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Abstract: This paper is motivated by the study of the performance of distributed algo-
rithms. The method presented here uses a representation of the algorithm as a network
of state-transition graphs. The dynamic behavior of the algorithm is analyzed under
Markovian assumptions. The state space explosion is handled by a decomposition tech-

nique. The generator of the chain is derived using tensor algebra operators.



1. Introduction

This work is motivated by the study of the performance of distributed algorithms.
In the literature, there are many propositions for solving in a distributed way problems
like mutual exclusion, termination detection, blocking detection or prevention, and infor-
mation diffusion [Lamp78], [MeMu79], [RiAg81], [CaRo83|, [DFVG83], [Rayn85|,
[ChLa85]. These algorithms should be examined for their correctness and compared for
their performance. Measures like the number of message exchanges or whether or not
the timestamp drift is bounded, can sometimes be derived from a rather simple analysis
of the algorithm. In contrast, measures like response time, resource utilization and
blocking probability have to take into account various complex timing patterns. These
algorithms are characterized by two or more concurrent computations and synchroniza-
tion constraints of various forms. To compare these algorithms, it is absolutely necessary
to use the same type of assumptions for each distributed algorithm and a unified
approach is essential to handle this comparison. Assuming a formal description of the
algorithm is available in an algorithmic language, a simple way to keep a unified

approach is to:

- exclude any behavior reduction,

- keep track of any relevant processes synchronization variables,

- have a uniform approach in terms of the random time distributions in the system.

This set of constraints forces the model to be very detailed, with a complex state space,
and so is time consuming to solve. Once we have decided to work on a level of descrip-
tion very close to the application, one approach is to find the appropriate formalism and
algorithms to handle this description. Indeed, any technique whose purpose is to
describe parallelism - whether it is to achieve correctness proofs or to compute perfor-
mance measures - has to be efficient regarding the rapid growth of the state space. An
alternative to comparing these algorithms is to exhibit a set of rules that allows a sys-
tematic reduction of the model (in terms of the number of states) and leaves the perfor-

mance measures invariant.

In this paper, a solution belonging to the first kind of approach is proposed. We
present a graphical notation for describing the model that reflects naturally the processes
composing the distributed algorithm. This representation leads to the identification of

the synchronization constraints and to the decomposition of the transition rates of the
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related Markov model. Then Kronecker algebra is used to express the generator matrix
of the Markov chain. This formulation is used for a more efficient computation of the

performance measures.

The model is based on a state-transition graph description with timing information.
A process in the distributed algorithm is represented by one or more state-transition
graphs, which are related to each other. Typically, a node (also called a state) of one
graph represents a specific state of process. An event is the transition from one state to
another of one or more graphs. An event is represented by a zero-time transition:
between events, the process spends time within states. This model is interpreted on a
continuous time scale (a forthcoming paper will develop the same method on a discrete
time scale). As a single graph represents the state of one process, additional information

1s used to express synchronization constraints among the processes.

The next example is a simple instance that shows situations that arise when model-
ling distributed algorithms [Plat85]. In Figure 1, we see three incomplete graphs that
are intended to represent the behavior of a distributed algorithm. Graphs A, and A,
have four states and are identical, while A; has only two states. Figure 1 represents
only the states, without any transition rules. These transition rules will be added, step
by step, through Figures 2 to 4. The global state space is the cross-product
[1,4])([1,4])([1,2].(**)

In Figure 2, directed edges with strictly positive rates a;, a; and a3 are added,
meaning that these particular transitions may fire independently with the corresponding
rate. Notice that if all the transitions are of this type, each graph would be stochasti-

cally independent of the others, and thus could be studied separately.

In Figure 3, new directed edges appear with labels of the type: ¢ 1(F), where ¢ is a
transition rate and 1(E) is the characteristic function of a predicate E that has its argu-
ments in the global state space .The function 1(E) has the value 1 if the predicate is
true and O otherwise. The current state at instant ¢ is an argument of the predicate.
The transition takes place between times ¢ and t+dt with rate ¢ 1(£). This kind of
dependency will be referred to as a probabilistic dependency among graphs and can be

used 1n various situations:

(**) [1,4] represents the integer mterval {1,2,3,4}.
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- edges labeled with &, 1(4s=1) and b, 1(A4#1) are such that transition graph A,

has a different dynamic behavior according to the current state of A .

- the edge labeled with b, 1(A 3=1) models a blocking situation: A, can only make
the transition 2—3 if A is in state 1. In this situation, it is important to have a
careful interpretation of the model. As time proceeds, a predicate value may
change. If it changes from O to 1, it means that the blocked activity is now allowed

to start. If it changes from 1 to 0, it means that the current activity is stopped.

More generally, we may have transition rates that are any function of a set of

parameters and the current global state.

In Figure 4, new labels of the type ¢ .(s), or (s), or (s) p appear, where ¢ is still a
transition rate. A predicate whose argument is the current global state space may also
appear in ¢ 1(E)(s). The symbol (s) stands for simultaneous, and all the transitions
that have the symbol (s;) with the same subscript ¢ are involved in a simultaneous tran-
sition. For example, in transition (s;) graphs A, and A, are involved, the starting state
must be such that (4,=3, A,=3), and they will proceed to transition 3—4 at the same
instant, with rate ¢ . This type of transition is called a concurrent-firing transition. Syn-
chronization (s,) is slightly more complex: it can take place only from a starting state
where (A =4, A,—~4, A;=2). The transition of A, from 2 to 1 fires the simultaneous
transitions of A; and A,. However, the destination of A, depends on a routing probabil-
ity p. We adopt the convention that firing rates precede the symbol (s), and routing
probabilities follow this sign. Note that for graph A, there is a so-called superposition of
different types of transitions out of state 2. This is denoted by the compound rate
d (sg) + bs: The interaction involves a simultaneous transition with rate d for A, A,
and A, If predicate (A ;=4 and A,=4) is not true, only the transition with rate b, can
take place, involving only A,. If this predicate is true, both transitions may take place,
competing for the first place, and the first transition will disable the other. This type of
transition is said to bear a mized dependency.

In this example, we have seen the types of of dependencies that may occur:

(a) The transition is condition-free and fires at a fixed rate, or the transition has a rate

and destination dependent on the global state space.

(b) The transition is bounded by a simultaneity constraint: the starting state of all the

graphs involved in the dependency is defined by the set of arcs where the same
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label (s) appear. A unique transition rate is dedicated to the transition. This rate

and each individual destination can also be dependent on the global state.

(¢c) Superpositions of the preceding dependencies may arise as it was seen in the exam-

ple for (s4).

These types of behavior can be identified easily in the framework of queuing networks:
For example, two queues running in parallel, with independent inputs but service rates
depending on the global state, is a case of probabilistic dependency between those two
queues (Figure 5). In this example, compound rates M and N take into account proba-
bilistic dependencies. On the other hand, if we consider two queues in tandem (Figure
6), concurrent-firing transitions occur at each termination of a service, which corresponds
to an arrival for the other server. We have simultaneous jumps (s,),...,(sy ), which are

triggered by an end of service from server 1 or 2.

Modelling examples of distributed algorithms using this method can be found in
[Plat84] and [PITt86]. The goal of this paper is not to study and compare a class of algo-
rithms, but to state carefully the theoretical basis of this approach. The behavior of the
stochastic graph network is associated with a stochastic process (the designation net-
work refers to the fact that synchronization constraints do exist between elementary

graphs). This process clearly has the Markovian property since we assume that:
- any period of time has an exponential distribution,
- the constraints refer only to the current state and not the history of the process.

The Markov chain has several components, each representing the dynamic behavior of
one state-transition graph. Due to synchronization constraints among components, it
may be that none have a Markovian behavior in isolation. These components might
have a finite or infinite discrete state space. The steady state behavior of the chain

allows us to derive performance measures of interest.

Section 2 gives a formal definition for the different types of dependency between
components of a vectorial Markov chain on continuous time and derive a basic decompo-
sition theorem. Then section 3 gives the necessary background on Kronecker algebra to
proceed. Finally, Section 4 shows how these formal dependencies can be translated in
terms of building rules to derive the matrix of the Markov chain. The appendix applies

the method to the examples of this introduction.
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2. Dependencies between the components of a Markov chain

The idea in the example of Figures 1-4 was to build the model step by step, accord-
ing to the different types of interactions that might occur among the model components.
The result of this procedure is a graphic representation of a Markov chain as a network
of stochastic graphs. To develop a mathematical definition of the interactions, we will
work with the vectorial Markov chain representing the dynamic behavior of the network,
rather than on the graph model. Considering the size of the problem, the first difficulty
1s to derive the transition matrix of this chain: As in any model of that type, the state
space grows exponentially in terms of the degree of parallelism that is represented here
by the number of components, which is also the number of elementary graphs. To solve
this problem, the method presented here proposes to decompose the state space of the
Markov chain so that each subspace can be identified by the single dependency it con-

tains. This section defines the context in which such decompositions are possible.

Let us introduce some notations. 7 = (Z;) is the homogeneous Markov chain

tc Rt

with ¢ components, ¢ >1, denoted by
Zy = (X4, oo, Xo )

The set of reachable states of component X;, ¢€[l,c], is E;, which is a finite or numer-
able space. Its cardinality is denoted p;, p; €[1,+00]. The chain Z is studied on the
cross-product state space £ = E X - -+ XE,. The set R denotes the set of reachable
states for Z. In some cases R can be considerably smaller than E. But still, the idea is
to keep the cross-product structure of E (which is the structure of independence) and
attempt to make use of it instead of working on R, which has lost the regular product
form structure of E. The set R is the irreducibility class we are interested in for perfor-

mance evaluation. We assume that R is known.

The state space E 1s decomposed using canonical projections. For a subset
I ={(iy, ..., 4)of [Lie], proj; is the canonical projection of E on Ey = E; X * -~ XE,-).
Each set E; is ordered and E possesses the corresponding lexicographical ordering. The
set proj; (R ) is denoted R;. T is the complement of I in [1,¢] and |/ | is the number of
elements in /. If # =(zy,...,2)€E, we denote by proji(z) =2 = (2, ..., %)

and for the same subset I, Z; = (X; .,X,~]). E; 1s the cross-product space

vt

B X+ X E;]. Given two disjoint subsets I and K of [1,¢], and given z; and yy, we

denote {z;,yx } the vector z=(z;);jeux With z;=2; if ¢ €I and z=y; if 1 € K. We
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emphasize that in any subvector, the ordering of components should be compatible with

the natural ordering of [L,¢].

If I is a subset of [L,c] and T is a subspace of R;, we define

F(T):{(x,x’ JERXE | proji(z) €T and =z sz }

F(T) is the larger transition subspace such that for components with subscripts in I,
the starting states of the transitions are restricted to 7 and the diagonal elements (of

the form (2,2 )) have been withdrawn.

The matrix that contains all transition rates is called the generator and is denoted

Qz. We assume in the following that all the referenced limits exist and are denoted by:

(V(t,t' )e RT ) with ¢t <t' and (V(y,y' )ERXE)
P(Zy =y' | Z, =y)

3 — ! 3 !
Jim, T =Qz(yy') i yFy

. 1—P(Z/ :y, , Zt :y) .
Jim t T =Qz(yy') i y=y'

P is the corresponding probability measure and the initial probability distribution is
such that: (Vy' ¢ R) (Vy€R) P(Zy=y')=0 and @Qz(y,y' )=0. Qz(y' ,¥y)
does not exist as the conditioning state is not reachable, but we arbitrarily set those ele-
ments to 0. @ is a square matrix of dimension | E |.

In the next sections, we will define local properties of the chain based on the transi-

tion rates.

2.1. The probabilistic dependency

Probabilistic dependencies correspond to the intuitive idea presented in case (a) of
the example in the introduction. In the sections that follow, ¢ is used for a state that is
fixed within the dependency, as y is a varying state. We want to emphasize that under
the hypothesis of stochastic independence of all exponential variables, two periods end

simultaneously with probability zero.

Definition 2.1: Let I = {¢} be a single element subset of [1,c], K another subset of
[L,c| that does not contain i and T; a nonempty subspace of E;. The component X; 1is

under the probabilistic dependency of Z, on T; if and only +f

(V(t,t' Y€ R* ) with t <t' and (V(y,y' )€ F(T}))



P(Ziv =9" | Zwks = vk )

lim ; =
th >t t’ —t

t! -t £ St t! -t

In this definition, the dependency relationship between X; and the rest of the
chain has been identified: only components Zy have an influence on the behavior of X;
and this dependency is expressed via the transition rate. This property holds whenever
the view of the chain restricted to the subspace of transitions in F(T;). The assumption
of stochastic independence of all the exponential delays, makes impossible any simultane-
ous jump of X; and other components, when the starting state of X; is T;, which

explains the exclusive predicates 1( yy=y;' ) and 1( y;=y;' ).

The restriction (y,y' ) € F(T;) excludes diagonal elements, which require a different
formula. To avoid heavier notations, those are omitted. They can be systematically

deduced from the fact that the sum of each row of @, is zero.

If the subset K is empty, component X; has a local independence on subspace T;.
Under the assumptions of this definition, for any subspace T;' CT;, X; is also under the
probabilistic influence of Zy on T;' . As our goal is to decompose the transition space,
and to achieve this with a minimum number of operations, we try to produce subspaces
with a property of mazimality. As we can notice in many examples, such a decomposi-
tion is not unique.

A probabilistic influence v will be represented by the triple (I,—={:,}, K, T;q) and the
set of coefficients:

(V(y.y" )EF(T,))

P()(iTt’ = 3/.',[' | 21K ¢ = YUK, )

c(y,y' )= lim XWyr =y ) 2.1

t! -t ¢ ¢ ¥ v
so that the global transition rate can be expressed:

P(Zt’ =y thZI'/)

! ; 1 1.1
(V(y,y' )EF(T;)) Jim, Y 2.1
, ) P( ZT,rt’ = quI ’ Zt =9 ) ,
=cqly,y' )+ Lim T X1y =y )

Component ¢, is called the moving component of this dependency. This summation

involving exclusive predicate functions is the type of decomposition that is searched for



- 10 -

in the next two sections. The result should lead to a decomposition of the transition

rates of Q7 into sums where each factor is clearly identified.

2.2. The concurrent-firing dependency

We now define the theoretical background for the type of dependency referred to as
type (b) in the introduction, where two groups of components can be defined. The first
group is composed of those components involved in the simultaneous jump. These com-
ponents are still called moving components. Furthermore, the transition probabilities
and each individual destination are dependent on the current state of another group of
components called the interacting components. These transition probabilities and desti-
nations are also naturally dependent on the state of the moving components as we are
under Markovian assumptions. Thus, by definition, interacting components are non-

moving components. This can be formalized as follows.

Definition 2.2 : Let I and K be two disjoint subsets of [1,¢], |I | >1, Ty={z} a sin-
gleton of Ry and p a mapping from | (T; XEx )NRuyx |XE; to R . Then we say the
components Z; are bounded by a concurrent-firing dependency on T; under the proba-

bilistic influence of Zy and driven by the mapping p if and only if

(¢) (M(y,y' YEF(Ty))
P(Z,::y’ |Zt Zy)

lim ; =
t! >t t’ —t

. P Zrp=y' |2, =y)
p(zru 0’ )X W yr=y' )+ tl,lqlﬂ ' P

X 1(y' =y )

() (VJCT) JHEI JH#D (V(y,y' )€ F(proj;(T;)) such that (Vjel-J

. P(Zy=y' |2, =y) . P(Zzp=y7' | Z =y)
lim = lim
t! —t t’ A t! —t tl —t

provided that mapping p has the following property: If we denote f;(yx) the set

X Uy,' =y;)

{e/" € By | 2" Fa;,and p(z;,yx 31" )540}, then we require that all elements of f;(yx)
are such that (Vi € I )  proyg; (z;' )5%prog; (2r).

Z; are the moving components and Z; the interacting ones. This definition states that
the simultaneous transition is the only way for Z; to jump out of T; = {a;}. No simul-

taneous jump may occur involving both X; and Xy on Ty. Case (¢) represents the fact

y; 7T,
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that the condition on the starting state of this concurrent-firing dependency is fulfilled
with y;=a;, as (y,y' ) € F(T;). This notion of enforced simultaneity is represented by
the single transition rate p (z;,yx,y;' ). This transition rate is different from O only when
all components are moving, which is expressed by the hypothesis on all elements in
frlg ) (Vi €I') progi(z' )s#proji(z;). fr(yx) is the set of possible destinations of
this simultaneous jump under the condition Zx =yx . In case (i), either the simultaneous
jump can take place, or none of the components in I can move. In case (# ), only part of
the components (namely in J) are ready for the simultaneous jump and those cannot
move at this instant. A parametric influence exists in the sense that the transition rate
mapping p only depends on z;, y¢ and y;' , meaning that we have identified the
interacting components Zy . The case where I has a single element is excluded as it
would turn a concurrent-firing dependency into a simple probabilistic one and we want
these designations to be exclusive. There might be concurrent-firing dependencies where
the subset K is empty and the parametric influence disappears leaving only the syn-

chronization constraint. A particular case occurs when I=@. In this case we assume

. P(Zry =y | Z=y)
lim ;
t! -t t' —t

== 0. This holds for the rest of the paper.

In this definition, T is restricted to a singleton as complex starting state set can be
decomposed as a collection of those elementary concurrent-firing dependencies. Each

concurrent-firing dependency X is defined by the 5-tuple (InKxTr,pxf1,) and a set of

coefficients cy\(y,y’ ) such that

(V(y.y' )eF(T1))

ex(y,y' )= > p(zr,9x 91, )X Uyr," ==, )Xl(%_)\:yfx' ) 2.2(i)

!
(S
o1, €11,luc)

and (VJC 1)) J#£I, JH#B (V(y,y' )€ F(proj;(Tr))) such that (Vjel,-J ) y;54g;
Ny’ ) =0 2.2(3)

Under the conditions of the theorem and with H, being I or J,, respectively, we have

. P(Zt':y' |Zt:y)
lim ;
t! -t t’ —t
, . P(Zﬁx,t’ :?/17; | Z =y)
=elyy’ )+ lim, " —t

which is again the summation form we are looking for.

221

XWyn,=yn,' )
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2.3. The mixed dependency

If we summarize the preceding discussion, a probabilistic dependency is related to a
dependency via transition rates for a single component and the concurrent-firing depen-
dency is related to a synchronization constraint. Nevertheless, there might be cases
where a stochastic dependency and a concurrent-firing dependency are superimposed as
we have seen in the introductory example. Multiple superpositions of this type can be

reduced to a single one by increasing the sets I and K .

Definition 2.3: Let I and K be two disjoint subsets of [l,c] with |I|>1, I, a
nonempty subset of I, T;={z;} a singleton of R, and p a mapping from
[(T; XExg )NRyx |XEr to RY . Then we say the components Z; are bounded by a mizved
dependency on T; under the probabilistic influence of Zyx and driven by the mapping p if
and only if

(1) (My.y' )e F(Tr))
P(Zp=y' | Z=y)

Iim

=p (2 ,9c,9" ) X yr=w' )

th ot t! -t
) P(Xiv=v'" | Zik =Yk ) )
+ lim = ‘ X 1(i€lo) X Y mvu' )x I Wm=u')
t! st t' —t k £i
. PlZryo=y' | Zi=y)
+ lim — T 1y =y )

() (VJCT) J£AI JH#D (V(y,y' )€ F(proj;(T;)) such that (Vjel-J)

P(Zy=y' |Z =y)

lim =

¢l St ¢! —t
P(Zyp=y;' |2, =y)
1 ’ I
tlllgt tl —_t X 1( Y _yJ)
. PXia=v" | Zkna=y )
+ tlllmt ( t,n t t|, _I;UK,n 1 UK ) X 1( ZEIoﬂJ ) % 1( y,-7éy.-' ) < H 1 ( ykzyk' )

ki
provided that mapping p has the following property: If we denote f;(yx) the set

{a;'" € E; | z;' 54%;,and p (v1,yx ,3;" )40}, then we require that all elements of f;(yx)
are such that (Vi € I') proyg; (z;' )#proj; (z7).

This definition essentially says that, from the starting state 2; exactly one of the follow-
ing may occur: a simultaneous jump, a single jump of one component in Iy, or any jump
that does not involve components in I. The superposition in the mixed dependency

appears in the summation of two types of coefficients: a single coeflicient for the

Y 745
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synchronized event, which involve all components in I, or local rates for the probabilistic
dependencies, which involves a single component in I, Case (¢) reflects the fact that the
starting condition z;=y; is satisfied, from which transitions may occur for the simul-
taneous jump or any single jump of components in I,. In case (i), the starting condi-
tion is not fulfilled and the components in (I-Ig)NJ are blocked, as those in I,NJ can

move according to their probabilistic dependency. The diagonal elements are still omit-
ted.
Each mixed dependency ¢ is defined by the 6-tuple (I¢,K¢,IO¢, T; p ¢,f,¢) and a set

of coefficients ¢ 4(y ,y' ) such that

(V' )eF(T1))

ey’ )= X el u) )XWy, =o)Xy =yr
w1y €1 i)

') 23(3)

$

. P(Xie =y | Zwk,=ywk )
+ ), tllxrnt PYR Wy Ay )X T W =w' )
— k?éj

iel,

and (VJCI,) JHAIy, JHAD (V(y,y' )€ F(projs;(Tr)) such that (VjEIyJ ) y;5;

c¢(y,y' )= 2'3(ii)
. P(Xe =v" | Zk,=ywk )
> lim t it : Wy v’ )X 1] Ume=w" )
ielga |V 7 - kA5

So, we can write the following summation formula, with H, being I4 or J, respectively

P(Zt, =y' |Zt:y)

(V(y,y' )eF(Tq,)) Jim Yy 2.3.1
, o Pl =) | 4 =yv) ,
=cyy,y’ )+ lim T X1(yr ~un, )

As is clear from these definitions, probabilistic, concurrent-firing and mixed dependencies
show an increasing complexity. As a matter of fact, a concurrent-firing dependency
could have been a particular case of mixed dependency: but the designation mixed is
used when it is neither a concurrent-firing dependency nor a probabilistic dependency, as

we assume | | >1 and I,70.

In the area of distributed algorithm modelling , this method will be tractable if the

model has only a few concurrent-firing and a very few mixed dependencies or if they
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show some regularities such as linearity (as in the queuing examples in the introduction).
Moreover, we will restrict ourselves to these three definitions. It is clear that they do not
cover all dependencies that may arise among components of a Markov chain. We have
defined a sort of pure probabilistic dependency and a pure concurrent-firing dependency
and started to consider one compound structure. It is possible to think of more complex
patterns, such as an embedded scheme of synchronization constraints. It is not clear
whether such situations deserve another definition or should be seen as a recursive appli-
cation of the same basic rules. This will be the subject of future work. For the time
being, we restrict ourselves to problems where these three basic rules lead to an exhaus-
tive analysis of the stochastic behavior of each component X; of the chain. The appen-

dix shows how this method applies to each of the examples of the introduction.

2.4. Partitioning of the state space

The line of thought is to isolate the parts of the Markov chain having the same
properties. Following the idea of the previous sections, isolation is made using a parti-
tion of the state space for each component or even group of components when they can-

not be separated by a synchronization constraint. The partition of E; is such that

- if X; is under a probabilistic dependency from Zx on T;, then T; is denoted T, * as

L

the m;-th member of this partition,
- if X; is a moving component within a concurrent-firing or mixed dependency = on

T;, then T,-m’ =proj; (17 ) is a member of this partition.

The sets T, cannot be overlapping as the Definitions 2.1, 2.2 and 2.3 are mutually
exclusive, so one component can only be involved in one dependency on a subspace T} *.
The set of (T;m')mle[l,,‘] covers E;, as we assumed a problem that shows only these three

types of dependencies. A partition of the global state space is obtained with all the
cross-products subspaces
T =1£I T,-m' m=(miy,...,m.) and 1<m; <y
i=1
T5 1s called a basic paving block of this problem. This decomposition, which is not
unique, leads to the decomposition of the global transition rates using these partial views
corresponding to dependencies. The interest of the whole technique lies in the belief that

it will enable us to study the behavior of Z by looking at small groups of components
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over subspaces of transitions where their stochastic properties can be clearly identified

and practically handled.

2.5. The decomposition theorem

From an exhaustive analysis of the chain, we withdraw IIT", the set of all probabilis-
tic dependencies, ITA, the set of all concurrent-firing dependencies and Il®, the set of all
mixed dependencies. The next definition helps to classify these dependencies according to

the paving blocks.

Definition 2.5: A basic paving block T and a dependency = defined on Ty ={z; } are
consistent if and only if projr (T) = Ti . If this dependency m and the paving block T
are inconsistent, we define the biggest set JCI, that has the property
proj; (T; )=proj;(T5), as being the trace of m on Ty . If J =0, © is saed to be totally

inconsistent with Ty . Otherwise w is said to be partially consistent with T .

The partial consistency is related to cases (ii) of Definitions 2.1 and 2.2, and con-
sistency to case (i). We notice that the notion of consistency is only related to moving
components. Considering any element y in R, there exists a unique paving block T
that contains y. Related to T, I', A, A' , ® and & are respectively the list of con-
sistent probabilistic dependencies, the lists of the consistent and partially consistent
concurrent-firing dependencies and the lists of the consistent and partially consistent
mixed dependencies. These dependencies define respectively the sets of components
(I )sers (Ihnen (Iahen s (Lg)scar (J4)ger (where J is the trace as defined in Definition
2.5), which altogether form a partition of [1,¢]. This property is important for the fol-

lowing. The next theorem gives a decomposition formula valid for any paving block T3 .

Theorem 2.1: Given the dependencies IIT, TIA, and II® from an exhaustive analysis of
the chain Z, given a paving block T, and y in T, NR, and the set of dependenciesT, A,
A, @ and ¥ defined above, we have:

(Vy' €E) w5y Qzlyy' )= 2.5

Yo my' )+ Y ey )+ X enlyy' )+ Y vy’ )+ D cwa)

~el AEA N oeN $cd ¢ e
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where the coefficients c., cy,cy cg and cy are those defined, for each dependency, in

equations 2.1, 2.2 (i),2.2 (ii), 2.3 (i) and 2.8 (i) respectively.

This proof is based on an iterative use of equations 2.1.1, 2.2.1 and 2.3.1. The use of
these coeflicients is consistent with the definitions as
(Vig[te]) if (y,9' )e(TzNR)XE and ysy' , then (y,y’ ) € F(Ty) for all con-
sistent dependencies 7 and (y,y’ ) € F(T; ) for any partially consistent dependency

whose trace on Ty is J,. Considering the null values of some of these coefficients, equa-

tion 2.5 becomes

Qe(yy' ) =23 ey’ ) + 3 sy’ )+ X colyy' )+ Y cyp(v,y')26

¥er AEA ¢ ¢ €
The proof must derive a sum decomposition of a global transition rate, according to the

local dependencies.

Proof: We assume for instance that T' is nonempty and for any vy €T we have from

equation 2.1.1

(Vye TznR) (Vy' €E) yH#y' 2.7
f ) . P(Zl_,rt’ = yl_,[l | Zi=y ) ,
Qz(yy' ) =cqlyy' )+ lim Y XUyr,=vr, )

To start with an inductive argument, we assume we have a subset of dependencies A

defined by
A = TUAUPUP,  with ToCT, AjCA, $,CP® and @) C¥

J is the set of moving components for all dependencies of A. We assume we have the

following equality for all ye T, NR, y' € E and y 4y’

. P(Zi r=y7 | Zi=y )
Qzlyy' )=2 colyy’ )+ lim ¢ X1(y;=y;" ) 2.8

A —t t’ —t
Then for any dependency v which is not in A, we have

P(Zr o =) | Zi=y )

Qz(y.y' )= cfy,y' )+ Jim, y X Wy =y ) 29

On the other hand we have a decomposition of the residual term in 2.8

P(Z;, =y5' Z, ==y
lim ( Tt Y7 | ¢ ) 2.10
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P(ZJ,t’ =y’ ,Zj,tl =3/7' | 2y =y )

= X lim 7
v, €g, 't t’ -t

If we call H the set of moving components involved in the set of dependencies

A" = AU{v}, then H=JUI, and we can apply 2.9 to each term of sum 2.10, yielding

lim ’ , 2.11
t! -t t' -t
. P( ZJ,t’ =yJ, ) Zﬁ = yﬁ’ I Zt =Y )
- Z c,,(y,y’ )+ tl’HEt ;f’ _t X l(yluzylu, )

vy’ €B;
In this sum, there is only one term where ¢, (y,y' ) is not null (namely the term
corresponding to the nonzero value of the function 1(y; =97 ' ), knowing that JCI,),

and we have

P(Z I y_, Z, =Yy
fim . | %=y ) 2.12
t! ot t' -t
. P( ZJ,t’ =Y; , Zﬁtl = 2/11’ | Zy=y )
=cfy,y' )+ ) }}Qt ,t’ ~ X Wy =y )

v, €E;

At this point, we can process the Y, so that from 2.8 and 2.12, and knowing that
cfy,9" ) =Uwr=ys' IXely,y') and Uy =y ) )XUy,=y' )= Uyg=ys' ), we

deduce

. Py =yg' | Zi=y )
QZ(y ! )= E ca(y,y’ )+ lim .t HI Xl(yyzlyy’ )213
sen’ t! ot t! —t

With this iterative procedure, by scanning all dependencies in I', A, A’ , ® and &' , we
reach the point where the set A is reduced to an empty set, as the sets (I.)rers (Ia)ren

(Iahen s (Ig)geas (Jp)pcer form a partition of [1,¢]. This concludes the proof.

This theorem closes the section dedicated to the stochastic analysis of the chain.
We know that within the framework of this model, we can obtain a decomposition of
the global transition rates into a sum of transition rates, which are of a more elementary
type. Intuitively, cuts are made according to local stochastic independence. The following
will focus on the other aspect, namely developing matrix tools that correspond to this
stochastic analysis. For this, the next section gives a small introduction to the matrix

tools necessary for further work.



- 18 -

3. Elements of Kronecker algebra and their extensions

This section states the definitions and gives some information on the Kronecker
algebra utilization [Maza83]. Let M(n) be the set of square matrices of size n with ele-
ments in R . On the one hand, a matrix can be represented by A = (a (¢,5) )i<i j<n-
On the other hand, a matrix in M (np ) can be represented by the set of its terms, accord-

ing to their positions in the n? blocks in M (p):

CEM(np) C = (C (T?]_) )T,J_'GL (n,p)
with L(n,p)=1{7 | T =(ii) 1<i;<n, 1<i,<p}

The block coordinate of element (7,7) is (¢,,7;), and (ig,755) is its situation within this

block.  With a direct generalization procedure, the elements of matrix

ceM(pips - p.) are referenced as follows:
C = (c (V.0 ) 5eL (v pnp,)
with L(pyeope)=1{i | ¢ = (it )and (Vk €[l,c]) 1< 4 < pp }

L(py,...,». ) has the lexicographical ordering. We denote p = (py,...,p.), and for
i€L (p) define the number

i=1
s(7) is the cardinality of L (7). 7% is the vector obtained from ¢ by removing the 4

component. L (7) is the set of all 4 and s(¢ ) is the cardinality of L (7). We define

also
_ k-1 ¢
r(@)=1][ % and &(¢)= i
j=1 J=k+1

where any empty product is equal to 1. Id, is the identity matrix in M (p ).

Definition 3.1: The Kronecker product and sum of matriz A in M(n) and B in M(p) are
matrices C and D in M(np) defined by:

C=A & B
with ¢ (7,1_) = a(iy,f1)b (52,]'2) and T = (2'1,1'2) , ]— = (1'1,1'2)

and DZA@BZA@Idp-i—Id,L@B

with d(7,7)=a(iy,i1) o 15551 and i5=7j,
with  d(7,5)=b(ig,70) o ¢1=4, and iy,
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with d(ZT;J_')=—a(51:f1)“b(iz,f2) of d1=31 and ig=j,
with d(1,7)=0 otherwise

As an example consider,

a(1,1) a(1,2) b(1,1) b(1,2)
4= 1401 a(22) B = 1421 5(22)
Then
a(1,1)b(1,1) a(1,1)b(1,2) a(1,2)6 (1,1) a(1,2)b(1,2
AQ B~ a(1,1)6(2,1) a(1,1)6(2,2) a(1,2)b(2,1) a(1,2)b(2.2
a (2,106 (1,1) a(2,1)b(1,2) a(2,2)b(1,1) a(2,2)b (1,2
a(2,1)b (2,1} a(2,1)6(2,2) a(2,2)b(2,1) a(2,2)b(2,2
and
a(1,1)+6(1,1) b (1,2 a(1,2) 0
A®B— b (2,1 a(1,1)+5(2,2) 0 a(1,2
= a(2,1 0 a(2,2)+5 (1,1) b(1,2
0 a(2,1) b(2,1) a(2,2)+56(2,2)

Notice the embedded block structure of the result A & B and A @ B. It is clear from

this last definition that the operators @ and @ are not commutative.

It can be easily shown that if X is a Markov chain (indexed by a discrete time
scale) with transition matrix A, and Y is another Markov chain independent from the
first with transition matrix B, the vector (X,Y) has the transition matrix A ® B.
Similarly, if X is a Markov chain indexed by a continuous time scale, with generator
matrix A, and Y is another Markov chain independent from the first one with generator
matrix B, the vector (X,Y) has the generator matrix A @ B. We see that stochastic
independence has a straightforward representation in terms of Kronecker product and
sum. Note that in the first case the Kronecker product is the natural operator, while in
the second it is the Kronecker sum. Nevertheless, we restrict ourselves to the product
operator. This is possible because the sum, which we exclude, can be expressed as pro-

ducts (as in the definition). Complementary information can be found in [Davi81] con-

cerning Kronecker algebra properties.

The classical Kronecker product has simple matrices as arguments. We generalize
it for vector arguments. Given (A4 ")15,-9,, p matrices in M (n), we denote A the vector

of matrices A = (A"');<;<,, which is considered as an element of M (n ).
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Definition 3.2 : Given the vectors of matrices A — (A )1<i<p, where A* € M(n), and
B = (B*)i<i<n, where B* € M(p), the generalized Kronecker product of A and B is the
matrice O in M (np) defined by:

C=AQB
with c (Z_,J_) = a'g(il;jl) . b'l(iz;h) if T = ({1,82) 7 =(J1,J2)
and A" =(a'(k,0) h<ki<n BY = (b(k,l) Ji<ki<p
For example, if n = p =2
a (1,101 (1,1) a,1)6}(1,2) @ }(1,2)51(1,1) a’(1,2)8(1,2)
IQ B — a2$1,1)61(2,1) o X1,1)bY(2,2) a%(1,2)6%2,1) a2£1,2)bl(2,2)
a'2,1)6%(1,1) a'(2,1)6%1,2) «%(2,2)b%(1,1) «2,2)57%(1,2)
a?(2,1)b%2,1) a%(2,1)6%2,2) a%2,2)b%2,1) a?%(2,2)b2%(2,2)

The terms in the first row of this matrix come from A! and B', those of the second row
from A% and B!, those of the third from A! and B2, these of the fourth from A2 and B2
If all the matrices A* are equal to A and all the matrices B' are equal to B, then
A @ B=A ® B. By an extension of notation, if 4 is a matrix in M(n), A is the
vector (A )i<i<, whose components are all equal to A, and B = (B');<;<,, then we

write:
AR B=AQB
For A in M(n), we denote /; (A ) the matrix of the same dimension whose i-th row
is equal to the 7-th row of A, the other terms being zero. Notice that for every
matrix A in M(n)and B in M(p) the following equality holds:

LAY R ;(B)=§kA & B) with 1 =(i,5)
This property can be generalized as follows: If A € M(n)? and B € M(p )" then

I@B=%YLAY)Q (B
i=17=1

This equality is very useful to reduce formulas where generalized Kronecker products

occur into expressions with classical Kronecker products only. A particular case is:

IQ B=YY4Q 1,(B)
i=1

AR B=Y0,A)& B
i=1

These identities are often used to simplify the generalized Kronecker sums. They can
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also help in defining generalized Kronecker operations with more than two arguments, as

we will see in the next definitions.

It is easy to check that if A and B are vectors of transition matrices, A & B is
also a transition matrix, and if A and B are vectors of stochastic generators,
A Q1Id, + Id, @ B is also a stochastic generator. We already noticed the possible use
of classical Kronecker algebra for vector Markov chains whose components are indepen-
dent. The generalized operations have the same use when the components are not
independent. Precisely, if vector (4° )iepn,p) Tepresents the stochastic behavior of process
X conditioned on the state of process Y, whose state space is [1,p], this vector is an

operand to express the generator matrix of (X,Y).

To generalize these Kronecker operations to more than two operands, the vectors
should be essentially of the required dimension, which is stated in the following

definition.

Definition 3.3: If (A, )n li,e] 18 a sequence of vector of matrices such that

- each component of A,, is a square matriz of dimension p,, ,

- the number of components of A,, s s, (7)) withp = (p,, . . ., p, ) and these components
are indexed in L,, (7).

-the components of A,, are denoted (A,E),;eL 7 ond Al = (a,’,i_(z',j)),-,je[l,,,m]

then C = cl A, 1s defined by:

m=

C= % &  LAr) o (ViFeL®) (@) =TI o (in.in)
TeL (7) "= m=1

From simple algebraic arguments, we can show the the Kronecker product of vectors of

transition matrices is a transition matrix.
For the sake of completeness, the generalized Kronecker sum is defined as

D = Xc] 14, 5K A, R Id, ) Where r, (p') and ¢, (p) have been defined at the begin-

m =1

ning of this section. If each A,, is a vector of stochastic generators, then D is a stochas-

tic generator.

This last definition concludes the technical introduction on Kronecker products.

The important thing is to clarify the relationship between these operators and the
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identified stochastic behaviors of a vector Markov chain, which is the goal of the follow-

ing section.

4. Structure of the generator matrix of a vector Markov chain

We resume the discussion of section 2: the first analysis of this chain has lead to
the identification of an exhaustive set of dependencies, which are defined to be proba-
bilistic, concurrent-firing or mized, and are related to a group of components and a sub-
space of transitions. The last section gave a short introduction to the tools that will

enable us to assemble the building blocks of the global transition rate matrix Qz.

We emphasize that the state space E has essentially a structure of cross-product
space, and assuming that each space E; is arbitrarily ordered, the lexicographical order-
ing on E; is used. If |E; | is finite, E; is identified to [1,p;], otherwise to IN and

pi = co. The matrix E, (z,,2,) is the matrix of size p; whose elements in position (y,,y)
are defined by E, (¢1,22)(y1,92)=1(r1=y1) l(ze=y,): E, has only one nonzero element,

which is on row z, and column =z, At the end of section 2, a partition of the global
state space has been defined, and this will be used as a basis for the main theorem.

Namely, we recall that

E =
me

T; and

(t)
¢ m
T =] T;* with m=(m,, ..., m ) and 1<m; <y

i=1

SIS

Dependencies have been defined in terms of the properties of the transition rates. In this
section, the coefficients c,, ¢y and cy4 will be structured as elements of vectors of

matrices, called contributions.

Definition 4.1: Considering the probabilistic dependency defined by the triple
(I={¢},K,T;), the contribution of component X; is given by the vector (T,—@Xl | 2, )

which has 1] px components, and for each value yx, the component T;-Qx |z, is a

=y
keK

matrix of size p; equal to

(V(y: %' ) €EE; X E; ) such that y;5%y,' (Vyx€Ex )

. P( X =" | Zwke = vk )
TI_QX:|ZK=3/K(yini’ ) = tlllxgt L) [ S

i v ¥k} € projuwk (T )NBx
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=0 otherwise

The diagonal elements of these matrices are chosen so that the sum of each row is zero.

The nonzero coefficients of this vector are exactly the appropriate coefficients ¢.(y,y' )
given in equation 2.1 for a probabilistic dependency . When those are not defined,
either because {y;,yx } 1s not in the designated paving block, or because the conditioning

event is not reachable, the value O is used.

In a concurrent-firing or mixed dependency, we arbitrarily select a component
within the set of moving components: this component is called the master of the depen-
dency. For a dependency = defined by (/4K 1o ,pf; ), the master component will bear

the responsibility of the coefficient p(:c,ﬂ,yKﬂ,y]“' ), which occurs only once for all com-

ponents in I,. This choice can be directed by the model itself where this component has

a particular leader role. We denote | f; | the maximum of the cardinalities of the sets

frlv ) | fr ] = max (| fr(yx }|) The number | f; | represents the max-
x x g {“I”'yK”}GRI”UKﬂ, x g .

imum number of possible destinations for this dependency. Moreover, we assume that

each of the sets f; (yx ) Is ordered by the trace of the lexicographical ordering, and we

denote accordingly: f,ﬂ(yKﬂ) = {x,m,’ beel | Iy G ) )

Definition 4.2: Considering the concurrent-firing dependency defined by the 5-tuple
(I,K,Ty={2;},p,fr), for all i€l, the contribution of X; s given by a sequence of

| [ | +1 wectors (T’_QX; 1z e, 7, 1) which have ] p, components and
k€K

(i) if i is not the master and for each wvalue {x;,yx} € Rgyr, the component
T1-Qx, |ZK=yK(0) is the matriz EP;(‘T"’Z" ), the components ( T1-Qz, |ZK=yK(1)),€[1,|,,(yK)|]
are respectively the matrices E, (x; ,proji(zr,' ), and for L € ]| f1(yx)|,| f1|] the com-

ponents are null. If {z; ,yx } & Ryy; all vectors have null components.

(%) if ¢ is the master, and for each value {x;,yx} € Rxy, the component

T1-Qx, |ZK=31K(0) is the matriz (- Y, plaryx.2r' ) - E, (z;,2:), the components
o' €f l9g)

( Ty-Qx |ZK=yK(l) )tell, |7 1] are respectively the matrices

p (21, 0k 21y’ ).Ep‘(x,- profi(zr ' ), and for L €| fi(yx) |, f1|] the components are
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null. If {z,yx } € Rgyr, the vectors have uniformly null components.

This definition requires some comments. A contribution is given knowing the value y,
of the interacting component and the starting state z; of the moving components, which
is fixed by definition. Depending on the value of yg, the number of possible destinations
of this concurrent-firing dependency may vary. This is why we have a number of contri-
butions equal to | f; |, the maximum number of destinations. Whenever a given value
yx has fewer possible destinations, extra vectors are filled with null values. We must
notice that the contributions of a master component differ from the other ones only by a
scalar multiple. For a concurrent-firing dependency X, the coefficient ¢, of equation 2.3
will be obtained as an element of a Kronecker product of these matrices.

We define next the contributions of a mixed dependency where we will be able to

recognize both the probabilistic and concurrent firing patterns.

Definition 4.3: Considering the mized dependency defined by the 6-tuple
(I, 10,K,Ty={z;},p,f1), for all 1€, the contribution of X; is given by a sequence of
| 1 | +1  vectors (T,—@X‘ 1z hiep, 11,1} and ome wvector (T,—Q-X‘ |z,) Jfor each

i € Iy, which all have ][] pr components and
kEK

(i) if i is not the master and for each wvalue {z;,yx} € Rgy;, the component
T1-Qx, | 2, =y, (0) s the matriz E, (;,5;), the components ( T1-Qz, |z =y (I icit,| 1, ) 1]
are respectively the matrices Ep (z; ,prog; (z;,' ), and for L € || fi(yx) |, | 1 |] the com-

ponents are null. If {z;,yx } & Ryxyr the vectors have null components.

(i) if ¢ <4ds the master and for each walue {a;,yx} € Rgy, the component

T1-Qx, | 2=y, (0) s the matriz (- >o o eyt ). E, (z;,%;), the components
31,1’ ef](!/[{)

(Tr-@x, | 2=y (1) Dicn, 1 1,000 11 are respectively the matrices
p @y ,mry" ) By (% ,progi(ar,' ), and for U €| fr(yc) |, | f1 |] the components are

null. If {2;,yx } & Rgy; the vectors have uniformly null components.
(1) for ¢ € I,, the vector (TI_QX, | z,,) has components of size p; equal to

(V(yi,u' ) €E; XE; ) such that y;7y' (Vygx€Ex )
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. P(X',t’ :!/" | ZIUK,t = Yk )
T1-Qx, | =y (W 0:" ) = tl'uEt ’ ’ ¢ ¢

of A% ,9x} € projk (T NRyx

= () otherwise

These matrices are completed with diagonal elements to enforce the sum of each row to

be zero.

Cases (i) and (ii) of this definition are in all points identical to those of definition 4.2 and
case (iii) is the replication of definition 4.1 for all components in I,. Generally any com-
pound structure should require contributions from all of its elementary trends. The fol-
lowing definition will modify these contribution vectors to make them usable in a gen-

eralized Kronecker product.

Definition 4.4: In the framework of a problem in E=FE X -+ XE,, denoting I ={i}

and given a vector of matrices of the type @X' |z, that has 1] p, components in M(p;),
kEK

the expanded version of this vector is e [@X' | 2 ] = (Qx, | Zr—a7 ),7657 that has 1] px
ki

components in M (p; ) such that
@x, | z7=2; = QX |z =2, Vaor € EfNR 7 with T =projk (z7)

= 0 otherwise

The vectors of matrices defined as contributions in the preceding definitions lead to inho-
mogeneous vector sizes, which are based on the set of interacting components K of each
dependency. The expansion is a mapping that gives a regular size to each vector, allow-

ing the use of definition 3.3 in the following theorem.

These contributions will be embedded into the general formula within noticeable
terms. Here also we emphasize that two different constructions arise for probabilistic

and concurrent-firing elements.

Definition 4.5: Considering vectors of contributions as defined previously, we want to

define their related term:

i) If the contribution (T;_Qx |z.) comes from a probabilistic dependency, the related
X, | Zy p

term s defined by
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4

t{Tl—QX,|ZK]= Q. M,

where M; is equal to e [T,—Q-Xt | 2, ] For ki, My has all its components equal to 1d, .

(%) If this contribution T,ﬂQ—QX' 1z, (1) comes from a concurrent-firing dependency involv-
ing the moving components Z;, the related term is defined relatively to I globally, and |
by:

¢

tI:T[-—QX' |ZK(1),1. EI]: @ k Mk

§ =

where My, is equal to e [T,_@Xk |ZK(I)], if k €1. For k@I, M, has all its components

equal to Id, .

The common feature of these terms is that all moving components introduce specific
contributions as the nonmoving components show their neutrality with a participation

equal to an identity matrix. Mixed dependencies have both patterns (i) and (ii).

Now we proceed to the main theorem of this section. We still consider that from an
exhaustive analysis of the chain, we withdraw IIT' the set of all probabilistic dependencies
and HA the set of all concurrent-firing dependencies and TI® the set of all mixed depen-

dencies.

Theorem 4.1: Given an exhaustive analysis, the generator matriz of the global model 1s

such that:

(Vy eR) (Vy' €F)
Qz(yy' )=, Ti-Qzyy') + X T1-Qyy' )+ > Ti-Qzyy')40

xeIll’ xellA »€lld
-if m is a probabilistic dependency, then

T -Qz = t[Tlﬂ_éX' | Zy ] 4.1
-if w15 a concurrent-firing dependency, then
T -Qz= ), t[TI,r—@X, 1z, (1)1 EI«] 4.2
telo, 175 11 4

-if 15 a mized dependency, then

Q= % t[T-0x 15 (0 i€l ]t 5 t[T1-0x 1 ] 4.3

repo, 7, 1! Vet
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Proof: This proof will show that the result of this matrix expression is identical to the

result given by Theorem 2.1. We denote A the matrix

A= T1-Q + Y Ti-Q + ) T1-Q

xelll’ m€llA r€llP

To analyze this formula, we restrict y in any one of the paving blocks, namely
ye€T-NR and y' €F, ys£y' . We have four subsets I', A, ® and & related to T3,
which are, respectively, the list of probabilistic dependencies, the list of consistent
concurrent-firing dependencies, the lists of consistent mixed dependencies and partially
consistent mixed dependencies. From there, we define the sets of moving components
(I )rer, (Inhens (g)gewr (J¢ )¢ e (where J is the trace related to T, as stated in
definition 2.5), which altogether form a partition of [1,c]. We study the element (y,y’' )

of these matrices:
(a) For all v €lll’ and y£y' we have from 4.1
T 0,00 Y= 1T 14 (w0’ )| XTs - N 44
1@z (y.y") [k=]:—1;[7éiq o (U Y )] ; QX‘”I]ZK’Y qu(?/ oY)
If ~ is Inconsistent with 7., then proy’;7(y)¢proj';7(Tm). This implies that
T,~7—QX' | Ze =y (y,-q,y,-ﬁ” ) =0, leading to a zero result for the product. On the other
9 e v

hand, if v is consistent with T;

P(X o =w! | Zryce =y vk, )
_ 1 . i il Y A e !
T17Qz(y,y' )= Jim T X1yr=yr' )
=c{y,y")
(b) For all X €IlA and y £y’ we have from 4.2
T;,-Qz(y,y' )= 4.5
I I, (ww' ) | X(- p (v o, )X T By, (2, )we 9" )
k=1k¢I, le[1,[f,x(ny)|] kely

Lell, | llx(y"x)ll =Lkly kely

4
> [ 1T 2, (5w’ ) ]X p (zIX:yKX;ZIX,l’ )X [ 1T By (z ,progy (20" ) Mow ')
k

If X is inconsistent with T, there exist ko € I, such that progi (y) & proge (T3 ) = {=, }-
This implies that the contribution of X, is such that

Epko(xko’xko)(yko’ykol ):Epko(xko,pTOJ.ko(l‘]¢,l’ ) {9k %, ) =0, leading to a zero result for

the product.

|
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On the other hand if X is consistent with 7.
TI;QZ(!/;ZI' )= , > p(zlx:ynylkl )Xl(?llk' :ZIX' )Xl(?ﬁx:yfx' )
°, eflx(yxx)

=cx(y.y')
Under the condition ys£y’ , the first term of the sum 4.5 is always null. This term is a

diagonal matrix, which allows fulfillment of the normalizing condition as we will see

further.

(¢) If ¢ a mixed dependency and y 4y’ , we have from 4.3

T -Qz(yy' )= 4.6
I (' ) | X(- Y p(ar vk pr i )X | I By, (3o Mun ')
k=1ke¢l, Vel 1 fuxc )1 kely

[4

+ 1dy, (v 3" ) ]X P (21 Uk por 41" )X [ 11 By, (z progi (w1 0 ) Yo e )]
k€[¢

Lefy, | f[¢(111<¢) |][’°=1,k§11¢

+ 2 [ IT 14, (v’ )]XT;—QX, |ZK¢=yK¢(y;,ZJ;' )

i€lo, k=1 i

If ¢ is totally unconsistent with T, or partially consistent but its trace J4 is such that
J4Nlo, = B, then the arguments given in (a) and (b) show that 7y ~Qz(y,y' ) is null. If

¢ is partially inconsistent, but J¢ﬂlo¢ # @, still with identical arguments, we show that

only the part ), 11 1d, (9 9" ) XT,-¢—QX - (y,-¢,y,-¢’ ) leads to nonzero
i€lo NV E=1k #£i 6% TN

result. Namely, if ¢€® is inconsistent with 7. but J¢OIO¢7é0

P(Xi,z' =¥ | ZIUK,t:yIUK )

T1¢"Qz(y W)= Y] l,imt T Wy " )X T Wwe=wu")
i€lo NV o - ki
= cy(y.y')

If ¢ is consistent with 7. then

T1Qz(y,y' )= , p) p (21 vk pur, )XWy = ar) )Xl(y,—¢ :ZIT¢' )
g € fuc )
. P(th' =Y | ZIUK,t =Y1vK )
+ 3 lim : —3 t Ly 7y )X} I U =n" )
iEIO t’ —t t' — k7éj
=cyy,y')

as defined in 2.3(i).
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Summarizing the points (a),(b) and (c), we have shown that

(Vy €eTzNR ) (Vy' €E) y5£y!

Alyy' )= cyy' )+ X exlyy') + D chlvy') + é}Zy Co (v, )
[

el \EA $cd

which shows the equality A=@; under the preceding conditions, if we compare this

result with the statement of Theorem 2.1. This is true for any 7% .

To conclude the proof, we must show the equality for the diagonal terms in R : the idea
is to show that on both sides of equality 4.0, we have the row normalization property.
The matrix @, clearly has this property from its stochastic definition. Moreover, this
property is stable by matrix addition, and we are going to prove it for each 7; -Qz

matrix:

(a) if vis a probabilistic dependency, and for all y,y’ € E | the terms on row y are

C Id Y » ! XT,' — — Ui !
[kzll;;[%iq p,,( k> Yk )] ,, QX,7}2K7 yK7(y 29y )

which clearly sum to 0, as T; -Qx |z, —, does.
5 ty K,7 K,,’

(b) If X is a concurrent-firing dependency, for all (y,y' ) € R XE, row y of T; -Qz Is

H Idp;,(yk ;yk’ ) X(" Z Y4 (xfny ;xlx H zk ,ftk yk :ykl )
lE{l I f] (yK

k=1k¢I, JI kely

+ E [ I1 Idpk(?/k,!/' k) ]X p(zlny)\lek,l’ )X HEpk(zk ,PTO Ji (xl)\,l’ ) ) 9! )]
lefL, |/ |] k=1kdly kel

The only row with nonzero terms are those corresponding to a state y such that

proj; (y )===; . On these rOWs, the terms are respectively

[ p (wlx,w{)\,@‘/x,z' )]le{],fI (v,)] and - ), p(xl)\;ny)xI)\,t’ ), which sum up to
g lE[l,flw(y,,)]

0.

(c) If mis a mixed dependency then both terms (a) and (b) appear and the stability by

addition leads the result.

This argument concludes the proof.

We have discarded in both theorems the transitions defined by (y,y' ), such that y
is not reachable. We know that if y €7, only dependencies I', A, ® and &' , as defined
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previously, lead to a nonzero result for the corresponding T; ~Qz. If we have the pro-
perty

(Vr €TUAUPU®' ) wk ur & Rk ur,
Aly,y' ) will be equal to zero. This comes from the fact that contributing values were
set to zero. But there might be models where this last property does not hold. Element y
can be non-reachable but all the yx vr, can be reachable projections. The corresponding

A(y,y' ) element will then depend on the particular model.

That problem will be addressed by choosing properly the numerical resolution

method: If we consider using a power method [Stew80] to compute the steady state vec-

tor of this chain, then

- the Kronecker algebra is of an essential use to reduce the computation and storage
cost [Davi8l]. As a matter of fact, there is no need at all to expand matrix 4,
which is usually huge, to compute the regular product ¥V A . This is done by replac-

ing the large matrix product by a sequence of smaller products.
- For this power method, we need to know the reachability space R, and the initial
vector Vy must be chosen such that

(Vy' €R) Vy')=0
We know that A has the same property as @, namely:

(VyeR ) and (Vy' €E-R) Aly,y' )=0
so that V| = V3 A is defined by

Vi(z) = ZEDE Voly) Ay,2) = EEDR Voly) Aly,2)

Whenever z € E-R, this gives V(z) = 0, yielding that V,(z) is also in R. If A
and V,p denote the restrictions of the preceding A and V, to R, this shows that
1t is equivalent to study either one of the sequences VA" or Vop .Af, n€ N |
knowing that Ar has the nice property of irreducibility. The recurrence that is
used is the following: Let o the maximum of the absolute value of the diagonal ele-
ments of matrix A, and ¢ be a small positive number. Then given W, € R, the

sequence

is assured to converge.
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These are the algorithmic advantages one can draw from the formula. Nevertheless the

power method applied to this type of matrix can probably be refined. This is the sub-

ject of continuing work.

5. Conclusion
To summarize what we have discussed so far, we may say:

- We have decomposed the transition rates of matrix @, by using the properties of

the stochastic behavior of the chain.

- We have given two building rules, for probabilistic and concurrent-firing dependen-

cies based on elementary matrices and Kronecker algebra.

- The main result shows how these match on a problem that fits into the framework

we have defined, for all relevant transitions.

Our interest in this technique lies in the belief that it will enable us to study the
behavior of the chain Z by looking at small groups of components over subspaces of
transitions where their stochastic properties can be clearly identified. The probabilistic
dependency introduces loose constraints among components (a particular case being pure
independence), as the concurrent-firing and mixed dependencies bring more constraints.
A reasonable decomposition is achievable only if the problem has few of these last singu-
lar points that we called concurrent-firing dependencies or if they show a regular pat-
tern. Our feeling is that this situation might be common when modeling distributed
applications where, it is reasonable to assume that, when a message is sent, its transmis-
sion time is independent of the forthcoming processors activities. Moreover, we think
that Kronecker algebra is a powerful tool to express vectorial problems that show actual
dependencies among components. Indeed, we have been able to derive a closed form
expression of the generator of a problem without any size limitations. Moreover, the

numerical procedures are efficient as they use the structural prooerties of the generator.

To conclude this paper, we will emphasize the relationships with other related
work. The first related area is the field of stochastic Petri nets. This technique also uses
a graphic representation of the system under study and an underlying Markov model
[Moll82], [DTGN84|, [MaBC84|, [VeHo86]. After the description phase, a program is run
to derive the reachability graph, to generate the stochastic matrix and to compute the

steady state probabilities and the performance. The line of thought of the present
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method is identical, except that it attempts to push further the analytical study and to
exploit the result in the numerical algorithmic part. It would be interesting to see
whether a similar approach can be pursued using a Petri net specification of the prob-

lem.

Another related area is the well-known field of queuing theory. Previous work has
been done [Neut81], [Mass84], to derive analytic results or bounds of single queues or
network of queues using Kronecker algebra. A systematic method to derive bounds

within the framework presented here would be of great interest.
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. S1

(Poisson) Service rate

A <
] | — ——————»  M=Znpl(A;=n)
N:o
(Poisson) >2
a
: | ] > N=v 1A <p)

Aq and A, represent respectively the number of customersin servers 1 and 2

at the current time. The service rates of S; and S, are respectively p and v

The state transition diagrams are:

A A A A
> —> —>
A1 0 P 1 2 P 3 ............
M M M M
a a a Qa
— ..
A, 0 1 2 3
- 4»___
N N N N

Figure 5
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Sq S2
The service rate of S is p and the service rate of S; is v. The total number of
customers is N.
Graphs Ay and A; represents respectively the number of customersin $;
andS; . Theirtransitions are:
v(s'o) v(s'y) v(s'N-1)
> oo
A1 0 — ... <4+— N-1 <
u(s1) u(s2) plsn)
(sn) (sn-1) (s2) (s1)
. o — "
A; 0 «— ... «— V' |e
(s"n-1) (s'n-2) (s"1) (s'0)

Figure 6
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APPENDIX

To give an idea of the applicability of the method, we derive the stochastic genera-
tor of the Markov chain Z, = ( X;,X,,X3; ), whose behavior is described by the sto-
chastic graph network ( A;,A4,,A43) of Figure 4. The results of the analysis are summar-
ized in the following tables. Matrices ( M; );—,¢ are given at the end. The first table is

derived from Figure 3.

Probabilistic Dependencies

Description Contribution Related term

I={1}, K={3}, T=[12] | Qx, x,~( M,My) e[§X1|X3] ® Id, R Id,

I={2}, K={3}, T=[1,2] élexaz( MgMy) | Idy R e [§X2|X3] R Id,

I={8}, K =0, T =[] Qx,=( Ms) Iy @ I, Q e [QX3]

The next table describes the dependency labeled (s,).

Concurrent-firing Dependencies

Description Contribution Related term

I={1,2} , K=0, T=[3]x[3] | for X,:Qx (0)=-c E3,3)

Qx (1) = ¢ Ey(3,4) ¢ Ey33) R E33) Q Id,

Nb of destinations | f | =1 for X,:Qx (0)= E4(3,3)

Qx (1) = E4(34) e Ey34) R Ey34) K Iy
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This describes the dependency labeled (s5).

Mixed Dependencies

Description Contribution Related term
I={123} ,K=0,1,= {3}, for X:Qx (0)= E4(4,4) -d E444) K F444) K E42,2)
Qx,(1) = E4(4,1)
T =[4]x [4]x[2] Qx,(2) = E44,1) +d p Ef41) R Ey(41) R Ey2,1)
Nb of destinations | f | =2 for X5:Qx (0)= E4(4,4) +d (1-p) E44,1) & E4(4,2) & Ey2,1)
Qx (1) = E4(4,1)
Qx,(2) = E4(4,2) +1d, Q Idy & M,

Qx(0) = -d Ey(2,2)
Qx (1) =d p Ey2,1)

Qx,(2) = d (1-p) Eof2,1)

Qx, = Mg
-a1 a; 0 O —-ay a; 0 O —-a9 a9 0 O
0 -b; 6,0 0 -b;, 0 b, 0 -by 8,0
M, = 0 0 00 My = 0 0 00 My = 0 0 00O
0 0 00 0 0 00O 0 0 0O
—ag ap 00
0 0 00 —04 Gy 0 O
Mi= 19 000| Ms=1 o o o= | b, —b,
0 0 00O

So, the generator is given by the following formula, after some modifications to eliminate

the generalized operators:

Qr =M, Q I, R [(Id)+M; Q Id, R 1,(Idy,)
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T, R My Q L(Idy)+ Idy, @ My Q I,(Idy)
+H,Q I, R M,

- C E4(3,3) ® E4(3,3) ® Id2+ c E4(3,4) ® E4(3,4) ® Idg
—d Ey(4,4) @ Ey(4,4) R E522)+d p E4(41) ® Ey41) Q@ Ey21)
+d (1-p)Ef41) R E42) @ Ej21)+ 1d, R Id, R M,

This is a typical example of a non-regular problem, where no factorization is possible

within the formula.

We consider now the queuing example of Figure 5. We denote R: the infinite

matrix whose effect is the elementary right shift, and Le the infinite matrix whose effect

is the elementary left shift. Id is also the infinite identity matrix.

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0

Ry = 0 0 0 1 0 Le = 0 1 0 0 0

0 0 0 0 1 0 0 1 0 0

The analysis yields:
Probabilistic Dependencies

Description Contribution Related term
I={1} , K={2} , T= N §X1|X2:(>\R5+V"L6 Jne N C7)(1|X2® Id
I={2} , K={1} , T=N | Qx,x=(aRi +v1{n<p)Le )en 4 Q Qx,|x,

So, the generator is

Qz :§X1|X2 R Id+1d R C7X2|X1
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We denote Riy, Ley and Idy respectively, the right shift, left shift and the identity

matrix of dimension N. The analysis of the queuing example of Figure 6, yields the

table:
Concurrent-firing Dependencies
Description Contribution Related term
12{172} ) K= w; for XIZQXI(O): (_“_V) EN (k )k)
QXl(l) =V EN (k 7k +1) (——ﬂ—-l/) EN(k :k) ® EN (N“l” ;N_l”')
T=l[k] for all k € ]0,N| @x (2) = p En (k k1)

+ v EN(IC ,k +1) ® EN (N—k‘ ,N*]’i*l:

Nb of destinations | f | =2 | for X,:Qx(0) = Ey(N -k ,N-k)
Qx (1) = Ey (N -k Nk -1) +p Ey(k,k+1) Q Ey(N-k,N-k-1

Qx (2) = Ey (N —k N~k +1)

]:{1,2} , K= @,T:[O] for XIZQXI(O): —V EN (0,0)
QXI(I) =v EN (0)1) - EN (0:0) K EN (N»N)
Nb of destinations | f | =1 for X9:Qx (0) = En (N ,N)
QXz(l) = EN (N’N_l) + v EN (0:1) ® EN (N,N_l)
[={1,2} , K= 0,T =[N] for X,:Qx (0)= - Ey (N ,N)
@x,(1) = p Ey(N ,N-1) - Ey(N,N) & Ey(0,0)
Nb of destinations | f | =1 for X5:Qx (0) = Ey (0,0)
Qx,(1) = En(0,1) +p Ey(N,N-1) & Ey(0,1)

This analysis leads to a numerable number of terms, but those can be reduced to the fol-

lowing:
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Qy = —u [(LCN RZN)® IdN]—I/[IdN % (RZN Ley )]+,u(LeN K Riy )—l-I/(RZN %) LeN)



