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Summary

A least-squares, weighted residual projection method is presented for computing Stokes flow solutions to
driven cavity problems in rectangular and cylindrical geometries. In this procedure, the velocity field com-
ponents are first defined by eigenfunction expansion solutions to the Stokes flow problem in terms of an
unknown pressure field which is subsequently computed by minimizing the continuity equation residual
norm by the least-squares projection. The role of spectral filtering methods for improving pointwise solution

convergence is also discussed.

Keywords: Eigenfunction expansion; driven cavity flows; Stokes flow; convergence; spectral filtering; Gibbs

phenomenon.
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1 Introduction

We consider computing solutions to the Stokes flow problem defined by a cavity filled with liquid set in
motion by one cavity wall. This wall is located at » = 1 and moves at unit velocity in the axial direction;
the remaining walls are stationary (see Fig. 1). Because we assume both velocity components are zero at
the stationary walls, an analytical solution in closed form is not possible due to the jump discontinuity
of the boundary conditions at both outer corners [4]. This problem has been studied in the context of
modeling plasma flow between adjacent red blood cells moving through a capillary blood vessel [5]; other
applications include studies of creeping flow eddy structures and their transitions in rectangular cavities by
eigenfunction expansion solutions to the stream function formulation of the problem (e.g., [1, 4, 9, 10, 11]). In
this paper, we present an alternative to the stream-function based solution approaches: a quadrature-based
[6] eigenfunction expansion method is investigated where the pressure field is computed from a least squares
projection of the continuity equation residual. We focus on the computational methods and convergence
performance of the proposed projection method.

The equations governing the fluid motion are written in dimensionless form as
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where @ = R/Z is the aspect ratio of the cavity and 8 is the geometry factor: 3 = 0 for a rectangular cavity

with infinite spanwise dimension and 8 = 1 for a cylindrical cavity. The continuity condition is

ov,
0z

ig(r’gv,q)—l—a =0.
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Boundary conditions arev, =latr=1,v, =0at 2z =0,1,and v, =0 at 2 = 0,1 and r = 0,1. We consider

the cases Ov,/0r = 0 for the cylindrical cavity and v, = 0 at 7 = 0 for the rectangular cavity.



2 TRIAL FUNCTION EXPANSIONS 3

VZ:1
.
r=1 —
Tvr
Vz
- 5
e
| |
z=0 z=1

Figure 1: Flow field geometries.

2 'Trial Function Expansions

The fluid velocity components and pressure field are represented by globally-defined trial function expansions

of the form

or(r,z) = Zvai,jcbi(T)?/Jj(Z)

ij—1
My Mgc

UZ(T,Z) = Z b1,]771(r)§J(z) + Z Cj’l“zé'j(z)
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p(r,z) = > divi(r)d;(z)

i,7=1

where the trial function components are computed as nontrivial solutions (including nontrivial eigenfunctions

associated with zero-value eigenvalues) to the Strum-Liouville problems
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subject to boundary conditions ¢(0) = ¢(1) = 0, ¥(0) = ¥(1) = 0, n(1) = 0, £(0) = &(1) = 0, 7/(0) =
(1) =0, §(0) = ¢'(1) =0, and either n(0) =0 (for 3 =0) or n’(0) =0 (for B =1). We note that while 1;
and &; are computed from the same Sturm-Liouville problem, only odd functions are used to define the 1;
and even for &;; odd functions are used to define the d;. The trial functions are orthogonal sequences (and

are normalized) with respect to the inner product

<¢'id)ja¢k¢l>r,z = ¢1a¢k> <1/)J7d)l>

/ Bi(r)ou(r ﬁdr/ 32z

2.1 Flow Velocity Components

Substituting the trial function expansions into the momentum balance equations, we obtain for the radial

velocity component v,

Mp My
> digvidi = aij(Ne + oAy, dith

i,j=1 i,j=1
where the prime denotes differentiation (with respect to r in this case). Solving for the coefficient ap 4 by

projecting this residual onto ¢,1,, we obtain

1 o
!
apvq = )\ + a2)\ Z <’Y7,6,77 ¢pr>r7z dzv]
ép hq i,j=1

An important numerical simplification we observe is that v/ (r) and ¢, (r) satisfy the same eigenvalue problem.

Therefore, (7}, ¢p)r = 0 for all i # p+ 1, and the eigenfunction expansion solution simplifies to

- <’7;:;+17¢p>r o 5 d
S v v DL A

Mp

= > Apgrdpiri. (1)

k=1

As the first step of determining a solution to the axial velocity component v,, we represent the nonhomoge-



3 THE PROJECTION METHOD 5

neous contribution to this velocity component as

Mgpc

Vion = Y, 05¢77;(2) (2)
=1

and compute the coefficients c; by

1
Cj = <1’£j>z = /70 gj dZ

The spectral filter constants o; will be discussed later in this paper. The residual function for the axial

velocity component is

Mp M~
@y digmid; = Y big (A + QA 0k + Vs,
=1 ij=1

with V2v,,, = Zj\gc cj [2(B+ 1) + o?r?)¢, | €. Projecting this function onto 7,&, and solving for the by, ;

gives
bra =t 3 islmpty), dog — LD ] ),
D,q M +042/\gq 2= Vi035:MpSq ), , Tirj oy +042>\§q .

Similar to the radial component case, the choice of even {;(z) and odd d;(z) means that §; and ¢} satisfy the

same eigenvalue problem and that (§;,d}). = 0 for all i # j. Therefore,

a <5/ , £q> Mp
b = NPz E d . —
D,q )\np T a2)\§q et <7k:7 77p>r k,q €p,q

Mp
= Z By q,kdk,q — €p,q- (3)
k=1

3 The Projection Method

Having effectively written the solutions to both velocity field components in terms of the still unknown
pressure field, we can substitute the coefficient arrays a and b back into their trial function expansions to

evaluate the velocity field components and substitute these into the continuity equation to determine the
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pressure field that satisfies the continuity equation. This gives

My
Z Loipjai; + abs jnifs + aV v, =0

i,j=1

where V, = 0/0z and

1d
= By,
£¢l /,-5 d’f‘r ¢l'

In terms of the pressure field coefficients d, the residual function can be written as

My Mp
Re(r,2) = aVatpq + Y Lty > Asjrdigrp + [Bijrdej — es 5] - (4)
i,j=1 k=1

The least-squares projection consists of determining the dj, , that satisfy

OR
<Rc(r, z), 5d < > =0 or (Re(r, Z)’TP7Q>wT,wz =0 (5)
P4/ wy,w,

for p,g =1,...,Mp, and with test functions 7}, ; defined by

My My
Tpq = Lop— Z UkAp—1,kq + af; Z Mk Bl,q,p-
k=1 k=1

The projection operation is based on the weighted inner product

(Di%j Ok wr e = (Bis Pk (Vjy Vi) rws
- /:0 ®i(r)¢r(r) wy(r) rﬁ’dr/zo Ui (2)01(2) w (w) dz.

For this study, we choose w,.(r) = (1 — 7)? and w, = (22 — 1)? to enhance the corner flow and pressure field

convergence. Therefore, if

Ipaii = (Tigs Tpa) i, .
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My Mpc
— / 2 ¢/
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we can determine the pressure field coefficients by solving the Mp x Mp set of linear equations resulting

from condition (5). The elements of the linear equation coefficient array can be written explicitly as

My
Jp,q,i,j = <£¢i717£¢p 1 wr Z 1/%,11)1 ’L 1,l,]Ap lk:q"'az £¢z 1)77k: Bk,q,p2<wla w, z 1,1,5

k=1 k=1

)

My
—I-Ocz (Lop—1,m),, Buji Z<¢k,€> Ap_1 g+ a? <€j,§> Z (s M), B3, Bheyg,p

kl 1
and the nonhomogeneous terms as
MV MV MV
2
oy = @ Z <£¢p*1a 77m>wr <1/Jk,5;>wz emnAp-1kq+a Z €m,n <£(I];£;L>wz Z Bi,q,p (MK 77m>wT
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The system of linear equations Jd = f resulting from the least-squares projection is solved by first re-indexing
the equations and pressure field mode amplitude coefficients d and then solving the M2 x M?% set of linear
equations. We note that because there is no “flat” mode in the pressure field trial function expansion, the
solution has a zero-mean pressure field. We call this Mp x Mp array of coefficients dz,..

The weighted inner products defining the coeflicients Jj, 4;; are computed with a numerical procedure
based on discrete approximations to the eigenfunctions, represented in discretized form by their values at
Gauss-Lobatto quadrature points. Accurate discrete differentiation operations (to be used for computing the
residual function R.) are formulated by representing the eigenfunctions in terms of Lagrangian interpolation
functions [6]. We find that computing the weighted inner products using N = 4My quadrature points to be

sufficiently accurate and not computationally intensive.
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Figure 2: Spectrally-filtered and direct projections of the axial velocity component profile at the outer wall
(r=1) for Mpc =9.

4 Spectral Filtering

Because of the velocity field boundary condition jump discontinuities at the corners r = 1, z = 0, 1, global
spectral filtering techniques are used to smooth the Gibbs oscillations ([2] and see Fig. 2). In Fig. 2, we
compare v,,, computed from a direct projection of the nonhomogeneous boundary condition to the velocity

profile reconstructed using filter coefficients that give the equivalent to the Cesaro sums [4, 8] of (2), where

The filtered projection is significantly smoother than the direct projection and was necessary for obtaining
converged solutions. Other spectral filtering methods will also work; an overview of these methods can be
found in [3].

If the residual function R.(r,z) (4) is computed for two successive values of Mp, we find that the functions
in the neighborhood of the corner points » = 0 and z = 0,1 have approximately zero mean but are of
opposite sign. This suggests that filtering can also be used to reduce the residual magnitude in these regions

without sacrificing convergence in the remaining physical domain. We implement this filtering methodology
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by computing the Cesaro sums of a sequence of solutions dys to obtain the filtered pressure field profile dyy,.:

1 U
dy,=——-— dy.
Me ™ Mp — Mpc + 1 M:zl\;gc M

The axial and radial velocity components are then computed from the filtered pressure field using (3) and
(1), respectively. A representative solution is shown in Fig. 3 for the case of a = 1 and 8 = 0; results for

B =1 and other values of the aspect ratio o will be discussed in a subsequent paper.

5 Convergence

Convergence of the computed solutions can be quantified as a function of truncation number in terms of the L?
norm of the continuity equation residual function ||R.| = \/m , a quantity easily computed using the
discrete differentiation operations and quadrature techniques discussed previously. If the truncation number
of the trial function expansion defining the nonhomogeneous contribution to the axial velocity component
(2) is increased at the same rate as the overall solution truncation number (Mpc = Mp), the axial velocity
component gradient will grow infinitely large as Mp grows. This would ultimately (as Mp — o0) lead
to infinite static pressure in the corners, a result consistent with the similarity solutions of Moffatt [7],
resulting in a divergent sequence of solution norms. To obtain convergent solution sequences, we consider
cases where Mpc is fixed and convergence is studied in terms of solution truncation number Mp; under
these circumstances, we find the residual norms diminish with increasing Mp.

Another means of assessing computed solution accuracy is to evaluate the stream function ¥(r, z), defined

for the two geometries considered in this paper as

L_adv 10w
"B 9z = B o’

For the case 8 = 0, we can compute the stream function explicitly because the trial function components

are ¥,(2) = "2sin2q¢7rz and 7,(r) = “2sin7pr. The stream functions can be computed from the velocity
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Figure 3: Stream function contours ¥,y (solid) and ¥,
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field component trial function expansions for v, and v, as

Viy(r,2) = Z %anqcbp(r) [1 — cos2gmz]
p,g=1
L5 No¢ 5oc
Uiy(r,z) = — Z W_pbp’q [1 — cosmpr] &(z) — Z %r?’fj(z)
P,q=1 Jj=1

respectively. The overall accuracy of the computed solution can then be gauged by comparing the two
stream functions. As can be seen in Fig. 3, the larger-scale structures emerge first and the smaller-scale
corner eddies develop with increasing Mp. These observations are consistent with physical intuition and the
convergence properties of global spectral methods. In this Figure, we observe small deviations in the two
stream functions in the neighborhood of the corner eddies (the streamlines of the large eddy overlap in this

Figure). The differences in the corner eddy streamfunction structures diminish with increasing Mp.

6 Conclusions

In this paper, we presented an alternative to the stream-function based solution approaches to Stokes flow
problems in driven cavities, where the pressure field is computed directly from a least squares projection of
the continuity equation residual. Explicit descriptions of the numerical procedure were given for two cavity
geometries. The convergence performance of the projection method was discussed in terms of the spectral
filtering methods necessary for improved pointwise convergence of the velocity and pressure fields.

The results presented in this paper demonstrate that accurate solutions to the large-eddy structure can be
obtained with a moderate number of modes, with increased resolution possible with increasing truncation
number. Subsequent studies will focus on eddy structure transitions as a function of aspect ratio for the two
geometry factors. We see this approach as being directly applicable to three-dimensional flows and other

cavity geometries.
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