
ABSTRACT

Title of thesis: DESIGN FOR A STAND-ALONE, UNIVERSAL SERIAL BUS
(USB) -ENABLED AIRFLOW PERTURBATION DEVICE

Nischom Karl Silverman, Master of Science, 2004

Thesis directed by: Professor Arthur T. Johnson
Biological Resources Engineering Department

The stand-alone, USB-enabled Airflow Perturbation Device (APD)

provides an average respiratory resistance (RR) measurement without connection to a

computer and offers expanded functionality when connected to a computer. In both

home and medical clinic settings, RR can provide a measure of impairment in obstructive

respiratory disorders and the effectiveness of respiratory therapies. The APD measures

RR during passive breathing by sensing the ratio of pressure increase to flow reduction

during brief, partial airflow interruptions. Prior work has shown the APD to produce

repeatable, sensitive RR measurements in humans and animals. The device of prior

investigations incorporated a computer and data acquisition card. The research presented

here demonstrates that the APD can provide accurate measurements in a stand-alone

format and provide expanded function with a USB host computer.

DESIGN FOR A STAND-ALONE, UNIVERSAL SERIAL BUS (USB)
-ENABLED AIRFLOW PERTURBATION DEVICE

by

Nischom Karl Silverman

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland at College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2004

Advisory Committee:

Professor Arthur T. Johnson, Chair
Associate Professor Hubert J. Montas
Professor Yang Tao

©Copyright by

Nischom Karl Silverman

2004

ii

DEDICATION

This work is dedicated to my family who has supported my education

and encouraged in me a sense of its true values.

iii

ACKNOWLEDGMENTS

The author is grateful for the energies of many people without whose invaluable

support this work could not have been completed. In particular the author wishes to

thank:

Dr. Arthur T. Johnson for his guidance, his perspective on engineering concepts, and

his persistence in voicing his belief that the author was capable of completing this

project,

Dr. Hubert J. Montas for his dedication to student support, helpful ideas, practical

suggestions, and perspective

Dr. Yang Tao for his support, criticism, practical guidance, and insight into industrial

perspective

Dr. John Jeka for his guidance and support,

Dr. Adel Shirmohammadi for his student advocacy,

all Biological Resources Engineering and Kinesiology faculty, staff and graduate

students for their support in daily matters, comraderie, perspectives and suggestions,

the Internet hardware and software developer community for the energy devoted to user

forums and the freedom of information and tools,

all colleagues, coworkers and friends elsewhere for their patience and acceptance each

time the author had to forgo an opportunity, and their assurance that there would be

future opportunities at the completion of this work,

all loved ones in my life for their encouragement and illumination when the light at the

end of the tunnel was not yet in sight.

iv

TABLE OF CONTENTS

LIST OF FIGURES..vi

LIST OF TABLES...viii

LIST OF ABBREVIATIONS...ix

INTRODUCTION...1
Respiratory Measurement Device Needs: Homes and Medical Clinics.............................1
Research Goal...4

LITERATURE REVIEW..6
Prevalence of Pulmonary Disorders..7
Where and When Respiratory Function Should Be Assessed..8
What Characteristics a Measurement Device Can Assess ...10

Respiratory Mechanical Properties..11
Respiratory Performance Characteristics...13

The Impact of Measurement Technique on Respiratory Function.....................................14
Measurement Techniques...16

Physical Structure Imaging...16
Lumped Characteristic Measurement ..17

Acoustic Analysis..17
Spirometric Assessment ...18
Esophageal Balloon..23
Full Body Plethysmography..24
Interrupter Devices...25
Forced Oscillation Technique: Pressure Addition...26
Perturbation Techniques and the APD: Flow Reduction ..27

OBJECTIVES...29
Design Specifications..29

EQUIPMENT..34
APD Design Prior to this Research: APD100...34
Equipment Available: Options for APD Design Revisions..36
Equipment: Revised Design for APD-SA USB..36

APD-SA Components...38
APD-SA Operation..44

Division of Functionality..44
Firmware Descriptions..46
Software Description..52

v

PROCEDURES..55
PC Hosted Prototype Development..55
Integrated Hardware and Software Development..56
APD-SA Performance Validation...59

Calibration Performance..59
Human Subject Testing..60
Further Investigation of RR Calculation Algorithms...61

RESULTS AND DISCUSSION...63
Design Results..63
Calibration Results...68
Subject Testing Results...73

Subject Summary Data...73
APD-SA and APD100 Average RR Comparison...74
Investigation of Measurement Differences...76

CONCLUSIONS..80

SUGGESTIONS FOR FURTHER STUDY...81
Explore APD Algorithms ..81
Improve APD Hardware and Software..82

APD System Expansion...82
APD Software...83

APD100 Software...84
APD200 Software...85
APD-SA Performance in Firmware..86

APD-SA Hardware Improvements..88
APD Body Mechanical Improvements...89

APPENDICES..90

REFERENCES...336

vi

LIST OF FIGURES

Figure 1. Block diagram of the design for the APD-SA USB...37

Figure 2. A rendering of the APD-SA in which the APD-SA enclosure housing
electronics mounts onto the APD body that is also used in the APD100 system..............39

Figure 3. APD-SA ADC and logic schematic for analog signal conversion, motor
control and interfacing APD-SA PCBs; the figure includes all headers for
connections between PCBs; all electrical connections, or nets, are named, and
identical names indicate electrical connection, even if a trace is not drawn between
the named points; the PCB layout was derived from this complete schematic..................42

Figure 4. Interconnections and data exchange among the ICs and PCBs in the
APD-SA enclosure..43

Figure 5. Interrupt driven communication among APD-SA DSP, USB and
host PC...45

Figure 6. Diagram of the APD-SA EZUSB firmware; the polling loop (top)
executes continuously; if a command is received from the USB host PC, then the
EZUSB executes the necessary actions to comply with the command (bottom)...............47

Figure 7. Diagram of APD-SA DSP firmware operations upon power-up and the
point at which the DSP will heed PC-initiated USB commands...48

Figure 8. Diagram of the APD-SA DSP firmware polling loop that toggles among
operating modes and enables timer interrupt routines to stream raw data or
measure RR..50

Figure 9. Diagram of the APD-SA TimeProcRunMode timer interrupt routine that
triggers at the sample rate to measure pressure and flow to calculate RR...........................51

Figure 10. Diagram of the APD-SA implementation of the EZUSB "Renumeration"
feature when APD200 invokes USB communication; USB cable connection (top left)
and APD200 program execution (top right) are independent of each other and can
occur in any order; APD200 software has provisions for both the presence and
absence of the APD-SA USB connection ..54

Figure 11. APD-SA USB ready to make an RR measurement ...63

vii

Figure 12. A subject using the APD-SA USB as a stand-alone device to measure
his RR...64

Figure 13. LCD display sequence on the APD-SA USB; clockwise from the top left:
two start-up screens followed by screens that indicate to the user that the device is
reading data; “Read:” followed by a percentage indicates to the user how much of the
measurement has been completed, as a percentage of the total number of required
good perturbations; the dashes at the bottom of the “Read:” screen move from left to
right with every few good perturbations and the displayed percentage increases in
10% intervals; when a sufficient number of perturbations have been acquired, the
screen displays the average RR; at any time during operation, a USB connection to
the device will be indicated with the “USB” screen..65

Figure 14. APD200 main panel window with menu functions and RR data display,
shown here in operation with the APD-SA USB device..66

Figure 15. APD200 window that indicates to the user the status of the connection to
the APD-SA USB when a USB connection to the device is first attempted.......................66

Figure 16. APD200 window that shows calibration constants, shown here in
operation with the APD-SA USB; the window includes buttons to transfer
calibration constants to and from the APD-SA USB...67

Figure 17. APD200 window that shows a plot of individual RR values over time
measured by the APD-SA USB..68

Figure 18. APD-SA average RR plotted against APD100 average RR for
13 subjects..75

Figure 19. Device resistance, pressure, and flow during an inhalation (negative flow
and pressure) APD perturbation; APD100 samples every several data points until one
is found above an RD threshold (RD, thres); when the first point is found (A),
APD100 then scans backwards for the first point at which RD is below the threshold
and the slope of RD is negative (B); APD100 then scans forward for the first point
having the same value and slope characteristics as (B) which is (C); RR is then
calculated based on flow slope (m, flow) and pressure slope (m, pressure) between
points (B) and (C); true RR would probably best be calculated between (C) and (D)
or (B) and (E)..79

viii

LIST OF TABLES

Table 1. Selected commercially available peak flow meter (PFM) and pulmonary
function test (PFT) device models...21

Table 2. Summary information for the four printed circuit boards in the APD-SA
enclosure...40

Table 3. Span calibration results for APD100 and APD-SA; APD100 collects and
scales voltage data while the APD-SA collects and scales ADC counts..............................69

Table 4. Data for a comparison of calibration results for APD100 and APD-SA,
showing the measured and theoretical spans and percent difference between
theoretical and measured values for each span; pressure to flow span ratio is the
pressure span divided by flow span, the ratio that converts an unscaled respiratory
resistance value to a scaled value...71

Table 5. Specifications relevant to calibration span for sensing and data conversion
components on the APD100 and APD-SA...71

ix

LIST OF ABBREVIATIONS

AC alternating current
ADC analog to digital converter
ANSI American National Standards Institute
APD Airflow Perturbation Device
APD100 APD sensor and data processing unit prior to this research that requires

data acquisition card and computer
APD200 APD host computer software that communicates with APD-SA over

USB and includes APD100 functionality for backward
compatibility

APD-SA stand-alone APD designed in this research
APD-SA USB refers to APD-SA but highlights its USB functionality
API application programming interface – functions that hook into operating

system or driver capabilities
BRE-UMCP Biological Resources Engineering Department of University of

Maryland at College Park
CAD computer aided drafting
cmH2O measure of pressure as centimeters of water
COPD chronic obstructive pulmonary disease
CPU central processing unit
DAQ data acquisition card
DB9-F D-subminiature 9-pin connector, female
DB9-M D-subminiature 9-pin connector, male
DC direct current
DRD derivative of the device resistance
DSP digital signal processor; a CPU/ MCU specifically optimized for typical

digital signal processing data operations
EEPROM electrical erasable programmable read only memory
Exh exhalation direction of breathing cycle
EZUSB USB controller chip based upon 8051 MCU architecture released by

Cypress semiconductor – especially part number AN2131Q
FBP full body plethysmography
FEV1 forced expiratory volume in one second
FLASH a very fast type of EEPROM
FO forced oscillation
FVC forced vital capacity
HID human interface device – a class of USB device
Hz Hertz, cycles per second
I2C two-wire bi-directional serial communication interface used especially

for chip-to-chip communication on PCBs

x

IC integrated circuit
IDE integrated development environment
Inh inhalation
inH2O measure of pressure as inches of water
IO input/ output; communications in and out of a device
JTAG Joint Test Action Group – refers to a standardized protocol created by

this group for in-circuit firmware downloading and debugging in
embedded processors

LCD liquid crystal display
Lps measure of flow rate as Liters per second
mA milliamps
MCU microcontroller
OS operating system
PC personal computer
PC104 standardized format for small footprint single board computers

functionally resembling personal computer motherboards
PCB printed circuit board
PEF peak expiratory flow
PFM peak flow meter
PFT pulmonary function test
RAM random access memory
RAW resistance of the airways
RD resistance of the device
RMD respiratory monitoring device
ROM read-only memory
RR respiratory resistance
RS232/485 serial communication protocol common to PC
SRAM static RAM
USB universal serial bus; high-speed serial communication protocol
V volts
VAC volts – specifically alternating current volts
VB Microsoft Visual Basic (6.0)
VDC volts – specifically direct current volts
W watts

1

INTRODUCTION

The Airflow Perturbation Device (APD) non-invasively measures in humans

and other animals respiratory resistance (RR) during passive, spontaneous breathing

(Lausted and Johnson, 1998; Johnson et al., 1984a). The APD is useful because RR

measurements and other measures of respiratory system properties allow the

assessment, in a population, of average respiratory characteristics and the degree to

which a disease or environmental condition has altered these characteristics.

Respiratory Measurement Device Needs: Homes and Medical Clinics

Respiratory system-altering disorders and conditions occur frequently. For

example, approximately 17 million people, or six percent of the United States

population, have airways-narrowing asthmatic disorders (United States Centers for

Disease Control, 1998). This prevalence creates a need for respiratory measurement

devices in clinics, ambulances, and hospitals for assessment and monitoring. Home

recovery, rehabilitation, and monitoring programs often supplement clinical treatment

and augment the need for respiratory assessment devices, especially inexpensive, small

and easy-to-use devices.

Many devices partially satisfy the need for respiratory measurement in clinical

and home settings. Body plethysmography and spirometric pulmonary function testing

2

prevail in hospitals and clinics, respectively, and peak flow monitoring dominates the

home respiratory measurement device market. Though they provide useful information,

each of these measurement methods suffers drawbacks in its ease-of-use, expense,

accuracy, or utility for home-use obstructive respiratory disease monitoring. The APD

offers advantages to these methods.

Further, the respiratory system is dynamic and common measurement methods

fail to easily depict the short-term changes in respiratory function. Some changes in

measurable properties occur during a single breath. Some changes occur on the order of

a minute, whether normal or disease-induced. Some changes occur over several years

as part of the aging process or as part of the progression of lung damage. Thus, fast,

continuous, sensitive measurements of respiratory function can illuminate any

decrement in respiratory response for those respiratory characteristics that have a time

component. Measurement accuracy and repeatability are important for long-term

changes, while quick-response is important for short-term changes. The APD’s

sensitivity and repeatability has been demonstrated in Lausted (1997) and Silverman et

al. (2002) have demonstrated its ability to show short term airways caliber changes.

Regardless of the integrity of the measurement method, the form that a

respiratory measurement device (RMD) takes defines its cost, ease of use and thereby

the extent of its use. Most measurement methods targeted for home-use measure

conglomerate characteristics of the respiratory system, like RR or peak exhalation flow,

and require no technicians or special auxiliary apparatus like computers or sealed

chambers. These qualities make reasonable the widespread use of peak flow as a home-

use RMD. In its simplest form, the device requires only mechanical parts constructed

3

such that when a patient blows into the device, an indicator moves along a scale in

proportion to the peak flow passed through the device, enabling a cheap, disposable

plastic construction. Other spirometric methods such as continually monitored forced

exhalation require a computer for detailed data analysis and are restricted to a

laboratory. However, some peak flow meters and spirometric devices are available for

home use that incorporate electronics for more precise measurements or more detailed

information. Their price increases according to their functionality and complexity,

defined by the flow sensing, signal processing and display hardware, as well as their

mechanical packaging.

The home-use spirometric products on the market most likely represent final

products built upon concepts from tested prototypes. The custom RMD housing and

custom circuitry optimized for minimal space and cost represent a large initial capital

investment in time and materials, for example in the tooling of machines. Building a

prototype RMD in the Human Performance Laboratory, Biological Resources

Engineering, University of Maryland at College Park (HPL, BRE-UMCP) defines a

different set of constraints – those restricting the initial capital investment and project

focus. Though some of the capital may be affordable despite its expense, the time

required to work with the specialized equipment must also be considered. Thus, the

project discussed here will be considered an endeavor to prototype a home-use APD,

using materials that may cost more per item purchased, but require less capital

investment. This will allow the evaluation of the design and data processing methods,

leaving refinement of circuitry and housing to future steps in product development. As

4

such, the final product of this endeavor will be a product that is testable in ease of use

and reliability and can be easily used in laboratories, clinics or at home.

Research Goal

The objective of this research is to continue the development of the APD into a

device that demonstrates the APD’s suitability for clinical and home use. The

development is intended to produce a form of the APD that incorporates similar

measurement methods to those in Lausted (1997), but resides in a more portable unit

fully dedicated to APD RR measurement. In this development, the human-device

interface is now limited to system on-off and measurement start-stop actions most

readily. Calibration functions and more detailed subject data will be available upon

connection to a host personal computer (PC), typically in a clinical or similar advanced

user setting.

The stand-alone form is built around microcontroller (MCU) development

platforms intended for embedded and hand held applications with custom data

collection electronic hardware. The custom display, input-output (IO), user-interface

and data collection hardware eliminates the costs of a data acquisition card (DAQ)

typically $400 to $500 and makes optional a PC. Prior to this research the APD

required a DAQ and PC for operation. Given the state-of-the-art technology readily

5

available, this APD revision might have taken many forms, but uses hardware that most

appropriately meets the development needs.

6

LITERATURE REVIEW

The review of the literature demonstrates that a modified APD that can be used

in clinics or at home is needed because:

1) Obstructive respiratory disorders that often require or benefit from home

respiratory monitoring occur frequently.

2) Home-use respiratory monitoring requires simple, inexpensive devices.

3) Home-use as well as clinical respiratory monitoring is presently dominated by

devices that suffer drawbacks such as indirect measurement of airways

obstruction, effort dependency and poor sensitivity.

4) There are many techniques that can measure airways obstruction more directly

as airways or respiratory resistance.

5) Most techniques that can measure airways obstruction more directly are not

suitable for home-use.

6) The APD measures respiratory resistance and is suitable for home and clinical

use, but its configuration prior to this research confines it to the laboratory.

7

Prevalence of Pulmonary Disorders

Pulmonary disorders comprise a great portion of medical focus. In the United

States, approximately 14 million citizens require treatment for chronic obstructive

pulmonary disorders (COPD), such as emphysema and chronic bronchitis (American

Thoracic Society, 1998). In 1993, asthma and COPD induced over 17 million physician

office visits per year, at a cost of about 10.4 billion dollars (Higgins, 1993). In 1999,

there were over 190,000 asthma-induced hospitalizations for children younger than 15

years of age, and near 500,000 hospitalizations in the United States (National Heart,

Lung and Blood Institute, 2002, 1997). The impact of asthma on our society has been

increasing rapidly since 1980 as measured by the number of diagnoses, doctor visits,

hospitalizations and missed work or school days (American Lung Association, 2001).

Various other respiratory disorders demand medical attention, including pneumonia,

acute bronchitis, pulmonary embolism, laryngeal dyskinesia, interstitial disorder, lung

cancer, post-operative pulmonary complications, and pulmonary allergic reactions.

Some respiratory system impairment is known to occur directly from

environmental conditions. Wong et al. (1998) found that air pollution induced

bronchial hyperresponsiveness. Obase (1999) examined in workers the nature of

bronchoconstrictive asthma attacks induced by buckwheat and wheat flour inhalation.

Mazumdera (2000) found that the presence and degree of arsenic poisoning could be

determined by an examination of the degree of respiratory impairment. Thus,

8

respiratory impairment resulting from environmental pollutant exposure contributes

greatly to the number of respiratory-related medical cases.

Where and When Respiratory Function Should Be Assessed

Successful study, diagnosis, treatment, and rehabilitation for pulmonary

disorders require an accurate battery of pulmonary function tests. Extensive respiratory

function tests must take place in hospitals and outpatient clinics to diagnose and

monitor acute or chronic respiratory disorders as well as monitor respiratory function

that has been impaired from a treatment intended to address a non-respiratory ailment.

Many hospitalizations require respiratory monitoring in addition to other monitors

following treatment. For example, Snowden et al. (2000) found respiratory edema, the

accumulation of fluids in respiratory tissues, to be a common complication in post-

operative liver transplant patients. Such post-operative conditions increase the

workload for the respiratory system and hamper recovery. Pulmonary function tests,

such as a battery of forced exhalation maneuvers, have historically created a baseline or

common measure for studying respiratory diseases or monitoring patients during in-

patient recovery (Gern et al., 1997; Trigg et al., 1996; Wojnarowski et al., 1997;

Martinez et al., 1990; Jacob et al., 1997). Asthma patients including children are

encouraged to perform with a peak flow meter (PFM) PEF tests each day to monitor

their ever-changing bronchoconstriction as part of a home monitoring program.

9

Simpler pulmonary function tests must also be available in homes to facilitate

home-care rehabilitation programs or daily monitoring. Hernandez et al. (2000) found

that home-based care for COPD patients proved as successful as in-patient treatment.

Home-care pulmonary rehabilitation programs have been found to maintain improved

pulmonary health over a longer time period than outpatient rehabilitation clinics

(Goldstein et al., 1994; Wijkstra et al., 1996). Dirksen et al. (1998) recommend

continuous respiratory health monitoring for COPD patients every several months

because changes in respiratory function in these cases occur on this time scale and

necessitate continual evaluation. Vollmer et al. (2002) found that quality of life

significantly improves for even mild asthma patients when they closely monitored and

regularly treated their condition. Eid et al. (2000) suggest that monitoring respiratory

health several times daily at home is an essential component to asthma management.

Simple home monitoring tests facilitate continuous monitoring by reducing the

need to visit a clinic and making each measurement easy. A device that consistently

provides a valuable measure of respiratory characteristics in homes and hospitals

satisfies medical professionals’ and respiratory patients’ needs for diagnosis, treatment,

and rehabilitation. A device that provides respiratory information in the ambulance,

hospital, and home with equal accuracy would serve to standardize respiratory health

measures and ease comparison of data in and out of health care institutions.

10

What Characteristics a Measurement Device Can Assess

Respiratory disorders alter the performance of the respiratory system, often in a

measurable manner. For example, smoking-induced emphysema produces permanent

alveolar fusion and reduced oxygen transfer surface area in the lungs. Measuring blood

dissolved gas levels might provide an estimate of reduced oxygen transport. Some

respiratory diseases such as pulmonary dysplasia, pulmonary embolism, interstitial

disorder and lung cancer can be examined in their early stages by scanning the

respiratory system’s physical structure for abnormalities via imaging techniques. Many

respiratory afflictions impact respiratory mechanical characteristics such as lung

capacity, respiratory tract elasticity, breathing cycle characteristics, and energy required

to maintain respiration. Bronchial pathway restriction, air trapping outside the lungs,

and edema also characterize emphysema (Verbeken et al., 1996). These changes are

reflected in altered respiratory mechanical properties.

Of particular relevance to the APD are those properties of the respiratory system

that can be measured as a lumped characteristic for each subject and quickly compared

with expected values. Such lumped characteristics are either average mechanical

properties of the respiratory system, or average respiratory performance. RMDs have

been designed to measure the first or the latter. In respiratory clinics and at home,

respiratory performance is often used as an indirect indicator of respiratory mechanical

properties, though it is respiratory performance that without instrumentation may

ultimately alert each patient to his or her troubles.

11

Respiratory Mechanical Properties

The mechanical properties of the respiratory system are resistance, compliance,

and inertance. Lumped values of each are often assigned to each of three portions of

the respiratory system: airways, lung tissue and chest wall. Average values over two or

more of these portions is often what is measured in practice. The properties

characterize the manner in which a difference in pressure between the base of the lungs

and atmosphere cause airflow. Resistance occurs in the respiratory system as an

opposition to airflow in the upper and lower airways, resistance to movement in the

lung tissue, and a resistance to movement in the chest wall (Johnson, 1991).

Compliance is the change in pressure due to an induced volume change, representing

elastic properties of the respiratory system. Inertance is the tendency for air and tissue

to resist changes in speed of movement. Inertance exerts greater effect for larger

changes in speed of movement and larger mass. Both compliance and inertance are

frequency dependent properties. In respiratory measurements, the frequency

component arises from the breathing frequency or the frequency at which the

respiratory system is excited during a measurement.

In the context of the APD, inertance and compliance are less important than RR

for several reasons. APD measurements excite the respiratory system between six and

ten cycles per second, near the respiratory system’s resonance frequency (Lehtola,

1986). At this frequency, compliance and inertance become very small. Barnas et al.

(1989) found the chest wall component of compliance to decrease slightly as the chest

wall was moved incrementally faster from 3 Hz to 10 Hz, and to increase with larger

12

tidal volumes, the volume of a breath, at very low excitation frequencies. This further

suggests that compliance is low near the APD’s operating frequency. Lausted (1997)

found compliance to be very small - within the noise range – for APD measurements.

Inertance is generally neglected in respiratory measurements (Johnson, 1991). The

APD minimally changes airflow, further supporting the neglect of inertance. Thus RR

remains the dominant measurable parameter for consideration in this research.

Numerous studies have been conducted to examine RR throughout the breathing

cycle and to observe the effect of different breathing and periodic excitation rates on

RR. This information has, for the most part, been obtained through invasive techniques

to measure the pressure within the body that creates the pressure gradient to drive flow.

For example, at the end of expiration, RR increases as smaller airways collapse and, in a

forced exhalation, respiratory muscles contract to force air from the lungs. Properties of

the respiratory system have been measured while researchers induced air and

respiratory tissue motion at various cyclic rates. Research results indicate that the chest

wall component of RR has a minimum value between about 3 Hz and 10 Hz excitation

frequencies (Bouhuys and Jonson, 1967; Barnas, et al., 1990). For low excitation

frequencies, chest wall resistance was found to be strongly effected by the degree of

respiratory muscle contraction, but the effect diminished at higher frequencies, near 4

Hz (Barnas et al., 1989). This information exemplifies the time component in some of

the measurable properties of the respiratory system. It also suggests that a respiratory

system might be characterized as impaired based on its short time-scale behavior, in a

sense fingerprinting a respiratory system and subsequently determining if that

fingerprint resembles that of an impaired respiratory system.

13

Respiratory system changes occur on slightly longer time-scales as well, some

time-scales on the order of years. Moderate to severe asthma causes increased lung

volumes and airflow restrictions that vary on an hourly timescale (Eid et al., 2000).

Silverman et al. (2002) have found that RR is decreased just after moderate exercise and

increases towards pre-exercise values within about one minute. Tidal COPD airflow

changes vary only over long time periods (Cosio and Guerassimov, 1999; Celli, 1995).

Respiratory Performance Characteristics

Many respiratory assessments are made by inferring the mechanical properties

of the respiratory system from respiratory performance. Pulmonary function tests

(PFTs) such as spirometry measure the peak flow rates that a subject’s respiratory

system can generate. This provides an indirect estimate of the degree of

bronchoconstriction, because RR is correlated with resistance of the airways (RAW)

(Ducharme, et al., 1998). PFTs also provide a measure of diaphragm strength and tissue

elastance. Performance tests can also directly measure some physiological

characteristics of the respiratory system as well. If a maximum inhalation is followed

by a maximum exhalation, then the respiratory capacity can be measured.

14

The Impact of Measurement Technique on Respiratory Function

It seems clear that to characterize a system most accurately, a measurement

should minimize the degree to which the system must change to facilitate the

measurement. Otherwise, the measurement yields not the intended information about

the system characteristic in its current state, but information about the system when it

has changed to accommodate a measurement. For respiratory system characterization,

the act of measuring a respiratory system that strains to make the measurement has

achieved a measurement of the strained respiratory system and any of the resulting

changes that the strain immediately or soon thereafter induces. The impact of the

measurement method upon the measured system should be considered, including the

physiological and psychosomatic effects.

Several respiratory ailments have strong cognitive and perceptual components.

Dyspnea, the general sensation of improper respiratory functioning, and laryngeal

dyskinesia include true physical components but are strongly influenced by patients’

perception (American Thoracic Society, 1998; Carrieri-Kohlman et al., 1996).

Providing patients with actual physical descriptions of their respiratory performance can

aid in alleviating excessive affective disorder components (Ramirez, 1986).

Some measurements may actually induce affective changes in the patient. It is

possible that performance anxiety may result from maneuvers in which the patient is

stressed to make a measurement. Such measures include forced exhalation in which a

patient is forcefully coached to expel as much air as possible. Affective components of

15

dyspnea imply that the perception of effort varies with external conditions (American

Thoracic Society, 1998). Hence a patient may fail to consistently apply the same

maximal effort in spirometric testing. The inconsistency of effort-dependent measures

including the forced exhalation maneuver has been frequently cited but is often

neglected (Goldsmith, 2002). Given repeated trials and familiarity with the testing

procedure, patients may be able to use a portable spirometric device at home. In the

literature, the numerous studies based upon forced exhalation PFTs testify to the degree

to which the effort dependence is not considered to be a great hindrance.

Invasive measures in which a patient must allow a measurement device into his

or her body might cause stress to a subject until he or she becomes acclimated to the

device. An example of invasive measurement is the esophageal balloon technique in

which a subject swallows a small balloon attached to a tube to indicate pressure near the

base of the lungs.

Beyond affective patient changes, some test methods may physiologically alter

the respiratory system under study. Since lung volume and flow rate effect respiratory

system properties, the measurement technique should minimize the need for special

breathing patterns to achieve a measurement or at least track the changes during

breathing if highly precise measurements are desired throughout the breathing cycle.

Spirometry requires deep inhalation and exhalation. Spirometric breathing maneuvers

may introduce error since deep inhalation prior to maximal exhalation can cause

transient bronchodilation (Widdicombe, 1989; Burns, et al., 1985). Extreme forced

exhalation required for spirometry can cause bronchoconstriction or reduction in vital

capacity in asthmatics (Herxheimer, 1975). Some body plethysmography techniques

16

require hyperventilatory panting maneuvers and hence altered respiration rates. Further,

if long-term body plethysmography measurements are made, gas composition must be

adjusted to avoid gas composition-induced respiratory changes that occur as gas sensors

in the body adjust respiration to compensate for changes in carbon dioxide and oxygen

concentrations.

Measurement Techniques

Several techniques are used to measure respiratory properties in laboratories,

hospitals, clinics and at home. Each is restricted in the information that it provides.

Many present limitations to their widespread home or clinical use.

Physical Structure Imaging

Several assessment techniques provide relevant respiratory system data.

Computed tomography (Wu et al., 1994) provides a map of pulmonary physical

structure and radiology (Snowden et al., 2000) provides similar maps in less detail.

However, these time-consuming methods demand space-consuming scanning and

interpretation apparatus and experienced technicians, prohibiting their more widespread

implementation. Their value lies in detailed physical analysis.

17

Lumped Characteristic Measurement

Lausted (1997) and Johnson et al. (1984a,b) provide reviews of respiratory

characteristic measurement methods and highlights aspects of each that are particularly

relevant to an assessment of APD utility. A summary of respiratory measurement

techniques discussed therein is presented here with additional information on new

developments and the application of these techniques to home and clinical use. A more

complete description of respiratory measurement techniques not covered in the reviews

but relevant to home use is also included here.

Acoustic Analysis

In acoustic analysis, researchers attempt to correlate breathing sounds and

respiratory condition. Microphones such as contact sensors can be placed on the chest

to record breathing sounds that are analyzed for characteristics such as frequency

content. Oud et al. (2000) tested and found related acoustic respiratory sound analysis

and pulmonary disorder. The results showed that disease conditions could be

recognized by an acoustic footprint. However, the method required quiet laboratory

conditions, laboratory technicians and signal processing, discouraging its use as a

simple patient-accessible test. The repeatability of the measures depends upon the

patient exerting the same amount of effort at each test instance.

18

Spirometric Assessment

Spirometry assesses respiratory characteristics by measuring respiratory flow

rates during a patient's maximal exhalation effort. Currently, spirometry dominates

respiratory assessment, especially in obstructive disease (American Thoracic Society,

1999; Snow, 2000). Portable spirometric devices are considered an adequate solution

for home monitoring (Eid et al., 2000). Stein et al. (1966) have demonstrated

correlation between spirometric measurements and RAW thus validating spirometry's

application in obstructive pulmonary disease home and clinical monitoring. Since

spirometry is prevalent among respiratory measurement techniques, it is worth

examining its details to examine those measurements that are the benchmark for clinics.

The qualities that have made spirometric devices successful in the market are worth

examining as a model for APD development.

Spirometry requires a patient to forcefully expel air from the respiratory system

with maximal effort. Since the amount of air expelled over time depends on lung-

volume changes and resistance to airflow, the technique can diagnose COPD, asthma

and other respiratory diseases that cause airway constriction and respiratory tissue

change.

The results of the spirometric forced exhalation can be divided into at least three

diagnostic components. The first, peak expiratory flow (PEF), is the air volume exhaled

per time measured in the first 150 milliseconds of the expiration. The PEF is strongly

influenced by the thoracic and abdominal muscles, and represents expiration mainly

from the large upper respiratory bronchial pathways (Eid et al., 2000). The second

19

component, forced expiratory volume in one second (FEV1), reflects large and medium

sized airways at lower lung volumes (Eid et al., 2000). The third component, forced

expiratory flow from 25% to 75% of vital capacity (FEV25-75%) reflects the function of

small airways (Eid et al., 2000). FEV1 and FEV25-75% depend less on effort of the

exhalation and more upon the elastic recoil of the lungs because they occur later in

exhalation procedure.

The American Thoracic Society has published criteria to standardize pulmonary

function test (PFT) equipment performance (1995). The criteria specify maximum

allowable inaccuracy, imprecision and total error for forced vital capacity (FVC),

FEV1, FEV25-75%, and PEF, in both ambient and body temperature, water vapor saturated

(BTPS) conditions. The guidelines require testing with a standard spirometry simulator

that generates standardized waveforms and require a device resistance less than 1.5

cmH20/L/sec from 0 to 14 L/sec airflow. QRS Diagnostics, LLC. (see Table 1) used

the guidelines to demonstrate the performance of its product, and verified that their

product, Sensaire, met the human subject criterion by comparing its results with that of

a standardized spirometer for two subjects (Crapo and Jensen, 2001).

The most abundantly available device for home use without technician

assistance is the peak flow meter (PFM). For examples, see the MicroMedical turbine

meter, the Ferraris fdE pocket meter, the Vitalograph meter, the MultiSPIRO meter and

mini-Wright meter in Table 1. The popularity of PFMs can probably be attributed to

their inexpensive, simple design based on Wright and McKerrow's (1959) original or

some slight variant. These are designed to measure from zero to up to 1000 L/min

20

instantaneous peak flow in some models. The simple mechanical design keeps prices

low. There are slightly more expensive digital models available as well.

Since spirometry, and in particular PEF is extremely effort dependent, it is

recommended that the PEF measurement is repeated until 10% reproducibility is

achieved and that patient PEF measurement methods be carefully assessed (Janson-

Bjerklie and Snell, 1988; Jones and Mullee, 1990). PFM users are directed to find their

maximum achievable PFM reading and then compare daily readings with this maximum

to determine their current lung function as a fraction of their maximum PFM reading. A

patient’s PEF value is typically compared with the personal best by placing it into one

of the three categories: green 80 to 100 percent of personal best, yellow: 50 to 80

percent of personal best (asthma conditions may be deteriorating), red: less than 50

percent of personal best (take medication and consult physician). Mechanical PFM

modules typically have markers on the body that indicate maximum PFM and the

moderate and danger ranges of respiratory impairment. Digital modules implement this

through electronics and can store several hundred readings. Some PFM units are

capable of transmitting data back to a clinic (see Stahlman and Salmun, 1999).

21

Table 1. Selected commercially available peak flow meter (PFM) and pulmonary
function test (PFT) device models

Distributor PFM Manufacturer/
Model

(M)/ (E) Range
(L/ min)

Price

Allergy Control Products,
Inc.
96 Danbury Road
Ridgefield, CT 06877
800.422.DUST

Personal Best
Personal Best LFM
Assess
Assess LFM

(M)
(M)
(M)
(M)

60- 810
50- 390
60- 880
10- 380

$26
$26
$19
$21

Asthma Stuff
P.O. Box 1537
Amherst, New York 14226
866.943.3937

Pocket Peak
Clement Clarke:
- Airzone
- Mini-Wright Std
- Mini-Wright LFM

(M)

(M)
(M)
(M)

60- 800
30- 400

$22

$19
$29
$29

Pulmonary Data Services,
Inc.
Ferraris Medical, Inc.
908 Main Street
Louisville, CO 80027
800.574.7374

KoKo PFM
KoKo Peak Pro PFM
KoKo Software Home
KoKo Software Pro

(E)
(E)
(E)
(E)

60- 840
60- 840

$40
$75
$60
$250

QRS Diagnostic, LLC.
P.O. Box 47304
Plymouth, MN 55447
800.465.8408

SpiroCard PC Card
PFT
SpirOxCard PC Card
PFT/O2
Sensaire Portable PFT
Device

(E)
(E)
(E)

$1,495
$1,995
$1,995

Abbreviations: LFM = low flow model, (M) = mechanical, (E) = electronic

Supplementing PEF measurements with FEV1 and FEV25-75% to obtain more accurate

and complete respiratory data presents difficulties for home measurement, but these

capabilities have been incorporated into some models. These measures require more

complex and larger devices to record larger volume and time measurements. The

analysis to calculate the values is more complex and the PFT devices supporting these

functions are more expensive though some devices, such as the KoKo Peak Pro offer

peak flow data as well as some PFT data while maintaining a low cost (see Table 1).

22

Complete spirometry requires technician guidance for coaching the patient

throughout the maneuver. Klaustermeyer et al. recommend that PEF be used only in

conjunction with full laboratory spirometry tests (1990). Further, as FEV1 decreases,

the sensation of effort increases (American Thoracic Society, 1998), hence introducing

the possibility of cyclic reduction in FEV1 for a single patient, and underestimating

FEV1, especially in the absence of a trained technician. If such measurements are

unavailable at home, it may be necessary to augment home respiratory health records

with recurrent clinic visits.

Though spirometry and PFMs dominate respiratory function testing, several

complications arise regarding the data they provide. Spirometry is criticized for its

effort dependence, a quality that casts doubt upon the measurement's repeatability and

representation of the patient's respiratory system under its normal breathing state. Some

studies as previously mentioned have shown however that with adequate coaching,

results are repeatable and truly indicate airway obstruction and restriction (American

Thoracic Society, 1999). Unfortunately, the same coaching that helps to produce a

repeatable measurement is often unpalatable to younger children (Malmberg et al.,

2000). Further, consistent coaching could only occur in a clinical setting. In clinical

and emergency settings, the portability and low cost of spirometry is attractive, but its

effort-dependent quality precludes its use on paralyzed, unconscious or ventilated

patients.

In home monitoring programs, often focused on prevalent reversible obstructive

diseases, spirometry falls short of a being complete predictive tool. PFMs and

23

spirometry lack the capabilities and sensitivity to directly measure short-term small RR

changes. Snow et al. (1995) explain that FEV1 and PEF measurements may fail to

show important changes in RAW because patients can often exceed the pressures

required for maximal expiration. Bronchoconstriction can occur before asthma

symptoms, and thus may go undetected when spirometry is used for detection. Eid et

al. (2000) found that PEF values in the normal range were least likely to predict whether

or not a child would develop or presently had moderate to severe asthma. Hence, the

subject group most at risk for asthma attacks was most poorly identified by PEF. Gern

et al. (1997), Fleming et al. (1999) and Rakes et al. (1999) found that allergic reaction to

Rhinovirus resulted in inflamed lower and smaller airways. This finding renders PFM

measurements less indicatory of the true state of respiratory distress because PFM

measurements were shown to be dominated by upper airway characteristics. Thus in

many cases spirometry and especially PFMs lack the capability for sensitive

preventative diagnostics. Resistance is a more direct measure of airways constriction

whether due to inflammation, asthmatic bronchospasmic restriction or other obstruction.

Isolating resistance and then comparing with forced flow may augment respiratory

monitoring in a home setting.

Esophageal Balloon

Direct resistance measurements that lack the need for specific patient breathing

patterns eliminate the effort-dependence and affective component of forced exhalation

studies. Esophageal balloon techniques allow direct measurement of pressures across

24

the respiratory system. The esophageal balloon technique makes possible continuous

flow and pressure signal analysis. However, the Mead and Whittenberger (1953) and

Frank et al. (1957) esophageal balloon analysis technique requires the analysis of full

breaths that start and return to the same lung volume. Thus the technique has limited

temporal resolution – that of the frequency of occurrence of good full breaths - and

cannot be used to distinguish inhalation from exhalation resistances, during which

different physiological forces act upon the airways. Further, this pressure and flow

sensing technique for RR analysis requires technicians and invades the patient,

prohibiting widespread and home use.

Full Body Plethysmography

The full body plethysmograph (FBP) technique offers advantages in respiratory

characteristic measurement but its requirements limits the extent of its use. FBP places

the subject in a sealed enclosure primarily to measure airways conductance by

monitoring pressure and flow. The technique's strength lies in the facts that its primary

measurement is airway resistance and that it can be used to measure thoracic gas

volume. Snow (1997) emphasizes the importance of measuring airway resistance and

thoracic gas volume to detect the condition when a subject compensates for airway

obstruction by increasing functional residual capacity. This case has the effect of

reducing the effect of airway constriction by expanding the lungs to a state of larger

airway caliber. FBP focuses on the state of the airways, rather than total RR, making

more specific its measurement information in the diagnosis of airways problems.

25

Lausted (1997) presents a review of FBP technique relevant to APD development and

describes the manner in which APD RR correlates with FBP RAW. Previously, FBP's

requirement for patient cooperation in performing special panting maneuvers has been

cited as a weakness in plethysmography application. However, Krell et al. (1984) found

that quiet breathing FBP produced measurements comparable to those achieved by

panting maneuvers. Despite the value of its measurements, FBP's primary

disadvantages in widespread home and clinical application are the size and cost of the

apparatus and the need for a technician to instruct the subject and perform the

measurements.

Interrupter Devices

Airflow interruption devices have a potential for marketability as they are non-

invasive and can be made portable. Like a shutter, the interrupter occludes airflow for

an instant and then computes the RR from the change in pressure during the occlusion

and the flow just prior. The interrupter technique can provide fairly continuous RR

measurements, but suffers inaccuracies from inertial effects and is dependent on

respiratory compliance (Kessler et al., 1999). Bates et al. (1988) found that accurate

interrupter measurements depended heavily on proper technique and were confounded

by any compliance inequalities portions of subjects' lungs (1988). These qualities could

be considered to limit interrupter use to laboratories or clinics.

26

Forced Oscillation Technique: Pressure Addition

Forced oscillation (FO) is a technique that non-invasively measures RR and has

potential for widespread use. In obstructive disease assessment FO is more suitable

than spirometry for children because FO is non-invasive and effort independent. FO

uses a loudspeaker to add a pressure signal, usually between 2 and 10 Hz to a patient's

breathing pattern and measures pressure and flow variation during the oscillations to

measure RR. Lausted has reviewed aspects of FO that relate to APD development,

particularly highlighting the special breathing patterns and supervision FO required in

laboratory settings (1997).

In its early development, FO had been restricted to laboratory use, but new

developments have shown that FO can be implemented in smaller units that operate in a

manner suitable for any user. Recent work has shown that FO can provide accurate

measurements during passive breathing. Tests have shown FO to provide accurate

measurements in children and at home without supervision (Ducharme and Davis,

1997). These passive breathing FO measurement techniques have proven useful in

paralyzed and ventilated patients, requiring only the minor modification of ventilation

apparatus (Navajas and Farre, 2001). The passive breathing FO technique has been

used to monitor sleep breathing disorders (Lemes and Melo 2003).

The major limitation to FO use would be its required components. A recent

description of an FO system included a PC, DAQ and 6-inch speaker (Melo and Lemes,

2002). These requirements would preclude its use as an inexpensive or portable and

compact device. The PC and DAQ functions could be integrated into a small unit, but

27

FO would still require the speaker and speaker driving power that might make

impractical a hand held FO configuration.

Perturbation Techniques and the APD: Flow Reduction

Perturbation techniques briefly, partially occlude airflow several times each

second during passive breathing. In the sense that it reduces airflow, perturbation is

similar to the interrupter technique and in the sense that it imposes an additional signal

on the breathing waveform, it is similar to the FO method. The APD (Johnson et al.

1984a, Johnson et al. 1984b), measures RR by calculating the ratio of pressure change

to flow change during the airflow perturbation. The current configuration of the APD

requires a data acquisition card and computer for analysis, largely confining its use to

the laboratory.

The mechanisms by which the APD functions have been documented

extensively (Lausted 1997) and hence have been excluded from this discussion. Its

value lies in its lack of forced breathing requirements, its non-invasive measurement

technique, its sensitivity and capability for fine time-scale measurements. Patients

breathe normally into the device and hence have a reproducible baseline for

measurements. In contrast to FBP and esophageal balloon techniques but like

interrupter and FO methods, the device measures total RR at each calculation, as

evident in the response of chest wall accelerometers (Lausted, 1997).

As discussed prior, it is useful to consider whether the APD alters the respiratory

system from its natural state in order to make a measurement. The start of any such

28

undesired effect might initially be seen through EEG potentials, indicating an imminent

respiratory response that would occur in response to perturbing the respiratory system.

Akay and Daubenspeck (2000) measured brain EEG potentials induced 200-ms pulses

at negative pressures from 6 to 17-cmH20 at the mouth and found delays from 50 to 100

ms in the EEG response to the pulse. APD perturbations last about 100 ms for a 10 Hz

perturbation frequency with pressure magnitudes around +/- 3.0 cmH20 (1.2 inH20).

Since the pressures of perturbation are small and short in relation to those used in the

study, their impact on the human respiratory control system might be small. However,

this might be examined further in the future.

The APD’s potential for quick response without tiring the user through repeated

forced expiration opens the door to other applications. The APD presents potential for

biofeedback studies in bronchodilation. Biofeedback is the ability to change aspects of

the body’s functioning that are typically under autonomous control. For example,

patients have learned to control the form of their brainwaves on EEG displays or muscle

activity visible on EMGs (Olton, 1980). An asthmatic patient might learn to control

that aspect of autonomous function that controls airways constriction. The APD’s fast

response time also facilitates the characterization of a respiratory system throughout a

range of positions within the breathing cycle.

29

OBJECTIVES

To meet the aforementioned medical industry need identified in the Literature

Review, the APD requires modification. The following design objectives define the

manner in which modification would allow further APD implementation in the health

care industry.

1. To revise the APD design such that a single stand-alone unit performs

a. data collection;

b. data analysis;

c. a display;

d. IO circuitry for expanded functionality.

2. To design a framework for a fast-response APD.

3. To create a computer interface with the APD for expanded data transfer and

calibration protocols.

Design Specifications

The following design specifications detail the characteristics that the APD-SA

must possess in order to meet the objectives while providing measurements comparable

to the current APD design:

30

1) Prior design specifications that should be preserved

a. Variable direct current voltage (VDC) motor: 2W or less, 250 mA maximum

continuous current or less (e.g. A-max16 12V 016 EBCLL 2W SL 1SH,

Maxon Precision Motors, Inc., 838 Mitten Rd., Burlingame, CA 94010)

b. Rotating, belt-driven perturbation wheel perturbing airflow near 6 Hz

c. Accommodations for Fleisch pneumotachograph (PT)

i. Pressure sensing for pressure differential across the PT: +/- 1 inH20

(maximum pressure gradient across the PT is 0.4 inH20)

ii. Mouth pressure sensing +/- 10

iii. Mechanical provision for securing PT to the body

iv. Electrical provision for 6 Ohm PT heating element: 6VAC @ 1 A

d. Analog to digital converter (ADC): 12-Bit or greater at 500 Hz

e. Device resistance adjustment

f. Software

i. Digital filter after analog stage

ii. Perturbation detection and RR measurement based on perturbation

magnitude – developed as a modification to the prior method

(Lausted, 1997, Lausted and Johnson, 1998)

2) New design specifications

a. Stand-alone system operation

i. Character display and supporting circuitry

ii. Simple user interface

iii. Measurement mode is the default power-on mode

31

iv. Calibration mode and calibration variable retention in the device

b. Hardware requirements

i. Single system voltage supply input for potential battery operation

without heated PT and design simplicity

ii. On-board ADC

iii. Sufficient random access memory (RAM) to store pressure, flow

and RR value data points required for the proper display of a value:

1. Preliminary testing: 50-data point buffer for pressure, flow,

device resistance, derivative of device resistance and RR

values: 250 x 32-bits per value = 1 kilobytes minimum data

RAM

2. Preliminary testing: intermediate variable storage and

constants: 240 bytes minimum RAM allows about 60 x 32-bit

variables

iv. Sufficient program storage space

1. Preliminary testing: 100 kilobytes, including compiled IO

routine support.

v. central processing unit (CPU)-controlled pulse-width modulated

(PWM) 40 kHz typical sourcing up to 200 mA or with external

drivers for additional current

vi. Circuit layout

1. separation of analog and digital grounds

2. separation of analog and digital circuit components

32

3. separately regulated analog and digital supplies

vii. IO Support

1. To transmit raw pressure and flow data: 2 Channels ADC @

500 Hz, IEEE 32-bit gives 32 kilobits per seconds

2. To transmit each RR value only: 10 Hz nominal at IEEE 32-

bit precision, transmit time, press, flow at each RR value = 4

kilobits per second

c. Firmware

i. Tune software execution speed to ensure proper ADC control

ii. Effective digital filtering and spike rejection

iii. Software circular buffering for all data and RR values

iv. RR value tracking for display of averaged RR

v. RR value update at each new valid perturbation for maximum real-

time RR value display, if fast-response is used

vi. Respond to IO requests

3) A hardware platform for the stand-alone APD-SA must have the following

characteristics

a. Availability: Either:

i. fabricable within the current ENBE departmental means

ii. or affordable fabrication outside the department

iii. or easily acquired from vendors with assured product longevity

b. Data Rates: Capable of the necessary data rates including

i. Adequate data input/ output (IO) rates

33

ii. Adequate data analysis speed (i.e. sufficiently fast processor

instruction execution); initial profiling found a minimum requirement

of 100MHz Pentium in Windows 98 for real-time processing that

does not require the addition of a peripheral memory chip design

c. Memory and Storage: Contain adequate memory, as specified in section 2)

for:

i. Program storage

ii. Temporary data storage

4) Host PC Software

a. Support for the APD-SA should be integrated into the existing APD100 host

software

b. Provide any calibration routines not supported by the stand-alone device

c. Provide pressure, flow and RR values from the APD-SA while connected

d. Provide data viewing and export functions for the APD-SA

e. Indicate what mode the software is using, i.e. APD-SA or APD100 with a

DAQ

34

EQUIPMENT

APD Design Prior to this Research: APD100

As described in detail in Lausted (1997), APD100 consists of the APD body,

power supply unit and computer data acquisition and analysis system. The APD body

conducts air flow through the PT, the variable device resistance tube and to the rotating

wheel that intermittently reduces airflow. The APD body also houses the components

that create 1) the flow signal: the proximal and distal PT pressure taps, differential

pressure sensor and filter circuitry and 2) the pressure signal: the proximal PT pressure

tap, differential pressure sensor and filter circuitry. A male D-Subminiature 9-pin

(DB9-M) transfers to and from external devices the pressure and flow signals as well as

power for the sensors, perturbation wheel motor and PT heater. The power supply unit

transforms 115 VAC to 6.3 VAC PT heater supply voltage and variable VDC motor

supply voltage.

A computer data acquisition and analysis system contains the DAQ and analysis

software. The DAQ supplies 5 VDC to the sensors and converts to digital format the

analog pressure and flow signals. The APD100 software, written in Microsoft Visual

Basic, analyzes the data to determine respiratory resistance. Device drivers provided by

the DAQ manufacturers control the DAQ and organize the converted digital data into

buffers. APD100 software communicates to the drivers the buffer size, channels on

35

which to collect data and sample frequency. The sample frequency is 500 Hz and the

buffers contain five seconds of data from four channels, the first two, channels zero and

one, logging flow and pressure data respectively. APD100 offers data logging and

viewing options, and contains device calibration routines.

APD100 data collection and processing uses a dual, alternating five-second, 500

Hz data buffer scheme. When the DAQ finishes filling one buffer, the software is

notified that the filled buffer is available for processing. The DAQ continues sampling,

filling a second buffer while the first buffer is processed. APD100 looks through each

filled buffer, determines likely perturbations, determines perturbation frequency and

affirms or denies each perturbation's integrity. Each approved perturbation is used for a

RR measurement. The processing loop continues until the number of inhalation and

exhalation perturbation RR measurements exceed the maximum specified number,

typically 100.

36

Equipment Available: Options for APD Design Revisions

The next step in APD development could have taken many forms and still met

the research objectives and design specifications. Appendix H includes information on

hardware and software technology combinations that might have been used in this

research, as well as a comparison of the relevant qualities of each. A form was selected

for the APD-SA USB that was seen to be the best compromise in design possibilities to

achieve:

- low development cost

- feasible prototype fabrication given the available time and resources

- integration with existing APD technology

Equipment: Revised Design for APD-SA USB

Figure 1 illustrates the major components in the revised APD-SA USB design.

An electronics enclosure is mounted on the original APD body. The APD body

modulates breathing airflow and generates pressure and flow signals. The electronics

enclosure analyzes pressure and flow signals to determine RR, controls the APD body

motor, controls the LCD display, and coordinates USB communication.

37

Figure 1. Block diagram of the design for the APD-SA USB

RS232

DSP

Flow

LCD

A
D
C

L
O
G
I
C

Custom ADC & Logic PCB

Pressure

USB

To Host PC

LCD0821-V

NMIN-0803-MINI

USBI2CIO

APD-SA
Enclosure

P
W
M

Driver

APD
Body

Pressure
Sensors

Perturb
-ation
Wheel

Variable
Air

Resistance

Pneumotacho-
graph

Breathing
Tube

Air Air Air Air

Motor

38

APD-SA Components

The APD-SA USB system comprises the APD body, electronics enclosure, PC-

hosted APD200 software for USB-based communication, a DC power adapter and USB

cable. The APD body is the same body used in the APD100 system; it contains the

same PT, sensors, and perturbation mechanisms described earlier. Since the APD-SA

was designed to be integrated with existing portions of APD100, the electronics

enclosure mounts directly atop the APD body and the APD200 software is an upgrade

to the APD100 software. APD200 integrates USB communication and APD-SA-

specific routines into the APD program and was developed from Microsoft Visual Basic

6.0 on a Windows 98 PC. Figure 2 is a rendering from CAD drawings that shows the

rectangular APD-SA enclosure mounted to the APD body via mounting brackets, one

on each side of the device. A liquid crystal display (LCD) screen faces the user to

display device status, measurement progress and an average RR value when enough

usable perturbations have been collected. A DB9-F on the underside of the APD-SA

enclosure connects to the DB9-M connector on the APD body to transfer signals

between the two. DC power and USB connections are on the lower rear face of the

enclosure. Through APD-SA electronics, power is distributed to the motor, sensors and

processing circuitry.

39

The APD-SA enclosure houses all electronics required to measure RR.

Electronic components are located on one of four printed circuit boards (PCBs)

summarized in Table 2. A custom ADC and logic PCB serves to interface all

electronics by providing connection points for cables, logic to translate and control

integrated circuit (IC) inter-communication and power distribution from the single DC

power input to the APD-SA enclosure. Figure 3 is a schematic of the APD-SA custom

ADC and logic PCBs. The images for the PCB layout can be found in Appendix B.

Figure 4 shows how the four PCBs and their associated ICs are interconnected to

transfer data.

Figure 2. A rendering of the APD-SA in which the APD-SA enclosure housing
electronics mounts onto the APD body that is also used in the APD100 system

40

Table 2. Summary information for the four printed circuit boards in the APD-SA
enclosure

Function & Description Manufacturer Information Part No.
ADC & Logic – analog signal
conversion, communication interface
logic and power distribution

Custom N/A

LCD – RS232/ I2C backlit display Matrix Orbital Corp., Calgary,
Alberta, Canada

LCD0821-V

DSP – collect, analyze and
communicate data

New Micros, Inc., Dallas,
Texas

NMIN-0803-
MINI

USB – control USB communication
with PC host

DeVaSys, Penfield, New
York

USBI2CIO

Each PCB required additional software or hardware tools either for design or

development:

- Custom ADC and logic PCB

- The PCB layout was designed in a schematics and layout software package called

Eagle 4.11 (CadSoft Computer Inc., Delray Beach, Florida).

- The layout was printed on a LaserJet 4L printer (Hewlett Packard, Palo Alto,

California) on laser printer transparency film CG3300 (3M, St. Paul, Minnesota)

- PCB was etched on single-sided copper clad pre-sensitized positive etch board

using an exposure kit 416-X and etching photofabrication kit 416-K (MG

Chemicals, Surrey, British Columbia, Canada)

- PCB holes were drilled using DB-0360 #64 or 0.0360-in diameter 1/8-in shank

drills (T-Tech, Inc., Norcross, Georgia)

- LCD PCB

- A custom null-modem cable was created to interface the 0.100-in serial

communication (RS232) headers on the LCD platform to a DB9 PC serial port

41

- Digital Signal Processor (DSP) PCB

- A Joint Test Action Group (JTAG) FLASH programming and DSP debugging

cable was obtained (Gregor Air, Inc., San Jose, California)

- DSP firmware was developed in C and assembly language using CodeWarrior

integrated development environment (IDE) Embedded for Motorola DSP56800

Academic Edition (Metrowerks, Austin, Texas)

- EZUSB PCB

- EZUSB firmware was developed in C using uVision IDE for 8051 (Keil Software,

Inc., Plano, Texas)

- Microsoft Visual Basic 6.0 was used to develop host PC USB application code

Additional tools and components were used to interface components and development

platforms, but are generally part of a standard electronics development laboratory. This

includes items such as test and measurements tools, cables, connectors, hand tools and

breadboards.

42

Figure 3. APD-SA ADC and logic schematic for analog signal conversion, motor control and interfacing APD-SA PCBs; the figure
includes all headers for connections between PCBs; all electrical connections, or nets, are named, and identical names indicate electrical

connection, even if a trace is not drawn between the named points; the PCB layout was derived from this complete schematic

43

Appendix A contains detailed CAD drawings that describe the enclosure

dimensions, electronics mounting points in the enclosure, orientation of the PCBs and

assembly procedure. The mounting positions for the PCBs were determined by the

physical size of the PCBs as well as the clearance required for connectors. The

enclosure was designed so that once the enclosure is assembled, the sides of the

Figure 4. Interconnections and data exchange among the ICs and PCBs in the APD-
SA enclosure

RS232/PWR

RS232

RS232

Optional
EZUSB
Debug
RS232

PORTA/E

A1,A5

A0,A2,A3,A4,E4

PORTA

PORTB

A0-A7

A0-A7

EZ-USB

ADC and Logic PCB

DSP56F803

Logic

E5

B6 (INT6)

B5,B7

E6,IRQB

ADC

LCD0821

44

enclosure can be removed with a single bolt to expose the DSP and USB development

platform connectors that allow firmware updates and debugging. There is clearance

between components to attach the JTAG connector to the DSP platform and clearance

to connect a cable to an RS232 debug port for the EZUSB platform.

APD-SA Operation

Division of Functionality

Functions performed by the APD-SA USB system are divided into those

performed by the stand-alone device and those performed by the APD200 software and

host computer. The APD body portion of the stand-alone device generates the pressure

and flow signals that perturb the breath. The APD-SA enclosure portion of the stand-

alone device controls the motor speed, and digitizes and collects the pressure and flow

signals to calculate RR from well-proportioned or good perturbations – those with large

enough signal-to-noise ratios.

When power is applied to the APD-SA, the unit goes through its initialization

steps and then continually reads data and calculates RR until the specified maximum

number of perturbations is attained or the EZUSB platform asserts itself to the DSP

platform. The EZUSB platform is powered by the USB bus power from the host PC

and thus does not function until a USB cable is connected from host PC to APD-SA.

Figure 5 illustrates how the DSP, EZUSB and host PC signal each other through

interrupt requests to orchestrate the data transfer that underlies the APD-SA operation.

45

Host PC to APD-SA USB transfer requests are orchestrated through USB endpoint

interrupts. Transfer from the DSP to the EZUSB is signaled by the EZUSB external

hardware interrupt six and the EZUSB signals the DSP through its external hardware

interrupt B.

APD200 handles APD-SA USB calibration and detailed RR data collection

during measurement. APD200 can initiate raw data streams, RR measurement data

streams and calibration variable transfers. The streamed data is used for calibration

routines. Calibration variables are stored in the DSP FLASH memory. APD200

includes routines for plotting and saving the detailed RR measurement information.

Calibration information for the APD-SA USB can also be stored in files on the host PC.

Figure 5. Interrupt driven communication among APD-SA DSP,
USB and host PC

USB Host
APD200 Program

USB

APD-SA USB

EZ-USB

EP2IN IRQ

EP2OUT IRQ

DSP56F803

IRQ B

INT6

46

Firmware Descriptions

USB firmware was written to cause the APD-SA to appear to the host computer

as a human interface device (HID) and transfer commands and data between the host

PC and DSP. USB firmware was developed on the same PCB platform used in the

APD-SA enclosure, using the firmware and software development tools listed earlier.

USB and RS232 null modem cables allowed debugging. Figure 6 summarizes the USB

code. The firmware loops until it receives a request from the USB host. The request

arrives as a block of data, the first byte of which contains custom-defined codes that

indicate the type of operation to be performed. The EZUSB then signals the DSP with

the appropriate corresponding command, awaits acknowledgment, passes

acknowledgment to the host and transfers data when ready until the operation is

complete.

47

DSP firmware was written to coordinate ADC control, data buffering, data

processing, motor speed, LCD updates and responses to EZUSB requests. When power

is first applied to the APD-SA, the DSP initializes its circuitry, measures baseline (no

pressure and no flow) sensor voltages and then continually reads data, looking for

Figure 6. Diagram of the APD-SA EZUSB firmware; the polling loop
(top) executes continuously; if a command is received from the USB
host PC, then the EZUSB executes the necessary actions to comply
with the command (bottom)

Host
Request
Stop?

Stall DSP to Stop
Data Stream

Send Stop
Acknowledge
Back to Host

Yes

No

Polling Loop

Data from USB
Host Interrupt

Select Case of
First Byte
from Host

Connect to DSP

Request DSP Variables

Stream ADC Data from DSP

Send Host Variables to DSP

Run APD and Stream Data

Send Mode
Request to

DSP

Receive
Acknowledge

from DSP

1. Interrupt Enable, Mask and Service
2. Buffer Fill, Monitor, Arm and
Clear for Each Mode of
Data Transfer

Hit Watchdog
Timer

48

perturbations. The unit displays to the user through the LCD its progress through these

initialization steps. When good perturbations are detected, the LCD screen indicates

progress toward the maximum number of perturbations to collect before showing

average RR. When the maximum is reached, the DSP stops measurements and displays

the average of inhalation and exhalation RR. As depicted in Figure 7, at any point

during RR measurement, if the EZUSB asserts itself to the DSP, the DSP will

immediately go into a USB slave operation mode in which it only acts after receiving a

command passed to it via EZUSB from the PC host.

To achieve the stand-alone and USB-controlled functions, a polling loop in the

DSP firmware toggles among operating modes. Once a mode is selected, a DSP timer

Figure 7. Diagram of APD-SA DSP firmware operations upon power-up
and the point at which the DSP will heed PC-initiated USB commands

Power On

Initialize

Measure Respiratory
Resistance

USB
Connection
Asserted?

Display Progress

Reached
Sufficient

Perts?

Display Average
Respiratory Resistance

USB Assertion at IRQ B
from PC host via EZUSB

Await USB Commands
& Perform USB Functions

LCD

LCD

Yes

No

No

Yes

49

is used to periodically execute functions. Figure 8 illustrates how the loop toggles

among modes after power-up and how a DSP timer triggers software interrupts that

periodically call procedures. Timer interrupt-called procedures are prefixed as

“TimeProc,” as in “TimeProcRunMode” and “TimeProcStreamMode.” Depending on

operation mode, collected and analyzed data will be transmitted to the EZUSB, as

needed. The “TimeProcRunMode” timer interrupt function is the RR measuring

function. Figure 9 illustrates its major components.

50

Figure 8. Diagram of the APD-SA DSP firmware polling loop that toggles
among operating modes and enables timer interrupt routines to stream raw data
or measure RR

Power On

Initialize:
Timers, Ports, Registers
Read Calibration Values

Rezero

APD version
Self-Testing

LCD

Read Mode Variable

RUN
Mode?

USBRUN
Mode?

STREAM
Mode?

STOP
Mode?

No

No

No

No

Timer Interrupt Function
=TimeProcRunMode

Timer Interrupt Function
=TimeProcRunMode
(with USB provisions)

Timer Interrupt Function
=TimeProcStreamMode

Start Motor (PWM)
Start Timer
Clear Mode

Start Motor (PWM)
Start Timer
Clear Mode

Stop Motor
Start Timer
Clear Mode

Stop Motor
Stop Timer
Clear Mode

Yes

Yes

Yes

Yes

Timer
Enabled?

Increment
Timer Count

Count=
Compare
Value?

TimeProc
Mode

Function

Yes

No

Yes

Timer
Interrupt
Routine

51

Figure 9. Diagram of the APD-SA TimeProcRunMode timer interrupt routine
that triggers at the sample rate to measure pressure and flow to calculate RR

TimeProcRunMode

Get ADC Samples

Subtract Offset

Filter

Place Samples
into Buffer

Calculate
Device

Resistance
(rd)

Place rd into
Buffer

Differentiate
rd Buffer

Buffers
Full?

No

Yes

Find Most
Common Value

(mcv)

Look for
Perturbation

(Greater than mcv)

Pert
Found?

No

Yes

Check Pert
Integrity

Good
Pert?

Zero Pert
Data Points

No

Calculate
Respiratory
Resistance

Place rr into
Buffer

Update LCD
Display

USB
Mode?

Transmit
Value

Yes

No

Collected
Enough
Perts?

No

Set Mode =
Stop Mode

Yes

52

Software Description

APD200 functionality that supports the APD-SA can be considered to comprise

two layers of software. The first layer provides a set of functions that mimics the

APD100 capabilities, but was actually developed to work with the unique

characteristics of APD-SA communication and data transfer. APD-SA characteristics

that are unique with respect to the APD100 include data buffer size, numeric formats,

the order of transmitted variables and the necessary command sequence to control the

APD-SA over USB. The second layer resides beneath the first and translates the

modified functions into USB-specific IO operations through the HID driver. The HID

driver is shipped with the Windows operating system (OS) because the HID class of

USB devices follows all or a subset of particular and consistent behaviors dictated by

the USB HID specification. Operation as an HID required that the APD-SA function be

constrained within the HID specification, but circumvented the complexities of

developing a custom USB driver.

The APD-SA USB employs the EZUSB's “Renumeration” ability to present

itself as an HID. Enumeration is the process in which the host PC reads the descriptor

table of the USB device in order to properly identify the supporting drivers it requires.

Figure 10 illustrates the overall process that occurs as the APD200 first communicates

with APD-SA USB. After first power-up, the EZUSB loads its permanent read-only

memory (ROM) code that contains its identification code as a Cypress EZUSB device.

Upon first USB connection to the APD-SA, the host PC reads the identification code

from the EZUSB chip and searches its registry to load the corresponding Cypress

53

driver. If the driver has not yet been installed onto the computer, Windows will go

through its usual process of notifying the user of the newly discovered hardware. When

the driver is loaded, it provides basic USB test functions through Cypress test software.

The driver can also load under application control custom firmware into the EZUSB

RAM. In APD200, when the option to connect via USB to the APD-SA is selected,

APD200 searches the Windows system to determine if a Cypress EZUSB device has

been loaded. If it sees the EZUSB, it will invoke commands to download to the EZUSB

the custom developed APD-SA USB firmware. APD200 will then reset the EZUSB

chip and the chip will upon reset identify itself as an HID because this identification is

coded in its firmware. Windows will load the HID driver and APD200 will test for

proper communication with the APD-SA USB.

54

Figure 10. Diagram of the APD-SA implementation of the EZUSB
"Renumeration" feature when APD200 invokes USB communication; USB
cable connection (top left) and APD200 program execution (top right) are
independent of each other and can occur in any order; APD200 software has
provisions for both the presence and absence of the APD-SA USB connection

Connect USB Cable
to Host Computer

(Power On
USB Circuit)

Re-Initialize EZ-USB
EZ-USB Re-Numerates
to USB Host as USB

Human Interface Device
(HID)

EZ-USB
Enumerates to host

as Cypress AN2131
(EZ-USB) Device

Run APD200.exe
Program

Select "Connect to
APD-SA USB"

Search Windows OS
for attached EZ-USB

Device

EZ-USB
Found?

Download Custom
APD firmware from

USB Host to
EZ-USB RAM

Reset EZ-USB

USB Host

Yes

Await USB Host
Commands and

Perform
APD-USB

Functionality

USB Host

Search Windows OS
for attached HID

Device (APD)

Begin APD-USB
Functionality

APD200 USB Host

APD-SA USB

55

PROCEDURES

PC Hosted Prototype Development

The first step in APD-SA design was the evaluation of hardware and software

options in a PC hosted prototype. APD code designed for a simple, fast-response APD-

SA was written in MS Visual C++ using only C-compatible language. The PC executed

the code in order to simulate an embedded processor. The PC communicated via

parallel port with an external breadboard that contained the analog signal conversion

circuitry, display circuitry and motor control circuitry. The breadboard was connected

to the APD body to collect analog signals and control the motor. The code was

optimized to minimize code size and maximize code speed. MS Visual C++ includes a

time-profiling feature in which it monitors the time it takes for a section of code to

execute. This feature was used to maximize code speed by comparing alternate

methods of achieving the same result and selecting the fastest method. The prototype

was used to estimate the processing and memory requirements of a stand-alone system.

The design was also reviewed to determine the suitability of a fast-response device and

the best option for a user interface. A detailed description of the PC hosted prototype

can be found in Appendix I.

56

Integrated Hardware and Software Development

Following review of the first PC-based prototype, work continued with the

development of the APD-SA on embedded processors. This work required EZUSB

firmware, DSP firmware and APD200 software development on a PC and the

integration of embedded processor development platforms with custom APD-SA

hardware. There were many steps in this process.

The PC-hosted C/C++ prototype code was ported to the DSP56F803E. Code

was written to initialize and control functional subunits on the DSP including PWM for

motor control, RS232 communication, timer interrupts and external hard interrupts.

The interrupt functions required proper interrupt vector table setup. DSP firmware

required the adaptation of the C/C++ conventions to the Metrowerks IDE, altering some

of the ways in which parameters were passed to the functions. The C code size had to

be decreased to fit into the DSP FLASH and RAM. Variable types and buffer sizes

were altered to a great extent in order reduce memory required. For example, pressure

and flow data was stored in integer buffers. Debugging options were minimized. The

alteration of variable types required the re-writing of some routines, as well as the

modification of the application of calibration constants. Routines were written in

assembly code to convert data types. A template memory map for the DSP56F803E

was modified to provide space for calibration constants. Numerous details of the code

adjustment can be reviewed in the code listed in Appendix D.

57

Once C code was ported to the DSP platform, the APD measurement hardware

was integrated for testing with the DSP. ADC and motor control options were explored.

ADC timing was adjusted. An RS232 PC terminal emulator (MS Hyperterm) was used

to simulate the APD-SA display and monitor debug data. After several revisions of the

hardware and DSP firmware, a final arrangement was selected. ADC data collection

integrity was verified by logging data over RS232. The RR measurement routines were

similarly validated.

After verifying the integrity of ADC and DSP performance, the EZUSB

platform was integrated with the DSP and ADC. Digital logic to interface the EZUSB

platform to the DSP and ADC was designed and tested. To more permanently join the

platforms, corresponding connectors were built or obtained and modified.

EZUSB firmware, DSP firmware and APD200 USB software co-development

ensued. The code listings contain comments that describe details of the EZUSB

firmware and APD200 USB software development. Appendix E is USB firmware code

and appendix F is APD200 code. Fundamental APD200 USB HID routines were

modified and expanded for APD-SA-specific operations. Basic data streaming and

variable exchange routines were developed on both the EZUSB and APD200 platforms

simultaneously, followed by more complex RR measurement data transfer routines.

DSP firmware was modified to respond appropriately to the possible timing and data

transfer requirements of USB connection. Communication routines were developed to

confirm command requests and pass data among DSP, EZUSB and PC. These routines

required that a custom structure for APD-SA data streams be developed. EZUSB code

was designed to keep intact this structure while managing the USB buffers. APD200

58

routines were designed to obtain these structures and extract variables and command

codes from the streams. Details of command codes, buffers, data stream formats and

data stream structures are described in the code listings. EZUSB debug information

was passed to the host PC on a second RS232 channel, often connected to second PC.

The EZUSB RS232 signals were first routed through an RS232 level-shifting chip,

which was retained in the final APD-SA design to facilitate EZUSB debugging in

future development.

Following ADC, logic, DSP, EZUSB and APD200 development, the LCD user

interface for the APD-SA was integrated into the design. The DSP code was modified

to include control routines for the LCD screen. The DSP code modifications included

adjustments to the particular type of information that would be passed to the LCD

screen. Appendix C contains tables listing the interconnections between hardware

devices in the prototype. The tested prototype system including ADC, logic, DSP,

EZUSB, LCD and APD200 was then reviewed for the suitability of its overall function.

Upon prototype design acceptance with some revision, a schematic layout was

developed for a custom ADC, logic and power distribution PCB. Appendix B contains

PCB layout images. The PCB positive image was printed on laser jet transparency film.

A positive exposure kit was used to etch the layout onto copper clad board. Two copper

clad boards were etched – one for the top and one for the bottom side. The boards were

assembled and holes for components were drilled. IC and connector sockets, regulators

and passive components were soldered. ICs were inserted into sockets. Performance of

the PCB was tested. Some modification were performed by cutting traces and soldering

jumper wires.

59

Once the custom PCB was determined to function properly, an enclosure to

house all APD-SA electronics was developed. The enclosure was designed in CAD to

be as small as possible while housing all electronics. Connector clearances and PCB

dimensions were considered in the design. An orientation of PCBs was found that

would minimize enclosure size, allow all inter-PCB cables to be connected and

facilitate future debugging. Appendix A contains the CAD drawings for the enclosure.

Upon assembly and testing, the APD-SA enclosure was ready for validation by

calibration and human subject tests.

APD-SA Performance Validation

Calibration Performance

To validate basic data transfer and the accuracy of pressure and flow data in the

APD-SA USB, calibration data for the APD-SA and APD100 were compared. For each

device, three pressure and three flow calibrations were performed. Pressure calibration

points were at zero and 10 cmH2O and flow calibration was performed for three Liters

of air in five seconds for each flow direction, injection and withdrawal. The

experimental calibration values were compared with theoretical calibration values

derived from the specifications for the APD pressure sensors, PT, circuitry and ADC.

60

A statistical comparison of the calibration values was not performed, because

the statistically different calibration constants between the devices does not imply

different RR measurements – the purpose of calibration constants is to correct for signal

transformation differences between devices. For example, if the two devices yielded

statistically different calibration constants due to differences in circuitry, they could still

yield accurate RR measurements because the calibration constants should compensate

for the differences in circuitry. A qualitative analysis of calibration data was

performed, however, to demonstrate the overall validity of APD-SA data acquisition.

Human Subject Testing

To examine the accuracy of the APD-SA, APD-SA and APD100 RR

measurements were performed for human subjects. The format used here for APD

measurement is identical to that used in prior and on-going APD measurements and

thus falls under IRB approval 03-0324. Thirteen subjects older than 18 years of age

were tested. For each subject, one APD100 measurement and one APD-SA

measurement was made. The order of measurements was randomly determined and

measurements were obtained within 15 minutes of each other. For the APD-SA

measurement, the device was used in its USB mode to provide more detailed data. The

APD body was placed on a ring stand and when an APD-SA measurement was

required, the APD-SA enclosure was placed atop the APD body. Prior to each

measurement, the APD was rezeroed, and prior to each APD-SA measurement, the

device power was cycled, i.e. the power connection was removed and reattached.

61

Subjects were encouraged to find and maintain for both measurements, a comfortable

sitting position. The height of the APD mouthpiece was adjusted to meet the subject's

mouth once the subject was comfortably seated. The subject was instructed to hold the

cheeks firmly during the measurement and breath normally through the device. Each

subject used a disposable cardboard mouthpiece and re-usable, washable noseclip for

the measurement set. For each measurement, at least 100 good perturbations were

collected in each breathing direction. If during a measurement an error such as a USB

miscommunication or perturbation wheel seizure occurred, the measurement was

performed again after rectifying the problem. Average RR data for the APD-SA was

compared with that for the APD100.

Further Investigation of RR Calculation Algorithms

During APD-SA firmware and hardware development, synthesized data sets had

been used to test perturbation detection and RR calculations. These data sets had been

constructed based on typical pressure and flow magnitudes obtained from previously

collected APD data. However, a sampled data set had not been tested in both devices.

After human subject data collection and analysis, it was desired to briefly

validate the APD-SA and APD100 RR calculation algorithms by using the same

pressure and flow data set for each. Pressure and flow data during perturbations was

collected on the APD-SA in JTAG debug mode so that execution could be paused and

data buffers examined, as had been the process during early development stages. The

calculated RR values for the APD-SA were recorded, and the pressure and flow data

62

points were transferred to a lookup table for the APD100. The APD100 software was

then temporarily altered to read data from the lookup table to replace data collected

from the DAQ. The APD100 RR calculations were then recorded. Algorithms were

compared and discrepancies explored.

The PT heater was disconnected on the APD body for this research and not

included as a design parameter for several reasons. The PT is heated to eliminate

condensation and to better stabilize temperatures for volume correction. Proper

inclusion of the PT heater would have required a good deal of additional design effort

and may be better suited for future development. The PT heater requires nearly one

watt of power depending on the desired temperature. This power requirement might be

considered excessive for a device destined for hand held battery-operated use, though

high-drain batteries are now available. The heater time constant is also a complication

in implementing the heater because the hand held device is designed for quick start and

measurement. In practice, PT operating temperatures are often achieved by allowing

the PT to heat for a minimum of 10 to 15 minutes before measurement. Miller et al.

(1997) provide a discussion of the impact of PT temperature on measurement accuracy,

emphasizing its impact on volume calculation. Volume calculation was not studied

here. For device validation, the heater was disconnected so that the measurement

conditions would be identical for both the APD-SA and APD100.

63

RESULTS AND DISCUSSION

Design Results

The design process yielded a prototype APD-SA USB device capable of

measuring RR as a stand-alone unit, and capable of providing more detailed RR data via

USB connection to a host PC. Figure 11 shows the working APD-SA USB prototype

with DC power connected. Figure 12 shows a subject using the device as a stand-alone

unit to measure his RR. Figure 13 shows how the LCD screen on the APD-SA USB

communicates device status and measurement progress to the user during measurement

and upon USB connection to a host PC.

Figure 11. APD-SA USB ready to make an RR measurement

64

Figure 12. A subject using the APD-SA USB as a stand-alone
device to measure his RR

65

APD200 software, a revision of APD100, expands upon the basic functions of

APD100. Figures 14 through 17 present typical program windows in the host PC

APD200 program when the software is used in conjunction with the APD-SA USB.

The main APD panel screen (Figure 14) provides menus and data display during RR

measurement. APD200 menu items include file functions such as saving data, USB

connection functions (Figure 15), calibration functions (Figure 16), and data plotting

functions (Figure 17).

Figure 13. LCD display sequence on the APD-SA USB; clockwise from the top left:
two start-up screens followed by screens that indicate to the user that the device is
reading data; “Read:” followed by a percentage indicates to the user how much of the
measurement has been completed, as a percentage of the total number of required good
perturbations; the dashes at the bottom of the “Read:” screen move from left to right
with every few good perturbations and the displayed percentage increases in 10%
intervals; when a sufficient number of perturbations have been acquired, the screen
displays the average RR; at any time during operation, a USB connection to the device
will be indicated with the “USB” screen

66

Figure 14. APD200 main panel window with menu functions and RR data
display, shown here in operation with the APD-SA USB device

Figure 15. APD200 window that indicates to the user the status of the connection to
the APD-SA USB when a USB connection to the device is first attempted

67

Figure 16. APD200 window that shows calibration constants, shown here in
operation with the APD-SA USB; the window includes buttons to transfer
calibration constants to and from the APD-SA USB

68

Calibration Results

The calibration results demonstrate that the APD100 and APD-SA provide

similar calibration values. The results demonstrate the integrity of the APD200

calibration procedure, the signal conversion and data processing in the APD-SA, and

the APD-SA to APD200 USB communication. If any of these data processing and

transmission steps were erroneous, then calibration values would greatly differ from the

Figure 17. APD200 window that shows a plot of individual RR values
over time measured by the APD-SA USB

69

expected values, and APD200 performance would differ greatly from APD100

performance.

Calibration span values are particularly important because the ratio of pressure

to flow span is what ultimately converts unscaled data to scaled data and thus

determines the RR reported by the device. Table 3 presents the measured flow and

pressure spans for the APD100 and APD-SA as well as average, standard deviation and

standard deviation as a percent of the average. Notably, all calibration span standard

deviations are less than one percent of the mean value. The relative magnitude of flow

and pressure standard deviations in the APD100 are similar to those for APD-SA.

Table 3. Span calibration results for APD100 and APD-SA; APD100 collects and
scales voltage data while the APD-SA collects and scales ADC counts

APD100 Flow Spans Pressure Span

Inh (Lps/V) Exh (Lps/V) (cmH2O/V)

-4.216 -4.392 -12.386

-4.206 -4.379 -12.565

-4.203 -4.340 -12.540

Average -4.208 -4.370 -12.497

Std Dev 0.003 0.020 0.034

Rel Std Dev 0.07% 0.46% -0.27%

APD-SA Flow Span (Lps/count) Pressure Span (cmH2O/count)

-0.001312 -0.003843

-0.001307 -0.003826

-0.001307 -0.003846

Average -0.001309 -0.003838

Std Dev 0.000001 0.000010

Rel Std Dev 0.08% 0.26%

70

To examine the similarity of calibration values between the two APD versions,

it is useful to compare how each measured calibration value relates to its predicted

value, and to examine the typical ratio between pressure and flow span. Table 4

presents the theoretical flow and pressure spans and a comparison between APD100 and

APD-SA calibration span values. For the APD100, the theoretical span values were

calculated based on manufacturer specifications for the No. 2 Fleisch

pneumotachograph and the Honeywell Pressure Sensors. For the APD-SA, the

theoretical span values were calculated based upon the same sensor specifications as

well as the specifications for the ADS7825 16-bit ADC. Specifications for signal

transduction elements are shown in Table 5. Typical theoretical calibration spans based

upon sensor specifications are shown for APD100 and APD-SA in Eq. 1 and Eq. 2

respectively.

SpanFlow , APD100 =

=
3.253- 0.346 Lps
1.0 - 0.1cmH2O

2.54
cm

inch

1 inH2O
4.25- 2.25VDC

=3.230
Lps

cmH2O
1.27

cmH2O
VDC

= 4.102
Lps

VDC

Eq. 1

SpanFlow , APDÿSA =

=3.230
Lps

cmH2O
2.54

cm
inch

1 inH2O

4.25- 2.25VDC

20VDC
216 -1

= 4.102
Lps

VDC

1VDC
3276.8 ADC count

= 0.001252
Lps

ADC count

Eq. 2

Similar calculations yield theoretical calibration spans for each device as shown in

Table 4.

71

Table 4. Data for a comparison of calibration results for APD100 and APD-SA,
showing the measured and theoretical spans and percent difference between theoretical
and measured values for each span; pressure to flow span ratio is the pressure span
divided by flow span, the ratio that converts an unscaled respiratory resistance value to
a scaled value

Theoretical Calibration Values

APD100 Flow Span (Lps/V) Pressure Span (cmH2O/V)

-4.102 -12.700

APD-SA Flow Span (Lps/count) Pressure Span (cmH2P/count)

-0.001252 -0.003876

Percent Difference Between Experimental and Theoretical Spans

Flow Pressure

APD100 4.13% (avg inh exh) -1.26%

APD-SA 4.39% -0.77%

Ratio of Average Pressure Span to Average Flow Span

APD100 2.936

APD-SA 2.943

Table 5. Specifications relevant to calibration span for sensing and data conversion
components on the APD100 and APD-SA

APD Version Part Calibration Span-Related Specifications

APD100 &
APD-SA No. 2 Fleisch PT

cmH2O Lps

0.1 0.346

0.5 1.733

1.0 3.253

APD100 &
APD-SA

Flow Pressure Sensor
Honeywell: DC001NDR5

±1 inH2O input across 0.25 to 4.25
VDC output

APD100 &
APD-SA

Mouth Pressure Sensor
Honeywell: DC010NDR5

±10 inH2O input across 0.25 to 4.25
VDC output

APD-SA
ADC:

Burr-Brown ADS7825
±10 V input across 16 bits

as twos-complement
(0 to 10 VDC = 0x0000 to 0x7fff)

72

Since both the APD100 and APD-SA incorporate the same PT and pressure

sensors, it would be expected that excepting data processing errors, calibration and

measurement should yield similar results. The APD-SA does however include unity-

gain buffering circuitry to drive the ADC inputs, and thus may introduce some

undesired signal transformation prior to the conversion. In the APD-SA PCB layout,

the buffer amplifier supply voltage is 5 VDC, thus a non-linear or even saturated

response may characterize the collected data for large sensor output values near 3.8

volts (see the specifications for the buffer amplifier). The APD is typically calibrated at

pressures and flows that would cause the sensors to produce voltages less than this

saturation voltage. The 3.8 VDC saturation corresponds to about 6 Lps flow or 18

cmH2O pressure. Typical values during measurements have been less than 2 Lps in the

highest flow subjects and less than 3 cmH2O pressure during perturbations. Pressure

calibration is typically conducted at 10 cmH2O and 3 Liters volume injected over 5

seconds. Nonetheless, it is possible, though not likely, that large perturbations causing

large pressures and to a lesser extent, high flows, might induce large sensor output

voltages that would enter the troublesome buffer amplifier input voltage range. Thus

APD calibrators should avoid fast volume injections, and RR measurements should be

made at proper perturbation magnitudes.

73

Subject Testing Results

Subject Summary Data

RR data was collected for 13 subjects. Subjects were between the ages of 18

and 60 years of age. Six subjects were male and seven were female. Subjects ranged in

height from 1.57 to 1.88 meters and in mass from 55 to 105 kg. Of the subjects, two

were smokers, one heavy, and two had mild asthma that was inactive at the time of

measurement. Two measurements had to be repeated due to perturbation wheel seizure,

one of which also had a USB communication failure. In general, subjects did not report

any large discomfort during measurement. Two subjects suggested creating an arm that

would hold the APD over the edge of the table for easier posture during measurement .

One subject reported that holding the cheeks caused her to feel as if her breathing were

restrained because her arms were positioned against her chest.

Appendix G contains the detailed APD data and the random numbers used to

determine which device was used first. RR values ranged from near 2.0 cmH2O/Lps to

near 4.5 cmH2O/Lps. The largest value was obtained for a 45 year old subject who had

been smoking since he was 18.

Preliminary measurements had been made allowing subjects to hold the APD in

one hand while holding the cheeks with the other. However, some subjects, primarily

those with smaller builds, rested their arms upon their chest and were reportedly more

74

muscularly tense while holding the larger APD-SA. Thus, the APD body was placed on

a stand for all measurements.

APD-SA and APD100 Average RR Comparison

Figure 18 shows the relationship between average RR values from the APD-SA

and APD100, one datum per subject. The data show that the APD-SA and APD100

return similar RR values. A statistically significant correlation of 0.98 with

p<0.0000001 was found for the relationship between APD-SA and APD100 RR values.

The linear regression slope was found to be 1.13.

To examine the practical meaning of the regression slope, it is useful to take an

example. The regression returns an APD-SA value of 3.1 cmH2O/Lps for an APD100

RR value of 3.0 cmH2O/Lps. This difference is near one standard deviation of

consecutive measurements with the APD100 (Lausted and Johnson, 1999). Thus the

APD-SA returns values that are usable, but on average larger than APD100 values in a

meaningful way, near one standard deviation for values around 3 cmH2O/Lps.

75

Since both APD-SA and APD100 use the same PT and pressure sensors,

differences between the two devices might occur in the amplification and data

conversion stages for processing the data. There may be non-linearities in the APD-SA

buffer amplifier response or conversion circuitry. Calibration is designed to obtain an

average response for the sensors and circuitry as a whole, thus compensating for any

differences between devices in data conversion. It is possible that in a non-linear data

collection response, calibration occurred at a large pressure value, but smaller pressure

values obtained during measurement lie along the portion of the amplifier response that

deviates most from the calibration's linear slope. Nonetheless, for there to be a

76

difference between devices in RR value, the ratio between pressure and flow would

have to be different from one device to the next. To achieve this, one channel of data

would have to deviate from a linear response in a convex manner while the other

channel deviated in a concave manner. An examination of the effect of calibration

values on the returned RR values might demonstrate whether typical calibration values

alter RR enough such that non-linearities would need to be considered.

Investigation of Measurement Differences

The APD-SA's tendency to return larger RR values than the APD100 was

investigated by examining the effect of calibration values. Since the application of

calibration constants to data essentially scales the data, data from both devices was

rescaled to reflect the effect of a calibration that would have caused the regression slope

to become less. RR data from each device was divided by the ratio of pressure to flow

calibration constants used for a measurement. Data points for the APD-SA were then

multiplied by the smallest ratio of calibration constants that was obtained for either

device, and the data points for the APD100 were multiplied by the largest ratio of

calibration constants. A regression was then performed again, yielding a slope of 1.10.

Thus even for calibration constants that would tend to sway the regression slope toward

one, the APD-SA still exceeded APD100 RR measurements.

A second difference between the two devices' measurements may have occurred

in the algorithms that calculated RR. The APD-SA perturbation detection algorithm

was changed several times. Since the APD-SA uses a much smaller data buffer than the

77

APD100, it was possible to make the device much more sensitive to perturbations

because perturbation detection parameters could be set for each perturbation rather than

an entire data buffer. However, when preliminary data was collected for several

subjects, the APD-SA returned larger RR values to a greater extent than data presented

here. To make the measurements compatible with the large amount of data previously

collected by the APD100 in laboratory studies, this sensitivity was decreased. After a

second preliminary test of subjects, the detection algorithm was again altered to match

the APD100 perturbation detection parameter method more closely. Though suggesting

an over prediction of RR by the APD-SA, the results presented here represent the third

revision of the APD-SA perturbation detection parameters. The preliminary tests,

though not rigorously statistically tested, appear to show that RR calculation is sensitive

to the perturbation detection algorithm, especially the manner in which the edges of the

perturbation are selected. This is discussed further in the section: Suggestions for

Further Research.

After data analysis, the APD100 and APD-SA device algorithms were again

compared. The first major remaining difference in perturbation detection was the fact

that the APD-SA sets detection parameters for each individual perturbation as it slides

through its data buffer while the APD100 examines a five second data buffer, setting

parameters based on the whole buffer. If device resistance (RD) changes with flow rate,

which qualitative observation of the flow and pressure waveforms during measurement

suggests, the perturbation detection parameters obtained from a large data set might

tend to truncate perturbations that occur nearer the edges of breath. As evidence of this

truncation, Yeh et al. (1982) present for a Fleisch No. 3 PT the non-constant

78

conductance increasing from 4.7 to 5.1 Lpm per cmH2O from near zero to 0.5 cmH2O

pressure differential. This would only have impact on the RR value if pressure and flow

do not have the same curvature during a perturbation. Again, qualitative observation of

data indicates that inertia may play a role in the flow waveform.

A second major remaining difference in the perturbation detection methods is

that the APD-SA detects perturbation edges slightly differently. Both devices use an

RD threshold and derivative of device resistance (DRD) to select a perturbation edge.

However, the APD-SA finds the beginning of the perturbation at the point where the

RD is below the threshold and the DRD is positive, that is RD is increasing. The

APD100 selects the beginning of a perturbation by using the same criterion that RD is

less than the threshold, but looks for a point where the DRD is negative, that is where

RD is decreasing. This may have a tendency in the APD100 to extend the assumed

beginning of the perturbation edge beyond where the APD-SA algorithm defines it.

Both devices define the end of the perturbation as the point where RD is below the

threshold and DRD is negative (see Figure 19). The effect of this difference is not

clear, and would require the examination in detail of the relationship between pressure

and flow at the edges of a perturbation. For example, when moving along a

perturbation from its center to its start backwards in time, if the point at which the RD

rises occurs primarily from pressure as a result of flow phase lag, then the magnitude of

the pressure perturbation might be underestimated.

79

In the test of an identical data set, differences between the APD-SA and

APD100 measurement were found. APD-SA was found to give a larger RR value than

the APD100. When the APD100 perturbation edge detection was changed such that it

looked for increasing RD at the start of a perturbation, the RR value returned was

identical to that found in the APD-SA. A more complete analysis along these lines

would be required to draw substantial conclusions, but it appears that the different edge

detection methods may influence calculated RR magnitude.

Figure 19. Device resistance, pressure, and flow during an inhalation (negative flow
and pressure) APD perturbation; APD100 samples every several data points until one is
found above an RD threshold (RD, thres); when the first point is found (A), APD100
then scans backwards for the first point at which RD is below the threshold and the
slope of RD is negative (B); APD100 then scans forward for the first point having the
same value and slope characteristics as (B) which is (C); RR is then calculated based on
flow slope (m, flow) and pressure slope (m, pressure) between points (B) and (C); true
RR would probably best be calculated between (C) and (D) or (B) and (E)

1.21 1.22 1.23 1.24 1.25 1.26
-1500

-1250

-1000

-750

-500

-250

0

250

500

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Time (seconds)

Pr
es

su
re

, F
lo

w
 (u

ns
ca

le
d

A
D

C
 c

ou
nt

s)

Device Resistance

Flow

Pressure

RD, thres

m, flow

m, pressure

A

B

C

D
E

80

CONCLUSIONS

1. The APD can be packaged into a stand-alone device that collects and analyzes data,

displays RR to a user, and offers additional functionality via USB connection to a

host PC.

2. It is possible to configure the APD-SA USB for fast-response such that the LCD

shows a weighted average of RR values that is updated with each new usable

perturbation that is collected; however, the fast-response option is not appropriate for

a basic RR measuring device.

3. The APD200 program successfully incorporates APD-SA USB calibration protocols

and expands data collection to allow the storage of pressure, flow, and RR

throughout a measurement.

4. The APD-SA USB provides usable RR measurement values that correlate with

previous RR measurements; however, an uncertain parameter in the APD100

precludes direct comparison between the two.

5. Algorithm parameters used to detect perturbations may effect the calculated value of

RR.

6. Anomalies, quirks, and deviation from documented behavior greatly complicate the

implementation of semiconductor devices and semiconductor prototype PCBs

necessitating familiarity with each family of semiconductor devices prior to

implementation.

81

SUGGESTIONS FOR FURTHER STUDY

Explore APD Algorithms

The expansion of powerful MCUs in small packages facilitates the development

of newer and more robust APD algorithms that are improved in the areas of perturbation

detection and perturbation integrity checking. Throughout APD-SA development and

testing possibilities arose to implement adjustments in the perturbation detection and

respiratory resistance calculation algorithms. For example, it became clear that the

APD could be made more sensitive by decreasing the threshold at which a perturbation

was detected. However, preliminary work with different thresholds, both lower and

higher, appeared to show slight differences in calculated RR values. An examination of

the pressure and flow waveforms showed that phase delay and threshold might interact

to produce these calculated RR differences. Since the RR calculation is based upon a

ratio, it might be assumed that a larger detection threshold would have little effect on

the RR calculation. A preliminary look at the pressure and flow waveforms again

showed that they differ enough in their curvature to change the RR calculation. For

example, flow might be analogous to a sin2(t) while pressure might be analogous to sin

(t) function during a perturbation. Further, flow waveforms appeared to differ from

pressure waveforms at the edges of the perturbation. In general it appeared as though

the flow waveform did appear to demonstrate inertial effects as might be expected.

82

Perturbations might be more carefully checked for integrity by examining their

shape or proportions. For example, the point at which the virtual pressure and flow is

calculated might be checked for its proximity to the perturbation edges. The variance of

perturbations might be continually monitored to filter anomalous RR values.

Perturbations of excessive length or flow reduction could be rejected and used as an

indicator of potential malfunction to the user because they probably occur due to a

slowing of the perturbation wheel when it binds to the APD body or becomes gummed

with deposits. With the available PWM motor control units on the DSP, automatic

perturbation magnitude control could now be implemented by providing feedback to a

motor that controls the variable resistance collar on the APD body.

Improve APD Hardware and Software

APD System Expansion

The APD system could be expanded to include features that facilitate the

management of many APDs. A standard format for summary resistance data and

calibration files might be devised and used to create a database. A database could then

automatically track calibration data for each device and the RR measurement data could

be automatically generated, in addition to the hard copy paper backups. Such an

arrangement would eliminate data entry steps and facilitate queries for study of the data.

83

Further, medical clinics have been moving in the direction of linking home medical

devices over a network to databases for remote monitoring and data collection.

The APD system might be expanded to include abilities for gathering more

types of information, and better using the information it does collect. Since motor

speed is controlled by the MCU, a range of frequencies could be swept to collect RR

data as a function of frequency or estimate other mechanical properties of the lungs

such as compliance. The APD already collects flow data and estimates lung volume.

This data could be used more extensively to generate as a standard part of the displayed

summary data numerical values that might characterize each subject's RR at various

lung volumes and flow rates, in addition to the plots it already provides. In a standard

and automated output file for each measurement, this type of data could be

automatically logged without display if required.

APD Software

As with any software and hardware development projects there are bugs both

known and unknown in both APD100 and APD200 portions of the APD host PC

software. As the project becomes larger, no doubt additional effort will be required for

debugging over the long term. In general, it would probably be useful to overhaul the

software to make sure it provides the functions that are most needed, and those that

would be most helpful. Further, its response to errors could be improved to provide

more user feedback and more automated error prevention. Eventually, the software will

need to be ported to other operating systems which may require adjustments in the

84

drivers used by the software. A more specific list of issues for correction and expansion

in each area of the APD software follows.

APD100 Software

In the FindPerturbations routine, the beginning of a perturbation is detected by

moving from the middle of a peak in device resistance to a point earlier in time when

device resistance falls below a threshold and the derivative of device resistance is less

than zero. This is probably unintended, as this condition would make sense at the end

of a perturbation but not at the beginning. In the beginning of a perturbation it would be

expected that the derivative of device resistance is positive. The code was written in

this manner in very early APD code as well in APDKM7.XLS, an MS Excel-based

macro that performed the calculations. This should probably be changed, and its

potential impact on measurements examined.

In the PertDetectParams routine, the resistance threshold, resThr, above which

the software begins to look for a perturbation may exclude good data. The value of

resThr is the sum of inhalation and exhalation thresholds. First, in the case when one

breathing direction is not yielding usable perturbations, the threshold is set very high,

and no perturbations are considered, even if they are valid in the other direction.

Secondly, when this summation of thresholds is used it makes the device overall less

sensitive to smaller magnitude perturbations even if they are valid. If one airflow

direction through the device incurs higher resistance, then the measurement effectively

becomes less sensitive to perturbations in the breathing direction with lower device

85

resistance. The is especially relevant for the case in which the APD perturbation wheel

flaps back and forth with each breath, creating differing degrees of perturbation in each

direction. In either case, the issue might be worth addressing.

APD200 Software

There are several areas for debugging and improvement in the APD200 software

specific to APD-SA functioning and general APD PC host software improvement:

- Work through any bugs in window appearances, calibration file loading or expected

performance.

- Perhaps automate the display and calibration file loading depending on the selected

device. This might require expansion of the APD settings file to include names for

each calibration file used in a session, not just the last one selected prior to

shutdown.

- Fortify the USB functions. The USB functions interact extensively with the

operating system and related application programming interfaces (APIs), and

complications that hang the application or PC should be examined. Issues include

USB bandwidth saturation, OS hang on USB disconnect and other issues that as of

now require reboot to reinitialize the USB subsystem.

- Check USB functionality when a user already has an HID device attached to the

system.

- Port USB function to other operating systems.

86

- Consider custom USB driver development. Custom USB driver development

requires extensive testing with the operating system. Software to generate a USB

driver template is available at a fairly substantial price.

- Develop a help menu that includes troubleshooting and configuration tips.

- Include messages about device operation to the user directly on the APD panel while

the program is running.

- Why perturbations are not being detected (low flow, insufficient magnitude).

- Performance warnings such as unreasonable calibration values, ADC or DAQ

saturation, likely perturbation wheel stall or binding.

APD-SA Performance in Firmware

- USB-related improvements:

- Purchase a full EZUSB development platform to improve USB reliability. Since

a full EZUSB development platform was not purchased, the debug versions of

firmware had to fit into the EZUSB internal RAM, and debugging could only be

accomplished through RS232 output. When code for all routines was written,

there was little to no memory left for debug code and thus debugging stopped

when the needed functionality was achieved, though infrequent

miscommunication still occurred – usually after several RR measurement

collection commands. It is advisable to reset the device after each measurement

by unplugging both the USB cable and power.

87

- In the case of a USB miscommunication, implement a synchronization data frame

to re-send data and indicate the point at which data is being re-sent. At present, a

miscommunication will corrupt any future data transmission until device reset.

- Implement more efficient USB data transfer to allow higher usable data rates for

the same bit rates. This might require, or at least would benefit from, the

development of an external (.dll) file developed in C or C++ to handle bitwise

operations and data manipulation. This type of data manipulation is possible in

Visual Basic (VB), but initial tests found it unreliable and limited in its

applicability.

- FLASH memory download and uploads:

- Consider downloading from the APD-SA the device serial number and firmware

revision when needed after future development.

- Implement bi-directional flow calibration values. At present, an average

calibration flow constant is used for both inhalation and exhalation.

- Implement a bitwise mode constant that can be uploaded to select fast or average

RR display modes, spurious data point rejection and the maximum number of

collected perturbations. This would require the corresponding control panel in the

APD200 software.

- Implement feedback control of perturbation rate. Initial code provisions have been

made for this but require refinement.

- Implement the fast-response option. The fast-response option can update the APD-

SA display with an RR value at each time a good perturbation is measured. Initial

code was developed and tested to provide this functionality but has been commented

88

out and was not included in the final design. The initial fast-response code included

provisions for average and weighted average filters in order to smooth the displayed

RR value.

APD-SA Hardware Improvements

- Redesign a circuit and layout to incorporate all components into a minimum number

of circuit boards designed specifically for the APD-SA. This would dramatically

reduce the package required for the APD and decrease eventual manufacturing cost

by eliminating unused components.

- Use custom LCD screen by writing firmware for an inexpensive MCU to control the

LCD, or similar. Potentially buffer LCD-destined DSP output and have the LCD-

devoted MCU read the buffer to reduce RS232 time delays.

- Use a larger supply voltage for the ADC buffer amplifier to allow the use of the full

range of the pressure sensors. The supply voltage presently limits the range over

which the buffer tracks sensor output. Further, since the full range of the pressure

sensors is at present rarely used, more sensitive pressure sensors could be

incorporated to provide a larger signal-to-noise ratio.

- Bring the LEDs on the USB and DSP PCBs to a place in which they are visible to

the user. They may be very helpful in indicating USB connection and perturbation

detection. At this point, the yellow-green LED on the DSP PCB toggles each time a

good perturbation is detected, indicating proper performance to the user that patiently

awaits measurement.

89

- Include the PT heater in the APD-SA design or use a different flow transducer. A

tap from the DC power supply to the APD-SA could be used with a power resistor to

provide DC current to the PT heater, but the operating current will be near the

maximum for the power supply used in development here.

APD Body Mechanical Improvements

- Improve the perturbation wheel mechanism. It presently moves toward the body on

inhalation and away on exhalation, creating a different degree of perturbation in each

direction. The wheel also tends to bind to the APD body after many uses.

- Tighten belt and reduce drive-shaft pulley diameter to improve perturbation wheel

control. Or continue seeking alternate closure methods to work around the higher

torque at low speeds required for the perturbation control.

90

APPENDICES

91

LIST OF APPENDICES

APPENDIX A: APD-SA ENCLOSURE CAD DRAWINGS..92

APPENDIX B: APD-SA PCB LAYOUT IMAGES...98

APPENDIX C: APD-SA PIN CONNECTIONS..101

APPENDIX D: DSP FIRMWARE CODE..103

APPENDIX E: USB FIRMWARE CODE..200

APPENDIX F: APD200 SOFTWARE – REVISED PORTIONS OF APD100...........233

APPENDIX G: SUBJECT DATA..303

APPENDIX H: EQUIPMENT AVAILABLE FOR APD-SA DESIGN......................305

APPENDIX I: PC HOSTED PROTOTYPE...326

92

APPENDIX A: APD-SA ENCLOSURE CAD DRAWINGS

93

94

95

96

97

98

APPENDIX B: APD-SA PCB LAYOUT IMAGES

99

Figure B.1. APD-SA ADC and logic circuit PCB layout showing component placement from a top view

100

Figure B.2. APD-SA ADC and logic circuit PCB layout top (left) and bottom (right); top side is inverted so that
when printed on laser jet transparency film, the ink side faces the PCB surface; should be scaled so that ICs are 0.3
inches between sides and 0.1 inches between neighboring pins

101

APPENDIX C: APD-SA PIN CONNECTIONS

Conventions:
- 803 refers to the Motorola DSP56F803 IC
- ADS refers to the ADS7825 ADC IC
- Mini refers to the New Micros NMIN-803 platform for the DSP56F803
- LCD0821 refers to the 2x8 character Matrix Orbital LCD screen
- J9 and similar refers to a header number on a PCB, numbered according to

documentation for the platform
- Pin numbering corresponds to pin numbering in documentation for each chip or

platform

Table C.1. Mini to ADS connections

ADS Pin ADS Pin Function 803 Pin
Function

Mini
J9 Pin No.

803
Direction

15 DATACLK (in) A0 7 out

16 SDATA (out) A1 8 in

18 CHADDR MSB A1 (in) A2 9 out

19 CHADDR LSB A0 (in) A3 10 out

22 R/!C (in) A4 11 out

24 !BUSY (out) A5 12 in

23 !CS (in) E4 6 out

Table C.2. APD DB9 connector; table orientation: facing the pins (not solder cups) on
a male connector on the APD body

Flow AGND (NC) GND Sensor V Heater Motor+

1 2 3 4 5

6 7 8 9

Pressure V+ Sensor (7-35VDC) V Heater Motor-

Table C.3. Mini to LCD0821; when board is oriented with pin headers at bottom and
printed text on PCB reads upright, pin one is on the left

Pin Function

1 RS232 Ground

2 RS232 RxD (Data in from 803 TxD)

3 Power (use 8-15 VDC in this wide voltage model)

102

Table C.4. Mini to USBI2CIO connections; USBI2CIO pin one of the IDC 34-pin
header is top left-most with the single alignment slot facing left and USB jack on the
right when looking at the top of the board

USBI2CIO
Pin USBI2CIO Pin Fcn 803 Pin Function Mini J9

Pin
803

Direction

21 A0 A0 7 io

22 A1 A1 8 io

23 A2 A2 9 io

24 A3 A3 10 io

25 A4 A4 11 io

26 A5 A5 12 io

27 A6 A6 13 io

28 A7 A7 14 io

19 B6 (in) (INT6) MOSI/RW/PE5 5 out

20 B7 (out) MISO/RS/PE6 4 in

18 B5 (out) IRQA (active low) (Not J9) in

Table C.5. 803 Mini J9 IDC to DIP via ribbon cable; IDC DIP is numbered as a
standard DIP IC with pin one at the top left when the IC is oriented upright or vertically,
as is typical in manufacturer documentation

Mini J9 IDC DIP IDC DIP Mini J9

16 8 9 15

14 7 10 13

12 6 11 11

10 5 12 9

8 4 13 7

6 3 14 5

4 2 15 3

2 1 16 1

103

APPENDIX D: DSP FIRMWARE CODE

Code Listings:

- Listing D.1. 56803_flash_xROM-RAM_linker.cmd – a linker command file for

copying data ROM to RAM on startup)

- Listing D.2. 56F803RegDef.h – header file containing register declarations and

macros for 56F803

- Listing D.3. M56803_main.c – main program code

- Listing D.4. 56803_vector_pROM.asm – interrupt vector table

104

LISTING D.1. 56803_flash_xROM-RAM_linker.cmd

--
Linker command file used for APD-SA USB with the New
Micros NMIN-0803 module for the DSP56F803E chip.
#
This linker command file is used to make the
DSP copy data ROM to RAM on startup
and makes provisions for storing constants
defined in M56803_main.c as read-only
in the FLASH memory as well.

This linker file is based upon a memory map that
uses only onboard memory for the DSP, i.e. no
extended or external memory.

This code is almost identical to sample code
from Motorola as described below, but has been
changed in a few places to facilitate
the use of FLASH memory for calibration constant
storage.
#
N. Silverman 2004 for MS
#
--
Metrowerks, a company of Motorola
sample code

linker command file for DSP56803EVM
using
flash pROM
flash xROM (const and dynamic data
internal xRAM (dynamic data copied from xROM)

revision history
011020 R4.1 a.h. first version
030220 R5.1 a.h. improved comments

--

see end of file for additional notes
additional reference: Motorola docs
DSP56F801-7UM.pdf
DSP56F803EVMUM.pdf

memory use for this LCF:
interrupt vectors --> flash pROM starting at zero
program code --> flash pROM
constants --> flash xROM
dynamic data --> flash xROM (copied to RAM with init)

requirements: Mode 0A and EX=0

105

note -- there is a mode OB but any Reset or COP Reset
resets the memory map back to Mode 0A.

DSP56803EVM eval board settings:
ON --> jumper JG4 (mode 0 upon exit from reset)
OFF --> jumper JG5 (enable external board SRAM)

note: with this LCF memory config, internal memory
will be used regardless of JG5 setting;
however, you can turn SRAM off to validate
use of internal RAM.

CodeWarrior debugger Target option settings
ON --> "Use Hardware Breakpoints"
OFF --> "Debugger sets OMR at Launch" option

note: since debugger doesn't set OMR, JG4 on the EVM set OMR to:
OMR:
0 --> MA bit
0 --> MB bit

56803
mode 0A
EX = 0

MEMORY
{
 .p_boot_flash_1 (RX) : ORIGIN = 0x0000, LENGTH = 0x0004
 .p_interrupts_ROM (RX) : ORIGIN = 0x0004, LENGTH = 0x007C
 .p_flash_ROM (RX) : ORIGIN = 0x0080, LENGTH = 0x7D80
 .p_internal_RAM (RWX) : ORIGIN = 0x7E00, LENGTH = 0x0200
 .p_boot_flash_2 (RX) : ORIGIN = 0x8000, LENGTH = 0x0800
 .p_reserved (RX) : ORIGIN = 0x8800, LENGTH = 0x7800
 .x_compiler_regs_iRAM (RW) : ORIGIN = 0x0030, LENGTH = 0x0010
 .x_internal_RAM (RW) : ORIGIN = 0x0040, LENGTH = 0x07C0
 .x_reserved (R) : ORIGIN = 0x0800, LENGTH = 0x0400
 .x_peripherals (RW) : ORIGIN = 0x0C00, LENGTH = 0x0400
 .x_flash_ROM (R) : ORIGIN = 0x1000, LENGTH = 0x1000
 .x_external_RAM (RW) : ORIGIN = 0x2000, LENGTH = 0xDF80
 .x_core_regs (RW) : ORIGIN = 0xFF80, LENGTH = 0x0080
}

we ensure the interrupt vector sections are not deadstripped here

KEEP_SECTION{ interrupt_vectors.text, interrupt_vectors_mirror.text }

106

the following is the section title for read-only data for FLASH
storage
provision

KEEP_SECTION{ .rodata }

About ROM-to-RAM copying at init time:

In embedded programming,it is common for a portion of
a program resident in ROM to be copied into RAM at runtime.
For starters,program variables cannot be accessed until
they are copied to RAM.

To indicate data or code that is meant to be copied
from ROM to RAM,the data or code is given two addresses.

One address is its resident location in ROM (defined by
the linker command file).The other is its intended
location in RAM (defined in C code where we will
do the actual copying).

To create a section with the resident location in ROM
and an intended location in RAM,you define the two addresses
in the linker command file.

Use the MEMORY segment to specify the intended RAM location,
and the AT(address)parameter to specify the resident ROM address.

we have defined the MEMORY segment x_internal_RAM above
we set the .data section with AT to resident ROM address

SECTIONS
{

.interrupt_vectors :
{
 # from 56803_vector_pROM.asm
 * (interrupt_vectors.text)

} > .p_interrupts_ROM

 # hawk mirrors this code back to P memory boot_flash_1

.interrupt_vectors_mirror :
{
 # from 56803_vector_pROM.asm
 * (interrupt_vectors_mirror.text)

} > .p_boot_flash_2

.executing_code :
{

107

.text sections

* (.text)
* (rtlib.text)
* (fp_engine.text)
* (user.text)

} > .p_flash_ROM

.x_flash_ROM_data :
{
 # initialized constants stay in flash xROM

* (.rodata)

save address for ROM data we will copy to RAM
__xROM_data_start =.;

} > .x_flash_ROM

the LCF command AT sets optional parameter
that specifies the address of the section.
The default (if not specified)is to make
the load address the same as the relocation address.
Here, we want the load address to be in ROM
and the relocation address in RAM.

.data : AT(__xROM_data_start) # load address is in ROM
{ # starting after constant data
 # data sections

 # values inside this section represent relocated data
 __xRAM_data_start =.;

note:
for troubleshooting or other uses, you can directly
write data using the LCF and then use the memory window
to check results

WRITEH 0x0050;

 * (.data)

 * (fp_state.data)
* (rtlib.data)

__xRAM_data_end = .;
__data_size = __xRAM_data_end - __xRAM_data_start;

.bss sections

 * (rtlib.bss.lo)

108

 __bss_start = .;

* (.bss)

__bss_end = .;
__bss_size = __bss_end - __bss_start;

setup the heap address

__heap_addr = .;
__heap_size = 0x0100;
__heap_end = __heap_addr + __heap_size;

. = __heap_end;

setup the stack address

_min_stack_size = 0x0200;
__stack_addr = __heap_end;
__stack_end = __stack_addr + _min_stack_size;
. = __stack_end;

set global vars now

MSL uses these globals:
F_heap_addr = __heap_addr;
F_heap_end = __heap_end;
F_stack_addr = __stack_addr;

stationery init code uses these globals:
F_data_size = __data_size;
F_data_RAM_addr = __xRAM_data_start;
F_data_ROM_addr = __xROM_data_start;
F_bss_size = __bss_size;
F_bss_addr = __bss_start;

 F_rom_to_ram = 0x0001; # non-zero is true

} > .x_internal_RAM # relocation address --
 # intended final destination in RAM

}

additional notes:

109

about the reserved sections
for this internal RAM and flash ROM LCF:

p_interrupts_ROM -- reserved in pROM
memory space reserved for interrupt vectors
interrupt vectors must start at address zero
interrupt vector space size is 0x80

x_compiler_regs_iRAM -- reserved in internal xRAM
The compiler uses page 0 address locations 0x30-0x40
as register variables. See the Target manual for more info.

other memory sections are per chip

notes:
program memory (p memory)
(RWX) read/write/execute for pRAM
(RX) read/execute for flashed pROM

data memory (X memory)
(RW) read/write for xRAM
(R) read for data flashed xROM

LENGTH = next start address - previous
LENGTH = 0x0000 means use all remaing memory

110

//LISTING D.2. 56F803RegDef.h

/********************************

 DSP56F803 Registers and related macro definitions
 including registers for APD-SA USB functionality

 An indented comment following a definition refers to the macro
 above the comment. Non-indented comments refer to section
 below the comment.

 Register names that are not commented
 are consistent with DSP56F803 documentation.
 Therefore explanations for these macros can be found in
 documentation. See:
 56F801-7UM.pdf (Users Manual)
 56800FM.pdf (Family Manual)
 56F803.pdf (56F803 Manual)

 Portions of GPIO defs were adapted from Small C
 examples from Peter Gray
 (http://petegray.newmicros.com)

 For a complete list of register definitions
 see 56803.h provided by Motorola in the development
 package for 56800 series

 N. Silverman 2004 for MS

*********************************/

//** General purpose IO (GPIOA) port A
#define GPIOA_BASE 0x0FB0
#define GPIOB_BASE 0x0FC0
#define GPIOD_BASE 0x0FE0
#define GPIOE_BASE 0x0FF0

//** General purpose IO (GPIOE) port E
#define GPIO_E_PUR GPIOE_BASE+0x0

//Pull-up enable register
#define GPIO_E_DR GPIOE_BASE+0x1

//Data register
#define GPIO_E_DDR GPIOE_BASE+0x2

//Data direction register
#define GPIO_E_PER GPIOE_BASE+0x3

//Peripherial Enable Register
#define GPIO_E_IAR GPIOE_BASE+0x4

//Interrupt assert register
#define GPIO_E_IENR GPIOE_BASE+0x5

//Interrupt enable register
#define GPIO_E_IPOLR GPIOE_BASE+0x6

//Interrupt polarity register
#define GPIO_E_IPR GPIOE_BASE+0x7

//Interrupt pending register
#define GPIO_E_IESR GPIOE_BASE+0x8

//Interrupt edge-sensitive register

111

//** ADC register definitions
//** ADC Registers...
#define ADCR1 (*(char *) 0x0E80)
#define ADSDIS (*(char *) 0x0E85)
#define ADSTAT (*(char *) 0x0E86)
#define ADRSLT0 (*(char *) 0x0E89)
#define ADRSLT4 (*(char *) 0x0e8d)
#define ADLST1 (*(char *) 0x0e83)
#define ADLST2 (*(char *) 0x0e84)

//** ADC Commands...
#define STARTADC 0x2005

// Applies to ADCR1
#define ENSMPL0 254

// 0x007e
 // Applies to ADSDIS - disables

// all but sample 0 in seq mode
#define TESTADC 0x4000
 // Applies to ADSDIS - sets input of AN to Vref/2
#define CONVIP 0x8000
 // Applies to ADSTAT - conversion in

//progress = bit 15 = 1
#define CH0RDY 0x0001
 // Applies to ADSTAT - channel 0 ready for

// read is indic. by bit 0 = 1

// GPIO registers - port E
#define PEPUR (*(char *) 0x0FF0)
#define PEDR (*(char *) 0x0FF1)
#define PEDDR (*(char *) 0x0FF2)
#define PEPER (*(char *) 0x0FF3)
#define PEIAR (*(char *) 0x0FF4)
#define PEIENR (*(char *) 0x0FF5)
#define PEIPOLR (*(char *) 0x0FF6)
#define PEIPR (*(char *) 0x0FF7)
#define PEIESR (*(char *) 0x0FF8)

// GPIO register - port A
#define PAPUR (*(char *) 0x0fb0)
#define PADR (*(char *) 0x0fb1)
#define PADDR (*(char *) 0x0fb2)
#define PAPER (*(char *) 0x0fb3)
#define PAIAR (*(char *) 0x0fb4)
#define PAIENR (*(char *) 0x0fb5)
#define PAIPOLR (*(char *) 0x0fb6)
#define PAIPR (*(char *) 0x0fb7)
#define PAIESR (*(char *) 0x0fb8)

// SCI registers - RS232 communication
#define SCI0BR (*(char *) 0x0F00)
#define SCI0CR (*(char *) 0x0F01)
#define SCI0SR (*(char *) 0x0F02)
#define SCI0DR 0x0F03

112

// PWM Registers
#define PWMA_BASE (*(char *) 0x0e00)
#define PWMA_CTL (*(char *) 0x0e00)
#define PWMA_OUT (*(char *) 0x0e03)
#define PWMA_CNT (*(char *) 0x0e04)
#define PWMA_MCM (*(char *) 0x0e05)
#define PWMA_VAL0 (*(char *) 0x0e06)
#define PWMA_PMDISMAP1 (*(char *) 0x0e0d)
#define PWMA_PMDISMAP2 (*(char *) 0x0e0e)
#define PWMA_CFG (*(char *) 0x0e0f)
#define PWMA_PMFSA (*(char *) 0x0e02)

// Timer A0,B0, D0, D1, D2 register definitions
// not all are used in APD-SA USB code final revision
// but are retained for future development if needed
// Timer D is used extensively in final revision and thus
// has many more macros
#define TMRA_BASE 0x0d00
#define TMRA0_CTRL (*(char *) 0x0d06)
#define TMRA0_CMP1 (*(char *) 0x0d00)
#define TMRA0_CMP2 (*(char *) 0x0d01)
#define TMRA0_CNTR (*(char *) 0x0d05)
#define TMRA0_LOAD (*(char *) 0x0d03)
#define TMRA0_SCR (*(char *) 0x0d07)

#define TMRB_BASE 0x0d20
#define TMRB0_CTRL (*(char *) 0x0d26)
#define TMRB0_CMP1 (*(char *) 0x0d20)
#define TMRB0_CMP2 (*(char *) 0x0d21)
#define TMRB0_CNTR (*(char *) 0x0d25)
#define TMRB0_LOAD (*(char *) 0x0d23)
#define TMRB0_SCR (*(char *) 0x0d27)

#define TMRD0_SCR_R 0x0d67
//TMRD_BASE + 0x7

#define TMRB0_SCR_R 0x0d27

#define TMRD2_BASE 0x0d20
#define TMRD2_CMP1 (*(char *) 0x0d30)
#define TMRD2_CMP2 (*(char *) 0x0d31)
#define TMRD2_CAP (*(char *) 0x0d32)
#define TMRD2_LOAD (*(char *) 0x0d33)
#define TMRD2_HOLD (*(char *) 0x0d34)
#define TMRD2_CNTR (*(char *) 0x0d35)
#define TMRD2_CTRL (*(char *) 0x0d36)
#define TMRD2_SCR (*(char *) 0x0d37)

#define TCSR (*(char *) 0x0e7c)
#define TMODE 0x0080 //use TMODE
#define TISR1 (*(char *) 0x0e79) //includes 30,31
#define TISR2 (*(char *) 0x0e7a) //includes 42
#define T42 0x0400
#define T31 0x8000

//** on 56F803 Timer D is dedicated quad timer - reg defs
#define TMRD_BASE 0x0d60

113

#define TMRD0_CTRL (*(char *) 0x0d66)
//TMRD_BASE+0x6

#define TMRD1_CTRL (*(char *) 0x0d6e)
//TMRD_BASE+0xe

#define TMRD0_CNTR (*(char *) 0x0d65)
//TMRD_BASE+0x5

#define CRE 0xe000
//0x2000 count rising edges

#define IPBD128 0x1e00
 //0x1e00 source = IPBus (40MHx for 8MHz PLL)
 //divided by 128 this is 312.5kHz thus at count

//625, this is one 500 Hz cycle
#define CTR1OUT 0x0a00

//source=counter 1 output
#define COUNTREP 0x0000
 // bit 6 = 0 count repeatedly
#define REINIT 0x0020
 // bit 5 = 1 = reinitialize on reach CMP1 value
 // for CMP1 count up compare
#define COUNTUP 0x0010
 // bit 4 = count up
#define SETOFLAG 0x0000
 // bits 2-0 = set OFLAG on successful compare

//** Timer D setup values - see documentation for
//** extensive description
//** of registers and meaning
#define SETUPTMRD0 CRE|CTR1OUT|REINIT|COUNTUP
#define SETUPTMRD1 0x3e30
#define TMRD0_SCR (*(char *) 0x0d67)

//TMRD_BASE+0x7
 // Timer D 0 status and control register
#define TMRD1_SCR (*(char *) 0x0d6f)
#define TCF 0x8000
 // this is Timer Compare Flag bit
 // it needs to be cleared when set at reach compare
#define TCFIE 0x4000
 // this is bit 14 timer compare flag interrupt enable
#define TMRD0_CMP1 (*(char *) 0x0d60)

// TMRD_BASE+0x0
 // Timer D compare register CMP1 for up counting compare
#define TMRD1_CMP1 (*(char *) 0x0d70)
#define TMRD1_CMP2 (*(char *) 0x0d71)
#define TMRD1_CNTR (*(char *) 0x0d6d)
#define CMP1VAL 0xffff
 // 625 decimal - this is the value to which TMRD0

//is compared
#define TMRD0_CMP2 (*(char *) 0x0d61)

// TMRD_BASE+0x1
#define CMP2VAL 0x0000
#define TMRD0_LOAD (*(char *) 0x0d63)

//TMRD_BASE+0x3
 // Timer D 0 load value - should be 0x0000 to start from 0
#define TMRD1_LOAD (*(char *) 0x0d6b)
#define TMRINITVAL 625
 // 0 to begin with

//** Timer D Chan 0 has interrupt vector 30 at 0x003C
//** IRQ table address

114

//** since it is vector 30 it has group priority register
//** 7 (along with vectors 28 through 31)
#define ITCN_BASE 0x0E60
 // from table 3-11 in DSP56F801-7UM.pdf
#define ITCN_GPR7 (*(char *) 0x0e67)

// ITCN_BASE=0x0e60+$7 TMRD0
#define ITCN_GPR10 (*(char *) 0x0e6a)

// TMRA0 = Ch 42 = 0x0700
#define ITCN_GPR9 (*(char *) 0x0e69)

// TMRB0
#define TMRA0_IPL 0x0100
#define TMRB0_IPL 0x0100
#define TMRD2_IPL 0x0001
#define TMRD0_IPL 0x0100

//0x1000 ch31 for TMRD1
//0x0700 Ch 30 for TMRD0

#define TMRD1_IPL 0x1000
 // this puts 7 (highest priority) in the vector bits in

// the grp 7 reg
 // since the 3rd nibble is for vector 30 in grp 7 prior
 // lev reg

//** Interrupt priority register
#define IPR_W (*(char *) 0xfffb)

// address of IPR
#define IPRVAL 0xFE12
#define IPRVAL_NOIRQ 0xfe00
#define ALLOWIRQA_FES 0x0006

// allow IRQ A falling-edge sensitive
#define ALLOWIRQA_LLS 0x0002

// allow IRQ A low-level sensitive
#define ALLOWIRQB_FES 0x0030
 // value written to it: enables all interrupt channels for

// on-chip peripherals, but not ext IRQs

//** Flash programming registers
#define DFIU_CNTL (*(char *) 0x0f60)
#define DFIU_EE (*(char *) 0x0f62)
#define DFIU_PE (*(char *) 0x0f61)
#define DFIU_IE (*(char *) 0x0f65)

115

//LISTING D.3. M56803_main.c

/**

 m56800_main.c

 Main program code for APD-SA USB device
 for DSP56F803 firmware on NMIN-0803 from New Micros

 See MS Thesis for description of operation as well
 as diagram of program flow, use of interrupts, etc.

 Uses initialization code from Motorola embedded package.

 For additional DSP56F803 documentation see:
 56F801-7UM.pdf (Users Manual)
 56800FM.pdf (Family Manual)
 56F803.pdf (56F803 Manual)

 This code contains main program loop, interrupt functions,
 custom initialization code, APD perturbation detection
 algorithms, motor control code, LCD diplay code, USB
 communication code, ADC control code.

 An indented comment following a definition refers to the
 macro above the comment. Non-indented comments refer to
 section below the comment. This applies in macros, function
 and global variable declaration section.

 Some unused code remains from original
 prototype as a reference, and for potential
 future development.

 Serial communication code for character transmission
 was taken or adapted from examples from Pete Gray
 Small C examples (http://petegray.newmicros.com)

 N. Silverman 2004

**/

/*************************
*Includes
**************************/

//** Standard library
#include <stdlib.h>
//** Custom register macro definitions
#include "56F803RegDef.h"
//** ISRs are now contained within this code
//#include "isr.h"
//** Floating point support
#include <float.h>
#include "C:\Program Files\Motorola\Embedded
SDK\src\dsp56803evm\nos\include\port.h"
#include "C:\Program Files\Motorola\Embedded
SDK\src\dsp56803evm\nos\include\arch.h"
#include "C:\Program Files\Motorola\Embedded
SDK\src\dsp56803evm\nos\include\basic_op.h"

116

/***************************
*Pre-Macro Globals
***************************/

Frac16 pressval = 0.0f;
Frac16 flowval = 0.0f;

/*******************************
* Macros
*******************************/

#define SIZE 10
#define PI 3.14159f
 //PI needed for sim data only
#define SAMPFREQ 500
 //AD sample rate
#define MINPERTFREQ 10.0
 //6.0f
#define MAXPERTFREQ 16.0f
 //max considered pert freq
#define TIMERMS 2
 //multiplier * ms period of timer for soft
 //interrupt calls
#define MONITORTIME 1
 //monitor elapsed execution time?
//#define NUMVARS 2

#define PRESSCHAN 0
#define FLOWCHAN 1
#define SAMPBUFLEN 40
 //AD sample buffer length
#define RRVALLEN 20
 //number of rr measurements to average total
#define RRVALTILLDISP 3
 //num of rr meas at which to begin disp processing
#define MAXRR 20
 //maximum allowed rr value
#define REZEROSAMPLES 500
 //1 second at 500Hz

#define EQUALAVG 0
 //equally weighted average
#define LINEARAVG 1
 //linear wieghted average
#define NONLINAVG 2
 //exponentially weighted average
#define SUM 3
 //simple sum of values
#define MAXPROCESSES 1000
 //num of buffer process loops until quit
#define MINPERTLEN 14
 //SAMPFREQ / MAXPERTFREQ / 2.0
#define MAXPERTLEN 32
 //SAMPFREQ / MINPERTFREQ / 2.0
//#define TESTSWITCH (int)(1.0*SAMPFREQ)
 //switch test display every second

117

//#define TESTSWITCHFINE (int)(0.05*SAMPFREQ)
 //switch faster test display every 50 ms
//#define TESTSWITCHLONG (int)(500.0*TESTSWITCH)

#define MAXRDALLOW 100.0
#define MINRDALLOW 0.0
 //maxs and mins for range of allowable values

//min num samples required for TRUE pert
#define MINFLOW 180
 //200 is approx 0.25 Lps//50
 //this is now fraction value (int)//0.25
 //minimum allowed flow in LPS
#define MINPERT 40
 //minimum magnitude in counts of flow perturbation
#define OK 1
#define APDFAIL -9
#define TOOMANYFAILS 5000
#define MINRD 0.2f
 //important criteria for ignoring zeroed rd values

//MIN is inclusive
#define MAXRD 2.2f
 //MAX is not inclusive
#define NUMBINS 20
 //num bins for histogram of most common vals for rthres
#define NOMINALRTHRES 1.0f
 //default pert detection threshold
#define THRESPAD interval
 //padding to increase resist thres for detection
 //"interval" sets it to bin interval in MCV detection
#define ERRPAD 0.051f
 //pad to add to close to borderline values for exactness
#define INH 1
#define EXH -1
#define EXHISNEG < 0
 //EXHISNEG > 0 for EXH = 1 not -1
#define TARGET_RESOLUTION 1
 //1-millisecond target resolution
#define DIGOUTPRECIS 2
 //num dec places to output to screen

#define CLOCKSPD 233
 //Assumed to be MHz
#define CYCLENS 40
 //Typical ns for one instr exec
#define CTRLMASK 0//^0x0b
 //these bits hardware inverted
#define STATMASK 0//^0x80
 //these bits hardware inverted
#define CTRLDIROUT &(~0x20)
 //turn off direction bit 5 to output
#define DPDIG 3
 //dec pt req'd for digit 3 (base 1)

//** Mode Macros
#define NOCALLMODE 0x0000
#define STARTMODE 0x1000
#define CHANGEMODE 0x2000
#define STOPMODE 0x3000
#define ENDCALMODE 0x4000

118

#define NOCALLMODEECM 0x5000
 //no call after ENDCALMODE called
#define POLLMODE 0x6000
#define ENDRUNMODE 0x7000
#define NOCALLMODEERM 0x8000
 //no call after end run mode
#define RUNMODE 0x9000
#define STREAMMODE 0xa000
#define USBRUNMODE 0xb000
#define POLLMASK 0xf000
 //mask for all of the above modes
#define USBATTACHMASK 0x0002
 //set if USB attach ok

#define ADS_DDR 0x001d
 //direction register for PA 0=input
#define DT_USB_DDR 0x00ff
 //direction register for PA 0=input
#define DF_USB_DDR 0x0000
 //direction register for PA...data from USB

//** USBI2CIO Macros
#define DR_to_USB PEDR = PEDR |0x20
 //set PE5 to indicate data ready for USB to pick-up
#define NDR_to_USB PEDR = PEDR &(~0x20)
 //clear PE5 to indicate data no data ready
#define USB_ACK PEDR &0x40
 //read PE6 to see if USB has set ack bit
#define USB_DSP_ACK PADR = 0xbb
 //set 0xbb on port
#define USB_HELLO 0xb0
 //USB device should send this on port to show it's there
#define USB_REQUEST_VARIABLES 0x02
 //send all relevent variables
#define USB_END_OF_VARIABLE_TRANSFER 0xfd
#define USB_BYTES_PER_VAR 6
 //number of bytes for each value to send
#define USB_NUMVARS 36
 //number of total variables to send in variable request
#define USB_STREAM_ADC 0x03 //
stream adc values
#define USB_STOP 0xfb
 //stop streaming stuff to USB
#define USB_WRITE_VARS 0x04
 //write variables to flash memory
#define USB_GET_HOST_VARS 0x05
 //get vars from host
#define USB_RUN 0x06
 //run mode on APD with streaming of data
#define USB_DEC_PT 46
 //ASCII Decimal point
#define USB_NEG_SIGN 45
 //ASCII Hyphen
#define USB_MAX_NUM_TRIES_IN 5
 //maximum number of times to try after failing
 //to read a byte
#define USB_HOST_TOO_SLOW_STREAM 500
 //maximum timer ticks IP/64 until too slow during

119

 //streams of two channels of data
#define USB_HOST_TOO_SLOW 0xfa
 //host is too slow at picking up data

//** LCD Macros
#define CLS1 outscibyte(SCI0DR, 0xFE);
#define CLS2 outscibyte(SCI0DR, 0x58);
#define GOTOLINE2 outscibyte(SCI0DR, 0xFE);
 outscibyte(SCI0DR, 0x47);
 outscibyte(SCI0DR, 0x01);
 outscibyte(SCI0DR, 0x02);

//** ADC Macros
//#define SETdataOUT (short)_outp(control, 0x00 CTRLDIROUT CTRLMASK)
#define NADSBITS 16
 //7825 is 16bit; 7824 is 12bit
#define PADREADBITS 2
 //extra bits to read
#define RTSHIFTBITS 1
 //dummy trailing bits
#define LEADDUMMYBITMASK 0xf0000
 //bits to zero after right shift 0xf000 for
 //12 bit 0xf0000 for 16 bit
#define SETADSADDRCH0 PADR = PADR |0x08
 //(short)_outp(data, 0x00)
#define SETADSADDRCH1 PADR = PADR &(~0x0c)
 //(short)_outp(data, 0x10)
#define R_C_0 &(~0x10)
 //&(~0x04)
#define R_C_1 |0x10
 //|0x04
#define DCLK_0 &(~0x01)
 //&(~0x08)
#define DCLK_1 |0x01
 //|0x08
#define SELECTADS PEDR = PEDR &(~0x10)
 //clear PE4 to select ADS
#define DESELECTADS PEDR = PEDR |0x10
 //set PE4 to deselect ADS
//#define READADSSYNC (short)((_inp(status)STATMASK)&0x40)
#define READADSdata PADR &0x02
 //(short)((_inp(status)STATMASK)&0x20)
#define READADSBUSY PADR &0x20
 //(short)((_inp(status)STATMASK)&0x80)
#define NUMADBITLEV 65535.0
 //16bits is 65535.0; 12 bits is 4095.0
#define ADMIN -10.0
#define ADMAX 10.0
#define ADCAL (ADMAX/NUMADBITLEV*2.0)
 //in volts per bit levels for two's complement conversion
#define NUMSECCALAVG 5
 //number of seconds to average for calibration
#define MINVOLTAGE 0.25
 //minimum expected sensor voltage
#define MAXVOLTAGE 4.25
 //maximum expected sensor voltage

120

//**Motor Macros
#define MOTOR_0 | 0x02
 //MOTOR off
#define MOTOR_1 &(~0x02)

//motor is 0x02 of control PORT _ !!!reversed
 //logic due to port functioning
#define MOTOR_ON (short)_outp(control, 0x00 CTRLDIROUT MOTOR_1
CTRLMASK);
#define MOTOR_OFF (short)_outp(control, 0x00 CTRLDIROUT MOTOR_0
CTRLMASK);
#define PWM_PD_STEP 0x000f
 //increment/ decrement in PWM period
#define PWM_PD_INIT 0x0113
 //initial PWM period
#define PWM_PD_MIN 0x00c8
 //minimum allowed PWM pd during run

#define DEFPRESSOFF 7400 //2046//1.9283
 //default pressure offset voltage
//#define DEFPRESSSPAN -35.588
 //default pressure span
#define DEFPRESSSPAN -.003878
 //cmH20 per count //-17.794
//#define DEFPRESSSPAN -8.897
#define DEFFLOWOFF 7400 //2043//1.5630

//default flow offset voltage
#define DEFFLOWSPAN -.001252
 //Lps per count
 //-5.75
 //default flow span (Lps/V)
//#define DEFFLOWSPAN -2.875
#define PRESSCALVAL 5.0
 //press calibration value in cmH20
#define FLOWCALVAL 3.0
 //flow calibration value this is volume

#define STARTSTOPPORT status
 //use status port for push-button
#define STARTSTOPPORTMASK STATMASK
 //use status port mask for TRUE input
#define STARTSTOPBIT 0x10
 //use bit 4 (base 0) as push-button bit
#define STARTSTOPHIT 0
 //assume normally pulled high and goes low with button

#define RUNBIT 0x00001
 //RUN MODE bits
#define TESTBIT 0x00010
 //
#define TESTSTREAMBIT 0x00020
 //
#define TESTSTREAMCHANBIT 0x00040
 //
#define CALBIT 0x00100
 //CAL MODE bits
#define CALVERIFYBIT 0x00080
 //determine verifybits
#define CALREZEROBIT 0x00200
 //

121

#define CALCHAN0BIT 0x00400
 //
#define CALCHAN1BIT 0x00800
 //
#define CALMODEBITS 0x00e80
 //determine REZERO, or CALCHAN bits
#define STOPBIT 0x01000
 //STOP MODE bit
#define NEWTIMERBIT 0x02000
 //if timer just reset and called first time
#define MOTORBIT 0x04000
 //motor on/ off bit on=1
#define CALLMODEBITS 0xf0000
 //CALLMODE (STOPMODE, CHANGEMODE etc) bit mask - 3 bits
#define FAILCODEBITS 0xf0000000
 //APDFAIL time requirement bit
#define FAILTIMEBIT 0x10000000

//assume each cycle about 40ns thus 1e9 * 40
#define DEBOUNCECNT 0x2f
#define MAXSHORTPULSECNT 0x3ff
#define MAXTESTCNT 0x8fff

#define REZERO_CMP 0xffff
 //at IP / 128 this is about 0.209 sec
#define SAMPLE500_CMP 0x0271
 //this is 500Hz at IP / 128

//0x138 is 1kHz
#define SAMPLE250_CMP 0x4e2
 //at IP/128 this is 250 Hz

//** Debug options, file writing
#define DEBUG 0
 //don't use with LCD0821
#define USELCD 1
 //19200 for LCD0821
#define SHOWEACHRRVAL 0
 //if yes, output each value, if no only show
 //progress and end values
#define SHOWRRASCIIINDICATOR 5
 //show '-' and '_' for RR val detected

//number indicates interval to show indicator
#define SHOWRRBACKLIGHTINDICATOR 0
 //toggle backlight to indicate RR vals
#define VERBOSE 0
#define GENERATEdata 0
#define GENERATETESTdata 0
#define LOGdata 1
#define PROFILE 0
#define TESTFAIL 0
#define TESTDISPLAYSEGMENTS 0
#define REZEROONSTARTUP 1
#define MAXNUMPERTS 100
 //max no. perts to collect in each direction;
 // 0 is continuous
#define CHECKTIME 1
 //check execution time
#define TALK 1
 //for outsci type functions

122

#define STARTCHECKTIME TMRA0_CTRL = 0x3c00
 //this is IP/64

//0x3c00 start timer A0 at IP/64
//0x3000 = ip/1
//0x3600 ip/8

#define STOPCHECKTIME TMRA0_CTRL = 0x0000
 //stop timer A0
#define USEWEIGHTEDAVERAGE 0
 //whether or not to calculate weighted average

//for each new pert detected
#define SERVOPWM 0
 //monitor PWM, freq period and adjust motor speed
#define SENDAVRVFRATRR 1
 //send actual as well as virtual flow rates at
 //pert rather than

//- virtual is sent in place of the actual pressure
 //value at the rr time

//** for filtering
#define NZEROS 10
#define NPOLES 10
//#define GAIN 2.310287053e+00
 //for 200Hz, 4-pole butterworth
//#define GAIN 21.46710182352036
 //<- as 1/0.04658290663644
 //original: 2.146710182e+01
//#define GAIN 112.17732870747824
 //for 60 Hz
//#define GAIN 1240.14108757011457366
 //017187539115 //for 30 Hz
//#define GAIN 2.309503626e+04
 //30Hz 8pole Bessel
#define GAIN 7.856997806e+05
 //24Hz 10pole Bessel

//** RUNTIME changeable block locations
#define BLOCKcontrol + 3
#define BLOCKMODE + 0

#define FALSE 0
#define TRUE 1

#define C_DUTY (*(char *) 0x1006)

/********************
* Function Prototypes
***********************/
void swap (int *a, int *b);
void print_array(int arr[], int length);
void inscichar(int *a, char *b);
void outsci(int *a, char *b);
void outscichar(int *a, char *b);
void outdec(int *chan, int val);
void outscihex(int *a, int b);
void outdecfloat (int *chan, float floatin);
void outscibyte (int *a, const int b);
int ByteToUSB(unsigned int* c);
void outusb(unsigned int * val);

123

int outusbdec(int var);
int outusbdecfloat(float * var);
int SendVars(void);
int SendAckToUSB(void);

void SetupTimerInterrupt(const int comparevalue);
void SetupPWM(void);
void SetPWMDuty(int* duty);
void SetupADC();

void TimeProcRunMode();
void TimeProcStreamMode();

void GetADSSamples(short* first, short* second);
void InitConv(const short NextChan);
void LoopSWait(const long numcycles);
void LoopWait(const long millisec);

void isrIRQB ();
void isrTimerB0Compare ();

void ReadFlashConstants();
void WriteFlashConstants();

void DifferentiateArray(float* inarray,
 float* outarray, const int arraysize);
int FullPertPresent(float* inarray, float* dinarray,
 const int arraysize, int * start, int * stop,
 float * thres);
int FindMostCommonValue(float* inarray,
 const int arraysize,
 const float min, const float max, const int numbins,
 float * mcv);
int* MaxInt(int* inarray, const int arraysize);
int ConsistentDirection(Frac16* inarray,
 const int arraysize, int * start, int * stop);
int CalcRespResist(Frac16* pressdata, Frac16* flowdata,
 const int arraysize, int * start, int * stop,
 int * breathdir, float * rr);
int OutputRespResistValue(float * rr);

short GetADSamples(short* first, short* second);
void ADSampleToVoltage(short* digital1, short* digital2,
 float* val1, float* val2);

void CopyCircArray(float* srcarr, float* destarr,
 float* bsrcarr, float* bdestarr, const int length);
void CopyCircArrayFrac(Frac16* srcarr, Frac16* destarr,
 Frac16* bsrcarr, Frac16* bdestarr, const int length);

int ZeroOldPertRDPoints(float* curloc, float* begin,
 float* end, int * start, int * stop);
float WtAverage(float* inarray, int toteles2avg,
 const int type);

void ADVoltagesToScaledValues(Frac16* pressval,
 Frac16* flowval);

float* MaxFloat(float* inarray, const int arraysize);

124

static void DualFilterLoop4Pole100_500(Frac16* valinout1,
 Frac16* valinout2, const int reset);

float FracToFloat(int fraction);
Frac16 FloatToFrac(float floatin);

void SetupTimerCheck();
void StartProfileTimer();
void StopProfileTimer();

asm int GetMSByte (float floatin);
asm int GetLSByte (float floatin);

int ByteFromUSB(unsigned int* c);
int GetHostVars(void);
int inusbdecfloat(float* var);

void LCDGoToLineTwo(void);
void outscierr(char *b);
void LCDClearScreen(void);
void outsciusbinfo(char *b);

/*******************************
* Post-Macro Globals
*******************************/

//** Sample buffers
Frac16 pressbuf[SAMPBUFLEN] = {0.0f};
 //pressure values
Frac16 presstempbuf[SAMPBUFLEN] = {0.0f};
 //temp pressure values shifted
Frac16 flowbuf[SAMPBUFLEN] = {0.0f};
 //flow values
Frac16 flowtempbuf[SAMPBUFLEN] = {0.0f};
 //temp flow values shifted
float rdbuf[SAMPBUFLEN] = {0.0f};
 //device resistance values
float rdtempbuf[SAMPBUFLEN] = {0.0f};
 //device resistance values shifted
float drdbuf[SAMPBUFLEN] = {0.0f};
 //deriv of rd - shifted only
float freqbuf[SAMPBUFLEN] = {0.0f};
 //array of frequencies for motor control
float freqtempbuf[SAMPBUFLEN] = {0.0f};
 //shifted freqs for weighted averaging

//** Pointers to beginning of buffers
Frac16* press = &pressbuf[0];
Frac16* presstemp = &presstempbuf[0];
Frac16* flow = &flowbuf[0];
Frac16* flowtemp = &flowtempbuf[0];
float* rd = &rdbuf[0];
float* rdtemp = &rdtempbuf[0];
float* drd = &drdbuf[0];
float* freq = &freqbuf[0];

125

float* freqtemp = &freqtempbuf[0];
Frac16* pbpress = &pressbuf[0];//press;
Frac16* pbpresstemp = &presstempbuf[0];//presstemp;
Frac16* pbflow = &flowbuf[0];//flow;
Frac16* pbflowtemp = &flowtempbuf[0];//flowtemp;
float* pbrd = &rdbuf[0];//rd;
float* pbrdtemp = &rdtempbuf[0];//rdtemp;
float* pbdrd = &drdbuf[0];//drd;
float* pbfreq = &freqbuf[0];//freq;
float* pbfreqtemp = &freqtempbuf[0];//freqtemp;

//** Buffers for RR calculations
//** averages, shifting as in above buffers
float inrrvalsbuf[RRVALLEN] = {0.0f};
float inrrvalstempbuf[RRVALLEN] = {0.0f};
float exrrvalsbuf[RRVALLEN] = {0.0f};
float exrrvalstempbuf[RRVALLEN] = {0.0f};

//** Pointers to beginning of RR buffers
float* inrrvals = &inrrvalsbuf[0];
float* pbinrrvals = &inrrvalsbuf[0];//inrrvals;
float* inrrvalstemp = &inrrvalstempbuf[0];
float* pbinrrvalstemp = &inrrvalstempbuf[0];//inrrvalstemp;
float* exrrvals = &exrrvalsbuf[0];
float* pbexrrvals = &exrrvalsbuf[0];//exrrvals;
float* exrrvalstemp = &exrrvalstempbuf[0];
float* pbexrrvalstemp = &exrrvalstempbuf[0];//exrrvalstemp;

//** Calibration variables
Frac16 pressoff; //= DEFPRESSOFF;
Frac16 flowoff; //= DEFFLOWOFF;
floatpressspan; //= DEFPRESSSPAN;
floatflowspan; //= DEFFLOWSPAN;

//** Modes, counters
float rthres = 0.0f;
 //resistance threshold
long g_process = 0;
 //general counter for global monitors
int timeprocdone = APDFAIL;
floatdisplayvalue1 = 0.0f;
floatdisplayvalue2 = 0.0f;
int mode = 0x0000;
void (*g_pfcn)();
 //pointer to whatever function is to be called in isr
float g_accumfloat1 = 0.0f;
float g_accumfloat2 = 0.0f;
int duty; //= PWM_PD_INIT;

//** Calibration constant initialization for FLASH
// Tables, structures or similar of stored constants
// #pragma opt_dead_assignments off
// #pragma opt_dead_code off
//** USE THIS (because it works):
#pragma use_rodata on
 //use this in combination with
 //KEEP SECTION { .rodata } in linker

//to prevent dead-stripping of these
 //constants during compile/link

126

 //optimization
//#pragma define_section rodata "data.rodata" R
//#pragma section rodata begin

const Frac16 c_pressoff = DEFPRESSOFF;
 //these five lines should begin with const
const Frac16 c_flowoff = DEFFLOWOFF;
const float c_pressspan = DEFPRESSSPAN;
const float c_flowspan = DEFFLOWSPAN;
const int c_duty = PWM_PD_INIT;

//create dummy array to fill remainder of page
//to prevent linker from
//filling page with valuable info that gets erased
//when re-writing flash cal consts
const int fill[505] = {0};
 //512 bytes = 32 words = 8 rows per page of data flash

//#pragma section rodata end
//USE THIS (because it works):
#pragma use_rodata off
//#pragma opt_dead_assignments on
//#pragma opt_dead_code on

127

/***
* MAIN PROGRAM LOOP AND CODE BEGINS HERE
**/
int main(void)
{

//int arr[SIZE] = {4,6,7,1,2,3,4,12,4,5};
//int i,j;

char c;

 int val;
 int stat, result, ave, count;
 int fint1, fint2, fdec1, fdec2;

 long longval;
 float floatval;

 //Disable interrupts to be enabled as needed
 IPR_W = 0x0000;

 if(TALK){ //config SCI output for RS232

 SCI0BR = 130; //130=19200
 //22; 22=11500 //65;
 //65 = 38400 baud
 //260
 //set up SCI (9600, 8N1
 SCI0CR = 0x0008;//12;
 //and display instructions...
 //config display - autoline wrap 254,67
 outscibyte(SCI0DR, 0xFE);
 outscibyte(SCI0DR, 0x43);

}
if(!TALK)

SCI0CR = 0x0002;
 //set receiver to standby mode
 //and everything else disabled

//Use fill data to keep in program

 stat=0;
 for(val=0;val<505; val++){
 stat *= fill[val];
 //outdec(SCI0DR, stat);
 outsci(SCI0DR, "APD v0.1");
 }

//Clear screen
outscibyte(SCI0DR, 0xFE);
outscibyte(SCI0DR, 0x58);
outsci(SCI0DR, "APD v0.1");

 //Block cursor off
 CLS1;

outscibyte(SCI0DR, 0x54);

 CLS1; //prep for command;

outscibyte(SCI0DR, 0x42);// 46 = off; 42 = backlight on
outscibyte(SCI0DR, 0x05); //zero means inf minutes

128

 //Read all constants from FLASH memory into
 //global variables
 ReadFlashConstants();

SetupPWM();

 //** Set up GPIO E
 PEIAR = 0;
 PEIENR = 0;
 PEIPOLR = 0;
 PEIESR = 0;
 PEPER = 0x0083;
 //let GPIO control bits 2,3,4,5,6
 //on the port - peripheral
 //is enabled only on bits 0,1,7
 PEDDR = 0x003c;
 //bits 2,3,4,5 set to output
 //bit 6 = input
 PEPUR = 0x00ff;
 //pull-ups //1=pull-up enabled on any inputs
 val = 0x0008 | 0x0004;
 PEDR = val;
 // set both leds 'on'

//** Set up GPIO A
PAIAR = 0;
PAIENR = 0;
PAIPOLR = 0;
PAIESR = 0;
PAPER = 0x0000;

 //let GPIO control all pins on port A -
 //not the peripheral

PADDR = 0x001d;
 //0 = input, 1 = output

PAPUR = 0x00ff;
 //use pull-ups on all bits
 //(only used if it's output)

PADR = 0x0000;

 //SetupADC();

//
//** INIT ADS7824/5 to proper channel acquire
SELECTADS;
PADR = PADR R_C_1;
PADR = PADR R_C_1;
SETADSADDRCH0;
PADR = PADR R_C_0;
PADR = PADR R_C_0;
PADR = PADR R_C_1;
DESELECTADS;

//No Data ready to USB yet
NDR_to_USB;

//If necessary, setup timer for profiling
if(CHECKTIME)

 SetupTimerCheck();

129

//Test DSP to USB byte transmit
/*c = 0xcf;
g_process = 0;
STARTCHECKTIME;
while(1)
{

//STARTCHECKTIME;
if((TMRA0_CNTR &0xefff) > 0x7800)
{

g_process++; //clear sign bit
TMRA0_CNTR=0;

}
if (g_process > 125)
{

STOPCHECKTIME;
TMRA0_CNTR=0;
outsci(SCI0DR, "s");
STARTCHECKTIME;
ByteToUSB(&c);
g_process = TMRA0_CNTR;
STOPCHECKTIME;
TMRA0_CNTR=0;
outscibyte(SCI0DR, 0xFE);
outscibyte(SCI0DR, 0x58);
outdec(SCI0DR, g_process);
g_process=0;
STARTCHECKTIME;

}
}*/

//Debug print old flash constants:
if(DEBUG){
outsci(SCI0DR, "OFC: ");
outdec(SCI0DR, pressoff);
outdec(SCI0DR, flowoff);
outdecfloat(SCI0DR, pressspan);
outdecfloat(SCI0DR, flowspan);}

 //Rezero device
 if(REZEROONSTARTUP)
 {
 LCDClearScreen();
 if(DEBUG){
 outsci(SCI0DR, "REZ...");}
 if(USELCD){
 outsci(SCI0DR, "Self-");
 LCDGoToLineTwo();
 outsci(SCI0DR, "Testing");}

 g_process = 0;
 //set this to zero; it will increment until enough
 //samples have been collected for the zeroing

 //Turn off any prior running timer
 TMRB0_CTRL = 0x0000;

 //Reset pointer to proper interrupt function
 g_pfcn = TimeProcStreamMode;

130

 //Should already be off
 //Turn off motor
 //SetPWMDuty(0x0000);

//Reconfig and set timer
SetupTimerInterrupt(SAMPLE500_CMP);

longval = (long)REZEROSAMPLES;
while(1)
{

//outdec(SCI0DR, longval);
if (_L_sub(g_process, longval) >= 0)
{

//outsci(SCI0DR, "bigger");
break;

}
}

//Stop timer
TMRB0_CTRL = 0x0000;

//floatval = (g_accumfloat1 / (float)REZEROSAMPLES);
//outdecfloat(SCI0DR,floatval);
//outdecfloat(SCI0DR, g_accumfloat1);

//floatval = 11243.00;
//outdecfloat(SCI0DR, floatval);
//pressoff = (int)floatval;

pressoff = FloatToFrac(g_accumfloat1 /

(float)REZEROSAMPLES);
flowoff = FloatToFrac(g_accumfloat2 /

(float)REZEROSAMPLES);

//May want to write these Frac16 values
 //into the ADC offset registers

//in future

if(DEBUG)
{

outsci(SCI0DR, "pfx: ");
outdec(SCI0DR, pressoff);
outsci(SCI0DR, ", ");
outdec(SCI0DR, flowoff);

}

LCDClearScreen();

 if(DEBUG){
 outsci(SCI0DR, "Dun");}

 } //if(REZEROONSTARTUP)

 //Write new re-zeroed constants to flash memory
 WriteFlashConstants();

 //Read them back into variables
 ReadFlashConstants();

131

 //Debug print old flash constants:
 if(DEBUG){

outsci(SCI0DR, "NFC: ");
outdec(SCI0DR, pressoff);
outdec(SCI0DR, flowoff);
outdecfloat(SCI0DR, pressspan);
outdecfloat(SCI0DR, flowspan);}

//outscibyte(SCI0DR, 0xFE);

 //command
//outscibyte(SCI0DR, 0x58);

 //clear screen and go to top left

//If initial mode on power on is to be runmode then:
mode = mode | RUNMODE;

if(USELCD){
outsci(SCI0DR, "Reading");
LCDGoToLineTwo();
//CLS1; //prepare for command
//outscibyte(SCI0DR, 0x48);

 //go to home position for progress indicators

 CLS1; //prepare for command
outscibyte(SCI0DR, 0x44);

 //auto line wrap off so keep
 //progress indicators only at top

}

//Now enable IRQA interrupt with falling

 //edge sensitivity to prevent mult trigs
IPR_W = IPR_W | ALLOWIRQB_FES; //ALLOWIRQA_FES;

//*********************************
//** Main polling loops for modes etc.

 //** loop forever
 while (1){
 //since there is no operating system,
 //there is nothing to return to
 //so just loop forever - e.g.
 //that's the simple OS - polling
 //with IRQ adjusted commands

 if((mode & POLLMASK) == RUNMODE)
 {

 //Turn off any prior running timer
 TMRB0_CTRL = 0x0000;

 //Clear all buffers here...

 g_process=0;

 //signals TimeProcRunMode to rezero static vars.
 //it is set to 1 after re-zeroing in the procedure

 //Reset pointer to proper interrupt function
 g_pfcn = TimeProcRunMode;

132

 //SetPWM duty for initial
 duty = C_DUTY;//c_duty;//PWM_PD_INIT;
 SetPWMDuty(&duty);

 //Reset mode to no call mode so this

 //is not called again

 mode = (mode & ~RUNMODE);
 //mode = NOCALLMODE;

 //Reconfig and set timer
 SetupTimerInterrupt(SAMPLE250_CMP);

 }

 if((mode & POLLMASK) == USBRUNMODE)

 {

 //Turn off any prior running timer
 TMRB0_CTRL = 0x0000;

 g_process=0;

 //signals TimeProcRunMode to rezero static vars.
 //it is set to 1 after re-zeroing in the procedure

 //Reset pointer to proper interrupt function
 g_pfcn = TimeProcRunMode;

 //SetPWM duty for initial
 duty = C_DUTY;//c_duty;
 SetPWMDuty(&duty);

 //Reset mode to no call mode so

 //this is not called again
 mode = (mode & ~USBRUNMODE);
 //mode = NOCALLMODE;

 //Reconfig and set timer
 SetupTimerInterrupt(SAMPLE250_CMP);

 }

 if((mode & POLLMASK) == STREAMMODE)
 {

 //Turn off any prior running timer
 TMRB0_CTRL = 0x0000;

 //Reset pointer to proper interrupt function
 g_pfcn = TimeProcStreamMode;

 //Turn off motor
 duty = 0x0000;
 SetPWMDuty(&duty);

 duty = C_DUTY;

 //Reset mode so no call is made again to this stuff
 mode = (mode & ~STREAMMODE);

133

 //mode = NOCALLMODE;

 //Reconfig and set timer

SetupTimerInterrupt(SAMPLE500_CMP);

 }

 if((mode & POLLMASK) == STOPMODE)
 {
 //Turn off any running timer
 TMRB0_CTRL = 0x0000;

 //Turn off motor
 duty = 0x0000;
 SetPWMDuty(&duty);

 duty = C_DUTY;

 //Reset mode - turn off stopmode bits
 mode = (mode & ~STOPMODE);
 //mode = NOCALLMODE;

 }

 } //while (c != 'q') //end of main polling while loop

return(0);

} //main

/**/
void WriteFlashConstants()
{

 //Writes FLASH constants to FLASH

int status = 0x0000;
Frac16 fraction = 0x0000;
float floatval = 0.0;

//disable IRQ interrupts
//IPR_W = (IPR_W & ~0x0010);// & ~0x0002); //disable IRQA
//nope, that should be done in calling routine

//First intelligent erase a block of flash
//the APD program so far uses the first page of flash memory
//This is data flash
if((DFIU_CNTL &0x803f) == 0x0000)
//check to make sure in flash read or standby mode
{

//set IFREN to 0 to use main memory, not information block
DFIU_CNTL = DFIU_CNTL & ~0x0040;

DFIU_IE = DFIU_IE | 0x0100;
//set IE[8] to enable trev interrupt when done erasing

//erase page: page # = address &= 0x7fff and then >>= 8
//page 0 right now for address = 0x1000 --> 0x0010

134

DFIU_EE = DFIU_EE | 0x4010;
//EE[14] = IEE = intelligent erase enable
//EE[0:6] = page number = 0x0010

//write any value to an address in the page and
//it will start erase cycle
//on the 803, xROM (flash) is from 0x1000 - 0x1fff
(*(char *) 0x1000) = 0x0000;
//any value written to data flash
//start address
//read busy bit until it clears indicating end of erase
do
{

status = DFIU_CNTL & 0x8000;
//busy = DFIU_CNTL[15]

} while(status != 0x0000);

//clear CNTL and EE registers
DFIU_EE = 0x0000;
DFIU_CNTL = 0x0000;
DFIU_IE = 0x0000;

//busy bit has cleared, now write data to block.
//setup intelligent page write
//if(DFIU_CNTL &0x803f = 0x0000)
//may need to use something like this <--

//Test here!!! for erase page only
DFIU_IE = DFIU_IE | 0x0100;
//set IE[8] to enable trev interrupt when done erasing

DFIU_PE = DFIU_PE | 0x4080; //PE= program enable
//PE[14] = intelligent program enable
//PE[0:9] = row number - start at 0
//address &= 0x7fff >>= 5 --> 0x0050

//32 words in a row - each word is 16 bits
//begin writing to each address
//use order of constants in global declaration before
//main()
fraction = pressoff;
(*(char *) 0x1000) = fraction;
do status = (DFIU_CNTL & 0x8000); while(status != 0);
//loop until not busy

//writing the flash
fraction = flowoff;
(*(char *) 0x1001) = fraction;
do status = (DFIU_CNTL & 0x8000); while(status != 0);
//loop until not busy

//writing the flash
floatval = pressspan;
fraction = GetMSByte(floatval);
(*(char *) 0x1003) = (fraction);
do status = (DFIU_CNTL & 0x8000); while(status != 0);
//loop until not busy

//writing the flash

135

floatval = pressspan;
fraction = GetLSByte(floatval);
//Doesn't work:
//status = (((int)floatval >> 16) & 0xffff);

(*(char *) 0x1002) = fraction;
do status = (DFIU_CNTL & 0x8000); while(status != 0);
//loop until not busy

//writing the flash
floatval = flowspan;
fraction = GetMSByte(floatval);
//Doesn't work
//(*(char *) 0x1004) = ((int)floatval & 0xffff);

(*(char *) 0x1005) = fraction;
do status = (DFIU_CNTL & 0x8000); while(status != 0);
//loop until not busy

//writing the flash
floatval = flowspan;
fraction = GetLSByte(floatval);
//Doesn't work //status = (((int)floatval >> 16) & 0xffff);
(*(char *) 0x1004) = fraction;
do status = (DFIU_CNTL & 0x8000); while(status != 0);
//loop until not busy

//writing the flash
fraction = duty;
(*(char *) 0x1006) = fraction;
do status = (DFIU_CNTL & 0x8000); while(status != 0);
//loop until not busy

//writing the flash

//when finished writing all data clear enable bits
DFIU_PE = 0x0000; //clear program enable register
DFIU_CNTL = 0x0000;
DFIU_IE = 0x0000;
//Test here <----!!!

if(DEBUG)outsci(SCI0DR, "WFO ");

} else
{

if(DEBUG)outsci(SCI0DR, "WFX");
if(USELCD)outscierr("WFX");

}

//re-enable IRQ interrupts
//this should be done in calling routine

} //WriteFlashConstants

/**/
asm int GetMSByte (float floatin)
{
 //ASM routine to get most significant byte

136

//floatin is passed on a (a1, a0)
move a1,y0
rts

} //GetMSByte

/***/
asm int GetLSByte (float floatin)
{
 //ASM routine to get least significant byte

move a0,y0
rts

} //GetLSByte

/**/
void ReadFlashConstants()
{

 //Read FLASH constants from FLASH into vars

//pressoff = 0x0000;

pressoff = (*(char *) 0x1000); //this works - others do not
//(*(&c_pressoff)); //(*(char *) 0x1000);//c_pressoff;
pressspan = (*(float *) 0x1002); //c_pressspan;
flowoff = (*(char *) 0x1001); //c_flowoff;
flowspan = (*(float *) 0x1004); //c_flowspan;
duty = (*(char *) 0x1006); //c_duty;

} //ReadFlashConstants

/**/
int ByteToUSB(unsigned int* c)
{

 //Send Byte to EZ-USB chip

int value;
int wdog=0;

DESELECTADS;
PADDR = DT_USB_DDR;
PADR = *c;
//DR_to_USB; //was commented 1
//do value = USB_ACK; while(value == 0);
//LoopSWait(40);
do
{

NDR_to_USB; //was uncommented 1
DR_to_USB; //was uncommented 1
//LoopSWait(4);
//try without this for quickness,
//may need to re-structure method
value = USB_ACK;
wdog++;

137

} while(value==0 && wdog<0x7ff);

//de-assert data ready to you mr usb
NDR_to_USB;

//return values according to failure or success
if(wdog>=0x7ff)
{

if(DEBUG)outsci(SCI0DR, "BTU1x");
if(USELCD)outsciusbinfo("14");
return APDFAIL;

}

//if it was a watchdog ok, then finish ack cycle...
if(wdog<0x7ff)
{

//reset watchdog
wdog=0;

//wait for USB to ack that data was picked up and has fin.
//processing it mkay
do {

//LoopSWait(4);
value = USB_ACK;
wdog++;

} while(value!=0 && wdog<0xfff);
//make sure the ACK bit is dropped

}

//CLS1;
//outdec(SCI0DR, wdog);

//return values according to failure or success
if(wdog>=0x7ff)
{

if(DEBUG)outsci(SCI0DR, "BTU2x");
//if(USELCD)outscierr("BTU2x");
if(USELCD)outsciusbinfo("11");
return APDFAIL;

} else
return OK;

//scenario 1 doesn't work...locks up in current method

}

/***/
int ByteFromUSB(unsigned int* c)
{

 //Read a byte of data from the EZ-USB chip

int value;
int wdog=0;

DESELECTADS;
PADDR = DF_USB_DDR;

138

//PADR = *c;
//DR_to_USB; //was commented 1
//do value = USB_ACK; while(value == 0);
//LoopSWait(40);
//Signal Host with an interrupt
do
{

NDR_to_USB; //was uncommented 1
DR_to_USB; //was uncommented 1
LoopSWait(4);
//try without this for quickness,
//may need to re-structure method
value = USB_ACK; //read USB ACK bit
wdog++;

} while(value==0 && wdog<0x7ff);

//de-assert data ready to you mr usb
//NDR_to_USB;

*c = PADR; //read the port from USB

//Now say I got that data with NDR_to_USB
NDR_to_USB;

//if it was a watchdog ok, then finish ack cycle...
if(wdog<0x7ff)
{

//reset watchdog
wdog=0;

//wait for USB to ack that data was picked up and has fin.
//processing it mkay
do {

value = USB_ACK;
wdog++;

} while(value!=0 && wdog<0x7ff);
//make sure the ACK bit is dropped

}

//return values according to failure or success
if(wdog>=0x7ff)
{

if(DEBUG)outsci(SCI0DR, "BX");
if(USELCD)outscierr("BX");
return APDFAIL;

} else {
if(DEBUG)
{

outscihex(SCI0DR, *c);
}
return OK;

}

} //ByteFromUSB

/***/
int GetHostVars(void)

139

{

 //Retrieve variables from the USB PC host

int success=0;
int i = 0x0000;
float floatval;
unsigned int dummy;

success = inusbdecfloat(&floatval);
if(DEBUG)
{

outdecfloat(SCI0DR, floatval);
}
//pressoff = FloatToFrac(floatval);
pressoff = (int)floatval;
if(DEBUG)
{

outdec(SCI0DR, pressoff);
}
success = inusbdecfloat(&floatval);
//flowoff = FloatToFrac(floatval);
flowoff = (int)floatval;

success = inusbdecfloat(&floatval);
//at present, pressspan is transmitted as inverse to maximize
//transmitted signif digits
floatval = 1.0 / floatval; //invert to make true value
pressspan = floatval;

success = inusbdecfloat(&floatval);
floatval = 1.0 / floatval; //again, invert to make value needed
flowspan = floatval;

success = inusbdecfloat(&floatval);
//duty = FloatToFrac(floatval);
duty = (int)floatval;
if(DEBUG)
{

outdecfloat(SCI0DR, duty);
}
do
{

success = ByteFromUSB(&dummy);
//this is placed here to cause one more

} while(dummy!=USB_END_OF_VARIABLE_TRANSFER);
//INT6 strobe to the EZUSB that triggers it to
//read for its USB_END_OF_VARIABLE_TRANSFER
//byte from host and thus go through its stop transfer paces.

end_of_gethostvars:
;

if(success==APDFAIL)
return APDFAIL;

else
return OK;

} //GetHostVars()

140

/**/
int SendVars(void)
{

//Send all relevant variables to host computer on connect

 int i=0x0000;
 int var; //pointer to variable
 char temp[USB_BYTES_PER_VAR]={USB_END_OF_VARIABLE_TRANSFER};
 int value = 0x00;
 unsigned int j=0;
 int success=0;
 float floatval;

 /*for(i=0; i<=USB_NUMVARS; i++)
 {
 //is it after last variable sent
 if(i==USB_NUMVARS)
 {
 //var = &temp[0]; //point to beginning of array
 //outusb
 //DESELECTADS;

//PADDR = DT_USB_DDR;
//PADR = USB_END_OF_VARIABLE_TRANSFER;
//DR_to_USB;
//LoopSWait(4);
//do
//{
// NDR_to_USB;
// DR_to_USB;
// LoopSWait(4);
// value = USB_ACK;
//} while(value == 0);
//NDR_to_USB;
//
j=(unsigned int)0xfd;//USB_END_OF_VARIABLE_TRANSFER;
success = ByteToUSB(&j);

 outsci(SCI0DR, "L.V");
 value = USB_END_OF_VARIABLE_TRANSFER;
 outscihex(SCI0DR, value);
 //outusb(&temp[0]);
 goto end_of_sendvars;
 }

 j=(unsigned int)i;

 outscihex(SCI0DR, i);
 //ByteToUSB(&j);

 /*var = (int)pressoff; //set var to address of variable
 if(sizeof(var)==sizeof(Frac16))
 {

 outsci(SCI0DR, "SNDVAR");
 outdec(SCI0DR, var);
 outsci(SCI0DR, "_");

 g_process=0;

141

TMRA0_CNTR=0;
STARTCHECKTIME;

success = outusbdec(var);

g_process = TMRA0_CNTR;
STOPCHECKTIME;
TMRA0_CNTR=0;
outscibyte(SCI0DR, 0xFE);
outscibyte(SCI0DR, 0x58);
outdec(SCI0DR, g_process);
outsci(SCI0DR, "_");
g_process=0;

 }

 //if(sizeof(*var)==sizeof(float)){outusbdecfloat((float *)var);}
 ////outusb(var);

//send the var out of port - outusb need to check type
}*/

var = (int)pressoff;
success = outusbdec(var);

var = (int)flowoff;
success = outusbdec(var);

floatval = 1.0 / pressspan;
//invert to trasmit maximing signif digs trans.
success = outusbdecfloat(&floatval);

floatval = 1.0 / flowspan;
//invert to trasmit maximing signif digs trans.
success = outusbdecfloat(&floatval);

var = (int)C_DUTY;//c_duty;
//use c_duty because duty will have been set to
//0x0000 on connect to dsp
//via STOP_MODE
success = outusbdec(var);
duty = var; //this is done so that when WriteFlashVars
//is called, it write the proper value
//this may cause problems later, depending on how
//duty updates are implemented

//NOTE NOTE WARNING CAUTION of above

j=(unsigned int)0xfd;//USB_END_OF_VARIABLE_TRANSFER;
success = ByteToUSB(&j);
if(DEBUG)outsci(SCI0DR, "URe");

//INT6 strobe to the EZUSB that triggers it to
//read for its USB_END_OF_VARIABLE_TRANSFER
//byte from host and thus go through its stop transfer paces.

end_of_sendvars:
;

if(success==APDFAIL)
return APDFAIL;

142

else
return OK;

}

/**/
void outusb(unsigned int * val)
{

 //Send an integer value to the EZ-USB
 //maximum USB_BYTES_PER_VAR value

int i = 0;

//val is assumed to point to the first element in an array of
//bytes to send
for(i=0; i<USB_BYTES_PER_VAR; i++)
{

ByteToUSB(val);
val++;

}
}

/**/
int outusbdec(int var)
{

//this should work for Frac16 as well
//send out digits of an int as chars via port A
//assumes that values are not large - need support for positive
//and negative integers
//also note proper number of digits
unsigned int u,t;
int success=0;
int tries = 0;
//char c;

//t = 10000;
t=1;

for(u=0;u<(USB_BYTES_PER_VAR-2);u++) //mult to prep for # digits
{

//if you use more than 0 to 5 then
//overflow and erroneous number...
t *= 10;
//prep for proper number of digits with zeroes preceding

}

if(var < 0) //if negative input variable
{

t /= 10; //one less digit if need to send negative sign
u=45;//this is ASCII '-'
do
{

tries++;
success = ByteToUSB(&u);

} while((tries<=USB_MAX_NUM_TRIES_IN) &&
 (success==APDFAIL));

143

if(success==APDFAIL)goto end_of_outusbdec;

tries=0; //rezero this if no failure

var *= -1; //make positive

//send the extra zero digit to make a total OF ^^^^6
//u=0;
//do
//{
// tries++;
// success = ByteToUSB(&u);
//} while((tries<=USB_MAX_NUM_TRIES_IN) &&
 (success==APDFAIL));

//if(success==APDFAIL)goto end_of_outusbdec;

//tries=0; //rezero this if no failure

}

//send out extra digit to make 6 digits
u=0;
do
{

tries++;
success = ByteToUSB(&u);

} while((tries<=USB_MAX_NUM_TRIES_IN) && (success==APDFAIL));

if(success==APDFAIL)goto end_of_outusbdec;

tries=0; //rezero this if no failure

do { //send out the digits

u = 0;
 while (var>=t) { var -= t; u++; }
 //c = '0' + u;
 //outdec(SCI0DR, u); //for debug to check digit
 do

{
tries++;
success = ByteToUSB(&u);

} while((tries<=USB_MAX_NUM_TRIES_IN) &&
 (success==APDFAIL));

if(success==APDFAIL)goto end_of_outusbdec;

tries=0; //rezero this if no failure

 t /= 10;
} while (t>0);

end_of_outusbdec:
;

if(success==APDFAIL)
{

outsci(SCI0DR, "OUDx");

144

return APDFAIL;
} else

return OK;

}

/**/
int inusbdecfloat(float* var)
{

//this should work for Frac16 as well
//send out digits of an int as chars via port A
//assumes that values are not large - need support for positive
//and negative integers
//also note proper number of digits
int i, deccounter;
int success=0;
//char c;
float sign = 1.0f;
float floatval = 0.0f;
float pow10 = 1.0f;
int countdecplaces = 0;
unsigned int dig = 0;
int tries = 0;

//t = 10000;
pow10=1.0f;
deccounter = 0;
i=0;

for(i=0;i<(USB_BYTES_PER_VAR-1);i++) //mult to prep for # digits
{

//if you use more than 0 to 5 then overflow
//and erroneous number...
pow10 *= 10.0;
//prep for proper number of digits with zeroes preceding

}

for(i=0;i<USB_BYTES_PER_VAR;i++)
{

do
{

tries++;
success = ByteFromUSB(&dig);

} while((tries<=USB_MAX_NUM_TRIES_IN) &&
(success==APDFAIL));

if(success==APDFAIL)goto end_of_inusbdecfloat;

tries=0; //rezero this if no failure

if(dig==USB_DEC_PT)
{

countdecplaces=1;
}else if(dig==USB_NEG_SIGN)
{

sign *= -1.0;
}else
{

145

floatval = floatval + (dig * pow10);
if(countdecplaces!=0)

deccounter++;
pow10 = pow10 / 10.0;

}
}

floatval *= sign;
pow10=1.0;
if(sign==-1.0)pow10=10.0; //-13 was seen as -130. before this
for(i=0; i<=deccounter; i++)
{

pow10 *= 10.0;
}
floatval /= pow10;
//this sets final proper position of decimal place

*var = floatval;

end_of_inusbdecfloat:

if(success==APDFAIL)
return APDFAIL;

else
return OK;

} //inusbdecfloat

/***/
int outusbdecfloat(float * floatin)
{

//send out digits of a float as chars via port A

//var decs
float rounddivisor = 5.0;
int hasnegsign = 0;
int digitplace = 0;
int decdigit = 0;
int num10divs = 0;
float multcounter = 10.0;
int totdigout = 0;
int prevaccum = 0;
int value = 0;
float copyfloat = 0.0;
unsigned int dig;
int i;
int success = APDFAIL;
int tries = 0;

//debug trial numbers
copyfloat = *floatin;

//floatin *= 3.999f;
// to preserve rr value in calling function

//digit = static_cast<unsigned int>(100.0f * floatin);

146

//process

//** first first check for negative and then abs
if(*floatin < 0.0)
{

dig = (unsigned int)USB_NEG_SIGN;
success = ByteToUSB(&dig);
*floatin = *floatin * -1.0;
hasnegsign=1;
//totdigout = USB_BYTES_PER_VAR - 1;

} else {
//totdigout = USB_BYTES_PER_VAR;

}

//** first count number power of ten
while((int)(*floatin / multcounter) != 0)
{

num10divs++;
multcounter *= 10.0;

}
//** loop to output each digit - limited to -99.00
//or 999.00 for DIGOUTPRECIS=2
totdigout = USB_BYTES_PER_VAR - num10divs - 1 - hasnegsign;
for(i = 0; i < totdigout; i++)
//to prep for rounding:

rounddivisor /= 10.0;
// - create 5 digit to add to LSDig

*floatin += rounddivisor;
//add the 5 to LSDig

*floatin /= multcounter;
//start with decimal at beginning

multcounter = 10.0;
//reset multcounter
//OutFile << "floatin: " << floatin << endl;

//now reset total digits out for proper USB functioning
//tries=0;
totdigout = USB_BYTES_PER_VAR - hasnegsign;
decdigit = totdigout - num10divs - 1;
for(i = 0; i < totdigout; i++) //just changed this to < from <=
{

//OutFile << "totdigout: " << totdigout << endl;
digitplace = totdigout - i;
if(digitplace == (decdigit)) //might need decimal place
{

dig = (unsigned int)USB_DEC_PT;
do
{

tries++;
success = ByteToUSB(&dig);

} while((tries<=USB_MAX_NUM_TRIES_IN) &&
 (success==APDFAIL));

if(success==APDFAIL)goto end_of_outusbdecfloat;

147

tries=0; //rezero this if no failure

goto end_of_outusbdecfloat_loop;

}

prevaccum *= 10;
value = (long)(*floatin * multcounter);
//output'digit' value here
//for decimal place on MAX and LED chips use
//digitplace == DPDIG

//c = '0'+digit;
dig = (unsigned int)(value - prevaccum);
//OutFile << "floatin * multcounter: " << (value)
//<< ", (short)(floatin * multcounter): " << digit << endl;
multcounter *= 10.0;
prevaccum = value;

do
{

tries++;
success = ByteToUSB(&dig);

} while((tries<=USB_MAX_NUM_TRIES_IN) &&
 (success==APDFAIL));

if(success==APDFAIL)goto end_of_outusbdecfloat;

tries=0; //rezero this if no failure

 //success = ByteToUSB(&dig);

/*
if(USEMAX7221)
{

digitplace = totdigout - i;
if(digitplace == 4 && digit == 0)digit = 0x0f;
//if MSD is zero, blank it
if(digitplace == DPDIG)digit |= 0x80;
//turn on dec pt if necess
WriteOutDigitMAX7221(digit, digitplace);

}
else
{

digitplace = totdigout - i - 1;
WriteOutDigit4511(digit, digitplace);

}
//LoopWait(1000);
*/

end_of_outusbdecfloat_loop:
;
}

*floatin = copyfloat; //if debug, return original ref value to
original state

end_of_outusbdecfloat:
;

148

if(success==APDFAIL)
return APDFAIL;

else
return OK;

}

/**/
void SetupPWM(void)
{

 //Set up the PWM for motor control based
 //on macros for PWM frequency and config

//(*(char *) 0x0fa1) = 0xf413;
/*PWMA_CTL = 0x0001;
PWMA_OUT = 0x8000; //enable output pads of PWM
PWMA_MCM = 0x2710;
//period is 10000 clock cycles (IPBus = 40MHz

// and desired is 4000 = 40M/10000
PWMA_VAL0 = 0x2710; //pulse width in clock periods
PWMA_PMDISMAP1 = 0x0000;
PWMA_PMDISMAP2 = 0x0000;
PWMA_CFG = 0x100e;
//edge-aligned, independent channels
(*(char *) 0x0e0c) = 0x0000; //zero deadtime
PWMA_CTL = 0x0003;
*/

//This works...
PWMA_CFG = 0x100e;//PWMA_CFG | 0x100e;//bfset 0x100e
PWMA_PMDISMAP1 = 0x0000;//PWMA_PMDISMAP1 & (~0xffff);
//bfclr 0xffff
PWMA_PMDISMAP2 = 0x0000;//PWMA_PMDISMAP2 & (~0x00ff);
//bfclr 0x00ff
PWMA_PMFSA = 0x0055;//PWMA_PMFSA | 0x0055;
PWMA_OUT = 0xbc00;//PWMA_OUT | 0xBC00;
PWMA_MCM = 0x0400;
PWMA_VAL0= 0x0000;
//PWM duty cycle as number of clock cycles
PWMA_CTL = PWMA_CTL | 0x0002;
PWMA_CTL = PWMA_CTL | 0x0001;

//Try setting up PWM as Timer D Chan 2 output
//asm (bfset #$0100,sr); //level 0 interrupt mask
//asm (bfclr #$0200,sr);
//level 1 int mask /* allow lowest priority */
/*
ITCN_GPR7 = TMRD2_IPL;
TMRD2_CTRL = 0x0000;
TMRD2_CMP1 = 0x0200;
TMRD2_CMP2 = 0x0000;
TMRD2_LOAD = 0x0100;
TMRD2_CNTR = 0x0100;
asm (bfset #$0003,x:$0d37);
//TMRD2_SCR = TMRD2_SCR | 0x0003;

149

//allow it to be set on output pin, OFLAG that is
TMRD2_CTRL=0x3e33;//0x5e14;
//use alt cmp1 and cmp2 regs counting up and down
//from load value
*/
/*
ITCN_GPR9 = TMRB0_IPL;
// Group Priority for Timer B, channel 0
TMRB0_CTRL=0x0000;
TMRB0_CMP1=comparevalue;//0xffff;
TMRB0_CMP2=0x0000;
TMRB0_LOAD=comparevalue;//0xffff;
TMRB0_CNTR=comparevalue;
TMRB0_SCR=0x4000;
TMRB0_CTRL=0x3e30;
*/

}

/**/
void SetPWMDuty(int* duty)
{

 //Adjust the PWM duty cycle based on int* duty

PWMA_VAL0 = *duty;
PWMA_CTL = PWMA_CTL | 0x0003;
//if(TALK)outsci(SCI0DR, "\15\n\SetPWMDuty:\15\n");
//if(TALK)outdec(SCI0DR, *duty);

}

/**/
void SetupTimerInterrupt(const int comparevalue)
{

 //Set up the timer interrupt based on macros
 // - interrupt is triggered when counter reaches
 // the const int comparevalue

asm (bfset #$0100,sr); //level 0 interrupt mask
asm (bfclr #$0200,sr); //level 1 int mask
/* allow lowest priority */

 //above means allow all interrupts
 IPR_W = IPR_W | IPRVAL_NOIRQ;

// set Interrupt Priority Register
//ITCN_GPR7 = TMRD0_IPL|TMRD1_IPL;
/*
ITCN_GPR10 = TMRA0_IPL;
// Group Priority for Timer D, channel 0
TMRA0_CTRL=0x0000;
TMRA0_CMP1=0x7fff;
TMRA0_CMP2=0x0000;
TMRA0_LOAD=0x7fff;
TMRA0_CNTR=0x7fff;
TMRA0_SCR=0x4000;
TMRA0_CTRL=0x3e30;
*/
/*

150

// stop timer 0
TMRD0_CTRL=0x0000;
TMRD1_CTRL=0x0000;
//outscihex(SCI0DR,TCFIE);

TMRD1_CMP2 = 0x0000; //CMP2VAL;
TMRD1_CMP1 = 0xffff;
TMRD1_LOAD = 625; //TMRINITVAL;
TMRD1_CNTR = 625;

 //TMRD0_CMP1 = 500; //CMP1VAL;
// count up comparison value

 TMRD0_CMP2 = 0x0000; //CMP2VAL;
//count down comparison value

 TMRD0_LOAD = 0x0fff; //TMRINITVAL; // reload value
TMRD0_SCR = 0x4000; //TCFIE; // enable compare interrupt

 //TMRD1_SCR = 0x4000;
 TMRD0_CTRL = 0xea30; //SETUPTMRD0;

// count IPBus/128, repeat, reinit, count up
TMRD1_CTRL = 0x3e30; //SETUPTMRD1;
*/

ITCN_GPR9 = TMRB0_IPL;
// Group Priority for Timer B, channel 0
TMRB0_CTRL=0x0000;
TMRB0_CMP1=comparevalue;//0xffff;
TMRB0_CMP2=0x0000;
TMRB0_LOAD=comparevalue;//0xffff;
TMRB0_CNTR=comparevalue;
TMRB0_SCR=0x4000;
TMRB0_CTRL=0x3e30;

} //SetupTimerInterrupt

/**/
void SetupTimerCheck()
{

 //This is used to set up a timer for
 //time profiling code execution - if
 //count can b examined to determine
 //how long a segment of code has taken
 //to execute. This is used as part of
 //the testing and init mode to ensure proper
 //sample acquisition time.

asm (bfset #$0100,sr); //level 0 interrupt mask
asm (bfclr #$0200,sr); //level 1 int mask
/* allow lowest priority */

 //above means allow all interrupts
 IPR_W = IPR_W | IPRVAL_NOIRQ;

// set Interrupt Priority Register

ITCN_GPR10 = TMRA0_IPL;
// Group Priority for Timer A, channel 0
TMRA0_CTRL=0x0000;
//TMRA0_CMP1=0x7fff;
//TMRA0_CMP2=0x0000;
TMRA0_LOAD=0x0000;

151

TMRA0_CNTR=0x0000;
TMRA0_SCR=0x0000;
//No interrupt compares or anything like this
//TMRA0_CTRL=0x3e00; //0x3c00 = ip / 64

} //SetupTimerCheck

/**/
void GetADSSamples(short* first, short* second)
{
 //This acquires two samples from channels 0 and 1 on the
 //ADS ADC chip - either ADS7824 or 7825 depending on
 //selected bits in macros
 //Most recently confirmed for 7825 16-bit testing

//consts

//var decs
short processok = 0;
long value = 0x00000000;
short i = 0;
long value2 = 0x00000000;

//process

//outsci(SCI0DR, "GetADSSamples");

//may want to use controlled _CS now to share port IO
//thus use _CS to make _CS low during conversions
//notes that it needs 10ns time between _CS low and _RC going
//this corresponds to 10Mhz or 4 to 8 instruction cycles...

//set direction of PA I/O
PADDR = ADS_DDR;

 //first clear the CS bit to the ADC
 SELECTADS;

//first channel
InitConv(1);
//InitConv(0); //doesn't work in this order do 1 first....

for(i = 0; i < NADSBITS+PADREADBITS; i++)
{

PADR = (PADR R_C_1) DCLK_1;
//this initiates sync pulse first, then

//then second rising edge msb
value <<= 1;

if(READADSdata)
//(short)(_inp(status)&0x20 STATMASK) -
//data read on rising edge

value |= 0x01;

152

//on DSP56803 this outputs a 640 ns pulse

//max freq for ADS7825 is 10 MHz

PADR = (PADR R_C_1) DCLK_0;

//LoopSWait(1);
asm(nop);
//adjust this to get proper duty cycle (20 to 70%
//dclk high time)
asm(nop);
//five nops in DSP56803 gives about 50%
asm(nop);
asm(nop);
asm(nop);

}

value2 = value;
value >>= RTSHIFTBITS;
value &= ~(LEADDUMMYBITMASK);
//get rid of first junk bits (4)

*second = (short)value;
//used to be first, but reversed the data
value = 0x00000000;

//Need to wait (conservative est) 2
//usec between convert command and last DCLCK
LoopSWait(1); //this and prev commands gives ~23 usec

//Do second channel
InitConv(0);
//InitConv(1); //doesn't work in this order....

for(i = 0; i < NADSBITS+PADREADBITS; i++)
{

PADR = (PADR R_C_1) DCLK_1;
//12

value <<= 1;
if(READADSdata)
//(short)(_inp(status)STATMASK)

value |= 0x01;
//high pulse is about 3.5 usec

PADR = (PADR R_C_1) DCLK_0;
//13 -> MSB to LSB

//LoopSWait(1);
asm(nop);
asm(nop);
asm(nop);
asm(nop);
asm(nop);

}
value >>= RTSHIFTBITS;

153

value &= ~(LEADDUMMYBITMASK);
*first = (short)value; //used to be second...

//R/_C should remain high and DCLK should remain
//low during no activity
PADR = (PADR R_C_1) DCLK_0;

//then de-select the chip to allow bus to be used
//for USB if necessary
DESELECTADS;

//outdec(SCI0DR, *first);
//outdec(SCI0DR, *second);

} //GetADSSamples

/**/
void InitConv(const short NextChan)
{

 //Initiate ADC conversion on the ADS7825/4 with
 //the appropriate logic

//short processok = 0;

//assumes this proc is entered with RC set high and CS tied low

//Init conversion with RC low pulse
//outsci(SCI0DR, "IC");

PADR = (PADR R_C_0) DCLK_0;

PADR = (PADR R_C_1) DCLK_0;

if (NextChan == 1)
{ SETADSADDRCH1; //(short)_outp(data, 0x01)

//outsci(SCI0DR, "Ch1");
}else{

SETADSADDRCH0;
//outsci(SCI0DR, "Ch0");

}

while(!(READADSBUSY)){}
//this should be 25usec worst case max

} //InitConv

/**/
void LoopSWait(const long numcycles)
{

 //Short wait loop - compare with LoopWait
 //empty loops are normally stripped out
 //by compiler

long i = 0;
for (i = 0; i < numcycles; i++)
{

154

//dummy loop
// more nop's for consistence across optimization
asm (nop);
//asm (nop);
//asm (nop);
/*asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);*/

}
}

/**/
void LoopWait(const long millisec)
{

 //Wait loop
 //Empty loops are otherwise stripped out by
 //compiler

//consts
long cycles = CLOCKSPD * 100;
long k= 0;
long j =0;

for(k = 0; k < millisec; k++)
{

for(j=0; j < cycles; j++)
{

//wait loop
// more nop's for consistence across optimization

asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
asm (nop);
}

}
return;

155

}

/**/
void ADSampleToVoltage(short* digital1, short* digital2, float* val1,
float* val2)
{

 //Convert ADC sample to voltage if needed
 //not used in final prototype

//static float prevval1 = 0.0f;
//static float prevval2 = 0.0f;

//*val1 = (((float)*digital1) * (float)ADCAL);
//*val2 = (((float)*digital2) * (float)ADCAL);
/*
if((val1 > MAXVOLTAGE) || (val1 < MINVOLTAGE))

val1 = prevval1;

if((val2 > MAXVOLTAGE) || (val2 < MINVOLTAGE))
val2 = prevval2;

*/

//prevval1 = *val1;
//prevval2 = *val2;

return;
} //ADSampleToVoltage

/**
*/
void ADVoltagesToScaledValues(Frac16* pressval, Frac16* flowval)
{

 //Convert or scale ADC values
 //in this current version, only offset
 //is subtracted here, as scaling is applied
 //later in order to retain integer values
 //for as long as possible, reducing needed
 //buffer sizes.

*pressval = __sub(*pressval, pressoff);// * pressspan;
*flowval = __sub(*flowval, flowoff);// * flowspan;
//if(LOGdata)OutFiledata << dec << "scaled press, flow:
//"<< pressval << " " << flowval;

//YES: __sub(s1, s2) is s1-s2

} //ADVoltagesToScaledValues

void StartProfileTimer()
{

//Set the timer for going:
TMRA0_CTRL = 0x3e00;
//Count rising edges, IPBus/128 rate, count up

} //StartProfileTimer

156

void StopProfileTimer()
{

//Check the counter register
TMRA0_CTRL = 0x0000; //stop the counter
//pressAD = TMRA0_CNTR;
outsci(SCI0DR, "Timer stopped: ");
outscihex(SCI0DR, TMRA0_CNTR);
TMRA0_CNTR = 0x0000; //reset the counter register to 0

} //StopProfileTimer

void TimeProcStreamMode()
{

 //This is the main timer interrupt called
 //function for simple data collection for
 //rezeroing or for streaming data to the
 //USB PC host.

short pressAD = 0;
short flowAD = 0;
//assume 16-bit returned dig val

int time = 0;
int success = OK;

//float flttest = 0.0f;
//int inttest = 0;

unsigned int dummy = 0;

if((mode&USBATTACHMASK)!=0) //if USB is attached
{

//Start timer for debug
//outsci(SCI0DR, "USA ");
time=0;
TMRA0_CNTR=0;
STARTCHECKTIME;

}

//Acquire samples
GetADSSamples(&pressAD, &flowAD);

//flttest = (float)pressAD;

g_accumfloat1 += FracToFloat(pressAD);
g_accumfloat2 += FracToFloat(flowAD);
//outdec(SCI0DR, pressAD);

//inttest = (int)g_accumfloat1;

if((mode&USBATTACHMASK)!=0)
//if USB is attached, send out the data
{

success = outusbdec((int)pressAD);
//for debug used: (int)g_process
success = outusbdec((int)flowAD);
//flowAD);

157

//stop timer for debug
time = TMRA0_CNTR;
STOPCHECKTIME;
TMRA0_CNTR=0;
//outscibyte(SCI0DR, 0xFE);
//outscibyte(SCI0DR, 0x58);
//outdec(SCI0DR, time);
//outusbdec(time);
////g_process=0; // use time=0 if needed
//tests show time to be about 420 counts for
//this proper acquire sample
//and transfer over USB
if(time>=USB_HOST_TOO_SLOW_STREAM)
{

if(DEBUG)outsci(SCI0DR, "USTSx");
if(USELCD)outscierr("USTSx");
//fill USB buffer with junk enough to
//cause it to send and then exit
dummy = USB_HOST_TOO_SLOW;
success = ByteToUSB(&dummy);
//send code for too slow host
dummy = USB_END_OF_VARIABLE_TRANSFER;
success = ByteToUSB(&dummy);
success = APDFAIL;

}

}

g_process++; //count number of times this has been called
//was uncommented 1

if(success==APDFAIL)
{

if(DEBUG){outsci(SCI0DR, "USfx ");}
if(USELCD)outsciusbinfo("12");
//Reset mode so no call is made again to this stuff

 //mode = (mode & ~STREAMMODE);
//already done in loop at beginning

 mode |= STOPMODE;

}

} //TimeProcStreamMode

/**/
void TimeProcRunMode()
{

 //This is the main timer interrupt called
 //respiratory resistance reading routine
 //that grabs samples, looks for potential
 //perts, determines their integrity
 //calculates respiratory resistance,
 //performs display, averaging or
 //USB output depending on current mode
 //and settings.

158

//vars from APDTimetesting in MS VC++ prototypes
short pressAD = 0;
short flowAD = 0;
//assume 16-bit returned dig val
short processok = 0;
int intprocessok = 0;
int start = 0;
int stop = 0;
static long sampcnt = 0;
static int process = 0;
static long inrrvalcnt = 0;
//num successful rr calc'd so far
static long exrrvalcnt = 0;
int isok = 0;
float curfreq = 0.0f;
float wtavfreq = 0.0f;
float inrr = 0.0f;
//respiratory resistance value calculated
float avwtrr = 0.0f;
static float inwtrr = 0.0f;
static float exwtrr = 0.0f;
float inwtrrdisp = 0.0f;
float exwtrrdisp = 0.0f;
float exrr = 0.0f;
float** pcur_rrvals = &exrrvals;
float** pcur_rrvalstemp = &exrrvalstemp;
float** pbegin_rrvals = &pbexrrvals;
float** pbegin_rrvalstemp = &pbexrrvalstemp;
float* prr = &exrr;
float* pwtrr = &exwtrr;
long* prrvalcnt = &exrrvalcnt;
//int* pcallmode = (int*)dwUser;
//int copymode = *pcallmode;
static int callmode = 0;
//static short controlport = (0x00 CTRLDIROUT MOTOR_1);
//float fltpress = 0.0f;
//float fltflow = 0.0f;
float floatval = 0.0f;
int success = OK;
int lcdplacecounter = 0;
static int last10 = 10;
int time = 0;

//if(TALK)outsci(SCI0DR, "\15\nCalled TimeProcRunMode");

//monitor loop execution time
//This is commented out because it is only for debugging,
//testing etc.
//see end of this program
/*
time=0;
TMRA0_CNTR=0;
STARTCHECKTIME;
*/

//Rezero all statics etc. if this is the first time
//this was called
if(g_process==0)

159

{
exwtrr=0.0;
inwtrr=0.0;
sampcnt=0;
process=0;
inrrvalcnt=0;
exrrvalcnt=0;

}

if(g_process==0)g_process=1;

//---
//** GET BOTH press and flow samples.
//** Press assumed chan 0, flow chan 1
GetADSSamples(&pressAD, &flowAD);

//---
//** CONVERT samples to voltages
//ADSampleToVoltage(&pressAD, &flowAD, &pressval, &flowval);
pressval = pressAD;
flowval = flowAD;

//---
//** CONVERT Voltages to Scaled values
ADVoltagesToScaledValues(&pressval, &flowval);

 //Now this converts Frac16 just by offset

//---
//** FILTER new sample in IIR filter
DualFilterLoop4Pole100_500(&pressval, &flowval, FALSE);

//---
//** PLACE scaled values into proper circular buffer position
*press++ = pressval;
*flow++ = flowval;

//floatval = (float)pressval;
//outdecfloat(SCI0DR, floatval);
//floatval = (float)flowval;
//outdecfloat(SCI0DR, floatval);

//---
//** CALCULATE RESISTANCE at this press - flow pair
//Now use scaled values for rd to facilitate minrd and
//maxrd selection for finding
//most common rd value later...this then uses values
//already shown to work in
//earlier LPT port prototype of the system
g_accumfloat1 = (float)pressval;
g_accumfloat2 = (float)flowval;

*rd = g_accumfloat1/g_accumfloat2; //divide
*rd = *rd * pressspan / flowspan; //scale

//have potential for divide by zero here with the frac. numbers:
//if(*rd > MAXRDALLOW || *rd < MINRDALLOW)*rd=0.0;
if(g_accumfloat2==0.0)*rd=0.0; //this prevents hang on
//"inf" in outusbdecfloat
//floatval = *rd++;

160

rd++;

//StopProfileTimer();
/*if(DEBUG)
{
outsci(SCI0DR, "\15\nFirst sample: ");
outdecfloat(SCI0DR, fltpress);
outdec(SCI0DR, pressAD);
outsci(SCI0DR, "\15\nSecond sample: ");
outdecfloat(SCI0DR, fltflow);
outdec(SCI0DR, flowAD);
}*/
//StopProfileTimer();

//---
//** CHECK CIRC BUFFER - if past end, circulate to beginning
if(press > (pbpress + SAMPBUFLEN - 1))
{

press = pbpress;
flow = pbflow;
rd = pbrd;
//drd = pbdrd;
//Don't increment drd = not a TRUE buffer
//- only rewritten array

}

//---
//** CHECK for full buffer (calls >= PERFBUFFERLEN) -
//** matters only at startup
//** if buffers are full, then set 'process' to begin
//** processing buffers
if(DEBUG) //increment always if DEBUG to keep track of

//time for simulated breath
sampcnt++;

if(!process)
{

if(!DEBUG)
sampcnt++;

if (sampcnt >= SAMPBUFLEN)
process = 1;

}

//--
//** if BUFFERS FULL with samples, then PROCESS BUFFER
if(process >= 1)
{

//cout<< "process in run entered." << endl;

//--
//** COPY CIRC buffers into arrays at proper endpoints
//OutFile << "About to copy arrays..." << endl;
CopyCircArray(rd, rdtemp, pbrd, pbrdtemp, SAMPBUFLEN);
CopyCircArrayFrac(press, presstemp, pbpress, pbpresstemp,

SAMPBUFLEN);
CopyCircArrayFrac(flow, flowtemp, pbflow, pbflowtemp,

SAMPBUFLEN);

//--
//** COMPARE - DEBUG only - Use circ buffer methods for

161

//** exec time check
//DifferentiateArrayCirc();

//--
//** DIFFERENTIATE rdtemp array
DifferentiateArray(rdtemp, drd, SAMPBUFLEN);

//--
//** FIND MCV RD (Most common value of device resistance)
intprocessok = FindMostCommonValue(rdtemp, SAMPBUFLEN,

MINRD, MAXRD, NUMBINS, &rthres);
if(intprocessok == APDFAIL)

rthres = NOMINALRTHRES;
//OutFile << "rthres: " << rthres << endl;

//--
//** DETERMINE if FULL PERT present in data and greater than
//** MINPERTLEN
intprocessok = FullPertPresent(rdtemp, drd, SAMPBUFLEN,

&start, &stop, &rthres);

if(intprocessok != APDFAIL)
{

//if(TALK)outsci(SCI0DR, "PertFnd");
//if(TALK)outdec(SCI0DR, stop-start);
//---
//** DETERMINE if FLOW is CONSISTENT DIRECTION and
//** ABOVE THRESHOLD
//** If consistent, then calc respiratory resistance
intprocessok = ConsistentDirection(flowtemp,

SAMPBUFLEN, &start, &stop);
//outsci(SCI0DR, "Consistent Direction? ");
//outdec(SCI0DR, intprocessok);
if(DEBUG)outsci(SCI0DR, "\15\n");
if(intprocessok == INH)
//at each call of this procedure, these pointers
//are initialized to ex vars
{

pcur_rrvals = &inrrvals;
pbegin_rrvals = &pbinrrvals;
pcur_rrvalstemp = &inrrvalstemp;
pbegin_rrvalstemp = &pbinrrvalstemp;
prr = &inrr;
prrvalcnt = &inrrvalcnt;
pwtrr = &inwtrr;
if(DEBUG)outsci(SCI0DR, "I ");

}
if(intprocessok != APDFAIL)
{

//---
//** IF OK, CALC RESPIRATORY RESISTANCE
//** Calculate respiratory resistance
intprocessok = CalcRespResist(presstemp,

flowtemp, SAMPBUFLEN, &start, &stop,
 &intprocessok, prr);

if(intprocessok != APDFAIL)
{

//Toggle Yellow LED (or some LED

162

//to show ack
if((PEDR & 0x0008) == 0)
{

PEDR = PEDR | 0x0008;
}else{

PEDR = PEDR & ~(0x0008);
}

//Check pert frequency
//SAMPFREQ: because run mode
//sample rate is 250 Hz
curfreq = (SAMPFREQ / 2) / (stop - start);
//curfreq >>= 1; //divide by two
*freq++ = curfreq;

*(*pcur_rrvals)++ = *prr;
//if(DEBUG)cout<< "rr pt: " << *prr;

floatval = *prr;
//set value to USB host as the rr val.
*pwtrr += *prr;
//accum rrs in proper number -
//this will be replaced
//by a weighted average value in the
//below code, if that
//option is selected...otherwise, these
//values are accum
//until max num perts in both directions is
//collected
//then values are divided, avged, and
//displayed.
//assumes that in CalcRespResist, pressval

 //and flowval are set to
//actual measured flow and pressure values

 //at the perturbation value

if((*prrvalcnt) < RRVALLEN)
{

(*prrvalcnt)++;
//floatval = *prr; //*pwtrr;
//for stream to host

if((*prrvalcnt) >= RRVALTILLDISP)
{
//*pwtrr = *prr;
if(USEWEIGHTEDAVERAGE)
{
*pwtrr = WtAverage((*pbegin_rrvals),

(*prrvalcnt), LINEARAVG);
lcdplacecounter =
OutputRespResistValue(pwtrr);
}else{
lcdplacecounter =
OutputRespResistValue(prr);
}

wtavfreq = WtAverage(pbfreq,
(*prrvalcnt), LINEARAVG);

163

//LED notice that not full
//if(DEBUG)cout << ", rr ind buff
//not full # rr vals="<<
//(*prrvalcnt);

}
}
else
{

(*prrvalcnt)++;
//added to keep incrementing number of
//perts collected
//floatval = *prr; //*pwtrr;
//for stream to host
CopyCircArray((*pcur_rrvals),
(*pcur_rrvalstemp), (*pbegin_rrvals),
(*pbegin_rrvalstemp), RRVALLEN);

CopyCircArray(freq, freqtemp, pbfreq,
pbfreqtemp, RRVALLEN);

//*pwtrr = *prr;
if(USEWEIGHTEDAVERAGE)
{
*pwtrr = WtAverage
((*pbegin_rrvalstemp), RRVALLEN,
LINEARAVG);
lcdplacecounter = OutputRespResistValue
(pwtrr);
}else{
lcdplacecounter = OutputRespResistValue
(prr);
}
wtavfreq = WtAverage(pbfreqtemp,
RRVALLEN, LINEARAVG);

//LED notice that ok

}

//Adjust PWM frequency if necessary
//using wtavfreq ends up with too
//much delay in the control loop
//with the PWM_PD_STEP gain, get a
//lot of overshoot/ undershoot
if(SERVOPWM)
{

if(curfreq > MAXPERTFREQ)
{
duty -= PWM_PD_STEP;
if(duty < PWM_PD_MIN)duty =
PWM_PD_MIN; //set floor for PWM

SetPWMDuty(&duty);
}
if(curfreq < MINPERTFREQ)
{

duty += PWM_PD_STEP;
SetPWMDuty(&duty);

}
}//SERVOPWM

164

if(LOGdata)
{

if(pwtrr = &inwtrr)
{

inwtrrdisp = (*pwtrr);
exwtrrdisp = 0.0f;

}
if(pwtrr = & exwtrr)
{

inwtrrdisp = 0.0f;
exwtrrdisp = (*pwtrr);

}
}

if((*pcur_rrvals) > ((*pbegin_rrvals) +
RRVALLEN - 1))
{

(*pcur_rrvals) = (*pbegin_rrvals);
freq = pbfreq;
//if(VERBOSE) cout << "Reset rrvals
pointer to beginning: " <<
(*pcur_rrvals) << endl;

}
//if(DEBUG)DebugPrintArray((*pbegin_rrvals),
// (*prrvalcnt), "RR vals");
//if(DEBUG)cout << ", wt avg wtrr: " <<
//(*pwtrr) << endl;

}
} //if(intprocessok != APDFAIL)

//--
//** ZERO OLD PERT data POINTS to go to the next
//OutFile << "Outer start: " << start << ", Outer
//stop: " << stop << endl;
intprocessok = ZeroOldPertRDPoints(rd, pbrd, (pbrd +
SAMPBUFLEN - 1), &start, &stop);

}

process++;
if(process==0x00ff)process=0x00fe;
//without this, it wraps to -32xxx
//and thus inhibits further processing
//g_process = process;

}

if((mode&USBATTACHMASK)!=0)
//if USB is attached, send out the data
{

//assumes that in CalcRespResist, pressval and flowval are
//set to
//actual measured flow and pressure values at the
//perturbation value
success = outusbdec((int)pressval);
//use instead of pressAD to get offset corrected value
success = outusbdec((int)flowval);
success = outusbdecfloat(&floatval);

}

if((mode&USBATTACHMASK)==0)

165

//if USB not attached, look for max num perts and average
{ //when max is reached

if(MAXNUMPERTS > 0)
{

/*if((inrrvalcnt >= MAXNUMPERTS) && (exrrvalcnt <
MAXNUMPERTS) && (g_process<2))

{
displayvalue1 = inwtrr / (float)MAXNUMPERTS;
g_process=2;

}

if((inrrvalcnt < MAXNUMPERTS) && (exrrvalcnt >=
MAXNUMPERTS))
{

}*/

if((inrrvalcnt >= MAXNUMPERTS) && (exrrvalcnt >=
MAXNUMPERTS))
{

//show avg RR vals and then stop the run mode
//displayvalue1 = inwtrr / (float)inrrvalcnt;
//displayvalue2 = exwtrr / (float)exrrvalcnt;
inwtrr /= (float)inrrvalcnt;
exwtrr /= (float)exrrvalcnt;

avwtrr = (inwtrr + exwtrr) / 2.0;

if(DEBUG){

outsci(SCI0DR, "MNP ");
OutputRespResistValue(&avwtrr);

}

if(USELCD){

LCDClearScreen();
outsci(SCI0DR, "Ave RR:");
LCDGoToLineTwo();
outdecfloat(SCI0DR, avwtrr);
CLS1;
outscibyte(SCI0DR, 0x54);

//turn on LCD backlight (for three minutes
//max)
CLS1; //prep for command;
outscibyte(SCI0DR, 0x42);
// 46 = off; 42 = backlight on
outscibyte(SCI0DR, 0x03);
//zero means inf minutes

}

mode |= STOPMODE;

}else{ //show percent completed on screen
if((inrrvalcnt>=RRVALTILLDISP) && (exrrvalcnt >=
RRVALTILLDISP))
{

166

intprocessok = inrrvalcnt < exrrvalcnt ?
inrrvalcnt: exrrvalcnt;
//(inrrvalcnt + exrrvalcnt)/2;
//avg num of perts so far
intprocessok *= 100;
//percent of total needed

intprocessok /= MAXNUMPERTS;
//fraction of total needed

if(intprocessok >= last10){
CLS1; //prep for command
outscibyte(SCI0DR, 0x47);
//go to cursor position
outscibyte(SCI0DR, 0x05);
//column 5 of 8
outscibyte(SCI0DR, 0x01);
//row 1

outsci(SCI0DR, ":");
//no digit there
//for very large number of one
//type of pert...
//if(last10 > 90){
// last10=90;}
outscibyte(SCI0DR, ((last10/10)
+0x30));
//first digit - add 0x30 to make
//ascii 1 = digit number 1
outsci(SCI0DR, "0%");

last10 += 10;
//increment to next 10 percent mark

CLS1;
outscibyte(SCI0DR, 0x47);
outscibyte(SCI0DR, lcdplacecounter+1);
outscibyte(SCI0DR, 0x02);
//go back to second line at
//last cursor position

}
}

}
} //MAXNUMPERTS>0

} //mode&USBATTACHMASK==0

if(success==APDFAIL)
{

if(DEBUG)outsci(SCI0DR, "USfx ");
//if(USELCD)outscierr("USFx ");
if(USELCD)outsciusbinfo("13");
//Reset mode so no call is made again to this stuff

 //mode = (mode & ~STREAMMODE);
//already done in loop at beginning

 mode |= STOPMODE;

}

////if(LOGdata)OutFiledata<< " " << (*prr);

167

//log individual rr value
////if(LOGdata)OutFiledata<<" "<<(*pwtrr);
//log weighted avg rr value

//if(LOGdata)OutFiledata<< " " << inrr << " " << exrr << " "
// << inwtrrdisp << " " << exwtrrdisp <<
//" "
// << (*pwtrr) << " " << curfreq << " "
//<< wtavfreq;
//if(LOGdata)OutFiledata<<endl; //next line of data file for
//whatever entries placed within

/*
//if a maximum number of rr measurements has been selected i.e.
for consistent measurement,
//chech to see the criterion has been met and if so, stop the
measurement
if(MAXNUMPERTS > 0)
{

if((inrrvalcnt > MAXNUMPERTS) && (exrrvalcnt >
MAXNUMPERTS))
{

displayvalue1 = inwtrr;
displayvalue2 = exwtrr;
(*pcallmode) &= ~(RUNBIT);

//turn off run bit
(*pcallmode) &= ~(CALLMODEBITS);

//rezero callmodebits
(*pcallmode) |= ENDRUNMODE;

//set end of run mode bit
}

}

CheckButtonPress(dwUser);
*/

//StopProfileTimer();
/* if(DEBUG)

{
outsci(SCI0DR, "\15\nFirst sample: ");
outdecfloat(SCI0DR, g_accumfloat1);
outdec(SCI0DR, pressAD);
outsci(SCI0DR, "\15\nSecond sample: ");
outdecfloat(SCI0DR, g_accumfloat2);
outdec(SCI0DR, flowAD);
}

*/

// if(CHECKTIME)
// {
// //StopProfileTimer();
// }

//The following is commented out because it was used to check the
//full loop run time
//but sends '*' to the display with each LCD update and is thus
//clutters the display
//we already know that at each LCD update, samples are lost.
/*STOPCHECKTIME;

168

time = TMRA0_CNTR;
TMRA0_CNTR=0;

if(time>0x9c4){outsci(SCI0DR, "*");}
//0x4e2 is 2* 0x0271 thus twice counts

//profiling timer is set for IP/64 not IP/128
//now we are using 250 Hz in run mode so
//check timer at 2* 0x4e2 = 0x9c4
*/

/* clear compare status flags */
asm (bfclr #$8000,X:TMRB0_SCR_R);

} //TimeProcRunMode

/**/
asm Frac16 FloatToFrac(float floatin)
{

 //Convert a floating point value to a frac/int
//adapted from motorola library

//ARTF32_TO_FXS16U:
//INPUT = a, the float
//OUTPUT = y0, the fixed value

//;save sign
move a1,x0
andc #$8000,x0
tstw x0
beq ssave_positive
//;move #$8000,x:m5 ; US 06.23.99
move #$0001,x:$35//m5 ; US 06.23.99
bra ssave_done

ssave_positive:
move #0,x:$35//m5

ssave_done:
//; Save input
move a0,x0
move x0,x:$36//xlo
move a1,x:$37//xhi

//;check if input is zero
andc #$7fff,a1
tstw a1
bne not_zero
tstw x0
bne not_zero
movei#0,y0
rts

//; Check if exponent is 255
not_zero:

move x:$37,a1//xhi,a1
move a1,y0
andc #$78f0,y0 //#exp_mask,y0

169

cmp #$78f0,y0 //#exp_mask,y0
//; If it 255 (result 0), branch
beq exp_is_255

movei#$7,y0
nop
lsrr a1,y0,a
nop
nop
andc #$00ff,a1
nop
movei#127,x0
sub x0,a
tstw a1
//; If exponent is >=0, overflow occured
bge max_value
abs a
move a1,x0
move x:$37,a1//xhi,a1
move #$8,y0
cmp #15,y0
lsll a1,y0,y0
bfset#$8000,y0
cmp #15,x0
ble resume411
movei#0,y1
bra resume412

resume411:
lsrr y0,x0,y1

resume412:
;bfset #$4000,y1
move x:$36,a1//xlo,a1
move #$8,y0
lsrr a1,y0,y0
cmp #15,x0
ble resume421
movei#0,y0
bra resume422

resume421:
lsrr y0,x0,y0

resume422:
or y1,y0
//; Fall through to transfer_sign

transfer_sign:
tstw x:$35//m5
beq transfer_sign_done
clr a
move y0,a1
neg a
move a1,y0
//;move x:$35,y1//m5,y1
//;ory1,y0

transfer_sign_done:
rts

exp_is_255:

170

move a1,y0
andc #$7f,y0//frac_hi_mask,y0
cmp #$0,y0
beq hi_frac_is_zero
bne is_NaN

hi_frac_is_zero:
move x:$36,y0//xlo,y0
cmp #$0,y0
bne is_NaN
beq max_value

max_value:
movei#$7fff,y0
jmp transfer_sign

is_NaN:
movei#$7fff,y0
//SetInvalid
//bfset #$0040,x:$0000//INVALID,x:FPE_state
rts

//ENDSEC

} //FloatToFrac

/**/
asm float FracToFloat(int fraction)
{

 //Convert a fraction value to a floating point value
//Based on motorola library

//;save input
move y0,x:$37//xhi

;save sign
move y0,x0
andc #$8000,x0
tstw x0
beq ssave_positive
move #$8000,x:$32//m2

// ;negate the input to make it positive.
clr b

move y0,b1
neg b
move b1,y0

bra ssave_done

ssave_positive:
move #0,x:$32//m2

171

ssave_done:

//;check if it is zero
move y0,x0
andc #$7fff,x0
tstw x0
bne US0

//;Handle 0x8000
clr a
bfset#$8000,x:$32//m2
bcc US_ret_0
move #$BF80,a1

US_ret_0:
//; A was cleared before the branch to this.
bra end_this

US0:
movei#$8000,x0//startmask_lsl,x0
move y0,x:$36//m6
move #0,a0
movei#0,y1

US1:
lsr x0
dec y1
move x:$36,y0//m6,y0
and x0,y0
tstw y0
beq US1

//; Otherwise first 1 has being encountered
bra first_one
jmp end_this

first_one:
move y1,y0
add #127,y1 //;create exponent of the float
move y1,x:$33//m3

create_mantissa:
//; Take absolute value of y0
//; make it positive.
not y0
add #$1,y0

US2:
move x:$36,y1//m6,y1
lsll y1,y0,y1
lsl y1

//; Now y0 contains the value of the mantissa.
//; We proceed to split it up in accordance with IEEE format

move y1,a1
move #$9,y0
lsrr a1,y0,y0
move y0,a1
move #$7,y0

172

lsll y1,y0,y1
move y1,a0

//; Now move the exponent to the correct place
move x:$33,y1//m3,y1
move #$7,y0
lsll y1,y0,y1
or y1,a

//;Transfer Sign
move x:$32,y0//m2,y0
or y0,a
rts

end_this:
rts

}

/**/
int OutputRespResistValue(float * floatin)
{

 //Send out respiratory resistance value

//This routine gets individual digits in base ten for
//output routines
//Assumes:
// - type cast from float to long truncates float at its decimal
//point

//consts

//var decs
/*float rounddivisor = 0.5f;
short digit;
int digitplace = 0;
int num10divs = 0;
int multcounter = 10.0f;
int totdigout = 0;
long prevaccum = 0;
long value = 0;*/
float copyfloat = 0.0f;
static int placecounter = 0;
static short useit = 0x01;
static int rrcounter = 0;
static int useitback = 0x01;

//debug trial numbers
copyfloat = *floatin;

//floatin *= 3.999f;
// to preserve rr value in calling function

//digit = static_cast<unsigned int>(100.0f * floatin);

//process

173

//** first count number power of ten

if((mode&USBATTACHMASK)==0) //if USB is not attached, send out the data
{

if(DEBUG){
outsci(SCI0DR, "RR: ");
outdecfloat(SCI0DR, *floatin);

}

if((USELCD) && (SHOWEACHRRVAL)){
LCDClearScreen();
outsci(SCI0DR, "RR =");
LCDGoToLineTwo();
outdecfloat(SCI0DR, *floatin);

}

if((USELCD) && (!SHOWEACHRRVAL) && (SHOWRRASCIIINDICATOR)){

rrcounter++;
if(rrcounter==SHOWRRASCIIINDICATOR){

rrcounter=0; //reset it
placecounter++;
if(placecounter>8){

//should be set for not auto-wrap to stick to one
//line
useit^=0x01; //toggle useit
placecounter=0;
LCDGoToLineTwo(); //go back to start of line

//since auto-wrap is off
}
//if(!SHOWRRBACKLIGHTINDICATOR){
if(useit==0x01)outsci(SCI0DR, "-");
if(useit==0x00)outsci(SCI0DR, "_");
//}
useitback^=0x01; //each time display is updated,
//toggle backlight
if(SHOWRRBACKLIGHTINDICATOR){

if(useitback==0x01){
CLS1; //prep for command;
outscibyte(SCI0DR, 0x42);
// 46 = off; 42 = backlight on
outscibyte(SCI0DR, 0x05);
//zero means inf minutes

}
if(useitback==0x00){

CLS1; //prep for command
outscibyte(SCI0DR, 0x46); //off

}
}

}
}

}//if((mode&USBATTACHMASK)!=0) //if USB is not attached, send out the
data
//if USB is attached, don't send out data since this eats up bandwidth

*floatin = copyfloat; //if debug, return original ref value to
original state

174

return placecounter;
} //OutputRespResistValue

/**/
int ZeroOldPertRDPoints(float* curloc, float* begin, float* end, int *
start, int * stop)
{

 //Get rid of data points that have already been
 //used for a calculation

//Assumes:
// - start is first point above threshold
// - stop is first point below threshold
// - curloc is current location of pointer in array to be zeroed
//- it
// refers to the location with the oldest data point (just
//incremented
// after the newest data point collected).
// - curloc is set to beginning of circ buf before entering this
//function if it needed to wrap

int i = 0;

//process
float* first = curloc + *start;
int cnt = *stop - *start + 1;
//for 0 to < cnt

//need to do endpoint checking and wrapping
if(first > end)

first = (first - end) - 1 + begin;

for(i = 0; i < cnt; i++)
{

*first++ = 0.0f;
if(first > end)

first = (first - end) - 1 + begin;
}

//OutFile << "Pert Erased: Num pts erased + 1 =" << cnt << endl;
//DebugPrintArray(rd, SAMPBUFLEN, "rd just after erase pts.");

return OK;
} //ZeroOldPertRDPoints

/**/
float WtAverage(float* inarray, int toteles2avg, const int type)
{

 //Calculate a weighted average of a buffer

//toteles2avg = total elements to average starting from 0
// - thus toteles2avg = 3 averages elements 0, 1, 2.

175

//consts

//var decs
float eles = 0.0f;
float numer = 0.0f;
float denom = 0.0f;
float fi = 0.0f;
float* curloc = inarray + toteles2avg - 1;
int i = 0;

//process

if(type == EQUALAVG)
{

for(i = 0; i<toteles2avg; i++)
{

numer += *inarray++;
denom += 1.0;

}
}

if(type == SUM)
{

for(i = 0; i<toteles2avg; i++)
{

numer += *inarray++;
}
denom = 1.0;

}

if((type == LINEARAVG) || (type == NONLINAVG))
{

if(type == LINEARAVG)
{

eles = (float)toteles2avg;
}

if(type == NONLINAVG)
{

eles = (float)toteles2avg * (float)toteles2avg;
}

for(i = (toteles2avg-1); i >= 0; i--)
{

fi = (((float)i) + 1.0f) / eles;
numer += ((float)(*curloc--)) * fi;
denom += fi;

}
}

if(DEBUG)

//OutFile << "Avg RR Val: " << (numer/denom) << "for num
//pts: " << toteles2avg << endl;

return (numer / denom);
} //WtAverage

176

/**/
int CalcRespResist(Frac16* pressdata, Frac16* flowdata, const int
arraysize, int * start, int * stop, int * breathdir, float* rr)
{

//Calculate respiratory resistance as delta press over delta
//flow

//assumes:
// - start is first point above rd threshold
// - stop is first point below rd threshold

//consts

//var decs
//float x1 = 0.0f;
//float x2 = 0.0f;
float mf = 0.0f;
//float bf = 0.0f;
float mp = 0.0f;
//float bp = 0.0f;
float virtflow = 0.0f;
float virtpress = 0.0f;
float fbreathdir = 0.0f;
int dsample = 0;
int novolaccelindex = 0;
int startind = 0;
int i = 0;

//process

startind = (*start > 0 ? *start-1 : *start);
dsample = *stop - startind;

//actual number of intervals
//x1 = startind * DT;
//x2 = stop * DT;

fbreathdir = (float)(*breathdir);

//** find flow and press fit line params
//mf = FracToFloat(flowdata[*stop] - flowdata[startind]);
mf = (float)(flowdata[*stop] - flowdata[startind]);
mf = (mf) / (dsample); //(y2-y1) / (x2-x1)
//mb = flowdata[startind] - mf * x1;

//y1 - mf * x1
//OutFile << "flow slope: " << mf << endl;

//mp = FracToFloat(pressdata[*stop] - pressdata[startind]);
mp = (float)(pressdata[*stop] - pressdata[startind]);
mp = (mp) / (dsample);
//bp = pressdata[startind] - mp * x1;
//OutFile << "press slope: " << mp << endl;

//** find max or min of flow - point of no volume accel i.e.
//Vdotdot = 0
novolaccelindex = startind;
for(i = startind; i< *stop; i++)
{

177

if(flowdata[i] * fbreathdir < flowdata[novolaccelindex] *
fbreathdir)

novolaccelindex = i;
}

//** calculate delta p to delta vdot ratio
virtflow = mf*novolaccelindex + (flowdata[startind] - mf *
startind);
virtpress = mp*novolaccelindex + (pressdata[startind] - mp *

startind);

*rr = (pressdata[novolaccelindex] - virtpress) / (virtflow -
flowdata[novolaccelindex]);

//write value for proper sync'd output of rr with corresponding
//pressval and flowval
flowval = flowdata[novolaccelindex];

if(SENDAVRVFRATRR){//if sending virtual and actual flows at RR to
//host in USB

pressval = (int)virtflow;//should be unscaled value still at
//this point, as with other output values (to USB)

}else{
pressval = pressdata[novolaccelindex];

}

//For the DSP56803 version, a final scaling needs to be applied
//to the RR
//since only offsets are adjusted prior to converting the
//fraction to float
//Use:
// (pressspan in real per volts or dig)
// rr = rr * ------------------------------------
// (flowspan in real per volts or dig)
*rr = *rr * pressspan / flowspan;

//OutFile << "novolaccelindex: " << novolaccelindex << endl;
//OutFile << "virtflow: " << virtflow << endl;
//OutFile << "virtpress: " << virtpress << endl;
//OutFile << "rr within func: " << rr << endl;

//** check proper rr proportions - rr should always be positive
if((virtflow - flowdata[novolaccelindex]) == 0)return APDFAIL;
if(flowdata[novolaccelindex]<0){ //if negative number

//and virtflow >= actual flow (less negative)
if(virtflow >= (flowdata[novolaccelindex]-MINPERT))return

APDFAIL;
if(virtpress <= (pressdata[novolaccelindex]+MINPERT))return

APDFAIL;
}
if(flowdata[novolaccelindex]>0){ //if positive number

//and virtflow <= actual flow (less positive)
if(virtflow <= (flowdata[novolaccelindex]+MINPERT))return

APDFAIL;
if(virtpress >= (pressdata[novolaccelindex]-MINPERT))return

APDFAIL;
}
if(*rr > 0 && *rr < MAXRR)

return OK;

178

else
return APDFAIL;

} //CalcRespResist

/***/
int ConsistentDirection(Frac16* inarray, const int arraysize, int *
start, int * stop)
{

 //Determine if the points in a potential perturbation
 //all have same flow direction

//looks from point just after pert starts above threshold
//to point just before it falls below threshold to determine
//if all points are with same flow direction and in sufficient
//flow range

//assumes:
// - start is first point above threshold
// - stop is point just below threshold
// - exhalation is positive

//inputs:
// inarray should be flow array

//consts

//var decs
int i = 0;
int flowdir = INH;
int fail = OK;
int nextflowdir = INH;
//int exhisneg = 0;

//exhisneg = EXH < 0 ? -1 : 1;

//process
//note: multiplying array element by flowdirection forces
//all values compared to lowflow to be positive
flowdir = inarray[*start] EXHISNEG ? EXH : INH;
if (inarray[*start] * (float)(flowdir) < MINFLOW)

fail = APDFAIL;
for(i=*start+1; i<*stop; i++)
{

nextflowdir = inarray[i] EXHISNEG ? EXH : INH;
if (nextflowdir != flowdir)

fail = APDFAIL;
if (inarray[i] * (float)(nextflowdir) < MINFLOW)

fail = APDFAIL;
flowdir = nextflowdir;

}

//if consistent flow direction all above threshold, return the
flow direction
if(fail == OK)

return flowdir;

179

else
return APDFAIL;

} //ConsistentDirection

/**/
int FullPertPresent(float* inarray, float* dinarray, const int
arraysize, int * start, int * stop, float * thres)
{

 //Determine if a full perturbation is present
 //based on rise above and fall back below
 //threshold with proper slope at each end.

//consts

//var decs
float* inarray_1 = inarray; //to make sure that pert
//start just after higher than thres
int foundstart = FALSE; //start of pert found
int foundstop = FALSE; //end of pert
//bool okpertlen = 0; //length of pert ok?
int i = 1;

//process
inarray++; //go to second array element: 1
//(base 0) for drd have valid value
dinarray++; //go to second array
//element: 1 (base 0)

//DebugPrintArray(rdtemp, SAMPBUFLEN, "rdtemp before start
//loc.");
//DebugPrintArray(drd, SAMPBUFLEN, "drd before start loc.");
while((i<arraysize-2) && (foundstart == FALSE))
{

//OutFile << " Start find index: " << i;
if((*inarray > *thres) && (*inarray_1 <= *thres) &&
(*dinarray > 0.0f))
{

foundstart = TRUE;
*start = i;
*stop = *start;
//OutFile << "Inner start: " << start << endl;

}
inarray_1++; inarray++; dinarray++; i++;

}

if(foundstart == TRUE)
{

//OutFile << "Stop at end second to last of array? " << ((i
/< arraysize-1) && (foundstop == FALSE)) << endl;
while((i < arraysize-1) && (foundstop == FALSE))
{

//OutFile << " Stop find index: " << i;
//OutFile << "drd: " << *dinarray << ", i: " << i << "
//";
if(*inarray <= *thres && *dinarray <= 0.0f)
{

180

foundstop = TRUE;
*stop = i;
//OutFile << "Inner stop: " << stop << endl;

}
inarray++; dinarray++; i++;

}
}

//Check to see that start and stop were found for pert. If //
length is less than min

//pert length, then zero the rd points to get rid of the useless
//data.

if(foundstart == TRUE && foundstop == TRUE)
{

if((*stop - *start) > MINPERTLEN)
{

//if(LOGdata)OutFiledata<<", pertlengthfound ok: " <<
//(stop-start) << endl;
return OK;

}
else
{

i = ZeroOldPertRDPoints(rd, pbrd, (pbrd + SAMPBUFLEN -
1), start, stop);
return APDFAIL;

}
}
else

return APDFAIL;
} //FullPertPresent

/***/
int* MaxInt(int* inarray, const int arraysize)
{

 //Find the maximum value of an integer array

//consts

//var decs
int maxvalindex = 0;
int i = 0;

//process
for(i = 0; i<arraysize; i++)
{

if(inarray[i] >= inarray[maxvalindex])
maxvalindex = i;

}

//OutFile << "max value index: " << maxvalindex << endl;
return &inarray[maxvalindex];

} //MaxInt

/***/

181

float* MaxFloat(float* inarray, const int arraysize)
{
 //Find the maximum value of a floating point array

//consts

//var decs
int maxvalindex = 0;
int i = 0;

//process
for(i = 0; i<arraysize; i++)
{

if(inarray[i] >= inarray[maxvalindex])
maxvalindex = i;

}

//OutFile << "max value index: " << maxvalindex << endl;
return &inarray[maxvalindex];

} //MaxFloat

/***/
int FindMostCommonValue(float* inarray, const int arraysize,

const float min, const float max, const
int numbins, float * mcv)
{

 //Find the most common value in the array
 //based on bins for floating point values
 //This is used to set the threshold for
 //resistance determination

//Assumes:
// - positive values only
// this function executes fastest out of various methods so far

//consts

//var decs
int i = 0;
int index = 0;

//index tracker
int NumInBin[NUMBINS] = {0};
float interval = 0.0f; //(max - min) / ((float)numbins);
//bin interval
float floatval = 0.0f;

//process
floatval = *MaxFloat(inarray, arraysize);
floatval = max > floatval ? max : floatval;

interval = (floatval - min) / ((float)numbins);

//count values falling within each bin
for(i = 0; i < arraysize; i++)
{

if(*inarray >= min)

182

{
index = (int)((*inarray - min + ERRPAD) / interval);
//OutFile << "Index" << index << " for val: " <<
//*inarray << "at i = " << i << endl;
if(index < numbins)

NumInBin[index]++;
}
inarray++;

}

//subtract pointers to get index of max value, multiply by
//interval and add
//one interval to get upper bound of bin as most common value
//Old Method for APD-SA: add one interval to bin for threshold
//*mcv = (interval * (MaxInt(NumInBin, numbins) - NumInBin)) +
//THRESPAD + min;
//above was inconsistent with APD100, using exact APD100 method
//(*1.25)
//which gives higher threshold, but may keep data more consistent
//with past collection
*mcv = 1.25 * ((interval * (MaxInt(NumInBin, numbins) -
NumInBin)) + min);

//OutFile << "Index of MCV: " << (MaxInt(NumInBin, numbins) -
//NumInBin) << ", Num Occurences: "
// << (*MaxInt(NumInBin, numbins))
// << ", interval: " << interval << ", Num at bin 15: "
// << (NumInBin[15]) << ", Num at bin 16: " << (NumInBin[16])
//<< endl;

if(1)

return OK;
else

return APDFAIL;

} //FindMostCommonValue

/**/
void DifferentiateArray(float* inarray, float* outarray, const int
arraysize)
{

 //Differentiate array starting with first values
 //to the end

//consts

//var decs
float* pminus1;
int i = 0;

//process
*outarray++ = 0.0f; //outarray[0] = 0
pminus1 = inarray++; //pminus = 0, inarray = 1
for(i=1; i<arraysize-1; i++)
{

*outarray++ = *(++inarray) - *pminus1++; //pre-inc inarray
}

183

*outarray = 0.0f; //zero last element

return;
} //DifferentiateArray

/**/
void CopyCircArrayFrac(Frac16* srcarr, Frac16* destarr, Frac16*
bsrcarr,

 Frac16* bdestarr, const int length)
{

 //Copy Array for ints from source buffer to
 //destination buffer such that first
 //item in destination buffer is the
 //first item in the time sequence.

//assumes input source location is incremented to one new
//location, not yet filled.
//assumes global arrays
//this function fills locations but doesn't update pointers

//var decs
Frac16* pcurloc;
int i = 0;

//process
pcurloc = srcarr;
destarr = bdestarr;

for(i = (srcarr - bsrcarr); i < length; i++)
//copy last part of rd array
{

*destarr++ = *pcurloc++;
}

pcurloc = bsrcarr;
for(i = 0; i < (srcarr - bsrcarr); i++)

//copy first part of rd array
{

*destarr++ = *pcurloc++;
}

return;
} //CopyCircArrayFrac

/**/
void CopyCircArray(float* srcarr, float* destarr, float* bsrcarr,
float* bdestarr, const int length)
{

 //Copy Array from source buffer to
 //destination buffer such that first
 //item in destination buffer is the
 //first item in the time sequence.

184

//assumes input source location is incremented to one new
//location, not yet filled.
//assumes global arrays
//this function fills locations but doesn't update pointers

//var decs
float* pcurloc;
int i = 0;

//process
pcurloc = srcarr;
destarr = bdestarr;

for(i = (srcarr - bsrcarr); i < length; i++)
//copy last part of rd array
{

*destarr++ = *pcurloc++;
}

pcurloc = bsrcarr;
for(i = 0; i < (srcarr - bsrcarr); i++)

//copy first part of rd array
{

*destarr++ = *pcurloc++;
}

return;
} //CopyCircArray

/**/
static void DualFilterLoop4Pole100_500(Frac16* valio1, Frac16* valio2,
const int reset)
{

 //This is implementation of an infinite impulse
 //digital filter - Bessel, see section below
 //for poles, cutoff freq.

static float xv1[NZEROS+1] = {0.0f};
static float yv1[NPOLES+1] = {0.0f};
static float xv2[NZEROS+1] = {0.0f};
static float yv2[NPOLES+1] = {0.0f};
int ii = 0;

float _valinout1 = 0.0f;
float _valinout2 = 0.0f;
float* valinout1 = &_valinout1;
float* valinout2 = &_valinout2;

//*valinout1 = FracToFloat(*valio1);
//*valinout2 = FracToFloat(*valio2);
*valinout1 = (float)(*valio1);
*valinout2 = (float)(*valio2);

185

//10 Pole
if(reset == FALSE)
{

xv1[0] = xv1[1]; xv1[1] = xv1[2]; xv1[2] = xv1[3]; xv1[3] =
xv1[4]; xv1[4] = xv1[5]; xv1[5] = xv1[6]; xv1[6] = xv1[7];
xv1[7] = xv1[8]; xv1[8] = xv1[9]; xv1[9] = xv1[10];

 xv1[10] = *valinout1 / GAIN;
 yv1[0] = yv1[1]; yv1[1] = yv1[2]; yv1[2] = yv1[3]; yv1[3] =

yv1[4]; yv1[4] = yv1[5]; yv1[5] = yv1[6]; yv1[6] = yv1[7]; y
v1[7] = yv1[8]; yv1[8] = yv1[9]; yv1[9] = yv1[10];

 yv1[10] = (xv1[0] + xv1[10]) + 10 * (xv1[1] + xv1[9]) + 45 *
(xv1[2] + xv1[8])

 + 120 * (xv1[3] + xv1[7]) + 210 * (xv1[4] + xv1
[6]) + 252 * xv1[5]

 + (-0.0101977570 * yv1[0]) + (0.1490792186 *
yv1[1])

 + (-0.9942499194 * yv1[2]) + (3.9879880270 *
yv1[3])

 + (-10.6669162260 * yv1[4]) + (19.9083721130 *
yv1[5])

 + (-26.2993670320 * yv1[6]) + (24.3276134390 *
yv1[7])

 + (-15.1148787730 * yv1[8]) + (5.7112536127 *
yv1[9]);
*valinout1 = yv1[10];

//process second val
xv2[0] = xv2[1]; xv2[1] = xv2[2]; xv2[2] = xv2[3]; xv2[3] =
xv2[4]; xv2[4] = xv2[5]; xv2[5] = xv2[6]; xv2[6] = xv2[7];
xv2[7] = xv2[8]; xv2[8] = xv2[9]; xv2[9] = xv2[10];

 xv2[10] = *valinout2 / GAIN;
 yv2[0] = yv2[1]; yv2[1] = yv2[2]; yv2[2] = yv2[3]; yv2[3] =

yv2[4]; yv2[4] = yv2[5]; yv2[5] = yv2[6]; yv2[6] = yv2[7];
yv2[7] = yv2[8]; yv2[8] = yv2[9]; yv2[9] = yv2[10];

 yv2[10] = (xv2[0] + xv2[10]) + 10 * (xv2[1] + xv2[9]) + 45 *
(xv2[2] + xv2[8])

 + 120 * (xv2[3] + xv2[7]) + 210 * (xv2[4] + xv2
[6]) + 252 * xv2[5]

 + (-0.0101977570 * yv2[0]) + (0.1490792186 *
yv2[1])

 + (-0.9942499194 * yv2[2]) + (3.9879880270 *
yv2[3])

 + (-10.6669162260 * yv2[4]) + (19.9083721130 *
yv2[5])

 + (-26.2993670320 * yv2[6]) + (24.3276134390 *
yv2[7])

 + (-15.1148787730 * yv2[8]) + (5.7112536127 *
yv2[9]);
*valinout2 = yv2[10];

}

186

//NEED TO CONVERT FLOAT BACK TO FRAC16 and WRITE OUT TO REFs
//*valio1 = FloatToFrac(*valinout1);
//*valio2 = FloatToFrac(*valinout2);
*valio1 = (int)(*valinout1);
*valio2 = (int)(*valinout2);

if(reset == TRUE)
{

for(ii = 0; ii< (NPOLES+1); ii++)
{

yv1[ii] = 0.0f;
yv2[ii] = 0.0f;

}
for(ii = 0; ii < (NZEROS + 1); ii++)
{

xv1[ii] = 0.0f;
xv2[ii] = 0.0f;

}
}

return;

} //DualFilterLoop4Pole100_500

/**/
print_array(int arr[], int length)
{

 //For debugging, print array to screen.

int i;
outsci(SCI0DR,"\15\nArray = ");
for (i=0;i<length;i++)
{

outdec(SCI0DR,arr[i]);
}
outsci(SCI0DR,"\n");

}

/**/
void swap (int *a, int *b)
{
 //swap values

int c = *a;
*a = *b;
*b = c;

}

/**/
/* I/O routines for SCI (i.e. PC hyperterm or minicom communication) */
void inscichar (int *a,char *b)
{
 //Read character in from serial port
 //this is from Peter Gray example
 int status;

187

 do status = SCI0SR; while ((status&0x3000)!=0x3000);
 *b = *a;
}
/**/
void LCDGoToLineTwo(void)
{

 //Just like the title says.

outscibyte(SCI0DR, 0xFE); //prepare to receive command
outscibyte(SCI0DR, 0x47); //go to position
outscibyte(SCI0DR, 0x01); //column 1 base 1
outscibyte(SCI0DR, 0x02); //row 2 base 1

}
/**/
void LCDClearScreen(void)
{

 //Just like the title says.

CLS1;
CLS2;

}
/**/
void outscibyte (int *a, const int b)
{

 //send byte out of serial port
 //this is from Peter Gray example

int status;

 do status = SCI0SR; while ((status&0xC000)!=0xC000);
 *a = b;
 do status = SCI0SR; while ((status&0xC000)!=0xC000);

}
/**/
void outscierr(char *b)
{

 //send out error code to LCD display

LCDClearScreen();
outsci(SCI0DR, "Err: ");
//outsci(SCI0DR, "->USB<-");//use this instead since in debugged
//version,
//code numbers will signify error type, but an error probably
//means normal
//functioning in which a timeout is used to stop an operational
//mode

LCDGoToLineTwo();

outsci(SCI0DR, b);

}
/**/
void outsciusbinfo(char *b)
{

188

LCDClearScreen();
outsci(SCI0DR, "->USB<-");//use this instead since in debugged
//version,
//code numbers will signify error type, but an error probably
//means normal
//functioning in which a timeout is used to stop an operational
//mode

LCDGoToLineTwo();

outsci(SCI0DR, b);

}

/**/
void outsci (int *a,char *b)
{
 //send out integer or string via serial port
 //this is from Peter Gray example

 unsigned int status;
 while (*b !=0) {
 do status = SCI0SR; while ((status&0xC000)!=0xC000);
 *a = *b;
 *b++;
 }
 do status = SCI0SR; while ((status&0xC000)!=0xC000);
}
/**/
void outscichar (int *a,char *b)
{

 //This is raw send of character out of serial
 //port
 //from Peter Gray example

 int status;
 do status = SCI0SR; while ((status&0xC000)!=0xC000);
 *a = *b;
 do status = SCI0SR; while ((status&0xC000)!=0xC000);
}
/**/
void outdec (int *chan, int val)
{

 //send decimal integer out via serial port
 //this is from Peter Gray example

 unsigned int u,t;
 char c;
 t = 10000;
 do {
 u = 0;
 while (val>=t) { val -= t; u++; }
 c = '0' + u;
 outscichar (chan,&c);
 t /= 10;
 } while (t>0);
}
/**/

189

void outdecfloat (int *chan, float floatin)
{

 //Send out floating point value
 //to serial port

//var decs
float rounddivisor = 0.5;
short digit;
int digitplace = 0;
int num10divs = 0;
float multcounter = 10.0;
int totdigout = 0;
int prevaccum = 0;
int value = 0;
float copyfloat = 0.0;
char c;
int i;

//debug trial numbers
copyfloat = floatin;

//floatin *= 3.999f;
// to preserve rr value in calling function

//digit = static_cast<unsigned int>(100.0f * floatin);

//process

//** first first check for negative and then abs
if(floatin < 0.0)
{

c = '-';
outscichar(chan, &c);
floatin = floatin * -1.0;

}

//** first count number power of ten
while((int)(floatin / multcounter) != 0)
{

num10divs++;
multcounter *= 10.0;

}
//** loop to output each digit
totdigout = num10divs + 1 + DIGOUTPRECIS;
for(i = 0; i < totdigout; i++)
//to prep for rounding:

rounddivisor /= 10.0;
// - create 5 digit to add to LSDig
floatin /= multcounter;
//start with decimal at beginning
floatin += rounddivisor;
//add the 5 to LSDig
multcounter = 10.0;
//reset multcounter
//OutFile << "floatin: " << floatin << endl;

for(i = 0; i < totdigout; i++) //just changed this to < from <=
{

190

//OutFile << "totdigout: " << totdigout << endl;
prevaccum *= 10;
value = (long)(floatin * multcounter);
digit = (short)(value - prevaccum);
//OutFile << "floatin * multcounter: " << (value)
//<< ", (short)(floatin * multcounter): " << digit << endl;
multcounter *= 10.0;
prevaccum = value;

//output'digit' value here
//for decimal place on MAX and LED chips use
//digitplace == DPDIG
digitplace = totdigout - i;
if(digitplace == (DPDIG-1)) //might need decimal place
{

c = '.';
outscichar(chan, &c);

}
c = '0'+digit;

 outscichar (chan,&c);

/*
if(USEMAX7221)
{

digitplace = totdigout - i;
if(digitplace == 4 && digit == 0)digit = 0x0f;
//if MSD is zero, blank it
if(digitplace == DPDIG)digit |= 0x80;
//turn on dec pt if necess
WriteOutDigitMAX7221(digit, digitplace);

}
else
{

digitplace = totdigout - i - 1;
WriteOutDigit4511(digit, digitplace);

}
//LoopWait(1000);
*/

}

floatin = copyfloat;
//if debug, return original ref value to original state

}
/**/
void outscihex (int *a,int b)
{

 //send hex value out of serial port
 //this is from Peter Gray's example

 int c;
 int r;
 char t[5];
 c = 3;
 while (c>=0) {
 r = b&0x000F;
 if (r < 10)
 t[c] = '0'+r;

191

 else
 t[c] = 'A'+((r)-10);
 b >>= 4;
 b = b&0x0FFF;
 c--;
 }
 t[4] = 0;
 outsci (a,t);
}

/***/
int SendAckToUSB(void)
{

//send ack byte to USB portA via porta 803

int i = 0x00;
int wdog = 0x0000;

PADDR = DT_USB_DDR; //set pins to out
USB_DSP_ACK; //send ACK byte to USB
DR_to_USB; //interrupt USB to receive data
do{

i=USB_ACK;
wdog++;

} while(i==0 && wdog<0xfff);
//wait for USB to say ok I heard your ACK
//at 80MHz, 10 instructions per loop
//fff=4095 is about 0.8 ms
//reset the data ready flag - hopefully this will avoid unwanted and
//further INTs
//on the USB - though I don't know if this is true...question for EZ-
//USB
//if INT6 (edge-sensitive) is latched, but not cleared when the int
//flag
//is cleared from within the ISR, will another INT6 be flagged? even
//though
//there was not an actual transition? we shall see...
//NDR_to_USB;
//yup, it looks as if this is the case...how annoying, though
///////should
//have written the NDR anyway to be sure, ya know...anyway, at least
//now I know.

//if not an overflow of watchdog, then continue ack cycle
if(wdog<0xfff)
{

wdog=0; //reset wdog for next wait...

do {
i=USB_ACK;
wdog++;

} while(i!=0 && wdog<0xfff);
//wait for USB to finish saying ok

192

}

if(wdog>=0xfff)
{

return APDFAIL;
if(DEBUG)outsci(SCI0DR, "AF:ACK2USB");
if(USELCD)outscierr("A2Ux");

} else
return OK;

}

/**/
#pragma interrupt saveall
void isrIRQB ()
{

 //ISRB is the USB control interrupt
 //IRQ B is triggered and then data is read
 //from port to determine type of action to
 //complete

//Some information for you:
//IRQB is second highest priority interrupt and is en/dis
//by IPR bit 4 - it is second in priority to IRQA and
//then to the level 1 non-maskable interrupts
//thus you cannot watchdog a routine called from within
//it...because the IRQ will never be interrupted by
//lower priority interrupts - even if set to highest
//priority as a Ch6 assignable peripheral interrupt
//level....thus, just use a loop counter and break on failure
//of a routine, mkay? - you got the time it appears as
//all execution is pretty fast, and hopefully the resources
//for a non-static variable, mkay?

//This (IRQB) is a USB command assertion

static j=0;
int i;
int porta = 0x00;
int success = 0;

if(DEBUG)

outsci(SCI0DR, "Qs ");

TMRB0_CTRL = 0x0000; //Turn off any running timer

duty = 0x0000; //Turn off motor
SetPWMDuty(&duty);

IPR_W = (IPR_W & ~0x0010);// & ~0x0002); //disable IRQA
DESELECTADS; //make sure no ADS selected
NDR_to_USB; //no data to USB (don't int it)

PADDR = DF_USB_DDR; //read PA to check for appropriate USB byte
porta = PADR;

193

if(DEBUG){j++;} //number of times this called for debug stuff

if(!(mode & USBATTACHMASK))
{ //USB not yet attached

if(porta==USB_HELLO)
//proper byte from USB is preset to attach
{

success = SendAckToUSB();
//First send ACK byte to USB

//if timeout or no transfer
if(success==APDFAIL)

goto end_of_irqb;

mode = (mode | USBATTACHMASK);
//set USB_ATTACHED bit

if(DEBUG){

LCDClearScreen();
outsci(SCI0DR, "UC ");}

if(USELCD){
//LCDClearScreen();
//outsci(SCI0DR, "->USB<-");
//LCDGoToLineTwo();
//outsci(SCI0DR, "Connect");
//outsci(SCI0DR, "01"); //just use codes
outsciusbinfo("01");

}

mode |= STOPMODE;
//Set mode for poll loop

goto end_of_irqb;
//Just in case, jump to end of this

} else { //not proper byte to connect
LCDClearScreen();
if(DEBUG){

outsci(SCI0DR, "U?");
outscihex(SCI0DR, porta);}

if(USELCD){
//outscierr("U?");
outsciusbinfo("02");

}

goto end_of_irqb;

}
} else { //USB already attached

//Select command from the USB
//outsci(SCI0DR, "UA ");
switch (porta)
{

case USB_REQUEST_VARIABLES:

g_process=0;
TMRA0_CNTR=0;
STARTCHECKTIME;

194

success = SendAckToUSB();
//send ACK Byte to USB port A

g_process = TMRA0_CNTR;
STOPCHECKTIME;
TMRA0_CNTR=0;
if(DEBUG){

outscibyte(SCI0DR, 0xFE);
outscibyte(SCI0DR, 0x58);
outdec(SCI0DR, g_process);

}
g_process=0;

//if timeout or no transfer
if(success==APDFAIL)

goto end_of_irqb;

if(DEBUG){
LCDClearScreen();
outsci(SCI0DR, "UR ");}

if(USELCD){
outsciusbinfo("03");}

success = SendVars();
//send over all the variables

//if timeout or no transfer
if(success==APDFAIL)

goto end_of_irqb;

break;

case USB_HELLO:
//already connected
success = SendAckToUSB();

//if timeout or no transfer
if(success==APDFAIL)

goto end_of_irqb;

//connected bit is already set so leave it alone
if(DEBUG){

LCDClearScreen();
outsci(SCI0DR, "URC ");}

if(USELCD){

outsciusbinfo("04");}

//just in case in run mode, stream mode etc.
//set this to allow re-connect to stop
//any transfers etc.
mode |= STOPMODE;
break;

case USB_STREAM_ADC:
success = SendAckToUSB();

195

//if timeout or no transfer
if(success==APDFAIL)

goto end_of_irqb;

//now wait for EZUSB to finish doing its
//comm with host
LoopSWait(0xffff);

if(DEBUG){

LCDClearScreen();
outsci(SCI0DR, "US ");}

if(USELCD){

outsciusbinfo("05");}

mode |= STREAMMODE;
break;

case USB_RUN:
success = SendAckToUSB();

//if timeout or no transfer
if(success==APDFAIL)

goto end_of_irqb;

//now wait for EZUSB to finish doing its
//comm with host
LoopSWait(0xffff);

if(DEBUG){

LCDClearScreen();
outsci(SCI0DR, "UN ");}

if(USELCD){

outsciusbinfo("06");}

mode |= USBRUNMODE;
break;

case USB_STOP:
success = SendAckToUSB();

//if timeout or if no transfer
if(success==APDFAIL)

goto end_of_irqb;

if(DEBUG){
LCDClearScreen();
outsci(SCI0DR, "UX ");}

if(USELCD){

outsciusbinfo("07");}

mode |= STOPMODE;
break;

case USB_WRITE_VARS:
success = SendAckToUSB();

196

//if timeout or if no transfer
if(success==APDFAIL)

goto end_of_irqb;

if(DEBUG){

LCDClearScreen();
outsci(SCI0DR, "UW ");}

if(USELCD){

outsciusbinfo("08");}

WriteFlashConstants();

break;

case USB_GET_HOST_VARS:
success = SendAckToUSB();

//if timeout or no transfer
if(success==APDFAIL)

goto end_of_irqb;

if(DEBUG){
LCDClearScreen();
outsci(SCI0DR, "UG ");}

if(USELCD){

outsciusbinfo("09");}

success = GetHostVars();

//if timeout or no transfer
if(success==APDFAIL)

goto end_of_irqb;

WriteFlashConstants();

break;

default:
if(DEBUG){

outsci(SCI0DR, "UU ");
outscihex(SCI0DR, porta);}

//if(USELCD){
// outscierr("UU");}
if(USELCD){

outsciusbinfo("10");}

break;
}

}

//change run mode to slave mode? the config vars to the Main PC

//if(mode==STOPMODE){};
//this shouldn't really ever happen

197

if(mode==NOCALLMODE){};
//after stuff has already been cleared in the main loop

//if(mode==RUNMODE)mode=STOPMODE;

end_of_irqb:
if(DEBUG){

outsci(SCI0DR, "Q#");
outscihex(SCI0DR, j);}

//if timeout or no transfer
if(success==APDFAIL)
{

if(DEBUG)outsci(SCI0DR, "AF");
if(USELCD)outscierr("AF");
//maybe consider putting here a reset to RUNMODE if failed
//for example if failure due to disconnect...
//OR could just leave it so that to resume in the case of
//disconnect, just
//recycle power....yes, yes.

}
IPR_W = (IPR_W | 0x0010); //0x0002); //re-enable IRQB

}

/**/
#pragma interrupt saveall
void isrTimerB0Compare ()
{

 //Timer interrupt routine for TIMERB0

/*short first = 0x0000;
short second = 0x0000;
int val = 0x0000;
static int cntr = 0;
static int cntr2 = 0;
static float flt_val = 0.0;
*/

//process

(*g_pfcn)();

/* clear compare status flags */
asm (bfclr #$8000,X:TMRB0_SCR_R);
//another timer compare int shouldn't fire
//until after this bit is cleared.

}

198

;LISTING D.4. 56803_vector_pROM.asm

;---
; For APD-SA USB 56803 chip
; The framework was provided in the Motorola embedded 56800
; development package.
;
; Isr Routines that were added for APD.
; ISRs: TimerB0 and IRQB
;
; N. Silverman
;
; ---
; Metrowerks Embedded Runtime Support
;
; 56803_vector_pROM.asm
;
; sample code
; Metrowerks, a Motorola Company
;
;
;
; Routines
; --------
;
; These are the interrupt vectors for the DSP56803
;
;
;---

section rtlib
org p:

M56803_intRoutine:
nop
rti

M56803_illegal:
debug ; illegal instruction interrupt ($04)
nop
nop

M56803_HWSOverflow:
debug ; hardware stack overflow interrupt ($08)
nop
nop

M56803_PLL:
debug ; PLL lost of lock interrupt ($28)
nop
nop

M56803_intDef:
nop
rti

 endsec

section interrupt_vectors_mirror
org p:

199

jmp Finit_M56803_ ; reset ($00)
jmp M56803_intRoutine ; COP Watchdog reset ($02)

 endsec

section interrupt_vectors
org p:

jmp M56803_intRoutine ; reserved ($04)
jmp M56803_illegal ; illegal instruction ($06)
jmp M56803_intRoutine ; Software interrupt ($08)
jmp M56803_HWSOverflow ; hardware stack overflow ($0A)
jmp M56803_intRoutine ; OnCE Trap ($0C)
jmp M56803_intRoutine ; reserved ($0E)
jmp M56803_intRoutine ; external interrupt A ($10)
jmp FisrIRQB ; external interrupt B ($12)
jmp M56803_intRoutine ; reserved ($14)
jmp M56803_intRoutine ; boot flash interface ($16)
jmp M56803_intRoutine ; program flash interface ($18)
jmp M56803_intRoutine ; data flash interface ($1A)
jmp M56803_intRoutine ; mscan transmitter ready ($1C)
jmp M56803_intRoutine ; mscan receiver full ($1E)
jmp M56803_intRoutine ; mscan error ($20)
jmp M56803_intRoutine ; mscan wakeup ($22)
jmp M56803_intRoutine ; program flash interface 2($24)
jmp M56803_intRoutine ; GPIO E ($26)
jmp M56803_intRoutine ; GPIO D ($28)
jmp M56803_intRoutine ; reserved ($2A)
jmp M56803_intRoutine ; GPIO B ($2C)
jmp M56803_intRoutine ; GPIO A ($2E)
jmp M56803_intRoutine ; SPI transmitted empty ($30)
jmp M56803_intRoutine ; SPI receiver full/error ($32)
jmp M56803_intRoutine ; Quad decoder #1 home sw ($34)
jmp M56803_intRoutine ; Quad decoder #1 idx pulse($36)
jmp M56803_intRoutine ; Quad decoder #0 home sw ($38)
jmp M56803_intRoutine ; Quad decoder #0 idx pulse($3A)
jmp M56803_intRoutine ; Timer D Channel 0 ($3C)
jmp M56803_intRoutine ; Timer D Channel 1 ($3E)
jmp M56803_intRoutine ; Timer D Channel 2 ($40)
jmp M56803_intRoutine ; Timer D Channel 3 ($42)
jmp M56803_intRoutine ; Timer C Channel 0 ($44)
jmp M56803_intRoutine ; Timer C Channel 1 ($46)
jmp M56803_intRoutine ; Timer C Channel 2 ($48)
jmp M56803_intRoutine ; Timer C Channel 3 ($4a)
jmp FisrTimerB0Compare ; Timer B Channel 0 ($4c)
jmp M56803_intRoutine ; Timer B Channel 1 ($4e)
jmp M56803_intRoutine ; Timer B Channel 2 ($50)
jmp M56803_intRoutine ; Timer B Channel 3 ($52)
jmp M56803_intRoutine ; Timer A Channel 0 ($54)
jmp M56803_intRoutine ; Timer A Channel 1 ($56)
jmp M56803_intRoutine ; Timer A Channel 2 ($58)
jmp M56803_intRoutine ; Timer A Channel 3 ($5a)
jmp M56803_intRoutine ; SCI #1 Transmit complete ($5c)
jmp M56803_intRoutine ; SCI #1 transmitter ready ($5e)
jmp M56803_intRoutine ; SCI #1 receiver error ($60)
jmp M56803_intRoutine ; SCI #1 receiver full ($62)
jmp M56803_intRoutine ; SCI #0 Transmit complete ($64)
jmp M56803_intRoutine ; SCI #0 transmitter ready ($66)
jmp M56803_intRoutine ; SCI #0 receiver error ($68)

200

jmp M56803_intRoutine ; SCI #0 receiver full ($6a)
jmp M56803_intRoutine ; ADC B Conversion complete($6c)
jmp M56803_intRoutine ; ADC A Conversion complete($6e)
jmp M56803_intRoutine ; ADC B zero crossing/error($70)
jmp M56803_intRoutine ; ADC A zero crossing/error($72)
jmp M56803_intRoutine ; Reload PWM B ($74)
jmp M56803_intRoutine ; Reload PWM A ($76)
jmp M56803_intRoutine ; PWM B Fault ($78)
jmp M56803_intRoutine ; PWM A Fault ($7a)
jmp M56803_PLL ; PLL loss of lock ($7c)
jmp M56803_intRoutine ; low voltage detector ($7e)

endsec

M56803_OMRSetting equ $0103

section rtlib

org x:
 global FM56803_int_Addr
FM56803_int_Addr dc M56803_intDef ; Address of the unhandled
exception

M56803_argc equ 0

global FM56803_argv
global FM56803_arge

FM56803_argv:
FM56803_arge: dc 0

endsec
end

201

APPENDIX E: USB FIRMWARE CODE

Code Listings:

- Listing E.1. apdusb.h – header file including custom APD-SA USB commands

- Listing E.2. DSCR.A51 – descriptor table for the EZUSB firmware that indicates to

the host the device identity and requirements of the APD-SA USB on attachment

- Listing E.3. timer0.c – timer routines for watchdog and data transmission timeout

routines

- Listing E.4. ezmouse.c – main code for the EZUSB firmware for the APD-SA USB

202

//LISTING E.1. apdusb.h

/**

 apdusb.h header file for inclusion in
 ezmouse.c and timer0.c

 Macro Definitions for EZUSB APD-SA USB firmware:
 - identifying control bytes in data transmission.
 - bitwise register manipulation
 - data formatting

 Macros defined here are mirrored almost entirely in the
 APD200 host PC software and to some extent in the DSP
 firmware where needed.

 Indented comments refer to the macro definition above the
 comment.

 N. Silverman 2004 MS Thesis

***/

#define USB_CONNECT_TO_DSP 0x01
#define USB_UNRECOGNIZED_COMMAND 0xff
#define USB_DSP_NO_ACK 0xfe
#define USB_DSP_ACK 0xbb
#define USB_REQUEST_VARIABLES 0x02
#define USB_END_OF_VARIABLE_TRANSFER 0xfd
#define USB_HELLO 0xb0
#define USB_NUMVARS 2
#define USB_BYTES_PER_VAR 6

//bytes per variable - sent as char
#define USB_MAX_BYTES 64

//max bytes in buffer
#define USB_EN_INT6 EIE|=0x10

//enable INT6
#define USB_DIS_INT6 EIE&=~0x10

//disable INT6
#define USB_EN_USBINT EIE|=0x01

//enable USB INTs
#define USB_DIS_USBINT EIE&=~0x01

//disable USB INTs
#define USB_STREAM_ADC 0x03

//stream ADC values request
#define USB_STALL_FAILURE 0xfc

//USB unit stalled and had timer interrupt - watchdog
#define USB_STOP 0xfb

//tell DSP to stop whatever is continuously occurring...
//(or anything)

#define USB_GET_HOST_VARS 0x05
//host computer to send variables to apd for storage

#define USB_RUN 0x06
//run mode on the APD with streaming of data -
//rr, press, flow vals

#define USB_RUN_FULL 0x07
//run mode with stream of full pert info data,
//without each ADC value

203

;; LISTING E.2. DSCR.A51
;;--
;; dscr.a51
;;
;; For APD-SA USB, the EZUSB firmware is intended to have the
;; device enumerate as an HID mouse device
;;
;; This descriptor table is passed to the host and lets the host
;; know what type of device it is and what its requirements for
;; data transmission bandwidth and needed endpoints are.
;;
;; This file was constructed from various samples provided by
;; Cypress Semiconductor, Inc. (2001)
;;
;; Adaptation was however extensive.
;;
;; The adaptation here combines USB HID mouse identification
;; but includes the specification of additional endpoints as
;; interrupt endpoints.
;;
;; Jan Axelson (USB Complete, 2001)
;; and John Hyde (http://www.usb-by-example.com)
;; and the USB Consortium (http://www.usb.org) provide
;; very useful information that describe the details of the
;; sections of the descriptor table. In particular, usb.org
;; provides the specification documents for HID and USB 1.1
;; as well as 2.0 of course.
;;
;; Adaptation: N. Silverman 2004 MS Thesis
;;
;; Note that indented comments typically follow the line to which
;; they refer.
;;
;; Contents: This file contains descriptor data for
;; sample mouse descriptor tables.
;;
;; Original sample descriptor:
;; Copyright (c) 2001 Cypress Semiconductor, Inc.
;; All rights reserved
;;--

DSCR_DEVICEequ 1 ;; Descriptor type: Device
DSCR_CONFIGequ 2 ;; Descriptor type: Configuration
DSCR_STRINGequ 3 ;; Descriptor type: String
DSCR_INTRFCequ 4 ;; Descriptor type: Interface
DSCR_ENDPNTequ 5 ;; Descriptor type: Endpoint

ET_CONTROL equ 0 ;; Endpoint type: Control
ET_ISO equ 1 ;; Endpoint type: Isochronous
ET_BULK equ 2 ;; Endpoint type: Bulk
ET_INT equ 3 ;; Endpoint type: Interrupt

public DeviceDscr, ConfigDscr, StringDscr, UserDscr, HIDDscr,
ReportDscr, ReportDscrEnd

DSCR SEGMENT CODE

;;--

204

;; Global Variables
;;--
;; Note: This segment must be located in on-part memory.

rseg DSCR
;; locate the descriptor table anywhere below 8K
DeviceDscr:db deviceDscrEnd-DeviceDscr ;; Descriptor length

db DSCR_DEVICE ;; Decriptor type
dw 0001H ;; Specification Version (BCD)
db 00H ;; Device class
db 00H ;; Device sub-class
db 00H ;; Device sub-sub-class
db 64 ;; Maximum packet size
/*dw 4705H ;; Vendor ID
dw 0210H ;; Product ID
dw 0100H ;; Product version ID
db 1 ;; Manufacturer string index
db 2 ;; Product string index
db 0 ;; Serial number string index
db 1 ;; Numder of configurations
*/
dw 4705H ;; Vendor ID

;;this shows up in windows as 0547 NS
dw 2810H ;;0210H ;;2810H

;; Product ID - set to default example ID
;;this shows up in windows as 1028 NS

dw 0100H ;; Product version ID
;;this shows up in windows as 0001 NS

db 0 ;; Manufacturer string index
db 0 ;; Product string index
db 0 ;; Serial number string index
db 1 ;; Number of configurations

deviceDscrEnd:

ConfigDscr:db ConfigDscrEnd-ConfigDscr
;; Descriptor length

db DSCR_CONFIG ;; Descriptor type
db StringDscr-ConfigDscr

;; Configuration + End Points length (LSB)
db (StringDscr-ConfigDscr)/256

;; Configuration + End Points length (MSB)
db 1 ;; Number of interfaces
db 1 ;; Interface number
db 0 ;; Configuration string
db 10100000b

;; Attributes (b7 - buspwr, b6 - selfpwr, b5 - rwu)
db 0 ;; Power requirement (div 2 ma)

ConfigDscrEnd:

IntrfcDscr:
db IntrfcDscrEnd-IntrfcDscr ;; Descriptor length
db DSCR_INTRFC ;; Descriptor type
db 0 ;; Zero-based index of this interface
db 0 ;; Alternate setting
db 2 ;; Number of end points
db 03H ;; Interface class (HID)

;;ffH for ep_pair NS
db 00h ;;01H

;; Boot Interface sub class
;;00h for ep_pair NS

205

db 00h ;; 02H
;; Interface sub sub class (Mouse)
;;00H for ep_pair NS

db 0 ;; Interface descriptor string index
IntrfcDscrEnd:

;; this works NS
HIDDscr:

db 09h ; length
db 21h ; type: HID
db 10h,01h ; release: HID class rev 1.1
db 00h ; country code (none)
db 01h ; number of HID class descriptors to follow
db 22h ; report descriptor type (HID)
db (ReportDscrEnd-ReportDscr) ; length of HID descriptor
db 00h

HIDDscrEnd:

EpInDscr:
db EpInDscrEnd-EpInDscr ;; Descriptor length
db DSCR_ENDPNT ;; Descriptor type
db 82H ;; Endpoint number, and direction
db ET_INT ;; Endpoint type
db 40H ;; Maximum packet size (LSB)
db 00H ;; Max packet size (MSB)
db 01H ;; Polling interval

;;00H for ep_pair -
;;changed to 1 ms
;;for EP IN (ns)

EpInDscrEnd:

;;from ep_pair
EpOutDscr:

db EpOutDscrEnd-EpOutDscr ;; Descriptor length
db DSCR_ENDPNT ;; Descriptor type
db 02H ;; Endpoint number, and direction
db ET_INT ;; Endpoint type
db 40H ;; Maximun packet size (LSB)
db 00H ;; Max packect size (MSB)
db 00H ;; Polling interval

EpOutDscrEnd:

/*
ReportDscr:

db 09h, 01h
db 06h,00h,ffh
db 1bh,01h,00h,00h,ffh
db 29h,01h
db a1h,00h
db 15h, 81h
db 26h, 80h, 00h
db 75h, 08h
db 95h, 02h
db c0h

EndReportDscr:
*/

;; this works NS

206

ReportDscr:
db 05h, 01h ; Usage Page (Generic Desktop),
;;db 05h, A0h, FFh ;; Usage Page (vendor defined)
db 09h, 02h ;; Usage (vendor defined)

db 0A1h, 01h ;; Collection (Application)
db 09h, 01h ;; Usage (vendor defined)

;;Input report
db 09h, 01h ;; Usage (vendor defined)
;;db 15h, 80h ;; Log Min (-127)
;;db 25h, 7Fh ;; Logical Max (128)
db 75h, 08h ;; Report Size (8) (bits)
db 95h, 40h ;; Report Count (2) (fields) now64
db 81h, 02h ;; Input (Data, Variable, Absolute)

;;Output report
db 09h, 01h ;; Usage (vendor defined)
;;db 15h, 80h ;; Log Min (-127)
;;db 25h, 7Fh ;; Logical Max (128)
db 75h, 08h ;; Report Size (8) (bits)
db 95h, 40h ;; Report Count (2) (fields) now64
db 91h, 02h ;; Output (Data, Variable, Absolute)

db 0C0h ;; End Collection
ReportDscrEnd:

StringDscr:
StringDscr0:

db StringDscr0End-StringDscr0 ;; String
descriptor length

db DSCR_STRING
db 09H,04H

StringDscr0End:

StringDscr1:
db StringDscr1End-StringDscr1 ;; String

descriptor length
db DSCR_STRING
db 'U',00 ;;C
db 'M',00 ;;Y
db 'C',00 ;;P
db 'P',00 ;;R
db 'e',00
db 's',00
db 's',00

StringDscr1End:

StringDscr2:
db StringDscr2End-StringDscr2 ;; Descriptor

length
db DSCR_STRING
db 'E',00
db 'Z',00
db '-',00
db 'M',00
db 'o',00
db 'u',00
db 's',00

207

db 'e',00
StringDscr2End:

UserDscr:
dw 0000H
end

208

// LISTING E.3. timer0.c
//---
// timer0.c
//
// This code contains functions that set, reset and otherwise
// control a timer on the 8051 portion of the EZUSB chip. It is
// based around a timer interrupt function, called when a
// compare occurs that triggers an interrupt.
//
// The routines set the timer count speed, and cascade two
// counters for higher count. The interrupt is used as a
// watchdog timer in the APD-SA USB EZUSB firmware. It can
// be used to reset after any lockups or as a tool to signal
// communication timeouts that are intended as part of the
// communication protocol.
//
// Beware, the timer interrupt is masked in other portions
// of the code in order to protect the integrity of other data
// transmission and thus may not serve as an appropriate watchdog
// timer.
//
// Indented comments typically follow the line to which they refer.
//
//
//
//
//
// Note that serial out port was used for debug data but
// most of this code has been commented out here.
//
// This code was adapted (extensively) from an example of timer
// use on the Cypress EZUSB development platform that was intended
// to show timed counting on a LED digit display. See below for
// for original documentation for that example.
//
// N. Silverman 2004 for MS Thesis
//
//--
//
// Contents: Programmable timer interrupt that controls step
// interval (ranging from 1-5 s)
// of LED display from 0-9, using endpoint control from the
// Control Panel.
// Length Field: Controls how many times the 0-9 count will loop.
// Hex Bytes Field: Controls how fast the count steps
// 1) 01h -> 1s
// 2) 02h -> 2s
// 3) 03h -> 3s
// 4) 04h -> 4s
// 5) 05h -> 5s
//
// Author: Zin Thein Kyaw
//
// Copyright (c) 2000 Cypress Semiconductor. All rights reserved
//--

#include <ezusb.h>
#include <ezregs.h>
#include <apdusb.h> //my header mano – for the APD-SA USB

209

extern BYTE gotfreshdata;
extern BYTEreceivedatablock;

//so that INT6 isn't re-enables during IN2EP INT
extern BYTEincount;
extern BYTEoutcount;
extern BYTEirqcalled;

extern void TD_Init(void);
void HitWatchdog(void);
extern void outsci(char *b);

//extern void Dummy(void);

// 10ms interrupt
#define TIMER0_COUNT 0x0001

//this inits so full count is int = 0.0328 seconds
//maybe not 0x0000 this might trigger INT?????
//TIMER0_COUNT 0xB1E0
// 10000h - ((24,000,000 Hz / (12 * 100))

//as 0xffff - 0xb1e0 = 19999 * (1/2000000) = 10 ms
 // EZ-USB 8051 runs on either a 4-clock bus cycle

// or the traditional 12-clock bus cycle
static unsigned timer0_tick;
// timer tick variable

//--
// Timer Interrupt
// This function is an interrupt service routine for Timer 0.
// It should never
// be called by a C or assembly function. It will be executed
// automatically
// when Timer 0 overflows.
// "interrupt 1" tells the compiler to look for this ISR at
// address 000Bh
// "using 1" tells the compiler to use register bank 1

void timer0 (void) interrupt 1 using 1
{

// Stop Timer 0, adjust the Timer 0 counter so that
//we get another in 10ms,
// and restart the timer.

static int j=0x00;

EA=0;
//disable all interrupts...to service this without
//interruption (would only be from an INT6)

TR0 = 0;
// stop timer

//outsci("t ");
//**MINE - I guess do some stuff here, eh?
//Let's arm endpoints in the case of application (host)
//stall on waiting for locked up
//EZUSB

210

//you (niz) might want to consider dumping some debug data
//into this buffer, e.g. counts etc.

//since 0 to 0xffff = 0.0328 second, do 35 hits ~=
//1 sec to trigger actual something or other.
//0x7f is about 4 seconds

if(timer0_tick >= 0x7f)
{

//Dummy();
outsci("o ");

if(j>(USB_MAX_BYTES-1)){j=0x00;}
//reset j if it's larger than buffer EP size

//setup some type of "oops I stalled" code...
IN2BUF[j] = USB_STALL_FAILURE;
IN2BUF[j+1]= timer0_tick;

//just place stall code in next spot
j+=2;

//reset counter
timer0_tick = 0;

//clear pending interrupts
IN07IRQ |= 0x04;
//clear USB EP2IN int - cleared by writing a 1 to it
OUT07IRQ |= 0x04;
//clear USB EP2OUT int - cleared by writing a 1 to it
//USBIRQ=0x00;
EXIF &= ~0x10;
//clear USBINTs
EICON &= ~0x08; //|= 0x08;
//this one is not reset by writing to it...annoying.
//clear INT6

//enable interrupts and start over -
//nope this is not so good really...
//TD_Init(); <---------------'

OEA =0x00; // init as input...
OUTA = 0x00;
// Initialize PORTA to all LOW if used as an output

 USB_DIS_INT6; // disable INT6

OUTB |= 0x20;
// IRQ is active low, so initialize the
//803 IRQA = EZ PB5 as high
// make sure you don't do = 0x20; here cuz it'll
//drop the whole register and thus give an
// "all done getting that port data buddy"
// to that speedy little dsp, ya know?
gotfreshdata = 0x00;
receivedatablock = 0;
//so that INT6 isn't re-enables during IN2EP INT
//incount=0;

211

//outcount=0;
irqcalled=0;

//reset timer
TL0 = TL0 + (TIMER0_COUNT & 0x00FF);
TH0 = TH0 + (TIMER0_COUNT >> 8);

// Increment the timer tick. This interrupt
// should occur approximately
// every 10ms. So, the resolution of the timer
//will be 100Hz not
// including interrupt latency. - used to be -
//this comment is left over from sample with old
//COUNT reset value
timer0_tick++;

TR0 = 1;// start Timer 0

EA=1; //re-enable interrupts - really just allow
//future USBINTs at this point...

//enable USB INTs for EP servicing
USB_EN_USBINT;

//dump buffer and enable OUT for further future
//command - this should happen anyway with reset
EPIO[OUT2BUF_ID].bytes=0;
//out first to allow new commands and because
//IN can be picked up whenever
EPIO[IN2BUF_ID].bytes=64;

//reset- yeah right, that's not gonna work -
//it's host access only....how can it run after
//resetting itself....?
//CPUCS |= 0x01; //hold in reset
//CPUCS=0; //release

} else {

//timer should be set as high priority as well - will
//be masked during the INT6 (since it is set as high
//priority, but
//will not be masked during USB transfer stalls, i.e. in
//the middle of a USB interrupt and waiting for return
//from the dsp that doesn't happen because its stuck

//perhaps this routine might return the address of the
//current instruction, or some general failure due to stall
//code....yes, let's try that for now...

TL0 = TL0 + (TIMER0_COUNT & 0x00FF);
TH0 = TH0 + (TIMER0_COUNT >> 8);

// Increment the timer tick. This interrupt should occur
//approximately
// every 10ms. So, the resolution of the timer will be

212

//100Hz not
// including interrupt latency.

timer0_tick++;

TR0 = 1;
// start Timer 0

EA=1; //re-enable interrupts

}
}

void HitWatchdog(void)
{

EA=0;
TR0 = 0;

// stop timer

//reset the tick counter...holy ** man,
//I can't believe I forgot this...

timer0_tick = 0;

TL0 = TL0 + (TIMER0_COUNT & 0x00FF);
TH0 = TH0 + (TIMER0_COUNT >> 8);

TR0 = 1;
// start Timer 0

//outsci("h ");
//ok, this is being reached as it's supposed
//to be...lots of h's

EA=1;
}

void timer0_init (void);

// This function enables Timer 0. Timer 0 generates a
//synchronous interrupt once
// every 100Hz or 10 ms.

void timer0_init (void)
{

EA = 0;
// disables all interrupts

timer0_tick = 0;

TR0 = 0;
// stops Timer 0

CKCON &= ~0x08;

// Timer 0 using CLK24/12 is bit 3=0
//CKCON = 0x03;

// this used to be in here - it makes a stretch to 7

//of strobes (programmable wait states....not sure why

//it was here...in the original example

213

TMOD &= ~0x0F;
// clear Timer 0 mode bits

TMOD |= 0x01;
// setup Timer 0 as a 16-bit timer

TL0 = (TIMER0_COUNT & 0x00FF);
// loads the timer counts

TH0 = (TIMER0_COUNT >> 8);

//PT0 = 0;
// sets the Timer 0 interrupt to low priority

ET0 = 1;
// enables Timer 0 interrupt

TR0 = 1;
// starts Timer 0

EA = 1;
// enables all interrupts

}

214

// LISTING E.4. ezmouse.c

//--
//
// Main firmware for the APD-SA USB EZUSB chip. This firmware
// is downloaded to the EZUSB upon enumeration first as a
// Cypress UEZUSB device.
//
// The framework for the necessary functions, initialization codes
// etc. comes from ezmouse.c and periph.c code from Cypress, among
// other references. The corresponding information is at the bottom
// of these comments. However, extensive coding is specific to
// the APD-SA USB EZUSB. This specificity includes:
//
// - endpoint interrupt functions
// - USB-DSP communication functions for grabbing and transmitting
// data
// - specific initialization options
//
// Indented comments generally follow the lines to which they refer.
//
// Some rather large comment sections were included because the
// browse function in the Keil IDE was not particularly accurate or
// easily accessible – thus scrolling was often the required method
// for locating a section of code.
//
//
//
// Debug information was sent over serial port. However, most of
// this code has been commented out because most of the firmware
// was written, there was little memory left for debug data storage.
// For this reason, the full Cypress evaluation platform with
// monitor program would be useful.
//
// N. Silverman 2004 for MS Thesis
//
//--
// Original sample framework:
// Contents: Hooks required to implement USB peripheral function.
//
// Copyright (c) 2001 Cypress Semiconductor, Inc.
// All rights reserved
//--

#pragma NOIV // Do not generate interrupt vectors

#include <ezusb.h>
#include <ezregs.h>

//#include <stdio.h>
/* prototype declarations for I/O functions */

//mine – APD-SA USB header
#include <apdusb.h>

#define min(a,b) (((a)<(b))?(a):(b))

#define GD_HID 0x21
#define GD_REPORT 0x22

215

#define CR_SET_REPORT 0x09
#define HID_OUTPUT_REPORT 2

#define BTN_ADDR 0x41

//** my macros, mkay – now included in header file
//#define USB_CONNECT_TO_DSP 0x01
//#define USB_UNRECOGNIZED_COMMAND 0xff
//#define USB_DSP_NO_ACK 0xfe
//#define USB_DSP_ACK 0xbb
//#define USB_REQUEST_VARIABLES 0x02
//#define USB_END_OF_VARIABLE_TRANSFER 0xfd
//#define USB_HELLO 0xb0

extern BOOLGotSUD; // Received setup data flag
extern BOOL Sleep;

WORD pHIDDscr;
WORD pReportDscr;
WORD pReportDscrEnd;
extern code HIDDscr;
extern code ReportDscr;
extern code ReportDscrEnd;

void TD_Poll(void);

//Timer functions!!!!
void timer0_init (void);
unsigned timer0_count (void);
void timer0_delay (unsigned count);
void HitWatchdog(void);
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!___________-----
//========++++++++++++++++++++++@@@@@@@@@@@@@@@@@

BYTE Configuration; // Current configuration
BYTE AlternateSetting; // Alternate settings

//**mine, all mine!!!! - some moreAPD-SA USB global variables
BYTE gotfreshdata;
BYTE outcount;
BYTE incount;
BYTE irqcalled;
BYTE receivedatablock;
BYTE g_status;
BYTE index;
BYTE countbytes;

BYTE read_dsp_ack(void);
BYTE send_to_dsp(BYTE val);
//BYTE stop_dsp(void);

//void Dummy(void);
void outsci(char *b);

void outsci(char *b)
{

int status;

216

SCON0 &= ~0x02; //clear the transmit complete bit

while (*b != 0)
{

SBUF0 = *b;
*b++;
do status = (SCON0); while ((status&0x02)!=0x02);
//wait until bits are shifted
SCON0 &= ~0x02; //clear the transmit complete bit

}

}

/**
**/
/**
**/
/**
**/
/*void Dummy(void)
{

int i = 0;

for(i=0; i<0x05; i++)
{

i++;
i--;

}
}*/ //Dummy() //Dummy() //Dummy() //Dummy() //Dummy() //Dummy
() //Dummy() //Dummy() //Dummy() //Dummy()

//--
// Task Dispatcher hooks
// The following hooks are called by the task dispatcher.
//--
//BOOL enumerated;
/**
**/
/**
**/
/**
**/
//TD_Init() //TD_Init() //TD_Init() //TD_Init() //TD_Init
() //TD_Init() //TD_Init() //TD_Init()
//TD_Init() //TD_Init() //TD_Init() //TD_Init() //TD_Init
() //TD_Init() //TD_Init() //TD_Init()
//TD_Init() //TD_Init() //TD_Init() //TD_Init() //TD_Init
() //TD_Init() //TD_Init() //TD_Init()
void TD_Init(void) // Called once at startup
{

int i=0x00;

EA=0; //disable interrupts

//Setup serial port for debug
PORTCCFG= 0x03;
//PC0 and 1 = 1 to setup port c pins for peripheral function

217

OEC=0xff;//output
//PC0=1;
//PC1=1;
//PCON |= 0x80; //PCON.7 is rate doubler
SCON0 = 0x50;
//SCON0.7 and .6 = 0 and 1 resp for mode 1 on Serial Port 0
//and enable receive
RCAP2L = 0xf3; //overflow for 57600 baud
RCAP2H = 0xff; //overflow for 57600 baud
T2CON = 0x10;
//T2CON.5, .4 and .2 are all 1 for Rx and Tx baud gen and
//start run
T2CON |= 0x04; //start it
CKCON = CKCON |0x20;
//SCON0 = 0x40;//0x50;
/* SCON: mode 1, 8-bit UART, enable rcvr */

 //TMOD |= 0x20;
/* TMOD: timer 1, mode 2, 8-bit reload */
//PCON |= 0x80; //SMOD0 = 1
//TMOD &= ~0x40; //TMOD6=0
//CKCON |= 0x10; //CKCON4=1

 //TH1 = //64;221;
/* TH1: reload value for 1200 baud @ 16MHz */

 //TR1 = 1;
/* TR1: timer 1 run */

 //TI = 1;
/* TI: set TI to send first char of UART */
//*/
//outsci("Init ");
//printf("Hello World\n");

//**This is taken from ep_pair example: two endpoints;
//OUT endpoint is option for HID
//8051 operates only on the even endpoints
// Enable endpoint 2 in, and endpoint 2 out
IN07VAL = bmEP2; // Validate all EP's
OUT07VAL = bmEP2;

//** From example: int_4pf or something like this:
//** Enable the EP interrupts...?
OUT07IEN |= bmEP2; // enable ISR for EP2OUT
IN07IEN |= bmEP2; // and EP2 IN

//** Enable double buffering on endpoint 2 in, and endpoint 2 out
//USBPAIR = 0x09;
//this pairs Bit0: 2IN and 3IN and also (Bit3) pairs 2OUT
//and 3OUT
USBPAIR = 0x01;
//this pairs IN2 and IN3 using IN2 for working location

//** Arm Endpoint 2 out to recieve data - this should
//happen anyway by default on reset
EPIO[OUT2BUF_ID].bytes = 0;

//** NS Added? does it work? no. ARM IN EP2
//EPIO[IN2BUF_ID].bytes = 0; don't do this for single
//endpoint, as it will keep the IN busy until IN is received
//and thus will prevent loopback test

218

// Setup breakpoint to trigger on TD_Poll()
BPADDR = (WORD)TD_Poll;//(WORD)Dummy; //(WORD)TD_Poll;
//ISR_Ep2in;
USBBAV |= bmBPEN; // Enable the breakpoint
USBBAV &= ~bmBPPULSE; //|= bmBPPULSE; //

//**From extr_intr.c
PORTACFG = 0x00;
// PORTA is is configured as an I/O
//OEA = 0xFF;
// PORTA is an output - don't initialize this way -
// it'll bog down the ADC outs if they're running when this inits
OEA =0x00; //init as input...
OUTA = 0x00;
// Initialize PORTA to all LOW if used as an output
//PORTCCFG = 0x0C; // PC2 and PC3 are INT0 and INT1
//PORTBCFG = 0x70;
// PB4, PB5, PB6 are INT4, INT5, INT6
//TCON |= 0x05;
// Detect INT0 and INT1 on fallinfg edge

 //OEC |= 0xF3;
 //Enable Interrupts

EIE = 0x01; // Enable USB Int
//USB_EN_INT6;
// Enable INT6 - do you really want to do this early on?
//probably not.

 USB_DIS_INT6;
IE &= ~0x05;
// Disable External Interrupts 0 and 1

//**From me
PORTBCFG = 0x40;
// PB: 6 is INT6 from 803 PE5 and 7 is still regular IO
// used to signal back to 803 from USB to PE6
// PB5 is to IRQ the 803 (IRQA) to signal connection/
//request etc.
// INT6 is low-to-high transition detection
OEB = 0xa0;
// initialize PB7 and PB5 as outs
OUTB = 0x20;
// IRQ is active low, so initialize the 803 IRQA = EZ PB5 as high
// EICON.3 is the 1=transition detected for INT6
EIP = 0x10;
// EIP.4 =SFR 0xf8 = set to 1 for high priority
// EIP.0 = set to 0 for USB low priority
IP &= ~0x02;
//Timer 0 interrupt set to low priority - watchdog timer
//when set to high priority, it interferes with INT6
//because it has higher natural priority

gotfreshdata = 0x00;
//IN2BUF[0]=0x02;
//IN2BUF[1]=0x03;
//EPIO[IN2BUF_ID].bytes=2;
//EPIO[IN2BUF_ID].cntrl &= ~bmEPBUSY; //clear the busy bit
//IN2BUF[1] = 0xcc; //OUT2BUF[1];
//connect_to_dsp(); //Connect to 803 DSP

219

incount=0;
outcount=0;
irqcalled =0;
receivedatablock=0;
//not yet armed to receive a data block from dsp via portA
countbytes=0;
//OUTB |= 0x80; //this works out ok

//for(i=0; i<USB_MAX_BYTES; i++){IN2BUF[i] = 0x00;} //clear
IN2EP buffer

EA = 1; // Enable Global Interrupt

//this inits a timer currently set to about 100Hz operation
timer0_init();

} //TD_Init() //TD_Init() //TD_Init() //TD_Init() //TD_Init()
//TD_Init() //TD_Init() //TD_Init()

/**
***************************************/
/**
***************************************/
/**
***************************************/
/**
***************************************/
/**
***************************************/
//read_dsp_ack() //read_dsp_ack() //read_dsp_ack() //read_dsp_ack
() //read_dsp_ack() //read_dsp_ack()
//read_dsp_ack() //read_dsp_ack() //read_dsp_ack() //read_dsp_ack
() //read_dsp_ack() //read_dsp_ack()
//read_dsp_ack() //read_dsp_ack() //read_dsp_ack() //read_dsp_ack
() //read_dsp_ack() //read_dsp_ack()
BYTE read_dsp_ack(void)
{

BYTE status;
BYTE count;
BYTE count2;
BYTE count3;
//this connects to the dsp using signalling:
//803IRQA is EZ PB5 = 0x20; it's active low

//**This routine should be interrupted by INT6 from the
//DSP's PEx and have the PINSA set to input
//and read...they're re-read here anyway...

//wait for ACK of this IRQ from 803
count = 0x00;
count2 = 0x00;
count3 = 0x00;
g_status = 0x00;

outsci("rda ");

//debug - read the pending interrupts

220

IN2BUF[USB_MAX_BYTES-8]=EXIF;
//interrupt flags for INTs 5, 4, I2C, USB (7,6,5,4
//bits respectively)
IN2BUF[USB_MAX_BYTES-9]=EICON;
//bit 3 means INT6 detected low-to-high transition...
//latched ya know.

//USB_EN_INT6 used to be right here ...

//but disable other EP INTs
USB_DIS_USBINT;

//for debug purposes, write this to show where we are...
IN2BUF[USB_MAX_BYTES-2]=0xcc;

//drop 0x20 to signal active low 803 IRQA to request
//INT6 basically if dsp is there and ready
//OUTB &= ~0x20;

//Moving USB_EN_INT6 here allowed proper USB_STOP recognition
//and still seems to allow the
//proper variable transfer too, now deal with problem of no
//STOP ACK after streaming data...

//if we're here, we're waiting for an ACK byte and thus an
//INT6 so enable it at least...
//clear prior INT6
EICON &= ~0x08; //|= 0x08;
//this one is not reset by writing to it...annoying. clear INT6
//enable INT6
USB_EN_INT6; //this should then be disabled in the INT6 handler
//DANGER here: any pending interrupt will be serviced, even
//if it occured prior and is irrelevent
//to our needs...deal with this ok.
//try this here instead of above to see if it all happens
//too fast before and the response was missed
OUTB &= ~0x20;

do //loop to wait for INT6 and read of ACK byte or time out....
{

count++;
if(count>0xfe)
{

count=0;
count2++;
/*if(count3>0xfe)
{

count2=0;
count3++;
HitWatchdog(); //maybe

}*/
}
if(count2>0xfe)break; //or count3...
if(g_status==USB_DSP_ACK)break;

221

}while(1);
//await ack byte on portA and watch for too long a time

//right now, in wait for ACK, in INT6 handler, USB and INT6
//ints are disabled

//reset the IRQA803 - it's edge sensitive setting hopefully
//on the 803 (should be anyway)
OUTB |= 0x20;

//for debug purposes...
IN2BUF[USB_MAX_BYTES-4]=count;
//used to be count2 but shows fine res
IN2BUF[USB_MAX_BYTES-5]=count2;
IN2BUF[USB_MAX_BYTES-6]=g_status;

if(count2>=0xfe) //it took too long
{

IN2BUF[0]=USB_DSP_NO_ACK;
//re-enable EP INTS
//USB_EN_USBINT;
//EPIO[IN2BUF_ID].bytes=64;
//OUTB |= 0x20; //reset the IRQ pin
//no response
//send to USB buffer: no connection to DSP\
return 0;

}else{ //ack was returned in time via INT6 so send the
//ack to the IN2 EP and arm it...then clear the
//IRQA for the 803
//OUTB |= 0x80; //tell DSP I heard that ACK
IN2BUF[0]=USB_DSP_ACK;
IN2BUF[USB_MAX_BYTES-7]=0xcc;
//re-enable USB INTs
//USB_EN_USBINT;
//EPIO[IN2BUF_ID].bytes=64; //arm IN2EP
//OK
//send to USB buffer: connected to DSP
//OUTB |= 0x20; //reset the IRQ pin
return 1;

}

} //read_dsp_ack() //read_dsp_ack() //read_dsp_ack() //
read_dsp_ack() //read_dsp_ack() //read_dsp_ack()

/**
***************************************/
/**
***************************************/
/**
***************************************/
BYTE send_to_dsp(BYTE val)
{

OEA = 0xff; //make PORTA output - yes, yes, just make it an out
here when a byte needs to be sent.

OUTA=val; //set pins to val

222

return 1; //return
}

/**
***************************************/
/**
***************************************/
/**
***************************************/
//STOP_DSP //STOP_DSP //STOP_DSP //STOP_DSP //STOP_DSP
//STOP_DSP //STOP_DSP //STOP_DSP
//STOP_DSP //STOP_DSP //STOP_DSP //STOP_DSP //STOP_DSP
//STOP_DSP //STOP_DSP //STOP_DSP
//STOP_DSP //STOP_DSP //STOP_DSP //STOP_DSP //STOP_DSP
//STOP_DSP //STOP_DSP //STOP_DSP
/*BYTE stop_dsp(void)
{

//send a stop to the DSP

//unsigned int i = 0x0000; //16 bits by compiler docs. -
//this may cause problems????

//first disable all interrupts and clear them so as not to
//fire in the middle of this
EA=0; //beware this will stop the watchdog interrupt as well

//let watchdog on dsp timeout
//for(i=0; i<0xfff; i++)
//{
// HitWatchdog();
//}

//need INTs here to read ACK or NACK etc.
//disable EP ints
USB_DIS_USBINT;
//INT6 will be enabled in the read_dsp_ack routine...
USB_DIS_INT6;

//clear pending interrupts - I'll need to check if this
//is necessary in each case...
IN07IRQ |= 0x04;
//clear USB EP2IN int - cleared by writing a 1 to it
OUT07IRQ |= 0x04;
//clear USB EP2OUT int - cleared by writing a 1 to it
//USBIRQ=0x00;
EXIF &= ~0x10;//0x00; clear bit 4 = IRQ for USB = USBINT
EICON &= ~0x08; //|= 0x08;
//this one is not reset by writing to it...annoying. clear INT6

//NOTE: calling the read_dsp_ack from this routine which
//is called by polling routine may cause problems
//(i.e. linker error: L15) meaning that it's called both
//from interrupt level and non-interrupt levels
//meaning potential corruption, however, if it's all setup
//ok, then it won't be called recursively
//because interrupts are disabled and cleared within it, and
//it can't be called until the poll routine

223

//is run, which occurs outside of an interrupt routine...
//keep fingers crossed here - the linker doesn't
//realize that the routine itself prevent recursive calling
//from any interrupts so it warns. Thanks.

//send an IRQ to DSP, wait for ACK, then
send_to_dsp(USB_STOP);

//signal that this is now command mode, not continuous data
//block mode
receivedatablock = 0;
//this needs to happen prior to read_dsp_ack so that proper
//case is selected
//in that function
//thus, after exit of read_dsp_ack, INT6 should be disabled,
//as well as USB EP ints.

EA=1;
read_dsp_ack(); //==1) //if we've received the ACK
//{
// receivedatablock=0; //get ready to receive data block...
// //USB_DIS_INT6;
//disable INT6 already disabled in the INT6 routine...
//}else{ //no dsp ack
// receivedatablock=0; //check this....?????
//}
USB_DIS_INT6; //disable any INT6s here...until commands
//require streams of data - just to make sure...

//do it again just to try...
//send an IRQ to DSP, wait for ACK, then
send_to_dsp(USB_STOP);
read_dsp_ack();
//if(read_dsp_ack()==1) //if we've received the ACK
//{
// receivedatablock=0; //get ready to receive data block...
// //USB_DIS_INT6; //disable INT6 already disabled in
//the INT6 routine...
//}else{ //no dsp ack
// receivedatablock=0; //check this....?????
//}

//EA=0; //disable again just in case...

USB_DIS_INT6; //disable any INT6s here...until
//commands require streams of data - just to make sure...

IN2BUF[1]=USB_STOP; //write this to acknowledge that
//this command was received..

//for debug
IN2BUF[USB_MAX_BYTES-10]=0xcc;

USB_EN_USBINT; //enable future USB interrupts for commands
//from host and transfer of ACK or NACK to host

224

EPIO[OUT2BUF_ID].bytes=0; //may need to place this in the
//IN2 INT routine to prevent early firing
EPIO[IN2BUF_ID].bytes=64; //arm IN2EP to send the ACK or
//NACK bytes
//EP should be re-armed only at end of USB REQ VARS all
//acquired so as not have interrupts in the middle

outsci("eos ");

//re-enable necessary interrupts
//EA=1;

} //stop_dsp() //stop_dsp()//stop_dsp()//stop_dsp()//stop_dsp()//
stop_dsp()//stop_dsp()//stop_dsp()//stop_dsp()
*/

/**
***************************************/
/**
***************************************/
/**
***************************************/
//POLL //POLL //POLL //POLL //POLL //POLL //POLL //POLL //POLL
//POLL //POLL //POLL //POLL //POLL //POLL
//POLL //POLL //POLL //POLL //POLL //POLL //POLL //POLL //POLL
//POLL //POLL //POLL //POLL //POLL //POLL
//POLL //POLL //POLL //POLL //POLL //POLL //POLL //POLL //POLL
//POLL //POLL //POLL //POLL //POLL //POLL
void TD_Poll(void) // Called repeatedly while the
device is idle
{

BYTE i=0x00;
BYTE isbusy=0x00;

//don't put a while(1) loop in here, it'll lock up the
//whole thing. :)

HitWatchdog(); //like it says...

//Check OUT2EP just in case there was a stop command issued...
//but put maximum number of loops for checking for
//busy buffer...so as not to lock-up the whole stuffs
//try to just sample once on each loop
//do
//{
//try always arming OUT2BUF for receiving commands.

//EPIO[OUT2BUF_ID].bytes=0;
//enable receiving a command here - this is not a good idea

isbusy=(EPIO[OUT2BUF_ID].cntrl & bmEPBUSY);
if(isbusy==0) //if not busy
{

if(OUT2BUF[0]==USB_STOP)
{

EA=0; //hopefully this won't f it up.
outsci("S ");
//ok here - it doesn't continually call this

225

//apparently
receivedatablock=0; //reset this to 0 so that in
//EP 2 IN and any other INT, proper choice is
//selected
USB_DIS_INT6; //disable further INT6 responses
//to force timeout at dsp end while waiting for
//byte acceptance
OUT2BUF[0]=0x00; //zero this.
//stop_dsp();
//nope - instead delay causing dsp to timeout
//waiting for byte reception
for(isbusy=0; isbusy<0xff;isbusy++)
{

i=0;
do {
//using #pragma asm / #pragma endasm with
//nop; requires enable SRC option to
//generate ASM that then needs to be
//compiled to object code

i++;
} while (i<0xff);

} //delay here to cause APDFAIL on the dsp
IN2BUF[1]=USB_STOP;
//write this to acknowledge that this
//command was received..
//for debug
IN2BUF[USB_MAX_BYTES-10]=0xcc;
//this is just for debug info to show we
//got here
EA=1; //re-enable all enabled interrupts
USB_EN_USBINT; //enable USB interrupts
outsci("s "); //debug to show we got here
EPIO[OUT2BUF_ID].bytes=0; //arm out EP
EPIO[IN2BUF_ID].bytes=64; //arm IN EP
//outsci("s "); //debug to show we got here

} //if need to stop
} //if not busy

// i++; //advance loop counter
//} while(i<0x0f);
//only do this a few times, or else wait until next loop...

//outsci("T");

/*if(receivedatablock==USB_END_OF_VARIABLE_TRANSFER)
{

receivedatablock=0; //back to receive commands
EPIO[OUT2BUF_ID].bytes=0;
EPIO[IN2BUF_ID].bytes=64;

}
*/
//try always arming OUT2 EP for receiving commands
//EPIO[OUT2BUF_ID].bytes=0; //this appears to cause problems

//on exit poll, clear breakpoint
USBBAV &= ~0x08; //USBBAV.3 is breakpoint clear bit

} //POLL //POLL //POLL //POLL //POLL //POLL //POLL //POLL //
POLL //POLL //POLL //POLL //POLL //POLL

226

BOOL TD_Suspend(void) // Called before the device goes
into suspend mode
{

// Turn off breakpoint light before entering suspend
USBBAV |= bmBREAK; // Clear the breakpoint
return(TRUE);

}

BOOL TD_Resume(void) // Called after the device resumes
{

return(TRUE);
}

//--
// Device Request hooks
// The following hooks are called by the end point 0 device request
// parser.
//--

BOOL DR_ClassRequest(void)
{

return(TRUE);
}

BOOL DR_GetDescriptor(void)
{

BYTE length,i;

pHIDDscr = (WORD)&HIDDscr;
pReportDscr = (WORD)&ReportDscr;
pReportDscrEnd = (WORD)&ReportDscrEnd;

switch (SETUPDAT[3])
{

case GD_HID: //HID Descriptor
SUDPTRH = MSB(pHIDDscr);
SUDPTRL = LSB(pHIDDscr);
return (FALSE);

case GD_REPORT: //Report Descriptor
length = pReportDscrEnd - pReportDscr;

while (length)
{

for(i=0; i<min(length,64); i++)
*(IN0BUF+i) = *((BYTE xdata *)

pReportDscr+i);

//set length and arm Endpoint
EZUSB_SET_EP_BYTES(IN0BUF_ID,min(length,64));

length -= min(length,64);

// Wait for it to go out (Rev C and above)
while(EP0CS & 0x04)

;

227

}
return (FALSE);

default:
return(TRUE);

}
}

BOOL DR_SetConfiguration(void) // Called when a Set Configuration
command is received
{

Configuration = SETUPDAT[2];
return(TRUE); // Handled by user code

}

BOOL DR_GetConfiguration(void) // Called when a Get Configuration
command is received
{

IN0BUF[0] = Configuration;
EZUSB_SET_EP_BYTES(IN0BUF_ID,1);
return(TRUE); // Handled by user code

}

BOOL DR_SetInterface(void) // Called when a Set Interface
command is received
{

AlternateSetting = SETUPDAT[2];
return(TRUE); // Handled by user code

}

BOOL DR_GetInterface(void) // Called when a Set Interface
command is received
{

IN0BUF[0] = AlternateSetting;
EZUSB_SET_EP_BYTES(IN0BUF_ID,1);
return(TRUE); // Handled by user code

}

BOOL DR_GetStatus(void)
{

return(TRUE);
}

BOOL DR_ClearFeature(void)
{

return(TRUE);
}

BOOL DR_SetFeature(void)
{

return(TRUE);
}

BOOL DR_VendorCmnd(void)
{

return(TRUE);
}

//--
// USB Interrupt Handlers

228

// The following functions are called by the USB interrupt jump
// table.
//--

// Setup Data Available Interrupt Handler
void ISR_Sudav(void) interrupt 0
{

GotSUD = TRUE; // Set flag
EZUSB_IRQ_CLEAR();
USBIRQ = bmSUDAV; // Clear SUDAV IRQ

}

// Setup Token Interrupt Handler
void ISR_Sutok(void) interrupt 0
{

EZUSB_IRQ_CLEAR();
USBIRQ = bmSUTOK; // Clear SUTOK IRQ

}

void ISR_Sof(void) interrupt 0
{

EZUSB_IRQ_CLEAR();
USBIRQ = bmSOF; // Clear SOF IRQ

}

void ISR_Ures(void) interrupt 0
{

EZUSB_IRQ_CLEAR();
USBIRQ = bmURES; // Clear URES IRQ

}

void ISR_IBN(void) interrupt 0
{
 // ISR for the IN Bulk NAK (IBN) interrupt.
}

void ISR_Susp(void) interrupt 0
{

Sleep = TRUE;
EZUSB_IRQ_CLEAR();
USBIRQ = bmSUSP;

}

void ISR_Ep0in(void) interrupt 0
{
}

void ISR_Ep0out(void) interrupt 0
{
}

void ISR_Ep1in(void) interrupt 0
{
}

void ISR_Ep1out(void) interrupt 0
{
}

229

//***

//***

//**|---- |^^^\ /^^^\ ^|^ |\ |
//**|__ |___/ _-^ | | \ |
//**|____ | /____ _|_ | \|
//***

//***

void ISR_Ep2in(void) interrupt 0
{

//outsci("EI ");
//Clear ints
EZUSB_IRQ_CLEAR();
IN07IRQ |= 0x04;

//clear the IRQ for EP2 IN although it looks like setting
//a bit, it clears the IRQ

//if this request has been hit, a packet from IN2BUF has
//been transmitted, thus
//EP2 IN data to host is now old data
//this interrupt signals that one buffer is free
gotfreshdata = 0x00;
//IN2BUF[0]=IN2BUF[0]+1;
//EPIO[IN2BUF_ID].bytes=2;
//this also should mean that the busy bit is now cleared
//until the byte count is set again
//which will set the busy bit
//buffer now empty
incount++;
//EPIO[IN2BUF_ID].bytes=2; //re-arm ???
//EA=1; //enable interrupt only after ACK picked up just prior
//to variable transfer - impossible...you'll never
//get here without an interrupt...so just disable
//INT4 interrupt...prior, then re-enable here
if(receivedatablock==1)
{

outsci("EI1 ");
//re-enable INT6 during data transfer to allow for
//next transfer
USB_EN_INT6;

//if we've finished total transfer reset the
//receievdata block, thus
//INT6 won't be re-enabled until another command set
//is received...
if(g_status == USB_END_OF_VARIABLE_TRANSFER)

receivedatablock=0;
}

if(receivedatablock==2)
{

outsci("EI2 ");
USB_EN_INT6;

}

230

}

//***

//***

//**|---- |^^^\ /^^^\ /^^^\ | | ^^^|^^^
//**|__ |___/ _-^ | | | | |
//**|____ | /____ ___/ ___/ |
//***

//***

void ISR_Ep2out(void) interrupt 0
{

BYTE i=0x00;
//this interrupt signals that data was received from host
//thus we have fresh data
//outsci("E2O ");
gotfreshdata = 0x01;
outcount++;
//bmBusy should be 0 here...cleared on successful receipt of data
//writing the byte count reg should arm endpoint and cause
//busy bit to go

IN2BUF[USB_MAX_BYTES-1] = outcount;

switch (OUT2BUF[0])
//report ID is not trasmitted on bus because only one
//report...thus byte 0 is first data byte
{

case USB_CONNECT_TO_DSP:
receivedatablock=0; //added 10.8.03
for(i=0; i<USB_MAX_BYTES; i++){IN2BUF[i] = 0x00;}
//clear IN2EP buffer
send_to_dsp(USB_HELLO);
i=read_dsp_ack();
USB_EN_USBINT;
EPIO[IN2BUF_ID].bytes=64; //arm IN2EP
EPIO[OUT2BUF_ID].bytes = 0;
//arm the EP to receive more data
//EA=1; //re-enable interrupts - disables after ACK
//read; if no ACK, then never disabled
//right now INT6 should be disabled, but USB INTS
//enabled and IN2EP armed
//host program should not send OUT until the IN has
//been received, so another OUT2INT shouldn't be
//generated
//prior to the IN2EP INT which will then re-enable
//INT6
//unless, host automatically fires an OUT
//often....we'll see
//???? if INT6 fires first (erroneously, without any
//other pending command, what happens?

231

outsci("UC ");
break; //return;

case USB_REQUEST_VARIABLES:
//USBBAV |= bmBPEN;
// clear the breakpoint
receivedatablock=0;
for(i=0; i<USB_MAX_BYTES; i++){IN2BUF[i] = 0x00;}
//clear IN2EP buffer
send_to_dsp(USB_REQUEST_VARIABLES);
i=read_dsp_ack();
if(i==1) //if we've received the ACK
{

receivedatablock=1;
//get ready to receive data block...
//USB_DIS_INT6; //disable INT6 already disabled
//in the INT6 routine...

}else{ //no dsp ack
}
USB_EN_USBINT;
EPIO[IN2BUF_ID].bytes=64; //arm IN2EP
EPIO[OUT2BUF_ID].bytes=0;
//may need to place this in the IN2 INT routine to
//prevent early firing
//EA=1; //re-enable interrupts - disables after ACK
//read; if no ACK, then never disabled; allow EPINTs
//EP should be re-armed only at end of USB REQ VARS
//all acquired so as not have interrupts in the middle
outsci("UR ");
break;

case USB_STREAM_ADC:

for(i=0; i<USB_MAX_BYTES; i++){IN2BUF[i] = 0x00;}
//clear IN2EP buffer
send_to_dsp(USB_STREAM_ADC);
if(read_dsp_ack()==1)
//if we've received the ACK
{

receivedatablock=1;
//get ready to receive data block...
//USB_DIS_INT6;
//disable INT6 already disabled in the INT6
//routine...

}else{ //no dsp ack
}
USB_EN_USBINT;
EPIO[IN2BUF_ID].bytes=64;
//arm IN2EP to send the ACK or NACK bytes
EPIO[OUT2BUF_ID].bytes=0;
//may need to place this in the IN2 INT routine
//to prevent early firing
//EA=1; //re-enable interrupts - disables after ACK
//read; if no ACK, then never disabled; allow EPINTs
//EP should be re-armed only at end of USB REQ VARS
//all acquired so as not have interrupts in the middle
outsci("US ");
break;

case USB_GET_HOST_VARS:

232

USBBAV |= bmBPEN;
// clear the breakpoint
for(i=0; i<USB_MAX_BYTES; i++){IN2BUF[i] = 0x00;}
//clear IN2EP buffer
send_to_dsp(USB_GET_HOST_VARS);
if(read_dsp_ack()==1)
//if we've received the ACK
{

receivedatablock=2;
//get ready for sending variables on INT6
//USB_DIS_INT6; //disable INT6 already disabled
//in the INT6 routine...

}else{ //no dsp ack
}
USB_EN_USBINT;
EPIO[IN2BUF_ID].bytes=64; //arm IN2EP
EPIO[OUT2BUF_ID].bytes=0;
//may need to place this in the IN2 INT routine to
//prevent early firing
//EA=1; //re-enable interrupts - disables after ACK
//read; if no ACK, then never disabled; allow EPINTs
//EP should be re-armed only at end of USB REQ VARS
//all acquired so as not have interrupts in the middle
outsci("UG ");
break;

case USB_RUN:
for(i=0; i<USB_MAX_BYTES; i++){IN2BUF[i] = 0x00;}
//clear IN2EP buffer
send_to_dsp(USB_RUN);
if(read_dsp_ack()==1)
//if we've received the ACK
{

receivedatablock=1;
//get ready to receive data block...
//USB_DIS_INT6;
//disable INT6 already disabled in the INT6
//routine...

}else{ //no dsp ack
}
USB_EN_USBINT;
EPIO[IN2BUF_ID].bytes=64;
//arm IN2EP to send the ACK or NACK bytes
EPIO[OUT2BUF_ID].bytes=0;
//may need to place this in the IN2 INT routine to
//prevent early firing
//EA=1; //re-enable interrupts - disables after ACK
//read; if no ACK, then never disabled; allow EPINTs
//EP should be re-armed only at end of USB REQ VARS
//all acquired so as not have interrupts in the middle
outsci("fRUN ");
break;

//OK, but what if INTs are enabled, e.g. CONNECT works,
//but not STOP...

default:
//may need to check if IN2 is busy, but we'll assume
//things are queued properly

233

//if(!(EPIO[IN2BUF_ID].cntrl & bmBusy))
IN2BUF[0] = USB_UNRECOGNIZED_COMMAND;
EPIO[OUT2BUF_ID].bytes = 0;
//arm the EP to receive more data
//EPIO[OUT2BUF_ID].bytes=0;
EPIO[IN2BUF_ID].bytes=64; //arm the IN2 EP for data to
//send; this sets the busy bit as well supposedly
outsci("UU ");
break;//return;

}

//since out has been read, arm it for another write
//EPIO[OUT2BUF_ID].bytes=0;

//Clear ints
EZUSB_IRQ_CLEAR();
OUT07IRQ |= 0x04; //clear the IRQ for EP2 OUT
//although it looks like setting a bit, it clears the IRQ

//reset the buffer
//OUT2BUF[0] = 0x00; //maybe??

}

void ISR_Ep3in(void) interrupt 0
{
}

void ISR_Ep3out(void) interrupt 0
{
}

void ISR_Ep4in(void) interrupt 0
{
}

void ISR_Ep4out(void) interrupt 0
{
}

void ISR_Ep5in(void) interrupt 0
{
}

void ISR_Ep5out(void) interrupt 0
{
}

void ISR_Ep6in(void) interrupt 0
{
}

void ISR_Ep6out(void) interrupt 0
{
}

void ISR_Ep7in(void) interrupt 0

234

{
}

void ISR_Ep7out(void) interrupt 0
{
}

235

APPENDIX F: APD200 SOFTWARE – REVISED PORTIONS OF APD100

Code Listings:

- Listing F.1. ApdUsb.bas – main APD200 code that provides USB functions

236

' LISTING F.1. ApdUsb.bas

Attribute VB_Name = "ApdUsb"
Option Explicit

'---
'
' ApdUsb.bas
'
' This code contains most of the functions that support the APD-SA
' USB device as an HID class USB device. Modifications have been
' made to other modules and forms in the APD PC host code, but the
' majority of functions are for the APD-SA USB are in this module.
'
' This code works as two layers, the first providing a similar
' interface to APD functions as was found in the APD100 model,
' the second layer working below the first to handle USB controls.
'
' There are several routines that provide data manipulation from the
' USB data stream in order to extract variables and use the APD
' functions in the first layer.
'
' The USB access functions are built around the Windows HID device
' driver that expects to communicate with a USB 1.1 compliant USB
' device.
'
' The basic HID-class USB device functions in this code are adapted
' from:
' Project: HIDDemo2.vbp
' Version: 1.1
' Date: 3/8/00
' Copyright 1999 and 2000 by Jan Axelson (jan@lvr.com)
'
' This example USB HID projects includes the functions:
' DisplayResultofAPICall
' DoAWriteFile
' FindtheHID
' GetDataString
' GetDeviceCapabilities
' GetDeviceString
' ReadSingleReport
' SendReporttotheHID
'
' The above listed functions communicate with the Windows HID-class
' USB device driver
' and require J. Axelson's ApiDeclarations file.
'
' This API declaration file however
' has been expanded
' to access more functions in the HID driver that are implemented in
' this APD program.
'
' Further the example functions have been expanded to better suit
' the device here.
'
' The vendor ID and device ID have been changed to match that
' programmed in the
' EZ-USB chip

237

' The USB Re-numeration code has been adapted from
' examples provided by Cypress (EZ-USB) for the AN2131 chip
' This includes the functions:
' Download
' DoneDownload
' All functions in EZUSB.bas module
' All functions in Memory module
'
' However, the code has been changed to be implemented specifically
' for the APD-SA device
'
' The remaining functions, and changes to the above examples were
' written to
' enable the APD-SA USB functionality within the existing APD100
' program
'
' Much has been changed in the APD100 program thus making reasonable
' its promotion to
' APD200
'
' The original data acquisition card functions have been left intact
' or modified
' to check for conditions of APD-SA attachment - thus new or modified
' routines have
' been written for all aspects of the APD program including:
' Data collection during run, calibration, variable transfer, etc.
' Device Calibration
' Data display on panel
' Plotting
' Saving or logging data to file
'
' The bulk of new code related to USB functionality resides within
' this ApdUsb module
' however much modified code and a few added routines reside within
' the ApdMain
' module, ApdPlotting module or on forms (code section)
' ApdIndic, ApdSim, ApdTesing modules and associated forms were
' designed for
' prior to the development of the final prototype of the APD-SA for
' testing the APD,
' simulating an APD panel, and simulating a fast response APD display.
'
' In general, comments are either line by line of for a section.
' Line comments generally follow the line to which they refer.
'
' N. Silverman 2004 for MS Thesis
'
'---

Dim Capabilities As HIDP_CAPS
Dim DataString As String
Dim DetailData As Long
Dim DetailDataBuffer() As Byte
Dim DeviceAttributes As HIDD_ATTRIBUTES
Dim DeviceDetected As Boolean
Dim DevicePathName As String
Dim DeviceInfoSet As Long
Dim ErrorString As String
Dim HID As Long

238

Dim LastDevice As Boolean
Dim MyDeviceDetected As Boolean
Dim MyDeviceInfoData As SP_DEVINFO_DATA
Dim MyDeviceInterfaceDetailData As SP_DEVICE_INTERFACE_DETAIL_DATA
Dim MyDeviceInterfaceData As SP_DEVICE_INTERFACE_DATA
Dim Needed As Long
Dim OutputReportData(7) As Byte
Dim PreparsedData As Long
Dim ReadBuffer() As Byte
Dim ReportNumber As Integer
Dim result As Long
Dim SendBuffer() As Byte
Dim Timeout As Boolean
'Dim WithEvents HIDObj As clsHID
'by niz
Dim CurrentCommTimeout As COMMTIMEOUTS

Public blnKill As Boolean

'For download
Public strBuffer As String

' For overlapped reads...
Public EventObject As Long
Public HIDOverlapped As OVERLAPPED

'For typical SAAPD values:
'#2 Fleisch: 1 mmH20 = 0.346 lps; 10 mmH20 = 3.253 lps
'Flow sensor: +/- 1 inH20 for full range (0.25 to 4.25 volts out)
'Pressure sensor: +/- 10 inH20 for full range (0.25 to 2.25 volts out)
'For zero point for transducers nears: 7400 and lowest reading
'at abour 480 counts:
'Flowspan: -.001186 lps / count
'Pressspan: -.00367 cmH20 / count

'Set these to match the values in the device's firmware and INF file.
Const MyVendorID = &H547
'this is reversed in windows &H4705 '4705 from DSCR.A51 file '&H4242
'&HABF '&H925
Const MyProductID = &H1028 '&H2810 also reversed bytes
'2810 from DSCR.A51 file '&H4200 '&H3B9 '&H1234
Const USB_CONNECT_TO_DSP = &H1
'constant sent to USB to say "hey buddy, connect to DSP, mkay?
Const USB_UNRECOGNIZED_COMMAND = &HFF
'USB says what are trying to say?
Const USB_DSP_ACK = &HBB
'says yes, I received the ACK byte from the DSP ok?
Const USB_DSP_NO_ACK = &HFE
'dsp did not ack in time upon connect trial
Const USB_REQUEST_VARIABLES = &H2
'Ask for all relevant variables from DSP
Const USB_END_OF_VARIABLE_TRANSFER = &HFD
'last variables received - end of transfer
Public Const USB_BYTES_PER_VAR = 6
'number of bytes composing a variable in the buffer
Const USB_MAX_VARS_PER_BUFFER = 10

239

Const USB_NUM_VARS = 36 'total number of variables to transfer etc.
Const USB_MAX_READ_REPORTS = 10
'total number of allowed reports to read
Const USB_MAX_ATTEMPTED_REPORTS = USB_MAX_READ_REPORTS + 20
Const USB_DEC_PT = 46 'decimal point in ASCII
Const USB_NEG_SIGN = 45 'hyphen in ASCII
Const USB_STREAM_ADC = &H3
Const USB_RUN = &H6
'set APD USB to runmode and collect data - this is just pert val, and
'press and flow vals
Const USB_STOP = &HFB 'signal stop to the dsp to stop streaming to usb
Const USB_GET_HOST_VARS = &H5
'request for host computer to send vars to apd for storage e.g.
'calibration
Const USB_MAX_STREAM_SIZE = 5 * 2 * 500
'5 seconds x 500Hz x 2 data channels
Public Const USB_MAX_RUN_SIZE = 1 * 4 * 500
'1 second x 4 data slots x 500Hz
Public Const USB_BYTES_PER_REPORT = 64
'Really there are 65 (0 to 64) with the 0th being the report ID,
'but each
'report only contains 64 actual data bytes (1 to 64)
Const USB_HOST_TOO_SLOW = &HFA
'for when the host is collecting data too slowly in the stream or run
'modes this is signalled from the TimeProc, not the subroutines
'that transfer the data
Public Const USB_RUN_VARS = 3 'three variables transmitted
Const USB_RUN_FULL = 7
'this is for running with full data returned after each pert.
Const USB_ERR_PAD = 0.005
'error padding for transfer of rd for 0.0004 -> 0.0
Const USB_NUM_INPUT_BUFFERS = 640
'64 reports in buffer - circular buffer - default is 8

Public Const USB_DEF_MIN_FREQ = 5 'Hz
Public Const USB_DEF_MAX_FREQ = 14 'Hz

Public Vars() As Single
'array of variables from buffer to be redimmed when needed
Public intVarsIndex As Integer 'index for this vars array
Public Digits() As Integer
Public intPertNo As Integer

'***
'***
Public Sub ToggleApdUsbOptions(blnUsbInUse As Boolean)

' This sub switches available options on menus on ApdPanel
' and dialog boxes, depending on which devices (USB or APD100)
' is in use.

With ApdCal

 If blnUsbInUse = True Then
 .fmeApdUsb.Enabled = True
 .txtDuty.Enabled = True
 .cmdDownloadCal.Enabled = True

240

 .cmdRetrieveCal.Enabled = True
 .Frame4.Enabled = False
 .Frame5.Enabled = False
 ElseIf blnUsbInUse = False Then
 .fmeApdUsb.Enabled = False
 .txtDuty.Enabled = False
 .cmdDownloadCal.Enabled = False
 .cmdRetrieveCal.Enabled = False
 .Frame4.Enabled = True
 .Frame5.Enabled = True
 End If

End With

With ApdPanel

 If blnUsbInUse = True Then
 .Simulation.Enabled = False
 .Simulate.Enabled = False
 .Testing.Enabled = False
 .SaveFFTData.Enabled = False
 .SaveRXValues.Enabled = False
 .SaveLast5Sec.Enabled = False
 .FftResTime.Enabled = False
 .ResistReact.Enabled = False
 .RvsVolume.Enabled = False
 .MagnitudePlot.Enabled = False
 ElseIf blnUsbInUse = False Then
 .Simulation.Enabled = True
 .Simulate.Enabled = True
 .Testing.Enabled = True
 .SaveFFTData.Enabled = True
 .SaveRXValues.Enabled = True
 .SaveLast5Sec.Enabled = True
 .FftResTime.Enabled = True
 .ResistReact.Enabled = True
 .RvsVolume.Enabled = True
 .MagnitudePlot.Enabled = True
 End If

End With

End Sub

'***
'***
Public Sub OutDecFloat(floatin As Single, Optional ByRef
intSendBufIndex As Integer = -1)

' This sub sends out a float (single) over USB
'

'This method uses string conversion and dumping of each character
Dim i As Integer
Dim j As Integer
Dim stringval As String
Dim dig As String
Dim blnDidDecPt As Boolean

241

ReDim Digits(USB_BYTES_PER_VAR - 1)

blnDidDecPt = False

stringval = CStr(floatin)

If Len(stringval) > 0 Then
For i = 0 To Len(stringval) - 1
'hoping that it's always shorter than the Digits
 If i >= USB_BYTES_PER_VAR - 1 Then Exit For
 dig = Mid(stringval, i + 1, 1)
 If dig = "-" Then
 Digits(i) = USB_NEG_SIGN
 ElseIf dig = "." Then
 Digits(i) = USB_DEC_PT
 blnDidDecPt = True
 ElseIf dig = "" Then
 Digits(i) = 0
 Else
 Digits(i) = CInt(dig)
 End If
Next i

If ((Len(stringval) - 1) < (USB_BYTES_PER_VAR - 1)) _
And blnDidDecPt = False Then
 Digits(i) = USB_DEC_PT

'Add decimal point after integers that are less than 6 places
End If
'i should be incremented arleady as a result of exiting the for loop

Debug.Print "Floatin: " & CStr(floatin)

For i = 0 To UBound(Digits)
 Debug.Print i & ": " & CStr(Digits(i))
 If intSendBufIndex <> -1 Then
 SendBuffer(intSendBufIndex) = Digits(i)
 intSendBufIndex = intSendBufIndex + 1
 End If
Next i

End If

End Sub

'***
'***
Public Sub RezeroUSB()

' This sub rezeroes the APD-SA USB by collecting five seconds
' worth of data from both ADC channels
' The values are averaged to calculate a zero point (the voltage
' or counts really when no pressure or flow is applied)

 Dim newxo As Single
 Dim msgTxt As String

242

 Dim response As Variant

 'Start acquisition of five seconds.
 MsgBox "Apply no flow or pressure to APD for five seconds."

 Beep

 MyMsg ("Reading pressure and flow values...")

 ApdUsb.StreamADC

 MyMsg ("...")

 newxo = Average(mp()) 'Ch1 of 2
 msgTxt = "The mouth pressure baseline changed from " & Format(xp,
"0")
 msgTxt = msgTxt & " to " & Format(newxo, "0")
 msgTxt = msgTxt & " ADC Counts. Update the calibration?"
 response = MsgBox(msgTxt, vbYesNo, "Calibration")
 If (response = vbYes) Then
 xp = CSng(Round(newxo))
 ApdUsb.GetHostVars 'write values to the USB flash
 Else
 MsgBox "Not updated."
 End If

 newxo = Average(fr()) 'Ch2 of 2
 msgTxt = "The flowrate baseline changed from " & Format(xo, "0")
 msgTxt = msgTxt & " to " & Format(newxo, "0")
 msgTxt = msgTxt & " ADC Counts. Update the calibration?"
 response = MsgBox(msgTxt, vbYesNo, "Calibration")
 If (response = vbYes) Then
 xo = CSng(Round(newxo))
 ApdUsb.GetHostVars 'write values to the USB flash
 Else
 MsgBox "Not updated."
 End If

 'This will re-download the variables - can then ensure
 'they were transferred ok if necess.
 ApdUsb.RequestVariables

 'Re-connect just to reset if necess.
 ApdUsb.Connect

End Sub

'***
'***
Sub CalibratePressureUSB()

' This sub performs the pressure calibration routine for the
' APD-SA USB. It collects five seconds worth of ADC data from
' both channels and then computes calibration coefficients
' based on average values and the specified actual pressure
' Upon completion and acceptance of the values by the user, the
' calibration values are sent back to the APD-SA to be written to

243

' FLASH memory.

 Dim sum As Long, rw As Variant, chn As Integer
 Dim span As Variant, offset As Variant, x As Variant
 Dim X1 As Single, X2 As Single 'A/D calibration readings.
 Dim Y1 As Single, Y2 As Single 'Applied calibration pressures.
 Dim txt As String, msgTxt1 As String, msgTxt2 As String
 Dim userInput As Variant
 Dim response As Variant

 msgTxt1 = "Apply low mouth pressure and press OK (cmH2O):"
 msgTxt2 = "Apply high mouth pressure and press OK (cmH2O):"

 'Ask for low pressure calibration point.
 userInput = InputBox(msgTxt1, "Calibration", "0.00")
 Y1 = Val(userInput)

 MyMsg ("Reading low pressure...")
 'Start acquisition of five seconds.
 ApdUsb.StreamADC

 Beep
 X1 = Average(mp())
 MyMsg ("...")

 'Ask for high pressure calibration point.
 userInput = InputBox(msgTxt2, "Calibration", "10.0")
 Y2 = Val(userInput)

 MyMsg ("Reading high pressure...")
 'Start acquisition of five seconds.
 ApdUsb.StreamADC

 Beep
 X2 = Average(mp())
 ApdPanel.StatusBar.Caption = "..."

 'Calculate calibration values.
 If (Abs(Y1 - Y2) < 0.01 Or Abs(X1 - X2) < 0.01) Then
 MsgBox "Calibration failed."
 Exit Sub
 End If
 span = (Y2 - Y1) / (X2 - X1)
 'offset = (0 - Y1) / ap + X1 'In case y1 is not 0.
 offset = X1 - ((Y1 - 0#) / span)

 'Display results to user
 txt = "Your calibration value was " & Format(span, "0.000000")
 txt = txt & " cmH2O/Count. Update the calibration?"
 response = MsgBox(txt, vbYesNo, "Calibration")

 'If accept the updated cal, then save the values in program and to
 'the USB device
 If (response = vbYes) Then
 xp = CSng(Round(offset, 0))
 ap = CSng(Round(span, 8))
 'this depends on format for the span used....check precision

 'etc.
 ApdUsb.GetHostVars 'write values to the USB flash

244

 Else
 MsgBox "Not updated."
 End If

End Sub

'***
'***
Public Sub CalibrateFlowBySyringeUSB()

' This sub performs flow calibration on APD-SA USB by
' collecting five seconds worth of ADC data from both channels.
' The calibration coefficient is calculated by integrating the
' ADC counts over time based upon the specified total injection
' and withdrawal volumes.
' Value are calculated for inhalation and exhalation, but as of this
' writing, the average is taken and applied to both directions.
' Upon completion and acceptance of the values by the user, the
' calibration values are sent back to the APD-SA to be written to
' FLASH memory.

 Dim msgTxt As String
 Dim actVol As Variant
 Dim inVol As Single, exVol As Single
 Dim response As Variant

 'Setup collection of baseline data. One second average.
 MsgBox "Apply no flow through the APD and press OK."

 MyMsg ("Reading baseline...")

 ApdUsb.StreamADC

 Beep

 xo = Average(fr())
 MyMsg ("...")

 'User injects volume through APD.
 Do
 msgTxt = "What calibration volume will you use? Liters:"
 actVol = InputBox(msgTxt, "Calibration", "3.0")
 Loop Until IsNumeric(actVol) Or actVol = vbCancel
 If actVol = vbCancel Then Exit Sub

 actVol = Val(actVol)

 MsgBox "Press OK and then inject the calibration volume within 5
seconds."

 MyMsg ("Monitoring Flow...")

 ApdUsb.StreamADC

245

 Beep
 MyMsg ("...")

 exVol = (Average(fr()) - xo) * 5 'Average flowrate*5 seconds.

 negIsExh = (exVol < 0)

 MsgBox "Press OK and then withdraw the calibration volume within 5
seconds."

 MyMsg ("Monitoring Flow...")

 ApdUsb.StreamADC

 Beep

 MyMsg ("...")

 inVol = (Average(fr()) - xo) * 5 'Average flowrate*5 seconds.

 If (Abs(inVol) > 0.01 And Abs(exVol) > 0.01) Then
 ai = -actVol / inVol
 ae = actVol / exVol
 msgTxt = "Your inhalation calibration was " _

& Format(ai, "0.000000")
 msgTxt = msgTxt & " Lps/count and your exhalation” _

& calibrations was " & Format(ae, "0.000000")
 msgTxt = msgTxt & " Lps/count. Update values?"
 response = MsgBox(msgTxt, vbYesNo)
 'If accept the updated cal, then save the values

'in program and to the USB device
 If (response = vbYes) Then
 xo = CSng(Round(xo, 0))
 ai = CSng(Round((Abs(ae) + Abs(ai)) / 2#, 8))

'check for rounding here depending on format
 'If (exVol < 0) Then ai = ai * -1# 'this is unneeded
 ae = ai
 ApdUsb.GetHostVars 'write values to the USB flash
 Else
 MsgBox "Not updated on stand-alone APD."
 End If
 Else
 MsgBox "Calibration error. No flow detected."
 End If

End Sub

'***
'***
Public Sub OutDecFloatMath(floatin As Single)

' This sub sends out a float (single) to the APD-SA USB
' over USB by math (rather than a text approach). Compare
' with program OutDecFloat.

ReDim Digits(USB_BYTES_PER_VAR)

'Also note that when viewing locals and when program runs for that

246

'matter, dimming all ints
'in one line does not create equivalent types..... same with singles
'etc. so dim each
'separately here to be sure

Dim rounddivisor As Single
Dim multcounter As Single
Dim copyfloat As Single
Dim keepmult As Single
Dim floatval As Single
Dim digit As Integer
Dim digitplace As Integer
Dim num10divs As Integer
Dim totdigout As Integer
Dim prevaccum As Long
Dim value As Long
Dim i As Integer
Dim digindex As Integer

'This routine appears to work most of the time and all the time in '
'theory, but
'cannot be used in this program (use alternative method) because VB
'doesn't
'do 'Fix' properly -> e.g. 0.53 * 100 will fix to 52 and then screw up
'the whole method.

rounddivisor = 0.5
multcounter = 10#
copyfloat = floatin

digit = 0
digitplace = 0 'USB_BYTES_PER_VAR - 1
num10divs = 0
totdigout = USB_BYTES_PER_VAR
prevaccum = 0
value = 0
i = 0
digindex = 0

If floatin < 0 Then
 digit = USB_NEG_SIGN
 Digits(digindex) = digit
 digindex = digindex + 1
 floatin = floatin * -1#
End If

keepmult = 10#

'First count number power of ten
Do While (Fix(floatin / multcounter) <> 0)
 num10divs = num10divs + 1
 multcounter = multcounter * 10#
 keepmult = multcounter
Loop

'Loop to output each digit
For i = 0 To num10divs
 rounddivisor = rounddivisor / 10#
Next i

247

floatin = floatin / multcounter
'floatin = floatin + rounddivisor
multcounter = 10#

Do
 prevaccum = prevaccum * 10#
 floatval = floatin * multcounter 'Fix doesn't really work properly
 value = Fix(floatval)
 digit = Fix(value - prevaccum)
 If multcounter = 10# * keepmult Then
 Digits(digindex) = USB_DEC_PT
 digindex = digindex + 1
 End If
 multcounter = multcounter * 10
 prevaccum = value

 'Just in case added decimal point in last place of array
 If digindex >= USB_BYTES_PER_VAR Then Exit Do

 digitplace = totdigout - i
 'output decimal point if necessary

 Digits(digindex) = digit
 digindex = digindex + 1
Loop Until digindex >= USB_BYTES_PER_VAR

End Sub

'***
'***
Private Sub ShowReadBuffer()

' This sub is primarily for debugging and prints
' to the APDUSB monitoring panel (which is not used
' in the release version of APD200) the values of the
' USB buffer that was read most recently.

Dim intCount As Integer
Dim strLine As String

With ApdUSBPanel.lstUSB

.AddItem "ReadBuffer contents:"

.ListIndex = .ListCount - 1

For intCount = 0 To UBound(ReadBuffer)
 strLine = strLine & Hex$(intCount) & ": " & Hex$(ReadBuffer
(intCount)) & Chr(9) 'this is tab
 If ((intCount + 1) Mod 16 = 0) Then

'if its a multiple of 16 thensesx
 'strLine = strLine & Chr(10) & Chr(13)

'linefeed and carriage return ASCII
 .AddItem strLine
 .ListIndex = .ListCount - 1
 strLine = ""
 End If

248

Next intCount

'Add last line if not multiple of 16
.AddItem strLine
.ListIndex = .ListCount - 1

End With

End Sub

'***
'***
Private Sub ShowSendBuffer()

' This sub is primarily for debugging and prints
' to the APDUSB monitoring panel (which is not used
' in the release version of APD200) the values of the
' USB buffer that was sent most recently.

Dim intCount As Integer
Dim strLine As String

With ApdUSBPanel.lstUSB

.AddItem "SendBuffer contents:"
.ListIndex = .ListCount - 1

For intCount = 0 To UBound(SendBuffer)
 strLine = strLine & Hex$(intCount) & ": " & Hex$(SendBuffer
(intCount)) & Chr(9) 'this is tab
 If ((intCount + 1) Mod 16 = 0) Then

'if its a multiple of 16 thensesx
 'strLine = strLine & Chr(10) & Chr(13)

'linefeed and carriage return ASCII
 .AddItem strLine
 .ListIndex = .ListCount - 1
 strLine = ""
 End If
Next intCount

End With

End Sub

'***
'***
Public Sub StopDsp()

' This sub sends a stop command via USB to the DSP
' The stop command can be for a stop sending ADC data

249

' or stop running

 Dim blnResult As Boolean
 '
 '
 'Assume the WriteFile function will set SendBuffer(0) =
 'ReportID to zero
 SendBuffer(1) = USB_STOP

 'Clear input report queue - Gets rid of the reports waiting in

'ring buffer
 'that have not yet been read...
 blnResult = HidD_FlushQueue(HID)
 ApdUSBPanel.lstUSB.AddItem "Flush Queue Result: " & CStr(blnResult)
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
 '
 '
 blnResult = DoAWriteFile()
 '
 'Try the following here: it may flush the response though, in

'which case, maybe put flush
 'earlier and try reading several reports in the queue.
 'However, may be slow enough (delayed enough) response that queue

'is flushed and then response
 'can be read. - !!!!!!!!!!!!NOTE is there a way to stop reading

'reports? (i.e. tell
 'the driver to stop :)

 If blnResult = True Then

'wrote file OK, so check for DSP ACK connection etc.
 ApdUSBPanel.lstUSB.AddItem "Wrote USB_STOP OK. Waiting for
acknowledgement from DSP."
 '
 'Clear input report queue - Gets rid of the reports waiting in

'ring buffer
 'that have not yet been read...
 'blnResult = HidD_FlushQueue(HID)
 'ApdUSBPanel.lstUSB.AddItem "Flush Queue Result: " & Cstr

'(blnResult)
 'ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
 '
 'Do ReadFile waiting for ACK
 blnResult = (ReadSingleReport() > 0)

'ReadSingleReport returns the number of bytes read
 '
 'If...then write ok...connected to USB APD
 If blnResult = True Then
 ApdUSBPanel.lstUSB.AddItem "Read something here..."
 ApdUSBPanel.lstUSB.AddItem "Result: " & Hex$(ReadBuffer(1))
& ", outcount: " & Hex$(ReadBuffer(2))

'assuming (0) is report ID ?
 If ReadBuffer(1) = USB_DSP_NO_ACK Then
 ApdUSBPanel.lstUSB.AddItem "= USB_DSP_NO_ACK..."
 End If
 If ReadBuffer(1) = USB_DSP_ACK Then
 ApdUSBPanel.lstUSB.AddItem "DSP ACK'd USB_STOP."
 End If
 If ReadBuffer(2) = USB_STOP Then

250

 ApdUSBPanel.lstUSB.AddItem "EZUSB wrote back USB_STOP
recognizing request to stop dsp"
 End If
 ' Kill global variable
 'blnKill = True
 'ApdUSBPanel.lblKill.Caption = "Killed."
 '
 Else
 ApdUSBPanel.lstUSB.AddItem "Could not read a response from
device..."
 End If

 End If

 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

 If ApdOpt.chkLogAPDSAUSBToFile.value = 1 Then
 'close file
 Close #g_fNum
 End If

End Sub

'***
'***
Public Sub OpenLogFile()

' This opens and prepares, if selected in the APD options,
' a file that logs detailed data while it is collected.
' The filename comes from the global variable 'logfile'
' Calibration values, and data are put to file.

 Dim fNum As Integer
 Dim fname As String, fTitle As String

 'Set default directory
 ChDrive "C"
 ApdDir
 ChDir "C:\Apd"

 'Bring up Save dialog box.
 On Error GoTo EndOfSub3 'This is for when user clicks Cancel.

 g_fNum = FreeFile

 Open logFile For Output As #g_fNum
 Write #g_fNum, "Logged data..."
 Write #g_fNum, "Calibration Values"
 Write #g_fNum, "Press Offset", "Press Span", "Flow Offset", "Flow
Inh Span", "Flow Exh Span", "Duty Cycle"
 Write #g_fNum, "(Counts)", "(cmH20/count)", "(counts)",
"(Lps/count)", "(Lps/count)", "(counts 0x0400 = 1024 max)"
 Write #g_fNum, xp, ap, xo, ai, ae, duty
 Write #g_fNum, ""
 Write #g_fNum, "Respiratory Resistance (cmH20/Lps)", "Mouth
Pressure (counts)", "Flow (counts)"

251

 'Close #g_fNum
 'Leave file open for logging

 Exit Sub

EndOfSub3:
 MsgBox "Log file not selected."

End Sub

'***
'***
Public Sub StreamADC()

' This sub requests and then receives streamed ADC values from
' the APD-SA USB. Streamed variables if received properly
' are then extracted from the stream and put into their
' respective buffers

'Stream ADC values from the device
Dim blnResult As Boolean
Dim intCount As Integer
Dim ReportsAttempted As Integer
Dim intVarsIndexLoc As Integer
Dim strLastFragment As String
Dim intTempTransferBufferCount As Integer
Dim intTempTransferBuffer() As Integer
Dim ReportsRead As Integer
Dim intWhenToStop As Integer

intVarsIndexLoc = 0
strLastFragment = ""

'global stuff for getting these vars etc.
ReDim Vars(1 To arraysize)
intVarsIndex = 0

'ReDim temp buffer according to needed temp buffer
intTempTransferBufferCount = 0
ReDim intTempTransferBuffer((CLng(USB_BYTES_PER_VAR) *
USB_MAX_STREAM_SIZE) - 1 + (3 * USB_BYTES_PER_REPORT))
'one integer slot to hold each
'added extra room for extra bytes in padded buffer at end for
'communication handshake etc. on stop
'The CLng in the above statement prevents overflow in array ReDim
'each digit of the streamed value
'ReDim intTempTransferBuffer((USB_BYTES_PER_VAR * 200) - 1)
'one integer slot to hold each

ReportsAttempted = 0
ReportsRead = 0
'Clear input report queue - Gets rid of the reports waiting in
'ring buffer

252

'that have not yet been read...
blnResult = HidD_FlushQueue(HID)
ApdUSBPanel.lstUSB.AddItem "Flush Queue Result: " & CStr(blnResult)
ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

'Assume the WriteFile function will set SendBuffer(0) = ReportID to
'zero
SendBuffer(1) = USB_STREAM_ADC
'this is global const
'
blnResult = DoAWriteFile()

If blnResult = True Then
 ApdUSBPanel.lstUSB.AddItem "Sent request to stream ADC values..."
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
End If

'Read the ACK or NACK to this request
blnResult = ApdUsb.ReadSingleReport()
If blnResult = True Then
 If (ReadBuffer(1) = USB_DSP_ACK) Then
 blnResult = True
 With ApdUSBPanel.lstUSB
 .AddItem "Read ACK to stream ADC request."
 .AddItem "Now about to ReadSingleReport(s) containing
values."
 .AddItem "Screen here will only show the number of reports
read as they occur"
 .ListIndex = .ListCount - 1
 End With
 Else
 blnResult = False
 End If
End If

'*************
'Yes ACK was received so GET DATA streaming...
If blnResult = True Then

 'intWhenToStop = 20 '20 reports for debug and slow reporting
 intWhenToStop = CLng((CSng(USB_BYTES_PER_VAR) * USB_MAX_STREAM_SIZE
/ USB_BYTES_PER_REPORT) + 3)
 'this is about 657 reports for 7 seconds, 500 Hz, 2 channels, 6

'bytes per var, 64 bytes per report
 'and requires about 93 reports per second, and thus 10ms per

'report - which is well within bounds.
 'NOTE: the above value should provide at least one report beyond

'the number of reports actually
 'containing data - e.g. is 656.25 reports required, get 658
 'For 5 seconds, its less but at the same rate 471 reports = 30144

'bytes = 5024 values

 'Then during extract variables, only the needed variables are

'extraced
 'The last report is just used to signal ACK of the STOP request
 'Use 3 report beyond fraction of needed for the manner in which

'intWhenToStop-1 is checked and
 'then set to intWhenToStop at the end of the loop

253

 'intTempTransferBuffer needs to be appropriately large enough

 'Do loop until byte is returned indicating end of variables

'transferred
 Do
 'Get report
 ReportsAttempted = ReportsAttempted + 1
 'ApdUSBPanel.lstUSB.AddItem "Reports Attempted = " & CStr
(ReportsAttempted) 'should show report number
 blnResult = (ReadSingleReport(False) > 0)

'Calling with False means don't show read buffer
 'If blnResult = True Then
 'assign appropriate vars here
 'Print them as obtained
 'Shouldn't need to check for end of usb var transfer

'here...because it's stopped from
 'host perspective
 '<!--
 'For intCount = 0 To UBound(ReadBuffer)
 ' If ReadBuffer(intCount) = USB_END_OF_VARIABLE_TRANSFER
Then
 ' ApdUSBPanel.lstUSB.AddItem "Found
USB_END_OF_VARIABLE_TRANSFER at: " _
 ' & CStr(intCount) & " (arrays are base 0);
value = " & Hex$(USB_END_OF_VARIABLE_TRANSFER)
 ' ApdUSBPanel.lstUSB.ListIndex =
ApdUSBPanel.lstUSB.ListCount - 1
 ' blnResult = False
 ' End If
 'Next intCount
 '-->
 'ApdUSBPanel.lstUSB.AddItem Hex$(ReadBuffer(1)) & ", " &
Hex$(ReadBuffer(2))
 'ApdUSBPanel.lstUSB.ListIndex =
ApdUSBPanel.lstUSB.ListCount - 1
 'End If
 '
 'If OK, then extract the variables from this buffer
 'Don't do this quite yet
 '<!--
 'strLastFragment = ExtractVariablesFromReadBuffer(_
 ' (Not (blnResult)), _
 ' strLastFragment, _
 ' intVarsIndexLoc)
 '-->
 '
 'Transfer each value to buffer for later processing
 If blnResult = True Then
 ReportsRead = ReportsRead + 1
 For intCount = 1 To UBound(ReadBuffer)

'element 0 is report ID
 intTempTransferBuffer(intTempTransferBufferCount) =
ReadBuffer(intCount)
 intTempTransferBufferCount = intTempTransferBufferCount
+ 1
 If ReadBuffer(intCount) = USB_HOST_TOO_SLOW Then GoTo
ExitLoop_StreamADC
 Next intCount
 End If

254

 'Terminate the streaming of data if read sufficient number

'of reports
 If ReportsRead = (intWhenToStop - 1) Then
'(USB_MAX_READ_REPORTS - 1) Then
 ApdUSBPanel.lstUSB.AddItem "Reached intWhenToStop; Calling
Stop DSP" 'USB_MAX_READ_REPORTS-1; Calling StopDsp"
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount
- 1
 Call StopDsp
 ReportsRead = intWhenToStop 'USB_MAX_READ_REPORTS
 End If

 DoEvents 'Hopefully this will allow for manual stop when

'button is pressed on form...
 'may need to use instead the Kill global var and check with

'each loop for its state

 Loop Until _
 ReportsAttempted = (intWhenToStop + USB_MAX_ATTEMPTED_REPORTS) _
 Or ReportsRead = intWhenToStop

ExitLoop_StreamADC:

 'Loop Until ReportsAttempted = USB_MAX_ATTEMPTED_REPORTS Or

'ReportsRead = USB_MAX_READ_REPORTS 'ReadBuffer(1) =
'USB_END_OF_VARIABLE_TRANSFER

 'Loop Until blnResult = False Or ReportsAttempted =
'USB_MAX_READ_REPORTS 'ReadBuffer(1) =
'USB_END_OF_VARIABLE_TRANSFER

 '
 'When finished collecting all data into transfer buffer, need to

'extract the variables
 'ExtractVariables here !!!!!!!!!!!!!!!! <---<------
 'Need new extract variables based on the number of channels to

'split and for this buffer
 blnResult = ExtractStreamedVariablesFromBuffer
(intTempTransferBuffer(), _
 CLng(USB_BYTES_PER_VAR) * USB_MAX_STREAM_SIZE - 1, _
 2)

 ' used to use intMaxIndex = CLng(USB_BYTES_PER_VAR) *
USB_MAX_STREAM_SIZE - 1

 With ApdUSBPanel.lstUSB
 .AddItem "intTempTransferBufferCount = " & CStr
(intTempTransferBufferCount)
 .ListIndex = .ListCount - 1
 End With

 'The with block below would be too long processing if kept in for

'the full transfer block, so
 'just transfer the variables to the blocks
 'With ApdUSBPanel.lstStreamData
 ' For intCount = LBound(intTempTransferBuffer) To
(intTempTransferBufferCount - 1)
 ' .AddItem CStr(intTempTransferBuffer(intCount))
 ' Next intCount
 'End With

255

 With ApdUSBPanel.lstStreamData(0)
 .Clear
 For intCount = LBound(mp()) To UBound(mp())
 .AddItem CStr(mp(intCount))
 Next intCount
 End With
 With ApdUSBPanel.lstStreamData(1)
 .Clear
 For intCount = LBound(fr()) To UBound(fr())
 .AddItem CStr(fr(intCount))
 Next intCount
 End With

ElseIf blnResult = False Then
 ApdUSBPanel.lstUSB.AddItem "An ACK was not received after the
stream ADC request."
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
End If

End Sub

'***
'***
Public Sub Run()

' This sub performs the 'run' function, that is it tells
' the APD-SA USB to begin collecting data and looking for perts
' while sending pressure, flow, and any RR data back to the host
' PC by USB. This function includes the request of run mode, the
' receipt of acknowledge, and then the receipt of data, extraction
' of variables from the data stream. If at any point, the
' the run needs to stop, either from user clicking stop button
' or from reaching max perts, then the sub uses stop dsp routine.

'Set APD USB to runmode

'Stream ADC values from the device
Dim blnResult As Boolean
Dim intCount As Integer
Dim ReportsAttempted As Integer
Dim intVarsIndexLoc As Integer
Dim strLastFragment As String
Dim intTempTransferBufferCount As Integer
Dim intTempTransferBuffer() As Integer
Dim ReportsRead As Integer
Dim intWhenToStop As Integer
Dim intInCount As Long
Dim intExCount As Long

'Prepare arrays and variables to hold the data.
inPertNo = 0
exPertNo = 0
inFftNo = 0
exFftNo = 0
intDisplayUpdateNumber = 0

256

intPertNo = 0 'to keep track of order of breaths, perts, to fill in
time of RR's (approx)

'ReDim inPI(0 To maxNumPerts - 1)
'Fix and zero max number of inh perturbations.
'ReDim exPI(0 To maxNumPerts - 1)
'Fix and zero max number of exh perturbations.
ReDim inPI(0 To maxNumPerts + 100)
'Padded for case of very uneven number of perts
ReDim exPI(0 To maxNumPerts + 100)
'Padded for case of very uneven number of perts
ReDim SI(1 To 1)
'Spectral analysis results dynamically allocated.

ReDim InShiftReg(0 To 0)
ReDim ExShiftReg(0 To 0)
intInCount = 0
intExCount = 0

intVarsIndexLoc = 0
strLastFragment = ""

ApdPanel.LogStatus.Caption = "USB Logging..."
'ApdPanel.Freq.Caption = "USB"
ApdUsb.ClearAPDMainDisplayUSB

'global stuff for getting these vars etc.
ReDim Vars(1 To arraysize)
intVarsIndex = 0

'ReDim temp buffer according to needed temp buffer
intTempTransferBufferCount = 0
ReDim intTempTransferBuffer((CLng(USB_BYTES_PER_VAR) *
USB_MAX_RUN_SIZE) - 1 + (3 * USB_BYTES_PER_REPORT))
'one integer slot to hold each
'added extra room for extra bytes in padded buffer at end for
'communication handshake etc. on stop
'The CLng in the above statement prevents overflow in array ReDim
'each digit of the streamed value
'ReDim intTempTransferBuffer((USB_BYTES_PER_VAR * 200) - 1)
'one integer slot to hold each

ReportsAttempted = 0
ReportsRead = 0
'Clear input report queue - Gets rid of the reports waiting in ring
'buffer
'that have not yet been read...
blnResult = HidD_FlushQueue(HID)
ApdUSBPanel.lstUSB.AddItem "Flush Queue Result: " & CStr(blnResult)
ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

'Assume the WriteFile function will set SendBuffer(0) = ReportID to
'zero
SendBuffer(1) = USB_RUN 'this is global const
'
blnResult = DoAWriteFile()

257

If blnResult = True Then
 ApdUSBPanel.lstUSB.AddItem "Sent request to run..."
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
End If

'Read the ACK or NACK to this request
blnResult = ApdUsb.ReadSingleReport()
If blnResult = True Then
 If (ReadBuffer(1) = USB_DSP_ACK) Then
 blnResult = True
 With ApdUSBPanel.lstUSB
 .AddItem "Read ACK to run request."
 .AddItem "Now about to ReadSingleReport(s) containing
values."
 .AddItem "Screen here will only show the number of reports
read as they occur"
 .ListIndex = .ListCount - 1
 End With

 blnKill = False
 ApdUSBPanel.lblKill.Caption = "Not Killed."
 '

 Else
 blnResult = False
 End If
End If

'*************
'Yes ACK was received so GET DATA streaming...
If blnResult = True Then

 'intWhenToStop = 20 '20 reports for debug and slow reporting
 'intWhenToStop = CLng((CSng(USB_BYTES_PER_VAR) *

'USB_MAX_RUN_SIZE / USB_BYTES_PER_REPORT))
 intWhenToStop = 180
 'the above = 187.5 reports - but need number of reports divisible

'by 3 to be an int.
 'thus use 180 reports which is about a second but is 1920 complete

'variable values
 'the above value should be something like 1 second x 500Hz x 4

'variables x 6 bytes per var
 ' divided by 64 bytes per report and should give an integer before

'conversion to long
 'for example in the present case: 12,000 bytes = 187.5 reports.
 'thus use a multiple of 3 reports so that complete variables are

'extracted since 10 2/3
 'variables are returned with each report (3 reports gives exactly

'32 variables)
Begin_of_Run_Loop:
 ReportsAttempted = 0
 ReportsRead = 0
 intTempTransferBufferCount = 0

 'Do loop until proper amount of data is collected for processing
 Do
 'Get report
 ReportsAttempted = ReportsAttempted + 1

258

 'ApdUSBPanel.lstUSB.AddItem "Reports Attempted = " & CStr
(ReportsAttempted) 'should show report number
 blnResult = (ReadSingleReport(False) > 0)

'Calling with False means don't show read buffer

 'Transfer each value to buffer for later processing
 If blnResult = True Then
 ReportsRead = ReportsRead + 1
 For intCount = 1 To UBound(ReadBuffer)

'element 0 is report ID
 intTempTransferBuffer(intTempTransferBufferCount) =
ReadBuffer(intCount)
 intTempTransferBufferCount = intTempTransferBufferCount
+ 1
 If ReadBuffer(intCount) = USB_HOST_TOO_SLOW Then GoTo
ExitLoop_Run
 Next intCount
 End If

 'Terminate the streaming of data if read sufficient number of

'reports
 If ReportsRead = (intWhenToStop) Then

'Report number is base 1
 ApdUSBPanel.lstUSB.AddItem "Reached intWhenToStop;
transferring data" 'USB_MAX_READ_REPORTS-1; Calling StopDsp"
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount
- 1
 'Call StopDsp 'nope - for run mode, just tranfer data and

'keep collecting until stop is requested by user or
'max data reached

 ReportsRead = intWhenToStop 'USB_MAX_READ_REPORTS
 End If

 DoEvents

'Hopefully this will allow for manual stop when button is
'pressed on form...

 'may need to use instead the Kill global var and check with
'each loop for its state

 Loop Until _
 ReportsAttempted = (intWhenToStop + USB_MAX_ATTEMPTED_REPORTS) _
 Or ReportsRead = intWhenToStop _
 Or blnKill = True

ExitLoop_Run:

 If blnKill = True Then
 Call StopDsp
 GoTo End_of_Run
 End If

 'When finished collecting all data into transfer buffer, need to

'extract the variables
 'ExtractVariables here !!!!!!!!!!!!!!!! <---<------
 'Need new extract variables based on the number of channels to

'split and for this buffer
 'blnResult = ExtractStreamedVariablesFromBuffer
(intTempTransferBuffer(), _
 ' CLng(USB_BYTES_PER_VAR) * USB_MAX_RUN_SIZE - 1, _

259

 ' USB_RUN_VARS)
 blnResult = ExtractStreamedVariablesFromBuffer
(intTempTransferBuffer(), _
 CLng(USB_BYTES_PER_REPORT) * intWhenToStop - 1, _
 USB_RUN_VARS)

 'if error in transfer then restart the read loop...
 If blnResult = False Then
 GoTo Begin_of_Run_Loop
 End If

'Process variable values - perturbations etc.
Call ProcessPertsUSB(CInt(intWhenToStop * USB_BYTES_PER_REPORT /
USB_BYTES_PER_VAR / USB_RUN_VARS))

'Update the display if necessary
Call UpdateDisplayUSB

'If logging data, write to file
'Call LogDataUSB
'Or data may be saved with the usual file save method.

'If reached max num of desired perts then
If inPertNo >= maxNumPerts + 10 And exPertNo >= maxNumPerts + 10 Then
 With ApdUSBPanel.lstUSB
 .AddItem "Reached maxNumPerts for both inPertNo and exPertNo"
 .ListIndex = .ListCount - 1
 End With
 Call StopDsp
 blnKill = True
 MsgBox "Reached maximum number of inhalation and exhalation
perturbations."
 UpdateDisplayUSB (True) 'Update display with average of all values.
End If

'If continue reading reports / data then goto beginning of loop again
to refill buffer
If blnKill = False Then
 GoTo Begin_of_Run_Loop
End If

End_of_Run:

 With ApdUSBPanel.lstUSB
 .AddItem "intTempTransferBufferCount = " & CStr
(intTempTransferBufferCount)
 .ListIndex = .ListCount - 1
 End With

 With ApdUSBPanel.lstStreamData(0)
 For intCount = LBound(mp()) To UBound(mp())
 .AddItem CStr(mp(intCount))
 Next intCount
 End With
 With ApdUSBPanel.lstStreamData(1)
 For intCount = LBound(fr()) To UBound(fr())
 .AddItem CStr(fr(intCount))
 Next intCount

260

 End With

ElseIf blnResult = False Then
 ApdUSBPanel.lstUSB.AddItem "An ACK was not received after the run
request."
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
End If

ApdPanel.LogStatus.Caption = "Not Logging"

End Sub

'***
'***
Public Sub UpdateDisplayUSB(Optional AverageAll As Boolean = False)

' This sub updates the ApdPanel display with USB-derived RR data.
' Based on early fast-reponse device simulations, this function
' still includes the ability to use a filter for updating the display
' or for using the simulated analog display.
' This is now buffered pert data - about one second's worth of data
' updating
' thus need to look through data to find how many perts are there

Static InShiftReg() As PertInfo
Static ExShiftReg() As PertInfo
Static intInCount, intExCount, intLBnd, intUBnd As Integer
Dim blnIsExh As Boolean
Dim PertValue As PertInfo
Dim TempShift() As PertInfo
Dim intCount As Integer
Dim oldUBound As Integer

Dim cnt As Integer
Dim inR() As Single, exR() As Single 'Resistance.
Dim inFR() As Single, exFR() As Single 'Flowrate.
Dim inVFR() As Single, exVFR() As Single 'Flow reduction.
Dim inDev() As Single, exDev() As Single 'Device resistance.
Dim period() As Single 'Period from one perturbtion to the next.
Dim inA As Single, exA As Single 'Temporary variables.

If intDisplayUpdateNumber = 0 Then
 ReDim InShiftReg(0 To 0)
 ReDim ExShiftReg(0 To 0)
 intInCount = 0
 intExCount = 0
End If

If AverageAll = True Then

 ApdPanel.StatusBar.Caption = "All value averaged - to max. no.
specified in options."

 'Take average of all freq estimates.
 exA = UBound(SI()) + 1 'add one more element to SI array
 ReDim Preserve SI(LBound(SI()) To exA)
 SI(exA).f1 = 0 'zero it to be sure

261

 For intCount = (LBound(SI()) + 1) To (UBound(SI()) - 1)
 'Go from LBound + 1 because due to flow of program, first element

'is always 0
 SI(exA).f1 = SI(exA).f1 + SI(intCount).f1

'add all prior elements
 Next intCount

 SI(exA).f1 = SI(exA).f1 / CSng(UBound(SI()) - LBound(SI()))

'divide to acheive avg

 'Write new average value to display
 inA = SI(UBound(SI())).f1
 ApdPanel.Freq.Caption = Format(inA, "0.0") ' + " Hz"

 '***
 '** INH data averages
 PertValue.R = 0
 PertValue.afr = 0
 PertValue.vfr = 0

 For intCount = 0 To inPertNo - 1 'maxNumPerts - 1

'Sum all values...
 'inR(intCount) = inPI(intCount + intInCount).R
 'inFR(intCount) = inPI(intCount + intInCount).afr
 'inVFR(intCount) = inPI(intCount + intInCount).vfr
 PertValue.R = PertValue.R + inPI(intCount).R
 PertValue.afr = PertValue.afr + inPI(intCount).afr
 PertValue.vfr = PertValue.vfr + inPI(intCount).vfr
 Next intCount

 'Divide values to get average
 PertValue.R = PertValue.R / CSng(inPertNo - 1) '(maxNumPerts)
 PertValue.afr = PertValue.afr / CSng(inPertNo - 1) '(maxNumPerts)
 PertValue.vfr = PertValue.vfr / CSng(inPertNo - 1) '(maxNumPerts)

 blnIsExh = False

 'Might consider removing large data points here and msg to user

'indicating such:
 'calc mean and std dev and then any pts larger than mean + 5 sd

 Call ApdUsb.UpdateAPDMainUSBDisplay(PertValue, intInCount,
intExCount, blnIsExh)

 '***
 '**EXH Now...
 PertValue.R = 0
 PertValue.afr = 0
 PertValue.vfr = 0

 For intCount = 0 To exPertNo - 1 'maxNumPerts - 1 'Sum all values
 PertValue.R = PertValue.R + exPI(intCount).R
 PertValue.afr = PertValue.afr + exPI(intCount).afr
 PertValue.vfr = PertValue.vfr + exPI(intCount).vfr
 Next intCount

262

 'Divide values to get averages
 PertValue.R = PertValue.R / CSng(exPertNo - 1) '(maxNumPerts)
 PertValue.afr = PertValue.afr / CSng(exPertNo - 1) '(maxNumPerts)
 PertValue.vfr = PertValue.vfr / CSng(exPertNo - 1) '(maxNumPerts)

 blnIsExh = True

 Call ApdUsb.UpdateAPDMainUSBDisplay(PertValue, intInCount,
intExCount, blnIsExh)

 GoTo UDU_End

End If

'** If not using filter because filter length = 1
'this is really just average of each period
'and is thus an average of data collection interval
If APDSimSettings.sldFilterLength.value = 1 Then
 intDisplayUpdateNumber = intDisplayUpdateNumber + 1
 'ApdMain.UpdateDisplay (False)

'Use APD main update display data to show data collected
 ApdPanel.StatusBar.Caption = "Unfiltered perturbation data."
 ApdPanel.StatusBar2.Caption = " "

 'ReDim inR(0 To inPertNo - intInCount - 1)
 'ReDim exR(0 To exPertNo - intExCount - 1)
 'ReDim inFR(0 To inPertNo - intInCount - 1)
 'ReDim exFR(0 To exPertNo - intExCount - 1)
 'ReDim inVFR(0 To inPertNo - intInCount - 1)
 'ReDim exVFR(0 To exPertNo - intExCount - 1)

 '***
 '* INHALATION
 '***

 If inPertNo < 1 Then GoTo Check_Exh_Perts_No_Shift

'if no inh perts yet
 If inPertNo - intInCount = 0 Then GoTo Check_Exh_Perts_No_Shift

'if no new perts since last cycle

 PertValue.R = 0
 PertValue.afr = 0
 PertValue.vfr = 0

 For intCount = 0 To inPertNo - intInCount - 1 'Sum all values...
 'inR(intCount) = inPI(intCount + intInCount).R
 'inFR(intCount) = inPI(intCount + intInCount).afr
 'inVFR(intCount) = inPI(intCount + intInCount).vfr
 PertValue.R = PertValue.R + inPI(intCount + intInCount).R
 PertValue.afr = PertValue.afr + inPI(intCount + intInCount).afr
 PertValue.vfr = PertValue.vfr + inPI(intCount + intInCount).vfr
 Next intCount

 'Divide values to get average
 PertValue.R = PertValue.R / CSng(inPertNo - intInCount)
 PertValue.afr = PertValue.afr / CSng(inPertNo - intInCount)

263

 PertValue.vfr = PertValue.vfr / CSng(inPertNo - intInCount)

 blnIsExh = False

 Call ApdUsb.UpdateAPDMainUSBDisplay(PertValue, intInCount,
intExCount, blnIsExh)

 intInCount = inPertNo

 '***
 '* EXHALATION
 '***
Check_Exh_Perts_No_Shift:

 If exPertNo < 1 Then GoTo UDU_End
 If exPertNo - intExCount = 0 Then GoTo UDU_End

 PertValue.R = 0
 PertValue.afr = 0
 PertValue.vfr = 0

 For intCount = 0 To exPertNo - intExCount - 1 'Sum all values
 'exR(intCount) = exPI(intCount + intExCount).R
 'exFR(intCount) = exPI(intCount + intExCount).afr
 'exVFR(intCount) = exPI(intCount + intExCount).vfr
 PertValue.R = PertValue.R + exPI(intCount + intExCount).R
 PertValue.afr = PertValue.afr + exPI(intCount + intExCount).afr
 PertValue.vfr = PertValue.vfr + exPI(intCount + intExCount).vfr
 Next intCount

 'Divide values to get averages
 PertValue.R = PertValue.R / CSng(exPertNo - intExCount)
 PertValue.afr = PertValue.afr / CSng(exPertNo - intExCount)
 PertValue.vfr = PertValue.vfr / CSng(exPertNo - intExCount)

 blnIsExh = True

 Call ApdUsb.UpdateAPDMainUSBDisplay(PertValue, intInCount,
intExCount, blnIsExh)

 intExCount = exPertNo

'** If yes, use filter (filter length > 1) then...
ElseIf APDSimSettings.sldFilterLength.value > 1 Then

 intDisplayUpdateNumber = intDisplayUpdateNumber + 1

 ApdPanel.StatusBar.Caption = "Filtered perturbation data."
 ApdPanel.StatusBar2.Caption = " "

 If inPertNo < 1 Then GoTo Check_Exh_Perts 'if no inh perts yet
 If inPertNo - intInCount = 0 Then GoTo Check_Exh_Perts 'if no new
perts since last cycle

 ' If inh filter not yet full because not yet enough data to

'fill it...

264

 If (inPertNo - 1) < APDSimSettings.sldFilterLength.value Then
 intLBnd = 0
 intUBnd = inPertNo - 1

 ReDim Preserve InShiftReg(intLBnd To intUBnd)

 For intCount = 0 To inPertNo - 1
 InShiftReg(intCount) = inPI(intCount)
 Next intCount

 PertValue = ApdSim.AvgFilter(InShiftReg)

 blnIsExh = False

 Call ApdUsb.UpdateAPDMainUSBDisplay(PertValue, intInCount,
intExCount, blnIsExh)

 ApdPanel.StatusBar.Caption = "Inh filter not full"

 intInCount = inPertNo

 '** If inh filter is full then
 ElseIf (inPertNo - 1) >= APDSimSettings.sldFilterLength.value Then

 blnIsExh = False '** This is inhalation not exhalation

 oldUBound = UBound(InShiftReg)

 intLBnd = 0

 intUBnd = UBound(InShiftReg) + (inPertNo - intInCount)

 '** Allocate new empty space(s) in Inh Shift Register
 ReDim Preserve InShiftReg(intLBnd To intUBnd)

 '** Place new pert value into the Inh Shift Register
 For intCount = 1 To (inPertNo - intInCount)
 InShiftReg(oldUBound + intCount) _
 = inPI(intInCount + intCount - 1)
 Next intCount

 '** Clear and redim the temporary shift register
 ReDim TempShift(0 To APDSimSettings.sldFilterLength.value - 1)

 '** Dump the last elements of Inh Shift Register into Temp Reg
 Call ShiftArrayUSB(InShiftReg, TempShift, inPertNo -
intInCount)

 '** Clear and redim Inh Shift Register to max size
 ReDim InShiftReg(0 To APDSimSettings.sldFilterLength.value - 1)

 '** Dump the temp stored values into Inh Shift Register
 Call ShiftArrayUSB(TempShift, InShiftReg, 0)

 '** Send the Inh Shift Register to be filtered to one value
 PertValue = ApdSim.AvgFilter(InShiftReg)

 '** Send the value to the display

265

 Call ApdUsb.UpdateAPDMainUSBDisplay(PertValue, intInCount,
intExCount, blnIsExh)

 '** Update ApdPanel status bar
 ApdPanel.StatusBar.Caption = "Inh filter filled."

 '** Increment count of inhalation perts processed
 intInCount = inPertNo

 End If

Check_Exh_Perts:

 If exPertNo < 1 Then GoTo UDU_End
 If exPertNo - intExCount = 0 Then GoTo UDU_End

 '** If Exhalation filter not yet full then...
 If (exPertNo - 1) < APDSimSettings.sldFilterLength.value Then
 blnIsExh = True '** This is exhalation pert
 intLBnd = 0
 intUBnd = exPertNo - 1

 '** Add next element to Exh Shift Register
 ReDim Preserve ExShiftReg(intLBnd To intUBnd)

 For intCount = 0 To exPertNo - 1
 ExShiftReg(intCount) = exPI(intCount)
 Next intCount

 PertValue = ApdSim.AvgFilter(ExShiftReg)

 Call ApdUsb.UpdateAPDMainUSBDisplay(PertValue, intInCount,
intExCount, blnIsExh)

 ApdPanel.StatusBar.Caption = "Exh filter not full"

 intExCount = exPertNo

 '** If exhalation filter is full then
 ElseIf (exPertNo - 1) >= APDSimSettings.sldFilterLength.value Then
 blnIsExh = True '** This is exhalation not inhalation

 oldUBound = UBound(ExShiftReg)

 intLBnd = 0

 intUBnd = UBound(ExShiftReg) + (exPertNo - intExCount)

 '** Allocate new empty space(s) in Exh Shift Register
 ReDim Preserve ExShiftReg(intLBnd To intUBnd)

 '** Place new pert value into the Exh Shift Register
 For intCount = 1 To (exPertNo - intExCount)
 ExShiftReg(oldUBound + intCount) _
 = exPI(intExCount + intCount - 1)
 Next intCount 'exPI is base 0

 '** Clear and redim the temporary shift register
 ReDim TempShift(0 To APDSimSettings.sldFilterLength.value - 1)

266

 '** Dump the last elements of Exh Shift Register into Temp Reg
 Call ShiftArrayUSB(ExShiftReg, TempShift, exPertNo -
intExCount)

 '** Clear and redim Exh Shift Register to max size
 ReDim ExShiftReg(0 To APDSimSettings.sldFilterLength.value - 1)

 '** Dump the temp stored values into Exh Shift Register
 Call ShiftArrayUSB(TempShift, ExShiftReg, 0)

 '** Send the Exh Shift Register to be filtered to one value
 PertValue = ApdSim.AvgFilter(ExShiftReg)

 '** Send the value to the display
 Call ApdUsb.UpdateAPDMainUSBDisplay(PertValue, intInCount,
intExCount, blnIsExh)

 '** Update ApdPanel status bar
 ApdPanel.StatusBar.Caption = "Exh filter filled."

 '** Increment count of inhalation perts processed
 intExCount = exPertNo

 End If

End If

'** If analog indicators are used, then update them
'** Use average resp resist value if it's displayed on main panel yet
ApdMain.UpdateIndicators ("Main")

UDU_End:

End Sub
Sub ClearAPDMainDisplayUSB()

ApdPanel.Rin.Caption = "?"
ApdPanel.Rex.Caption = "?"
ApdPanel.Rav.Caption = "?"
ApdPanel.FRin.Caption = "?"
ApdPanel.FRex.Caption = "?"
ApdPanel.FRav.Caption = "?"
ApdPanel.FPin.Caption = "?"
ApdPanel.FPex.Caption = "?"
ApdPanel.FPav.Caption = "?"
ApdPanel.Pin.Caption = Str(0)
ApdPanel.Pex.Caption = Str(0)
ApdPanel.Freq = "?.?"
ApdPanel.lblMode.Caption = "USB"

End Sub

Sub UpdateAPDMainUSBDisplay(PertData As PertInfo, ByVal inPertNo As
Integer, _
ByVal exPertNo As Integer, blnIsExh As Boolean)

'** This sub updates the main APD panel display with USB data
'** it uses the main APD Panel

267

'** timer.

Dim inFP, exFP, inA, exA As Single
Const minperts As Integer = 3

If inPertNo < minperts And _
exPertNo < minperts Then
 ApdPanel.Rin.Caption = "?"
 ApdPanel.Rex.Caption = "?"
 ApdPanel.Rav.Caption = "?"
 ApdPanel.FRin.Caption = "?"
 ApdPanel.FRex.Caption = "?"
 ApdPanel.FRav.Caption = "?"
 ApdPanel.FPin.Caption = "?"
 ApdPanel.FPex.Caption = "?"
 ApdPanel.FPav.Caption = "?"
 ApdPanel.Pin.Caption = Str(inPertNo)
 ApdPanel.Pex.Caption = Str(exPertNo)
 Exit Sub
End If

'** Display updated resistance values
'** Display updated flow rates
'** Display updated percent flow perturbation
'** Display perturbation numbers

If blnIsExh = True Then '** Update exhalation if it's exhalation pert
 With ApdPanel
 If exPertNo < minperts Then
 .Rex.Caption = "?"
 .Rav.Caption = "?"
 .FRex.Caption = "?"
 .FRav.Caption = "?"
 .FPex.Caption = "?"
 .FPav.Caption = "?"
 .Pin.Caption = Str(inPertNo)
 .Pex.Caption = Str(exPertNo)
 Exit Sub
 Else
 .Rex.Caption = Format(PertData.R, "0.00")
 .FRex.Caption = Format(Abs(PertData.vfr * ae), "0.00")
 If PertData.vfr = 0 Then
 exFP = 0
 Else
 exFP = (1 - PertData.afr / PertData.vfr) * 100#
 End If
 .FPex.Caption = Format(exFP, "0.0")
 .Pex.Caption = Str(exPertNo)
 End If
 End With
ElseIf blnIsExh = False Then
 With ApdPanel
 If inPertNo < minperts Then
 .Rin.Caption = "?"
 .Rav.Caption = "?"
 .FRin.Caption = "?"
 .FRav.Caption = "?"
 .FPin.Caption = "?"

268

 .FPav.Caption = "?"
 .Pin.Caption = Str(inPertNo)
 .Pex.Caption = Str(exPertNo)
 Exit Sub
 Else
 .Rin.Caption = Format(PertData.R, "0.00")
 .FRin.Caption = Format(Abs(PertData.vfr * ai), "0.00")
 If PertData.vfr = 0 Then
 inFP = 0
 Else
 inFP = (1 - PertData.afr / PertData.vfr) * 100#
 End If
 .FPin.Caption = Format(inFP, "0.0")
 .Pin.Caption = Str(inPertNo)
 End If
 End With
End If

'** Calculate averages if both in and ex values are not "?"
With ApdPanel
 If IsNumeric(.Rin.Caption) And IsNumeric(.Rex.Caption) Then
 .Rav.Caption = Format(0.5 * (CSng(.Rin.Caption) + CSng
(.Rex.Caption)), "0.00")
 End If
 If IsNumeric(.FRin.Caption) And IsNumeric(.FRex.Caption) Then
 .FRav.Caption = Format(0.5 * (Abs(CSng(.FRin.Caption)) + Abs
(CSng(.FRex.Caption))), "0.00")
 End If
 If IsNumeric(.FPin.Caption) And IsNumeric(.FPex.Caption) Then
 .FPav.Caption = Format(0.5 * (CSng(.FPin.Caption) + CSng
(.FPex.Caption)), "0.0")
 End If
End With

'** Display frequency - this cannot be reconstructed from current
'** APD saved pert files so it's set to 12.3 Hz
'inA = 12.3
'ApdPanel.Freq.Caption = "USB" 'Format(inA, "0.0") + " Hz"
If UBound(SI()) > 2 And SI(UBound(SI())).f1 >= Val(ApdOpt.txtMinFreq)
Then 'only update is some values have been calculated
 ApdPanel.Freq.Caption = Format(SI(UBound(SI())).f1, "0.0")
End If

End Sub
Sub ShiftArrayUSB(inarray() As PertInfo, SubArray() As PertInfo, _
intOffset As Integer)

'** This function outputs ShiftArray, a subset of InArray,
'offset by intOffset

Dim intCount As Integer

For intCount = LBound(SubArray) To UBound(SubArray)
 SubArray(UBound(SubArray) - intCount + LBound(SubArray)) _
 = inarray(UBound(inarray) - intCount + LBound(inarray))
Next intCount

End Sub

269

'***
'***
Public Sub ProcessPertsUSB(intMaxIndex As Integer)

' This sub processes perts from rd buffer just transferred
' from the ExtractVariables
' routine. It looks for pert value in the buffer, fills pert
' info structures etc. The pert info structs are used for
' display updating, file writing etc. and is also the way
' that pert information and flow and pressure at the time of
' perturbation is retained while data buffers are re-written.

Dim intCount As Integer
Dim n As Integer
Dim intLastCount As Integer
Dim intLastPertDir As Integer
Const EXH As Integer = 1
Const INH As Integer = 2
Const NOTFOUNDYET As Integer = -1
'Const MAXACCEPTABLETIMEDIFFERENCE As Integer = 50
'500 Hz sample rate, max pert freq:
'Const MINACCEPTABLETIMEDIFFERENCE As Integer = 10
'minimum samples
Dim MAXACCEPTABLETIMEDIFFERENCE As Integer
Dim MINACCEPTABLETIMEDIFFERENCE As Integer
Dim sngFreqs() As Single
Dim intFreqCount As Integer

'Inits
ReDim sngFreqs(1 To intMaxIndex)
intLastCount = 0
'for estimating frequency by monitoring samples between perts.
intLastPertDir = NOTFOUNDYET
intFreqCount = 0 'zero freqs estimated to begin with
MAXACCEPTABLETIMEDIFFERENCE = Int(OURSCANRATE / 2# / CSng(Val
(ApdOpt.txtMinFreq))) '500 samples per second / 7 Hz
MINACCEPTABLETIMEDIFFERENCE = Int(OURSCANRATE / 2# / CSng(Val
(ApdOpt.txtMaxFreq))) '500 samples per second / 14 Hz
'Divided by two because runmode is 250 Hz to be able to stream data

'Loop through this buffer looking for perts and assigning to inh or
'exh based on flow direction
'In processing of data, normally, assign pressure to pert.amp (actual
'mouth pressure) and flow to pert.afr (actual flow rate)
'If a pert is present in this USB mode, then the RR value in the sets
'of 3 data points sent by the APD-SA USB
'will not be zero, and thus the virtual and actual flow rates are sent
'- thus data is assigned to the next pert
'accordingly.
For intCount = LBound(rd) To intMaxIndex - (1 - LBound(rd))
 'look for values <>0 to indicate the presence of a pert value
 'then transfer pert value, press and flow values into pert info
structures

 'log data to file if this option is selected
 If ApdOpt.chkLogAPDSAUSBToFile.value = 1 Then
 Write #g_fNum, rd(intCount), mp(intCount), fr(intCount)

270

 End If

 If rd(intCount) <> 0 Then 'pert found
 'intLastCount = intLastCount + 1

'increment counter for perts found for freq. det. - may not
'need extra counter here

 intPertNo = intPertNo + 1 'increment counter of pert numbers
 If negIsExh = True Then
 'Debug.Print "negIsExh=True"
 If fr(intCount) > 0 Then
 'If inPertNo >= maxNumPerts Then GoTo SkipPert
 If inPertNo > UBound(inPI) Then GoTo SkipPert

'prevent overrunning end of array
 inPI(inPertNo).afr = fr(intCount)
 If ApdOpt.chkAPDSASendsAFRVFRatRR.value = 1 Then
 inPI(inPertNo).vfr = mp(intCount)

'if this option is set, the APD-SA actually
 'sends vfr in the mp place only at the point of an

'RR val
 Else
 inPI(inPertNo).amp = mp(intCount)
 End If
 inPI(inPertNo).R = rd(intCount)
 inPI(inPertNo).abstime = intPertNo

 'Estimate frequency based on last consecutive good

'pert in same direction
 If intLastCount > 1 Then 'This really doesn't matter

'now: if not the first pert found in this data
'set

 'Debug.Print "Inh: intLastCount > 1"
 If intLastPertDir = INH Then

'if already found one and it was INH direction
 'Debug.Print "Inh: intLastPertDir=INH"
 Debug.Print "Inh: intCount-intLastCount: " &
CStr(intCount - intLastCount)
 If ((intCount - intLastCount) <
MAXACCEPTABLETIMEDIFFERENCE) _
 And ((intCount - intLastCount) >
MINACCEPTABLETIMEDIFFERENCE) Then
 'If there was not too much space between last

'pert and this pert in the same direction
 'i.e. these are most likely consecutive perts
 'Debug.Print "It is less than and greater than"
 intFreqCount = intFreqCount + 1

'I miss programming in C
 sngFreqs(intFreqCount) = 1# / (CSng
(intCount - intLastCount) * CSng(DT * 2#)) 'Hz = 1/(samples*DT)
 Debug.Print CStr(sngFreqs(intFreqCount)) &
"Is sngFreqs(intFreqCOunt)"
 'mult denom by 2 because 250 Hz run mode
 End If
 End If
 End If

 intLastPertDir = INH

 inPertNo = inPertNo + 1

271

 ElseIf fr(intCount) < 0 Then
 'If exPertNo >= maxNumPerts Then GoTo SkipPert
 If exPertNo > UBound(exPI) Then GoTo SkipPert
 exPI(exPertNo).afr = fr(intCount)
 If ApdOpt.chkAPDSASendsAFRVFRatRR.value = 1 Then
 exPI(exPertNo).vfr = mp(intCount)

'if this option is set, the APD-SA actually
 'sends vfr in the mp place only at the point of

'an RR val
 Else
 exPI(exPertNo).amp = mp(intCount)
 End If
 exPI(exPertNo).R = rd(intCount)
 exPI(exPertNo).abstime = intPertNo

 'Estimate frequency based on last consecutive

'good pert in same direction
 If intLastCount > 1 Then

'This really doesn't matter now: if not the
'first pert found in this data set

 If intLastPertDir = EXH Then
'if already found one and it was INH direction

 If ((intCount - intLastCount) <
MAXACCEPTABLETIMEDIFFERENCE) _
 And ((intCount - intLastCount) >
MINACCEPTABLETIMEDIFFERENCE) Then
 'If there was not too much space between last

'pert and this pert in the same direction
 'i.e. these are most likely consecutive perts
 intFreqCount = intFreqCount + 1

'I miss programming in C
 sngFreqs(intFreqCount) = 1# / (CSng
(intCount - intLastCount) * CSng(DT * 2#)) 'Hz = 1/(samples*DT)
 End If
 End If
 End If

 intLastPertDir = EXH

 exPertNo = exPertNo + 1
 End If
 End If
 If negIsExh = False Then
 'Debug.Print "negIsExh = False"
 If fr(intCount) < 0 Then
 'If inPertNo >= maxNumPerts Then GoTo SkipPert
 If inPertNo > UBound(inPI) Then GoTo SkipPert
 inPI(inPertNo).afr = fr(intCount)
 If ApdOpt.chkAPDSASendsAFRVFRatRR.value = 1 Then
 inPI(inPertNo).vfr = mp(intCount)

'if this option is set, the APD-SA actually
 'sends vfr in the mp place only at the point of

'an RR val
 Else
 inPI(inPertNo).amp = mp(intCount)
 End If
 inPI(inPertNo).R = rd(intCount)
 inPI(inPertNo).abstime = intPertNo

272

 'Estimate frequency based on last consecutive
'good pert in same direction

 If intLastCount > 1 Then
'This really doesn't matter now: if not the
'first pert found in this data set

 If intLastPertDir = INH Then
'if already found one and it was INH direction

 If ((intCount - intLastCount) <
MAXACCEPTABLETIMEDIFFERENCE) _
 And ((intCount - intLastCount) >
MINACCEPTABLETIMEDIFFERENCE) Then
 'If there was not too much space between

'last pert and this pert in the same
'direction

 'i.e. these are most likely consecutive perts
 intFreqCount = intFreqCount + 1

'I miss programming in C
 sngFreqs(intFreqCount) = 1# / (CSng
(intCount - intLastCount) * CSng(DT * 2#)) 'Hz = 1/(samples*DT)
 End If
 End If
 End If

 intLastPertDir = INH

 inPertNo = inPertNo + 1

 ElseIf fr(intCount) > 0 Then
 'If exPertNo >= maxNumPerts Then GoTo SkipPert
 If exPertNo > UBound(exPI) Then GoTo SkipPert
 exPI(exPertNo).afr = fr(intCount)
 If ApdOpt.chkAPDSASendsAFRVFRatRR.value = 1 Then
 exPI(exPertNo).vfr = mp(intCount)

'if this option is set, the APD-SA actually
 'sends vfr in the mp place only at the point of

'an RR val
 Else
 exPI(exPertNo).amp = mp(intCount)
 End If
 exPI(exPertNo).R = rd(intCount)
 exPI(exPertNo).abstime = intPertNo

 'Estimate frequency based on last consecutive good

'pert in same direction
 If intLastCount > 1 Then

'This really doesn't matter now: if not the
'first pert found in this data set

 If intLastPertDir = EXH Then
'if already found one and it was INH direction

 If ((intCount - intLastCount) <
MAXACCEPTABLETIMEDIFFERENCE) _
 And ((intCount - intLastCount) >
MINACCEPTABLETIMEDIFFERENCE) Then
 'If there was not too much space between last

'pert and this pert in the same direction
 'i.e. these are most likely consecutive perts
 intFreqCount = intFreqCount + 1

'I miss programming in C

273

 sngFreqs(intFreqCount) = 1# / (CSng
(intCount - intLastCount) * CSng(DT * 2#)) 'Hz = 1/(samples*DT)
 End If
 End If
 End If

 intLastPertDir = EXH

 exPertNo = exPertNo + 1
 End If
 End If
 intLastCount = intCount

'for estimating freq. - save last position of pert
 End If 'if rd<>0 -> i.e. pert found

SkipPert:

Next intCount

'Now that this round of perts (Or lack thereof is read,
'update the shift registers for the
'display averaging - do this in update display.

'if found some frequencies and no doing FFTs
'Comment out FFT provisions until these are implemented
If (intFreqCount > 0) Then 'And Not (ApdOpt.dDoFFT.value = 1) Then
 'Augment the SI array and place in the new slot the

'average present freq estimates
 n = UBound(SI()) + 1
 ReDim Preserve SI(LBound(SI()) To n)
 SI(n).f1 = 0 'zero this to be sure
 For intCount = 1 To intFreqCount
 SI(n).f1 = SI(n).f1 + sngFreqs(intCount)

'add freqs to this value
 Next intCount
 SI(n).f1 = SI(n).f1 / intFreqCount 'average over the number found
 'Now when display is updated, the upper most SI.f1 value

'will contain the latest
 'freq estimation for this batch of data. Otherwise,

'SI.f1 of latest value
 'will be from FFT
 Debug.Print "intFreqCount: " & CStr(intFreqCount) & "; intFreqs
(intFreqCount): " & CStr(sngFreqs(intFreqCount))

End If

'If (intFreqCount > 0) And (ApdOpt.dDoFFT.value = 1) Then
' 'If fft selected, do it.
' If ApdOpt.dDoFFT.value = 1 Then
' ApdMain.SpectralAnalysis 'this will be called and
' the sub should now check to
' 'see if USB is in use according APD menu checked items and
'then proceed accordingly
' End If
'End If

End Sub

274

'***
'***
Public Sub Connect()

' This sub coordinates all the routines to connect to the APD-SA
' USB. It goes through the paces of finding the Cypress device,
' re-numerating after downloading firmware, and then upon final
' connection to the renumerated device, calibration constants are
' downloaded to the host PC. If this sub doesn't find the
' appropriate device, then errors are displayed, and USB functions
' are aborted.

 On Error Resume Next
'if error finding hid and downloading, just go to next

 'command, the error should show up and this will just exit

 Dim blnResult As Boolean
 Dim intTwiddle As Integer
 Dim blnCTOK As Boolean
 Dim NumBuffers As Long

 NumBuffers = USB_NUM_INPUT_BUFFERS

'32 buffers instead of the standard 8

 With ApdUSBConnectPanel
 .lstAPDUSBConnect.AddItem "Looking for attached APD-SA USB
Device..."
 .lstAPDUSBConnect.ListIndex = .lstAPDUSBConnect.ListCount - 1
 End With

 'Connect to USB interface
 blnResult = FindTheHid()

 'If didn't find the device, try downloading the

'firmware...just try once
 If blnResult = False Then

 With ApdUSBConnectPanel
 .lstAPDUSBConnect.AddItem "Device not found."
 .lstAPDUSBConnect.AddItem "Attempting to download firmware
to device / APD-SA..."
 .lstAPDUSBConnect.ListIndex = .lstAPDUSBConnect.ListCount -
1
 End With

 Call Download

 ApdUSBPanel.lstUSB.AddItem "Download attempted. Waiting for OS
Driver load...)"
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

 With ApdUSBConnectPanel
 .lstAPDUSBConnect.AddItem "Waiting for Windows to Load USB
Driver..."
 .lstAPDUSBConnect.ListIndex = .lstAPDUSBConnect.ListCount -
1
 End With

 'Now wait for re-numeration and OS to load proper

275

'HID driver...
 'This will only work if the driver has been loaded before
 ApdUSBPanel.tmrTimout.Enabled = True
 Do
 intTwiddle = intTwiddle + 1
 DoEvents 'allow the OS to do its stuff
 Loop Until ApdUSBPanel.tmrTimout.Enabled = False
 blnResult = FindTheHid()

'try one more time after the so called download
 End If

 If blnResult = True Then
 ApdUSBPanel.lstUSB.AddItem "Connected to APD USB Interface"
 ApdUSBPanel.lstUSB.AddItem "Now looking for connection to the
APD Brain itself " & vbCrLf _
 & "(not just its USB mouth)"
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

 With ApdUSBConnectPanel
 .lstAPDUSBConnect.AddItem "Connected to APD-SA USB
Interface."
 .lstAPDUSBConnect.AddItem "Attempting to communicate with
APD-SA..."
 .lstAPDUSBConnect.ListIndex = .lstAPDUSBConnect.ListCount -
1
 End With

 'Now since found, redim the data buffers
 If Capabilities.OutputReportByteLength > 0 Then
 ReDim SendBuffer(Capabilities.OutputReportByteLength - 1)
 Else
 ReDim SendBuffer(0)
 ApdUSBPanel.lstUSB.AddItem "OutputReportByteLength=0??????"
 End If
 If Capabilities.InputReportByteLength > 0 Then
 ReDim ReadBuffer(Capabilities.InputReportByteLength - 1)
 Else
 ReDim ReadBuffer(0)
 ApdUSBPanel.lstUSB.AddItem "InputReportByteLength=0??????"
 End If
 Else
 ApdUSBPanel.lstUSB.AddItem "Cannot connect to USB Interface"
 With ApdUSBConnectPanel
 .lstAPDUSBConnect.AddItem "Cannot connect to APD-SA USB
Interface."
 .lstAPDUSBConnect.AddItem "Check your USB cable connection,
try unplugging the device,"
 .lstAPDUSBConnect.AddItem "cycling power to the APD-SA and
replugging the USB cable."
 .lstAPDUSBConnect.ListIndex = .lstAPDUSBConnect.ListCount -
1
 End With
 End If

 'If OK, then DSP connect using the USB interface
 If blnResult = True Then
 'Clear input report queue - Gets rid of the reports

276

'waiting in ring buffer
 'that have not yet been read...
 blnResult = HidD_FlushQueue(HID)
 ApdUSBPanel.lstUSB.AddItem "Flush Queue Result: " & CStr
(blnResult)
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
 '
 blnResult = HidD_SetNumInputBuffers(HID, NumBuffers)
 ApdUSBPanel.lstUSB.AddItem "HidD_SetNumInputBuffers: " & CStr
(blnResult)
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
 'Oops, this isn't included in the

'kernel32.dll!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
 '
 'Assume the WriteFile function will set SendBuffer(0) =

'ReportID to zero
 SendBuffer(1) = USB_CONNECT_TO_DSP 'USB_UNRECOGNIZED_COMMAND

'USB_CONNECT_TO_DSP 'this is global const
 '
 blnResult = DoAWriteFile()
 '
 If blnResult = True Then

'wrote file OK, so check for DSP ACK connection etc.
 ApdUSBPanel.lstUSB.AddItem "Wrote File OK. Waiting for
acknowledgement from DSP."
 '
 'Do ReadFile waiting for ACK
 blnResult = (ReadSingleReport() > 0)

'ReadSingleReport returns the number of bytes read
 '
 'If...then write ok...connected to USB APD
 If blnResult = True Then
 ApdUSBPanel.lstUSB.AddItem "Read something here..."
 ApdUSBPanel.lstUSB.AddItem "Result: " & Hex$(ReadBuffer
(1)) & ", outcount: " & Hex$(ReadBuffer(2))

'assuming (0) is report ID ?
 If ReadBuffer(1) = USB_DSP_NO_ACK Then
 ApdUSBPanel.lstUSB.AddItem "=
USB_DSP_NO_ACK...either timeout on connect or"
 ApdUSBPanel.lstUSB.AddItem "connect reject...
ouch."
 End If
 If ReadBuffer(1) = USB_DSP_ACK Then
 ApdUSBPanel.lstUSB.AddItem "Looks like we're
connected people."
 With ApdUSBConnectPanel
 .lstAPDUSBConnect.AddItem "Communcation to APD-
SA Ok."
 .lstAPDUSBConnect.AddItem "Success: Connected
to APD-SA."
 .lstAPDUSBConnect.AddItem " "
 .lstAPDUSBConnect.AddItem "Requesting APD-SA
calibration variables..."
 .lstAPDUSBConnect.ListIndex = .
lstAPDUSBConnect.ListCount - 1
 End With

 ApdUSBPanel.cmdRequestVariables.Enabled = True
 ApdUSBPanel.cmdStreamADC.Enabled = True

277

 'Check for commtimeouts stuff - no dice - maybe
'only for serial

 'keep getting invalid handle messages...probably
'cuz not handle to serial

 'blnCTOK = GetCommTimeouts(HID,
'CurrentCommTimeout)

 'ApdUSBPanel.lstUSB.AddItem "GetCommTimeouts
'result: " & CStr(blnCTOK)

 'ApdUSBPanel.lstUSB.AddItem Cstr
'(CurrentCommTimeout.ReadTotalTimeoutConstant)

 'ApdUSBPanel.lstUSB.AddItem Cstr
'(CurrentCommTimeout.ReadTotalTimeoutMultiplier)

 'ApdUSBPanel.lstUSB.ListIndex =
'ApdUSBPanel.lstUSB.ListCount - 1

 'Call DisplayResultOfAPICall("GetCommTimeouts")
 ApdUSBPanel.lstUSB.AddItem "Requesting SAAPD
variables over USB..."
 ApdUsb.RequestVariables

 ApdPanel.lblMode.Caption = "USB"

 End If
 Else
 ApdUSBPanel.lstUSB.AddItem "Could not read a response
from device..."
 ApdUSBPanel.lstUSB.AddItem "Not connected to APD
Brain."
 With ApdUSBConnectPanel
 .lstAPDUSBConnect.AddItem "Cannot communicate with
APD-SA."
 .lstAPDUSBConnect.AddItem "Not connected to APD
(just USB Interface)."
 .lstAPDUSBConnect.AddItem "Try unplugging the
device,"
 .lstAPDUSBConnect.AddItem "cycling power to the
APD-SA and replugging the USB cable."
 .lstAPDUSBConnect.ListIndex = .
lstAPDUSBConnect.ListCount - 1
 End With
 'Here need to get rid of HID connection maybe?
 End If

 ElseIf blnResult = False Then
 With ApdUSBConnectPanel
 .lstAPDUSBConnect.AddItem "Could not write USB data or
communicate with APD-SA."
 .lstAPDUSBConnect.AddItem "Try quitting this program,
unplugging the device to reset the Windows USB HID Driver,"
 .lstAPDUSBConnect.AddItem "cycling power to the APD-SA
and replugging the USB cable."
 .lstAPDUSBConnect.ListIndex = .
lstAPDUSBConnect.ListCount - 1
 End With
 End If
 End If

 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

 ApdUSBConnectPanel.cmdOK.Enabled = True

278

 If blnResult = False Then
'Get rid of any handle to USB communications if not
'properly connected.

 Call ApdUsb.ShutdownUSB
 End If

End Sub

'***
'***
Public Sub ShowCalDefaultsUSB()

' This sub loads into the calibration window typical default
' (theoretical) calibration constants for an APD-SA USB with
' characteristics that are shown in the popup window.
' This could be expanded to offer several alternatives or
' even a library of calibration sets.

 With ApdCal

 MsgBox "Values are for typical" & vbCrLf _
 & "+/-1 inH20 DC001NDR5 flow sensor " & vbCrLf _
 & "+/-10 inH20 DC010NDR5 pressure sensor " & vbCrLf _
 & "with ADS7825 ADC chip (16-bit). Sensors are 0.25 to 4.25 VDC
output "

 .txtDuty = CStr(256)
 'default pressure cal vals
 .Span1 = CStr(-0.003876) 'cmH20 / adc count
 .Offset1.Text = CStr(7373) 'adc counts
 'default flow cal vals
 .SpanI.Text = CStr(-0.001252) 'lps/adc count
 .SpanE.Text = CStr(-0.001252) 'lps/adc count
 .Offset0.Text = CStr(7373)

 .dNegIsExh.value = 1

 End With

End Sub

'***
'***
Public Sub GetHostVars()

' Though called "GetHostVars" this is actually to transfer variables
' calculated by this host PC to the target device.
' Variables are transferred to the APD-SA USB and then written to
' FLASH. Variables are calibration variables.

Dim blnResult As Boolean
Dim intCount As Integer
Dim intBufIndex As Integer

intBufIndex = 1

279

'Clear input report queue - Gets rid of the reports waiting in ring
'buffer
'that have not yet been read...
blnResult = HidD_FlushQueue(HID)
ApdUSBPanel.lstUSB.AddItem "Flush Queue Result: " & CStr(blnResult)
ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

'Signal write host vars to DSP
SendBuffer(intBufIndex) = USB_GET_HOST_VARS

'Write each vars as bytes to the sendbuffer
' Note that after each OutDecFloat, intBufIndex has already been
incremented to the next index
intBufIndex = intBufIndex + 1
With ApdUSBPanel.lstGetHostVars

.Clear

.AddItem CStr(ApdMain.xp)
Call OutDecFloat(ApdMain.xp, intBufIndex) 'pressure offset
'Write digits to window too for debugging purposes
For intCount = LBound(Digits) To UBound(Digits)

 ApdUSBPanel.lstGetHostVars.AddItem CStr(Digits(intCount))
Next intCount
.AddItem CStr(ApdMain.xo)
Call OutDecFloat(ApdMain.xo, intBufIndex) 'flow offset
'Write digits to window too for debugging purposes
For intCount = LBound(Digits) To UBound(Digits)

 ApdUSBPanel.lstGetHostVars.AddItem CStr(Digits(intCount))
Next intCount
.AddItem CStr(ApdMain.ap)
Call OutDecFloat(1# / ApdMain.ap, intBufIndex) 'pressure span inh
'inverted during send preserve sig. digs.
'Write digits to window too for debugging purposes
For intCount = LBound(Digits) To UBound(Digits)

 ApdUSBPanel.lstGetHostVars.AddItem CStr(Digits(intCount))
Next intCount
.AddItem CStr(ApdMain.ai)
Call OutDecFloat(1# / ApdMain.ai, intBufIndex) 'flow span inh
'inverted during send preserve sig. digs.
'Write digits to window too for debugging purposes
For intCount = LBound(Digits) To UBound(Digits)

 ApdUSBPanel.lstGetHostVars.AddItem CStr(Digits(intCount))
Next intCount
.AddItem CStr(ApdMain.duty)
Call OutDecFloat(CSng(ApdMain.duty), intBufIndex) 'duty cycle
'Write digits to window too for debugging purposes
For intCount = LBound(Digits) To UBound(Digits)

 ApdUSBPanel.lstGetHostVars.AddItem CStr(Digits(intCount))
Next intCount

End With

'Signal end of variables
SendBuffer(intBufIndex) = USB_END_OF_VARIABLE_TRANSFER 'already
incremented in the OutDecFloat routine

'Send buffer to EZUSB
blnResult = DoAWriteFile()

If blnResult = True Then

280

 ApdUSBPanel.lstUSB.AddItem "Sent request to write host vars
(USB_GET_HOST_VARS)..."
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
End If

'Read the ACK or NACK to this request
blnResult = ApdUsb.ReadSingleReport()
If blnResult = True Then
 If (ReadBuffer(1) = USB_DSP_ACK) Then
 blnResult = True
 With ApdUSBPanel.lstUSB
 .AddItem "Read ACK to GET_HOST_VARS request."
 '.AddItem "Now about to ReadSingleReport containing
variables."
 .ListIndex = .ListCount - 1
 End With
 Else
 blnResult = False
 End If
End If

'Yes ACK was received then do something if you want...?
If blnResult = True Then

ElseIf blnResult = False Then
 ApdUSBPanel.lstUSB.AddItem "An ACK was not received after the
GET_HOST_VARS request."
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
End If

End Sub

'***
'***
Public Sub RequestVariables()

' This sub sends a byte to the DSP that says,
' "please send back all necessary variables"
' It then recieves the variables (calibration variables)

Dim blnResult As Boolean
Dim intCount As Integer
Dim ReportsAttempted As Integer
Dim intVarsIndexLoc As Integer
Dim strLastFragment As String

intVarsIndexLoc = 0
strLastFragment = ""

'global stuff for getting these vars etc.
ReDim Vars(0 To (USB_NUM_VARS - 1))
intVarsIndex = 0

ReportsAttempted = 0

'Clear input report queue - Gets rid of the reports waiting
'in ring buffer

281

'that have not yet been read...
blnResult = HidD_FlushQueue(HID)
ApdUSBPanel.lstUSB.AddItem "Flush Queue Result: " & CStr(blnResult)
ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

'Assume the WriteFile function will set SendBuffer(0) = ReportID
'to zero
SendBuffer(1) = USB_REQUEST_VARIABLES 'USB_UNRECOGNIZED_COMMAND
'USB_CONNECT_TO_DSP 'this is global const
'
blnResult = DoAWriteFile()

If blnResult = True Then
 ApdUSBPanel.lstUSB.AddItem "Sent request for all relevent
variables..."
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
End If

'Read the ACK or NACK to this request
blnResult = ApdUsb.ReadSingleReport()
If blnResult = True Then
 If (ReadBuffer(1) = USB_DSP_ACK) Then
 blnResult = True
 With ApdUSBPanel.lstUSB
 .AddItem "Read ACK to send vars request."
 .AddItem "Now about to ReadSingleReport containing
variables."
 .ListIndex = .ListCount - 1
 End With
 Else
 blnResult = False
 End If
End If
'Yes ACK was received
If blnResult = True Then
 'Do loop until byte is returned indicating end of

'variables transferred
 Do
 'Get report
 ReportsAttempted = ReportsAttempted + 1
 Debug.Print "REPORTS ATTEMPTED: " & CStr(ReportsAttempted)
 blnResult = (ReadSingleReport() > 0)
 If blnResult = True Then
 'assign appropriate vars here
 'Print them as obtained
 For intCount = 0 To UBound(ReadBuffer)
 If ReadBuffer(intCount) = USB_END_OF_VARIABLE_TRANSFER
Then
 ApdUSBPanel.lstUSB.AddItem "Found
USB_END_OF_VARIABLE_TRANSFER at: " _
 & CStr(intCount) & " (arrays are base 0); value
= " & Hex$(USB_END_OF_VARIABLE_TRANSFER)
 ApdUSBPanel.lstUSB.ListIndex =
ApdUSBPanel.lstUSB.ListCount - 1
 blnResult = False
 End If
 Next intCount
 'ApdUSBPanel.lstUSB.AddItem Hex$(ReadBuffer(1)) & ", " &

'Hex$(ReadBuffer(2))

282

 'ApdUSBPanel.lstUSB.ListIndex =
ApdUSBPanel.lstUSB.ListCount - 1
 End If
 '
 'If OK, then extract the variables from this buffer
 strLastFragment = ExtractVariablesFromReadBuffer(_
 (Not (blnResult)), _
 strLastFragment, _
 intVarsIndexLoc)
 DoEvents
 Loop Until _
 blnResult = False _
 Or ReportsAttempted = USB_MAX_READ_REPORTS _
 Or blnKill = True 'ReadBuffer(1) = USB_END_OF_VARIABLE_TRANSFER

 ApdMain.xp = Vars(0) 'pressoff
 ApdMain.xo = Vars(1) 'flowoff
 ApdMain.ap = 1# / Vars(2) 'pressspan

'inverted during send preserve sig. digs.
 ApdMain.ai = 1# / Vars(3) 'flowspan inh

'inverted during send preserve sig. digs.
 ApdMain.ae = 1# / Vars(3) 'flowspan exh

'inverted during send preserve sig. digs.
 ApdMain.duty = Vars(4) 'duty cycle

 ApdUSBPanel.lstVars.Clear
 Vars(2) = 1# / Vars(2)
 Vars(3) = 1# / Vars(3)
 For intCount = LBound(Vars) To UBound(Vars)
 ApdUSBPanel.lstVars.AddItem CStr(Vars(intCount))
 Next intCount

 With ApdUSBConnectPanel
 .lstAPDUSBConnect.AddItem "Received variables from APD-SA USB."
 .lstAPDUSBConnect.ListIndex = .lstAPDUSBConnect.ListCount - 1
 End With

ElseIf blnResult = False Then
 ApdUSBPanel.lstUSB.AddItem "An ACK was not received after the send
variable request."
 ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

 With ApdUSBConnectPanel
 .lstAPDUSBConnect.AddItem "Did not properly receive variables
after the send variable request."
 .lstAPDUSBConnect.ListIndex = .lstAPDUSBConnect.ListCount - 1
 End With

End If

End Sub

'***
'***
Private Function ExtractVariablesFromReadBuffer(_
 blnFoundEndOfVars As Boolean, _

283

 strLastFragment As String, _
 ByRef intVarsIndexLoc As Integer _
) As String

' This sub does the following:
' Extract the variables from the buffer based on the number of digits
' expected.
' Adjust later for number of buffer, multi-buffer use, etc. including
' placement
' of call to this function...
'
' Returns: the remaining string of the digits in the buffer that were
' not
' enough to form a complete character i.e. if there are only 4 of 6
' digits
' remaining in the buffer, the four are returned, and the next 2 are
' assumed to arise in the next buffer read...

Dim intBufferIndex, intDigitNum, intDig As Integer
'intVarNum As Integer
'Dim Vars() As Single
Dim strVal As String
Dim strLine As String

'ReDim Vars(USB_MAX_VARS_PER_BUFFER)
'This will create 11 slots for USB...=10
'intVarNum = 0

'Start at 1 because (0) is record number...
'''For intBufferIndex = 1 To (UBound(ReadBuffer) - USB_BYTES_PER_VAR +
1)
'intBufferIndex = 1 + Len(strLastFragment)

intBufferIndex = 1
' nope-> + Len(strLastFragment) that's wrong, no need to jump
' ahead there buddy old pal, mkay?
strVal = strLastFragment

Do

 For intDigitNum = 0 To (USB_BYTES_PER_VAR - 1 - Len(strVal))
 'If reading fragment of digit and past end of buffer then exit
 If (intBufferIndex + intDigitNum) > UBound(ReadBuffer) Then
GoTo ExitLoop
 'If reading an end of var transmit value, then exit cuz last
 'good digit was already saved.
 intDig = ReadBuffer(intBufferIndex + intDigitNum)
 If intDig = USB_END_OF_VARIABLE_TRANSFER Then GoTo ExitLoop
 'Ignore large numbers (from codes, etc., prepare for reading

'other digit codes too
 If intDig <= 9 Then

'hopefully not confused with negatives here...
 strVal = strVal & CStr(intDig)
 ElseIf intDig = USB_NEG_SIGN Then
 strVal = strVal & "-"
 ElseIf intDig = USB_DEC_PT Then
 strVal = strVal & "."

284

 ElseIf intDig > &HAF Then
'45 and 46 are ascii symbols, acks, nacks etc are >0xb_

 If ApdUSBPanel.chkShowHexCodes.value = True Then
 strVal = strVal & Hex$(intDig)
 Else
 strVal = strVal & "0"
 End If
 Else
 strVal = strVal & "0"
 End If
 Next intDigitNum
 Vars(intVarsIndexLoc) = CSng(strVal)
 intBufferIndex = intBufferIndex + intDigitNum 'USB_BYTES_PER_VAR
 intVarsIndexLoc = intVarsIndexLoc + 1
 'Just for DEBUG - will need to be adjusted
 If intVarsIndexLoc > UBound(Vars) Then
 intVarsIndexLoc = 0
 End If

 'MAY need to check for running past the end of this Vars array....
 strVal = ""

Loop Until intBufferIndex > UBound(ReadBuffer)

ExitLoop:
ExtractVariablesFromReadBuffer = strVal 'save the last fragment if
there is one

'For intBufferIndex = 0 To UBound(Vars)
' ApdUSBPanel.lstUSB.AddItem CStr(Vars(intBufferIndex))
' ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
'Next intBufferIndex

'Dim intCount As Integer
'Dim strLine As String

With ApdUSBPanel.lstUSB

 .AddItem "Vars contents:"
 .ListIndex = .ListCount - 1

 For intBufferIndex = 0 To UBound(Vars)
 If (Len(CStr(Vars(intBufferIndex))) >= 6) Then
 strLine = strLine & Hex$(intBufferIndex) & ": " & CStr(Vars
(intBufferIndex)) & Chr(9) 'this is tab
 Else
 strLine = strLine & Hex$(intBufferIndex) & ": " & CStr(Vars
(intBufferIndex)) & Chr(9) & Chr(9) 'this is tab
 End If
 If ((intBufferIndex + 1) Mod 8 = 0) Then 'if its a multiple of
8 thensesx
 'strLine = strLine & Chr(10) & Chr(13)

'linefeed and carriage return ASCII
 .AddItem strLine
 .ListIndex = .ListCount - 1
 strLine = ""
 End If
 Next intBufferIndex

285

 'Add last line if not multiple of 16
 .AddItem strLine
 .ListIndex = .ListCount - 1

End With

End Function

'***
'***
Private Function ExtractStreamedVariablesFromBuffer(_
 ByRef intBuffer() As Integer, _
 intMaxIndex As Long, _
 intNumberOfSets As Integer _
) As Boolean

' This sub extracts pressure and flow or pressure, flow and RR
' variables from a data stream from the USB.
'
'Assumes that for whatever number of data set in the buffer, that the
'order is always:
'pressure, flow, respiratory resistance, some other debug integer type
'of data here.
'
'Extract the variables from the buffer based on the number of digits
'expected.
'Adjust later for number of buffer, multi-buffer use, etc. including
'placement
'of call to this function...

Dim intBufferIndex, intDigitNum, intDig As Integer
Dim strVal As String
Dim strLine As String
Dim intVarsIndexLoc As Long
Dim intVarSetNum As Integer

On Error GoTo ESVFB_ErrorHandler

intBufferIndex = 0 'incoming buufer is base 0
' nope-> + Len(strLastFragment) that's wrong, no need to jump
'ahead there buddy old pal, mkay?
strVal = ""
intVarsIndexLoc = 0 'reset counter for destination of vars
intVarSetNum = 1

Do

 For intDigitNum = 0 To (USB_BYTES_PER_VAR - 1 - Len(strVal))
 'If reading fragment of digit and past end of buffer then exit
 If (intBufferIndex + intDigitNum) > intMaxIndex Then GoTo
ExitLoop
 'If reading an end of var transmit value, then exit cuz last
 'good digit was already saved.
 intDig = intBuffer(intBufferIndex + intDigitNum)
 With ApdUSBPanel.lstUSB
 If intDig = USB_END_OF_VARIABLE_TRANSFER Then
 .AddItem "Found USB_END_OF_VARIABLE_TRANSFER"

286

 .ListIndex = .ListCount - 1
 GoTo ExitLoop
 End If
 If intDig = USB_STOP Then
 .AddItem "Found USB_STOP"
 .ListIndex = .ListCount - 1
 GoTo ExitLoop
 End If
 If intDig = USB_HOST_TOO_SLOW Then
 .AddItem "Found USB_HOST_TOO_SLOW"
 .ListIndex = .ListCount - 1
 GoTo ExitLoop
 End If
 End With

 'Ignore large numbers (from codes, etc., prepare for reading

'other digit codes too
 If intDig <= 9 Then

'hopefully not confused with negatives here...
 strVal = strVal & CStr(intDig)
 ElseIf intDig = USB_NEG_SIGN Then
 strVal = strVal & "-"
 ElseIf intDig = USB_DEC_PT Then
 strVal = strVal & "."
 ElseIf intDig > &HAF Then '45 and 46 are ascii symbols, acks,

'nacks etc are >0xb_
 If ApdUSBPanel.chkShowHexCodes.value = True Then
 strVal = strVal & Hex$(intDig)
 Else
 strVal = strVal & "0"
 End If
 Else
 strVal = strVal & "0"
 End If
 Next intDigitNum

 If CSng(strVal > 32000) Then
 'Put msgbox here.

 'MsgBox "Error: ExtractStreamedVariablesFromBuffer: Bad data

'transfer from DSP to USB to HOST. " _
 '& vbCrLf & "Please try again."
 Debug.Print "Too large extracted streamed var - raising err 13"
 err.Raise 13
 End If

 'Check cases here for number of data sets in the stream and split

'according to arrays.
 Select Case intNumberOfSets
 Case 1
 Vars(intVarsIndexLoc) = CSng(strVal)
 'Just for DEBUG - will need to be adjusted
 If intVarsIndexLoc > UBound(Vars) Then
 intVarsIndexLoc = 0
 End If

 Case 2 'pressure and flow data in the stream of data
 'first value is pressure & second is flow
 If intVarSetNum = 1 Then

287

 mp(intVarsIndexLoc + 1) = CSng(strVal)
'mp, fr are base 1

 ElseIf intVarSetNum = 2 Then
 fr(intVarsIndexLoc + 1) = CSng(strVal)
 End If
 Case USB_RUN_VARS

'data is pressure, flow at an rr value with extra field -
'say number of pert or similar

 If intVarSetNum = 1 Then
 mp(intVarsIndexLoc + 1) = CSng(strVal)

'mp, fr are base 1
 ElseIf intVarSetNum = 2 Then
 fr(intVarsIndexLoc + 1) = CSng(strVal)
 ElseIf intVarSetNum = 3 Then
 rd(intVarsIndexLoc + 1) = CSng(strVal)
 If Abs(rd(intVarsIndexLoc + 1)) < USB_ERR_PAD Then
 rd(intVarsIndexLoc + 1) = 0#

'within tolerance for precision errors on dsp
 End If
 'ElseIf intVarSetNum = 4 Then

'presently in this run mode, only 3 vars streamed
 ' Vars(intVarsIndexLoc + 1) = CSng(strVal)
 End If
 Case Else
 'ExtractStreamedVariablesFromBuffer = False

'Failed to have proper input value
 'GoTo ExitLoop
 End Select

 'intVarsIndexLoc = 0

' Make sure to reset and increment this as needed
 'Vars(intVarsIndexLoc) = CSng(strVal)
 intBufferIndex = intBufferIndex + intDigitNum 'USB_BYTES_PER_VAR
 'intVarsIndexLoc = intVarsIndexLoc + 1

'index in destination variable

 intVarSetNum = intVarSetNum + 1 'increment set for next variable
 If intVarSetNum > intNumberOfSets Then
 intVarSetNum = 1 'reset variable set number to first variable

'is exceeded the number of sets
 intVarsIndexLoc = intVarsIndexLoc + 1

'index in destination variable
 End If

 'MAY need to check for running past the end of this Vars array....
 strVal = ""

Loop Until intBufferIndex > intMaxIndex

ExitLoop:
ExtractStreamedVariablesFromBuffer = True
'save the last fragment if there is one
ApdUSBPanel.lstUSB.AddItem "intVarsIndexLoc on exit ESVFB: " & CStr
(intVarsIndexLoc)
ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

'For intBufferIndex = 0 To UBound(Vars)

288

' ApdUSBPanel.lstUSB.AddItem CStr(Vars(intBufferIndex))
' ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
'Next intBufferIndex

''Dim intCount As Integer
''Dim strLine As String

GoTo ESVFB_End

ESVFB_ErrorHandler:
If err.Number = 13 Then
 Call UpdateErrorStatusUSB("ExtractStreamedVariablesFromBuffer",
err.Number)
 ExtractStreamedVariablesFromBuffer = False
Else
 MsgBox "Error in ESVFB: " & CStr(err.Number) & " " &
err.Description
End If

ESVFB_End:

End Function

'***
'***
Public Sub UpdateErrorStatusUSB(Optional strDescrip As String = " ", _
 Optional lngNum As Long = 0)

' This sub sends error codes to the USB panel – usually used when
' a mangled USB variable transfer has been detected – this is
' detected when a variable is far outside of its expected range.
' This type of range exceedence occurs when bit or byte have dropped
' or swapped, or during a stalled transfer.

With ApdUSBPanel.lstUSB
 .AddItem "Error: " & strDescrip
 .AddItem CStr(lngNum)
 .ListIndex = .ListCount - 1
End With

ApdPanel.StatusBar2.Caption = "Error in USB Data transfer - reset
suggested."

End Sub

'***
'***
Function ShowVarsContents()

' This sub is primarily for debugging and prints to the USB test
' panel variables that have been transferred.

Dim intBufferIndex As Integer
Dim strLine As String

With ApdUSBPanel.lstUSB

289

 .AddItem "Vars contents:"
 .ListIndex = .ListCount - 1

 For intBufferIndex = 0 To UBound(Vars)
 If (Len(CStr(Vars(intBufferIndex))) >= 6) Then
 strLine = strLine & Hex$(intBufferIndex) & ": " & CStr(Vars
(intBufferIndex)) & Chr(9) 'this is tab
 Else
 strLine = strLine & Hex$(intBufferIndex) & ": " & CStr(Vars
(intBufferIndex)) & Chr(9) & Chr(9) 'this is tab
 End If
 If ((intBufferIndex + 1) Mod 8 = 0) Then

'if its a multiple of 8 thensesx
 'strLine = strLine & Chr(10) & Chr(13)

'linefeed and carriage return ASCII
 .AddItem strLine
 .ListIndex = .ListCount - 1
 strLine = ""
 End If
 Next intBufferIndex

 'Add last line if not multiple of 16
 .AddItem strLine
 .ListIndex = .ListCount - 1

End With

End Function

'***
'***
Private Function DoAWriteFile() As Boolean

'Attempts a WriteFile call. Fails if the device isn't attached.

Dim Count As Integer
Dim NumberOfBytesRead As Long
Dim NumberOfBytesToSend As Long
Dim NumberOfBytesWritten As Long
Dim result2 As Integer
Dim result As Integer

'** Commented out so that data can be setup in other calls to this
'function
'The SendBuffer array begins at 0, so subtract 1 from the number of
'bytes.
'If Capabilities.OutputReportByteLength > 0 Then
' ReDim SendBuffer(Capabilities.OutputReportByteLength - 1)
'Else
' ReDim SendBuffer(0)
'End If

'**
'WriteFile
'Sends a report to the device.
'Returns: success or failure.
'Requires: the handle returned by CreateFile and
'The output report byte length returned by HidP_GetCaps

290

'***

'The first byte is the Report ID
SendBuffer(0) = 0

'This is commented out to allow other functions to set data and call
'DoAWriteFile to
'output the data over USB
'The next bytes are data
'For Count = 1 To Capabilities.OutputReportByteLength - 1
' SendBuffer(Count) = OutputReportData(Count - 1)
'Next Count

NumberOfBytesWritten = 0

result = WriteFile _
 (HID, _
 SendBuffer(0), _
 CLng(Capabilities.OutputReportByteLength), _
 NumberOfBytesWritten, _
 HIDOverlapped)

'Used to be: 0) - HIDOverlapped is unsupported in the API
Call DisplayResultOfAPICall("WriteFile")

'Wait for ReadFile to complete or a timeout whichever comes first at
'spec'ed timeout interval
result2 = WaitForSingleObject _
 (EventObject, _
 1000) '1 second (# of ms)

Call DisplayResultOfAPICall("WaitForSingleObject")
'NOTE: even if this timed out, the printed result from the above
'display result
'will give "completed properly"

ApdUSBPanel.lstUSB.AddItem " OutputReportByteLength = " &
Capabilities.OutputReportByteLength
ApdUSBPanel.lstUSB.AddItem " NumberOfBytesWritten = " &
NumberOfBytesWritten
ApdUSBPanel.lstUSB.AddItem " Report ID: " & SendBuffer(0)
ApdUSBPanel.lstUSB.AddItem " Output Report Data:"

If result2 = WAIT_TIMEOUT Or result2 = WAIT_ABANDONED Then
 DoAWriteFile = False
 ApdUSBPanel.lstUSB.AddItem " WriteFile Timed Out"
ElseIf result2 = WAIT_OBJECT_0 Then
 DoAWriteFile = True
 ShowSendBuffer
End If

'For Count = 1 To UBound(SendBuffer)
' ApdUSBPanel.lstUSB.AddItem " " & Hex$(SendBuffer(Count))
'Next Count

'Scroll to the bottom of the list box.
ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

End Function

291

'***
'***
Private Function FindTheHid() As Boolean
'Makes a series of API calls to locate the desired HID-class device.
'Returns True if the device is detected, False if not detected.

Dim Count As Integer
Dim GUIDString As String
Dim HidGuid As GUID
Dim MemberIndex As Long

LastDevice = False
MyDeviceDetected = False

'***
'HidD_GetHidGuid
'Get the GUID for all system HIDs.
'Returns: the GUID in HidGuid.
'The routine doesn't return a value in Result
'but the routine is declared as a function for consistency with the
other API calls.
'***

result = HidD_GetHidGuid(HidGuid)
Call DisplayResultOfAPICall("GetHidGuid")

'Display the GUID.
GUIDString = _
 Hex$(HidGuid.Data1) & "-" & _
 Hex$(HidGuid.Data2) & "-" & _
 Hex$(HidGuid.Data3) & "-"

For Count = 0 To 7
 'Ensure that each of the 8 bytes in the GUID displays two

'characters.
 If HidGuid.Data4(Count) >= &H10 Then
 GUIDString = GUIDString & Hex$(HidGuid.Data4(Count)) & " "
 Else
 GUIDString = GUIDString & "0" & Hex$(HidGuid.Data4(Count)) & "
"
 End If
Next Count

ApdUSBPanel.lstUSB.AddItem " GUID for system HIDs: " & GUIDString

'***
'SetupDiGetClassDevs
'Returns: a handle to a device information set for all installed
devices.
'Requires: the HidGuid returned in GetHidGuid.
'***

DeviceInfoSet = SetupDiGetClassDevs _
 (HidGuid, _
 vbNullString, _
 0, _
 (DIGCF_PRESENT Or DIGCF_DEVICEINTERFACE))

292

Call DisplayResultOfAPICall("SetupDiClassDevs")
DataString = GetDataString(DeviceInfoSet, 32)

'***
'SetupDiEnumDeviceInterfaces
'On return, MyDeviceInterfaceData contains the handle to a
'SP_DEVICE_INTERFACE_DATA structure for a detected device.
'Requires:
'the DeviceInfoSet returned in SetupDiGetClassDevs.
'the HidGuid returned in GetHidGuid.
'An index to specify a device.
'***

'Begin with 0 and increment until no more devices are detected.
MemberIndex = 0

Do
 'The cbSize element of the MyDeviceInterfaceData structure must be

'set to
 'the structure's size in bytes. The size is 28 bytes.
 MyDeviceInterfaceData.cbSize = LenB(MyDeviceInterfaceData)
 result = SetupDiEnumDeviceInterfaces _
 (DeviceInfoSet, _
 0, _
 HidGuid, _
 MemberIndex, _
 MyDeviceInterfaceData)

 Call DisplayResultOfAPICall("SetupDiEnumDeviceInterfaces")
 If result = 0 Then LastDevice = True

 'If a device exists, display the information returned.
 If result <> 0 Then
 ApdUSBPanel.lstUSB.AddItem " DeviceInfoSet for device #" &
CStr(MemberIndex) & ": "
 ApdUSBPanel.lstUSB.AddItem " cbSize = " & CStr
(MyDeviceInterfaceData.cbSize)
 ApdUSBPanel.lstUSB.AddItem _
 " InterfaceClassGuid.Data1 = " & Hex$
(MyDeviceInterfaceData.InterfaceClassGuid.Data1)
 ApdUSBPanel.lstUSB.AddItem _
 " InterfaceClassGuid.Data2 = " & Hex$
(MyDeviceInterfaceData.InterfaceClassGuid.Data2)
 ApdUSBPanel.lstUSB.AddItem _
 " InterfaceClassGuid.Data3 = " & Hex$
(MyDeviceInterfaceData.InterfaceClassGuid.Data3)
 ApdUSBPanel.lstUSB.AddItem _
 " Flags = " & Hex$(MyDeviceInterfaceData.Flags)

 '***
 'SetupDiGetDeviceInterfaceDetail
 'Returns: an SP_DEVICE_INTERFACE_DETAIL_DATA structure
 'containing information about a device.
 'To retrieve the information, call this function twice.
 'The first time returns the size of the structure in Needed.
 'The second time returns a pointer to the data in

'DeviceInfoSet.

293

 'Requires:
 'A DeviceInfoSet returned by SetupDiGetClassDevs and
 'an SP_DEVICE_INTERFACE_DATA structure returned by

'SetupDiEnumDeviceInterfaces.
 '***

 'The final parameter passed in SetupDIGetDeviceInterfaceDetail
 'is an optional pointer to an SP_DEVINFO_DATA structure.
 'If retrieving the structure, set the size of

'MyDeviceInfoData:
 'MyDeviceInfoData.cbSize = Len(MyDeviceInfoData)
 'and pass the structure's address (declare the parameter

'ByRef)
 'This application doesn't retrieve or use the structure.

 MyDeviceInfoData.cbSize = Len(MyDeviceInfoData)
 result = SetupDiGetDeviceInterfaceDetail _
 (DeviceInfoSet, _
 MyDeviceInterfaceData, _
 0, _
 0, _
 Needed, _
 0)

 DetailData = Needed

 Call DisplayResultOfAPICall("SetupDiGetDeviceInterfaceDetail")
 ApdUSBPanel.lstUSB.AddItem " (OK to say too small)"
 ApdUSBPanel.lstUSB.AddItem " Required buffer size for the
data: " & Needed

 'Store the structure's size.
 MyDeviceInterfaceDetailData.cbSize = _
 Len(MyDeviceInterfaceDetailData)

 'Use a byte array to allocate memory for
 'the MyDeviceInterfaceDetailData structure
 ReDim DetailDataBuffer(Needed)
 'Store cbSize in the first four bytes of the array.
 Call RtlMoveMemory _
 (DetailDataBuffer(0), _
 MyDeviceInterfaceDetailData, _
 4)

 'Call SetupDiGetDeviceInterfaceDetail again.
 'This time, pass the address of the first element of

'DetailDataBuffer
 'and the returned required buffer size in DetailData.
 result = SetupDiGetDeviceInterfaceDetail _
 (DeviceInfoSet, _
 MyDeviceInterfaceData, _
 VarPtr(DetailDataBuffer(0)), _
 DetailData, _
 Needed, _
 0)

 Call DisplayResultOfAPICall(" Result of second call: ")
 ApdUSBPanel.lstUSB.AddItem "
MyDeviceInterfaceDetailData.cbSize: " & _

294

 CStr(MyDeviceInterfaceDetailData.cbSize)

 'Convert the byte array to a string.
 DevicePathName = CStr(DetailDataBuffer())
 'Convert to Unicode.
 DevicePathName = StrConv(DevicePathName, vbUnicode)
 'Strip cbSize (4 characters) from the beginning.
 DevicePathName = Right$(DevicePathName, Len(DevicePathName) -
4)
 'Strip 2 trailing nulls from the end.
 DevicePathName = Left$(DevicePathName, Len(DevicePathName) - 2)
 ApdUSBPanel.lstUSB.AddItem " Device pathname: " &
DevicePathName

 '***
 'CreateFile
 'Returns: a handle that enables reading and writing to the

'device.
 'Requires:
 'The DevicePathName returned by

'SetupDiGetDeviceInterfaceDetail.
 '***

 'Create an event object to signal completion of a read file
 EventObject = CreateEvent _
 (0&, _
 True, _
 False, _
 "")

'First false says auto reset, second true says start
'as signalled but will

 'be set to non-signalled when thread owns it - then when
'thread releases, it is

 'set to signalled
 ' set to non-signalled first 'True, _
 Call DisplayResultOfAPICall("CreateEvent")

 'Fill overlapped structure
 HIDOverlapped.offset = 0
 HIDOverlapped.OffsetHigh = 0
 HIDOverlapped.hEvent = EventObject

 HID = CreateFile _
 (DevicePathName, _
 GENERIC_READ Or GENERIC_WRITE, _
 (FILE_SHARE_READ Or FILE_SHARE_WRITE), _
 0, _
 OPEN_EXISTING, _
 FILE_FLAG_OVERLAPPED, 0)

'This used to be 0, 0) but was changed for overlapped call

 Call DisplayResultOfAPICall("CreateFile")
 ApdUSBPanel.lstUSB.AddItem " Returned handle: " & Hex$(HID) &
"h"

 'Now we can find out if it's the device we're looking for.

 '***

295

 'HidD_GetAttributes
 'Requests information from the device.
 'Requires: The handle returned by CreateFile.
 'Returns: a HIDD_ATTRIBUTES structure containing
 'the Vendor ID, Product ID, and Product Version Number.
 'Use this information to determine if the detected device
 'is the one we're looking for.
 '***

 'Set the Size property to the number of bytes in the

'structure.
 DeviceAttributes.Size = LenB(DeviceAttributes)
 result = HidD_GetAttributes _
 (HID, _
 DeviceAttributes)

 Call DisplayResultOfAPICall("HidD_GetAttributes")
 If result <> 0 Then
 ApdUSBPanel.lstUSB.AddItem " HIDD_ATTRIBUTES structure
filled without error."
 Else
 ApdUSBPanel.lstUSB.AddItem " Error in filling
HIDD_ATTRIBUTES structure."
 End If

 ApdUSBPanel.lstUSB.AddItem " Structure size: " &
DeviceAttributes.Size
 ApdUSBPanel.lstUSB.AddItem " Vendor ID: " & Hex$
(DeviceAttributes.VendorID)
 ApdUSBPanel.lstUSB.AddItem " Product ID: " & Hex$
(DeviceAttributes.ProductID)
 ApdUSBPanel.lstUSB.AddItem " Version Number: " & Hex$
(DeviceAttributes.VersionNumber)

 'Find out if the device matches the one we're looking for.
 If (DeviceAttributes.VendorID = MyVendorID) And _
 (DeviceAttributes.ProductID = MyProductID) Then
 ApdUSBPanel.lstUSB.AddItem " My device detected"
 MyDeviceDetected = True
 Else
 MyDeviceDetected = False
 'If it's not the one we want, close its handle.
 result = CloseHandle _
 (HID)
 DisplayResultOfAPICall ("CloseHandle")
 End If
End If
 'Keep looking until we find the device or there are no more

'left to examine.
 MemberIndex = MemberIndex + 1
Loop Until (LastDevice = True) Or (MyDeviceDetected = True)

If MyDeviceDetected = True Then
 FindTheHid = True
 Call GetDeviceCapabilities
Else
 ApdUSBPanel.lstUSB.AddItem " Device not found."
 FindTheHid = False
End If

296

End Function

'***
'***
Private Function GetDataString _
 (Address As Long, _
 Bytes As Long) _
As String

'Retrieves a string of length Bytes from memory, beginning at Address.
'Adapted from Dan Appleman's "Win32 API Puzzle Book"

Dim offset As Integer
Dim result$
Dim ThisByte As Byte

For offset = 0 To Bytes - 1
 Call RtlMoveMemory(ByVal VarPtr(ThisByte), ByVal Address + offset,
1)
 If (ThisByte And &HF0) = 0 Then
 result$ = result$ & "0"
 End If
 result$ = result$ & Hex$(ThisByte) & " "
Next offset

GetDataString = result$

End Function

'***
'***
Private Function GetErrorString _
 (ByVal LastError As Long) _
As String

'Returns the error message for the last error.
'Adapted from Dan Appleman's "Win32 API Puzzle Book"

Dim Bytes As Long
Dim ErrorString As String
ErrorString = String$(129, 0)
Bytes = FormatMessage _
 (FORMAT_MESSAGE_FROM_SYSTEM, _
 0&, _
 LastError, _
 0, _
 ErrorString$, _
 128, _
 0)

'Subtract two characters from the message to strip the CR and LF.
If Bytes > 2 Then
 GetErrorString = Left$(ErrorString, Bytes - 2)
End If

297

End Function

'***
'***
Private Sub cmdReadSingleReport_Click()

' This simple sub just handles debug window button click event

 Dim result As Integer

 result = ReadSingleReport()
End Sub

'***
'***
Public Function ReadSingleReport(Optional blnShowReadBuffer As Boolean
= True) As Integer

' This sub attempts to read a single report from APD-SA USB

 Dim NumberOfBytesRead As Long
 Dim result As Integer
 Dim Count As Integer
 Dim result2 As Integer
 Dim blnHasCompleted As Boolean
 Dim blnresult3 As Boolean

 '** Commented out because assume already checked for attached and
'appropriate device

 'and to allow other calling function to set read buffer size
 'If DeviceDetected = True Then
 ' 'The ReadBuffer array begins at 0, so subtract 1 from the

'number of bytes.
 ' If Capabilities.InputReportByteLength > 0 Then
 ' ReDim ReadBuffer(Capabilities.InputReportByteLength - 1)
 ' End If
 'End If

 blnHasCompleted = ResetEvent(EventObject)
 '**With ApdUSBPanel.lstUSB
 ' .AddItem "ResetEvent returned " & CStr(blnHasCompleted)
 ' .ListIndex = .ListCount - 1
 'End With

 result = ReadFile _
 (HID, _
 ReadBuffer(0), _
 CLng(Capabilities.InputReportByteLength), _
 NumberOfBytesRead, _
 HIDOverlapped)

'Used to be just: 0) for non-overlapped read-file

 '**Call DisplayResultOfAPICall("ReadFile")

 'Wait for ReadFile to complete or a timeout whichever comes first

'at spec'ed timeout interval

298

 result2 = WaitForSingleObject _
 (EventObject, _
 1000) '1 second (# of ms)

 '**Call DisplayResultOfAPICall("WaitForSingleObject")

 blnresult3 = GetOverlappedResult _
 (HID, _
 HIDOverlapped, _
 NumberOfBytesRead, _
 False)
 'False = don't wait (sinze already have the

'WaitForSingleObject function above
 '**Call DisplayResultOfAPICall("GetOverlappedResult")

 'This following function is not in kernel32
 'blnHasCompleted = HasOverlappedIoCompleted _
 ' (HIDOverlapped)

 'With ApdUSBPanel.lstUSB
 ' .AddItem "HasOverlappedIoCompleted = " & Cstr

'(blnHasCompleted)
 ' .ListIndex = .ListCount - 1
 'End With

 'Optional debugging information:
 'Debug.Print "Readfile result= "; GetErrorString(Err.LastDllError)
 'Debug.Print "handle= "; DeviceHandle
 'Debug.Print "report length= "; ReportLength
 'Debug.Print "bytes read= "; NumberOfBytesRead
 'For Count = 0 To UBound(ReadBuffer)
 ' Debug.Print ReadBuffer(Count)
 'Next Count

 'For Count = 1 To UBound(ReadBuffer)
 ' ApdUSBPanel.lstUSB.AddItem " " & CStr(Count) & ": " & Hex$

'(ReadBuffer(Count))
 'Next Count

 'This is for when it looks like it read ok: i.e.: "overlapped io

'in progress" from ReadFile
 'and "Completed OK" from WaitForEvent, but really the ReadFile

'returned 0 bytes - probably
 'because the USB sent a NACK to an IN request

 'If result = 0 And NumberOfBytesRead = 0 Then
 'If NumberOfBytesRead = 0 Then
 ' ReadSingleReport = 0
 ' ApdUSBPanel.lstUSB.AddItem "ReadFile returned 0 - abandoning"
 ' ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
 ' GoTo EndOfReadFile
 'End If

 If result2 = WAIT_TIMEOUT Or result2 = WAIT_ABANDONED Then
 ReadSingleReport = 0
 '**ApdUSBPanel.lstUSB.AddItem "ReadFile Timed Out"
 '**ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1
 ElseIf result2 = WAIT_OBJECT_0 Then
 ReadSingleReport = NumberOfBytesRead '=True, = 1 etc.

299

 If blnShowReadBuffer = True Then
 Call ShowReadBuffer
 End If

 '**With ApdUSBPanel.lstUSB
 ' .AddItem "Bytes read in ReadSingleReport: " & Cstr

'(ReadSingleReport) 'should show number of bytes read
 ' .ListIndex = .ListCount - 1
 'End With
 End If

EndOfReadFile:

End Function

'***
'***
Private Sub DisplayResultOfAPICall(FunctionName As String)

'This sub displays the results of an API call.

Dim ErrorString As String

ApdUSBPanel.lstUSB.AddItem ""

ErrorString = GetErrorString(err.LastDllError)

ApdUSBPanel.lstUSB.AddItem FunctionName
ApdUSBPanel.lstUSB.AddItem " Result = " & ErrorString

'Scroll to the bottom of the list box.
ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

End Sub

'***
'***
Private Sub Form_Unload(Cancel As Integer)

' This sub simply ensures that if, on closing the application,
' there is still USB handle open, that it is closed.

Call ShutdownUSB
End Sub

'***
'***
Private Sub GetDeviceCapabilities()

' This sub uses USB HID driver APD to get information
' about the attached USB HID device.

'***
'HidD_GetPreparsedData
'Returns: a pointer to a buffer containing information about the

300

'device's capabilities.
'Requires: A handle returned by CreateFile.
'There's no need to access the buffer directly,
'but HidP_GetCaps and other API functions require a pointer to the
'buffer.
'***

Dim ppData(29) As Byte
Dim ppDataString As Variant

'Preparsed Data is a pointer to a routine-allocated buffer.
result = HidD_GetPreparsedData _
 (HID, _
 PreparsedData)
Call DisplayResultOfAPICall("HidD_GetPreparsedData")

'Copy the data at PreparsedData into a byte array.
result = RtlMoveMemory _
 (ppData(0), _
 PreparsedData, _
 30)
Call DisplayResultOfAPICall("RtlMoveMemory")

ppDataString = ppData()
'Convert the data to Unicode.
ppDataString = StrConv(ppDataString, vbUnicode)

'***
'HidP_GetCaps
'Find out the device's capabilities.
'For standard devices such as joysticks, you can find out the specific
'capabilities of the device.
'For a custom device, the software will probably know what the device
'is capable of,
'so this call only verifies the information.
'Requires: The pointer to a buffer containing the information.
'The pointer is returned by HidD_GetPreparsedData.
'Returns: a Capabilites structure containing the information.
'***
result = HidP_GetCaps _
 (PreparsedData, _
 Capabilities)

Call DisplayResultOfAPICall("HidP_GetCaps")
ApdUSBPanel.lstUSB.AddItem " Last error: " & ErrorString
ApdUSBPanel.lstUSB.AddItem " Usage: " & Hex$(Capabilities.Usage)
ApdUSBPanel.lstUSB.AddItem " Usage Page: " & Hex$
(Capabilities.UsagePage)
ApdUSBPanel.lstUSB.AddItem " Input Report Byte Length: " &
Capabilities.InputReportByteLength
ApdUSBPanel.lstUSB.AddItem " Output Report Byte Length: " &
Capabilities.OutputReportByteLength
ApdUSBPanel.lstUSB.AddItem " Feature Report Byte Length: " &
Capabilities.FeatureReportByteLength
ApdUSBPanel.lstUSB.AddItem " Number of Link Collection Nodes: " &
Capabilities.NumberLinkCollectionNodes
ApdUSBPanel.lstUSB.AddItem " Number of Input Button Caps: " &
Capabilities.NumberInputButtonCaps

301

ApdUSBPanel.lstUSB.AddItem " Number of Input Value Caps: " &
Capabilities.NumberInputValueCaps
ApdUSBPanel.lstUSB.AddItem " Number of Input Data Indices: " &
Capabilities.NumberInputDataIndices
ApdUSBPanel.lstUSB.AddItem " Number of Output Button Caps: " &
Capabilities.NumberOutputButtonCaps
ApdUSBPanel.lstUSB.AddItem " Number of Output Value Caps: " &
Capabilities.NumberOutputValueCaps
ApdUSBPanel.lstUSB.AddItem " Number of Output Data Indices: " &
Capabilities.NumberOutputDataIndices
ApdUSBPanel.lstUSB.AddItem " Number of Feature Button Caps: " &
Capabilities.NumberFeatureButtonCaps
ApdUSBPanel.lstUSB.AddItem " Number of Feature Value Caps: " &
Capabilities.NumberFeatureValueCaps
ApdUSBPanel.lstUSB.AddItem " Number of Feature Data Indices: " &
Capabilities.NumberFeatureDataIndices

'***
'HidP_GetValueCaps
'Returns a buffer containing an array of HidP_ValueCaps structures.
'Each structure defines the capabilities of one value.
'This application doesn't use this data.
'***

'This is a guess. The byte array holds the structures.
Dim ValueCaps(1023) As Byte

result = HidP_GetValueCaps _
 (HidP_Input, _
 ValueCaps(0), _
 Capabilities.NumberInputValueCaps, _
 PreparsedData)

Call DisplayResultOfAPICall("HidP_GetValueCaps")

'ApdUSBPanel.lstUSB.AddItem "ValueCaps= " & GetDataString((VarPtr
(ValueCaps(0))), 180)
'To use this data, copy the byte array into an array of structures.

End Sub

'***
'***
Private Sub SendReportToTheHID()

'Send a report to the APD-SA USB device.

Dim Count As Integer
Dim NumberOfBytesRead As Long
Dim NumberOfBytesToSend As Long
Dim NumberOfBytesWritten As Long
Dim WriteSuccess As Boolean

'In most cases, once a device has been detected it will remain
'available.
'But it's possible that the device has been removed, or removed and

302

'reattached
'(with a new handle). We need to handle each of these cases.

If DeviceDetected = True Then
 WriteSuccess = DoAWriteFile
 'If the write attempt failed, it may be because the device was

'removed,
 'then reattached. So try to find it again.
 If WriteSuccess = False Then
 DeviceDetected = FindTheHid
 'If success, try to write to the device.
 If DeviceDetected = True Then
 WriteSuccess = DoAWriteFile
 End If
 End If
Else
 'If the device isn't detected, try to find it.
 DeviceDetected = FindTheHid
 'If success, try to write to it.
 If DeviceDetected = True Then
 WriteSuccess = DoAWriteFile
 End If
End If

If WriteSuccess = True Then
 ApdUSBPanel.lstUSB.AddItem " OutputReportByteLength = " &
Capabilities.OutputReportByteLength
 ApdUSBPanel.lstUSB.AddItem " NumberOfBytesWritten = " &
NumberOfBytesWritten
 ApdUSBPanel.lstUSB.AddItem " Report ID: " & SendBuffer(0)
 ApdUSBPanel.lstUSB.AddItem " Output Report Data:"
 For Count = 1 To UBound(SendBuffer)
 ApdUSBPanel.lstUSB.AddItem " " & Hex$(SendBuffer(Count))
 Next Count
Else
 ApdUSBPanel.lstUSB.AddItem "Unable to write to device."

End If
'Scroll to the bottom of the list box.
ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

End Sub

'***
'***
Public Sub ShutdownUSB()

' This sub performs tasks that must execute when the program ends
' or when USB session has ended and in order to close the USB
' connection.
'
' Send a report to the device to tell the device to
' tell the server to stop reading from the device.
' Call StopReadingReports

On Error Resume Next

'Close the open handle to the device.

303

result = CloseHandle _
 (HID)
Call DisplayResultOfAPICall("CloseHandle (HID)")

'Free memory used by SetupDiGetClassDevs
'Nonzero = success
result = SetupDiDestroyDeviceInfoList _
 (DeviceInfoSet)
Call DisplayResultOfAPICall("DestroyDeviceInfoList")

result = HidD_FreePreparsedData _
 (PreparsedData)
Call DisplayResultOfAPICall("HidD_FreePreparsedData")

ApdPanel.UseStandAloneAPD.Checked = False
ApdPanel.UseDataAcquisitionCardAPD.Checked = True

ApdUsb.ToggleApdUsbOptions (False)

'Call ApdPanel.UseStandAloneAPD_Click

MsgBox "Closed USB connection..."

End Sub

'***
'***
Private Sub StopReadingReports()

'Send an Output report to the device with byte 0 = FFh.
'This tells the device to notify the server that it should stop
'reading from the device.
'When the device reads the report, it sets byte 0 of its next Input
'report to FFh.
'When the server reads this report, it knows that it should stop
'attempting to
'read Input reports from the device. This enables the server to close.

OutputReportData(0) = &HFF
Call SendReportToTheHID

End Sub

'***
'***
Private Sub Download()

' This sub downloads the compiled EZ-USB firmware to the EZ-USB
' device in the APD-SA USB

'Private Sub cmdDownloadFile_Click()
Dim dirname As String
Dim x, lastx As Integer

' CommonDialog1.InitDir = GetSetting("EZ-USB_DownloadHex",
'"Defaults", "Directory", "")
'
' CommonDialog1.ShowOpen
' If CommonDialog1.FileName <> "" Then

304

' x = -1
' lastx = 0
' Do While x <> 0
' x = InStr(lastx + 1, CommonDialog1.FileName, "\")
' If x <> 0 Then: lastx = x
' Loop
'
' dirname = Left(CommonDialog1.FileName, lastx)
'
' SaveSetting "EZ-USB_DownloadHex", "Defaults", "Directory",
'dirname
'
' gDriver = cmbDriverName.Text
'
' LoadHexFile CommonDialog1.FileName
' End If

ApdUSBPanel.lstUSB.AddItem "Downloading firmware (attempting...)"
ApdUSBPanel.lstUSB.ListIndex = ApdUSBPanel.lstUSB.ListCount - 1

Call Memory.Main
Call InitDownload

'dirname =
'"C:\Windows\Desktop\OldDesktop\MastersThesis\Software\Apd200\"

'This is from host desktop program - 1/04
'dirname = "C:\Cypress\USB\Examples\EzUsb\HID_Mouse\EZ-USB
'Mouse\ezmouse\"

'This is for laptop and future versions
dirname = "C:\Apd\Firmware\"

'SaveSetting "EZ-USB_DownloadHex", "Defaults", "Directory", dirname

gDriver = "Ezusb-0"

LoadHexFile dirname & "ezmouse.hex"

End Sub

'***
'***
Private Sub InitDownload()
'Private Sub Form_Load()

' This sub initiates the firmware download to the EZUSB on APD-SA USB

Dim index As Integer
Dim sDriverName As String
Dim hDriver As Long
Dim DeviceDescriptor As USB_DD

 ' find all the attached EZ-USB devices
 ' add device names to combo-box list
 For index = 0 To MAX_USB_DEV_NUMBER - 1
 sDriverName = "Ezusb-" & index

305

 hDriver = OpenDriver(sDriverName)
 If hDriver > 0 Then
 'cmbDriverName.AddItem sDriverName
 CloseHandle hDriver
 End If
 Next

 'ProgressBar1.value = 0

 'If cmbDriverName.ListCount > 0 Then
 ' cmbDriverName.Text = cmbDriverName.List(0)
 ' GetDeviceDescriptor cmbDriverName.Text, DeviceDescriptor
 'Else
 ' ErrMsg (eBadDriver)
 ' End
 'End If

End Sub

'***
'***
Private Sub DoneDownload()

' This sub clears memory when download has finished.

Dim Segment As CSegment
' release memory

For Each Segment In gFirmwareCache
 Set Segment = Nothing
Next

Set gFirmwareCache = Nothing

End Sub

306

APPENDIX G: SUBJECT DATA

Table G.1. Random numbers for measurement order; a one indicates that APD100 was
used first

Table G.2. Subject Data: age, height, weight, self-reported respiratory issues

Table G.3. Subject Data for APD100 measurements for 13 subjects

1 2 2 2 2 1 2 1 2 2 1 1 2

Subject Age (Yrs) Sex Height (m) Mass (kg) Respiratory Issues
1 26 M 5'10” 165 No
2 60 F 5'2” 120 No
3 58 M 5'10” 168 No
4 26 F 5'5” 123 No
5 21 M 6'2” 155 No
6 19 F 5'7” 125 No
7 44 M 5'8” 207 Smoked heavily since 18
8 33 M 5'10” 230 No
9 28 M 6' 200 Smoker
10 18 F 5'2” 125 Mild asthma – inactive
11 23 F 5'2” 122 Mild asthma – inactive
12 21 F 5'5” 120 No
13 33 F 5'9” 135 No

S
ub

je
ct

A
vg

 F
lo

w
 (

L
ps

)

In
h

F
lo

w
 (

L
ps

)

E
xh

 F
lo

w
 (

L
ps

)

A
vg

 %
 P

er
t

In
h

%
 P

er
t

E
xh

 %
 P

er
t

In
h

P
er

ts

E
xh

 P
er

ts

F
re

qu
en

cy
 (

H
z)

1 2.03 1.87 2.19 1.20 0.91 1.48 32.4 40.7 24.2 127 243 7.6
2 3.72 3.25 4.18 0.83 0.86 0.80 37.6 51.4 23.9 120 113 6.3
3 2.91 2.68 3.13 0.56 0.69 0.44 27.4 36.3 18.6 120 114 6.6
4 3.31 2.92 3.71 1.08 1.16 1.00 25.6 34.8 16.3 120 112 7.1
5 2.20 1.84 2.57 1.73 1.76 1.70 25.8 29.3 22.3 120 113 6.6
6 3.19 2.73 3.65 0.67 0.85 0.50 39.6 54.8 24.4 114 120 6.3
7 4.42 3.83 5.01 0.59 0.66 0.51 27.6 39.1 16.1 120 119 6.7
8 2.72 2.45 2.98 0.83 0.80 0.85 31.6 40.2 22.9 120 116 7.1
9 3.09 3.21 2.97 0.90 1.15 0.64 50.6 70.0 31.2 116 120 6.6

10 3.39 3.36 3.42 0.67 0.77 0.56 30.6 38.1 23.1 114 120 6.8
11 3.08 2.63 3.53 0.49 0.52 0.45 27.4 35.2 19.7 120 120 6.8
12 3.77 3.47 4.08 0.97 0.89 1.05 17.4 19.6 15.1 120 105 7.1
13 2.79 2.38 3.19 0.60 0.56 0.63 18.4 20.1 16.7 120 116 7.6

A
ve

ra
ge

 R
R

(c

m
H

2O
/L

ps
)

In
h

R
R

(c

m
H

2O
/L

ps
)

E
xh

 R
R

(c

m
H

2O
/L

ps
)

307

Table G.4. Subject Data for APD-SA measurements for 13 subjects

S
ub

je
ct

A
vg

 F
lo

w
 (

L
ps

)

In
h

F
lo

w
 (

L
ps

)

E
xh

 F
lo

w
 (

L
ps

)

A
vg

 %
 P

er
t

In
h

%
 P

er
t

E
xh

 %
 P

er
t

In
h

P
er

ts

E
xh

 P
er

ts

F
re

qu
en

cy
 (

H
z)

1 2.02 1.80 2.24 1.20 1.13 1.28 25.4 30.5 20.4 177 287 7.3
2 4.15 3.48 4.81 0.69 0.70 0.69 28.4 38.1 18.7 138 131 6.6
3 3.06 2.93 3.18 0.78 0.93 0.62 27.1 36.4 17.7 135 182 7.1
4 3.50 3.16 3.84 1.03 1.18 0.88 21.6 29.8 13.5 135 133 6.0
5 2.23 1.87 2.58 1.70 1.89 1.52 17.0 22.2 11.7 134 130 7.1
6 3.16 2.96 3.36 0.78 0.85 0.70 25.7 34.4 16.9 155 135 7.5
7 4.65 4.21 5.08 0.52 0.49 0.55 26.3 33.8 18.8 165 137 8.0
8 2.76 2.41 3.11 0.49 0.51 0.48 22.6 28.2 17.0 148 90 7.1
9 3.14 3.08 3.20 0.48 0.54 0.41 29.4 39.0 19.9 161 132 7.9

10 3.91 3.59 4.24 0.78 0.79 0.77 22.0 28.7 15.2 163 131 6.9
11 3.15 2.69 3.62 0.44 0.50 0.39 30.5 40.7 20.3 221 134 7.4
12 3.78 3.53 4.04 0.94 0.97 0.91 12.2 14.1 10.2 130 140 8.0
13 2.97 2.51 3.42 0.51 0.52 0.51 13.4 15.1 11.7 156 111 8.3

A
ve

ra
ge

 R
R

(c

m
H

2O
/L

ps
)

In
h

R
R

(c

m
H

2O
/L

ps
)

E
xh

 R
R

(c

m
H

2O
/L

ps
)

308

APPENDIX H: EQUIPMENT AVAILABLE FOR APD-SA DESIGN

Electronics that can be implemented in a hand held or at least compact

arrangement will be considered here since the alternative home-use RMD, the APD, is

the research focus. The APD requires data collection via ADC, data analysis and

interface capabilities: display, buttons and possibly input-output. To perform data

analysis, some sort of digital computing IC must be incorporated. Examples include:

smaller microcontrollers (MCUs), generally targeted for less complex calculation or

system control – a complex system might be built around several linked MCUs; CPUs,

generally able to perform more complex calculations and system control, and designed

for faster operation speed – a complex system might be entirely controlled by a single

CPU; and DSPs, ICs somewhere between MCUs and CPUs that are optimized for

complex calculations, especially those frequently required in digital filters or similar

signal manipulation in which members of a set of data are continually multiplied and

added – a complex system dedicated to signal processing, such as a multimedia device,

might be designed around a DSP.

Memory, Storage and IO

To perform a data analysis task, an IC must be able to store and move data as

well as permanently retain the instructions it is required to execute in order to process

the data. Many MCUs and DSPs contain enough temporary data storage space and

309

RAM onboard to perform their designated tasks, while CPUs typically have enough

RAM onboard to prepare for the next few routines, but not their entire set of designated

tasks. It is necessary to add peripheral RAM chips to augment the chip’s inherent

memory, unless the data space and space to store the program code on the IC are

particularly small. Generally, RAM is intended only for temporary data storage and

does not retain data after power has been removed from the chip, though other

configurations allow long-term RAM data storage.

To operate a data analysis system, it necessary to permanently or at least

persistently store data until it requires alteration. Stored information that can be altered

is often called firmware because it is more permanent than software but not irreversibly

hardwired like hardware. Program code, the set of instructions for the IC, will need to

be stored indefinitely or until the program needs to be updated. This type of memory is

usually intended only to be read from, not written to, and is thus called read only

memory (ROM). If a program is finalized and slated for mass production, then the code

can be built into each new chip in a custom order from the IC manufacturer.

Alternatively, one-time programmable chips can be obtained and programmed in the

development facilities with an ultraviolet (UV) programmer.

If prototype code is used, then it is desirable to be able to reprogram the ICs, and

thus reprogrammable ICs would be purchased. The code is similarly burned into the

chip’s memory itself via UV or into a memory chip which is then accessed when power

is first applied to the circuit. Reprogrammable chips are often electrically erasable

programmable read-only memory (EEPROM) chips, whether the memory sits inside an

MCU or it resides in an external memory IC. These chips are programmed with a series

310

of commands that activate an elevated voltage that allows data to be written to the chip.

This is performed in an EEPROM programming machine or, in many ICs, can be

achieved by sending a command to the chip, for example through its serial port

controller, that will cause it to program its own memory by generating a higher voltage

required for programming. FLASH memory is a form of easily alterable EEPROM and

as such retains data after power has been removed. An alternative method to store data

is to have a battery apply small amounts of current to a static RAM (SRAM) chip – just

enough to allow it to retain its data. This configuration retains the advantage of high

speed data movement to and from the SRAM with the advantage of data persistence, or

long-term storage. Other forms of storage can be used to store program code and large

amounts of data, approaching the qualities of hard disks used in desktop computers.

These include FLASH variants like CompactFlash and IBM Microdrives, that retain

their data without power, but are a bit slower to access.

 Some ICs incorporate controls on board for moving data in and out of the chip

or circuit board while others require an external IO controller. Most chips incorporate

some method for data transfer with a neighboring chip, often serial protocols. These

protocols include Phillips IC-IC (I2C), serial peripheral interface (SPI) and various

other serial inter-chip protocols, some particular to a manufacturer, based on one to four

or more wired connections between chips on which data is transmitted one bit at a time.

Parallel data transmission is also used in which nibbles (4 bits), bytes (8 bits) or words

(16 to 32 to 64 or even 128 bits on internal data buses in DSPs) are transferred at once

between chips, or computers in the standard LPT parallel port case.

311

It is often necessary to move data from one circuit, or hardware platform, to

another. A serial protocol such as RS232 or RS485 is usually reserved for long distance

transfer to another computer and uses digital pulse voltages in conjunction with optional

error checking routines and data transmission configurations that attempt to preserve the

integrity of the data pulses in a noisy environment.

Some ICs either include the capability to control, or have the sole responsibility

to control, infrared (IrDA) data transmission, universal serial bus (USB) or Ethernet

data transmission. IrDA is typically used for short distance peripheral to computing

device data communication. USB is typically used for desktop computer to peripheral

communication in which up to 128 devices can be connected to a computer via hubs,

with each cable link up to 5 meters in length. Ethernet is designed for much longer

distances between connections, and includes provisions in its protocol for networks of

many computers. Still other protocols such as IEEE-1394, also called firewire, allows

inter-peripheral communication between multimedia devices and a computer. In the

cases of chip-to-chip communication, I2C and SPI are standardized and fairly simple

since they are low level communications protocols, implemented during the circuit

board and firmware design process. Protocols designed for communication from one

circuit board to another, such as RS232, RS485, USB, and Ethernet, have more complex

protocols standardized by a governing agency (e.g. www.usb.org, USB implementers

forum). These more complex communication methods are supported by numerous texts

written to extract the essential elements from the published standards, such as Jan

Axelson’s books like Parallel Port Complete (1997), Serial Port Complete (1998) and

USB Complete (2001). These protocols are more complex because they are designed

312

for entire computing systems to communicate and must be general enough to be

independent of the type of hardware used. The protocols must also allow harmonious

communication when multiple communication activities simultaneously occur.

Hardware and Software Integration Options

A successful design should include hardware that sufficiently supports the

software needs dictated by the data manipulation scheme devised for the application, in

this case the stand-alone APD. Many combinations of ICs are possible from highly

integrated MCUs to CPUs and peripherals. Designing, prototyping and assembling

circuits brings challenges in signal routing to ensure data integrity and the costs in the

tools required to create the designs. Custom outsourced circuit design solves some of

these problem but introduces costs for the service. Commercially available hardware

platforms may be used. These offer the cost benefits of mass production but frequently

offer capabilities beyond those needed for the application and their associated cost.

Some commercially mass produced platforms fit a standardized specification, such as

PC104 and thus, upon purchase, the user can be assured of particular hardware

capabilities. A balance among these options must be achieved with the APD’s purpose

in mind. Each hardware configuration determines the type of software that may be used

to implement the data analysis algorithms.

313

Platform Software

Software Options. Any platform for the device will incorporate an MCU or

CPU for its processing and thus presents the need to address programming methods.

The options range from direct assembler programming to higher level programming in

an integrated development environment (IDE). To use assembler, the code would be

compiled and programmed into the MCU or its memory peripherals via debugging port

on a circuit or an EEPROM burner. This approach is typical for smaller MCUs and

demands that the code be specific to the selected MCU model. Another option for both

MCUs and more complex microprocessors approaching PC CPUs, is to use an IDE in

which higher-level code, such as American National Standards Institute (ANSI)-

compliant C, is compiled upon completion and loaded onto the MCU or CPU. The

benefits of assembler programming for smaller MCUs is the simplicity and overall low-

cost. The disadvantage of this method is the specificity of the code and the resulting

lack of portability across platforms should a new MCU or CPU be selected. Further,

the specificity makes it less accessible to other programmers should quick modifications

be required. The advantage of using an IDE for simpler MCUs is that the original code

becomes portable, if written in a commonly used language, such as C, and the code is

more readily accessible. The disadvantage of this method is that the IDE may be more

costly and will still require tools for loading the compiled code onto the platform. If an

IDE is used that is intended for more complex CPUs used in typical PCs, the IDE may

be costly, but the programming methods are potentially well-known by programmers,

and the methods of loading the code onto a platform more closely resemble those used

314

for PC data transfer. This simplifies the debugging process and the tools required to

prototype and produce a system.

BRE-UMCP Software Resources. The ENBE Department currently has licenses

for Microsoft Visual Studio which includes Visual C++ and Visual Basic IDEs.

Writing original code in ANSI C will facilitate any future code modifications and

ensure the portability of the code, as long as a C-compiler is available for the selected

platform (MCU or CPU). Visual C++ is particularly useful for platform design because

it is able to time profile its code, meaning it is possible to determine how long a portion

of code takes to execute. Thus, the code for time-critical tasks can be optimized to

execute as quickly as possible. If the compiled code can be used directly from the

Visual Studio IDE, than the costs of a C-compiler and IDE are eliminated from the

project, while the portability and accessibility of the code are maintained. A potential

pitfall arises in this case however, in which the platform that is able to run this code too

closely resembles a PC and hence integrates many unused functions that inflate the cost

of each APD-SA. Clearly, a balance among these issues must be sought.

Platform Hardware

BRE-UMCP Resources: Wire-wrapped and Low-cost PCB Fabrication.

Electronics manufacturing capabilities within the department are limited to wire-

wrapping or the acquisition and use of low-cost PCB fabrication systems such as print

and transfer copper etching systems. Preliminary tests showed wire-wrapped prototype

315

circuits to be viable up to about 8 or 16MHz. At higher frequencies, stray capacitances

and wire inductance caused considerable ringing or degraded digital pulse shapes.

These 8 and 16 MHz constraints might allow for wire-wrapped APD circuits using

typical 8-bit 8 MHz microcontrollers (MCUs) such as those from Motorola or PIC and

numerous other manufacturers. Using such a system however would require the use of

several peripheral chips for data memory and IO management since these chips are

limited in their IO capabilities and storage. With an increase in chip count, the time

required to manufacture one board would become very large. Recently, a wire-wrapped

board with approximately 300 connections required 40 to 80 hours to complete.

Furthermore, the less constrained signal lines in complex wire-wrapped designs

increased the likelihood of signal crosstalk and errors in the wrapping process.

PCB fabrication using etching kits poses similar signal and fabrication

complexity limitations. Typical etching kits are limited in their trace resolution and

allow one double-sided layer. With a single layer, the routing of complex tracings for a

microcontroller poses a challenge. Precise etches can be made with laser printed

tracings. However, they are of limited resolution due to the printing process. Complex,

fine-trace circuits also require precise drilling for component holes. A successful PCB

fabrication would require proper layout derived from the appropriate layout software.

ExpressPCB offers custom layout software for free, but uses the software in its in-house

fabrication. OrCad or other CAD programs for electronics are viable options but are

costly. Free versions of OrCad were found to be inadequate for the project due to their

lack of components, since OrCAD has discontinued its practice of providing IC models

for free. In any case, the process of developing a successful PCB requires attention to

316

signal routing for proper current carrying capacities, minimized trace length and clean

signals. Such details require a large time commitment and possibly several PCB

prototype revisions, potentially a process better suited for future platform development

once the success of the data processing methods has been proven.

Contracted Custom PCB Fabrication. Using a commercial PCB fabricator

shifts outside of the department the cost of tooling to produce the actual PCB. This

allows for more precise and complex PCB designs that would facilitate the use of large

chip-count designs in small PCB dimensions fabricated from more expensive automated

machinery. An extensive list of PCB fabricators can be found through Thomas Register

and through an internet search engine, Google’s, online PCB service directory at

http://directory.google.com/Top/Business/Electronics_and_Electrical/Contract_Manufa

cturers/Printed_Circuit_Boards/Fabrication/. Firms such as ExpressPCB

(www.expresspcb.com) and Circuit Express, Inc. (www.circuitexpressinc.com) offer

short-lead time PCB manufacture for less than $100 in minimum quantities of two to six

double-layer 20-square inch boards. Other companies offer more precise PCB

manufacturing options at a higher price: Hughes Circuits, Inc. offers 4-6 layers boards

at a $1100 typical minimum per lot (Glatts, 2002); Douglas Electronics offers double-

layer boards at $350 per lot for 0.062-in min trace at 8-mil thickness, 16-sq. in, a

configuration in 4 layers is closer to $1050 (Vierra, 2002).

317

Contracting a PCB manufacturer would still pose challenges on the remaining PCB

design and APD-SA manufacture. Outsourcing the PCB manufacture would require

custom circuit layout and with it the associated layout tools. The PCB required for an

APD control and analysis platform demands high-speed digital traces and cross-talk

protected analog traces and thus would require some time devoted to adjusting the

layout to ensure signal integrity, ideally through simulation or prototype revision.

Manufacturing each subsequent APD-SA would be simplified in the PCB fabrication

step, but would still require component placement. Soldering the components would

require further chip placement costs either to acquire the proper tools or simply in the

required time. Any high-density pin chip designs such as small outline (SO) would

greatly reduce PCB size and cost, but potentially require further specialized chip

placement tools for manufacture. Thus, the required cost and time make inefficient the

use of a custom prototype printed circuit board (PCB) for the entire circuit at the present

stage of APD development in which the focus is to design and test data processing

architecture in a stand-alone, fast-response configuration.

 Wire-wrap and PCB fabrication pose particular challenges. Wire-wrapping

poses signal limitations and thus restricts MCU and system architecture towards larger

chip count circuits that require longer manufacture times and are less accessible for

modification. PCB fabrication would require the acquisition of appropriate layout

software and etching materials. Though some of these are available in limited and low-

cost versions, the design task for the APD-SA would incur a large commitment to

318

layout and PCB development, even if outside manufacturers are contracted to produce

the actual PCB.

Custom PCB Development Requirements for MCU Programming. If a custom

PCB were implemented, the investment in MCU programming and debugging must be

considered. Developing complex designs that incorporate faster MCUs requires

expensive apparatus approaching the cost of personal computer (PC) motherboard

design since the instruction sets and programming interfaces become more complex.

Thus, custom APD-SA circuit design would most likely be limited to more compact

MCU designs. Figure H.1 typifies a hardware design for a system using MCUs for

peripheral data control built around a DSP core as an example of the types of

considerations required in a custom hardware design. These hold the advantage of

simplified instruction sets and simpler system designs, allowing a system to built with

bare-bones programming. Such programming however would be specific to each chip

manufacturer and model. For example, the instruction set and chip peripherals would

be specifically programmed for each manufacturer, e.g. Motorola, Atmel, PIC, Analog

Devices, Zilog and others. This requires an investment in the appropriate compilers,

though in some cases, assemblers and limited functionality compilers are available for

free or at low cost. Motorola and many others provide free assembler language

compilers. Free general Unix-based public license (GNU) compilers are available for

some Motorola chips without much support. MicroChip, Inc. provides a free entry level

Windows-based development environment for some of its smaller MCUs. Several

319

third-party developers offer ANSI C compliant compiler development environments for

many MCU manufacturers. In each of these cases as the MCU processing power

increases, the development platform costs increase. Typical Motorola or Intel

development environments for powerful DSP or 16-bit or high-speed 8-bit MCUs can

run into the $1000 range or more. In any case, whether a free compiler or low-cost

development environment is used for prototyping, the software must be downloaded

onto a chip. Thus some portion of the design time will be required simply for MCU

programming from a host computer, for example via serial port, not just for prototype

functionality in its eventual application. Alternatively, a chip programmer might be

purchased for those MCUs that are available in erasable electrically programmable read

only memory (EEPROM) dual inline pin (DIP) programmable packages. Each

programming machine is capable of programming only chips of an architecture for

which it was designed, e.g. DIP or peripherally arrange pins for insertion into a chip

carrier (PLCC). In any case, once an MCU was selected, it would determine the

investment in corresponding programming tools - software and hardware – thus making

costly future changes in platform architecture.

320

Figure H.1. Example of an MCU/ DSP custom stand-alone APD hardware design

It thus appears that any custom PCB development requires an investment in

proper tools. The time to learn and assemble the prototyping and programming system

321

are considerable. Future modifications would require that the person modifying the

design become acquainted with a set of tools specific to one MCU architecture – a

valuable experience – but one that would preclude quick modifications, adjustments or

gaining a more universally applied knowledge.

It seems the more immediately important focus now is on the successful

implementation of data processing algorithms in order to answer questions such as: Will

the system work? How should the data analysis parameters be adjusted to provide a

fast-responding sensitive stand-alone device? In the future, focus might then be shifted

towards reducing costs through custom PCB manufacture and component selection.

Pre-Fabricated Embedded Platform. A pre-fabricated platform speeds much of

the prototyping process. In implementing a pre-fabricated platform such as a single-

board computer, the manufacturing company assumes the initial capital investment of

optimizing signal layout, PCB fabrication, prototyping and designing a programming

interface and environment, thus leaving the user to benefit from a tested hardware

platform that can be programmed immediately. The cost of a platform ranges from near

$200 to $1000 and demonstrates the benefit of mass produced platforms from an

external source (see table H.1). This prototyping method allows for immediate focus on

the data processing and system control architecture. The more closely a platform

resembles a PC, the more likely it is to be programmable through more readily

accessible means. For example, many industry standard architecture single-board

computers, such as those meeting the PC104 specification, can be loaded with PC

322

operating systems and run PC-developed programs. Thus additional software need not

be purchased, and the programs can be loaded onto the platforms using standard serial

interfaces. Most of these products are designed to be industrially embedded and

provide maximum returns for the capital investment and so are generally supported by

the manufacturer for years to come. Zworld, Inc. one embedded hardware

manufacturer, has never discontinued or changed a product still used by a customer

(Wills, 2001). VersaLogic, Inc. (2002) states that it uses chips available from multiple

vendors to ensure product longevity. Many platform manufacturers have stated similar

support and availability time windows, citing their large initial investment in a stable

industry-accepted platform as a reason to support and manufacture their products for

long periods of time, when compared with the rate at which personal computer

platforms change (Wills, 2001).

Table H.1. Typical commercially manufactured embedded hardware platforms

Manufacturer Model Features Disadvantage Pricing
Blue Chip
Technology

MICRON
PC104 SBC

200MHz,
64MB RAM,
CRT, EN, USB,
LPT, SP, RTC,
MSE, KBD,
FDD, HDD

Excessive
features, large
power
consumption

$850.00 (ea)
(£545.00)
(Keith
Heaviside,
7.18.02)

Zworld Omega,
Wildcat,
Smartcat SBC
and Dynamic
C 32

ADC, SP, EN,
SP, RTC, LCD
expansion,
DIO, LP

No USB, slow
– for lower-
sampling rate
control
applications

$400 (kit)
$200 – 300
subsequent

Versa Logic EPM-CPU-3
(PC104)

AMD SC520
133MHz, EN,
SP, FDD, HDD

Excessive
features, no
USB

$375- $400

323

WinSystems PPM-520
(PC104)
PPM-TX is
PPM-520 with
USB and
MMX P166 or
P233 MHz

AMD Elan
SC520 133
MHz, +5, LPT,
SP, EN, KBD,
MSE, HDD,
FDD

Excessive
features, no
USB on 520

$600 to
$1000
depending
on features.

MicroCompute
r Systems, Inc.

PC104 x386
MSI-CM387

Low cost
PC104 SBC,
FDD, EN, +5,
SP, LPT, FDD,
CRT

No USB, some
excessive port
components,
slow PCU

$220 (ea)

Intrinsyc, Inc. CerfBoard Intel
StrongARM
133/206 MHz,
<PC104 size,
USB, Win CE
3.0, SP, EN, 16
MB FLASH, 32
MB SDRAM
standard

Some excessive
components,
development
platform req’d

$1000
development
kit; $350
subsequent,
small
quantity.
(Kaarto,
2002)

AmPro, Inc. CoreModule
P5e (PC104)

SP, IrDA, USB,
LPT, KBD,
MSE, FDD, +5,
P266 MHz,
CRT, HDD

High power
consumption, 6
to 8 watts,
custom memory
not field
upgradable,
excessive
features

Arius, Inc. PC104C31 TI DSP PC104,
TMS320C31 80
MHz, SP, AIO
option

Expensive TI
compiler
required; no
USB

$3000
(Collins,
2002)

Digital Logic SM586 based
on ZFx86 from
ZF Micro
Devices

133 MHz, 16
MB RAM
MIN, USB,
FDD, MSE,
KBD, LPT, SP,
CRT, +5,
highly compact

5W power
consumption,
excessive
features,
complete
system requires
additional
components

$400 (ea
BB)

324

Arcom Control
Systems

Pegasus AMD Elan
SC520 133
MHz, 16 MB
RAM, 16 MB
FLASH, EN,
SP, LPT, MSE,
KBD, FDD,
HDD, RAM

No USB, larger
than PC104,
excessive
power
consumption,
features

$400 (ea)
Win CE Dev
Kit ($1000)

Analog
Devices

EZKIT 40 to 80 MHz
DSP, ANSI C
IDE, RAM, SP,
ADC, DIO

No USB,
limitations on
system use on
low-cost
version

(free
donation to
department)

Other
companies

Sensoray, ZFMicro Devices, Micronix (PC104
expansion cards A/D, power supply), Arbor,
Advanced Digital Logic

(Not
included
because
product
profiles were
very similar
to those
above)

Abbreviations FDD = Floppy Disk Drive, HDD = Hard Disk Drive, SP = Serial
Port, LPT = Parallel Port, DIO = Digital IO, AIO = Analog IO,
KBD = keyboard port, MSE = mouse port, CRT = video monitor
support, IDE = integrated development environment, MIN =
minimum, +5 = single 5 VDC power supply, BB = bare board, no
options or expanded memory, EN = Ethernet, LP = particularly low
power consumption, RTC = real-time clock

A pre-fabricated platform suffers drawbacks as well – products of the goals of

mass production. A pre-fabricated design must maximize the needs it can meet for a

wide variety of consumers and thus will usually include several unneeded components

or lack specific needed components. For example, several PC104 boards include cost-

inflating peripherals such as multiple serial and parallel ports and cathode ray tube

(CRT) monitor ports, but lack universal serial bus (USB) support. The reason most

likely lies in the design and optimization of a line of products that benefit from tested

325

and slightly dated PC technology brought to market to meets the needs of industrial

design, an arena that strives to maximize the longevity of its initial capital investment,

in addition to the fact that slower processors tend to consume less power and require

less heat removal. In the case of platforms that retain many qualities of the PC, the time

required to load an operating system delays the time at which the system is ready upon

power on.

Thus it appears the challenge is, if possible, to select a pre-fabricated platform

for embedded use that most closely meets all the needs of the project without incurring

the cost of excessive peripherals. If all the needed functionality is not present on the

platform, several supporting components will need to be fused with the platform, such

as a USB controller module that will in itself require the acquisition of additional

prototyping tools, negating the benefits of using a pre-fabricated platform. Such an

investment might be better suited to future product application-specific streamlining.

With these concerns in mind, several options present themselves.

Zworld offers a line of products that might be classified as simplified single-

board computers especially suited to embedded products. These device make

provisions for Ethernet or serial IO, ADC, display output and data processing. Most

boards typically run at or around several tens of MHz. These products are simplified in

that they do not include excessive peripheral features characteristic of PCs. They are

programmable using a Zworld version of C similar to ANSI C, at a cost. There are no

USB-equipped devices and the required data rates may require external interface chips

to buffer the stored data. These devices appear to be better suited to lower rate sample

gathering and control applications rather than signal processing.

326

Analog Devices has provided two EZKIT digital signal processing (DSP)

evaluation platforms. These excel in their ability to process the APD-SA waveforms in

as near to real time as possible, implementing hardware circular buffer pointers and a

myriad of other boons for continuous signal processing. These kits are ANSI C

programmable and retail for nearly $200 each. These kits are restricted in that they only

access one-quarter of the platform’s memory and lack USB or Ethernet capabilities.

Thus, although inexpensive and powerful, early testing found the memory limitation to

prevent adequate software development and debugging because the compiled

debugging executable exceeded the memory limitation. Further, any IO routine would

require software emulation or the addition of USB or similar IO controller peripherals,

an additional cost. The cost of the full development platform rights, i.e. the rights to all

the memory, is near $2000 dollars.

The implementation of PC104 platforms was examined. These platforms most

often included extra peripherals but most closely approximated PCs, allowing for the

use of the department’s Visual Studio software in the APD-SA development. In most

cases, these platforms lacked USB support but contained sufficient memory and storage

and fast processors, relative to the requirements for the task, e.g. 486 and 586 Intel

CPUs. These platforms would, in the less equipped and less expensive cases, require

the addition of peripheral USB control. In general these platforms, even those more

expensive with the proper USB or other IO capabilities suffered from excessive

components for the APD-SA application and would be a source of wasted funds for

each future APD-SA. Further, these platforms use typical PC operating systems and

would necessitate start-up waits. Since they embody a compact PC platform, PC104

327

boards typically lack low-power consumption designs, some intended more for standard

ATX power supply schemes, and other still consuming several Watts, in reduced-power

consumption models.

Pre-fabricated platforms targeted for hand held devices offer certain benefits

over industrial control oriented platforms, DSP development kits and PC104 boards:

they are designed for minimal power consumption, more recently updated IO options

including USB and Ethernet, small footprint and a minimum of extra peripheral

components. These platforms most likely include more up-to-date IO options because

they are aimed at the current mass entertainment consumption market. Since these

platforms are smaller, they are tailored for smaller, faster operating system load times

and standby modes while retaining the benefits associated with using pared-down

versions of programming languages for which the department already owns licenses.

Once installed and configured, WinCE 3.0 is instant-on with battery back-up. Most

platforms arrive in a package loaded with an operating system that has already been

configured with drivers for the platform’s particular peripherals and a port for digital

IO. Although hand held oriented platforms may still contain unneeded features and

present some OS-load latency, the magnitude of these issues is smaller compared with

other platforms.

The extended features of hand held oriented platforms can be implemented to

minimize chip count and hence assembly time. One hand held oriented board, the

CerfBoard, incorporates an Intel ARM CPU that integrates many functions into a single

chip, minimizing board size, but retaining processing speed up to 233 MHz as of this

writing. Since the prototype software was tested on a 233 MHz desktop PC, it would be

328

expected that few if any latency issues would arise when the software was transferred to

a new platform. Since the platform runs at such a high speed, the need for creating any

peripheral memory buffers is eliminated – these buffers can instead be implemented in

software. Along with the elimination of such a memory buffer chip, the timing, address

incrementing and memory control hardware is also eliminated. The platform includes

USB and Ethernet eliminating the need for external component interface. Running

WinCE or Embedded Linux, the software development tools will be free; Microsoft

provides Embedded Visual Studio free. Linux operating systems are free except those

offered as pre-compiled or ready-to-be-compiled packages at minimal cost ($50).

There are drawbacks to these platforms. Since the platforms are aimed at the

portable entertainment or personal digital assistant market, manufacturers are more

likely to discontinue support in efforts to stay competitive with cutting edge technology.

Further, using an embedded operating system such as WinCE introduces complications

in accessing low-level chip functions that could be used for APD-SA function.

329

APPENDIX I: PC HOSTED PROTOTYPE

To meet the objectives, the essential components and data flow for the APD

were outlined and then reflected in preliminary software and hardware designs. The

user interface was required to be as simple as possible, implementing as few control

buttons as needed and making the device accessible to any user. Considerations also

included the type of display and the types of interface connections for computer

interface. Algorithms necessary for data analysis were evaluated in preparation for

implementing a revision of the APD prototype on the hardware platform selected for the

device. The MCU hardware selection process considered the memory required for

processing the data, the required sampling rate, input and output data storage and

communications protocol. PSpice student edition was used to a limited extent to

simulate some basic electronics functions.

Once the hardware and software design was outlined, a PC was employed to test

the firmware C code routines and ADC data collection electronics. Code was

developed using MS Visual C++, an IDE that includes time profiling capabilities.

Figure I.1 summarizes the prototype system and shows where the PC functions would

be eventually replaced by an embedded MCU. The test code communicated with the

data collection hardware through the computer parallel port. Since the development PC

was a Windows 98 platform, the parallel port could be freely accessed as memory-

mapped address. An adapter cable was used to transfer parallel port signals to a

breadboard containing the ADC, motor control and 4-digit 7-segment LED display

330

circuitry. An adapter cable connected the breadboard to the APD100 body. Figure I.2

is a schematic of the prototype circuit. Figure I.3 diagrams the signal connections to the

PC parallel port. A single push-button on the breadboard controlled all modes including

calibration span, calibration zeroing, display of raw data and display of RR

measurements.

The purpose of development on the PC was to substitute the PC CPU for an

embedded processor in order to determine routine timing, RR measurement accuracy,

ADC control procedures and APD-SA functionality. The prototype was first developed

to drive the simplified 4-digit 7-segment LED display as a fast-response device. The

fast-response device filled a buffer of RR measurements and at each new measurement

updated the display with the weighted average of the most recently detected RR values.

Functions were tuned to ensure that they could be executed within the sample interval.

Data was logged to ensure that ADC values were sensible and that the RR calculation

routines performed as required. Logged data and digital filter routines were analyzed in

Matlab. Functions were tested and tuned to make common APD functions, such as RR

measurement and rezeroing easily attained by short button pushes. The code was

developed to allow calibration and diagnostic data reading upon longer button pushes.

Figure I.4 documents the prototype operating modes. Figure I.5 documents the overall

RR measurement code in the prototype. The code displayed text and data through the

LED display digits.

The PC-driven prototype was then reviewed to determine the suitability of fast-

response, the appearance of LED display digits, its use of push-button modes and its

potential embedded MCU.

331

Figure I.1. Prototype tested with a desktop computer performing the functions of the
future embedded CPU components

332

Figure I.2. APD-SA display, ADC and motor control circuit schematic in the PC-
hosted prototype; this schematic incorporates CAD-drawn IC shapes that are scaled to
actual sizes; electrical connections are labeled; any electrical connections with
identical names are electrically connected even if they are not linked with a trace on
the drawing

333

Figure I.3. Parallel port to breadboard connections for IC control and data acquisition in
the APD-SA PC hosted prototype

334

Figure I.4. APD-SA PC-hosted prototype mode flow chart indicating how short and
long button presses change mode

335

Figure I.5. Software flow chart for APD-SA PC hosted prototype indicating processes
that occur with each clock tick

336

REFERENCES

Akay, M. and J. A. Daubenspeck. 2000. Respiratory related evoked responses to
graduated pressure pulses using wavelet transform methods. Annals of Biomedical
Engineering. 28:1126-1135.

American Lung Association. 2001. Trends in Asthma Morbidity and Mortality.

American Thoracic Society. 1998. Dyspnea: Official statement adopted by ATA board
of directors. American Journal of Respiratory Critical Care and Medicine. 159:321-
340.

American Thoracic Society. 1999. Pulmonary rehabilitation. American Journal of
Respiratory Critical Care and Medicine. 159:1666-1682.

Axelson, J. 2001. USB Complete. Madison, Wisconsin: Lakeview Research.

Axelson, J. 1998. Serial Port Complete. Madison, Wisconsin: Lakeview Research.

Axelson, J. 1997. Parallel Port Complete. Madison, Wisconsin: Lakeview Research.

Barnas, G. M., N. C. Heglund, D. Yager, K. Yoshino, S. H. Loring and J. Mead. 1989.
Impedance of the chest wall during sustained respiratory muscle contraction. Journal of
Applied Physiology. 28:365-372.

Barnas, G. M., K. Yoshino, J. Fredberg, Y. Kikuchi, S. H. Loring, and J. Mead. 1990.
Total and local impedance of the chest wall up to 10 Hz. Journal of Applied Physiology.
68:1409-1414.

Bates, J. H., P. Baconnier and J. Milic-Emili. 1988. A theoretical analysis of interrupter
technique for measuring respiratory mechanics. Journal of Applied Physiology. 64(5):
2204-2214.

Bouhuys A. and B. Jonson. 1967. Alveolar pressure, airflow rate, and lung inflation in
man. Journal of Applied Physiology. 22:1086-1100.

Burns, C. B., W. R. Taylor and R. H. Ingram, Jr. 1985. Effects of deep inhalation in
asthma: relative airway and parenchymal hysteresis. Journal of Applied Physiology.
59:1590–1596.

337

Carrieri-Kohlman, V., J. M. Gormley, M. K. Douglas, S. M. Paul and M. S. Stulbarg.
1996. Exercise training decreases dyspnea and the distress and anxiety associated with
it: monitoring alone may be as effective as coaching. Chest. 110:1526 -1535.

Celli, B. R. 1995. Pulmonary rehabilitation in patients with COPD. American Journal
of Respiratory Critical Care and Medicine. 152(3):861-864.

Cosio, M. and A. Guerassimov. 1999. Chronic obstructive pulmonary disease:
inflammation of small airways and lung parenchyma. American Journal of Respiratory
Critical Care and Medicine. 160:S21-S25.

Crapo, R.O. and R.L. Jensen. 2001. Test report: QRS Diagnostic, LLC. Sensaire. Salt
Lake City, Utah: Intermountain Health Care: LDS Hospital.

Dirksen, A., N. H. Holstein-Rathlou, F. Madsen, L. T. Skovgaard, C. S. Ulrik, T.
Heckscher and A. Kok-Jensen. 1998. Long-range correlations of serial FEV1
measurements in emphysematous patients and normal subjects. Journal of Applied
Physiology. 85(1):259-265.

Ducharme, F. M., G. M. Davis and G. R. Ducharme. 1998. Pediatric reference values
for respiratory resistance measured by forced oscillation. Chest. 113: 1322-1328.

Ducharme, F. M. and G. M. Davis. 1997. Measurement of respiratory resistance in
emergency departments: feasibility in young children. Chest. 111:1519-1525.

Eid, N., B. Yandell, L. Howell, M. Eddy and S. Sheikh. 2000. Can peak expiratory flow
rate predict airflow obstruction in children with asthma? Pediatrics. 105(2):354-358.

Fleming, H. E., F. F. Little, D. Schnurr, P. C. Avila, H. Wong, J. Liu, S. Yagi and H. A.
Boushey. 1999. Rhinovirus-16 colds in healthy and in asthmatic subjects. American
Journal of Respiratory Critical Care and Medicine. 160(1):100-108.

Frank, N. R., J. Mead and B. G. Ferris. 1957. The mechanical behavior of the lungs in
healthy elderly persons. Journal of Clinical Investigations. 36:1680–1687.

Gern, J. E., W. Calhoun, C. Swenson, G. Shen and W. W. Busse. 1997. Rhinovirus
infection preferentially increases lower airway responsiveness in allergic subjects.
American Journal of Respiratory Critical Care and Medicine. 155(6):1872-1876.

Goldsmith, T. 2002. National Institute for Occupational Safety and Health, Health
Effects Laboratory Division, Engineering and Control Technology Branch, personal
communication, September 29, 21st Southern Biomedical Engineering Conference.

338

Higgins, M. 1993. Epidemiology of obstructive pulmonary disease. In Principles and
Practice of Pulmonary Rehabilitation, ed. R. Cassaburi and T. L. Petty. Philadelphia:
W. B. Saunders.

Hernandez, M. T., T. M. Rubio, F. O. Ruiz, H. S. Riera, R. S. Gil and J. C. Gómez.
2000. Results of a home-based training program for patients with COPD. Chest.
118:106-114.

Herxheimer, H. 1975. A guide to bronchial asthma. New York, NY: Academic Press.

Jacob, S. V., L. C. Lands, A. L. Coates, G. M. Davis, C. F. MacNeish, L. Hornby, S. P.
Riley and E. W. Outerbridge. 1997. Exercise ability in survivors of severe
bronchopulmonary dyplasia. American Journal of Respiratory Critical Care and
Medicine. 155(6):1925-1929.

Janson-Bjerklie, S. and S. Shnell. 1988. Effect of peak flow information on patterns of
self-care in adult asthma. Heart and Lung. 17(5):543-549.

Johnson, A. T., C. S. Lin and J. N. Hochheimer. 1984a. Airflow perturbation device for
measuring airways resistance of humans and animals. IEEE Transactions of Biomedical
Engineering. 9:622-626.

Johnson, A. T., J. N. Hochheimer and J. Windle. 1984b. Airflow perturbation device for
respirator research and medical screening. Journal of the ISRP. 2:338-346.

Jones, K. P. and M. A. Mullee. 1990. Measuring peak expiratory flow in general
practice: comparison of mini Wright peak flow meter and turbine spirometer. British
Medical Journal. 300(6740):1629-1631.

Kessler, V., G. Mols, H. Bernhard, C. Haberthur and J. Guttmann. 1999. Interrupter air-
way and tissue resistance: errors caused by valve properties and respiratory system
compliance. Journal of Applied Physiology. 87(4):1546–1554.

Khan, J. H., S. Magnetti, E. Davis and J. Zhang. 2000. Late outcome of open heart
surgery in patients 70 years or older. Annals of Thoracic Surgery. 69:165-170.

Klaustermeyer, W. B., M. Kurohara and G. A. Guerra. 1990. Predictive Value of
Monitoring Expiratory Peak Flow Rates in Hospitalized Adult Asthma Patients. Annals
of Allergy. 64(3):281-284.

Krell, W. S., K. P. Agrawal and R. E. Hyatt. 1984. Quiet breathing vs. panting methods
for determination of specific airway conductance. Journal of Applied Physiology. 57(6):
1917-1922.

339

Lausted, C. G. 1997. Development of the Airflow Perturbation Device. M.S. Thesis.
Biological Resources Engineering Dept., University of Maryland at College Park.

Lausted, C. G. and A. J. Johnson. 1998. Respiratory resistance measured by an airflow
perturbation device. Physiological Measurements. 20(1999):21-35.

Lehtola, P. J. 1986. Improving the Airflow Perturbation Device. M.S. Thesis.
Agricultural Engineering Dept., University of Maryland, College Park.

Leidy, N. K., K. S. Chan and C. Coughlin. 1998. Is the asthma quality of life
questionnaire a useful measure for low-income asthmatics? American Journal of
Respiratory Critical Care and Medicine. 158:1082-1090.

Lemes, L. N. A. and P. L. Melo. 2003. Forced oscillation technique in the sleep apnoea/
hypopnoea syndrome: identification of respiratory events and nasal continuous positive
airways pressure titration. Physiological Measurement. 24(2003):11-25.

Malmberg, L.P., S. Mieskonen, A. Pelkonen, A. Kari, A. R. A. Sovijarvi and M.
Turpeinen. 2000. Lung function measured by the oscillometric method in prematurely
born children with chronic lung disease. European Respiratory Journal. 16:598-603.

Martinez, F. J., M. M. de Oca, R. I. Whyte, J. Stetz, S. E. Gay and B. R. Celli. 1997.
Lung-volume reduction improves dyspnea, dynamic hyperinflaction, and respiratory
muscle function. American Journal of Respiratory Critical Care and Medicine. 155(6):
1984-1990.

Martinez, T. Y. 2000. Evaluation of the Short-Form 36-Item questionnaire to measure
health-related quality of life in patients with idiopathic pulmonary fibrosis. Chest.
117:1627-1632.

Mazumder, D. N. G., R. Haque, N. Ghosh, B. K. De, A. Santra, D. Chakraborti and A.
H. Smith. 2000. Arsenic in drinking water and the prevalence of respiratory effects in
West Bengal, India. International Journal of Epidemiology. 29(6):1047-1052.

Mead, J. and J. L. Whittenberger. 1953. Properties of the human lungs measured during
spontaneous respiration. Journal of Applied Physiology. 5:779-796.

Melo, P. L. and L. N. A. Lemes. 2002. Instrumentation for the analysis of respiratory
system disorders during sleep: design and application. Review of Scientific Instruments.
73(11):3926-3932.

Miller, M. R., O. F. Pedersen and T. Sigsaard. 1997. Spirometry with a Fliesch
pneumotachograph: upstream heat exchanger replaces heating requirement. Journal of
Applied Physiology. 82(4):1053-1057.

340

Mitzner, W. and R. H. Brown. 2000. Potential mechanism of hypperresponsive airways.
American Journal of Respiratory Critical Care and Medicine. 161(5):1619-1623.

National Heart, Lung and Blood Institute. 1997. Data Fact Sheet on Asthma Statistics.
Bethesda, MD: National Institute of Health. Publication 55-798.

National Heart, Lung and Blood Institute. 2002. Morbidity and Mortality: 2002 Chart
Book on Cardiovascular, Lung, and Blood Diseases. Bethesda, MD: National Institute
of Health.

Navajas, D. and R. Farre. 2001. Forced oscillation assessment of respiratory mechanics
in ventilated patients. Critical Care. 5:3-9.

Nicholson, K. G., J. Kent and D. C. Ireland. 1993. Respiratory viruses and
exacerbations of asthma in adults. British Medical Journal. 307(6910):982-986.

Obase, Y., T. Shimoda, K. Mitsuta, H. Matsuse and S. Kohno. 2000. Two patients with
occupational asthma who returned to work with dust respirators. Occupational
Environmental Medicine. 57:62-64.

Olton, D. S. and A. R. Noonberg. 1980. Biofeedback: Clinical Applications in
Behavioral Medicine. Englewood Cliffs, New Jersey: Prentice-Hall.

Oud, M., E. H. Dooijes and J. S. van der Zee. 2000. Asthmatic airways obstruction
assessment based on detailed analysis of respiratory sound spectra. IEEE Transactions
on Biomedical Engineering. 47(11):1450-1455.

Quanjer, P. H, M. D. Lebowitz, I. Gregg, M. R. Miller and O. F. Pedersen. 1997. Peak
expiratory flow: conclusions and recommendations of a Working Party of the European
Respiratory Society. European Respiration Journal. 24:2s-8s.

Rakes, G. P., E. Arruda, J. M. Ingram, G. E. Hoover, J. C. Zambrano, F. G. Hayden, T.
A. E. Platts-Mills and P. W. Heymann. 1999. Rhinovirus and respiratory syncytial virus
in wheezing children requiring emergency care. American Journal of Respiratory
Critical Care and Medicine. 159(3):785-790.

Ramirez, J., I. Leon and LM Rivera. 1986. Episodic laryngeal dyskinesia. clinical and
psychiatric characterization. Chest. 90:716-721.

Silverman, N. S., A. T. Johnson, W. S. Scott, F. Koh. 2002. Exercise-induced
respiratory resistance changes measured by airflow perturbation device. Applied
Ergonomics. In press.

Snow, M. G. 1997. Airway resistance measurements. In: Respiratory Clinics of North
America, eds. A. Adams and C. McArthur. Philadelphia: W. B. Saunders.

341

Snow, M. G. 2000. Airways resistance measurements in the evaluation of obstructive
lung disease. American Association for Respiratory Care Times. 24(1):48-51.

Snow, M. G., B. Anderson, K. Kandal and R. J. Fallat. 1995. Airways resistance and
lung volume are valuable adjuncts to spirometry for assessing reversible airways
obstruction. Respiratory Care. 40(11):1179-1181.

Snowden, C. P., T. Hughes, J. Rose and D. R. Roberts. 2000. Pulmonary edema in
patients after liver transplantation. Liver Transplantation. 6(4):466-470.

Stahlman, J. E. and L. M. Salmun. 1999. New developments in the home monitoring of
asthma. The Internet Journal of Asthma, Allergy and Immunology. 1(1).

Stein, M., G. Tanabe, V. Rege and M. Khan. 1966. Evaluation of spirometric methods
to assess abnormalities in airways resistance. American Review of Respiratory Disease.
93(2):257-263.

Trigg, C. J., K. G. Nicholson, J. H. Wang, D. C. Ireland, S. Jordan, J. M. Duddle, S.
Hamilton and R. J. Davies. 1996. Bronchial inflammation and the common cold: a
comparison of atopic and non-atopic individuals. Clinical and Experimental Allergy. 26
(6):665-676.

United States Centers for Disease Control. 1998. Forecasted State-Specific estimates of
Self-Reported Asthma Prevalence. Morbidity and Mortality. 47:1022-1025.

Verbeken, E. K., M. Cauberghs and K. P. Van De Woestijne. 1996. Membranous
bronchioles and connective tissue network of normal and emphysematous lungs.
Journal of Applied Physiology. 81(6):2468-2480.

Vollmer, W. M., L. E. Markson, E. O'Connor, E. A. Frazier, M. Berger and A. S. Buist.
2002. Association of asthma control with health care utilization and quality of life.
American Journal of Respiratory and Critical Care Medicine. 165(2):195-199.

Widdicombe, J. G. 1989. Nervous receptors in the tracheobronchial tree: airway smooth
muscle reflexes. In Airway smooth muscle in health and disease, ed. R. F. Coburn. 35-
53. New York, NY: Plenum.

Wijkstra, P. J., T. W. van der Mark, J. Kraan, R. van Altena, G. H. Koeter and D. S.
Postma. 1996. Long-term effects of home rehabilitation on physical performance in
chronic obstructive pulmonary disease. American Journal of Respiratory Critical Care
and Medicine. 153(4):1234-1241.

Wojnarowski, C., I. Eichler, C. Gartner, M. Gotz, S. Renner, D. Y. Koller and T.
Frischer. 1997. Sensitization to Apsergillus fumigatus and lung function in children

342

with cystic fibrosis. American Journal of Respiratory Critical Care and Medicine. 155
(6):1902-1907.

Wong, C. M., T. H. Lam, J. Peters, A. J. Hedley, S. G. Ong, A. Y. Tam, J. Liu and D. J.
Spiegelhalter. 1998. Comparison between two districts of the effects of an air pollution
intervention on bronchial responsiveness in primary school children in Hong Kong.
Journal of Epidemiology and Community Health. 52:571-578.

Wright, B. and C. McKerrow. 1959. Maximum forced expiratory flow rate as a measure
of ventilatory capacity with a description of a new portable instrument for measuring it.
British Medical Journal. 2:1041-1047.

Wu, M. T., J. M. Chang, A. A. Chiang, J. Y. Lu, H. K. Hsu, W. H. Hsu and C. F. Yang.
1994. Use of quantitative CT to predict postoperative lung function in patients with lung
cancer. Radiology. 191:257-262.

Yeh, M. P., R. M. Garner, T. D. Adams and F. G. Yanowitz. 1982. Computerized
determination of pneumotachometer characteristics using a calibrated syringe. Journal
of Applied Physiology. 53(7):280-285.

