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The main disadvantage of static code analysis tools is the high rates of false

positives they produce. Users may need to manually analyze a large number of

warnings, to determine if these are false or legitimate warnings, reducing the benefits

of automatic static analysis.

Our long term goal is to significantly reduce the number of false positives that

these tools report. A learning system could classify the warnings into true positives

and false positives by means of features extracted from the program source code.

This work implements and evaluates a technique to reduce the source code producing

false positives into code snippets that are simpler to analyze.

Results indicate that the method considerably reduces the source code size

and it is feasible to use it to characterize false positives.
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Chapter 1: Introduction

The process of testing consists of evaluating whether an activity or a product

has been developed correctly. Software testing refers to this process performed

to support quality assurance of a program under test. In order to test a system,

different techniques are used. These, can be divided into two categories: dynamic

analysis and static analysis. The former type of testing requires the execution of

the software under test. The latter, which we are going to focus on, consists of

analyzing the source code or object code to detect errors or flaws.

These two techniques of verification have their advantages and disadvantages.

The dynamic execution of tests is relative easy and can be used to measure if the

system satisfies its requirements. Also, executing the software in the runtime en-

vironment where it will be running could provide confidence that it will work as

expected. On the other hand, by dynamic analysis, we can only show the existence

of faults in the code. Even in the case that we have executed several tests on the

system, we cannot guarantee the absence of vulnerabilities.

Static code analysis (SCA) is a more exhaustive approach to detect faults.

Tools performing this analysis usually scan the whole code to identify flaws. These

tools check the compliance of specific rules and detect instances of vulnerabilities
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patterns. Due to the low cost of implementation, SCA tools are extremely useful

to software verification. The main limitation of SCA tools is that they produce

plenty of warnings, many of them are false alarms. These could be false positives or

some other issues that are informed to the users, but are not faults. In [1], Lobo de

Mendonça et al. do a literature review and detail the false positive rate reported in

many publications. This rate is in general over 20%.

The primary complication related to false positives is that the user or software

developer should manually inspect every single warning in order to determine its

truthfulness. This requires time and effort and makes it an expensive process. Ad-

ditionally, the large amount of false positives tend to cause confusion to developers

which may ignore the SCA tool warnings. This could lead to the omission of true

positives and important bugs and flaws. For instance, in a project of a Computer

Science introductory undergraduate course, the build automation system generated

a report by means of a SCA tool. Students were supposed to use this tool to help

them in the development process but many of them did not pay attention to it,

because of the abundance of false positives.

There are many techniques used today to reduce the number of false positives

reported by SCA tools [2]. These could be as elementary as turning off some specific

types of checks or changing the source code not to produce the warning. But some

SCA tools provide more sophisticated features like processing annotations that in-

dicate the location of false positives, so that the warning is ignored the next time

the tool generates a report, or using statistical information to detect likely false

positives. Even though some of these techniques could be automatic, many of them
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are manual and require the experience of the software developers.

The report [3] presents another way to provide insights of user practice re-

garding warnings and false positives. This survey revealed that most of the users

are concerned about high priority warnings. But, surprisingly, a large number of

users also take into account low priority warnings. In general, low priority reports

are less accurate and, therefore, they tend to have a higher rate of false positives.

To the best of our knowledge, very little work has been published on warning

classification and false positives detection. An interesting idea is presented in [4].

Google’s code base was used to build models to predict if a warning is a false

positive or not. A logistic regression model was used to determine how accurate a

warning is. The logistic regression factors are obtained from complexity metrics,

the change history of files, the programming language, the description of the SCA

tool warnings. The main problem of this approach is that many external factors

are considered. These may not be available in an initial release of a program, like

the change history of files. Additionally, the source code is not analyzed in detail to

predict false positives, just by means of complexity metrics.

This thesis aims to help in the process of reducing the number of false positives

reported by SCA tools. To this end, we have to characterize the false positives

produced by the tools and then learn from them, so as to infer whether a warning

is a true or false positive. Besides the source code metadata obtained in [4], we

strongly believe that the warnings could be effectively predicted if we analyze the

source code in detail. In order to make the analysis simpler, the source code has to

be reduced or summarized.
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We will be using open source projects and the Juliet Test Suite [5] to evaluate

our approach. Juliet is a collection of programs with identified flaws. The code

contains functions named as “good” and “bad” that help to recognize if a detected

vulnerability is in fact a flaw (or true positive) or it is a false positive. We ran SCA

tools on this projects to get a large number of false positives. To obtain a simplified

representation of each false positive, we reduce the original source code file into

code snippets producing exactly the same false positive. These code snippets are

obtained by isolating failure causes by modified versions of Delta Debugging [6] on

the lines of the initial source code. It is worth pointing out that the snippets result

in valid programs, i.e., programs that can be compiled by the way the original code

was compiled.

Besides being a simple representation of the false positive, the code snippets

are source code. Not bytecode or any other abstract intermediate representation of

the code. This can really help a software developer in his process to understand the

reason of a warning message. In fact, by examining the code snippets we were able to

detect problems in the SCA tools. For example, we found that a SCA tool generates

a false positive if a global variable is used in a condition, but it does not report a

warning if the variable is replaced by its actual value. The process of source code

inspection of these snippets is straightforward: an original source code containing

thousand of LOC may be reduced in a snippet having just dozens of lines.

Once we obtain a simplified version of the code generating a warning, analyzing

it should become a simpler task. In this work we focus on the problem of the

reduction of the source code into the snippets.
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Chapter 2: Background

This chapter presents background information for the remaining of this work.

First we introduce SCA tools and the notion of false positives in binary classification,

then we describe the Delta Debugging algorithm, which results in one of the key

aspects of this work. Finally we introduce Iterative Reduction Debugging, another

method to minimize sets.

2.1 Static Code Analysis tools

Static code analysis [7] is the analysis of computer software performed stat-

ically, without executing the program, to find vulnerabilities on it. Usually, the

source code of the program or the object code are analyzed.

The kind of tools that perform this analysis are usually called static code

analysis tools or SCA tools. These automatic tools should, ideally, detect flaws with

a high degree of confidence that what is detected is actually a flaw. In practice,

many of the SCA tools help the programmers to find potential weaknesses in the

code more efficiently, but the process of flaw detection is far from being completely

automatic. And the primary reason is the presence of a large amount of False

Positives (FP).
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A false positive is an error in the process of evaluation in which a test result

mistakenly indicates the presence of a condition while in reality it is not the case.

In binary classification, we can also define true positives, false positives and true

negatives. Table 2.1 introduces them for the domain of SCA tools results.

SCA tool reports a flaw SCA tool does not report a flaw
Actual flaw True Positive False Negative
Not a flaw False Positve True Negative

Table 2.1: Binary classification data reporting

There are different techniques to conduct static code analysis. Many of them

are included in [8] and [9], we describe some of them briefly:

• Data Flow Analysis: This is a process to obtain run-time information of the

software in a static manner: without actually executing the code. This analysis

makes use of the control flow graph [10]: an abstract representation of all paths

that could be traversed in a program while it is executed. Every node in this

graph is a basic block, which is a portion of the code containing a single entry

point and also a single exit point. The paths from basic block to another is

represented by directed edges in the graph. The data relationship of a program

is done by means of the control flow graph. Additionally, it helps to identify

portions of code to be optimized.

• Taint Analysis: The technique aims to identify variables that are tainted with

user input. Then, it traces these variables to find vulnerable functions.

• Symbolic Analysis: The method is conceived to reason about non-constant
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variables values. It generates a formal mathematical characterization of the

calculations.

2.2 Delta Debugging

Delta Debugging (DD) is a technique to automatically minimize a failure-

inducing program input in order to obtain its minimal subset which produces exactly

the same original failure. It makes use of a intuitive method to minimize: binary

search. We will first present an intuitive example and then we formally define it.

Suppose an electronic system uses a small keyboard as depicted in figure 2.1.

Consider that the system fails if we press all the eight buttons in the keyboard at

the same time. But, actually, the failure is produced only when pressing the keys

labeled ‘A’, ‘B’ and ‘F’, but we do not know that yet. If we try to find what is the

minimum combination of keys producing the error, we could proceed as follows.

Figure 2.1: DD example: 8 buttons keyboard

Pressing no button does not reproduce the error, so we divide the keys into

two sets: from ‘A’ to ‘D’ and from ‘E’ to ‘H’. Pressing all the keys in these subsets

does not produce the error, so we divide into two again, with the subsets S1 =

{A,B}, S2 = {C,D}, S3 = {E,F} and S4 = {G,H}. Now we consider these sets

7



individually and their complements. Pressing the buttons in Si does not fail for any

i. But, if we consider the complements, S2, S3, S4 does not produce the failure, but

S1, S3, S4 does. So, we know that a subset of S1 ∪ S3 ∪ S4 should fail.

We can try to remove S3 from it, with no succes. Then, if we remove S4, we

get S1 ∪S3 which also fails. Now we can divide the subsets, getting single elements:

{A,B,E, F}. We proceed by removing single elements: {B,E, F} and {A,E, F}

do not fail, but {A,B, F} does. The last step is simply to remove single elements

from it, but they will not fail. Therefore, we have found the minimum failing subset:

{A,B, F}.

We could use a diagram to represent the technique for the keyboard example,

as in figure 2.2. To make the diagram complete, many tests that were already done

before are included. In practice, we will not run these tests twice.
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keys being pressed Result Note
A B C D E F G H 7 Original set
A B C D 3 Dividing into two subsets

E F G H 3

A B 3 Dividing into four subsets
C D 3

E F 3

G H 3

C D E F G H 3 Using complements of subsets
A B E F G H 7

A B 3 Working with {{A,B}, {E,F}, {G,H}}
E F 3

G H 3

E F G H 3 Using complements of subsets
A B G H 3

A B E F 7

A B 3 Working with {{A,B}, {E,F}}
E F 3 Splitting

A 3 Working with {{A}, {B}, {E}, {F}}
B 3

E 3

F 3

B E F 3 Using complements of subsets
A E F 3

A B E 3

A B F 7

A 3 Working with {{A}, {B}, {F}}
B 3

F 3

B F 3

A F 3

A B 3

A B F 7 DONE

Figure 2.2: DD in action: The minimization of the keyboard buttons results in
{A,B, F}, which is the last failing subset. As it is show in this table, we also try to
work with the complements of the potential solution in order to make the algorithm
more efficient.
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2.2.1 Formalizing Delta Debugging

The Delta Debugging technique has been defined in many publications as [11],

[12], [13]. We will use most of the notation found in [6].

For this work, we are interested in the minimization of a failing test case of a

system. If we assume that we have a system and a test case makes the system fail,

we would like to minimize the test case by successive testing. This means that we

want to obtain the minimal test case: if we remove any element from this test case,

the failure disappears. We denote a failure in the test by the symbol 7 and if the

test case passes we use 3.

In the rest of this section, we will use the term circumstances to refer to the

data or external envirtonment affecting the execution of a specific software program.

In particular, we are interested in those circumstances that could vary and cause

a system to behave differently. We denote the set of possible configurations of

circumstances by C.

In order to identify the changes causing failures, we say that r ∈ C is a specific

program run. Any program run r that fails is denoted as r7 and, analogously, if it

passes we use r3. To talk about the modifications in the test cases, we introduce

the following definition.

Definition 1. A change δ is a mapping δ : C → C. When talking about changes

between two runs r3 and r7, we say that δ is a relevant change if it makes δ(r3) =

r7.

In general, we will represent a relevant change δ by a set of atomic changes
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δ1, . . . , δn. These changes are problem specific. For instance, for the keyboard

example above, the change between {A}3 and {A,B,C}7 could be thought as

δ = δ1 ◦ δ2 where δ1 is the insertion of B to the set and and δ2 is the insertion of C;

the ◦ operation refers to the composition that groups changes.

Definition 2. The function rtest : C → {7,3} states whether a run r ∈ C fails or

not. In other words, rtest(r7) = 7 and rtest(r3) = 3. We also define c3 as the

empty set (c3 = ∅) and the set of all changes as c7. A test case is a subset c ⊆ c7.

Now we can introduce the notion of test over C:

Definition 3. If we denote the power set of c7 as ℘(c7), the function test : ℘(c7)→

{7,3} is defined as test(c) = rtest((δ1, . . . , δn)(c3)) where c = {δ1, . . . , δn} is a test

case. As a consequence of this definition, c3 = 3 and c7 = 7.

Given a failing test set, we would like to find the minimal subset that also

fails. Now we formalize what we mean by minimization.

Definition 4. We say that a test case c ⊆ c7 is n-minimal if test(c′) = 3 for every

c′ ⊆ c given that |c− c′| ≤ n.

Basically, the definition 4 states that a test case is n-minimal when any subset

passes the test, given that the number of changes in the test case is less than or

equal to n changes from the original test case. Delta Debugging was conceived to

guarantee 1-minimality. This means that we are looking for a failing test case such

that, when any single change is removed from it, the test case passes.

In order to obtain 1-minimality, we cannot just remove one element at a time.

The way to do it is by means of binary search. Let us suppose that we are given
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a failing set of changes c7. To get started, the original set c7 is divided into two

subsets of similar size, which are called ∆1 and ∆2. Now, we proceed to test them.

The possibilities are:

• ∆1 fails. Then we continue reducing ∆1 instead of c7, which is a smaller set.

• ∆1 does not fail, but ∆2 does. As before, we now reduce ∆2 which is also

smaller.

• Both tests pass. This case is what we call as ignorance.

The first two options consist on dividing the original set into a smaller set

containing approximately one half of the elements. The search space is reduced by

one half.

But, in case of ignorance, we should partition the set in order to get a failing

subset. There are two ways to do this:

• If the subsets of c7 are large, then there is a greater chance that the test fails,

but the progression of the algorithm gets smaller.

• If the subsets of c7 are small, the chances to find a test case that fails get

smaller, but we increase the speed of progression of the algorithm.

Delta Debugging tries to take advantage of these two approximations by using

both at the same time. When c7 is divided into n subsets, each one called ∆i, the

subsets are small so we get fast progression. But, simultaneously, we also make use

of the complement of ∆i: ∇i = c7 \∆i. ∇i is a larger test case having more chance

to fail.
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The problem is that we are increasing the number of test cases to test. If n

is the number of subsets, then we should test ∆1, . . . ,∆n and their complements

∇1, . . . ,∇n. We have three possibilities now:

• If ∆i fails, we continue by reducing this subset. This means that we take ∆i

as the failing set and set n = 2 to continue. In practice, we are restarting the

algorithm with a smaller subset as in a “divide and conquer” approximation.

• If ∇i fails, we use ∇i as the failing test. In this case, instead of setting n = 2,

we set n = n− 1. The reason why we use n− 1 is because many of the large

subsets of ∇i have already been tested before. For instance, we have depicted

the situation when ∇5 = c7 \ ∆5 fails for n = 8 in figure 2.3. As we can

see, ∇5 =
⋃4

i=1 ∆i ∪
⋃8

i=6 ∆i and we have already tested ∆1, . . . ,∆8. So, if

we set n = 2 we will redo most of the work; instead, by setting n = 7, we

continue working from the last partition ({∆1,∆2,∆3,∆4,∆6,∆7,∆8}) that

we had used before.

c7 =

∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 ∆8

∇5 =

Figure 2.3: DD subsets partitioning

• If none of these subsets fail, we increase the granularity by setting n = 2n.

This is done just when 2n > |c7|; if the last condition does not hold, then the

algorithm finishes.
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Figure 2.4 briefly summarizes the algorithm. We continue using the same

notation as in [6].

c7 is a test case satisfying test (c7) = 7 and test (∅) = 3.

The Delta Debugging algorithm ddmin(c) is defined as follows:

ddmin (c7) = ddmin2(c7, 2)

and

ddmin2(c
′
7, n) =


ddmin2(∆i, 2) if test(∆i) = 7 for some i ∈ {1, . . . , n}
ddmin2(∇i, n− 1) if test(∇i) = 7 for some i ∈ {1, . . . , n}
ddmin2(c

′
7, 2n) if n < |c′7|

c′7 o.w.

Figure 2.4: Delta Debugging algorithm

2.3 topformflat

In the Delta Debugging source code implementation [14], Daniel S. Wilkerson

and Scott McPeak include a tool called “topformflat”, which aims to manage the

hierarchical structure of source code.

Let us consider the problem of minimizing source code. For instance, we may

consider the problem that a compiler is failing to compile a file, and we would like

to get the minimal piece of code that produces exactly the same error. In order to

complete this task, we could consider that a file is a sequence of lines and all the

lines in the original source file represent the set of all changes. In this particular

situation, the changes or lines of code strongly depend on each other. topformflat

is a simple idea to handle the nesting structure of C/C++ code.
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The nesting depth of a line of source code refers to the number of blocks that

that line belongs to. This concept is language specific, this is why we are using

C/C++ here and we will not formalize the definition. But, to get the intuition, let

us consider the example in figure 2.5. We can see the nesting depth of each line in

a source code file.

ne s t ing depth
#include<s t d i o . h> 0
int main (void ) { 0

int i = 0 , a = 0 ; 1
p r i n t f ( ” Please input an i n t e g e r va lue : ” ) ; 1
s can f ( ”%d” , &a ) ; 1
i f ( a > 100) { 1

p r i n t f ( ”You entered : %d\n” , a ) ; 2
} else { 1

p r i n t f ( ”The m u l t i p l e s o f 7 sma l l e r than %d are : ” , a ) ; 2
for ( i = 7 ; i < 100 ; i +=7) { 2

p r i n t f ( ”%d ” , i ) ; 3
} 2

} 1
return 0 ; 1
} 0

Figure 2.5: Source code nesting depth

Given a desired nesting depth n and a source code file, topformflat creates a

new source code such that every line whose depth is greater than n is concatenated

to the previous line ignoring the newline characters between them. In other words,

topformflat copies the input file into a new file such that the newline characters are

omitted when the nested depth is greater than a nesting depth argument. We say

that topformflat “flattens” the source code.

We can see an example of the result of topformflat in figure 2.6, when applied

to the code given in the previous figure.
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#include<s t d i o . h>
int main (void ) { int i = 0 , a = 0 ; p r i n t f ( ” Please input . . . ” ) ; . . . ; return 0 ;
}

(a) topformflat level 0

#include<s t d i o . h>
int main (void ) {

int i = 0 , a = 0 ;
p r i n t f ( ” Please input an i n t e g e r value : ” ) ;
s can f ( ”%d” , &a ) ;
i f ( a > 100) { p r i n t f ( ”You entered : %d\n” , a ) ;
} else { p r i n t f ( ”The mu l t i p l e s . . . ” , a ) ; for ( i = 7 ; i < 100 ; i+=7) { p r i n t f ( ”%d ” , i ) ; } }
return 0 ;

}

(b) topformflat level 1

#include<s t d i o . h>
int main (void ) {

int i = 0 , a = 0 ;
p r i n t f ( ” Please input an i n t e g e r va lue : ” ) ;
s can f ( ”%d” , &a ) ;
i f ( a > 100) {

p r i n t f ( ”You entered : %d\n” , a ) ;
} else {

p r i n t f ( ”The m u l t i p l e s o f 7 sma l l e r than %d are : ” , a ) ;
for ( i = 7 ; i < 100 ; i +=7) { p r i n t f ( ”%d ” , i ) ; }

}
return 0 ;

}

(c) topformflat level 2

Figure 2.6: Examples of topformflat for different nesting levels

topformflat can be integrated with Delta Debugging. The strategy consists of

minimizing the topformflat result while increasing the nesting depths, starting from

zero depth. We will describe this approach in detail in the next chapter.

2.4 Iterative Reduction Debugging

An alternative to Delta Debugging that could be useful in some domains is

Iterative Reduction Debugging. From a starting failing ordered test case, this tech-
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nique consists of removing all possible consecutive changes until a failing test case

is found, in which case a new iteration is performed.

For this method to be defined, we have to make sure that the elements in the

test case have a specific order, to make meaningful the notion of consecutiveness.

More precisely, the set of all changes has to be a finite totally ordered set.

In this case, we say that ∇j
i = c7 \ {ei, . . . , ej} where c7 = {e1, . . . , em} are

the elements of c7 in order.

The algorithm is shown in figure 2.7.

c7 is an ordered test case satisfying test (c7) = 7 and test (∅) = 3 .

The Iterative Reduction Debugging algorithm ird(c) is defined as follows:

ird (c7) = ird2(c7, 1)

and

ird2(c
′
7, n) =


ird2(∇i+n

i , n) if test(∇i+n
i ) = 7 for some i ∈ {1, . . . ,m− n}

ird2(c
′
7, n+ 1) else if n < m

c′7 o.w.

Figure 2.7: Iterative Reduction Debugging algorithm

Additionally, we can also define a special case of minimality for these test

cases.

Definition 5. If the set of all changes c7 has an associated order, a test case c ⊆ c7

is n-consec-minimal if test(c′) = 3 for every c′ ⊆ c given that |c − c′| ≤ n and all

the elements in c− c′ are consecutive.

From this definition, it is trivial to prove that:

n-minimality⇒ n-consec-minimality⇒ 1-minimality
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IRD guarantees n-consec-minimality for every number n: simply, from the

original set, we remove n consecutive lines and try to generate the same error. If

it woks, we continue, if it does not, we choose some other lines. Even though the

method is very straightforward, in practice it works reasonably and its performance

is similar to DD, but more general: it generates n-consec-minimal results.
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Chapter 3: Source Code Reduction

Our main goal is to reduce source code files into smaller size files. The original

source code is supposed to be a compilable program such that when we run a SCA

tool on it, it generates a warning. This warning could be a false positive or a true

positive. As we try to summarize false positives, we propose a technique to reduce

the source code into valid snippets that, when the SCA tool is run on them, they

generate exactly the same warning. In the rest of this work, we will refer to the

resulting source code as the code snippets or simply snippets.

We begin this chapter by implementing the code reduction by means of Delta

Debugging and then we continue improving the approach to reach the main goal.

3.1 Reduction by Delta Debugging

In the previous chapter, we introduced the DD technique. To apply it to code

reduction, we have to define the test case c7, the test function and what the relevant

changes are.

As we are given a source program P that compiles and, when used as input

for a SCA tool, it generates a warning W , we say that
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test(c) =


7 if c compiles and the SCA tool generates the warning W

3 if c does not compile or it compiles but W is not generated

where c is a source code file “reduced” from P . Now we should define what we

mean by a source code file obtained from a program, but this is done by means of a

change. The changes in a program are the expansion of a trivial empty source code

file by portions of P .

A relevant change should be decomposed into a finite set of atomic changes.

These changes, for this specific problem, could be the insertion of single characters

into the source code, or adding tokens, or adding lines. In practice, using characters

or tokens leads to the generation of spurious source code. We can see in figure 3.1

an example of this phenomenon. If we force the line 3 to be part of the reduced

snippet, we could obtain misleading code, as in figure 3.1c.

1 int var1 = 0 ;
2 int var21 = 3 ;
3 p r i n t f ( ” i = %d” , var1 ) ;

(a) Original code to reduce, keeping line 3

1 int var1 = 0;
2 int var21 = 3 ;
3 p r i n t f ( ” i = %d” , var1 ) ;

(b) Removed characters

int var1 = 3 ;

3 p r i n t f ( ” i = %d” , var1 ) ;

(c) Reduced spurious code

Figure 3.1: Code reduction with single caracters as atomic changes

The situation is similar if we consider tokens. This problem can be solved by

taking lines of code as the atomic changes. Also, lines of code make the search space
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smaller. Note that we expect the source code to reduce to be written guided by a

common or friendly coding style.

Shown in figure 3.2c is an example of the process of code reduction by lines of

code using the Delta Debugging approach. The original code generated a warning

in a SCA tool stating that a variable was freed two times and the obtained snippet

generates exactly the same warning.
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1 int main (void ) {
2 int ∗ data = ( int ∗) mal loc (5 ∗ s izeof ( int ) ) ;
3 int value = 10 ;
4 data [ 1 ] = value ∗ 12 + 7 ;
5 f r e e ( data ) ;
6 f r e e ( data ) ;
7 return 0 ;
8 }

(a) Original source code

lines in c Result Next step description
1 2 3 4 5 6 7 8 7 Increasing n (n = 2)
1 2 3 4 3 (does not compile)

5 6 7 8 3 (does not compile) Increasing n (n = 4)
1 2 3 (does not compile)

3 4 3 (does not compile)
5 6 3 (does not compile)

7 8 3 (does not compile) Trying with complements
3 4 5 6 7 8 3 (does not compile)

1 2 5 6 7 8 7 Reducing to ∇2 (n = 3)
1 2 3 (already tested)

5 6 3 (already tested)
7 8 3 (already tested) Trying with complements

5 6 7 8 3 (does not compile)
1 2 7 8 3 (does not generate warning)
1 2 5 6 3 Increasing n (n = 6)
1 3 (does not compile)

2 3 (does not compile)
5 3 (does not compile)

6 3 (does not compile)
7 3 (does not compile)

8 3 (does not compile) Trying with complements
2 5 6 7 8 3 (does not compile)

1 5 6 7 8 3 (does not compile)
1 2 6 7 8 3 (does not generate warning)
1 2 5 7 8 3 (does not generate warning)
1 2 5 6 8 3 (does not compile)
1 2 5 6 7 3 (does not compile)

1 2 5 6 7 8 7

(b) DD algorithm based on the lines of the source code

1 int main (void ) {
2 int ∗ data = ( int ∗) mal loc (5 ∗ s izeof ( int ) ) ;
5 f r e e ( data ) ;
6 f r e e ( data ) ;
7 return 0 ;
8 }

(c) Result of the reduction

Figure 3.2: Example of the process of source code reduction by means of DD
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3.1.1 Analysis of Delta Debugging Source Code Reduction

Let us consider another similar source code file, the one in figure 3.3a. Again,

a SCA tool will generate a warning stating that the variable “data” is freed twice.

We would like to reduce the source code. Lines 3, 4 and 5 just initialize values in

the array and they do not contribute to the warning itself. So, we expect that the

resulting snippet consists of lines 1, 2, 6, 7, 8, 9. We can see in figure 3.3b that DD

does not remove all these lines. In fact, DD just eliminates line 4.

John Regehr, in [15], analyzes Delta Debugging in detail and criticizes it.

Delta Debugging is described as a “greedy search” algorithm in the sense that it

removes a contiguous chunk of the input and when there are no options of chunks

to be removed, it reduces the size of these chunks. The author states that DD could

be suitable to perform minimization in specific contexts, like random testing. But,

in some other domains, DD may find a local minimum before the test case is fully

reduced. This may happen in structured test cases, like the ones we are dealing

with. A computer program source code consists of several instructions forming a

set of dependent structures. This is, in fact, the case where DD does not work as

we expected.

If we consider the execution of DD again, we see that in the grey row of figure

3.3b, two lines that should be eliminated are ignored because the test passes. Here

is where the structure of the source code is affecting the results. The code snippet

obtained in this step does not compile because of the for loop syntax, but in a

non-structured domain this test case would have failed. And in some way, DD is

implicitly making the assumption that the test is monotone.

Definition 6. A test function is monotone if given two sets of changes c and c′,

such that c ⊆ c′, then we have

test(c) = 7⇒ test(c′) = 7

Equivalently, we can say that, given the same conditions, test is monotone if
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test(c′) = 3⇒ test(c) = 3

The test set in the gray row, consisting of lines {1, 2, 3, 6, 7, 8, 9}, passes the

test. Therefore, {1, 2, 6, 7, 8, 9} should also pass and this test case is never created.

Anyway, there is a really good reason not to create it: the complexity. If we try

with every possible subset, the complexity becomes exponential.

More formally, the reason why DD is not finding the snippet we expected is be-

cause DD guarantees 1-minimality: if we remove any single line from the minimized

result, the resulting test case passes. And that is, in fact, what is happening with

the source code in figure 3.3b. We may need 2-minimality (or 2-conseq-minimality)

for the lines 3 and 5 to be discarded.
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1 int main (void ) {
2 int ∗ data = ( int ∗) mal loc (5 ∗ s izeof ( int ) ) ;
3 for ( int i = 0 ; i < 5 ; i++) {
4 data [ i ] = i ;
5 }
6 f r e e ( data ) ;
7 f r e e ( data ) ;
8 return 0 ;
9 }

(a) Initial source code

lines in c Result Next step description
1 2 3 4 5 6 7 8 9 7 Increasing n (n = 2)
1 2 3 4 5 3 (does not compile)

6 7 8 9 3 (does not compile) Increasing n (n = 4)
1 2 3 3 (does not compile)

4 5 3 (does not compile)
6 7 3 (does not compile)

8 9 3 (does not compile) Trying with complements
4 5 6 7 8 9 3 (does not compile)

1 2 3 6 7 8 9 3 (does not compile)
1 2 3 4 5 8 9 3 (does not generate warning)
1 2 3 4 5 6 7 3 (does not compile) Increasing n (n = 8)
1 2 3 (does not compile)

3 3 (does not compile)
4 3 (does not compile)

. . . . . .
9 3 (does not compile) Trying with complements

3 4 5 6 7 8 9 3 (does not compile)
1 2 4 5 6 7 8 9 3 (does not compile)
1 2 3 5 6 7 8 9 7 Reducing to ∇3 (n = 7)
1 2 3 (already tested)

3 3 (already tested)
. . . . . .

9 3 (already tested) Trying with complements
3 5 6 7 8 9 3 (does not compile)

1 2 5 6 7 8 9 3 (does not compile)
. . . . . .

1 2 3 5 6 7 8 3 (does not compile) Increasing n (n = 8)
1 3 (does not compile)

2 3 (does not compile)
3 3 (already tested)

. . . . . .
9 3 (already tested) Trying with complements

2 3 5 6 7 8 9 3 (does not compile)
1 3 5 6 7 8 9 3 (does not compile)
1 2 5 6 7 8 9 3 (already tested)

. . . . . .
1 2 3 5 6 7 8 3 (already tested)

1 2 3 5 6 7 8 9 7

(b) DD algorithm based on the lines of the source code

1 int main (void ) {
2 int ∗ data = ( int ∗) mal loc (5 ∗ s izeof ( int ) ) ;
3 for ( int i = 0 ; i < 5 ; i++) {
5 }
6 f r e e ( data ) ;
7 f r e e ( data ) ;
8 return 0 ;
9 }

(c) Resulting code snippet

Figure 3.3: DD source code reduction resulting in extra lines
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3.2 Reduction by Delta Debugging with topformflat

topformflat is a very simple idea that can be integrated with any code reduc-

tion algorithm. In this section we present it combined with DD. One of its main

advantages is that it makes DD more efficient. It increases the processing speed

significantly. Additionally, topformflat solves the problems of DD regarding the

hierarchical structure of source code.

In the remaining of this work we will refer to this technique as Delta Debugging

with topformflat integration (DDT). In figure 3.4, we detail the algorithm for DD.

c7 is a test case satisfying test (c7) = 7 and test (∅) = 3.

The Reduction by DD with topformflat integration algorithm is then:

maxlevel← maxdepth(c7)
level← 0
c′7 ← c7
for level ∈ {0, . . . ,maxlevel} do
c′′7 ← topformflat(c′7)

c′7 ← ddmin(c′′7)
end for

Figure 3.4: Delta Debugging algorithm with topformflat integration

As we mentioned before, in practice, DDT handles the source code hierarchical

structure problems that DD per se has. We use the source code from the previous

examples to show in figure 3.5 how this algorithm works. In particular, when the

source code is flatten with depth level 2, as in figure 3.5a, we see how the entire

“for loop” that is the structure that we want to remove, becomes a single line.

DD will try to discard every single line of code in the last step of the algorithm.
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Consequently, the loop dissappears from the result.

1 int main (void ) {
2 int ∗ data = ( int ∗) mal loc (5 ∗ s izeof ( int ) ) ;
3 for ( int i = 0 ; i < 5 ; i++) {
4 data [ i ] = i ;
5 }
6 f r e e ( data ) ;
7 f r e e ( data ) ;
8 return 0 ;
9 }

(a) Initial source code

1 int main (void ) {
2 int ∗ data = ( int ∗) mal loc (5 ∗ s izeof ( int ) ) ;
3 for ( int i = 0 ; i < 5 ; i++) { data [ i ] = i ; }
4 f r e e ( data ) ;
5 f r e e ( data ) ;
6 return 0 ;
7 }

(b) Source code after topformflat level 2

lines in c Result Next step description
1 2 3 4 5 6 7 7 Increasing n (n = 2)
1 2 3 4 3 (does not compile)

5 6 7 3 (does not compile) Increasing n (n = 4)
1 2 3 (does not compile)

3 4 3 (does not compile)
5 6 3 (does not compile)

7 3 (does not compile) Trying with complements
3 4 5 6 7 3 (does not compile)

1 2 5 6 7 3 (does not compile)
1 2 3 4 7 3 (does not generate warning)
1 2 3 4 5 6 3 (does not compile) Increasing n (n = 8)
1 3 (does not compile)

2 3 (does not compile)
. . . . . .

7 3 (does not compile) Trying with complements
2 3 4 5 6 7 3 (does not compile)

1 2 4 5 6 7 7
. . . . . .

1 2 4 5 6 7 7

(c) DDT run on the flatten code

1 int main (void ) {
2 int ∗ data = ( int ∗) mal loc (5 ∗ s izeof ( int ) ) ;
6 f r e e ( data ) ;
7 f r e e ( data ) ;
8 return 0 ;
9 }

(d) Reduction result

Figure 3.5: DDT source code reduction
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3.3 Reduction by Iterative Reduction Debugging with topformflat

The Iterative Reduction Debugging algorithm requires an initial failing ordered

test case. For source code reduction, we can define this set as the set of LOC with

their corresponding line number. Their order is the natural one of the line numbers

(so, for instance, the first line precedes the second line and so on). As stated before,

this technique generates new test cases by deleting consecutive lines of code in

blocks. When a test case fails, it continues the reduction from this last failing code.

IRD was defined to implicitly tackle the problem of figure 3.3: the hierarchical

structure of code. By construction, this algorithm will find every single block and

try to remove it.

It is reasonable then, to try to use the topformflat idea with IRD, we will

call this technique as Iterative Reduction Debugging with topformflat integration

(IRDT). The algorithm simply consists of calling the ird function instead of the

ddmin function in figure 3.4. Through topformflat, IRD improves the performance

efficiency notably.

3.4 Preserved Control Flow Reduction

All the source code reduction algorithms described in this chapter could add an

extra feature: keeping the control flow of the original source code. The control flow

or flow of control of a program makes reference to the order in which its statements

are executed.
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When reducing the source code, one may want to preserve the control flow of

the original program. The main motivation to do this is given in the example of

figure 3.6. This is a trivial example, but shows that the previous approaches may

not work in practice. The difficulty that arises after the reduction process, is that

a false positive is converted into a true positive. Line 5 in the code in figure 3.6a

is death code. Even though it will never be executed, some SCA tools could report

that the variable “data” is freed twice. If we reduce the source code into the one in

figure 3.6b, we change the SCA warning completely: it was a FP and became a TP.

Remember that our goal is to reduce FPs to characterize them, in order to learn

from them. If the FPs are turned into TPs, the characterization will be completely

invalid.

1 int main (void ) {
2 int ∗ data = ( int ∗) mal loc (5 ∗ s izeof ( int ) ) ;
3 f r e e ( data ) ;
4 i f (0 ) {
5 f r e e ( data ) ;
6 }
7 return 0 ;
8 }

(a) Initial source code

1 int main (void ) {
2 int ∗ data = ( int ∗) mal loc (5 ∗ s izeof ( int ) ) ;
3 f r e e ( data ) ;
5 f r e e ( data ) ;
7 return 0 ;
8 }

(b) Reduced source code generating the same warning

Figure 3.6: DD with topformflat source code reduction

To try to preserve the control flow of the original source code, we force some
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specific lines to be part of the resulting snippet. These lines are called forced lines.

We assume that a warning was generated in a specific line of code n. To

identify the lines that will be added to the forced lines, we first determine the blocks

that n belongs to. The blocks that we consider are:

• control statements: like “if” conditions, “for” and “while” loops, “switch”

statements.

• class definitions.

• method or function definitions.

• try/catch blocks.

The lines of code containing these statements, are added to the set of forced

lines. Additionally, for these blocks we incorporate the lines corresponding to

“break”, “continue” and “return” statements.

Accordingly, adding these lines to the reduced source code tends to preserve

the original control flow. This method can be an extension to DDT and IRDT. In

the next section we show how this approach works in practice.
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Chapter 4: CodeReducer tool

In this chapter we highlight the design of the tool, called “CodeReducer”, and

we also briefly describe its implementation.

4.1 Design and Implementation

The system is implemented in Python. The language was selected to quickly

develop it while we focus on the techniques to reduce source code and on the eval-

uation of results.

The architecture of the system is described in figure 4.1.

In rough outline, the CodeReducer system consists of the following classes:

• Snippet Generator: the main class uses this class as an auxiliary to create the

snippets from the original source code. To that end, its constructor takes the

following parameters:

– SCA tool to use to generate the warning

– source code file generating a warning

– compiler used to compile the file
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Figure 4.1: Class diagram of the system

– line(s) where the warning was generated

– warning message that the SCA tool reports

• SCATool: the CodeReducer supports different SCA tools. This class is in-

tended to be extended by the different tools to perform the analysis of the

original source code and the code that the CodeReducer generates in every

step.

• Compiler: this class is an abstraction for the compilation process. As the

CodeReducer supports multiple SCA tools, these tools find potential errors

in different programming languages. In particular, we are using Java and

C/C++ compilers.

• ReductionAlgorithm: The reduction algorithms described in the previous sec-
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tion are inherited from this class.

The CodeReducer system was conceived to process the FPs obtained by the

Static Code Analysis Tool Evaluator (SCATE) [16]. SCATE is a tool that provides a

methodology to evaluate the quality of SCA tools based on test suites. In particular,

SCATE generates reports from test suites created by the National Security Agency’s

(NSA) Center for Assured Software (CAS) to use in testing static analysis tools.

SCATE informs what the FPs are for a specific tool and where these are located in

the source code.

Besides the SCA tool warnings, the CodeReducer also needs to compile files.

The tool has a parameter to define the compiler to be used and its options. Another

possibility is to pass a json file similar to the compile commands.json file produced

by CMake to specify how files are compiled.
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Chapter 5: Experiments

In this section we aim to evaluate empirically the system implemented. The

reduction algorithms presented transform an original source code file into, by con-

struction, a correct (compilable) source code snippet. But we are modifying the

source code and we wonder if these changes will significantly impact on the original

code semantics. We would like the snippets to remain as “similar” to the input as

possible.

In this chapter we describe how we conducted the experiments and then we

analyze the obtained results.

As pointed in section 3.1.1, reducing source code by simply using Delta De-

bugging generates code snippets that are 1-minimal. But we would like to remove

as much code as possible from the snippets. Therefore, we will focus on the source

code reduction by means of DD with topformflat integration (DDT), IRD with top-

formflat integration (IRDT) and the possibility to preserve the control flow in the

snippet.

In general, we would like to quantify the code reduction in terms of LOCs and

to know if the code snippets generated are meaningful to represent the original FPs.

To be more specific, we want to know how different the snippets generated
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by DDT and IRDT are. These techniques have different minimization algorithms,

so we expect them to produce different results. But the fact that topformflat is

gradually applied to the source code could lead to similar code snippets.

Additionally, the DDT and IRDT techniques can be extended to preserve the

control flow. We would like to know if there is any motivation in practice to use

this extension and how results differ.

To entirely describe the empirical experiments, first we detail the testing data

used and then we report the results.

5.1 Tests data

To reduce source code we have to determine the source code under test, the

code that is going to be analyzed. We choose two approaches. The first one is to

use open source projects. These are more realistic because the results will represent

what a developer would obtain in practice. But the main problem is that we have

to manually identify the false positives. The other alternative is to use test suites

designed to evaluate SCA tools. The advantage of these test suites is that one could

easily identify true positives and false positives. But these test suites may contain

more artificial code.

We report our evaluation on the following open source applications/libraries,

downloaded from GitHub and sourceforge:

• JUnit, version 4.11

• Java-design-patterns, version 1.5.0
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• KDG Commons, version 1.0.5

• KAnalyze, version 0.9.7

• PMD, version 5.3.0

The National Institute of Standards and Technology (NIST) supports a project

called the Software Assurance Reference Dataset (SARD). Acording to NIST [17],

the purpose of the SARD is to provide users, researchers and software developers

with a set of known security flaws. Consequently, the SARD has developed several

test suites to evaluate SCA tools. In particular, we have used two version of Juliet

as the test suites 1.

Juliet Test Suite for C/C++ version 1.1

Juliet 1.1 [18] is a set of test cases targeting difference flaws. Each of the test

cases contains flawed and non-flawed functions that could be used to determine false

positives and false negatives.

The flaw types for the test cases were selected taking into account the flaw

types used in previous test suites, the team’s experience in Software Assurance,

the SCA tools vendors information about the types of flaws they identify and the

weakness information in the Common Weakness Enumeration (CWE). CWE is a

software project that created a catalog of the common software weaknesses and

vulnerabilities.

1IARPA STONESOUP Phase 3 was also used but no warnings were generated for the SCA

tool under test.
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The test suite has some limitations due to the nature of the test cases. Many

of them could be considered extremely artificial, meaning that they do not occur in

practice. Also, the frequency of the flaws and non-flaws may not be the real one in

natural software.

Juliet Test Suite for C/C++ version 1.2

SARD launched the version 1.2 of the Juliet test suite [19]. This version is

an improvement from the previous release. Some of the changes include additional

CWEs, removal of certain test cases from some CWEs and the number of flaw types

being changed. Furthermore, dead code was removed from diverse control flow

variants.

5.2 SCA tools

We have run experiments with two open source SCA tools. One for C/C++

and one for Java source code programs.

CppCheck

Cppcheck [20] is a SCA tool for C/C++ source code. This tool does not detect

syntax error and it aims to detect the types of bugs that compilers do not detect,

having zero false positives. It supports non-standard code including many compiler

extensions and it works on any platform.

The documentation states that CppCheck rarely reports false positives and
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there are many bugs that it does not detect. We are using CppCheck 1.68.

FindBugs

One of the most widely used SCA tool for Java source code is FindBugs [21].

FindBugs is also available under an open source license. The version used is 3.0.1.

The technique that it implements to find bugs in the software is based on

bug patterns. Bug patterns are code idioms that are highly probable to be real

vulnerabilities. The tool scans the Java bytecode of the program under analysis to

find these patterns. The current version has 424 bug patterns organized into nine

categories.

5.3 Results and Analysis

It is important to remark that we are not worried about the performance of

the system. Consequently, the execution time will not be reported. We just mention

that, depending on the SCA tool and the testing data, the time to reduce a source

code file varies from a few seconds to about 20 minutes.

First we compare DDT and IRDT in terms of reduction of code or LOC of

the resulting code snippet. We exectuted CodeReducer configured to run DDT

and IRDT with CppCheck on a subset of Juliet 1.1. The subset was obtained

randomly from all the test cases. We did work on a subset because we manually

validated the false positives. Table 5.2 presents the results we got in terms of the

size of the code (LOC).
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Reduction SCA Tool Test Data
Source Code Code Snippet

Mean (LOC) SD (LOC) Mean (LOC) SD (LOC)
DDT CppCheck Juliet 1.1 (subset) 198.6 31.0 12.6 1.5
IRDT CppCheck Juliet 1.1 (subset) 198.6 31.0 11.2 1.3

Table 5.1: Comparison of DDT and IRDT

The code reduction is very significant in both cases, and the size of the code

snippets is almost identical. We manually checked the snippets and found that

DDT generates code with the same or more lines than IRDT. In figure 5.1, we show

an example of the results for both approaches. In particular, the extra lines are

due to the presence of C preprocessor conditionals that DDT fails to remove. As

the conditional compilation statement “#ifdef” does not have a nested structure,

topformflat is not capable to flatten them and, therefore, the DDT result contains

those lines. On the other hand, IRDT will remove the last four lines because they are

consecutive lines. Accordingly, we will keep our analysis on IRDT in the remaining

of this section.
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#include ” s t d t e s t c a s e . h”
#ifndef OMITBAD
stat ic void bad s ink ( long long ∗ data )
{

data = ( long long ∗) mal loc (100∗ s izeof ( long long ) ) ;
}
#endif
#i fde f INCLUDEMAIN
#ifndef OMITGOOD
#endif
#endif

(a) DDT code snippet

#include ” s t d t e s t c a s e . h”
#ifndef OMITBAD
stat ic void bad s ink ( long long ∗ data )
{

data = ( long long ∗) mal loc (100∗ s izeof ( long long ) ) ;
}
#endif

(b) IRDT code snippet

Figure 5.1: Comparison of code snippets generated with DDT and IRDT

We proceeded to manually inspect the code snippets generated by IRDT, to

analyze them. In many cases the results were reasonably, the code generating a FP

was changed to a little snippet causing the same FP. But in some other cases, we

found two difficulties. We are going to refer to them as snippets weaknesses. The

first one involves the problems mentioned in section 3.4, were a FP becomes a TP

in the snippet. The other one is due to critical changes to the code semantics. An

example of this situation is presented in figure 5.2, where two functions are merged

to create a recursive one.
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stat ic int i s d e l e t e a r r a y = 0 ;
stat ic void f r e e h e l p e r ( int ∗ data ) {

i f ( i s d e l e t e a r r a y )
{

/∗ INCIDENTAL: CWE 561 Dead Code , the code below w i l l never run ∗/
/∗ POTENTIAL FLAW: Dea l l oca te memory us ing d e l e t e [ ] − the source memory
∗ a l l o c a t i o n func t i on may requ i r e a c a l l to f r e e () to d e a l l o c a t e i t ∗/

de l e t e [ ] data ;
}
else
{

f r e e ( data ) ;
}

}
stat ic void a l l o c a n d f r e e ( ) {

int ∗ data = NULL;
/∗ POTENTIAL FLAW: Al l o ca t e memory with a func t i on tha t r e qu i r e s f r e e () ∗/
data = ( int ∗) r e a l l o c ( data , 100∗ s izeof ( int ) ) ;
i s d e l e t e a r r a y = 0 ; /∗ f a l s e ∗/
f r e e h e l p e r ( data ) ;

}

(a) Initial source code

stat ic void f r e e h e l p e r ( int ∗ data ) {
{

de l e t e [ ] data ;
}
data = NULL;
data = ( int ∗) r e a l l o c ( data , 100∗ s izeof ( int ) ) ;
f r e e h e l p e r ( data ) ;

}

(b) Source code reduced by IRDT

Figure 5.2: Severe semantic changes to the source code

In order to quantify these weaknesses, we count how often they occur in the

experiments. The table 5.2 shows the results. For Juliet 1.1, we analyzed 135 source

files producing FPs. Reducing them by IRDT resulted in 126 weaknesses. In 25

cases the problems were due to semantic changes as the ones described before and

101 times the original FP was converted into a TP in the snippet. As we want

to characterize FPs, we would like the snippet to cause a FP too. For Juliet 1.2,

we analyzed 37 FPs and only a few of them generated significant semantic changes

or were converted into TPs. This may be because Juliet 1.1 has many test cases
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consisting in death code that was changed in the 1.2 version.

Reduction SCA Tool Test Data Files analyzed (FP)
Code Snippet Weakness

Semantic Change Converted into TP
IRDT CppCheck Juliet 1.1 135 25 101
IRDT CppCheck Juliet 1.2 37 2 3

Table 5.2: Analysis of IRDT results

In chapter 3, we proposed an extension for DDT and IRDT to preserve the

control flow of the original code. We would like to determine if this approach

decreases the number of snippet weaknesses generated by IRDT. We test it on

Juliet 1.1 and 1.2 and the results are displayed in table 5.3.

Reduction SCA Tool Test Data Files analyzed (FP)
Code Snippet Weakness

Semantic Change Converted into TP
Control Flow IRDT CppCheck Juliet 1.1 135 0 4
Control Flow IRDT CppCheck Juliet 1.2 37 0 0

Table 5.3: Analysis of Control Flow preserved IRDT results

We can see that the number of weaknesses in the snippets generated by IRDT

have notably decreased when the control flow is preserved. For Juliet 1.1, 93% of

the snippets were incorrectly generated, and with this approach just 3% of them

could be considered wrong. For Juliet 1.2 the percentage is reduced from 14% to

0%. The four cases in which the FP has been changed into a TP are situations as

in figure 5.3. We can see that, even thought we tried to force the control flow to

remain as it was, the condition has changed forcing the control flow to change.
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int main (void )
{

int ∗ data = NULL;
data = new int [ 8 ] ;
bool cond i t i on = true ;
cond i t i on = f a l s e ;
i f ( cond i t i on ) {

f r e e ( data ) ; # t h i s i s dead code , but a SCA too l gene ra t e s a warning
}
de l e t e [ ] data ;

}

(a) Initial source code

int main (void )
{

int ∗ data = NULL;
data = new int [ 8 ] ;
bool cond i t i on = true ;
i f ( cond i t i on ) {

f r e e ( data ) ; # the SCA too l gene ra t e s a warning on t h i s l i n e
}
de l e t e [ ] data ;

}

(b) Source code reduced

Figure 5.3: Persisting problem in Preserved Control Flow IRDT reduction, the
original FP is turned into a TP

In terms of the size of the code snippet, preserving the control flow forces

several lines of code to be part of the snippet. As a result, the number of LOCs of

the resulting code will increase. In table 5.4 the LOCs are reported. If we compare

these results with the ones in table 5.2, we can see that this version increases the

length of the snippet between 50% and 100%, but the number of LOC remains low

if we compare them with the original source code.

Reduction SCA Tool Test Data
Source Code Code Snippet

Mean (LOC) SD (LOC) Mean (LOC) SD (LOC)
Control Flow IRDT CppCheck Juliet 1.1 (subset) 125.3 22.6 19.4 3.5
Control Flow IRDT CppCheck Juliet 1.2 (subset) 112.6 22.5 15.0 3.3

Table 5.4: Control Flow preserved IRDT snippets size

To validate these results, we test the preserved control flow IRDT reduction
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using FindBugs as the SCA tool. The next table shows the results we got for the

different open source projects that we used.

Test Data
Source Code Code Snippet

# FP Mean (LOC) SD (LOC) # Weaknesses Mean (LOC) SD (LOC)
JUnit 2 266 61 0 15.5 0.5
Java Dessign Patterns 7 24.7 9.1 0 9.4 3.5
KDG Commons 1 60 — 0 18 —
PMD 1 183 — 1 24 —
KAnalyze 4 200.3 168.5 0 19.5 5.4

Table 5.5: Control Flow preserved IRDT snippets with FindBugs

We can see that the size of the code snippets in terms of LOC remains low and,

for these test sets, there is just one snippet weakness: the system changed the nature

of one warning, it was a FP and became a TP. However, just one FP in a set of 15

FPs was changed to a TP, which corresponds to 6% of them. We believe that, based

on these numbers, the code snippets generated represent a suitable summarization

of the false positives.
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Chapter 6: Related Work

Since the Delta Debugging technique was introduced [11], many publications

focused on automated test case reduction. But, a few papers concentrate on min-

imizing failure-inducing programs. Hierarchical Delta Debugging (HDD) [22] pro-

poses an interesting procedure to use DD in hierarchical data. HDD reduces a

tree-structured input by providing primitives for tree pruning. Every time a node

of the tree is eliminated, its children are also removed, which makes it an efficient

algorithm. A different way to do HDD would be to use another abstract represen-

tation of the source code, besides the ASTs. However, we found these approaches

to be comparable to topformflat, this is why we did not apply it. An open research

question is how similar these techniques are.

Regarding false positives characterization, as far as this author knows, the only

publication that implements a learning system to predict SCA false positives is [4].

This system uses many factors obtained from source code metadata like file age,

revision number, faults in previous releases. But it does not take into consideration

the essence of the source code, that is the code by itself. We believe that, in order to

obtain even better results, the source code must be analyzed. Also, we are suggesting

an approach that, in a future, could help to classify the SCA tools warnings on any

code, even though there is no development history such as its revision number.
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Chapter 7: Conclusion

This thesis has presented different techniques with the aim of summarizing

source code when a false positive is generated by a SCA tool. We introduced different

methods that made the resulting code snippet similar to the original code, but we

drastically reduced their size. These snippets are a simplified version of the same

false positive.

The results suggest that one of the approaches makes the summarization feasi-

ble. Even though it may fail to keep the false positives in the obtained code snippets,

the number of cases in which this occurs is found to be relatively small.

We believe that the technique is promising in terms of future work. As we have

a simplified representation of the source code causing false positives, the next step

is to characterize them. First, the minimized code snippet should be represented in

a language independent manner, in order to compare code structure across different

systems. Then, the abstract models of the false positives should form a catalog, to

help in the learning process. Initially the learning activity can be based on different

features obtained from the code snippets, the SCA tool reports, the type of error

and any other contextual information of the environment where the warning was

generated.
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[8] Wolfgang Wögerer. A survey of static program analysis techniques. Vienna
University of Technology, 2005.

[9] Frank Elberzhager, Jürgen Münch, and Vi Tran Ngoc Nha. A systematic map-
ping study on the combination of static and dynamic quality assurance tech-
niques. Inf. Softw. Technol., 54(1):1–15, January 2012.

47



[10] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, July 1970.

[11] Andreas Zeller. Yesterday, my program worked. today, it does not. why? In
Software EngineeringESEC/FSE99, pages 253–267. Springer, 1999.

[12] Holger Cleve and Andreas Zeller. Finding failure causes through automated
testing. arXiv preprint cs/0012009, 2000.

[13] Andreas Zeller. Automated debugging: Are we close? Computer, 34(11):26–31,
2001.

[14] Daniel S. Wilkerson and Scott McPeak. Delta debugging implementation.
http://delta.stage.tigris.org/. Accessed: 2015-08-02.

[15] John Regehr. Generalizing and criticizing delta debugging. http://blog.

regehr.org/archives/527. Accessed: 2015-08-02.

[16] Lakshmi Manohar Rao Velicheti, Dennis C. Feiock, Manjula Peiris, Rajeev
Raje, and James H. Hill. Towards modeling the behavior of static code anal-
ysis tools. In Proceedings of the 9th Annual Cyber and Information Security
Research Conference, CISR ’14, pages 17–20, New York, NY, USA, 2014. ACM.

[17] National Institute of Standards and Technology. The nist software assurance
reference dataset project. http://samate.nist.gov/SARD/. Accessed: 2015-
08-02.

[18] Center for Assured Software United States National Security Agency. Juliet
test suite v1.1 for c/c++. [Online]. Available: http://samate.nist.gov/

SARD/resources/Juliet_Test_Suite_v1.1_for_C_Cpp_-_UserGuide.pdf,
December 2011.

[19] Center for Assured Software United States National Security Agency. Juliet
test suite v1.2 for c/c++. [Online]. Available: http://samate.nist.gov/

SARD/resources/Juliet_Test_Suite_v1.2_for_C_Cpp_-_UserGuide.pdf,
May 2013.
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