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Sparse representation, acquisition and reconstruction of signals guided by the-

ory of Compressive Sensing (CS) has become an active research research topic over

the last few years. Sparse representations effectively capture the idea of parsimony

enabling novel acquisition schemes including sub-Nyquist sampling. Ideas from CS

have had significant impact on well established fields such as signal acquisition, ma-

chine learning and statistics and have also inspired new areas of research such as

low rank matrix completion. In this dissertation we apply CS ideas to low-level

computer vision problems. The contribution of this dissertation is to show that CS

theory is an important addition to the existing computational toolbox in computer

vision and pattern recognition, particularly in data representation and processing.

Additionally, in each of the problems we show how sparse representation helps in

improved modeling of the underlying data leading to novel applications and better

understanding of existing problems.

In our work, the impact of CS is most felt in the acquisition of videos with

novel camera designs. We build prototype cameras with slow sensors capable of



capturing at an order of magnitude higher temporal resolution. First, we propose

sub-Nyquist acquisition of periodic events and then generalize the idea to capturing

regular events. Both the cameras operate by first acquiring the video at a slower

rate and then computationally recovering the desired higher temporal resolution

frames. In our camera, we sense the light with a slow sensor after modulating it

with a fluttering shutter and then reconstruct the high speed video by enforcing its

sparsity. Our cameras offer a significant advantage in light efficiency and cost by

obviating the need to sense, transfer and store data at a higher frame rate.

Next, we explore the applicability of compressive cameras for computer vi-

sion applications in bandwidth constrained scenarios. We design a compressive

camera capable of capturing video using fewer measurements and also separate the

foreground from the background. We model surveillance type videos with two pro-

cesses, a slower background and a faster but spatially sparse foreground such that

we can recover both of them separately and accurately. By formulating the problem

in a distributed CS framework we achieve state-of-the-art video reconstruction and

background subtraction. Subsequently we show that if the camera geometry is pro-

vided in a multi-camera setting, the background subtracted CS images can be used

for localizing the object and tracking it by formulating its occupancy in a grid as a

sparse reconstruction problem.

Finally, we apply CS to robust estimation of gradients obtained through pho-

tometric stereo and other gradient-based techniques. Since gradient fields are often

not integrable, the errors in them need to be estimated and removed. By assum-

ing the errors, particularly the outliers, as sparse in number we accurately estimate



and remove them. Using conditions on sparse recovery in CS we characterize the

distribution of errors which can be corrected completely and those that can be only

partially corrected. We show that our approach has the important property of lo-

calizing the effect of error during integration where other parts of the surface are

not affected by errors in gradients at a particular location.

This dissertation is one of the earliest to investigate the implications of com-

pressive sensing theory to some computer vision problems. We hope that this effort

will spur more interest in researchers drawn from computer vision, computer graph-

ics, computational photography, statistics and mathematics.
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Chapter 1

Introduction
Modeling data and representing signals as a linear combination of basis ele-

ments is a simple and popular way of describing a signal using its constituent parts.

For example, the Fourier transform of a signal gives us the weights with which the

sinusoidal basis functions should be combined. Similarly, given data samples the

singular value decomposition (SVD) provides us with orthogonal basis elements and

their weights. Nevertheless, most of the energy in the signal is often concentrated

at few basis elements.

The simplest way to characterize this redundancy is to approximate the data

with a subspace of the space spanned by all the basis elements. For instance, natural

signals have a Fourier transform which rapidly falls off with frequency leading to

a baseband bandwidth which is a fraction of the entire spectrum. Similarly, the

principal component analysis (PCA) of data samples reveals a pattern where most of

the energy is concentrated at principal components. Thus subspace representation of

signals captures the energy distribution but it doesn’t always explain the underlying

redundancy. For example, a signal may have a large baseband bandwidth but only

a small bandwidth. Also, to explain the redundancy in a signal, a different set of

basis elements might be required such as Wavelets for image decomposition. In such
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a decomposition the energy maybe distributed sparse and non-contiguously.

Often over-complete representations (such as the union of Fourier and canon-

ical basis) are used to capture the underlying redundancy leading to a non-unique

representation. Unlike subspace representation, the ensemble of signals here are rep-

resented not by a single subspace but a union-of-subspaces. To represent a signal

with a subspace from the union requires solving computationally intense optimiza-

tion problems with sparsity constraints. The guarantees for unique sparse decompo-

sition of signals given an over-complete representation have been found only recently.

This resulted in great excitement and fervent research in the development of theory

and applications of sparse representations.

Under the umbrella term ‘Compressive Sensing’ (CS), the sparse represen-

tation/acquisition theory has had significant impact on many problems in signal

processing, statistics and machine learning with applications in many other. For

instance, CS questions the traditional Nyquist sampling theory and proposes novel

sub-Nyquist sampling schemes. In the appendix, we briefly describe the CS theory.

In this dissertation we apply CS theory to low-level computer vision prob-

lems. Particularly, we focus on novel acquisition of videos leading to prototype

compressive cameras which can capture at higher temporal resolution even at lower

frame rate. We also investigate the potential application of compressive cameras in

low-level vision tasks in bandwidth constrained scenarios. Further, we apply it to

traditional gradient based surface reconstruction algorithms. The contribution of

this dissertation is to show that sparse representation and reconstruction algorithms

are important tools which can improve the state-of-the-art in many applications in

2



computer vision with potential to define new research areas. Next, we provide an

overview of the dissertation and briefly describe its component chapters.

1.1 Coded strobing photography

We propose a camera that can capture high speed periodic phenomenon with a

slow sensor at sub-Nyquist rates. We do so by strobing the scene during the exposure

duration of the sensor according to a pre-determined pseudo random code, thereby

preserving the high frequency information from being lost due to blur. Later, we

computationally recover the fast phenomenon by enforcing its sparsity in Fourier

transform. We have built a prototype 25fps camera capable of capturing at 2000fps

Strobing is a traditional passive/active way of visualizing/capturing high speed

periodic visual signals using a low frame rate camera. It relies on flashing a bright

source of light (strobe) periodically for a short duration to illuminate the scene. By

keeping the period of the strobe to be near the signal’s period, beat frequencies are

generated which allows visualization of the signal. Although this approach is widely

used in medical imaging and industrial settings, it is very light inefficient. Moreover,

the period of the visual signal needs to be known a priori. Instead, coded strobing

is light efficient and doesn’t need a priori knowledge of the period. Also, it allows

us to capture multiple periodic signals of with different periods.

Each frame of our camera captures the modulation of coded strobe and the

visual signal. Since the modulation matrix is known, we can invert the observed

coded frames by enforcing sparsity of the periodic signal using techniques from CS
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literature. Our approach is also applicable to sparse band-limited signals including

quasi-periodic signals.

1.2 Programmable pixel compressive camera

We extend the idea of coded strobing to handle regular motion by designing

and building programmable pixel compressive camera (P2C2). Our camera captures

videos at a higher temporal resolution without blur, loss in spatial resolution and

any additional cameras. We generalize the model of videos to handle a broad class

of motions and at the same time generalize the acquisition by building a per-pixel

shutter. While sparse representations model images accurately, they need to be

augmented in videos by treating the spatial and temporal correlations separately.

To handle a broad class of motion patterns and occlusions, we enforce sparsity in

each high-speed frame but enforce brightness constancy constraints temporally.

To prevent the temporal information from being lost through integration of

light during exposure of each frame, we code each pixel independently. This can be

interpreted as ‘time-stamping’ the incoming high speed frames with a unique mask

which can be inverted during reconstruction. The per-pixel coding offers improved

conditioning of the measurement matrix compared to the fluttered global shutter.

We have built a prototype camera (25fps) with a liquid crystal on silicon (LCOS)

modulating device for testing and show an order of magnitude improvement in

temporal resolution (200fps). Per-pixel control of shutter offers significant control

over the sensor and can be used for other applications as well. For instance, per-
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pixel coding can be used to capture high dynamic range (HDR) images and also for

implementing programmable sensors.

1.3 Compressive background substraction and tracking

We propose to use compressive cameras for surveillance applications involv-

ing computer vision tasks such as detection and tracking. Compressive cameras by

virtue of sensing less data, are particularly useful in bandwidth constrained scenar-

ios. Compressive cameras also offer the advantage of using fewer/cheaper sensors

(e.g. Single Pixel Camera [45]) allowing significant savings in hyper-spectral and

fast imaging. For example, in a camera (say hyper-spectral) network with band-

width limitations it would be prudent to sense compressively and then transmit to

a central location for subsequent processing.

We propose a background subtraction algorithm on compressive frames with-

out the need for reconstructing the individual frames. Since, the compressed mea-

surements are a linear projection of the scene, the statistics of the background model

extend in a straightforward way from the typical background subtraction algorithms.

Typically, the foreground pixel statistics are different from that of background and

this holds in compressed measurements as well. Since the foreground image is typi-

cally sparse, we show that we can perform background subtraction with even fewer

measurements. Our algorithm is robust to both slow and fast variations in the

background.

Next, we show that tracking of objects can be performed in a multi-camera
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setting on compressed measurements. The problem of tracking is formulated as that

of sparse estimation where the object being tracked occupies sparse support on a

localization grid on the ground plane. Given the homography between the ground

plane and the cameras, the appearance of the scene corresponding to the grid points

on the ground plane can be mapped to pixels on the cameras. By collecting random

projections of these pixels at multiple cameras, the position of the object is estimated

centrally by first estimating the background subtracted image at each pixel and then

solving the position using homography from all cameras. We show that our approach

is scalable in number of cameras and the computation depends only on the size of

the grid.

1.4 Joint compressive video sensing and background sub-

traction

In the background subtraction approach mentioned above, the background in-

formation is completely lost. This leads to the loss of background context in which

the object is moving. We propose to reconstruct both foreground and background

without any additional measurements by exploiting the fact that the background

changes slowly compared to the foreground and by modifying the sensing by chang-

ing the measurement matrix in each frame. We overcome the drawback of strict

sparsity necessary for good quality compressive reconstruction by avoiding the need

to enforce sparsity in background. By formulating the problem in a distributed

compressive framework, we not only separate the background but also sense it.
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1.5 Enforcing integrability

In many applications such as shape from shading, photometric stereo and gra-

dient domain processing, the estimated gradient field is noisy. This renders the

gradient field to be non-integrable (non-zero curl) leading to poor surface recon-

struction. We treat the problem of enforcing integrability as that of error correction

where we correct the errors (noise and outliers). Using sufficient conditions for sparse

recovery, we analyze the scenarios under which all the errors can be corrected. We

propose minimizing the ℓ1-norm of gradient error subject to the observed curl values

resulting in robust estimation of the gradients. We show through experiments that

our approach is significantly better than existing techniques in correcting errors and

that even when it fails to correct the errors it doesn’t corrupt the reconstructed

surface elsewhere.
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Chapter 2

Coded Strobing Photography

2.1 Introduction

Periodic signals are all around us. Several human and animal biological pro-

cesses such as heart-beat, breathing, several cellular processes, industrial automation

processes and everyday objects such as hand-mixer and blender all generate periodic

processes. Nevertheless, we are mostly unaware of the inner workings of some of

these high-speed processes because they occur at a far greater speed than can be

perceived by the human eye. Here, we show a simple but effective technique that

can turn an off-the-shelf video camera into a powerful high-speed video camera for

observing periodic events.

Strobing is often used in entertainment, medical imaging and industrial ap-

plications to visualize and capture high-speed visual phenomena. Active strobing

involves illuminating the scene with a rapid sequence of flashes within a frame time.

The classic example is Edgerton’s Rapatron to capture a golf swing [46]. In modern

sensors, it is achieved passively by multiple-exposures within a frame time [157][121]

or fluttering [124]. We use the term ‘strobing’ to indicate both active illumination

and passive sensor methods.
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Coded Strobing Schematic
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Coded Strobing: Time Domain
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TFrame= Frame Duration = 40ms
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Measure Linear Combinations

4fP

Structured Sparsity Enforcing 
Reconstruction Algorithm
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f

Figure 2.1: CSC: A fast periodic visual phenomenon is recorded by a normal video
camera (25 fps) by randomly opening and closing the shutter at high speed (2000
Hz). The phenomenon is accurately reconstructed from the captured frames at the
high-speed shutter rate (2000 fps).

In the case of periodic phenomenon, strobing is commonly used to achieve

aliasing and generate lower beat frequencies. While strobing performs effectively

when the scene consists of a single frequency with a narrow sideband, it is difficult

to visualize multiple or a wider band of frequencies simultaneously. Instead of

direct observation of beat frequencies, we exploit a computational camera approach

based on different sampling sequences. The key idea is to measure appropriate

linear combinations of the periodic signal and then decode the signal by exploiting

the sparsity of the signal in Fourier domain. We observe that by coding during

the exposure duration of a low-frame-rate (e.g., 25 fps) video camera, we can take
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appropriate projections of the signal needed to reconstruct a high-frame-rate (e.g.,

2000 fps) video. During each frame, we strobe and capture a coded projection of

the dynamic event and store the integrated frame. After capturing several frames,

we computationally recover the signal independently at each pixel by exploiting

the Fourier sparsity of periodic signals. Our method of coded exposure for sampling

periodic signals is termed ‘coded strobing’ and we call our camera the ‘coded strobing

camera’ (CSC). Figure 2.1 illustrates the operation of CSC.

2.1.1 Contributions

• We show that sub-Nyquist sampling of periodic visual signals is possible and

that such signals can be captured and recovered using a coded strobing com-

putational camera.

• We develop a sparsity-exploiting reconstruction algorithm and expose connec-

tions to compressive sensing.

• We show that the primary benefit of our approach over traditional strobing is,

increased light-throughput and the ability to simultaneously tackle multiple

frequencies post-capture.

2.1.2 Benefits and limitations

The main constraint for recording a high-speed event is light throughput.

We overcome this constraint for periodic signals via sufficient exposure duration

(in each frame) and extended observation window (multiple frames). For well-lit
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non-periodic events, high-speed cameras are ideal. For a static snapshot, a short

exposure photo (or single frame of the high-speed camera) is sufficient. In both cases,

light throughput is limited but unavoidable. Periodic signals can also be captured

with a high-speed camera. But one will need a well-lit scene or must illuminate it

with unrealistic bright lights. For example, if we use a 2000 fps camera for vocal

cord analysis instead of strobing using a laryngoscope, we would need a significantly

brighter illumination source and this creates the risk of burn injuries to the throat.

A safer option would be 25 fps camera with strobed light source and then exploit

the periodicity of vocal fold movement. Here, we show that an even better option

in terms of light-throughput is a computational camera approach. Further, the

need to know frequency of the signal at capture-time is also avoided. Moreover, the

computational recovery algorithm can tackle the presence of multiple fundamental

frequencies in a scene, which poses a challenge to traditional strobing.

2.1.3 Related work

High-speed imaging hardware: Capturing high-speed events with fast,

high-frame rate cameras require imagers with high photoresponsivity at short in-

tegration times, synchronous exposure and high-speed parallel readout due to the

necessary bandwidth. In addition, they suffer from challenging storage problems.

A high-speed camera also fails to exploit the inter-frame coherence, while our tech-

nique takes advantage of a simplified model of motion. Edgerton [46] and others

have shown visually stunning results for high-speed objects using extremely narrow-
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duration flash . These snapshots capture an instant of the action but fail to in-

dicate the general movement in the scene. Multiple low-frame rate cameras can

be combined to create high-speed sensing. Using a staggered exposure approach,

Shechtman et al. [137] used frames captured by multiple co-located cameras with

overlapped exposure time. This staggered exposure approach also assisted a novel

reconfigurable multi-camera array [159]. Although numerous super-resolution tech-

niques have been proposed to increase the spatial resolution of images, only few

methods are available for temporally super-resolving a video [57]. In [65], a super-

resolution technique to reconstruct a high-resolution image from a sequence of low-

resolution images was proposed using the backprojection method. A method to do

super-resolution on a low quality image of a moving object was proposed in [12] by

first tracking it, estimating the motion and deblurring the motion blur and creating

a high quality image. Freeman et al. [55] proposed a learning-based technique for

superresolution from one image where the high frequency components like edges of

an image are filled by patches obtained from examples with similar low resolution

properties. Finally, fundamental limits on super-resolution for reconstruction based

algorithms have been explored in [7][85].

Stroboscopy and periodic motion: Stroboscopes (from the Greek word

στρωβωσ for ‘whirling’) play an important role in scientific research, to study ma-

chinery in motion, in entertainment and medical imaging. Muybridge in his pioneer-

ing work used multiple triggered cameras to capture high-speed motion of animals

[105] and proved that all four of a horse’s hooves left the ground at the same time

during a gallop. Edgerton also used flashing lamp to study machine parts in motion
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[46]. The most common approaches for “freezing” or “slowing down” the movement

are based on temporal aliasing. In medicine, stroboscopes are used to view the vocal

cords for diagnosis. The patient hums or speaks into a microphone which in turn

activates the stroboscope at either the same or a slightly lower frequency [81],[131].

However, in all healthy humans, vocal-fold vibrations are aperiodic to a greater or

lesser degree. Therefore, strobolaryngoscopy does not capture the fine detail of each

individual vibratory cycle; rather, it shows a pattern averaged over many succes-

sive nonidentical cycles [100][135]. Modern strobocopes for machine inspection [36]

are designed for observing fast repeated motions and for determining RPM. The

idea can also be used to improve spatial resolution by introducing high-frequency

illumination [60].

Processing: In computer vision, periodic motion of humans has received sig-

nificant attention. Seitz et al. [132] introduced a novel motion representation, called

the period trace, that provides a complete description of temporal variations in a

cyclic motion, which can be used to detect motion trends and irregularities. A tech-

nique to repair videos with large static background or cyclic motion was presented

in [69]. Laptev et al. [80] presented a method to detect and segment periodic motion

based on sequence alignment without the need for camera stabilization and tracking.

[14] exploited periodicity of moving objects to perform 3D reconstruction by treating

frames with same phase to be of same pose observed from different views. In [141],

the authors showed a strobe based approach for capturing high-speed motion using

multiexposure images obtained within a single frame of a camera. The images of a

baseball appear as distinct non-overlapping positions in the image . High temporal
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and spatial resolution can be obtained via a hybrid imaging device which consists

of a high spatial resolution digital camera in conjunction with a high frame-rate

but low resolution video camera [16]. In cases where the motion can be modeled

as linear, there have been several interesting methods to engineer the motion blur

point spread function so that the blur induced by the imaging device is invertible.

These include coding the exposure [124] and moving the sensor during the exposure

duration [83]. The method presented in this dissertation tackles a somewhat related

problem of reconstructing periodic signals from very low-speed images acquired via

a conventional video camera (albeit enhanced with coded exposure).

Comparison with flutter shutter: In [124], the authors showed that by

opening and closing the shutter according to an optimized coded pattern during

the exposure duration of a photograph, one can preserve high-frequency spatial

details in the blurred captured image. The image can be then de-blurred using a

manually specified point-spread function. Similarly, we open and close the shutter

according to a coded pattern and this code is optimized for capture. Nevertheless,

there are significant differences in motion models and reconstruction procedures

of both these methods. In flutter shutter (FS), a constant velocity linear motion

model was assumed and deblurring was done in blurred pixels along the motion

direction. On the other hand, CSC works even on very complicated motion models

as long as the motion is periodic. In CSC each of the captured frames is the result

of modulation with a different binary sequence whereas in FS a single frame is

modulated with a ‘all-pass’ code. Further, our method contrasts fundamentally

with FS in reconstruction of the frames. In FS the system of equations is not
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under-determined whereas in CSC we have a severely under-determined system. We

overcome this problem by ℓ1-norm regularization, appropriate for enforcing sparsity

of periodic motion in time. In FS a single system of equations is solved for entire

image whereas in CSC at each pixel we temporally reconstruct the periodic signal

by solving an under-determined system.

2.1.4 Capture and reconstruction procedure

The sequence of steps involved in the capture and reconstruction of a high-

speed periodic phenomenon with typical physical values are listed below with refer-

ences to appropriate sections for detailed discussion.

• Goal: Using a 25 fps camera and a shutter which can open and close at 2000 Hz,

capture a high-speed periodic phenomenon of unknown period by observing

for 5s.

• The length of the binary code needed is N = 2000 × 5 = 10000. For an

upsampling factor of U = 2000/25 = 80, find the optimal pseudo random

code of length N (Section 2.3.1).

• Capture M = 25 × 5 = 125 frames by fluttering the shutter according to the

optimal code. Each captured frame is an integration of the incoming visual

signal modulated with a corresponding subsequence of binary values of length

U = 80 (Section 2.2.3).

• Estimate the fundamental frequency of the periodic signal (Section 2.2.4.3).
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Figure 2.2: Time domain (Left) and the corresponding frequency domain (Right)
characteristics of various sampling techniques as applicable to periodic signals. Note
that capturing high-speed visual signals using normal camera can result in attenu-
ation of high frequencies ((b) and (c)) whereas a high-speed camera demands large
bandwidth (d) and traditional strobing is light-inefficient (e). Coded strobing is
shown in (f). To illsutrate sampling only two replicas have been shown and note
that colors used in time domain and frequency domain are unrelated.

• Using the estimated fundamental frequency, at each pixel reconstruct the pe-

riodic signal of length N = 10000 from M = 125 values by recovering the

signal’s sparse Fourier coefficients (Section 2.2.4).

2.2 Strobing and Light Modulation

2.2.1 Traditional sampling techniques

Sampling is the process of converting a continuous domain signal into a set

of discrete samples in a manner that allows approximate or exact reconstruction of
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the continuous domain signal from just the discrete samples. The most fundamental

result in sampling is that of Nyquist-Shannon sampling theorem. Figure 2.2 provides

a graphical illustration of traditional sampling techniques applied to periodic signals.

Nyquist sampling: Nyquist-Shannon sampling states that when a contin-

uous domain signal is band-limited to [0 , f0] Hz, one can exactly reconstruct the

band-limited signal, by just observing discrete samples of the signal at a sampling

rate fs greater than 2f0 [111]. When the signal has frequency components that

are higher than the prescribed band-limit, then during reconstruction, the higher

frequencies get aliased as lower frequencies contributing to erroneous reconstruction

(see Figure 2.2(Right)(c)). If the goal is to capture a signal whose maximum fre-

quency fMax is 1000 Hz, then one needs a high-speed camera capable of 2000 fps

in order to acquire the signal. Such high-speed video cameras are light limited and

expensive.

Band-pass sampling (strobing): If the signal is periodic as shown in Fig-

ure 2.2(Left)(a), then we can intentionally alias the periodic signal by sampling at a

frequency very close to the fundamental frequency of the signal as shown in Figure

2.2(Left)(e). This intentional aliasing allows us to measure the periodic signal. This

technique is commonly used for vocal fold visualization [100][135]. However, tradi-

tional strobing suffers from the following limitations. The frequency of the original

signal must be known at capture-time so that one may perform strobing at the right

frequency. Secondly, the strobe signal must be ‘ON’ for a very short duration so

that the observed high-speed signal is not smoothed out and this makes traditional

strobing light-inefficient. Despite this handicap, traditional strobing is an extremely
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interesting and useful visualization tool (and has found several applications in vary-

ing fields).

Non-uniform sampling: With periodic sampling, aliasing occurs when the

sampling rate is not adequate because, all frequencies of the form f1 + k · fs (k an

integer) lead to identical samples. One method to counter this problem is to employ

non-uniform or random sampling [19][98]. The key idea in non-uniform sampling

[19][98] is to ensure a set of sampling instants such that the observation sequence

for any two frequencies are different at least in one sampling instant. This scheme

has not found widespread practical applicability because of its noise sensitivity and

light inefficiency.

2.2.2 Periodic signals

Since, the focus of this chapter is high-speed video capture of periodic signals,

we first study the properties of such signals.

2.2.2.1 Fourier domain properties of periodic signals

Consider a signal x(t), which has a period P = 1/fP and a bandlimit fMax.

Since the signal is periodic, we can express it as,

x(t) = xDC +

j=Q∑

j=1

aj cos(2πjfP t) + bj sin(2πjfP t) (2.1)

Therefore, the Fourier transform of the signal x(t) contains energy only in the fre-

quencies corresponding to jfP , where j ∈ {−Q,−(Q − 1), ...0, 1, ..., Q}. Thus, a

periodic signal has a maximum of (K = 2Q+1) non-zero Fourier coefficients. There-
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fore, periodic signals by definition, have a very sparse representation in the Fourier

domain. Recent advances in the field of compressed sensing (CS) [43][23][9][22][144]

have developed reliable recovery algorithms for inferring sparse representations if

one can measure arbitrary linear combinations of the signals. Here, we propose and

describe a method for measuring such linear combinations and use the reconstruc-

tion algorithms inspired by CS to recover the underlying periodic signal from its

low-frame-rate observations.

2.2.2.2 Effect of visual texture on periodic motion

Visual texture on surfaces exhibiting periodic motion introduces high fre-

quency variations in the observed signal (Figure 2.3(d)). As a very simple instructive

example consider the fan shown in Figure 2.3(a). The fan rotates at a relatively slow

rate of 8.33 Hz. This would seem to indicate that in order to capture the spinning

fan one only needs a 16.66 fps camera. During exposure time of 60 ms of a 16.66

Hz camera, the figure ‘1’ written on the fan blade completes about half a revolution

blurring it out (Figure 2.3(b)). Shown in Figure 2.3(c) is the time profile of the

intensity of a single pixel using a high-speed video camera. Note that the sudden

drop in intensity due to the dark number ‘1’ appearing on the blades persists only

for about 1 millisecond. Therefore, we need a 1000 fps high-speed camera to ob-

serve the ‘1’ without any blur. In short, the highest temporal frequency observed

at a pixel is a product of the highest frequency of the periodic event in time and

the highest frequency of the spatial pattern on the objects across the direction of
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(a) A frame from high speed video (b) A frame from 16.66 fps video 
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Figure 2.3: (a) Video of a fan from a high-speed camera (b) A 16.66 Hz camera blurs
out the ‘1’ in the image (c) Few periods of the signal at a pixel where the figure
‘1’ passes. Note the notch of duration 1 ms in the intensity profile. (d) Fourier
transform of the signal in (c). Notice the higher frequency components in a signal
with low fundamental frequency fP .

motion. This makes the capture of high-speed periodic signals with texture more

challenging.

2.2.2.3 Quasi-periodic signals

Most real world “periodic signals” are not exactly so, but almost; there are

small changes in the period of the signal over time. We refer to such broader

class of signals as quasi-periodic. For example, the Crest toothbrush we use in our

experiments exhibits a quasi-periodic motion with fundamental frequency that varies

between 63− 64 Hz. Figure 2.4(a) shows few periods of a quasi-periodic signal at a

pixel of a vibrating tooth brush. Variation in fundamental frequency fP , between 63

and 64 Hz, over time can be seen in (b). Variation in fP of a quasi-periodic signal

is reflected in its Fourier transform which contains energy not just at multiples

jfP but in small band around jfP . Nevertheless, like periodic signals, the Fourier

coefficients are concentrated at jfP (Figure 2.4(c)) and are sparse in the frequency

domain. The coefficients are distributed in a band [jfP − j∆fP , jfP + j∆fP ]. For

example, ∆fP = 0.75 Hz in Figure 2.4(d).
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Figure 2.4: (a) Six periods of a N = 32768 ms long quasi-periodic signal at a pixel
of a scene captured by 1000 fps high-speed camera. (b) Fundamental frequency fP
varying with time. (c) Fourier coefficients of the quasi-periodic signal shown in (a).
(d) On zoom we notice that the signal energy is concentrated in a band around the
fundamental frequency fP and its harmonics.

2.2.3 Coded exposure sampling (or Coded strobing)

The key idea is to measure appropriate linear combinations of the periodic

signal and then recover the signal by exploiting the sparsity of the signal in Fourier

domain (Figure 2.5). Observe that by coding the incoming signal during the expo-

sure duration, we take appropriate projections of the desired signal.

2.2.3.1 Camera observation model

Consider a luminance signal x(t). If the signal is band-limited to [−fMax , fMax],

then in order to accurately represent and recover the signal, we only need to measure
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samples of the signal that are δt = 1/(2fMax) apart where δt represents the temporal

resolution with which we wish to reconstruct the signal. If the total time of observ-

ing the signal is Nδt, then the N samples can be represented in a N dimensional

vector x.

In a normal camera, the radiance at a single pixel is integrated during the

exposure time, and the sum is recorded as the observed intensity at a pixel. Instead

of integrating during the entire frame duration, we perform amplitude modulation

of the incoming radiance values, before integration. Then the observed intensity

values y at a given pixel can be represented as

y = Cx + η, (2.2)

where theM×N matrix C performs both the modulation and integration for frame

duration, and η represents the observation noise. Figure 2.5 shows the structure of

matrix C. If the camera observes a frame every Ts seconds, the total number of

frames/observations would be M = Nδt/Ts and so y is aM ×1 vector. The camera

sampling time Ts is far larger than the time resolution we would like to achieve (δt),

therefore M << N . The upsampling factor (or decimation ratio) of CSC can be

defined as,

Upsampling factor = U =
N

M
=

2fMax

fs
. (2.3)

For example, in the experiment shown in Figure 2.15, fMax = 1000 Hz, and fs = 25

fps. Therefore, the upsampling factor achieved is 80, i.e., the frame-rate of CSC

is eighty times smaller than that of an equivalent high-speed video camera. Even

though, the modulation function can be arbitrary, in practice it is usually restricted

22



to be binary (open or close shutter). Effective modulation can be achieved with

codes that have a 50% transmission, i.e., the shutter is open for 50% of the total

time, thereby limiting light-loss at capture-time to just 50%.
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Figure 2.5: Observation model shows the capture process of the CSC where different
colors correspond to different frames and the binary shutter sequence is depicted
using the presence or absence of color. Note that each frame uses a different binary
sub-sequence. The signal model illustrates the sparsity in the frequency spectrum
of a periodic signal.

2.2.3.2 Signal model

If x, the luminance at a pixel is bandlimited it can be represented as,

x = Bs, (2.4)

where, the columns of B contain Fourier basis elements. Moreover, since the signal

x(t) is assumed to be periodic, we know that the basis coefficient vector s is sparse

as shown in Figure 2.5. Putting together the signal and observation model, the

intensities in the observed frames are related to the basis coefficients as,

y = Cx+ η = CBs + η = As + η, (2.5)
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where A is the effective mixing matrix of the forward process. Recovery of the high-

speed periodic motion x amounts to solving the linear system of equations (2.5).

2.2.4 Reconstruction algorithms

To reconstruct the high-speed periodic signal x, it suffices to reconstruct its

Fourier coefficients s from modulated intensity observations y of the scene.

Unknowns, measurements and sparsity: In (2.5), the number of un-

knowns exceeds the number of known variables by a factor U (typically 80) and

hence the system of equations (2.5) is severely under-determined (M << N). To

obtain robust solutions, further knowledge about the signal must be used. Since the

Fourier coefficients s, of a periodic signal x, are sparse, a reconstruction technique

enforcing sparsity of s could still hope to recover the periodic signal x.

We present two reconstruction algorithms, one which enforces the sparsity

of the Fourier coefficients and is inspired by compressive sensing and other which

additionally enforces the structure of the sparse Fourier coefficients.

2.2.4.1 Sparsity enforcing reconstruction

Estimating a sparse vector s (withK non-zero entries) that satisfies y = As+η,

can be formulated as an ℓ0 optimization problem:

(P0) : min||s||0 s.t ||y − As||2 ≤ ǫ. (2.6)

Although for general s this is a NP-hard problem, for K sufficiently small the equiv-

alence between ℓ0 and ℓ1-norm [22] allows us to reformulate the problem as one
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of ℓ1-norm minimization, which is a convex program with very efficient algorithms

[43][22][9].

(P1) : min||s||1 s.t ||y −As||2 ≤ ǫ (2.7)

The parameter ǫ allows for the variation in the modeling of signal’s sparsity and/or

noise in the observed frames. In practice, it is set to a fraction of captured signal

energy (e.g., ǫ = 0.03||y||2) and is dictated by the prior knowledge about camera

noise in general and the extent of periodicity of the captured phenomenon. An

interior point implementation basis pursuit de-noising (BPDN) of (P1) is used to

accurately solve for s. Instead, in most experiments in this chapter, at the cost of

minor degradation in performance we use CoSaMP [107], a faster greedy algorithm

to solve (P0). Both (P0) and (P1) do not take into account the structure in the

sparse coefficients of the periodic signal. By additionally enforcing the structure of

the sparse coefficients s, we achieve robustness in the recovery of the periodic signal.

2.2.4.2 Structured sparse reconstruction

We recall that periodic/quasi-periodic signals are (a) sparse in the Fourier

basis and (b) if the period is P = 1/fP , the only frequency content the signal has

is in the small bands at the harmonics jfP , j an integer. Often, the period P is

not known a priori. If the period is known or can be estimated from the data y,

then for a hypothesized fundamental frequency fH , we can construct a set SfH with

basis elements [jfH − ∆fH , jfH + ∆fH ], for j ∈ {−Q, ...0, 1, ..., Q} such that all

the sparse Fourier coefficients will lie in this smaller set. Now the problem (P0) can
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Figure 2.6: (a) Overview of structured sparse and sparsity enforcing reconstruction
algorithms (b) Five periods of a noisy (SNR=35 dB) periodic signal x (P = 14
units). Signal recovered by structured and normal sparsity enforcing reconstruction
are also shown.

instead be reformulated as

(PStructured) : min||s||0 s.t (2.8)

||y − As||2 ≤ ǫ and

nonZero(s) ∈ SfH for some fH ∈ [0 , fMax].

where nonZero(s) is a set containing all the non-zero elements in the recon-

structed s. Since the extent of quasi-periodicity is not known a priori, the band ∆fH

is chosen safely large and the non-zero coefficients continue to remain sparse in the

set SfH . Intuitively, problem PStructured gives a better sparse solution compared to
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(P0) since the non-zero coefficients are searched over a smaller set SfH . An example

of a periodic signal and its recovery using sparsity enforcing (P1) and structured

sparsity are shown in Figure 2.6(b). The recovery using PStructured is exact whereas

(P0) fails to recover the high-frequency components.

The restatement of the problem provides two significant advantages. Firstly, it

reduces the problem search space of the original ℓ0 formulation. To solve the original

ℓ0 formulation, one has to search over NCK sets. For example, if we observe a signal

for 5 seconds at 1 ms resolution, then N is 5000 and NCK is prohibitively large

(10212 for K = P = 100). Secondly, this formulation implicitly enforces the quasi-

periodicity of the recovered signal and this extra constraint allows us to solve for the

unknown quasi-periodic signal with far fewer measurements than would otherwise

be possible. The type of algorithms which exploit further statistical structure in the

support of the sparse coefficients come under model-based compressive sensing [10].

2.2.4.3 Knowledge of fundamental frequency

Structured sparse reconstruction performs better over a larger range of up-

sampling factors and since the structure of non-zero coefficients is dependent on

fundamental frequency fP , we estimate it first.

Identification of fundamental frequency: For both periodic and quasi-

periodic signals we solve a sequence of least-square problems to identify the fun-

damental frequency fP . For a hypothesized fundamental frequency fH , we build

a set SfH with only the frequencies jfH (for both periodic and quasi-periodic sig-
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nals). Truncated matrix AfH is constructed by retaining only the columns with

indices in SfH . Non-zero coefficients ŝfH are then estimated by solving the equation

y = AfHsfH in a least-squares sense. We are interested in fH which has a small

reconstruction error ‖y − ŷfH‖ (or largest output SNR) where ŷfH = AfH ŝfH . If

fP is the fundamental frequency, then all the sets SfH , where fH is a factor of fP ,

will provide a good fit to the observed signal y. Hence, the plot of output SNR

has multiple peaks corresponding to the good fits. From these peaks we pick the

one with largest fH . In Figure 2.7, we show the results of experiments on synthetic

datasets, under two scenarios: noisy signal and quasi-periodicity. We note that

even when (a) the signal is noisy and (b) when the quasi-periodicity of the signal

increases, the last peak in the SNR plot occurs at fundamental frequency fP . We

generate quasi-periodic signals from periodic signals by warping the time variable.

Note that, solving a least squares problem for a hypothesized fundamental frequency

fH is equivalent to solving Pstructured with ∆fH = 0. Setting ∆fH = 0 eases the pro-

cess of finding the fundamental frequency by avoiding the need to set the parameter

∆fH appropriate for both the captured signal and fH . This is especially useful for

quasi-periodic signals where a priori knowledge of quasi-periodicity is not available.

2.3 Design Analysis

In this section, we analyze important design issues and gain a better under-

standing of the performance of the coded strobing method through experiments on

synthetic examples.
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Figure 2.7: Identifying the fundamental frequency fP . Output SNR ||y||/||y− ŷfH ||
in dB is plotted against hypothesized fundamental frequency fH . (a) Plot of SNR
as the noise in y is varied. Note that the last peak occurs at fH = 165 (= N

P
). (b)

Plot of SNR with varying level of quasi-periodicity.

2.3.1 Optimal code for coded strobing

Theoretically optimal code: The optimization problems (2.6) and (2.7)

give unique and exact solutions provided the under-determined matrix A satisfies

the restricted isometry property (RIP) [30]. Since the location of the K non-zeros

of the sparse vector s which generates the observation y is not known a priori, RIP

demands that all sub-matrices of A with 2K columns have a low condition number.

In other words, every possible restriction of 2K columns are nearly orthonormal and

hence isometric. Evaluating RIP for a matrix is a combinatorial problem since it

involves checking the condition number of all NC2K submatrices.

Alternately, the matrix A satisfies RIP if every row of C is incoherent with

every column of B. In other words, no row of C can be sparsely represented by

columns of B. Tropp et al. [144] showed in a general setting that if the code matrix

C is drawn from a IID Rademacher distribution, the resulting mixing matrix A
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Figure 2.8: Time domain (Left) and corresponding frequency domain (Right) un-
derstanding of CSC. Shown in (a) is a single sinusoid. (b),(c) & (d) show the effect
of coded strobing capture on the sinusoid. (e) coded strobing capture of multiple
sinusoids is simply a linear combination of the sinusoids.

satisfies RIP with a high probability. It must be noted that a modulation matrix

C with entries ‘+1’, ‘-1’ is implementable but would involve using a beam splitter

and two cameras in place of one. Due to ease of implementation (details in section

2.4), for modulation we use a binary ‘1’, ‘0’ code matrix C as described in section

2.2.3.1. For a given signal length N and an upsampling factor U we would like to

pick a binary ‘1’, ‘0’ code which results in mixing matrix A, optimal in the sense of

RIP.

Note that the sparsity of quasi-periodic signals is structured and the non-zero

elements occur at regular intervals. Hence, unlike the general setting, RIP should

be satisfied and evaluated over only a select subset of columns. Since the funda-

mental frequency fP of the signal is not known a priori, it suffices if the isometry is

evaluated over a sequence of matrices Ā corresponding to the hypothesized funda-
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mental frequency fH . Hence, for a given N and U , a code matrix C which results

in a smallest condition number over all the sequence of matrices Ā is desired. In

practice, such a C is sub-optimally found by randomly generating the binary codes

tens of thousand times and picking the best one.

Compared to a normal camera, CSC blocks half the light but captures all

the frequency content of the periodic signal. The sinc response of the box filter of a

normal camera attenuates the harmonics near its zeros as well as the higher frequen-

cies as shown in Figure 2.2(b). To avoid the attenuation of harmonics, the frame

duration of the camera has to be changed appropriately. But, this is undesirable

since most cameras come with a discrete set of frame rates. Moreover, it is hard

to have a priori knowledge of the signal’s period. This problem is entirely avoided

by modulating the incoming signal with a pseudo-random binary sequence. Shown

in Figure 2.8 is the temporal and frequency domain visualization of the effect of

CSC on a single harmonic. Modulation with a pseudo-random binary code spreads

the harmonic across the spectrum. Thus, every harmonic irrespective of its position

avoids the attenuation, the sinc response causes.

We performed numerical experiments to show the effectiveness of CSC (binary

code) over the normal camera (all ‘1’ code). Shown in Table 2.1 are the comparison

of the largest and smallest condition numbers of the matrix Ā arising in CSC and the

normal camera. For a given signal length N = 5000 and upsampling factor U = 25

(the second column in Table 1), we vary the period P and generate different matrices

Ā for both CSC and normal camera. The largest condition number (1.8 × 1019) of

mixing matrix Ā of a normal camera occurs for signal of period P = 75. Similarly,
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Condition Number κ (Period P) U = 25 U = 40 U = 47 U = 55 U = 63 U = 91

NC: largest 1.8× 1019 (75) 8.6× 1033 (5) 6.1× 1032 (47) 4.5× 1065 (95) 3.4× 1064 (90) 6.5× 1048 (70)

CSC: largest 1.3× 103 (9) 1.4× 104 (7) 6.0× 103 (8) 2.1× 104 (19) 8.1× 102 (27) 2.4× 103 (7)

NC: smallest 5.9× 102 (67) 8.4× 102 (63) 1.5× 103 (54) 2.7× 102 (92) 1.5× 103 (80) 1.6× 103 (55)

CSC: smallest 16.5 (67) 11.5 (94) 10.1 (98) 9.7 (90) 10.9 (77) 13.2 (53)

Table 2.1: Table comparing the largest and smallest condition numbers of mixing
matrix Ā corresponding to normal (NC) and coded strobing exposure (CSC).

the smallest condition number occurs for P = 67. On the other hand, the mixing

matrix Ā of CSC has significantly lower maximum (at P = 9) and minimum (at

P = 67) condition numbers. Note that the largest and smallest condition number

of CSC matrices Ā across different upsampling factors U are significantly smaller

compared to those of normal camera matrices. This indicates that when the period

of the signal is not known a priori, it is prudent to use the CSC over normal camera.

Performance evaluation: We perform simulations on periodic signals to

compare the performance of sparsity enforcing and structured sparse reconstruc-

tion algorithms on CSC frames, structured sparse reconstruction on normal camera

frames and traditional strobing. SNR plots of the reconstructed signal using the

four approaches for varying period P , upsampling factor U and noise level in y are

shown in Figure 2.9. The signal length is fixed at N = 2000 units. The advantage

of structured sparse reconstruction is apparent from comparing blue and red plots.

The advantage of CSC over a normal camera can be seen by comparing blue and

black plots. Note that the normal camera performs poorly when the upsampling

factor U is a multiple of the period P .
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Figure 2.9: Performance analysis of structured and normal sparsity enforcing re-
construction for CSC and structured sparsity enforcing reconstruction for normal
camera: (a) Reconstruction SNR as the period P increases. (b) Reconstruction
SNR as upsampling factor U increases. (c) Reconstruction SNR as the noise in y is
varied.

2.3.2 Experiments on a synthetic animation

We performed experiments on a synthetic animation of a fractal to show the

efficacy of our approach. We also analyzed the performance of the algorithm under

various noisy scenarios. It was assumed that at every δt = 1 ms, a frame of the

animation is being observed and that the animation is repetitive with P = 25 ms

(25 distinct images in the fractal). Two such frames are shown in Figure 2.10(a). A

normal camera running at fs = 25 fps will integrate 40 frames of the animation into a

single frame, resulting in blurred images. Two images from a 25 fps video are shown

in (b). By performing amplitude modulation at the shutter, as described in 2.2.3.1,

the CSC obtains frames at the same rate as that of the normal camera (25 fps) but

with the images encoding the temporal movement occurring during the integration

process of the camera sensor. Two frames from the CSC are shown in (c). Note that

in images (b) & (c) and also images in other experiments we rescaled the intensities

appropriately for better display. We observed the animation for 5 seconds (N =

5000) resulting in M = 125 frames. From these 125 frames we recover frequency
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(a) Original frames

(b) Normal camera capture

(c) Coded strobing capture

Recon SNR
17.8dB

(d) Structured sparse 
recovery: CSC

Recon SNR
7.2dB

(e) Structured sparse 
recovery: Normal camera

Recon SNR
7.5dB

(f) Sparsity enforcing
recovery: CSC

Figure 2.10: (a) Original frames of the fractal sequence which repeat every P = 25
ms. (b) Frames captured by a normal 25 fps camera. (c) Frames captured by a
CSC running at 25 fps. (d) Frames reconstructed by enforcing structured sparsity
on CSC frames. (e) Frames reconstructed by enforcing structured sparsity on nor-
mal camera frames. (f) Frames reconstructed by enforcing simple sparsity on CSC
frames. Overall 5 seconds (N = 5000) of the sequence was observed to reconstruct it
back fully. Upsampling factor was set at U = 40 (M = 125) corresponding to δt = 1
ms. Note that image intensities in (b) and (c) have been rescaled appropriately for
better display.
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content of the periodic signal being observed by enforcing sparsity in reconstruction

as described in 2.2.4. We compared the structured sparse reconstruction on normal

camera frames, normal sparse and structured sparse reconstruction on CSC frames

and the results are shown in (d),(e) and (f) respectively. It is important to modulate

the scene with a code to capture all frequencies and enforcing both sparsity and

structure in reconstruction ensures that the periodic signal is accurately recovered.

Noise analysis and influence of upsampling factor: We perform sta-

tistical analysis on the impact of two most common sources of noise in CSC and

also analyze the influence of upsampling factor on reconstruction. We recover the

signal using structured sparsity enforcing reconstruction. First, we study the impact

of sensor noise. Figure 2.11(a) shows the performance of our reconstruction with

increasing noise level η. We fixed the upsampling factor at U = 40 in these simula-

tions. The reconstruction SNR varies linearly with the SNR of the input signal in

accordance with compressive sensing theory. The second most significant source of

errors in a CSC are errors in the implementation of the code due to lack of synchro-

nization between the shutter and the camera. These errors are modeled as bit-flips

in the code. Figure 2.11(b) shows the resilience of the coded strobing method to such

bit-flip errors. The upsampling factor is again fixed at 40. Finally, we are interested

in understanding how far the upsampling factor can be pushed without compro-

mising the reconstruction quality. Figure 2.11(c) shows the reconstruction SNR as

the upsampling factor increases. This indicates that by using structured sparsity

enforcing reconstruction algorithm, we can achieve large upsampling factors with

a reasonable fidelity of reconstruction. Using the procedure described in previous
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Figure 2.11: Performance analysis of CSC: (a) Reconstruction SNR as the observa-
tion noise increases. (b) Impact of bit-flips in binary exposure sequence. (c) Coded
strobing camera captures the scene accurately upto an upsampling factor U = 50.
(d) ||y||/||y− ŷ|| against varying hypothesized fundamental frequency fH .

section we estimate the fundamental frequency as fp = 40 Hz (Figure 2.11(d)).

2.4 Experimental Prototypes

2.4.1 Hi-speed video camera

In order to study the feasibility and robustness of the proposed camera, we first

tested the approach using a high-speed video camera. We used an expensive 1000

fps video camera, and captured high-speed video. We had to use strong illumination

sources to light the scene and capture reasonably noise-free high-speed frames. We

then added several of these frames (according to the strobe code) in software to

simulate low speed coded strobing camera frames. The simulated CSC frames were

used to reconstruct the high-speed video. Some results of such experiments are
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reported in Figure 2.12.

2.4.2 Sensor integration mechanism

We implemented the CSC for our experiments using an off-the-shelf Dragonfly2

camera from PointGrey Research [121], without modifications. The camera allows

a triggering mode (Multiple Exposure Pulse Width Mode- Mode 5) in which the

sensor integrates the incoming light when the trigger is ‘1’ and is inactive when the

trigger is ‘0’. The trigger allows us exposure control at a temporal resolution of

δt = 1 ms. For every frame we use a unique triggering sequence corresponding to

a unique code. The camera outputs the integrated sensor readings as a frame after

a specified number of integration periods. Also, each integration period includes at

its end a period of about 30 ms during which the camera processes the integrated

sensor readings into a frame. The huge benefit of this setup is that it allows us to

use an off-the-shelf camera to slow down high-speed events around us. On the other

hand, the hardware bottleneck in the camera restricts us to operate at an effective

frame rate of 10 fps (100 ms) and a strobe rate of 1000 strobes/second (δt = 1 ms).

2.4.3 Ferro-electric shutter

The PointGrey Dragonfly2 provides exposure control with a time resolution

of 1 ms. Hence, it allows us a temporal resolution of δt = 1 ms at recovery time.

However, when the maximum linear velocity of the object is greater than 1 pixel

per ms, the reconstructed frames have motion blur. One can avoid this problem
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with finer control over the exposure time. For example, a DisplayTech ferro-electric

liquid crystal shutter provides an ON/OFF contrast ratio of about 1000 : 1, while

simultaneously providing very fast switching time of about 250µs. We built a pro-

totype where the Dragonfly2 captures the frames at usual 25 fps and also triggers

a PIC controller after every frame which in turn flutters the ferro-electric shutter

with a new code at a specified temporal frequency. In our experiment we set the

temporal resolution at 500µs i.e. 2000 strobes/second.

2.4.4 Retrofitting commercial stroboscopes

Another exciting alternative to implement CSC is to retrofit commercial stro-

boscopes. Commercial stroboscopes used in laryngoscopy usually allow the strobe

light to be triggered via a trigger input. Stroboscopes that allow such an external

trigger for the strobe can be easily retrofitted to be used as a CSC. The PIC con-

troller used to trigger the ferro-electric shutter can instead be used to synchronously

trigger the strobe light of the stroboscope, thus converting a traditional stroboscope

to a coded stroboscope.

2.5 Experimental Results

To validate our design we conducted two kinds of experiments. In the first

experiment, we captured high-speed videos and then generate CSC frames by appro-

priately adding frames of the high-speed video. In the second set of experiments we

captured videos of fast moving objects with a low-frame-rate CSC implemented us-
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ing a Dragonfly2 video camera. Details about the project and implementation can be

found at the webpage http://www.umiacs.umd.edu/ dikpal/Projects/codedstrobing.html

.

2.5.1 High-speed video of toothbrush

(a)Hi-speed capture at 1000fps

(b)
(b) Coded strobing capture

U=10 U=50 U=100

Recon SNR = 20.8dB Recon SNR = 16.4dB Recon SNR = 13. 6dB

(c) Structured sparse recovery
U=10 U=50 U=100

t1 t3t2

t1

t2

t3

Figure 2.12: Reconstruction results of an oscillating toothbrush under three different
capture parameters (U): Images for simulation captured by a 1000 fps high-speed
camera at time instances t1, t2 and t3 are shown in (a). The second row (b) shows
a frame each from the coded strobing capture (simulated from frames in (a)) at up-
sampling factors U = 10, 50, and 100 respectively. Reconstruction at time instances
t1, t2 and t3 from the frames captured at U = 10 are shown in first column of (c).
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We captured a high-speed (1000 fps) video of a pulsating Crest toothbrush

with quasi-periodic linear and oscillatory motions at about 63 Hz. Figure 2.4(b)

shows the frequency of the toothbrush as a function of time. Notice that even

within a short window of 30 seconds, there are significant changes in frequency. We

render a 100 fps, 20 fps, 10 fps CSC (i.e., a frame duration of 10 ms, 50 ms, 100 ms

respectively) by adding appropriate high-speed video frames, but reconstruct the

moving toothbrush images at a resolution of 1 ms as shown in Fig 2.12c. Frames

of the CSC operating at 100, 20 and 10 fps (U = 10, 50 and 100 respectively) are

shown in Figure 2.12(b). The fine bristles of the toothbrush add high frequency

components because of texture variations. The bristles on the circular head moved

almost 6 pixels within 1 ms. Thus the captured images from the high-speed camera

themselves exhibited blur of about 6 pixels which can be seen in the recovered

images. Notice that contrary to what it seems to the naked eye, the circular head

of the toothbrush does not actually complete a rotation. It just exhibits oscillatory

motion of 45 degrees and we are able to see it from the high-speed reconstruction.

(b)

(a)

Recon SNR = 20.8dB

Recon SNR = 13.2dB

Figure 2.13: Reconstruction results of toothbrush with upsampling factor U = 10
without and with 15 dB noise in (a) and (b) respectively.

To test the robustness of coded strobing capture and recovery on the visual
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(b)

(a)

Recon SNR = 16.4dB

Recon SNR = 13.0dB

Structured sparse recovery
Coded Strobing Camera

Structured sparse recovery
Normal Camera

Figure 2.14: Reconstruction results of toothbrush with upsampling factor U = 50.
Note that using CSC to capture periodic scenes allows us better reconstruction over
using a normal camera.

quality of images, we corrupted the observed images y with white noise having

SNR = 15 dB. The results of the recovery without and with noise are shown in

Figure 2.13.

We compare frames recovered from CSC to those recovered from a normal

camera (by enforcing structured sparsity) to illustrate the effectiveness of modulat-

ing the frames. Normal camera doesn’t capture the motion in the bristles as well

(Figure 2.14) and is saturated.

2.5.2 Mill-tool results using ferro-electric shutter

We used a Dragonfly2 camera with a ferro-electric shutter and captured images

of a tool rotating in a mill. Since the tool can rotate at speeds as high as 12000 rpm

(200 Hz), to prevent blur in reconstructed images we use the ferro-electric shutter

for modulation with a temporal resolution of 0.5 ms. The CSC runs at 25 fps (40

ms frame length) with the ferro-electric shutter fluttering at 2000 strobes/second.

Shown in Figure 2.15 are the reconstructions at 2000 fps (δt = 0.5 ms) of a tool
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(a) 3000 RPM (b) 6000 RPM (c) 9000 RPM (d) 12000 RPM

Figure 2.15: Tool bit rotating at different rpm captured using coded strobing: Top
row shows the coded images acquired by a PGR Dragonfly2 at 25 fps, with an
external FLC shutter fluttering at 2000 Hz. (a)-(d) Reconstruction results, at 2000
fps (temporal resolution δt = 500µs), of a tool bit rotating at 3000, 6000, 9000 and
12000 rpm respectively. For better visualization, the tool was painted with color
prior to the capture.

rotating at 3000, 6000, 9000 and 12000 rpm. Without any prior knowledge of

scene frequencies, we use the same strobed coding and the same software decoding

procedure for the mill tool rotating at different rpm. This shows that we can capture

any sequence of periodic motion with unknown period with a single pre-determined

code. In contrast, traditional strobing methods need prior knowledge of the period

to strobe at the appropriate frequency. Note that the reconstructed image of the

tool rotating at 3000 rpm is crisp (Figure 2.15(a)) and the images blur progressively

as the rpm increases. Since the temporal resolution of Dragonfly2 strobe is 0.5 ms,

the features on the tool begin to blur at speeds as fast as 12000 rpm (Figure 2.15(d)).

In fact, the linear velocity of the tool across the image plane is about 33 pixels per

ms (for 12000 rpm), while the width of the tool is about 45 pixels. Therefore, the

recovered tool is blurred to about one-third its width in 0.5 ms.
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2.5.3 Toothbrush using Dragonfly2 camera

We used a Dragonfly2 camera operating in Trigger Mode 5 to capture a coded

sequence of the Crest toothbrush oscillating. The camera operated at 10 fps, but we

reconstructed a video of the toothbrush at 1000 fps (U = 100) as shown in Figure

2.16. Even though the camera acquires a frame every 100 ms, the reconstruction

is at a temporal resolution of 1 ms. If we assume that there are L photons per

ms, then each frame of the camera would acquire around 0.5 ∗ 100 ∗ L photons. In

comparison, each frame of a high-speed camera would accumulate L photons, while

traditional strobing camera would accumulate L ∗ fP/fs = 6.3L photons per frame.

(a) Frame from 10 fps 
camera

(b) Frames reconstructed from a 10 fps Dragonfly2 c oded 
strobing  camera ( U = 100 )

Figure 2.16: Demonstration of CSC at upsampling factor U = 100 using Dragon-
fly2. (a) Captured image from a 10 fps CSC (Dragonfly2). (b)-(c) Two reconstructed
frames. While the CSC captured an image frame every 100 ms, we obtain recon-
structions with a temporal resolution of 1 ms.

2.5.4 High-speed video of a jog

Using frames from a high-speed (250 fps) video of a person jogging-in-place

we simulate in computer the capture of the scene using a normal camera and the

CSC at upsampling factors of U = 25, 50 and 75. The coded frames from CSC

are used to reconstruct back the original high-speed frames by enforcing structured
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sparsity. The result of the reconstruction using frames from the CSC is contrasted

with frames captured using a normal camera in Figure 2.17(a). At any given pixel,

the signal is highly quasi-periodic since it is not a mechanically driven motion but

our algorithm performs reasonably well in capturing the scene. In Figure 2.17(b)

we contrast the reconstruction at a pixel for U = 25, 50, and 75.

2.6 Benefits and Limitations

2.6.1 Benefits and advantages

Coded strobing allows three key advantages over traditional strobing: (i) signal

to noise ratio (SNR) improvements due to light-efficiency, (ii) does not require prior

knowledge of the dominant frequency, and (iii) the ability to capture scenes with

multiple periodic phenomena with different fundamental frequencies.

Light throughput: Light efficiency plays an important role if one can-

not increase the brightness of external light sources. Let us consider the linear

noise model (scene independent) where the SNR of the captured image is given by

LTExposure/σgray, where L is the average light intensity at a pixel and σgray is a signal

independent noise level which includes effects of dark current, amplifier noise and

A/D converter noise. For both traditional and coded strobing cameras, the dura-

tion of the shortest exposure time should at most be tδ = 1/(2fMax). In traditional

strobing, this short exposure tδ is repeated once every period of the signal, and there-

fore the total exposure time in every frame is given by TStrobing = (1/2fMax)(fP/fs).

Since the total exposure time within a frame can be as large as 50% of the total frame
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duration for CSC, TCoded = 1/2fs. The decoding process in coded strobing intro-

duces additional noise, and this decoding noise factor is d =
√
trace((ATA)−1)/M .

Therefore, the SNR gain of CSC as compared to traditional strobing is given by

SNRGain =
SNRCoded

SNRStrobing
=

(LTCoded)/(dσ)

(LTStrobing)/(σ)
=
fMax

dfP
(2.9)

For example, in the case of the tool spinning at 3000 rpm (or 50 Hz), this

gain is 20 log(1000/(2 · 50)) = 20dB since fMax = 1000 Hz for strobe rate 2000

strobes/second. So coded strobing is a great alternative for light-limited scenarios

such as medical inspection in laryngoscopy (where patient tissue burn is a concern)

and long range imaging.

Knowledge of fundamental frequency: Unlike traditional strobing, coded

strobing can determine signal frequency in post-capture, software only process. This

allows for interesting applications such as simultaneous capture of multiple signals

with very different fundamental frequencies. Since the processing is independent

for each pixel, we can support scenes with several independently periodic signals

and capture them without a-priori knowledge of the frequency bands as shown in

Figure 2.18(a). Shown, in Figure 2.15 are the reconstructions obtained for the

tool which was rotating at 3000,4500,6000 and 12000 rpm. In all these cases, the

same coded shutter sequence was used at capture-time. Also, the reconstruction

algorithm can easily handle both periodic and quasi-periodic signals using the same

framework.

Multiple periodic signals: Unlike traditional strobing, coded strobing al-

lows us to capture and recover scenes with multiple periodic motions with different
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fundamental frequencies. The capture in coded strobing does not rely on the fre-

quency of the periodic motion being observed and the recovery of the signal at each

pixel is independent of the other. This makes it possible to capture a scene with

periodic motions with different fundamental frequency all at the same time using

the same hardware settings. The different motions are independently reconstructed

by first estimating the respective fundamental frequencies and then reconstructing

by enforcing structured sparsity.

We performed experiments on synthetic data with two periodic motions with

different fundamental frequencies. Shown in Figure 2.18(a) are few frames of the

animation with a rotating globe on the left and a horse galloping on the right.

The animation was created using frames of a rotating globe which repeats every 24

frames and frames of the classic galloping horse which repeats every 15 frames. For

simulation, we assumed that a new frame of the animation is being observed at a

resolution of δt = 1 ms and observed the animation for a total time of 4.8 seconds

(N = 4800). This makes the period of the globe 24 ms (fP = 41.667 Hz) and that

of horse 15 ms (fP = 66.667 Hz). The scene is captured using a 25 fps (U = 40)

camera and few of the captured CSC frames are shown in (b). The reconstructed

frames obtained by enforcing structured sparsity are shown in (c). Prior to the

reconstruction of the scene at each pixel, fundamental frequencies of the different

motions were estimated. For one pixel on horse (marked blue in Figure 2.18(a))

and one pixel on the globe (marked red), the output SNR ||y||/||y − ŷ|| is shown

as a function of hypothesized fundamental frequency fH in Figure 2.18(d). The

fundamental frequency are accurately estimated as 66.667 Hz for the horse and
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41.667 Hz for the globe.

Ease of implementation: The previous benefits assume significance because

modern cameras, such as PointGrey DragonFly2, allow coded strobing exposure and

hence there is no need for expensive hardware modifications. We transform this off-

the-shelf camera instantly into a 2000 fps high-speed camera using our sampling

scheme. On the other hand, traditional strobing has been extremely popular and

successful because of its direct-view capability. Since our reconstruction algorithm

is not yet real-time, we can only provide a delayed viewing of the signal. Table

2.2 lists the most important characteristics of the various sampling methodologies

presented.

Method Sampling Rate Best Scenario Benefits Limitations

High-speed (Nyquist) 2 f0 Scene within f0 Robust Costly

Strobing (band-pass) Lower than f0 Periodic and Brightly lit Direct-view Linear search

Non-uniform Lower than f0 Brightly lit No aliasing Not robust to noise

Coded Strobing Lower than f0 Periodic Light-efficient No direct-view

Table 2.2: Table showing relative benefits and appropriate sampling for presented

methods.

2.6.2 Artifacts and limitations

In this section, we address the three most dominant artifacts in our recon-

structions: (a) blur in the reconstructed images due to time resolution, (b) tem-

poral ringing introduced during de-convolution process, and (c) saturation due to

specularity.
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Blur: As shown in Fig 2.19, we observe blur in the reconstructed images when

the higher spatio-temporal frequency of the motion is not captured by the shortest

exposure time of 0.5 ms. Notice that the blur when δt = 0.5 ms is less compared to

when δt = 1 ms. The width of the tool is about 45 pixels and the linear velocity

of the tool across the image plane is 33 pixels per millisecond. Hence, there is a

blur of about 16 pixels in the reconstructed image when δt = 0.5 ms and 33 pixels

when δt = 1 ms. Note that this blur is not a result of the reconstruction process

and is dependent on the smallest temporal resolution. It must also be noted here

that while 12000 rpm (corresponding to 200 Hz) is significantly less compared to

the 2000 Hz temporal resolution offered by coded strobing, the blur is a result of

visual texture on the tool.

Temporal ringing: Temporal ringing is introduced in the reconstructed im-

ages during the reconstruction (deconvolution) process. For simplicity, we presented

results without any regularization in the reconstruction process (Figure 2.12(c)).

Note that in our algorithm reconstruction is per pixel and the ringing is over time.

Figure 2.20(a) shows temporal ringing at two spatially close pixels. Since the wave-

forms at these two pixels are related (typically phase shifted), the temporal ringing

appears as spatial ringing in the reconstructed images (Figure 2.16(b)). Either data

independent Tikhonov regularization or data dependent regularization (like priors)

can be used to improve the visual quality of the reconstructed videos.

Saturation: Saturation in the captured signal y results in sharp edges which

in turn leads to ringing artifacts in the reconstructed signal. In Figure 2.20(b) we

can see that the periodic signal recovered from saturated y has temporal ringing.
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Since reconstruction is independent for each pixel, the effect of saturation is local

and does not affect the rest of the pixels in the image. A typical cause of saturation

in the captured image is due to specularities in the observed scene. Specularities,

that are not saturated, do not pose a problem and are reconstructed as well as other

regions.

2.7 Discussion and Conclusion

2.7.1 Spatial redundancy

In this chapter, we discussed a method called coded strobing that exploits

the temporal redundancy of periodic signals and in particular, their sparsity in the

Fourier domain in order to capture high-speed periodic and quasi-periodic signals.

The analysis and reconstruction algorithms presented considered the data at every

pixel as independent. In reality, adjacent pixels have temporal profiles that are

very similar. In particular (see Figure 2.21), the temporal profiles of adjacent pixels

are related to each other via a phase shift which depends upon the local speed

and direction of motion of scene features. This redundancy is currently not being

exploited in our current framework. We are currently exploring extensions of the

CSC, that explicitly model this relationship and use these constraints during the

recovery process.
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2.7.2 Spatio-temporal resolution trade-off

The focus of this chapter, was on the class of periodic and quasi-periodic sig-

nals. One interesting and exciting avenue for future work is to extend the application

of the CSC to a wider class of high-speed videos such as high-speed videos of statis-

tically regular dynamical events (e.g., waterfall, fluid dynamics etc) and finally to

arbitrary high-speed events such as bursting balloons etc. One alternative we are

pursuing in this regard is considering a scenario which allows for spatio-temporal

resolution trade-offs, i.e., use a higher resolution CSC in order to reconstruct lower

resolution high-speed videos of arbitrary scenes. The spatio-temporal regularity

and redundancy available in such videos needs to be efficiently exploited in order to

achieve this end.

2.7.3 Conclusions

In this chapter, we present a simple, yet powerful sampling scheme and re-

construction algorithm that turns a normal video camera into a high-speed video

camera for periodic signals. We show that the current design has many benefits

over traditional approaches and show a working prototype that is able to turn an

off-the-shelf 25 fps PointGrey Dragonfly2 camera into a 2000 fps high-speed camera.
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Figure 2.17: Frontal scene of a person jogging-in-place. (a) A frame captured by a
normal camera (left) and one of the frames recovered from coded strobing capture at
U = 25 (right). (b) Plot in time of the pixel (yellow) of the original signal and signal
reconstructed from coded strobing capture at U = 25, 50 and 75. Note that the low
frequency parts of the signal are recovered well compared to the high-frequency
spikes.
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(a) Original frames (b) Coded strobing, U=40 (c) Reconstructed frames
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Figure 2.18: Recovery of multiple periodic motion in a scene. (a) Periodic events
with different periods in the same scene. The scene as captured by CSC with U = 40
is shown in (b). The recovered frames are shown in (c). Shown in (d) is the estimated
fundamental frequency of globe and horse at points marked red and blue. Note that
the last peak in both globe and horse corresponds to the respective fundamental
frequency of 41.667 Hz and 66.667 Hz.

(a) 0.5 ms

(b) 1 ms

Figure 2.19: Coded strobing reconstructions exhibit blur when the temporal resolu-
tion δt is not small enough. Shown in (a) and (b) are the same mill tool rotating at
12000 rpm and captured by a strobe with δt = 0.5 ms and δt = 1 ms respectively.
The reconstructions shown in the second and third column show that δt = 1 ms
strobe rate is insufficient and leads to blur in the reconstructions.
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Figure 2.20: (a) Ringing artifacts (in time) in the reconstructed signal at two pixels
separated by 8 units in Fig 2.12(c). Also shown are the input signals. Note that
the artifacts in reconstruction (in time) manifests as artifacts in space in the recon-
structed image. (b) Artifacts in the reconstructed signal due to saturation in the
observed signal y.
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Figure 2.21: The waveforms in a neighborhood are highly similar and hence the
information is redundant. Shown are the waveforms of 4 pixels at the corners of a
3×3 neighborhood. The waveforms are displaced vertically for better visualization.
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Chapter 3

Programmable Pixel Compressive

Camera

3.1 Introduction

Spatial resolution of imaging devices is steadily increasing; mobile phone cam-

eras have 5−10 megapixels while point-and-shoot cameras have 12−18 megapixels.

But the temporal resolution of video cameras has increased slowly; today’s video

cameras mostly operate at 30 − 60 fps. High-speed video cameras are technically

challenging due to high bandwidth and high light efficiency requirements. In this

chapter, we present an alternative architecture for acquiring high-speed videos that

overcomes both these limitations.

The imaging architecture we present (Figure 3.1), is termed Programmable

Pixel Compressive Camera (P2C2). Our camera consists of a normal 25 fps, low

resolution video camera, with a high resolution, high frame-rate modulating de-

vice such as a Liquid Crystal on Silicon (LCOS) or a Digital Micromirror Device

(DMD) array. The modulating device modulates each pixel independently in a pre-

determined random fashion at a rate higher than the acquisition frame rate of the
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Figure 3.1: Programmable Pixel Compressive Camera (P2C2): Each pixel of a low
frame rate, low resolution camera is modulated independently with a fast, high res-
olution modulator (LCOS or DMD). The captured modulated low resolution frames
are used with accompanying brightness constancy constraints and a wavelet do-
main sparsity model in a convex optimization framework to recover high resolution,
high-speed video.

camera. Thus, each observed frame at the camera is a coded linear combination

of the voxels of the underlying high-speed video frames. Both low frame-rate video

cameras and high frame-rate amplitude modulators (DMD/LCOS) are inexpensive

and this results in significant cost reduction. Further, the capture bandwidth is sig-

nificantly reduced due to P2C2’s compressive imaging architecture. The underlying

high resolution, high-speed frames are recovered from the captured low resolution

frames by exploiting temporal redundancy in the form of brightness constancy and

spatial redundancy through transform domain sparsity in a convex optimization

framework.
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3.1.1 Contributions:

• We present a new imaging architecture ‘P2C2’ for compressive acquisition of

high-speed videos. P2C2 allows temporal super-resolution of videos with no

appreciable loss in spatial resolution.

• We show that the brightness constancy constraint significantly improves video

reconstruction. Our algorithm reconstructs high-speed videos from low frame

rate observations over a broad range of scene motions.

• We characterize the benefits and limitations of P2C2 through experiments on

high-speed videos. We implement a prototype P2C2 and acquire 200 fps videos

of challenging scenes using a 25 fps video camera.

3.2 Related Work

High speed sensors: Traditional high-speed cameras are expensive due to

requirement of high light sensitivity and large bandwidth. Usually these cameras

[1] have limited on-board memory with a dedicated bus connecting the sensor. The

acquisition time is limited by the on-board memory. For example, FastCam SA5 (a

$300K high-speed camera) can capture atmost 3 seconds of video at 7500 fps and 1

megapixel. Though most videos have significant spatio-temporal redundancy, cur-

rent high-speed cameras do not exploit them. Our camera allows us to exploit this,

thereby reducing the capture bandwidth significantly. Further, existing cameras

use specialized sensors with high light sensitivity and image intensifiers to ensure
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each frame is above the noise bed. In contrast, P2C2 captures a linear combination

of video voxels, thereby naturally increasing the signal-to-noise ratio and partially

mitigating the need for image intensifiers.

Temporal super-resolution: Shechtman et al. [136] perform spatio-temporal

super-resolution by using multiple cameras with staggered exposures. Similarly,

Wilburn et al. [160] use a dense 30 fps camera array to generate a 1000 fps video.

Recently Agrawal et al. [4] showed that combining this idea with per camera flutter

shutter (FS) [123] significantly improves the performance of such staggered multi-

camera high-speed acquisition systems. While these systems acquire high-speed

videos, they require multiple cameras with accurate synchronization and their frame-

rate scales linearly with number of cameras. In contrast, we increase temporal reso-

lution without the need for multiple cameras and also our camera is not restricted to

planar scene motion. Ben-Ezra [15] built a hybrid camera where motion is measured

using an additional higher frame rate sensor and then used to estimate the point

spread function for deblurring. We estimate both motion and appearance from the

same sensor measurements.

Video interpolation: Several techniques exist for frame-rate conversion

[134]. Recently, [89] showed that explicit modeling of occlusions and optical flow in

the interpolation process allows us to extract ‘plausible’ interpretations of interme-

diate frames.

Motion deblurring: When a fast phenomenon is acquired via a low frame-

rate camera one can either obtain noisy and aliased sharp images using short expo-

sure, or blurred images using long exposures. Motion deblurring has made great
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progress by incorporating spatial regularization terms within the deconvolution

framework [133][51]. Novel hardware architectures [123][82] have also been designed

to improve deconvolution. These techniques require the knowledge of motion mag-

nitude/direction and cannot handle general scenes exhibiting complex motion. In

contrast, P2C2 can handle complex motion without the need for any prior knowl-

edge.

Compressive sensing (CS) of videos: Existing methods for video CS as-

sume multiple random linear measurements are available at each time instant either

using a coded aperture [94] or a single pixel camera (SPC) [44]. [150] shows that

videos with slowly changing dynamics need far fewer measurements for subsequent

frames once the first frame is recovered using standard number of measurements.

[113] presents an algorithm for compressive video reconstruction by using a motion

compensated wavelet basis to sparsely represent the spatio-temporal volume. Such

methods have achieved only moderate success since (a) the temporal redundancy

of videos is not explicitly modeled and (b) the hardware architectures need to be

highly engineered and/or are expensive.

In [153], the authors extend FS to videos and build a high-speed camera for

periodic scenes. For the class of video that can be adequately modeled as a linear

dynamical system [129] provides a method for compressively acquiring videos using

the SPC architecture. Both approaches can handle only periodic/dynamic texture

scenes while P2C2 can capture arbitrary videos.

Spatio-temporal trade-off: Gupta et al. [59] show how per-pixel temporal

modulation allows flexible post-capture spatio-temporal resolution trade-off. The
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method loses spatial resolution for moving elements of the scene, whereas our method

preserves spatial resolution while achieving higher temporal resolution. Similarly,

Bub et al. [21] propose spatio-temporal trade-off of captured videos but has limited

light throughput and unlike [59] lacks flexible resolution trade-off. Gu et al. [58]

proposed a coded rolling shutter architecture for spatio-temporal trade-off.

Per-pixel control: Nayar et al. [106] propose a DMD array based pro-

grammable imager for HDR imaging, feature detection and object recognition.

[59, 21] use DMD array based per-pixel control for spatio-temporal resolution trade-

off. Similarly, DMD arrays were used in [127, 126] for phase analysis and shape

measurement. While the idea of per-pixel modulation is not new, we propose a

sophisticated spatio-temporal modulation using P2C2 for high-speed imaging. Such

modulation allows us to achieve higher temporal resolution without loss in spatial

resolution.

3.3 Imaging Architecture

Let the intensity of desired high frame rate video be x(s, t) where s = (r, c) ∈

[1 N ] × [1 N ] are the row and column coordinates respectively and t ∈ [1 T ] the

temporal coordinates. We term the higher rate frames xt as ‘sub-frames’ since

the acquired frames are formed by integrating them. Our camera captures the

modulated intensities y(sl, tl) where sl = (rl, cl) ∈ [1 N/Ls] × [1 N/Ls] and tl ∈

[1 T/Lt] are its spatial and temporal coordinates. Ls and Lt are the spatial and

temporal sub-sampling factors respectively. The captured frame ytl is related to
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Figure 3.2: Camera architecture: At every pixel the camera independently modu-
lates the incoming light at sub-frame durations and then integrates it. For example,
the 3-D spatio temporal volume of a golf ball is modulated with a random mask
at sub-frame durations and then integrated into a frame. A frame captured by our
camera has the code embedded in the blur.

sub-frames xt as

ytl = D




tlLt∑

t=(tl−1)Lt+1

xtφt


 (3.1)

where φ is the spatio-temporal modulation function (achieved by LCOS as shown in

Figure 3.3) and xtφt is modulation of sub-frame at t with mask at t. D(·) denotes

a spatial subsampling operation to account for the possibility that camera could
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also be spatially modulated at sub-pixel resolution. Notice that Lt sub-frames are

modulated with Lt independent high resolution random masks and then integrated

to produce one spatio-temporally subsampled frame of captured video (as shown in

Figure 3.2). We limit our discussion mostly to temporal downsampling. Neverthe-

less, the architecture and recovery algorithm presented later easily extend to spatial

subsampling as well and we illustrate it through results in experimental section.

Since the observed pixel intensities y are linear combinations of the desired

voxels x, with the weights given by modulation function φ, the equation (3.1) can

be written in matrix-vector form as,

y = Φx (3.2)

where Φ is the matrix representing per pixel modulation followed by integration in

time and spatial sub-sampling. x and y are the vectorized form of desired high-speed

voxels x (eg., 256× 256× 32 voxels) and the captured video y (128× 128× 4 video)

respectively. The optimization term enforcing fidelity of the recovered sub-frames

to the captured frames is given by Edata = ‖y −Φx‖22.

3.3.1 Prototype P2C2

We realize P2C2 with an LCOS mirror SXGA-3DM from Forth Dimension

Displays as a spatio-temporal modulator. The mirror has 1280 × 1024 pixels and

each pixel can be fluttered (binary) independently at maximum rate of 3.2 kHz.

This imposes an upper limit of 3200 fps on frame-rate of the recovered video. LCOS

works by flipping the polarization state of incoming light and therefore needs to be
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Figure 3.3: Prototype: Illustration of the optical setup.

used with a polarizing beam-splitter and necessary relay optics as shown in Figure

3.3. The scene is focused on LCOS device which modulates this incoming light.

The Pointgrey Dragonfly2 sensor (1024 × 768 pixels at 25 fps) is in turn focused

on LCOS mirror. An LCOS modulator offers a significantly higher contrast ratio

(> 100) compared to off-the-shelf graphic LCD attenuators. Further, the primary

advantage of LCOS mirror over LCD arrays is the higher fill factor of pixels. LCOS

based per-pixel control was used by Mannami et al. [93] for recovering high dynamic

range images.

Related architectures: The architecture of P2C2 is a generalization of pre-

vious imaging architectures proposed for high-speed imaging and motion deblurring.

For example, flutter shutter (FS) camera [123] is a special case where all the pixels

have the same shutter. P2C2 adopts a random spatio-temporal modulation and is

a generalized version of architectures for spatio-temporal resolution trade-off [8, 4,

7].

P2C2 is a compressive imaging system and is related to SPC [44]. In P2C2 the
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mixing of voxel intensities is localized in space and time as opposed to SPC which

aims for global mixing of underlying voxel intensities. Our architecture also exploits

the cost benefit of current sensors (especially in visible wavelength) by using a pixel

array in place of single pixel detector.

3.4 High speed video recovery

Since the number of unknown pixel intensities is much larger than available

equations, (3.2) is severely under-determined. To solve for sub-frames x, a prior on

spatio-temporal video volume should be incorporated.

Most natural video sequences are spatio-temporally redundant. Spatially, im-

ages are compressible in transform basis such as wavelets and this fact is used in

image compression techniques such as JPEG2000. Temporally, object and/or cam-

era motion preserves the appearance of objects in consecutive frames and this fact

is used in video compression schemes such as MPEG. We exploit both forms of re-

dundancy to solve the system of under-determined equations (3.2) and recover the

high-speed sub-frames.

3.4.1 Transform domain sparsity

Each sub-frame is sparse in appropriate transform domain and we enforce this

property in our recovery through ℓ1 regularization of its transform coefficients. The

regularization term enforcing spatial-sparsity of sub-frames isEspatial =
T∑

t=1

β‖Ψ−1xt‖1,

where xt is the vectorized sub-frame xt and Ψ the transform basis.
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Figure 3.4: Brightness constancy constraints at p1, p2 and p3 and OF consistency
check at q2 and q3.

3.4.2 Brightness constancy as temporal redundancy

Unlike spatial redundancy, temporal redundancy in videos is not easily amenable

to sparse representation in a transform basis. Hence, regularization of 3-D trans-

form basis coefficients to solve the under-determined system in (3.2) results in poor

reconstruction quality. To overcome this challenge, we propose to keep the temporal

regularization term distinct from spatial regularization. We exploit the brightness

constancy(BC) constraint in temporal direction. This constraint is distinct from

and in addition to the spatial transform domain sparsity regularization.

Consider three consecutive frames of a club hitting the ball in Figure 3.4. The

points p1, p2 and p3 correspond to the same point on the golf club in frames x1, x2

and x3 respectively. If the relative displacement of these points is estimated, then

their pixel intensities in (3.2) can be constrained to be equal i.e. brightness at these

pixels is constant x(p2, 2)− x(p1, 1) = 0 (backward flow) and x(p2, 2)− x(p3, 3) = 0

(forward flow). This effectively decreases the number of unknowns by 2. The system

becomes significantly less under-determined if BC constraints at other points are
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known as well. The sub-frame BC constraints over entire video volume are then

given by

Ωx = 0 (3.3)

where every row of matrix Ω is the relevant BC equation of a spatio-temporal

point (s, t). We incorporate these constraints in the optimization by adding a BC

regularization term EBC = λ‖Ωx‖22.

To enforce the BC constraint at any spatio-temporal point (s, t), we first es-

timate the optical flow (OF) at sub-frame xt in forward direction (uft , v
f
t ). Then

we perform a consistency check by estimating the backward flow (ubt+1, v
b
t+1) at sub-

frame xt+1. Such a consistency check not only detects points of xt occluded in

sub-frame xt+1, but also prunes the untrustworthy flow in (uft , v
f
t ). For example,

consider points q1 and q2 on a blue background in Figure 3.4. Both points have

same spatial coordinates and have the same intensity x(q2, 2) − x(q1, 1) = 0. The

fact that both q1 and q2 are same points in the scene (here background) is estab-

lished solely from OF by performing the following consistency check: q1 goes to q2

according to forward OF and q2 comes back to q1 in the backward OF. On the other

hand x(q2, 2) 6= x(q3, 3) even though q2 = q3. This is because forward OF suggests

q2 is same as q3 since q2 belongs to background and has 0 flow. But the backward

OF at q3 is non-zero and hence q3 + (ub(q3, 3), v
b(q3, 3)) 6= q2. This implies that

point q2 is occluded and/or has unreliable forward OF (uf(q2, 2), v
f(q2, 2)). This

means the consistency doesn’t check at q2 i.e. of(q2, 2) = 0 whereas it checks at q1

i.e. of(q1, 1) = 1. The BC constraint is enforced only when consistency checks. We

perform the consistency check in backward direction as well by checking the con-

65



Figure 3.5: In clockwise direction (a) two sub-frames from the initialization (b)
forward and backward OF at respective sub-frames (c) corresponding forward and
backward consistency map (d) sub-frames from next iteration incorporate BC con-
straints only at white pixels from (c).

sistency between (ubt , v
b
t ) and (uft−1, v

f
t−1). The process of pruning OF is illustrated

in Figure 3.5. The sub-frames estimated in first iteration of our algorithm (Figure

3.5a) are used to determine EBC for the next iteration. The results of next iteration

are shown in Figure 3.5d.

The importance of brightness constancy in video recovery is illustrated in Fig-

ure 3.6. The third column shows reconstruction fidelity obtained by assuming only

spatial sparsity. The fourth column shows our reconstruction which incorporates

explicit brightness constancy (BC) constraints. This significantly improves recon-

struction since the algorithm adapts to the complexity of motion in a particular

video.

3.4.2.1 Recovery Algorithm

Initialization: Given optical flow, the BC constraints are incorporated through

EBC . But OF can be determined only when the sub-frames are available. Hence,
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Figure 3.6: Importance of Brightness Constancy: All results are 16X temporal super-
resolution. Shown are the original high-speed frames, motion blurred frames and
reconstructions with and without BC. Notice the huge improvement in reconstruc-
tion SNR due to BC. The results in column 4 and its necessary OF were computed
in an alternating fashion using an iterative procedure on the observations. OF was
not assumed to be available. ‘Golf’ and ‘Recoil’ high-speed video credit TECH
IMAGING.

we iteratively determine the sub-frames and the optical flow in an alternating fash-

ion. We begin by estimating the sub-frames without any BC constrains. In the

first iteration we trade-off spatial resolution to recover frames at desired temporal

resolution. We assume that each sub-frame xt is an upsampled version of a lower

spatial resolution frame: xt = U(zt) where zt is a vectorized [ N
Ls

√
Lt

× N
Ls

√
Lt
] image

and U(·) is a linear upsampling operation such as bilinear interpolation. The initial

estimate is given by solving

z0 = arg min
T∑

t=1

β‖Ψ−1U(zt)‖1 + ‖y−ΦU(z)‖22. (3.4)

The estimate x0 = U(z0) doesn’t capture all the spatial detail and is noisy

but it preserves the motion information accurately as shown in Figure 3.5a. We

estimate OF [86] on initial estimate (Figure 3.5b) and perform consistency check to
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prune the flow (Figure 3.5c) as described in section 3.4.2. Only consistent flow is

used to enforce the BC constraint for the next iteration.

Optimization: We minimize the total energy function which also includes

the term EBC built using the matrix Ωk−1 from the previous iteration.

xk = arg min
T∑

t=1

β‖Ψ−1xt‖1 + ‖y −Φx‖22 + λ‖Ωk−1x‖22 (3.5)

The above optimization problem is convex but even for a moderate sized video

of 256X256 pixels and 32 frames, the variable x is 2 million large. To solve the

optimization problem we use a fast algorithm designed for large systems, based

on fixed point continuation [61]. In all our experiments we fix the parameters at

β = 10−5 and λ = 10−1. In practice, our algorithm converges in 5 iterations.

3.5 Experimental Results

We rigorously evaluate the performance and reconstruction fidelity on several

challenging datasets. First, we simulate P2C2 in software by capturing fast events

with a standard high-speed camera.

3.5.1 Simulation on high speed videos

Figure 3.6 shows example reconstructions of high-speed sub-frames at 16X

temporal super-resolution. Notice that while normal camera frames are highly

blurred, the reconstruction retains sharpness and high frequency texture detail

is maintained. Several of our examples contain complex and non-linear motion.

Most examples also contain several objects moving independently causing occlusion
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Figure 3.7: Results on LCOS prototype: For the dataset in the top row, one frame
from a normal 23 fps camera and our recovered video with zoom-in insets are shown.
The fourth and fifth column shows the X-T slices of the original and recovered videos.
For the middle and bottom datasets, two images from normal 23 fps camera and
four recovered images are shown.

and disocclusions. To better understand the quality of reconstruction with vary-

ing spatio-temporal compression factors, examine Figure 3.8. This video has highly

complex motion, where different dancers are performing different motions. There

is a significant non-rigidity in motion and challenging occlusion effects. Notice that

our reconstruction retains high fidelity even at high compression factors. Even a

compression factor of 4 × 4 × 4 = 64 produces acceptable visual quality and 24dB

PSNR.
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Figure 3.8: Effect of spatio-temporal upsampling factors on Dancers video. Notice
that our reconstructions retain visual fidelity even in the presence of complex non-
rigid multi-body motions and occlusions. High-speed video credit TECH IMAGING.

3.5.2 Results on P2C2 prototype datasets

We captured several datasets using our prototype device. The camera was

operated at 23 fps and 8 different masks were flipped during the integration time

of sensor. This allows us to reconstruct the sub-frames at a frame rate of 184 fps

(23 × 8). We note that in our experimental setup we were limited by the field of

view since the beamsplitter size forced us to use a lens with a large focal length .
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In Figure 3.7, we show three different datasets. In the pendulum dataset, four

letters ‘CVPR’ were affixed to four out of five balls and the pendulum was swung.

As shown in X-T slices the balls and the letters had significant acceleration and also

change in the direction of motion. The recovered frames are much sharper than the

original 23 fps frames as shown in inset. Note that the characters are much clearer

in the reconstructed frame despite a 40 pixel blur in each captured frame. Also, the

X-T slice clearly illustrates the reconstruction quality. On the other hand, a fine

feature such as the thread is blurred out since the flow corresponding to it is hard

to recover.

Next, we rotate a fan and capture it at 23 fps and reconstruct sharper and

clearer frames at 184 fps as shown in the white inset. During recovery, we do not

assume that motion is rotational. Note that the normal camera frame has intensities

integrated from both fan blade and the background mesh as shown in the black inset.

We can handle this sub-frame occlusion in our recovery as indicated by the clear

background and foregrounds in the recovered frame.

Finally, we drop a marble in water and capture it at 23 fps and reconstruct at

184 fps. Again, we do not assume any motion path but still recover the curved path

of the marble. Note that, despite specularities in the scene our algorithm is robust.

3.6 Analysis

Choice of modulation masks: There are two requirements on modulation

masks to obtain high fidelity reconstruction. Firstly, the temporal code at a given
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pixel should have a broadband frequency response [123], such that none of the scene

features are blurred irrevocably. Secondly, the temporal code at a local neighbor-

hood of pixels should be different. This along with spatial smoothness assumption

provides sufficient constraints in a neighborhood to recover the low resolution sub-

frames during the initialization process (3.4). This initialization is important to

extract optical flow estimates which are then propagated forward using the iterative

framework. On the other hand, when brightness constancy constraints are available,

a modulation mask with well-conditioned matrix is desirable. Given ground-truth

BC constraints, we reconstruct sub-frames of Golf dataset at 16X temporal super-

resolution under three different masks (Table 3.1). We see that random mask of

P2C2 offers significant advantage over the ‘all one’ mask and flutter shutter. We

believe that proper theoretical analysis will lead to the design of optimal modulation

masks and this is an area of future work.

P2C2 ‘All one’ FS

PSNR in dB 26.2 21 16

Table 3.1: Reconstructing Golf dataset at 16X temporal super-resolution with dif-
ferent masks with ground truth BC constraints.

Comparison with prior art: We compare P2C2 with flexible voxels (FV)

[59] on a fast phenomenon shown in Figure 3.9. Flexible voxels reconstruction

suffers from two disadvantages: spatial smoothness is introduced in moving parts

of the scene leading to blurred features and since the coding sequence for flexible

voxels is mostly zeros, it leads to a highly light-inefficient capture method leading
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Figure 3.9: One frame of a video sequence of marble dropped in water. 40dB sensor
noise was added. Our reconstruction is less noisy (zoom for better view) than those
of flexible voxels due to higher light efficiency of P2C2.

to performance degradation in the presence of noise. In 16× temporal upsampling

example shown in Figure 3.9, the high temporal resolution reconstruction of FV is

noisier than our reconstruction.

Effect of spatio-temporal upsampling: To evaluate the impact of varying

upsampling factors, we perform statistical evaluation of sub-frame reconstructions

using P2C2 on several challenging high-speed videos. These videos have very differ-

ent spatial and motion characteristics. We carefully selected the dataset to ensure

that it spans a large range of videos in terms of spatial texture, light level, motion

magnitude, motion complexity, number of independent moving objects, speculari-

ties, varying material properties. Shown in Figure 3.10 is a plot of reconstruction

73



Figure 3.10: PSNR vs compression factors. (a) Spatial compression is kept at 1 and
temporal compression is varied (b) Spatial compression is 2 in both dimensions. (c)
Spatial compression is 4 in both dimensions. Notice that the video reconstruction
fidelity remains high (PSNR>30dB) even at total compression factors of 16 − 32.
(d) Brightness Constancy constraints significantly improves the reconstruction.

PSNR (in dB) as a function of spatial and temporal upsampling for various datasets.

From our visual inspection we note that reconstructions with PSNR of 30dB or

greater have sufficient textural sharpness and motion continuity to be called good

quality reconstructions. From the figure, it is clear that we can achieve 8 − 16X

temporal upsampling and retain reconstruction fidelity. Also, when we perform

32X spatio-temporal super-resolution using P2C2 (2X2X8 or 4X4X2) we obtain

acceptable reconstruction fidelity. Few frames from the reconstructions and their

corresponding PSNR values are also shown in Figure 3.6 and 3.8 to relate visual

quality to PSNR.

Benefits: Our imaging architecture provides three advantages over conven-

tional imaging architectures. It significantly reduces the bandwidth requirement

at the sensor by exploiting the compressive sensing paradigm. It improves light

throughput of the system compared to acquiring a short exposure low frame-rate

video and allows acquisition at low light levels. These are significant advantages

since the prohibitive cost of high-speed imagers, is essentially due to the require-

ment for high bandwidth and high light sensitivity. Finally, the imaging architecture
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is flexible allowing incorporation of several other functionalities including high dy-

namic range (HDR) [93], assorted pixels [163] and flexible voxels [59].

Limitations: P2C2 exploits spatio-temporal redundancy in videos. Scenes

such as a bursting balloon cannot be directly handled by the camera. Since the

spatio-temporal redundancy exploited by traditional compression algorithms and

our imaging architecture are very similar, as a thumb rule one can assume that

scenes that are compressed efficiently can be captured well using our method. Our

prototype uses a binary per-pixel shutter and this causes a 50% reduction in light

throughput. Since most sensors already have the ability to perform ‘dual mode’

integration (i.e., change the gain of pixels) we imagine the possibility of non-binary

modulation in future. The algorithm is not real-time and this precludes the direct-

view capability.

Summary: We presented Programmable Pixel Compressive Camera, a new

imaging architecture for high-speed video acquisition, that (a) reduces capture band-

width and (b) increases light efficiency compared to related works. We also high-

lighted the importance of explicitly exploiting the brightness constancy constraints.
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Chapter 4

Compressive Background

Subtraction and Tracking

4.1 Introduction

Presently, images are fully sampled using either charge-coupled device (CCD)

or CMOS technologies but are compressed to a smaller size after capture. This sam-

pling process is inexpensive for imaging at visible wavelengths as the conventional

devices are built from silicon, which is sensitive to these wavelengths; however, if

sampling at other optical wavelengths is desired, it becomes quite expensive to ob-

tain estimates at the same pixel resolution as new imaging materials are needed.

For example, a camera with an array of infrared sensors can provide night vision

capabilities but can also cost significantly more than the same resolution CCD or

CMOS camera.

Recently, a prototype single pixel camera (SPC) was built based on the new

mathematical theory of compressive sensing (CS) [156]. The CS theory states that

a signal can be perfectly reconstructed, or can be robustly approximated in the pres-

ence of noise, with sub-Nyquist data sampling rates, provided it is sparse in some

76



linear transform domain [24, 43]. That is, it has K nonzero transform coefficients

with K ≪ N , where N is the dimension of the transform space. For computer vi-

sion applications, it is known that natural images can be sparsely represented in the

wavelet domain [91]. Then, according to the CS theory, by taking random projec-

tions of a scene onto a set of test functions that are incoherent with the wavelet basis

vectors, it is possible to recover the scene by solving a convex optimization problem.

Moreover, the resulting compressive measurements are robust against packet drops

over communication channels with graceful degradation in reconstruction accuracy,

as the image information is fully distributed.

Compared to conventional camera architectures, the SPC hardware is specif-

ically designed to exploit the CS framework for imaging. An SPC fundamentally

differs from a conventional camera by (i) reconstructing an image by using only

using a single optical photodiode (infrared, hyperspectral, etc.) along with a digital

micromirror device (DMD), and (ii) combining the sampling and compression into

a single nonadaptive linear measurement process. An SPC can directly scale from

the visual spectra to hyperspectral imaging with only a change of the single opti-

cal sensor. Moreover, enabled by the CS theory, an SPC can robustly reconstruct

the scene from much fewer measurements than the number of reconstructed pixels

which define the resolution, given that the image of the scene is compressible by an

algorithm such as the wavelet-based JPEG 2000.

Conventional cameras can also benefit by processing in the compressive sens-

ing domain if their data is being sent to a central processing location. The näıve

approach is to transmit the raw images to the central location. This exacerbates

77



the communication bandwidth requirements. In more sophisticated approaches, the

cameras perform motion compensation and then code the video. This requires an

even smaller communication bandwidth than the compressive samples. However,

the embedded systems needed to perform video coding are power hungry and ex-

pensive. In contrast, the compressive measurement process only requires cheaper

embedded hardware to calculate inner products with a previously determined set

of test functions to transmit information at the compressibility rate of the image.

They trade off expensive embedded intelligence for more computational power at the

central location, which reconstructs the images and is assumed to have unlimited

resources.

Hence, compressive cameras are an interesting proposition for computer vision

tasks such as tracking and surveillance in both hyper-spectral regime and multi-

camera scenarios. For applications in computer vision such as surveillance, telecon-

ferencing and 3-D modeling [39], background subtraction [47, 119] is fundamental

in automatically detecting and tracking moving objects. Usually, the foreground

or the innovation of interest occupies a sparse spatial support as compared to the

background and may be caused by the motion and the appearance change of ob-

jects within the scene. By obtaining the object silhouettes on a single image plane

or multiple image planes, a background subtraction algorithm can be performed.

An interesting intellectual challenge arises when one desires to directly recon-

struct the sparse foreground innovations within a scene without any intermediate

image reconstruction. The main idea is that the background subtracted images

can be represented sparsely in the spatial image domain and hence the CS recon-
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struction theory should be applicable for directly recovering the foreground. For

natural images, we use wavelets as the transform domain. Pseudo-random matrices

provide an incoherent set of test functions to recover the foreground image. Then,

the following questions surface (i) how can we detect targets without reconstruct-

ing an image? and (ii) how can we directly reconstruct the foreground without

reconstructing auxiliary images?

In this chapter, we describe a method to directly recover the sparse innova-

tions (foreground) of a scene. We first show that the object silhouettes (binary

background subtracted images) can be recovered as a solution of a convex opti-

mization or an orthogonal matching pursuit problem. In our method, the object

silhouettes are learned directly using the compressive samples without any auxil-

iary image reconstruction. We then discuss simultaneous appearance recovery of

objects using the compressive measurements. In this case, we show that it may be

necessary to reconstruct one auxiliary image. To demonstrate the performance of

the proposed algorithm, we use field data captured by a compressive camera and

provide background subtraction results. Further, we simulate multiple distributed

compressive cameras and provide a method for 2D tracking and 3D voxel recon-

struction. By assuming that camera geometry is known we treat the multi-view

2D tracking and 3D voxel reconstruction problem as that of estimating the sparse

support of the object location. Our approach is similar to the multi-view tracking

method proposed in [74]. But in our formulation the sparse support of the object

is related to the estimated compressive foreground corresponding to multiple com-

pressive cameras observing the scene. By estimating the sparse support using the

79



foreground information from all cameras, we recover the object occupancy.

While the idea of performing background subtraction in compressed image

domain is not novel, there exist no cameras that directly record MPEG videos.

Both Aggarwal et al. and Lamarre and Clark perform background subtraction

on a MPEG-compressed video using the DC-DCT coefficients of I frames, limit-

ing the resolution of the BS images by 64 [2, 78]. Our technique is tailored for

CS imaging, and not compressed video files. Lamarre et al. and Wang et al. use

DCT coefficients from JPEG images and MPEG videos, respectively for representa-

tion [78, 158]. Toreyin et al. similarly operate on the wavelet representation [143].

These methods implicitly perform decompression by working on every DCT/wavelet

coefficient of every image. We never have to go to the high-dimensional images or

representations during background subtraction, making our approach particularly

attractive for embedded systems and demanding communication bandwidths. Com-

pared to the eigenbackground work in [109], we use random projections which are

universal and need no update. In our work the only basis needed is the sparsity basis

for difference images, hence no training is required. The very recent work of Ut-

tam, Goodman and Neifeld [146] considers background subtraction from adaptive

compressive measurements, with the assumption that the background-subtracted

images lie in a low-dimensional subspace. While this assumption is acceptable when

image tiling is performed, background subtracted images are sparse in an appro-

priate domain, spanning a union of low-dimensional subspaces rather than a single

subspace.

Our specific contributions are as follows:
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1. We present a background subtraction algorithm for compressive cameras. We

treat the foreground estimation as a sparse signal recovery problem where

convex optimization and greedy methods can be applied. We employ Basis

Pursuit Denoising methods [37] as well as total variation minimization [24] as

convex objectives to process field data.

2. We show that it is possible to recover the silhouettes of foreground objects

by learning a low-dimensional compressed representation of the background

image. Hence, we show that it is not necessary to learn the background itself

to sense the innovations or the foreground objects. We also explain how to

adapt this representation so that our approach is robust against variations of

the background such as illumination changes.

3. We develop an object detector directly on the compressive samples. Hence,

no foreground reconstruction is done until a detection is made to save compu-

tation.

4. In a multi-camera setting we formulate 2-D tracking and 3-D voxel reconstruc-

tion peroblems as sparse estimation problems and use the estimated compres-

sive foreground for its recovery.

The organization of the chapter is as follows. Section 4.2 reviews the rele-

vant CS theory. Section 4.3 explains the details of the background subtraction for

silhouette and appearance recovery. Section 4.4 presents the multi-view estima-

tion formulation. Section 4.5 discusses the limitations of our approach. Section 4.6
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demonstrates the effectiveness of our method for background subtraction with field

data and presents multi-view estimation results.

4.2 The Compressive Sensing Theory

4.2.1 Sparse Representations

Suppose that we have an image X of size N1 × N2 and we vectorize it into

a column vector (N = N1 × N2) by concatenating the individual columns of X

in order. The nth element of the image vector x is referred to as x(n), where

n = 1, . . . , N . Let us assume that the basis Ψ = [ψ1, . . . ,ψN ] provides a K-sparse

representation of x:

x =
N∑

n=1

θ(n)ψn =
K∑

l=1

θ(nl)ψnl
, (4.1)

where θ(n) is the coefficient of the nth basis vector ψn (ψn: N×1) and the coefficients

indexed by nl are the K-nonzero entries of the basis decomposition. Equation 4.1

can be more compactly expressed as follows

x = Ψθ, (4.2)

where θ is an N × 1 column vector with K-nonzero elements. Using ‖ · ‖p to denote

the ℓp norm where the ℓ0 norm simply counts the nonzero elements of θ, we call an

image X as K-sparse if ‖θ‖0 = K.

Many different basis expansions can achieve a sparse representation of natural

images, including wavelets, Gabor frames, and curvelets [24, 91]. However, in most

cases, a natural image does not result in an exactlyK-sparse representation; instead,
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its transform coefficients decay exponentially fast to zero. The discussion below

also applies to such images, denoted as compressible images, as they can be well-

approximated using the K largest terms of θ.

4.2.2 Random/Incoherent Projections

In the CS framework, it is assumed that the K-largest θ(n) are not measured

directly. Rather, M < N linear projections of the image vector x onto another set

of vectors Φ = [φ′
1, . . . ,φ

′
M ]′ are measured:

y = Φx = ΦΨθ, (4.3)

where the vector y (M × 1) constitutes the compressive samples and the matrix Φ

(M ×N) is called the measurement matrix. Since M < N , recovery of the image x

from the compressive samples y is underdetermined; however, as we discuss below,

the additional K-sparsity assumption makes recovery possible.

The CS theory states that when (i) the columns of the sparsity basis Ψ cannot

sparsely represent the rows of the measurement matrix Φ and (ii) the number of

measurements M is greater than O
(
K log

(
N
K

))
, then it is possible to recover the set

of nonzero entries of θ from y [24, 43]. Then, the image x can be obtained by the

linear transformation of θ in 4.1. The first condition is called the incoherence of the

two bases and it holds for many pairs of bases, e.g., delta spikes and the sine waves

of the Fourier basis. Surprisingly, the incoherence also holds with high probability

between an arbitrary basis and a randomly generated one, e.g., i.i.d. Gaussian or

Bernoulli/Rademacher ±1 vectors.
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4.2.3 Signal Recovery via ℓ1 Optimization

There exists a computationally efficient recovery method based on the follow-

ing ℓ1-optimization problem [24, 43]:

θ̂ = argmin ‖θ‖1 s. t. y = ΦΨθ. (4.4)

This optimization problem, also known as Basis Pursuit [43], can be efficiently solved

using polynomial time algorithms.

Other formulations are used for recovery from noisy measurements such as

Lasso, Basis Pursuit with quadratic constraint [24]. In this chapter, we use the

Basis Pursuit Denoising (BPDN) optimization for recovery:

θ̂ = argmin ‖θ‖1 +
1

2
β‖y −ΦΨθ‖22, (4.5)

where 0 < β < ∞ [37]. When the images of interest are smooth, a strategy based

on minimizing the total variation of the image works notably well [24].

4.3 CS for Background Subtraction

With background subtraction, our objective is to recover the location, shape

and (sometimes) appearance of the objects given a test image over a known back-

ground. By definition, the background image contains no objects of interest. Let

us denote the background, test, and difference images as xb, xt, and xd, respec-

tively. The difference image is obtained by pixel-wise subtraction of the back-

ground image from the test image. Note that the support of xd, denoted as

Sd = {n|n = 1, . . . , N ; |xd(n)| 6= 0}, gives us the location and the silhouettes of
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(a) (b) (c)

Figure 4.1: (a) Example background image. (b) Test image. (c) Difference image.
Note that the vehicle appearance also shows the curb in the background, which it
occludes. The images (a) and (b) are from the PETS 2001 database.

the objects of interest, but not their appearance (see Fig. 4.1).

4.3.1 Sparsity of Background Subtracted Images

Suppose xb and xt are typical real-world images in the sense that when

wavelets are used as the sparsity basis for xb, xt, and xd, these images can be well

approximated with the largest K coefficients with hard thresholding [90], where K is

the corresponding sparsity proportional to the cardinality of the image support. The

images xb and xt differ only on the support of the foreground, which has a cardinal-

ity of P = |Sd| pixels with P ≪ N . Moreover, we assume that images have uniform

complexity in space. We model the sparsity of the real world images as a function of

their size: Kscene = Kb = Kt = (λ0 logN + λ1)N , where (λ0, λ1) ∈ R
2. We assume

that the difference image is also a real-world image on a restricted support (see

Fig. 4.1(c)), and similarly we approximate its sparsity as Kd = (λ0 logP + λ1)P .

The number of compressive samplesM necessary to reconstruct xb, xt, and xd

in N dimensions are then given by Mscene = Mb = Mt ≈ Kscene log (N/Kscene) and

Md ≈ Kd log (N/Kd). When Md < Mscene, a smaller number of samples is needed
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to reconstruct the difference image than the background or foreground images. We

empirically show in Sect. 4.6 that this condition is almost always satisfied when

the sizes of the difference images are smaller than original image sizes for natural

images.

4.3.2 The Background Constraint

Let us assume that we have multiple compressive measurements ybi (M × 1,

i = 1, . . . , B) of training background images xbi, where xb is their mean. Each

compressive measurement is a random projection of the whole image, whose distri-

bution we approximate as an i.i.d. Gaussian distribution with a constant variance

ybi ∼ N (yb, σ
2I), where the mean value is yb = Φxb. When the scene changes

to include an object which was not part of the background model and we take the

compressive measurements, we obtain a test vector yt = Φxt, where xd = xt − xb

is sparse in the spatial domain.

In general, the sizes of the foreground objects are relatively smaller than the

size of the background image; hence, we model the distribution of the elements of

the literally background subtracted vector as yd = yt − yb ∼ N (µd, σ
2I) (M × 1).

Note that the appearance of the objects constructed from the samples yd would

correspond to the literal subtraction of the test frame and the background; however,

their silhouette is preserved (Fig. 4.1(c)).

The number of samples M in yb is greater thanMd as discussed in Sect. 4.3.1,

but is not necessarily greater than or equal Mb or Mt; hence, it may not be suffi-
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cient to reconstruct the background. However, the background image xb still needs

to satisfy the constraint yb = Φxb. To be robust against small variations in the

background and noise, we consider the distribution of the ℓ2 distances of the back-

ground frames around their mean yb:

‖ybi − yb‖22 = σ2
M∑

n=1

(
ybi(n)− yb(n)

σ

)2

. (4.6)

WhenM is greater than 30, this sum can be well approximated by a Gaussian distri-

bution due to the central limit theorem. Then, it is straightforward to show that we

have ‖ybi − yb‖22 ∼ N (Mσ2, 2Mσ4). When we have a test frame with a foreground

object, the same distribution becomes ‖yt−yb‖22 ∼ N (Mσ2 + ‖µd‖22, 2Mσ4 + 4σ2‖µd‖22).

Since σ2 scales the whole distribution and 1/M ≪ 1, the logarithm of the

ℓ2 distances in (4.6) can be approximated quite accurately with a Gaussian dis-

tribution. That is, since u ≪ 1 implies 1 + u ≈ eu, we have N (Mσ2, 2Mσ4) =

Mσ2N
(
1, 2

M

)
= Mσ2

(
1 +

√
2
M
N (0, 1)

)
≈ Mσ2 exp

{√
2
M
N (0, 1)

}
. This deriva-

tion can also motivated by the fact that the square-root of the Chi-squared distri-

bution can be well approximated by a Gaussian [33].

Hence, (4.6) can be used to approximate

log ‖ybi − yb‖22 ∼ N
(
µbg, σ

2
bg

)
, (4.7)

where the variance term does not depend on the additive noise in the pixel measure-

ments. Equation (4.7) allows some variability around the constraint yb = Φxb that

the background image needs to satisfy in order to cope with the small variations of

the background and the measurement noise. However, the samples yd = yt − yb
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can be used to recover the foreground objects. We learn the log-Normal parameters

in (4.7) from the data using the maximum likelihood techniques.

4.3.3 Object Detector based on CS

Before we attempt any reconstruction, it is a good idea to determine if the test

image has any differences from the background. Using the results from Sect. 4.3.2,

the ℓ2 distance of yt from yb can be subsequently approximated by

log ‖yt − yb‖22 ∼ N
(
µt, σ

2
t

)
. (4.8)

When the object is small, σ2
t should be on the same order size of σ2

bg, while µt is

different from µbg in (4.7). Then, to test the hypothesis of whether there is a new

object, the optimal detector would be a simple threshold test since we would be com-

paring two Gaussian distributions with similar variances. When σ2
t is significantly

different from σ2
bg, the optimal test can be a two sided threshold test [149]. For our

case, we simply use a constant times the standard deviation of the background as a

threshold and declare that there is a new object if |log ‖yt − yb‖22 − µbg| ≥ cσbg.

4.3.4 Foreground Reconstruction

For foreground reconstruction, we use BPDN with a fixed point continuation

method [62] and total variation (TV) optimization with an interior point method [24]

on the background subtracted compressive measurements. During reconstruction,

we lose the actual appearance of the objects as the acquired measurements also con-

tain information about the background. Although it is known that the subtracted

88



image is a sum of two components that exclusively appear in xb and xt, it is difficult,

if not impossible, to unmix them without taking enough measurements to recover

xb or xt. Hence, if the appearances of the objects are needed, a straightforward

way to obtain them would be to either reconstruct the test image by taking enough

compressive samples and then use the binary foreground image as a mask, or recon-

struct and mask the background image and then add the result to the foreground

estimate.

4.3.5 Adaptation of the Background Constraint

We define two types of changes in a background: drifts and shifts. A back-

ground drift consists of gradual changes that occur in the background such as illu-

mination changes in the scene and may result in immediate unwanted foreground

estimates. A background shift is a major and sudden change in the definition of the

background, such as a new vehicle parked within the scene. Adapting to background

shifts at the sensing level is quite difficult because high level logical operations are

required, such as detecting the new object and deciding that it is uninteresting.

However, adapting to background drifts is essential for a robust background sub-

traction system as it has immediate impacts on the foreground recovery.

The background constraint yb needs to be updated continuously if the back-

ground subtraction system is to be robust against the background drifts. Otherwise,

the drifts may accumulate and trigger unwanted detections. In the compressive

sensing framework, this can be done as follows. Once we obtain an estimate of
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the difference image x̂d with one of the reconstruction algorithms discussed in the

previous section, we determine the compressive samples that should be generated

by it: ŷd = Φx̂d. Since we already have yd = yt − yb, we can substitute the de-

noised difference estimate to obtain the background estimate of the current frame:

ŷb = yt − ŷd. Then, a running average can be used to update the background with

a learning rate of α ∈ (0, 1) as follows:

y
{j+1}
b = α

(
y
{j}
t − ŷ{j}

d

)
+ (1− α)y

{j}
b , (4.9)

where j is the time index.

Unfortunately, this update rule does not suffice for compensating background

shifts, such as global illumination changes and new stationary targets. Consider a

pixel whose intensity value changes because of a background shift. This pixel will

then be identified as an outlier in the background model. The corresponding pixel

in the background model will not be updated in (4.9). Hence, for all future frames,

the pixel will continue to be classified as part of the foreground. This problem can

be handled by allowing for a second moving average of the frames, which updates

all pixels within the image as in [70].

Hence, we use the following updates:

y{j+1}
ma = γy

{j}
t + (1− γ)y{j}

ma ,

y
{j+1}
b = α

(
y
{j}
t − ŷ{j}

e

)
+ (1− α)y

{j}
b ,

(4.10)

where yma is the simple moving average, γ ∈ (0, 1) is the moving average learning

rate, and ŷe = Φx̂ma. Consider a global illumination change. The moving average

update integrates the pixel’s illumination change over time, whose speed depends on

90



+

+

+
+

-

+

+
-

Φ

Φ

α

Buffer

Buffer

Camera

1− α

CS

CS

> 0

Output
γ

1− γ

xt

yt yd

x̂dyb

Figure 4.2: Block diagram of the proposed method.

γ. In subsequent frames, the value of the moving average will approach the intensity

value observed at the pixel. This implies that when used as a detection image, the

moving average will stop detecting the pixel as foreground. Once this happens,

the pixel will be updated in the background update, making the background model

adaptive to global changes in illumination. A disadvantage of this approach is that

if the targets stay stationary for extended periods of time, they become part of

the background. However, if they move again, they can be detected. Figure 4.2

illustrates the outline of the proposed background subtraction method.

4.4 Multi-view Estimation

In computer vision, silhouette images are used for various applications like

tracking, activity recognition, building 3-D models using voxels etc. Silhouette

images can be considered as sparse matrices where few pixels are in the foreground

and most in the background. The sparsity of the silhouette images corresponds to the
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sparsity of object parameters. Silhouette images are obtained by indicating which

pixels of the difference image are non-zero. We utilize the sparsity of corresponding

difference images, using their compressed samples, to directly recover the object

parameters in a multi-view setting. We first formulate the multi-view tracking

problem and then consider the formulation of 3-D voxel reconstruction task. We

assume that multiple cameras are observing a scene.

Suppose we have the observation region O (which can be either 2-D or 3-D

space), being observed by synchronized cameras c = 1, ..., C. We assume that most

of the region is visible to all the cameras. At any frame f ∈ {1, 2, ..., F} we have

background subtracted difference images (i.e. foreground) Icf (of size Nrow × Ncol)

at each of the cameras. The foreground in the image is the moving object which we

are interested in tracking and on which we would like to further focus and perform

our analysis. The foreground is sparse in the image plane. This implies that in

the corresponding observation region O, the objects or people corresponding to the

image foreground are sparse i.e., the area (or volume) occupied by the moving objects

or people is very small compared to the area (or volume) of the observation region.

We relate the foreground image and the corresponding objects in the observation

region by a linear transformation. For simplicity, we first consider a 2-D observation

region O where camera c is provided with homographyHc between the world plane

and the image plane.

Assume that for some frame f the cameras are observing the 2-D observation

space O as shown in Fig. 4.3. The region is divided into non-overlapping, tightly

packed subregions n = 1, ..., N where (xn, yn) are the coordinates of the representa-
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tive point (like points on the ground plane in Fig. 4.3) of the subregion n, known at

the cameras. In tracking application we would like to localize the objects to one of

the regions. Assume that camera c observes the foreground image Icf (foreground

has non-zero value and background is zero) with image coordinates (u, v). We de-

fine vectors s and xc
d associated with the object location on the 2-D plane and the

silhouette image respectively. s is a N × 1 vector with s(n) 6= 0 if object is present

in the subregion n and 0 otherwise. In Fig. 4.3, s is the indicator of the objects at

points on the ground plane and xc
d is the foreground at corresponding points on the

silhouette image at camera c. Typically in tracking scenarios s is sparse since the

objects of interest occupy a small area in the observation region. For every frame f

we would like to know the position of the objects, in other words our desired variable

is s. But, what the cameras instead observe is the background subtracted image Icf

and for the multi-view estimation problem we assume that the camera (normal or

compressive) can be setup to sense only the N × 1 vector xc
d defined as,

xc
d(i) = I

c
f(ui, vi), (4.11)

where the image coordinates (un, vn) of camera c are related to the coordinate

(xn, yn) of the representative point n by




un

vn

1



∽Hc




xn

yn

1



, (4.12)

(it should be noted that since (un, vn) take integer values we round the right hand
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side). The equation relating s and xc
d is then given by

xc
d = s+ e

c
d, (4.13)

where ecd is the view dependent error when observing the desired vector s. In our

model, this error also encompasses the errors in silhouettes, rounding off errors and

the errors when not all subregions in O are visible to camera c. Given O, each

camera can sense xc
d as described above. A simple projection of the foreground at a

single camera on the ground plane gives an estimate of the object location but this

is not accurate since the parts of the object in parallax do not register under the

homography projections. To accurately estimate the position of the objects on the

ground plane from xc
d, information from multiple cameras is used. For this, cameras

need to transmit the information to a centralized location where the computation

can be performed. Noting that s is sparse, the compressive cameras can significantly

decrease the amount of data sensed and hence the data transmitted to the central

processing center by projecting the signals into lower dimensions and recovering it

using the principle of CS. We assume the vector s to be K-sparse. This means that

we can randomly project the vector xc
d to lower dimensional yc (= Φcxc

d) using the

M ×N projection matrix Φc with entries from Gaussian distribution N (0, 1/N) or

random Bernoulli distribution. The resulting equation is

yc = Φcs+ ec. (4.14)

where ec = Φcecd. Note that yc is the compressive foreground measurement and

it can be obtained from the background subtraction algorithm described in the
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previous section. At the central location yc are stacked to form vector y



y1

y2

...

yC




=




Φ1

Φ2

...

ΦC




s+




e1

e2

...

eC




(4.15)

resulting in

y = Φs+ e (4.16)

Assuming e to be additive white Gaussian(AWG) noise, the vector s is recovered by

solving (4.5). The recovery of s is a function of N allowing the algorithm to scale in

number of cameras. For simplicity, we consider rectangular subregions n = 1, ..., N ,

with the representative points forming a N1 ×N2 rectangular grid.The problem de-

scribed above easily extends to 3-D voxel reconstruction. We assume a 3-D O being

observed by C cameras. At frame f , the cameras observe silhouette images Icf . We

assume that at camera c, the projection matrix P c is known. Unlike multi-view

ground plane tracking, in 3-D voxel reconstruction we need to recover all the three

coordinates of the object to reconstruct the 3-D shape. We divide the 3-D obser-

vation region into N sufficiently dense subregions which are non-overlapping and

tightly packed. Here the representative point of the subregion n has coordinates

(xn, yn, zn). Again, for simplicity we assume that the subregions are cuboidal vol-

umes called voxels and the representative points form a N1 × N2 × N3 grid. The

sub-regions are denser compared to tracking and the object occupies a lot more sub-

regions than it did in tracking scenario. Similarly, we define N × 1 vectors s and

xc
d. s(n) 6= 0 if object occupies subregion n and 0 otherwise. Obviously, if s(i) 6= 0
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we would have xc
d(i) = I

c
f (ui, vi) 6= 0 where




ui

vi

1



= P c




xi

yi

zi

1




, (4.17)

and (xi, yi, zi) are the coordinates of the grid point in voxel i. All the voxels whose

projection onto the image plane of camera c intersects with the silhouette of image

Icf are assigned to be occupied — i.e., xc
d(i) = 1. Thus for any camera the number

of voxels assigned as occupied is greater than the number of truly occupied voxels.

Hence, for finding the true voxel occupation s we use silhouettes from multiple

cameras. In the region O the volume occupied by the object is assumed to be

sparse implying a sparse s. To recover s from xc
d, c = 1, . . . , C we follow exactly

the recovery procedure adopted in multi-view tracking.

4.5 Limitations

In this section, we discuss some of the limitations of our specific compressive

sensing approach to the background subtraction. Some of these limitations can be

caused by the hardware architecture, whereas others are due to our image models.

Note that our formulation is general enough that we do not require an SPC for

operation. If a centralized vision system is used with no background subtraction at

the camera, then our methods can be used at conventional cameras for processing in

the compressive domain to reduce communication bandwidth and be robust against
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Figure 4.3: Ground plane tracking scenario. The observation regionO is observed by
3 cameras. The points onO are the representative points of the subregions known at
cameras. The homographyHc is provided at camera c. Icf are the silhouette images
at camera c at frame f . The silhouette values at points on image Icf form xc

d. The
sparsity of the silhouette image corresponds to the sparsity of the object(cylinder)

packet drops.

The SPC architecture uses a DMD to generate a random sampling pattern

and sends the resulting inner product of the incident light field from the scene with

the random pattern to the optical sensor to create a compressive measurement. By

changing the random pattern in time, a set of M consecutive measurements can be

made about the scene using the same optical sensor, which form the measurement

vector y. The current DMD arrays can change their geometric configuration ap-

proximately 10 to 40K times per second. For example, with a rate of 30K times

per second, we can construct at most a 300×300 resolution background subtracted

image with 1% compression ratios at 30fps. Although the resolution may not be

sufficient for some applications, it will improve as the capabilities of the DMD arrays
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increase.

In our background modeling, we assume that the background and foreground

images exhibit sparsity. We argued that the background subtracted image has a

lower sparsity and hence can be reconstructed with fewer number of samples that

is necessary to reconstruct the background or the foreground images. When the

images of interest do not show sparsity (e.g., they are white noise), our approach

can still be applied. That is, the difference image xd is always sparse regardless of

the sparsities of xb and xt if its support cardinality P is much smaller than N .

In our formulations, we have used black and white images as opposed to color

images. Although our ideas easily extend to multiple color planes, the required com-

putation also proportionally increase. Finally, our Gaussian model for background

images cannot cope with multimodal backgrounds. These backgrounds require more

sophisticated processing, which is the focus of future work.

In the multi-view estimation formulation we made a simplifying assumption

to map the ground plane to the image plane. We assume that the location vector

s has values which are the same as the estimated difference image xc
d value. Our

assumption holds only in cases where the object has roughly the same appearance

from all the directions. Further, for simplicity we assume that the noise e in the

estimation problem is Gaussian but this often not the case.
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4.6 Experiments

4.6.1 Background Subtraction with an SPC

We performed background subtraction experiments with an SPC; in our test,

the background xb consists of the standard test Mandrill image, with the foreground

xt consisting of a white rectangular patch as shown in Fig. 4.4. Both the back-

ground and the foreground were acquired using pseudorandom compressive mea-

surements (yb and yt, respectively) generated by a Mersenne Twister algorithm

with a 64 × 64 pixel resolution [99]. We obtain measurements for the subtraction

image as yd = yt − yb. We reconstructed both the background, test, and difference

images, using TV minimization. The reconstruction is performed using several mea-

surement rates ranging from 0.5% to 50%. In each case, we compare the subtraction

image reconstruction with the difference between the reconstructed test and back-

ground images. The resulting images are shown in Fig. 4.4, and show that for low

rates the background and test images are not recovered accurately, and therefore

the subtraction performs poorly; however, the sparser foreground innovation is still

recovered correctly from the difference of the measurements, with rates as low as

1% being able to recover the foreground at this low resolution.

4.6.2 The Sparsity Assumption

In our formulation, we assumed that the sparsity of natural images has the

following form: K = (λ0 logN + λ1)N . To test this assumption, we used the Berke-

ley Segmentation Data Set (BSDS) as a natural image database [97] and obtained
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Figure 4.4: Background subtraction experimental results using an SPC. First row:
reconstruction of background image from compressive measurements. Second row:
reconstruction of the test image from compressive measurements. Third row: con-
ventional background subtraction using the above images. Fourth row: reconstruc-
tion of difference image directly from compressive measurements. The columns
correspond to measurement rates M/N of 50%, 5%, 2%, 1% and 0.5%, from left to
right. Background subtraction from compressive measurements is feasible at lower
measurement rates than standard background subtraction.

wavelet approximations of various block sizes varying from 2×2 to 256×256 pixels.

To approximate the sparsity K of any given tile size, we determined the minimum

number of wavelet coefficients that results in a compression with -40dB distortion

with respect to the image itself. Figure 4.5(a) shows that our sparsity assumption is

justified for natural images. Figure 4.5(b) illustrates that the necessary number of

compressive samples is monotonic with the tile size. Therefore, if the innovations in

the image are smaller than the image, it takes fewer compressive samples to recover

them. In fact, the total number of samples necessary to reconstruct is rather close

to linear: M ≈ κN1−δ where δ ≪ 1. In general, the λ parameters are scene specific

(Fig. 4.5(c)). Hence, the exact number of compressive measurements needed may
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Figure 4.5: (a) Average sparsity over N as a function of the tile size for the images
in BSDS. (b) Number of compressive measurements needed to reconstruct an image
of different sizes from BSDS. (c) Average sparsity over N as a function of the tile
size for the images in PETS 2001 data set.

vary.

4.6.3 Adaptation to Illumination Changes

To compare the performance of the background constraint adaptations (4.9)

(drift adaptive) and (4.10) (shift adaptive), we test them on a sequence where there

is a global illumination change due to sunlight. To emphasize the differences, we

use the delta basis (0/1 in spatial domain) as the sparsifying basis Ψ. This basis

creates much noisier background subtraction images than wavelets, but it is quite
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Figure 4.6: Background subtraction results on a sequence with changing illumination
using (4.9) and (4.10) for background constraint updates. Outputs are shown with
identical parameters used for both models. Note that for the same detection output,
the update rule (4.10) produces much less false alarm. However, (4.10) has twice
the computational cost as (4.9).

illustrative for the purposes of this comparison.

Figure 4.6 shows the results of the comparison. The images on top are the

original images. The middle row corresponds to the update in (4.10) whereas the

bottom row images correspond to the update in (4.9). The update in (4.10) allows

the background constraint to keep track of the changing illumination. Hence, the

resulting images are cleaner and continue to improve if the illumination does not

change. This results in much lower false alarm rates for the same detection probabil-

ity (see Fig. 4.6(Right)). For plotting the receiver operating characteristics (ROC)

curves, we use the full images, run the background subtraction algorithm proposed

in [70], and obtain baseline background subtracted images. We then compare the

pixels on the resulting target from different updates to calculate the detection rate.

We also compare the spurious detections in the rest of the images to generate the

ROC curve.
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4.6.4 Multi-view Ground Plane Tracking

We present the results of an experiment performed using video sequences col-

lected by four cameras located in an outdoor area. The background-subtracted

images at the cameras are of size 240× 320 (Nrow = 240, Ncol = 320). First, we de-

tect the objects in the scene and then track them over 400 frames. During detection

the observation region O is a rectangular region 60ft×55ft most of which is observed

by all the 4 cameras. We place a sufficiently dense 101× 101 (N1 = 101, N2 = 101)

uniformly spaced grid on this region, implying N = N1N2 = 1012 subregions over

which we detect and localize the objects. Following the procedure described in Sec-

tion 4.4 we recover the vector x which indicates which sub-regions have the object.

We detect 2 objects which we track over the next 400 frames. Since each object

occupies more than a point, instead of recovering an exact 2-sparse vector s we get a

more dense vector. The location is estimated by averaging over these 2 dense blobs.

Once we detect the objects, we track them using a similar procedure but for tracking

we confine our region of search to a rectangular region of size 20ft × 20ft centered

at the detected object locations. For tracking, the observation region O at frame f

is centered around the object location estimated at frame f − 1. On this we place

a grid of size 26× 26 (N1 = 26, N2 = 26) where unlike detection the grid points are

distributed according to a Gaussian distribution centered at the object location and

with variance 3.5ft in both directions. A Gaussian spaced grid allows us to account

for the expected small movements as well as the large ones. It also decreases the

complexity by decreasing N . The observed vector is randomly projected using a
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matrix with IID Gaussian entries. The tracking results are shown in Fig. 4.7
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Figure 4.7: Outdoor scene of size 60ft× 55ft observed by C = 4 cameras. Tracking
results on a video sequence of 400 frames. The first two rows show sample images and
the estimated background subtracted silhouettes respectively. These background
subtracted difference images are used to track objects on the ground plane. The
bottom image shows the tracked points (blue) as well as the ground truth (black).

We performed the 3-D reconstruction experiment in an indoor setting for one

frame where the object is being observed by C = 8 cameras placed around it. The

images are of size 484 × 648. The observation region is a 0.8m × 0.82m × 1.62m

space. We place a sufficiently dense uniformly space grid of size 81 × 83 × 163

((N1 = 81, N2 = 83, N3 = 163)) in this region. As in the tracking scenario we

randomly project the observed vector using matrix with IID Gaussian entries. To

decrease the complexity of the recovery algorithm we divide the grid into smaller
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chunks of size N1 along one of the rows. We recover s which has non-zeros values

corresponding to the region occupied by the object and lower values in the empty

regions. We can see that our method of reconstructing 3D-voxels is robust to errors

in the silhouette images. Figure 4.8(Top) shows the ground the difference image

reconstructed using CS, which incorporates elements from the background, such as

the camera setup behind the subject, affecting the final reconstruction. Hence, the

difference images do not always result in the desired silhouettes. Figure 4.8(Bottom)

shows the voxel reconstruction with four cameras with 40% compression, which is

visually satisfactory despite the artifacts in the difference images.
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Figure 4.8: Indoor scene of size 0.8m × 0.82m × 1.62m overlayed with grid of size
81× 83× 163 observed by C = 8 cameras. (Top) Estimated background subtracted
silhouette images . (Bottom) Three views of the reconstructed object.
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4.7 Summary

We demonstrated that the compressive sensing framework can be used to di-

rectly reconstruct sparse innovations on a background scene with a significantly

fewer data samples than the conventional methods. As opposed to acquiring the

minimum amount of measurements to recover a background and the test image, we

exploit the sparsity of the foreground to perform background subtraction by using

even fewer measurements (Md measurements as opposed to Mb). We illustrated

that due to the linear nature of the measurements, it is still possible to adapt to

the changes in the background directly in the compressive domain. In addition, it is

possible to formulate an object detector. We formulated the multi-view tracking and

3D reconstruction problems using sparse estimation framework. We estimate the

location and occupancy of the object by relating these quantities with background

subtracted difference images.
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Chapter 5

Joint Compressive Video Sensing

and Background Subtraction

5.1 Introduction

Cameras are often used to sense dynamic scenes for various tasks such as

surveillance, tracking [164], activity recognition [145] and 3D reconstruction [103].

In these applications we are interested in separating the interesting moving objects

from the static parts of the video. For example, surveillance videos have a person

or a vehicle moving in the scene and the rest of it is mostly static. Similarly,

other videos can also be decomposed into two processes, a slow background and

the more interesting foreground. For many taks including visual inference, we focus

on the foreground and hence wish to separate the interesting foreground from the

background. Typically, foreground refers to the region of the image where a static

or moving object is present and background refers to the static part with noisy

variations due to illumination change, motion of foliage, rain etc.

Current video sensing architecture first senses the video frames and then per-

forms preprocessing tasks such as background subtraction (BS) [140], [48] for sub-
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sequent inference. Typical background subtraction involves two steps, estimating

the background and separating the foreground. Often, Once the foreground is sep-

arated, the background pixels are often discarded or incorporated into the back-

ground model. This means that we first sense the frames at full resolution and then

throw away majority of pixels from the background. While sensing is inexpensive

in the visual range, it is significantly costly in the hyper-spectral regime. Even in

visual range where the CMOS sensors are inexpensive, when the available process-

ing power and communication bandwidth are limited, it is undesirable for a camera

to first perform computationally costly background modeling and subtraction and

then transmit the foreground. Since the interesting foreground often occupies only

a small portion of the scene and majority of the background is slowly varying or

static, it raises the following question: Can videos be sensed robustly using fewer

measurements by exploiting the redundancy in both the slow and fast processes? In

this chapter we address this question.

Compressive sensing (CS) [43],[24] has emerged as a potential solution to the

problem of parsimonious sensing in the presence of signal redundancy. When sam-

pling cost is high due to expensive sensors, such as in hyperspectral imaging, com-

pressive sensing of video frames provides a solution. CS allows a signal which is

sparse in a transform basis to be sensed with fewer samples and provides a recovery

scheme to exactly reconstruct the signal from these samples. An advantage of CS is

that the amount of sensed data is proportional to the dimension of the innovations

rather than the ambient signal dimension. This fact has been used to build pro-

totype compressive imagers such as the ‘single pixel camera’ (SPC) [45]. Imaging
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architectures like SPC help us sense with far fewer pixels than what would other-

wise be needed. In practice compressive sensing of images is effective only when the

images are sparse. Since natural images are not strictly sparse but compressible, CS

imaging leads to poor image quality. In domains where signals tend to be sparse, CS

does provide the level of detail comparable to traditional sensing as illustrated by

its applications in magnetic resonance imaging (MRI) [87] and synthetic aperture

radar (SAR) imaging [114].

Compared to images, videos are redundant not only in each frame but more

so in temporal dimension [104]. This has lead to CS research in exploiting redun-

dancy in successive frames which have similar appearance due to objects in motion.

Techniques have been proposed to exploit inter-frame redundancy. Methods which

compressively sense videos can be found in [125], [112], [95], [72], [41], [139], [165].

CS acquisition methods for a restricted class of videos are presented in [71], [152],

[151] for MRI, [154] for repetitive visual signals found in automation and [130] for

videos satisfying a linear dynamical model. CS methods aimed towards a narrower

class of signals with stronger signal models have tended to provide more impressive

results. This has lead to interest in building compressive video sensing schemes for

specific applications where in addition to the sparsity within a frame, inter-frame

redundancy is also exploited. In this chapter, we present our work on a restricted

but important class of videos, namely the fixed camera surveillance videos.

We present a compressive sensing and recovery scheme for videos which are

composed of fast and slowly varying processes. Our recovery scheme not only recov-

ers the videos accurately but can separate the slowly varying background from the
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foreground. We show that by using a different measurement matrix during each new

frame we can not only capture the sparse foreground information but also capture

the background accurately without any sparsity assumptions. We formulate the

recovery and background modeling problem in the framework of distributed com-

pressive sensing (DCS) [11]. We treat each frame in a temporal window as acquired

from a different sensor in DCS context and separate it into a component common

to all the frames and a unique foreground. The common component and unique

sparsity model for frames from a surveillance video allow us to achieve the state-of-

the-art results by avoiding sparsity assumption on the background frame altogether.

We make sparsity assumption only on the foreground which allows us to reconstruct

it accurately.

The contributions of our work are as follows.

1. A new compressive sensing and recovery scheme to capture and recover surveil-

lance type videos.

2. Formulation of background modeling in compressive frames as DCS.

3. A simple reconstruction algorithm to robustly recover the frames and separate

the foreground from the background.

Related work:

We discuss here the previous efforts related to our approach and contrast them

with our method.

CS Scheme: Since we propose a new CS sensing scheme where the measure-

ment matrix in every frame is changed, we discuss different CS acquisition archi-
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tectures which enable such acquisition. MRI [87] is a natural compressive imaging

system where only a few Fourier coefficients are measured and from which the en-

tire image slice is constructed by assuming bounded total variation. Each frame

is acquired by capturing Fourier coefficients corresponding to the directions from

which the scan is performed. This imaging system can be used for our problem by

changing the set of scan directions in every frame leading to different measurement

matrices for consecutive frames. Previous reconstruction methods for dynamic MRI

include motion compensation [71]. Methods have been also proposed to reconstruct

the videos by assuming small changes in Fourier coefficients of consecutive frames

[151]. Our method sensing and reconstruction can be be applied to MRI when the

video has a sparse moving foreground with a slowly varying background.

The first prototype demonstrating compressive imaging is the SPC [45]. The

authors proposed a digital micro-mirror device (DMD) array based modulator which

collects many measurements for each frame by taking random projections of the

scene in quick succession. We envision using SPC for capturing different sets of ran-

dom projections at successive frames. Since the projections are multiplexed in time

it would be a simple matter of running through different projections continuously

only repeating them after a fixed number of frames as opposed to every frame.

Other imagers include task based imager [108], random lens imager [52] sim-

ilar in principle to SPC, coded aperture imager [96] where pixels in a local region

corresponding to the defocus blur are mixed. While different aperture masks can

be used for consecutive frames, coded aperture imaging has a sparse measurement

matrix which is not suitable for recovering the sparse foreground. Similarly a CMOS
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compressive imager [68] has been proposed where the pixels are mixed once they

are captured. Compressive imagers have also been built for increasing the temporal

resolution for periodic videos [154] by modulating the shutter and its generaliza-

tion [125]. Since in these cases the imaging is done by temporal multiplexing, our

method is not applicable here. A spectral compressive imaging system [155] which

multiplexes different frequencies is also available but not suitable for our application.

CS for Videos: Recent work in compressive video sensing attempts to re-

construct videos from compressed measurements by exploiting redundancy in the

temporal dimension in addition to the spatial sparsity. [112] proposed compressive

video sensing using the SPC architecture and reconstruction using wavelet lifting.

[125] proposed a compressive camera architecture by modifying existing slower cam-

eras to collect an order of magnitude faster videos by explicitly exploiting motion

constraints during reconstruction. Similarly, CS video capture for processes satisfy-

ing a linear dynamical model was proposed by [130]. Similarly [152], [151] proposed

a Kalman filtered based recovery scheme and extended it to a general framework.

Marcia [95] proposed a coded aperture based compressive acquisition system for

videos which are recovered using a joint compressive framework. Further, [67] pro-

posed an algorithm based on motion compensation to recover compressive videos.

Compressive video sensing based on sensing a keyframe at full measurements

and then other frames at reduced measurements have been proposed in [72], [139]

and [165]. The difficulty with key frame approaches is that either it should be

sensed fully or reconstructed with priors on the image which degrades its quality.

Such degradation in key frames propagates to other frames as well. Compared to
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other methods we do not have to change the number of measurements at every

frame, only the measurement matrix changes. This way we are blind to different

processes generating the video.

A compressive video coding and analysis work has been proposed in [41] where

CS projections are used as video coding and simple object tracking is performed on

the compressive measurements.

Foreground-background separation:

Significant amount of work exists for background subtraction on traditional

videos. In [140] the background is modeled pixelwise as a mixture-of-Gaussian

whereas in [48] the background is modeled at each pixel using a non-parametric den-

sity. PCA based decomposition is used in [110] to separate the background from the

foreground and [76] uses a Kalman filter based approach to model the background.

A good overview of these algorithms can be found in [120] and [40]. Background

subtraction problem has also been formulated as robust PCA [32], [42] where the

error is the foreground and the principle components capture the background. Re-

cent work in background modeling has also taken into account the motion of the

camera [88]. These algorithms can be broadly divided into two kinds, those which

model the background pixel-wise and those which model the entire image based

on a collection of past images. Pixel-based methods have the advantage of both

increased speed and low memory requirements. Since the goal of our work is to sep-

arate the foreground from the background and reconstruct the images, modeling the

background in the compressive domain is significantly challenging. This means that

effective background subtraction algorithms based on mixture-of-Gaussians (MoG)
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are difficult to adapt since the pixels are mixed but the inference is pixel-wise.

An algorithm for background subtraction using compressive sensing ideas was

proposed in [35]. There the foreground is assumed to be spatially sparse and an

adaptive background model is proposed to update the changes in the background.

Nevertheless the background model is simplistic and is sensitive to moderate changes

in illumination in the scene. Further, this approach recovers only the foreground

(albeit with lesser measurements than traditional CS) but fails to recover the back-

ground. Retaining only the foreground information implies that the background

which often provides visual context is lost. Hence, it is desirable for both visual and

hyperspectral imaging to sense data with fewer measurements in the first place but

where no information is lost. Our work is closely related to [35] but builds on it by

proposing a joint framework for both separation of foreground and background and

also estimating the video sequence.

5.2 Compressive Imaging

Compressive sensing theory [24] states that a signal sparse in a transform

basis can be sensed and recovered accurately from fewer measurements of it. Let the

signal x of size N×1 be sparse in some transform basis Ψ. Then the transformation

between the signal and its sparse transformation coefficients s is given by

x = Ψs. (5.1)

The signal x can be recovered fromM measurements y = Φx whereM << N

provided the coefficients s are sparse (say ‖s‖0 = K) and the matrix A = ΦΨ
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satisfies a sufficient condition termed ‘Restricted Isometry Property’ (RIP) [25] for

a given sparsity. x can be recovered by solving for sparse s through either convex

programming such as Basis Pursuit [38] or greedy algorithms [115], [107]. It has

been shown that random Gaussian or Bernoulli matrices and partial Fourier matrix

satisfy RIP with a high probability.

To realize above compressive sensing scheme, it is sufficient if the sensor can

take projections satisfying RIP such that it preserves the information and allows

the signal to be computationally reconstructed. For instance, MRI is performed by

sensing the partial Fourier measurements and since the image has bounded total

variation, it is accurately reconstructed from the partial measurements. For natu-

ral images, both in visual and hyperspectral regime, SPC which sequentially takes

M measurements in time corresponding to different projections is applicable. The

projection matrix is drawn from a random ‘1’ , ‘0’ Bernoulli process. The architec-

ture is realized using a digital micromirror device (DMD) array which modulates the

incoming light and then transmits it to single pixel. Each configuration of DMD cor-

responds to a row of Φ and M such configurations provide sufficient measurements

for sensing an image.

SPC uses a single pixel and elegantly illustrates the idea of CS at its extreme

but other architectures are possible which either use multiple pixels or completely

novel architectures [68]. Since we are concerned with sensing a surveillance video

and separating the foreground from the background we assume an architecture which

senses by mixing the pixel intensities in space as done in MRI and SPC as opposed

to mixing in time [154], [125], [101], [144] or frequency [155]. Nevertheless, the above
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architectures are limited in their effectiveness since natural images are rarely truly

sparse in any known basis. Instead they are compressible and their reconstruction

quality is upper bounded by the sparse approximation to the image.

To overcome lack of redundancy in space, we can exploit redundancy in time.

The similarity of consecutive frames xt and xt+1 is used while reconstructing them

from their compressive measurements yt = Φxt. The CS architecture achieves video

sensing by continuously taking the same projections of the incoming light in every

frame. For example, in SPC the DMD runs through M projections for a frame

and then repeats the same cycle for the next frame. Similarly, MRI devices take

particular Fourier measurements for a frame and cycle through them for the next

frame. Note that when the architecture sequentially takes measurements we assume

that the motion during each frame is limited compared to that between consecutive

frames.

In this chapter, we propose to modify the architecture for sensing videos made

up of two processes. Such a modification in sensing architecture can be achieved

using existing CS camera realizations such as SPC without any changes to its hard-

ware. We simply propose to take different measurements every frame such that

after a small duration R the projections span the N dimensional image space. We

sense M measurements yt = Φtxt such that the MR dimensional concatenated

measurement matrix [ΦT
1Φ

T
2 . . .Φ

T
R]

T has rank N . This can be achieved in SPC by

simply running through the MR measurements in the duration of R frames. This

simple but important modification allows us to avoid the sparsity assumption during

reconstruction of a slowly changing video. If the frame x1 is similar to xR then we
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can reconstruct them without any assumption of some transform domain sparsity.

When the frames x1 and xR differ in appearance due to motion of objects in the

foreground we make no sparsity assumptions on the slowly changing background

but assume that the quickly changing foreground is spatially sparse. In a surveil-

lance video each frame xt can be decomposed into two processes, a quickly varying

foreground xf
t and a slowly varying background xb

t .

x = xf
t + x

b
t (5.2)

For example in Figure 5.2, the moving clouds are slowly changing and treated as

background. The illumination change is faster than that of clouds but slower than

the foreground and is eventually incorporated in the background. The moving person

is treated as foreground since the motion is significantly large between consecutive

frames. The car which was moving quickly was initially treated as foreground but

eventually incorporated into the background when it became stationary. In Figure

5.1 the motion of foliage is fast and hence treated as foreground for video recovery.

In an earlier work [35], a technique to sense surveillance videos using CS ar-

chitecture was proposed. In it the number of measurements needed are dependent

on the sparsity of foreground and a procedure to separate and estimate the fore-

ground was proposed. The procedure was based on updating the background and

performed satisfactorily on a simple dataset but failed on the challenging PETS

dataset. The primary drawback of the approach was that only the foreground could

be estimated. This meant that the context in which the foreground object is moving

was unavailable.
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In this chapter we propose a joint compressive video sensing and background

subtraction method by modeling the video as a background and a foreground pro-

cess. We apply the distributed CS framework [11] over frames xt in a temporal

window of size W . The frames though different have similarities and this fact is

leveraged to sense the frames (both background and foreground) using the same

number of measurements as previous technique [35]. This is made possible by mod-

ifying the sensing scheme which allows us to sense the background by avoiding

sparsity assumption thereby increasing the quality of reconstruction.

DCS is a framework for compressively sensing signals generated by distributed

sources but which share similarities. For example, a signal xt indexed by the source

t (frame number in our case) could share common sparse support of its coefficient

st with other signals. Or the signals could have a common component (sparse or

non-sparse) and a sparse innovation.

5.3 Compressive Video Reconstruction and Background Sub-

traction

Given a sequence of frames, we define the background as the component com-

mon to all the frames in the window and the foreground as the respective innovation

in each frame. In background subtraction [140], [48] on images, the background pix-

els are determined based on the multi-modal distribution at the pixel. Adapting

these techniques to compressive frames involves making inferences about the pixel

distribution’s membership to one of the mixtures. Such an inference, without explic-
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itly reconstructing the frames from the projections, is hard due to the exponential

number of possibilities. The same inference on images has only linear number of pos-

sibilities since each pixel is treated independently but the compressive projections

are a mixture of pixel intensities. This makes multi-modal foreground-background

separation extremely difficult.

Hence, we define an intuitive, appearance based foreground and background

in the compressive domain. Our approach can be interpreted as modeling the back-

ground using a single distribution thereby avoiding the exponential possibilities in-

volved in using MoG model. Given a sequence of frames xt−W+1,xt−W+2, . . . ,xt

where W > R, we define background as the image component common to this

collection of W frames and the foreground of individual frames as the innovations

which are different from the common component

xt+i = x
b
t + x

f
t+i. (5.3)

Since, there is no unique way of defining the background or the innovations, we

impose the condition that xf
t+i should be sparse i.e. it has a sparse support {Ωi}.

Such an assumption is valid especially in far field surveillance videos where the

foreground regions is small and the foreground component is assumed to be sparse.

In the compressive domain, where we sense measurements yt−W+1,yt−W+2, . . . ,yt,

we define the background and the foreground similarly.

yt+i = Φt+ixt+i (5.4)

and

yt+i = y
b
t+i + y

f
t+i (5.5)
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Here yb
t+i = Φt+ix

b
t is the background projected on the measurement matrix at

time t+i and yf
t+i = Φt+ix

f
t+i is the compressive component of the sparse foreground

innovations. We drop the subscript t where the context is obvious and we retain

it when specific reference to time is made. Note that our goal is to estimate the

sparse xf
i and its support as well as the common component xb from the sequence

of compressive frames y−W+1,y−W+2, . . . ,y0 without explicitly recovering the cor-

responding frames x−W+1,x−W+2, . . . ,x0. Our formulation is inspired by the idea

of distributed compressive sensing (DCS), especially the joint signal model (JSM3)

where the sources have a common non-sparse component and a sparse innovation

component. It has been shown in [11] that both the common and innovation com-

ponents can be extracted from the compressive measurements at a central location

through an alternating algorithm.

We recover the background image xb without any sparsity assumptions by

solving a simple least-squares problem as described below. Though the background

image is compressible in wavelet basis we avoid enforcing it. Instead we rely on the

fact that different projections yb
i of the background image span the entire space i.e.

[ΦT
−W+1Φ

T
−W+2 . . .Φ

T
0 ]

T is full rank. Our iterative least squares-based algorithm is

based on the following idea.

Suppose we have an accurate estimate of the compressive background x̂b, then

we can subtract its contribution ŷb
i = Φix̂

b from the compressive frames yi and

reconstruct the sparse foreground x̂f
i and its support {Ω̂i}. Instead if the sparse

foreground x̂f
i and its support {Ω̂i} are known, we partition the measurements into

two parts: the projection onto span({Φi}n∈Ω̂i
) and the component orthogonal to
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that span. We define a M × (M − |Ω̂i|) matrix Qi whose orthogonal columns span

the orthogonal complement of ΦΩ̂i
.

We then define the component of the compressive frame which does not have

any contribution from those of the foreground columns

ỹi = Q
T
i yi (5.6)

and similarly the component of the measurement matrix without the contribution

from foreground columns as

Φ̃i = Q
T
i Φi. (5.7)

The modified measurements ỹ = [ỹT
−W+1ỹ

T
−W+2 . . . ỹ

T
0 ]

T and the modified basis

Φ̃ = [Φ̃
T

−W+1Φ̃
T

−W+2 . . . Φ̃
T

0 ]
T can be used to refine the estimate of the compressive

background.

x̂b = argmin
xb

0∑

i=−W+1

‖ỹi − Φ̃ix
b‖2 (5.8)

x̂b = Φ̃
†
ỹ (5.9)

We use the above fact to refine the foreground and background estimates by alter-

nating between estimates of each. If the estimate of the background is not accurate

then we can use the estimated foreground to refine it and vice versa. The alternating

approach used for estimating the foreground is presented in Algorithm 1.

5.3.1 Compressive Video Reconstruction

In practice the least squares problem in equation (5.8) is solved using incre-

mental gradient method [18] since the size of the images prohibits us from computing
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Algorithm 1: Joint Compressive Video Reconstruction and Background Sub-

traction: Batch
Input: Compressive measurements y−W+1,y−W+2, . . . ,y0 and corresponding

measurement matrices Φ−W+1,Φ−W+2, . . . ,Φ0.

Output: Background estimate x̂b, foreground estimate x̂f
i and foreground region

{Ω̂i} for i = −W + 1,−W + 2, . . . , 0.

Initialize:

Set Ω̂i = ∅ for i = −W + 1,−W + 2, . . . , 0.

Set the iteration counter l = 1.

while l < L do

Estimate background:

Update background x̂b according to equation (5.8).

Compressive background estimate ŷbi = Φix̂
b.

Estimate foreground support:

For i = −W + 1,−W + 2, . . . , 0, subtract compressive background ŷbi from

compressive frame, ŷi = yi − ŷbi .

Estimate the sparse support Ω̂i of the foreground xf
i .

end

Estimate the foreground:

For i = −W + 1,−W + 2, . . . , 0, estimate the foreground x̂f

i,Ω̂i

= Φ
†
i,Ω̂i

ŷi.

Output the background x̂b.
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the large matrix inverse. Note that the definition of background in compressive do-

main is robust and can capture the changes in illumination but it cannot handle

the faster background variation such as the motion of a tree. As mentioned earlier,

our pixel is modeled using an unimodal distribution and hence we cannot handle

multi-modal distributions as modeled by MoG-based methods.

Recall that the above foreground background separation is for frames

xt−W+1, xt−W+2, . . . , xt. To find the background and foreground for the next set of

frames, obtained by shifting the window by a single frame, we would have to ap-

ply Algorithm 1 to frames xt−W+2, xt−W+3, . . . , xt+1. At time instances t and t + 1

we calculate the backgrounds xb
t and x

b
t+1 respectively and also calculate two fore-

ground sets of size W each. Such an approach is computationally inefficient since

the background xb
t+1 of the new set is only slightly different from xb

t . Similarly, the

foregrounds differ little as well. Also, the foreground computation is unnecessary

except for frame t + 1. In such batch-based approach, every frame t+ i is involved

in computation of W different backgrounds as the windows are shifted past it and

hence W different foregrounds corresponding to each of the wondows. Moreover,

it solves the expensive sparse recovery problem LW times before estimating the

background and W foregrounds. To overcome the computationally inefficiencies in

the batch algorithm we propose an incremental approach where only a single fore-

ground is estimated at every frame. The background for the frame is estimated

based on the W compressive measurements and estimated foregrounds. Once we

compute foregrounds for frames j (j < t), we do not compute them again. We

estimate the foreground x̂f
t given the compressed frame yt, background estimate x̂b

t
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and the measurement matrix Φt. The background x̂b
t is estimated from the previ-

ous set of W compressed frames yt−W ,yt−W+1, . . . ,yt−1 and estimated foreground

x̂
f
t−W , x̂

f
t−W+1, . . . , x̂

f
t−1 according to equation (5.8). We propose Algorithm 2 to

find the compressive background and the foreground.

5.3.2 Background Subtraction

If the measurement matrix is not changed at every frame as in traditional CS

imaging, we have Φt = Φ. Then equations (5.4) and (5.5) are modified as

yt+i = Φxt+i (5.10)

and

yt+i = y
b + yf

t+i (5.11)

Since each frame has same projection, it is impossible to estimate the background

x̂b without additional priors. But the foreground x̂f
i can be estimated by enforcing

spatial sparsity. By estimating the compressive background ŷb and then subtracting

from the compressed frame we retain only the foreground information which can be

recovered through sparse recovery. To estimate the compressive background we solve

ŷb = argmin
yb

0∑

i=−W+1

‖ỹi −QT
i y

b‖2. (5.12)

The algorithm for the foreground is a modification of Algorithm 1 and is given by

Algorithm 3.
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Algorithm 2: Joint Compressive Video Reconstruction and Background Sub-

traction: Incremental
Input: Compressive measurements yt, measurement matrices Φt for

t = 1, 2, . . . , T .

Output: Background estimate x̂b
t , foreground estimate x̂f

t and foreground region

{Ω̂t} for t = 1, 2, . . . , T .

Initialize:

Given compressive measurements yt, measurement matrices Φt for t = 1, 2, . . . ,W ,

use Algorithm 1 to estimate the foregrounds x̂f
t , foreground regions {Ω̂t} and

orthogonal basis Qt for t = 1, 2, . . . ,W ,.

Set t = W + 1.

while t ≤ T do

Estimate background:

Use the compressive measurements yt−i, measurement matrices Φt−i and

orthogonal basis Qt−i for i = 1, 2, . . . ,W in equation (5.8) to estimate the

background x̂b
t .

Compressive background estimate ŷbt = Φtx̂
b
t .

Estimate foreground support:

Subtract compressive background estimate ŷbt from the compressive frame,

ŷt = yt − ŷbt .

Estimate the sparse support Ω̂t of the foreground xf
t .

Estimate the foreground:

Estimate the foreground x̂f

t,Ω̂t
= Φ

†
t,Ω̂t
ŷt.

Output the background x̂b
t .

end
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Algorithm 3: Background Subtraction: Batch
Input: Compressive measurements y−W+1,y−W+2, . . . ,y0 and measurement

matrices Φ.

Output: Foreground estimate x̂f
i and foreground region {Ω̂i} for

i = −W + 1,−W + 2, . . . , 0.

Initialize:

Set Ω̂i = ∅ for i = −W + 1,−W + 2, . . . , 0.

Set the iteration counter l = 1.

while l < L do

Estimate background:

Update compressive background estimate ŷb according to equation (5.12).

Estimate foreground support:

For i = −W + 1,−W + 2, . . . , 0, subtract compressive background estimate ŷb

from compressive frame, ŷi = yi − ŷb.

Estimate the sparse support Ω̂i of the foreground xf
i .

end

Estimate the foreground:

For i = −W + 1,−W + 2, . . . , 0, estimate the foreground x̂f

i,Ω̂i

= Φ
†
i,Ω̂i

ŷi.
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5.4 Experiments

In this section, we present the experimental results on recovery of videos from

their compressive measurements. We perform our experiments on the PETS 2001

dataset which is a typical outdoor surveillance video. Currently, our approach has

not been tested on videos from compressive imager but it is applicable to sensing

frameworks where each frame is sensed with a different, dense measurement matrix.

The PETS dataset is challenging since the background changes over time.

For example, cars which are initially moving become stationary and become part

of the background and vice versa. There is also the slow motion of clouds in the

background and this leads to changes in illumination which need to be incorporated

in to background as well. Further, there is motion of the foliage which while quickly

changing is part of the background.

First, we show the performance of the video reconstruction algorithm on the

dataset. Then we evaluate the stand alone background subtraction algorithm.

5.4.1 Compressive Video Reconstruction

For joint compressive video reconstruction and background subtraction we

sense each frame using M = 0.2N measurements. We vary the measurement matrix

in each frame and cycle through the same set of matrices after setting R = 20

ensuring that the concatenated matrix is of rank N . We set the temporal window

W = 50 and estimate the background using the procedure described in Algorithm

2. Initialization of the background and the foregrounds necessary to define the
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backgrounds in later frames is described below. For solving the least squares problem

in equation (5.8) we use the incremental gradient method presented in [18]. Since

solving least squares of size N with MW constraints is computationally expensive

we rely on an incremental approach. For solving the sparse foreground we use

SPGL1 [148], [147] an implementation of basis pursuit denoising (BPDN). While

the foreground is sparse it also occupies contiguous pixels. This fact was exploited

in an MRF based approach to recover sparse signals [34] but we do not enforce this

constraint in our recovery. We note that, enforcing joint sparsity enables significant

decrease in number of measurements needed to solve for sparse signal but here

we focus on our ability to extract the foreground and reconstruct the background.

Once we estimate the foreground x̂f
t , pixels above a threshold are assigned to the

foreground region {Ω̂t}.

We calculate the projection of compressive measurement yi on the basis Qi

orthogonal to the foreground columns {Φi}n∈Ω̂i
, by first performing QR decompo-

sition on the foreground columns and then removing from yi its projection on the

span({Φi}n∈Ω̂i
). We note that this step is computationally expensive but can be

performed off-line during the recovery of the sensed video. The projection of the

the compressed measurements onto the orthogonal basis of foreground effectively

prevents the foreground from contributing to the estimate of the background in the

subsequent frames. In computationally constrained scenarios, at loss of some quality

in reconstruction of background, the effect of foreground can be subtracted from the

compressive measurement instead.

The results of video reconstruction on two different surveillance videos are
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Figure 5.1: Reconstruction of video from compressive measurements. The video is
reconstructed by decomposing it into a slowly changing background and a quickly
changing foreground. Note that our method handles changes in illuminations and
incorporates them in the background.

presented in Figures 5.1 and 5.2. In the first video of a outdoor scene people and

cars are moving against a backdrop of buildings and trees. Over the course of

the video the the scene brightened due to change in illumination. Our approach

accurately estimates the background and the foreground. In the first three frames,

moving people and car have been accurately detected and estimated. Note that

there is also foreground detection corresponding to the edges of the tree due to its

swaying. Since we model the background unimodally, we have classified few of the

tree’s edges as foreground. The car in the third frame is now nearer to the tree

in the fourth frame. In the video the car briefly stops at this location to backup.

Our approach accurately incorporates the stationary car in the background. In the

fifth frame, we capture the changing illumination at the far end of the building and

129



correctly incorporate it in the background. Finally, in the last frame when there is

a significant change in foreground our background model adapts. In the foreground

there are some false positives in few locations but overall our algorithm performs

well.

Figure 5.2: Reconstruction of video from compressive measurements. Note that
even the small changes in the shape of the cloud is accurately reconstructed.

The second video is similar to the first scene but from slightly different view-

point. Over the video, the brightness in the scene rises a bit, drops and then rises

dramatically due to motion of the clouds. Despite a significant change in illumi-

nation, our method can accurately estimate the background and the foreground.

Like the previous video, the final frame has false positives in the foreground at few

locations due to quick change in illumination. Note that clouds in the sky slowly

move over the course of the video and we captured their subtle change in shape.

Since our method is appearance based, scenes with camouflage cannot be de-
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tected. If the foreground and the background has the same intensity in a frame

then they are both classified as a background. Also, since background is mod-

eled using an unimodal distribution, we classify motion due to foliage and large

changes in illumination as foreground. To eliminate false positives, a MoG [140]

based foreground detector can be applied on the estimated foreground images. Such

a post-processing step can significantly remove the spurious foreground compared

to the simple thresholding step described above.

In our experiments, we initialize the background and foreground by imple-

menting the batch background and foreground estimating Algorithm 1. Since, the

computations are performed offline, the background and foreground corresponding

to each of the frames in the window are estimated in an iterative fashion. Once, the

foregrounds are available then background for the next frame is estimated according

to equation 5.8.

5.4.2 Background Subtraction

Here, we experiment on only the background subtraction version of our algo-

rithm. When the measurement matrix is not changed over time, additional priors

are needed to estimate the background. Since sparse priors result in unsatisfac-

tory reconstruction of images, we estimate only the foreground from these frames.

Since the foreground images are spatially sparse, they can be reconstructed even

if the background is not. This was illustrated in [35] where a model for the com-

pressive background is adaptively built and then subtracted from the compressive
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measurement to estimate the foreground. In our approach, we similarly estimate

the compressive background but with two important differences. In [35] during the

update of the background model, the foreground from the previous frame is excluded

by subtracting it from the compressive measurement. In our case, we do not sub-

tract the foreground component but instead project the compressive measurements

onto subspace orthogonal to the foreground columns. This completely prevents the

foreground columns from contributing to the estimate of the background. Whereas

[35] estimates the foreground needed for background update from a parallel process,

we use the foreground estimated from the previous estimates to update the next

background. Our approach is principled since we define the background as that

which is common to a collection of frames and devise and algorithm to estimate it

and the unique innovations.

We experiment on a video from PETS 2001 dataset by setting M = 0.2N

and implementing Algorithm 3. The results of our approach in comparison with

[35] are shown in Figure 5.3. Note that our approach absorbs a stationary car into

the background and performs significantly better than [35]. Contrast the third and

fourth frames. Note that pixels corresponding to car in the third frame are labeled

foreground in the fourth frame. This is because the algorithm is adapting to the

fact that the car in the third frame was stationary and was eventually absorbed

into the background. Subsequently when the car moved to the location shown in

the fourth frame, both the previous and the current location are labeled foreground.

This disappears after a few frames in the fifth frame.
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Figure 5.3: Background subtraction on compressive video. Compared to [35] our
method is accurate in estimating the foreground.

5.5 Conclusions

In this chapter, we presented a compressive sensing and video reconstruction

approach for surveillance videos. Our method performs joint video reconstruction

and background subtraction by formulating the problem in a distributed compressive

sensing framework. The video is modeled by decomposing into two parts, a slowly

varying background and quickly varying but spatially sparse foreground. By sensing

each frame with a unique set of measurement projections, the video is reconstructed

by separately reconstructing the background and the foreground using a simple

iterative algorithm. We performed experiments on standard PETS 2001 dataset to

illustrate the effectiveness of our method.
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Chapter 6

Enforcing integrability via ℓ1

minimization

6.1 Introduction

Surface reconstruction from gradient fields is an important final step in many

vision and graphics applications involving gradient domain processing. These can

be broadly classified as (a) manipulating gradients and/or (b) estimating gradients

before integration. Methods such as Photometric Stereo (PS) [161] and Shape from

Shading (SfS) [63] estimate the gradient field of the surface from captured images.

Applications such as image editing [116], stitching [84], HDR compression [50] etc.

first apply local/global manipulations to the gradient field of single/multiple images.

The final image is then reconstructed from the modified gradient field. The reader

is referred to the recent course [5] for more details.

Typically, the resulting gradient field is non-integrable due to linear/non-linear

gradient manipulations, or due to the presence of noise/outliers in gradient estima-

tion (figure 6.1). For a reconstruction algorithm, two important considerations are

(a) robustness or ability to handle outliers and (b) local error confinement (LEC) [3].

134



Robustness means that surface features are well reconstructed in the presence of out-

liers. A related property is LEC, which ensures that distortions in the integrated

surface are confined spatially close to the errors in the underlying gradient field.

It is well-known that least squares estimate is not robust in presence of outliers.

While several integration techniques have been proposed before, we analyze robust

surface integration as an error correction problem. We are inspired from recent

work in compressed sensing [24], particularly the ℓ0 − ℓ1 equivalence. We propose

to obtain the 3D surface by finding the gradient field which best fits the corrupted

gradient field in the ℓ1-norm sense. While minimizing the ℓ1-norm is not new as a

robust statistic, we analyze the properties of ℓ1 solution and provide new insights

using linear algebra and graph analogy. We compare with existing techniques and

show that ℓ1 solution performs well across all scenarios without the need for any

tunable parameter adjustments.

6.1.1 Contributions

• We analyze robust gradient integration as error correction by utilizing ideas

from sparse signal recovery literature.

• We show that the location of errors is as important as the number of errors for

gradient integration, which is not typically explored when considering ℓ0 − ℓ1

equivalence.

• We exhaustively analyze the properties of ℓ1 solution in terms of robustness

and LEC for various outlier patterns and noise in given gradient field.
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6.1.2 Related work

Enforcing integrability: The simplest approach is to find an integrable gra-

dient field (or the surface) which best fits the given gradient field, by minimizing

the least squares cost function. This amounts to solving the Poisson equation [138].

Frankot & Chellappa [54] project the given gradient field onto integrable functions

using Fourier basis to enforce integrability. Cosine basis functions were proposed

in [56], while Kovesi [77] proposed shapelets as a redundant set of basis functions.

Petrovic et al. [118] used a loopy belief propagation algorithm to find the corre-

sponding integrable field. Methods based on ℓ2-norm cannot handle large outliers

in the gradient field.

Robust estimation: There has been large body of work on robust paramet-

ric estimation using RANSAC [53], which becomes combinatorial in nature as the

number of parameters increases. For gradient integration on N × N grid, there

are N2 unknowns (pixel values) and 2N2 observations (x and y gradients). Thus,

RANSAC is computationally prohibitive [6]. M-estimators modify the least squares

cost function to reduce the influence of outliers. Several such influence functions

such as Huber, Tukey, etc. have been proposed [64, 122].

Agrawal et al. [6] proposed a general framework for robust gradient integration

by gradient transformations, such as anisotropic weighting and affine transforma-

tions. The diffusion algorithm in [6] solves a modified Poisson equation by applying

edge preserving affine transformations to the gradient field. To calculate the local

surface edge direction, the algorithm uses gradient values in a neighborhood. We
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show that it performs poorly when the neighborhood of an edge is corrupted by

outliers.

Our approach instead minimizes the ℓ1-norm of gradient errors. Minimizing

the ℓ1-norm has been shown to be effective in correcting outlier errors and recovering

sparse signals [38, 73, 84]. Traditionally, the ℓ1-norm is not preferred since the

cost function is not analytically differentiable and minimization is computationally

expensive. However, there has been a renewed interest in using ℓ1 cost functions

due to ℓ0 − ℓ1 equivalence for sparse reconstructions under the restricted isometry

property (RIP). We use RIP to show that for gradient integration, the location of

outliers is as important as their number. In addition, we use the expander graph

structure of gradient-curl pairs to understand the distribution of outliers which can

be corrected.

Graph-based approach: To avoid the combinatorial nature of RANSAC,

a greedy graph based technique was proposed in [3]. This approach treats the

underlying 2D grid as a graph, gradients as edges and unknown surface values as

nodes. The outlier gradients are heuristically determined by thresholding the curl

values over the graph and the corresponding edges are removed. If the graph remains

connected, surface could be integrated using the remaining edges (gradients). Else,

a minimal set of edges are chosen to connect the graph by assigning edge weights

using gradient magnitude or curl values. However, the underlying heuristic of using

curl values as a ‘goodness’ measure often fails in presence of noise. We show that [3]

performs poorly in the presence of noise and that minimizing the ℓ1-norm effectively

handles noise as well as corrects sparsely distributed outliers in the gradient field.
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Figure 6.1: (Left) Ground truth p for Mozart (Right) Outliers along possible shadow
regions in the gradient field obtained from PS. The magnitude of the outliers is 5
times the largest ground truth gradient values.

In addition, when the outliers are concentrated, the LEC property is maintained.

Denoising and TV regularization: Image denoising is a classical prob-

lem and several approaches for feature preserving denoising have been successfully

demonstrated. Anisotropic filtering [117] takes into account the local edge direc-

tion in a PDE based framework. Rudin et al. [128] proposed total variation (TV)

regularization, which penalizes the ℓ1-norm of the gradients of the estimated (de-

noised) image. Note that our approach is different: we minimize the ℓ1-norm of

gradient errors, not gradients themselves. Thus, we do not employ any assumptions

on the underlying surface such as natural image statistics (distribution of gradients

is peaked at zero).

6.2 Gradient integration as error correction

We use the terminology from [3]. Let S(y, x) be the desired surface over a

rectangular grid of size H ×W . In vector form, we denote it by s. Let (p, q) denote

the given non-integrable gradient field, possibly corrupted by noise and outliers.

The goal is to estimate S from (p, q). The integrable gradient field of S is given by
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the forward difference equations

p0(y, x) = S(y, x+ 1)− S(y, x)

q0(y, x) = S(y + 1, x)− S(y, x).

(6.1)

In vector form (6.1) can be written as

Ds =



p0

q0


 = g0, (6.2)

where g0 denotes the stacked gradients and D denotes the gradient operator matrix.

Each row of D has two non-zero entries: ±1 in pixel positions corresponding to that

particular gradient. The curl of the gradient field can be defined as loop integrals

around a box of four pixels [3]

curl(y, x) = p(y + 1, x)− p(y, x) + q(y, x)− q(y, x+ 1)

which can be written as

d = C



p

q


 = Cg. (6.3)

Here, d denotes the vector of stacked curl values and C denotes the curl operator

matrix. Each row of C has only four non-zero entries (±1) corresponding to the

gradients associated with the loop integral.

Since the gradient field g0 is integrable, Cg0 = 0. However, for the given

non-integrable gradient field g, Cg 6= 0. Decomposing g as the sum of g0 and a

gradient error field e, we get

g = g0 + e = Ds + e. (6.4)
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Applying the curl operator on both sides, we obtain

d = Ce (6.5)

Thus, integrability can also be defined as error correction: the goal is to estimate the

gradient error field e given the curl d of the corrupted gradient field. Note that in

this formulation, there areM = HW knowns (curl values) andN = 2HW unknowns

(error gradients), leading to an under-determined system of linear equations. We

use ‖ · ‖p to denote the ℓp-norm. ‖e‖0 simply counts the nonzero elements of e.

Poisson solver finds a least squares fit to the gradients by solving

ê = argmin ‖e‖2 s.t. d = Ce. (6.6)

The least squares estimate is optimal when the gradient errors obey a Gaussian

distribution. If the errors contain outliers, then the estimate is skewed leading to

severe artifacts in the reconstructed surface or image. Outliers in the gradient field

can be understood as arbitrarily large errors and could obey any distribution. An

example of the errors in gradients obtained from PS is shown in figure 6.1.

ℓ0-minimization: An approach to handle outliers is to combinatorially search

for the possible locations of outliers, estimate them subject to the curl constraint (6.5)

and pick the combination which satisfies the constraints the best. This can be writ-

ten mathematically as

ê = argmin ‖e‖0 s.t. d = Ce. (6.7)

This problem is NP-hard and hence computationally infeasible.
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Grid & Curl Gradients & CurlSpanning Tree ST & Errors

Figure 6.2: (a) Graph with pixels as nodes & gradients as edges. Curl is calculated
along 2 × 2 loops (b) Spanning tree edges in black (c) Gradient errors in dashed
lines (d) Solid black lines and red curl loops have expander graph structure

ℓ1-minimization: Instead, we solve a convex relaxation of (6.7) by replacing

the ℓ0-norm of the gradient error e with the ℓ1-norm. The conditions under which

this equivalence holds true are described in detail in Sec. 6.4.

ê = argmin ‖e‖1 s.t. d = Ce. (6.8)

Equation (6.8) can be solved using convex optimization algorithms in polynomial

time.

6.3 Graph based interpretation

In [3], a graph-based interpretation is provided for integrating the gradient

field corrupted by outliers. We discuss this method and borrow its framework to

explain our approach. [3] treats the pixel grid as a graph (G,E), where the pixels

are the nodes of the graph and gradients correspond to the edges of the graph

(figure 6.2(a)). Let us first assume that the location of outliers (bad gradients)

are known. [3] proposes to remove the corresponding edges from the graph. If the

resulting sub-graph remains connected, then integration could be done using the

remaining edges/gradients. Else, the graph is connected using a minimal set of
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edges, by assigning edge weights based on gradient magnitude or curl values. Since

in practice, the locations of outlier gradients are not known, [3] thresholds the curl

values as a heuristic.

Relationship with ℓ0-minimization: Note that the key idea is that for

integration to be possible, the resulting graph has to be connected. Thus, the

minimal set of gradients required for integration should correspond to a spanning

tree (ST) [6] as shown in figure 6.2(b). First, let us assume that the graph remains

connected after removing the edges corresponding to outlier gradients. Then, it is

easy to see that [3] is a greedy algorithm for ℓ0-minimization. This is because the

resulting sub-graph trivially minimizes the ℓ0-norm of gradient errors.

However, the important point is that even if we know the location of outliers, it

does not guarantee error-free reconstruction, since the resulting sub-graph needs to

be connected. For example, it is easy to see that if all 4 edges of a node are removed,

the graph does not remain connected (figure 6.3, clique-5). On other hand, if the

errors are distributed as shown in figure 6.3 (right), perfect reconstruction can be

achieved. Thus, even ℓ0-minimization does not guarantee perfect reconstruction. It

can handle up to 25% outliers1, but can fail for as low as 4 outliers. While recent

work in compressed sensing [24] has focused on the number of errors (outliers), the

location of outliers is equally important for gradient reconstruction problem. Since

ℓ0-minimization can fail depending on spatial distribution of errors, it is important

to consider it while analyzing ℓ0 − ℓ1 equivalence.

1In general, ℓ0-minimization can handle up to 50% outliers. For gradient integration, a unique

solution can be obtained only for maximum of 25% outliers

142



RANSAC: In gradient integration, RANSAC would search over different re-

alizations of ST and pick the one which rejects most outliers. As shown in [6], since

the number of parameters are large, RANSAC is computationally prohibitive.

6.3.1 Performance under noise

Note that a robust algorithm should also be able to work well in presence of

noise. In [3], a heuristic is used to estimate outlier errors, assuming that the non-

zero curl values are related to outlier gradients. However, this assumption is well

suited only when the gradient field is corrupted by outliers and fails in presence of

noise. Under noise, the algorithm in [3] confuses correct gradients as outliers and

performs poorly as shown in figure 6.5.

In presence of noise, gradient error e is non-sparse with the largest components

corresponding to outliers. To handle noise, the cost function is modified to

ê = argmin ‖e‖1 s.t. ‖d−Ce‖2 ≤ ǫ (6.9)

for an appropriate ǫ.

6.4 ℓ0 − ℓ1 equivalence

One of the earliest methods in sparse signal recovery by minimizing the ℓ1-

norm is Basis Pursuit [38] but it is recently that conditions for equivalence between

minimizing ℓ0 and ℓ1-norm have been provided in the compressed sensing litera-

ture [24, 28, 25]. In fact, the gradient error correction problem is similar to the

classical error correction problem analyzed in [28], but the location of errors is
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Figure 6.3: (Left) Top row: Isolated cliques (set T ) in error (red). Second row:
Number of unknown (gradients) and known (curls) variables. Third row: Shows
whether ℓ1-minimization can correct these errors. Fourth row: Smallest & largest
eigenvalue (λmin & λmax) of C

∗
TCT . (Right) Distribution of outliers (red) on 12 ×

12 grid which can be corrected perfectly by ℓ0 and ℓ1. Note that the errors are
distributed apart and follow clique-1 structure.

equally important as discussed in section 6.3. Continuing the notation, we present

sufficient conditions for ℓ0 − ℓ1 equivalence as described in [25]. They are

• e is k-sparse (‖e‖0 = k)

• The matrix C obeys RIP with isometry constant δ2k

fig: Exp: RampOutliersfig: Exp: RampNoise

RIP (with δ2k) is a sufficient condition on a matrix (C) which guarantees

recovery of all k-sparse vectors (e) from its projection (d) using ℓ0-minimization (if

δ2k ≤ 1) or ℓ1-minimization (if δ2k <
√
2−1). This implies that ℓ1-minimization can

recover a k-sparse vector as well as ℓ0-minimization when δ2k <
√
2 − 1. C is said

to satisfy RIP with isometry constant δ2k, if the eigenvalues of C∗
TCT

2 lie between

(1− δ2k) and (1 + δ2k) for every submatrix CT , formed by choosing 2k columns with

index set T . Note that the condition to recover k-sparse e is actually on 2k columns

of C. This is to ensure that the true k-sparse vector is not confused with any other

2C∗ is the transpose of C
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k-sparse vector with the same projection d, thereby ensuring a unique solution.

Typically, dense matrices such as i.i.d. Gaussian or partial Fourier matrices [24]

satisfy RIP for large k.

As discussed in section 6.3, if all 4 edges of a node are in error, they can’t be

corrected even if we knew their locations. It implies that the recovery of 4-sparse

gradient error vector e using either ℓ0 or ℓ1-minimization is impossible. Thus, RIP

doesn’t hold for k = 4 and hence for all k > 4. But, the constant δ2k corresponding

to a 2k edge set T does inform us whether any k gradient errors in T can be corrected

using either ℓ0 or ℓ1-minimization

For a 2k edge set T , δ2k < 1 means that C∗
TCT is non-singular. This implies

that the 2D graph remains connected after removing the corresponding 2k edges T .

Conversely, in figure 6.3 clique-5, δ2k = 1 since the graph does not remain connected

when all the four edges are in error.

6.4.1 Spatial distribution of errors

Figure 6.3 lists several spatial distribution of errors in a isolated neighborhood.

We qualitatively analyze which of these can be corrected with the help of isometry

constant δ2k. Few of them are described in detail below. For example, in clique-

2 (2k = 2), δ2k = 0.5 implying clique-1 (k = 1) can be corrected perfectly by

ℓ0-minimization. However, in practice ℓ1-minimization can also correct the single

outlier although δ2k >
√
2−1. Likewise, δ2k = 0.5 in clique-8 (2k = 4) implies clique-

6 (k = 2) can be corrected perfectly by both ℓ0 & ℓ1-minimization. This confirms
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that conditions on δ2k are just sufficient. Nevertheless, the conditions provide insight

into the error locations that can be corrected.

Since the condition for ℓ1 recovery is stronger than ℓ0 recovery, there exist

outlier distributions which ℓ0-minimization can correct but ℓ1 cannot. For example,

since δ2k = 0.5 in clique-8, ℓ0-minimization can correct clique-3 but ℓ1 cannot always.

Conversely, if ℓ0-minimization cannot correct a gradient error e then neither can ℓ1.

In other words, ℓ1-minimization corrects less errors compared to ℓ0.

We generalize to other outlier spatial distributions. Let T denote the indices

of some 2k edge locations and T c the complement edges. If T c is not a connected

subgraph, the matrix C∗
TCT is singular and δ2k = 1. This implies that there exist

k error locations in T , which ℓ0-minimization cannot correct uniquely. If T c is a

connected subgraph, then the matrix C∗
TCT is non-singular and δ2k < 1 suggesting

ℓ0-minimization can correct any k error locations in T . For sufficiently small k we

will have δ2k <
√
2 − 1 and ℓ1-minimization corrects all of them. For example,

ℓ1-minimization can correct outliers distributed as shown in figure 6.3 (right).

6.4.2 Expander graph structure

Unlike typical dense matrices in compressed sensing, the curl matrix C is

sparse and hence doesn’t satisfy RIP for even few edges in error. Each curl value

carries information about four gradients and each gradient contributes to two curl

values. In the graph obtained by removing the border edges of the grid, the gra-

dients and curl values have an expander graph relationship where every gradient
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contributes to two curl values and every curl value has contribution from four gradi-

ents. The truncated curl matrix Cint corresponding to gradients in the interior has

the structure of an adjacency matrix of an expander graph, where the gradients are

the left nodes U and the curl values, the right nodes V (figure 6.2(d)). But, each

column of Cint has both +1 and −1 entries unlike the adjacency matrix which has

only +1 as both entries.

In the compressed sensing literature, the concept of RIP has been extended to

sparse matrices such as the adjacency matrix of an expander graph [17]. Theorem 1

in [17] states that if any matrixCex of sizeM×N ′

is the adjacency matrix of an (k, α)

expander G = (U, V, E) with left degree d such that 1/α, d are smaller than N
′

, then

the scaled matrix Cex/d
1/p satisfies the RIPp,k,δ property, for 1 ≤ p ≤ 1 + 1/logn

and δ = βα for some absolute constant β > 1.

AlthoughCint is not truly an adjacency matrix, it follows the proof of Theorem

1 in [17] for the case p = 1 in a straightforward way with parameters d = 2 and

α ∼ 3/4. α ∼ 3/4 implies a poor expander and hence ℓ1-minimization fails to correct

the errors for even simple outlier distributions. Nevertheless, the expander graph

structure of the problem provides a nice framework to analyze the error distributions

which can be corrected completely (such as figure 6.3 (right)) and also opens the

door for greedy algorithms which can correct such error distributions. For example,

the standard decoding algorithm for expander codes with d = 2 and α ∼ 3/4 would

first look for two neighboring curl values which have been affected by a corrupt

edge and then account for that edge in the curl values and iterate this search.

This procedure indicates that for a decoding algorithm to be successful on the 2D
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ℓ1-minimization Least Squares Diffusion Shapelets Algebraic

Ramp-peaks Noise only 0.5581 0.2299 0.3980 0.7221 4.5894

Ramp-peaks Outliers only 0.3136 9.9691 2.0221 24.7759 0.2430

Ramp-peaks Noise & Outliers 0.5064 6.8096 1.8382 16.8603 3.1849

Mozart PS 550.1 575.8 521.4 1179.1 708.7

Table 6.1: MSE of reconstructed surfaces using different methods on Ramp-peaks
dataset and PS experiment on Mozart dataset.

graph (poor expander), the gradient errors should be distributed apart as shown in

figure 6.3 (right)).

6.5 Experiments and Results

We compare the performance of our algorithm with the the least squares [138],

Shapelets [77], algebraic approach [3] and the Diffusion algorithm [6]. For shapelets,

we use the default parameters (nscales=6, minradius=1, mult=2). Shapelets pro-

duce a scaled surface with unknown scale, which is fixed by setting the surface mean

to the mean of the ground truth surface (for synthetic experiments). We assume

Neumann boundary conditions for integration, which results in an unknown additive

constant of integration. This needs to be set for meaningful comparisons among ap-

proaches for which we align the median of the reconstructed surface values3. Note

that although mean square error (MSE) values in table 6.1 are indicative of the

algorithm performance, it may not be related to the visual performance.

To solve (6.9), we use the regularized formulation: argminµ‖e‖1 + 1/2‖d −
3Effective as long as 50% of the surface values remain uncorrupted after surface reconstruction.
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Ce‖22, since faster software [75] exists for the latter. µ is the only parameter which

we need to set and to enforce sparsity in the gradient error e, we found that µ = 10−3

works over a wide range of problems and outlier distributions.

Effect of noise without outliers: First, we compare the performance of

the algorithms when the the gradient field is corrupted only by noise. We added

Gaussian noise with σ = 10% of the maximum gradient value to the gradients of

Ramp-peaks synthetic dataset shown in figure 6.5. ℓ1-minimization performs as

well as Least squares in presence of noise in the gradient field. The algebraic method

performs poorly due to the simplifying assumptions it makes about the relationship

between curl and gradient error. The MSE numbers are reported in table 6.1.

Effect of outliers without noise: To analyze the effect of outliers, we added

outliers to 10% of the ground truth gradient field. The outliers are salt and pepper

noise with a range five times that of the original gradient field. The reconstructed

surfaces are shown in figure 6.6. ℓ1-minimization performs as well as the algebraic

approach as shown in table 6.1. Note that ℓ1-minimization corrects most of the

outliers and preserves the surface edges and details. It also confines the errors

locally when it fails to correct them.

We also analyze the performance of various algorithms as the percentage of

outliers increase. In figure 6.4(a), we vary the percentage of outliers in the Ramp-

peaks gradient field and compute the percentage of surface values in error. We

declare a surface value to be in error if it deviates more than 5% from the maximum

surface value. The plot shows that the algebraic approach is the most effective in

correcting outliers with similar performance by ℓ1-minimization. Note that both
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Figure 6.4: (a) Plot showing the number of surface values in error versus varying
outlier percentage. (b) LEC is satisfied by the ℓ1-minimization method and the
algebraic approach but fails in the least squares. (c) In presence of outliers near a
sharp edge, the Diffusion technique results in artifacts.

the least squares and Shapelets fail to preserve the surface shape even for small

percentage of outliers. For this experiment, we averaged the performance over 200

realizations for every percentage of outliers.

Effect of noise and outliers: The true test of a robust algorithm is it’s

performance in presence of both noise and outliers. We test the realistic scenario

of both noise and outliers by adding outliers to 7% of the gradients and Gaussian

noise with σ = 7% of the maximum gradient value. ℓ1-minimization performs better

than all the other methods. It captures the characteristic of least squares to handle

noise and that of a combinatorial method such as an algebraic approach to correct

outliers.

Photometric stereo (PS): We perform a PS experiment on Mozart syn-

thetic dataset to simulate the realistic occurrence of outliers in gradient fields. We

first generate images assuming Lambertian reflectance model, distant point source

lighting and constant albedo. Then we estimate the surface normals (nx,ny,nz) and

albedo through PS on images corrupted by random noise (σ = 5% of the maximum

intensity). The estimated gradient field is given by p = −nx

nz
and q = −ny

nz
and is
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Figure 6.5: Reconstructed surface when the gradient field is corrupted by only
Gaussian noise (σ=10% of the maximum gradient value). Note that the algebraic
approach performs poorly under noise and ℓ1-minimization performs as well as the
least squares.

corrupted by outliers as shown in figure 6.1. Figure 6.8 shows that our method

and the diffusion algorithm give the best results. Both these methods correct the

outlier errors which corrupt the gradient field during gradient estimation. Although

ℓ1-minimization is marginally less successful compared to the diffusion algorithm

in terms of MSE, note that our method corrects more outliers on the side of the

face and also avoids the pinching artifacts near the flatter regions of the surface.

It should be noted that the diffusion algorithm introduces artifacts close to sharp

edges corrupted by outliers as illustrated in figure 6.4(c).

Local error confinement: We show that even when ℓ1-minimization fails to

correct the outliers, it confines the errors locally. In figure 6.4(b), we add outliers in

a 5×5 region on a 20×20 flat surface. Both ℓ1-minimization and the least squares fail

to correct the errors. However, least squares method spreads the error globally, while

ℓ1-minimization confines it locally. By further regularizing the gradients themselves

as in TV regularization, these remaining errors could be removed.
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Figure 6.6: The reconstructed surface when 10% of the gradient field is corrupted by
outliers with no noise. Note that because there is no noise, the algebraic approach
performs best. The ℓ1-minimization method also reconstructs with high fidelity.
Other techniques perform poorly. Even when ℓ1-minimization can’t correct all the
errors, it confines the errors locally and preserves sharp edges in the surface.
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Figure 6.7: The reconstructed surface when the gradient field is corrupted by both
outliers (at 7% locations) and noise (Gaussian with σ=7% the maximum gradient
value). The ℓ1-minimization method performs significantly better with the best
characteristic of algebraic approach for outliers and the least squares for noise.
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Figure 6.8: Surface of the Mozart bust reconstructed from the gradient field obtained
from PS. The gradient errors are shown in figure 6.1. Both ℓ1-minimization and
diffusion perform significantly better compared to other methods but the flatter
regions of the surface have artifacts in the diffusion method.
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Chapter 6

Summary and Future Research

Directions
In this dissertation we presented applications of sparse modeling and recon-

struction for video acquisition, background subtraction, tracking and surface recon-

struction. Our research illustrates that CS theory offer a distinct advantage when

the redundancy underlying a problem can be expressed as a sparse combination of

basis vectors. In our experience, CS theory is most applicable in low-level vision,

particularly representation and acquisition of visual signals.

Sparsity is a powerful concept during signal synthesis since the idea is for-

mulated in a linear framework and lends itself to simple expression of the notion of

parsimony. On the other hand, analysis of signal is computationally expensive. Nev-

ertheless, this limitation is being overcome through novel algorithms with relation to

convex optimization and algorithms. Sparse techniques occupy an important place

in the toolbox of parsimonious data modeling among manifolds, graphical models,

subspace representation etc. Like other generative models for signals, sparse rep-

resentation allows us to design and implement better algorithms for learning and

classification. Further, the interpretation of sparse representation as a generaliza-
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tion of subspace representation is important since it allows us to describe data with

a much richer union-of-subspace model.

Sparse models while rich in capturing the notion of parsimony are often not

sufficient to describe real data such as images, videos and plenoptic functions. Sparse

modeling needs to be appropriately adapted to the problem domain. For instance,

images are not sparse but compressible a model should reflect this for improved

reconstruction. Similarly, videos with wide variety of motion cannot be described

using an overcomplete dictionary. Richer models are needed to capture the redun-

dancy in a spatio-temporal volume by building on the idea of sparsity.

Sparsity enforcing constraints can also be interpreted in a regularization frame-

work (used widely in CV). Sparse regularization quantifies the underlying simplicity

of data. This fact is commonly used in statistics in the form of ℓ1 norm and other

robust measures (e.g. Huber penalty). In view of increased understanding of sparse

modeling, the regularization used in computer vision problems could be revisited.

Also, notion of sparsity generalized to matrices as low-rank [49] would find potential

use in many CV problems such as structure from motion (SfM). The missing data

problem in SfM [66] could be solved using low rank modeling [102].

Specifically, this dissertation proposes following problems for further explo-

ration.

Coded strobing photography: Coded strobing photography has many ap-

plications in monitoring industrial processes where the automation is periodic in

nature. If due to faulty functioning, few of the periods of the signal are disturbed

we would like our method to detect and estimate the faulty periods. This raises
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an interesting question of reconstructing an anomaly in the signal which does not

obey the periodicity assumption. A simpler problem to investigate would be the

conditions under which faulty periods are recoverable.

Currently, the technique assumes that the camera is stationary and that the

periodic phenomena is of mechanical nature such as mill-tool and toothbrush. To

extend the method to repetitive biological processes such as jogging and vocal fold

vibrations, the non-rigid deformation of the objects should be accounted in recon-

struction. Similarly, to extend the reconstruction to a hand-held camera, the camera

shake must accounted as well. Solving these problems would enable the technique

to be applicable in unconstrained real world settings.

P2C2: An open question is the optimal coding scheme to be used for capturing

fast processes. Would such a code be signal dependent and how should that be

estimated?

Another interesting question which needs further investigation is the limits of

spatio-temporal super-resolution. In our work we present temporal upsampling of

upto 8 with satisfactory results. How much can this be pushed? We conjecture that

temporal super-resolution is intimately linked to spatial resolution. For any scene,

more the spatial resolution, the higher we will be able to super-resolve temporally.

This needs to be investigated. On a related note, the detail in the spatial content

would affect the temporal super-resolution and this needs to be investigated as well.

Further, the appropriate spatio-temporal representation needs further investi-

gation. We have presented an approach of keeping the spatial and temporal redun-

dancy distinct. An interesting question would be to combine the motion information
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in time with patch similarity which has shown huge promise in video restoration

techniques.

More broadly investigation of different forms of redundancy in the plenoptic

function is an interesting avenue of research. Identifying the redundancy would

allow us to devise novel ways of capturing and manipulating the plenoptic function.

Further it would be interesting to evaluate if low-rank models can be used for the

plenoptic function and how it can be exploited for capture and display [79].

Tracking: Currently, we estimate the foreground and the background in a

compressed video. An interesting avenue of research is to track the foreground and

use it improve the estimate of the foreground in the subsequent frames. Such a

system would enable the deployment of compressive cameras in realistic scenarios.

Integrability: Currently we use an ℓ1 minimization approach to solving for

the gradient errors. It would be interesting to investigate the connection between

sub-modularity and the graph structure of the gradients to develop greedy algo-

rithms for estimating the errors.
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Chapter A

Appendix

A.1 Overview of CS theory

In signal processing the idea of decomposing a signal into simple compo-

nents, compressing a signal, de-noising it and solving inverse problems such as

de-convolution are very common. The central underlying idea is that although

data (signal) manifests itself in a certain form with a certain number of variables,

it can typically be explained using a far fewer number of variables by looking at it

appropriately.

Compressed sensing, with its central theme as ‘sparsity’, is an emerging theory

which studies the established ideas in signal processing in a fundamental way. The

core idea is that a signal which is sparse in an appropriate basis can be represented

using far fewer variables than its original dimension and that the original signal can

be recovered with the help of realistically implementable algorithms. This develop-

ment has led to a burst of new research in the area of signal and image processing

and related fields. The scope of this theory is vast enough to warrant a second

look at the Shannon-Nyquist sampling theorem. Consequently, it’s effect can be felt

on most signal processing ideas. Behind this theory is sophisticated mathematics
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which can provide insight into old problems. In this dissertation, we investigated

few problems in imaging and computer vision where this new theory enables new

algorithms to improve the state-of-the-art.

First, we provide a brief introduction to the ideas encompassed by the term

‘compressed sensing’. Introduction to the field of compressed sensing can be found

in [8, 31, 24, 20]. Given an under-determined system of equations

y = Φx (A.1)

where Φ ∈ R
m×n is a full rank matrix with m < n, there are infinitely many

solutions. The central question in compressed sensing is to seek the sparsest one.

This raises the question of conditions under which a unique sparse solution exists

and how to recover such a solution. This problem can be extended to scenarios

encountered in practice where the signal x is not sparse but is ‘compressible’ and

when the signal y is corrupted by noise. The conditions under which a unique sparse

x exists has been given in [28] and [43]. The Restricted Isometry Property(RIP)

introduced in [28] and re-proved using elementary ideas in [25] is the most popular

one. Generally, it is a combinatorial problem to check if a matrix Φ satisfies RIP.

Nevertheless, it has been shown in [26] that a random Fourier ensemble satisfies

such a condition with high-probability. Similarly, it has been shown in [29] using

concentration of measure ideas that a random IID Gaussian matrix satisfies RIP

with high probability. The formulation in (A.1) can be easily extended to cases

when x is sparse in some basis Ψ i.e. x = Ψθ. In such cases the condition for

recovering sparse solutions would be on the matrix product ΦΨ.
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To recover a sparse x, one would need to solve a combinatorial problem which

minimizes the ℓ0 pseudo-norm.

(P0) : min||x||0 s.t y = Φx (A.2)

But this is NP-hard and infeasible to implement. Instead, the ℓ1-norm is minimized

since it is the convex equivalent closest to ℓ0 pseudo norm.

(P1) : min||x||1 s.t y = Φx (A.3)

It has been known in machine learning research [142] that (P1) leads to sparse

solutions and this fact was also used in signal processing literature in the form of

Basis Pursuit [37]. The conditions under which (P1) gives the same unique solution

as (P0) for random Fourier ensemble was given in [26] and a stronger version of

RIP was shown to ensure recovery of unique solution using (P1) [28, 25]. (P1) is

typically implemented in practice using convex programming.

There exists another branch of recovery algorithms which as compared to con-

vex programming based approaches are greedy in nature. For instance, Matching

Pursuit(MP) introduced in [92] sequentially finds the largest elements in x con-

tributing to the observation y. A significantly better versions in terms of accu-

racy and speed are the algorithms Orthogonal Matching Pursuit(OMP) [115] and

CoSaMP [107]. Greedy algorithms have a significant advantage in speed over convex

programming based methods but at the cost of slightly lower accuracy. Also, these

algorithms need a stronger condition on RIP than (P1).

The above mentioned recovery algorithms extend naturally to scenarios where

the signal x is not sparse but compressible. It has been shown in [27] that the
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recovered signal x̂ using (P1) will be close to the sparse approximation of the original

signal. The stability of the recovered signal x̂ under observation noise was also shown

in the same paper.

Based on the above ideas, new imaging techniques have been invented. For

instance the ‘single pixel camera’ introduced in [156] acquires images in a compressed

form based on the idea that images are compressible in wavelet basis. The idea

is to reconstruct the image in software from far fewer measurements than that

of a conventional camera. In this dissertation, we present simple computer vision

techniques such as background subtraction and tracking of moving objects in images

acquired using such a compressive camera.

The fundamental ideas in compressed sensing and the mathematics behind it

are relevant to problems in imaging and computer vision. For instance, the familiar

problem of face recognition in computer vision when looked at from a point of

view of signal processing encompasses the idea of compression where a face can be

represented by it’s PCA coefficients. Similarly, under mild conditions on geometry

and albedo, a face belonging to a class under varying illumination can be explained

using 9 parameters and a face can be affected by non-idealities such as occlusion

and cast shadows [13]. Compressed sensing can help in explaining and providing

new solutions. But, it must be noted that ideas from compressed sensing can be

useful in few scenarios and may not be relevant in others. For instance, using the

ideas of sparse representations the authors in [162] make face recognition robust to

occlusions but other aspects of representing and recognizing faces remain a open

problem and may or may not borrow ideas from compressed sensing.
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[143] B. U. Töreyin, A. E. Çetin, A. Aksay, and M. B. Akhan. Moving object detec-
tion in wavelet compressed video. Signal Processing: Image Communication,
20(3):255–264, 2005.

[144] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk.
Beyond nyquist: Efficient sampling of sparse bandlimited signals, 2009.

[145] P. Turaga, R. Chellappa, V.S. Subrahmanian, and O. Udrea. Machine recogni-
tion of human activities: A survey. Circuits and Systems for Video Technology,
IEEE Transactions on, 18(11):1473 –1488, nov. 2008.

[146] S. Uttam, N. A. Goodman, and M. A. Neifeld. Direct reconstruction of dif-
ference images from optimal spatial-domain projections. In Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series, volume 7096 of
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Se-
ries, August 2008.

[147] E. van den Berg and M. P. Friedlander. SPGL1: A solver for large-scale sparse
reconstruction, June 2007. http://www.cs.ubc.ca/labs/scl/spgl1.

[148] E. van den Berg and M. P. Friedlander. Probing the pareto frontier for ba-
sis pursuit solutions. SIAM Journal on Scientific Computing, 31(2):890–912,
2008.

172



[149] H. L. Van Trees. Detection, Estimation, and Modulation Theory, Part I. John
Wiley & Sons, Inc., 1968.

[150] N. Vaswani. Kalman filtered compressed sensing. In IEEE International Con-
ference on Image Processing, pages 893–896, 2008.

[151] N. Vaswani. Ls-cs-residual (ls-cs): Compressive sensing on least squares resid-
ual. Signal Processing, IEEE Transactions on, 58(8):4108 –4120, 2010.

[152] N. Vaswani and Wei Lu. Modified-cs: Modifying compressive sensing for
problems with partially known support. Signal Processing, IEEE Transactions
on, 58(9):4595 –4607, 2010.

[153] A. Veeraraghavan, D. Reddy, and R. Raskar. Coded strobing photography:
Compressive sensing of high speed periodic videos. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 33(4):671 –686, 2011.

[154] A. Veeraraghavan, D. Reddy, and R. Raskar. Coded strobing photography:
Compressive sensing of high speed periodic videos. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 33(4):671 –686, 2011.

[155] A. Wagadarikar, R. John, R. Willett, and D. Brady. Single disperser design
for coded aperture snapshot spectral imaging. Appl. Opt., 47(10):B44–B51,
Apr 2008.

[156] M. B. Wakin, J. N. Laska, M. F. Duarte, D. Baron, S. Sarvotham, D. Takhar,
K. F. Kelly, and R. G. Baraniuk. An architecture for compressive imaging. In
ICIP, pages 1273–1276, Atlanta, GA, Oct. 2006.

[157] B. Wandell, P. Catrysse, J. DiCarlo, D. Yang, and A. El Gamal. Multiple cap-
ture single image architecture with a cmos sensor. In the International Sym-
posium on Multispectral Imaging and Color Reproduction for Digital Archives,
pages 11–17. Society of Multispectral Imaging of Japan, 1999.

[158] W. Wang, D. Chen, W. Gao, and J. Yang. Modeling background from com-
pressed video. In IEEE Int. Workshop on VSPE of TS, pages 161–168, 2005.

[159] B. Wilburn, N. Joshi, V. Vaish, E. V. Talvala, E. Antunez, A. Barth,
A. Adams, M. Horowitz, and M. Levoy. High performance imaging using
large camera arrays. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers,
pages 765–776, New York, NY, USA, 2005. ACM.

[160] B. Wilburn, N. Joshi, V. Vaish, E.V. Talvala, E. Antunez, A. Barth, A. Adams,
M. Horowitz, and M. Levoy. High performance imaging using large camera
arrays. ACM SIGGRAPH 2005.

[161] R. J. Woodham. Photometric method for determining surface orientation from
multiple images. OptEng, 19(1):139–144, 1980.

173



[162] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust face
recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. In-
tell., 31(2):210–227, 2009.

[163] F. Yasuma, T. Mitsunaga, D. Iso, and S.K. Nayar. Generalized Assorted Pixel
Camera: Postcapture Control of Resolution, Dynamic Range, and Spectrum.
IEEE Transactions on Image Processing, 19(9):2241–2253, 2010.

[164] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM Comput.
Surv., 38, December 2006.

[165] J. Zheng and E. L. Jacobs. Video compressive sensing using spatial domain
sparsity. Optical Engineering, 48(8):087006–+, August 2009.

174


