverse the poset and use different query configura-

tions? We next explore how our different algorithms traverse the poset, and how they

112

use different query configurations. The results reported are averaged over ten runs and

correspond to the People’s domain. We begin by considering how many queries these al-

gorithms issue at various levels of the poset. In Figure 4.10, we plot the different number

of queries issued at various levels by our algorithms when the budget is set to 10 and 100

respectively. Given a small budget, we observe that all algorithms prefer issuing queries

at higher levels of the poset. Notice that inner nodes of the poset are preferred and only a

small number of queries is issued at the root (i.e., level one) of the poset. This behavior

is justified if we consider that due to their popularity, certain entities are repeatedly ex-

tracted, thus leading to a lower gain. As the budget increases, we see that all algorithms

tend to consider more specialized queries at deeper levels of the poset. It is interesting to

observe that all of our algorithms issue the majority of their queries at the level two nodes,

while GSExact, which has perfect information, focuses mostly on the leaf nodes. Thus, in

this case, our techniques could benefit from being more aggressive at traversing the poset

and reaching deeper levels; overall, our techniques may end up being more conservative

in order to cater to a larger space of posets and popularity distributions. In Figure 4.11,

we plot the different query configurations chosen by our algorithms when the budget is set

to 10 and 100 respectively. We observe that GSExact always prefers queries with k = 20

and l = 0 for both small and large budgets. On the other hand, our algorithms issue more

queries of smaller size when operating under a limited budget and prefer queries of larger

size for larger budgets. Out of all algorithms we see that GSNewR was the only one issu-

ing queries with exclude lists of different sizes, thus exploiting the rich diversity of query

interfaces. However, the number of such queries is limited.

113

 0

 5

 10

 15

 20

GSChao GSHwang GSNewR GSExact

N
u
m

b
e
r

o
f
In

v
o
c
a
ti
o
n
s

Lv.1
Lv.2
Lv.3

 0

 20

 40

 60

 80

 100

GSChao GSHwang GSNewR GSExact

N
u
m

b
e
r

o
f
In

v
o
c
a
ti
o
n
s

Lv.1
Lv.2
Lv.3

Figure 4.10: The number of queries issued at different levels used when budget is set at
10 or 100.

 0

 5

 10

 15

 20

GSChao GSHwang GSNewR GSExact

N
u
m

b
e
r

o
f
In

v
o
c
a
ti
o
n
s

(5,0)
(5,2)

(10,0)
(10,5)
(20,0)
(20,5)

(20,10)

 0

 20

 40

 60

 80

 100

GSChao GSHwang GSNewR GSExact

N
u
m

b
e
r

o
f
In

v
o
c
a
ti
o
n
s

(5,0)
(5,2)

(10,0)
(10,5)
(20,0)
(20,5)

(20,10)

Figure 4.11: The query configurations used when budget is set at 10 or 100.

How effective are the different estimators at predicting the gain of additional queries?

Finally, we point out that GSNewR was able to outperform GSChao and GSHwang for

Eventbrite but the opposite behavior was observed for the People’s domain. To further un-

derstand the relative performance of GSChao, GSHwang and GSNewR, we evaluate the

performance of the gain estimators Chao92Shen, HwangShen and NewRegr at predicting

the number of new retrieved events for different query configurations. For Eventbrite, we

choose ten random nodes containing more than 5,000 events and for each of them and

each of the available query parameter configurations (k, l), we execute ten queries of the

form “Give me k items from node u ∈ HD that are not included in an exclude list of size

l”. As mentioned in Section 4.3.2 the exclude list for each query is constructed following

114

Table 4.2: Average absolute relative error for estimating the gain of different queries for
Eventbrite.

Q. Size k EL. Size l Chao92Shen HwangShen NewRegr
5 0 0.470 0.500 0.390
5 2 0.554 0.612 0.467

10 0 0.569 0.592 0.544
10 5 0.580 0.696 0.29
20 0 0.642 0.756 0.471
20 5 0.510 0.60 0.436
20 10 0.653 0.756 0.631

a randomized approach. For the People’s domain, we issue ten queries over all nodes of

the input poset for all available query configurations. We measure the performance of

each estimator by considering the absolute relative error between the predicted return and

the actual return of the query.

Table 4.2 reports the relative error for each of the three estimators averaged over all

points under consideration for Eventbrite. As shown, all three estimators perform equiv-

alently with the new regression-based technique slightly outperforming Chao92Shen and

HwangShen for certain types of queries. For example, for k = 10, l = 5, Chao92Shen

has a relative error of 0.58, HwangShen had a relative error of 0.7, and NewRegr had

a relative error of 0.29. We attribute the improved extraction performance of GSNewR

to these improved estimates. The relatively large values for relative errors are justified

as the retrieved samples correspond to a very small portion of the underlying population

for each of the points. This is a well-known behavior for non-parametric estimators and

studied extensively in the species estimation literature [79].

Table 4.3 shows the results for the People’s domain. We observe that for smaller

query sizes the regression technique proposed in this chapter offers better gain estimates.

However, as the query size increases, and hence, a larger portion of the underlying popu-

115

lation is observed Chao92Shen outperforms both regression-based techniques. Thus, we

are able to explain the performance difference between GSChao and the other two algo-

rithms. Eventually, we have that for sparse domains regression-based techniques result

in better performance. However, for dense domains the Chao92Shen estimator results in

better performance as a larger portion of the underlying population can be sampled.

Table 4.3: Average absolute percentage error for estimating the gain of different queries
for the People’s data domain.

Q. Size k EL. Size l Chao92Shen HwangShen NewRegr
5 0 0.295 0.299 0.228
5 2 0.163 0.156 0.144

10 0 0.306 0.305 0.277
10 5 0.341 0.349 0.293
20 0 0.359 0.371 0.467
20 5 0.2615 0.264 0.249
20 10 0.1721 0.162 0.127

4.6 Related Work

The prior work related to the techniques proposed in this chapter can be placed in a few

categories; we describe each of them in turn:

Crowd Algorithms. There has been a significant amount of work on designing algo-

rithms where the unit operations (e.g., comparisons, predicate evaluations, and so on) are

performed by human workers, including common database primitives such as filter [121],

join [105] and max [69], machine learning primitives such as entity resolution [10, 163]

and clustering [64], as well as data mining primitives [4, 148].

Previous work on the task of crowdsourced extraction or enumeration, i.e., popu-

lating a database with entities using the crowd [122, 157] is the most related to ours. In

116

both cases, the focus is on a single entity extraction query; extracting entities from large

and diverse data domains is not considered. Moreover, the proposed techniques do not

dynamically adapt crowd queries to optimize for a specified monetary budget.

Knowledge Acquisition Systems. Recent work has also considered the problem of using

crowdsourcing within knowledge acquisition systems [83, 93, 166]. This line of work

suggests using the crowd for curating knowledge bases (e.g., assessing the validity of the

extracted facts) and for gathering additional information to be added to the knowledge

base (e.g., missing attributes of an entity or relationships between entities), instead of

augmenting the set of entities themselves. As a result, these papers are solving an or-

thogonal problem. The techniques described in this chapter for estimating the amount

of information from a query and devising querying strategies to maximize the amount of

extracted information will surely be beneficial for knowledge extraction systems as well.

Deep Web Crawling. A different line of work has focused on data extraction from the

deep web [84, 147]. In such scenarios, data is obtained by querying a form-based interface

over a hidden database and extracting results from the resulting dynamically-generated

answer (often a list of entities). Typically, such interfaces provide partial list of matching

entities to issued queries; the list is usually limited to the top-k tuples based on an un-

known ranking function. Sheng et al. [147] provide near-optimal algorithms that exploit

the exposed structure of the underlying domain to extract all the tuples present in the hid-

den database under consideration. Our work is similar to this work in that our goal is to

also extract entities via a collection of interfaces (in our case the interfaces correspond to

queries asked to the crowd).

117

The main difference between this line of work and ours is that answers from a hid-

den database are deterministic, i.e., a query in their setting will always retrieve the same

top-k tuples. This assumption does not hold in the crowdsourcing scenario considered

in this chapter and thus the proposed techniques are not applicable. In their setting, it

suffices to ask each query precisely once. In our setting, since crowdsourced entity ex-

traction queries can be viewed as random samples from an unknown distribution, one

needs to make use of the query result estimation techniques introduced in Section 4.3.

4.7 Summary

In this chapter, we studied the problem of crowdsourced entity extraction over large and

diverse data domains. We introduced a novel crowdsourced entity extraction framework

that combines statistical techniques with an adaptive optimization algorithm to maximize

the total number of unique entities extracted. We proposed a new regression-based tech-

nique for estimating the gain of further querying when the number of retrieved entities

is small with respect to the total size of the underlying population. We also introduced a

new algorithm that exploits the often known structure of the underlying data domain to

devise adaptive querying strategies. Our experimental results show that our techniques

extract up to 4X more entities compared to a collection of baselines, and for large sparse

entity domains are at most 25% away from an omniscient adaptive querying strategy with

perfect information.

118

Chapter 5: Selecting Valuable Sources for Integration

So far in the dissertation we focused on the techniques used by the source analysis engine

of the quality-aware data source management architecture (Section 1.2) to index the con-

tent and discover the quality of available sources. In this chapter, we focus on the second

major part of the QDSM architecture that uses the quality profiles of the sources to dis-

cover the most valuable sources for integration. We introduce a collection of algorithms

that, given a set of available sources, discover the subset of sources that, if integrated

together, will maximize the utility of integrated data at the minimum cost. We will refer

to the utility of integrated data as the gain of integration. The gain of integration can be

quantified using the quality metrics for integrated data described in Section 3.5. The cost

of integration can incorporate the monetary cost of acquiring source data and the computa-

tion cost of performing integration. Recently, Dong et al. [47] formalized this problem of

maximizing the gain of integration while minimizing its cost by introducing the paradigm

of source selection. While the definition of the problem is generic, the authors considered

only static sources with no content updates and univariate gain functions.

In the following sections, we first review the basic definition of source selection and

provide the necessary background for the reader (Section 5.1). Then, we introduce the

problem of time-aware source selection extending the formulation of Dong et al. Further,

119

we formalize variations of the problem that, in addition to selecting a subset of sources,

allow us to decide the optimal frequency to acquire data from each source, as well as,

the optimal subset of data to acquire from each source (Section 5.2). All this variations

of the source selection problem are shown to be NP-complete. However, in Section 5.3,

we show that many of the time-aware source selection instances (e.g., where the gain is

a function of time-dependent coverage, and the cost is an additive function) correspond

to well-studied submodular optimization problems for which efficient local-search algo-

rithms with constant factor approximations are known. We also discuss how one can solve

time-aware source selection for arbitrary objective functions and multiobjective objective

functions. In Section 5.4, we present an experimental evaluation of the performance and

scalability of the source selection algorithms introduced in Section 5.3 for the business

listings and GDELT datasets introduced in Section 1.1. Finally in Section 5.5 we discuss

related work and summarize the main results of this chapter in Section 5.6.

5.1 Preliminaries

We consider a set of sources S̄ that provide data from a data domain D. As before, we

assume that D follows a closed-world assumption, i.e., D contains only objects stored in

the sources in S̄. The integrated data for any subset of sources from S̄ is characterized

by its cost and gain. The cost of integration is a function of the monetary cost to acquire

data, and the total resources needed for integration. The gain quantifies the benefit of

integration and is a function of the integration quality using the same unit as for cost.

120

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40
C

o
v
e

ra
g

e

Source Index

Coverage for BL

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0 5 10 15 20 25 30 35 40

A
c
c
u

ra
c
y

Source Index

Accuracy for BL

Figure 5.1: (a) Coverage and (b) accuracy of integrated data for the BL scenario intro-
duced in Section 1.1; Sources processed in decreasing order of coverage.

In many real-world applications it is not always worthwhile to integrate all available

sources in a domain. For example, in the presence of redundancy among data sources,

integrating new sources may not increase the coverage significantly, if at all, while it in-

creases the total cost. This can be seen in Figure 5.1(a), where we plot the coverage of

integrated data for the sources in the business listings domain described in Section 1.1.

Even worse, low-quality sources can even hurt the accuracy of integrated data while still

increasing the integration cost. This can be observed in Figure 5.1(b) for the same busi-

ness listings domain.

To address this problem, Dong et al. [47] introduced the paradigm of source se-

lection, which is performed before real integration to balance the cost and the gain of

integration. Source selection is defined as follows:

Definition 2. (SOURCE SELECTION) Let S̄ be a set of sources, F be an integration model,

GF (·) be a gain function and CF (·) a cost function using model F , and βc be a budget

on cost. The Source Selection problem finds a subset SI ⊆ S̄ that maximizes GF (SI) −

CF (SI) under constraint CF (SI) ≤ βc.

121

The gain of integration can be quantified using the quality of integrated data. Let

Q(F (SI)) denote the overall quality of the integration result F (SI) for a set of sources

SI . The quality of integrated data can be measured using a combination of different qual-

ity metrics, such as the coverage, freshness or accuracy of the integration result. Given

Q(F (SI)) the gain of integration can be defined asGF (SI) = f(Q(F (SI))) where f(·) is

a function converting the quality of integration to monetary units. The cost of integration

can vary from simple additive functions over the individual source prices [47] (i.e., the

amount of money each source requires to acquire its data) to more elaborate models that

compute the cost of integration by estimating the effort needed to integrated the data of

the selected sources [142]. To reason about the trade-off between the gain and cost of in-

tegration, it is necessary that the cost and gain functions to have the same range expressed

in monetary units. Given the aforementioned gain and cost function families, Dong et al.

show that the problem of source selection described above is NP-complete.

5.2 Selecting Dynamic Data Sources

We now consider that sources in S̄ are dynamic, i.e., they change their content over time.

Recall, that source selection is a pre-processing step to data integration, therefore, when

one selects the optimal set of sources to be integrated, she makes a decision for future

time points. Consider a fixed set of future time points, denoted by Tf . The goal is to

maximize the profit of integration, i.e., the difference between the gain and cost, for D

and Tf . Let GF (SI , Tf) be the overall gain of integrating SI using the fusion model F

for Tf , and CF (SI , Tf) be the corresponding integration cost. With GF (SI , t) denoting

122

the gain of integrating SI for a single time point t ∈ Tf , and At∈Tf denoting an aggregate

function (e.g., average or max) over the time points in Tf , define the overall gain as

GF (SI , Tf) = At∈TfGF (SI , t). Similarly to Dong et al. [47], consider an additive cost

model with CF (SI , Tf) =
∑

S∈SI
C(S, Tf), where C(S, Tf) denotes the cost of source

S ∈ SI for Tf . The problem of time-aware source selection is defined as follows:

Definition 3. (TIME AWARE SOURCE SELECTION) Let S̄ be a set of sources, F be

an integration model, and βc be a budget on cost. Let Tf be a set of time points of

interest. The Time-Aware Source Selection problem finds a subset SI ⊆ S̄ that maximizes

GF (SI , Tf)− CF (SI , Tf) under the constraint CF (SI , Tf) ≤ βc.

It is easy to see that the problem of time-aware source selection is a strict gener-

alization of the source selection problem introduced in the previous section. Therefore,

time-aware source selection is also NP-complete. Next, we introduce two variations of

the basic time-aware source selection.

Varying update frequencies: Dynamic sources offer significant opportunities to lower

the integration cost while maintaining the quality of integrated data. In particular, choos-

ing to integrate data from a source at a lower frequency than the source update frequency

can lead to similar integration quality but reduced cost.

Example 8. We focus on the BL and GDELT domains introduced in Section 1.1. For

BL, we consider the evolution of coverage for the largest source, when its updates are

acquired at half the update frequency. As shown in Figure 5.2(a), the quality loss is

not significant while the cost is reduced significantly since only half of the updates are

acquired. A similar behavior can be observed in GDELT as illustrated in Figure 5.2(b).

123

 0.65

 0.7

 0.75

 0.8

 0.85

1
1
/1

1
2
/1

1
/1

2
/1

3
/1

4
/1

5
/1

6
/1

7
/1

8
/1

9
/1

1
0
/1

1
1
/1

1
2
/1

1
/1

2
/1

3
/1

4
/1

C
o
v
e
ra

g
e

Date

Coverage Timelines for Largest Source in BL

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

1
/0

1

1
/0

3

1
/0

5

1
/0

7

1
/0

9

1
/1

1

1
/1

3

1
/1

5

1
/1

7

1
/1

9

1
/2

1

1
/2

3

C
o
v
e
ra

g
e

Date

Coverage Timelines for Largest Source for US in GDELT

Reg. Freq. Reg. Freq. x 0.5

Figure 5.2: (a) Evolution of coverage for the largest source, when incorporating updates
with different frequencies for BL. (b) Evolution of coverage for the largest source, when
incorporating updates with different frequencies for GDELT.

124

Figure 5.3: Sources covering different parts of the data domain.

We now extend the basic definition of time-aware source selection to exploit this

opportunity for lowering the integration cost. Here, we select both the subset of sources

that maximizes the integration profit and their optimal frequencies with which updates

should be acquired. Given a set of selected sources SI and their selected frequencies fSI

letGF (SI , fSI
, Tf) denote the integration gain of SI , under model F , with the frequencies

specified in fSI
for TF , and CF (SI , fSI

, Tf) denote the corresponding integration cost.

The problem of varying update frequencies is defined as follows:

Definition 4. (VARYING FREQUENCY SOURCE SELECTION) Let S̄ be a set of sources

with variable update frequencies, F be an integration model, and βc be a budget on cost.

Let Tf be a set of time points of interest. The Varying Frequency Source Selection prob-

lem finds a subset SI ⊆ S̄ and their corresponding update frequencies fSI
that maximize

GF (SI , fSI
, Tf)− CF (SI , fSI

, Tf) under the constraint CF (SI , fSI
, Tf) ≤ βc.

Integrating slices of data: Often sources may exhibit significant differences in the types

of data they cover, and, instead of acquiring all the entries from a source, only a subset

can be acquired (i.e., a slice), thus, reducing the integration cost.

125

For example, consider the three sources from BL shown in Figure 5.3. The listings

domain is characterized by two dimensions: (a) the location of the listing and (b) the

category of business (e.g., restaurants in New York). From the three data sources, (1)

the first one provides entries for most location-category pairs, (2) the second one entries

for a specific set of locations but across all categories, and (3) the last one entries for a

specific set of categories but across all locations. A user focusing on certain locations

may consider acquiring the second source and small parts of the first source to increase

the overall coverage at a reduced cost.

In such cases, sources can be viewed as aggregates of multiple micro-sources, i.e.,

elemental sources focusing on certain slices of the data domain. The basic definition of

time-aware source selection can be extended to account for this case as follows:

Definition 5. (SLICE TIME AWARE SOURCE SELECTION) Let S̄m be a set of micro-

sources corresponding to slices obtained from a set S̄ of data sources, F be an integra-

tion model, and βc be a budget on cost. Let Tf be a set of time points of interest. The

Slice Time-Aware Source Selection problem finds a subset SI ⊆ S̄m that maximizes

GF (SI , Tf)− CF (SI , Tf) under the constraint CF (SI , Tf) ≤ βc.

The SLICE TIME AWARE SOURCE SELECTION problem can be easily extended to

identify optimal update frequencies as well.

5.3 Source Selection Algorithms

This section presents how the problem of time-aware source selection and its variations

can be solved efficiently. First, we study a specific family of profit functions, i.e., sub-

126

modular profit function, and introduce a collection of efficient algorithms that come with

theoretical guarantees. This class of profit functions is specific to independent sources.

Then, we discuss how one can solve the problem of time-aware source selection for arbi-

trary profit functions and multi-variate functions.

5.3.1 Submodular Objective Functions

Dong et al. [47] proved that not only source selection in the context of data fusion is

NP-complete but also estimating the integration quality is #P-hard. In contrast to static

source selection, the quality estimators for time-dependent metrics can be approximated

efficiently when sources are independent and under an integration model using the union

semantics. Moreover, as discussed earlier the coverage and global freshness estimates

are non-decreasing submodular functions. Exploiting submodularity, a set of local-search

algorithms can be used for solving the different versions of time-aware source selection

that come with theoretical guarantees on the quality of the solution.

Given a set of time points of interest Tf and a set of independent sources, the nec-

essary conditions for a profit function to be submodular are:

• The integration gain GF (SI , t) for each time point t ∈ Tf has to be a non-negative

linear function of either estimated coverage or global freshness of F (SI).

• The aggregate function A to compute GF (SI , Tf) should be an average (or non-

negative weighted average) since the class of submodular functions is closed under

non-negative linear combinations.

127

• The cost function CF (SI , Tf) has to be an additive function, so that the profit function

GF (SI , Tf)−CF (SI , Tf) is also submodular since the difference of a submodular and

an additive function is still submodular.

Time-Aware Source Selection. Consider the basic version of time-aware source selec-

tion (Definition 3). For simplicity, assume that no constraint is set on the budget βc. This

version corresponds to the problem of maximizing a monotone submodular function, and

can be solved by a local-search algorithm introduced by Feige et al. [52] (Algorithm 3).

Algorithm 3 Submodular Maximization
1: Input: S̄: set of sources available; f : value oracle access to submodular function; n:

cardinality of S̄;
2: Output: SI : a set of selected sources;
3: Set v ← arg max{f(u)|u ∈ S̄} and SI ← {u}
4: while one of the following local operations applies do
5: /* Addition operation on SI . */
6: if e ∈ S̄ \ SI such that f(SI ∪ {e}) > (1 + ε

n2f(SI)) then
7: SI ← SI ∪ {e}
8: /* Deletion operation on SI . */
9: if e ∈ SI such that f(SI \ {e}) > (1 + ε

n2f(SI)) then
10: SI ← SI \ {e}
11: return arg maxS̄∈{SI ,S̄\SI}(f(S̄))

This algorithm starts by selecting a single source that maximizes the profit (Ln.3)

and then tries to increase the value of the running solution SI either by including a new

element in SI or by discarding one of the elements of SI until a local optimum is reached

(Ln. 4 - 10). Once a local optimum is reached, the algorithm checks if the complement of

the running selection improves the solution and returns the selected sources (Ln.11). The

algorithm is proven to yield a constant-factor approximation of (1 + ε
n2) and is shown to

use O(1
ε
n3logn) oracle calls [52].

128

Varying Frequency Source Selection. Selecting the optimal set of sources and their

corresponding frequencies can be expressed as an optimization problem with a unified

objective function. Let S̄ be the set of available sources. For each source Si ∈ S̄ one can

select a variable update frequency f ′Si
=

fSi

li
, li ∈ {1, 2, . . . ,mi},mi ∈ Z+ lower than

the original frequency fSi
of the source. Define the augmented set of available sources

as Saug = {S1
1 , S

2
1 , . . . , S

m1
1 , . . . , S1

i , . . . , S
mi
i , . . . Smk

k } where Sji denotes a version of

source Si with an update frequency of fSi

j
. One can now select sources from Saug instead

of S̄ - each entry of Saug can be considered as a different source - under the constraint

that only one of the [li] versions of an actual source Si will be selected for integration.

The submodular objective is now defined over the ground set Saug and the fre-

quency constraints can be expressed as a uniform matroid constraint. A uniform matroid

U r
n is defined over a set of n elements, and a subset of the elements is independent if

and only if it contains at most r elements. Thus, each of the k constraints corresponds

to a uniform matroid constraint of rank 1. Every uniform matroid is also a partition ma-

troid. The varying frequency time-aware source selection corresponds to the problem of

maximizing a monotone submodular function under a fixed number of partition matroid

constraints, and can be solved by an algorithm that yields a constant-factor approximation

of 1
k+ε

[95].

The algorithm is shown in Algorithm 4. The independent sets defined by the ma-

troid constraints divide the ground set of sources in multiple partitions, each correspond-

ing to the intersection of a combination of independent sets from all constraints. The

algorithm identifies k + 1 disjoint partitions for which the optimization objective is lo-

cally maximized and returns the partition with the highest objective value. The algorithm

129

Algorithm 4 Submodular Maximization with Matroid Constraints
1: Input: Saug: ground set of sources; k: number of matroid constraints;
2: Output: Sopt: a set of selected sources;
3: Set V1 = Saug

4: for i = 1, · · · , k + 1 do
5: Apply the approximate local search procedure A on a ground set Vi to obtain a

solution Si ⊆ Vi corresponding to the problem:

max{f(S) : S ∈ ∩kj=1Ij, S ⊆ Vi}

6: Set Vi+1 = Vi \ Si
7: return Sopt ← max{f(S1), · · · , f(Sk+1)}

performs k+ 1 iterations (Ln. 4) and at each iteration i uses a local-search procedure (Ln.

5) similar to the one used in the basic version (Algorithm 5) to select an approximately

optimal set of sources over a subset Vi of the available sources. Each of the sets Vi cor-

responds to the union of a subset of the aforementioned partitions. After each iteration

the set of available sources for the next iteration is restricted to sources that were not pre-

viously selected (Ln. 6). Finally, the algorithm returns the partition, i.e., a subset of the

data sources, with the highest objective value (Ln. 7).

The local search procedure is given a set of available data sources and greedily

selects a set of available sources that maximizes the optimization objective under the

given constraints. The algorithm detects a single source that yields the highest objective

value (Ln. 4) and proceeds by searching the neighborhood of the running solution for

solutions that improve the objective. The local neighborhood of the running solution is

constructed either by removing a source from the solution (Ln. 5-7) or by exchanging a

set of selected sources with a new source such that all the constraints are satisfied (Ln.

8-10). The local search procedure iterates until a local optimum is retrieved. The running

130

time of Algorithm 5 is 1
ε
nO(k) with n = |Saug| and k is the number of matroid constraints,

and thus the running time of Algorithm 4 is O((k + 1)1
ε
nO(k)) [95].

Algorithm 5 Local Search Procedure
1: Input: X: ground set of sources; f : value oracle access to submodular function; n:

cardinality of Saug;
2: Output: SI : a set of selected sources;
3: Set v ← arg max{f(u)|u ∈ X} and SI ← {u}
4: while one of the following local operations applies do
5: /* Delete operation on SI . */
6: if e ∈ SI such that f(SI \ {e}) > (1 + ε

n4f(SI)) then
7: SI ← SI \ {e}
8: /* Exchange operation on SI . */
9: if d ∈ X \SI and ei ∈ SI ∪{∅} (for 1 ≤ i ≤ k) are such that (SI \{ei})∪{d} ∈ Ii

for all i ∈ [k] and f((SI \ {e1, · · · ek}) ∪ {d}) ≥ (1 + ε
n4)f(SI) then

10: SI ← (SI \ {e1, · · · , ek}) ∪ {d}
11: return SI

Slice Time-Aware Source Selection. The basic submodular optimization problem of

time-aware source selection can be trivially extended to account for this case by includ-

ing all the micro-sources in S̄. The set of available sources can also be replaced by its

augmented set to account for variable update frequencies of the micro-sources.

5.3.2 Arbitrary Objective Functions

When the integration profit is not submodular (e.g., when the gain is quantified using the

accuracy or local freshness of F (SI) or when the sources are dependent), one can apply

the greedy randomized adaptive search procedure (GRASP) meta-heuristic [54]. GRASP

was also used by Dong et al. [47] to solve source selection for static sources. The GRASP

algorithm for solving the basic time-aware source selection problem follows similar steps

as the algorithm shown in Dong et al. However, GRASP needs to be extended in the case

of varying frequencies to account for the matroid constraints introduced above.

131

GRASP is conceptually similar to the submodular optimization algorithm, in that it

starts by selecting the best source and at each step explores the local neighborhood of the

running solution in a hill-climbing fashion, by adding and deleting sources. However, in

each step GRASP identifies the top-k candidate decisions in terms of resulting profit and

chooses one at random. Since the process is randomized, GRASP repeats the overall se-

lection process r times and chooses the best selection out of these repetitions. Depending

on the number of repetitions, the complexity of GRASP increases significantly. Finally,

GRASP does not come with any theoretical guarantees.

5.3.3 Multiobjective Source Selection

As discussed in Section 3.5, multiple metrics can be used to characterize the quality of

data. Thus far, the techniques presented for solving source selection, considered a unified

objective function that combines the different metrics into a single gain value. However,

many times it is hard for users to know the right trade-off between the individual quality

metrics, while it is natural for them to specify a cost constraint. Considering this, the

source selection problem can be case as a multiobjective optimization problem that finds

the set of Pareto optimal solutions corresponding to the source selection problem at hand.

Pareto optimality states that for the returned solutions, i.e., the Pareto front, it is

impossible to improve one of the individual quality metrics without hurting at least one

other metric [58]. Discovering all the solutions on the Pareto front is expensive as one

needs to reason about all the potential trade-offs amongst the available quality metrics.

To address this issue we use a sampling strategy to recover solutions that correspond

132

to different quality trade-offs. Let Q be the set of quality metrics under consideration

and Gq
F (·) be a function computing the gain of integration with respect to quality metric

q ∈ Q for any set of sources. We compute the total gain of integration as a weighted linear

combination of the individual gain for each quality metric, i.e.,GF (·) =
∑

q∈Qwq ·Gq
F (·).

Given this definition of the total gain of integration, we sample different combinations for

the weights wq and solve source selection for each of those using the algorithms above.

The result of this sampling process is a collection of vector points where the di-

mensions of each vector correspond to the different quality metrics in Q. Now, our goal

becomes finding the Pareto optimal vectors in the collection. For this, we use the Sim-

ple Cull (SC) minimization algorithm [127]. At a high-level this algorithm maintains a

set Cmin of Pareto points among the points observed so far. Whenever a new point is

inspected, either the point is dominated (i.e., all of its quality values are lower than an

existing point in Cmin) and the point is discarded or if the point is not dominated it is

added in Cmin and any points from Cmin dominated by this new point are removed. The

worst case complexity of the algorithm is O(n2) where n is the number of input points.

Here, these points correspond to the sampled source selection solutions.

5.4 Experimental Evaluation

We present an experimental evaluation of the source selection algorithms presented above.

The main questions we seek to address are: (1) how different source selection algorithms

perform under different families of gain and cost functions, and (2) how well do these

algorithms scale. We study these questions on both real-world and synthetic datasets.

133

5.4.1 Experimental Setup

Data. For our real-world experiments we use the business listing and GDELT datasets

described in Section 3.7.1. Furthermore, we use a collection of synthetically generated

datasets BL+ , using BL as a seed, to evaluate the scalability of the proposed algorithms.

We decompose the sources in BL into multiple overlapping micro-sources, where each

micro-source covers a randomly selected subset of the initial source. If |L| denotes the

locations in a source S, we construct each micro-source to contain all the entities from

S belonging to a randomly selected subset of locations from the original source. The

number of locations in each micro-source is chosen uniformly at random from a uniform

distribution U(0.2 · |L|, 0.5 · |L|). We vary the total number of micro-sources to be in

{0, 1, 2, 5, 10, 20, 50, 100, 200} obtaining 9 different datasets with 43 to 8643 sources.

Algorithms. The following algorithms are considered:

• Greedy: The same as the greedy algorithm used by Dong et al. [47]. Starting from

an empty selection set the algorithm iteratively selects the source that maximizes the

integration profit until it reaches a local optimum.

• MaxSub: Depending on the version of time-aware source selection MaxSub corre-

sponds to the submodular optimization algorithms in Section 4.4.

• GRASP: The GRASP algorithm proposed by Dong et al. [47] for different configura-

tions of (κ, r).

All algorithms are implemented in Java and the evaluation is performed on an Intel(R)

Core(TM) i5 2.3 GHz/64bit/8GB machine.

134

Gain-Cost Models. The following two families of gain models are considered: (1) qual-

ity driven, and (2) data driven models. For the first, let Q be the quality (i.e., coverage,

freshness or accuracy) of the integrated data. The specific gain functions are: (1) LIN-

EARGAIN assuming that the gain grows linearly with a certain data quality metric Q and

sets G(Q) = 100Q, (2) QUADGAIN assuming that the gain grows quadratically with Q

and setsG(Q) = 100Q2, and (3) STEPGAIN assuming that reaching a milestone of quality

increases the gain significantly and sets

G(Q) =



100Q if 0 ≤ Q < 0.2

100 + 100(Q− 0.2) if 0.2 ≤ Q < 0.5

150 + 100(Q− 0.5) if 0.5 ≤ Q < 0.7

200 + 100(Q− 0.7) if 0.7 ≤ Q < 0.95

300 + 100(Q− 0.95) if 0.95 ≤ Q ≤ 1.0

For the second category, denoted by DATAGAIN, a gain of $10 is considered for

each covered item in F (SI) and for a particular time point t the integration gain is

G(F (SI), t) = 10 · Cov∗(F(SI), t)|Ω|t.

Finally, an additive cost function is considered. Similarly to DATAGAIN, each entity

has a basic cost of $10 and an actual cost of c = $10
(#sources mentioning the item) . The cost c of a

source is the total cost of items contained in it. When considering varying frequencies for

sources the source cost is set to c′ = c/(1 + m/10), where m is the frequency divisor.

Finally, both the gain and cost are rescaled to take values in [0, 1].

135

5.4.2 Performance of Source Selection Algorithms

We first evaluate the performance of the aforementioned source selection algorithms. We

focus on two scenarios.

Fixed update frequencies. Consider a fixed update frequency for each data source and

the basic time-aware source selection problem with a user being interested in ten future

time points for six data domain points. The overall gain is computed by taking the av-

erage gain across time points. The selection tasks for BL correspond to the six largest

domain points corresponding to four business types in the states of California and New

York. For GDELT, the selection tasks correspond to six domain points for events in

the United States. The different algorithms are compared considering DATAGAIN, and

LINEARGAIN, QUADGAIN, STEPGAIN with the gain being quantified using coverage and

accuracy for BL and coverage for GDELT.

Greedy, MaxSub and GRASP with κ ∈ {1, 2, 5, 10} and r ∈ {1, 10, 20, 100} are

used for solving the source selection problem for both datasets. GRASP with (κ = 1, r =

1) corresponds to a hill-climbing algorithm. For each gain function, I compare the se-

lections by the various algorithms and choose the one with the highest profit as the best.

The results presented below report the percentage of times the best selection is returned

by each algorithm and for sub-optimal selections the average and maximum, reported in

parenthesis, profit difference from the best selection is shown. For GRASP the (κ, r)

configuration that obtained the best selection is also reported.

The results for BL are shown in Table 5.1. MaxSub and GRASP outperform Greedy

returning solutions that result in up to 9.5% higher objective values on average and up to

136

Table 5.1: Various algorithms for source selection in BL on the percentage of out-
putting the best selection and average and worst (reported in parenthesis) profit difference
from the best selection. Notation (κ, r) denotes the best performing GRASP algorithm.
Sources with a fixed update frequency are considered.

Avg. Selection Quality
Gain Metric Msr. Greedy Maxsub Grasp

Linear
cov.

best 16.7% 50% 100% (5, 20)
diff. .005 (.01)% .001 (.007)% -

acc.
best 0% 33.3% 83.3% (2, 100)
diff. 9.5 (53.7)% .39 (2.31)% 8.9 (53.7)%

Quad.
cov.

best 33.3% 66.7% 100% (10, 100)
diff. .017 (.06)% .012 (.06)% -

acc.
best 100% 100% 100% (1,1)
diff. - - -

Step
cov.

best 50.0% 66.7% 83.3% (10, 100)
diff. 7.45 (27.8)% 1.76 (10.6)% .7 (4.2)%

acc.
best 50% 66.7% 83.3% (5,100)
diff. 6 (23.98)% .8 (4.7)% 3.99 (23.98)%

Data -
best 16.7% 50% 83.3% (5, 20)
diff. .004 (.01)% .001 (.003)% .002 (.007)%

53.7% in the worst case. While GRASP returns the best solution most of the times, the

solutions returned by MaxSub are on average comparable to the ones obtained by GRASP

with a low average profit difference. This behavior is expected since MaxSub unlike

Greedy comes with rigorous theoretical guarantees, and GRASP applies a similar local

search procedure to the one used by MaxSub. Nevertheless, observe that randomization

and multiple iterations help GRASP to obtain marginally better solutions. However, if

one considers the run time of the algorithms (shown in Table 5.2), she sees that MaxSub

is one to two orders of magnitude faster than GRASP. Eventually, depending on the gain

function, MaxSub can be a viable alternative compared to GRASP. Although, if the profit

requirements are strict one should use GRASP.

137

Table 5.2: Average run times of the source selection algorithms for BL. Notation (κ, r)
denotes the parameters of GRASP.

Avg. Run Time (sec)
Gain Metric Greedy Maxsub (1,1) (2,10) (5,20) (10,100)

Linear
cov. 0.05 0.16 0.16 2.23 4.35 20.13
acc. 0.42 1.6 1.5 14.9 39.9 144.2

Quad
cov. 0.03 0.11 0.14 1.6 3.3 17.6
acc. 0.14 0.35 0.43 5.5 11.9 57.8

Step
cov. 0.03 0.11 0.13 1.6 2.8 15.25
acc. 0.14 0.46 0.5 6.4 14.16 74.02

Data - 0.04 0.18 0.17 2.4 4.6 25.7

Table 5.3: Performance and runtime comparison of the source selection algorithms for
GDELT, showing the percentage of outputting the best selection and average and worst
(reported in parenthesis) profit difference from the best selection. Notation (κ, r) denotes
the best performing GRASP algorithm.

Avg. Selection Quality
Gain Msr. Greedy Maxsub Grasp

Linear Cov.
best 16.7% 50% 100% (10, 100)
diff. 4.01 (13.7)% 0.5 (2)% -

runtime (sec) 8.58 (37) 74.12 (326) 1231.05 (4363)

Data
best 3.3% 0% 100% (10, 100)
diff. 5.64 (14.9)% .91 (3)% -

runtime (sec) 1.01 (5.03) 8.96 (44) 868.87 (4322)

Similar results are observed for GDELT. Table 5.3 reports the performance and run-

time of the various algorithms. One can see that for LINEARGAIN and DATAGAIN both

MaxSub and GRASP outperform Greedy. While GRASP never fails to detect the best

solution, the profit difference between MaxSub and GRASP is very small and more

importantly MaxSub is again one to two orders of magnitude faster. The results for

QUADGAIN and STEPGAIN are omitted since all algorithms retrieved the same solution.

The following results focus on the average quality of the retrieved solution and the

average number of sources selected for BL and GDELT. The results for BL are shown in

Table 5.4. As shown, all algorithms tend to choose fewer sources when the gain is mea-

138

Table 5.4: Characteristics of the selected sources for various algorithms on BL for fixed
source update frequencies.

Alg
Coverage Accuracy

Avg. Qual. Avg. #Srcs Avg. Qual. Avg. #Srcs.
Greedy 0.52 10 0.49 8
MaxSub 0.56 11 0.57 7.6
GRASP 0.56 11 0.57 8.6

Table 5.5: Characteristics of the selected sources for various algorithms on GDELT for
fixed source update frequencies.

Alg Greedy MaxSub GRASP
Avg. Coverage 0.57 0.62 0.65

Avg. # Srcs 154 163 167

sured with respect to accuracy. All algorithms tend to select fewer large uniform sources

and prefer more specialized smaller sources. Figure 5.4 shows the various source types se-

lected from GRASP when the LINEARGAIN function with coverage and accuracy is used

to specify the gain. A similar behavior was observed for all algorithms. Finally, Table 5.5

shows the results for GDELT. GRASP and MaxSub were able to select significantly more

sources and increase the coverage of the retrieved solution by 5% and 8%.

Variable update frequencies. The following experiment considers different versions

for each source corresponding to different update frequencies. For BL seven different

Figure 5.4: Selected sources when the gain is defined using coverage and accuracy. For
accuracy smaller and more specialized sources are preferred.

139

Table 5.6: Characteristics of the selected sources for various algorithms on BL for sources
with variable update frequencies.

Alg
Coverage Accuracy

Avg. Qual. Avg. #Srcs Avg. Qual. Avg. #Srcs.
Greedy 0.96 15.6 0.948 14.6
MaxSub 0.976 15.6 0.958 15
GRASP 0.976 16 0.958 16

versions S1
i · · · , S7

i are taken for each original source. As before, the user is assumed to

be interested in the same ten future time points and the same six data domains. Similar

performance, as the one presented above, is observed for all the algorithms. Namely,

GRASP outperforms both Greedy and MaxSub. The difference in profit between the

retrieved solutions is significantly smaller (less than 0.5% in average) compared to the

previous case.

Focusing on the quality of the solutions returned by the various algorithms, Allow-

ing sources to have variable frequencies significantly improves the quality of the retrieved

solutions. The average coverage and accuracy rise to 0.976 and 0.958 respectively, com-

pared to 0.56 and 0.57 for the case of fixed frequencies. The reason is that by reducing the

update frequency of a source the corresponding cost is reduced, and hence, the algorithms

choose to integrate more sources. The corresponding results are reported in Table 5.6. Fi-

nally, observe that all algorithms preferred selecting large sources with a significantly

reduced update frequency. However, for small specialized sources they either select the

original update frequency or a small divisor of that. The average frequency divisors for

uniform and specialized sources are reported in Table 5.7.

140

Table 5.7: Average frequency divisor for uniform and specialized sources in the solution
of the various algorithms.

Alg Greedy MaxSub GRASP
Uniform Srcs. 4.9 5.2 4.9

Specialized Srcs. 2.6 2.9 3.2

 1

 10

 100

 1000

 10000

 100000

 1e+06

 50 1500 3500 5500 8500

R
u
n
 T

im
e
 (

m
s
)

of Sources

Scalability of Source Selection

Greedy
MaxSub

Grasp-(1,1)

Grasp-(2,10)
Grasp-(5,20)

Grasp-(10,100)

Figure 5.5: Run time of the various algorithms as the number of sources increases.

5.4.3 Scalability

The next set of experiments evaluates the scalability of the various algorithms as the

number of available sources increases. The gain function used corresponds to LINEAR-

GAIN with coverage, and the synthetically generated datasets BL+ , considering source

selection for a single data point for 10 future time points, are used. The corresponding run

times are shown in Figure 5.5, where the x-axis corresponds to the number of available

data sources and the y-axis (shown in log-scale) to the run time measured in millisec-

onds. As shown, MaxSub is one to two orders of magnitude faster compared to the best

performing alternatives of GRASP, and scales better as the number of sources increases.

141

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 50 100 200 300 400 500
R

u
n
 T

im
e
 (

m
s
)

Size of Data Domain (#(Location, Business Types))

Scalability of Source Selection - Size of Data Domain

Cov.-Greedy
Cov.-MaxSub

Cov.-Grasp-(1,1)
Cov.-Grasp-(5,20)

Acc.-Greedy
Acc.-MaxSub

Acc.-Grasp-(1,1)
Acc.-Grasp-(5,20)

Figure 5.6: Run time of the algorithms as the the size of the input domain increases.

BL is used to examine the scalability of the various algorithms with respect to the

size of the input data domain, where the size of the input domain is the number of location-

business type pairs specified in a certain user query. The performance of Greedy, MaxSub

and GRASP with (κ = 5, r = 20) is evaluated for LINEARGAIN with coverage and accu-

racy. The corresponding run times are shown in Figure 5.6, where the x-axis corresponds

to the size of the input domain and the y-axis (shown in log scale) to the run time mea-

sured in milliseconds. Again, observe that MaxSub is an order of magnitude faster than

GRASP-(5,20).

5.4.4 Main Results

The main results are as follows.

1. Most of the time, GRASP selects the subset of dynamic sources with the highest

profit. However, the solutions discovered by MaxSub are mostly comparable to

142

the best solutions, with an average quality loss of less than 2% and a worst-case

quality loss of about 10% compared to the best solution. However, we point out that

there are cases where GRASP is significantly worse than MaxSub, with an average

quality loss of about 9% and a worst-case quality loss of over 50% compared to the

solutions by submodular optimization. Greedy is the worst strategy overall.

2. Finally, MaxSub is one to two orders of magnitude faster than GRASP, and scales

better as the number of sources increases. Coupled with the robust quality of its

solutions, the significantly faster run-times makes MaxSub a viable alternative to

GRASP, especially for large instances of source selection.

5.5 Related Work

The most relevant work to the techniques described in this chapter is that by Dong et

al. [47]. The authors introduced the problem of source selection, and showed how one can

maximize the profit of integration by optimizing the gain and cost of integrating sources

jointly. However, this work focuses on static sources and is not applicable to sources

whose content changes dynamically. Moreover, the proposed algorithms, while effective

in practice, do not come with rigorous theoretical guarantees on their performance. In this

chapter, we considered the problem of source selection for dynamic sources and showed

how to select a nearly-optimal set of sources and determine their optimal update frequen-

cies by providing a set of algorithms with rigorous theoretical guarantees. Regarding the

cost function families, in this chapter, we limited source selection to simple cost families

using a model similar to that of Dong et al. [47]; however, other cost models such as the

143

one introduced by Kruse et al. [142] can be seamlessly incorporated in our techniques.

Finally, algorithms for computing the Pareto frontier of a finite set of alternatives have

been studied in the skyline query literature [63, 94]. While here we use a simple algo-

rithm for approximating the Pareto optimal frontier, these more sophisticated techniques

can be used to extend our methodology.

5.6 Summary

In this chapter, we studied the problem of identifying the most valuable sources for in-

tegration in the case of dynamic data sources. We introduced the problem of time-aware

source selection and variations of it that not only select a nearly-optimal set of sources

for integration but decide the optimal frequency with which to acquire data from each

source. We also proposed an algorithmic framework for solving time-aware source se-

lection that comes with rigorous theoretical guarantees on the quality of the selected set

of sources. Finally, we experimentally evaluated our source selection algorithms under

different families of benefit and cost functions, and showed that our submodular optimiza-

tion algorithms provide solutions of similar, and in some cases, better quality compared

to previous state-of-the-art approaches. Moreover, our algorithms are one to two orders

of magnitude faster and scale better as the number of sources increases making them a

viable alternative for large instances of source selection.

144

Chapter 6: Managing Source Dependencies with Probabilistic Databases

Thus far, we considered sources that update their content independently. For instance, in

Section 3.5.2.1 we described how the content changes for a set of sources can be estimated

efficiently when they are independent. While this assumption is valid for many practical

scenarios, sources can exhibit dependencies. In most cases, dependence between sources

arises when sources copy information from each other. This is quite prevalent in the news

domain where many news agencies collect articles from local correspondents and then

larger news papers copy news articles from these agencies. Furthermore, there might be

scenarios where sources provide conflicting information due to different perspectives they

may have. Recently, there has been an increasing interest in discovering the dependencies

between sources [171, 45, 12] and reasoning about the accuracy of the integration result

in the presence of source dependencies [126].

In this chapter, we demonstrate how source dependencies can be represented as a

factor graph and how computing the content changes corresponds to performing inference

over Boolean formulas with dependent variables (i.e., Boolean queries). When a large

number of data sources is available, we discuss how a probabilistic database can be used

to store the corresponding factors graphs and evaluate Boolean queries over them.

145

6.1 Introduction

In Section 3.5.2.1, we showed how, under the union semantics, estimating content changes

in the integration result of a set of sources SI corresponds to computing the probability

that at least one of the sources captures a change from the underlying data domain. We

also described that this probability is equivalent to computing the probability of a disjunc-

tive Boolean formula evaluating to true. The base variables in that formula correspond to

Boolean indicator variables that sources in SI captured a change or not. When sources are

dependent, e.g., they copy from each other following known patterns, one can easily see

that the variables in this formula are correlated. Hence, one cannot use Equations 3.22,

3.23 and 3.24 to efficiently estimate the changes in the integration result.

Similarly, Pochampally et al. [126]show that estimating the overall accuracy of the

integration result for a set of sources whose precision and recall are known, corresponds

to computing the probability of a conjunctive Boolean formula evaluating to true. We

refer the reader to Section 4.1 in Pochampally et al. [126] for details on this derivation.

Source dependencies, and hence, the correlations of the aforementioned indicator

variables, can be represented using a factor graph [92]. For example, Figure 6.1 shows

an example of two dependent sources. Source S2 is copying information from S1 with

probability 0.7. This means that whenever S1 captures a change in the underlying data

domain, then S2 will reflect it as well with probability 0.7. Variables I1 and I2 are the

corresponding Boolean indicator variables for capturing changes from the world. The

copying dependence between S1 and S2 corresponds to I2 being true with probability 0.7

when I1 is true. This is captured by the factor graph shown in the figure. Recently, Li

146

I1f1 I2f2

0.651

0.35

Prob.I
1

0

1 0.71

01 0.6

0.3

0.4

Prob.

10

00

I
1

I
2

f1 f2

S1 S2

Source S2 copies from S1 with probability 0.7

I1: indicator variable that Source S1 captured a change from the world

I2: indicator variable that Source S2 captured a change from the world

Factor graph

Figure 6.1: An example of two sources where S2 copies from S1 and the corresponding
factor encoding that dependency.

147

et al. [99] studied the problem of large-scale copy detection and showed how one can

retrieve source dependencies and the probabilities as the ones shown in Figure 6.1 by

collectively analyzing the data provided by different sources.

Given a factor graph as the one shown above, we can reason about the content

changes of sources by computing the probabilities shown in Equations 3.22, 3.23 and

3.24. This corresponds to computing the probability of the corresponding Boolean formu-

las over the factor graph capturing the dependencies of sources. In the previous example,

if we want to compute the probability that the integration result will capture a change in

the world, we need to compute the probability Pr(I1 ∨ I2 = true). Given the dependen-

cies across sources, this probability is Pr(I1 ∨ I2 = true) = Pr(I1 = true) + Pr(I1 =

false ∧ I2 = true) = 0.65 + 0.35 ∗ 0.6 = 0.86. We refer to these Boolean compu-

tations as Boolean queries. Notice that this probability is lower than considering that

sources are independent. More precisely, from the factor graph shown above we have

that Pr(I1 = true) = 0.65 and Pr(I2 = true) = 0.665. If we assume that sources

are independent we have that Pr(I1 ∨ I2 = true) = 0.88275 which overestimates the

corresponding probability by 2%.

Given the large number of data sources and their dependencies, the goal now be-

comes storing and managing these dependencies efficiently. Moreover, we want to be

able to evaluate Boolean queries as the one presented above efficiently. Recently, the

paradigm of probabilistic databases has been proposed as a means for storing large factor

graphs and evaluating Boolean queries over them efficiently [31, 143].

Query evaluation over probabilistic databases as well as probabilistic inference are

known to be #P -hard. To overcome this limitation, a number of different approaches

148

have been explored to make query evaluation over probabilistic databases more efficient,

including knowledge compilation techniques [115] or approximation techniques [91, 117,

132]. While these approaches perform reasonably well under the scenario that the ran-

dom variables stored in the database are independent, they exhibit poor scalability in the

presence of correlated variables, which is exactly the case for data source dependencies.

In the remainder of this chapter, we introduce an algorithmic framework that in-

creases the efficiency of query evaluation over probabilistic databases. To speed up query

evaluation, our techniques exploit context-specific independence and determinism in the

correlations, collectively referred to as local structure [36]. Context-specific indepen-

dence [17, 173], often observed in practice, refers to independences that hold given a

specific assignment of values to certain variables. Determinism in the correlations, i.e.,

assigning zero probability to some joint variable assignments, typically manifests in un-

certainties involving logical constraints, e.g., mutual exclusion, implications, etc. Ex-

ploiting such local structure enables probabilistic inference to run efficiently in many

scenarios, where the standard inference techniques such as variable elimination are not

feasible [36]. Our framework builds upon the notion of an arithmetic circuit (AC) [36],

which is a compiled and compact representation of a factor graph that can effectively

exploit local structure to drastically reduce online inference times [24]. The highly-

compact compiled form of ACs makes it a non-trivial challenge to compute probabilities

of Boolean formulas over them. To address this challenge, we introduce annotated arith-

metic circuits (AACs), an extension where we add variable annotations on the internal

operation nodes of an AC, and develop a novel algorithm for merging two AACs to, in

essence, combine the uncertainties captured by the AACs. For evaluating queries over

149

an AAC-representation of a probabilistic database, we represent the resulting lineage for-

mulas using ordered binary decision diagrams (OBDDs), suggested in prior work [115].

However, the AAC-representation of the database imposes significant constraints on how

OBDDs can be generated, requiring us to develop new algorithms for this task. However,

we show that our techniques exhibit speed-ups of at least one order of magnitude over

competing approaches.

The remainder of the chapter is structured as follows. In Section 6.2, we discuss

the necessary background as related to this chapter. In Section Section 6.3 we present

an overview of our algorithmic framework. Then in Section 6.4 we define the structure

of Annotated Arithmetic Circuits (AACs) and how one can compile a factor graph to an

AAC. Then in Section 6.5, we present how one can evaluate boolean queries over AACs.

We experimentally evaluate our approach in Section 6.6. Finally, in Section 6.7, we

discuss related work and in Section 6.8 we summarize the contributions of this chapter.

6.2 Preliminaries

We present a short review of probabilistic databases and arithmetic circuits.

6.2.1 Probabilistic Databases

A probabilistic database can be defined using the possible world semantics [33]. Let

R be a set of relations, X = {X1, · · · , Xn} be a set of random variables associated

with the tuples or attributes stored in the database (these could either be binary random

variables capturing tuple existence uncertainty, or discrete random variables capturing at-

150

tribute value uncertainty), and Φ be a joint probability distribution overX . A probabilistic

database D is defined to be a probability distribution over a set of deterministic databases

(or possible worlds) W each of which is obtained by assigning X a joint assignment

x = {X1 = x1, . . . , Xn = xn} such that xi ∈ dom(Xi). The probability associated with

a possible word obtained from the joint assignment x is given by Φ.

Given a query q to be evaluated against databaseD, the result of the query is defined

to be the union of results returned by each possible world. Furthermore, the marginal

probability of each result t in the union is obtained by summing the probabilities of the

possible worlds Wt ⊆ W that return t: Pr(t) =
∑
w∈Wt

Pr(w).

Representation. Typically, we are not able to represent the uncertainty in the dataset

using an explicit listing of the joint probability distribution Φ. Instead more compact

representations need to be used. The different representations differ in their expressibil-

ity and the complexity of query evaluation. The simplest representation associates tuple

existence probabilities with individual tuples, and assumes that the tuple existences are

independent of each other. However, most real-world datasets contain complex correla-

tions, therefore, making an independence assumption can lead to oversimplification and

large errors [143, 144].

Instead, we use a general and flexible representation of a probabilistic database,

proposed by Sen et al. [143] and also used by Wick et al. [167], that can capture com-

plex correlations among the tuples or the attributes in the database through use of factor

graphs, a class of graphical models that generalizes both directed Bayesian networks and

undirected Markov networks. More formally we have:

151

Definition 6. A factor f : dom(X1) × dom(X2) × · · · × dom(Xm) → R+ is a

function over a set of random variables X = {X1, X2, . . . , Xm} such that f(x) ≥ 0,∀x ∈

dom(X1) × · · · × dom(Xm). The set of variables X is called the scope of the factor and

denoted Scope[f].

Definition 7. A factor graph P = (F ,X) defines a joint distribution Φ over the set of

random variables X via a set of factors F , where ∀f(·) ∈ F , Scope[f] ⊆ X . Given

a complete joint assignment x = {X1 = x1, . . . , Xn = xn} such that xi ∈ dom(Xi),

the joint distribution is defined by Φ(x) = Pr(x) = 1
Z
∏
f∈F

f(xf) where xf denotes the

assignments restricted to Scope[f] and Z =
∑

x′∈X

∏
f∈F

f(x′f).

This leads us to a formal definition of a probabilistic database:

Definition 8. A probabilistic database D is a pair (R,P) where R is a set of relations

and P denotes a factor graph defined over the set of random variables associated with the

tuples inR.

We require that the joint distribution defined by the factor graph satisfy certain nor-

malization constraints, i.e., the partition function Z = 1. This does not imply a limitation

on the applicability of the proposed framework but is only used for ease of representation.

Figure 6.2(a) shows an example probabilistic database represented using factors, along

with the factor graphs themselves (which contain nodes for each factor and each random

variable, and a factor is connected to all variables that it is defined over). We assume we

only have tuple existence uncertainties, and the Boolean random variables corresponding

to the tuple existences are associated with the tuples (x1, x2, · · ·). In the remainder of the

chapter, for any Boolean random variable x we will denote its true and false assignment

152

x2 x2b2a2

rv

x1a1x1

A

b1

Btid

X:

y2b2y2 c2

tid

y1 c1

rvB

y1b1

C

Y:

D

c1

rv

c2

C

z2

z1

d2

z1

tid

d1

z2

Z:

X1 X2

X1 f(.)

0.4x12

0.6x11

X2 f(.)X1

x22x12 1

x12 x21 0

0.7

0.3

x22x11

x21x11

f(.)Z1

0.2z12

0.8z11

Z2 f(.)Z1

z22z12 1

z12 z21 0

0.9

0.1

z22z11

z21z11

Y1 f(.)

0.8y12

0.2y11

Y1

f1:
f5:f3:

f2:
f6:

{z1,z2}f5

{z1}

f4

{y1}

f1

fid

{y1,y2}

{x1,x2}

{x1}

f3

f5

rv

f2

factor:

f1 f2
f5

f6f3

Z2Z1

Y2 f(.)Y1

y22y12 0.9

y12 y21 0.1

0.3

0.7

y22y11

y21y11

f4:

f4

Y2

Lineage: (x
1
∧y
1
∧z
1
) ∨ (x

2
∧y
2
∧z
2
) Query: q():- X(A,B), Y(B,C), Z(C,D)

(a)

(b)

Figure 6.2: (a) A probabilistic database where the uncertainty is represented with factors.
(b) The lineage corresponding to a conjunctive query.

with x1 and x2 respectively. The factors are stored separately. In this example, we have

six factors, f1, · · · , f6. The random variables over which they are defined are stored in a

separate table (called factor). As an example, we have two factors containing variable x1,

namely, f1 and f2, the latter of which is a joint factor over x1 and x2. The joint probability

distribution over all variables is defined as:

Φ = f1(X1)f2(X1, X2)f3(Y1)f4(Y1, Y2)f6(Z1)f6(Z1, Z2).

Querying a probabilistic database. Executing an SQL query over a probabilistic database

efficiently has been a subject of much research over the last decade in the database com-

munity. The approaches can roughly be divided into extensional approaches and inten-

sional approaches. In an extensional approach, the query evaluation process is guided

solely by the query expression, and query operators are extended to directly compute the

153

corresponding probabilities. For example, the probability of a join result tuple s 1 t is the

product of the probabilities of the tuples s and t. When such extensional evaluation is pos-

sible, the query can be evaluated in polynomial time, hence, much research has focused

on characterizing datasets, queries, and query plans for which extensional methods can

be correctly applied [32, 115, 81, 116]. On the other hand, in an intensional approach, the

intermediate tuples generated during query execution and the final result tuples are associ-

ated with propositional symbolic formulas (often called lineage expressions) over a subset

of the random variables corresponding to the base input tuples. One of several general

purpose inference algorithms can then be used to compute the result tuple probabilities,

either exactly, e.g., using Shannon expansion [115], variable elimination [145], etc., or

approximately [91, 117, 132], depending on the complexity of the lineage expression and

the uncertainty model.

With our focus on correlated databases, we are restricted to using an intensional

approach. In intensional methods the relational operators are extended to build a Boolean

formula (called lineage) for each intermediate tuple and each result tuple generated during

query evaluation (Figure 6.2(b)). The marginal probability of a result tuple can now be

obtained by computing the probability of the corresponding Boolean formula evaluating

to true, which is #P-hard.

Next, we review some of the intensional query evaluation techniques that have been

proposed in the literature.

Variable Elimination (VE)-based Approach. In the VE-based approach [143], instead

of constructing a lineage formula for each result tuple, we construct an equivalent rep-

154

(a) Factor graph (b) OBDD

Lineage: (x1∧y1∧z1) ∨ (x2∧y2∧z2)

x1 y1 z1 x2 y2 z2

i1 i3

i4
i2

i5

f
1

f
3

f
5

f
2

f
4

f
6

^ ^

^^

v

x2 y2

z2

10

x1

y1

z1

1

1

1

1

1

0
0

0

0

0

0
1

Figure 6.3: A query over the probabilistic database in Figure 6.2. (a) The factor graph for
the query with AND and OR factors. (b) The OBDD for the lineage of the result tuple
when the random variables are independent.

resentation as a factor graph where each intermediate tuple is explicitly represented (see

Figure 6.3(a)). For each intermediate tuple, we add an appropriate factor containing the

tuple and the tuples that generated it. For instance, for tuple i1 generated by joining tuples

x1 and y1, we introduce an AND factor that captures the logical constraint that i1 is true

iff x1 and y1 are both true. Similarly, for tuple i5, we add an OR factor capturing the

logical constraint that i5 is true if either i2 or i4 is true (corresponding to a project opera-

tion). Query evaluation is now equivalent to performing inference on this factor graph to

compute the marginal probability distribution of i5.

Variable elimination [38] is a simple and widely-used technique for performing

inference over factor graphs. In essence, VE operates by eliminating one variable at a

time from the factor graph until we are only left with the variable of interest (in this case,

155

i5). For this purpose, a variable ordering needs to be chosen a priori to specify the order

in which to eliminate the variables. At each iteration two operations are performed: Let

X be the variable under consideration. All factors that refer to X are multiplied to get a

new factor f ′ and thenX is summed out of f ′ to get a factor f ′′ with no reference toX . As

an example, if we choose to eliminate x1 in the first step, we would multiply the factors

f1, f2, and the AND factor on x1, x2, i1 to get a factor on x1, y1, i1, x2, and sum-out x1 to

get a new factor on y1, i1, x2. The complexity of the inference procedure is exponential

in the size of the largest factor (measured as the number of variables) created during the

process, which is at least the treewidth of the factor graph. However, finding the optimal

variable ordering is NP-hard and heuristics are typically used.

Sen et al. [144] introduced a lifted inference technique that exploits the symmetry

in the probabilistic database to reduce the complexity of query evaluation. Our work

is orthogonal to their proposal of exploiting symmetry, and it is an interesting future

direction to see how these two can be combined.

OBDD-based approach. In a different approach, Olteanu et al. [115] focus on tuple-

independent databases and explore the connection between ordered binary decision di-

agrams (OBDDs) [19] and query evaluation for a large class of queries ranging from

conjunctive queries with safe plans, to hard queries on restricted databases. OBDDs are

rooted, directed acyclic graphs that compactly represent Boolean formulas. They con-

sist of decision nodes and two terminal nodes, called 0-terminal and 1-terminal. Each

decision node is labeled with a Boolean variable and has two children, one for each in-

stantiation of the corresponding Boolean variable. Dashed edges represent the assignment

156

of the variable to false, while solid edges represent the assignment to true. Finally, the

two terminal nodes represent the value of the Boolean formula for a particular variable

assignment defined by a path from the root node to that terminal node. In the worst case,

an OBDD may be a complete binary tree with exponential size, but since it can exploit

the structure of the Boolean formula, it is typically much more compact. Figure 6.3(b)

shows the OBDD corresponding to the lineage formula in Figure 6.2(b).

Under the tuple-independence assumption, given the OBDD of a lineage formula,

each edge can be annotated with the probability of its source decision node taking the

corresponding value. The probability of any non-terminal node is computed as the sum

over the probabilities of its children, weighted by their corresponding edge probabilities.

One can, therefore, compute the probability that the lineage formula evaluates to true

by traversing all bottom-up paths from the 1-terminal node to the root, multiplying the

probabilities along the way, and then summing the products. This can be done in time

linear in the size of the OBDD, hence, when the lineage formula results in an OBDD of

polynomial size, the query can be evaluated efficiently.

However not all Boolean formulas admit an OBDD of polynomial size. In fact,

OBDD construction is also driven by a variable ordering which dictates the order in which

the variables are evaluated and corresponds to the top-down order of decision nodes in the

final OBDD. Choosing the optimal variable ordering is NP-hard. A comprehensive review

of different construction techniques is presented by Mantadelis et al. [104].

Discussion. All the approaches mentioned above present significant limitations in pres-

ence of correlations and local structure. Factor graphs do not exploit the local structure of

157

the factors to reduce the complexity of inference. Moreover, OBDDs are applicable only

under the tuple-independence assumption. In the next section we present an approach that

combines the representational power of factor graphs with the compactness of decompo-

sition methods leading to more efficient query evaluation over correlated databases.

6.2.2 Arithmetic Circuits

In this section we briefly review how context-specific independence and determinism can

be exploited to enable efficient exact inference even in factor graphs with high treewidth,

through use of arithmetic circuits [24, 25, 26, 27]. Context-specific independence is

prevalent in relational domains, since the underlying structure introduces regularities and

conditional independencies that are true only under specific contexts. Furthermore, de-

terminism appears during query evaluation, where every relational operator introduces

deterministic constraints over its input tuples, e.g., both input tuples of a join must exist

in order for the intermediate tuple to exist. One can also consider the constraints intro-

duced by foreign keys as another source of deterministic correlations. Exploiting such

determinism is important for improving the efficiency of probabilistic query processing.

Let Φ(·) be the joint distribution over a set of random variables X defined by a

factor-graph. We associate Φ with a unique multi-linear function (MLF) [35] over two

types of variables:

• Evidence indicators: For each random variable Y ∈ X with dom(Y) = {y1, · · · , yn},

we have a set of evidence indicators:

{λy1 , λy2 , . . . , λyn}, i.e., one evidence indicator for each yi.

158

• Factor parameters: For each factor f over a set of random variables X, we have a set

of parameters θX=x.

For any unobserved random variable, i.e., a random variable whose value is not fixed,

all the evidence indicators are set to 1. When a particular value is assigned to a random

variable, the indicator corresponding to that value is set to 1 and all other indicators is

set to 0. The factor parameters θX=x correspond to the actual values in the factors of the

factor graph. The MLF for a factor graph has an exponential number of terms, i.e., one

term for each joint assignment of the random variables in X . For example, the factor

graph in Figure 6.4(a), with only binary random variables, induces the following MLF:

λa1λb1θa1θb1a1 + λa1λb2θa1θb2a1+

λa2λb2θa2θb2a2 + λa2λb2θa2θb2a2

Given the MLF for a factor graph, we can compute the probability of evidence,

denoted by Pr(e), i.e., the probability of a specific joint assignment of all (or of a subset

of) the random variables, by setting the appropriate evidence indicators to 0 instead of

1 and evaluating the MLF. While the MLF has exponential size, if we can factor it into

something small enough to fit within memory, then we can compute Pr(e) in time linear

in the size of the factorization. The factorization will take the form of an arithmetic

circuit [36]. More rigorously we have the following definition.

Definition 9. An arithmetic circuit (AC) over variables Σ is a rooted, directed acyclic

graph whose leaf nodes are either numeric constants or evidence indicators, internal nodes

159

A +

* *
λ
a
1

θ
a
1

λ
a
2

θ
a
2

+

* *

θ
b
1
a
1

θ
b
2
a
1

λ
b
1

λ
b
2

+

*

θ
b
2
a
2

*

θ
b
1
a
2

B

B f(.)A

b
2

a
2

θ
b
2
a
2

a
2
b
1
θ
b
1
a
2

θ
b
2
a
1

θ
b
1
a
1

b
2

a
1

b
1

a
1

+

* *λ
a
1

0.6

λ
a
2

0.4+

* *

0.3 0.7λ
b
1

λ
b
2

A f(.)

0.4a
2

0.6a
1

BA f(.)

b
2

a
2 1

a
2
b
1 0

0.7

0.3

b
2

a
1

b
1

a
1

(a) (b)

f
a

f
ab

f
a
:

Factor graph:

Factors:

f
ab
:

Arithmetic Circuit:

A Bf
a

f
ab

Factor graph:

f
a
:

Factors:

f
ab
:

Arithmetic Circuit:

A f(.)

θ
a
2

a
2

θ
a
1

a
1

Figure 6.4: ACs and their factor graphs. Although ACs are DAGs, the directions on
the edges are not explicitly drawn. (a) Assuming no local structure, the size of the AC is
exponential in the number of variables. (b) Exploiting determinism (i.e., Pr(A = a2, B =
b1) = 0) leads to an AC of smaller size.

correspond to product and sum operations, and the root node corresponds to the circuit’s

output. The size of the arithmetic circuit is defined to be the number of its edges.

We elaborate more on the connection between ACs and variable elimination. As

mentioned earlier, VE is an algorithm that acts on a set of factors and, driven by a variable

ordering, performs two operations at each iteration: First, factors that contain a particular

variable are multiplied to create a new factor and, then, that variable is summed out of that

factor. An arithmetic circuit can be viewed as the trace of the VE process for a particular

factor graph [36].

We refer to the process of producing an AC from a factor graph as compilation.

One way to do this is to represent the joint distribution by a propositional logical formula

in tractable logical form, known as deterministic, decomposable negation normal form

(d-DNNF), which is then mapped to an AC [34]. Other approaches are based on decision

160

diagrams, and we discuss them in Section 6.4.2. Jha and Suciu [82] show that d-DNNF

is a tractable logical form which subsumes decision diagrams. Therefore, arithmetic cir-

cuits can be viewed as a generalization of the decision diagrams used in the intensional

probabilistic inference methods presented earlier.

A probability of evidence query is computed by assigning appropriate values to the

evidence-indicator nodes and evaluating the circuit in a bottom-up fashion to compute

the value of the root. For example, using the AC in Figure 6.4(b) we can compute the

probability of evidence Pr(A = a1, B = b1) by first setting λa1 = 1, λa2 = 0, λb1 =

1, λb2 = 0, and then traversing and evaluating the circuit. This process may be repeated

for as many probability of evidence queries as desired and it is only linear in the size

of the AC. The size of an AC is in the worst case exponential in the treewidth of the

factor graph. However, if local structure is present, the size of an AC is often significantly

smaller. Figure 6.4(b) shows one example where the factor value for the joint assignment

A = a2, B = b1 is set to 0, hence, the corresponding sub-circuit is pruned, resulting in a

much smaller AC.

6.3 Arithmetic circuits in Probabilistic Databases

In this section we discuss how arithmetic circuits can be used in correlated probabilistic

databases. We begin by discussing a naive approach that uses ACs for inference alone,

discuss its limitations, and then present an overview of our proposed approach.

161

6.3.1 Naive Approach

Let D denote a probabilistic database and P the factor graph representing the correla-

tions among the stored data. Consider a query Q against D. Following the factor graph

approach (Figure 6.3(a)), we can construct a new (augmented) factor graph P ′ for Q on

which inference needs to be performed. Compiling P ′ into an arithmetic circuit results

in a compact representation of the VE process due to the deterministic intermediate fac-

tors introduced. Inference can be performed by parsing the circuit to compute the result

probabilities. However, although the inference time in ACs is low, compilation time can

be quite expensive. Furthermore, for each different query, the corresponding augmented

factor graph needs to be compiled into a new AC. Therefore, such an approach is not a

viable means for evaluating queries against probabilistic databases.

Ideally, we would like to avoid repeatedly compiling the base arithmetic circuit,

ACP , from the database. Instead, it would be desirable that we construct ACP offline

once, and save it in the database. Then, for a given query Q, we can construct a new

arithmetic circuit, ACQ, and somehow “merge” the two ACs to get a single AC for com-

puting the query result. However, arithmetic circuits do not support online updates. This

significant limitation arises because only the leaf nodes of the circuit provide information

about the random variables present in the factor graph through the corresponding evi-

dence indicators. The internal nodes do not have enough information to determine which

variables participate in a particular operation. Therefore, it is impossible to merge arith-

metic circuits into a unified variable elimination trace, which takes into account all the

corresponding correlations.

162

6.3.2 Overview of the Proposed Framework

We begin with a brief overview of our proposed query evaluation framework. We elabo-

rate on the steps in the next two sections. We also introduce the running example that we

will be using.

Phase 1 - Preprocessing: We assume that a probabilistic databaseD and the factor graph

P representing the correlations among the stored tuples are given as input. The factors

in P are represented using ADDs to capture the local structure. Offline, we compile the

given probabilistic database into an annotated arithmetic circuit (AAC), an extended

version of an AC where sum nodes are annotated with the variable on which the sum-

mation is performed. The AACs corresponding to the probabilistic database shown in

Figure 6.2 are shown in Figure 6.5. As depicted, we do not have a single AAC for the

entire network. Instead, we require that disconnected parts of the factor graph referring

to independent sets of variables correspond to separate AACs. An immediate conse-

quence of this is that a random variable can be present only in one AAC. Maintaining a

collection of AACs, denoted by ACol, instead of a single AAC, allows for indexing the

AACs, thereby, offering more flexibility while merging them.

Phase 2 - Lineage Processing: Given a queryQ, we compute a lineage formula for each

result tuple using standard techniques.

Phase 3 - Query Evaluation: During this phase we iterate through the result tuples of

the given query Q. For each tuple we perform the following steps:

163

+ x1

* *
λx11

0.6

λx12

0.4+ x2

* *

0.3 0.7λx21
λx22

+ x2

*

0

+ y1

* *
0.2 0.8

λy11
λy12

0

0 1

0 1

1
10

+ z1

* *

λz11

0.8

λz12

0.2

+ z2

* *
0.1 0.9λz21

λz22

+ z2

*
0

0

0 1 0 1

1

+ y2

* *

0.7 0.3λy21
λy22

10

+ y2

* *

0.1 0.9

10

Figure 6.5: The (complete) AACs for the probabilistic database in Figure 6.2.

(a) The lineage formula introduces a set of new deterministic correlations among the

random variables present in it. Specifically, the new correlations describe the log-

ical constraints under which the lineage formula evaluates to 1. Then lineage is

compiled into a new AAC (called a lineage-AAC) that captures the constraints and

represents them in a compact way.

(b) The lineage-AAC is merged with the collection of all the AACs that refer to vari-

ables present in the lineage-AAC.

(c) The result tuple probability is computed by traversing the resulting merged AAC.

We define and describe AACs in Section 6.4.1, and describe algorithms to compile

the database factor graph and the lineage formula into AACs in Sections 6.4.2 and 6.4.3.

We then present our merging algorithm for combining multiple AACs in Section 6.5.

6.4 Annotated Arithmetic Circuits

In this section we introduce annotated arithmetic circuits and show how a correlated prob-

abilistic database can be compiled into a collection of AACs. We also introduce a novel

algorithm for representing lineage formulas as AACs.

164

6.4.1 Definitions

An annotated arithmetic circuit is a generalization of an arithmetic circuit that includes

full information on the sequence of arithmetic operations performed during inference and

the variables that participate in them. We maintain this information by adding variable

annotations to the internal operation nodes. We have the following definition:

Definition 10. An annotated arithmetic circuit (AAC) over variables Σ is a rooted, di-

rected acyclic graph whose leaf nodes are either numeric constants or evidence indicators,

internal nodes correspond to product and sum operations, and the root node corresponds

to the circuit’s output. Each sum node is annotated with the corresponding variable si that

is being summed out and its outgoing edges are annotated with the values of the different

instantiations of variable si. The size of the annotated arithmetic circuit is defined to be

the number of its edges.

AACs inherit their representational power from regular ACs, and therefore, can

capture the local structure and the conditional independences present in a network. More-

over, variable annotations provide the necessary information to detect the exact order of

operations performed during variable elimination, as we discuss in the next section. This

enables us to detect and directly update the corresponding parts of the circuit when new

correlations are introduced and thus plays a key role when merging different arithmetic

circuits. To guarantee the correctness of the merging algorithm presented in Section 6.5,

we require that the circuit be a complete trace of the variable elimination algorithm.

165

Definition 11. An AAC over variables Σ is a complete trace of variable elimination over

variables in Σ, if each evidence-indicator λX=x for a random variable X is preceded by a

sum node annotated with variableX and none of its sibling nodes is an evidence-indicator.

When an AAC is a complete trace of VE, sum and product nodes appear in an

interleaving manner. Every sum node will be followed by a product node and every

operation child of a product node will be a sum node. From now on, we will assume that

all AACs correspond to complete traces, and we will drop the qualification.

Examples of AACs corresponding to complete traces of VE are shown in Figure 6.5.

As we can see the annotations in the sum nodes allow us to trace the exact variable that

is being summed out. Furthermore if we compare the first AAC presented in Figure 6.5

with the arithmetic circuit shown in Figure 6.4, we have that both factor graphs present the

same pattern of determinism, however the AAC has an extra sum node in the sub-circuit

that expresses the deterministic conditional probabilities. This is necessary because the

presented AAC keeps full trace of the VE process. Moreover, when a product node has

constant 1 as child, we drop it but the product node itself is kept since it is needed during

merging. We note that a complete AAC exploits local structure as a regular AC does, and

presents only a small increase in size compared to a regular AC.

6.4.2 Compiling Factor Graphs into AACs

We compile a factor graph into the corresponding collection of AACs by extending a com-

pilation algorithm introduced by Chavira [25], which is based on variable elimination and

algebraic decision diagrams (ADDs) [8]. Analogous to how a BDD is a representation

166

of a Boolean function, an ADD is a graph representation of a function that maps instan-

tiations of Boolean variables to real numbers. Our algorithm to compile factor graphs

into AACs extends the algorithm described in [25] by adding variable annotations and

merging contiguous product nodes, outputting a complete AAC. For brevity, we omit a

detailed description here.

However, one important issue that warrants discussion here is the variable ordering

used to generate the AACs. Similar to variable elimination and the OBDD construction

algorithm, we need to choose an ordering of the variables to compile the database into

AACs using the above procedure. Let Π denote the total ordering over all variables that is

used to generate the AACs, and let ΠCol denote a collection of partial orderings over the

disjoint sets of variables corresponding to the different AACs in ACol.

As we will see in the next section, the AAC corresponding to the lineage of a query

result tuple must respect all of these partial orderings. This crucial constraint imposed by

the AAC merging algorithm means that we cannot use standard algorithms for construct-

ing an AAC from a lineage expression.

6.4.3 Compiling Lineage Formulas into AACs

Lineage can be represented as a factor graph (Figure 6.3(a)), and we can use the above

algorithm to construct an AAC for it. However, the lineage corresponds to a factor graph

limited to consist of only two deterministic factors (AND and OR). Hence, we can employ

more efficient techniques based on OBDD construction.

167

Recall that an OBDD corresponding to a lineage formula is a compact decision

diagram representing the set of constraints over the instantiations of the random variables

under which the lineage formula evaluates to true (Section 6.2), and can be constructed

by choosing a ordering of the variables in which the variables are evaluated. As discussed

above, the variable ordering we choose must respect all the partial orderings in ΠCol.

However, none of the standard order selection algorithms can be used for our purpose, as

they do not take into account the ordering constraints.

Constructing an AAC from an OBDD. The easiest way to construct an AAC for a given

lineage formula is to first construct an OBDD, and then modify it by adding the nec-

essary annotated operation nodes with the appropriate indicator constants. Figure 6.6(b)

depicts the OBDD and the AAC (Figure 6.6(c)) corresponding to a conjunctive query, exe-

cuted against the probabilistic database shown in Figure 6.2. The query generates a single

Boolean formula. There is a one-to-one mapping between the OBDD and the correspond-

ing AAC; in particular, each decision node is converted into a sum node, and expanded

to add a product node and an appropriate evidence indicator. We see that the AAC rep-

resents the deterministic correlations introduced by the query. During the lineage-AAC

construction we ignore the correlations among the random variables.

Choosing a variable order for the lineage OBDD. The order in which the variables are

evaluated in an OBDD plays a crucial role in determining its size. Given a good vari-

able ordering, the size of the OBDD can be polynomial in the size of the corresponding

Boolean expression. In the general case, finding the optimal variable ordering for a given

Boolean formula is NP-hard [16]. OBDDs have been extensively used in VLSI design

168

(a) OBDD (c) Lineage AAC(b) OBDD

Var. Order:

x1, y1, z1, x2, y2, z2

Var. Order:

x1, x2, y1, y2, z1, z2

Var. Order:

x1, x2, y1, y2, z1, z2

x
2

y
2

z
2

10

x
1

x
2

y
1

z
1

y
1

y
2

z
1

1

1
1

1

1

1

1

11

1

0
0

0

0

0

00

0

0

0

+ x
2

* λ
x
22

+ y
2

*

0 λ
y
22

+ z
2

*
λ

z
22

+ x
1

*
λ

x
12

+ y
1

*
λ

y
12

+ z
1

*

λ
z
12

*

λ
z
11

*
λ

x
11

+ x
2

*

0 1

*

+ y
1

*

λ
x
21

+ z
1

*

*

λ
y
11

+ y
2

*

λ
y
21

*

0

0

0

0

0

0

0

0

0 11

1

1

1

1

1

1

1

Lineage: (x
1
∧y
1
∧z
1
) ∨ (x

2
∧y
2
∧z
2
)

x
2

y
2

z
2

10

x
1

y
1

z
1

1

1

1

1

1

0

0

0

0

0

Query: q():- X(A,B), Y(B,C), Z(C,D)

Figure 6.6: (a) The OBDD for the given lineage formula when the variable ordering
is generated by a constraint oblivious heuristic. (b,c) An example of the lineage AAC
corresponding to the given query when executed against the database shown in Figure
6.2. The new constraint aware heuristic was used to generate the variable ordering.

169

and many heuristics that give good variable orderings have been proposed in the corre-

sponding literature [49]. In particular, there are two main guidelines that the proposed

heuristics satisfy:

(a) Input variables of a Boolean formula that are connected should appear together in

the ordering. For example, consider a CNF formula where we fix the values of a set

of variables that belong to the same clause so that the clause evaluates to zero. The

entire formula will then evaluate to zero.

(b) Input variables with higher fan-out should appear sooner in the variable ordering

since they have greater influence in the output of the formula. Fixing the values of

influential variables first may lead to fixing the values of larger parts of the Boolean

formula. By having those variables together in the OBDD, we can significantly

reduce the size of the OBDD.

Another advantage of these requirements is that they facilitate cach-ing. During OBDD

construction the results of intermediate operations are stored in a cache, following a sim-

ilar rationale as dynamic programming algorithms where the subproblems of the initial

problem are cached. This ensures that all intermediate OBDDs are of polynomial size if

the final OBDD is of polynomial size.

Partial order constraints. This brings us to the main challenge in constructing an AAC

for the lineage formula. Recall that ΠCol can be seen as a list of disjoint orderings, each

specifying an order over a disjoint subset of the variables. Let Πfinal denote the variable

ordering used to construct the lineage-AAC. We require that Πfinal satisfy two constraints,

170

one motivated by the merging algorithm (Section 5), and the second motivated by the

desire to enable caching in that phase (cf. Section 5). Specifically we require that:

(c) Πfinal must respect the partial orderings in ΠCol. This is necessary since it enables

merging multiple AACs that refer to the same set of variables.

(d) Variables that are present in a constraint must be kept together in Πfinal to enable

caching in the merging phase.

Requirement (c) is mandatory for the correctness of the merging algorithm, there-

fore, we assume that it is always satisfied. We elaborate more on requirement (d). Heuris-

tics that only take into account requirements (a) and (b) may generate a variable ordering

that minimizes the size of the lineage-AAC but will not always give a good variable order-

ing for the final AAC. In particular, disregarding the partial ordering constraints may lead

to a variable ordering that does not enable efficient caching during the merging phase,

leading to a final AAC of exponential size. As we show in Section 6.5, caching plays an

important role in the performance of our proposed AAC merging algorithm.

Keeping the variables that are present in a constraint together in Πfinal, enables

the detection of parts of the final AAC that refer to disjoint sets of variables, allowing

caching of those parts. Interleaving variables present in different partial ordering con-

straints makes it harder to detect isomorphic sub-graphs of the AAC.

Consider the left part of the OBDD shown in Figure6.6(a). As mentioned earlier, we

require that the final (after merging) AAC respect a global variable ordering, specifically,

the one shown in the figure. Observe that during merging, variables y1 and z1 will be

inserted before x2, y2, and z2, as the latter depend on the former. Since x2 is independent

171

of z1, the parts of the left sub-AAC that refer to x2 and appear in the two sub-AACs

corresponding to z1 = 0 and z1 = 1, denoted by Az1=0 and Az1=1 respectively, will be

the same. However, caching can not be used since Az1=0 and Az1=1 are not isomorphic.

The reason is that the sub-circuits corresponding to z2 which appear at the end of Az1=0

and Az1=1 are different. Finally, we note that the problem of minimizing the size of an

OBDD given order constraints over the input variables is NP-hard because the OBDD

construction without any such constraints is NP-hard. Next, we develop a heuristic for

this problem.

Variable ordering heuristic. Ideally, we would like to find a variable order that satisfies

all four requirements listed above. However, the requirements will usually conflict with

each other. We introduce a new heuristic algorithm to generate a good variable ordering

Πfinal that will be used during the construction of both the lineage AAC and the final AAC.

The new heuristic is shown in Algorithm 6. It takes as input the ordering constraints

defined in ΠCol and the lineage formula L and it returns the variable ordering Πfinal. In

Algorithm 6, we represent orderings as vectors.

Let us elaborate on the algorithm. First, the Boolean formula L is converted to

its corresponding Boolean circuit C. Assuming that connections between the input vari-

ables are only introduced because of the lineage formula, the algorithm starts by detecting

groups of connected input variables. This directly addresses requirement (a). Let Sg de-

note the set of groups. Variables contained in a single group should appear together.

Variables are assigned to groups in Sg by traversing circuit C recursively: for each

variable node v in C we examine its siblings, i.e., other nodes that are connected with v

172

via some Boolean operation. If any of these siblings is assigned to a group g, we assign

v to g. Otherwise, we create a new group and assign v to it. For each internal operation

node o we examine its children nodes. If all of them belong to the same group then we

assign o to it, otherwise we assign o to a new one.

The algorithm proceeds by generating an ordering Ov
g among the variables con-

tained in a single group. Variables are ordered in descending order of their fan-out in

C. This step complies with requirement (b), stating that more influential variables appear

sooner. So far the algorithm is oblivious to the ordering constraints in ΠCol. The following

steps are introduced to account for them.

Ordering variables within groups only generates partial orderings over the variables.

To get a total ordering, it is necessary to impose an ordering OCl on the groups according

to their position score (PScore). Motivated by requirement (c), we define the following

process: Each input variable is associated with a position score, which is defined to be its

position in the corresponding ordering in ΠCol. The position score of each group in Sg, is

defined to be the average position score of the variables contained in it. The intuition is

that variables that appear early in an ordering in ΠCol should also appear early in Πfinal.

Until now the proposed algorithm does not explicitly satisfy requirements (c) and

(d), presented above. To address them, the algorithm iterates over the groups and the vari-

ables in them. Let v denote the variable under consideration at each step of the iteration.

The algorithm finds the ordering constraint Constrv corresponding to v and appends in

the final ordering Πfinal the set of variables S that contains v and all variables u ∈ Constrv

that precede v and are not present in Πfinal. It is easy to see that both requirements (c) and

(d) are satisfied.

173

In Algorithm 6 we show the append operation with the concatenation symbol | .

Some of the variables may not be present in the lineage formula but are necessary in the

merging phase as they appear before v in the corresponding ACs.

6.5 Merging AACs

In this section, we introduce a new algorithm for merging a lineage-AAC with the corre-

sponding complete AACs in the database. We begin with formally defining the problem.

Algorithm 6 variableOrdering(ΠCol: a collection of ordering constraints, L: a lineage
formula): returns Variable Ordering

1: C ← transform L into its corresponding Boolean circuit.
2: V arL ← get the set of variables present in L.
3: Sg ← Get the set of groups of connected variables for circuit C.
4: for c ∈ Sg do
5: Ov

g ← order the variables in c in a decreasing order with respect to their fan-out in C.
6: Assign a position score PScoreg to group g.
7: OCl ← order the groups in an increasing order by their PScore.
8: Πfinal ← {}
9: for c ∈ OCl do

10: for v ∈ Ov
g do

11: if v /∈ Πfinal then
12: Constrv ← get the constraint for v from ΠCol
13: u← arg max

w∈Constrv∩L
(Position of w in Constrv)

14: S ← ⋃
w∈Constrv ,w�u

w

15: Πfinal ← Πfinal |S
16: return Πfinal

The merging problem. Let ACol denote the collection of AACs produced after the com-

pilation of the database, ΠCol the collection of partial orderings over the random variables

in the database, and Πfinal the variable ordering generated by the heuristic algorithm pre-

sented in the previous section. The merging algorithm takes as inputACol and the lineage-

AAC and generates an AAC, which is used to evaluate the probability of the lineage.

174

The core idea of the algorithm can be simply stated: we traverse the lineage-AAC

and all the appropriate database-AACs, i.e., AACs that refer to the variables present in the

lineage-AAC, simultaneously by keeping one or more cursors over each of them. At any

point, the algorithm considers exactly two AAC nodes, a node from the lineage-AAC and

a corresponding node from a database-AAC, and tries to merge them. Since the database-

AACs refer to disjoint sets of random variables, a node in the lineage-AAC can only

correspond to one database-AAC node. We check whether we can compute the result

of the merge operation for the two nodes immediately, otherwise we choose a variable

to branch on and recursively perform the merge operation for each instantiation of the

variable. The variable is chosen according to Πfinal. In the remainder of the section, we

elaborate on these steps.

Path annotations. When traversing the input AACs, it is important to be able to iden-

tify in which path of an AAC a variable appears, since traversing redundant paths will

significantly deteriorate performance. In general, a product node can have multiple sum

nodes as children. This can happen when two or more variables are conditionally inde-

pendent given the value of a particular variable. To address this issue, we introduce a new

annotation for each variable, which we call the path annotation of the variable.

Path annotations are set according to the following process: we start by assigning

a path annotation of 0 to the root of each AAC in ACol and then we traverse each AAC

in a depth-first manner. If a product node has multiple sum children we extend the path

annotation with the count information of each child. Consider for example a product

node with two sum nodes as children and a path annotation 0. The annotations of its

175

children will be 0::1 and 0::2. Path annotations are created offline during the compilation

phase. The order in which sum nodes appear in the set of children of a product node is

determined by the corresponding ordering ΠCol. Thus, for different instantiations of the

predecessor variables the children of a product node appear in the same order.

Traversing multiple AACs simultaneously. The merging algorithm traverses all the

AACs in a breadth-first or a depth-first manner, by keeping multiple cursors at different

sum nodes, and recursively traversing down the children of an appropriate product node.

If it is traversing down a product node that has two or more sum children, then multiple

cursors are generated pointing to those different sum nodes. At any point, we may have

at most as many cursors as the number of variables in the AAC. A key requirement here

is to be able to identify first which database-AAC contains a particular variable, and then,

along which path the variable may be found in that AAC. We use a simple index for the

first purpose, whereas the path annotations are used for the second purpose. For example,

let the considered variable have a path annotation of 0::1::1, and let the cursors in the

corresponding database-AAC point to 0::1 and 0::2. By comparing the prefixes, we can

deduce that the variable will be found under the former cursor.

Merging AACs. We now introduce the merging algorithm (shown in Algorithm 7). The

multi-merge operation is implemented recursively, reducing the operation of merging the

lineage-AAC with the appropriate AACs, into operations over smaller AACs, until we

reach boundary conditions: AACs that correspond to constant nodes.

Let a1 and v1 denote the root node of the input lineage-AAC and the variable that

is associated with it. The algorithm starts by finding the database-AAC Ad that needs to

176

be merged and selects the appropriate cursor of Ad (using the procedure described above,

and encapsulated in the function getAACCursor()). Let a2 denote the sum node that the

selected cursor points to.

If the algorithm is given a trivial input, i.e., a lineage-AAC equal to 0 or 1, or if

the result of the multi-merge between a1 and a2 is present in the cache, the multi-merge

operation terminates immediately. Otherwise we must recursively compute the result of

the operation for a1 and a2. Recall that v1 is the variable that corresponds to a1 and let v2

be the variable that corresponds to a2. Because all variables present in the lineage-AAC

are already present in an AAC in ACol and all AACs respect Πfinal, there are only two

cases that the algorithm needs to consider: (a) v2 ≺ v1 and (b) v2 = v1. We also note

that in each turn the merging algorithm expands two contiguous levels of the AACs under

consideration, exploiting that in a complete AAC sum and product nodes appear in turns.

The algorithm proceeds as described below.

Case - Same variables. When both sum nodes refer to the same variable v1, the merge

operation outputs a sum node a annotated with v1. To construct the children of a the

algorithm iterates through all values v in the domain of v1 and performs the following

process: let c and c′ denote the child node of a1 and a2 respectively that correspond to

v1 = v. The algorithm checks for the following terminal cases: (1) if either c or c′

are 0 it outputs 0 and (2) if c and c′ are indicator constants it outputs c′. If none of the

terminal cases are met, then it outputs a new product node c1 with children as the constant

children of c. Subsequently the merge operation is propagated by: (1) traversing both

input AACs and updating the cursors of the database-AAC appropriately, (2) considering

177

Algorithm 7 multiMerge(a1: lineage AAC, acol: AAC Collection): returns AAC
1: a2 ← getAACCursor(Var(a1))
2: if cache(a1, a2) 6= null then
3: return cache(a1, a2)
4: else if (a1 == 0) or (a1 == 1) then
5: return a1

6: if (Pos(a2) < Pos(a1)) then
7: a← new + node; Var(a)← Var(a2)
8: for v ∈ Values(Var(a2)) do
9: c← getChild(a2, v)

10: //c is either a ∗ node or a constant
11: if (c == 0) or (c is indicator constant) then
12: c1 ← c
13: else
14: c1 ← new ∗ node
15: Const(c1)← Const(c)
16: moveCursorToChild(a2, v)
17: c2 ← multiMerge(a1, acol); addChild(c1, c2)
18: moveCursorToParent(a2, v)
19: addChild(a, c1, v)
20: else if (Pos(a2) == Pos(a1)) then
21: a← new + node; Var(a)← Var(a1)
22: for v ∈ Values(Var(a1)) do
23: c← getChild(a1, v); c′ ← getChild(a2, v)
24: //c and c′ are either ∗ nodes or constants
25: if (c == 0) or (c′ == 0) then
26: c1 ← 0
27: else if (c and c′ are indicator constants) then
28: c1 ← c′

29: else
30: c1 ← new ∗ node
31: Const(c1)← Const(c′)
32: moveCursorToChild(a2, v)
33: if (c has a + node in its children) then
34: c← getChild(c)
35: c2 ← multiMerge(c, acol); addChild(c1, c2)
36: moveCursorToParent(a2, v)
37: addChild(a, c1)
38: cacheInsert(a, a1, a2)
39: return a

178

+ x
1

*
λ

x
11

0 1

+ x
2

* λ
x
22

0 1

0

+ x
1

*
λ

x
11

0 1

Lineage AAC

+ x
2

*
0.3 0.7λ

x
21

λ
x
22

0 1

Database AAC Merged AAC

0.6

*

+ x
1

*
λ

x
11

0 1

+ x
2

0.7

λ
x
22

0 1

0.6

*
0

Var. Order: x
1,
x
2,
y
1,
y
2,
z
1,
z
2

Figure 6.7: Partial AAC produced after merging the lineage-AAC with the corresponding
database-AAC.

the descendant sum nodes of a1 and a2 and (3) recursively merging them. Finally, the

result of the merge operation between a1 and a2 is cached.

Figure 6.7 depicts the merging operation as applied to the database-AACs in Figure

6.5 and the lineage-AAC in Figure 6.6(c) using the variable order X1, X2, Y1, Y2, Z1, Z2.

The first step is to merge the sum nodes that are annotated with X1 and create a new sum

node with the same annotation that contains both 0.6 and λx11 in its children nodes. As

shown the algorithm continues in a depth-first manner and considers the sum node present

in the left sub-AAC.

Case - Different variables. When the merge operation is applied to sum nodes with

variables v2 ≺ v1 in Πfinal the output node is a sum node a annotated with v2. To construct

the children of node a the algorithm iterates through each child c of node a2 corresponding

to a particular instantiation of v2 and performs the following process: if c is a constant it

outputs c, otherwise it outputs a new product node c1 with children the constant children

of c. Subsequently, the merge operation is propagated by: (1) traversing the database-

AAC and updating its cursors appropriately, (2) considering the descendant sum nodes of

179

Lineage AAC Database AAC Merged AAC

+ y2

* λy22

0 1

0

+ y1

* *
0.2 0.8

λy11
λy12

10

+ y2

* *

0.7 0.3λy21
λy22

10

+ y2

* *

0.1 0.9

10

+ y1

* *
0.2 0.8

λy11
λy12

10

+ y2

*

0.3 λy22

10

+ y2

*

0.9

10

0

Var. Order: x
1,
x
2,
y
1,
y
2,
z
1,
z
2

Figure 6.8: A subsequent step of the merging process shown in Figure 6.7. Note that the
sum nodes to be merged in this step refer to different variables, namely Y2 and Y1.

a2, and (3) recursively merging them with a1. Finally, the result of the merge operation

between a1 and a2 is stored in the cache. Figure 6.8 depicts a subsequent step of the

merging process shown in Figure 6.7. The merging operation is performed between two

different variables, namely Y2 and Y1. Since Y1 ≺ Y2 in the variable order, the output is a

copy of the sum node, annotated with Y1, in the database-AAC. The algorithm proceeds

recursively to merge the sum nodes that are annotated with variable Y2.

In the algorithm, method getAACCursor(x) returns the appropriate running cursor

of the AAC in ACol in which variable x appears. When applied to a sum node, method

Var() returns the variable annotation of that node. Furthermore method Values(v) re-

turns a set of all possible values in the domain of variable v. For a sum node a, method

addChild(a, c, v) adds a new child c in a for Var(a) = v. For product nodes, method

Const() returns the children of the node corresponding to constant nodes. For a sum node

with a variable annotation V , methods getChild(v) and Pos() return the child of the node

corresponding to V = v and the position of the variable labeling of the node in the global

180

variable order Πfinal respectively. Method moveCursorToChild(a, v) sets the AAC cursor

to point to the descendant sum node of node a in the path for which Var(a) = v. Finally,

moveCursorToParent(a, v) returns the AAC cursor to the preceding sum node of a.

As mentioned in the previous section, minimizing memory usage and the number

of operations performed during merging is important for the performance of the algo-

rithm. A variable in the lineage-AAC may appear in different paths, therefore, after the

merge, parts of the database-AACs will be repeated. In order to leverage the detection

and caching of those sub-circuits we require that variables which appear together in an

AAC from ACol also appear together in the final AAC (Section 6.4.3, Requirement (d)).

Finally, we analyze the complexity of the merging algorithm after caching is intro-

duced. Let m be the size of the query AAC and si be the size of the ith AAC from the set

A ⊆ ACol of AACs used during the merge phase. In the worst case the algorithm parses

each entire annotated arithmetic circuit at most once. Its complexity is O(m ∗ ∑
i∈A

si). To

compute the result probability, we set all indicator variables in the final AAC to 1 and

parse the circuit. This operation takes time linear in the size of the final circuit.

6.6 Experiments

In this section we present an experimental evaluation of our framework. The evaluation

was performed on an Intel(R) Core(TM) i5 2.3 GHz/64bit/8GB machine running Mac

OS X/g++ 4.6.1. Our framework is implemented in C++ for query extraction, lineage

processing and probability computation. We used PostgreSQL 9.0 for storing the prob-

abilistic database and the factors. For BDD construction we use the publicly available

181

CUDD package [149] released by the VLSI group at the University of Colorado. We

compare our approach to variable elimination, a generic approach which can support both

tuple-independent and correlated tuples [143]. We examine two versions of VE. The first

is regular VE using a tabular representation of the factors, and the second is VE where

factors are represented using ADDs. VE with ADDs can capture the local structure in

the factors of the network. For our results we report wall-clock times of queries averaged

over five runs.

6.6.1 Datasets and Queries

We study both tuple-independent and correlated cases. The data used for the experiments

was generated by a modified version of the TPC-H data generator. In the first case the

generator was modified to create tuple-independent probabilistic databases. We assume

that all tables apart from nation and region are probabilistic and associate each tuple with

some existence probability uniformly sampled between (0, 1].

In the second case, we focus on probabilistic databases with arbitrary correlations.

We extend the TPC-H data generator to generate correlated probabilistic data according

to the following model. We assume that all the tables apart from nation and region contain

uncertain data. Furthermore, tables customer, supplier, and partsupp contain independent

tuples. Following the foreign key constraint, each tuple in the lineitem table depends on

the corresponding tuple from the orders table. Many entries of the orders table are asso-

ciated with multiple entries from the lineitem table. This introduces many conditionally

independent random variables associated with tuples from the lineitem table.

182

For the part table, we assume that there is uncertainty over the part price, and

that there is a mutual exclusion constraint over price. Finally, for the table orders we

assume that the orders of a particular customer for a given month are correlated. In

particular, this type of correlation can be represented as a chain where the orders are

sorted chronologically and then the existence of an order depends on the preceding order.

This scenario is realistic as the orders within a particular month may be connected with

the same project and they may depend on each other for the fulfillment of that project.

The length of the chain varies for databases of different sizes. For a scale factor of 0.001

the maximum length is restricted to two while for a scale factor of 0.1 it increases to ten.

We evaluate our framework for both tractable and hard queries for five different

scale factors, namely 0.001, 0.005, 0.01, 0.05 and 0.1. We consider queries Q2, Q3, Q5,

Q6, Q8, and Q16. Queries Q6 and Q16 do not contain complicated joins and are easy.

However, they are challenging because they generate a large number of result tuples. For

every query we remove top-level aggregates and consider its Boolean version.

6.6.2 Experimental Results

We begin by evaluating the scalability of the database compilation technique based on

arithmetic circuits. Figure 6.9 illustrates the compilation time as a function of the size

of the underlying database and, in particular, the scale factor used to generate it. As

illustrated the time required for compiling the database introduces an sizeable overhead

to our framework. However, since compilation is performed offline this overhead does

not affect the performance of the system during query evaluation.

183

100

101

102

103

 0.01 0.05 0.1
C

om
pi

la
tio

n
T

im
e

(s
ec

)
TPC-H Scale factor

Database Compilation Time

Independent DB
Correlated DB

Figure 6.9: The time required to compile the database as a function of its size.

We examine the efficiency of our framework during query evaluation and, in par-

ticular, the total execution time for the Boolean versions of the TPC-H queries described

above. The results are shown in Figure 6.10. Each graph presents the total evaluation

time for a single query for both independent and correlated databases of different sizes.

Note that in all graphs the y-axis is in logarithmic scale. Finally, missing values for a par-

ticular scale factor correspond to cases where the total evaluation time exceeds the time

threshold of 100 seconds.

We focus on hard queries. As shown, for all hard queries, the evaluation based

on AACs is at least one order of magnitude faster compared to regular VE but it is also

significantly faster than VE with ADDs. As expected, VE with ADDs is faster than tabular

VE, since ADDs can capture the local structure in the factors of the network. However,

even when using VE with ADDs we still have to pay the cost of multiplying the different

ADDs and summing-out variables during online query evaluation. To the contrary, our

184

10-4

10-3

10-2

10-1

 0.01 0.05 0.1

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B2

VE - indep. DB
VE(ADD) - indep. DB

AAC - indep. DB
VE - cor. DB

VE(ADD) - cor. DB
AAC - cor. DB

10-3

10-2

10-1

100

101

 0.01 0.05 0.1

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B3

VE - indep. DB
VE(ADD) - indep. DB

AAC - indep. DB
VE - cor. DB

VE(ADD) - cor. DB
AAC - cor. DB

10-4

10-3

10-2

10-1

100

101

 0.001 0.005 0.01

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B5

VE - indep. DB
VE(ADD) - indep. DB

AAC - indep. DB
VE - cor. DB

VE(ADD) - cor. DB
AAC - cor. DB

10-3

10-2

10-1

100

101

102

 0.01 0.05 0.1

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B6

VE - indep. DB
VE(ADD) - indep. DB

AAC - indep. DB
VE - cor. DB

VE(ADD) - cor. DB
AAC - cor. DB

10-3

10-2

10-1

100

101

 0.01 0.05 0.1

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B8

VE - indep. DB
VE(ADD) - indep. DB

AAC - indep. DB
VE - cor. DB

VE(ADD) - cor. DB
AAC - cor. DB

10-3

10-2

10-1

100

101

102

 0.01 0.05 0.1

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B16

VE - indep. DB
VE(ADD) - indep. DB

AAC - indep. DB
VE - cor. DB

VE(ADD) - cor. DB
AAC - cor. DB

Figure 6.10: Query evaluation times for the Boolean versions of TPC-H queries for both
independent and correlated databases of different sizes. Figures (a), (b), (e) refer to hard
queries, while the rest to easy queries. Missing values for a scale factor correspond to
queries that exceeded the time threshold of 100 seconds.

185

approach has a significant advantage compared to both baselines as this cost is paid only

once, during the offline preprocessing phase. Of particular interest are queries Q3 and

Q8 where both versions of VE exceeds the threshold of 100 seconds for both dependency

assumptions for scale factors larger than 0.01. This is because of the increasing number of

distinct variables in the lineage formulas for larger scale factors. For example the lineage

formula for Q3 contains 6276 distinct random variables for a scale factor of 0.1.

Since we are considering the Boolean versions of the queries, the size of the lineage

formula is directly associated with the treewidth of the final augmented factor graph. To

the contrary, AACs are more scalable since they can fully exploit determinism across

the entire network rather than only at a factor level. For example, for Q3 and a scale

factor 0.1, the resulting AACs have 42486 and 53803 edges for the independent and the

correlated case respectively. Observe that the difference in the size is not that significant

despite the presence of correlations as determinism is present in the network. In general,

the sizes of the final AACs were sensitive to the queries and the size of the database. For

the correlated database experiments the size of the AACs ranged from 19 to 2570 edges

for a scale factor of 0.001 and from 1359 to 353214 edges for a scale factor of 0.1.

We continue our discussion and focus on queries 6 and 16. Recall that query 6

contains a projection over table lineitem and no joins, while query 16 contains a join

between tables partsupp and part. For both, we observe that the performance gain of

using AACs is decreasing as the size of the database increases.

To understand this behavior better, we ran micro-benchmarking experiments to in-

vestigate the performance of the different components in our framework. We evaluated all

queries against correlated databases and we measured the time spent at the different steps

186

of the final AAC creation process. We measure the time for: (a) generating the lineage

for the result tuples, (b) generating the final variable ordering using the new algorithm

presented in Section 6.4.3, (c) creating the lineage OBDD and converting it to an AAC

using the previous variable ordering, and (d) merging all the AACs together. We omit the

actual evaluation of the final AAC since it is linear in the size of the final structure, thus,

extremely efficient. Due to space constraints we present the results for two representative

queries in Figure 6.11. Similar patterns were observed for the rest of the queries.

As shown in the figure, most of the time is spent in creating the lineage OBDD.

We demonstrate that this time increases significantly as the size of the database (and

consequently the size of the lineage formula) increases. In particular, the size of the linage

formula ranges from 59 to 6276 distinct random variables for Q3 and from 142 to 15010

distinct random variables for Q16. Moreover we observed that for all cases where query

evaluation with AACs exceeded the threshold of 100 seconds, the actual bottleneck was

creating the OBDD for the lineage formula. We would like to point out that an external

package was used for creating OBDDs. Improving the performance and optimizing this

process is left as future work. Nevertheless, we see that only a small portion of the total

running time is spent in the new merging algorithm proposed. Finally, this analysis also

explains why for Q6 and Q16 we see a decreasing performance gain when using AACs.

6.7 Related Work

Much of the work in probabilistic database literature has focused on query evaluation

under tuple-independence assumption, with some of that work also allowing determin-

187

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0.001 0.005 0.01 0.05 0.1
E

va
lu

at
io

n
T

im
e

(s
ec

)

TPC-H Scale factor

TPC-H Query B3 evaluation breakdown

Lineage Creation
Variable Ordering

Lineage-to-AAC
Merging Phase

 0

 1

 2

 3

 4

 5

 6

 7

0.001 0.005 0.01 0.05 0.1

E
va

lu
at

io
n

T
im

e
(s

ec
)

TPC-H Scale factor

TPC-H Query B16 evaluation breakdown

Lineage Creation
Variable Ordering

Lineage-to-AAC
Merging Phase

Figure 6.11: Evaluation time breakdown for queries 3 and 16, against correlated databases
of multiple sizes.

istic correlations like mutual exclusion. Several recent works have attempted to support

more complex correlations, typically represented using graphical models; these include

BayesStore [162], PrDB [144], and the work by Wick et al. [167] which uses an MCMC-

based technique. However, none of that work exploits local structure for efficient query

evaluation. In a followup work to the OBDD-based approach that is limited to tuple-

independent databases, Olteanu et al. [117] proposed decomposition trees (d-trees), that

can support simple correlations expressed via Boolean formulas, but they cannot han-

dle arbitrary correlations in a natural way. While obeying similar structural properties

as AACs, d-trees can decompose the lineage formula only partially and can exploit sub-

formulas that can be evaluated efficiently. Moreover d-trees can be used to compute

approximate confidence values. It would be an interesting future research direction to

combine our approach with d-trees. In a recent work, Jha et al. [81] proposed a frame-

work to combine the intensional and extensional approaches, where they try to use an

extensional method as much as possible, falling back to using an intensional approach

only when necessary. However, their approach cannot be applied directly to correlated

188

databases represented using factor graphs. Aside from factor graphs, other representa-

tions like pc-tables [67] can be used to represent correlations. We note that our framework

is still applicable in that case, however the preprocessing compilation algorithm (Section

6.4.2) should be replaced with a logical knowledge base compilation algorithm [24] for

compiling the database-AACs. Finally, Sanner et al. [140] propose an extension of ADDs,

called Affine ADDs, that is capable of compactly representing context-specific, additive,

and multiplicative structure. While sharing similarities with AACs, affine ADDs cannot

represent conditional independences present in the correlations.

6.8 Summary

In this chapter, we discussed how one can estimate the content changes and the quality

of integrated data for a set of dependent sources. We showed how source dependencies

can be represented as a factor graph and how computing the content changes corresponds

to performing inference over Boolean formulas with dependent variables (i.e., Boolean

queries). In the presence of a large number of data sources we described how a probabilis-

tic database can be used to store the corresponding factors graphs and evaluate Boolean

queries. We introduced a new algorithmic framework based on knowledge compilation

techniques to improve the efficiency of query evaluation in probabilistic databases. Our

technique is based on the new structure of annotated arithmetic circuits. In our experi-

mental evaluation we showed that our approach offers speed-ups of at least one order of

magnitude over competing approaches.

189

Chapter 7: Quality-Aware Data Source Management Applications

In this chapter, we demonstrate how the techniques described so far in the dissertation can

be used in real-world applications. First, we design a prototype quality-aware data source

management system for reasoning about the content and quality of electronic news media

including social media, such as Twitter, online news papers and blogs. Then we show

how reasoning about the quality of multiple sources can help us forecast outbreaks of rare

diseases more accurately than source agnostic forecast models.

7.1 Source Selection for Event Data

Recently, there has been an increasing interest in monitoring news media, blogs, and so-

cial media from all over the world and extracting geo-referenced records that correspond

to different real-world events and interactions between diverse groups of people, inter-

national organizations, countries etc.. These repositories are updated regularly whenever

new extractions are obtained from a diverse collection of data sources. Example repos-

itories of such extractions include GDELT1 and EventRegistry2 which are updated over

fixed time intervals (e.g., daily). The extracted data is stored in a tuple format containing

information about its origin (i.e., the source it was extracted from), an event identifier

1http://gdeltproject.org/
2http://eventregistry.org/

190

corresponding to a real-world event, a short description of the event and a timestamp.

Due to the large number of data sources monitored in such repositories (e.g., EventReg-

istry monitors around 75,000 news sources daily) it is often hard for analysts to identify

sources that are useful for their applications. In this part of the dissertation we intro-

duce SOURCESIGHT, a quality-aware data source management system that implements

the techniques proposed in the previous chapters of the dissertation while focusing on

the event data domain described above. Next, we discuss SOURCESIGHT’s design and

present an overview of the system’s functionalities.

7.1.1 Design Details

SOURCESIGHT offers a number of unique features:

(1) Users can describe a data domain relevant to their application using a keyword-based

interface. They can also explore sources relevant to that domain and discover domains that

are highly relevant to their initial search. The latter allows them to refine the specification

of their desired task.

(2) Given a domain description, users can perform source selection by selecting their

desired quality metrics from a collection of prespecified metrics. SOURCESIGHT casts

source selection as a multiobjective optimization problem to help users understand the

trade-offs between the different selected quality metrics. It also proposes different sets of

sources, with each corresponding to a source selection solution where different weights

are assigned to the selected quality metrics.

191

(3) Finally, the system allows users to interactively explore the recommended solutions.

Users can also perform a qualitative comparison between different source selection solu-

tions. This is crucial for evaluating the solutions recommended by SOURCESIGHT and

helps users understand why a particular set of sources was proposed by the system.

The core of SOURCESIGHT is built around the techniques introduced in Sections3.3.1,

3.4.1 3.5 and 3.6 and Chapter 5. SOURCESIGHT’s design follows the architecture shown

in Figure 1.5 and extends it with a frontend that allows users to interact with the system.

The frontend is a “thin-client” that allows users to specify a data domain by providing a

keyword-based description and displays visualizations that aid users to select the desired

sources for integration.

To enable effective source selection over diverse domains, we use a correspondence

graph (Section 3.6) to identify the domains covered by the available sources. To discover

the literals associated with each source entry we use Thomson Reuter’s Open Calais3, an

API for semantic annotations with respect to multiple knowledge bases including DB-

pedia, Freebase and others. After discovering the context literals associated with each

source, we identify the c-cluster nodes in the correspondence graph (see Section 3.6).

To characterize the quality of data sources, SOURCESIGHT considers the metrics of

coverage and freshness (referred to as timeliness in the system). Accuracy is not applica-

ble in the domain of event data as no retractions or deletions were observed. Furthermore,

SOURCESIGHT extends the quality metrics by reasoning about the position bias of each

source with respect to the c-clusters in the correspondence graph. The position bias of a

source S with respect to a c-cluster C measures how positive or negative the sentiment of

3http://www.opencalais.com/

192

the entries of S are towards entities contained in the domain C.D of the c-cluster. The

sentiment of S for a single source entry is extracted using standard sentiment analysis

techniques [119] that focus on the subjectivity and polarity of the entry. The position

bias of S towards the c-cluster C is computed by aggregating the subjectivity and polarity

values over all source entries relevant to C.D.

7.1.2 SOURCESIGHT Functionalities

Users interact with SOURCESIGHT by providing a keyword-based description of their

domain of interest. These keywords are matched against the context literals associated

with the different c-clusters to identify domains relevant to their description.

Once a description is provided users can choose among three main functionalities.

They can (i) choose to explore which keywords and sources are highly relevant to their de-

scription, (ii) choose to perform source selection, and (iii) choose to perform a qualitative

comparison between different source selection solutions recommended by the system.

SOURCESIGHT offers a unified interface for users to explore both context-literals

and sources related to their desired integration task (see Figure 7.1). Given the description

of a user, SOURCESIGHT returns the set of top relevant literals to the search of the user as

well as the most relevant sources with respect to coverage or other metrics for the specified

keyword search. The user can then select any of the recommended sources to view a

summary of the literals that the source covers as well as a quality summary of the source

for the corresponding keyword search. Users can also choose to update their description

by including new relevant context-literals. Figure 7.1 shows an example use-case where a

193

Search for "Greece" Search for "Greece, Business, Finance"

Relevant Literals
"Business, Finance", "Sports"
"Environment", "Labor", etc.

Relevant Literals
"Athens", "EUR"

"USD", "Portugal", "Bank of Greece"

Most Relevant Sources
w.r.t. coverage

Figure 7.1: Discovering relevant sources and refining an integration task with SOURCE-
SIGHT.

journalist wants to write an overview article about the socio-economic situation in Greece.

The journalist starts by requesting news sources relevant to the keyword “Greece”. Apart

from presenting the relevant sources, SOURCESIGHT additionally recommends that it

might be beneficial to explore related and more specialized descriptions, such as “Greece

and Business and Finance” or “Greece and Labor”, as the set of relevant sources may

change significantly.

Because of the variety of quality metrics SOURCESIGHT supports, it provides the

user with multiple source selection solutions that correspond to different weighting con-

figurations for the available quality metrics. The solutions are generated using the tech-

nique described in Section 5.3.3. This allows users to explore different trade-offs amongst

the available quality metrics and identify the set of sources that best satisfies their quality

requirements (seeFigure 7.2).

194

Qualitative Comparison of
Different Source Selection Solutions

Quality Summary of
Selected Solution

Choose
among different
quality metrics

Figure 7.2: SOURCESIGHT’s interface for exploring source selection solutions.

Set of Sources BSet of Sources A

Per metric contribution

of each selected sourceSelected sources

Figure 7.3: Comparing source selection solutions with SOURCESIGHT.

195

Finally, users can perform a quality comparison between the solutions recommended

by SOURCESIGHT. All the sampled solutions are presented to the user in a way that

makes it easy for her to compare the quality of each solution. Users can select a particular

solution and view a concise summary of the benefit and cost of integration achieved by

it. Users can also drill down and expand only on a subset of the available quality metrics

to fully understand specific trade-offs across different solutions. Users can also view a

detailed description of a source selection solution with information about the sources in-

cluded in the result and their individual contributions to the quality of the final integration

result (see Figure 7.3).

7.2 Forecasting Rare Disease Outbreaks with Multiple Sources

Recently, there has been a growing interest in developing statistical models to forecast in-

fectious disease outbreaks enabling effective control measures to be taken in a sufficiently

timely fashion. In this section, we demonstrate how some of the techniques described in

Chapter 3 can be used to forecast the incidences of rare disease outbreaks when the data

used for forecasting are collected by multiple sources. We focus on incidences of Han-

tavirus syndromes over countries in Latin America. Human infections of Hantaviruses

are rare and have almost entirely been linked to human contact with rodent excrement.

Many previous approaches rely on integrating publicly available data from the Web,

including news articles [18, 102], blogs [29], search engine logs [62] and micro-blogging

services, such as Twitter [30, 123, 124]. However, most approaches are agnostic to the

quality of each individual source used in the process and usually proposed models that

196

0 0.5 1
0

5

10

Source Accuracy

#
 o

f
S

o
u
rc

e
s

Source Characteristics (Chile)

0.4 0.6 0.8 1
0

50

100

Source Accuracy

#
 o

f
S

o
u

rc
e

s

Source Characteristics (Brazil)

Figure 7.4: Source accuracy histograms for Chile and Brazil.

utilize the data of all available sources. Nevertheless, different data sources may exhibit

different delays at reporting rare disease incidences, and using their data for predicting

outbreaks may lead to predictions of significantly different accuracy. To illustrate this we

use the following scenario.

We consider a dataset that corresponds to a corpus of public health-related news ar-

ticles and tweets from 798 different sources referring to multiple diseases over a timespan

of 15 months. All news articles are either in Spanish or Portuguese. The news article feed

gets updated on a weekly basis and the goal is to predict disease outbreaks for the next

week. We wish to reminder the reader that the same dataset was used in Section 3.7.2.

Example 9. We consider data sources providing information for Chile and Brazil and ex-

amine their accuracy at predicting Hantavirus outbreaks. Figures 7.4(a) and 7.4(b) shows

the source accuracy histograms. As shown, the accuracy levels of different data sources

vary significantly. The model used for predicting outbreaks is described in Section 7.2.1.

Motivated by this example, we apply our quality-aware source management tech-

niques to the problem of forecasting Hantavirus outbreaks in countries in Latin America

197

using the data described above. Sources correspond to newspapers publishing news arti-

cles and data entries correspond to unstructured data. Therefore, we use the techniques

introduced Section 3.3.2 and Section 3.4.2 to identify the quality of available sources.

Using these techniques we can estimate the effectiveness of each data source at cov-

ering the topics present in the underlying domain at future time points. The effectiveness

of a source in covering certain topics at future time points (i.e., the future source-topic rel-

evance value) can be viewed as a surrogate for its authoritativeness for that topic. Thus,

if a source is very effective in covering Hantavirus related topics, then more emphasis

should be put on its data compared to other sources.

Each source can be viewed as an expert providing a prediction for an outbreak.

Given the individual source predictions, one needs to fuse them together into a single

prediction. Next, we present how, one can derive source-specific predictions for Han-

tavirus outbreaks by taking into account the source-topic relevance values, and provide

an algorithmic framework for fusing predictions from multiple sources.

7.2.1 Expert Fusion with Sources as Experts

Hantavirus incidences are scarce over time. Therefore, the source-topic relevance values

(Equation 3.11 and Equation 3.13) for a rare disease topic will be low for most time

points and high only for few time points corresponding to an outbreak. Following this

observation, high relevance values for a rare disease topic, can be viewed as anomalous

points, and thus, anomaly detection techniques can be used to identify if the source-topic

relevance corresponds to an anomalous point.

198

One-class SVMs [141] (OCSVM) can be used to classify the source-topic relevance

values as anomalous or not. OCSVMs have successfully been used in a variety of anomaly

detection tasks [103, 150, 73]. OCSVMs present superior performance compared to other

anomaly detection techniques, such as Nearest Neighbor classification, in scenarios where

a small number of anomalous example is available [90]. Finally, OCSVMs do not make

any assumptions on the distribution of the data point values.

Let L be the set of available locations in the data and T the time window for which

data from the sources are collected. To predict outbreaks for a future time point t, a sepa-

rate OCSVM for each source-location pair (s, l), with l ∈ L, is trained using the estimated

source-topic relevance values for all time points up to t− 1 as training data. The training

entry for a time point t′ ≺ t corresponds to a vector < Relevance(s, z1; l, t′),Relevance(s, z2; l, t′), · · · >

containing the estimated relevance values for all topics z1, z2, . . . that are relevant to the

rare disease under consideration. The estimated relevance values for time point t can be

computed using the methodology described in Section 3.4.2. Our goal is to forecast dis-

ease outbreaks for a specific location, thus, the predictions of all sources should be fused

into a single prediction for each location l ∈ L at time t. For this, we introduce a weighted

majority voting algorithm based on the multiplicative weights update framework[5].

Given time t in the future, focus on a location l and view each source s ∈ S̄ as

an expert providing a prediction ds ∈ [−1, 1] with the value −1 corresponding to the

emergence of an outbreak and 1 otherwise. A weight ws is assigned to each source, and

given the predictions of all sources, predict yes/no for an outbreak at location l by taking

the majority vote
∑

s∈S̄ws · ds. The weights ws can be learned using the multiplicative

weights update algorithm shown in Algorithm 8.

199

Algorithm 8 Multiplicative Weights Update for Sources
1: Input: Sl: set of sources for location l; Dl: training points; RSl

: source-topic rele-
vance dictionary for sources in Sl and points in Dl; OSl

: one-class SVMs for Sl; ε:
discount factor

2: Output: W: weights for sources in Sl
3: Initialize all weights W to 1
4: for all d ∈ Dl do
5: for all s ∈ Sl do
6: /*Extract the expert’s vote*/
7: v ← OSl

[s].predict(RSl
[s][d])

8: if v is wrong then
9: Wk ← Wk · exp(−ε) /* Decrease the weight */

10: else
11: Wk ← Wk · exp(ε) /* Increase the weight */
12: Normalize the weights to sum up to 1.0
13: return W

Consider a location l. To construct the necessary input for the multiplicative weights

update algorithm we assume access to a gold-standard report (GSR) is assumed. GSR

provides ground truth information for disease outbreaks at locations in L for time points

t ≺ T and is being updated at a much lower rate than that of the source data and therefore

one can observe significant delays at obtaining ground truth information. Given GSR we

perform the next steps: (i) identify the set of sources Sl relevant to location l, i.e., sources

that have published for location l, and (ii) construct the set of training points Dl by con-

sidering the reported outbreaks in GSR for location l and the disease under consideration.

Populate Dl with tuples of the form (timepoint, outbreak) for all historical time points

up to the latest time point present both in Ω and GSR and set the value of outbreak to −1

if an actual outbreak was reported and 1 otherwise. Finally, use the past source-topic rel-

evance values for the sources in Sl and the training points in Dl. The latter step converts

the quality metric of coverage extracted by the proposed automated source management

techniques to a task specific accuracy metric for each source.

200

Given the input described above, the algorithm proceeds in an iterative fashion up-

dating the weights of the sources considering the accuracy of their predictions. More

precisely, the algorithm iterates over all training points in Dl (Ln. 4). At each iteration,

it examines all available sources (Ln. 5) and extracts their prediction corresponding to a

specific training point from the past (Ln. 6-7). If the expert is mistaken, it’s correspond-

ing weight is reduced in a multiplicative fashion (Ln. 9), otherwise its weight is increased

(Ln. 11). Finally, the algorithm outputs the normalized weights, which are later used to

fuse the individual source predictions for future time points. The process is repeated as

more ground-truth data are becoming available through GSR.

Finally, each outbreak prediction for location l is associated with a confidence score.

Let S be the set of relevant sources for location l and S−1 be the subset of sources pre-

dicting an outbreak. Moreover, let al(s) be the overall accuracy of a source s ∈ Sl

considering its past predictions for location l. The accuracy of source s is defined over

the available past time window as al(s) =
correct predictions

#total prediction and corresponds to the

probability of s giving a correct prediction. The confidence score is:

ConfScore =
∏
s∈S−1

al(s) ·
∏

s∈Sl\S−1

(1− al(s)) (7.1)

Given the confidence score of each outbreak prediction, one can use a threshold mecha-

nism to select the final outbreak predictions, and balance the trade-off between precision

and recall as discussed in Section 7.2.2. Fusing the predictions of individual sources, one

can predict if a disease outbreak will happen during a specific week. To predict the exact

day of the incidence, a standard relative date within the week is adopted to be the date at

which the rare disease incidence will occur, and is tuned using cross-validation.

201

7.2.2 Evaluating Outbreak Forecasts

We now evaluate the performance of the proposed source-aware forecasting approach.

Data. We use the news articles dataset introduced in Section 3.7.2.

GSR. The gold standard report gives ground truth determinations of whether a disease in-

cidence (Hantavirus) happened in a given location.. The GSR is used from out multiplicative-

weights algorithm to determine the predictive accuracy of different sources. The GSR is

determined by analysts considering multiple news sources and studying bulletins issued

by health reporting organizations such as ProMED [1].

Models. The following models are evaluated:

• SourceSeer: The source-aware prediction framework that combines the techniques

introduced in Section 3.3.2 and Section 3.4.2 with the multiplicative-weights algo-

rithm described above. We also couple this framework with a thresholding mechanism

where for a week and country accepts only the predictions with confidence scores in

the top-k percentile of all prediction scores for that country.

• LocSeer: A variation of SourceSeer that uses the topic model from Section 3.3.2 to

identify disease related topics but integrates this with a location-only anomaly detec-

tion approach that is similar to the one introduced above. For each location we calcu-

late the location-topic relevance values for future time points and use an OCSVM to

detect anomalous points. To calculate the location-topic relevance, we estimate each

entry of the location’s word frequency vector as:

202

F̂l,t[w] = x̄w Pr(t|l, w)
∑
z∈K

φz,w · θl,z · ξz,t

where Pr(t|s, w) is defined similarly to Equation 3.15. Intuitively, LocSeer inte-

grates news articles from multiple data sources ignoring the coverage and accuracy of

individual sources. Again a thresholding mechanism similar to that of SourceSeer

is used considering the accuracy of each state-based OCSVM.

• KeyWord: A keyword based prediction technique that monitors the mentions of Han-

tavirus related keywords. We considered the set {“hanta”, “hantavirus”, “roedores”,

“ratones”, “cardiopulmonar”} and used an OCSVM to predict future outbreaks based

on past mentions of words. This word-set reflects the fact that Hantavirus has almost

entirely been linked to human contact with rodent excreta and their symptoms affect

the heart and lungs.

• BRM: A base rate model that assumes a fixed rate for the occurrence of rare disease

outbreaks for each location and for each month. To determine this rate, the model

extracts the average frequency of outbreak occurrences reported over a past time win-

dow of four months. BRM reports disease outbreaks for that location at a frequency

equal to the extracted rate. Alerting dates are assigned to the beginning of each month

while event dates are assigned uniformly at random to a day within the corresponding

month. The average performance over 25 independent runs is taken.

All models are implemented in Python and the evaluation is performed on an Intel(R)

Xeon(R) CPU E7-4870 @2.40GHz/64bit/1TB machine.

203

Parameter Setup. The OCSVM parameters are tuned using leave-one-out cross-validation.

The topic model, the parameters of the Dirichlet priors are set to α = 2/K, β = 0.01

and γ = 0.01 where K is the number of topics. The topic model was evaluated with

K = {8, 12, 15} and setting K = 12 was found to provide the most meaningful topics.

Metrics. Five key measures of performance are adopted. Given the predictions, the pre-

cision, recall and F1-score are computed at a country level, grouping together prediction

for locations in the same country. An average warning quality for each country is also

computed as follows. Each prediction for a location in the country under consideration is

assigned a quality score Q = 4
3
(1 + aloc + adate), where aloc and adate denote the location

and date accuracy of the prediction. To calculate aloc A two-level topology, considering

the country, and state corresponding to the location of a warning is used. A partial score

of 0.5 is assigned to a warning if it matches the country of an outbreak correctly and an

additional score of 0.5 is assigned if the warning matches the state correctly. The date

specific accuracy adate is:

adate = 1− min(|predicted date− actual date|, 7)

7
(7.2)

Finally, the lead-time of the predictions is considered. The lead-time calculated as the

time between the date of alerting and the actual date of reporting the outbreak (not the

incidence date of the outbreak). Lead-time is different from the date accuracy above.

Mapping Warnings to Events. Since there can be multiple events in a given month, we

need a strategy to map events to alerts. A maximum bipartite matching between events

and alerts is used where (i) an edge exists if the alert was issued prior to the reporting date

of the event, (ii) the weight on the edge denotes the putative quality score.

204

7.2.2.1 Predicting Disease Outbreaks

How efficient is SourceSeer at forecasting disease outbreaks? We evaluate the per-

formance of the various disease outbreak forecasting algorithms focusing on hantavirus

incidences at the country level considering the predicted outbreaks for Argentina, Chile,

Uruguay and Brazil. We apply BSR, KeyWord, SourceSeer and LocSeer. We evaluate

the performance of SourceSeer and LocSeer with k ∈ {5, 10, 20, 30, 40, 50, 70}. We

use the three hantavirus topics described above to construct the necessary feature vectors

for SourceSeer and LocSeer.

Table 7.1 shows the precision, recall and F1 score of the three approaches from Jan-

uary 2013 to March 2014 aggregated over all countries. For LocSeer and SourceSeer

the results for the configuration k that obtained the best performance are reported. As

shown, SourceSeer obtains the best F1-score for most of the months. The F1 score of

BSR is lower as its recall is significantly lower compared to that of SourceSeer. The

latter is expected as BSR can only predict outbreaks for states where a sufficient number

of outbreaks has occurred in the past. In fact, due to its design BSR fails completely to

forecast outbreaks for states or countries where no outbreaks have been observed in the

past (e.g., the outbreak in Brazil for October 2013 and the outbreak in Uruguay for March

2013). However this mechanism limits the number of false positives significantly, and

thus, for many months we observe slightly higher or comparable precision scores for BSR

with those of SourceSeer. The F1 score of LocSeer is significantly lower compared to

SourceSeer due to its significantly lower precision scores. The reason for this behavior

is the increased number of false positives returned by LocSeer even after the threshold-

205

Table 7.1: BSR, KeyWord, LocSeer and SourceSeer on predicting hantavirus out-
breaks. Notation (k%) denotes the best performing configuration for LocSeer and
SourceSeer.

BSR KeyWord LocSeer (5%) SourceSeer (5%)
Month Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
01/13 0.5 0.17 0.25 0.67 0.33 0.44 0.13 0.67 0.22 0.44 0.67 0.53
02/13 0.52 0.78 0.62 0.67 1.0 0.80 0.12 1.0 0.21 0.5 1.0 0.67
03/13 0.7 0.35 0.46 0.6 0.75 0.67 0.29 0.5 0.37 0.5 0.5 0.5
04/13 0.78 0.59 0.67 0.33 0.25 0.28 0.6 0.75 0.67 0.57 1.0 0.73
05/13 0.51 0.48 0.54 0.29 0.4 0.34 0.14 0.2 0.16 0.38 0.6 0.47
06/13 0.22 0.68 0.33 0 0 0 0.14 1.0 0.25 0.14 1.0 0.25
07/13 0.22 0.68 0.33 0 0 0 0.14 1.0 0.25 0.2 1.0 0.33
08/13 0.4 0.6 0.47 0 0 0 0.2 1.0 0.33 0.67 1.0 0.80
09/13 0.5 0.33 0.39 0 0 0 0.23 1.0 0.37 0.67 0.67 0.67
10/13 0.62 0.24 0.35 0.5 0.4 0.44 0.31 0.8 0.45 0.38 0.6 0.47
11/13 0.89 0.44 0.59 0.75 0.5 0.6 0.21 0.83 0.34 0.45 0.83 0.58
12/13 0.9 0.32 0.47 0.75 0.27 0.40 0.75 0.55 0.63 0.67 0.55 0.60
01/14 0.65 0.49 0.56 0.43 0.38 0.40 0.19 0.5 0.28 0.71 0.63 0.67
02/14 0.56 0.74 0.64 0.43 0.5 0.46 0.27 0.67 0.38 0.67 0.67 0.67
03/14 0.55 0.88 0.68 0.57 0.8 0.66 0.29 0.8 0.42 0.5 0.8 0.62

ing mechanism was employed. Finally, KeyWord performs reasonably well when there

is an increase in the number of outbreaks in previous weeks leading to increased keyword

counts. However, the model performs poorly in the presence of low keyword counts.

KeyWord failed to forecast the outbreaks in August and September 2013 as only one was

reported in July.

Is the performance gain of SourceSeer significant? To obtain a clearer understand-

ing of SourceSeer’s performance gain, we perform the Wilcoxon signed-rank [168] test

comparing the performance of BSR with SourceSeer, KeyWord with SourceSeer and

LocSeer with SourceSeer for precision, recall, and F1-score across all months. In Ta-

ble 7.2 we report the corresponding test statistic scoresW and the z-scores. We consider a

baseline confidence level of α = .05. As shown, the performance difference between BSR

and SourceSeer is statistically significant for recall and F1 (with SourceSeer outper-

206

Table 7.2: Wilcoxon signed-rank statistical significance test on SourceSeer’s perfor-
mance gain. H0: The median performance difference between the pairs is zero. Reject
H0: | z | ≥ 1.645 or W ≥ 15 when z not applicable. Baseline confidence level of
α = .05. Bold fonts denotes statistically significant differences.

Metric Score SourceSeer v.s. SourceSeer v.s. SourceSeer v.s.
BSR LocSeer KeyWord

Prec. W -51 81 36
z -1.463 2.966 1.349

Rec. W 114 3 76
z 3.223 - 2.961

F1 W 61 101 100
z 1.899 3.154 2.825

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

0
1
/1

3

0
2
/1

3

0
3
/1

3

0
4
/1

3

0
5
/1

3

0
6
/1

3

0
7
/1

3

0
8
/1

3

0
9
/1

3

1
0
/1

3

1
1
/1

3

1
2
/1

3

0
1
/1

4

0
2
/1

4

0
3
/1

4

Q
u
a
lit

y
 S

c
o
re

Date

Quality Timeline

BSR
KeyWord

LocSeer
SourceSeer

Figure 7.5: Quality score timeline for BSR, KeyWord, LocSeer and SourceSeer on
predicting Hantavirus outbreaks.

forming BSR) while the difference for precision is not statistically significant. The same

behavior was observed for KeyWord and SourceSeer. For LocSeer and SourceSeer,

we see that the performance gain of SourceSeer for precision and F1 is statistically sig-

nificant while the difference for recall is not. We did not observe significant differences in

the performance of LocSeer and SourceSeer for different values of k. We further ana-

lyze the performance of the four models by comparing the quality score cross all months

under consideration. Figure 7.5 shows the average prediction quality score obtained by

207

 0
 2
 4
 6
 8

 10
 12
 14

0
1
/1

3

0
2
/1

3

0
3
/1

3

0
4
/1

3

0
5
/1

3

0
6
/1

3

0
7
/1

3

0
8
/1

3

0
9
/1

3

1
0
/1

3

1
1
/1

3

1
2
/1

3

0
1
/1

4

0
2
/1

4

0
3
/1

4

L
e
a
d
 T

im
e
 (

D
a
y
s
)

Date

Lead-time Timeline

KeyWord
LocSeer

SourceSeer

Figure 7.6: Lead-time for KeyWord, LocSeer’s and SourceSeer’s predictions.

each model from January 2013 to March 2014. A higher quality score is an indicator

that a model can predict outbreaks correctly at the state and not only at the country level.

As shown, both LocSeer and SourceSeer outperform BSR and KeyWord significantly.

This is expected since BSR relies only on past reported events to predict future outbreaks

and KeyWord on increased keyword counts, hence, by design both cannot predict out-

breaks in states with no reported incidents. We also see that SourceSeer obtains higher

quality scores for most of the months compared to LocSeer. This is due to weighting the

predictions of difference sources based on their accuracy for each specific state.

What is the lead-time gain of SourceSeer? Finally, we analyze the average lead-time

of KeyWord, LocSeer and SourceSeer to examine if the proposed models can forecast

outbreaks in a timely manner. Figure 7.6 shows the lead-time timeline of the three models

from January 2013 to March 2014. We observe that both models have a significant lead-

time advantage when compared against the mention of the outbreak in news sources and

also outperform KeyWord.

208

7.3 Summary

In this chapter, we demonstrated how the techniques proposed in the dissertation can have

significant impact on real-world applications. Quality-aware data source management

can not only enable users to discover valuable sources for integration but the underlying

techniques can also be used to devise significantly more effective forecasting mechanisms.

209

Chapter 8: Conclusion

In this dissertation, we introduced a framework for quality-aware data source manage-

ment. We demonstrated that, in the presence of a large number of heterogeneous data

sources, it is possible to effectively reason about their quality, and determine the actual

utility of the data they provide for diverse user applications. We showed that, without

fully integrating all available data from multiple sources, it is possible to find the set of

sources that maximize the utility of the integration result given an integration cost budget.

The technical contributions of the dissertation are (i) a collection of formally de-

fined data quality metrics based on probability theory, (ii) statistical models to formally

compute the content focus and quality of different types of sources, including sources

whose content changes over time and sources that provide both structured and unstruc-

tured data, and (iii) efficient algorithms with formal performance guarantees for finding

the most valuable sources for integration. We also introduced two systems, SOURCE-

SIGHT and SOURCESEER, that demonstrate how the techniques in this dissertation can

not only help users identify the most useful sources for their applications but can also lead

to significant accuracy improvements for multi-source learning applications.

210

8.1 Future Directions

Characterizing and assessing data quality, and therefore data source quality, will be an

increasingly important area over the next several years as businesses, governments and

analysts realize that data is a commodity similar to standard computational resources

(e.g., the number of nodes in a cluster) that everybody is familiar with. Moreover, as

the collection and publishing of data is only expected to increase, the problems of under-

standing how useful a data source is and why it is useful for a specific application, will

only become more important. Next, we identify research directions which we believe to

have a high potential of impact.

Automated Quality Assessment with Guarantees. Assessing the quality of a data

source or a dataset requires comparing and contrasting it with the real world constructs

it refers to. As discussed earlier in this dissertation, one can either do that by consid-

ering limited ground truth, if available, or in the case of missing ground truth, one can

approximate the real-world by integrating and overlaying samples from different sources.

While our models in Chapter 3 were empirically shown to provide accurate estimates for

different source quality metrics, they come with no guarantees on the goodness of fit of

these estimates. An immediate next step would be to devise new quality estimation pro-

cedures that will not only estimate the quality of sources via sampling the content of data

sources but will also provide confidence intervals for the estimated quality metrics. These

intervals need to take into account the size of the sample as well as how representative the

sample is with respect to the population of entries provided by the source. For example,

consider a source providing business listings from Maryland and New York. We want to

211

estimate the accuracy of this source but we only have access to a sample that contains 1%

of the source’s data and data entries from Maryland are significantly more abundant. It

is obvious that the source’s accuracy on this small sample may be significantly different

from the source’s true accuracy. Therefore, we need to account for the sample specific

information and obtain confidence intervals for the source’s accuracy.

Expert-Specified Quality Metrics and Explanations. In Chapter 3, we described a col-

lection of generic metrics (i.e., coverage, freshness and accuracy) that can be used to

characterize the content of sources and the quality of integrated data. While these met-

rics are generic and can be instantiated under different semantics, they are not always

sufficient to describe the content of a high-quality source. For example, consider a sce-

nario where we have multiple data sources corresponding to results of clinical trials and

a biologist that wants to evaluate the data published by each source. One measure that

characterizes the results of clinical trials is how representative is the population on which

the trial was conducted on. Nevertheless, this is a specific metric that is applicable to the

scenario of clinical trials and may not be directly applicable to generic data sources.

Given the need of application-specific metrics, a future direction for data quality re-

search is to enable users to specify quality-requirements for their applications via declar-

ative interfaces. Such interfaces can be built upon first order logic and data quality can

be expressed using a collection of logical rules. Generic metrics such as coverage, fresh-

ness, and accuracy, can be used as building blocks, but nonetheless designing the neces-

sary primitives for expressive quality specifications is an open research problem. Finally,

declarative quality specifications will allow quality-aware data source management sys-

tems to provide explanations for the quality of integrated data by reasoning about how

212

well the integration result satisfies the provided quality rules. We believe that discovering

concise and human-interpretable explanations is a rather challenging problem with a high

potential of impact.

213

Appendix A: Supplemental Derivations and Proofs

A.1 Derivation of Gibbs Sampling Equations

In this section we provide a Gibbs sampling algorithm for learning the parameters of the

topic model introduced in Section 3.3.2. Before we proceed with the actual algorithm, we

present the joint distribution corresponding to the topic model.

Pr(w, t,v, z, φ, θ, ξ;α, β, γ) =

=
K∏
z=1

Pr(φz; β) Pr(ξz; γ)
∏

v∈VAD

Pr(θl;α)

·
S̄∏
s=1

Ns∏
i=1

Pr(zsi|lsi, θl) Pr(wsi|φzsi) Pr(tsi|ξzsi)

Next, marginalize over all φ, ξ and θ:

214

Pr(w, t,v, z;α, β, γ) =

∫
φ

∫
θ

∫
ξ

Pr(w, t,v, z, φ, θ, ξ;α, β, γ)dξdθdφ

=

∫
φ

K∏
z=1

Pr(φz; β)
S̄∏
s=1

Ns∏
i=1

Pr(wsi|φzsi)dφ

·
∫
ξ

K∏
z=1

Pr(ξz; γ)
S̄∏
s=1

Ns∏
i=1

Pr(tsi|ξzsi)dξ

·
∫
θ

∏
v∈VAD

Pr(θv;α)
S̄∏
s=1

Ns∏
i=1

Pr(zsi|vsi, θvsi)dθ

=

∫
φ

K∏
z=1

Pr(φz; β)
S̄∏
s=1

Ns∏
i=1

Pr(wsi|φzsi)dφ

·
∫
ξ

K∏
z=1

Pr(ξz; γ)
S̄∏
s=1

Ns∏
i=1

Pr(tsi|ξzsi)dξ

·
∫
θ

∏
v∈VAD

Pr(θv;α)
S̄∏
s=1

Ns∏
i=1

Pr(zsi|vsi, θvsi)dθ

Now, one can focus on the different integrals in the expression presented above.

Start with the integral over φ.

215

∫
φ

K∏
z=1

Pr(φz; β)
S̄∏
s=1

Ns∏
i=1

Pr(wsi|φzsi)dφ

=
K∏
z=1

∫
φz

Pr(φz; β)
S̄∏
s=1

Ns∏
i=1

Pr(wsi|φzsi)dφz

=
K∏
z=1

∫
φz

Γ(
∑V

r=1 βr)∏V
r=1 Γ(βr)

V∏
r=1

φβr−1
zr

V∏
r=1

φ
nz
(·),r
zr dφz

=
K∏
z=1

∫
φz

Γ(
∑V

r=1 βr)∏V
r=1 Γ(βr)

V∏
r=1

φβr+nz
r−1

zr dφz

=
K∏
z=1

Γ(
∑V

r=1 βr)∏V
r=1 Γ(βr)

∏V
r=1 Γ(nzr + βr)

Γ(
∑V

r=1 n
z
r + βr)

where nzr denotes the number of times word r was associated with topic z across all

sources and entries. Similarly for the ξ part:

∫
ξ

K∏
z=1

Pr(ξz; γ)
S̄∏
s=1

Ns∏
i=1

Pr(tsi|ξzsi)dξ

=
K∏
z=1

∫
ξz

Pr(ξz; γ)
S̄∏
s=1

Ns∏
i=1

Pr(tsi|ξzsi)dξ

=
K∏
z=1

Γ(
∑T

t=1 γt)∏T
t=1 Γ(γt)

∏T
t=1 Γ(mz

t + γt)

Γ(
∑T

t=1 m
z
t + γt)

where mz
t denotes the number of times time-point t was associated with topic z across all

sources. Finally, focus on the θ integral. Following a similar analysis we have:

216

∫
θ

∏
v∈VAD

Pr(θv;α)
S̄∏
s=1

Ns∏
i=1

Pr(zsi|vsi, θvsi)dθ

=
∏

v∈VAD

∫
θv

Pr(θa;α)
S̄∏
s=1

Ns∏
i=1

Pr(zsi|vsi, θvsi)dθl

=
∏

v∈VAD

∫
θv

Γ(
∑K

z=1 αz)∏K
z=1 Γ(αz)

K∏
z=1

θαz−1
vz

K∏
z=1

θo
z
v
vzdθv

=
∏

v∈VAD

∫
θv

Γ(
∑K

z=1 αz)∏K
z=1 Γ(αz)

K∏
z=1

θαz+ozv−1
vz dθv

=
∏

v∈VAD

Γ(
∑K

z=1 αz)∏K
z=1 Γ(αz)

∏K
z=1 Γ(ozv + αz)

Γ(
∑K

z=1 o
z
v + αz)

where ozv denotes the number of times value v was associated with topic z across all

sources and their entries. Eventually the joint distribution is given by:

Pr(w, t,v, z;α, β, γ) =
K∏
z=1

Γ(
∑V

r=1 βr)∏V
r=1 Γ(βr)

∏V
r=1 Γ(nzr + βr)

Γ(
∑V

r=1 n
z
r + βr)

·
K∏
z=1

Γ(
∑T

t=1 γt)∏T
t=1 Γ(γt)

∏T
t=1 Γ(mz

t + γt)

Γ(
∑T

t=1m
z
t + γt)

·
∏

v∈VAD

Γ(
∑K

z=1 αz)∏K
z=1 Γ(αz)

∏K
z=1 Γ(ozv + αz)

Γ(
∑K

z=1 o
z
v + αz)

Gibbs sampling is used to approximate the conditional distribution Pr(z|w, t,v;α, β, γ,Ψ).

Using the chain rule one gets the following for the conditional probability:

217

Pr(zsi|w, t,v, z−si;α, β, γ) =
Pr(zsi, wsi, tsi, vsi|w−si, t−si,v−si, z−si;α, β, γ)

Pr(wsi, tsi, vsi|w−si, t−si,v−si, z−si;α, β, γ)

∝ n
k,−(s,i)
wsi + βwsi∑V
r=1 n

k,−(s,i)
r + βr

· m
k,−(s,i)
tsi + γtsi∑T

t=1 m
k,−(s,i)
t + γt

· o
k,−(s,i)
vsi + αvsi∑

v∈VAD
o
k,−(s,i)
v + αv

where −si in the superscript indicates that the current example has been excluded by the

count summations.

A.2 Proof of Theorem 1

Consider the coverage estimator introduced in Equation 3.25. It is easy to see that

the only terms which depend on the set of selected sources SI are Cov(F(SI); t0) and

Pr[Ins;F (SI), t, τ]. The estimator Cov∗(F(SI); t) is expressed as a non-negative linear

combination of these terms. Thus, it suffices to show that each of these terms corresponds

to non-decreasing submodular function. First, focus on Cov(F(SI); t0). We have that:

Cov(F(SI); t0) =
Up(F(SI); t0) + Out(F(SI); t0)

|DP|t0
(A.1)

The denominator does not depend on SI and is a positive constant. Thus, one only needs

to prove that Up(F(SI); t0) + Out(F(SI); t0) is a non-decreasing submodular function. Let

C(F (SI); t0) = Up(F(SI); t0) + Out(F(SI); t0) denote the covered data items in F (SI) at

time t0. From Section 3.5.2.1 one has that:

218

C(F (SI); t0) = |
∨
S∈SI

Bcov
S |

where | · | denotes the number of bits set to one in the signature given as input. Let

C(F (SI ∪ S ′); t0) denote the covered items when a new source S ′ is added in SI :

C(F (SI ∪ S ′); t0) = |
∨
S∈SI

Bcov
S ∨Bcov

S′ |

= |
∨
S∈SI

Bcov
S |+ |Bcov

S′\SI
| ≥ C(F (SI); t0)

where |Bcov
S′\SI
| denotes the number of bits set to one only in Bcov

S′ and not
∨
S∈SI

Bcov
S .

Thus the number of covered items is a non-decreasing function. Next, I show that the

number of covered items is a submodular function. First, I compute the quantity ∆Cov∗(F(SA); t):

∆Cov∗(F(SA); t) = Cov∗(F(SA ∪ {S′}); t)− Cov∗(F(SA); t)

= |
∨
S∈SI

Bcov
S ∨Bcov

S′ | − |
∨
S∈SI

Bcov
S |

= |Bcov
S′\SA

|

Similarly, ∆Cov∗(F(SB); t) = |Bcov
S′\SB | and:

219

|Bcov
S′\SB

| = |Bcov
S′\(SA∪(SB\SA))|

= |Bcov
(S′\SA)∩(S′\(SB\SA))|

= |Bcov
(S′\SA) ∧Bcov

(S′\(SB\SA))|

≤ |Bcov
(S′\SA)| (A.2)

Directly from the above equation one has that |Bcov
S′\SB

| ≤ |Bcov
S′\SA

|. Thus, the number of

covered items is a submodular function. From the analysis presented above, the coverage

at time t0 is a non-decreasing submodular function.

For each of the terms Pr[Ins;SI , t, τ, P] one has the following for the set of sources

SA and SB. From Equation 3.22:

Pr[Ins;SA, t, τ, P] = 1−
∏
S∈SA

(
1−GS

i (TS(t), τ ;P)
)

Similarly for SB. The probability corresponding to SB can be expressed as:

Pr[Ins;SB, t, τ, P] = 1−
∏
S∈SB

(
1−GS

i (TS(t), τ ;P)
)

= 1−
∏
S∈SA

(
1−GS

i (TS(t), τ ;P)
) ∏
S∈SB\SA

(
1−GS

i (TS(t), τ ;P)
)

Since
∏

S∈SB\SA

(
1−GS

i (TS(t), τ ;P)
)
≤ 1 one has that:

Pr[Ins;SB, t, τ, P] ≥ Pr[Ins;SA, t, τ, P]

220

thus proving that each term Pr[Ins;SI , t, τ, P] corresponds to a non-decreasing function.

Next, we prove that this function is submodular:

Pr[Ins;SB ∪ {S ′}, t, τ, P]− Pr[Ins;SB, t, τ, P]

=
∏
S∈SB

(
1−GS

i (TS(t), τ ;P)
)
−

∏
S∈SB∪{S′}

(
1−GS

i (TS(t), τ ;P)
)

= Gi,S′(TS′(t), τ ;P)
∏
S∈SB

(
1−GS

i (TS(t), τ ;P)
)

= Gi,S′(TS′(t), τ ;P)
∏
S∈SA

(
1−GS

i (TS(t), τ ;P)
)
∗

∏
S∈SB\SA

(
1−GS

i (TS(t), τ ;P)
)

≤ Pr[Ins;SA ∪ {S ′}, t, τ, P]− Pr[Ins;SA, t, τ, P]

proving that Pr[Ins;SI , t, τ, P] is submodular.

A.3 Proof of Theorem 3

To derive the new estimator we make used of the generalized jackknife procedure for

species richness estimation [75]. Given two (biased) estimators of S, say Ŝ1 and Ŝ2, let R

be the ratio of their biases:

R =
E(Ŝ1)− S
E(Ŝ2)− S

(A.3)

By the generalized jackknife procedure, we can completely eliminate the bias resulting

from either Ŝ1 or Ŝ2 via

S = G(Ŝ1, Ŝ2) =
Ŝ1 −RŜ2

1−R (A.4)

provided the ratio of biases R is known. Yet, R is unknown and needs to be estimated.

221

Let Dn denote the number of unique entities in a unified sample of size n. We con-

sider the following two biased estimators of S: Ŝ1 = Dn and Ŝ2 =
∑n

j=1Dn−1(j)/n =

Dn − f1/n where Dn−1(j) is the number of species discovered with the jth observation

removed from the original sample. Replacing these estimators in Equation A.4 gives us:

S = Dn +
R

1−R
f1

n
(A.5)

Similarly, for a sample of increased size n+m we have:

S = Dn+m +
R′

1−R′
f ′1

n+m
(A.6)

where R′ is the ratio of the biases and f ′1 the number of singleton entities for the in-

creased sample. Let K = R
1−R and K ′ = R′

1−R′ . Taking the difference of the previous two

equations we have:

Dn+m −Dn = K
f1

n
−K ′ f ′1

n+m
(A.7)

Therefore, we have:

G = K
f1

n
−K ′ f ′1

n+m
(A.8)

We need to estimate K, K ′ and f ′1. We start with f ′1, which denotes the number of

singleton entities in the increased sample of size n + m. Notice, that f ′1 is not known

since we have not obtained the increased sample yet, so we need to express it in terms of

f1, i.e., the number of singletons, in the running sample of size n. We have:

222

f ′1 = G+ f1 − f c1 (A.9)

where f c1 denotes the number of old singleton entities from the sample of size n that

appeared in the additional query of size m. Let E1 denote the set of singleton entities in

the old sample of size n. We approximate f c1 by its expected value:

f̂ c1 =
∑
e∈E1

Pr[e appears in query of size m] (A.10)

We compute the probability of an old singleton entity appearing in an additional query

as follows. Let pe denote the popularity of entity e. As described before, an additional

query of size m corresponds to taking a sample of size m from the underlying entity

population without replacement. However, m is significantly smaller compared to the

size of the underlying population, thus, we can consider a that taking a sample of size m

corresponds to taking a sample with replacement. Following this we have that:

Pr[e appears in query of size m] = 1− (1− pe)m (A.11)

Following a standard approach in the species estimation literature we assume that the

popularity of retrieving a singleton entity again is the same for all singleton entities. This

popularity can be computed using the corresponding Good-Turing estimator considering

the running sample. We have:

∀e ∈ E1, pe = p1 = θ̂(1) =
1

n
2
f2

f1

(A.12)

223

where f2 is the number of entities that appear twice in the sample and f1 is the number of

singletons. Eventually we have that:

f̂ c1 = f1(1− (1− p1)m) (A.13)

and

f ′1 = G+ f1(1− p1)m (A.14)

Replacing the last equation in Equation A.8 we have:

G = K
f1

n
−K ′G+ f1(1− p1)m

n+m

G = K
f1

n
−K ′ G

n+m
−K ′f1(1− P)

n+m

G(1 +
K ′

n+m
) = K

f1

n
−K ′f1(1− P)

n+m

G =
1

(1 + K′

n+m
)
(K

f1

n
−K ′f1(1− p1)m

n+m
)

A.4 Proof of Lemma 1

We will denote K(n + m) as K ′. By definition we have that K =
∑S

i=1(1−pi)n∑S
i=1 pi(1−pi)n−1

and

K ′ =
∑S

i=1(1−pi)n+m∑S
i=1 pi(1−pi)n+m−1

. We want to show that:

224

∑S
i=1(1− pi)n+m∑S

i=1 pi(1− pi)n+m−1
≥

∑S
i=1(1− pi)n∑S

i=1 pi(1− pi)n−1

S∑
i=1

(1− pi)n+m

S∑
j=1

pj(1− pj)n−1 ≥
S∑
i=1

pi(1− pi)n+m−1

S∑
j=1

(1− pj)n

∑
i,j:i≺j

[(1− pi)n+mpj(1− pj)n−1 − pi(1− pi)n+m−1(1− pj)n+

+ (1− pj)n+mpi(1− pi)n−1 − pj(1− pj)n+m−1(1− pi)n] ≥ 0∑
i,j:i≺j

[(1− pi)n−1(1− pj)n−1(pj − pi)((1− pi)m − (1− pj)m) ≥ 0 (A.15)

But the last inequality always holds since each term of the summation is positive.

In particular, if pj ≥ pi then also 1− pi ≥ 1− pj and if pj ≤ pi then 1− pi ≤ 1− pj .

225

Bibliography

[1] International society for infectious diseases. http://www.promedmail.org/.

[2] Mechanical Turk. http://mturk.com.

[3] Yael Amsterdamer, Susan B. Davidson, Tova Milo, Slava Novgorodov, and Amit

Somech. OASSIS: query driven crowd mining. In International Conference on

Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014,

pages 589–600, 2014.

[4] Yael Amsterdamer, Yael Grossman, Tova Milo, and Pierre Senellart. Crowd min-

ing. In Proceedings of the ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 241–

252, 2013.

[5] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update

method: a meta-algorithm and applications. Theory of Computing, 8(1), 2012.

[6] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Jour-

nal of Machine Learning Research, 3:397–422, 2002.

226

[7] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. DBpedia: A nucleus for a web of open data. In Proceedings

of the 6th International The Semantic Web and 2nd Asian Conference on Asian

Semantic Web Conference, ISWC’07/ASWC’07, pages 722–735, 2007.

[8] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii,

Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and their ap-

plications. In Proceedings of the 1993 IEEE/ACM International Conference on

Computer-aided Design, ICCAD ’93, pages 188–191, 1993.

[9] Magdalena Balazinska, Bill Howe, and Dan Suciu. Data markets in the cloud: An

opportunity for the database community. Proc. VLDB Endow., 4(12):1482–1485,

2011.

[10] Kedar Bellare, Suresh Iyengar, Aditya G. Parameswaran, and Vibhor Rastogi. Ac-

tive sampling for entity matching. In Proceedings of the 18th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, KDD ’12, pages

1131–1139, 2012.

[11] Laure Berti-Equille. Measuring and modelling data quality for quality-awareness

in data mining. In Quality Measures in Data Mining, volume 43 of Studies in

Computational Intelligence, pages 101–126. 2007.

[12] Laure Berti-Equille, Anish Das Sarma, Xin Dong, Amélie Marian, and Divesh

Srivastava. Sailing the information ocean with awareness of currents: Discovery

and application of source dependence. In CIDR, 2009.

227

[13] Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and S. Su-

darshan. Keyword searching and browsing in databases using BANKS. In Pro-

ceedings of the 18th International Conference on Data Engineering, San Jose, CA,

USA, February 26 - March 1, 2002, pages 431–440, 2002.

[14] David M. Blei and John D. Lafferty. Dynamic topic models. In Proceedings of the

23rd International Conference on Machine Learning, ICML ’06, pages 113–120.

ACM, 2006.

[15] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.

J. Mach. Learn. Res., 3:993–1022, March 2003.

[16] Beate Bollig and Ingo Wegener. Improving the variable ordering of OBDDs is

NP-complete. IEEE Trans. Comput., 45(9):993–1002, September 1996.

[17] Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. Context-

specific independence in bayesian networks. In Proceedings of the Twelfth In-

ternational Conference on Uncertainty in Artificial Intelligence, UAI’96, pages

115–123, 1996.

[18] John S. Brownstein, Clark C. Freifeld, Ben Y. Reis, and Kenneth D. Mandl.

Surveillance Sans Frontières: Internet-Based Emerging Infectious Disease Intel-

ligence and the HealthMap Project. PLoS Medicine, 5(7), 2008.

[19] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Comput. Surv., 24(3):293–318, September 1992.

228

[20] Michael J. Cafarella and Alon Y. Halevy. Web data management. In Proceedings

of the 2011 ACM SIGMOD International Conference on Management of Data,

SIGMOD ’11, 2011.

[21] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hr-

uschka Jr., and Tom M. Mitchell. Toward an architecture for never-ending language

learning. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial In-

telligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, 2010.

[22] Tiziana Catarci and Maurizio Lenzerini. Representing and using interschema

knowledge in cooperative information systems. Journal of Intelligent and Cooper-

ative Information Systems, 2:375–398, 1993.

[23] Anne Chao and Shen-Ming Lee. Estimating the number of classes via sample

coverage. Journal of the American Statistical Association, 87(417):pp. 210–217,

1992.

[24] Mark Chavira and Adnan Darwiche. Compiling Bayesian networks with local

structure. In Proceedings of the 19th International Joint Conference on Artifi-

cial Intelligence, IJCAI’05, pages 1306–1312. Morgan Kaufmann Publishers Inc.,

2005.

[25] Mark Chavira and Adnan Darwiche. Compiling Bayesian networks using variable

elimination. In Proceedings of the 20th International Joint Conference on Artifi-

cal Intelligence, IJCAI’07, pages 2443–2449. Morgan Kaufmann Publishers Inc.,

2007.

229

[26] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model

counting. Artif. Intell., 172(6-7):772–799, April 2008.

[27] Mark Chavira, Adnan Darwiche, and Manfred Jaeger. Compiling relational

Bayesian networks for exact inference. Int. J. Approx. Reasoning, 42(1-2):4–20,

May 2006.

[28] Junghoo Cho and Hector Garcia-Molina. Effective page refresh policies for web

crawlers. ACM Trans. Database Syst., 28(4):390–426, December 2003.

[29] Courtney D. Corley, Diane J. Cook, Armin R. Mikler, and Karan P. Singh. Text and

structural data mining of influenza mentions in web and social media. International

Journal of Environmental Research and Public Health, 7(2), 2010.

[30] Aron Culotta. Towards detecting influenza epidemics by analyzing twitter mes-

sages. In Proceedings of the First Workshop on Social Media Analytics, SOMA

’10, pages 115–122, 2010.

[31] Nilesh Dalvi, Christopher Ré, and Dan Suciu. Probabilistic databases: Diamonds

in the dirt. Commun. ACM, 52(7):86–94, July 2009.

[32] Nilesh Dalvi, Karl Schnaitter, and Dan Suciu. Computing query probability with

incidence algebras. In Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-

SIGART Symposium on Principles of Database Systems, PODS ’10, pages 203–

214. ACM, 2010.

[33] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases.

The VLDB Journal, 16(4):523–544, October 2007.

230

[34] Adnan Darwiche. A logical approach for factoring belief networks. In Proceedings

of the Eights International Conference on Principles and Knowledge Representa-

tion and Reasoning. Morgan Kaufmann, 2001.

[35] Adnan Darwiche. A differential approach to inference in Bayesian networks. J.

ACM, 50(3):280–305, May 2003.

[36] Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge

University Press, 2009.

[37] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae Lee, Fei Wu,

Reynold Xin, and Cong Yu. Finding related tables. In Proceedings of the 2012

ACM SIGMOD International Conference on Management of Data, SIGMOD ’12,

pages 817–828. ACM, 2012.

[38] Rina Dechter. Bucket elimination: A unifying framework for probabilistic infer-

ence. In UAI ’96: Proceedings of the Twelfth Annual Conference on Uncertainty

in Artificial Intelligence, Reed College, Portland, Oregon, USA, August 1-4, 1996,

pages 211–219, 1996.

[39] AnHai Doan, Alon Halevy, and Zachary Ives. Data Matching. Morgan Kaufmann

Publishers Inc., 1st edition, 2012.

[40] AnHai Doan, Alon Halevy, and Zachary Ives. Describing Data Sources. Morgan

Kaufmann Publishers Inc., 1st edition, 2012.

[41] AnHai Doan, Alon Halevy, and Zachary Ives. Principles of Data Integration. Mor-

gan Kaufmann Publishers Inc., 1st edition, 2012.

231

[42] AnHai Doan, Jayant Madhavan, Pedro Domingos, and Alon Halevy. Learning to

map between ontologies on the semantic web. In Proceedings of the 11th Interna-

tional Conference on World Wide Web, WWW ’02, pages 662–673, 2002.

[43] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-

phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault: A

web-scale approach to probabilistic knowledge fusion. In Proceedings of the 20th

ACM SIGKDD International Conference on Knowledge Discovery and Data Min-

ing, KDD ’14, pages 601–610, 2014.

[44] Xin Dong, Alon Y. Halevy, and Cong Yu. Data integration with uncertainty. In Pro-

ceedings of the 33rd International Conference on Very Large Data Bases, VLDB

’07, pages 687–698. VLDB Endowment, 2007.

[45] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. Integrating conflicting

data: The role of source dependence. Proc. VLDB Endow., 2(1):550–561, August

2009.

[46] Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. Truth discovery and

copying detection in a dynamic world. Proc. VLDB Endow., 2(1):562–573, August

2009.

[47] Xin Luna Dong, Barna Saha, and Divesh Srivastava. Less is more: selecting

sources wisely for integration. In Proceedings of the 39th international confer-

ence on Very Large Data Bases, PVLDB’13, pages 37–48. VLDB Endowment,

2013.

232

[48] Maximilian Dylla, Iris Miliaraki, and Martin Theobald. A temporal-probabilistic

database model for information extraction. PVLDB, 6(14):1810–1821, 2013.

[49] Ruediger Ebendt, Goeschwin Fey, and Rolf Drechsler. Advanced BDD Optimiza-

tion. Springer, 2005.

[50] Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Action elimination and stop-

ping conditions for the multi-armed bandit and reinforcement learning problems.

J. Mach. Learn. Res., 7:1079–1105, December 2006.

[51] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms

for middleware. In Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, PODS ’01, pages 102–113, 2001.

[52] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone

submodular functions. SIAM J. Comput., 40(4):1133–1153, July 2011.

[53] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American

Statistical Association, 64:1183–1210, 1969.

[54] Thomas A. Feo and Mauricio G. C. Resende. Greedy Randomized Adaptive Search

Procedures. Journal of Global Optimization, 6, 1995.

[55] Jonathan Finger and Neoklis Polyzotis. Robust and efficient algorithms for rank

join evaluation. In Proceedings of the 2009 ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD ’09, pages 415–428, 2009.

233

[56] Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and Reynold

Xin. CrowdDB: Answering queries with crowdsourcing. In Proceedings of the

2011 ACM SIGMOD International Conference on Management of Data, SIGMOD

’11, pages 61–72, 2011.

[57] Clark C. Freifeld, Kenneth D. Mandl, Ben Y. Reis, and John S. Brownstein.

HealthMap: Global Infectious Disease Monitoring through Automated Classifi-

cation and Visualization of Internet Media Reports. JAMIA, 15, 2008.

[58] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, Cambridge, MA,

1991. Translated into Chinesse by Renin University Press, Bejing: China.

[59] R. G. Gallager. Discrete Stochastic Processes. Kluwer Academic Publishers,

Boston, 1996.

[60] Lise Getoor and Ashwin Machanavajjhala. Entity resolution: Theory, practice &

open challenges. In International Conference on Very Large Data Bases, 2012.

[61] Lise Getoor and Ashwin Machanavajjhala. Entity resolution for Big Data. In

Proceedings of the 19th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’13, pages 1527–1527, New York, NY, USA,

2013. ACM.

[62] Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer,

Mark S. Smolinski, and Larry Brilliant. Detecting influenza epidemics using search

engine query data. Nature, 457, 2009.

234

[63] Parke Godfrey, Ryan Shipley, and Jarek Gryz. Algorithms and analyses for maxi-

mal vector computation. The VLDB Journal, 16(1):5–28, 2007.

[64] Ryan G. Gomes, Peter Welinder, Andreas Krause, and Pietro Perona. Crowd-

clustering. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q.

Weinberger, editors, Advances in Neural Information Processing Systems 24, pages

558–566. Curran Associates, Inc., 2011.

[65] Hector Gonzalez, Alon Y. Halevy, Christian S. Jensen, Anno Langen, Jayant Mad-

havan, Rebecca Shapley, and Warren Shen. Google fusion tables: data manage-

ment, integration and collaboration in the cloud. In Proceedings of the 1st ACM

Symposium on Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA, June

10-11, 2010, pages 175–180, 2010.

[66] Luis Gravano, Panagiotis G. Ipeirotis, Nick Koudas, and Divesh Srivastava. Text

joins in an rdbms for web data integration. In Proceedings of the 12th International

Conference on World Wide Web, WWW ’03, pages 90–101, 2003.

[67] Todd J. Green and Val Tannen. Models for incomplete and probabilistic informa-

tion. In Proceedings of the 2006 International Conference on Current Trends in

Database Technology, EDBT’06, pages 278–296. Springer-Verlag, 2006.

[68] Thomas R. Gruber. A translation approach to portable ontology specifications.

Knowl. Acquis., 5(2):199–220, June 1993.

[69] Stephen Guo, Aditya Parameswaran, and Hector Garcia-Molina. So who won?:

Dynamic max discovery with the crowd. In Proceedings of the 2012 ACM SIG-

235

MOD International Conference on Management of Data, SIGMOD ’12, pages

385–396, New York, NY, USA, 2012. ACM.

[70] Alon Halevy, Michael Franklin, and David Maier. Principles of dataspace systems.

In Proceedings of the Twenty-fifth ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, PODS ’06, pages 1–9, 2006.

[71] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate

generation. In Proceedings of the 2000 ACM SIGMOD International Conference

on Management of Data, SIGMOD, 2000.

[72] Oktie Hassanzadeh, Ken Q. Pu, Soheil Hassas Yeganeh, Renée J. Miller, Lucian

Popa, Mauricio A. Hernández, and Howard Ho. Discovering linkage points over

web data. PVLDB, 6, 2013.

[73] Katherine A. Heller, Krysta M. Svore, Angelos D. Keromytis, and Salvatore J.

Stolfo. One class support vector machines for detecting anomalous windows reg-

istry accesses. In In Proc. of the workshop on Data Mining for Computer Security,

2003.

[74] Joseph M. Hellerstein, Michael Stonebraker, and Rick Caccia. Independent, open

enterprise data integration. IEEE Data Eng. Bull., 22(1):43–49, 1999.

[75] James F Heltshe and Nancy E Forrester. Estimating species richness using the

jackknife procedure. Biometrics, pages 1–11, 1983.

[76] Thomas N. Herzog, Fritz J. Scheuren, and William E. Winkler. Data quality and

record linkage techniques. Springer, 2007.

236

[77] Joaquı́n Hortal, Paulo AV Borges, and Clara Gaspar. Evaluating the performance of

species richness estimators: sensitivity to sample grain size. J. of Animal Ecology,

75(1):274–287, 2006.

[78] Ting Hua, Chang-Tien Lu, Naren Ramakrishnan, Feng Chen, Jaime Arredondo,

David Mares, and Kristen Summers. Analyzing civil unrest through social media.

Computer, 46(12):80–84, 2013.

[79] Wen-Han Hwang and Tsung-Jen Shen. Small-sample estimation of species rich-

ness applied to forest communities. Biometrics, 66(4):1052–1060, 2010.

[80] Ihab F. Ilyas, Walid G. Aref, and Ahmed K. Elmagarmid. Supporting top-k join

queries in relational databases. The VLDB Journal, 13(3):207–221, September

2004.

[81] Abhay Jha, Dan Olteanu, and Dan Suciu. Bridging the gap between intensional and

extensional query evaluation in probabilistic databases. In Proceedings of the 13th

International Conference on Extending Database Technology, EDBT ’10, pages

323–334, New York, NY, USA, 2010. ACM.

[82] Abhay Jha and Dan Suciu. Knowledge compilation meets database theory: Com-

piling queries to decision diagrams. In Proceedings of the 14th International Con-

ference on Database Theory, ICDT ’11, pages 162–173. ACM, 2011.

[83] Lili Jiang, Yafang Wang, Johannes Hoffart, and Gerhard Weikum. Crowdsourced

entity markup. In CrowdSem, 2013.

237

[84] Xin Jin, Nan Zhang, and Gautam Das. Attribute domain discovery for hidden web

databases. In Proceedings of the 2011 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’11, pages 553–564, New York, NY, USA, 2011.

ACM.

[85] Colleen B. Jonsson, Luiz Tadeu Moraes Figueiredo, and Olli Vapalahti. A global

perspective on hantavirus ecology, epidemiology and disease. Clinical Microbiol-

ogy Review, 23(2), 2010.

[86] Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi De-

sai, and Hrishikesh Karambelkar. Bidirectional expansion for keyword search on

graph databases. In Proceedings of the 31st International Conference on Very

Large Data Bases, VLDB ’05, pages 505–516, 2005.

[87] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler:

Interactive visual specification of data transformation scripts. In Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, pages

3363–3372, 2011.

[88] E. L. Kaplan and Paul Meier. Nonparametric estimation from incomplete observa-

tions. JASA, 53:457–481, 1958.

[89] Gjergji Kasneci, Maya Ramanath, Mauro Sozio, Fabian M. Suchanek, and Gerhard

Weikum. Star: Steiner-tree approximation in relationship graphs. In Proceedings

of the 2009 IEEE International Conference on Data Engineering, ICDE ’09, pages

868–879, 2009.

238

[90] Shehroz S. Khan and Michael G. Madden. One-class classification: taxonomy of

study and review of techniques. Knowledge Eng. Review, 29(3):345–374, 2014.

[91] Christoph Koch. Approximating predicates and expressive queries on probabilistic

databases. In Proceedings of the Twenty-seventh ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, PODS ’08, pages 99–108. ACM,

2008.

[92] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-

niques. MIT Press, 2009.

[93] S. Kumar Kondredi, P. Triantafillou, and G. Weikum. Combining information ex-

traction and human computing for crowdsourced knowledge acquisition. In 30th

IEEE International Conference on Data Engineering, ICDE, 2014.

[94] Donald Kossmann, Frank Ramsak, and Steffen Rost. Shooting stars in the sky:

An online algorithm for skyline queries. In Proceedings of the 28th International

Conference on Very Large Data Bases, VLDB ’02, pages 275–286, 2002.

[95] Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Non-

monotone submodular maximization under matroid and knapsack constraints. In

Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing,

STOC ’09, pages 323–332. ACM, 2009.

[96] Kalev Leetaru and Philip Schrodt. Gdelt: Global data on events, language, and

tone, 1979-2012. Inter. Studies Association Annual Conf., 2013.

239

[97] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceedings

of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems, PODS ’02, pages 233–246. ACM, 2002.

[98] Hector J. Levesque and Ronald J. Brachman. Expressiveness and tractability in

knowledge representation and reasoning1. Computational Intelligence, 3(1):78–

93, 1987.

[99] Xian Li, Luna Dong, Kenneth Lyons, Weiyi Meng, and Divesh Srivastava. Scaling

up copy detection. In Proceedings of the 2015 IEEE International Conference on

Data Engineering, ICDE ’15, 2015.

[100] Xian Li, Xin Luna Dong, Kenneth Lyons, Weiyi Meng, and Divesh Srivastava.

Truth finding on the deep web: is the problem solved? In Proceedings of the 39th

international conference on Very Large Data Bases, PVLDB’13, pages 97–108.

VLDB Endowment, 2013.

[101] Girija Limaye, Sunita Sarawagi, and Soumen Chakrabarti. Annotating and search-

ing web tables using entities, types and relationships. PVLDB, 3(1):1338–1347,

2010.

[102] J P Linge, R Steinberger, T P Weber, R Yangarber, and E van der Goot. Internet

surveillance systems for early alerting of health threats. Eurosurveillance, 14(13),

2009.

[103] Larry M. Manevitz and Malik Yousef. One-class SVMs for document classifica-

tion. J. Mach. Learn. Res., 2:139–154, March 2002.

240

[104] Theofrastos Mantadelis, Ricardo Rocha, Angelika Kimmig, and Gerda Janssens.

Preprocessing boolean formulae for BDDs in a probabilistic context. In JELIA,

2010.

[105] Adam Marcus, Eugene Wu, David Karger, Samuel Madden, and Robert Miller.

Human-powered sorts and joins. Proc. VLDB Endow., 5(1):13–24, September

2011.

[106] Adam Marcus, Eugene Wu, Samuel Madden, and Robert C. Miller. Crowdsourced

databases: Query processing with people. In CIDR, pages 211–214, 2011.

[107] Yasuko Matsubara, Yasushi Sakurai, Christos Faloutsos, Tomoharu Iwata, and

Masatoshi Yoshikawa. Fast mining and forecasting of complex time-stamped

events. In Proceedings of the 18th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD ’12, pages 271–279, New York,

NY, USA, 2012. ACM.

[108] Weiyi Meng, Clement Yu, and M. Tamer Ozsu. Advanced Metasearch Engine

Technology. Morgan & Claypool Publishers, 2010.

[109] George A. Mihaila, Louiqa Raschid, and Mara esther Vidal. Using quality of data

metadata for source selection and ranking. In Vossen (Eds.), Proceedings of the

Third International Workshop on the Web and Databases, WebDB, pages 93–98,

2000.

241

[110] Andrew Cameron Morris, Viktoria Maier, and Phil Green. From WER and RIL to

MER and WIL: improved evaluation measures for connected speech recognition.

In INTERSPEECH, 2004.

[111] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James. Automatic linkage

of vital records: Computers can be used to extract ”follow-up” statistics of families

from files of routine records. Science, 130(3381):954–959, 1959.

[112] Feng Niu, Christopher Ré, AnHai Doan, and Jude Shavlik. Tuffy: Scaling up

statistical inference in Markov logic networks using an RDBMS. Proc. VLDB

Endow., 4(6):373–384, March 2011.

[113] Feng Niu, Ce Zhang, Christopher Ré, and Jude Shavlik. Elementary: Large-scale

knowledge-base construction via machine learning and statistical inference. Int. J.

Semant. Web Inf. Syst., 8(3):42–73, July 2012.

[114] Natalya F. Noy. Semantic integration: A survey of ontology-based approaches.

SIGMOD Rec., 33(4):65–70, December 2004.

[115] Dan Olteanu and Jiewen Huang. Using OBDDs for efficient query evaluation on

probabilistic databases. In Proceedings of Second International Conference on

Scalable Uncertainty Management, SUM, 2008.

[116] Dan Olteanu, Jiewen Huang, and Christoph Koch. SPROUT: Lazy vs. eager query

plans for tuple-independent probabilistic databases. In Proceedings of the 2009

IEEE International Conference on Data Engineering, ICDE ’09, pages 640–651.

IEEE Computer Society, 2009.

242

[117] Dan Olteanu, Jiewen Huang, and Christoph Koch. Approximate confidence com-

putation in probabilistic databases. In Proceedings of the 26th International Con-

ference on Data Engineering, ICDE 2010, March 1-6, 2010, Long Beach, Califor-

nia, USA, pages 145–156, 2010.

[118] Aditya Pal, Vibhor Rastogi, Ashwin Machanavajjhala, and Philip Bohannon. In-

formation integration over time in unreliable and uncertain environments. In Pro-

ceedings of the 21st International Conference on World Wide Web, WWW ’12,

pages 789–798, New York, NY, USA, 2012. ACM.

[119] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: Sentiment

classification using machine learning techniques. In Proceedings of the ACL-02

Conference on Empirical Methods in Natural Language Processing - Volume 10,

EMNLP ’02, pages 79–86, Stroudsburg, PA, USA, 2002. Association for Compu-

tational Linguistics.

[120] Aditya G. Parameswaran, Stephen Boyd, Hector Garcia-Molina, Ashish Gupta,

Neoklis Polyzotis, and Jennifer Widom. Optimal crowd-powered rating and filter-

ing algorithms. PVLDB, 7(9):685–696, 2014.

[121] Aditya G. Parameswaran, Hector Garcia-Molina, Hyunjung Park, Neoklis Polyzo-

tis, Aditya Ramesh, and Jennifer Widom. CrowdScreen: Algorithms for filtering

data with humans. In Proceedings of the 2012 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’12, pages 361–372, New York, NY,

USA, 2012. ACM.

243

[122] Hyunjung Park and Jennifer Widom. Crowdfill: Collecting structured data from

the crowd. In Proceedings of the 2014 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’14, pages 577–588, 2014.

[123] Jon Parker, Yifang Wei, Andrew Yates, Ophir Frieder, and Nazli Goharian. A

framework for detecting public health trends with Twitter. In Proceedings of the

2013 IEEE/ACM International Conference on Advances in Social Networks Anal-

ysis and Mining, ASONAM, 2013.

[124] Michael Paul and Mark Dredze. You are what you tweet: Analyzing Twitter for

public health. 2011.

[125] Leo L. Pipino, Yang W. Lee, and Richard Y. Wang. Data quality assessment.

Commun. ACM, 45(4):211–218, 2002.

[126] Ravali Pochampally, Anish Das Sarma, Xin Luna Dong, Alexandra Meliou, and

Divesh Srivastava. Fusing data with correlations. In Proceedings of the 2014 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’14, pages

433–444, 2014.

[127] Franco P. Preparata and Michael Ian Shamos. Computational Geometry. Springer,

1985.

[128] Jay Pujara, Hui Miao, Lise Getoor, and William Cohen. Knowledge graph identi-

fication. In International Semantic Web Conference (ISWC), 2013.

[129] Guo-Jun Qi, Charu C. Aggarwal, Jiawei Han, and Thomas Huang. Mining collec-

tive intelligence in diverse groups. In Proceedings of the 22Nd International Con-

244

ference on World Wide Web, WWW ’13, pages 1041–1052. International World

Wide Web Conferences Steering Committee, 2013.

[130] Alexander J. Quinn and Benjamin B. Bederson. Asksheet: Efficient human com-

putation for decision making with spreadsheets. CSCW, 2014.

[131] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D. Manning. La-

beled LDA: A supervised topic model for credit attribution in multi-labeled cor-

pora. In Proceedings of the 2009 Conference on Empirical Methods in Natural

Language Processing: Volume 1 - Volume 1, EMNLP ’09, pages 248–256, Strouds-

burg, PA, USA, 2009. Association for Computational Linguistics.

[132] Christopher Re, Nilesh Dalvi, and Dan Suciu. Efficient top-k query evaluation on

probabilistic data. In Proceedings of the 23rd International Conference on Data

Engineering, ICDE, ICDE. IEEE, 2007.

[133] Theodoros Rekatsinas, Amol Deshpande, Xin Luna Dong, Lise Getoor, and Divesh

Srivastava. SourceSight: Enabling effective source selection. 2015.

[134] Theodoros Rekatsinas, Amol Deshpande, and Lise Getoor. Local structure and

determinism in probabilistic databases. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’12, pages 373–384.

ACM, 2012.

[135] Theodoros Rekatsinas, Amol Deshpande, and Aditya G. Parameswaran.

Crowdgather: Entity extraction over structured domains. CoRR, abs/1502.06823,

2015.

245

[136] Theodoros Rekatsinas, Xin Luna Dong, Lise Getoor, and Divesh Srivastava. Find-

ing Quality in Quantity: The Challenge of Discovering Valuable Sources for Inte-

gration. CIDR, 2015.

[137] Theodoros Rekatsinas, Xin Luna Dong, and Divesh Srivastava. Characterizing and

selecting fresh data sources. In Proceedings of the 2014 ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD ’14, pages 919–930. ACM,

2014.

[138] Theodoros Rekatsinas, Saurav Ghosh, Sumiko Mekaru, Elaine Nsoesie, John

Brownstein, Lise Getoor, and Naren Ramakrishnan. SourceSeer: Forecasting rare

disease outbreaks using multiple data sources. In the SIAM International Confer-

ence on Data Mining, SDM, 2015.

[139] Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and Padhraic Smyth. The

author-topic model for authors and documents. In Proceedings of the 20th Con-

ference on Uncertainty in Artificial Intelligence, UAI ’04, pages 487–494. AUAI

Press, 2004.

[140] Scott Sanner and David McAllester. Affine algebraic decision diagrams (AADDs)

and their application to structured probabilistic inference. In Proceedings of the

19th International Joint Conference on Artificial Intelligence, IJCAI’05, pages

1384–1390. Morgan Kaufmann Publishers Inc., 2005.

[141] Bernhard Schölkopf, John C. Platt, John C. Shawe-Taylor, Alex J. Smola, and

Robert C. Williamson. Estimating the support of a high-dimensional distribution.

246

Neural Comput., 13(7):1443–1471, July 2001.

[142] Felix Naumann Sebastian Kruse, Paolo Papotti. Estimating data integration and

cleaning effort. In Proceedings of the International Conference on Extending

Database Technology (EDBT), 3 2015.

[143] Prithviraj Sen and Amol Deshpande. Representing and querying correlated tuples

in probabilistic databases. In Proceedings of the 23rd International Conference on

Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20,

2007, pages 596–605, 2007.

[144] Prithviraj Sen, Amol Deshpande, and Lise Getoor. PrDB: managing and exploiting

rich correlations in probabilistic databases. The VLDB Journal, 18, 2009.

[145] Prithviraj Sen, Amol Deshpande, and Lise Getoor. Read-once functions and query

evaluation in probabilistic databases. Proc. VLDB Endow., 3(1-2):1068–1079,

September 2010.

[146] T. Shen, A. Chao, and C. Lin. Predicting the number of new species in further

taxonomic sampling. Ecology, 84(3), 2003.

[147] Cheng Sheng, Nan Zhang, Yufei Tao, and Xin Jin. Optimal algorithms for crawling

a hidden database in the web. PVLDB, 5(11):1112–1123, July 2012.

[148] Victor S. Sheng, Foster Provost, and Panagiotis G. Ipeirotis. Get another label?

improving data quality and data mining using multiple, noisy labelers. In Proceed-

ings of the 14th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, KDD ’08, pages 614–622, New York, NY, USA, 2008. ACM.

247

[149] Fabio Somenzi. CUDD: CU Decision Diagram Package. http://vlsi.

colorado.edu/fabio/CUDD/.

[150] Ingo Steinwart, Don Hush, and Clint Scovel. A classification framework for

anomaly detection. J. Mach. Learn. Res., 6:211–232, December 2005.

[151] Michael Stonebraker, Daniel Bruckner, Ihab Ilyas, George Beskales, Mitch Cher-

niack, Stan Zdonik, Alexander Pagan, and Shan Xu. Data curation at scale: The

data tamer system. In Proceedings of CIDR’13, 2013.

[152] Alexander Strehl, Er Strehl, Joydeep Ghosh, and Raymond Mooney. Impact of

similarity measures on web-page clustering. In In Workshop on Artificial Intelli-

gence for Web Search (AAAI 2000), pages 58–64. AAAI, 2000.

[153] Fabian Suchanek and Gerhard Weikum. Knowledge harvesting in the big-data era.

In Proceedings of the 2013 ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD ’13, pages 933–938, 2013.

[154] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A large ontol-

ogy from wikipedia and wordnet. Web Semant., 6(3):203–217, September 2008.

[155] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic

databases. Synthesis Lectures on Data Management, 3(2):1–180, 2011.

[156] Olivier Teytaud, Sylvain Gelly, and Michèle Sebag. Anytime many-armed bandits.

In CAP, 2007.

248

http://vlsi.colorado.edu/ fabio/CUDD/
http://vlsi.colorado.edu/ fabio/CUDD/

[157] Beth Trushkowsky, Tim Kraska, Michael J. Franklin, and Purnamrita Sarkar.

Crowdsourced enumeration queries. In Proceedings of the 2013 IEEE Interna-

tional Conference on Data Engineering (ICDE 2013), ICDE ’13, pages 673–684,

Washington, DC, USA, 2013. IEEE Computer Society.

[158] Prasang Upadhyaya, Martina Unutzer, Magdalena Balazinska, Dan Suciu, and

Hakan Hacigumus. Affordable analytics on expensive data. In Proceedings of

the First International Workshop on Bringing the Value of ”Big Data” to Users

(Data4U 2014), Data4U ’14, 2014.

[159] Guy Van den Broeck and Adnan Darwiche. On the role of canonicity in knowledge

compilation. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial In-

telligence, AAAI Conference on Artificial Intelligence, Austin Texas, USA, January

2015. AAAI Press, January 2015.

[160] Petros Venetis, Alon Y. Halevy, Jayant Madhavan, Marius Pasca, Warren Shen, Fei

Wu, Gengxin Miao, and Chung Wu. Recovering semantics of tables on the web.

PVLDB, 4, 2011.

[161] Daisy Zhe Wang, Yang Chen, Sean Goldberg, Christan Grant, and Kun Li. Au-

tomatic knowledge base construction using probabilistic extraction, deductive rea-

soning, and human feedback. In Proceedings of the Joint Workshop on Automatic

Knowledge Base Construction and Web-scale Knowledge Extraction, AKBC-

WEKEX ’12, pages 106–110, 2012.

249

[162] Daisy Zhe Wang, Eirinaios Michelakis, Minos N. Garofalakis, and Joseph M.

Hellerstein. BayesStore: managing large, uncertain data repositories with prob-

abilistic graphical models. PVLDB, 1(1):340–351, 2008.

[163] Jiannan Wang, Tim Kraska, Michael J. Franklin, and Jianhua Feng. CrowdER:

Crowdsourcing entity resolution. Proc. VLDB Endow., 5(11):1483–1494, July

2012.

[164] Xianggang Wang and Eric Grimson. Spatial latent dirichlet allocation. In Advances

in Neural Information Processing Systems, volume 20, 2007.

[165] Xuerui Wang and Andrew McCallum. Topics over time: A non-markov

continuous-time model of topical trends. In Proceedings of the 12th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’06,

pages 424–433. ACM, 2006.

[166] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta, and

Dekang Lin. Knowledge base completion via search-based question answering. In

Proceedings of the 23rd International Conference on World Wide Web, WWW ’14,

pages 515–526, New York, NY, USA, 2014. ACM.

[167] Michael L. Wick, Andrew McCallum, and Gerome Miklau. Scalable probabilistic

databases with factor graphs and MCMC. Proc. VLDB Endow., 3(1):794–804,

2010.

[168] Frank Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics Bul-

letin, 1(6):80–83, December 1945.

250

[169] William E. Winkler. Improved decision rules in the fellegi-sunter model of record

linkage. Technical report, Statistical Research Division, U.S. Census Bureau,

Washington, DC, 1993.

[170] William E. Winkler. Methods for record linkage and bayesian networks. Technical

Report Statistical Research Report Series RRS2002/05, U.S. Bureau of the Census,

Washington, D.C., 2002.

[171] Xiaoxin Yin, Jiawei Han, and Philip S. Yu. Truth discovery with multiple con-

flicting information providers on the web. IEEE Trans. on Knowl. and Data Eng.,

20(6):796–808, June 2008.

[172] Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword Search in Databases. Morgan

and Claypool Publishers, 1st edition, 2010.

[173] Nevin L. Zhang and David Poole. On the role of context-specific independence

in probabilistic inference. In Proceedings of the 16th International Joint Confer-

ence on Artificial Intelligence - Volume 2, IJCAI’99, pages 1288–1293. Morgan

Kaufmann Publishers Inc., 1999.

[174] Bo Zhao, Benjamin I. P. Rubinstein, Jim Gemmell, and Jiawei Han. A bayesian

approach to discovering truth from conflicting sources for data integration. Proc.

VLDB Endow., 5(6):550–561, February 2012.

[175] Hongwei Zhu, Stuart E. Madnick, Yang W. Lee, and Richard Y. Wang. Data and

information quality research: Its evolution and future. In Computing Handbook,

251

Third Edition: Information Systems and Information Technology, pages 16: 1–20.

2014.

252

	Introduction
	Challenges in Determining the Quality and Utility of Data Sources
	Dissertation Overview and Contributions
	Reasoning About the Content and Quality of Data Sources
	Enriching Structured Domain Indexes
	Selecting Valuable Data Sources for Integration
	Data Source Management Applications

	Background
	Data Integration
	Data Source Management
	Knowledge Bases and Uncertain Data

	Analyzing the Content and Quality of Data Sources
	Introduction
	Preliminaries
	Modeling Changes in the Overall Data Domain
	Structured Data Entries
	Unstructured Data Entries

	Modeling Changes in Data Sources
	Structured Data Entries
	Unstructured Data Entries

	Quality of Integrated Data
	Defining Quality
	Estimating Quality

	Reasoning about Diverse Data Domains
	Experimental Evaluation
	Structured Data Entries
	Unstructured Data Entries

	Related Work
	Summary

	Enriching Structured Domain Indexes
	Introduction
	A Real-World Scenario

	Preliminaries
	Structured Data Domain
	Entities and Entity Extraction Queries
	Crowdsourced Entity Extraction
	Underlying Query Response Model
	Framework Overview

	Estimating the Gain of Extraction Queries
	Previous Estimators
	Exclude Lists and Negative Answers
	Direct Gain Estimation

	Discovering Querying Policies
	Balancing Exploration and Exploitation
	A Multi-Round Querying Policy Algorithm
	Updating the Set of Actions

	Experimental Evaluation
	Experimental Setup
	Experimental Results

	Related Work
	Summary

	Selecting Valuable Sources for Integration
	Preliminaries
	Selecting Dynamic Data Sources
	Source Selection Algorithms
	Submodular Objective Functions
	Arbitrary Objective Functions
	Multiobjective Source Selection

	Experimental Evaluation
	Experimental Setup
	Performance of Source Selection Algorithms
	Scalability
	Main Results

	Related Work
	Summary

	Managing Source Dependencies with Probabilistic Databases
	Introduction
	Preliminaries
	Probabilistic Databases
	Arithmetic Circuits

	Arithmetic circuits in Probabilistic Databases
	Naive Approach
	Overview of the Proposed Framework

	Annotated Arithmetic Circuits
	Definitions
	Compiling Factor Graphs into AACs
	Compiling Lineage Formulas into AACs

	Merging AACs
	Experiments
	Datasets and Queries
	Experimental Results

	Related Work
	Summary

	Quality-Aware Data Source Management Applications
	Source Selection for Event Data
	Design Details
	SourceSight Functionalities

	Forecasting Rare Disease Outbreaks with Multiple Sources
	Expert Fusion with Sources as Experts
	Evaluating Outbreak Forecasts

	Summary

	Conclusion
	Future Directions

	Supplemental Derivations and Proofs
	Derivation of Gibbs Sampling Equations
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Lemma 1

	Bibliography

