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Space-E�cient Hot Spot EstimationAbstractThis paper is concerned with the problem of identifying names which occur frequently in anordered list of names. Such names are called hot spots. Hot spots can be identi�ed easily by countingthe occurrences of each name and then selecting those with large counts. However, this simplesolution requires space proportional to the number of names that occur in the list. In this paper,we present and evaluate two hot spot estimation techniques. These techniques guess the frequentlyoccurring names, while using less space than the simple solution. We have implemented and testedboth techniques using several types of input traces. Our experiments show that very accurate guessescan be made using much less space than the simple solution would require.1 IntroductionThis paper is concerned with the problem of identifying names which occur frequently in an ordered listof names. Frequently occuring names are called hot spots. We are primarily concerned with on-line hotspot detection, in which the list may be scanned only once, in order.Hot spot detection is not di�cult. The obvious technique is to maintain a list of all of the names thatoccur in the input list, along with a counter for each name. Each time a name appears on the list, itscounter is incremented. When the list is exhausted, those names with su�ciently large counter valuesare reported as hot spots.The drawback of this technique is the amount of space it requires, particularly when the name spaceis large and the reference list is long. The space required is proportional to the number of unique namesthat appear in the input list. Yet, if we names to be hot spots if they appear with a frequency of at leastT , then no more than 1=T names can possibly be hot spots, regardless of how many appear in the input.Space is particularly important when reference counts are maintained in main memory, so that theycan be searched and updated quickly. Fast, e�cient hot spot detection algorithms are important inon-line applications in which the reference list is scanned \on-the-
y". For example, we may wish tomonitor packets in a large network to determine which sources or destinations occur frequently. In thiscase, packet arrivals determine the reference list, and the hot spot detector must keep pace with them.In this paper, we present and compare two hot spot estimation techniques. These techniques use lessspace than the simple technique described above. However, they do not guarantee a completely accuratesolution. In some cases, they may inadvertantly report as hot a name that is not (a false positive). Inothers, they may fail to report a hot name (a false negative).The two estimation techniques di�er in the types of inaccuracies that they allow. The �rst techniqueguarantees that no false positives will be reported, i.e., any name that it reports as hot will truly be hot.1



The second technique produces no false negatives. It correctly reports all hot spots, although it mayinadvertently report some cold items as hot as well. We believe that each of these techniques has usefulapplications, and so we report them both here.Hot spot estimation has many applications. We have used it in an adaptive storage manager todetermine which stored data are accessed frequently [1, 2]. In this application, the ordered list of namesis the stream of data requests arriving at the storage manager. The storage manager can take advantageof detected hot spots in a variety of ways. In our case, frequently accessed data is migrated to thecenter of a disk's platters to reduce expected seek times. Other performance-enhancing techniques,including prefetching, data replication and data declustering (in systems with multiple disks) can also beimplemented adaptively using hot spot information.Hot spot estimation can also be used as a data processing tool. For example, data classi�cation canbe accomplished using a simple clustering algorithm based on hot spots. The algorithm works as follows.First, the data are scanned to produce a (possibly multidimensional) histogram of values. Second, clustersare associated with peaks in the histogram. Finally, individual data points are assigned to clusters basedon their proximity to the peaks (clusters). (An application of this technique for clustering of pixels inmulti-spectral images is described in [12].) Clearly, the process of constructing a histogram to determineits peak values is hot spot detection. For data processing tasks such as this, it is not critical that on-linehot spot detection be used. However, since on-line techniques are fast and require relatively little memory,they may still be valuable when large volumes of data must be processed.Hot spots are a well-known phenomenom in both computer systems and natural systems. Numerousstudies, e.g., [4, 13, 5, 7]. have reported the existence of skewed data or request distributions in �lesystems and database systems. Generally, these studies have used o�-line analyses of reference traces tomeasure the complete distributions. Analytic models, such as those based on the Zipf distribution, havealso been developed to capture this skew.Numerous, disparate techniques have been developed to take advantage of hot spot information.(Often it is assumed that the hot spots are known in advance.) For example, it is well known that diskseek times can be reduced by clustering hot data together on the disk. In data processing systems, specialconcurrency controls [6, 11] and data structures [5] can be used.We are aware of one other paper [10] that addresses the hot spot detection problem. That paperpresents two detection algorithms. Both detect hot spots with perfect accuracy, and one is known to havea space overhead proportional to 1=T , where T is the frequency threshold for hot spots. However, bothalgorithms require two passes over the reference string, thus they cannot be used for on-line estimation.Although they were not designed for this purpose, the �rst pass (only) of either algorithm from [10]could be used as an on-line estimation technique. Used this way, either algorithm could produce falsepositives, but no false negatives (like the RP algorithm described here). However, neither algorithmallows a tradeo� between space overhead and accuracy. In particular, if the estimate is inaccurate, thereis no mechanism to improve it by using additional space. We will not pursue either of these techniquesfurther here.The next section of this paper describes the two hot spot estimation techniques that we have consid-2



ered. In Section 3 we de�ne and prove several useful properties of these algorithms. We have implementedand evaluated both techniques using reference traces drawn from several application domains. In Section4 we describe the traces and the results of our evaluation. Our tests demonstrate that, in practice, bothtechniques can provide very accurate hot spot estimates using a fraction of the space that would berequired to learn the entire request distribution with perfect accuracy.2 Hot Spot EstimationA hot spot estimation algorithm scans a sequence of names, called the reference string. When the scanis completed, the algorithm reports those names that appeared frequently during the scan. These namesare the hot spots detected by the algorithm.Hot spots are de�ned as names which appear with a frequency of at least TH in the reference string.The value TH is called the hot temperature threshold. It is a parameter to the hot spot detection algorithm.For our algorithms, threshold values are speci�ed as positive real numbers no greater than one. A nameis a hot spot if it occurs at least LTH times in the reference string, where L is the length of the string.In the remainder of this section, we will describe two di�erent hot spot estimation algorithms. Foreach algorithm, we present an both an informal description and an implementation in pseudo-code.Each implementation is de�ned by three programs: Initialize, ProcessReference, and ReportResults. TheProcessReference routine is called once for each name that is scanned from the reference string. TheInitialize and ReportResults routines are called at the beginning and end of the scan, respectively.2.1 The Name Cache AlgorithmThe Name Cache (NC) algorithmmaintains a list of names from the reference string and counts referencesto them. As each name is scanned from the reference string, its reference count is incremented if it isalready present in the name cache. If the referenced name does not appear in the cache and the cacheis not full, the new name is cached with an initial reference count of one. If the cache is full, NC uses areplacement heuristic to guide its behavior. The replacement heuristic selects one name to be eliminatedfrom the cache. The newly-referenced name is then added to the cache with a reference count of one.We have considered three replacement heuristics. Each heuristic selects one eligible cached name tobe removed (along with its reference count) from the cache. The three replacement heuristics are:LRU The least recently used eligible name on is removed from the cache.Random An eligible name is selected randomly for removal. All eligible names are equally likely to beselected.Biased An eligible name is selected randomly for removal. A name's selection probability is chosen to beinversely related to its reference count. Speci�cally, if eligible names i and j have reference countsci and cj , then their probabilities of selection (pi and pj), satisfypipj = cjci3



A name's eligibility for replacement is determined by a screening process that uses a parameter calledthe eligibility threshold, Telig . A cached name is considered eligible for replacement if its current estimatedtemperature is below Telig . A name's estimated temperature is simply its current reference count dividedby the total number of references that have been scanned. The eligibility threshold Telig is a tunableparameter to the NC algorithm.When a replacment is required, it is possible that no cached names will be eligible. In that case, noreplacement occurs. The just-referenced name is simply ignored, and is not added to the name cache.Figure 1 shows the Initialize, ProcessReference, and ReportResult routines that implement the NCalgorithm. The algorithm takes two parameters in addition to the hot temperature threshold TH . Theseparameters are the safety threshold Telig and the maximum size of the name cache.2.2 The Random Partitioning AlgorithmThe second hot spot detection technique is called random partitioning (RP). Under RP, hash functionsare used to partition the name space. A single reference counter is used to count references to all namesthat fall into a single partition. The RP algorithm simultaneously maintains several distinct partitioningsof the name space. Names are reported as hot spots only if they fall into frequently referenced parititionsunder all of the partitionings. A pseudo-code implementation of RP is shown in Figure 2.Suppose that hash functions are available which map names to integers in the range [1; C]. Each suchfunction de�nes a partitioning of the name space into C distinct subspaces. The RP algorithm uses Ksuch functions to de�ne K di�erent partitionings of the name space. Every name is assigned to exactlyK partitions, one for each of the K hash functions.The RP algorithm maintains C reference counters for each of K hash functions. We will use fi todenote the ith hash function, and counteri[j] to denote the jth reference counter for hash function fi Areference to name n causes counteri[fi(n)] to be incremented (for each 1 � i � K). A name n is reportedas a hot spot if all of the partitions (counters) it hashes to are hot.2.2.1 The Candidate SetOne di�culty with the RP algorithm as described is that it does not store any of the names from theinput sequence. Unlike the NC algrithm, RP does not associate each reference counter with a singlename. Once the reference string has been scanned, RP's reference counters can be used to test whethera given name n is (estimated to be) hot. However, RP has no way of knowing which names to test. Anexhaustive check of the name space is likely to be very time consuming, or impossible if the name spacein in�nite.To avoid this problem, RP maintains an additional data structure called the candidate set. Thecandidate set is a set of names whose temperatures should be tested after the reference string has beencompletely scanned. Names that are tested and found to be hot are reported as hot spots by the algorithm.The RP algorithm uses two rules to manage the candidate set.4



INPUT PARAMETERS USED:TH : the hot temperature thresholdTelig : the replacement eligibility thresholdMaxCacheSize: maximum number of cache entries allowedDATA STRUCTURES:Cache: a set of entries, where each entry X includes a name (X:name) and a reference count (X:count)RefCount: an integer, the total number of names scanned from the input so farPROCEDURE Initialize()BEGINCache ;RefCount 0ENDPROCEDUREProcessReference(name)BEGINRefCount RefCount + 1look for an entry X in Cache such that X:name = nameIF there is such an entry X THENX:count X:count+ 1ELSE IF jCachej < MaxCacheSize THENadd a new entry to Cache, with name name and reference count oneELSElet E = fXjX 2 Cache ^ X:countRefCount < TeliggIF E 6= ; THENselect Y 2 E according to replacement policydelete Y from Cacheadd a new entry to Cache, with name name and reference count oneENDPROCEDURE ReportResult()BEGINFOREACH entry X in Cache DOIF X:countRefCount � TH THEN OUTPUT(X:name)ENDFOREACHEND Figure 1: Pseudo-Code for the NC Algorithm5



INPUT PARAMETERS USED:TH : the hot temperature thresholdK: the number of hash functions usedC: size of the range of each hash functionDATA STRUCTURES:Counters[K][C]: a K-by-C array of reference countersCandidateList: a set of namesRefCount: the total number of names scanned from the input so farPROCEDURE Initialize()BEGINFOREACH 1 � i � K and 1 � j � C DO Counters[i][j] 0randomly select K hash functions fi, 1 � i � KRefCount 0, CandidateList ;ENDPROCEDURE ProcessReference(name)BEGINRefCount RefCount + 1, min  1FOREACH i FROM 1 TO K DOCounters[i][fi(name)] Counters[i][fi(name)] + 1IF (min > Counters[i][fi(name)]) THEN min Counters[i][fi(name)]END FOREACH/* min now contains minimum reference count of all partitions to which name hashed */IF ( minRefCount � TH ) THENCandidateList CandidateList [ fnamegENDPROCEDURE ReportResult()BEGINFOREACH name N in CandidateList DOmin 1FOREACH 1 � i � K DO IF (min > Counters[i][fi(N )]) THEN min Counters[i][fi(N )]IF ( minRefCount � TH ) THEN OUTPUT(N )END Figure 2: Pseudo-Code for the RP Algorithm6



Insertion Rule: When a name n is referenced, it is inserted into the candidate set if its current estimatedtemperature is hot, i.e., above TH . (No action is required if n is already in the set.)Deletion Rule: A name may be removed from the set only if its current estimated temperature is nothot.The estimated temperature of a name is simply the minimum of the reference counts of the K countersthe name hashes into, divided by the total number of references so far. As we will discuss in the nextsection, these rules are su�cient to ensure that all truly hot names will be in the candidate set after thereference string has been completely scanned.The Deletion Rule permits some latitude in the timing of deletions. An very aggressive implementationmight check the current temperatures of candidate names very frequently so that cooling names do notremain in the candidate list any longer than necessary. A lazier implementation could check less frequentlyfor deletion. In fact, it is never necessary to delete names from the set at all.Our implementation of RP uses an opportunisitc approach that lies in between these extremes. Thecandidate set is implemented using a hash table. During a lookup or insert into the table, any namesthat are touched have their current temperature checked. Names are deleted if they are found to be nothot.2.2.2 HashingThe accuracy of the RP algorithm depends on the choice of hash functions (fi) used to partition thename space. Consider two names x and y, one hot and the other cold. If fi(x) = fi(y) for all i, then thetwo names lie in all of the same parititions, and RP will be unable to distinguish between them. In otherwords, both x and y will be reported hot.To reduce the likelihood of this occurrence, RP's hash functions are randomly generated from a classof universal2 hash functions [3]. A universal2 hash function class has the following useful property: nopair of distinct names collides under more than 1=Cth of the functions in that class. (As used above, C isthe size of the range of the hash functions.) In other words, by increasing the number of hash functionsused, we make it increasingly likely that any pair of names can be distinguished.Our implementation of RP uses hash functions from the universal2 class of the formha;b(x) = ((ax+ b) mod p) mod Cwhere p is a large prime number (preferably larger than the size of the name space) and a; b 2 f0; 1; : : : ; p�1g; a 6= 0. Functions from this class are chosen by random selection of the constants a and b.These hash functions can be used directly if the referenced names are integers. If the names arecharacter strings (or some other type), as was the case for one of our test traces, they must be convertedto integers before hashing. Thus, if the string to integer conversion function is denoted fconv, the actualhashing functions used are of the form ha;b(fconv(x)).Unfortunately, any names that collide under fconv can never be resolved by the RP algorithm. Severalcommon, simple conversion functions produced signi�cant numbers of collisions in our test traces. (For7



example, combining character codes using exclusive-or to produce an integer key, as suggested in [8], didnot work well on the �le names in our NCAR trace.) We were able to reduce this problem by using adi�erent conversion function for each integer hash function ha;b. Speci�cally, we used a general conversionfunction which accepted the constants a; b as parameters, giving us string hashing functions of the formha;b(fconv(x; a; b)). Although collisions are still possible with such a function, it is less likely that a pairof names will collide under K randomly selected functions.3 Properties of the AlgorithmsThe two hot spot estimation algorithms have complementary properties. The NC algorithm never pro-duces false positives, i.e., it never mistakenly reports a cold name as hot. Under certain conditions, whichwe will describe shortly, the RP algorithm does not produce false negatives. In this section we show whythese properties hold.Throughout the section, we will use the following notation. We will denote by R(n; i) the number ofreferences to name n among the �rst i references of the reference string. The temperature of name n afteri references, T (n; i) is given by T (n; i) = R(n; i)iWe will use T (n) as a shorthand for T (n; L), where L is the length of the reference string. This is calledthe �nal temperature of name n.Each of the hotspot algorithms uses reference counters to estimate the true reference count of eachname. Since the algorithms work with limited numbers of counters, the estimates they produce may notbe accurate. We will use ~R(n; i) to denote an algorithm's estimated reference count for n after i referenceshave been processed. Estimated temperature, ~T (n; i), is de�ned by the ratio of ~R(n; i) to i, as above.3.1 The Name Cache AlgorithmThe estimated reference counts for the NC algorithm can be de�ned as follows. If name n is in the namecache after i references have been processed, then ~R(n; i) is equal to the value of n's reference counter. Ifn is not in the cache after i references, then ~R(n; i) is de�ned to be zero. We can now prove the followingsimple lemma, which says that the name cache algorithm never overestimates reference counts.Lemma 3.1 For all names n and for all 0 < i � L, R(n; i) � ~R(n; i) under the NC algorithm.Proof: This can be shown by induction on i. Clearly, R(n; 1) = ~R(n; 1). Assume that R(n; i � 1) �~R(n; i � 1). If the ith reference is to n, then R(n; i) = R(n; i � 1) + 1. If n was in the name cache,the estimated count for n will also increase by one, otherwise it will be exactly one. In either case, theLemma holds. If the ith reference is not to n, then R(n; i) = R(n; i � 1). The estimated count eitherremains the same, or becomes zero if n is replaced in the cache. In either case, the Lemma holds. 2The NC algorithm reports a name n as hot if its �nal estimated temperature ~T (n) is greater thanthe hot temperature threshold TH . Since T (n) � ~T (n) (from Lemma 3.1), any name reported hot by NC8



must truly be hot. However, NC may fail to report a hot name by severely underestimating that name'sreference count. Clearly, the greater the size of the name cache, the less likely the algorithm will be toreport false hot spots. We explore this trade-o� between space and accuracy in Section 4.3.2 The Random Partitioning AlgorithmThe RP algorithm uses K hash functions to paritition the name space. The estimated reference count ofa name n is the minimum of the counts of the K counters that n hashes to. Thus, if counteri(j) is thevalue of the jth counter for the ith hash function, then~R(n; i) = min1�k�K counterk(fk(n))The following lemma states that the RP algorithm never underestimates reference counts.Lemma 3.2 For all names n and for all 0 < i � L, R(n; i) � ~R(n; i) under the RP algorithm.Proof: By induction on i. For i = 1, either the �rst reference to n or it is not. If it is to n, then R(n; 1) =~R(n; 1) = 1. Otherwise, R(n; 1) = 0 and ~R(n; 1) is either zero or one. Assume R(n; i� 1) � ~R(n; i� 1).If the ith reference is to n, then ~R(n; i) = ~R(n; i� 1) + 1 since each counterk(fk(n)) will be incrementedby the algorithm. The true reference count for n also increases by one. If the ith reference is to m 6= n,then R(n; i) = R(n; i � 1) and the estimated reference count either remains unchanged or increases byone. (An increase by one occurs if there is a hash collision between n and m under any of the hashingfunctions, i.e., if fk(n) = fk(m) for any 1 � k � K.) In either case, the Lemma holds. 2To make claims about the hot spots reported by RP, we must also model the state of the candidateset. We will let C(i) represent the state of the candidate set after any insertions or deletions resultingfrom the �rst i references have been performed. The next lemma says that the candidate set must includeall hot names from the reference string.Lemma 3.3 For all names n and for all 0 < i � L, (T (n; i) � TH )) (n 2 C(i)), under RP.Proof: By induction on i. After one reference, all names have a true temperature of zero except thereferenced name, which has a temperature of 1.0. That is the only name which can satisfy the antecedentof the Lemma, and it must be inserted into the candidate set because of the Insertion Rule. Assumethat (T (n; i � 1) � TH ) ) n 2 C(i � 1). Suppose that n satis�es the antecedent of the Lemma afterreference i. If n 2 C(i � 1) then n 2 C(i), since ~T (n; i) � T (n; i) � TH and the Deletion Rule preventsit from leaving the candidate set. If n 62 C(i � 1), then T (n; i � 1) < TH by the inductive hypothesis.Since T (n; i) � TH , the ith reference must have been to n, since a name's true reference count (and truetemperature) can only increase when it is referenced. Since ~T (n; i) � T (n; i), the Insertion Rule forces ninto C(i). 2By Lemma 3.3, all hot names will appear in the candidate set after the references string has beenscanned. By Lemma 3.2, the �nal estimated temperatures of all such names will be hot, and thereforethey will be reported by the algorithm. Thus, the RP algorithm will never fail to report a hot name.9



Lemma 3.1 holds regardless of the number of reference counters used. Thus, regardless of the amountof space used for hot spot detection under the NC algorithm, no false hot spots will be reported. Un-fortunatly, it is di�cult to make an analogous claim for the RP algorithm. Although Lemma 3.2 holdsregardless of the number of reference counters used, Lemma 3.3 depends on a candidate set managedusing the Insertion Rule and the Deletion Rule. In general, it is not possible to set an upper limity onthe size of the candidate set while still observing the rules. The problem occurs if a new hot name mustbe added to the set when it is �lled to capacity with other hot names.Thus, if the size of the candidate set is �xed in advance, it is possible for the RP algorithm to failto report a truly hot name. However, the following claim is possible: if there are no violations of theInsertion Rule or the Deletion Rule during processing of the reference string, then the RP algorithm willnot fail to report any true hot spots. In other words, although RP cannot always avoid false negativeswhen the candidate set size is limited, it has a mechanism for determining whether false negatives arepossible after processing a given reference trace.4 Performance AnalysisWe have implemented and and evaluated both hot spot detection algorithms. Our evaluation was per-formed using a set of input sequences from the application problem domains mentioned in the introduc-tion. The goals of our evaluation were, �rst, to determine the e�ectiveness of each algorithmwhen appliedto realistic input sequences, and second, to determine how best to use the algorithms. In particular, wewere interested in how to set the algorithm-speci�c parameters.4.1 Input DataBoth algorithms were evaluated using three input sequences representing di�erent application domains.The input sequences included the following:UMD A trace of physical disk block references obtained from a Unix �le server in the University ofMaryland's Computer Science Department.NCAR A trace of �le transfers to and from amass storage system at the National Center for AtmosphericResearch.NASA A raster scan of pixel intensities from a four-band multispectral Landsat image.A summary of some of the characteristics of these traces is given in Figure 3.The UMD trace was collected from a Fujitsu 2351 Eagle disk attached to a Sun workstation runningversion 3.2 of SunOS. Each trace entry corresponds to a read or write request sent to the disk's driver.The sequence of requested disk addresses (block numbers) forms the input sequence used to drive the hotyOf course, the number of names that can be truly hot at any time is bounded from above by 1=TH. However, theInsertion and Deletion rules are speci�ed in terms of estimated temperatures, not true temperatures. The number ofestimated hot spots may be much greater than 1=TH, particularly if very few reference counters are available.10



Number Temp. of Temp. of Temp. of Temp. ofTrace Trace of Unique Hottest 10th Hottest 100th Hottest 1000th HottestName Length Names Name Name Name NameUMD 93664 6045 0.0529 0.0079 0.0015 0.0001NCAR 94633 30667 0.0036 0.0020 0.0008 0.0002NASA 262144 11986 0.0064 0.0030 0.0015 0.0001Figure 3: Characteristics of Input Tracesspot detection algorithms. A total of 45138 unique block numbers are possible with this disk. However,Figure 3 shows that the actual number of unique block numbers occurring in the trace was much smaller.The traced disk held a �le system containing primarily shared binary �les. The trace re
ects requestsfor these �les generated by multiple concurrent processes running on networked workstations. It coversa period of approximately sixteen hours, from 10am until 2am, on a weekday.The NCAR trace captures one month of �le transfers between the NCAR mass storage system andits supercomputing center. The trace was recorded during November, 1990. Each trace entry speci�es afully-quali�ed �le name within the mass-storage system. The sequence of �le names from the trace is theinput sequence used to drive the hot spot detection algorithms. Further information on the collection ofthese data and on the NCAR mass storage system itself can be found in [9].The NASA trace is intended to be representative of an input sequence from a scienti�c data processingapplication. The trace consists of a list of pixel values taken from a multi-spectral image of the Wash-ington, DC metropolitan area. The image was produced from data acquired by the Landsat thematicmapper (TM) instrument.The image includes data from four spectral bands. Thus, each pixel value consists of a four-tuple ofintensity values, one from each of the spectral bands. Intensity values for each band are quantized to sevenbits. The trace was derived from a row-major scan of the pixels in the full 512x512 pixel image, resultingin an input sequence 256K entries long. The input sequence used to drive the hot spot detectors is thesequence of four-tuples from the trace. Application of a hot spot detection algorithm to the NASA traceproduces a list of frequently occurring intensity tuples. Such a list has useful applications. For example,it can be used to de�ne potential clusters (classes) in an unsupervised classi�cation if the image's pixels.4.2 MethodologyTo determine the performance of the hot spot algorithms, we computed the true reference frequency(temperature) of each name in each of our test traces. These frequencies are used to determine thetrue hot set for each trace, as a function of the hot temperature threshold. The true frequencies weredetermined by applying the NC algorithm using an unlimited cache size, so that replacement of namesfrom the cache was never necessary.In each of the following experiments, we compare the size of the hot set predicted by an algorithm tothe size of the true hot set. A hot set's size is simply the number of names that it contains. This simple11



Algorithm Symbol Parameter Meaning Default ValueName Cache Tsafe safety threshold 0.0003Name Cache - replacement policy biasedboth TH hot temperature threshold 0.002Random Partitioning K number of hash functions 3Figure 4: Default Algorithm Parameter Settingsmetric does not provide information on which hot names are not reported (under NC) or which coldnames are mistakenly reported (under RP). Our simulator did maintain additional, weighted metrics inan attempt to capture more detailed information. However, we found that these more complex metricsdid not provide much additional insight in the performance of the algorithms. Thus, we have reportedonly the simple metric here.4.3 Accuracy vs. Number of CountersIn our �rst set of experiments, we sought to determine the accuracy of the hot spot detection algorithmsas a function of the number of reference counters used. All other algorithmic parameters were �xedat default values, which are summarized in Table 4. The e�ects of these parameters are considered inlater later experiments. For the RP algorithm, the candidate set size was unbounded. We discuss thecandidate set further in Section 4.5.Figure 5 summarizes the performance of the two algorithms on all three of the input traces. Foreach trace, the size of the true hot spot (for TH = 0:002) is shown, along with the size of hot spotdetected by the algorithm. Since the NC algorithm underestimates temperatures, its hot spot predictionconverges to the true hot spot from below as the number of reference counters in increased. Conversely,the RP algorithm overestimates the hot spot size and its prediction converges from above. In all cases,the detected hot spot converges to the true hot spot as the number of reference counters is increased.Comparison of the two graphs shows that the RP algorithm requires more counters (by about an orderof magnitude) than NC to function e�ectively. However, in both cases the number of counters required fora very accurate estimate of the hot spot is signi�cantly less than the number of unique names appearingin the input traces (see Figure 3).4.4 E�ect of the Hot Temperature ThresholdAs TH is varied, the size of the true hot spot changes. We expect that larger values of TH (smallerhot spot sizes) will require fewer reference counters for accurate prediction. In our next experiment wevaried TH to test this hypothesis. Figure 6 shows the results of this experiment for the UMD trace. (Theremaining traces produced similar results.) Algorithm-speci�c parameters remained �xed at the defaultvalues shown in Figure 4.As expected, more counters are required to accurately predict the hotspot when TH is small. Forexample, the RP algorithm produces a very accurate hot spot estimate using 1000 counters when TH =12
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0:006. However, more than 5000 counters are required to produce comparable accuracy when TH = 0:002.The �gure also illustrates the declining marginal bene�t of additional reference counters as the numberof counters increases. Given a particular value of TH , the marginal bene�t of using additional counterscan be seen by drawing a vertical line through TH on the �gure's horizontal axis.It would be desirable to be able to predict in advance how many reference counters would be requiredfor an accurate hot spot diagnosis. Unfortunately, the relationship between the number of referencecounters, the value of TH , and the accuracy of the prediction is very complex. Furthermore, we havefound that this relationship is trace-dependent.Nonetheless, Figure 6 does suggest an iterative method for determining an appropriate number ofcounters to use. The basic idea is to run the detection algorithm several times, either on the same traceor on a series of similar traces. Before each successive run, the number of counters to be used is increased.This process is repeated until the size of reported hot spot does not change signi�cantly from run to run.Of course, a more sophisticated search strategy, such as binary search, can be used to reduce the numberof runs required. We have successfully applied this technique to a series of traces of disk accesses (similarto the UMD trace).4.5 Candidate List SizeThe RP algorithm maintains a list of candidate names, in addition to its reference counters. Thisrepresents a space overhead over and above the space used by reference counters.z Figure 7 shows thenumber of candidates in the set as a function of the number of references processed, for varying numbersof reference counters. These data were obtained using the UMD trace and the default parameter valuesfrom Figure 4.Two points can be observed from this �gure. First, if too few reference counters are used, the candidatelist can continue to grow as the reference list is processed. However, we have found that this occurs onlyif so few reference counters are used that the �nal predicted hot set will not be very accurate. Suchbehavior can be avoided if the number of reference counters is selected properly. In fact, a long-termincrease in the size of the candidate list can serve as a indication that insu�cient counters are being usedfor accurate prediction.Second, the candidate list is largest while the very beginning of the reference stream is being processed(assuming enough reference counters are being used). Unfortunately, all names that appear very early inthe reference string will have initial temperatures that are high relative to TH . For example, names thatappear in within the �rst 1=TH references will have a temperature greater than TH when �rst referenced,and thus will be placed in the candidate list. This e�ect accounts for the initial transient that canbe observed in Figure 7. It is possible to avoid this transient by simply not adding any names to thecandidate list early in the reference string. While this may be acceptable in practice, it may lead to aviolation of Lemma 3.3, which guarantees that RP will not miss any truly hot names.zThe NC algorithmmust also store names. However, the number of names stored is the same as the number of referencecounters used. 15
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Figure 7: Size of the Candidate List vs. Number of References Processed4.6 E�ects of Algorithm-Speci�c Parameters4.6.1 E�ect of the Eligibility ThresholdThe NC algorithm uses an eligibility threshold Telig to select eligible names for replacement in the cache.Figure 8 illustrates the e�ect of Telig on the performance of NC. Two graphs are shown, one for TH = 0:001and one for TH = 0:004.As the value of Telig is increased, its impact diminishes because fewer names will be deemed ineligiblefor replacement. Figure 8 shows that the safety threshold is important: the algorithm performs poorlywhen Telig is too high. As Figure 8 illustrates, the ideal value of Telig depends somewhat on TH . Wehave found that a good rule of thumb is to set Telig about an order of magnitude less than the desiredTH . Starting from this value, the safety threshold can then be �ne-tuned for a particular type of trace.The optimal safety threshold does not depend strongly on the number of reference counters used.However, when there are many counters the range of safety thresholds that gives good performancewidens.4.6.2 E�ect of the Replacement PolicyFigure 9 compares the three replacement policies for the NC algorithm, using the UMD trace. This �gurewas produced using the default hot temperature threshold value of 0.002.The replacement policy does not have a signi�cant impact on the algorithm's performance. Across16
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Figure 9: Predicted and Actual Hot Spot Sizes vs. Replacement Policyall three traces, we found that the biased policy was somewhat better than the other two. However, thedi�erences were not large. Overall, the pre-screening accomplished by the eligibility threshold (Figure 8)is much more important than the replacement policy in the NC algorithm.4.6.3 E�ect of the Number of Hash FunctionsFigure 10 shows the e�ect of varying the number of hash functions used by the RP algorithm,while keepingthe total number of reference counters constant. Thus, as the number of hash functions increases, therange of each function must shrink. Other parameters are set to their default values.The use of a small number (greater than one) of hash functions produces the best performance. Whensu�cient reference counters to permit accurate predictions are used, two to four functions produced thebest performance. Furthermore, performance drops o� only slowly as the number of functions is increased.We found this conclusion to be insensitive to TH . However, as we have shown previously, a greater totalnumber of counters is required for accurate prediction when TH decreases.When too few counters are available for accurate prediction (e.g., 2000 counters in Figure 10), thenumber of hash functions used is more critical. Using exactly two hash functions provides the bestperformance possible under these conditions. 18
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Predicted: 8000 countersFigure 10: Predicted and Actual Hot Spot Sizes vs. Number of Hash Functions5 ConclusionWe have described and evaluated NC and RP, two algorithms for on-line estimation of hot spots. Thesealgorithms may make errors in their estimates. However, they require little space. Furthermore, it ispossible to trade additional space for greater accuracy. The goal of our performance evaluation was toevaluate this tradeo�.Either algorithm can detect hot spots accurately using much less space than a simple algorithm whichcounts references to all names in the input string. At our default parameter settings, the NC algorithmrequired only a few hundred reference counters to produce very accurate hot spot estimates from ourtraces, which contained tens of thousands of unique names. Typically, the RP algorithm required aboutan order of magnitude more space to produce good estimates. However, RP is guaranteed not to neglectany true hot spots in its estimate.For either algorithm, the space required for accurate estimation depends strongly on the hot spotthreshold temperature. Lower thresholds result in larger hot spots and require more space for accurateestimation. In addition, both algorithms include tunable parameters. Our evaluation provided guidelinesfor setting them.Implementations of both algorithms, in C, are available from the author.19
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