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Access to large genome-wide biological datasets has now enabled computational 
researchers to tackle long-standing questions in Biomedicine through the lens of 
Machine Learning (ML) and Artificial Intelligence (AI). The potential benefits of 
such computational approaches to biological research are immense. For 
example, efficient, and yet interpretable, machine learning models of 
disease/drug response/phenotype can impact our life at both personal and social 
levels. However, heterogeneity is found at multiple scales in biology, manifested 
as the context-specificity of biological processes. This context-specific 
heterogeneity poses a major challenge to ML models. Even though context-
specific models are often trained, this is mostly done without the benefit of 



mechanistic insights about the biological processes being modeled, and as such 
do not help improve our biological understanding. 
This dissertation addresses these challenges and their limitations by: a) 
designing appropriate features and ML models motivated by the current 
biological hypothesis at hand, b) building pipelines to analyze multiple context-
specific models together, and c) developing data integration and imputation 
methods to address the problems of insufficient and missing data. 
The first project studies loss of methylation or hypo-methylation in large blocks 
causing aberrant gene activity, a well-known phenomenon in cancer. To find the 
associated markers, I designed a classification model of hypo-methylated block 
boundaries and non-boundaries in colon cancer. 
The second project models binding of transcription factor (TF) to specific DNA 
element to the genome, one of the principal components of gene regulation. 
Since condition specificity of TF binding is not yet well understood, this 
dissertation examines a design of cell type-specific models for transcription factor 
(TF) binding using ChIPSeq data. A meta-analysis pipeline, called TRISECT, is 
applied for multiple TF binding models to understand heterogeneity of cell 
specificity across those models. 
Next, models for breast cancer metastasis using gene expression data are 
discussed. In breast cancer metastasis, the affinity towards distant tissues called 
secondary tissues has not been comprehended. Therefore, going beyond mere 
discriminatory models, I propose another meta-analysis pipeline, MONTAGE 
intending to understand the organotropism of breast cancer metastasis across 
secondary tissues. 
Building ML models can be hindered by the data size, specially, for rare 
diseases. Therefore, by necessity, molecular data have been merged across 
multiple studies, and across multiple technical platforms which has vulnerability 
of so called batch effects diluting the actual biological signal. Existing methods 
are not capable of removing multi-variate confounding artifacts leading to 
inaccurate models. To circumvent this issue, this dissertation examines a deep 
learning based technique (deepSavior) which ‘translates’ the gene expression 
profile from samples of one technical platform to another platform. 
To summarize, this dissertation makes three distinct contributions, a) designing 
effective ML model to explore the determinants of cancer-associated 
hypomethlation, b) designing meta-analysis pipelines to compare multiple related 
but context-specific ML models to understand heterogeneous relations among 
biological processes, and b) developing new method to overcome the data 
integration and imputation challenges. 
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1 Background 

1.1 Motivation and Contribution 

Machine learning (ML) has become mainstream in several domains, including 
language translation, facial and speech recognition, spam detection, and 
marketing. The revolution of Machine Learning has also made its way into 
genomics, especially due to continued technological advances that incessantly 
increase our ability to comprehensively measure a variety of molecular 
phenomena over large populations. In fact, access to large genome-wide 
biological datasets now enable computational researchers to tackle long-standing 
questions in Biomedicine through the lens of Machine Learning (ML) and Artificial 
Intelligence (AI). The potential benefits of such computational approaches to 
biological research are immense, for example, modeling any 
disease/drug/phenotype would significantly impact our life at both personal and 
social levels. 
Currently, the opportunities for personalized medicine applications are 
challenged by, a) the complexity of biological systems, and b) the size and 
complexity of the available datasets to probe biological systems. The former 
challenge necessitates computational approaches to generate and prioritize 
hypotheses and the latter demands techniques to fill gaps of missing data and 
data integration. One way of generating and prioritizing hypotheses is to design 
effective but interpretable machine learning models. However, heterogeneity is 
prevalent at multiple scales in biology, manifested as the context-specificity of 
biological processes and functional effects of individual genes. Such 
heterogeneity poses additional challenges to computational and statistical 
modeling. Nonetheless, context-specific models are often built in the presence of 
such heterogeneity but are mostly used without the benefit of mechanistic 
insights about the processes being modeled. As such, these models do not help 
improve our understanding of these biological processes. 
This dissertation addresses the above challenges and limitations by: a) designing 
appropriate features and ML models motivated by the current biological 
hypotheses at hand, b) by building pipelines to analyze multiple context-specific 
models together, and c) the development of novel data integration methods.  
Loss of methylation or hypo-methylation in large blocks is a very well known 
phenomena in cancer. Such hypo-methylation leads to aberrant gene activity in 
cancer. First, I designed a model to identify biological determinants of hypo-
methylated block boundaries in colon cancer. The design of this model was 
motivated from the following observations. Nucleosome and heterochromatin lie 
near the methylation block boundary of the cell when it is at normal state. 
However, they shift away from the boundary when the cell goes to cancer state. 
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Based on the above, I hypothesized that the genetic and epigenetic features of 
methylation boundaries might explain whether these boundaries have distinct 
properties compared to the non-boundaries regions and whether the relevant 
features are responsible for the formation of large block of hypo-methylation and 
hyper-variability of genes. Based on the model and downstream analysis I found 
that boundaries have distinct properties, they act like pseudo-promoter even 
though they are not promoter and the genetic features of methylation boundaries 
interact with chromatin modifying enzymes. 
Second, I designed cell type-specific models for transcription factor (TF) binding. 
Binding of transcription factor (TF) to specific DNA element to the genome is one 
of the principal components of gene regulation. However, condition specificity of 
TF is not yet well understood and we are interested in finding the determinants of 
TF binding specificity. The TF models used here are built using the sequence 
features taking the binding information from ChIPSeq (Chromatin 
immunoprecipitation (ChIP) with massively parallel DNA sequencing). Our 
ensemble based TF binding models (EMT) perform favorably compared to 
previously published models.  
Going beyond mere discriminatory models, I designed and applied a meta-
analysis pipeline TRISECT (Ensemble model of TF Binding and Clustering) for a 
set of tissue specific TF binding models. TRISECT aims to understand 
heterogeneity of multiple cell specific TF binding models. Using TRISECT, I 
demonstrated that TF can have both ubiquitous and cell type-specific functions. 
The rules that govern binding of a TF to DNA can exhibit different levels of 
heterogeneity, contributed by interaction partners and such binding rules can 
transcend cell types, and are informative of the function of the gene targets.  
Third, I built models for breast cancer metastasis in distant organ specific fashion 
using gene expression data of primary tissue (breast). The target organ-specific 
metastasis models showed 70-90% AUC-ROC (Area Under Receiver Operating 
Curve). No models for this task were previously reported. It is well-known that 
when cancer cells spread to a distant organ, it does so with more affinity towards 
certain tissues than others. Such affinity, called organotropism, is not well 
understood. To this end, I applied another meta-analysis pipeline, MONTAGE 
(Models of organotropism and metastasis using gene expression). MONTAGE 
intends to cheracterize distant tissue affinity of metastatic cancer cells and 
patient heterogeneity.  
Building ML models can be hindered by the data size, specially, for rare 
diseases. Therefore, by necessity, gene expression data are commonly 
integrated across multiple studies, and across multiple technical platforms. 
However, integrating data across studies/platform has vulnerability of having so 
called batch effects that often overshadow the actual biological signal we are 
interested in. To date, batch correction methods either remove confounding 
principal components along technical batches or explicitly model the batches as 
bias for each molecular feature (e.g., a gene) independently. However, as ML 
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models include non-linear interactions among multiple genes, the multi-variate 
confounding artifacts misrepresent the models, even when they are built using 
data that is batch corrected data by existing methods. To circumvent this issue, 
borrowing techniques from natural language translation, I propose a deep 
learning based technique (deepSavior) which can project the expression data 
into a smaller non-linear space and then regenerate the gene expression profile 
from samples of one technical platform to another platform.  
To summarize, this dissertation contains three kinds of contributions, a) 
designing effective ML models to test the biological hypotheses at hand, b) 
designing meta-analysis pipelines to compare multiple related but context-
specific ML models to understand heterogeneous relations among biological 
processes, and b) developing new method to overcome the data integration 
challenges. 
The rest of the dissertation is organized as follows. The following subsections 
introduces a) the basic biology of transcriptional regulation by genetics and 
epigenetics, b) basics of cancer metastasis, c) the ML models used in this 
dissertation, d) prior available methods on batch corrections, and e) basics of 
neural networks. Chapter 2 presents the models of methylation block boundaries 
and the downstream analysis. EMT and TRISECT are described in Chapter 3. 
MONTAGE pipeline, the findings of cancer heterogeneity are presented in 
Chapter 4. Chapter 4 also sets the premise for the necessity of new method 
development for batch correction and data imputation. Chapter 5 introduces the 
deep learning method (deepSavior) and the performance on both single cell 
expression data and bulk-Seq expression data. 
In particular, the contributions of each chapter are shown below. 

• Chapter 2. H.C.B. and S.H. conceived and designed the project. M.S. 
performed all the analyses. All authors helped write the manuscript. All 
authors read and approved the final manuscript. 

• Chapter 3. S.H. conceived the project. S.H. and M.S. designed the 
analyses in consultation with H.C.B. M.S. performed the analyses. S.H. 
and M.S. wrote the manuscript with help from H.C.B. 

• Chapter 4. M.S. conceived the project. M.S., S.H., and H.C.B. designed 
the analyses. M.S. performed the analyses. Everybody participated in 
writing the manuscript. 

• Chapter 5. M.S. conceived the project. H.C.B and M.S. designed the 
analyses in consultation with S.H. M.S. performed the analyses. M.S., 
H.C.B. and S.H. wrote the manuscript. J.H. and Y.V. helped M.S. with 
technical issues. 
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1.2 Transcriptional regulation by genetics and 
epigenetics 

Cells are basic structural and functional building blocks of all living organisms. 
Both prokaryotic (without nucleus) and eukaryotic (with nucleus) cell contain 
cytoplasm carrying proteins and organelles encapsulated by cellular membrane 
[1], [2]. Nearly all living cells carry DNA (and RNA) which is the genetic material 
containing hereditary information. DNA resides in the cytoplasm for prokaryotic 
cells and is protected and separated by the nuclear membrane for eukaryotic 
cells [3]. DNA holds all the instructions for life of an organism in the form of 
functional segments, called genes, which encode for protein molecules, as well 
as other non-protein-coding genes such as tRNAs, ribosomal-RNAs, micro-
RNAs, pi-RNAs, etc [4], [5].  
The information in DNA is stored as a code consisting of four chemical bases: 
adenine (A), guanine (G), cytosine (C), and thymine (T) [6], [7]. The order, or 
sequence, of these bases determines the information available for building and 
maintaining an organism. Together, a base, sugar, and phosphate are called a 
nucleotide. Nucleotides are arranged in two long strands that form a spiral called 
a double helix. Human DNA consists of about 3 billion bases, and more than 99.9 
percent of those bases are the same in all people. An important property of DNA 
is that it can replicate itself. Each strand of DNA in the double helix can serve as 
a pattern for duplicating the sequence of bases. This is critical when cells divide 
because each new cell needs to have an exact copy of the DNA present in the 
mother cell. 

 
Figure 1.1 Illustration of cell and DNA structure 
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DNA is organized in one or more molecules or chromosomes. Chromosomal 
DNA is packaged inside the nucleus with the help of histone proteins: the DNA-
protein complex is called chromatin. These positively-charged proteins strongly 
adhere to negatively-charged DNA to form complexes called nucleosomes. DNA 
is wrapped around the eight histone proteins of each nucleosome. Nucleosomes 
fold up to form chromatin fiber, which forms loops averaging 300 nanometers in 
length. The 300 nm fibers are again compressed and folded to produce a wider 
fiber, which is tightly coiled into the chromatid of a chromosome. When DNA is 
lightly packed, it is called euchromatin (unfolded or unwind DNA) or open 
chromatin or accessible state and otherwise it is called heterochromatin or closed 
chromatin or inaccessible state [8].  
Proteins carry out all essential processes necessary to maintain life, including 
development, cellular, tissue, and organismal functions, and reproduction. The 
availability of proteins determines what bio-chemical reactions and thus functions 
are going to be carried out by the cell. According to the central dogma of 
molecular biology, the protein production is instructed by the gene in DNA: DNA 
produces RNA which goes out of cytoplasm to be turned into a protein [9]. The 
1st phase of this process is called transcription and 2nd phase is called 
translation. In many organisms, the translated protein can be further modified by 
various enzymes. This process, referred to as post-translation modification, is not 
covered by the central dogma [10]. 
 

 
Figure 1.2 Illustrations of transcription and translation. 
 
In eukaryotic cells, the transcription process first generates primary transcript 
mRNA (pre-mRNA), which is then spliced into the final product - the mature 
mRNA molecule. During translation, a protein complex called ribosome reads the 
mRNA according to the genetic code, where each mRNA triplet codon encodes 
for an amino acid. Thus, mRNA is used as a template to assemble a chain of 
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amino acids that form the final protein product. In eukaryotic cells, transcription 
occurs in the nucleus while translation occurs in cytoplasm, therefore mRNA are 
transported out of the nucleus to the cytoplasm [11]. 
 
The transcription process is controlled by a class of proteins called Transcription 
Factors (TF). They bind to the DNA, in the promoter (upstream genomic region) 
as well as other distal regulatory regions of a gene, using DNA binding domains 
which recognize a 6-20 base-pair sequence signature or motif. A promoter (and 
regulatory region) contains a specific set of motifs, also called transcription factor 
binding sites (TFBS), which allow specific set of TFs to bind and modulate 
expression of the target gene and in turn the amount of protein produced. For 
transcription, a promoter needs to be unwound from histones (i.e. accessible) so 
that TFs can bind and a pre-initiation complex can be formed by RNA 
polymerase to read the DNA [12].  
Many TFs are activators, while others are repressor of genes. Gene regulation 
can happen not only by binding to the promoter but also by binding to a distal 
genomic region which can reach up to 1Mbp away from the transcription start site 
(TSS). TFs involved in such distal regulation are referred to as enhancers. An 
enhancer physically interacts with the gene-promoter by forming a chromatin 
loop, whereas the regular TF-gene-promoter interactions are mostly linear. The 
presence or absence of TF determines which genes are going to be on and 
which genes are going to be off. In sum, the combinations of genes, thereby 
availability of certain proteins can determine the functionality carried out by the 
cell; in another words, TFs and enhancers are the crucial determinants of cell 
identity [13]. 
A set of chemical modifications to the DNA and to the histones can change the 
local accessibility of DNA for TF binding and therefore can modulate gene 
expression [14]. DNA methylation is the modification to DNA that silences gene 
expression by not letting any TF to bind.  H3K4me3 and H3K27me3 are histone 
modifications where the former activates the gene by making the promoter 
accessible to TFs and RNA polymerase, and the latter represses the gene. 
Histone modifications and DNA methylation are also known to be inherited during 
cell division and therefore are collectively called epigenetics. Epigenetics, in 
summary, modulates how transcription machinery reads the genetic instruction 
from DNA in a cell. It is also widely known that undesirable epigenetic changes 
cause many human diseases [15]. 
Each cell type expresses a unique subset of genes. Conversely, the set of the 
genes expressed in a cell determines its identity. For example, the set of genes 
that is expressed in blood cells is different from those in immune cells or in 
neurons. That's the reason for all the cell types to look and act differently even 
though they contain same DNA sequence. Cancer cells also activate sets of 
genes that are different from any normal cell, thus acting differently from any 
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normal cell. During cellular differentiation, a daughter cell acquires the capability 
to express different set of genes than the parent cell. Understanding cellular 
differentiation has significant impact both in the understanding of biology and 
clinical applications [16]. 
 

1.3 Cancer and Metastasis 

Cancer is among the leading cause of death worldwide and in the US. In 2012, 
around 15 million new cases of cancer and 8.2 million deaths were reported [17], 
and in 2015 about 90.5 million people were reported to have cancer [18]. It is 
expected that the number of cancer cases will increase by 70% in the next two 
decades. Among all diseases National Institute of Health allocates the highest 
amount of its budget to the cancer research.  
Cancer is a unique genetic disorder where the transcription machinery and other 
cellular processes are hijacked to allow cancer to proliferate and migrate. 
Existing cellular processes and regulatory networks are reprogrammed in 
systematic manner to adapt the need of such proliferation and migration. In order 
for a normal cell to transform into a malignant cancer cell, a series of genetic and 
transcriptomic alterations need to occur to the genes controlling cell growth and 
differentiation. The genetic alterations can be divided into two broad categories: 
alterations of oncogenes and alterations of tumor suppressor genes [19]. The 
former promotes cell growth and division, while the latter inhibit cell proliferation. 
Genetic changes can occur at different genomic levels and by different 
mechanisms: gain/loss of an entire chromosome, mutations, insertions, 
deletions. Epigenetic alterations also occur frequently in cancers.  Epigenetic 
alterations refer to functionally relevant modifications to the genome that do not 
change the nucleotide sequence. Large blocks of hypo- and hyper-methylation, 
histone modifications and changes in chromosome architecture are common 
phenomena in cancer [20], [21]. All epigenetic alterations regulate gene 
expression without changing the underlying DNA sequence and may last through 
cell divisions for multiple generations. 
Hanahan et. al. [22] suggested several essential alterations in cells required to 
transform into a tumor: Self-sufficiency of growth signal, antigrowth, apoptosis, 
limitless potential of replication, angiogenesis, invasion and metastasis. 
Self-sufficiency of growth signal: Normal cells require specific growth signal (GS) 
from extracellular signaling molecules to proliferate. Tumor cells, in contrast, 
show a greatly reduced dependence on the external growth stimulation by 
mimicking growth signals or by permanently activating the pathways that respond 
to the GSs [23].  
Antigrowth or Insensitivity to growth-inhibitory signals: Uncontrolled proliferation 
is blocked by many antigrowth signals through trans-membrane signaling 
receptors and intracellular signaling pathways in normal cells. The signals either 
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force a cell out of the proliferation or permanently switch off the proliferation 
potential of a cell. Cancer escapes these antigrowth factor signals to keep 
proliferating uncontrollably. Such insensitivity to antigrowth signals can be 
achieved by disruption of tumor suppressor genes that primarily control those 
signals and pRB pathway responsible for blocking antigrowth signals [24].  
Apoptosis or Avoidance of programmed cell death: Programmed cell death, 
known as apoptosis, is a major mechanism by which uncontrolled growth is 
controlled in the normal cells. The acquired resistance to the apoptosis is a 
hallmark of all cancer types. Cancer acquires the apoptosis resistance through a 
variety of strategies: mutation of p53 (tumor suppressor gene regulating 
apoptosis), overexpression of anti-apoptic signals e.g. AKT/PKB pathway, 
increased capability to detect DNA damage or abnormalities etc [25]. 
Limitless number of cell divisions: Three acquired capabilities - independence of 
the growth signals, insensitivity to antigrowth signals, and resistance to apoptosis 
- do not suffice in supporting uncontrolled tumor growth and tumorigenesis due to 
an intrinsic limit on a number of cell divisions allowed. Once cells have achieved 
a certain number of doubling they stop dividing, a concept termed as 
senescence. This program is independent of cell signaling. In order for cells to 
grow in malignant tumor, they must evade this program too. Telomeres located at 
the ends of chromosomes are the counting devise, which shorten with every cell 
division. The progressive shortening causes cells to eventually lose their 
capability to divide further. Telomere maintenance is evident in all types of 
tumors. In most tumors, their maintenance is mediated by telomerase up-
regulation, the enzyme responsible for maintaining telomere length in stem cells 
[26]. 
Angiogenesis or Promotion of blood vessel construction: The formation of new 
blood vessels is referred to as angiogenesis. Nutrients and oxygen are supplied 
by blood to each cell and are necessary for maintenance and survival. The 
expanding tumor needs additional routes for blood supply. Cancer hijacks the 
angiogenesis to ensure adequate oxygenation. This is achieved by disruption of 
the production of factors that regulate blood vessel formation [27], [28]. 
Invasion of tissue and Formation of metastasis: Advanced stages of tumors 
eventually acquire capability to invade adjacent tissue and metastasize to distant 
sites [29]. Most of cancer types do not lead to patient's death unless they 
metastasize. In fact, 90% of cancer deaths are due to metastasis. 
Metastasis is the spread of cancer from one body site to another, a stage of 
cancer arrived at by a complex series of steps from single or multiple cancer 
cells. Cancer cells acquire the ability to break the Extra Cellular Matrix (ECM), 
leave the original tumor site, migrate to other parts of the body [30]. The 
migration can occur by the following routes: a) hematogenous spread, b) 
lymphatic spread, c) transcoelomic and d) transplantation or implantation. For 
sarcoma and certain types of carcinoma, e.g. renal cell, the common route is 
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hematogenous spread: distribution by blood stream. Because of their thinner 
walls, veins are more frequently invaded than are arteries, and metastasis tends 
to follow the pattern of venous flow. Except sarcoma, the most common route of 
metastasis is lymphatic spread which allows the transport of tumor cells to lymph 
nodes which drain off the metastatic cells into the systemic venous system and 
thus these cells can spread through the haematogenous route. Transcoelomic is 
the spreading via body cavities such as peritoneal, pleural, pericardial, or 
subarachnoid spaces. Transplantation is the spreading via regional lymph nodes 
near the primary tumor. Localized spread to regional lymph nodes near the 
primary tumor is not normally counted as metastasis, although this is a sign of 
worse prognosis [31].  
The location of the metastases is not always random, with different types of 
cancer tending to spread to particular tissues at a rate that is higher than 
expected by statistical chance alone. Breast cancer, for example, tends to 
metastasize to the bones and lungs. The propensity for a metastatic cell to 
spread to a particular tissue is called 'organotropism'. According to “Seed and 
soil” theory of Stephen Paget, “it is difficult for cancer cells to survive outside their 
region of origin, so in order to metastasize they must find a location with similar 
characteristics. For example, breast tumor cells, which gather calcium ions from 
breast milk, metastasize to bone tissue, where they can gather calcium ions from 
bone. Malignant melanoma spreads to the brain, presumably because neural 
tissue and melanocytes arise from the same cell line in the embryo” [32].  
The "seed and soil" theory was challenged by James Ewing proposing that 
metastasis occurs purely by anatomic and mechanical routes [33]. This 
hypothesis has been recently utilized to suggest several hypotheses about the 
life cycle of circulating tumor cells (CTCs) and to postulate that the patterns of 
spread could be better understood through a 'filter and flow' perspective [34]. 
However, contemporary evidence indicates that the primary tumor may dictate 
organotropism by inducing the formation of pre-metastatic niches at distant sites, 
where incoming metastatic cells may engraft and colonize. Specifically, exosome 
vesicles secreted by tumors have been shown to home to pre-metastatic sites, 
where they activate pro-metastatic processes such as angiogenesis and modify 
the immune contexture, so as to foster a favorable microenvironment for 
secondary tumor growth. 
It is theorized that metastasis always coincides with a primary cancer, and, as 
such, is a tumor that started from a cancer cell or cells in another part of the 
body. However, over 10% of patients presenting to oncology units will have 
metastases without a primary tumor found. In these cases, doctors refer to the 
primary tumor as "unknown" or "occult," and the patient is said to have cancer of 
unknown primary origin (CUP) or unknown primary tumors (UPT). It is estimated 
that 3% of all cancers are of unknown primary origin [35]. 
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1.4 Ensemble Models 

A classification problem is to find a function (or a set of functions) that can 
discriminate a data points membership in one of multiple different classes. On 
occasion, functions that define membership to a specific class is referred to as a 
hypothesis in this context. Ensemble methods refer to a classifier that itself 
consists of multiple classifiers; such classifier combinations may outperform non-
ensemble classifiers as each classifier in the ensemble may model a specific 
hypothesis required discrimination. So as a whole, the set of classifiers can 
capture the diversity of the class-membership pattern. We provide a short 
discussion of two common ensemble methods in the following. 
 

1.4.1 Random Forest 

Random Forest [36] is a combination of bagging [37] and a special case of the 
random subspace method [38]. Bagging is an ensemble meta-algorithm. In this 
composite model, each sub-model has equal weight, constructed from multiple 
independent samples, Di. Each Di is constructed from dataset D using uniform 
random selection and with replacement. Each Di is then used to train a separate 
sub-model mi. The average of these sub-models is considered as the outcome of 
the final model. Bagging reduces variance and helps to avoid over fitting, in many 
ensemble techniques bagging is done as pre-step of modeling. On the other 
hand, in random subspace method, each sub-model is constructed on Di where 
the feature set of Di is a sub-set of original feature set. The feature subset is 
selected without replacement. For classifying a new observation, the output of all 
sub-models is combined by majority voting or averaging the posterior 
probabilities.  
Random Forest consists of a set of decision trees, each tree is a sub-model here. 
Each sub-model is trained on a bootstrap sample and the feature of sample 
dataset is a subset of original feature set. Typically, the size of the feature 
subspace is decided as the one-third of the original size, i.e. number of features 
selected in each bootstrap sample is one-third of the original feature number [39]. 
 

1.4.2 Adaboost 

Boosting is an iterative method where weak learners are constructed based on 
the performance of the current classifier [40]. In the basic boosting method, the 
algorithm gives equal weight for each sub-model. While working with subsequent 
sub-models, the model puts more emphasize on misclassified examples. In the 
1st stage, all the examples have equal weight. All the misclassified examples are 
given higher weight, and the next model is trained on the newly weighted 
dataset. The weights of the misclassified examples are updated again based on 
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the combined model and the training step is repeated. The weight update and 
training is done |m| number of times. There are many variation of boosting, the 
most popular one is Adaboost or adaptive boost [41]–[43].  
In adaptive boost not only the weights of the examples are updated but also the 
weights of sub-models are tweaked as the training progresses. The problem is 
seen as a minimization of error function which is defined as the error of current 
model and new weak learner. The new weak learner is weighted in such a say 
that the total error decreases. Each weak learner produces an output, hypothesis 
ℎ", for each sample in the training set. At each iteration t, a weak learner is 
selected and assigned a coefficient 𝛼$ such that the sum training error 𝐸$ of the 
resulting t-stage boost classifier is minimized. The ensemble of basic boosting is 
shown by 𝐹$(𝑥) = 𝑓$(𝑥)$,-…/ , and the ensemble of adaboost is expressed by 
𝐹$ 𝑥 = 𝐹$0- 𝑥 +	𝛼$ℎ$ 𝑥 . Here, ℎ$ is new hypothesis and 𝛼$ is chosen in such a 
way that sum of training error is minimized, 𝐸$ = 𝐸[𝐹$0-(𝑥4)+𝛼$ℎ$ 𝑥4 ]4 . 
Because of the good performance, the variations of boosting are applied to 
adaboost framework [44].  
 

1.5 Batch Correction Methods 

Systematic differences and non-biological variations due to experimental and 
technological conditions in sequencing experiments are called batch effects [45]. 
Various hybridization (e.g. microarray) and sequencing technologies (e.g. 
RNASeq), are used to determine gene expression profiles of samples coming 
from different states (disease, cell cycle, normal). The expression profiles are 
useful measurement to understand the gene-phenotype relationships. Due to 
practical reasons, the number of samples processed for sequencing is limited. 
For example, for rare disease the samples can come from multiple labs and 
hospitals, the samples can be sequenced using different technologies, array 
types or platform, even the replicate samples can be generated several 
days/months apart, experiments can be done by different people, they can be 
performed under different environmental conditions. All these contribute to the 
differences in gene expression patterns that are unrelated to the underlying 
biology of interest. Several techniques have been developed to remove such 
differences as described below. Among them, the 1st three methods are 
applicable when the batches are known. 
 

1.5.1 Singular Value Decomposition 

SVD is a linear transformation of the expression data from the genes × arrays 
space to the “eigen genes” × “eigen arrays” space [46]. The new space is of 
lower dimensional than the original space and in the new space, the data are 
diagonalized with each eigen gene expressed only in one eigenarray and with 
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the corresponding “eigen expression” level indicating their relative significance. 
The eigen genes and eigen arrays are unique, and therefore also data-driven, 
orthonormal super positions of the genes and arrays, respectively. After 
determining the eigen genes and eigen arrays, those inferred to represent noise 
or experimental artifacts are filtered out and the rest is normalized. The caveat of 
SVD method is that it is hard to detect the right eigen gene to remove and the 
removed eigen gene and eigen array might be combination of both noise and the 
phenotype of interest and hence not worthy of removing all of the variation 
across that direction. 
 

1.5.2 Distance Weighted Discrimination 

DWD does not remove all information along maximum variance, rather adjusts 
the mean along the mean discriminating hyperplanes [47]. In particular, DWD 
finds the separating hyperplanes (DWD direction vector) between two sets of 
samples. The sub-populations (e.g. respective source subsets) are all projected 
in that DWD direction, and the sub-population projected means are computed. 
Each subpopulation is then shifted in the DWD direction, by an appropriate 
amount, through the subtraction of the DWD direction vector multiplied by each 
projected mean for each gene. The DWD method can only be applied to two 
batches at a time. A way around for more than two batch scenarios can be 
achieved using a stepwise approach. In this approach, the two most similar 
batches are adjusted first, and then the third against the previous (adjusted) two 
are compared. Such stepwise method works reasonably well in their three-batch 
case, but when many more batches are present or when batches are not very 
similar, the iterative approach could potentially break down. 
 

1.5.3 ComBat  

ComBat [48] has two main advantages over previous methods, a) it is robust for 
small number of samples, e.g. less than 10 whereas SVD/PCA, DWD requires at 
least 25 samples, b) it removes both linear and non-linear noise. In ComBat, 
batch effects are modeled out by standardizing means and variances (L/S model 
parameters) across batches. These adjustments can range from simple gene-
wise mean and variance standardization to complex linear or non-linear 
adjustments across the genes. Specifically, the L/S model parameters that 
represent the batch effects are estimated by “pooling information” across genes 
in each batch to “shrink” the batch effect parameter estimates toward the overall 
mean of the batch effect estimates (across genes). These EB estimates are then 
used to adjust the data for batch effects, providing more robust adjustments for 
the batch effect on each gene. 
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1.5.4 Surrogate Variable Analysis and Limma 

Unlike previous methods, SVA identifies and estimates the variation of unknown 
batches (unmeasured or unmodeled factors of both biological and technical 
sources) to overcome the problems caused by heterogeneity in expression 
studies [49]. For example, due to the complexity of our genomes, environment, 
and demographic features, there are many sources of variation when analyzing 
gene expression levels. Therefore, to understand the relationship between two 
variables, such as a drug and its effect on a disease, we might not want the 
effect of the variation of age and sex on the disease. In SVA, a residual matrix, R 
is constructed by removing the signal of the primary variable(s) of interest. 
Signatures of additional heterogeneity is identified by singular value 
decomposition (SVD) and based on permutation test, those singular vectors are 
retained that represent significant variation than expected by chance. For each 
singular vector, the subset of genes are identified who are associated with the 
variation of the singular vector. Next, for each subset of genes, a surrogate 
variable is built based on the full expression heterogeneity signature of that 
subset in the original expression data. After the surrogate variable are detected, 
they can be treated as other known batches to remove biases using any previous 
method, e.g. ComBat [48]. However, usually the surrogate variables are used as 
covariates in a differential expression (DE) analysis so that differentially 
expressed genes are accounted for the batches. 
Limma [50] is used to find differentially expressed genes between case and 
control by fitting a linear model for each gene considering heteroscedasticity of 
different genes. Limma offers interface of providing the information of surrogate 
variables so that the measured differential expression signals are due to strictly 
case and control not due to on any unmodeled variations. 
 

1.6 Artificial Neural Networks 

An artificial neural network (ANN) is a structure of information processing using 
interconnected processing elements or nodes. This structure is analogous to the 
vast network of neurons in a brain. Figure 1.3 depicts a general architecture of a 
neural network [51].  
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Figure 1.3 Example architecture of Artificial Neural Network 
 
Here, each circular node represents an artificial neuron and an arrow represents 
a connection from the output of one neuron to the input of another. Typically, 
neurons are connected in layers, and signals travel from the first (input), to the 
last (output) layer. An ANN is typically defined by three types of parameters: a) 
the interconnection pattern between the different layers of neurons, b) the 
weights of the interconnections, which are updated in the learning process and c) 
the activation function that converts a neuron's weighted input to its output 
activation. A function defined by a neuron is a composite of all incoming neurons 
which are also composite function of other incoming neurons. A widely-used type 
of composition is the nonlinear weighted sum, where 𝑦𝑖 = 𝑓 𝑥 =
	𝐾( 𝑊 𝑖, 𝑗 . 𝑔[𝑗]( 𝑥)), where 𝐾 (commonly referred to as the activation function) 
is some predefined function, such as the hyperbolic tangent or sigmoid function. 
The important characteristic of the activation function is that it provides a smooth 
transition as input values change, i.e. a small change in input produces a small 
change in output. It will be convenient for the following to refer to a collection of 
functions 𝑔[𝑗] as simply a vector 𝑔 = (𝑔 1 , 𝑔 2 ,…𝑔[𝑛]). Together, an ANN can 
approximate very complex function. Among many varieties of network 
architecture, for the sake of relevance to this dissertation, residual network and 
auto-encoder are discussed below.  
 

1.6.1 Residual Network 

Residual neural networks is a recently introduced class of very deep neural nets 
[52], [53] typically formed by concatenation of many blocks (Figure 1.4), where 
each block receives an input x (the output of the previous block) and computes 
output y = x + δ(x), where δ(x) is the residual between original input and distorted 
input. The advantages of Residual neural networks over other architectures are 
they can avoid exploding or vanishing gradients during back propagation and 
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thus can grow deeper without determining performance. Since a Residual neural 
network block consists of a residual term and an identity term, it can easily learn 
functions close to the identity function, when the weights are initialized close to 
zero, which is shown to be a valuable property for deep neural nets. 

 
Figure 1.4 Building block of Residual Network 
 

1.6.2 Auto-encoder 

An auto-encoder is an artificial neural network used for unsupervised learning of 
efficient coding of the input [54]. The aim of an auto-encoder is to learn an 
encoding for a set of data in, mostly, lower dimensionality reduction. When the 
encoding is done in higher dimensional space, the corresponding network is 
called sparse auto-encoder. Architecturally, the simplest form of an auto-encoder 
is a feedforward, non-recurrent neural network, like the multilayer perceptron 
(MLP), having an input layer, an output layer and one or more hidden layers 
connecting them, but with the output layer having the same number of nodes as 
the input layer, and with the purpose of reconstructing its own inputs. An auto-
encoder (Figure 1.5) always consists of two parts, the encoder and the decoder, 
which can be defined by the following equations. 
z	 = 	s(WX	 + 	b) and X’	 = 	s′(W’z	 + 	b’). 
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Figure 1.5 Schematic architecture of auto-encoder. 
 
The auto-encoder is trained with a squared loss function between X and X’ or KL-
divergence of X’ and X’. Denoising auto-encoders take a partially corrupted input 
and is trained to recover the original undistorted input. To train an auto-encoder 
for denoising data, it is necessary to perform preliminary stochastic mapping from 
X to X’ in order to corrupt the data and use X’ as input for a normal auto-encoder 
and use the 𝑙𝑜𝑠𝑠(X, X’). 
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2 Demarcation of hypo-methylated blocks by 
distinct features in colon cancer 

2.1 Background and Related works 

Cells in an individual adopt hundreds of distinct phenotypes in their structure and 

function. This dramatic phenotypic variability through development and disease 

cannot be explained by genetic differences alone. Phenotypic variability is also 

partly encoded by the so-called epigenetic variation – varying degrees of 

chemical modifications of the DNA and nucleosome histones that the genomic 

DNA is wrapped around [55], [56]. Epigenetic mechanisms are integral to gene 

regulation; and, their role in cellular differentiation [21], aging [57] and disease 

[20] are areas under active investigation. DNA methylation is one of the earliest 

known epigenetic modifications, for which cellular inheritance mechanisms are 

now well understood [58].  Although a direct relationship between locus-specific 

DNA methylation and gene expression is well known, a more specific 

involvement of DNA methylation in various diseases, particularly in cancer, is 

only beginning to be investigated in a comprehensive manner [20], [59], [60]. 

Collectively, these studies have identified specific oncogenes that are 

hypomethylated, and thus activated, in cancer [61]; certain tumor suppressor 

genes that are hypermethylated, and thus inactivated [62], and additional 

methylation changes in cancer [59], [60].  

A recent study showed well-demarcated, large regions, collectively covering half 

of the genome, to be differentially methylated in cancer [20]. Moreover, presence 

of such large cancer-specific differentially methylated regions (cDMRs) was 

found to be a general epigenomic signature across many cancer types [20]. The 

cDMRs contain important genes involved in mitotic cell cycle and matrix 

remodeling and were shown to exhibit extreme gene expression variability. 

Moreover, cDMRs are highly enriched among regions that are differentially 

methylated during stem cell reprogramming of induced pluripotent stem cells 
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[63]. Subsequent investigations revealed that cDMRs significantly overlapped 

with Lamina Attachment Domains (LAD), Large organized chromatin lysine 

modifications (LOCK) [64] and Partially Methylated Domains (PMD) in cancer 

[21]. Additionally, 1kb regions flanking cDMR boundaries were shown to be 

enriched for DNase hypersensitive sites [65]. Nucleosomes were found to be 

locally enriched in hypomethylated regions in normal tissue [66]. Collectively, 

these observations led the authors to postulate a model of cancer progression 

involving epigenetic instability of well-defined genomic domains [20]. However, 

investigations of additional genomic and epigenomic correlations of cDMRs, and 

ultimately the causes of cDMR formation are necessary to gain a better 

mechanistic understanding of the role of DNA methylation in cancer, and also to 

harness the full potential of these earlier studies for epigenetic-based cancer 

diagnostics [67]. 

Vast majority of large cDMRs are in fact hypomethylated in cancer, i.e. less 

methylated in cancer tissue than the corresponding normal tissue, and such 

hypomethylation happens in large contiguous genomic regions called 

hypomethylated blocks. Here, we focused on previously identified ~13k 

hypomethylated blocks (HMB) in colon cancer, which encompass approximately 

half the genome [20]. Given the length of HMBs and their general overlap with 

chromatin structural features such as LADs and enrichment of DNAse 

hypersensitive sites at HMB boundaries, it is likely that the genome and the 

epigenome at HMB boundaries hold the clues to the underlying mechanisms of 

genome wide hypomethylation with distinct boundaries. We therefore analyzed a 

number of genomic and epigenomic features at the HMB boundaries including 

TF binding motifs, epigenomic marks, and three-dimensional chromatin structural 

features (Figure 2.1). 

Our analysis revealed that the classical promoter epigenomic mark – H3K4me3, 

is highly enriched at HMB boundary in normal colon tissue, and the boundaries 

that are enriched for promoter marks are also enriched for in vivo binding of the 
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insulator protein CTCF in colon cancer. We also found that the HMB boundaries 

harbor distinct combinations of TF motifs. Our Random Forest machine learning 

model that uses TF motifs as features can distinguish boundaries not only from 

regions inside and outside HMBs, but surprisingly, from active promoters as well, 

with very high accuracy (F-measure ~ 0.98). Interestingly, the TFs that 

preferentially bind at HMB boundaries and their interacting partners are involved 

in chromatin modification. Finally, we found that HMB boundaries are associated 

with the boundaries of Topological Associating Domains (TADs), which form the 

backbone of chromatin structure [68].  

 
Figure 2.1 Schematic of analysis pipeline for hypo-methylated block boundaries. 

Starting with ~13,000 HMBs, we perform a number of tests to assess the 
association of HMBs and HMB boundaries with Topological Associating 
Domains, Physical interaction within and across HMBs, profiles of various 
epigenetic marks, and CTCF binding. In addition, we identified TF motifs 
enriched at the HMB boundaries relative to various controls and assessed the 
ability of a random forest model to distinguish HMB boundaries from other 
domains based on TF binding site motifs. Finally, we assessed the spatial profile 
and functions of enriched TF motifs and their interacting partners. 
 
Taken together, our analyses suggest that the overall architecture of HMBs is 

guided and restricted by pre-existing chromatin architecture, while their creation 
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in cancer may be caused by aberrant activity of promoter-like sequences at the 

boundary, with a direct chromatin modification activity. 

2.2 Results 

2.2.1 Overview  

Our objective is to characterize genetic and epigenetic features that demarcate 

hypomethylated blocks in cancer, in order to gain insights into the mechanism 

and functional implications of these genomic blocks. Our findings are organized 

as follows: First, we determined and examined epigenomic marks that are 

enriched at HMB boundaries. Second, we analyzed genomic properties, namely, 

putative binding sites for all vertebrate transcription factors at HMB boundaries. 

Third, we showed that many of the motifs enriched at HMB boundaries exhibit 

specific positional distributions aligned with the HMB boundary. Fourth, we 

investigated specific transcription factor motifs enriched at HMB boundaries and 

their links to chromatin modifying enzymes (CMEs), in order to understand the 

mechanistic link between transcription factor binding and chromatin structure. 

Fifth, we furthered examined the link between genetic/epigenetic properties of 

the HMB boundaries and CMEs by analyzing the association between HMB 

boundaries and topologically associating domains (TAD) boundaries, which 

define the structural backbone of the chromatin. Finally, we examined at HMB 

boundaries, the putative sites for CTCF, which acts both as mediator of 

chromatin loop formation as well as an insulator that restricts the spread of 

chromatin marks. 

2.2.2 Boundaries of hypomethylated blocks are enriched for 
promoter-associated histone mark H3K4me3. 

Previous studies have shown cross-talk between DNA methylation and various 

histone modifications [69]. Given that HMBs exhibit relatively sharp demarcation 

of their boundaries [20], we investigated the patterns of various histone marks in 
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normal colon tissue in the vicinity of HMB boundaries. We summarized the signal 

strength of six histone marks in 20 kbp flanking the HMB boundaries (see 

Methods) from human colon tissue data downloaded from the Epigenetic 

Roadmap Website (www.roadmapepigenomics.org). Histone marks H3K4me3 

and H3K9ac, known to be associated with active promoters, showed a distinct 

peak immediately outside the HMBs (Figure 2.2). Patterns for other histone 

marks (H3K4me1, H3K9me3, H3K27me3 and H3K36me3) did not show 

noticeable trends at HMB boundaries (Figure 2.3). 

 

 
Figure 2.2 Histone modifications enriched near HMB boundaries.  

Mean normalized ChIP signal for (a) H3K4me3 and (b) H3K9ac as a 
function of genomic distance to HMB boundary. The dotted vertical line (pink) 
depicts the precise location where the HMB starts while the shaded (cyan) region 
is the 3 kb HMB boundary region as defined in this paper. The solid vertical lines 
(pink) indicate inside (right) and outside (left) of HMBs. (c) Distribution of 
normalized H3K4me3 signal in HMB boundary regions and outside HMBs. 
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Figure 2.3 Patterns of various histone marks near HMB boundaries. 
 

Given the enrichment for promoter histone marks at the HMB boundaries, we 

considered the possibility that the HMB boundaries coincide with or are near 

gene promoters. We excluded the HMB boundaries (5kb outside the HMB and 1 

kb inside the HMB) that overlapped with the transcription start site of any gene or 

pseudogene (including non-coding genes), based on Gencode annotation [70], 

and repeated the analysis of histone mark pattern. The remaining boundaries still 

showed a significant, but smaller than previously mentioned peak, at the HMB 

boundary. For instance, as shown in Figure 2.2c, H3K4me3 signal strength in 

3kb outside HMBs was lower than that in the regions immediately outside HMBs. 

The mean of normalized signals (see Methods) at the HMB boundaries was -

0.82, while at random 3kb regions outside of HMBs the mean signal was -1.01 

(Wilcoxon test p-value = 7.08e-42). This suggests that the observed enrichment 
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of histone modification at HMB boundaries is not entirely due to annotated 

promoters for genes or pseudogenes. 

2.2.3 HMB boundaries harbor distinguishing TF binding motifs. 

Given the enrichment for promoter-like histone marks near HMB boundaries, we 

assessed whether HMB boundaries are distinct from non-boundary regions as 

well as other known promoters in terms of their TF binding motifs. For this 

purpose, in addition to the HMB boundary regions we defined three sets of 

regions of 6kb length (see Methods): (1) Inside: regions within HMBs, (2) 

Outside: regions between HMBs, and (3) Promoters. All regions were non-

overlapping and in each pairwise comparison task, the GC content was similar in 

the two sets of regions (See Methods). For each 6kb region we constructed a 

932-dimensional feature set quantifying the fraction of CpG Island overlaps and 

the number of motif matches for each of the 931 vertebrate TF motifs from 

TRANSFAC, v2011 [18], using FIMO [71] as the motif search tool. We then 

applied Random Forest (RF) classifiers on the feature set to distinguish HMB 

boundaries from the other genomic region sets under study. We trained the RF 

using 70% of the data and noted the classification accuracy on the remaining 

30% of the data. The classification performances are shown in Table 2.1. 

Surprisingly, HMB boundaries can be distinguished from even other promoters 

with very high accuracy (F-measure ~ 0.978); Figure 2.4 shows the ROC curve 

corresponding to classification between HMB boundaries and promoters (ROC 

curves for the rest of the classification tasks are presented in Figure 2.5. We 

were able to recapitulate the RF results of HMB boundary versus promoter 

classification accuracy using Support Vector Machine (SVM) (F-measure ~0.97) 

– SVM is a classic tool for learning the combination of features of set of 

sequences that distinguishes the set from the control set. This suggests that the 

motif composition at HMB boundaries is distinct from those in promoter regions. 

We also obtained high discriminative performance when distinguishing HMB 

boundaries from regions inside HMBs (F-measure ~0.90).  
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 Sensitivity Specificity F-score AUC Size of Data 

Set 

Boundary vs. Inside 0.90 0.89 0.90 0.96 41425 

Boundary vs. Outside 0.84 0.81 0.83 0.91 41430 

Boundary vs. Promoter 0.98 0.97 0.98 0.99 31051 

Boundary vs. Promoter 

(SVM) 

0.97 0.97 0.97 0.99 31051 

Table 2.1 Performance of Random Forest classifier for HMB boundaries relative 
to other genomic regions. 

‘Inside’ and ‘outside’ correspond to regions inside or outside HMBs 
respectively. Random sampling of these regions was stratified to match the 
length and CG content of HMB boundaries (see Methods). The last row 
corresponds to a Support Vector Machine classifier used to replicate the Random 
Forest result on the HMB boundary vs. Promoter region classification. In all 
cases, 70% of the data used as training and 30% used for testing. Sensitivity, 
Specificity and F-score were noted at the optimal F-score. 
 

 
Figure 2.4 ROC curves for classifiers distinguishing HMB boundaries and 
promoters based on TF binding site motifs.  

(a) Using Random Forest classifier, (b) Using Support Vector Machine 
classifier. Each ROC curve is based on predictions on a held-aside set of 
genomic regions (see Methods). 
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Figure 2.5 ROC curves for classifiers distinguishing HMB boundaries and 
inside/outside of HMB. 

2.2.4 Positional distribution of discriminating motifs. 

Next, we assessed whether TF motifs that distinguish HMBs exhibit a positional 

bias relative to the HMB boundaries. To prioritize the motifs we used the Mean 

Decrease Accuracy as the measure of a motif’s relevance to a specific 

discrimination task (see Methods). Table 7.4 (Supplementary Data) lists the top 

20 most discriminating motifs in the classification of HMB boundaries against 

inside-HMB, outside-HMB, and promoters. Also, we only selected 46 motifs that 

were enriched above a threshold in the boundary (see Methods). For each of the 

46 motifs, we plotted the frequency of the motif in 100 bps windows within the 6 

kb HMB boundary regions, averaged over all HMB boundaries. Figure 2.6 shows 

the positional profile for the two most discriminating transcription factors ZFX 

(TRANSFAC id M01593) and SP1 (TRANSFAC id M00196) as an illustration; the 

profiles of all other motifs are included in Figure 7.1 in Supplementary Section. 

We next estimated for each motif the positional bias of binding sites within HMB 

boundaries by taking the most extreme (high or low) frequency of binding motifs 

among all 100 bp windows. The extreme frequencies of binding motifs were 

normalized and converted to Z-scores across all 100 bp windows in the 6kb 

regions. Z-score provides a standardized measurement of deviation from the 
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mean frequency of binding motifs across the 46 motifs. We found that the 

majority of extreme frequency was located near the HMB boundaries: within 6k 

block the median location is 5574 from the outside of the boundary with a 

standard deviation of 892. Z-scores for all motifs ranged from 2.35 to 5.94 with a 

mean of 3.48 (See Figure 7.1 in Supplementary Section for all positional profiles, 

the corresponding Z-score for both boundary and promoter). This suggests that 

discriminating motifs have a skewed positional distribution that exhibits extreme 

enrichment very close to the HMB boundaries.  

 
Figure 2.6 Positional profile of binding sites for ZFX and SP1.  

Number of occurrences in 100 bp windows as function of genomic 
distance to HMB or promoter start site for TFs ZFX_01 (a) and SP1_Q6 (b). The 
dotted vertical line indicates the location of HMB and promoter respectively. 
‘Outside’ and ‘inside’ correspond to 6 kb sized genomic regions outside or inside 
HMBs respectively. 
 

2.2.5 Characterization of the most discriminating Transcription Factor 
motifs. 

Some TFs are directly involved in histone modification and some other TFs are 

known to interact with chromatin modification enzymes [72]. We assessed 

whether the TFs whose motifs are most discriminative of HMB boundaries are 

involved in chromatin modification, either directly or by interacting with a 

chromatin modification enzyme. We first compiled a set of 492 genes annotated 
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as Chromatin Modification Enzymes (CME) from the ENSMBL database. For 

each of the 931 TRANSFAC motifs, we obtained the Ensemble Gene ID for the 

corresponding TF protein and then obtained the set of annotated proteins known 

to interact with the particular TF using the string-db R package, which is based 

on the STRING database of protein interactions [73]. For each pair of regions 

compared (say, HMB boundary versus Promoter), we assessed whether the 

most discriminating motifs and their interacting partners are enriched for CMEs. 

To do so we obtained the top 20, 25, 40, and 50 motifs according to Mean 

Decrease Accuracy (see Methods), and compared the prevalence of CMEs 

among these motifs and their interacting partners against the rest of the available 

TF proteins as background. For each comparison, we assessed enrichment of 

CMEs using Fisher’s Exact test. We found that the most discriminating TF motifs 

(Table 7.1-Table 7.3 from Supplementary Data) in HMB boundaries and their 

interacting partners were enriched for CMEs relative to all other regions (inside 

HMB, outside HMB, and promoter regions, Table 2.2). Encouragingly, the fold 

enrichment of CMEs increases monotonically as we restrict ourselves towards 

more significant TFs, from top 50 to top 20 motifs only. These results suggest 

that relative to inside and outside regions, the HMB boundaries not only harbor 

distinct motifs but these motifs could also be responsible for distinct epigenetic 

profiles at HMB boundaries.   

Classification Top 20 Top 25 Top 40 Top 50 
OR P-

value 
OR P-

value 
OR P-

value 
OR P-

value 
Boundary-Inside 1.66 2.8e-9 1.57 6.1e-8 1.48 7.5e-7 1.46 7.8e-7 

Boundary-Outside 1.61 3.0e-8 1.53 3.5e-7 1.50 2.4e-7 1.45 1.4e-6 

Boundary-
Promoter 

1.64 7.6e-9 1.56 1.2e-7 1.44 3.9e-6 1.45 1.1e-6 

Table 2.2 Enrichment of chromatin modification enzymes among the most 
discriminating TF motifs and their interacting partners. 

Odds ratio (OR) and Fisher test P-value for a chromatin modification 
enzyme enrichment test using the most discriminating (20, 25, 40 or 50) TF 
binding site motifs for each classification task (as described in Table 2.1). 
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Table 7.5 (Supplementary Data) lists the 135 CMEs that interact with the top 20 

enriched motifs in each of the three comparisons – boundary versus inside, 

outside, and promoter. Interestingly, these 135 CMEs include two DNA 

methyltransferases DNMT3A/B, and also P300, which is a well-known marker of 

regulatory enhancers. 

 

2.2.6 Hypo-methylated blocks may be informed by chromatin 
structure. 

Our analysis so far suggests that the HMB boundary regions possess 

distinguishing genomic and epigenomic characteristics, which may underlie their 

role as nucleation or termination of the methylation alteration. In addition, it is 

likely that the spread and confinement of epigenomic alteration within HMBs may 

be informed by preexisting chromatin organization and structure. This is 

suggested by a previous study that showed a significant overlap between cDMRs 

and LADs [20].  

Based on Hi-C assay, which provides quantitative evidence of physical 

interactions between genomic loci, previous work has identified the so-called 

Topological Associating Domains (TAD), which are mega-base-sized genomic 

regions with a much greater interactions within the regions relative to across 

regions. TADs are relatively conserved across cell lines and species, and thus 

represent an underlying structural backbone of the chromatin. Based on 3,127 

TADs reported in [68], we measured the proximity of each TAD boundaries to the 

closest HMB boundary, and compared the resulting positional distribution with 

that for a control set of randomly selected genomic loci. TAD boundaries are 

significantly closer (~43kb) in genomic distances to a HMB boundary compared 

with the expected ~71kb (ratio of mean = 3.8, ratio of median = 1.7, Wilcoxon test 

p-value = 5.4e-55, Figure 2.7a).  
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Figure 2.7 Hypo-methylated blocks associate with topological domains in the 
chromatin structure.  

(a) Boxplot of genomic distance (in bases) between TAD boundary 
(obtained from hESC) to nearest colon cancer HMB boundary. Distances 
between TADs and random 6 kb genomic regions are included as background. 
(b) Boxplots of average Hi-C interaction for bins within HMBs in hESC, with 
average interactions randomly generated genomic regions of similar size and GC 
content included as background. (c) same as (b) and for IMR90 cell line. 
 
Because TADs were identified based on a statistical overrepresentation of intra-

region interaction, we also directly assessed using the Hi-C data, whether HMBs 

show an enriched intra-block interaction compared to inter-block interactions. 

Unfortunately, Hi-C data is not available for human colon tissue. Based on the Hi-

C data in hESC, and hIMR90 cell line (yuelab.org/hi-c/download.html), as shown 

in Figure2.7b-c, we found a significantly greater interactions within HMBs 

compared to within random blocks controlled for length (For hESC: mean_HMB = 

32, mean_Random = 27, Wilcoxon test p-value = 3.2e-38. For hIMR90: 

mean_HMB = 21.8, mean_Random = 18.3, Wilcoxon test p-value = 4.1e-34). 

Overall, these analyses suggest that long domains of altered methylation in colon 

cancer may in part be informed by the underlying chromatin structure of the 

normal cell. 

2.2.7 CTCF binding sites coincide with the H3K4me3 signal in HMB 
boundaries. 

Among its numerous roles, CTCF is known to act as insulator by restricting the 

spread of heterochromatin, and is also involved in the maintenance of three 
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dimensional chromatin conformation in part by stabilizing long-distance 

interactions [74]. Consistent with the role of insulator, CTCF binding sites are 

enriched between TADs [68]. We assessed whether CTCF binding sites are 

enriched near HMB boundaries. We downloaded the in vivo CTCF binding sites 

for colon cancer tissue from CTCFBSDB 2.0 database (insulatordb.uthsc.edu/). 

We found that HMBs were often bounded by CTCF binding sites. The frequency 

of CTCF in the 6 kb HMB boundaries (21%) was significantly higher than random 

blocks inside (14%) and outside (18%) HMBs, where the total number of regions 

in each set was ~20k. Moreover and interestingly, the HMB boundaries with a 

CTCF binding site had significantly higher levels of H3K4me3 signal than the 

boudaries without a CTCF binding site (ratio of mean = 1.4, Wilcoxon test p-value 

= 3.7e-24). Overall, this suggests that HMB boundaries are enriched for CTCF, 

as is expected for structural chromatin domains, but the presence of CTCF is in 

fact linked to the promoter-like characteristic of HMB boundaries. 

2.3 Methods 

2.3.1 Data processing: Hypomethylated blocks 

We obtained coordinates for 13,540 reported long hypomethylated block (HMB) 

in colon cancer with an average and median size of 144 kbps and 39.5 kbps, 

respectively [20].  We define the boundary of an HMB as its 5kb flanking regions 

outside the HMB plus an additional 1kb inside the HMB. The choice of 5kb for the 

flanking region is arbitrary and 1kb inside is included to offset a lack of precision 

in localizing HMB boundary (e.g., Supplementary Figure 10b of [20]).  

2.3.2 Random Forest based discrimination of HMB boundaries 

We used Random Forest classifiers [75] to distinguish the resulting 27,080 6-kb-

long HMB boundary from other genomic regions:  (1) inside HMB - randomly 

selected 6kb block from inside of the HMBs, excluding HMB boundaries; (2) 

outside HMB - randomly selected 6kb regions from outside of the HMBs 
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excluding HMB boundaries; (3) promoter - randomly selected 6kb promoters for 

protein-coding genes, including 5 kb upstream and 1 kb downstream of the 

transcription start site using the Ensembl annotation (www.ensembl.org, version 

69). Given two sets of sequences (e.g., HMB and inside-HMB), and a set of 

characteristics (i.e. features) describing each sequence (e.g., putative binding 

sites for a set of transcription factors), the Random Forest classifier learns the 

combinations of features that distinguish one set of sequences from the other. 

When given an unforeseen sequence and its features, our Random Forest 

classifier can determine the set to which the sequence belongs to based on its 

features. The more distinguishing the features of the two sequence sets are (e.g., 

HMB and inside-HMB), the higher the accuracy with which our classifier can 

determine the set to which a new sequence belongs. To design the right control 

while building the Random Forest classifier, in each sequence set we selected 

the same numbers of regions for each pairwise classification task, while 

controlling for the GC content. For instance, when classifying between HMB 

boundaries and promoters, we selected two sets of regions that are non-

overlapping and with similar GC content distribution. Finally, each set of 

sequences were composed of ~20k sequences. 

As feature sets in the Random Forest classifiers, 931 motifs 

corresponding to vertebrate TFs were obtained from TRANSFAC v2011 [76]. 

Putative motif binding was determined in each 6kb region using the FIMO (Find 

individual Motif Occurrences) software [71]. Each 6 kb region was represented as 

a 931-dimensional feature vector where the measurement of each dimension is 

the count (0 or greater) of binding sites of each corresponding motif within the 

6kb region. To build each classifier, we used the implementation from 

‘randomForest’ package [77]; we used the default parameter setting except for 

the number of features (m) to be sampled randomly at each split of a decision 

tree. The default value of m is typically one-third of total number of features. 

However, we choose m=92 after tuning the random forests for optimal 

parameters. While tuning, the classifier was built with default m, and the out-of-
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bag error was estimated to update the value of m. In a random forests classifier, 

each tree was grown to the largest extent possible, i.e. without any pruning and 

to decide the classification of an unseen sequence the majority vote of the trees 

was considered. 

We assessed the classification accuracy using a 70%-30% split of the 

data into training and test sets, chosen randomly, for each of the pairwise 

classification tasks distinguishing HMB boundaries from the three sets of regions: 

inside HMB, outside HMB, and promoters. The classification accuracies are 

reported using both area under curve (AUC) of the receiver operating curve and 

harmonic mean of precision and recall (F-measure). As an additional robustness 

measure, we also performed the HMB boundary versus promoter classification 

task using Support Vector Machine (SVM) implemented in R statistical package 

(www.r-project.org), based on 10-fold cross-validation. 

2.3.3 CpG island overlap as an additional feature in the Random 
Forest Classifiers 

CpG islands tend to exhibit increased methylation in colon cancer. Consequently, 

HMBs are frequently `broken' by CpG islands [20], and thus their boundaries 

frequently overlap CpG islands. Therefore, motifs can be found more frequently 

in HMB boundaries than inside or outside HMBs simply due to the presence of 

CpG islands. We used the fraction of the 6kb region that overlaps any of the 

28,681 CpG islands annotated in the UCSC genome browser (genome.ucsc.edu) 

as an additional feature in the classification task, in addition to controlling for GC 

content in the classification task. 

2.3.4 Identifying most discriminating motifs 

We determined the importance of each motif in distinguishing between region 

types using Mean Decrease Accuracy obtained from the Random Forest 

classifier. Mean decrease accuracy of a feature measures the reduction in 

classification error upon including the corresponding feature in the model, and 
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thus represents the importance of the motif in distinguishing HMB boundaries 

from a specific control region set; the higher the mean decrease accuracy the 

more important the feature is. We also determined enrichment of each motif in 

HMB boundaries relative to each control set (inside, outside, or promoters) using 

Fisher’s exact test. The motif is considered as enriched (depleted) in the HMB 

boundaries relative to the control when the corresponding odds ratio is greater 

than 2 (less than 0.5). 

2.3.5 Epigenetic data processing 

Genome-wide profiles of six histone marks (H3K4me1, H3K4me3, and H3K9ac, 

H3K9me3, H3K27me3 and H3K36me3) in normal colon mucosa tissue were 

downloaded from the Roadmap Epigenetics Project website 

(www.roadmapepigenomics.org/). We calculated average signal for each histone 

mark (at 20bp resolution as provided by the Roadmap project) within each 6kb 

region in HMB, inside HMB, outside HMB, and promoter region. ChIP-Input was 

also obtained for normalization. To get the normalized values, we took the log 

ratio of methylation levels of histone marks and their corresponding ChIP-Input at 

the base-pair resolution. 

2.3.6 Chromatin interaction measurement in hypomethylated blocks 

To obtain the chromatin interaction information, we used Hi-C experimental data, 

which provides the spatial proximity information between pairs of different 

genome segments [78]. We obtained Hi-C data for human embryonic stem cell 

(hESC) and lung fibroblasts (hIMR90) cell lines from [68] as normalized 

interaction matrices with 40 kb bin size denoting the frequencies of physical 

contacts among pairs of genomic loci at a genome-wide scale. We mapped those 

40 kb bins onto the HMBs and disregarded partially mapped blocks so HMBs 

smaller than 40kb were excluded from the analysis. We then measured 

interaction strength within each HMB as the sum of all pairwise bin interactions 

within the HMB divided by the number of 40 kb bins within the HMB. As a 
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negative control, the same was done for randomly chosen non-overlapping 

genomic regions with same lengths as HMBs.   

2.3.7 Measuring Proximity to Topologically Associating Domains 

We downloaded the locations of 3,029 topological associating domains (TADs) 

from [68] for hESC cell lines. For each boundary of the TAD we obtain the 

minimum distance to a HMB boundary. As a control, we selected 13k random 

non-overlapping blocks of same sizes as HMBs. As for real HMBs, we also 

obtained the minimum distance of each TAD boundary to a random block 

selected for control.  

2.3.8 Fisher’s exact test: calculating enrichment/depletion of motif in 
different regions and finding motif interaction with chromatin 
modification enzymes (CME). 

The contingency table for testing enrichment/depletion of each motif is shown 

below. 

 Positive Negative 

Presence  a c 

Absence b d 

 

a (respectively b) denotes the number of positive examples in which a motif is 

present (respectively absent). Similarly, c (respectively d) denotes the number of 

negative examples in which a motif is present (respectively absent). 

The contingency table for testing interaction with CME is shown below. 
 Selected 

Motifs 

Other 

Motifs 

Interact with CME a c 

Do not interact with a CME b d 
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a (respectively b) denotes the number of selected motifs that themselves are 

CMEs or do not interact with a CME (respectively all others). Similarly, c 

(respectively d) corresponds to the control for testing CMC interaction using all 

the other motifs that themselves are not CMEs. 

2.4 Discussion 

In this study, we have characterized the regulatory landscape of large regions of 

methylation loss in colon cancer. We have found that the putative binding sites 

for specific TFs potentially involved in chromatin modification are distinguishing 

features of the DNA sequence at HMB boundaries. We also found that while 

activating histone marks common to promoters are enriched in HMB boundaries, 

HMB boundaries still show a distinct pattern of TF motif profile relative to known 

promoters. Finally, we found that the specific domains where HMBs occur are 

reflective of general chromatin organization of the normal cell. 

Based on our qualitative assessment, we found that TFs enriched in HMB 

boundaries include those involved in demethylation, cell proliferation and cell 

cycle, hallmarks of cancer. For instance, for the most discriminative motif Sp1, 

high expression of Sp1 is known to disrupt cell cycle. Sp1 deregulation might be 

beneficial for tumor cells and its overexpression is known to induce apoptosis of 

untransformed cells [79]. Other members of Sp TF family also play roles in 

metastasis and growth of different tumor types [80]. In our analysis, multiple TFs 

from this family were found to be enriched in HMB boundaries. Zfx presents 

another illustrative example, as it controls the self-renewal of embryonic and 

adult hematopoietic stem cells [81]. Zfx also controls BCR-induced proliferation 

and survival of B lymphocytes [82]. Another detected TF, FoxO is central to the 

integration of growth factor signaling, oxidative stress and inflammation, and is 

involved in tumor suppression [83] and DNA demethylation process in B-cell 
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development [84]. Finally, TF Zfp281 is known to play a role in cell pluripotency 

[85], chromatin remodeling [86], and inhibition of nanog auto-repression [87]. 

Loss of methylation in large domains has been identified as a consistent and 

stable mark in solid tumors [20], [88]. While the degree of methylation loss 

increases with tumor progression, intra-sample variability in DNA methylation and 

gene expression is greater within these domains [88]. These findings point to a 

general loss of epigenomic and transcriptomic stability that is essential to the 

normal behavior of the cell. The co-localization of these domains with lamin-

associated domains [20], with TADs (as found in this study), and the enrichment 

of CTCF binding in the boundaries of these domains suggest that a loss of 

chromatin organization is concomitant with this loss of epigenomic and 

transcriptomic stability.  

We note a few limitations of our analyses. Our analyses are based on 6 kb region 

flanking the HMB boundary. This choice, while reasoned, is somewhat arbitrary. 

Although our analyses suggest that HMB formation is associated with specific 

genomic, epigenomic, and chromatin features, it does not clarify the causality 

leading from TF binding to hypomethylation and ultimately to the previous 

observed aberrant gene expression in HMBs. While we observed specific 

patterns of certain epigenomic marks at HMB boundaries, these may be 

ultimately a reflection of the genomic characteristics [89]. Moreover, our analysis 

is based on putative binding site and not based on in vivo binding data for the 

TFs, which are currently not available for a majority of TF.  Nevertheless, our 

analyses do suggest a potential link between specific genomic marks and HMB 

boundaries, which require future experimental studies of the underlying 

mechanisms. 

Taken together, our analyses suggest that the overall architecture of HMBs is 

guided by pre-existing chromatin architecture, while their creation in cancers may 

be caused by aberrant activity of promoter-like sequences at the boundary. Our 
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results are consistent with a model where a loss of chromatin organization and a 

concomitant loss of epigenetic stability make previously inaccessible TF binding 

sites accessible for proteins involved in chromatin modification as well as cellular 

fate, whose binding sites are enriched within domains of inaccessible chromatin 

where HMBs reside. The binding of specific DNA binding factors at HMB 

boundaries may further participate in methylation loss. 
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3 Heterogeneity of Transcription Factor binding 
specificity models 

3.1 Background and Related works 

Transcriptional regulation is mediated by the binding of transcription factors (TF) 
to specific DNA elements in the genome [90], [91]. While the in vitro binding 
specificity of many human TFs has been determined, it is well-recognized that 
the in vitro binding specificity of a TF is not sufficient to its explain condition-
specific in vivo binding [92], [93]. This realization has spurred investigations of 
additional determinants of in vivo binding, such as heterogeneity of TF’s binding 
motif [94], broader sequence context and inter-position dependence [95], 
homotypic clusters of binding sites [96], cooperative binding of the TF with its 
partners [97], [98], condition-specific chromatin context [98]–[101], and local DNA 
properties [96], [99]. While, overall, both local genomic and epigenomic features 
are deemed important in determining in vivo occupancy of a TF, recent reports 
suggest that in vivo binding of a TF can be accurately predicted based solely on 
the genomic signatures near the binding site without relying on the epigenomic 
context [96], [102]; this is consistent with additional recent reports, showing that 
the epigenome itself is encoded by the genomic context [89], [103].  
Prior models of in vivo TF binding have shown that the genomic context of a 
binding site effectively encodes the condition-specific in vivo binding specificity 
[95], [102]. This can be explained by the substantial plasticity of a TF’s interaction 
with other TFs’ and the modular nature of a TF binding co-operativity [104]. The 
availability of specific combinations of interacting TFs can then guide in vivo 
binding to specific loci where the binding site of the interacting TFs are present in 
close proximity to each other, along with the availability of corresponding TFs 
[94]. 
Previous sequence-based modeling of in vivo TF binding was performed in a cell 
type-specific fashion [95], [102]. These cell type-specific models exhibit 
substantial inter-cell type heterogeneity, which is expected, given the variation in 
the availability of the potentially interacting TFs. In particular, Arvey et al. 2012 
explicitly modeled potential interactions of the primary TFs with multiple 
additional co-factors, while general sequence properties were used as features in 
Mathelier & Wasserman 2013. These previous approaches, however, build a 
single model for a cell type, thus implicitly assuming a homogeneous cell type-
specific TF binding model. As such, previous models have not investigated intra-
cell type model heterogeneity. Intra-cell type TF binding heterogeneity is 
expected for the same reasons as inter-cell type heterogeneity. Moreover, in 
many instances, a binding specificity model trained in one cell type can predict a 
subset of in vivo binding in another cell type [102], suggesting that binding 
models, or parts thereof, are shared across cell types.  
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The motivation of the following chapter is to evaluate the heterogeneity of 
sequence-based cell type-specific in vivo TF binding models, and the extent to 
which binding rules (sub-models) are shared across cell types. We have 
developed an ensemble model-based approach (TRISECT) to reveal both cell-
specific and cell-independent rules for the in vivo TF binding. Application of 
TRISECT to 23 TFs, each with genome-wide in vivo binding data in 4 – 12 cell 
types strongly suggests that the cell type-specific binding rule for a TF consists of 
multiple sub-models, a subset of which are shared across cell types, and points 
to shared functional underpinnings. This refinement to our understanding of the 
genomic context of in vivo binding specificity can facilitate future investigations of 
transcriptional regulation and its genetic determinants.  

3.2 Results 

3.2.1 TRISECT – Ensemble model of TF binding  

An illustration of the TRISECT analysis pipeline is presented by Figure 3.1A and 
a brief description of the pipeline is provided below (for additional details see 
Methods).  
Overview. As the first step, we developed an ensemble model (EMT) to 
discriminate a TF’s in vivo bound genomic loci (foreground) from non-bound sites 
(background), balancing model complexity (number of sub-models in the 
ensemble) against the cross-validation classification accuracy. Given a set of 
genome-wide loci, bound by a specific TF, we first identified sets of foreground 
and background (control) sequences. The foreground set consisted of 100 bp 
sequences centered at the ChIP-seq peak. As a stringent background 
sequences, as done previously [102], we used 100 bp regions ~200 bp away 
from the peak location. We considered a variety of feature sets for discrimination 
(see below). The EMT model was trained using the Adaboost method where 
each sub-model is a decision tree (Figure 3.1B) built from a bootstrap sample 
[105]–[107]. Next, given a TF’s EMT models for all cell types, each cell type-
specific sub-model was represented by a point in a d-dimensional space, with d 
corresponding to the number of relevant features. We constructed clusters of the 
data points for a TF (representing the sub-models across all cell types), using k-
Nearest Neighbors algorithm (k-NN). The sub-models within a cluster represent 
binding rules that are similar within or across the cell types.  
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Figure 3.1 Overview and benchmarking. 
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(A) Schematic of TRISECT pipeline. Color indicate different binding rules or sub-
models and rows (a, b, c) represent different cell types. Green, pink and yellow colors 
indicate cell type-specific sub-models. Each ensamble model (EMT) is represented by a 
bucket of sub-models (top right). Stars and diamonds with the same color denote 
corresponding sub-models and data points after transformation into reduced feature space, 
respectively. Each sub-model is represented by a decision tree. The sub-models across cell 
types are clustered. Cyan is common between cell types a and b, light-brown is common 
between cell types b and c, and purple is common across all three cell types. (B). An 
example sub-model taken from the Interaction model for CEBPB-Gm12878. Each node in 
the tree is labeled with the TRANSFAC id, corresponding gene name and the threshold at 
which the feature is split. Two binding rules are highlighted indicating TF binding and no TF 
binding. In (C) and (D) same color is used to denote the models using the same features. 
(C). Comparison of accuracy between all pairs of feature-sets. Nodes are labeled with 
feature type and mean accuracy. Edges are labeled with “>” (greater) or “<” (less) sign and 
two sided Wilcoxon p-value. (D) Accuracy (ROC-AUC) distribution of EMT for K-mer/K-
merRC/Interaction (1k) and those of kmer-SVM models. 
EMT Feature sets. We considered three feature sets for the 100 bp foreground 
and background sequences. The first feature set, K-mer, was comprised of 6-mer 
frequencies within each 100 bp sequence (total 4096 features). The second set, 
K-merRC, consisted of unified 6-mers and their reverse complement frequencies 
(total 2080 features. The third feature set included the binding scores for 981 
vertebrate TF motifs from TRANSFAC 2011 database. We defined the models 
built from the third feature set as the Interaction model, as the features represent 
potential TFs that might contribute to the binding of the reference TF (The TF for 
which EMT was built). For Interaction models, we used four thresholds for motif 
match in the PWMSCAN tool [108] where a threshold denotes the background 
match frequency – one hit in every 1kb, 2kb, 5kb, and 10kb.  
EMT Training. We applied TRISECT to 23 TFs, each with ChIP-seq data in 4 to 
12 cell types (a total of 135 TF-cell pair EMTs, Table 7.6 from Supplemental 
Data). A TF was included in this study if (i) the TF has narrow-peak data for at 
least 4 cell lines with at least 4000 bound sites in each cell line, and (ii) the TF 
has an established position weight matrix (PWM) in TRANSFAC 2011 database. 
See Figure 7.2 of Supplemental section for TF web-logos and Table 7.7 from 
Supplemental Data for other information about each TF including family names. 
EMTs were trained using 75% of the full dataset and performance assessment of 
EMTs was conducted using the remaining 25%. Model details such as the 
number of sub-models, model size etc. are provided in Table 7.8 from 
Supplemental Data.  
Each EMT includes multiple decision trees and each path from root to leaf in an 
estimated decision tree sub-model captures one binding rule that asserts how a 
combination of motifs and their binding affinities contribute to the target TF’s 
binding. As an illustrative example, Figure 3.1B shows an arbitrarily selected sub-
model of CEBPB in the Gm12878 cell line. Two of the binding rules are 
“presence of IRF8 with score greater than 2.08 and presence of NFATC4 with 
score of less than 2.3” - when these rules are met by the reference TF, CEBPB, 
is likely to bound. Whereas “presence of IRF8 with score greater than 2.08 and 
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presence of NFATC4 with score of greater than 2.3” hinders CEBPB binding. 
Supplemental Note 1 and Figure 7.3 of Supplemental section include further 
interpretation of a sample sub-model (decision tree), a summary of how the 
reference TF’s motifs are distributed among the sub-models, and a discussion of 
model robustness for various parameter choices. 
EMT performance. Model accuracy was quantified using Area Under the 
Receiver Operating Curve (ROC-AUC) on the 25% test set (Figure 3.1C, Figure 
7.3C of Supplemental Data). We compared the model performances, using 
Wilcoxon test across 135 TF-cell type pairs for the 6 sets of EMTs (K-mer, K-
merRC, and Interaction at 4 thresholds (namely, Interaction (1k), Interaction (2k), 
Interaction (5k), Interaction (10k)) (Figure 3.1C). We found that K-merRC 
significantly outperforms the K-mer model (two sided Wilcoxon p-value 5.3 x 10-

20). This is consistent with the fact that TF binding occurs on double-stranded 
DNA and as such does not have directionality (except in relation with other 
interacting TFs). Therefore, unifying each k-mer with its reverse complement is 
more representative of the biological determinants of TF binding. Following this 
line of reasoning, PWMs can provide an even better abstraction of DNA binding 
specificity and, as expected, the PWM-based models outperform the k-mer-
based models, two sided p-value 4.58 x 10-6 when comparing K-merRC to 
Interaction-1k. Therefore, for sub-model clustering and other downstream 
analyses we selected Interaction (1k)-based EMT (heretofore referred to as 
Interaction model).  
Comparison with previous model. Next, we compared EMT model (using K-
merRC and Interaction) with previously published model based on Support 
Vector Machine (kmer-SVM) [102]. In kmer-SVM, the authors considered both k-
mers and their reverse complements of size 8 with minimum matches of size 6. 
Applying the kmer-SVM pipeline to our dataseset, the resulting ROC-AUC for all 
the TF-cell pairs are listed in Table 7.9 from Supplemental Data. Figure 3.1D 
suggests that Interaction model performs favorably relative to kmer-SVM. 

3.2.2 Intra-cell type heterogeneity and inter-cell type sharing of 
binding rules  

Given the favorable performance of EMT, and its architectural differences to 
kmer-SVM, we next assessed whether EMT was better able to exploit the 
heterogeneous binding rules across the genome, as dictated by different 
combinations of co-occurring and co-regulated (i.e. potentially interacting) TFs. 
Conceptually, a ‘binding rule’ refers to the specific combination of motifs (along 
with their importance) aiding in the binding of a reference TF. While a general 
binding rule may be difficult to state concisely, it can be operationally defined in 
terms of a collective ensemble of cell type-specific binding rules. Each decision 
tree (a sub-model) operationally defines a binding rule, in terms of presence of 
specific motifs above/below a certain binding score. Furthermore, in general, the 
relative importance of features decrease with increasing depth of the node in the 
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decision tree, with the first few levels contributing a substantial portion of the 
decision. Although a decision tree represents a statistical model for TF binding, 
by applying strict thresholds for motif scores and considering only the top few 
layers, in principal, a concise ‘binding rule’ can be derived, albeit, at a loss of 
information. For a specific TF and cell type combination, we captured the binding 
rules by a set of sub-models (decision trees). Then to investigate commonality 
and uniqueness of binding rules for a TF across cell types, we pooled all sub-
models from cell-specific EMTs, represented them by feature importance and 
clustered them using k-NN clustering algorithm. Next, we constructed a cluster-
membership matrix mapping the number of sub-models originating from different 
cell types within each cluster. As an example, Figure3.2A-B shows the cluster-
membership matrix for the TF ATF3 for cluster sizes 16 and 20. The matrices 
show both cell type-specific (Figure3.2A, cluster #6) and ubiquitous (Figure3.2B, 
cluster #20) clusters. Examining the cluster mapping for all TFs (Figure 7.4 of 
Supplemental Data), a wide range of patterns emerge. For certain TFs, many 
clusters tend to map to single cell type, suggesting the cell type-specific binding 
modalities of these TFs (EP300, JUN), while other TFs have ubiquitously 
applicable binding rules, such as YY1 and TBP, suggesting the cell type 
independent binding rules and, presumably, function. Importantly, many clusters 
consist of sub-models from multiple, but not all, cell types. We ensured that inter-
cell type sharing of binding rules is not simply due to the shared binding loci 
across cell types (Supplemental Note 2 and Figure 7.5 of Supplemental Data). 
Subsequent analyses are based on k = 16; the reason for this choice is 
discussed in Supplemental Note 3). 

 

Figure 3.2 Assessment of TRISECT. 

(A&B) Cluster membership matrix using k-Nearest Neighbors algorithm (k-NN) where 
k=16 in (A) and k=20 in (B). Row represents clusters and columns represent cell types. Each 
element in the matrix denotes the number of sub-models in the cluster from each cell type. 
Some clusters consist of sub-models from multiple cells (cluster#20 in B), while some other 
consist of sub-models from a single cell type (cluster#6 in A). (C) Functional and Expression 
coherence of sub-model clusters: fraction of multi-cell clusters found to be coherent using k-
Nearest Neighbors algorithm (k-NN). Y-axis is the coherence percentage. Among the 
conditions (X-axis), mapped.targets denotes when genes are assigned to cluster based on 
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TRISECT pipeline, random.targets indicates the clusters consisting of random genes among 
all targets and random.genes indicates the cluster consisting of random genes. Here, 
expression coherence was defined with using an expression threshold of log2CPM>=1, i.e. a 
gene is considered as ON when the log2CPM>=1. The horizontal line (blue color) denotes 
the coherence level of 5% of the total multi-clusters. 

 
Previous research [109] showed that so-called ‘zinger’ motifs are enriched in 
ChIP-seq regions of several unrelated TFs. We conducted additional analysis to 
ensure that our clustering results are not affected by the zinger motifs 
(Supplemental Note 4 and Figure 7.6 of Supplemental Data). Moreover, it is 
possible that EMT can falsely yield multiple sub-models, even in the absence of 
heterogeneity, and those sub-models can be falsely clustered. By looking at the 
clustering tendency of the sub-models, we examined the heterogeneity across 
sub-models and found that it is possible to separate the sub-models into distinct 
clusters. (Supplemental Note 5 and Supplemental Figure 7.7B-C).  
Next, we assessed the functional underpinning of shared binding rules across 
cell types (see Methods for details). Specifically, we assessed whether two co-
clustered loci from different cell types (i.e., those obeying similar binding rules) 
are functionally associated relative to loci from the same cell type, but belonging 
to different clusters, indicating that they are obeying different binding rules. We 
measured a cluster-specific score for each binding sequence, and assigned each 
binding site in each cell type to one or more clusters. As per convention, we 
assigned each binding site to the nearest gene as a potential transcriptional 
target; 88% of the target genes were within 50 kb from the binding site (median 
distance 4.5 kb) (Figure 7.7G of Supplemental Data). To assess functional 
coherence of clusters, we defined two metrics: expression coherence and 
pathway coherence. Expression and pathway coherence are measured as the 
fraction of gene-pairs in a cluster (regardless of cell type) that are respectively 
co-expressed, or belong to same pathway. We assessed the significance of 
coherence using two sided Fisher's exact test. As shown in Figure3.2C, ~40% 
(~18%) multi-cell type clusters show significantly higher (p-value < 0.05) 
expression-coherence (pathway-coherence) than the background (expectation is 
5%) and 5.5% of the clusters show both significant expression and pathway 
coherence (called dual coherence). Applying a more stringent p-value threshold 
(< 0.001), these coherent percentages are 35% (expression), 10% (pathway) and 
4% (dual). Moreover, the expression and pathway coherence are highly 
correlated across clusters (spearman correlation=0.56, p-value=0.02). As a 
negative control, we conducted the same set of tests for random clusters with the 
same size as the real clusters. In both cases, the coherence was no greater than 
the null expectation (Figure3.2C).  
Taken together, these analyses support the existence of heterogeneous sets of 
TF binding rules governing the in vivo binding and suggests that a subset of rules 
are shared across cell types with functional implications. 
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3.2.3 The role of interaction partners in a TF’s binding occupancy  

By using 981 PWMs for a comprehensive set of vertebrate TFs as the basis for 
features, EMT implicitly incorporates the contributions of interaction partners in 
predicting in vivo binding of the reference TF. To quantify the contribution of 
putative interacting motifs, we repeated the EMT training and testing using only 
the PWMs corresponding to the reference TF. Individual TFs are represented by 
multiple motifs in the literature (ranging from 1 to 8, with a median of 3; Table 7.7 
from Supplemental Data), many of which differ substantially from each other, 
suggesting potential functional implications [110], [111], e.g. 75% of the intra TF 
PWM-pairs have less than 85% PWM-similarity, in contrast to 99% of inter TF 
PWM-pairs [112]. We refer to these motifs as the reference motifs, and, in 
contrast to the Interaction model, the EMT model utilizing only the reference 
motifs are referred as NonInteraction model. Figure 7.8 from Supplemental Data 
shows the prediction accuracies for the Interaction and the NonInteraction 
models; the diagonal elements represent the cross-validation accuracies within a 
cell type, while the off-diagonal elements represent the accuracy when EMT is 
trained on one cell type (row) and tested on another (column). Comparing the 
within cell type cross-validation accuracy for the Interaction and NonInteration 
models (Figure 3.3A, Figure 7.8 of Supplemental Data). The Interaction models 
have higher predictive accuracy than NonInteraction models, which is consistent 
with the expectation that in vivo binding of a TF relies on interactions among 
several TFs.  

 
Figure 3.3 Association between the number of interaction partners and model-accuracy. 
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In plots (A) and (C) Interaction and Noninteraction models are indicated with green 
and purple respectively. (A) Comparison of cross-validation prediction accuracy for 
Interaction and Noninteraction models. (B) The trend of model accuracy with increasing 
sequence size for TF ZNF143 (selected arbitarily for illustration). Models from each cell line 
are indicated with different colors. (C) Comparison of model variability in log scale (variability 
of cross-cell type performance for each model) for Interaction and Noninteraction models. (D) 
Distribution of the fraction of test sequences falling into one of the four categories: 
Overlapped_true denotes correctly and overlapped_false incorrectly classified sequences 
having at least 50% overlap between training sequences in one cell type and test sequences 
in another cell type. Nonoverlapped_true (nonoverlapped_false) denotes correctly 
(incorrectly) classified sequences that do not overlap with any sequence in the training set. 
Next, we conjectured that in the Interaction model, allowing for greater numbers 
of partners enables learning of more complex binding rules, leading to increased 
binding prediction accuracy. We therefore assessed the effect of the length of the 
region flanking the binding site on prediction accuracy (see Methods). We note 
that beyond 100bp, due to narrowing the gap between the foreground and the 
background region, the discrimination accuracy is expected to decrease. Despite 
this, in several cases (Figure 3.3B & Figure 7.9 of Supplemental Data), the 
increase in ROC-AUC beyond 100bp suggests that a larger context may be 
necessary in these cases to capture the binding rules. Nevertheless, we chose a 
sequence context of 100bp to make our model comparable to the previously 
published kmer-SVM [102]. 
For a given TF, we also quantified the variability of the model accuracy in 
different cell types (see Methods). We define cross-cell type prediction accuracy 
as the performance of a model from one cell type tested on another cell type. For 
these performance accuracy of models, we expect greater variability for the 
models relying on cell type-specific interaction partners than the models only 
relying on reference motifs. Our analysis supports this expectation, suggesting 
that the sequence information required for in vivo binding is encoded by the TF’s 
own motifs which does not vary substantially across cell types (Figure 3.3C). 
Conversely, the role of context and interaction-dependences in TF binding varies 
substantially across cell types (Figure 3.3C). However, the small variability in 
cross-cell type prediction accuracy when using the NonInteraction model is likely 
due to the heterogeneity of TF binding motif. We quantified the inter-motif 
divergence for each TF as either the number of annotated motifs, or the motif-
divergence (defined over all motifs-pairs) (see Methods). We found that the 
performance variability of NonInteraction models is positively correlated with both 
measures of motif divergence (Spearman correlation=0.63, 0.67; two sided p-
value=1.2 x 10-3, 6.3 x 10-4 respectively). 
In Figure 7.8 of Supplemental Data, the off-diagonal elements for the Interaction 
model shows higher cross-cell type performance relative to the same elements 
for NonInteraction model. This higher performance suggests that the binding 
‘rules’ are shared between cell types. We ensured that the high cross-cell type 
performance is not simply due to overlaps in the genomic loci used to train and 
test the model between cell types, i.e., the genomic loci on which the model was 
trained in one cell type does not substantially overlap with the loci tested in 
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another cell type. Overall, across TFs and cell type pairs, the fractional overlap in 
genomic loci ranges from 0 to 10%, with a mean and median of ~4% (Figure 
3.3D). This suggests that it is the binding rule, independent of specific sequence 
instances, that is shared across cell types. 
Furthermore, we found that when using the Interaction model, the cross-cell type 
accuracy is symmetric. In other words, a high (low) accuracy in cell type Y using 
EMT trained on cell type X implies a high (low) accuracy in cell type X using the 
model learned from cell type Y. To demonstrate this symmetry, we normalized 
the off diagonal elements of cross-cell performance matrices by the reference 
AUC by diving each row by the corresponding diagonal ROC-AUC. Then we 
showed in Figure 3.4A, the lower and upper diagonal ranks are highly correlated 
(Spearman correlation of upper and lower triangle of resulting matrices is 0.68, 
two sided p-value 9.5 x 10-53, Figure 3.4A), supporting our claim that the 
interaction-dependent (therefore genomic-context dependent) binding rules are 
shared across cell types. In stark contrast, there is a lack of symmetry in cross-
cell prediction accuracy when NonInteraction model is used (Spearman 
correlation = 0.04, two sided p-value 0.4, Figure 3.4B and Figure 7.10 of 
Supplemental Data).  

 
Figure 3.4 Comparing cross-cell type performance matrix of Interaction and Noninteraction models. 

(A) Ranks of the normalized symmetry of upper and lower diagonal matrices of 
cross-cell type performance. Interaction and Noninteraction models are colored green and 
purple respectively. (B) In each matrix, row represents the cell on which the model is trained 
and column represents the cell from which the test data is used. Diagonal elements are 
within cell type performance and each matrix is color coded according to the extent of the 
non-diagonal element symmetry. The symmetry is calculated by normalizing each row by the 
reference model (diagonal element). 
In summary, our analyses suggest that the cell type-specific TF interactions play 
critical role in determining the cell type-specific in vivo binding, and EMT reveals 
some of the interactions underlying the cell type-specific binding of a reference 
TF. 
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3.2.4 Cell-specific biological roles by putative co-factors 

Our results so far suggest that cell type-specific co-factors of a TF are a major 
driver of cross cell-type in vivo binding variability. To gain further insights into the 
functional implications of cell type-specific co-factors, for each reference TF, we 
identified its cell type-specific co-factors using the feature importance of the 
corresponding motif as estimated by the model. To minimize redundancy, we 
excluded motifs with substantially high co-occurrence frequency with at least one 
of the reference motifs (see Methods). To further minimize false positives, we 
assessed the enrichment of motif occurrence within the cell-specific ChIP-seq 
peaks of the reference TF relative to background and retained only those 
putative co-factor motifs that were significantly enriched (odds ratio > 1.2 and two 
sided p-value < 0.05, see Methods). The rationale for choosing 1.2 as the odds 
ratio threshold is discussed in Supplemental Note 6. 
Several lines of evidence support TRISECT identified cell type-specific TF co-
factors, referred to as putative co-factors. First, we showed that there exists an 
enrichment of protein-protein interactions (PPI) among a reference TF and its 
corresponding co-factors as compared to the PPI interactions among all motifs 
(Table 7.12a from Supplemental Data). Additionally, the putative co-factors are 
enriched for either heterodimerizing TFs or for the TF family that the reference 
TF belongs to for almost 70% of all TF-cell pair cases (see Methods, Table 
7.12b-c from Supplemental Data). The enrichment of same family as that of 
reference TF is consistent with the fact that TFs form dimer with other TFs 
preferably from same family [96], [113]. We also performed protein domain 
enrichment analysis (Table 7.13 from Supplemental Data) using DAVID tool 
[114], [115], and found that more than 80% of enriched domains are involved in 
homo- or hetero-dimerization consistent with the findings from Table 7.12 from 
Supplemental Data. 

 
Figure 3.5 Functional validation of putative co-factors. 
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(A) Each boxplot corresponds to all co-factors of a TF in X-axis and Y-axis denotes 
the log fold change (logFC) of the expression of co-factors in relevant cell vs. non-relevant 
cell. The ‘blue’ horizontal line at Y=0 denotes no fold change. For a TF motif detected as a 
co-factor in n cell lines, and not in another m cell lines, we calculated log fold change (logFC) 
in the TF’s expression between the two sets of cell lines. Identified co-factors have higher 
expression in the cell lines they are detected in (relevant cells). (B) Enrichment scores of GO 
terms obtained from GO analysis of co-factors in four cell types of ATF3 (selected arbitrarily). 
The known cell type-specific biological roles are highlighted. 
Second, we expect higher expression of putative co-factors in the cell types 
where they are identified as co-factors by our analysis. For each co-factor 
(excluding ubiquitous co-factors), we determined the log-fold difference in 
expression between the cell types where it is identified as co-factor relative to cell 
types where it is not (see Methods). The distributions of log fold changes of the 
co-factors are compared with a control set of fold ratios as presented in Figure 
3.5A. For most TFs, the co-factors show significantly higher expression in the 
relevant cells. This is not true only in 5 cases: ATF3, USF1, CTCF, NRF1 and 
GABPA. Among these 5 cases, CTCF is a known cell type-independent TF, 
GABPA and NRF1 exhibit higher cell independence than other TFs as shown via 
an independence test.  
Third, we assessed whether the relationship between a reference TF and its co-
factor is symmetric. For this assessment we limit the analysis to 23 TFs, as for 
the current study we have models and associated co-factors only for these TFs. 
Specifically, we assessed whether a reference motif from one TF appears as co-
factors in the TFs whose reference motifs are also reported as co-factors in the 
first TF. For all X-Y TF pairs where one TF is deemed co-factor of the other and 
both TFs have available ChIP-seq data in the same cell line, we found that the 
correlation between the enrichment score of motif X in the biding sequences of 
TF-Y and vice versa is 0.41 (two sided p-value = 5.19 x 10-14). This suggests a 
degree of co-dependence among TFs for their DNA binding. 
Finally, for each TF’s cell type-specific co-factors, we performed biological 
processes (BP) GO term enrichment analysis using the GOrilla tool [116] relative 
to all 981 motifs. We found significant differences in the assigned BP of a TF’s 
co-factors among cell types. Remarkably, the BP can vary across cell types while 
still being functionally related to the reference TF. As an example, Figure 3.5B 
shows the enriched BP (false discovery rate ≤ 10%) for ATF3 in 4 cell types. 
ATF3 is a stress-inducible TF involved in homeostasis regulating cell-cycle, 
apoptosis, cell adhesion and signaling [117], [118]. We found that ATF3 co-
factors are enriched for cell cycle and proliferation functions in 3 out of 4 cell 
lines. In the stem cell line, the identified co-factors are involved in liver 
regeneration and inflammatory response, consistent with previous studies 
showing a direct link between ATF3 induction to liver injury and regeneration in 
mice [119], [120]. Furthermore, enrichment of NOTCH and apoptotic signaling 
among co-factors in the Hepg2 cell line is consistent with ATF3’s role in glucose 
homeostasis and other primary liver functions [117]. Surprisingly, we find 
enrichment of cognition, learning and memory among the TF co-factors in the 
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leukemia cell line. Since leukemia is a cancerous cell line, non-native gene 
expression is not unexpected [121], [122]. While, ATF3 is not known to play a 
direct role in neuronal function, a functionally and structurally related protein 
CREB has a well documented role in neuronal activity and long-term memory 
formation in brain [123]. This raises the possibility that either ATF3 has a 
unknown role in cognition, or the same set of co-factors are involved in memory 
formation in conjunction with other TFs. 

 
 Figure 3.6 EMT model heterogeneity is associated with cell type-specificity of co-factors. 

(A) The plot shows for each TF the variability of co-factor cardinality across cell 
types. Each point is labeled by cell type where the relevant TF has specific usage, based on 
the literature and has the largest number of co-factors. TBP and CTCF are the most 
ubiquitous TFs. The ‘green’ dotted horizontal line denotes the variability of cardinality for 
CTCF co-factors. (B) Sparsity of cell-membership matrix correlates with co-factor cardinality. 
(C) Normalized ROC-AUC difference of Interaction and NonInteraction models for a specific 
TF-cell type pair correlates with co-factor cardinality. (D-E) Motif usage for the reference TF 
in the NonInteraction models of different cells, for JUN and TBP as two extreme examples. 
Y-axis denotes the feature importance of motif usage in the NonInteraction model. The 
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sequence logos for the corresponding reference PWMs are presented in (F). In (G) and (H) 
fX (fY) denotes the influencing co-factors of mX (mY) in cell line, X (Y) (G) Left: Log fold 
change (logFC) between relevant and non-relevant cell type for influencing co-factors of mX; 
Middle: logFC for non-influencing co-factors; Right: logFC between non-relevant and relevant 
cell type for influencing co-factors of mY. (H) Genomic proximity of the motif-specific 
interaction partner with the motif. mX~fX denotes the nearest genomic distances (in base 
pairs) from mX motif to any co-factors in the set of fX and so on. 
For other TFs, the enriched GO-terms are listed in Table 7.14 from Supplemental 
Data (enrichment scores ranges from 1.22 to 93.75 with a median of 7.44, false 
discovery rate cutoff of 10%). The corresponding discussion based on a review 
of the literature is provided in Supplemental Note 7 and Supplemental Note 8 
includes example co-factors in various cells. This can serve as a resource for 
further investigation into the cell type-specific binding and function of a broad 
array of TFs.  
We noted substantial variability in the number of detected co-factors across cell 
types for a TF. Interestingly, a literature survey suggests that the cell types for 
which the reference TF has specific known function, the number of co-factors in 
that cell type is comparatively higher. For example, REST has well-known 
neuronal functions and its binding sites in neurons exhibit lack of cognate RE1 
motifs [124], suggesting co-factor dependence. Consistently, Sknsh (brain cancer 
cell line) has the highest co-factor cardinality for REST. Similarly, JUN plays a 
specific role in hematopoetic differentiation and we found that Gm12878 (normal 
blood cell line) has the largest number of co-factors [125]. We reasoned that a TF 
with greater cell type-specific roles would exhibit greater variability in co-factor 
cardinality. For each TF, we measured the variability of its co-factor cardinality 
across cell types. As shown in Figure 3.6A, interestingly, TFs with ubiquitous and 
invariant roles such as TBP and CTCF have the least variable co-factor 
cardinality. Based on the trend shown in Figure 3.6A, we use the variability of co-
factor cardinality as a proxy for the TF’s cell type-specificity. As an additional 
support, this proxy also correlates with the Sparsity measure of cluster-
membership matrix. Specifically, for each TF we computed the sparsity of its 
cluster-membership matrix (presented in Figure3.2A-B & Figure 7.4 of 
Supplemental Data) using Gini index [126], [127]. Figure 3.6B shows that 
sparsity is positively correlated with the variability of co-factor cardinality 
(Spearman correlation = 0.66, two sided p-value = 9.2 x 10-4 using k-NN).  
We also assessed whether differences in prediction accuracy achieved by the 
Interaction model and the NonInteraction model for a particular TF-cell type pair 
may reflect the TF’s co-factor dependence. We compared co-factor cardinality to 
the normalized distance between Interaction and NonInteraction model 
performance (AUC shift). As shown in Figure 3.6C, the AUC shift is positively 
correlated with co-factor cardinality (Spearman correlation = 0.65, two sided p-
value = 2.7 x 10-17). 
Previous studies have found that the DNA sequence specificity of a TF can be 
influenced by its interactions with co-factors [128], [129]. Interestingly, a close 
inspection of the feature importance estimated by the NonInteraction EMT model 
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shows that for different cell types the composition of utilized reference motifs 
varies. Figure 3.6D-E presents all cell type-specific usage of JUN & TBP (see 
Figure 7.11 of Supplemental Data for other TFs); JUN shows significantly 
different binding specificity from the expected usage in different cell types 
(marked with asterisk, see Methods), while TBP does not. Notably, such diverse 
usage is observed using NonInteraction models, suggesting a cell type-specific 
motif preference. In Figure 3.6D, M00925 (JUN) and the reverse complement of 
M00926 (JUN) are almost identical, yet they show very different usage. Even 
though both PWM have very similar distributions of scores over the same 
genomic regions, in most cases M00925 yields slightly higher score than M00926 
and once M00925 is selected by a model, M00926 is deemed as redundant and 
not considered as important further. Hence, they show dissimilar importance. 
However, in our downstream analysis of assessing contribution of cell-specific 
usage, none of them are selected as having cell-specific influence and thus has 
no impact on the analysis. 
We further investigated the potential contribution of cell type-specific co-factors in 
modulating the cell type-specific motif usage for the reference TF. In this regard, 
we identified pairs of reference motifs (mX & mY) having the most differential 
usage in cell types X and Y respectively. For each such pair we selected a set of 
candidate co-factors (fX & fY) which could potentially aid the TF for cell type-
specific binding; we call them (fX & fY) influencing co-factors of mX and mY 
respectively. Next comparing the log fold change (logFC) of fX & fY in cell type X 
versus Y (Figure 3.6G), shows that the influencing co-factors have higher 
expression in relevant cell types. Moreover, the influencing co-factors are more 
proximal to the influenced motif in the relevant cell type (Figure 3.6H, see 
Methods for details).  
Taken together, cell type-specific co-factors revealed by TRISECT are consistent 
with their cell type-specific expression and function which may be critical in 
modulating a TF’s cell type-specific biological function. 

3.3 Methods 

3.3.1 Data Processing 

We downloaded the ChIP-seq peaks for 23 TFs from ENCODE [130] (Table 7.6 
from Supplemental Data). For each TF we selected only those cell lines for which 
narrow-peak data was available. We chose the more stringent of the two criteria 
– top 5000 most significant peaks, or FDR q-values<0.2 to select the binding 
sites. The criteria are reasoned by the availability of enough data to build a model 
and the backward compatibility of the previous method [102]. Notably, not all 
ENCODE datasets provide q-values and in that situation we generate the list of 
q-values from the given p-values [131]. Relative to the center of ChIP-seq peaks, 
the DNA regions of length 100bp were identified as the foreground. As negative 
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control, we sampled flanking regions of 100bp from 200bp away from the positive 
sequences. Again, the choice for the size and location of foreground and 
background can be rationalized by the backward compatibility. In fact, choosing 
control sequences from near the foreground makes the modeling problem harder 
than when they are chosen from arbitrary locations in the genome. Moreover, 
control sequences overlapping with any peak were excluded. Due to the 
proximity of the negative examples, both foreground and background are 
expected to have similar GC-composition [102] and chromatin accessibility. 
However, we explicitly controlled for the GC composition using sequence set 
balancing technique when comparing the foreground and the background [89]. In 
the sequence set balancing, the GC percentage is divided into N bins (e.g. we 
choose N=100). Then for both foreground (F) and background (B) sets, the 
number of sequences falling into each bin are enumerated: F[i] & B[i] where i=1 
to N. Finally, in each bin min(F[i], B[i]) sequences are selected randomly from 
foreground and background set. This way each set of sequences will have similar 
distribution of GC-composition. After sequence set balancing, we discarded any 
cell line resulting in fewer than 4000 sites. In our list of TFs, EP300 is non-
sequence specific. Even so, EP300 is localized to the chromatin by interacting 
with other motifs. Like Arvey et al. we include EP300, specifically to reveal those 
putative interactions. 
In addition to the 100bp foreground and background, we also extracted another 6 
sets of foreground and background of size 120, 150, 180 200, 250 and 300 base 
pairs. We keep increasing the size of foreground to check how much additional 
information was added to the model by the increased sequence size. Note that 
for all sequence sizes the middle point of the background does not vary; so as 
the sequence size is increased the gap between foreground and background 
decreases. 
3.3.2 Learning EMT (Ensemble model of TF binding) 

We considered three types of feature set for the sequence specificity model: (1) 
K-mers - frequencies of 4096 6-mers in the 100bp sequence, (2) K-merRC - 
frequencies of 2080 k-mer (k=6) groups equating a k-mer and its reverse 
complement, and (3) Interaction (Lk) – we obtained all 981 vertebrate positional 
frequency matrices (PFM) from TRANSFAC 2011 as the features. Each PFM 
was converted into positional weight matrices (PWMs), which is a log-likelihood 
matrix, by, (1) adding a pseudocount of 0.2 of ‘C’, ‘G’, and 0.3 for ‘A’,’T’ in line 
with genome composition, (2) normalizing the frequencies to get probabilities for 
each base, (3) dividing each base probability by the background probabilities (0.2 
of ‘C’, ‘G’, and 0.3 for ‘A’,’T’), and (4) taking the log of the probability ratio. The 
resulting PWMs were then used to get the motif matches using PWMSCAN 
[108]. Here, Lk refers to the PWM hit threshold (hit expected every L kb on 
average in the genome); we used L = 1, 2, 5, or 10. In particular, we use log(1/L 
k) as the threshold value to call a PWM ‘match’. For instance, at L=1, the 
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expected frequency of matches is once every 1kb, corresponding to a 20% 
chance of a match in a 100 bp region or its reverse complement. Previous 
research showed that clusters of homotypic ‘weak’ binding sites are prevalent in 
regulatory regions [132] and such presence of multiple weak binding sites, called 
homotypic cluster of binding sites, are preferred to single strong binding actual 
binding [133]. To mimic this binding affinity, from the output of PWMSCAN, we 
decided to use the sum of PWM-score (-log(match score)) for all matches as the 
feature value. However, we also collected the ‘maximum score’ and ‘average 
score’ of the bindings for each training sequences and measured their correlation 
with our feature value. The high correlations (0.8 and 0.87 respectively) suggest 
a minimal effect on downstream analysis and overall conclusions. Finally, we 
used the log sum of PWM-score to compensate for the skewed distribution of the 
number of binding sites for individual TFs.  
We found that the model performance was better for the 1k than the 2k 
thresholds, and at much higher stringency the model performance significantly 
deteriorates due to the sparsity of the matches (Figure 7.3C of Supplemental 
Data). Further, we determined the feature importance of the motifs for each TF-
cell pair at those four thresholds. For each TF-cell pair, we calculated the 
correlation of the feature importance based on 1k threshold with those based on 
other thresholds, i.e., three correlation values. Thus in total, we calculated 405 
correlation measures for 135 TF-cell pairs. We found that 90% of those 
correlations are significant, ranging from 0.21 to 0.81 with a median of 0.52. 
Considering the relative performance of the Interaction (1k) model, in the 
subsequent analysis we use them as the representative Interaction model, and 
refer to it as such. 
We chose Adaptive boosting [106], [107] as our composite model where each 
sub-model within the ensemble is a decision tree and each decision tree is 
constructed based on a bootstrap sample. We used the Adaboost framework 
implemented in R gbm package [134]. In the framework, Huber loss function is 
selected to reduce over-fitting. We estimated the classification accuracy of the 
model based on 25% held out data set, while 75% data were used to build the 
cell-specific models. In Supplemental Note 1, we summarize the interpretation of 
a model and parameter choices. 

3.3.3 Model conversion, Duda-Hart test and Hopkins statistics 

Each sub-model is represented by a point in a d-dimensional space. Each 
dimension denotes a feature and the value along the dimension indicates the 
importance of the feature for the sub-model. Therefore, each model (consisting of 
multiple sub-models) can be represented as a set of points in a d-dimensional 
space where d ≤ number of features (981). For a model, the feature importance 
was measured using the prediction performance improvement for out-of-bag 
sample predictions. We modified the gbm package [134] implementation of 
feature-importance to accommodate the calculation for single tree or the sub-
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model in question. In other words, we determined the contribution of a single tree 
(sub-model) in prediction performance improvement using the same out-of-bag 
samples. We disregard the features which do not contribute to any sub-model. 
We conducted Duda-Hart test to show that whether the sub-models belong to 
one or multiple clusters. We measured Duda-Hart or dh-ratio (ratio of within-
cluster sum of squares and overall sum of squares) for all cluster pairs, based on 
either cell type-specific set of sub-models, or the pooled set of sub-models 
across all cell types for a TF [135]. While calculating dh-ratio, k-Nearest 
Neighbors algorithm (k-NN) was used for clustering. Since the final output of k-
NN depends on initial random set of centers, the dh-ratio calculation was 
repeated 1000 times to ascertain robustness. We noted that all test results were 
significant (p-value < 0.001). 
Hopkins statistics (H) was measured to check clustering tendency of the sub-
models. To measure Hopkins statistics (H), the sub-models are again 
represented as a set of points. H is defined by the following. 

𝐻 =
𝑈"L",-…M

𝑈"L",-…M + 𝑊"L",-…M
 

𝑊" are the nearest-neighbor distances of m randomly chosen points (sub-
models), which demarcate the sampling window. 𝑈˾ are the minimum distances 
of the sub-models from m random points in the sampling window. To define the 
sampling window, we either took 25 to 75 percentile of the feature values or from 
δ to max.value-δ along each dimension, where δ denotes the standard deviation 
of the feature value [136]–[138]. To estimate p-value, we repeat the above 
procedure 1000 times and measured the H value. The p-values range from 0.026 
to less than 0.001. 

3.3.4 Clustering sub-models 

For a TF, we obtained the sub-models from all cell types, and then clustered all 
sub-models using k-Nearest Neighbors algorithm (k-NN), where each sub-model 
is an instance and the features of the instances are individual feature-importance 
obtained in the context of respective cell-specific model. Before feeding into the 
k-NN, we remove all the features whose cumulative importance over all sub-
models is zero. To check robustness, the sub-models are also clustered using 
XY-fused version of self-organizing map [139] from kohonen R package [140]. To 
make it comparable to k-NN, sub-models were clustered without preexisting sub-
model cell labels, i.e. we assumed 100% weight for X map. 

3.3.5 Assignment of sequences and target genes to the clusters 

A cluster of sub-models can be viewed as a new ensemble. Therefore, for each 
cluster, we built a gbm object by treating the cluster as an ensemble and used it 
the same way an original Interaction model would score a sequence. Thus, we 
scored each binding site sequence against each cluster, and a sequence is 
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assigned to a cluster when it is scored above a threshold (of 1) by the cluster. 
The choice of the threshold was based on the rationale that the intercept (bias of 
the model [134]) of cell-specific models are ~1, and for a high-confidence positive 
sequence, the model-score should be greater than the intercept. Each bound 
sequence (from all cell lines) is mapped to a set of clusters. For each bound 
sequence, the nearest gene on the genome is considered to be its putative 
target, as per convention [141]. Hence, each cluster corresponds to a set of 
target genes coming from different cells.  

3.3.6 Measuring pathway and expression coherence  

To measure the functional coherence, we determined the target gene array of 
size M-by-N for M clusters and N cell types. The M-by-N array thus includes a set 
of genes corresponding to each cluster in a particular cell type. We compared 
gene-pairs from the same row across columns (same cluster, different cells) to a 
background of gene-pairs along columns from different rows (same cell, different 
cluster). Then we apply the Fisher's exact test in a cluster-centric fashion by 
comparing the fraction of co-clustered gene-pairs in the foreground as compared 
to the background. The measure is named as expression coherence: whether 
targets gene pairs from same cluster but different cell lines are more co-
expressed than those from different clusters but same cell line. A gene-pair is 
considered co-expressed if both of the genes are turned on (RNA-seq log2CPM 
> 1) in their respective cells; CPM stands for Counts per Million. CPM, instead of 
the standard FPKM measure to quantify gene expression suffices for our 
purpose as we only compare a gene’s expression across samples, and not with 
other genes in the same sample. We showed similar trend of expression 
coherence with different expression threshold (log2CPM>=5) (Figure 7.7E-F of 
Supplemental Data). 
Pathway coherence is also assessed in similar fashion: whether the target genes 
from different cell lines that are assigned to the same cluster are more 
functionally related (i.e. in the same pathway) than the target genes coming from 
the same cell but from different clusters. Pathway data was downloaded from 
KEGG pathway database (www.genome.jp/kegg). 

3.3.7 Robustness of EMT and sub-model clustering 

While building EMT using gbm R package, we used the default parameter 
settings except maximum depth of variable interaction (interaction.depth), 
minimum number of observations in the trees terminal nodes (n.minobsinnode) 
and learning rate (shrinkage). Our parameter choices are the following – 
interaction.depth: 15, n.minobsinnode: 30, shrinkage: 0.05. To check model and 
pipeline robustness, we build models with different values of these three 
parameters and compared the performance and model size (number of learned 
sub-models). We found that performance and model size becomes stable after 
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interaction depth of 15 (Figure 7.3D-E of Supplemental Data), performance and 
model size do not vary much with the change of n.minobsinnode from 25 to 45 
(Figure 7.3G-H of Supplemental Data), and performance does not change which 
shrinkage from 0.1 to 0.5 (Figure 7.3I of Supplemental Data). However, model 
size varies with the shrinkage parameter setting because with lower learning 
rate, it takes longer to reach an optimum, and it results an increase in the model 
size (Figure 7.3J of Supplemental Data). Therefore, for different shrinkage 
parameters, we measured the clustering consistency. To this end, we took the 
models built with shrinkage=0.05 as the reference models and we compared the 
clustering pattern of reference models with the set of models built using different 
shrinkage value. More specifically, we determined if a pair of sequences fall into 
same cluster for the reference model, does it also fall in same cluster for a 
different shrinkage value. We found that on average 96% of the sequence-pairs 
fall in the same clusters regardless of shrinkage (Figure 7.3K of Supplemental 
Data). 

3.3.8 Model variability, and Motif-divergence 

Model variability is defined by its normalized-predictability across cell lines. For 
each model, n ROC-AUC values are obtained using the held-out dataset of n 
cell-lines. Cross-ROC-AUC values are normalized by self-ROC-AUC value. 
Mathematically,  

𝑣𝑎𝑟MQLRST = 	
UQVWXVYYZT,Y[\]^^_

UQVWXVT
	. 

Motif-divergence is defined by the following equation. 𝑚𝑜𝑡𝑖𝑓. 𝑑𝑖𝑣.cdMe =
L4e$T,Y
fgThfgY4,"∈cdMe . Here, 𝑑𝑖𝑠𝑡4," = 1/𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦4," and 𝐼𝐶4 is the information content 

of the ith motif. Similarity between two PWMs is calculated following the 
normalized version of the sum of column correlations [142]. 

3.3.9 Identification of co-factors 

EMT provides importance of all features in discriminating the foreground from the 
background. We retained all features with nonzero importance. From the initial 
set, we removed any motif that has 60% PWM-similarity (consensus overlap) for 
at least 50% of the binding site locations with any of the reference motifs. Next, 
we calculated an enrichment score (i.e. odds ratio) of the motif in the foreground 
binding sites relative to control sites. We retained the motifs with greater than 
1.2-fold enrichment and two sided p-value < 0.05. The resulting motifs were 
considered as co-factors. For further analysis, we considered cell-specific co-
factors by removing common motifs across cells. In particular, we excluded all 
co-factors that are common between any two cell-lines. The functional cell-
specificity measure for a TF is determined using the variability of co-factor 
cardinality of such unique co-factors.  
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3.3.10 Validation of co-factors using PPI and TF family 

We obtained protein-protein interaction (PPI) data from STRING v10 [143]. Using 
the TRANSFAC 2011 database, we determined the mapping from motifs to 
ENSEMBL protein id and the number of motif pairs having PPI. Using hyper-
geometric test we calculated the enrichment of PPI between reference TF and 
each set of cell-specific co-factors. The test summary indicated that 81% of the 
TF-cell cases have higher PPI enrichment among the interactions involving 
reference TF and their co-factor (Table 7.12a from Supplemental Data). 
We compiled each PWM’s family and the list of heterodimerizing PWMs from 
TRANSFAC 2011 database. To identify heterodimerizing TFs, we looked for the 
presence of keyword ‘heterodimer’ and absence of ‘no’ or ‘not’ in the description 
of the motif. Table 7.11 from Supplemental Data shows the heterodimerizing 
PWMs. Detailed manual inspection of a random subsample suggests that this 
automated criterion may result in ~5% false positives. We also noted that 
occasional use of the term ‘dimer’ instead of ‘heterodimer’ may lead to ~20% 
false negatives. For the hyper-geometric test of family-enrichment, we compared 
how many co-factors belong to the family of reference motif relative to the 981 
motifs. Heterodimer enrichment was tested similarly. The enrichments scores 
(odds ratios) and p-values are reported in the Table 7.12b-c from Supplemental 
Data. The Table shows that 70% of the model-co-factors are either enriched for 
heterodimerizing TFs or TFs coming from same family.  

3.3.11 Gene expression and differential gene expression 

For gene expression, we used RNA-seq data downloaded from ENCODE (Table 
7.10 from Supplemental Data). For each cell, we obtained between 2 and 4 RNA-
seq samples depending on the availability and obtained the number of reads 
aligned to the gene. We corrected for batch effect using sva R package [144]. To 
estimate the differential expression between two sets of cell lines (those in which 
a TF is deemed a co-factor, and those where it is not), we used the linear model 
implemented in limma package of R [145].  
For each co-factor, we determined all possible relevant & non-relevant cell pairs 
and took the log fold change (logFC) of the expression in those cells. To 
determine the control gene expression, we considered the same sets of cell pairs 
but took the logFC of an arbitrary gene instead of the co-factor. In both cases, we 
considered only significant differential expressions (logFC values with p-value < 
0.05) provided by the limma package [145]. 

3.3.12 Cell-specific PWM for the reference TF 

We obtained relative feature importance of the reference motifs from the 
Noninteraction models and compared them with random expectation. To 
calculate the random expectation, 1000 Noninteraction models are learned 
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based on randomly sampled 4000 sites from all binding sites across cell-lines. 
From 1000 models, 1000 relative feature importance was calculated. Each set of 
relative importance was assumed a point in p-dimensional space where p is the 
number of reference motifs. We considered the relative importance vectors as 
data points from multivariate normal distribution and for each vector we 
calculated the Mahalanobis distances from the centroid which follows a chi-
square distribution [146]. The degrees of freedom (d) for the chi-squared 
distribution was determined using maximum likelihood estimate and a p-value 
was generated from a chi-square distribution function of d degrees of freedom.  

3.3.13 Influencing co-factors, proximity to the influenced motif, 
and expression in the most used cell 

We identified the influencing co-factor set in the cell where one motif is used 
much more frequently than the others. More specifically, for a TF, we identified 
pairs of motifs and cell types where there is a maximal differential in cell type 
usage of the two motifs (i.e. one of the motifs has the highest usage in one cell 
type and the lowest usage in another, and vice versa). For such pairs of cell 
types X, Y, and corresponding reference motifs mX & mY, we determined the 
candidate motif-specific co-factors fX and fY as follows. We first separated the 
sequences from cell types X and Y where mX and mY matches are found, 
respectively. Next, we assessed each putative co-factor’s motif enrichment in 
each sequence set relative to the other sequence set. If the putative co-factor is 
enriched in X relative to Y we consider it as a putative influencing co-factor for 
mx, and likewise for my. All other co-factors (fc) are considered non-influencing, 
and serve as negative control. 
We measured the fold change (logFC) of all influencing and non-influencing co-
factors in X vs. Y using limma package [145]. To demonstrate the genomic 
proximity between influenced motif and influencing co-factors, we chose the 
nearest distance between them among potentially multiple motif matches.  

3.3.14 Ubiquitous vs. cell-specific sub-models 

We designated a cluster as cell type-specific if all member sub-models (at least 
5) came from the same cell type. We then estimated skewness for each multi-cell 
type [147] based on the numbers of sub-models contributed to the cluster by 
various cell types. If the skewness was less than 25%, we designated the cluster 
as ubiquitous. For each cluster, we counted the number of relevant features (i.e., 
with non-zero importance). Among the relevant features, we retained only those 
which were deemed as putative co-factors for at least one of the cell-specific 
models in our earlier analysis. The retained co-factors are designated ubiquitous 
or cell type-specific based on the label of the cluster they belong to. Any common 
features from the two sets are removed. For each feature, we collect the 
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expression across cell types in question and measure the skewness of gene 
expression [147].  

3.4 Discussion 

In this study, we have presented a novel ensemble-based framework –TRISECT, 
to investigate intra-cell type heterogeneity and inter-cell type commonality of in 
vivo TF binding rules. To the best of our knowledge, this is the first study to 
comprehensively demonstrate that in vivo binding specificity rules are composed 
of multiple components, or sub-models, many of which are shared across 
multiple cell types. Importantly, non-orthologous targets of binding sites across 
cell types governed by a shared binding sub-model exhibit a greater functional 
and expression coherence than targets of binding sites in the same cell type that 
are governed by different binding rules. For each TF, TRISECT identified cell 
type-specific co-factors that are supported by gene expression data and literature 
studies supporting their cell type-specific function.  
We chose Adaboost as our ensemble model due to its architectural advantages 
with respect to our ultimate goal of analyzing common and distinct binding rules, 
or sub-models, across ensembles learned for each cell type. Boosting ensemble 
methods, including Adaboost, are designed to learn optimal tree sub-models for 
successive reweighted bootstrap samples. This is in contrast to other ensemble 
methods, including the popular Random Forest (RF) approach which seeks to 
increase variability of sub-models by estimating weak sub-models from un-
weighted bootstrap samples. Since our primary goal is to reveal model 
heterogeneity, we chose to cluster sub-models generated by Adaboost rather 
than Random Forest’s weak learners.  
In terms of prediction accuracy, EMT compared favorably to the previously 
reported sequence-based discriminative model (kmer-SVM) [102]. Apart from the 
modeling approach, our study differs from Arvey et al. 2012 in several other 
aspects. The previous study compared the cell type-specific models for only two 
cell types – GM12878 and K562, while we have investigated in-depth the cell 
type-specificity of TRISECT across 4-12 cell types for each TF. While the 
previous work primarily discusses cell type-specificity and ubiquity of their 
models, by clustering the cell type-specific sub-models, our work investigates the 
extent of shared binding rules; cell type-specificity and ubiquity are extreme 
cases thereof. In addition to the cell type-specific variability in proximal co-
factors, we investigated in much greater depth the cross-cell type variability in the 
preferred motif for the reference TF. Together, these novel aspects of our study 
adds to the knowledge of sequence information that specify a TF’s in vivo binding 
in various cell types. 
Another recent study [96] aimed at deciphering the determinants of in vivo 
occupancy of a TF showed that TF binding specificity is influenced by nearby 
homotypic sites (for the reference TF), the local nucleotide composition, and 
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certain DNA physical properties. Moreover, the preferred in vivo binding in 
homotypic clusters was related to a preferred nucleotide composition, e.g. GC-
rich for zinc finger TFs and AT-rich for homeodomain reference TFs, in the 
binding site flanking region. These previous findings are consistent with the fact 
that the co-factors identified by TRISECT are enriched for same family of TFs as 
the reference TF and thus have similar preference for nucleotide composition to 
the reference TF. In the previous work [96], the accuracy in discriminating bound 
vs. unbound sequences after controlling for the presence of a putative site for the 
reference TF was modest (ROC-AUC ~ 0.6). In contrast, we have shown that the 
motifs for the reference TF alone can discriminate bound sites from unbound 
control sites with ROC-AUC ~ 0.78, suggesting that the reference TF is the most 
informative determinant of in vivo binding, which is indeed expected, and was 
also observed by Pique-Regi et al [148]. The additional power of discrimination 
comes from either the presence of co-factor motifs, as suggested before [94], 
[102], or from nucleotide composition and other DNA physical properties [96]. 
Interestingly, DNA flexibility measured by propeller twist [149] is highly 
dependent on GC-content [150], which in turn is related to motif composition, as 
we have noted. Overall, the three properties, nucleotide composition, DNA 
physical properties, and motif composition are interrelated. The specific 
advantage of an ensemble model based on motif composition is that, apart from 
achieving favorable accuracy, it is functionally more interpretable and can 
provide insight into a TF’s cell type-specific functions. 
Context-dependent function of a cis regulatory region requires binding of a 
specific combination of TFs. This modularity contributes to morphological 
evolution through changes in cis elements controlling transcription, while 
avoiding the pleiotropic effects of TF gene’s expression change [151]. Shared 
sub-models of TF binding rules across cell types, as revealed by TRISECT, may 
suggest shared history of cell types.  
The ability of a TF to bind to diverse reference motifs and in conjunction, interact 
with diverse combinations of co-factors serves to enhance its functional 
repertoire across contexts [102], [152]. Our analyses reveal a cell type-specific 
preference for the reference motif as well as the cell type-specific interaction 
partners of a TF. We found the expression of cell type-specific interaction 
partners to be higher in the cell types where they are expected to interact with 
the TF, and their function is consistent with the context based on the literature. 
Thus, our study provides further support for a TF’s cell type-specific functions, 
and more importantly, enables further investigation into the mechanisms 
underlying a TF’s diverse cell-specific functions. 
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4 Heterogeneity of breast cancer metastasis 
4.1 Background and Related works 
Metastasis is the spread of a cancer from the primary oncogenic site to a 
different secondary organ. Current data suggest that metastasis from a primary 
organ to secondary organs is biased, that tumors from a primary tissue tend to 
spread to a secondary organ more often than other tissues, and the mechanisms 
underlying this biased ‘organotropism’ is not fully understood. Previous efforts 
toward this have been limited to mouse model and cell lines breast cancer 
metastasis signature to a specific secondary tissue [260], [261], or molecular 
characterizations of various breast cancer sub types [262], [263]. A detailed 
molecular characterization of organotropism has not been reported.  
An important requirement of characterizing organotropism is recognizing that 
every tumor is composed of multiple clonal populations with distinct mutational 
and transcription profiles. This molecular heterogeneity presents a major hurdle 
toward developing effective cancer therapies. Such heterogeneities occur in 
biological systems at several levels, from rules that govern molecular interactions 
to cellular identity. Thus, the characterization of heterogeneities is fundamental to 
effective modeling of biological systems. 
The motivation of the current study is to model the heterogeneity of models of 
breast cancer metastasis to characterize components of the model that are 
unique to specific secondary organs and those that are shared among them. 
Toward this, we have developed an ensemble model-based approach 
(MONTAGE) to reveal both tissue-specific and tissue-independent rules of gene 
interactions for breast cancer metastasis. 

4.2 Results  
4.2.1 MONTAGE – Models of organotropism and metastasis using 

Gene Expression 
Overview. An illustration of the MONTAGE analysis pipeline is presented in 
Figure 4.1 and a brief description of the pipeline is provided below (for additional 
details see Methods).  
As the first step, we developed an ensemble model of metastasis (EMM) to 
discriminate patients’ gene expression profile of secondary metastasis 
(foreground) from the profile of primary cancer (background). The data was 
collected from Harrell et al, who integrated expression data of 4 cohorts 
sequenced in 3 platforms (see Methods for details). Given this expression data 
with distant breast cancer metastasis to bone, brain, liver and lung, and primary 
breast cancer covering (Table 4.1), we first selected the genes/features with high 
variability across patients regardless of disease status. Then, depending on 
single or non-single metastasis destination, we built two kinds of EMM models 
and three kinds of tissue specific EMM models as described in Table 4.2. The 
EMM models are: a) unique metastasis model and b) non-unique metastasis 
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model; and the tissue-specific EMM models are: a) tissue specific unique 
models, b) tissue specific non-unique models and c) tissue specific metastasis 
models. The 1st sets of models were built to gauge the general metastasis 
signature and the 2nd set of models we built to assess secondary tissue 
specificity. In each set, we divided them into unique and non-unique model to 
differentiate the heterogeneity of patients for tissue exclusive and non-exclusive 
way. Each EMM model was trained using the Adaboost method where each sub-
model is a decision tree built from a bootstrap sample [105]–[107]. Each tissue-
specific model is composed of an ensemble of sub-models. Next, given the 
tissue specific EMM models for all secondary tissues, each tissue-specific sub-
model was represented by a point in a d-dimensional space, with d 
corresponding to the number of relevant features. We constructed clusters of the 
data points for breast cancer metastasis (representing the sub-models across all 
tissues), using k-Nearest Neighbors algorithm (k-NN). The sub-models within a 
cluster represent similarity in gene expression combinations (or ‘rules’) within or 
across the tissues.  

 
Figure 4.1 MONTAGE pipeline. 

 
Metastasis to non-unique destination 
noMS BoMS BrMS LiMS LuMS 
211 238 49 107 101 
Metastasis to unique destination 
noMS BoMS BrMS LiMS LuMS 
211 138 14 28 42 
Table 4.1 Number of samples with primary breast tumor (noMS), breast to bone metastasis (BoMS), 
breast to brain metastasis (BrMS), breast to liver metastasis (LiMS) and breast to lung metastasis 
(LuMS). Unique (non-unique) destination refers to the samples which has been metastasized to only 
one (one or more) distant organ(s). 
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 Foreground Background 
Unique metastasis models 
(model.u) 

Metastasis samples of unique 
destination 

noMS samples 

Non-unique metastasis model 
(model.nu) 

Metastasis samples of non-
unique destination 

noMS samples 

Tissue specific unique model 
(e.g. BoMS or model.tu) 

Secondary Tissue specific 
samples with unique 
destination 

noMS samples 

Tissue specific non-unique 
model (e.g. BoMS or 
model.tnu) 

Secondary Tissue specific 
samples with non-unique 
destination 

noMS samples 

Tissue specific metastasis 
model (e.g. BoMS or 
model.tm) 

Secondary Tissue specific 
samples with unique 
destination 

Other MS 
samples 

Table 4.2 Model description 

 
EMM Feature Selection. Considering the relatively small number of samples 
used for each model, the total number of features is too large. Therefore, we 
performed feature selection in the overall data. To make the models comparable 
to each other, we built a universal set of features to be used for all models. As 
universal features, we chose genes having cross-sample expression variance 
more than K% of the mean variance of housekeeping genes. The housekeeping 
genes are collected from (http://www.stat.berkeley.edu/~johann/ruv/) and used as 
control as they are expected to have less variability than non-housekeeping 
genes. We varied K=85 and K=95 yielding 3102 and 920 features respectively.  

 
Figure 4.2 Performance of metastasis models. 
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 (A) metastasis model using unique samples, B) metastasis model using non-
unique models, C) Tissue specific metastasis models using unique samples, d) Tissue 
specific metastasis models using non-unique samples. 
 
EMM performance. Model accuracy was quantified using Area Under the 
Receiver Operating Curve (AUC-roc) and Area Under Precision Recall Curve 
(AUC-pr) on test set of 4-fold cross validation (Figure 4.2). According to Figure 
4.2, non-unique models have higher accuracy than unique models, most likely 
due to the higher number of samples used for building non-unique models. For 
the same reasoning, the BrMS has lower accuracy than other tissue specific 
unique/non-unique/metastasis models. Here we measured both AUC-roc and 
AUC-pr to ensure that our observed accuracies (70-90% AUC-roc) are not 
biased due to unequal number of foreground and background samples. More 
specifically, AUC-pr measure is not biased when the foreground and background 
sample-counts are very different. High (low) AUC-roc and with high (low) AUC-pr 
denotes that AUC-roc measures are not biased. Additionally, we checked that 
our feature selection is not causing any overfitting of the models and they are not 
learning any noise (Supplementary Note 1 & 2). 
 
4.2.2 Intra- and inter-tissue heterogeneity as revealed by MONTAGE 
Given the performance of EMM, and its architectural properties, we next 
assessed whether EMM can exploit the heterogeneous rules of genetic 
interactions, as manifested by different combinations of genes. Conceptually, a 
‘genetic interaction rule’ refers to the specific combination of gene expression 
values leading to the metastasis state. Each decision tree (a sub-model) 
operationally defines a set of interaction rules, in terms of activation of specific 
genes above/below a certain expression threshold. Furthermore, in general, the 
relative importance of features decrease with increasing depth of the node in the 
decision tree, with the first few levels contributing a substantial portion of the 
decision. Although a decision tree represents a statistical model for metastasis, 
by applying strict thresholds for gene expression and considering only the top 
few layers, in principal, a concise ‘genetic interaction rule’ can be derived, albeit, 
at a loss of information. For a specific disease state and tissue combination, we 
captured the genetic interaction rules by a set of sub-models (decision trees). 
Then to investigate commonality and uniqueness of interaction rules for a 
metastasis state across tissues, we pooled all sub-models from tissue-specific 
EMMs, represented them by feature importance and clustered them using k-NN 
clustering algorithm. Next, we constructed a cluster-membership matrix mapping 
the number of sub-models originating from different tissues within each cluster. 
As an example, Figure 4.3A-B shows the cluster-membership matrix for the 
unique and non-unique tissue specific metastasis models. The matrices show 
both tissue-specific (Figure 4.3A, cluster #4) and ubiquitous (Figure 4.3B, cluster 
#2) clusters. Examining the cluster mapping it is apparent that, unique models 
tend to map to single tissue, suggesting the tissue-specific behavior, while non-



 66 

unique models have more widely distributed clusters suggesting the tissue 
independent interaction rules and, presumably, function. Importantly, many 
clusters consist of sub-models from multiple, but not all, tissues. 

 
Figure 4.3 Cluster membership matrix of tissue specific metastasis models. 

 
Given the existence of heterogeneity across metastasis models we determined 
the shared and unshared markers of tissue specific metastasis (Method). The 
markers are model-specific important genes that are unique to specific model 
and common across models. For example, we identified 152 genes as unique to 
liver metastasis, 122 genes as unique to lung metastasis and 12 gene as 
common to both liver and lung metastasis. Then, we assessed their enrichment 
in the gene sets of each pathway from KEGG database. For 1st set of genes only 
“Cell Adhesion Molecules (CAMs)” pathway is found as significantly enriched, for 
2nd set of genes only “Proteoglycans in cancer” and for 3rd set of gene only 
“Metabolism of xenobiotics by cytochrome P450” pathway are found as 
significantly enriched. Literature review says that, EpCAM is highly expressed in 
breast to liver metastasis, but not lung metastasis, proteoglycan carrier is active 
in breast to lung metastasis but not in liver metastasis and cytochrome 
associated genes are involved in both breast to lung/liver metastasis. 
In sum, the above clustering of sub-models support the existence of 
heterogeneous sets of genetic interactions rules governing the metastasis state 
and suggests that a subset of rules are shared across tissues. 
 
4.2.3 Platform-associated markers confound MONTAGE 
MONTAGE successfully revealed the markers for breast to liver and breast to 
lung metastasis, but not for other secondary organs. Our data is compiled from 
multiple technical platforms to quantify gene expression. Following the best 
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practices, we corrected our data for batch effects, which in our cases primarily 
consists of multiple platforms. We found that even though we explicitly correct for 
batches, MONTAGE seems to learn features that distinguish the two platforms.  
Specifically, since the data has been corrected for batches across platform and 
according to the principal component analysis (as shown in Figure 4.6 from 
Supplementary Data), there should not be any bias left across batches and 
cohorts. However, unfortunately, we can detect batches or platform with very 
high accuracy (Figure 4.4A) on the corrected dataset regardless of the batch 
correction methods. According to Table 4.3, which shows the data size built for 
unique EMM, it is clearly a problem of experimental design, rather any batch 
correction problem. Because all the background samples are coming from only 
rosetta platform, the EMMs are, in principle, capturing the platform-associated 
markers. However, Table 4.4 shows that the data size used for building non-
unique EMMs are not biased to single platform, yet the platform models have 
very high accuracy (Figure 4.4B). It can be argued that the separating 
hyperplane for platform detection and the separating hyperplane for metastasis 
detection are different and thus should not be affected by each other. To assess 
their independence, we determined the set of importance genes of both 
metastasis models and platform models. We then designed a model by training 
on platform status and then assessed the model’s accuracy in distinguishing 
metastatic from primary samples.  The high accuracy of this model indicates that 
the platform detection and metastasis detection are not independent (Figure 
4.4C). This suggests that the Harrell et al. dataset is not suitable for metastasis 
signature detection and analysis of heterogeneity. We also confirmed the 
inefficacy and inadequacy of the current dataset, by showing that the set of 
important genes derived from metastasis models and platform models has 60% 
similarity (data not shown). 
 
 
Platform gpl96 gpl570 rosetta 
NoMS 0 0 159 
MS 126 95 68 
Table 4.3 Number of foreground and background samples used for unique EMM models. 

 
 
Platform gpl96 gpl570 rosetta 
NoMS 13 143 159 
MS 126 95 68 
Table 4.4 Number of foreground and background samples used for Non-unique EMM models. 
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Figure 4.4 Platform detectability and performance of Fake model. 

Unfortunately, in more than 50 research articles, the same dataset has been 
used either as primary data to test hypothesis about molecular characterization 
of breast cancer subtypes or as independent data to validate research findings. 
One of the main contributions of Harrell et al. [262] is the correlation of tissue-
specific signatures with certain subtype by PAM50 genes [264], [265], a 50-
geneset identified by PAM (Prediction Analysis Microarray) algorithm to 
determine breast cancer subtypes: Basal, Claudin, Her2, LumA and LumB. 
However, the differential expression of PAM50 genes across platforms casts 
doubt on this mode’s ability to correctly determine cancer-subtypes. Moreover, 
the accuracy of platform models, metastasis models and fake model (labeled as 
pam50) are found to be very high using PAM50 genes (Figure 4.5A). One can 
argue that a hypothetical scenario in which a specific cancer subtype is sampled 
exclusively from a specific platform would give the high accuracy in Figure 4.5A. 
We nullified such argument by showing that metastasis prediction after training 
only on platform show high accuracy even if we restrict the analysis to a single 
cancer type (labeled by LumA in Figure 4.5A). In addition, Table 4.5 shows that 
the different cancer subtypes are not biased toward any platform. Collectively, 
these observations question the credibility of correct expression of PAM50 genes 
and the conclusion reached by using their values. Another article [263], used the 
same dataset to verify their findings of 208 Irf7 genes being involved in 
metastasis prognosis from mouse data. However, as shown in Figure 4.5B, even 
using those 208 genes we can achieve high metastasis prediction accuracy after 
training the model simply based on platform. 
 
 Gpl570 Gpl96 Rosetta 
Basal 28 22 38 
Claudin 16 14 25 
Her2 31 23 45 
LumA 47 22 90 
LumB 24 26 63 
Normal 7 12 27 
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Table 4.5 Number of samples in different cancer subtypes in 3 platforms. 

 

 
Figure 4.5 Performance of platform models and fake model A) using PAM50 genes and B) using IRF7 
signaling pathway genes. 

 
Taken together, these results indicate that the batch-corrected dataset is highly 
noisy and confounded such that these analyses not only yield incorrect 
conclusion about metastasis heterogeneity, but also casts serious doubts on the 
previous findings about cancer metastasis signatures. 

4.3 Methods 
4.3.1 Data Processing 
We downloaded the gene expression data from Harrell et al. [262] where the 
samples were integrated from 4 cohorts and the measurements were sequenced 
in 3 different microarray platforms. The data set was already corrected for 
batches across platform using Distance Weighted Discrimination (DWD) method 
[47]. For sanity, we conducted principal component analysis and confirmed that 
the data are not biased across platforms or across cohort (Figure 4.6 from 
Supplementary Information).  
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Figure 4.6 Principal components of the expression data. 

Because of high number of features as compared to the number of available 
samples, we conducted universal feature selection. According to the universal 
selection, we disregarded any metastasis status of the samples and measured 
the variance of the expression of each feature independently across all samples. 
Next, we retained the features which shows variance of less than 5% of the 
housekeeping gene variance. The cut-off of such variance measure is shown in 
Figure 4.7 from Supplementary Information. 

 
Figure 4.7 Expression variance of housekeeping and non-housekeeping genes. The blue horizontal 
line denotes the measurement for less than 5% of housekeeping genes. 

We chose Adaptive boosting [106], [107] as our composite model where each 
sub-model within the ensemble is a decision tree and each decision tree is 
constructed based on a bootstrap sample. We used the Adaboost framework 
implemented in R gbm package [134]. In the framework, Huber loss function is 
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selected to reduce over-fitting. We estimated the classification accuracy of the 
model based on 4-fold cross validation. As the bootstrap sample sets can be 
different in each run of the Adaboost model, we repeated the building of each 
model 50 times to account for any random bias. 
 
4.3.2 Clustering sub-models 
For each tissue specific metastasis model, we obtained the sub-models from all 
secondary tissue, and then clustered all sub-models using k-Nearest Neighbors 
algorithm (k-NN), where each sub-model is an instance and the features of the 
instances are individual feature-importance obtained in the context of respective 
secondary tissue specific model. Before feeding into the k-NN, we remove all the 
features whose cumulative importance over all sub-models is zero.   

4.4 Discussion 
In this study, we have presented a novel ensemble-based framework –
MONTAGE, to investigate intra-tissue heterogeneity and inter-tissue 
commonality of genetic interaction rules in the context of breast cancer 
metastasis. To the best of our knowledge, this is the first study to 
comprehensively identify genetic interaction rules, each rule composed of more 
than 2 genes, many of which are shared across multiple tissue specific 
conditions. Additionally, we showed that why such study can be challenging 
using current data and given that challenge can also nullify some previous 
findings of cancer metastasis.  
We chose Adaboost as our ensemble model due to its architectural advantages 
with respect to our ultimate goal of analyzing common and distinct binding rules, 
or sub-models, across ensembles learned for each cell type. Boosting ensemble 
methods, including Adaboost, are designed to learn optimal tree sub-models for 
successive reweighted bootstrap samples. This is, in contrast to other ensemble 
methods, including the popular Random Forest (RF) approach which seeks to 
increase variability of sub-models by estimating weak sub-models from un-
weighted bootstrap samples. Since our primary goal is to reveal model 
heterogeneity, we chose to cluster sub-models generated by Adaboost rather 
than Random Forest’s weak learners.  
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5 Auto-encoder based non-linear batch 
correction 

5.1 Background and Related works 
High throughput gene expression profiling is ubiquitous in all of biomedical 
research. However, using gene expression profiles for such studies are not 
straightforward. Before effective usage of expression profile, the measurements 
need to be free of biases which are incurred due to many non-biological relevant 
sources: experiments done by different lab in different ozone level, experiments 
done by different personnel, experiments done at different time points, and 
different conditions. Collectively, these biases are called batch effects. In addition 
to that, the technology for sequencing the samples change with the advances in 
biotechnologies. It is likely that new patient samples are sequenced in different 
technology, and concurrent use of multiple technologies is common. All these 
technological differences mandate either to use the expression data separately 
causing smaller sample size and reduction of statistical power or to aggregate 
data across multiple sequencing technology after correcting for batches across 
platform. 
Previous research addressed batch affects by variety of techniques each of 
which has their respective advantages and disadvantages. Singular value 
Decomposition (or SVD [46]) corrects for batches by directly removing the 
singular vectors (termed as eigengene and eigen array) which have any non-
biological information along that vector. Distance Weighted Discrimination (DWD, 
[47]), on the other hand, removes the artifacts indirectly by projecting the 
expression on to mean separating hyperplane of two batches. Both SVD and 
DWD necessitates large number of samples. ComBat addresses the small 
sample size problem [48] by modeling the batch as additive and multiplicative 
noise for each gene independently. ComBat is often used along with SVA [49] 
which identifies unknown sources of noise unlike all the other previous methods. 
Limma [50] has also been used to incorporate batch information while finding the 
differentially expressed genes. Notably, neither SVA nor Limma correct for 
batches explicitly.  
A common caveat of all previous methods is that none of them consider the 
interaction of multiple features in non-linear fashion, a necessity for both 
biological and practical reasons. Phenotypes are affected by simultaneous 
interactions of multiple genes. Common machine learning models built using 
gene expression data also incorporate non-linear interaction of multiple genes. 
Hence, a method employing both multi-variate non-linearity are essential for 
effective batch correction. This motivates our proposed deep learning based 
method, deepSavior, offering the afore-mentioned characteristics. 
Recently, two deep learning based methods, ResNet and ADAGE, have been 
proposed for reducing noise in expression data [266], [267]. In the former 
method, the authors learnt the batches using residual network and the latter 
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method utilizes auto-encoder to remove noise and find relevant group of genes 
while reducing noise. While deepSavior utilizes auto-encoder based technique, it 
learns the expression translation of one technical platform to another technical 
platform in multi-modal fashion [268]. In our study, we explicitly show why such 
multi-modal learning is critical. We also show the efficacy of our method in single 
cell protein and gene expression data. 
 

5.2 Results 
5.2.1 Exemplifying the essentiality of deepSavior 
Prat et al. combined a dataset (Table 5.1) from 4 cohorts sequenced in 2 
microarray platforms: gpl96 and gpl570. As the data were coming from multiple 
sources, it calls for batch correction while integrating the data. 
 
Cancer subtype / 
Platform 

gpl96 gpl570 

ER+ 120 125 
ER- 217 190 
Table 5.1 Data size of Prat et al. 

 
Figure 5.1 shows the principal component analysis of the batch corrected data 
using DWD technique. According to the plots, the data are not biased by cohort 
or platform but retains the information of ER status of the samples which is the 
biological variable of interest. 
 

 
 

Figure 5.1 Principal components after batch correction. 
 
Next, we selected features with high variability regardless of their ER/platform 
status and build machine learning models using Adaboost method on the batch 
corrected data. The models were built to detect ER status, both within each 
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platform independently (ERD96 and ERD570 in Figure 5.2A) and pooling the two 
platforms (ERD in Figure 5.2A). The models performed with high accuracy in 4-
fold cross validation fashion. We also build models on batch corrected data to 
detect platform, both within samples of same ER status (PD+ and PD- in Figure 
5.2A) and pooling both ER status (PD in Figure 5.2A). The performance of the 
platform detection models is also measured in 4-fold cross validation fashion and 
shows high AUC-roc (Area Under Receiver Operating Curve). High accuracy in 
separating the two platforms is surprising given that the data was corrected for 
platform. Nevertheless, the argument supporting batch correction can be that the 
hyperplane separating the two platforms and the hyperplane separating the ER 
status are different and thus do not interfere with each other. We give a counter 
argument by building two Fake models, a) train a model to detect platform and 
test it for ER status detection (PERD) and b) train a model to detect ER status 
and test it for classifying platform (ERPD). As shown in Figure 5.2A, both Fake 
models show high performance indicating that the two above-mentioned 
hyperplanes are related. In addition, we repeated the above analysis using ~1k 
most variable genes as features from batch corrected data by ComBat method 
and using the principal components of batch corrected data by the same method. 
In both cases, we arrived at the same conclusion about platform detection, ER 
status detection and prediction by fake models (data not shown). 
 

 
Figure 5.2 Performance of platform models, ER status models and Fake models. 
 
Additionally, in the feature selection stage we removed the features which are 
found as differentially expressed (DE) between two platforms. However, as the 
removal of feature selection is done for each feature/gene independently, the 
removal of DE genes does not have any effect on the platform detection models 
(Figure 5.2B). On the other hand, removal of platform detectable genes from the 
platform model reduces the accuracy of all model (Figure 5.2C). Machine 
learning models, like Adaboost, Random forest, SVM with non-linear kernel (e.g. 
Gaussian or RBF kernel) introduces non-linear interaction across multiple 
features. On the other hand, any noise reduction at the batch correction stage 
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either use linear method or use non-linear method for each feature 
independently. Hence none of the current batch correction method are applicable 
for expression data, especially when we want to reuse the corrected data for 
building any ML model. 
deepSavior is a method which offers both multi-variate and nonlinear interaction 
of features. ResNet and ADAGE are also deep learning based method which 
have the above two properties. However, ResNet assumes the identity map 
between input and output while learning the batches as additional noise. This 
assumption applies for batches across same technology or platform, but does not 
apply for samples coming from different technology. For example, the probe sets 
from one platform can give ~14k Ensembl gene ids and the probe sets from 
another platform can generate ~17K Ensembl gene ids. The total common set of 
Ensembl ids could be ~12K and all previous methods work on taking those ~12K 
ids and the identity assumption does not hold here. In addition, the same set of 
ids coming from two different technology, the associated noise or difference in 
expression is far more complex than simple noise due to non-platform batches. 
Same reasoning applies to the efficacy of ADAGE which showed success on 
reducing noise on all expression data from GPL84 platform. In addition to that, 
while removing batches with any existing method, one must remove all the 
unmapped genes of different platform. The architecture of deepSavior, as 
described in next section, provides an opportunity for not leaving any information 
out of the dataset. 
 
5.2.2 deepSavior – deep learning architecture to tackle biases across 

technical platform 
deepSavior is multi-modal learning based neural network. The general network 
architecture of deepSavior is presented by Figure 5.3A and a brief description of 
the architecture is provided below (for additional details of activation and loss 
function see Methods).  
As the first step, we take separately preprocessed (log-normalized and scaled) 
expression data from two platforms. Without loss of generality, one of them is 
termed as ‘left’ expression and the other one is termed as ‘right’ expression. The 
number of input node is the number of features in each side (left or right), i.e. 
they do not need to be equal. The input layer is mapped to a smaller dimensional 
space (Dimension Reduction Layer - DRL) and both left and right DRL have 
same number of nodes. Then, the left and right DRL are mapped to a shared 
layer. The Decode and Reconstruction layer are simply reverse transform of 
original mapping. Notably, reconstruction layer is going to generate output in the 
same range of the activation functions used for each node of the layer. 
Therefore, an additional Linear Transform Layer (LTL) is added so that the tail of 
the distributions generated by each output layer is not truncated at [-1, 1] or [0, 
1]. The characteristics of input data is shown in Figure 5.3B, a set of samples 
with expression data from both left (CL) and right side (CR), a set of samples 
with only left side (UL) and another set of samples with only right side (UR). 
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While training the architecture with CL and CR, all 4 parameters sets ({wl}, {wr}, 
{wl

prime}, {wr
prime}) are updated and while training with UL/UR only the parameters 

from relevant sides are updated. After training, given a new sample expression 
from left (or right), both left and right expression data can be reconstructed. 
Given such reconstruction, we claim, deepSavior is not necessarily reducing any 
noise, rather it is learning how to translate expression measurements from one 
platform to expression measurements of a different platform. Figure 5.3C-D 
depicts this fundamental difference between previous batch correction methods 
and deepSavior.  
 
 

 
Figure 5.3 A) deepSavior architecture, B) General input format and C) Noise 
reduction by existing methods, D) Learning expression translation by deepSavior. 
 
5.2.3 Efficacy of deepSavior in simulated data 
We first assessed the efficacy of deepSavior on simulated data. We simulate 
data for both Left and Right, but to simulate UL and UR, we simply discard the 
data from the other side to reflect the real-world scenario (cross marked in Figure 
5.3B). However, as in simulated data the counterpart of UL/UR exists, against 
which the reconstructed output can be verified. For simulation, we generated two 
sets of expression data of 10k samples, each with 25 genes. Each gene is 
assumed to follow a Gaussian mixture of two components (to represent on and 
off state) and the data was generated following a 50 by 50 correlation matrix with 
the assumption that each  gene’s expression is correlated with that of all other 
genes in and the left and right side. As an illustration, 4 input features of left and 
right are presented in Figure 5.4A. 
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Figure 5.4 A) input feature distribution, B) Distribution of input and output from 
deepSavior. In B, “cview_left” (“cview_right”) denotes the left (right) input 
expression data from CL (CR) and “lview_left” (“rview_right”) denotes the left 
(right) input expression data from UL (UR). Notably, when the input expression is 
from left (right), the distribution is compared between corresponding test right 
(left) unseen by the model and predicted right (left). 
 
The simulation scheme is illustrated in Figure 5.3B and training, validation and 
test dataset were taken from each part or CL/CR, and UL/UR. The deepSavior 
model was trained with training dataset for n number of iterations, where n was 
chosen based on improvement of loss function for validation set at least by \delta 
amount from previous iteration. After training, the model is used for prediction of 
the both left and right expression given only one side of data, e.g. given the left 
expression data we measured the predicted left and predicted right. As an 
illustration, we only show the distribution of predicted and actual test right for 8 
features when the input is from left side and vice versa. In Figure 5.4A, the 
“cview_left” (“cview_right”) denotes the left (right) input expression data from 
common section i.e. CL (CR) and “lview_left” (“rview_right”) denotes the left 
(right) input expression data from unique section, i.e. UL (UR). The rationale for 
showing common and unique section is to show the similarity of performance 
measurements regardless of the input data coming from common or unique 
sections. The similar performance measure indicates that the performance found 
for common test data is not because the model has seen the data from both 
sides, rather it applies for both common and unique data section. Therefore, for 
real data we restrict the performance assessment based on common data. 
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Figure 5.5 A) Correlation and B) Square loss of test data. In each plot, 1st 4 
boxplots are measured along rows, i.e. across gene and 2nd 4 boxplots are 
measured along columns, i.e. across people. “cview_left” (“cview_right”) denotes 
the left (right) input expression data from CL (CR) and “lview_left” (“rview_right”) 
denotes the left (right) input expression data from UL (UR). “2ori” denotes the two 
original input expression, “LR” stands for predicted/output left and right, and “2L” 
(“2R”) stands for input left (right) and predicted/output left (right). 
 
Figure 5.5 shows high correlation in predicted data and test data, similar 
correlation and square losses in original inputs and predicted outputs, and low 
square losses in predicted data and test data are apparent from Figure 5.5. As 
argued previously, the correlation and square loss show similar behavior both for 
common data section and unique data section. 
In sum, deepSavior is capable of reconstructing expression data given only one 
side of data. The challenge for real data is the lack of availability of large samples 
which can be ignored for single cell data and can be worked around by 
simulating bulkSeq data. 
 
5.2.4 Application of deepSavior in CyTOF data 
CyTOF is a mass spectrometry machine to measure protein abundance. 
Previous method, batch correction method ResNet measured the efficacy of their 
model using CyTOF single cell data. In this dataset, there are 4 sets of single cell 
expression data with 25 features: Person1_baseline Day1 & Day2, 
Person1_3months Day1 & Day2, Person2_baseline Day1 & Day2 and 
Person2_3months Day1 & Day2. In each set, the batches are considered 
between Day1 & Day2. In this section, we compare deepSavior with ResNet to 
point out that in addition to platform or technological translation, deepSavior 
translates the expression in the same way across regular batches. Here, left 
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expression is taken from Day2 and right expression is taken from Day1. For 
illustration, we have used only the 1st dataset: Person1_baseline Day1 & Day2.  
Notably, single cell data are special in the sense that there is expression of each 
cell in two batches and we do not have any cell to cell correspondence between 
two batches. Thus, there is no direct common/shared dataset in two sides. 
However, in special cases, we might have information about cell-type in each 
batch which are measured by various markers. CyTOF have cell-type information 
and that’s why we can utilize this information to make an artificial 
common/shared dataset (CL as shown in Figure 5.3B). Since cell-type 
information is an expensive measurement and many other single cell data might 
not have such information, we also try to make the artificial CL dataset without 
using the cell-type information directly. We refer the former method as “with cell-
type” and the latter as “without cell-type”. 
The summary of expression datasets is presented in Table 5.2. More specifically, 
in “with cell-type”, we matched two expressions as left and right counterpart 
based on same cell type and in “without cell-type”, we matched two expression 
based on MMD (maximum mean discrepancy), membership of a cell expression 
according to SOM (Self-Organizing Map) cluster and without any information of 
cell-type (see Method for details). After training the model, we predict the 
translated expression using both left and right side data together because unlike 
platform batches, for every left expression there exists a corresponding right 
expression data and vice versa. 
 
 Person1_baseline 

(with cell-type) 
Person1_baseline 
(without cell-type) 

Common Left/Right 
(CL/CR) 

1315 452 

Unique Left (UL) 135 1008 
Unique Right (UR) 135 1008 
Table 5.2 Number of cells in each data section. 

 
We used the following criteria to compare deepSavior with ResNet: MMD, 
Frobenius Norm, PCA plots. MMD is similarity of two data sets or two 
distributions in RBF kernel space. The lower the MMD the better the correction 
and the expression translation. Since MMD is measure taking a subset of data 
points from each dataset, the MMD of same dataset, e.g. MMD(Day2, Day2) is 
not going to be zero, but very small number which we call as ‘baseline’. 
According to Table 5.3, the baseline MMD measure is 0.1271 and before any 
correction the measure is 0.6627. After correction by ResNet, the MMD goes 
down to 0.2702. Notably, deepSavior can translate either towards left or towards 
right side and hence two entries of MMD measure is being shown (~0.2). 
deepSavior translates the expression data minimizing the MMD further than 
ResNet. 
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 Person1_baseline 
(with cell-type) 

Person1_baseline 
(without cell-type) 

(Day1, Day2) 0.6627 0.6627 
(Day2, Day2)  0.1271 0.1274 
(ResNet(Day1), Day2) 0.2702 0.2815 
(deepSavior_left, left) 0.2119 0.3656 
(deepSavior_right, right) 0.1969 0.4017 
Table 5.3 MMD between two sets of expression data.  

 
Frobenius Norm is the difference between two correlation matrices. We 
measured the correlation matrix of source/left and target/right. The lower the 
norm, the less discrepancy between two expression data and the better. We took 
the ratio of two norms after and before correction/translation is applied. The lower 
the ratio, the better the correction is. Table 5.4 presents the results for ResNet 
and deepSavior indicating that with respect to the ratio of Frobenius Norm, 
deepSavior performs either comparable or better than ResNet. 
 
 Person1_baseline  

(with cell-type) 
Person1_baseline  
(without cell-type) 

ResNet 0.4217  
deepSavior (left) 0.4481 0.6397 
deepSavior (right) 0.1688 0.7253 
Table 5.4 Ratio of Frobenius norm between before and after method (ResNet and deepSavior). 

We then checked the cumulative distribution function (CDF) of features before 
applying any method, after calibration by ResNet, and after translating by 
deepSavior. As an illustration, we picked 4 arbitrary features in Figure 5.6. 
According to the CDF, deepSavior performs comparable to ResNet (average KS 
statistics are presented in Table 5.5). 
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Figure 5.6 Cumulative distribution function of features. 
 
 Person1_baseline  
Before correction/translation 0.3934 
ResNet 0.1068 
deepSavior (with cell-type) 0.0411 
deepSavior (without cell-type) 0.1458 
Table 5.5 KS statistics of the CDF presented in Figure 6. 

 
Next, we assessed the principal component analysis of the expression data both 
at the population (Figure 5.7) and sub-population (Figure 5.8) level. Population 
level denotes all expression data regardless of cell-type and sub-population level 
indicates the data taking from only one cell type to ensure that the 
correction/translation are not interfering the cell-type information. 
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Figure 5.7 Principal component analysis for all cell types together. 
 
According to principal component analysis (Figure 5.7 and Figure 5.8), it is 
apparent that deepSavior performs as good as ResNet which is not surprising, as 
both models considers multi-variate and non-linearity of the features. However, 
the superiority of deepSavior, as illustrated above, might stem from the fact that 
the translation is done on the test data which the model never saw which is not 
the case for ResNet. Moreover, for the same platform batch the existence of both 
batches of data are possible, but for different platform expression data, the model 
needs to learn from only one batch, possibly with different number of features, 
which is not facilitated by ResNet. 
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Figure 5.8 Principal component analysis for cell-type 1. 
 
 
 With cell-type Without cell-type 
 Batch 

model 
Cell-type 
model 

Batch model Cell-type 
model 

Before anything 0.93 0.98 0.93 0.98 
ResNet 
Correction 

0.77 0.98 0.77 0.98 

deepSavior (left) 0.77 0.99 0.81 0.96 
deepSavior (right) 0.75 0.98 0.79 0.89 
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deepSavior 
(outputs) 

0.99 0.94 0.90 0.95 

Table 5.6 AUC-roc of SVM batch and SVM cell-type models. 

 
Finally, we measured whether we can translate the expression data across 
batches by preserving the cell-type information. To this end, we built batch model 
and cell-type model using Support Vector Machine (SVM) to predict batch and 
cell-type respectively. Based on Table 5.6 , both ResNet and deepSavior 
reduced the stark difference between two batches while retaining the difference 
between cell-types. Additionally, the last row of Table 5.5, confirms that 
deepSavior retains the batch and cell-type information in the predicted output as 
well.  
In sum, deepSavior is well suited to be applicable for any batch correction done 
by ResNet.  
 
5.2.5 Application of deepSavior in single cell RNASeq data 
Next, we assessed the applicability of deepSavior to single-cell mRNA 
expression levels generated by DropSeq. We utilized the same dataset as in 
Shaham et al., which has two batches of seven replicates to study bipolar cells of 
mouse retina. We obtained the preprocessed data from Shaham et al., as 
according to Shekhar et al. (2016) most of the signal is captured by the leading 
37 principal components. Therefore, in mouse_retina dataset we have 37 
features for both left and right expression. In mouse_retina data, unlike CyTOF, 
the differences due to batches are very subtle (Figure 7.16 from Supplementary 
Information), and there is no cell-type information. As shown by Shaham et al., t-
SNE plot demonstrates clusters of cells might be representative of various cell-
types (Figure 5.9A and Figure 5.9B). We presented similar non-linear 
visualization after deepSavior translation (Figure 5.9C and Figure 5.9D). Based 
on the t-SNe plot, similar to ResNet, deepSavior also learns the expression 
translation while retaining the cell type information. Notably, the plots for 
deepSavior is sparser than ResNet as the former method is discarding some 
data points during training and testing. 
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Figure 5.9 t-SNE plot for two batches of mouse_retina data. 
 
Finally, we presented 3 features where deepSavior outperforms ResNet: the 
features are selected based on KS statistics measure. For most features the KS 
statistics between left and right (source and target) are very close to each other 
after correction/translation, and the measure for correction by ResNet and 
translation by deepSavior (mean difference 0.02). However, for the three 
features, as presented in Figure 5.10, the difference of two KS statistics are more 
than 0.2. 
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Figure 5.10 Cumulative distribution functions for principal component 2, 5 and 7. 
The features are selected based on having more 0.2 Ks statistics differences with 
ideal scenario. 
 
In Sum, deepSavior performs well enough to compete with ResNet. 

5.3 Methods 
5.3.1 deepSavior Method 
The activation function of each neuron in the deepSavior is a tanh function. The 
output range of tanh function is (-1, 1). If we keep the last layer as nodes with 
tanh activation, regardless of the range of input, the output will be truncated at -1 
and 1. Hence, the reconstruction layer is followed by a linear transform layer to 
enforce the output range of tail of the distribution beyond -1 and 1. 
The loss function of input and output is defined by the following. 
L = L1 + L2 + L3 + L4 + L5 – C * corr(left[i], right[i]), where C is a constant and  
L1 = square loss of input and output given CL and CR together 
L2 (L3) = square loss of input and output given only CL (CR) 
L4 (L5) = square of left (right) input and left (right) output given only UL (UR) 
The above loss function has four components, minimizing self-reconstruction 
error, represented by L1, minimizing cross-reconstruction error from common 
data, represented by both L2 and L3, minimizing cross-reconstruction error from 
unique data, represented by both L4 and L5, and maximizing correlation 
encoding of left and right expression. We used Pearson correlation in the loss 
function and based on our experience the range between 0.1 to 5 works well as 
the value of C. However, the correlation between test data and predicted data 
does not vary much if the correlation is not imposed in the loss function (Figure 
7.17).  
 
5.3.2 Cell-matching algorithm 
For single cell data, we, apriori, do not know the corresponding left and right cell 
expression. If we would have known the cell-type we can choose a cell either 
arbitrarily or based on correlation or Euclidean distance. In our algorithm of “with 
cell-type” version we choose two such expression arbitrarily from same cell-type. 
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For “without cell-type” version the assumption is we do know have the cell-type 
information and hence we match two such expression empirically. To this end, 
we measured the RBF kernel of each pair of expression from left and right. Next, 
we clustered the combined left-right expression data using Self-Organizing map 
in a grid of 7X7. The rational for choosing 7X7 grid is to make the clusters 
granular enough so that no two same cell types fall in the same cluster and we 
would not worry about if two same cell-types fall in different cluster. Given such 
clustering, we match two expression value which falls in same cluster and 
selected as one of the closest neighbors in the kernel space. If the candidat 
expression data from one side (e.g. right) is already taken by another expression 
from the other side (e.g. left), the next closest neighbor in the kernel space. The 
neighborhood is chosen arbitrarily as 300, i.e. beyond 300 data points, we keep 
the expression data as one of the unique data points (UL or UR). 
 

5.4 Discussion 
In this study, we have presented a novel deep learning based architecture to 
learn translation of gene expression across batches instead of correcting for 
batches. To the best of our knowledge, this is the first study for learning 
expression translation. The utility of such method can be tremendous, e.g. if we 
have data from n batches, and each (n-1) dataset can be translated into 1st batch 
then, together they can form a huge dataset. The most fundamental difference of 
proposed method and previous methods is we are bypassing the necessity of 
correction while incorporating the desired properties of multi-variate non-linear 
interactions. Even though there have been two other deep learning methods, 
namely ResNet and ADAGE, which offers such desirable properties, both require 
the same number of genes/features across batches. On the other hand, due to 
multi-modal input interface, deepSavior does not require having equal and same 
set of features between two sets of data. Therefore, when batches are due to 
platform differences, we do not need to throw away the information from 
unmapped probed between two platforms. However, the above results, so far, 
are expression translation across non-platform batches. For each platform of 
microarray or any other sequencing technology, the number of samples are very 
small to train neural network. As future work, we are developing an additional 
pipeline to generate large number of simulated data by looking at the covariance 
structure, correlation structure of the joint distribution and the marginal 
distribution of the original data. The simulated data is going to be used for 
training and the original data is going to be used for testing.  
In addition, data simulation is going to be useful for cases where there are 
unequal number of left- and right-samples. Notably, is one side has much higher 
number of samples than the other side, the network parameters of the former 
side will get chance to be updated more. Therefore, this can lead to imbalance of 
parameter learning. To overcome this, we can throw out additional samples of 
larger side. However, throwing out samples will limit the learning. Hence, number 
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of samples can be enlarged by simulating additional samples from the existing 
samples and keep equal number of samples on each side. 
Given the success of deepSavior for translating expression across batches, it 
can be further utilized to translate expression in completely different setting. For 
example, learning translation of one tissue to another tissue and thus increasing 
the sample size at the population level. 
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6 Conclusion 
In biology, variation is prevalent and it happens at multiple scale: across species, 
within species, and across cell types of same individual. This dissertation 
addressed part of the variations happening across cell-types of same individual. 
The two main sources for causing such variations are transcription factors (TF) 
and epi-genomics (e.g. methylation). Both factors cause transcriptomic variations 
generated from the same DNA across cell types and thus leading to cell-type 
specificity, or even disease. Collectively, this outcome is referred as phenotype 
and phenotype is function of genotype via the activity of transcription factors and 
epi-genetics. The presence of large scale genomics and epi-genomics data have 
enabled to understand such genotype-phenotype functional relationship using 
the art of Machine Learning (ML) and Artificial Intelligence (AI). Some 
representative examples of ML tasks in genomics can be prediction of epi-
genetic state, prediction of TF binding, prediction of disease condition etc.  

Design and interpretation of ML models can pose various challenges for effective 
understanding of mechanistic questions in genomics. For example, for proper 
mechanistic understanding of a biological process, the model built for that 
process should reflect the corresponding cell-type specificity. Often, even in 
same tissue, there exists heterogeneous groups of cells depending on their 
transcriptional properties. Having such heterogeneous groups of cells are very 
common phenomena in cancer. For effective interpretation, a good modelling 
should consider the presence of such heterogeneity. Finally, the dataset to build 
the models can be heterogeneous in nature in terms of their sources (e.g. lab) 
and technology (e.g. sequencing technology).  

To keep the above challenges in mind, this dissertation has tried to address three 
big questions from genomics. The 1st question has asked for the possible 
determinants for loss of methylation in cancer. In cancer, loss of methylation or 
hypo-methylation happens in large blocks and it causes aberrant gene activity. 
Even though hypo-methylation is a common phenomenon, the underlying 
mechanism has not been investigated yet. In the 1st chapter, I designed a 
classification model for boundary vs. non-boundary of hypo-methylation blocks 
from colon cancer to reveal the associated genetic and epi-genetic markers. 
From our models and post-hoc analysis, we identified TF markers in the 
boundary which are involved in chromatin modification and the boundaries of 
methylation blocks behave as promoter although they are not promoter.  

The 2nd chapter of the dissertation has studied the models of TF binding rules 
across cell-type. For decades, researchers are studying the models of TF binding 
to understand the functional consequence of TF binding rule. However, the 
relationship between TF binding rules and their functional consequences has not 
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been not properly understood yet. This dissertation has shown that TF binding 
rule can exhibit significant amount of functional heterogeneity across cell-types 
which was previously unappreciated. In addition, in this chapter it has been 
discussed that such functional heterogeneity is exerted by the combinatorial 
effect of surrounding interaction partners which are responsible for both 
ubiquitous and cell-type specific regulatory functions. 

The 3rd chapter of dissertation has studied the models of cancer metastasis for 
breast primary tissue. Metastasis is the spread of cancel cell from primary tissue 
to secondary tissue. Depending on the distant location, same primary tissue can 
end up showing multiple kinds of metastasis. This chapter has been focused on 
studying the heterogeneity of cancer metastasis using machine learning models.   

Building ML models often requires transcriptome from many patients. However, 
for disease, like metastasis, having patient samples from uniform sequencing 
technology is not possible. By necessity, patient data have been integrated 
across sources and technologies. However, data integration leads to noise which 
needs to be taken care of as it dilutes the real biological signal. This dissertation 
has studied the inefficacy of available noise correction methods and proposed a 
novel noise correction method for data integration.  

To summarize, computation tools provided by Machine Learning and Artificial 
Intelligence offers both powerful and intelligent system design. On the other 
hand, nature remain to function as robust and resilient by its intelligent design. 
The theme followed by this dissertation can be stated as “Use the power of 
machine learning to demystify the wonder of biology, borrow the intelligence of 
machine learning to understand the intelligence of nature”. 
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7 Supplementary Information 

7.1 Supplementary for Chapter 2	
7.1.1 Supplementary Figures 
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Figure 7.1 Positional profile of Frequency Plots for the TF motifs listed in 
Supplementary data. 
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7.1.2 Supplementary Data 

Table 7.1 TF motifs from classification of boundary vs. promoter. 

ENSG motif MeanDecreaseAccuracy 
  V_NANOG_02 0.13648 
ENSG00000129654 V_HFH4_01 0.09752 
ENSG00000123405 V_MAF_Q6_01 0.06761 
  V_DBX1_01 0.06727 
ENSG00000168269 V_HFH3_01 0.05710 
ENSG00000170608 V_HNF3_Q6_01 0.04865 
ENSG00000170608 V_HNF3_Q6 0.03299 
ENSG00000165556 V_CDX_Q5 0.01729 
ENSG00000181690 V_PLAG1_01 0.01595 
ENSG00000176678 V_FREAC7_01 0.01500 
ENSG00000172845 V_SP1_Q6_01 0.01132 
ENSG00000172845 V_SP1_Q4_01 0.00875 
ENSG00000172845 V_SP1_Q2_01 0.00820 
  V_SP1_01 0.00744 
ENSG00000072310 V_SREBP_Q6 0.00668 
ENSG00000006194 V_FPM315_01 0.00541 
  V_TCF3_01 0.00535 
  V_SP1_Q6 0.00525 
  V_GTF2IRD1_01 0.00380 
ENSG00000105866 V_SP4_Q5 0.00368 
  V_CACD_01 0.00360 
ENSG00000160685 V_CKROX_Q2 0.00327 
  V_MUSCLE_INI_B 0.00320 
ENSG00000072310 V_SREBP1_01 0.00307 
  cpgoverlap 0.00306 
  V_PITX2_Q2 0.00290 
  V_CACBINDINGPROTEIN_Q6 0.00287 
ENSG00000167182 V_SP2_01 0.00255 
ENSG00000143190 V_OCT1_04 0.00250 
ENSG00000163848 V_ZBP89_Q4 0.00250 
ENSG00000148606 V_RPC155_01 0.00249 
  V_ZFP281_01 0.00243 
ENSG00000185811 V_IK_Q5 0.00227 
ENSG00000103495 V_MAZ_Q6 0.00214 
ENSG00000114861 V_FOXP1_01 0.00205 
  V_SP1SP3_Q4 0.00202 
  V_ZFX_01 0.00190 
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ENSG00000120738 V_KROX_Q6 0.00189 
  V_MEF2C_01 0.00181 
  V_FOXD3_01 0.00178 
ENSG00000129514 V_HNF3ALPHA_Q6 0.00175 
  V_SP1_02 0.00152 
  V_GC_01 0.00148 
  V_KLF15_Q2 0.00142 
  V_UF1H3BETA_Q6 0.00135 
ENSG00000091831 V_ERALPHA_01 0.00129 
  V_BDP1_01 0.00123 
ENSG00000071564 V_MYOD_Q6_01 0.00118 
ENSG00000137203 V_AP2_Q6_01 0.00115 
  V_FOXJ2_01 0.00112 
ENSG00000136826 V_GKLF_02 0.00104 
ENSG00000185811 V_LYF1_01 0.00104 
ENSG00000111424 V_VDR_Q3 0.00101 
ENSG00000150907 V_FOXO1_Q5 0.00098 
ENSG00000172059 V_FKLF_Q5 0.00098 
ENSG00000197579 V_LUN1_01 0.00095 
ENSG00000185551 V_COUPTF_Q6 0.00088 
ENSG00000126351 V_TERALPHA_Q6 0.00066 
ENSG00000089225 V_TBX5_Q5 0.00062 
ENSG00000165804 V_ZNF219_01 0.00056 
ENSG00000130726 V_RNF96_01 0.00056 
ENSG00000135363 V_LMO2COM_01 0.00054 
ENSG00000124782 V_RREB1_01 0.00046 
  V_MYF_01 0.00044 
ENSG00000103241 V_FOX_Q2 0.00042 
  V_LXR_DR4_Q3 0.00041 
ENSG00000088038 V_CNOT3_01 0.00029 
  V_PUR1_Q4 0.00026 
ENSG00000100105 V_MAZR_01 0.00024 
  V_MINI19_B 0.00023 
ENSG00000185551 V_ARP1_01 0.00021 
ENSG00000066336 V_PU1_Q4 0.00018 
ENSG00000102974 V_CTCF_01 0.00018 
  V_NCX_02 0.00017 
ENSG00000184937 V_WT1_Q6 0.00017 
ENSG00000099326 V_MZF1_02 0.00016 
ENSG00000071564 V_E2A_Q2 0.00013 
  V_LHX3_02 0.00012 
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ENSG00000077809 V_TFIII_Q6 0.00012 
ENSG00000256683 V_ZBRK1_01 0.00011 
ENSG00000162367 V_TAL1_Q6 0.00011 
ENSG00000143190 V_OCT1_Q5_01 0.00009 
ENSG00000137203 V_AP2_Q3 0.00009 
  V_DBX2_01 0.00008 
  V_P53_04 0.00008 
ENSG00000111206 V_FOXM1_01 0.00007 
ENSG00000143190 V_OCT1_08 0.00007 
ENSG00000064835 V_PIT1_01 0.00007 
ENSG00000171786 V_HEN1_02 0.00007 
ENSG00000120738 V_EGR_Q6 0.00006 
ENSG00000171786 V_HEN1_01 0.00006 
ENSG00000156150 V_ALX3_01 0.00006 
  V_MYOD_Q6 0.00005 
ENSG00000162992 V_NEUROD_02 0.00004 
  V_NFY_01 0.00004 
ENSG00000106331 V_PAX4_04 0.00003 
ENSG00000106331 V_PAX4_03 0.00003 
  V_LHX5_01 0.00003 
ENSG00000102974 V_CTCF_02 0.00003 
  V_MINI20_B 0.00003 
ENSG00000172216 V_CEBPB_02 0.00003 
  V_ZFP206_01 0.00002 
ENSG00000057657 V_BLIMP1_Q6 0.00002 
ENSG00000084093 V_NRSF_01 0.00002 
ENSG00000177374 V_HIC1_03 0.00002 
ENSG00000188786 V_MTF1_Q4 0.00002 
  V_REX1_03 0.00002 
ENSG00000132170 V_PPARG_01 0.00002 
ENSG00000196767 V_BRN4_01 0.00002 
ENSG00000177374 V_HIC1_02 0.00001 
ENSG00000071564 V_E47_01 0.00001 
ENSG00000087510 V_AP2GAMMA_01 0.00001 
ENSG00000167034 V_NKX3A_02 0.00001 
ENSG00000137203 V_AP2ALPHA_01 0.00001 
ENSG00000072310 V_SREBP1_Q5 0.00001 
  V_IRX2_01 0.00001 
ENSG00000185668 V_TST1_02 0.00001 
  V_HOXC6_01 0.00001 
ENSG00000007372 V_PAX6_02 0.00001 
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ENSG00000198914 V_OCTAMER_01 0.00001 
ENSG00000084093 V_NRSE_B 0.00001 
ENSG00000125347 V_IRF_Q6 0.00001 
  V_DMRT3_01 0.00001 
  V_FOXJ2_02 0.00001 
ENSG00000116833 V_LRH1_Q5 0.00000 
ENSG00000163848 V_CACCCBINDINGFACTOR_Q6 0.00000 
ENSG00000162367 V_TAL1_01 0.00000 
  V_POU2F3_01 0.00000 
  V_HNF3B_01 0.00000 
  V_OLF1_01 0.00000 
ENSG00000082175 V_PR_02 0.00000 
ENSG00000172845 V_SP3_Q3 0.00000 
  V_TRF1_01 0.00000 
ENSG00000184486 V_POU3F2_01 0.00000 
ENSG00000100811 V_YY1_02 0.00000 
ENSG00000068305 V_HMEF2_Q6 0.00000 
  V_DMRT2_01 0.00000 
  V_BARX1_01 0.00000 
  V_HOXD8_01 0.00000 
ENSG00000101076 V_HNF4_01_B 0.00000 
ENSG00000166478 V_STAF_02 0.00000 
ENSG00000185551 V_COUP_DR1_Q6 0.00000 
ENSG00000128645 V_HOXD1_01 0.00000 
ENSG00000245848 V_CEBP_C 0.00000 
ENSG00000171634 V_FAC1_01 0.00000 
  V_IRX5_01 0.00000 
ENSG00000043039 V_BARX2_01 0.00000 
ENSG00000159387 V_IRXB3_01 0.00000 
  V_OBOX5_01 0.00000 
ENSG00000113916 V_BCL6_01 0.00000 
ENSG00000148200 V_GCNF_01 0.00000 
  V_ISL2_01 0.00000 
ENSG00000185122 V_HSF1_Q6 0.00000 
ENSG00000068305 V_RSRFC4_Q2 0.00000 
ENSG00000025156 V_HSF2_02 0.00000 
ENSG00000135457 V_CP2_02 0.00000 
ENSG00000101076 V_HNF4_Q6_01 0.00000 
ENSG00000162772 V_ATF3_Q6 0.00000 
ENSG00000160113 V_EAR2_Q2 0.00000 
ENSG00000118513 V_CMYB_01 0.00000 
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ENSG00000160224 V_AIRE_01 0.00000 
ENSG00000173153 V_ERR1_Q2 0.00000 
  V_NKX29_01 0.00000 
  V_ATF_01 0.00000 
ENSG00000169083 V_AR_Q2 0.00000 
ENSG00000090447 V_AP4_01 0.00000 
ENSG00000157554 V_ETS_Q4 0.00000 
ENSG00000147421 V_HMBOX1_01 0.00000 
  V_PSX1_01 0.00000 
  V_POLY_C 0.00000 
ENSG00000156925 V_ZIC3_01 0.00000 
  V_ETS1_B 0.00000 
ENSG00000068305 V_MEF2_01 0.00000 
ENSG00000064835 V_PIT1_Q6 0.00000 
ENSG00000196092 V_PAX5_01 0.00000 
ENSG00000169297 V_DAX1_01 0.00000 
ENSG00000074047 V_GLI2_01 0.00000 
ENSG00000182568 V_SATB1_Q3 0.00000 
ENSG00000135100 V_HNF1_Q6 0.00000 
  V_ELK1_01 0.00000 
  V_SEF1_C 0.00000 
ENSG00000251493 V_FREAC4_01 0.00000 
ENSG00000136944 V_LMX1B_01 0.00000 
ENSG00000141905 V_MYOGNF1_01 0.00000 
  V_STRA13_01 0.00000 
ENSG00000101076 V_HNF4_01 0.00000 
  V_ZTA_Q2 0.00000 
ENSG00000005102 V_MOX1_01 0.00000 
  V_HOXD10_01 0.00000 
  V_TBX15_01 0.00000 
  V_PAX9_B 0.00000 
  V_TAACC_B 0.00000 
ENSG00000068305 V_RSRFC4_01 0.00000 
ENSG00000149948 VS_HMGA2_01 0.00000 
  V_AHRARNT_01 0.00000 
  V_AHRARNT_02 0.00000 
  V_AHR_01 0.00000 
ENSG00000160224 V_AIRE_02 0.00000 
ENSG00000068305 V_AMEF2_Q6 0.00000 
ENSG00000159216 V_AML_Q6 0.00000 
ENSG00000170345 V_AP1_01 0.00000 
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ENSG00000137203 V_AP2ALPHA_02 0.00000 
ENSG00000137203 V_AP2ALPHA_03 0.00000 
ENSG00000148516 V_AREB6_01 0.00000 
  V_ARNT_01 0.00000 
ENSG00000004848 V_ARX_01 0.00000 
ENSG00000169083 V_AR_01 0.00000 
ENSG00000169083 V_AR_02 0.00000 
ENSG00000169083 V_AR_04 0.00000 
ENSG00000169136 V_ATF5_01 0.00000 
ENSG00000156273 V_BACH1_01 0.00000 
  V_BACH2_01 0.00000 
  V_BARBIE_01 0.00000 
  V_BARHL1_01 0.00000 
  V_BARHL2_01 0.00000 
ENSG00000113916 V_BCL6_02 0.00000 
  V_BEL1_B 0.00000 
ENSG00000164458 V_BRACH_01 0.00000 
ENSG00000184486 V_BRN2_01 0.00000 
ENSG00000091010 V_BRN3C_01 0.00000 
  V_BSX_01 0.00000 
  V_CAAT_C 0.00000 
  V_CART1_01 0.00000 
  V_CART1_03 0.00000 
  V_CBF_02 0.00000 
  V_CDP_02 0.00000 
  V_CDP_03 0.00000 
ENSG00000113722 V_CDX1_01 0.00000 
ENSG00000165556 V_CDX2_01 0.00000 
ENSG00000165556 V_CDX2_Q5 0.00000 
ENSG00000245848 V_CEBPA_01 0.00000 
ENSG00000153879 V_CEBPGAMMA_Q6 0.00000 
ENSG00000245848 V_CEBP_01 0.00000 
ENSG00000245848 V_CEBP_Q2 0.00000 
ENSG00000245848 V_CEBP_Q2_01 0.00000 
  V_CETS1P54_03 0.00000 
ENSG00000245848 V_CHOP_01 0.00000 
  V_CHX10_01 0.00000 
  V_CLOX_01 0.00000 
ENSG00000178573 V_CMAF_01 0.00000 
ENSG00000136997 V_CMYC_01 0.00000 
ENSG00000136997 V_CMYC_02 0.00000 
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  V_COMP1_01 0.00000 
ENSG00000175745 V_COUP_01 0.00000 
ENSG00000115966 V_CREBP1_Q2 0.00000 
ENSG00000118260 V_CREB_Q2_01 0.00000 
ENSG00000141905 V_CTF1_01 0.00000 
ENSG00000177030 V_DEAF1_01 0.00000 
ENSG00000134107 V_DEC_Q1 0.00000 
ENSG00000144355 V_DLX1_01 0.00000 
ENSG00000115844 V_DLX2_01 0.00000 
  V_DMRT1_01 0.00000 
  V_DMRT4_01 0.00000 
  V_DMRT7_01 0.00000 
  V_DOBOX4_01 0.00000 
  V_DOBOX5_01 0.00000 
  V_DUXL_01 0.00000 
ENSG00000101412 V_E2F1_Q3_01 0.00000 
ENSG00000101412 V_E2F_01 0.00000 
  V_E2_01 0.00000 
  V_E2_Q6 0.00000 
ENSG00000071564 V_E47_02 0.00000 
  V_EBNA1_01 0.00000 
ENSG00000132005 V_EFC_Q6 0.00000 
ENSG00000122877 V_EGR2_01 0.00000 
  V_ELF1_Q6 0.00000 
ENSG00000135374 V_ELF5_01 0.00000 
  V_ELK1_02 0.00000 
ENSG00000163064 V_EN1_02 0.00000 
ENSG00000164778 V_EN2_01 0.00000 
ENSG00000173153 V_ERR1_Q3 0.00000 
ENSG00000091831 V_ER_Q6 0.00000 
  V_ESX1_01 0.00000 
  V_ETS2_B 0.00000 
ENSG00000085276 V_EVI1_04 0.00000 
ENSG00000106038 V_EVX1_01 0.00000 
  V_EVX2_01 0.00000 
  V_FOXO3_01 0.00000 
ENSG00000184481 V_FOXO4_02 0.00000 
  V_FOXP3_Q4 0.00000 
ENSG00000137273 V_FREAC2_01 0.00000 
ENSG00000054598 V_FREAC3_01 0.00000 
  V_FXR_IR1_Q6 0.00000 
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ENSG00000012504 V_FXR_Q3 0.00000 
  V_GADP_01 0.00000 
ENSG00000102145 V_GATA1_04 0.00000 
  V_GBX1_01 0.00000 
ENSG00000165702 V_GFI1B_01 0.00000 
ENSG00000162676 V_GFI1_01 0.00000 
ENSG00000111087 V_GLI1_01 0.00000 
ENSG00000106571 V_GLI3_02 0.00000 
ENSG00000111087 V_GLI_Q2 0.00000 
ENSG00000113580 V_GRE_C 0.00000 
ENSG00000113580 V_GR_01 0.00000 
ENSG00000113580 V_GR_Q6 0.00000 
ENSG00000180613 V_GSH2_01 0.00000 
ENSG00000071564 V_HAND1E47_01 0.00000 
  V_HB24_01 0.00000 
ENSG00000130675 V_HB9_01 0.00000 
  V_HDX_01 0.00000 
  V_HES1_Q2 0.00000 
  V_HFH1_01 0.00000 
ENSG00000103241 V_HFH8_01 0.00000 
ENSG00000100644 V_HIF1_Q3 0.00000 
ENSG00000137309 V_HMGIY_Q3 0.00000 
ENSG00000215612 V_HMX1_02 0.00000 
ENSG00000108753 V_HNF1B_01 0.00000 
ENSG00000135100 V_HNF1_01 0.00000 
ENSG00000135100 V_HNF1_02 0.00000 
ENSG00000135100 V_HNF1_C 0.00000 
ENSG00000135100 V_HNF1_Q6_01 0.00000 
ENSG00000101076 V_HNF4ALPHA_Q6 0.00000 
ENSG00000101076 V_HNF4_DR1_Q3 0.00000 
ENSG00000119547 V_HNF6_Q6 0.00000 
  V_HOMEZ_01 0.00000 
ENSG00000106004 V_HOX13_01 0.00000 
ENSG00000253293 V_HOXA10_01 0.00000 
ENSG00000105991 V_HOXA1_01 0.00000 
ENSG00000197576 V_HOXA4_01 0.00000 
ENSG00000106006 V_HOXA6_01 0.00000 
  V_HOXA7_03 0.00000 
ENSG00000078399 V_HOXA9_01 0.00000 
ENSG00000159184 V_HOXB13_01 0.00000 
ENSG00000120093 V_HOXB3_01 0.00000 
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ENSG00000182742 V_HOXB4_01 0.00000 
ENSG00000120075 V_HOXB5_01 0.00000 
  V_HOXB7_01 0.00000 
ENSG00000120068 V_HOXB8_01 0.00000 
ENSG00000170689 V_HOXB9_01 0.00000 
ENSG00000123388 V_HOXC11_01 0.00000 
ENSG00000198353 V_HOXC4_01 0.00000 
ENSG00000172789 V_HOXC5_01 0.00000 
ENSG00000037965 V_HOXC8_01 0.00000 
ENSG00000180806 V_HOXC9_01 0.00000 
ENSG00000100219 V_HTF_01 0.00000 
ENSG00000140968 V_ICSBP_Q6 0.00000 
ENSG00000185811 V_IK1_01 0.00000 
ENSG00000185811 V_IK3_01 0.00000 
  V_IPF1_Q4_01 0.00000 
ENSG00000168310 V_IRF2_01 0.00000 
  V_IRX3_02 0.00000 
ENSG00000113430 V_IRX4_01 0.00000 
ENSG00000116132 V_K2B_01 0.00000 
ENSG00000115112 V_LBP9_01 0.00000 
  V_LBX2_01 0.00000 
  V_LDSPOLYA_B 0.00000 
ENSG00000106689 V_LH2_01 0.00000 
  V_LHX4_01 0.00000 
  V_LHX8_01 0.00000 
  V_LHX9_01 0.00000 
  V_LIM1_01 0.00000 
ENSG00000162761 V_LMX1_01 0.00000 
ENSG00000025434 V_LXR_Q3 0.00000 
  V_MAX_01 0.00000 
  V_MAX_Q6 0.00000 
ENSG00000169057 V_MECP2_01 0.00000 
ENSG00000068305 V_MEF2_02 0.00000 
ENSG00000068305 V_MEF2_03 0.00000 
ENSG00000068305 V_MEF2_04 0.00000 
ENSG00000068305 V_MEF2_05 0.00000 
ENSG00000068305 V_MEF2_Q6_01 0.00000 
  V_MEF3_B 0.00000 
ENSG00000078399 V_MEIS1AHOXA9_01 0.00000 
ENSG00000078399 V_MEIS1BHOXA9_02 0.00000 
  V_MEIS1_02 0.00000 
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  V_MEIS2_01 0.00000 
ENSG00000068305 V_MMEF2_Q6 0.00000 
ENSG00000150347 V_MRF2_01 0.00000 
  V_MRG2_01 0.00000 
ENSG00000163132 V_MSX1_02 0.00000 
ENSG00000120149 V_MSX2_01 0.00000 
  V_MSX3_01 0.00000 
  V_MTATA_B 0.00000 
ENSG00000127989 V_MTERF_01 0.00000 
ENSG00000188786 V_MTF1_01 0.00000 
ENSG00000136997 V_MYCMAX_01 0.00000 
ENSG00000136997 V_MYCMAX_03 0.00000 
  V_NANOG_01 0.00000 
ENSG00000141905 V_NF1_Q6 0.00000 
ENSG00000141905 V_NF1_Q6_01 0.00000 
ENSG00000109320 V_NFKB_Q6 0.00000 
ENSG00000173039 V_NFKB_Q6_01 0.00000 
ENSG00000120837 V_NFY_C 0.00000 
ENSG00000120837 V_NFY_Q6_01 0.00000 
  V_NKX11_01 0.00000 
  V_NKX12_01 0.00000 
  V_NKX21_01 0.00000 
  V_NKX22_02 0.00000 
  V_NKX23_01 0.00000 
  V_NKX24_01 0.00000 
ENSG00000183072 V_NKX25_03 0.00000 
ENSG00000109705 V_NKX32_02 0.00000 
  V_NKX52_01 0.00000 
ENSG00000163623 V_NKX61_01 0.00000 
ENSG00000163623 V_NKX61_02 0.00000 
ENSG00000163623 V_NKX61_03 0.00000 
  V_NKX63_01 0.00000 
ENSG00000134323 V_NMYC_01 0.00000 
ENSG00000116044 V_NRF2_Q4 0.00000 
  V_OBOX1_01 0.00000 
  V_OBOX2_01 0.00000 
  V_OBOX5_02 0.00000 
ENSG00000143190 V_OCT1_05 0.00000 
ENSG00000143190 V_OCT1_06 0.00000 
ENSG00000143190 V_OCT1_Q6 0.00000 
ENSG00000204531 V_OCT4_01 0.00000 
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ENSG00000204531 V_OCT4_02 0.00000 
ENSG00000184486 V_OCTAMER_02 0.00000 
ENSG00000143190 V_OCT_C 0.00000 
  V_OTP_01 0.00000 
ENSG00000115507 V_OTX1_01 0.00000 
ENSG00000165588 V_OTX2_01 0.00000 
  V_OTX3_01 0.00000 
ENSG00000100393 V_P300_01 0.00000 
  V_P50P50_Q3 0.00000 
  V_P53_05 0.00000 
ENSG00000073282 V_P63_01 0.00000 
ENSG00000075891 V_PAX2_01 0.00000 
ENSG00000106331 V_PAX4_01 0.00000 
ENSG00000106331 V_PAX4_05 0.00000 
ENSG00000196092 V_PAX5_02 0.00000 
ENSG00000125618 V_PAX8_01 0.00000 
ENSG00000125618 V_PAX8_B 0.00000 
  V_PBX1_02 0.00000 
  V_PBX1_04 0.00000 
ENSG00000159216 V_PEBP_Q6 0.00000 
  V_PITX1_01 0.00000 
  V_PITX2_01 0.00000 
ENSG00000107859 V_PITX3_01 0.00000 
ENSG00000165495 V_PKNOX2_01 0.00000 
ENSG00000165462 V_PMX2A_01 0.00000 
ENSG00000109132 V_PMX2B_01 0.00000 
ENSG00000031544 V_PNR_01 0.00000 
ENSG00000184271 V_POU6F1_03 0.00000 
ENSG00000186951 V_PPARA_01 0.00000 
ENSG00000132170 V_PPARG_02 0.00000 
ENSG00000132170 V_PPARG_03 0.00000 
ENSG00000160199 V_PREP1_01 0.00000 
ENSG00000175325 V_PROP1_02 0.00000 
ENSG00000082175 V_PR_01 0.00000 
  V_PTF1BETA_Q6 0.00000 
ENSG00000066336 V_PU1_01 0.00000 
ENSG00000132005 V_RFX1_01 0.00000 
  V_RHOX11_01 0.00000 
  V_RHOX11_02 0.00000 
ENSG00000102935 V_ROAZ_01 0.00000 
  V_RXRLXRB_01 0.00000 
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  V_R_01 0.00000 
  V_S8_01 0.00000 
  V_S8_02 0.00000 
  V_SIX1_01 0.00000 
ENSG00000170577 V_SIX2_01 0.00000 
  V_SIX3_01 0.00000 
  V_SIX4_01 0.00000 
  V_SIX6_01 0.00000 
  V_SIX6_02 0.00000 
ENSG00000125398 V_SOX9_B1 0.00000 
ENSG00000184895 V_SOX_Q6 0.00000 
ENSG00000142539 V_SPIB_01 0.00000 
ENSG00000164299 V_SPZ1_01 0.00000 
ENSG00000198911 V_SREBP2_Q6 0.00000 
ENSG00000072310 V_SREBP_Q3 0.00000 
ENSG00000112658 V_SRF_01 0.00000 
ENSG00000112658 V_SRF_02 0.00000 
ENSG00000112658 V_SRF_C 0.00000 
ENSG00000112658 V_SRF_Q4 0.00000 
ENSG00000112658 V_SRF_Q5_01 0.00000 
ENSG00000112658 V_SRF_Q5_02 0.00000 
ENSG00000112658 V_SRF_Q6 0.00000 
ENSG00000115415 V_STAT1_01 0.00000 
  V_STAT3STAT3_Q3 0.00000 
ENSG00000168610 V_STAT3_01 0.00000 
ENSG00000168610 V_STAT3_03 0.00000 
ENSG00000138378 V_STAT4_Q4 0.00000 
ENSG00000126561 V_STAT5A_01 0.00000 
ENSG00000173757 V_STAT5B_01 0.00000 
ENSG00000115415 V_STAT_Q6 0.00000 
ENSG00000164048 V_SZF11_01 0.00000 
  V_T3R_01 0.00000 
ENSG00000071564 V_TAL1ALPHAE47_01 0.00000 
ENSG00000071564 V_TAL1BETAE47_01 0.00000 
ENSG00000162367 V_TAL1BETAITF2_01 0.00000 
ENSG00000118260 V_TAXCREB_02 0.00000 
ENSG00000112837 V_TBX18_01 0.00000 
ENSG00000122145 V_TBX22_01 0.00000 
ENSG00000082641 V_TCF11MAFG_01 0.00000 
ENSG00000118707 V_TGIF2_01 0.00000 
ENSG00000177426 V_TGIF_02 0.00000 
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  V_UNCX4.1_01 0.00000 
ENSG00000158773 V_USF_01 0.00000 
  V_VAX1_01 0.00000 
  V_VAX2_01 0.00000 
  V_VDRRXR_01 0.00000 
  V_VJUN_01 0.00000 
  V_VMAF_01 0.00000 
ENSG00000100987 V_VSX1_01 0.00000 
  V_XFD1_01 0.00000 
  V_XFD2_01 0.00000 
  V_XFD3_01 0.00000 
ENSG00000100811 V_YY1_01 0.00000 
ENSG00000100811 V_YY1_Q6_02 0.00000 
ENSG00000198081 V_ZF5_B 0.00000 
  V_ZID_01 0.00000 
ENSG00000186350 V_PPARA_02 0.00000 
  V_IRX3_01 0.00000 
ENSG00000185551 V_DR1_Q3 0.00000 
ENSG00000177030 V_DEAF1_02 0.00000 
ENSG00000119715 V_ERR2_01 0.00000 
ENSG00000186951 V_PPAR_DR1_Q2 0.00000 
ENSG00000166478 V_STAF_01 0.00000 
ENSG00000084093 V_NRSF_Q4 0.00000 
ENSG00000143190 V_OCT1_02 0.00000 
  V_P53_03 0.00000 
ENSG00000169083 V_AR_03 0.00000 
  V_NKX26_01 0.00000 
ENSG00000188620 V_HMX3_02 0.00000 
ENSG00000170365 V_SMAD1_01 0.00000 
  V_P53_01 0.00000 
  V_ISRE_01 0.00000 
ENSG00000132005 V_RFX1_02 0.00000 
ENSG00000185551 V_DR4_Q2 0.00000 
ENSG00000085276 V_EVI1_01 0.00000 
ENSG00000143190 V_OCT1_01 0.00000 
  V_DMRT5_01 0.00000 
ENSG00000185122 V_HSF_Q6 0.00000 
ENSG00000111424 V_DR3_Q4 0.00000 
ENSG00000028277 V_OCT2_01 0.00000 
  V_TR4_03 0.00000 
ENSG00000141646 V_SMAD4_Q6 0.00000 
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ENSG00000170370 V_EMX2_01 0.00000 
  V_IPF1_06 0.00000 
ENSG00000102145 V_GATA1_02 0.00000 
  V_ARNT_02 0.00000 
ENSG00000109381 V_NERF_Q2 0.00000 
ENSG00000178573 V_MAF_Q6 0.00000 
ENSG00000148516 V_AREB6_03 0.00000 
  V_HOXD13_01 0.00000 
  V_MIF1_01 0.00000 
ENSG00000115415 V_STAT1_05 0.00000 
ENSG00000137203 V_AP2_Q6 0.00000 
  V_TBX15_02 0.00000 
ENSG00000109906 V_PLZF_02 0.00000 
ENSG00000185024 V_BRF1_01 0.00000 
ENSG00000126561 V_STAT5A_02 0.00000 
ENSG00000181449 V_SOX2_Q6 -0.00001 
ENSG00000007372 V_PAX6_Q2 -0.00001 
ENSG00000084093 V_REST_01 -0.00001 

 
Table 7.2 TF motifs from classification of boundary vs. inside. 

ENSG motif MeanDecreaseAccuracy 
  V_SP1_Q6 0.08087 
  V_ZFX_01 0.07906 
ENSG00000150907 V_FOXO1_Q5 0.07825 
ENSG00000091831 V_ERALPHA_01 0.05007 
  V_SP1SP3_Q4 0.04075 
  V_CACBINDINGPROTEIN_Q6 0.03286 
ENSG00000172845 V_SP1_Q4_01 0.02955 
ENSG00000172845 V_SP1_Q6_01 0.02199 
  V_GTF2IRD1_01 0.02066 
ENSG00000103495 V_MAZ_Q6 0.01563 
  V_ZFP281_01 0.01261 
ENSG00000172845 V_SP1_Q2_01 0.01147 
ENSG00000006194 V_FPM315_01 0.01062 
ENSG00000105866 V_SP4_Q5 0.01003 
ENSG00000181690 V_PLAG1_01 0.00968 
ENSG00000120738 V_KROX_Q6 0.00960 
ENSG00000103241 V_FOX_Q2 0.00916 
  V_PUR1_Q4 0.00833 
  V_SP1_01 0.00823 
  V_MUSCLE_INI_B 0.00806 
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  V_KLF15_Q2 0.00780 
ENSG00000185811 V_LYF1_01 0.00721 
  V_MEF2C_01 0.00713 
ENSG00000197579 V_LUN1_01 0.00680 
  V_GC_01 0.00636 
ENSG00000137203 V_AP2_Q6_01 0.00608 
ENSG00000160685 V_CKROX_Q2 0.00529 
  V_PITX2_Q2 0.00510 
ENSG00000185811 V_IK_Q5 0.00499 
ENSG00000148606 V_RPC155_01 0.00468 
  V_SP1_02 0.00435 
  V_UF1H3BETA_Q6 0.00433 
ENSG00000114861 V_FOXP1_01 0.00411 
ENSG00000163848 V_ZBP89_Q4 0.00397 
ENSG00000066336 V_PU1_Q4 0.00379 
ENSG00000136826 V_GKLF_02 0.00366 
  V_CACD_01 0.00344 
ENSG00000135363 V_LMO2COM_01 0.00326 
  V_BDP1_01 0.00319 
ENSG00000185551 V_ARP1_01 0.00315 
  cpgoverlap 0.00309 
ENSG00000165804 V_ZNF219_01 0.00260 
  V_FOXJ2_01 0.00253 
ENSG00000162367 V_TAL1_01 0.00240 
  V_FOXD3_01 0.00237 
ENSG00000123405 V_MAF_Q6_01 0.00214 
ENSG00000111424 V_VDR_Q3 0.00193 
ENSG00000077809 V_TFIII_Q6 0.00185 
ENSG00000185551 V_COUPTF_Q6 0.00165 
ENSG00000126351 V_TERALPHA_Q6 0.00149 
ENSG00000124782 V_RREB1_01 0.00145 
ENSG00000162992 V_NEUROD_02 0.00135 
ENSG00000129514 V_HNF3ALPHA_Q6 0.00128 
ENSG00000137203 V_AP2_Q3 0.00114 
ENSG00000071564 V_MYOD_Q6_01 0.00105 
ENSG00000089225 V_TBX5_Q5 0.00099 
ENSG00000177374 V_HIC1_02 0.00088 
ENSG00000071564 V_E2A_Q2 0.00087 
ENSG00000106571 V_GLI3_Q5_01 0.00074 
  V_MINI19_B 0.00069 
ENSG00000102974 V_CTCF_01 0.00066 
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ENSG00000143190 V_OCT1_Q5_01 0.00063 
ENSG00000071564 V_E2A_Q6 0.00060 
ENSG00000171786 V_HEN1_01 0.00055 
  V_LXR_DR4_Q3 0.00054 
ENSG00000072310 V_SREBP_Q6 0.00054 
ENSG00000171786 V_HEN1_02 0.00046 
ENSG00000099326 V_MZF1_02 0.00046 
ENSG00000072310 V_SREBP1_01 0.00039 
ENSG00000184937 V_WT1_Q6 0.00036 
ENSG00000256683 V_ZBRK1_01 0.00035 
ENSG00000106331 V_PAX4_03 0.00034 
ENSG00000102974 V_CTCF_02 0.00030 
ENSG00000143190 V_OCT_Q6 0.00023 
  V_MYF_01 0.00022 
ENSG00000172059 V_FKLF_Q5 0.00018 
ENSG00000198911 V_SREBP2_Q6 0.00013 
ENSG00000084093 V_REST_01 0.00010 
ENSG00000100811 V_YY1_02 0.00009 
ENSG00000172216 V_CEBPB_02 0.00009 
ENSG00000106571 V_GLI3_01 0.00009 
  V_P53_04 0.00009 
ENSG00000100105 V_MAZR_01 0.00007 
  V_NCX_02 0.00006 
ENSG00000163848 V_CACCCBINDINGFACTOR_Q6 0.00006 
ENSG00000119715 V_ERR2_01 0.00006 
ENSG00000172845 V_SP3_Q3 0.00006 
ENSG00000106331 V_PAX4_04 0.00006 
ENSG00000072310 V_SREBP1_Q5 0.00006 
  V_MINI20_B 0.00005 
ENSG00000196767 V_BRN4_01 0.00005 
ENSG00000188786 V_MTF1_Q4 0.00005 
ENSG00000120738 V_EGR_Q6 0.00005 
ENSG00000166478 V_STAF_02 0.00005 
ENSG00000057657 V_BLIMP1_Q6 0.00004 
ENSG00000185668 V_TST1_02 0.00004 
  V_ETS1_B 0.00004 
ENSG00000100393 V_P300_01 0.00003 
ENSG00000084093 V_NRSF_01 0.00003 
ENSG00000130726 V_RNF96_01 0.00003 
  V_XFD3_01 0.00003 
ENSG00000141646 V_SMAD4_Q6 0.00002 
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ENSG00000064835 V_PIT1_01 0.00002 
  V_DBX1_01 0.00002 
ENSG00000007372 V_PAX6_Q2 0.00002 
ENSG00000084093 V_NRSF_Q4 0.00002 
ENSG00000143190 V_OCT1_01 0.00001 
ENSG00000071564 V_E47_01 0.00001 
ENSG00000109381 V_NERF_Q2 0.00001 
ENSG00000115415 V_STAT1_05 0.00001 
ENSG00000185551 V_DR4_Q2 0.00001 
ENSG00000185024 V_BRF1_01 0.00001 
  V_IRX2_01 0.00001 
ENSG00000170608 V_HNF3_Q6_01 0.00001 
ENSG00000101076 V_HNF4_Q6_01 0.00001 
ENSG00000101076 V_HNF4_01 0.00001 
ENSG00000082641 V_TCF11MAFG_01 0.00001 
ENSG00000148516 V_AREB6_03 0.00001 
ENSG00000111206 V_FOXM1_01 0.00001 
ENSG00000101076 V_HNF4_01_B 0.00001 
  V_NANOG_02 0.00000 
ENSG00000085276 V_EVI1_01 0.00000 
  V_TCF3_01 0.00000 
ENSG00000177374 V_HIC1_03 0.00000 
  V_MYOD_Q6 0.00000 
  V_HNF3B_01 0.00000 
ENSG00000156925 V_ZIC3_01 0.00000 
ENSG00000182568 V_SATB1_Q3 0.00000 
ENSG00000183072 V_NKX25_03 0.00000 
  V_TR4_03 0.00000 
  V_ZTA_Q2 0.00000 
ENSG00000084093 V_NRSE_B 0.00000 
  V_NKX24_01 0.00000 
ENSG00000186951 V_PPAR_DR1_Q2 0.00000 
ENSG00000188620 V_HMX3_02 0.00000 
  V_P50P50_Q3 0.00000 
  V_DMRT3_01 0.00000 
  V_OLF1_01 0.00000 
ENSG00000136997 V_CMYC_02 0.00000 
ENSG00000186350 V_PPARA_02 0.00000 
  V_HOXD10_01 0.00000 
ENSG00000074047 V_GLI2_01 0.00000 
ENSG00000091831 V_ER_Q6_02 0.00000 
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  V_OBOX5_01 0.00000 
ENSG00000101076 V_HNF4_DR1_Q3 0.00000 
ENSG00000185551 V_COUP_DR1_Q6 0.00000 
ENSG00000148200 V_GCNF_01 0.00000 
ENSG00000068305 V_RSRFC4_01 0.00000 
ENSG00000111087 V_GLI1_01 0.00000 
ENSG00000120837 V_NFY_C 0.00000 
ENSG00000071564 V_E12_Q6 0.00000 
ENSG00000120075 V_HOXB5_01 0.00000 
ENSG00000088038 V_CNOT3_01 0.00000 
ENSG00000132170 V_PPARG_02 0.00000 
ENSG00000167182 V_SP2_01 0.00000 
ENSG00000116833 V_LRH1_Q5 0.00000 
  V_BEL1_B 0.00000 
  V_NKX21_01 0.00000 
ENSG00000082175 V_PR_01 0.00000 
ENSG00000107859 V_PITX3_01 0.00000 
ENSG00000068305 V_MEF2_02 0.00000 
  V_VDRRXR_01 0.00000 
ENSG00000177426 V_TGIF_02 0.00000 
ENSG00000125398 V_SOX9_B1 0.00000 
ENSG00000066336 V_PU1_01 0.00000 
  V_BARHL1_01 0.00000 
  V_HB24_01 0.00000 
  V_BARHL2_01 0.00000 
  V_IRX3_01 0.00000 
ENSG00000106004 V_HOX13_01 0.00000 
ENSG00000176678 V_FREAC7_01 0.00000 
ENSG00000073282 V_P63_01 0.00000 
ENSG00000064835 V_PIT1_Q6 0.00000 
ENSG00000164299 V_SPZ1_01 0.00000 
ENSG00000054598 V_FREAC3_01 0.00000 
  V_VJUN_01 0.00000 
ENSG00000137203 V_AP2ALPHA_01 0.00000 
  V_CAAT_C 0.00000 
ENSG00000115507 V_OTX1_01 0.00000 
  V_XFD1_01 0.00000 
ENSG00000169083 V_AR_Q2 0.00000 
  V_PBX1_04 0.00000 
ENSG00000167034 V_NKX3A_02 0.00000 
ENSG00000109906 V_PLZF_02 0.00000 
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ENSG00000143190 V_OCT1_05 0.00000 
ENSG00000165556 V_CDX2_Q5 0.00000 
ENSG00000171634 V_FAC1_01 0.00000 
  V_PAX9_B 0.00000 
ENSG00000115966 V_CREBP1_Q2 0.00000 
ENSG00000100811 V_YY1_01 0.00000 
ENSG00000100644 V_HIF1_Q3 0.00000 
  V_TBX15_01 0.00000 
  V_ARNT_01 0.00000 
  V_HFH1_01 0.00000 
ENSG00000169136 V_ATF5_01 0.00000 
ENSG00000143190 V_OCT1_02 0.00000 
ENSG00000184481 V_FOXO4_02 0.00000 
  V_P53_03 0.00000 
  V_CART1_01 0.00000 
ENSG00000169083 V_AR_01 0.00000 
  V_DMRT4_01 0.00000 
ENSG00000068305 V_MEF2_03 0.00000 
ENSG00000159387 V_IRXB3_01 0.00000 
  V_LHX3_02 0.00000 
  V_HDX_01 0.00000 
ENSG00000126561 V_STAT5A_01 0.00000 
ENSG00000004848 V_ARX_01 0.00000 
  V_ARNT_02 0.00000 
ENSG00000134107 V_DEC_Q1 0.00000 
ENSG00000068305 V_MEF2_04 0.00000 
  V_LHX4_01 0.00000 
ENSG00000196092 V_PAX_Q6 0.00000 
ENSG00000142539 V_SPIB_01 0.00000 
ENSG00000087510 V_AP2GAMMA_01 0.00000 
ENSG00000184486 V_OCTAMER_02 0.00000 
ENSG00000111087 V_GLI_Q2 0.00000 
ENSG00000132170 V_PPARG_01 0.00000 
ENSG00000166478 V_STAF_01 0.00000 
ENSG00000149948 VS_HMGA2_01 0.00000 
  V_AHRARNT_01 0.00000 
  V_AHR_01 0.00000 
ENSG00000160224 V_AIRE_02 0.00000 
ENSG00000156150 V_ALX3_01 0.00000 
ENSG00000068305 V_AMEF2_Q6 0.00000 
ENSG00000159216 V_AML_Q6 0.00000 
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ENSG00000170345 V_AP1_Q6_01 0.00000 
ENSG00000137203 V_AP2ALPHA_02 0.00000 
ENSG00000137203 V_AP2ALPHA_03 0.00000 
ENSG00000137203 V_AP2_Q6 0.00000 
  V_APOLYA_B 0.00000 
ENSG00000148516 V_AREB6_01 0.00000 
ENSG00000169083 V_AR_02 0.00000 
ENSG00000169083 V_AR_03 0.00000 
ENSG00000169083 V_AR_04 0.00000 
  V_ATF_01 0.00000 
ENSG00000156273 V_BACH1_01 0.00000 
  V_BACH2_01 0.00000 
  V_BARBIE_01 0.00000 
  V_BARX1_01 0.00000 
ENSG00000043039 V_BARX2_01 0.00000 
ENSG00000164458 V_BRACH_01 0.00000 
ENSG00000091010 V_BRN3C_01 0.00000 
  V_BSX_01 0.00000 
  V_CART1_03 0.00000 
  V_CBF_02 0.00000 
  V_CDP_03 0.00000 
  V_CDP_04 0.00000 
ENSG00000113722 V_CDX1_01 0.00000 
ENSG00000165556 V_CDX2_01 0.00000 
ENSG00000245848 V_CEBPA_01 0.00000 
ENSG00000172216 V_CEBPB_01 0.00000 
ENSG00000153879 V_CEBPGAMMA_Q6 0.00000 
ENSG00000245848 V_CEBP_01 0.00000 
ENSG00000245848 V_CEBP_C 0.00000 
  V_CETS1P54_02 0.00000 
  V_CETS1P54_03 0.00000 
ENSG00000245848 V_CHOP_01 0.00000 
  V_CIZ_01 0.00000 
  V_COMP1_01 0.00000 
ENSG00000175745 V_COUP_01 0.00000 
ENSG00000118260 V_CREB_Q2_01 0.00000 
ENSG00000118260 V_CREB_Q4_01 0.00000 
ENSG00000162924 V_CREL_01 0.00000 
ENSG00000141905 V_CTF1_01 0.00000 
ENSG00000177030 V_DEAF1_01 0.00000 
ENSG00000177030 V_DEAF1_02 0.00000 
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ENSG00000148516 V_DELTAEF1_01 0.00000 
ENSG00000144355 V_DLX1_01 0.00000 
ENSG00000115844 V_DLX2_01 0.00000 
  V_DMRT1_01 0.00000 
  V_DMRT2_01 0.00000 
  V_DMRT7_01 0.00000 
  V_DOBOX5_01 0.00000 
ENSG00000111424 V_DR3_Q4 0.00000 
  V_E2_01 0.00000 
  V_E2_Q6 0.00000 
ENSG00000071564 V_E47_02 0.00000 
ENSG00000165030 V_E4BP4_01 0.00000 
ENSG00000167967 V_E4F1_Q6 0.00000 
  V_EBNA1_01 0.00000 
  V_ELF1_Q6 0.00000 
ENSG00000135374 V_ELF5_01 0.00000 
  V_ELK1_01 0.00000 
  V_ELK1_02 0.00000 
ENSG00000170370 V_EMX2_01 0.00000 
ENSG00000163064 V_EN1_02 0.00000 
ENSG00000164778 V_EN2_01 0.00000 
  V_ESX1_01 0.00000 
  V_ETS2_B 0.00000 
ENSG00000085276 V_EVI1_04 0.00000 
  V_EVX2_01 0.00000 
  V_FOXJ2_02 0.00000 
  V_FOXO3A_Q1 0.00000 
  V_FOXO3_01 0.00000 
ENSG00000184481 V_FOXO4_01 0.00000 
  V_FOXP3_Q4 0.00000 
ENSG00000137273 V_FREAC2_01 0.00000 
ENSG00000012504 V_FXR_Q3 0.00000 
  V_GADP_01 0.00000 
ENSG00000102145 V_GATA1_06 0.00000 
  V_GBX1_01 0.00000 
ENSG00000165702 V_GFI1B_01 0.00000 
ENSG00000162676 V_GFI1_01 0.00000 
ENSG00000111087 V_GLI1_Q2 0.00000 
ENSG00000106571 V_GLI3_02 0.00000 
ENSG00000113580 V_GRE_C 0.00000 
ENSG00000113580 V_GR_01 0.00000 
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ENSG00000113580 V_GR_Q6 0.00000 
ENSG00000130675 V_HB9_01 0.00000 
ENSG00000030419 V_HELIOSA_02 0.00000 
  V_HES1_Q2 0.00000 
ENSG00000168269 V_HFH3_01 0.00000 
ENSG00000129654 V_HFH4_01 0.00000 
  V_HLF_01 0.00000 
ENSG00000147421 V_HMBOX1_01 0.00000 
ENSG00000068305 V_HMEF2_Q6 0.00000 
ENSG00000215612 V_HMX1_02 0.00000 
ENSG00000108753 V_HNF1B_01 0.00000 
ENSG00000135100 V_HNF1_C 0.00000 
ENSG00000135100 V_HNF1_Q6 0.00000 
ENSG00000135100 V_HNF1_Q6_01 0.00000 
ENSG00000170608 V_HNF3_Q6 0.00000 
ENSG00000101076 V_HNF4ALPHA_Q6 0.00000 
  V_HOMEZ_01 0.00000 
ENSG00000106004 V_HOX13_02 0.00000 
ENSG00000105991 V_HOXA1_01 0.00000 
ENSG00000105996 V_HOXA2_01 0.00000 
ENSG00000197576 V_HOXA4_01 0.00000 
  V_HOXA7_03 0.00000 
ENSG00000078399 V_HOXA9_01 0.00000 
ENSG00000159184 V_HOXB13_01 0.00000 
ENSG00000120093 V_HOXB3_01 0.00000 
ENSG00000182742 V_HOXB4_01 0.00000 
  V_HOXB7_01 0.00000 
ENSG00000170689 V_HOXB9_01 0.00000 
ENSG00000123388 V_HOXC11_01 0.00000 
ENSG00000172789 V_HOXC5_01 0.00000 
  V_HOXC6_01 0.00000 
ENSG00000037965 V_HOXC8_01 0.00000 
ENSG00000180806 V_HOXC9_01 0.00000 
ENSG00000128645 V_HOXD1_01 0.00000 
ENSG00000128652 V_HOXD3_01 0.00000 
  V_HOXD8_01 0.00000 
ENSG00000185122 V_HSF_Q6 0.00000 
ENSG00000100219 V_HTF_01 0.00000 
ENSG00000140968 V_ICSBP_Q6 0.00000 
ENSG00000185811 V_IK1_01 0.00000 
ENSG00000185811 V_IK3_01 0.00000 
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  V_IPF1_Q4_01 0.00000 
  V_IRX3_02 0.00000 
  V_ISL2_01 0.00000 
  V_ISX_01 0.00000 
ENSG00000116132 V_K2B_01 0.00000 
ENSG00000115112 V_LBP9_01 0.00000 
  V_LBX2_01 0.00000 
  V_LDSPOLYA_B 0.00000 
  V_LHX5_01 0.00000 
  V_LHX61_01 0.00000 
  V_LHX8_01 0.00000 
  V_LHX9_01 0.00000 
  V_LIM1_01 0.00000 
ENSG00000136944 V_LMX1B_01 0.00000 
ENSG00000162761 V_LMX1_01 0.00000 
  V_MAX_01 0.00000 
  V_MAX_Q6 0.00000 
  V_MEF3_B 0.00000 
ENSG00000078399 V_MEIS1AHOXA9_01 0.00000 
ENSG00000078399 V_MEIS1BHOXA9_02 0.00000 
  V_MEIS1_01 0.00000 
  V_MEIS1_02 0.00000 
ENSG00000068305 V_MMEF2_Q6 0.00000 
ENSG00000005102 V_MOX1_01 0.00000 
ENSG00000150347 V_MRF2_01 0.00000 
  V_MRG2_01 0.00000 
ENSG00000120149 V_MSX2_01 0.00000 
ENSG00000127989 V_MTERF_01 0.00000 
ENSG00000188786 V_MTF1_01 0.00000 
ENSG00000136997 V_MYCMAX_01 0.00000 
ENSG00000136997 V_MYCMAX_03 0.00000 
  V_MYOD_01 0.00000 
  V_NANOG_01 0.00000 
ENSG00000141905 V_NF1_Q6_01 0.00000 
ENSG00000123405 V_NFE2_01 0.00000 
  V_NFKAPPAB50_01 0.00000 
ENSG00000173039 V_NFKAPPAB65_01 0.00000 
ENSG00000173039 V_NFKAPPAB_01 0.00000 
ENSG00000109320 V_NFKB_Q6 0.00000 
ENSG00000173039 V_NFKB_Q6_01 0.00000 
ENSG00000120837 V_NFY_Q6_01 0.00000 
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  V_NKX12_01 0.00000 
  V_NKX22_02 0.00000 
  V_NKX23_01 0.00000 
  V_NKX26_01 0.00000 
ENSG00000109705 V_NKX32_02 0.00000 
ENSG00000163623 V_NKX61_01 0.00000 
ENSG00000163623 V_NKX61_02 0.00000 
ENSG00000163623 V_NKX61_03 0.00000 
  V_NKX63_01 0.00000 
  V_OBOX1_01 0.00000 
  V_OBOX2_01 0.00000 
  V_OBOX5_02 0.00000 
ENSG00000143190 V_OCT1_06 0.00000 
ENSG00000143190 V_OCT1_08 0.00000 
ENSG00000143190 V_OCT1_Q6 0.00000 
ENSG00000028277 V_OCT2_01 0.00000 
ENSG00000204531 V_OCT4_01 0.00000 
ENSG00000204531 V_OCT4_02 0.00000 
ENSG00000198914 V_OCTAMER_01 0.00000 
ENSG00000143190 V_OCT_C 0.00000 
  V_OTP_01 0.00000 
ENSG00000165588 V_OTX2_01 0.00000 
ENSG00000165588 V_OTX2_Q3 0.00000 
  V_P53_01 0.00000 
ENSG00000075891 V_PAX2_01 0.00000 
ENSG00000106331 V_PAX4_01 0.00000 
ENSG00000106331 V_PAX4_05 0.00000 
ENSG00000196092 V_PAX5_02 0.00000 
ENSG00000125618 V_PAX8_01 0.00000 
ENSG00000125618 V_PAX8_B 0.00000 
  V_PBX1_02 0.00000 
  V_PITX1_01 0.00000 
  V_PITX2_01 0.00000 
ENSG00000165495 V_PKNOX2_01 0.00000 
ENSG00000165462 V_PMX2A_01 0.00000 
ENSG00000109132 V_PMX2B_01 0.00000 
ENSG00000031544 V_PNR_01 0.00000 
  V_POU2F3_01 0.00000 
ENSG00000204531 V_POU5F1_01 0.00000 
ENSG00000184271 V_POU6F1_01 0.00000 
ENSG00000184271 V_POU6F1_02 0.00000 
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ENSG00000184271 V_POU6F1_03 0.00000 
ENSG00000160199 V_PREP1_01 0.00000 
ENSG00000175325 V_PROP1_02 0.00000 
ENSG00000082175 V_PR_02 0.00000 
  V_PSX1_01 0.00000 
  V_RELBP52_01 0.00000 
  V_REX1_03 0.00000 
ENSG00000132005 V_RFX1_01 0.00000 
ENSG00000087903 V_RFX_Q6 0.00000 
  V_RHOX11_01 0.00000 
  V_RHOX11_02 0.00000 
ENSG00000102935 V_ROAZ_01 0.00000 
ENSG00000069667 V_RORA1_01 0.00000 
  V_R_01 0.00000 
  V_S8_01 0.00000 
  V_S8_02 0.00000 
  V_SEF1_C 0.00000 
ENSG00000168779 V_SHOX2_01 0.00000 
  V_SIX1_01 0.00000 
ENSG00000170577 V_SIX2_01 0.00000 
  V_SIX4_01 0.00000 
  V_SIX6_02 0.00000 
ENSG00000170365 V_SMAD1_01 0.00000 
ENSG00000072310 V_SREBP_Q3 0.00000 
ENSG00000112658 V_SRF_01 0.00000 
ENSG00000112658 V_SRF_C 0.00000 
ENSG00000112658 V_SRF_Q4 0.00000 
ENSG00000112658 V_SRF_Q5_01 0.00000 
ENSG00000112658 V_SRF_Q5_02 0.00000 
ENSG00000112658 V_SRF_Q6 0.00000 
ENSG00000115415 V_STAT1_01 0.00000 
  V_STAT3STAT3_Q3 0.00000 
ENSG00000168610 V_STAT3_01 0.00000 
ENSG00000126561 V_STAT5A_02 0.00000 
  V_STRA13_01 0.00000 
ENSG00000164048 V_SZF11_01 0.00000 
  V_T3R_01 0.00000 
ENSG00000077092 V_T3R_Q6 0.00000 
  V_TAACC_B 0.00000 
ENSG00000071564 V_TAL1ALPHAE47_01 0.00000 
ENSG00000071564 V_TAL1BETAE47_01 0.00000 
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ENSG00000162367 V_TAL1BETAITF2_01 0.00000 
ENSG00000112592 V_TATA_01 0.00000 
ENSG00000118260 V_TAXCREB_02 0.00000 
ENSG00000112837 V_TBX18_01 0.00000 
ENSG00000122145 V_TBX22_01 0.00000 
ENSG00000118707 V_TGIF2_01 0.00000 
  V_TITF1_Q3 0.00000 
ENSG00000177463 V_TR4_Q2 0.00000 
ENSG00000185668 V_TST1_01 0.00000 
  V_UNCX4.1_01 0.00000 
ENSG00000158773 V_USF_01 0.00000 
ENSG00000158773 V_USF_02 0.00000 
ENSG00000158773 V_USF_Q6_01 0.00000 
  V_VAX1_01 0.00000 
  V_VAX2_01 0.00000 
ENSG00000167074 V_VBP_01 0.00000 
  V_VMAF_01 0.00000 
  V_VMYB_01 0.00000 
ENSG00000100987 V_VSX1_01 0.00000 
ENSG00000100219 V_XBP1_01 0.00000 
  V_ZBED6_01 0.00000 
ENSG00000198081 V_ZF5_B 0.00000 
  V_ZFP206_01 0.00000 
ENSG00000152977 V_ZIC1_01 0.00000 
ENSG00000071564 V_HAND1E47_01 0.00000 
  V_P53_05 0.00000 
ENSG00000159216 V_PEBP_Q6 0.00000 
ENSG00000132005 V_RFX1_02 0.00000 
ENSG00000181449 V_SOX2_Q6 0.00000 
ENSG00000068305 V_RSRFC4_Q2 0.00000 
ENSG00000157554 V_ETS_Q4 0.00000 
ENSG00000113430 V_IRX4_01 0.00000 
ENSG00000132170 V_PPARG_03 0.00000 
ENSG00000170345 V_AP1_01 0.00000 
  V_DOBOX4_01 0.00000 
  V_MIF1_01 0.00000 
ENSG00000141905 V_NF1_Q6 0.00000 
ENSG00000113916 V_BCL6_01 0.00000 
ENSG00000068305 V_MEF2_01 0.00000 
ENSG00000169297 V_DAX1_01 0.00000 
ENSG00000186951 V_PPARA_01 0.00000 
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  V_MSX3_01 0.00000 
ENSG00000185551 V_DR1_Q3 0.00000 
  V_HOXD13_01 0.00000 
ENSG00000025434 V_LXR_Q3 0.00000 
ENSG00000196092 V_PAX5_01 0.00000 
ENSG00000160224 V_AIRE_01 0.00000 
  V_POLY_C 0.00000 
ENSG00000103241 V_HFH8_01 0.00000 
  V_NKX29_01 0.00000 
  V_RXRLXRB_01 0.00000 
ENSG00000168610 V_STAT3_03 0.00000 
  V_NFY_01 0.00000 
ENSG00000091831 V_ER_Q6 0.00000 
  V_PTF1BETA_Q6 0.00000 
ENSG00000118513 V_CMYB_01 0.00000 
ENSG00000116044 V_NRF2_Q4 0.00000 
ENSG00000112658 V_SRF_02 0.00000 
ENSG00000135457 V_CP2_02 0.00000 
ENSG00000090447 V_AP4_01 0.00000 
ENSG00000173153 V_ERR1_Q2 0.00000 
ENSG00000185122 V_HSF1_Q6 0.00000 
  V_TBX15_02 0.00000 
ENSG00000162772 V_ATF3_Q6 0.00000 
ENSG00000178573 V_MAF_Q6 0.00000 
  V_SIX6_01 0.00000 
ENSG00000173153 V_ERR1_Q3 0.00000 
ENSG00000165556 V_CDX_Q5 0.00000 
  V_DMRT5_01 0.00000 
ENSG00000141905 V_MYOGNF1_01 0.00000 
  V_NKX52_01 0.00000 
ENSG00000160113 V_EAR2_Q2 0.00000 
ENSG00000138378 V_STAT4_Q4 0.00000 
ENSG00000253293 V_HOXA10_01 0.00000 
  V_DBX2_01 0.00000 
  V_IPF1_06 0.00000 
ENSG00000115415 V_STAT_Q6 0.00000 
  V_IRX5_01 0.00000 
ENSG00000102145 V_GATA1_02 0.00000 
  V_TRF1_01 0.00000 
ENSG00000251493 V_FREAC4_01 0.00000 
ENSG00000137309 V_HMGIY_Q3 0.00000 
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ENSG00000113916 V_BCL6_02 0.00000 
  V_ISRE_01 0.00000 
ENSG00000184486 V_POU3F2_01 0.00000 
ENSG00000007372 V_PAX6_02 0.00000 
  V_SIX3_01 0.00000 
ENSG00000125347 V_IRF_Q6 0.00000 
ENSG00000173757 V_STAT5B_01 0.00000 
ENSG00000143190 V_OCT1_04 0.00000 

 
Table 7.3 TF motifs from classification of boundary vs. outside. 

ENSG motif MeanDecreaseAccuracy 
  V_GTF2IRD1_01 0.07980 
  V_CACBINDINGPROTEIN_Q6 0.04906 
ENSG00000181690 V_PLAG1_01 0.02797 
ENSG00000103495 V_MAZ_Q6 0.02714 
  V_ZFX_01 0.02393 
  V_SP1_Q6 0.02371 
  V_SP1SP3_Q4 0.02178 
ENSG00000172845 V_SP1_Q4_01 0.01994 
ENSG00000160685 V_CKROX_Q2 0.01935 
  V_KLF15_Q2 0.01916 
  V_CACD_01 0.01295 
ENSG00000071564 V_E2A_Q6 0.01140 
  V_LXR_DR4_Q3 0.01122 
ENSG00000163848 V_ZBP89_Q4 0.01083 
ENSG00000105866 V_SP4_Q5 0.00981 
ENSG00000006194 V_FPM315_01 0.00945 
ENSG00000185811 V_IK_Q5 0.00940 
ENSG00000172845 V_SP1_Q2_01 0.00937 
  V_UF1H3BETA_Q6 0.00924 
  V_SP1_02 0.00896 
ENSG00000172845 V_SP1_Q6_01 0.00858 
ENSG00000197579 V_LUN1_01 0.00854 
  V_BDP1_01 0.00817 
  V_SP1_01 0.00716 
ENSG00000172059 V_FKLF_Q5 0.00701 
  V_MUSCLE_INI_B 0.00671 
  V_ZFP281_01 0.00641 
ENSG00000137203 V_AP2_Q6_01 0.00584 
  V_PITX2_Q2 0.00569 
ENSG00000148606 V_RPC155_01 0.00558 
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ENSG00000185811 V_LYF1_01 0.00521 
ENSG00000072310 V_SREBP1_01 0.00516 
ENSG00000077092 V_T3R_Q6 0.00472 
ENSG00000120738 V_KROX_Q6 0.00455 
ENSG00000114861 V_FOXP1_01 0.00424 
ENSG00000072310 V_SREBP_Q6 0.00402 
ENSG00000256683 V_ZBRK1_01 0.00374 
  V_GC_01 0.00357 
ENSG00000111424 V_VDR_Q3 0.00344 
ENSG00000136826 V_GKLF_02 0.00286 
  V_MEF2C_01 0.00285 
ENSG00000091831 V_ERALPHA_01 0.00245 
ENSG00000123405 V_MAF_Q6_01 0.00236 
ENSG00000071564 V_MYOD_Q6_01 0.00231 
ENSG00000165804 V_ZNF219_01 0.00226 
ENSG00000130726 V_RNF96_01 0.00169 
ENSG00000185551 V_COUPTF_Q6 0.00165 
ENSG00000126351 V_TERALPHA_Q6 0.00164 
ENSG00000103241 V_FOX_Q2 0.00157 
ENSG00000185551 V_ARP1_01 0.00153 
  V_FOXJ2_01 0.00150 
  cpgoverlap 0.00123 
  V_PUR1_Q4 0.00121 
ENSG00000124782 V_RREB1_01 0.00118 
ENSG00000077809 V_TFIII_Q6 0.00112 
ENSG00000184937 V_WT1_Q6 0.00111 
ENSG00000172216 V_CEBPB_02 0.00102 
ENSG00000137203 V_AP2_Q3 0.00086 
ENSG00000089225 V_TBX5_Q5 0.00072 
ENSG00000148516 V_AREB6_03 0.00066 
ENSG00000099326 V_MZF1_02 0.00060 
  V_MYF_01 0.00060 
  V_FOXD3_01 0.00057 
ENSG00000102974 V_CTCF_01 0.00055 
ENSG00000150907 V_FOXO1_Q5 0.00054 
ENSG00000066336 V_PU1_Q4 0.00052 
ENSG00000100105 V_MAZR_01 0.00050 
ENSG00000071564 V_E2A_Q2 0.00044 
ENSG00000135363 V_LMO2COM_01 0.00040 
ENSG00000072310 V_SREBP1_Q5 0.00039 
  V_MINI19_B 0.00037 



 127 

ENSG00000111206 V_FOXM1_01 0.00035 
ENSG00000129514 V_HNF3ALPHA_Q6 0.00035 
ENSG00000102974 V_CTCF_02 0.00032 
  V_P53_04 0.00028 
ENSG00000120738 V_EGR_Q6 0.00028 
ENSG00000106331 V_PAX4_04 0.00025 
ENSG00000171786 V_HEN1_02 0.00023 
ENSG00000162992 V_NEUROD_02 0.00021 
ENSG00000106331 V_PAX4_03 0.00021 
ENSG00000171786 V_HEN1_01 0.00017 
  V_MYOD_Q6 0.00014 
ENSG00000177374 V_HIC1_02 0.00011 
ENSG00000084093 V_REST_01 0.00010 
ENSG00000188786 V_MTF1_Q4 0.00007 
  V_MINI20_B 0.00007 
ENSG00000057657 V_BLIMP1_Q6 0.00006 
ENSG00000163848 V_CACCCBINDINGFACTOR_Q6 0.00006 
ENSG00000084093 V_NRSF_Q4 0.00006 
ENSG00000137203 V_AP2ALPHA_01 0.00006 
ENSG00000087510 V_AP2GAMMA_01 0.00005 
ENSG00000162367 V_TAL1_01 0.00005 
ENSG00000088038 V_CNOT3_01 0.00005 
ENSG00000196767 V_BRN4_01 0.00004 
  V_NCX_02 0.00003 
ENSG00000143190 V_OCT1_Q5_01 0.00002 
ENSG00000177374 V_HIC1_03 0.00002 
ENSG00000185668 V_TST1_02 0.00002 
ENSG00000185024 V_BRF1_01 0.00001 
ENSG00000090447 V_AP4_01 0.00001 
  V_ARNT_01 0.00001 
  V_NANOG_02 0.00001 
ENSG00000071564 V_E47_01 0.00001 
ENSG00000172845 V_SP3_Q3 0.00001 
ENSG00000102145 V_GATA1_02 0.00001 
  V_DMRT3_01 0.00001 
  V_DBX2_01 0.00001 
ENSG00000185551 V_COUP_DR1_Q6 0.00001 
ENSG00000170608 V_HNF3_Q6_01 0.00001 
ENSG00000251493 V_FREAC4_01 0.00001 
ENSG00000101076 V_HNF4_Q6_01 0.00000 
ENSG00000125398 V_SOX9_B1 0.00000 
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ENSG00000084093 V_NRSF_01 0.00000 
ENSG00000166478 V_STAF_02 0.00000 
  V_DMRT5_01 0.00000 
ENSG00000196092 V_PAX5_01 0.00000 
ENSG00000101076 V_HNF4_DR1_Q3 0.00000 
ENSG00000186951 V_PPAR_DR1_Q2 0.00000 
ENSG00000176678 V_FREAC7_01 0.00000 
ENSG00000182568 V_SATB1_Q3 0.00000 
  V_ISRE_01 0.00000 
ENSG00000129654 V_HFH4_01 0.00000 
ENSG00000113430 V_IRX4_01 0.00000 
ENSG00000166478 V_STAF_01 0.00000 
ENSG00000123405 V_NFE2_01 0.00000 
ENSG00000178573 V_MAF_Q6 0.00000 
ENSG00000078399 V_MEIS1BHOXA9_02 0.00000 
ENSG00000118513 V_CMYB_01 0.00000 
ENSG00000109381 V_NERF_Q2 0.00000 
ENSG00000100393 V_P300_01 0.00000 
  V_LDSPOLYA_B 0.00000 
ENSG00000162676 V_GFI1_01 0.00000 
  V_TR4_03 0.00000 
ENSG00000160113 V_EAR2_Q2 0.00000 
  V_SIX6_01 0.00000 
ENSG00000064835 V_PIT1_01 0.00000 
  V_XFD3_01 0.00000 
ENSG00000137309 V_HMGIY_Q3 0.00000 
ENSG00000173153 V_ERR1_Q3 0.00000 
ENSG00000186350 V_PPARA_02 0.00000 
  V_BEL1_B 0.00000 
ENSG00000165556 V_CDX2_Q5 0.00000 
ENSG00000068305 V_AMEF2_Q6 0.00000 
ENSG00000073282 V_P63_01 0.00000 
  V_MIF1_01 0.00000 
ENSG00000091831 V_ER_Q6 0.00000 
ENSG00000074047 V_GLI2_01 0.00000 
ENSG00000116044 V_NRF2_Q4 0.00000 
ENSG00000204531 V_OCT4_01 0.00000 
  V_MSX3_01 0.00000 
ENSG00000132005 V_RFX1_02 0.00000 
ENSG00000173039 V_NFKB_Q6_01 0.00000 
ENSG00000186951 V_PPARA_01 0.00000 
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ENSG00000028277 V_OCT2_01 0.00000 
  V_CAAT_C 0.00000 
ENSG00000165556 V_CDX_Q5 0.00000 
ENSG00000068305 V_RSRFC4_01 0.00000 
ENSG00000084093 V_NRSE_B 0.00000 
ENSG00000068305 V_HMEF2_Q6 0.00000 
ENSG00000101076 V_HNF4_01 0.00000 
ENSG00000177463 V_TR4_Q2 0.00000 
  V_P53_03 0.00000 
ENSG00000141905 V_NF1_Q6 0.00000 
ENSG00000112658 V_SRF_Q5_02 0.00000 
ENSG00000113916 V_BCL6_01 0.00000 
  V_SIX3_01 0.00000 
ENSG00000031544 V_PNR_01 0.00000 
ENSG00000106331 V_PAX4_01 0.00000 
ENSG00000132170 V_PPARG_03 0.00000 
ENSG00000164458 V_BRACH_01 0.00000 
  V_ETS2_B 0.00000 
  V_OLF1_01 0.00000 
  V_IPF1_06 0.00000 
ENSG00000111087 V_GLI1_01 0.00000 
ENSG00000164778 V_EN2_01 0.00000 
  V_LHX3_02 0.00000 
  V_PBX1_04 0.00000 
ENSG00000156925 V_ZIC3_01 0.00000 
ENSG00000198914 V_OCTAMER_01 0.00000 
  V_PTF1BETA_Q6 0.00000 
  V_HOXA7_03 0.00000 
  V_PSX1_01 0.00000 
  V_HNF3B_01 0.00000 
ENSG00000162761 V_LMX1_01 0.00000 
  V_BARBIE_01 0.00000 
ENSG00000136997 V_EBOX_Q6_01 0.00000 
ENSG00000102935 V_ROAZ_01 0.00000 
  V_ARNT_02 0.00000 
ENSG00000147421 V_HMBOX1_01 0.00000 
ENSG00000164299 V_SPZ1_01 0.00000 
  V_P50P50_Q3 0.00000 
ENSG00000100811 V_YY1_01 0.00000 
  V_OBOX5_02 0.00000 
ENSG00000143190 V_OCT1_05 0.00000 
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  V_SEF1_C 0.00000 
  V_NKX52_01 0.00000 
ENSG00000120093 V_HOXB3_01 0.00000 
ENSG00000127989 V_MTERF_01 0.00000 
  V_ZID_01 0.00000 
ENSG00000120068 V_HOXB8_01 0.00000 
ENSG00000112658 V_SRF_C 0.00000 
  V_NKX22_02 0.00000 
ENSG00000136944 V_LMX1B_01 0.00000 
ENSG00000116833 V_LRH1_Q5 0.00000 
ENSG00000173757 V_STAT5B_01 0.00000 
ENSG00000163623 V_NKX61_01 0.00000 
ENSG00000185122 V_HSF1_Q6 0.00000 
  V_MEIS1_02 0.00000 
  V_AHRARNT_01 0.00000 
  V_AHRARNT_02 0.00000 
  V_AHR_01 0.00000 
ENSG00000160224 V_AIRE_02 0.00000 
ENSG00000156150 V_ALX3_01 0.00000 
  V_ALX4_01 0.00000 
ENSG00000170345 V_AP1_01 0.00000 
ENSG00000137203 V_AP2ALPHA_02 0.00000 
ENSG00000137203 V_AP2ALPHA_03 0.00000 
  V_APOLYA_B 0.00000 
ENSG00000148516 V_AREB6_01 0.00000 
ENSG00000169083 V_AR_02 0.00000 
ENSG00000169083 V_AR_Q2 0.00000 
ENSG00000169136 V_ATF5_01 0.00000 
  V_ATF_01 0.00000 
ENSG00000156273 V_BACH1_01 0.00000 
  V_BACH2_01 0.00000 
  V_BARHL1_01 0.00000 
ENSG00000043039 V_BARX2_01 0.00000 
ENSG00000113916 V_BCL6_02 0.00000 
ENSG00000091010 V_BRN3C_01 0.00000 
  V_BSX_01 0.00000 
  V_CAAT_01 0.00000 
  V_CART1_01 0.00000 
  V_CART1_03 0.00000 
  V_CBF_02 0.00000 
  V_CDP_03 0.00000 
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  V_CDP_04 0.00000 
ENSG00000113722 V_CDX1_01 0.00000 
ENSG00000153879 V_CEBPGAMMA_Q6 0.00000 
ENSG00000245848 V_CEBP_01 0.00000 
ENSG00000245848 V_CEBP_Q2_01 0.00000 
  V_CETS1P54_03 0.00000 
ENSG00000245848 V_CHOP_01 0.00000 
  V_CHX10_01 0.00000 
  V_COMP1_01 0.00000 
ENSG00000115966 V_CREBP1_Q2 0.00000 
ENSG00000118260 V_CREB_Q2_01 0.00000 
ENSG00000105392 V_CRX_02 0.00000 
ENSG00000141905 V_CTF1_01 0.00000 
ENSG00000177030 V_DEAF1_01 0.00000 
ENSG00000177030 V_DEAF1_02 0.00000 
ENSG00000134107 V_DEC_Q1 0.00000 
ENSG00000144355 V_DLX1_01 0.00000 
ENSG00000105880 V_DLX5_01 0.00000 
  V_DMRT1_01 0.00000 
  V_DMRT4_01 0.00000 
  V_DOBOX4_01 0.00000 
  V_DOBOX5_01 0.00000 
ENSG00000111424 V_DR3_Q4 0.00000 
  V_E2_01 0.00000 
  V_E2_Q6 0.00000 
ENSG00000071564 V_E47_02 0.00000 
  V_EBNA1_01 0.00000 
ENSG00000132005 V_EFC_Q6 0.00000 
  V_ELF1_Q6 0.00000 
ENSG00000135374 V_ELF5_01 0.00000 
  V_ELK1_01 0.00000 
  V_ELK1_02 0.00000 
ENSG00000170370 V_EMX2_01 0.00000 
ENSG00000163064 V_EN1_02 0.00000 
ENSG00000119715 V_ERR2_01 0.00000 
  V_ESX1_01 0.00000 
ENSG00000157554 V_ETS_Q4 0.00000 
ENSG00000085276 V_EVI1_03 0.00000 
ENSG00000085276 V_EVI1_04 0.00000 
  V_EVX2_01 0.00000 
ENSG00000171634 V_FAC1_01 0.00000 
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  V_FOXJ2_02 0.00000 
ENSG00000150907 V_FOXO1_02 0.00000 
ENSG00000184481 V_FOXO4_02 0.00000 
  V_FOXP3_Q4 0.00000 
ENSG00000137273 V_FREAC2_01 0.00000 
  V_FXR_IR1_Q6 0.00000 
  V_GADP_01 0.00000 
ENSG00000102145 V_GATA1_04 0.00000 
  V_GBX1_01 0.00000 
ENSG00000165702 V_GFI1B_01 0.00000 
ENSG00000106571 V_GLI3_02 0.00000 
ENSG00000111087 V_GLI_Q2 0.00000 
ENSG00000113580 V_GRE_C 0.00000 
ENSG00000113580 V_GR_01 0.00000 
ENSG00000113580 V_GR_Q6 0.00000 
  V_GSC_01 0.00000 
ENSG00000180613 V_GSH2_01 0.00000 
ENSG00000071564 V_HAND1E47_01 0.00000 
ENSG00000130675 V_HB9_01 0.00000 
  V_HDX_01 0.00000 
ENSG00000030419 V_HELIOSA_02 0.00000 
  V_HES1_Q2 0.00000 
  V_HFH1_01 0.00000 
ENSG00000103241 V_HFH8_01 0.00000 
ENSG00000100644 V_HIF1_Q3 0.00000 
ENSG00000215612 V_HMX1_02 0.00000 
ENSG00000108753 V_HNF1B_01 0.00000 
ENSG00000135100 V_HNF1_C 0.00000 
ENSG00000135100 V_HNF1_Q6_01 0.00000 
ENSG00000170608 V_HNF3_Q6 0.00000 
ENSG00000101076 V_HNF4ALPHA_Q6 0.00000 
ENSG00000119547 V_HNF6_Q6 0.00000 
  V_HOMEZ_01 0.00000 
ENSG00000106004 V_HOX13_01 0.00000 
ENSG00000106004 V_HOX13_02 0.00000 
ENSG00000253293 V_HOXA10_01 0.00000 
ENSG00000105991 V_HOXA1_01 0.00000 
ENSG00000105996 V_HOXA2_01 0.00000 
ENSG00000197576 V_HOXA4_01 0.00000 
ENSG00000106006 V_HOXA6_01 0.00000 
  V_HOXA7_02 0.00000 
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ENSG00000078399 V_HOXA9_01 0.00000 
ENSG00000159184 V_HOXB13_01 0.00000 
ENSG00000182742 V_HOXB4_01 0.00000 
ENSG00000108511 V_HOXB6_01 0.00000 
  V_HOXB7_01 0.00000 
ENSG00000170689 V_HOXB9_01 0.00000 
ENSG00000123388 V_HOXC11_01 0.00000 
ENSG00000172789 V_HOXC5_01 0.00000 
  V_HOXC6_01 0.00000 
ENSG00000037965 V_HOXC8_01 0.00000 
ENSG00000180806 V_HOXC9_01 0.00000 
  V_HOXD10_01 0.00000 
  V_HOXD13_01 0.00000 
ENSG00000128645 V_HOXD1_01 0.00000 
ENSG00000128652 V_HOXD3_01 0.00000 
  V_HOXD8_01 0.00000 
  V_HP1SITEFACTOR_Q6 0.00000 
ENSG00000025156 V_HSF2_02 0.00000 
ENSG00000185122 V_HSF_Q6 0.00000 
ENSG00000100219 V_HTF_01 0.00000 
ENSG00000140968 V_ICSBP_Q6 0.00000 
ENSG00000185811 V_IK1_01 0.00000 
ENSG00000185811 V_IK3_01 0.00000 
  V_IPF1_05 0.00000 
  V_IPF1_Q4_01 0.00000 
ENSG00000125347 V_IRF1_01 0.00000 
ENSG00000168310 V_IRF2_01 0.00000 
ENSG00000185507 V_IRF7_01 0.00000 
  V_IRX3_02 0.00000 
ENSG00000116132 V_K2B_01 0.00000 
ENSG00000115112 V_LBP9_01 0.00000 
  V_LBX2_01 0.00000 
  V_LHX4_01 0.00000 
  V_LHX5_01 0.00000 
  V_LHX8_01 0.00000 
  V_LHX9_01 0.00000 
  V_LIM1_01 0.00000 
  V_MAX_01 0.00000 
  V_MAX_Q6 0.00000 
ENSG00000068305 V_MEF2_02 0.00000 
ENSG00000068305 V_MEF2_03 0.00000 
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  V_MEF3_B 0.00000 
ENSG00000078399 V_MEIS1AHOXA9_01 0.00000 
  V_MEIS2_01 0.00000 
ENSG00000005102 V_MOX1_01 0.00000 
ENSG00000150347 V_MRF2_01 0.00000 
  V_MRG2_01 0.00000 
ENSG00000188786 V_MTF1_01 0.00000 
ENSG00000136997 V_MYCMAX_01 0.00000 
ENSG00000136997 V_MYCMAX_03 0.00000 
  V_MYOD_01 0.00000 
ENSG00000141905 V_NF1_Q6_01 0.00000 
ENSG00000109320 V_NFKB_Q6 0.00000 
ENSG00000120837 V_NFY_Q6_01 0.00000 
  V_NKX12_01 0.00000 
  V_NKX23_01 0.00000 
  V_NKX24_01 0.00000 
ENSG00000183072 V_NKX25_03 0.00000 
  V_NKX29_01 0.00000 
ENSG00000109705 V_NKX32_02 0.00000 
ENSG00000167034 V_NKX3A_02 0.00000 
ENSG00000163623 V_NKX61_02 0.00000 
ENSG00000163623 V_NKX61_03 0.00000 
  V_NKX63_01 0.00000 
  V_OBOX1_01 0.00000 
  V_OBOX2_01 0.00000 
  V_OBOX5_01 0.00000 
ENSG00000143190 V_OCT1_06 0.00000 
ENSG00000143190 V_OCT1_08 0.00000 
ENSG00000143190 V_OCT1_Q6 0.00000 
ENSG00000204531 V_OCT4_02 0.00000 
ENSG00000184486 V_OCTAMER_02 0.00000 
ENSG00000143190 V_OCT_C 0.00000 
ENSG00000143190 V_OCT_Q6 0.00000 
  V_OG2_02 0.00000 
ENSG00000115507 V_OTX1_01 0.00000 
ENSG00000165588 V_OTX2_01 0.00000 
  V_OTX3_01 0.00000 
ENSG00000073282 V_P53_DECAMER_Q2 0.00000 
ENSG00000075891 V_PAX2_01 0.00000 
ENSG00000106331 V_PAX4_05 0.00000 
ENSG00000196092 V_PAX5_02 0.00000 
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ENSG00000007372 V_PAX6_01 0.00000 
ENSG00000007372 V_PAX6_02 0.00000 
ENSG00000125618 V_PAX8_01 0.00000 
ENSG00000125618 V_PAX8_B 0.00000 
  V_PBX1_02 0.00000 
ENSG00000159216 V_PEBP_Q6 0.00000 
  V_PITX1_01 0.00000 
  V_PITX2_01 0.00000 
ENSG00000107859 V_PITX3_01 0.00000 
ENSG00000165495 V_PKNOX2_01 0.00000 
ENSG00000109132 V_PMX2B_01 0.00000 
  V_POU2F3_01 0.00000 
ENSG00000184271 V_POU6F1_02 0.00000 
ENSG00000184271 V_POU6F1_03 0.00000 
ENSG00000132170 V_PPARG_02 0.00000 
ENSG00000160199 V_PREP1_01 0.00000 
  V_PROP1_01 0.00000 
ENSG00000175325 V_PROP1_02 0.00000 
  V_REX1_03 0.00000 
ENSG00000132005 V_RFX1_01 0.00000 
  V_RHOX11_01 0.00000 
  V_RHOX11_02 0.00000 
ENSG00000179456 V_RP58_01 0.00000 
ENSG00000068305 V_RSRFC4_Q2 0.00000 
  V_RXRLXRB_01 0.00000 
  V_R_01 0.00000 
  V_S8_01 0.00000 
  V_S8_02 0.00000 
  V_SIX1_01 0.00000 
ENSG00000170577 V_SIX2_01 0.00000 
  V_SIX4_01 0.00000 
  V_SIX6_02 0.00000 
ENSG00000170365 V_SMAD1_01 0.00000 
ENSG00000170365 V_SMAD_Q6_01 0.00000 
ENSG00000072310 V_SREBP_Q3 0.00000 
ENSG00000112658 V_SRF_01 0.00000 
ENSG00000112658 V_SRF_Q4 0.00000 
ENSG00000112658 V_SRF_Q5_01 0.00000 
ENSG00000112658 V_SRF_Q6 0.00000 
ENSG00000184895 V_SRY_02 0.00000 
ENSG00000115415 V_STAT1_01 0.00000 
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  V_STAT3STAT3_Q3 0.00000 
ENSG00000168610 V_STAT3_01 0.00000 
ENSG00000138378 V_STAT4_Q4 0.00000 
ENSG00000126561 V_STAT5A_01 0.00000 
  V_STRA13_01 0.00000 
ENSG00000164048 V_SZF11_01 0.00000 
  V_T3R_01 0.00000 
  V_TAACC_B 0.00000 
ENSG00000071564 V_TAL1ALPHAE47_01 0.00000 
ENSG00000071564 V_TAL1BETAE47_01 0.00000 
ENSG00000162367 V_TAL1BETAITF2_01 0.00000 
ENSG00000112592 V_TATA_01 0.00000 
ENSG00000118260 V_TAXCREB_02 0.00000 
  V_TBX15_01 0.00000 
  V_TBX15_02 0.00000 
ENSG00000112837 V_TBX18_01 0.00000 
ENSG00000122145 V_TBX22_01 0.00000 
ENSG00000089225 V_TBX5_01 0.00000 
ENSG00000118707 V_TGIF2_01 0.00000 
ENSG00000177426 V_TGIF_02 0.00000 
ENSG00000185668 V_TST1_01 0.00000 
  V_UNCX4.1_01 0.00000 
ENSG00000158773 V_USF_01 0.00000 
  V_VAX1_01 0.00000 
  V_VAX2_01 0.00000 
  V_VDRRXR_01 0.00000 
  V_VJUN_01 0.00000 
  V_VMAF_01 0.00000 
ENSG00000100987 V_VSX1_01 0.00000 
ENSG00000100219 V_XBP1_01 0.00000 
  V_XFD2_01 0.00000 
ENSG00000198081 V_ZF5_B 0.00000 
  V_ZTA_Q2 0.00000 
ENSG00000245848 V_CEBP_C 0.00000 
ENSG00000120837 V_NFY_C 0.00000 
ENSG00000004848 V_ARX_01 0.00000 
ENSG00000135100 V_HNF1_Q6 0.00000 
  V_P53_01 0.00000 
  V_BARHL2_01 0.00000 
ENSG00000181449 V_SOX2_Q6 0.00000 
  V_PAX9_B 0.00000 
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  V_TRF1_01 0.00000 
  V_TCF3_01 0.00000 
ENSG00000112658 V_SRF_02 0.00000 
ENSG00000142539 V_SPIB_01 0.00000 
ENSG00000162772 V_ATF3_Q6 0.00000 
ENSG00000054598 V_FREAC3_01 0.00000 
ENSG00000165462 V_PMX2A_01 0.00000 
ENSG00000179388 V_EGR3_01 0.00000 
ENSG00000126561 V_STAT5A_02 0.00000 
  V_DMRT2_01 0.00000 
ENSG00000169083 V_AR_03 0.00000 
ENSG00000064835 V_PIT1_Q6 0.00000 
  V_XFD1_01 0.00000 
ENSG00000159216 V_AML_Q6 0.00000 
ENSG00000109906 V_PLZF_02 0.00000 
ENSG00000165556 V_CDX2_01 0.00000 
  V_NANOG_01 0.00000 
ENSG00000143190 V_OCT1_02 0.00000 
ENSG00000066336 V_PU1_01 0.00000 
ENSG00000175745 V_COUP_01 0.00000 
  V_DMRT7_01 0.00000 
  V_POLY_C 0.00000 
  V_P53_05 0.00000 
ENSG00000068305 V_MMEF2_Q6 0.00000 
ENSG00000120075 V_HOXB5_01 0.00000 
  V_BARX1_01 0.00000 
  V_ISL2_01 0.00000 
  V_IRX2_01 0.00000 
  V_NKX26_01 0.00000 
ENSG00000137203 V_AP2_Q6 0.00000 
ENSG00000136997 V_CMYC_02 0.00000 
  V_NKX21_01 0.00000 
ENSG00000132170 V_PPARG_01 0.00000 
  V_HB24_01 0.00000 
ENSG00000085276 V_EVI1_01 0.00000 
ENSG00000169083 V_AR_04 0.00000 
ENSG00000188620 V_HMX3_02 0.00000 
ENSG00000198911 V_SREBP2_Q6 0.00000 
ENSG00000168610 V_STAT3_03 0.00000 
ENSG00000185551 V_DR1_Q3 0.00000 
ENSG00000082175 V_PR_01 0.00000 
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  V_IRX3_01 0.00000 
ENSG00000169083 V_AR_01 0.00000 
ENSG00000068305 V_MEF2_01 0.00000 
ENSG00000101076 V_HNF4_01_B 0.00000 
ENSG00000141905 V_MYOGNF1_01 0.00000 
ENSG00000125347 V_IRF_Q6 0.00000 
ENSG00000135457 V_CP2_02 0.00000 
  V_IRX5_01 0.00000 
ENSG00000082641 V_TCF11MAFG_01 0.00000 
ENSG00000148200 V_GCNF_01 0.00000 
ENSG00000115415 V_STAT_Q6 0.00000 
ENSG00000159387 V_IRXB3_01 0.00000 
ENSG00000025434 V_LXR_Q3 0.00000 
ENSG00000100811 V_YY1_02 0.00000 
ENSG00000007372 V_PAX6_Q2 0.00000 
ENSG00000167182 V_SP2_01 0.00000 
ENSG00000141646 V_SMAD4_Q6 0.00000 
ENSG00000160224 V_AIRE_01 0.00000 
ENSG00000143190 V_OCT1_01 0.00000 
ENSG00000068305 V_MEF2_04 0.00000 
ENSG00000082175 V_PR_02 0.00000 
ENSG00000115415 V_STAT1_05 0.00000 
ENSG00000169297 V_DAX1_01 0.00000 
ENSG00000143190 V_OCT1_04 0.00000 
  V_ETS1_B 0.00000 
ENSG00000184486 V_POU3F2_01 0.00000 
ENSG00000173153 V_ERR1_Q2 0.00000 
  V_ZFP206_01 0.00000 
  V_NFY_01 -0.00001 
  V_DBX1_01 -0.00001 
ENSG00000185551 V_DR4_Q2 -0.00001 

 
Table 7.4 Union of top 20 motifs from three classifications. 

V_SP1_Q6 
V_ZFX_01 
V_FOXO1_Q5 
V_ERALPHA_01 
V_SP1SP3_Q4 
V_CACBINDINGPROTEIN_Q6 
V_SP1_Q4_01 
V_SP1_Q6_01 
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V_GTF2IRD1_01 
V_MAZ_Q6 
V_ZFP281_01 
V_SP1_Q2_01 
V_FPM315_01 
V_SP4_Q5 
V_PLAG1_01 
V_KROX_Q6 
V_FOX_Q2 
V_PUR1_Q4 
V_SP1_01 
V_MUSCLE_INI_B 
V_KLF15_Q2 
V_LYF1_01 
V_MEF2C_01 
V_LUN1_01 
V_GC_01 
V_AP2_Q6_01 
V_CKROX_Q2 
V_PITX2_Q2 
V_IK_Q5 
V_RPC155_01 
V_SP1_02 
V_UF1H3BETA_Q6 
V_FOXP1_01 
V_ZBP89_Q4 
V_PU1_Q4 
V_GKLF_02 
V_CACD_01 
V_LXR_DR4_Q3 
V_BDP1_01 
V_FKLF_Q5 
V_SREBP1_01 
V_SREBP_Q6 
V_MAF_Q6_01 

 
Table 7.5 List of chromatin modifying enzymes interacting with top 20 available Ensemble Gene Id. 

Ensembl Protein ID Gene Name Description 
ENSP00000080059 HDAC7 histone deacetylase 7  
ENSP00000200691 MT3 metallothionein 3  
ENSP00000206249 ESR1 estrogen receptor 1  
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ENSP00000212015 SIRT1 sirtuin 1  
ENSP00000221413 RUVBL2 RuvB-like AAA ATPase 2  
ENSP00000225916 KAT2A K(lysine) acetyltransferase 2A  
ENSP00000225983 HDAC5 histone deacetylase 5  
ENSP00000231487 SKP1 S-phase kinase-associated protein 1  
ENSP00000231509 NR3C1 

nuclear receptor subfamily 3, group C, member 1 
(glucocorticoid receptor)  

ENSP00000243914 CTCFL CCCTC-binding factor (zinc finger protein)-like  
ENSP00000245479 SOX9 SRY (sex determining region Y)-box 9  
ENSP00000250003 MYOD1 myogenic differentiation 1  
ENSP00000250448 FOXA1 forkhead box A1  
ENSP00000257555 HNF1A HNF1 homeobox A  
ENSP00000257745 KMT2E lysine (K)-specific methyltransferase 2E  
ENSP00000260926 SATB2 SATB homeobox 2  
ENSP00000262188 SMARCD3 

SWI/SNF related, matrix associated, actin dependent 
chromatin regulator 

ENSP00000262367 CREBBP CREB binding protein  
ENSP00000262376 UBN1 ubinuclein 1  
ENSP00000262965 TCF3 transcription factor 3  
ENSP00000263121 SMARCB1 

SWI/SNF related, matrix associated, actin dependent 
chromatin regulator 

ENSP00000263253 EP300 E1A binding protein p300  
ENSP00000263360 EED embryonic ectoderm development  
ENSP00000263754 KAT2B K(lysine) acetyltransferase 2B  
ENSP00000264110 ATF2 activating transcription factor 2  
ENSP00000264183 ARID4B AT rich interactive domain 4B (RBP1-like)  
ENSP00000264515 RBBP5 retinoblastoma binding protein 5  
ENSP00000264606 HDAC4 histone deacetylase 4  
ENSP00000264709 DNMT3A DNA (cytosine-5-)-methyltransferase 3 alpha  
ENSP00000264834 KLF1 Kruppel-like factor 1 (erythroid)  
ENSP00000265165 LEF1 lymphoid enhancer-binding factor 1  
ENSP00000265773 SMARCA2 

SWI/SNF related, matrix associated, actin dependent 
chromatin regulator 

ENSP00000266970 CDK2 cyclin-dependent kinase 2  
ENSP00000267163 RB1 retinoblastoma 1  
ENSP00000268712 NCOR1 nuclear receptor corepressor 1  
ENSP00000274764 HIST1H2BA histone cluster 1, H2ba  
ENSP00000275780 TLK2 tousled-like kinase 2  
ENSP00000278616 ATM ataxia telangiectasia mutated  
ENSP00000278916 CHEK1 checkpoint kinase 1  
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ENSP00000283131 SMARCA5 
SWI/SNF related, matrix associated, actin dependent 
chromatin regulator 

ENSP00000284898 L3MBTL4 l(3)mbt-like 4 (Drosophila)  
ENSP00000289352 HIST1H4H histone cluster 1, H4h  
ENSP00000296930 NPM1 nucleophosmin (nucleolar phosphoprotein B23, numatrin)  
ENSP00000299402 APBB1 

amyloid beta (A4) precursor protein-binding, family B, 
member 1 (Fe65)  

ENSP00000299440 RAG1 recombination activating gene 1  
ENSP00000301067 KMT2D lysine (K)-specific methyltransferase 2D  
ENSP00000302967 HDAC3 histone deacetylase 3  
ENSP00000304004 FOXA3 forkhead box A3  
ENSP00000305355 PRKCB protein kinase C, beta  
ENSP00000305899 SUV420H1 suppressor of variegation 4-20 homolog 1 (Drosophila)  
ENSP00000307208 BPTF bromodomain PHD finger transcription factor  
ENSP00000307684 TADA3 transcriptional adaptor 3  
ENSP00000307803 TET3 tet methylcytosine dioxygenase 3  
ENSP00000308227 HMGA1 high mobility group AT-hook 1  
ENSP00000308620 RAG2 recombination activating gene 2  
ENSP00000309555 HCFC1 host cell factor C1 (VP16-accessory protein)  
ENSP00000309992 ZMYND11 zinc finger, MYND-type containing 11  
ENSP00000311513 RSF1 remodeling and spacing factor 1  
ENSP00000311816 REST RE1-silencing transcription factor  
ENSP00000316578 SUZ12 SUZ12 polycomb repressive complex 2 subunit  
ENSP00000318094 SCMH1 sex comb on midleg homolog 1 (Drosophila)  
ENSP00000318297 RUVBL1 RuvB-like AAA ATPase 1  
ENSP00000320147 EZH2 enhancer of zeste homolog 2 (Drosophila)  
ENSP00000320940 NCOA1 nuclear receptor coactivator 1  
ENSP00000323967 SMARCE1 

SWI/SNF related, matrix associated, actin dependent 
chromatin regulator 

ENSP00000324444 MBIP MAP3K12 binding inhibitory protein 1  
ENSP00000328547 DNMT3B DNA (cytosine-5-)-methyltransferase 3 beta  
ENSP00000331614 IKZF1 IKAROS family zinc finger 1 (Ikaros)  
ENSP00000333640 EYA2 eyes absent homolog 2 (Drosophila)  
ENSP00000337088 MEN1 multiple endocrine neoplasia I  
ENSP00000338868 PHF8 PHD finger protein 8  
ENSP00000339250 DPPA3 developmental pluripotency associated 3  
ENSP00000339992 MYB v-myb avian myeloblastosis viral oncogene homolog  
ENSP00000340896 ASH2L ash2 (absent, small, or homeotic)-like (Drosophila)  
ENSP00000342434 BAZ1B bromodomain adjacent to zinc finger domain, 1B  
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ENSP00000342626 EYA1 eyes absent homolog 1 (Drosophila)  
ENSP00000343282 HIST1H4D histone cluster 1, H4d  
ENSP00000343325 PKN1 protein kinase N1  
ENSP00000346148 PRKAA1 protein kinase, AMP-activated, alpha 1 catalytic subunit  
ENSP00000346316 HIST1H4I histone cluster 1, H4i  
ENSP00000346986 WAC WW domain containing adaptor with coiled-coil  
ENSP00000347168 HIST1H4J histone cluster 1, H4j  
ENSP00000347733 TRRAP transformation/transcription domain-associated protein  
ENSP00000348258 HIST1H4L histone cluster 1, H4l  
ENSP00000348610 MED24 mediator complex subunit 24  
ENSP00000349213 PBRM1 polybromo 1  
ENSP00000349508 CHD4 chromodomain helicase DNA binding protein 4  
ENSP00000350681 ELK4 ELK4, ETS-domain protein (SRF accessory protein 1)  
ENSP00000350720 SMARCA4 

SWI/SNF related, matrix associated, actin dependent 
chromatin regulator 

ENSP00000352516 DNMT1 DNA (cytosine-5-)-methyltransferase 1  
ENSP00000354522 TOP1 topoisomerase (DNA) I  
ENSP00000354850 MGEA5 meningioma expressed antigen 5 (hyaluronidase)  
ENSP00000355153 CDKN2A cyclin-dependent kinase inhibitor 2A  
ENSP00000357311 CENPW centromere protein W  
ENSP00000357965 SETDB1 SET domain, bifurcated 1  
ENSP00000358335 MAP3K7 mitogen-activated protein kinase kinase kinase 7  
ENSP00000359290 DR1 

down-regulator of transcription 1, TBP-binding (negative 
cofactor 2)  

ENSP00000359321 MTF2 metal response element binding transcription factor 2  
ENSP00000360163 SMARCA1 

SWI/SNF related, matrix associated, actin dependent 
chromatin regulator 

ENSP00000360290 PRKAA2 protein kinase, AMP-activated, alpha 2 catalytic subunit  
ENSP00000361066 NCOA3 nuclear receptor coactivator 3  
ENSP00000361219 GTF3C4 general transcription factor IIIC, polypeptide 4, 90kDa  
ENSP00000362592 RBBP4 retinoblastoma binding protein 4  
ENSP00000362649 HDAC1 histone deacetylase 1  
ENSP00000362674 HDAC8 histone deacetylase 8  
ENSP00000362748 TET1 tet methylcytosine dioxygenase 1  
ENSP00000362824 OGT O-linked N-acetylglucosamine (GlcNAc) transferase  
ENSP00000363958 BRD2 bromodomain containing 2  
ENSP00000364524 PAX7 paired box 7  
ENSP00000364597 PADI4 peptidyl arginine deiminase, type IV  
ENSP00000364839 ASXL1 additional sex combs like 1 (Drosophila)  
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ENSP00000365380 FOXP3 forkhead box P3  
ENSP00000365877 SUV39H1 suppressor of variegation 3-9 homolog 1 (Drosophila)  
ENSP00000367207 MYC v-myc avian myelocytomatosis viral oncogene homolog  
ENSP00000369351 TET2 tet methylcytosine dioxygenase 2  
ENSP00000369681 USP3 ubiquitin specific peptidase 3  
ENSP00000369716 CHD3 chromodomain helicase DNA binding protein 3  
ENSP00000370343 IRF4 interferon regulatory factor 4  
ENSP00000371067 JAK2 Janus kinase 2  
ENSP00000376611 TDG thymine-DNA glycosylase  
ENSP00000378414 SMARCD1 

SWI/SNF related, matrix associated, actin dependent 
chromatin regulator 

ENSP00000380414 DEK DEK oncogene  
ENSP00000380695 SUDS3 suppressor of defective silencing 3 homolog (S. cerevisiae)  
ENSP00000381331 HDAC2 histone deacetylase 2  
ENSP00000381522 CHD9 chromodomain helicase DNA binding protein 9  
ENSP00000382204 JMJD1C jumonji domain containing 1C  
ENSP00000382688 KDM5A lysine (K)-specific demethylase 5A  
ENSP00000384026 HMGA2 high mobility group AT-hook 2  
ENSP00000384708 FSHR follicle stimulating hormone receptor  
ENSP00000392028 CHD7 chromodomain helicase DNA binding protein 7  
ENSP00000395535 MECP2 methyl CpG binding protein 2 (Rett syndrome)  
ENSP00000405574 TBL1XR1 transducin (beta)-like 1 X-linked receptor 1  
ENSP00000408617 HDAC9 histone deacetylase 9  
ENSP00000418379 TAF1L TAF1 RNA polymerase II,  TBP-associated factor 
ENSP00000419494 RYBP RING1 and YY1 binding protein  

7.1.3  
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7.2 Supplementary for Chapter 3 
7.2.1 Supplementary Text 

Supplemental Note 1. A model is built using Adaboost method where multiple 
classifiers are combined to represent the final output of the composite boosted 
classifier. In this approach, for each weighted bootstrap sample, a new sub-
model (in our case a decision tree) is built and added to the model until no further 
improvement can be made.  
In the Interaction model, the composite boosted model includes multiple decision 
trees, each of which captures a set of binding rules based on co-occurring motifs 
(potential interaction partners or co-factors) in the weighted training sequences 
bound by the reference TF. Each path from root to leaf in an estimated decision 
tree sub-model captures one such binding rule, asserting how a combination of 
motifs and along with their binding affinities relative to thresholds defined by the 
sub-model contribute to the target TF’s binding. Each sub-model is built allowing 
interaction (tree) depth of 15. We found that 79% of all sub-models include the 
reference motif. However, this percentage increases up to 85% with increasing 
interaction depth (Figure 7.3F of Supplemental Data) and no performance loss 
(Figure 7.3D of Supplemental Data). The sub-models without a reference motif 
may be explained by the possible absence of the reference motif sequence from 
the training set due a sequence-length restriction, PWM match threshold, indirect 
binding, or by other unknown confounders. Notably, by virtue of physical space, 
the number of non-overlapping features fit in the sequence of restricted length 
should be limited, e.g. with average size (8bp) of PWM the 15 features need at 
least 120bp. However, we have ascertained that only 0.8% of all possible single 
paths (encompassing only ~13% of all the sub-models) have more than 12 
features. Thus, in almost all cases, the features fit in a 100bp physical space 
(12*8=96). 
We clustered the sub-models based on feature importance, meaning the 
contribution of each co-factor in the set of binding rules specified by each 
decision tree. Therefore, by design, sub-models, common across cell types, will 
have increased similarity in the set of co-factors and the weight of their 
contribution whereas cell type-specific sub-models will either have different sets 
of co-factors, or similar sets of co-factors but with different contribution. For 
example, none of the CEBPB sub-models have the rule: “presence of IRF8 and 
presence of NFATC4 leads to the binding of CEBPB” (highlighted in Figure 3.1B) 
except in Gm12878. On the other hand, the following rule exists in multiple sub-
models of all cell types except Gm12878 generated sub-models: “presence of 
CEPBE and one of the reference PWM of CEBPB increases the binding 
probability of CEBPB”. In Figure 7.3A-B of Supplemental Data the corresponding 
rules are highlighted. Overall, when we looked at the ubiquitous sub-models and 
cell-specific sub-models, we found that ubiquitous sub-models contribute more 
co-factors than cell type-specific sub-models (Figure 7.3L of Supplemental Data). 
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This leads to cell-specific sub-models having a more skewed feature importance 
than ubiquitous sub-models (Figure 7.3M of Supplemental Data). Furthermore, 
the co-factors contributed by cell-specific sub-models exhibit a slightly more 
skewed gene expression across cell types than those contributed by ubiquitous 
sub-models (Figure 7.3N of Supplemental Data, see Methods for details). 
Supplemental Note 2. Each cluster of sub-models can itself serve as a 
composite, or ensemble, classifier. We determined a cluster-specific score for 
each TF-bound sequence based on these new cluster-based ensemble 
classifiers and assigned each sequence to one or more sub-model clusters 
based on this score (see Methods). Independently, for each TF, we partitioned all 
bound sequences into those that are bound uniquely in a cell type and those that 
are bound in multiple cell types. In general, if the clustering of sub-models in 
different cell types is simply due to sequence sharing then we expect to see a 
large fraction of overlapping sequence pairs, and not the cell type-specific 
sequence pairs, assigned to same cluster. We trained EMT using 75% of the 
sequences in each cell type dataset followed by clustering, and assessed the 
aforementioned fractions for the remaining 25% of the sequences to avoid 
training bias. As shown in Figure 7.5 of Supplemental Data, we expect pairs of 
overlapping sequences to be assigned to the same cluster and hence the size of 
dark orange box (same cluster) is greater than dark purple box (different cluster). 
However, many pairs of non-overlapping sequences are also assigned to the 
same cluster (light orange). We conducted a chi-squared test to assess whether 
the proportion of non-overlapped sequence pairs assigned to the same cluster is 
smaller than expected, indicating that co-clustering is driven by sequence 
overlap. For each cluster, we obtain the proportion of overlapping and non-
overlapping sequence pairs and computed the expected proportion from the 
overall proportion of overlapping vs. non-overlapping sequence pairs. We 
conducted one chi-squared test per TF using data pooled from all clusters and all 
cell types, there was no evidence for depletion of non-overlapped sequence pairs 
assigned to the same cluster (all P-values > 0.05). These results suggest that co-
clustering of sub-models across cell types are not simply due to sequence 
overlap, but rather, represent shared binding rules.  
Supplemental Note 3. In clustering the sub-models, our goal was not to find the 
precise number of distinct binding rules, but rather to assess the modularity and 
sharing of binding rules across cell types. That’s why we decided to choose k in 
such a way that the coherence among the sub-models in the same clusters is still 
detectable (i.e. k, not too high) while still revealing the cross-cell type sharing 
(i.e., k not too low). We checked the value of within-cluster sum of squares 
(normalized by the cluster-size) for different cluster sizes (Figure 7.7A of 
Supplemental Data) [153]. For some TFs the suggested clusters seem ~15 (e.g. 
CTCF), for others ~20 (e.g. FOS), and in extreme cases the desired number of 
clusters seems to be more than 30 (e.g. ATF3, MYC). Based on these results a 
cluster size ranging from 15 to 25 seemed a reasonable choice. As a 
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compromise across TFs and to make the analyses comparable we selected k=16 
for all TFs. 
Supplemental Note 4. We collected 22 position frequency matrices for the 
zinger motifs reported in [109]. We identified the corresponding TRANSFAC id by 
matching the PWM-similarity by TFBSTools R package [154]. Allowing 90% 
(85%) PWM-similarity gave us 16 (42) TRANSFAC ids as zinger motifs; Figure 
7.65 of Supplemental Data lists all the zinger TRANSFAC ids. We found that only 
5.5% (14%) of the identified the co-factors are zinger motifs suggesting that 
these motifs have little impact on the models. Moreover, we checked the 
clustering pattern of the sub-models after removing the zinger motifs and found 
that the sparsity of the cluster-membership matrix is highly correlated with the 
original clustering pattern (spearman correlation = 0.96, p.value = 2.4 x 10-13). 
This suggests that our overall findings are not affected by the zinger motifs. 
Supplemental Note 5. It is possible that EMTs can falsely yield multiple sub-
models, even in absence of heterogeneity, and those sub-models can be falsely 
clustered. We ascertained heterogeneity across sub-models for a TF from 
multiple cell types using a Duda-Hart test [155] and assessed the clustering 
tendency of the sub-models in the d-dimensional feature space using Hopkins 
statistics [156]. The Duda-Hart test verifies whether or not a set of data points 
should be split into two clusters from the estimate of within-cluster sum of 
squares for all pairs of clusters versus overall sum of squares; the ratio of the two 
sum of squares is quantified as the dh-ratio; the smaller the value, the greater the 
clustering. On the other hand, the Hopkins statistic (H) compares the nearest 
neighbor distribution for a random set of points to the same distribution for the 
clustered sub-models (see Methods). A value close to 0.5 indicates the sub-
models are random sets of points with no clustering, a value close to 1 indicates 
that they form cohesive clusters. Figure 7.7B-C of Supplemental Data summarize 
the dh-ratio and Hopkins statistic respectively for 135 TF-cell pairs based on sub-
models of TF-cell type pair, and for each TF after gathering all sub-models under 
a TF. We found that in all cases the dh-ratio is less than 1, and the Hopkins 
statistic > 0.5, consistent with heterogeneity; all tests rejected homogeneity 
(p.value <0.001). Together, the Duda-Hart test and Hopkins statistic strongly 
suggest that the sub-models are distinct and cluster-able, i.e., TF binding rules 
are heterogeneous and partly shared across cell types. 
Supplemental Note 6. Figure 7.76H of Supplemental Data shows the 
distribution of enrichment scores for the co-factors identified per TF. Except 
CTCF, the minimum of median enrichment score is ~1.2. If we choose a cutoff 
greater than 1.2, we might lose true positive co-factors for TFs like NRF1, REST, 
TBP etc. On the other hand, a lower threshold will likely yield many false positive 
co-factors for the other TFs.  
Supplemental Note 7. The enriched GO terms (only biological processes at 
<=10% false discovery rate) for the cell type-specific co-factors are listed in Table 
7.14 from Supplemental Data. Here we discuss the literature evidence supporting 
the TF functionality in different tissues related to the enriched terms for some of 
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the TFs studied. For other TF’s, based on our limited literature survey, we did not 
find a compelling support for tissue-specific functions of the TF. The following 
should be considered a selected sampling and an absence of support below 
should not necessarily be considered as a contradiction. 
1. BHLHE40 – BHLHE40 is known to be associated with many biological 

processes including circadian rhythm [157], [158], chondrogenesis [159], cell 
growth, cell differentiation [160], immune response, and apoptosis [161]. Our 
enrichment analysis of Hepg2 co-factors is consistent with the link between 
Bhlhe40 expression and hepatic clock and metabolic functions of the liver 
[162], [163]. Gm12878 co-factors are enriched for cell differentiation, and 
signaling pathway which are related to inhibition of cell growth and immune 
response. Enrichment of with BMP response in leukemia cell line is consistent 
with stimulation of BMP response in certain kinds of leukemia [164].  

2. CEBPB - The enrichment analysis of Gm12878 co-factors supports the 
known roles of CEBPB in the “regulation of genes involved in immune and 
inflammatory responses” [165], “binding to the IL-1 response element in the 
IL-6 gene, as well as to regulatory regions of several acute-phase and 
cytokine genes” [166], high induction of CEBPB in blood leukocytes to 
strengthen muscle [167] etc. Association of CEBPB in AML (Acute myeloid 
leukemia) [168] is known, where encouragingly coagulation is enriched 
among the co-factor functions. Studies have found metastasis in Helas3 via 
ER stress of unfolded protein response [169], [170] and GO analysis shows 
that the Helas3 co-factors are enriched for ER and unfolded protein response, 
strongly supporting CEBPB’s role. The function of liver and lung depend of 
the circadian cycle [171], [172].  

3. EP300 - EP300 is acetyl-transferase gene involved in tumor suppression 
[173], [174], cell proliferation specially in myeloproliferative disorders [175], 
enhance beta-catenin activity [176], chromatin modelling [173], alu-
expression [177], induction of epithelial and mesenchymal proteins and cell-
adhesion [178] etc. These are broadly consistent with the enrichment 
analysis. Enrichment of cell signaling, cell communication in epithelial cancer, 
limb bud formation in H1hesc, different type of immune and cellular response 
in normal blood and liver cancer etc. Co-factors identified in Sknsh (brain 
cancer) are enriched for cortex related hormone-secretion and stimulus, drug 
response etc. In literature also, there are many evidence about involvement of 
EP3oo with neuronal disease and its potential as drug for neuronal disorders 
[179]–[182]. Not surprisingly, EP300 co-factors in liver are involved in 
response to alcohol and several other metabolic processes. Interestingly, 
enrichment of several hormone-mediated processes is consistent with the 
role of EP300 in hepatic encephalopathy [183].  

4. FOS - FOS processes many extracellular signals via NOTCH signaling [184], 
or stimulating transcription of AP-1 responsive genes [185]. Therefore, it is 
not surprising to see enrichment of various type cell-signaling terms among 
FOS co-factors. FOS is also involved in other cellular events like 
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differentiation and survival, hypoxia and EMT (epithelial-mesenchymal-
transition) [186], metastatis growth in mammary epithelial cells [187], [188]. 
Furthermore, FOS is a predictor for decreased survival rate in breast cancer 
[189] and is induced by VEGF which plays an important role in the 
neovascularization in primary breast cancer [190]. We found that breast-
specific co-factors are enriched for organ regeneration.  

5. GABPA - GABPA is known for maintaining homeostasis [191], mitochondrial 
respiration [192], and cellular oxidative stress [193]–[195]. The enrichment 
analysis revealed homeostasis in Gm12878, oxygen-containing compound in 
Hepg2, and DNA replication in H1hesc, which are consistent with literature. In 
addition, ETS TF family pays role in the development of vasculature in 
endothelial cell and its progenitor [196] and we find similar evidence of the 
role of GABPA, an Ets-family member, in K562. 

6. JUN - AP-1 (JUN/FOS) complex modulates apoptosis in blood cells [125], 
controls cell proliferation, cell cycle progression [197], [198], and is involved in 
angiogenesis [199], [200]. This gene is the putative transforming gene of 
avian sarcoma virus. We find enrichment of defense mechanism, immune 
response, homeostasis, estrogen response etc. in blood cells (Gm12878, 
Huvec, K562). There is also some evidence of involvement of JUN in the 
development of liver tumor [201], and cervical cancer [202] via co-factors.  

7. MAFK - MAFK regulates globin genes and plays significant role in 
coagulation system during embryonic growth and placental development 
[203]. In addition to that, perturbation in MAFK function is highly associated 
with carcinogenesis, especially leukemia [204]–[208]. Consistently, we found 
enrichment of mitotic cell cycle in stem cells, meiosis in liver cancer cell, and 
response to various metal ion in K562 cell. 

8. MAZ - MAZ regulates MMP genes, gamma fibrinozen, and serum amyliod A 
[209], [210] which are consistent with the enriched terms among K562 co-
factors, blood coagulation, and hemostasis. Immune and viral response 
functions among Gm12878 co-factors are supported by the study that MAZ 
plays functional role in CD4 expression [211].  

9. MYC - MYC is an oncogene, and in Huvec and Gm12878, we found 
enrichment of cell cycle check points, DNA damage consistent with its role as 
oncogene. We found that MYC co-factors of H1hesc are enriched for spinal 
cord development, glial cell fat regulation, limb bud formation, consistent with 
its role in determining growth size [212], controlling glial cell in stem cells 
[213], [214], developing limb link with skeletal size [215]. Gonadotropin up-
regulates myeloid protein leukemia-1 [216] and is induced by MYC 
expression [217]. In addition to that, MYC regulates intestinal intraepithelial 
lymphocytes and is involved in the homeostasis of adult intestinal epithelium 
[218], [219]. Consistently, K562 co-factors show enrichment of gonadotropin 
protein, intestinal epithelial cell differentiation along with cell cycle and cell-
cell signaling. MCF co-factors were found to be enriched for viral 
transcription. It has been shown that knockdown of MYC inhibits breast tumor 
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growth by RNA interference which treats cancer by viral infection [220], [221] 
which is consistent with our findings that breats tumor (Mcf7) cell co-factors 
are enriched with viral transcription and high RNA production by carbon 
catabolite. 

10. NRF1 - NRF1 activates the expression of key metabolic genes regulating 
cellular growth and nuclear genes required for mitochondrial respiration 
[222]–[225]. We found an enrichment of terms related to mitochondrial 
respiration and biosynthetic process in most cell lines. Interestingly, the 
enrichment is evident even though cell specific co-factors are used. 
Interestingly, in K562 NRF1 shows enrichment of a diverse set of terms, 
several of which are consistent with literature, e.g. association with neurite 
outgrowth in rodent [226], oxidative stress response [227], mitochondrial 
biogenesis [228] etc. 

11. REST - REST acts as a repressor neuronal genes in non-neuronal cell types, 
and has activation role in neuronal functions [229]–[231]. In the enrichment 
analysis of REST co-factors, gliblastoma cell line shows cognition, memory, 
pattern recognition etc. Furthermore, Pancreas cell line shows enrichment for 
cell differentiation which is consistent with the role of NRSF/REST in 
pancreas via induction of Pax4 gene [232]. We see extremely high 
enrichment (>93) of intestinal epithelial cell differentiation among K562 co-
factors. We did not find any direct support for this, however, there is evidence 
that lung and colon epithelial cells show abnormal expression of NRSF in 
respective cancers [233]. 

12. RFX5 - A lack of MHC-II expression results in a severe immunodeficiency 
syndrome called MHC-II deficiency, or the bare lymphocyte syndrome [234]. 
Helas3 co-factors are enriched for immune response related terms. RFX5 
regulates collagen gene expression [235], which in turn modulate 
angiogenesis [236]. Consistently, K562 co-factors are enriched with positive 
regulation of angiogenesis. RFX5 is found to be up-regulated in primary lung 
budding and mesenchymal cells of branchial arches and stomach in sub-
epithelial layer of mouse [237]. Consistently, Hepg2 co-factors are enriched 
with epithelial tube branching involved in lung morphogenesis. RFX5 complex 
interacts with the collagen in human fibroblasts [238] and consistently, 
regulation of fibroblast proliferation is enriched in Gm12878. 

13. USF1 – Upstream regulatory factor 1 is known for regulating multiple genes of 
glucose and lipid metabolism [239], [240]. In almost all cell lines, the USF1 
co-factors are enriched with hormone mediated signaling pathway; especially 
epithelium cancer cell line (A549) shows enrichment of lipid metabolism 
related terms. In addition, ovulation, reproductive process, female pregnancy 
are significantly enriched in A549 co-factors which is consistent with 
suppression of Follicle-stimulating hormone receptor activity by USF1 [241].  

14. YY1 - YY1 is known as ubiquitous TF. Still the co-factor enrichment analysis 
shows some of its cell-specific roles. For example, enrichment of epithelial 
cell maturation in prostate gland development in Gm12878 co-factors [242], 
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various biosynthetic process in K562 and Hct116 [243], [244] are consistent 
with literature. Other ontology associated with YY1 co-factors are cell 
cycle/DNA damage [245], [246]. Nt2d1 and Hepg2 co-factors are enriched 
with cell cycles and DNA metabolic process respectively. 

15. ZNF143 – ZNF143 plays role as one of the key components of three-
dimensional chromatin structure [247], [248], regulates dna-replication and 
cell-cycle-associated genes [249], [250]. Among the co-factors, we found 
enrichment of cell-adhesion and cell-proliferation in 3 out of 4 cells. 

Supplemental Note 8. We have detailed lists of cell type-specific co-factors for 
all TFs that we can provide as supplementary online material, and which can 
serve as a resource for others. Here we discuss a few cases which demonstrate 
that the co-factors revealed by TRISECT are supported by previous experimental 
research. Recall that P300 is not a typical TF with a DNA binding motif. It 
nevertheless is expected to interact with other DNA-binding co-factors to achieve 
specificity. TRISECT revealed TEAD as one of the most influential co-factors of 
P300 in multiple cell types. Indeed, TEAD is known to form a complex with P300 
providing locus-specificity to P300 [251]. Likewise, CEBP is known to recruit 
P300 [252] and ATF interacts with P300’s HAT domain [253], and both were 
detected as P300’s ubiquitous co-factors. NR2F2 (also known as COUP-TF2) 
has a liver-specific function [254] and is known to interact with P300, although 
this was shown in a different context [255]. It is this interesting that our method 
detects NR2F2 as Hepg2-specific co-factor of P300. Likewise, members of 
GATA family are core regulators in liver. We found that in many (but not all) cell 
lines, and notably in HepG2, members of GATA family are co-factors of P300, 
consistent with [256]. Serum response factor (SRF) is a ubiquitous protein and 
with a specific function in liver [257]. FOXA TFs are critical for liver development 
and function [258]. Our analysis reveals FOXA TFs as HepG2-specific co-factors 
of SRF. On the other hand, we found ELK4 to be broadly used co-factor of SRF, 
consistent with their broad expression and known physical interaction with SRF 
[259]. As yet another example, PAX1 and SOX4 are key TFs in embryogenesis, 
and both are revealed as co-factors of the core promoter factor Tata Binding 
Protein (TBP) specifically in hESC. 
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7.2.2 Supplemental Data 
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Figure 7.2 Web-logos of position weight matrices for 23 TFs investigated. Each weblogo is labeled 
with the TF name and TRANSFAC id. 
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Figure 7.3 Robustness of TRISECT. 
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Figure 7.4  Cluster membership matrix for k-Nearest Neighbor (k-NN) algorithm for k = 16. In each 
matrix, a row represents a cluster and a column represents a cell type. Elements in the matrix denote 
the number of sub-models in the cluster belonging to a specific cell type. 
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Figure 7.5 Fraction of overlapped and non-overlapped sequences which fall in the same or different 
clusters. Dark orange represents the fraction of overlapped sequences falling in the same cluster, 
whereas light orange represents non-overlapped sequences. Dark purple represents the fraction of 
overlapped sequences falling in different clusters, with light purple non-overlapped sequences. 
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Figure 7.6 Weblogos of the TRANSFAC ids with 85% similar to any zinger motifs. 
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Figure 7.7 Assessment of clusters and associated genes. 
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Figure 7.8 Cross-cell type performance matrix for Interaction and Noninteraction models. In each 
matrix, row represents the cell line used to build the model and column represents the cell line from 
which the test data is used. Diagonal elements are within cell type performance and only diagnal 
elements are colored according to the ROC-AUC to show the difference between Interaction and 
Noninteraction models. 
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Figure 7.9 Relationship between model accuracy and sequence size. In each plot, color is used to 
indicate models from different cell lines. 
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Figure 7.10 Same as Figure 7.8 of Supplemental Data, except the matrix is color coded according to 
the extent of symmetry of the non-diagonal elements. The symmetry is calculated by normalizing 
each row by the reference model (diagonal element). 
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Figure 7.11 Motif usage for the reference TF in different cell types for the NonInteraction model. Y-
axis denotes the feature importance of motif usage in the NonInteraction model. The sequence logos 
for the PWMs can be accessed from Figure 7.2 of Supplemental Data. 

 
TF Cell line File name 
ATF3 A549 wgEncodeAwgTfbsHaibA549Atf3V0422111Etoh02UniPk.narrowPeak.gz 
ATF3 H1hesc wgEncodeAwgTfbsHaibH1hescAtf3V0416102UniPk.narrowPeak.gz 
ATF3 Hepg2 wgEncodeAwgTfbsHaibHepg2Atf3V0416101UniPk.narrowPeak.gz 
ATF3 K562 wgEncodeAwgTfbsHaibK562Atf3V0416101UniPk.narrowPeak.gz 
BHLHE40 A549 wgEncodeAwgTfbsSydhA549Bhlhe40IggrabUniPk.narrowPeak.gz 
BHLHE40 Gm12878 wgEncodeAwgTfbsSydhGm12878Bhlhe40cIggmusUniPk.narrowPeak.gz 
BHLHE40 Hepg2 wgEncodeAwgTfbsHaibHepg2Bhlhe40V0416101UniPk.narrowPeak.gz 
BHLHE40 K562 wgEncodeAwgTfbsSydhK562Bhlhe40nb100IggrabUniPk.narrowPeak.gz 
CEBPB A549 wgEncodeAwgTfbsSydhA549CebpbIggrabUniPk.narrowPeak 
CEBPB Gm12878 wgEncodeAwgTfbsHaibGm12878Cebpbsc150V0422111UniPk.narrowPeak 
CEBPB H1hesc wgEncodeAwgTfbsSydhH1hescCebpbIggrabUniPk.narrowPeak 
CEBPB Helas3 wgEncodeAwgTfbsSydhHelas3CebpbIggrabUniPk.narrowPeak 
CEBPB Hepg2 wgEncodeAwgTfbsSydhHepg2CebpbIggrabUniPk.narrowPeak 
CEBPB Imr90 wgEncodeAwgTfbsSydhImr90CebpbIggrabUniPk.narrowPeak 
CEBPB K562 wgEncodeAwgTfbsSydhK562CebpbIggrabUniPk.narrowPeak 
CTCF A549 wgEncodeAwgTfbsUtaA549CtcfUniPk.narrowPeak.gz 
CTCF Gm12878 wgEncodeAwgTfbsBroadGm12878CtcfUniPk.narrowPeak.gz 
CTCF H1hesc wgEncodeAwgTfbsBroadH1hescCtcfUniPk.narrowPeak.gz 
CTCF Hct116 wgEncodeAwgTfbsUwHct116CtcfUniPk.narrowPeak.gz 
CTCF Hek293 wgEncodeAwgTfbsUwHek293CtcfUniPk.narrowPeak.gz 
CTCF Helas3 wgEncodeAwgTfbsBroadHelas3CtcfUniPk.narrowPeak.gz 
CTCF Hepg2 wgEncodeAwgTfbsBroadHepg2CtcfUniPk.narrowPeak.gz 
CTCF Huvec wgEncodeAwgTfbsBroadHuvecCtcfUniPk.narrowPeak.gz 
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CTCF Imr90 wgEncodeAwgTfbsSydhImr90CtcfbIggrabUniPk.narrowPeak.gz 
CTCF K562 wgEncodeAwgTfbsBroadK562CtcfUniPk.narrowPeak.gz 
CTCF Mcf7 wgEncodeAwgTfbsUtaMcf7CtcfUniPk.narrowPeak.gz 
CTCF Sknshra wgEncodeAwgTfbsHaibSknshraCtcfV0416102UniPk.narrowPeak.gz 
EP300 A549 wgEncodeAwgTfbsHaibA549P300V0422111Etoh02UniPk.narrowPeak 
EP300 Gm12878 wgEncodeAwgTfbsHaibGm12878P300Pcr1xUniPk.narrowPeak 
EP300 H1hesc wgEncodeAwgTfbsHaibH1hescP300V0416102UniPk.narrowPeak 
EP300 Helas3 wgEncodeAwgTfbsSydhHelas3P300sc584sc584IggrabUniPk.narrowPeak 
EP300 Hepg2 wgEncodeAwgTfbsHaibHepg2P300V0416101UniPk.narrowPeak 
EP300 Sknsh wgEncodeSydhTfbsSknshP300bIggrabPk.narrowPeak 
EP300 T47d wgEncodeAwgTfbsHaibT47dP300V0416102Dm002p1hUniPk.narrowPeak 
FOS Gm12878 wgEncodeAwgTfbsSydhGm12878CfosUniPk.narrowPeak 
FOS Helas3 wgEncodeAwgTfbsSydhHelas3CfosUniPk.narrowPeak 
FOS Huvec wgEncodeAwgTfbsSydhHuvecCfosUcdUniPk.narrowPeak 
FOS K562 wgEncodeAwgTfbsSydhK562CfosUniPk.narrowPeak 
FOS Mcf10 wgEncodeAwgTfbsSydhMcf10aesCfosEtoh01HvdUniPk.narrowPeak 
GABPA A549 wgEncodeAwgTfbsHaibA549GabpV0422111Etoh02UniPk.narrowPeak 
GABPA Gm12878 wgEncodeAwgTfbsHaibGm12878GabpPcr2xUniPk.narrowPeak 
GABPA H1hesc wgEncodeAwgTfbsHaibH1hescGabpPcr1xUniPk.narrowPeak 
GABPA Helas3 wgEncodeAwgTfbsHaibHelas3GabpPcr1xUniPk.narrowPeak 
GABPA Hepg2 wgEncodeAwgTfbsHaibHepg2GabpPcr2xUniPk.narrowPeak 
GABPA K562 wgEncodeAwgTfbsHaibK562GabpV0416101UniPk.narrowPeak 
JUN Gm12878 wgEncodeYaleChIPseqGm12878Cjun.narrowPeak 
JUN H1hesc wgEncodeAwgTfbsSydhH1hescCjunIggrabUniPk.narrowPeak 
JUN Helas3 wgEncodeAwgTfbsSydhHelas3CjunIggrabUniPk.narrowPeak 
JUN Hepg2 wgEncodeAwgTfbsSydhHepg2CjunIggrabUniPk.narrowPeak 
JUN Huvec wgEncodeAwgTfbsSydhHuvecCjunUniPk.narrowPeak 
JUN K562 wgEncodeAwgTfbsSydhK562CjunUniPk.narrowPeak 
JUND Gm12878 wgEncodeAwgTfbsSydhGm12878JundUniPk.narrowPeak 
JUND H1hesc wgEncodeAwgTfbsHaibH1hescJundV0416102UniPk.narrowPeak 
JUND Helas3 wgEncodeAwgTfbsSydhHelas3JundIggrabUniPk.narrowPeak 
JUND Hepg2 wgEncodeAwgTfbsHaibHepg2JundPcr1xUniPk.narrowPeak 
JUND K562 wgEncodeAwgTfbsSydhK562JundIggrabUniPk.narrowPeak 
JUND Sknsh wgEncodeSydhTfbsSknshJundIggrabPk.narrowPeak 
MAFK H1hesc wgEncodeAwgTfbsSydhH1hescMafkIggrabUniPk.narrowPeak.gz 
MAFK Helas3 wgEncodeAwgTfbsSydhHelas3MafkIggrabUniPk.narrowPeak.gz 
MAFK Hepg2 wgEncodeAwgTfbsSydhHepg2Mafkab50322IggrabUniPk.narrowPeak.gz 
MAFK Imr90 wgEncodeAwgTfbsSydhImr90MafkIggrabUniPk.narrowPeak.gz 
MAFK K562 wgEncodeAwgTfbsSydhK562Mafkab50322IggrabUniPk.narrowPeak.gz 
MAZ Gm12878 wgEncodeAwgTfbsSydhGm12878Mazab85725IggmusUniPk.narrowPeak.gz 
MAZ Helas3 wgEncodeAwgTfbsSydhHelas3Mazab85725IggrabUniPk.narrowPeak.gz 
MAZ Hepg2 wgEncodeAwgTfbsSydhHepg2Mazab85725IggrabUniPk.narrowPeak.gz 
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MAZ K562 wgEncodeAwgTfbsSydhK562Mazab85725IggrabUniPk.narrowPeak.gz 
MXI1 Gm12878 wgEncodeAwgTfbsSydhGm12878Mxi1IggmusUniPk.narrowPeak.gz 
MXI1 H1hesc wgEncodeAwgTfbsSydhH1hescMxi1IggrabUniPk.narrowPeak.gz 
MXI1 Helas3 wgEncodeAwgTfbsSydhHelas3Mxi1af4185IggrabUniPk.narrowPeak.gz 
MXI1 Hepg2 wgEncodeAwgTfbsSydhHepg2Mxi1UniPk.narrowPeak.gz 
MXI1 K562 wgEncodeAwgTfbsSydhK562Mxi1af4185IggrabUniPk.narrowPeak.gz 
MYC A549 wgEncodeSydhTfbsA549CmycIggrabPk.narrowPeak.gz 
MYC Gm12878 wgEncodeAwgTfbsUtaGm12878CmycUniPk.narrowPeak.gz 
MYC H1hesc wgEncodeAwgTfbsSydhH1hescCmycIggrabUniPk.narrowPeak.gz 
MYC Helas3 wgEncodeAwgTfbsUtaHelas3CmycUniPk.narrowPeak.gz 
MYC Hepg2 wgEncodeAwgTfbsUtaHepg2CmycUniPk.narrowPeak.gz 
MYC Huvec wgEncodeAwgTfbsUtaHuvecCmycUniPk.narrowPeak.gz 
MYC K562 wgEncodeAwgTfbsSydhK562CmycIggrabUniPk.narrowPeak.gz 
MYC Mcf7 wgEncodeAwgTfbsUtaMcf7CmycEstroUniPk.narrowPeak.gz 
NRF1 Gm12878 wgEncodeAwgTfbsSydhGm12878Nrf1IggmusUniPk.narrowPeak.gz 
NRF1 H1hesc wgEncodeAwgTfbsSydhH1hescNrf1IggrabUniPk.narrowPeak.gz 
NRF1 Helas3 wgEncodeAwgTfbsSydhHelas3Nrf1IggmusUniPk.narrowPeak.gz 
NRF1 Hepg2 wgEncodeAwgTfbsSydhHepg2Nrf1IggrabUniPk.narrowPeak.gz 
NRF1 K562 wgEncodeAwgTfbsSydhK562Nrf1IggrabUniPk.narrowPeak.gz 
REST A549 wgEncodeAwgTfbsHaibA549NrsfV0422111Etoh02UniPk.narrowPeak 
REST Gm12878 wgEncodeAwgTfbsHaibGm12878NrsfPcr1xUniPk.narrowPeak 
REST H1hesc wgEncodeAwgTfbsHaibH1hescNrsfV0416102UniPk.narrowPeak 
REST Helas3 wgEncodeAwgTfbsHaibHelas3NrsfPcr1xUniPk.narrowPeak 
REST Hepg2 wgEncodeAwgTfbsHaibHepg2NrsfPcr2xUniPk.narrowPeak 
REST K562 wgEncodeAwgTfbsHaibK562NrsfV0416102UniPk.narrowPeak 
REST Panc1 wgEncodeAwgTfbsHaibPanc1NrsfPcr2xUniPk.narrowPeak 
REST Pfsk1 wgEncodeAwgTfbsHaibPfsk1NrsfPcr2xUniPk.narrowPeak 
REST Sknsh wgEncodeAwgTfbsHaibSknshNrsfPcr2xUniPk.narrowPeak 
REST U87 wgEncodeAwgTfbsHaibU87NrsfPcr2xUniPk.narrowPeak 
RFX5 Gm12878 wgEncodeAwgTfbsSydhGm12878Rfx5200401194IggmusUniPk.narrowPeak.gz 
RFX5 H1hesc wgEncodeAwgTfbsSydhH1hescRfx5200401194IggrabUniPk.narrowPeak.gz 
RFX5 Helas3 wgEncodeAwgTfbsSydhHelas3Rfx5200401194IggrabUniPk.narrowPeak.gz 
RFX5 Hepg2 wgEncodeAwgTfbsSydhHepg2Rfx5200401194IggrabUniPk.narrowPeak.gz 
RFX5 K562 wgEncodeAwgTfbsSydhK562Rfx5IggrabUniPk.narrowPeak.gz 
SRF Gm12878 wgEncodeAwgTfbsHaibGm12878SrfPcr2xUniPk.narrowPeak 
SRF H1hesc wgEncodeAwgTfbsHaibH1hescSrfPcr1xUniPk.narrowPeak 
SRF Hepg2 wgEncodeAwgTfbsHaibHepg2SrfV0416101UniPk.narrowPeak 
SRF K562 wgEncodeAwgTfbsHaibK562SrfV0416101UniPk.narrowPeak 
TBP Gm12878 wgEncodeAwgTfbsSydhGm12878TbpIggmusUniPk.narrowPeak.gz 
TBP H1hesc wgEncodeAwgTfbsSydhH1hescTbpIggrabUniPk.narrowPeak.gz 
TBP Helas3 wgEncodeAwgTfbsSydhHelas3TbpIggrabUniPk.narrowPeak.gz 
TBP Hepg2 wgEncodeAwgTfbsSydhHepg2TbpIggrabUniPk.narrowPeak.gz 
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TBP K562 wgEncodeAwgTfbsSydhK562TbpIggmusUniPk.narrowPeak.gz 
TCF12 A549 wgEncodeAwgTfbsHaibA549Tcf12V0422111Etoh02UniPk.narrowPeak.gz 
TCF12 Gm12878 wgEncodeAwgTfbsHaibGm12878Tcf12Pcr1xUniPk.narrowPeak.gz 
TCF12 H1hesc wgEncodeAwgTfbsHaibH1hescTcf12Pcr1xUniPk.narrowPeak.gz 
TCF12 Hepg2 wgEncodeAwgTfbsHaibHepg2Tcf12Pcr1xUniPk.narrowPeak.gz 
TCF7L2 Hct116 wgEncodeAwgTfbsSydhHct116Tcf7l2UcdUniPk.narrowPeak.gz 
TCF7L2 Hek293 wgEncodeAwgTfbsSydhHek293Tcf7l2UcdUniPk.narrowPeak.gz 
TCF7L2 Helas3 wgEncodeAwgTfbsSydhHelas3Tcf7l2UcdUniPk.narrowPeak.gz 
TCF7L2 Hepg2 wgEncodeAwgTfbsSydhHepg2Tcf7l2UcdUniPk.narrowPeak.gz 
TCF7L2 Mcf7 wgEncodeAwgTfbsSydhMcf7Tcf7l2UcdUniPk.narrowPeak.gz 
TCF7L2 Panc1 wgEncodeAwgTfbsSydhPanc1Tcf7l2UcdUniPk.narrowPeak.gz 
USF1 A549 wgEncodeAwgTfbsHaibA549Usf1Pcr1xDex100nmUniPk.narrowPeak 
USF1 Gm12878 wgEncodeAwgTfbsHaibGm12878Usf1Pcr2xUniPk.narrowPeak 
USF1 H1hesc wgEncodeAwgTfbsHaibH1hescUsf1Pcr1xUniPk.narrowPeak 
USF1 Hepg2 wgEncodeAwgTfbsHaibHepg2Usf1Pcr1xUniPk.narrowPeak 
USF1 K562 wgEncodeAwgTfbsHaibK562Usf1V0416101UniPk.narrowPeak 
YY1 A549 wgEncodeAwgTfbsHaibA549Yy1cV0422111Etoh02UniPk.narrowPeak 
YY1 Gm12878 wgEncodeAwgTfbsHaibGm12878Yy1sc281Pcr1xUniPk.narrowPeak 
YY1 H1hesc wgEncodeAwgTfbsHaibH1hescYy1sc281V0416102UniPk.narrowPeak 
YY1 Hct116 wgEncodeAwgTfbsHaibHct116Yy1sc281V0416101UniPk.narrowPeak 
YY1 Hepg2 wgEncodeAwgTfbsHaibHepg2Yy1sc281V0416101UniPk.narrowPeak 
YY1 K562 wgEncodeAwgTfbsHaibK562Yy1V0416101UniPk.narrowPeak 
YY1 Sknshra wgEncodeAwgTfbsHaibSknshraYy1sc281V0416102UniPk.narrowPeak 
YY1 Nt2d1 wgEncodeAwgTfbsSydhNt2d1Yy1UcdUniPk.narrowPeak 
ZNF143 Gm12878 wgEncodeAwgTfbsSydhGm12878Znf143166181apUniPk.narrowPeak.gz 
ZNF143 H1hesc wgEncodeAwgTfbsSydhH1hescZnf143IggrabUniPk.narrowPeak.gz 
ZNF143 Helas3 wgEncodeAwgTfbsSydhHelas3Znf143IggrabUniPk.narrowPeak.gz 
ZNF143 K562 wgEncodeAwgTfbsSydhK562Znf143IggrabUniPk.narrowPeak.gz 

Table 7.6 List of TF-cell pairs, the narrow peak file used for each pair. 

 
  General Information for the TFs 

  

# of 
motif 
ids 

family name PWMs 

ATF3 3 bZIP, CH M00513, M00801, M00981 

BHLHE40 2 
bHLH, bHLH-
bZIP M00997, M01034 

CEBPB 4 bZIP M00109, M00117, M00770, M00912 
CTCF 2 CH M01200, M01259 
EP300 1 - M00033 
FOS 5 bZIP M00172, M00517, M00924, M00925, M00926 
GABPA 3 ETS M00341, M00971, M01660 
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JUN 6 bZIP M00041, M00172, M00517, M00924, M00925, M00926 
JUND 4 bZIP M00517, M00924, M00925, M00926 
MAFK 1 bZIP M00517, M00924, M00925, M00926 
MAZ 1 CH M00649 

MXI1 1 
bHLH, bHLH-
bZIP M01034 

MYC 8 
bHLH, bHLH-
bZIP 

M00118, M00123, M00322, M00615, M00799, M01034, M01145, 
M01154 

NRF1 1 
bZIP, unchar-
DBD M00652 

REST 4 CH M00256, M00325, M01028, M01256 

RFX5 1 
fork, unchar-
DBD M00975 

SRF 8 Mads 
M00152, M00186, M00215, M00810, M00922, M01007, M01257, 
M01304 

TBP 4 Tata M00216, M00252, M00471, M00980 
TCF12 3 bHLh M00698, M00973, M01034 
TCF7L2 2 HMG M00671, M01705 

USF1 6 
bHLH, bHLH-
bZIP M00121, M00122, M00187, M00217, M00796, M01034 

YY1 4 CH M00059, M00069, M00793, M01035 
ZNF143 2 CH M00262, M00264 
family 
name Explanation 
bZIP Basic Leucine Zipper Domain 
bHLH Basic Helix-Loop-Helix 
ETS E26 transformation-specific 
MADS MADS box 
HMG High Mobility Group 
CH C2H2 zinc finger 
unchar-
DBD 

Uncharacterized DNA Binding 
Domain 

Tata TATA-box 
fork fork head domain 

Table 7.7 List of TFs, their corresponding TRANSFAC ids, and family name. Explanation of family 
name abbreviation is also included. 

    a) Number of submodels in each model 

TF Cell K-
mer 

K-
merRC 

Interaction 
(1k) 

Interaction 
(2k) 

Interaction 
(5k) 

Interaction 
(10k) NonInteraction 

ATF3 A549 31 38 32 34 32 27 30 
ATF3 H1hesc 33 40 24 18 19 26 30 
ATF3 Hepg2 31 22 23 15 29 28 31 
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ATF3 K562 28 30 29 14 28 25 26 
BHLHE40 A549 30 31 18 31 27 23 29 
BHLHE40 Gm12878 36 34 25 22 25 30 32 
BHLHE40 Hepg2 34 28 30 30 20 25 26 
BHLHE40 K562 31 31 26 26 29 28 23 
CEBPB A549 15 26 23 27 27 20 27 
CEBPB Gm12878 47 41 26 29 39 36 28 
CEBPB H1hesc 40 26 29 29 26 28 28 
CEBPB Helas3 51 32 27 29 30 24 27 
CEBPB Hepg2 14 28 18 22 21 26 47 
CEBPB Imr90 26 32 20 25 29 27 29 
CEBPB K562 18 24 29 29 28 20 27 
CTCF A549 30 26 18 29 29 29 9 
CTCF Gm12878 30 31 19 20 22 29 29 
CTCF H1hesc 30 30 23 21 29 18 17 
CTCF Hct116 27 30 17 29 29 29 24 
CTCF Hek293 29 27 26 29 29 30 24 
CTCF Helas3 30 27 19 20 29 30 25 
CTCF Hepg2 31 31 25 18 29 33 21 
CTCF Huvec 32 29 19 29 29 29 12 
CTCF Imr90 25 28 18 18 29 30 27 
CTCF K562 31 23 29 19 29 30 26 
CTCF Mcf7 32 27 27 22 18 29 21 
CTCF Sknshra 31 23 18 15 16 29 1 
EP300 A549 31 38 28 35 35 30 34 
EP300 Gm12878 42 41 32 30 37 34 33 
EP300 H1hesc 48 42 34 33 27 27 31 
EP300 Helas3 23 31 27 29 32 29 36 
EP300 Hepg2 39 34 21 24 33 30 36 
EP300 Sknsh 44 42 38 35 36 36 34 
EP300 T47d 45 42 27 37 35 36 35 
FOS Gm12878 29 29 29 19 29 29 34 
FOS Helas3 31 31 28 28 29 27 31 
FOS Huvec 30 30 30 27 24 31 28 
FOS K562 20 29 24 14 22 27 34 
FOS Mcf10a 29 17 29 29 29 34 25 
GABPA A549 29 33 15 28 18 32 27 
GABPA Gm12878 32 33 25 25 29 31 20 
GABPA H1hesc 16 40 26 29 31 32 25 
GABPA Helas3 29 28 19 24 31 27 29 
GABPA Hepg2 23 30 23 23 22 31 24 
GABPA K562 28 26 28 28 27 30 26 
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JUN Gm12878 29 35 31 33 31 32 23 
JUN H1hesc 27 34 15 28 29 32 20 
JUN Helas3 31 28 17 17 19 30 30 
JUN Hepg2 31 31 25 15 25 28 24 
JUN Huvec 31 30 18 26 24 30 26 
JUN K562 28 30 23 28 20 23 29 
JUND Gm12878 24 31 30 23 30 31 31 
JUND H1hesc 28 40 27 30 31 27 27 
JUND Helas3 26 1 25 20 25 15 28 
JUND Hepg2 32 33 26 30 31 31 31 
JUND K562 31 30 27 19 29 29 24 
JUND Sknsh 31 34 31 34 32 27 23 
MAFK H1hesc 27 31 24 29 30 30 27 
MAFK Helas3 29 24 30 30 30 30 28 
MAFK Hepg2 30 14 27 27 17 13 24 
MAFK Imr90 29 29 25 28 29 30 48 
MAFK K562 33 24 29 27 19 30 6 
MAZ Gm12878 45 39 31 40 36 33 34 
MAZ Helas3 48 37 36 36 37 35 31 
MAZ Hepg2 44 43 33 30 37 31 34 
MAZ K562 41 52 31 31 31 24 31 
MXI1 Gm12878 35 32 30 28 32 26 37 
MXI1 H1hesc 36 38 31 25 34 26 38 
MXI1 Helas3 34 36 29 31 36 24 34 
MXI1 Hepg2 32 36 25 23 28 29 32 
MXI1 K562 37 31 29 31 34 32 28 
MYC A549 32 30 32 35 32 29 28 
MYC Gm12878 37 36 34 26 21 31 26 
MYC H1hesc 35 36 30 32 28 26 19 
MYC Helas3 36 36 27 31 33 30 28 
MYC Hepg2 36 36 36 30 34 30 26 
MYC Huvec 36 35 24 35 34 32 23 
MYC K562 33 35 28 31 32 27 28 
MYC Mcf7 34 32 36 36 33 30 24 
NRF1 Gm12878 30 26 27 29 32 25 28 
NRF1 H1hesc 31 27 30 30 30 30 28 
NRF1 Helas3 31 13 18 29 30 30 22 
NRF1 Hepg2 28 28 19 10 29 24 25 
NRF1 K562 31 23 24 29 23 31 28 
REST A549 40 37 28 28 32 33 23 
REST Gm12878 24 24 25 31 24 30 29 
REST H1hesc 31 24 24 22 28 30 25 
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REST Helas3 28 30 24 19 27 30 26 
REST Hepg2 39 38 32 27 32 32 27 
REST K562 32 31 26 22 30 31 28 
REST Panc1 36 32 26 23 31 32 30 
REST Pfsk1 32 19 28 21 30 25 17 
REST Sknsh 47 48 26 28 29 34 30 
REST U87 40 35 27 28 29 32 19 
RFX5 Gm12878 25 31 29 32 31 32 31 
RFX5 H1hesc 25 23 26 31 30 30 35 
RFX5 Helas3 28 35 23 23 31 29 31 
RFX5 Hepg2 22 31 23 30 31 29 33 
RFX5 K562 26 32 31 30 30 23 33 
SRF Gm12878 33 27 19 15 15 24 22 
SRF H1hesc 30 32 26 26 29 26 28 
SRF Hepg2 35 34 26 26 27 28 17 
SRF K562 26 39 24 28 24 32 19 
TBP Gm12878 50 48 36 34 37 30 32 
TBP H1hesc 47 36 35 36 34 32 28 
TBP Helas3 40 39 31 31 33 29 32 
TBP Hepg2 45 45 39 39 31 36 31 
TBP K562 42 42 38 36 36 31 31 
TCF12 A549 35 35 37 34 35 30 51 
TCF12 Gm12878 34 29 25 19 32 31 26 
TCF12 H1hesc 48 30 31 33 31 29 31 
TCF12 Hepg2 37 37 25 14 31 31 71 
TCF7L2 Hct116 30 34 22 33 33 33 25 
TCF7L2 Hek293 40 37 25 37 37 36 31 
TCF7L2 Helas3 35 31 29 26 30 29 19 
TCF7L2 Hepg2 27 31 24 32 35 31 24 
TCF7L2 Mcf7 32 34 34 33 37 33 29 
TCF7L2 Panc1 38 38 32 36 32 34 32 
USF1 A549 30 30 27 27 27 28 26 
USF1 Gm12878 30 26 26 24 27 28 29 
USF1 H1hesc 13 28 25 29 17 62 20 
USF1 Hepg2 18 25 28 28 28 27 23 
USF1 K562 30 26 24 28 28 23 25 
YY1 A549 26 33 34 30 31 27 20 
YY1 Gm12878 31 30 30 33 32 31 32 
YY1 H1hesc 29 30 23 24 24 25 30 
YY1 Hct116 29 33 32 33 31 26 28 
YY1 Hepg2 32 31 34 24 33 21 31 
YY1 K562 31 32 27 27 31 28 31 
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YY1 Nt2d1 29 28 32 22 31 32 23 
YY1 Sknshra 31 32 28 28 19 30 29 
ZNF143 Gm12878 29 31 31 29 31 30 28 
ZNF143 H1hesc 51 53 17 32 31 32 25 
ZNF143 Helas3 49 52 29 32 17 32 28 
ZNF143 K562 30 31 31 27 25 31 29 

    b) Area under ROC curve 

TF Cell K-
mer 

K-
merRC 

Interaction 
(1k) 

Interaction 
(2k) 

Interaction 
(5k) 

Interaction 
(10k) NonInteraction 

ATF3 A549 0.782 0.805 0.822 0.826 0.817 0.804 0.568 
ATF3 H1hesc 0.886 0.907 0.923 0.922 0.925 0.927 0.680 
ATF3 Hepg2 0.900 0.898 0.919 0.918 0.925 0.925 0.692 
ATF3 K562 0.926 0.945 0.956 0.931 0.954 0.943 0.684 
BHLHE40 A549 0.903 0.902 0.899 0.898 0.888 0.869 0.744 

BHLHE40 
Gm1287
8 0.918 0.929 0.918 0.908 0.903 0.882 0.729 

BHLHE40 Hepg2 0.918 0.925 0.937 0.933 0.932 0.908 0.752 
BHLHE40 K562 0.916 0.926 0.920 0.917 0.912 0.898 0.732 
CEBPB A549 0.909 0.944 0.981 0.979 0.975 0.955 0.962 

CEBPB 
Gm1287
8 0.773 0.794 0.787 0.778 0.781 0.758 0.539 

CEBPB H1hesc 0.958 0.959 0.982 0.985 0.979 0.968 0.974 
CEBPB Helas3 0.927 0.928 0.964 0.964 0.951 0.932 0.915 
CEBPB Hepg2 0.925 0.963 0.981 0.983 0.979 0.968 0.968 
CEBPB Imr90 0.924 0.953 0.980 0.977 0.974 0.949 0.957 
CEBPB K562 0.919 0.940 0.980 0.977 0.975 0.957 0.956 
CTCF A549 0.913 0.910 0.970 0.976 0.968 0.959 0.966 

CTCF 
Gm1287
8 0.909 0.925 0.966 0.972 0.968 0.949 0.960 

CTCF H1hesc 0.897 0.917 0.963 0.961 0.959 0.941 0.958 
CTCF Hct116 0.906 0.926 0.962 0.969 0.967 0.952 0.965 
CTCF Hek293 0.902 0.919 0.973 0.977 0.974 0.953 0.962 
CTCF Helas3 0.914 0.921 0.962 0.963 0.954 0.934 0.956 
CTCF Hepg2 0.898 0.916 0.967 0.969 0.958 0.940 0.959 
CTCF Huvec 0.913 0.923 0.965 0.969 0.963 0.949 0.961 
CTCF Imr90 0.890 0.916 0.966 0.970 0.963 0.946 0.965 
CTCF K562 0.890 0.886 0.949 0.949 0.943 0.930 0.943 
CTCF Mcf7 0.908 0.917 0.969 0.964 0.962 0.952 0.965 
CTCF Sknshra 0.924 0.921 0.975 0.980 0.971 0.965 0.972 
EP300 A549 0.816 0.850 0.854 0.859 0.848 0.818 0.501 

EP300 
Gm1287
8 0.802 0.824 0.815 0.807 0.799 0.787 0.511 

EP300 H1hesc 0.780 0.796 0.801 0.802 0.793 0.779 0.507 
EP300 Helas3 0.853 0.894 0.925 0.918 0.904 0.875 0.493 
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EP300 Hepg2 0.870 0.872 0.896 0.895 0.893 0.875 0.512 
EP300 Sknsh 0.715 0.729 0.693 0.693 0.677 0.652 0.513 
EP300 T47d 0.832 0.848 0.815 0.814 0.794 0.768 0.518 

FOS 
Gm1287
8 0.945 0.949 0.965 0.956 0.951 0.936 0.559 

FOS Helas3 0.954 0.960 0.968 0.968 0.962 0.936 0.901 
FOS Huvec 0.972 0.972 0.974 0.974 0.962 0.934 0.949 
FOS K562 0.964 0.971 0.974 0.970 0.968 0.967 0.741 
FOS Mcf10a 0.976 0.975 0.979 0.981 0.977 0.960 0.969 
GABPA A549 0.887 0.909 0.890 0.900 0.885 0.883 0.791 

GABPA 
Gm1287
8 0.880 0.887 0.884 0.883 0.883 0.874 0.829 

GABPA H1hesc 0.811 0.860 0.892 0.889 0.886 0.874 0.726 
GABPA Helas3 0.922 0.925 0.925 0.927 0.928 0.915 0.880 
GABPA Hepg2 0.912 0.927 0.921 0.922 0.916 0.907 0.870 
GABPA K562 0.926 0.928 0.931 0.924 0.922 0.915 0.844 

JUN 
Gm1287
8 0.742 0.757 0.732 0.732 0.718 0.677 0.634 

JUN H1hesc 0.857 0.875 0.880 0.880 0.874 0.862 0.782 
JUN Helas3 0.958 0.959 0.961 0.956 0.950 0.934 0.937 
JUN Hepg2 0.961 0.972 0.977 0.975 0.974 0.963 0.910 
JUN Huvec 0.963 0.970 0.966 0.969 0.960 0.942 0.917 
JUN K562 0.964 0.972 0.977 0.977 0.970 0.967 0.937 

JUND 
Gm1287
8 0.910 0.928 0.909 0.901 0.888 0.844 0.811 

JUND H1hesc 0.779 0.809 0.799 0.811 0.806 0.803 0.667 
JUND Helas3 0.974 0.962 0.977 0.978 0.974 0.960 0.954 
JUND Hepg2 0.931 0.945 0.956 0.956 0.947 0.932 0.860 
JUND K562 0.953 0.960 0.967 0.964 0.962 0.954 0.887 
JUND Sknsh 0.740 0.755 0.754 0.749 0.743 0.731 0.689 
MAFK H1hesc 0.939 0.955 0.961 0.966 0.958 0.945 0.770 
MAFK Helas3 0.945 0.944 0.961 0.959 0.946 0.928 0.728 
MAFK Hepg2 0.961 0.953 0.969 0.971 0.959 0.931 0.719 
MAFK Imr90 0.970 0.976 0.979 0.977 0.966 0.946 0.721 
MAFK K562 0.936 0.939 0.959 0.954 0.937 0.930 0.761 

MAZ 
Gm1287
8 0.800 0.808 0.801 0.815 0.806 0.791 0.626 

MAZ Helas3 0.790 0.797 0.821 0.822 0.816 0.810 0.613 
MAZ Hepg2 0.794 0.802 0.815 0.816 0.816 0.804 0.636 
MAZ K562 0.799 0.827 0.844 0.841 0.844 0.826 0.613 

MXI1 
Gm1287
8 0.825 0.832 0.837 0.827 0.833 0.813 0.582 

MXI1 H1hesc 0.818 0.829 0.828 0.825 0.822 0.808 0.622 
MXI1 Helas3 0.862 0.872 0.870 0.872 0.862 0.838 0.616 
MXI1 Hepg2 0.860 0.882 0.859 0.851 0.853 0.838 0.599 
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MXI1 K562 0.849 0.848 0.860 0.858 0.847 0.840 0.596 
MYC A549 0.716 0.735 0.731 0.734 0.734 0.715 0.628 

MYC 
Gm1287
8 0.749 0.764 0.745 0.724 0.700 0.699 0.686 

MYC H1hesc 0.818 0.837 0.840 0.847 0.840 0.817 0.758 
MYC Helas3 0.836 0.856 0.856 0.865 0.846 0.825 0.781 
MYC Hepg2 0.843 0.856 0.847 0.853 0.833 0.814 0.789 
MYC Huvec 0.876 0.885 0.864 0.874 0.862 0.851 0.756 
MYC K562 0.879 0.889 0.888 0.889 0.877 0.857 0.830 
MYC Mcf7 0.857 0.864 0.851 0.845 0.823 0.810 0.781 

NRF1 
Gm1287
8 0.941 0.943 0.923 0.940 0.937 0.921 0.880 

NRF1 H1hesc 0.944 0.952 0.937 0.944 0.939 0.932 0.884 
NRF1 Helas3 0.948 0.943 0.937 0.944 0.948 0.942 0.894 
NRF1 Hepg2 0.971 0.982 0.967 0.981 0.973 0.977 0.951 
NRF1 K562 0.938 0.934 0.937 0.944 0.926 0.911 0.889 
REST A549 0.849 0.862 0.879 0.876 0.871 0.850 0.723 

REST 
Gm1287
8 0.909 0.920 0.920 0.924 0.912 0.876 0.856 

REST H1hesc 0.965 0.965 0.967 0.964 0.961 0.926 0.911 
REST Helas3 0.955 0.968 0.961 0.959 0.947 0.916 0.888 
REST Hepg2 0.883 0.894 0.886 0.887 0.880 0.867 0.821 
REST K562 0.917 0.927 0.933 0.929 0.924 0.890 0.800 
REST Panc1 0.873 0.882 0.891 0.894 0.887 0.881 0.815 
REST Pfsk1 0.931 0.923 0.938 0.934 0.928 0.902 0.868 
REST Sknsh 0.847 0.868 0.860 0.858 0.840 0.835 0.687 
REST U87 0.867 0.879 0.893 0.896 0.895 0.885 0.748 

RFX5 
Gm1287
8 0.861 0.881 0.892 0.892 0.885 0.863 0.581 

RFX5 H1hesc 0.830 0.823 0.852 0.860 0.841 0.839 0.651 
RFX5 Helas3 0.816 0.839 0.873 0.875 0.879 0.865 0.580 
RFX5 Hepg2 0.834 0.865 0.864 0.874 0.859 0.848 0.606 
RFX5 K562 0.784 0.803 0.815 0.805 0.809 0.795 0.559 

SRF 
Gm1287
8 0.835 0.838 0.893 0.889 0.886 0.882 0.734 

SRF H1hesc 0.875 0.894 0.933 0.934 0.935 0.928 0.814 
SRF Hepg2 0.844 0.855 0.923 0.923 0.911 0.902 0.839 
SRF K562 0.823 0.848 0.873 0.879 0.876 0.876 0.676 

TBP 
Gm1287
8 0.749 0.768 0.753 0.753 0.740 0.708 0.572 

TBP H1hesc 0.745 0.758 0.740 0.742 0.733 0.711 0.569 
TBP Helas3 0.764 0.773 0.776 0.782 0.768 0.745 0.565 
TBP Hepg2 0.759 0.765 0.765 0.757 0.731 0.715 0.577 
TBP K562 0.765 0.779 0.768 0.759 0.753 0.739 0.543 
TCF12 A549 0.819 0.831 0.848 0.848 0.832 0.807 0.544 
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TCF12 
Gm1287
8 0.914 0.916 0.928 0.915 0.915 0.902 0.853 

TCF12 H1hesc 0.859 0.856 0.872 0.874 0.864 0.844 0.779 
TCF12 Hepg2 0.813 0.818 0.849 0.822 0.832 0.814 0.554 
TCF7L2 Hct116 0.860 0.874 0.874 0.876 0.868 0.843 0.778 
TCF7L2 Hek293 0.822 0.833 0.828 0.841 0.820 0.802 0.735 
TCF7L2 Helas3 0.784 0.810 0.823 0.813 0.798 0.786 0.766 
TCF7L2 Hepg2 0.783 0.801 0.805 0.813 0.792 0.767 0.754 
TCF7L2 Mcf7 0.822 0.833 0.854 0.846 0.825 0.800 0.764 
TCF7L2 Panc1 0.804 0.821 0.813 0.817 0.804 0.778 0.725 
USF1 A549 0.942 0.947 0.957 0.957 0.953 0.943 0.915 

USF1 
Gm1287
8 0.970 0.969 0.970 0.969 0.966 0.965 0.957 

USF1 H1hesc 0.974 0.984 0.985 0.981 0.979 0.978 0.972 
USF1 Hepg2 0.975 0.985 0.987 0.986 0.985 0.977 0.979 
USF1 K562 0.980 0.980 0.984 0.981 0.981 0.970 0.971 
YY1 A549 0.857 0.873 0.866 0.858 0.849 0.831 0.811 

YY1 
Gm1287
8 0.885 0.893 0.891 0.889 0.885 0.869 0.830 

YY1 H1hesc 0.932 0.935 0.935 0.928 0.925 0.909 0.897 
YY1 Hct116 0.868 0.882 0.889 0.889 0.885 0.873 0.807 
YY1 Hepg2 0.877 0.883 0.875 0.862 0.869 0.846 0.811 
YY1 K562 0.876 0.886 0.874 0.875 0.875 0.858 0.818 
YY1 Nt2d1 0.921 0.927 0.926 0.915 0.912 0.906 0.878 
YY1 Sknshra 0.908 0.913 0.909 0.906 0.889 0.875 0.869 

ZNF143 
Gm1287
8 0.835 0.856 0.904 0.915 0.901 0.892 0.673 

ZNF143 H1hesc 0.847 0.875 0.883 0.904 0.899 0.893 0.678 
ZNF143 Helas3 0.818 0.829 0.846 0.860 0.845 0.851 0.644 
ZNF143 K562 0.831 0.861 0.899 0.900 0.903 0.896 0.667 

Table 7.8a&b Number of sub-models and performance of various EMT (Ensemble Model of TF). 

 

TF Cell K-mer 
K-
merRC Interaction 

kmer-
SVM 

ATF3 A549 0.782 0.805 0.822 0.801 
ATF3 H1hesc 0.886 0.907 0.923 0.907 
ATF3 Hepg2 0.900 0.898 0.919 0.910 
ATF3 K562 0.926 0.945 0.956 0.944 
BHLHE40 A549 0.903 0.902 0.899 0.896 
BHLHE40 Gm12878 0.918 0.929 0.918 0.924 
BHLHE40 Hepg2 0.918 0.925 0.937 0.937 
BHLHE40 K562 0.916 0.926 0.920 0.921 
CEBPB A549 0.909 0.944 0.981 0.956 
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CEBPB Gm12878 0.773 0.794 0.787 0.778 
CEBPB H1hesc 0.958 0.959 0.982 0.968 
CEBPB Helas3 0.927 0.928 0.964 0.938 
CEBPB Hepg2 0.925 0.963 0.981 0.968 
CEBPB Imr90 0.924 0.953 0.980 0.960 
CEBPB K562 0.919 0.940 0.980 0.959 
CTCF A549 0.913 0.910 0.970 0.945 
CTCF Gm12878 0.909 0.925 0.966 0.941 
CTCF H1hesc 0.897 0.917 0.963 0.942 
CTCF Hct116 0.906 0.926 0.962 0.948 
CTCF Hek293 0.902 0.919 0.973 0.942 
CTCF Helas3 0.914 0.921 0.962 0.941 
CTCF Hepg2 0.898 0.916 0.967 0.934 
CTCF Huvec 0.913 0.923 0.965 0.946 
CTCF Imr90 0.890 0.916 0.966 0.945 
CTCF K562 0.890 0.886 0.949 0.925 
CTCF Mcf7 0.908 0.917 0.969 0.942 
CTCF Sknshra 0.924 0.921 0.975 0.955 
EP300 A549 0.816 0.850 0.854 0.845 
EP300 Gm12878 0.802 0.824 0.815 0.808 
EP300 H1hesc 0.780 0.796 0.801 0.792 
EP300 Helas3 0.853 0.894 0.925 0.914 
EP300 Hepg2 0.870 0.872 0.896 0.894 
EP300 Sknsh 0.715 0.729 0.693 0.713 
EP300 T47d 0.832 0.848 0.815 0.832 
FOS Gm12878 0.945 0.949 0.965 0.962 
FOS Helas3 0.954 0.960 0.968 0.964 
FOS Huvec 0.972 0.972 0.974 0.976 
FOS K562 0.964 0.971 0.974 0.977 
FOS Mcf10a 0.976 0.975 0.979 0.980 
GABPA A549 0.887 0.909 0.890 0.900 
GABPA Gm12878 0.880 0.887 0.884 0.890 
GABPA H1hesc 0.811 0.860 0.892 0.859 
GABPA Helas3 0.922 0.925 0.925 0.931 
GABPA Hepg2 0.912 0.927 0.921 0.933 
GABPA K562 0.926 0.928 0.931 0.930 
JUN Gm12878 0.742 0.757 0.732 0.737 
JUN H1hesc 0.857 0.875 0.880 0.871 
JUN Helas3 0.958 0.959 0.961 0.966 
JUN Hepg2 0.961 0.972 0.977 0.974 
JUN Huvec 0.963 0.970 0.966 0.977 
JUN K562 0.964 0.972 0.977 0.975 
JUND Gm12878 0.910 0.928 0.909 0.948 
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JUND H1hesc 0.779 0.809 0.799 0.802 
JUND Helas3 0.974 0.962 0.977 0.980 
JUND Hepg2 0.931 0.945 0.956 0.937 
JUND K562 0.953 0.960 0.967 0.954 
JUND Sknsh 0.740 0.755 0.754 0.738 
MAFK H1hesc 0.939 0.955 0.961 0.958 
MAFK Helas3 0.945 0.944 0.961 0.959 
MAFK Hepg2 0.961 0.953 0.969 0.975 
MAFK Imr90 0.970 0.976 0.979 0.980 
MAFK K562 0.936 0.939 0.959 0.947 
MAZ Gm12878 0.800 0.808 0.801 0.800 
MAZ Helas3 0.790 0.797 0.821 0.806 
MAZ Hepg2 0.794 0.802 0.815 0.800 
MAZ K562 0.799 0.827 0.844 0.833 
MXI1 Gm12878 0.825 0.832 0.837 0.827 
MXI1 H1hesc 0.818 0.829 0.828 0.830 
MXI1 Helas3 0.862 0.872 0.870 0.863 
MXI1 Hepg2 0.860 0.882 0.859 0.872 
MXI1 K562 0.849 0.848 0.860 0.863 
MYC A549 0.716 0.735 0.731 0.696 
MYC Gm12878 0.749 0.764 0.745 0.733 
MYC H1hesc 0.818 0.837 0.840 0.835 
MYC Helas3 0.836 0.856 0.856 0.855 
MYC Hepg2 0.843 0.856 0.847 0.844 
MYC Huvec 0.876 0.885 0.864 0.878 
MYC K562 0.879 0.889 0.888 0.890 
MYC Mcf7 0.857 0.864 0.851 0.845 
NRF1 Gm12878 0.941 0.943 0.923 0.951 
NRF1 H1hesc 0.944 0.952 0.937 0.944 
NRF1 Helas3 0.948 0.943 0.937 0.934 
NRF1 Hepg2 0.971 0.982 0.967 0.988 
NRF1 K562 0.938 0.934 0.937 0.938 
REST A549 0.849 0.862 0.879 0.866 
REST Gm12878 0.909 0.920 0.920 0.895 
REST H1hesc 0.965 0.965 0.967 0.980 
REST Helas3 0.955 0.968 0.961 0.977 
REST Hepg2 0.883 0.894 0.886 0.890 
REST K562 0.917 0.927 0.933 0.930 
REST Panc1 0.873 0.882 0.891 0.896 
REST Pfsk1 0.931 0.923 0.938 0.941 
REST Sknsh 0.847 0.868 0.860 0.840 
REST U87 0.867 0.879 0.893 0.885 
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RFX5 Gm12878 0.861 0.881 0.892 0.894 
RFX5 H1hesc 0.830 0.823 0.852 0.855 
RFX5 Helas3 0.816 0.839 0.873 0.858 
RFX5 Hepg2 0.834 0.865 0.864 0.874 
RFX5 K562 0.784 0.803 0.815 0.820 
SRF Gm12878 0.835 0.838 0.893 0.861 
SRF H1hesc 0.875 0.894 0.933 0.893 
SRF Hepg2 0.844 0.855 0.923 0.870 
SRF K562 0.823 0.848 0.873 0.845 
TBP Gm12878 0.749 0.768 0.753 0.739 
TBP H1hesc 0.745 0.758 0.740 0.749 
TBP Helas3 0.764 0.773 0.776 0.765 
TBP Hepg2 0.759 0.765 0.765 0.713 
TBP K562 0.765 0.779 0.768 0.752 
TCF12 A549 0.819 0.831 0.848 0.831 
TCF12 Gm12878 0.914 0.916 0.928 0.924 
TCF12 H1hesc 0.859 0.856 0.872 0.874 
TCF12 Hepg2 0.813 0.818 0.849 0.807 
TCF7L2 Hct116 0.860 0.874 0.874 0.877 
TCF7L2 Hek293 0.822 0.833 0.828 0.828 
TCF7L2 Helas3 0.784 0.810 0.823 0.806 
TCF7L2 Hepg2 0.783 0.801 0.805 0.806 
TCF7L2 Mcf7 0.822 0.833 0.854 0.857 
TCF7L2 Panc1 0.804 0.821 0.813 0.820 
USF1 A549 0.942 0.947 0.957 0.951 
USF1 Gm12878 0.970 0.969 0.970 0.972 
USF1 H1hesc 0.974 0.984 0.985 0.986 
USF1 Hepg2 0.975 0.985 0.987 0.983 
USF1 K562 0.980 0.980 0.984 0.983 
YY1 A549 0.857 0.873 0.866 0.866 
YY1 Gm12878 0.885 0.893 0.891 0.892 
YY1 H1hesc 0.932 0.935 0.935 0.940 
YY1 Hct116 0.868 0.882 0.889 0.886 
YY1 Hepg2 0.877 0.883 0.875 0.887 
YY1 K562 0.876 0.886 0.874 0.885 
YY1 Nt2d1 0.921 0.927 0.926 0.927 
YY1 Sknshra 0.908 0.913 0.909 0.919 
ZNF143 Gm12878 0.835 0.856 0.904 0.885 
ZNF143 H1hesc 0.847 0.875 0.883 0.871 
ZNF143 Helas3 0.818 0.829 0.846 0.821 
ZNF143 K562 0.831 0.861 0.899 0.889 

Table 7.9 Comparison of EMT (Ensemble Model of TF) with kmer-SVM (K-mer based Support Vector 
Machine). 
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Filename Cell line 
wgEncodeCshlLongRnaSeqA549CellLongnonpolyaAlnRep1.bam 

A549 wgEncodeCshlLongRnaSeqA549CellLongnonpolyaAlnRep2.bam 
wgEncodeCshlLongRnaSeqA549CellPapAlnRep1.bam 
wgEncodeCshlLongRnaSeqA549CellPapAlnRep2.bam 
wgEncodeCshlLongRnaSeqGm12878CellLongnonpolyaAlnRep1.bam 

Gm12878 wgEncodeCshlLongRnaSeqGm12878CellLongnonpolyaAlnRep2.bam 
wgEncodeCshlLongRnaSeqGm12878CellPapAlnRep1.bam 
wgEncodeCshlLongRnaSeqGm12878CellPapAlnRep2.bam 
wgEncodeCshlLongRnaSeqH1hescCellLongnonpolyaAlnRep1.bam 

H1hesc wgEncodeCshlLongRnaSeqH1hescCellLongnonpolyaAlnRep2.bam 
wgEncodeCshlLongRnaSeqH1hescCellPapAlnRep1.bam 
wgEncodeCshlLongRnaSeqH1hescCellPapAlnRep2.bam 
wgEncodeCaltechRnaSeqHct116R2x75Il200AlignsRep1V2.bam Hct116 
wgEncodeCaltechRnaSeqHct116R2x75Il200AlignsRep2V2.bam 
wgEncodeCshlLongRnaSeqHelas3CellLongnonpolyaAlnRep1.bam 

Helas3 wgEncodeCshlLongRnaSeqHelas3CellLongnonpolyaAlnRep2.bam 
wgEncodeCshlLongRnaSeqHelas3CellPapAlnRep1.bam 
wgEncodeCshlLongRnaSeqHelas3CellPapAlnRep2.bam 
wgEncodeCshlLongRnaSeqHepg2CellLongnonpolyaAlnRep1.bam 

Hepg2 wgEncodeCshlLongRnaSeqHepg2CellLongnonpolyaAlnRep2.bam 
wgEncodeCshlLongRnaSeqHepg2CellPapAlnRep1.bam 
wgEncodeCshlLongRnaSeqHepg2CellPapAlnRep2.bam 
wgEncodeCshlLongRnaSeqHuvecCellLongnonpolyaAlnRep1.bam 

Huvec wgEncodeCshlLongRnaSeqHuvecCellLongnonpolyaAlnRep2.bam 
wgEncodeCshlLongRnaSeqHuvecCellPapAlnRep1.bam 
wgEncodeCshlLongRnaSeqHuvecCellPapAlnRep2.bam 
wgEncodeCshlLongRnaSeqImr90CellPapAlnRep1.bam 

Imr90 wgEncodeCshlLongRnaSeqImr90CellPapAlnRep2.bam 
wgEncodeCshlLongRnaSeqImr90CellTotalAlnRep1.bam 
wgEncodeCshlLongRnaSeqImr90CellTotalAlnRep2.bam 
wgEncodeCshlLongRnaSeqK562CellLongnonpolyaAlnRep1.bam 

K562 wgEncodeCshlLongRnaSeqK562CellLongnonpolyaAlnRep2.bam 
wgEncodeCshlLongRnaSeqK562CellPapAlnRep1.bam 
wgEncodeCshlLongRnaSeqK562CellPapAlnRep2.bam 
wgEncodeCshlLongRnaSeqSknshCellPapAlnRep3.bam 

Sknsh wgEncodeCshlLongRnaSeqSknshCellPapAlnRep4.bam 
wgEncodeCshlLongRnaSeqSknshCytosolPapAlnRep3.bam 
wgEncodeCshlLongRnaSeqSknshCytosolPapAlnRep4.bam 
wgEncodeCshlLongRnaSeqSknshraCellLongnonpolyaAlnRep1.bam Sknshra 
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wgEncodeCshlLongRnaSeqSknshraCellLongnonpolyaAlnRep2.bam 
wgEncodeCshlLongRnaSeqSknshraCellPapAlnRep1.bam 
wgEncodeCshlLongRnaSeqSknshraCellPapAlnRep2.bam 
wgEncodeHaibRnaSeqPanc1AlnRep1.bam Panc1 
wgEncodeHaibRnaSeqPanc1AlnRep2.bam 
wgEncodeHaibRnaSeqPfsk1AlnRep1.bam Pfsk1 
wgEncodeHaibRnaSeqPfsk1AlnRep2.bam 
wgEncodeHaibRnaSeqT47dBpa14hAlnRep1.bam 

T47d wgEncodeHaibRnaSeqT47dBpa14hAlnRep2.bam 
wgEncodeHaibRnaSeqT47dDm002p4hAlnRep1.bam 
wgEncodeHaibRnaSeqT47dDm002p4hAlnRep2.bam 
wgEncodeHaibRnaSeqU87AlnRep1V2.bam U87 
wgEncodeHaibRnaSeqU87AlnRep2V2.bam 

Table 7.10 List of RNASeq files for various cell lines obtained from ENCODE to measure log fold 
change (logFC) of the gene expression. Explanation of cell line is also included. 

TRANSFAC 
id Name 
M00001 <NA> 
M00002 TCF3 
M00005 TFAP4 
M00006 MEF2A 
M00008 <NA> 
M00017 <NA> 
M00024 E2F1 
M00026 MEF2A 
M00034 <NA> 
M00035 <NA> 
M00036 <NA> 
M00040 ATF2 
M00041 JUN 
M00050 E2F1 
M00051 <NA> 
M00052 RELA 
M00053 REL 
M00054 RELA 
M00055 MYCN 
M00056 NFIC 
M00065 TCF3 
M00066 TCF3 
M00070 TAL1 
M00071 TCF3 
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M00075 GATA1 
M00096 <NA> 
M00109 CEBPB 
M00116 CEBPA 
M00117 CEBPB 
M00118 MYC 
M00119 <NA> 
M00121 USF1 
M00122 USF1 
M00123 MYC 
M00124 <NA> 
M00126 GATA1 
M00127 GATA1 
M00128 GATA1 
M00132 <NA> 
M00134 HNF4A 
M00139 <NA> 
M00146 HSF1 
M00152 SRF 
M00158 NR2F1 
M00159 CEBPA 
M00172 FOS 
M00175 TFAP4 
M00176 TFAP4 
M00179 ATF2 
M00184 <NA> 
M00185 NFYB 
M00186 SRF 
M00187 USF1 
M00190 CEBPA 
M00191 ESR1 
M00192 NR3C1 
M00193 NFIC 
M00194 NFKB1 
M00196 <NA> 
M00201 CEBPA 
M00203 GATA1 
M00205 NR3C1 
M00206 <NA> 
M00208 <NA> 
M00215 SRF 



 233 

M00217 USF1 
M00222 TCF3 
M00223 STAT1 
M00224 STAT1 
M00225 STAT3 
M00231 MEF2A 
M00232 MEF2A 
M00233 MEF2A 
M00235 <NA> 
M00236 <NA> 
M00237 <NA> 
M00240 NKX2-5 
M00241 NKX2-5 
M00242 PPARA 
M00243 EGR1 
M00249 CEBPA 
M00251 XBP1 
M00260 <NA> 
M00271 RUNX1 
M00272 <NA> 
M00280 RFX1 
M00281 RFX1 
M00284 NFE2L1 
M00285 NFE2L1 
M00302 NFATC1 
M00322 MYC 
M00327 PAX3 
M00338 <NA> 
M00341 GABPA 
M00346 GATA1 
M00347 GATA1 
M00360 PAX3 
M00403 MEF2A 
M00405 MEF2A 
M00406 MEF2A 
M00407 MEF2A 
M00411 HNF4A 
M00416 <NA> 
M00419 <NA> 
M00420 HOXA9 
M00421 HOXA9 
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M00425 <NA> 
M00426 <NA> 
M00427 <NA> 
M00428 E2F1 
M00430 E2F1 
M00431 E2F1 
M00444 VDR 
M00457 STAT5A 
M00460 STAT5A 
M00466 HIF1A 
M00490 <NA> 
M00491 <NA> 
M00492 STAT1 
M00493 STAT5A 
M00495 BACH1 
M00496 STAT1 
M00497 STAT3 
M00498 STAT4 
M00499 STAT5A 
M00511 ESRRA 
M00512 PPARG 
M00513 ATF3 
M00514 ATF4 
M00515 PPARG 
M00516 E2F1 
M00517 FOS 
M00518 RXRA 
M00528 PPARG 
M00538 XBP1 
M00539 <NA> 
M00615 MYC 
M00619 <NA> 
M00621 CEBPD 
M00622 CEBPG 
M00626 RFX1 
M00631 NR1H4 
M00638 HNF4A 
M00641 HSF1 
M00646 <NA> 
M00647 NR1H3 
M00691 <NA> 
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M00693 TCF3 
M00698 TCF12 
M00712 <NA> 
M00726 USF2 
M00731 RUNX2 
M00736 <NA> 
M00737 <NA> 
M00738 <NA> 
M00739 <NA> 
M00744 POU1F1 
M00750 HMGA1 
M00761 TP63 
M00762 NR2F2 
M00763 PPARA 
M00764 HNF4A 
M00765 NR2F2 
M00766 <NA> 
M00767 <NA> 
M00769 RUNX1 
M00770 CEBPA 
M00774 RELA 
M00775 NFYB 
M00777 STAT1 
M00778 <NA> 
M00789 GATA1 
M00790 <NA> 
M00792 <NA> 
M00796 USF1 
M00797 HIF1A 
M00799 MYC 
M00801 ATF7 
M00802 POU1F1 
M00803 E2F1 
M00804 TCF3 
M00806 NFIC 
M00807 EGR1 
M00808 PAX5 
M00810 SRF 
M00821 NFE2L2 
M00912 CEBPA 
M00916 CREB1 
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M00917 CREB1 
M00918 E2F1 
M00919 E2F1 
M00920 E2F1 
M00921 NR3C1 
M00922 SRF 
M00924 FOS 
M00925 FOS 
M00926 FOS 
M00927 TFAP4 
M00929 TCF3 
M00931 SP3 
M00932 SP3 
M00933 SP3 
M00935 NFATC1 
M00938 E2F1 
M00939 E2F1 
M00940 E2F1 
M00941 MEF2A 
M00955 NR3C1 
M00959 ESR1 
M00960 NR3C1 
M00961 VDR 
M00963 RARB 
M00964 NR1I3 
M00965 NR2F2 
M00966 VDR 
M00967 NR2F2 
M00971 ERG 
M00973 TCF3 
M00974 <NA> 
M00975 RFX2 
M00976 HIF1A 
M00981 ATF7 
M00982 EGR1 
M00983 NFE2 
M00984 RUNX1 
M00993 TAL1 
M00998 PBX2 
M01007 SRF 
M01009 <NA> 
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M01010 HMGA1 
M01011 <NA> 
M01013 <NA> 
M01023 HSF1 
M01029 TFE3 
M01031 HNF4A 
M01032 HNF4A 
M01033 HNF4A 
M01034 MYC 
M01036 NR2F2 
M01043 NKX2-5 
M01075 ZBTB16 
M01116 <NA> 
M01145 MYC 
M01154 MYC 
M01196 NFIC 
M01249 EPAS1 
M01250 E2F1 
M01251 E2F1 
M01252 E2F6 
M01257 SRF 
M01260 STAT1 
M01267 FOSL1 
M01268 NR1H4 
M01269 NR4A2 
M01270 PPARG 
M01281 NFATC2 
M01282 PPARA 
M01287 NEUROD1 
M01288 NEUROD1 
M01303 <NA> 
M01304 SRF 
M01339 PAX7 
M01351 HOXA9 
M01355 ALX3 
M01357 <NA> 
M01362 <NA> 
M01379 <NA> 
M01411 PKNOX2 
M01414 NKX2-5 
M01417 <NA> 
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M01419 <NA> 
M01425 <NA> 
M01453 <NA> 
M01459 PKNOX1 
M01465 POU1F1 
M01588 KLF4 
M01591 TAL1 
M01595 STAT3 
M01651 <NA> 
M01652 <NA> 
M01653 HMGA1 
M01655 <NA> 
M01658 RUNX1 
M01666 STAT4 
M01716 ATOH1 
M01718 NFATC1 
M01724 THRA 
M01770 XBP1 
M01801 ESR1 
M01808 MYCN 
M01820 CREM 
M01823 STAT1 
M01830 <NA> 
M01835 KLF4 
M01841 ESRRA 

Table 7.11 List of Heterodimerizing TFs and their name. 

 

    a) Enrichment of PPI     
TF Cell Odds Ratio p.value Enriched? family 
ATF3 A549 6.5323844 9.20782E-30 TRUE 

bZIP, CH ATF3 H1hesc 6.2557296 2.19565E-25 TRUE 
ATF4 Hepg2 5.9925038 1.64231E-26 TRUE 
ATF4 K562 4.6587484 2.75264E-20 TRUE 
BHLHE40 A549 3.5067545 1.59104E-07 TRUE 

bHLH, 
bZIP 

BHLHE40 Gm12878 2.1649943 0.000643582 TRUE 
BHLHE40 Hepg2 3.391001 1.00576E-10 TRUE 
BHLHE40 K562 4.1999105 1.24572E-11 TRUE 
CEBPB A549 5.4245242 2.86441E-14 TRUE 

bzip CEBPB Gm12878 3.7084298 2.46229E-20 TRUE 
CEBPB H1hesc 3.5505948 1.09844E-10 TRUE 
CEBPB Helas3 3.4360464 1.04204E-14 TRUE 
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CEBPB Hepg2 3.7259682 2.22576E-08 TRUE 
CEBPB Imr90 6.5404738 1.62673E-15 TRUE 
CEBPB K562 3.6878416 1.22792E-18 TRUE 
CTCF A549 2.9588052 0.01611419 TRUE 

CH 

CTCF Gm12878 0.7890216 0.8102347 FALSE 
CTCF H1hesc 2.3012978 0.0134669 TRUE 
CTCF Hct116 2.9588053 0.001355871 TRUE 
CTCF Hek293 1.5341975 0.1653797 FALSE 
CTCF Helas3 4.8418404 3.44514E-06 TRUE 
CTCF Hepg2 2.0583429 0.01744166 TRUE 
CTCF Huvec 2.2760095 0.0315983 TRUE 
CTCF Imr90 0.3945106 0.3094342 FALSE 
CTCF K562 2.9588053 0.000125138 TRUE 
CTCF Mcf7 1.0958909 0.7238471 FALSE 
CTCF Sknshra 3.2277901 0.002031186 TRUE 
EP300 A549 9.4141739 5.07775E-16 TRUE 

no entry in 
the file 

EP300 Gm12878 12.7411179 2.95466E-28 TRUE 
EP300 H1hesc 7.8261245 7.4611E-17 TRUE 
EP300 Helas3 11.063288 8.20635E-21 TRUE 
EP300 Hepg2 9.2988925 4.23388E-15 TRUE 
EP300 Sknsh 7.4823913 3.5984E-17 TRUE 
EP300 T47d 5.5695443 5.59584E-11 TRUE 
FOS Gm12878 9.90836 1.33966E-62 TRUE 

bzip 
FOS Helas3 5.0831812 4.3867E-38 TRUE 
FOS Huvec 14.5244274 2.87608E-69 TRUE 
FOS K562 11.5441056 7.47071E-56 TRUE 
FOS Mcf10a 4.5729256 1.09807E-22 TRUE 
GABPA A549 2.0928447 0.001098074 TRUE 

Ets 

GABPA Gm12878 1.1534148 0.5484333 FALSE 
GABPA H1hesc 1.3214139 0.2524994 FALSE 
GABPA Helas3 1.4937685 0.07821976 FALSE 
GABPA Hepg2 0.9862751 1 FALSE 
GABPA K562 1.4892028 0.03763997 TRUE 
JUN Gm12878 8.5395417 1.19383E-95 TRUE 

bzip 

JUN H1hesc 7.8495633 4.82001E-50 TRUE 
JUN Helas3 6.8421842 6.50128E-27 TRUE 
JUN Hepg2 4.8762612 1.11297E-28 TRUE 
JUN Huvec 13.1447941 1.87963E-59 TRUE 
JUN K562 18.2009724 5.42681E-90 TRUE 
JUND Gm12878 7.6921435 6.47957E-40 TRUE bzip 
JUND H1hesc 5.6358399 2.29014E-25 TRUE 
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JUND Helas3 8.1933641 3.64769E-29 TRUE 
JUND Hepg2 7.1503854 2.14264E-42 TRUE 
JUND K562 15.7798296 9.24009E-68 TRUE 
JUND Sknsh 8.5802981 3.80358E-47 TRUE 
MAFK H1hesc 5.2215017 1.21683E-05 TRUE 

bzip 
MAFK Helas3 3.3533207 0.000183661 TRUE 
MAFK Hepg2 2.4040323 0.01028812 TRUE 
MAFK Imr90 4.0970453 1.74868E-05 TRUE 
MAFK K562 5.1458426 5.15881E-07 TRUE 
MAZ Gm12878 1.1623726 0.6034424 FALSE 

CH MAZ Helas3 1.3038863 0.4001867 FALSE 
MAZ Hepg2 2.1518754 0.004896951 TRUE 
MAZ K562 1.7259724 0.07220691 FALSE 
MXI1 Gm12878 8.2080498 4.64414E-18 TRUE 

bhlh-bzip 
MXI1 H1hesc 9.8624885 2.27958E-16 TRUE 
MXI1 Helas3 7.9657566 9.68602E-15 TRUE 
MXI1 Hepg2 11.1776344 7.87708E-17 TRUE 
MXI1 K562 10.8488884 4.39108E-21 TRUE 
MYC A549 3.0734878 1.41831E-22 TRUE 

bhlh-bzip 

MYC Gm12878 3.0073102 2.30521E-20 TRUE 
MYC H1hesc 2.6073074 1.5755E-15 TRUE 
MYC Helas3 5.3259113 1.39955E-62 TRUE 
MYC Hepg2 2.7020927 1.7356E-22 TRUE 
MYC Huvec 3.5113022 3.03334E-28 TRUE 
MYC K562 2.7836745 8.59437E-22 TRUE 
MYC Mcf7 3.0276147 1.69524E-28 TRUE 
NRF1 Gm12878 0 0.00712004 TRUE 

bzip 
NRF1 H1hesc 0.1793236 0.05226093 FALSE 
NRF1 Helas3 0.268985 0.238341 FALSE 
NRF1 Hepg2 0 0.1573226 FALSE 
NRF1 K562 0.2276028 0.1663903 FALSE 
REST A549 5.5888804 1.12679E-21 TRUE 

CH 

REST Gm12878 0.6961964 0.4147254 FALSE 
REST H1hesc 0.6575191 0.3386072 FALSE 
REST Helas3 1.4794056 0.153898 FALSE 
REST Hepg2 0 7.45439E-06 TRUE 
REST K562 5.1286931 6.68219E-16 TRUE 
REST Panc1 1.1835122 0.6138163 FALSE 
REST Pfsk1 1.1271381 0.6689403 FALSE 
REST Sknsh 1.8081631 0.001171466 TRUE 
REST U87 2.1917188 8.68434E-05 TRUE 
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RFX5 Gm12878 2.5794292 0.001964828 TRUE 

fork 
RFX5 H1hesc 3.1701497 0.000674995 TRUE 
RFX5 Helas3 4.0813381 6.30748E-06 TRUE 
RFX5 Hepg2 3.7259683 7.08709E-05 TRUE 
RFX5 K562 2.5979168 0.00136052 TRUE 
SRF Gm12878 4.4384708 1.75931E-30 TRUE 

Mads SRF H1hesc 4.5088989 7.26269E-33 TRUE 
SRF Hepg2 4.6934709 3.70921E-48 TRUE 
SRF K562 4.8219187 2.92653E-47 TRUE 
TBP Gm12878 4.6934721 5.62827E-25 TRUE 

tata 
TBP H1hesc 5.9176032 2.00955E-32 TRUE 
TBP Helas3 5.0410418 1.6196E-26 TRUE 
TBP Hepg2 4.1425978 1.6851E-20 TRUE 
TBP K562 6.8720101 6.93555E-51 TRUE 
TCF12 A549 2.3605242 1.16708E-08 TRUE 

bhlh TCF12 Gm12878 3.8987878 2.04701E-13 TRUE 
TCF12 H1hesc 2.9588053 9.84801E-09 TRUE 
TCF12 Hepg2 1.9144307 1.29886E-05 TRUE 
TCF7L2 Hct116 1.2552501 0.4264807 FALSE 

HMG 

TCF7L2 Hek293 2.2330681 4.71099E-05 TRUE 
TCF7L2 Helas3 1.6907476 0.02149591 TRUE 
TCF7L2 Hepg2 3.8291406 1.09743E-10 TRUE 
TCF7L2 Mcf7 1.6610845 0.0133504 TRUE 
TCF7L2 Panc1 1.3398418 0.2107984 FALSE 
USF1 A549 3.7327137 2.92222E-26 TRUE 

bhlh-bzip 
USF1 Gm12878 3.4404862 2.82163E-15 TRUE 
USF1 H1hesc 6.5900213 2.9723E-34 TRUE 
USF1 Hepg2 2.7024762 9.33881E-12 TRUE 
USF1 K562 4.1737673 8.45784E-17 TRUE 
YY1 A549 4.3741677 9.04113E-18 TRUE 

CH 

YY1 Gm12878 2.6299531 2.52513E-07 TRUE 
YY1 H1hesc 3.1145323 7.04388E-08 TRUE 
YY1 Hct116 4.0685759 4.99682E-21 TRUE 
YY1 Hepg2 4.19195 4.28305E-17 TRUE 
YY1 K562 4.6028049 1.39009E-15 TRUE 
YY1 Nt2d1 5.7135667 3.44697E-35 TRUE 
YY1 Sknshra 3.7259682 3.07166E-15 TRUE 
ZNF143 Gm12878 1.2989938 0.3184913 FALSE 

CH ZNF143 H1hesc 0.8453854 1 FALSE 
ZNF143 Helas3 2.0998265 0.004612317 TRUE 
ZNF143 K562 0.8218973 0.6401558 FALSE 
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    b) Enrichment of heterodimerizing motifs 
TF Cell Odds Ratio p.value Enriched? family 
ATF3 A549 1.5951375 5.10E-02 FALSE 

bZIP, CH ATF3 H1hesc 1.6686604 5.49E-02 FALSE 
ATF4 Hepg2 2.6046432 1.55E-04 TRUE 
ATF4 K562 2.574259 7.49E-05 TRUE 
BHLHE40 A549 1.6601464 6.22E-02 FALSE 

bHLH, bZIP BHLHE40 Gm12878 1.795937 1.56E-02 TRUE 
BHLHE40 Hepg2 1.8261008 6.33E-03 TRUE 
BHLHE40 K562 3.698435 2.15E-07 TRUE 
CEBPB A549 2.4683057 1.21E-02 TRUE 

bzip 

CEBPB Gm12878 1.8497733 7.95E-03 TRUE 
CEBPB H1hesc 1.1999726 6.26E-01 FALSE 
CEBPB Helas3 1.590322 9.26E-02 FALSE 
CEBPB Hepg2 0.8090211 6.94E-01 FALSE 
CEBPB Imr90 2.654741 8.91E-03 TRUE 
CEBPB K562 1.5135991 1.10E-01 FALSE 
CTCF A549 1.9013647 2.17E-01 FALSE 

CH 

CTCF Gm12878 2.3232646 4.39E-02 TRUE 
CTCF H1hesc 2.1023069 2.32E-02 TRUE 
CTCF Hct116 2.941998 2.24E-03 TRUE 
CTCF Hek293 1.8935869 3.81E-02 TRUE 
CTCF Helas3 2.1782578 4.55E-02 TRUE 
CTCF Hepg2 1.4721854 2.05E-01 FALSE 
CTCF Huvec 3.7149106 1.81E-03 TRUE 
CTCF Imr90 2.956021 8.02E-03 TRUE 
CTCF K562 1.7242666 6.79E-02 FALSE 
CTCF Mcf7 2.2305047 6.94E-03 TRUE 
CTCF Sknshra 2.3232743 3.55E-02 TRUE 
EP300 A549 1.6463524 3.50E-02 TRUE 

no entry in 
the file 

EP300 Gm12878 2.2847931 2.90E-05 TRUE 
EP300 H1hesc 0.8243637 4.37E-01 FALSE 
EP300 Helas3 1.9366118 3.86E-03 TRUE 
EP300 Hepg2 1.9365985 6.99E-03 TRUE 
EP300 Sknsh 1.0173679 9.15E-01 FALSE 
EP300 T47d 1.2215659 4.03E-01 FALSE 
FOS Gm12878 2.2128889 7.53E-04 TRUE 

bzip 
FOS Helas3 1.487691 1.05E-01 FALSE 
FOS Huvec 1.190842 5.69E-01 FALSE 
FOS K562 2.8588065 1.25E-04 TRUE 
FOS Mcf10a 1.843203 4.38E-02 TRUE 
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GABPA A549 1.4088713 2.83E-01 FALSE 

Ets 

GABPA Gm12878 1.8347953 2.05E-02 TRUE 
GABPA H1hesc 2.4092807 2.41E-03 TRUE 
GABPA Helas3 2.7530465 2.35E-04 TRUE 
GABPA Hepg2 2.5409111 3.31E-04 TRUE 
GABPA K562 1.8882579 5.48E-03 TRUE 
JUN Gm12878 0.8799802 6.50E-01 FALSE 

bzip 

JUN H1hesc 1.1956941 5.42E-01 FALSE 
JUN Helas3 1.6269539 1.85E-01 FALSE 
JUN Hepg2 1.9918216 2.00E-02 TRUE 
JUN Huvec 1.5159185 2.14E-01 FALSE 
JUN K562 1.7429763 7.94E-02 FALSE 
JUND Gm12878 1.1378199 6.86E-01 FALSE 

bzip 

JUND H1hesc 1.3561083 3.01E-01 FALSE 
JUND Helas3 2.2224252 1.23E-02 TRUE 
JUND Hepg2 1.384935 1.95E-01 FALSE 
JUND K562 1.590322 9.26E-02 FALSE 
JUND Sknsh 1.5331356 9.67E-02 FALSE 
MAFK H1hesc 1.9918027 4.96E-02 TRUE 

bzip 
MAFK Helas3 1.2848257 3.83E-01 FALSE 
MAFK Hepg2 1.3459269 3.12E-01 FALSE 
MAFK Imr90 1.9365709 2.35E-02 TRUE 
MAFK K562 1.815698 3.79E-02 TRUE 
MAZ Gm12878 1.328489 2.09E-01 FALSE 

CH MAZ Helas3 1.6869557 1.53E-02 TRUE 
MAZ Hepg2 1.2115931 3.79E-01 FALSE 
MAZ K562 1.2609199 3.41E-01 FALSE 
MXI1 Gm12878 1.7708446 6.73E-03 TRUE 

bhlh-bzip 
MXI1 H1hesc 1.7198 2.12E-02 TRUE 
MXI1 Helas3 1.9918752 2.09E-03 TRUE 
MXI1 Hepg2 2.6897975 2.20E-05 TRUE 
MXI1 K562 2.3234271 1.27E-04 TRUE 
MYC A549 1.9541857 5.72E-03 TRUE 

bhlh-bzip 

MYC Gm12878 2.001052 8.98E-03 TRUE 
MYC H1hesc 1.2976181 3.38E-01 FALSE 
MYC Helas3 1.9283793 5.01E-03 TRUE 
MYC Hepg2 1.328489 2.09E-01 FALSE 
MYC Huvec 1.8705538 1.28E-02 TRUE 
MYC K562 1.9455965 5.41E-03 TRUE 
MYC Mcf7 2.1300222 9.16E-04 TRUE 
NRF1 Gm12878 1.2992 3.62E-01 FALSE bzip 



 244 

NRF1 H1hesc 2.2340788 7.57E-03 TRUE 
NRF1 Helas3 1.9137884 7.74E-02 FALSE 
NRF1 Hepg2 2.9033042 9.47E-03 TRUE 
NRF1 K562 1.0231639 1.00E+00 FALSE 
REST A549 1.6269698 1.18E-01 FALSE 

CH 

REST Gm12878 0.9513565 1.00E+00 FALSE 
REST H1hesc 1.9917834 8.66E-02 FALSE 
REST Helas3 2.1447785 7.59E-02 FALSE 
REST Hepg2 1.8347598 8.94E-02 FALSE 
REST K562 2.4522036 1.00E-02 TRUE 
REST Panc1 1.7770828 1.57E-01 FALSE 
REST Pfsk1 1.5902947 2.41E-01 FALSE 
REST Sknsh 1.5847777 6.76E-02 FALSE 
REST U87 2.0747031 1.38E-02 TRUE 
RFX5 Gm12878 1.9056695 4.40E-03 TRUE 

fork 
RFX5 H1hesc 1.6850355 4.31E-02 TRUE 
RFX5 Helas3 1.5873465 7.90E-02 FALSE 
RFX5 Hepg2 1.2109026 5.09E-01 FALSE 
RFX5 K562 1.4971482 6.63E-02 FALSE 
SRF Gm12878 1.4996472 2.11E-01 FALSE 

Mads SRF H1hesc 1.5292215 1.21E-01 FALSE 
SRF Hepg2 1.2485285 3.85E-01 FALSE 
SRF K562 1.9271617 9.18E-03 TRUE 
TBP Gm12878 0.9597338 9.04E-01 FALSE 

tata 
TBP H1hesc 1.0569549 8.16E-01 FALSE 
TBP Helas3 1.8188756 1.26E-02 TRUE 
TBP Hepg2 0.855068 5.55E-01 FALSE 
TBP K562 1.3813758 1.28E-01 FALSE 
TCF12 A549 1.8813786 1.95E-03 TRUE 

bhlh TCF12 Gm12878 1.8215875 2.69E-02 TRUE 
TCF12 H1hesc 0.7752908 4.13E-01 FALSE 
TCF12 Hepg2 1.7929622 2.92E-03 TRUE 
TCF7L2 Hct116 1.925531 1.69E-02 TRUE 

HMG 

TCF7L2 Hek293 0.54743 1.75E-02 FALSE 
TCF7L2 Helas3 1.9056695 4.40E-03 TRUE 
TCF7L2 Hepg2 0.750313 3.15E-01 FALSE 
TCF7L2 Mcf7 1.8755501 3.55E-03 TRUE 
TCF7L2 Panc1 1.1625291 5.50E-01 FALSE 
USF1 A549 2.3233887 5.39E-04 TRUE 

bhlh-bzip USF1 Gm12878 2.3233307 3.40E-03 TRUE 
USF1 H1hesc 3.8246313 2.04E-05 TRUE 
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USF1 Hepg2 1.247473 4.01E-01 FALSE 
USF1 K562 2.5442986 4.00E-03 TRUE 
YY1 A549 1.1120383 6.84E-01 FALSE 

CH 

YY1 Gm12878 1.2152985 4.93E-01 FALSE 
YY1 H1hesc 1.4850919 1.49E-01 FALSE 
YY1 Hct116 1.394823 1.49E-01 FALSE 
YY1 Hepg2 1.1397586 6.06E-01 FALSE 
YY1 K562 1.1072289 7.76E-01 FALSE 
YY1 Nt2d1 1.5198428 8.75E-02 FALSE 
YY1 Sknshra 1.0285555 8.97E-01 FALSE 
ZNF143 Gm12878 1.4390338 1.74E-01 FALSE 

CH ZNF143 H1hesc 1.7429584 1.50E-01 FALSE 
ZNF143 Helas3 1.3709941 2.56E-01 FALSE 
ZNF143 K562 1.4740879 1.34E-01 FALSE 
    c) Enrichment of same family TFs   
TF Cell Odds Ratio p.value Enriched? family 
ATF3 A549 2.10E+00 8.75E-04 TRUE 

bZIP, CH ATF3 H1hesc 2.01E+00 5.49E-03 TRUE 
ATF4 Hepg2 2.19E+00 1.28E-03 TRUE 
ATF4 K562 1.72E+00 2.48E-02 TRUE 
BHLHE40 A549 3.21E+00 6.76E-04 TRUE 

bHLH, 
bZIP 

BHLHE40 Gm12878 3.55E+00 2.09E-05 TRUE 
BHLHE40 Hepg2 2.20E+00 1.06E-02 TRUE 
BHLHE40 K562 4.08E+00 3.74E-06 TRUE 
CEBPB A549 8.08E+00 2.02E-10 TRUE 

bzip 

CEBPB Gm12878 2.78E+00 1.19E-03 TRUE 
CEBPB H1hesc 4.58E+00 6.17E-06 TRUE 
CEBPB Helas3 5.70E+00 2.75E-10 TRUE 
CEBPB Hepg2 5.01E+00 4.37E-05 TRUE 
CEBPB Imr90 8.47E+00 2.37E-10 TRUE 
CEBPB K562 5.03E+00 7.00E-09 TRUE 
CTCF A549 1.06E+00 1.00E+00 FALSE 

CH 

CTCF Gm12878 1.14E+00 7.74E-01 FALSE 
CTCF H1hesc 9.04E-01 1.00E+00 FALSE 
CTCF Hct116 8.48E-01 1.00E+00 FALSE 
CTCF Hek293 9.08E-01 1.00E+00 FALSE 
CTCF Helas3 2.75E-01 2.37E-01 FALSE 
CTCF Hepg2 1.13E+00 8.26E-01 FALSE 
CTCF Huvec 8.90E-01 1.00E+00 FALSE 
CTCF Imr90 0.2969291 3.47E-01 FALSE 
CTCF K562 0.9270318 1.00E+00 FALSE 
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CTCF Mcf7 0.7569474 6.67E-01 FALSE 
CTCF Sknshra 1.3237119 5.82E-01 FALSE 
EP300 A549 0 1.00E+00 FALSE 

no entry in 
the file 

EP300 Gm12878 0 1.00E+00 FALSE 
EP300 H1hesc 0 1.00E+00 FALSE 
EP300 Helas3 0 1.00E+00 FALSE 
EP300 Hepg2 0 1.00E+00 FALSE 
EP300 Sknsh 0 1.00E+00 FALSE 
EP300 T47d 0 1.00E+00 FALSE 
FOS Gm12878 2.1512599 2.67E-02 TRUE 

bzip 
FOS Helas3 2.845051 6.38E-04 TRUE 
FOS Huvec 1.6602691 1.80E-01 FALSE 
FOS K562 2.2192407 5.39E-02 FALSE 
FOS Mcf10a 4.3717434 6.28E-06 TRUE 
GABPA A549 8.7215588 7.42E-06 TRUE 

Ets 

GABPA Gm12878 5.6019798 3.37E-04 TRUE 
GABPA H1hesc 8.3535803 4.38E-06 TRUE 
GABPA Helas3 7.1992541 3.05E-05 TRUE 
GABPA Hepg2 6.2222022 8.73E-05 TRUE 
GABPA K562 7.011492 2.31E-06 TRUE 
JUN Gm12878 1.3328249 4.48E-01 FALSE 

bzip 

JUN H1hesc 4.6911107 1.69E-06 TRUE 
JUN Helas3 6.6759432 4.78E-08 TRUE 
JUN Hepg2 6.0934976 1.60E-09 TRUE 
JUN Huvec 3.2357318 4.14E-03 TRUE 
JUN K562 5.0886519 6.38E-07 TRUE 
JUND Gm12878 3.0795399 5.04E-04 TRUE 

bzip 

JUND H1hesc 3.9893934 2.69E-05 TRUE 
JUND Helas3 7.7900861 1.84E-12 TRUE 
JUND Hepg2 4.0485029 2.68E-06 TRUE 
JUND K562 4.2593085 3.35E-06 TRUE 
JUND Sknsh 3.3264881 8.72E-05 TRUE 
MAFK H1hesc 7.8564785 6.38E-11 TRUE 

bzip 
MAFK Helas3 6.0820785 2.73E-10 TRUE 
MAFK Hepg2 5.0687937 4.60E-08 TRUE 
MAFK Imr90 6.8608014 9.36E-12 TRUE 
MAFK K562 6.5200645 4.42E-11 TRUE 
MAZ Gm12878 2.1054598 3.71E-03 TRUE 

CH MAZ Helas3 1.9264231 1.01E-02 TRUE 
MAZ Hepg2 2.0538421 4.60E-03 TRUE 
MAZ K562 2.2393291 2.51E-03 TRUE 
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MXI1 Gm12878 1.8431646 5.07E-02 FALSE 

bhlh-bzip 
MXI1 H1hesc 3.2550065 7.71E-05 TRUE 
MXI1 Helas3 1.383034 4.22E-01 FALSE 
MXI1 Hepg2 2.2322579 1.60E-02 TRUE 
MXI1 K562 2.7028305 9.70E-04 TRUE 
MYC A549 1.8246552 9.23E-02 FALSE 

bhlh-bzip 

MYC Gm12878 3.4215318 9.17E-05 TRUE 
MYC H1hesc 2.1630139 3.07E-02 TRUE 
MYC Helas3 1.7565846 1.09E-01 FALSE 
MYC Hepg2 1.5556397 1.83E-01 FALSE 
MYC Huvec 2.4543355 7.81E-03 TRUE 
MYC K562 1.7774064 1.41E-01 FALSE 
MYC Mcf7 2.7627523 8.51E-04 TRUE 
NRF1 Gm12878 1.6528658 2.33E-01 FALSE 

bzip 
NRF1 H1hesc 1.8145005 1.41E-01 FALSE 
NRF1 Helas3 2.6418284 2.38E-02 TRUE 
NRF1 Hepg2 0.3996188 7.23E-01 FALSE 
NRF1 K562 2.7372159 1.47E-02 TRUE 
REST A549 0.3029818 1.08E-01 FALSE 

CH 

REST Gm12878 0.5935903 7.60E-01 FALSE 
REST H1hesc 0.322736 3.45E-01 FALSE 
REST Helas3 0.3092952 3.45E-01 FALSE 
REST Hepg2 0.5496559 5.64E-01 FALSE 
REST K562 0 4.08E-02 FALSE 
REST Panc1 0.8899884 1.00E+00 FALSE 
REST Pfsk1 0.2651286 2.38E-01 FALSE 
REST Sknsh 0.7113629 4.68E-01 FALSE 
REST U87 0.9794592 1.00E+00 FALSE 
RFX5 Gm12878 0.904439 1.00E+00 FALSE 

fork 
RFX5 H1hesc 0.990631 1.00E+00 FALSE 
RFX5 Helas3 1.9201193 1.28E-01 FALSE 
RFX5 Hepg2 2.2964117 3.09E-02 TRUE 
RFX5 K562 0.7237508 8.10E-01 FALSE 
SRF Gm12878 0 6.36E-01 FALSE 

Mads SRF H1hesc 0 3.93E-01 FALSE 
SRF Hepg2 0 2.44E-01 FALSE 
SRF K562 0 2.43E-01 FALSE 
TBP Gm12878 0 1.00E+00 FALSE 

tata TBP H1hesc 0 1.00E+00 FALSE 
TBP Helas3 0 1.00E+00 FALSE 
TBP Hepg2 0 1.00E+00 FALSE 



 248 

TBP K562 0 1.00E+00 FALSE 
TCF12 A549 1.2660094 4.75E-01 FALSE 

bhlh TCF12 Gm12878 1.7228047 1.70E-01 FALSE 
TCF12 H1hesc 3.0128669 1.22E-03 TRUE 
TCF12 Hepg2 1.1705098 5.91E-01 FALSE 
TCF7L2 Hct116 4.9744678 4.65E-03 TRUE 

HMG 

TCF7L2 Hek293 3.0706106 3.23E-02 TRUE 
TCF7L2 Helas3 4.2184079 5.70E-03 TRUE 
TCF7L2 Hepg2 6.5642464 7.65E-05 TRUE 
TCF7L2 Mcf7 3.199521 2.78E-02 TRUE 
TCF7L2 Panc1 3.4528202 2.08E-02 TRUE 
USF1 A549 1.9642107 5.96E-02 FALSE 

bhlh-bzip 
USF1 Gm12878 3.5155867 3.14E-04 TRUE 
USF1 H1hesc 4.1389737 7.46E-05 TRUE 
USF1 Hepg2 2.6493886 6.56E-03 TRUE 
USF1 K562 2.7620515 1.01E-02 TRUE 
YY1 A549 1.2153855 5.68E-01 FALSE 

CH 

YY1 Gm12878 0.7418214 6.88E-01 FALSE 
YY1 H1hesc 0.8558185 8.35E-01 FALSE 
YY1 Hct116 0.7854063 6.10E-01 FALSE 
YY1 Hepg2 0.9961475 1.00E+00 FALSE 
YY1 K562 1.1706367 6.92E-01 FALSE 
YY1 Nt2d1 0.542949 2.12E-01 FALSE 
YY1 Sknshra 0.6744454 4.44E-01 FALSE 
ZNF143 Gm12878 0.7636152 7.05E-01 FALSE 

CH ZNF143 H1hesc 0.5496559 5.64E-01 FALSE 
ZNF143 Helas3 0.717915 5.56E-01 FALSE 
ZNF143 K562 0.5983648 4.22E-01 FALSE 

Table 7.12a-c. Hypergeometric test results: a) identified co-factors are enriched for heterodimerizing 
TFs, b) identified co-factors are enriched for same family as that of the reference TF 

 

TF Cell Category Term Fold E FDR 
ATF3 

A549 

INTERPRO bZIP transcription factor, bZIP-1 7.26 1.13E-07 
ATF3 SMART BRLZ 4.99 1.84E-07 
ATF3 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.81 8.36E-07 
ATF3 INTERPRO Kelch related 8.82 4.82E+00 
ATF3 SMART FH 4.22 4.88E+00 
ATF3 INTERPRO Transcription factor, fork head, conserved site 4.07 8.75E+00 
ATF3 INTERPRO Transcription factor, fork head 4.07 8.75E+00 
ATF3 H1hesc INTERPRO Helix-loop-helix DNA-binding 5.05 5.89E-11 
ATF3 SMART HLH 4.65 1.70E-10 
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ATF3 INTERPRO Basic helix-loop-helix dimerisation region bHLH 4.43 1.33E-09 
ATF3 SMART BRLZ 3.61 2.93E-05 
ATF3 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.44 1.38E-04 
ATF3 INTERPRO bZIP transcription factor, bZIP-1 4.21 6.37E-03 
ATF3 INTERPRO Basic leucine zipper 3.98 1.01E+00 
ATF3 

Hepg2 

SMART HLH 4.68 2.18E-11 
ATF3 INTERPRO Helix-loop-helix DNA-binding 5.05 5.99E-11 
ATF3 INTERPRO Basic helix-loop-helix dimerisation region bHLH 4.62 7.00E-11 
ATF3 SMART BRLZ 2.93 1.98E-02 
ATF3 INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.89 3.97E-02 
ATF3 INTERPRO bZIP transcription factor, bZIP-1 3.86 6.15E-02 
ATF3 

K562 

SMART HLH 4.91 7.77E-14 
ATF3 INTERPRO Basic helix-loop-helix dimerisation region bHLH 4.72 5.88E-13 
ATF3 INTERPRO Helix-loop-helix DNA-binding 4.76 2.62E-10 
ATF3 SMART BRLZ 2.84 3.16E-02 
ATF3 INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.73 9.08E-02 
ATF3 INTERPRO bZIP transcription factor, bZIP-1 3.64 1.11E-01 
ATF3 SMART ZnF_GATA 5.85 2.25E+00 
ATF3 INTERPRO Zinc finger, GATA-type 5.62 3.98E+00 
BHLHE40 

A549 

INTERPRO bZIP transcription factor, bZIP-1 5.85 4.42E-03 
BHLHE40 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.62 7.71E-02 
BHLHE40 SMART BRLZ 3.42 7.74E-02 
BHLHE40 INTERPRO Fos transforming protein 7.96 7.27E+00 
BHLHE40 

Gm12878 

SMART ETS 5.39 3.31E-06 
BHLHE40 INTERPRO Ets 5.39 5.58E-06 
BHLHE40 INTERPRO Winged helix repressor DNA-binding 2.59 1.03E-03 
BHLHE40 SMART IRF 5.39 1.96E-01 
BHLHE40 INTERPRO Interferon regulatory factor, conserved site 5.39 3.02E-01 
BHLHE40 INTERPRO Interferon regulatory factor 5.39 3.02E-01 
BHLHE40 INTERPRO bZIP transcription factor, bZIP-1 3.62 3.50E-01 
BHLHE40 SMART BRLZ 2.61 3.75E-01 
BHLHE40 INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.61 6.05E-01 
BHLHE40 SMART HLH 2.58 7.81E-01 
BHLHE40 INTERPRO Basic helix-loop-helix dimerisation region bHLH 2.58 1.24E+00 
BHLHE40 SMART SAM_PNT 4.62 2.32E+00 
BHLHE40 INTERPRO Sterile alpha motif/pointed 4.62 3.52E+00 
BHLHE40 INTERPRO Sterile alpha motif-type 4.11 6.83E+00 
BHLHE40 INTERPRO Interferon regulatory factor-3 5.13 7.05E+00 
BHLHE40 INTERPRO SMAD domain-like 5.13 7.05E+00 
BHLHE40 

Hepg2 
INTERPRO bZIP transcription factor, bZIP-1 4.77 4.98E-05 

BHLHE40 INTERPRO High mobility group, HMG1/HMG2 5.35 1.03E-04 
BHLHE40 SMART HMG 4.99 1.41E-04 
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BHLHE40 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.16 1.78E-03 
BHLHE40 SMART BRLZ 2.95 3.17E-03 
BHLHE40 INTERPRO Zinc finger, NHR/GATA-type 2.44 4.44E-01 
BHLHE40 SMART ZnF_GATA 5.41 3.07E+00 
BHLHE40 INTERPRO Fos transforming protein 5.79 3.54E+00 
BHLHE40 INTERPRO Zinc finger, GATA-type 5.79 3.54E+00 
BHLHE40 

K562 

INTERPRO bZIP transcription factor, bZIP-1 5.84 8.81E-04 
BHLHE40 SMART BRLZ 3.99 1.79E-03 
BHLHE40 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.83 5.54E-03 
BHLHE40 SMART ZnF_GATA 9.39 3.11E-01 
BHLHE40 INTERPRO Fos transforming protein 9.02 5.67E-01 
BHLHE40 INTERPRO Zinc finger, GATA-type 9.02 5.67E-01 
BHLHE40 SMART HLH 2.73 5.55E+00 
CEBPB 

A549 

SMART BRLZ 8.65 8.42E-16 
CEBPB INTERPRO Basic-leucine zipper (bZIP) transcription factor 8.71 4.66E-15 
CEBPB INTERPRO bZIP transcription factor, bZIP-1 12.68 3.11E-13 
CEBPB INTERPRO Fos transforming protein 14.37 7.06E-02 
CEBPB INTERPRO Basic leucine zipper 7.19 4.83E-01 
CEBPB 

Gm12878 

INTERPRO bZIP transcription factor, bZIP-1 5.07 2.55E-07 
CEBPB SMART ETS 5.00 1.12E-06 
CEBPB INTERPRO Ets 5.05 1.47E-06 
CEBPB SMART BRLZ 3.07 6.97E-04 
CEBPB INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.10 9.22E-04 
CEBPB INTERPRO Winged helix repressor DNA-binding 2.46 9.27E-04 
CEBPB SMART IRF 5.33 3.05E-02 
CEBPB INTERPRO Interferon regulatory factor, conserved site 5.39 4.00E-02 
CEBPB INTERPRO Interferon regulatory factor 5.39 4.00E-02 
CEBPB SMART SAM_PNT 4.66 5.32E-01 
CEBPB INTERPRO Sterile alpha motif/pointed 4.72 7.02E-01 
CEBPB INTERPRO Interferon regulatory factor-3 5.39 1.02E+00 
CEBPB INTERPRO SMAD domain-like 5.39 1.02E+00 
CEBPB INTERPRO Sterile alpha motif-type 4.19 1.79E+00 
CEBPB INTERPRO Fos transforming protein 5.39 4.82E+00 
CEBPB 

H1hesc 

SMART BRLZ 7.33 2.20E-14 
CEBPB INTERPRO Basic-leucine zipper (bZIP) transcription factor 6.86 6.33E-13 
CEBPB INTERPRO bZIP transcription factor, bZIP-1 8.88 4.50E-09 
CEBPB INTERPRO Basic leucine zipper 6.29 2.08E-01 
CEBPB INTERPRO Fos transforming protein 10.78 2.50E-01 
CEBPB 

Helas3 

SMART BRLZ 5.92 2.11E-13 
CEBPB INTERPRO Basic-leucine zipper (bZIP) transcription factor 6.15 2.22E-13 
CEBPB INTERPRO bZIP transcription factor, bZIP-1 8.82 4.44E-13 
CEBPB INTERPRO Fos transforming protein 8.82 6.09E-01 
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CEBPB INTERPRO Basic leucine zipper 5.14 7.34E-01 
CEBPB INTERPRO Kelch related 8.82 4.62E+00 
CEBPB 

Hepg2 

SMART BRLZ 6.39 4.28E-06 
CEBPB INTERPRO Basic-leucine zipper (bZIP) transcription factor 6.65 5.78E-06 
CEBPB INTERPRO bZIP transcription factor, bZIP-1 6.95 1.19E-01 
CEBPB INTERPRO Basic leucine zipper 8.43 1.97E-01 
CEBPB 

Imr90 

INTERPRO Basic-leucine zipper (bZIP) transcription factor 10.29 5.28E-19 
CEBPB SMART BRLZ 9.47 1.45E-18 
CEBPB INTERPRO bZIP transcription factor, bZIP-1 14.26 2.82E-14 
CEBPB INTERPRO Basic leucine zipper 9.43 1.40E-02 
CEBPB INTERPRO Fos transforming protein 16.17 3.96E-02 
CEBPB INTERPRO Jun-like transcription factor 16.17 8.13E+00 
CEBPB INTERPRO Transcription factor Jun 16.17 8.13E+00 
CEBPB 

K562 

SMART BRLZ 5.41 6.28E-17 
CEBPB INTERPRO Basic-leucine zipper (bZIP) transcription factor 5.23 6.01E-16 
CEBPB INTERPRO bZIP transcription factor, bZIP-1 6.16 4.61E-10 
CEBPB SMART ZnF_GATA 6.38 1.60E+00 
CEBPB SMART POU 4.06 1.81E+00 
CEBPB INTERPRO Fos transforming protein 6.16 2.70E+00 
CEBPB INTERPRO Maf transcription factor 6.16 2.70E+00 
CEBPB INTERPRO Zinc finger, GATA-type 6.16 2.70E+00 
CEBPB INTERPRO POU-specific 3.92 3.25E+00 
CEBPB INTERPRO POU 3.92 3.25E+00 
CEBPB INTERPRO Basic leucine zipper 3.59 5.63E+00 
CEBPB INTERPRO DNA-binding RFX 5.13 6.97E+00 
CTCF 

A549 
INTERPRO Helix-loop-helix DNA-binding 6.63 2.93E-02 

CTCF SMART HLH 5.76 4.07E-02 
CTCF INTERPRO Basic helix-loop-helix dimerisation region bHLH 5.56 1.04E-01 
CTCF 

Gm12878 
INTERPRO Helix-loop-helix DNA-binding 8.95 1.59E-16 

CTCF INTERPRO Basic helix-loop-helix dimerisation region bHLH 7.87 1.02E-15 
CTCF SMART HLH 7.24 3.82E-15 
CTCF 

H1hesc 

SMART ZnF_C4 3.53 7.91E-01 
CTCF SMART HOLI 3.43 9.70E-01 
CTCF INTERPRO Zinc finger, nuclear hormone receptor-type 3.56 1.25E+00 
CTCF INTERPRO Steroid hormone receptor 3.56 1.25E+00 
CTCF INTERPRO Nuclear hormone receptor, ligand-binding 3.46 1.53E+00 
CTCF INTERPRO Nuclear hormone receptor, ligand-binding, core 3.46 1.53E+00 
CTCF INTERPRO Helix-loop-helix DNA-binding 3.73 5.50E+00 
CTCF SMART HLH 3.10 8.75E+00 
CTCF INTERPRO Zinc finger, NHR/GATA-type 2.92 9.71E+00 
CTCF Hct116 INTERPRO Helix-loop-helix DNA-binding 8.64 2.55E-17 
CTCF SMART HLH 7.57 7.93E-17 
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CTCF INTERPRO Basic helix-loop-helix dimerisation region bHLH 7.58 2.92E-16 
CTCF 

Hek293 
SMART HLH 5.62 5.59E-11 

CTCF INTERPRO Helix-loop-helix DNA-binding 6.09 5.65E-11 
CTCF INTERPRO Basic helix-loop-helix dimerisation region bHLH 5.36 4.27E-10 
CTCF 

Helas3 

INTERPRO Acute myeloid leukemia 1 protein (AML 1)/Runt 20.42 5.37E+00 
CTCF INTERPRO Runx inhibition 20.42 5.37E+00 
CTCF INTERPRO Acute myeloid leukemia 1 (AML 1)/Runt 20.42 5.37E+00 
CTCF INTERPRO Transcription factor, Runt-related, RUNX 20.42 5.37E+00 
CTCF 

Hepg2 

SMART ZnF_C4 3.12 4.52E-01 
CTCF SMART HOLI 3.03 5.83E-01 
CTCF INTERPRO Zinc finger, nuclear hormone receptor-type 2.84 1.86E+00 
CTCF INTERPRO Nuclear hormone receptor, ligand-binding, core 2.76 2.36E+00 
CTCF INTERPRO Nuclear hormone receptor, ligand-binding 2.76 2.36E+00 
CTCF INTERPRO Steroid hormone receptor 2.58 7.13E+00 
CTCF 

Huvec 

SMART ZnF_C4 4.17 1.70E-01 
CTCF SMART HOLI 4.06 2.11E-01 
CTCF INTERPRO Steroid hormone receptor 3.44 1.61E+00 
CTCF INTERPRO Zinc finger, nuclear hormone receptor-type 3.44 1.61E+00 
CTCF INTERPRO Nuclear hormone receptor, ligand-binding, core 3.34 1.96E+00 
CTCF INTERPRO Nuclear hormone receptor, ligand-binding 3.34 1.96E+00 

CTCF INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

8.92 5.60E+00 

CTCF 

Imr90 

SMART HLH 6.91 1.93E-01 

CTCF INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

18.48 4.79E-01 

CTCF INTERPRO Helix-loop-helix DNA-binding 6.40 6.98E-01 
CTCF INTERPRO Basic helix-loop-helix dimerisation region bHLH 5.36 1.64E+00 
CTCF INTERPRO E2F Family 16.63 8.12E+00 

CTCF 
K562 

INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

10.35 3.55E+00 

CTCF INTERPRO Transcription factor AP-2 15.52 9.88E+00 
CTCF INTERPRO Transcription factor AP-2, C-terminal 15.52 9.88E+00 
CTCF 

Mcf7 
SMART HLH 7.78 1.22E-19 

CTCF INTERPRO Helix-loop-helix DNA-binding 7.62 2.45E-18 
CTCF INTERPRO Basic helix-loop-helix dimerisation region bHLH 6.66 1.22E-16 
CTCF 

Sknshra 
INTERPRO Helix-loop-helix DNA-binding 7.64 1.46E-14 

CTCF SMART HLH 6.67 6.66E-14 
CTCF INTERPRO Basic helix-loop-helix dimerisation region bHLH 6.72 1.11E-13 
EP300 

A549 

SMART BRLZ 5.18 1.35E-11 
EP300 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.51 1.37E-09 
EP300 INTERPRO bZIP transcription factor, bZIP-1 5.71 4.28E-07 
EP300 INTERPRO Basic leucine zipper 4.31 6.16E-01 
EP300 INTERPRO Fos transforming protein 6.47 2.30E+00 
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EP300 INTERPRO DNA-binding RFX 5.39 6.01E+00 
EP300 

Gm12878 

INTERPRO bZIP transcription factor, bZIP-1 4.17 5.34E-07 
EP300 SMART BRLZ 2.49 1.20E-02 
EP300 INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.53 1.37E-02 
EP300 INTERPRO NF-kappa-B/Rel/dorsal 4.17 2.58E-01 
EP300 INTERPRO Rel homology 4.17 2.58E-01 
EP300 SMART IPT 3.28 2.00E+00 
EP300 INTERPRO Cell surface receptor IPT/TIG 3.34 2.48E+00 
EP300 INTERPRO Immunoglobulin-like fold 3.34 2.48E+00 
EP300 SMART IRF 3.59 2.56E+00 
EP300 INTERPRO Interferon regulatory factor, conserved site 3.65 3.20E+00 
EP300 INTERPRO Interferon regulatory factor 3.65 3.20E+00 
EP300 SMART ETS 2.56 3.90E+00 
EP300 INTERPRO Ets 2.61 4.76E+00 
EP300 

H1hesc 

INTERPRO bZIP transcription factor, bZIP-1 4.28 3.42E-05 
EP300 INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.79 5.64E-03 
EP300 SMART BRLZ 2.67 7.74E-03 
EP300 INTERPRO High mobility group, HMG1/HMG2 3.73 1.55E-01 
EP300 SMART HMG 3.57 1.61E-01 
EP300 INTERPRO Fos transforming protein 4.85 7.19E+00 
EP300 

Helas3 

SMART BRLZ 4.58 1.11E-11 
EP300 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.67 1.46E-11 
EP300 INTERPRO bZIP transcription factor, bZIP-1 5.80 2.68E-08 
EP300 INTERPRO Basic leucine zipper 5.13 6.42E-03 
EP300 SMART ZnF_GATA 6.05 2.14E+00 
EP300 INTERPRO Fos transforming protein 6.16 2.81E+00 
EP300 INTERPRO Zinc finger, GATA-type 6.16 2.81E+00 
EP300 

Hepg2 

INTERPRO Zinc finger, NHR/GATA-type 3.73 3.85E-05 
EP300 SMART HOLI 3.10 2.06E-02 
EP300 INTERPRO Steroid hormone receptor 3.20 2.46E-02 
EP300 INTERPRO Nuclear hormone receptor, ligand-binding, core 3.11 3.64E-02 
EP300 INTERPRO Nuclear hormone receptor, ligand-binding 3.11 3.64E-02 
EP300 SMART ZnF_C4 2.98 7.75E-02 
EP300 INTERPRO Vitamin D receptor 4.80 8.88E-02 
EP300 INTERPRO Zinc finger, nuclear hormone receptor-type 2.98 1.34E-01 
EP300 SMART ZnF_GATA 7.44 7.76E-01 
EP300 SMART BRLZ 2.70 8.85E-01 
EP300 INTERPRO Zinc finger, GATA-type 7.46 1.25E+00 
EP300 INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.71 1.48E+00 
EP300 INTERPRO bZIP transcription factor, bZIP-1 3.51 3.19E+00 
EP300 Sknsh SMART ZnF_GATA 5.17 3.91E+00 
EP300 INTERPRO Zinc finger, GATA-type 5.04 6.30E+00 



 254 

EP300 

T47d 

SMART BRLZ 3.93 4.52E-09 
EP300 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.71 3.99E-08 
EP300 INTERPRO bZIP transcription factor, bZIP-1 4.50 1.63E-05 
EP300 INTERPRO Basic leucine zipper 3.83 3.96E-01 
EP300 SMART ZnF_GATA 5.41 3.29E+00 
EP300 INTERPRO Zinc finger, GATA-type 5.11 6.02E+00 
EP300 INTERPRO Fos transforming protein 5.11 6.02E+00 
FOS 

Gm12878 
SMART HLH 4.83 1.55E-13 

FOS INTERPRO Basic helix-loop-helix dimerisation region bHLH 4.79 3.55E-13 
FOS INTERPRO Helix-loop-helix DNA-binding 4.83 1.83E-10 
FOS 

Helas3 

SMART BRLZ 3.25 1.08E-02 
FOS INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.94 7.07E-02 
FOS SMART ZnF_GATA 7.14 9.43E-01 
FOS INTERPRO Zinc finger, GATA-type 6.47 2.21E+00 
FOS INTERPRO DNA-binding RFX 5.39 5.79E+00 
FOS INTERPRO bZIP transcription factor, bZIP-1 3.04 7.45E+00 
FOS 

Huvec 

INTERPRO Ets 6.81 6.05E-10 
FOS SMART ETS 6.38 1.09E-09 
FOS INTERPRO Winged helix repressor DNA-binding 2.87 9.94E-05 
FOS INTERPRO Sterile alpha motif/pointed 6.81 6.79E-03 
FOS SMART SAM_PNT 6.38 7.34E-03 
FOS INTERPRO Sterile alpha motif-type 6.05 2.71E-02 
FOS INTERPRO Interferon regulatory factor 5.96 1.61E-01 
FOS INTERPRO Interferon regulatory factor, conserved site 5.96 1.61E-01 
FOS SMART IRF 5.58 1.62E-01 
FOS INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.48 3.35E+00 
FOS SMART BRLZ 2.32 3.92E+00 
FOS INTERPRO SMAD domain-like 5.67 4.73E+00 
FOS INTERPRO Interferon regulatory factor-3 5.67 4.73E+00 
FOS INTERPRO bZIP transcription factor, bZIP-1 3.20 5.49E+00 
FOS 

K562 
SMART BRLZ 4.06 1.02E-02 

FOS INTERPRO bZIP transcription factor, bZIP-1 5.27 5.02E-02 
FOS INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.62 7.52E-02 
FOS 

Mcf10a 

SMART BRLZ 4.56 1.90E-05 
FOS INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.76 8.38E-04 
FOS INTERPRO Basic leucine zipper 5.17 1.72E-01 
FOS INTERPRO DNA-binding RFX 6.47 2.89E+00 
FOS INTERPRO Winged helix repressor DNA-binding 2.04 5.48E+00 
GABPA 

A549 

INTERPRO bZIP transcription factor, bZIP-1 7.96 1.78E-09 
GABPA SMART BRLZ 4.84 1.40E-06 
GABPA INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.65 6.33E-06 
GABPA SMART SH2 9.39 3.40E-03 
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GABPA INTERPRO STAT transcription factor, all-alpha 9.02 7.22E-03 
GABPA INTERPRO SH2 motif 9.02 7.22E-03 
GABPA INTERPRO STAT transcription factor, DNA-binding 9.02 7.22E-03 
GABPA INTERPRO STAT transcription factor, core 9.02 7.22E-03 
GABPA INTERPRO STAT transcription factor, protein interaction 9.02 7.22E-03 

GABPA INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

9.02 7.22E-03 

GABPA INTERPRO EF-Hand type 7.90 2.66E-02 
GABPA INTERPRO Fos transforming protein 9.02 5.39E-01 
GABPA INTERPRO E2F Family 7.22 9.47E+00 
GABPA 

Gm12878 

SMART BRLZ 4.57 2.72E-07 
GABPA INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.56 5.77E-07 
GABPA INTERPRO bZIP transcription factor, bZIP-1 6.52 5.77E-07 
GABPA INTERPRO Fos transforming protein 7.92 1.01E+00 
GABPA 

H1hesc 

SMART SH2 9.92 2.66E-03 
GABPA INTERPRO Winged helix repressor DNA-binding 2.69 1.48E-02 
GABPA INTERPRO SH2 motif 8.08 1.52E-02 
GABPA INTERPRO STAT transcription factor, protein interaction 8.08 1.52E-02 
GABPA INTERPRO STAT transcription factor, all-alpha 8.08 1.52E-02 

GABPA INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

8.08 1.52E-02 

GABPA INTERPRO STAT transcription factor, core 8.08 1.52E-02 
GABPA INTERPRO STAT transcription factor, DNA-binding 8.08 1.52E-02 
GABPA SMART ETS 5.58 1.96E-02 
GABPA INTERPRO EF-Hand type 7.07 5.52E-02 
GABPA INTERPRO Ets 4.55 1.61E-01 
GABPA SMART DWA 9.92 2.23E+00 
GABPA INTERPRO DNA-binding RFX 6.74 2.40E+00 
GABPA SMART SAM_PNT 6.20 2.83E+00 

GABPA INTERPRO CTF transcription factor/nuclear factor 1, N-
terminal 

8.08 6.06E+00 

GABPA INTERPRO CTF transcription factor/nuclear factor 1, 
conserved site 

8.08 6.06E+00 

GABPA INTERPRO CTF transcription factor/nuclear factor 1 8.08 6.06E+00 
GABPA INTERPRO MAD homology 1, Dwarfin-type 8.08 6.06E+00 
GABPA INTERPRO Sterile alpha motif/pointed 5.05 9.00E+00 
GABPA 

Helas3 

INTERPRO bZIP transcription factor, bZIP-1 7.99 2.42E-08 
GABPA SMART BRLZ 5.41 1.50E-07 
GABPA INTERPRO Basic-leucine zipper (bZIP) transcription factor 5.00 1.63E-06 
GABPA SMART SH2 10.50 1.58E-03 

GABPA INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

9.70 4.49E-03 

GABPA INTERPRO STAT transcription factor, DNA-binding 9.70 4.49E-03 
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GABPA INTERPRO STAT transcription factor, core 9.70 4.49E-03 
GABPA INTERPRO SH2 motif 9.70 4.49E-03 
GABPA INTERPRO STAT transcription factor, all-alpha 9.70 4.49E-03 
GABPA INTERPRO STAT transcription factor, protein interaction 9.70 4.49E-03 
GABPA INTERPRO EF-Hand type 8.49 1.66E-02 
GABPA INTERPRO Fos transforming protein 9.70 3.96E-01 
GABPA INTERPRO E2F Family 7.76 7.64E+00 
GABPA 

Hepg2 

SMART SH2 10.82 1.53E-03 
GABPA INTERPRO STAT transcription factor, all-alpha 9.70 4.79E-03 
GABPA INTERPRO SH2 motif 9.70 4.79E-03 
GABPA INTERPRO STAT transcription factor, protein interaction 9.70 4.79E-03 

GABPA INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

9.70 4.79E-03 

GABPA INTERPRO STAT transcription factor, DNA-binding 9.70 4.79E-03 
GABPA INTERPRO STAT transcription factor, core 9.70 4.79E-03 
GABPA INTERPRO EF-Hand type 8.49 1.77E-02 
GABPA SMART BRLZ 3.28 7.25E-01 
GABPA INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.94 2.74E+00 
GABPA INTERPRO bZIP transcription factor, bZIP-1 3.99 3.84E+00 
GABPA SMART ETS 4.06 6.25E+00 
GABPA 

K562 

SMART SH2 8.11 1.09E-02 
GABPA INTERPRO SH2 motif 7.46 2.66E-02 

GABPA INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

7.46 2.66E-02 

GABPA INTERPRO STAT transcription factor, core 7.46 2.66E-02 
GABPA INTERPRO STAT transcription factor, protein interaction 7.46 2.66E-02 
GABPA INTERPRO STAT transcription factor, all-alpha 7.46 2.66E-02 
GABPA INTERPRO STAT transcription factor, DNA-binding 7.46 2.66E-02 
GABPA INTERPRO EF-Hand type 6.53 9.57E-02 
GABPA SMART ZnF_GATA 8.11 6.51E-01 
GABPA INTERPRO Zinc finger, GATA-type 7.46 1.29E+00 
GABPA SMART ETS 3.55 5.18E+00 
GABPA SMART BRLZ 2.46 7.32E+00 
GABPA INTERPRO Winged helix repressor DNA-binding 1.96 8.33E+00 
JUN 

Gm12878 

SMART ETS 4.81 1.92E-05 
JUN INTERPRO Ets 4.65 4.68E-05 
JUN SMART IRF 5.49 2.47E-02 
JUN INTERPRO Interferon regulatory factor 5.32 4.52E-02 
JUN INTERPRO Interferon regulatory factor, conserved site 5.32 4.52E-02 
JUN INTERPRO Winged helix repressor DNA-binding 2.14 9.65E-02 
JUN SMART SH2 5.49 1.31E-01 
JUN INTERPRO SH2 motif 5.32 2.29E-01 
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JUN INTERPRO STAT transcription factor, DNA-binding 5.32 2.29E-01 
JUN INTERPRO STAT transcription factor, core 5.32 2.29E-01 
JUN INTERPRO STAT transcription factor, protein interaction 5.32 2.29E-01 
JUN INTERPRO STAT transcription factor, all-alpha 5.32 2.29E-01 

JUN INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

5.32 2.29E-01 

JUN INTERPRO EF-Hand type 4.65 7.79E-01 
JUN INTERPRO Interferon regulatory factor-3 5.32 1.12E+00 
JUN INTERPRO SMAD domain-like 5.32 1.12E+00 
JUN SMART SAM_PNT 4.12 4.55E+00 
JUN INTERPRO Maf transcription factor 5.32 5.20E+00 
JUN INTERPRO Sterile alpha motif/pointed 3.99 7.42E+00 
JUN 

H1hesc 

INTERPRO Basic-leucine zipper (bZIP) transcription factor 5.53 1.13E-06 
JUN SMART BRLZ 5.25 1.46E-06 
JUN INTERPRO bZIP transcription factor, bZIP-1 6.04 1.61E-02 
JUN INTERPRO Basic leucine zipper 6.66 1.50E-01 
JUN 

Helas3 

INTERPRO Basic-leucine zipper (bZIP) transcription factor 8.55 9.17E-11 
JUN SMART BRLZ 7.87 1.63E-10 
JUN INTERPRO Basic leucine zipper 11.76 2.68E-04 
JUN INTERPRO bZIP transcription factor, bZIP-1 7.26 8.58E-02 
JUN INTERPRO CCAAT/enhancer-binding 17.64 6.71E+00 
JUN 

Hepg2 

INTERPRO Basic-leucine zipper (bZIP) transcription factor 6.60 2.77E-14 
JUN SMART BRLZ 6.22 6.66E-14 
JUN INTERPRO bZIP transcription factor, bZIP-1 6.12 4.97E-04 
JUN INTERPRO Basic leucine zipper 6.31 3.87E-02 
JUN INTERPRO Kelch related 9.46 3.61E+00 
JUN INTERPRO Maf transcription factor 7.57 8.20E+00 
JUN 

Huvec 

SMART ETS 8.37 1.87E-10 
JUN INTERPRO Ets 8.66 2.23E-10 
JUN SMART SAM_PNT 7.81 1.61E-02 
JUN INTERPRO Sterile alpha motif/pointed 8.08 2.26E-02 
JUN INTERPRO Winged helix repressor DNA-binding 2.76 3.75E-02 
JUN INTERPRO Sterile alpha motif-type 7.19 6.24E-02 
JUN SMART BRLZ 2.70 2.75E+00 
JUN INTERPRO Nuclear factor of activated T cells (NFAT) 2.80 3.71E+00 
JUN INTERPRO Basic-leucine zipper (bZIP) transcription factor 9.24 3.87E+00 

JUN INTERPRO Nuclear factor of activated T cells (NFAT), 
subgroup 

9.24 3.87E+00 

JUN INTERPRO bZIP transcription factor, bZIP-1 3.80 4.67E+00 
JUN 

K562 

INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.78 8.48E-04 
JUN SMART BRLZ 4.54 9.71E-04 
JUN SMART ZnF_GATA 11.52 1.32E-01 
JUN INTERPRO Zinc finger, GATA-type 12.13 1.54E-01 
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JUN INTERPRO bZIP transcription factor, bZIP-1 4.99 1.02E+00 
JUN INTERPRO Basic leucine zipper 5.05 9.75E+00 
JUND 

Gm12878 

SMART ETS 6.04 5.72E-06 
JUND INTERPRO Ets 5.95 1.23E-05 
JUND INTERPRO Winged helix repressor DNA-binding 3.08 1.64E-05 
JUND SMART BRLZ 3.61 8.62E-04 
JUND INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.55 1.99E-03 
JUND SMART IRF 7.44 2.17E-03 
JUND INTERPRO Interferon regulatory factor 7.32 3.91E-03 
JUND INTERPRO Interferon regulatory factor, conserved site 7.32 3.91E-03 
JUND INTERPRO bZIP transcription factor, bZIP-1 4.31 7.62E-02 
JUND INTERPRO Interferon regulatory factor-3 7.32 1.98E-01 
JUND INTERPRO SMAD domain-like 7.32 1.98E-01 
JUND SMART SAM_PNT 4.65 7.97E+00 
JUND 

H1hesc 

INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.55 3.63E-02 
JUND SMART BRLZ 3.35 4.73E-02 
JUND INTERPRO POU-specific 5.74 3.40E-01 
JUND INTERPRO POU 5.74 3.40E-01 
JUND SMART POU 5.41 3.42E-01 
JUND INTERPRO bZIP transcription factor, bZIP-1 4.25 8.84E-01 
JUND INTERPRO Helix-loop-helix DNA-binding 3.12 3.31E+00 
JUND 

Helas3 

INTERPRO Basic-leucine zipper (bZIP) transcription factor 8.33 1.99E-11 
JUND SMART BRLZ 7.66 4.12E-11 
JUND INTERPRO Basic leucine zipper 12.13 1.55E-05 
JUND INTERPRO bZIP transcription factor, bZIP-1 6.66 1.55E-01 
JUND INTERPRO CCAAT/enhancer-binding 16.17 8.19E+00 
JUND 

Hepg2 

SMART HMG 7.01 2.14E-06 
JUND INTERPRO High mobility group, HMG1/HMG2 6.89 4.53E-06 
JUND SMART BRLZ 2.99 1.55E-01 
JUND INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.94 3.11E-01 
JUND INTERPRO Basic leucine zipper 4.35 1.87E+00 
JUND INTERPRO DNA-binding RFX 6.22 3.16E+00 
JUND 

K562 

SMART BRLZ 3.61 2.46E-03 
JUND INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.53 5.88E-03 
JUND SMART ZnF_GATA 7.93 6.12E-01 
JUND SMART ETS 3.97 8.71E-01 
JUND INTERPRO Zinc finger, GATA-type 7.76 1.02E+00 
JUND INTERPRO Ets 3.88 1.56E+00 
JUND INTERPRO bZIP transcription factor, bZIP-1 3.65 2.38E+00 
JUND SMART SAM_PNT 4.96 6.30E+00 
JUND 

Sknsh 
SMART ETS 5.12 7.07E-06 

JUND SMART BRLZ 3.55 1.33E-05 
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JUND INTERPRO Ets 4.99 1.69E-05 
JUND INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.46 4.07E-05 
JUND INTERPRO bZIP transcription factor, bZIP-1 4.36 9.51E-04 
JUND SMART SH2 5.85 7.99E-02 
JUND INTERPRO STAT transcription factor, protein interaction 5.71 1.44E-01 
JUND INTERPRO STAT transcription factor, all-alpha 5.71 1.44E-01 
JUND INTERPRO SH2 motif 5.71 1.44E-01 

JUND INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

5.71 1.44E-01 

JUND INTERPRO STAT transcription factor, core 5.71 1.44E-01 
JUND INTERPRO STAT transcription factor, DNA-binding 5.71 1.44E-01 
JUND INTERPRO EF-Hand type 4.99 4.95E-01 
JUND SMART SAM_PNT 4.39 3.06E+00 
JUND INTERPRO Sterile alpha motif/pointed 4.28 5.20E+00 
JUND INTERPRO Sterile alpha motif-type 3.80 9.91E+00 
MAFK 

H1hesc 

SMART BRLZ 7.46 1.11E-13 
MAFK INTERPRO Basic-leucine zipper (bZIP) transcription factor 7.13 2.12E-12 
MAFK INTERPRO bZIP transcription factor, bZIP-1 8.99 5.06E-08 
MAFK INTERPRO Kelch related 11.76 1.83E+00 
MAFK INTERPRO Fos transforming protein 9.41 4.28E+00 
MAFK INTERPRO Maf transcription factor 9.41 4.28E+00 

MAFK INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

7.84 7.94E+00 

MAFK 

Helas3 

INTERPRO Basic-leucine zipper (bZIP) transcription factor 5.75 1.25E-11 
MAFK SMART BRLZ 5.41 2.35E-11 
MAFK INTERPRO bZIP transcription factor, bZIP-1 6.59 4.11E-06 
MAFK SMART POU 5.16 3.81E-01 
MAFK INTERPRO POU 5.49 4.44E-01 
MAFK INTERPRO POU-specific 5.49 4.44E-01 
MAFK INTERPRO Kelch related 8.62 4.80E+00 
MAFK INTERPRO Basic leucine zipper 4.31 6.12E+00 
MAFK 

Hepg2 

INTERPRO Basic-leucine zipper (bZIP) transcription factor 5.60 1.02E-09 
MAFK SMART BRLZ 5.28 1.63E-09 
MAFK INTERPRO bZIP transcription factor, bZIP-1 6.52 3.58E-05 
MAFK SMART POU 5.54 2.40E-01 
MAFK INTERPRO POU 5.88 2.84E-01 
MAFK INTERPRO POU-specific 5.88 2.84E-01 
MAFK INTERPRO Fos transforming protein 7.39 8.55E+00 
MAFK INTERPRO Maf transcription factor 7.39 8.55E+00 
MAFK 

Imr90 
INTERPRO Basic-leucine zipper (bZIP) transcription factor 7.35 5.82E-18 

MAFK SMART BRLZ 6.76 2.73E-17 
MAFK INTERPRO bZIP transcription factor, bZIP-1 7.99 2.33E-08 
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MAFK INTERPRO Basic leucine zipper 6.47 3.11E-02 
MAFK INTERPRO Kelch related 9.70 3.23E+00 
MAFK INTERPRO Fos transforming protein 7.76 7.36E+00 
MAFK INTERPRO Maf transcription factor 7.76 7.36E+00 
MAFK 

K562 

INTERPRO Basic-leucine zipper (bZIP) transcription factor 6.19 8.68E-11 
MAFK SMART BRLZ 5.69 2.59E-10 
MAFK INTERPRO bZIP transcription factor, bZIP-1 7.81 3.89E-07 
MAFK INTERPRO Kelch related 10.21 2.83E+00 
MAFK INTERPRO Fos transforming protein 8.17 6.50E+00 
MAFK INTERPRO Maf transcription factor 8.17 6.50E+00 
MAFK SMART ETS 3.52 9.81E+00 
MAZ 

Gm12878 

INTERPRO bZIP transcription factor, bZIP-1 3.99 5.62E-04 
MAZ SMART BRLZ 2.85 2.30E-03 
MAZ INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.79 5.60E-03 
MAZ SMART IRF 4.96 4.77E-02 
MAZ INTERPRO Interferon regulatory factor 4.85 8.43E-02 
MAZ INTERPRO Interferon regulatory factor, conserved site 4.85 8.43E-02 
MAZ SMART ETS 3.41 1.17E-01 
MAZ INTERPRO Ets 3.33 2.21E-01 
MAZ INTERPRO Winged helix repressor DNA-binding 1.96 4.72E-01 
MAZ INTERPRO SMAD domain-like 4.85 1.71E+00 
MAZ INTERPRO Interferon regulatory factor-3 4.85 1.71E+00 
MAZ SMART ZnF_C2H2 1.81 3.70E+00 
MAZ SMART SAM_PNT 3.72 6.68E+00 
MAZ INTERPRO Fos transforming protein 4.85 7.14E+00 
MAZ INTERPRO Zinc finger, C2H2-like 1.77 7.50E+00 
MAZ INTERPRO Zinc finger, C2H2-type 1.74 9.39E+00 
MAZ 

Helas3 

SMART BRLZ 3.50 1.37E-06 
MAZ INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.59 1.42E-06 
MAZ INTERPRO bZIP transcription factor, bZIP-1 4.75 6.79E-06 
MAZ SMART ETS 4.27 5.52E-04 
MAZ INTERPRO Ets 4.38 6.35E-04 
MAZ SMART ZnF_C2H2 1.92 1.71E+00 
MAZ INTERPRO Zinc finger, C2H2-like 1.97 1.93E+00 
MAZ INTERPRO Basic leucine zipper 3.59 1.98E+00 
MAZ INTERPRO Zinc finger, C2H2-type 1.93 2.49E+00 
MAZ INTERPRO Fos transforming protein 5.39 4.59E+00 
MAZ SMART SAM_PNT 3.94 4.97E+00 
MAZ INTERPRO Sterile alpha motif/pointed 4.04 6.50E+00 
MAZ 

Hepg2 
INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.25 4.39E-05 

MAZ SMART BRLZ 3.16 4.66E-05 
MAZ INTERPRO bZIP transcription factor, bZIP-1 4.20 2.81E-04 



 261 

MAZ INTERPRO Zinc finger, C2H2-like 2.16 1.28E-01 
MAZ SMART ZnF_C2H2 2.10 1.31E-01 
MAZ INTERPRO Zinc finger, C2H2-type 2.12 1.80E-01 
MAZ INTERPRO Zinc finger, C2H2-type/integrase, DNA-binding 2.02 1.36E+00 
MAZ INTERPRO Basic leucine zipper 3.40 2.88E+00 
MAZ INTERPRO Fos transforming protein 5.11 5.84E+00 
MAZ 

K562 

INTERPRO bZIP transcription factor, bZIP-1 5.43 8.66E-07 
MAZ INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.73 8.32E-06 
MAZ SMART BRLZ 3.61 8.66E-06 
MAZ INTERPRO Zinc finger, C2H2-like 2.49 1.73E-02 
MAZ SMART ZnF_C2H2 2.40 1.75E-02 
MAZ INTERPRO Zinc finger, C2H2-type 2.44 2.45E-02 
MAZ INTERPRO Zinc finger, C2H2-type/integrase, DNA-binding 2.31 3.21E-01 
MAZ SMART ETS 3.35 1.02E+00 
MAZ INTERPRO Ets 3.46 1.26E+00 
MAZ SMART ZnF_GATA 5.95 1.97E+00 
MAZ INTERPRO Zinc finger, GATA-type 6.16 2.66E+00 
MAZ INTERPRO Fos transforming protein 6.16 2.66E+00 
MXI1 

Gm12878 

INTERPRO bZIP transcription factor, bZIP-1 4.68 9.82E-07 
MXI1 SMART BRLZ 3.39 1.06E-05 
MXI1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.17 7.82E-05 
MXI1 INTERPRO Winged helix repressor DNA-binding 2.18 2.50E-02 
MXI1 SMART IRF 4.66 5.18E-01 
MXI1 INTERPRO Interferon regulatory factor, conserved site 4.35 1.16E+00 
MXI1 INTERPRO Interferon regulatory factor 4.35 1.16E+00 
MXI1 SMART ETS 3.00 2.60E+00 
MXI1 SMART HLH 2.23 3.51E+00 
MXI1 INTERPRO Ets 2.80 6.18E+00 
MXI1 INTERPRO Fos transforming protein 4.97 6.79E+00 
MXI1 INTERPRO Basic helix-loop-helix dimerisation region bHLH 2.09 9.75E+00 
MXI1 

H1hesc 

SMART HLH 3.16 4.04E-02 
MXI1 INTERPRO Basic helix-loop-helix dimerisation region bHLH 2.83 2.44E-01 
MXI1 SMART BRLZ 2.76 4.36E-01 
MXI1 INTERPRO bZIP transcription factor, bZIP-1 3.31 1.96E+00 
MXI1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.47 2.09E+00 
MXI1 SMART DWA 7.00 6.82E+00 
MXI1 INTERPRO DNA-binding RFX 5.22 6.83E+00 
MXI1 

Helas3 

SMART BRLZ 4.44 9.12E-10 
MXI1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.76 1.32E-07 
MXI1 INTERPRO bZIP transcription factor, bZIP-1 5.07 2.56E-07 
MXI1 INTERPRO Fos transforming protein 5.39 4.84E+00 
MXI1 Hepg2 INTERPRO bZIP transcription factor, bZIP-1 6.30 6.54E-09 
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MXI1 SMART BRLZ 4.54 1.40E-08 
MXI1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.26 1.33E-07 
MXI1 SMART HLH 2.76 7.97E-01 
MXI1 INTERPRO Fos transforming protein 6.69 2.02E+00 
MXI1 INTERPRO Basic helix-loop-helix dimerisation region bHLH 2.59 2.31E+00 
MXI1 

K562 

INTERPRO bZIP transcription factor, bZIP-1 4.50 1.62E-05 
MXI1 SMART ETS 4.46 5.11E-05 
MXI1 INTERPRO Ets 4.47 8.04E-05 
MXI1 SMART BRLZ 2.94 1.45E-03 
MXI1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.94 2.39E-03 
MXI1 SMART HLH 2.47 3.91E-01 
MXI1 INTERPRO Basic helix-loop-helix dimerisation region bHLH 2.47 6.02E-01 
MXI1 INTERPRO Winged helix repressor DNA-binding 1.97 6.44E-01 
MXI1 SMART SAM_PNT 4.46 6.62E-01 
MXI1 INTERPRO Sterile alpha motif/pointed 4.47 9.75E-01 
MXI1 INTERPRO Sterile alpha motif-type 3.97 2.46E+00 
MXI1 SMART ZnF_GATA 5.10 4.14E+00 
MXI1 INTERPRO Zinc finger, GATA-type 5.11 6.00E+00 
MXI1 INTERPRO Fos transforming protein 5.11 6.00E+00 
MYC 

A549 

SMART SH2 7.76 1.40E-02 
MYC INTERPRO STAT transcription factor, protein interaction 6.81 4.86E-02 
MYC INTERPRO STAT transcription factor, DNA-binding 6.81 4.86E-02 

MYC INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

6.81 4.86E-02 

MYC INTERPRO SH2 motif 6.81 4.86E-02 
MYC INTERPRO STAT transcription factor, core 6.81 4.86E-02 
MYC INTERPRO STAT transcription factor, all-alpha 6.81 4.86E-02 
MYC INTERPRO EF-Hand type 5.96 1.72E-01 
MYC SMART BRLZ 2.35 9.63E+00 
MYC 

Gm12878 

SMART BRLZ 4.19 1.47E-06 
MYC INTERPRO bZIP transcription factor, bZIP-1 5.51 6.41E-06 
MYC INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.85 1.61E-05 
MYC INTERPRO Fos transforming protein 6.69 1.94E+00 
MYC SMART HLH 2.59 2.48E+00 
MYC SMART ETS 3.19 7.74E+00 
MYC INTERPRO Basic helix-loop-helix dimerisation region bHLH 2.37 7.87E+00 
MYC 

H1hesc 

SMART HMG 6.39 6.61E-04 
MYC INTERPRO High mobility group, HMG1/HMG2 5.85 2.38E-03 
MYC INTERPRO Basic leucine zipper 4.44 1.72E+00 
MYC INTERPRO DNA-binding RFX 6.34 3.00E+00 
MYC SMART HLH 2.68 3.57E+00 
MYC SMART BRLZ 2.52 5.62E+00 
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MYC INTERPRO Basic helix-loop-helix dimerisation region bHLH 2.45 9.87E+00 
MYC 

Helas3 

SMART BRLZ 4.81 1.74E-11 
MYC INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.41 4.33E-10 
MYC INTERPRO bZIP transcription factor, bZIP-1 6.06 6.33E-10 
MYC INTERPRO Fos transforming protein 6.06 2.95E+00 
MYC INTERPRO Basic leucine zipper 3.54 6.27E+00 
MYC INTERPRO DNA-binding RFX 5.05 7.59E+00 
MYC 

Hepg2 

INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.23 7.03E-09 
MYC SMART BRLZ 3.95 1.88E-08 
MYC INTERPRO Basic leucine zipper 5.56 3.60E-04 
MYC INTERPRO bZIP transcription factor, bZIP-1 4.28 5.51E-03 
MYC INTERPRO Ets 3.41 1.47E+00 
MYC SMART ETS 3.19 1.58E+00 
MYC SMART SAM_PNT 4.25 3.56E+00 
MYC INTERPRO Sterile alpha motif/pointed 4.55 3.84E+00 
MYC INTERPRO Sterile alpha motif-type 4.04 7.44E+00 
MYC 

Huvec 

SMART BRLZ 4.26 5.00E-10 
MYC INTERPRO bZIP transcription factor, bZIP-1 5.79 1.44E-09 
MYC INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.21 1.45E-09 
MYC SMART ETS 5.49 2.29E-07 
MYC INTERPRO Ets 5.43 4.64E-07 
MYC SMART SAM_PNT 5.12 2.66E-01 
MYC INTERPRO Sterile alpha motif/pointed 5.07 4.37E-01 
MYC INTERPRO Sterile alpha motif-type 4.50 1.13E+00 
MYC INTERPRO Fos transforming protein 5.79 3.48E+00 
MYC INTERPRO Winged helix repressor DNA-binding 1.83 6.81E+00 
MYC 

K562 

SMART BRLZ 4.20 2.16E-11 
MYC INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.25 3.38E-11 
MYC INTERPRO bZIP transcription factor, bZIP-1 5.07 2.49E-07 
MYC SMART ETS 4.33 4.76E-04 
MYC INTERPRO Ets 4.38 6.53E-04 
MYC INTERPRO Basic leucine zipper 4.04 2.52E-01 
MYC SMART ZnF_GATA 5.33 3.38E+00 
MYC INTERPRO Fos transforming protein 5.39 4.72E+00 
MYC INTERPRO Zinc finger, GATA-type 5.39 4.72E+00 
MYC SMART SAM_PNT 4.00 4.82E+00 
MYC INTERPRO Winged helix repressor DNA-binding 1.80 6.43E+00 
MYC INTERPRO Sterile alpha motif/pointed 4.04 6.68E+00 
MYC 

Mcf7 

INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.18 1.92E-07 
MYC SMART BRLZ 4.06 1.99E-07 
MYC INTERPRO bZIP transcription factor, bZIP-1 4.64 2.21E-03 
MYC SMART HLH 2.88 1.23E-01 
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MYC INTERPRO Basic helix-loop-helix dimerisation region bHLH 2.97 1.34E-01 
MYC INTERPRO Maf transcription factor 6.58 2.13E+00 
MYC INTERPRO Helix-loop-helix DNA-binding 2.53 8.16E+00 

NRF1 Gm12878 INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

8.34 7.22E+00 

NRF1 

H1hesc 

INTERPRO Winged helix repressor DNA-binding 2.43 7.50E-01 
NRF1 SMART HLH 3.57 8.40E-01 
NRF1 INTERPRO DNA-binding RFX 7.70 1.41E+00 

NRF1 INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

7.70 1.41E+00 

NRF1 INTERPRO E2F Family 7.39 9.27E+00 
NRF1 INTERPRO Basic helix-loop-helix dimerisation region bHLH 2.68 9.56E+00 

NRF1 Helas3 INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

11.76 2.40E+00 

NRF1 

Hepg2 

SMART DWA 23.80 1.03E-01 

NRF1 INTERPRO CTF transcription factor/nuclear factor 1, 
conserved site 

18.48 4.12E-01 

NRF1 INTERPRO CTF transcription factor/nuclear factor 1 18.48 4.12E-01 

NRF1 INTERPRO CTF transcription factor/nuclear factor 1, N-
terminal 

18.48 4.12E-01 

NRF1 INTERPRO MAD homology 1, Dwarfin-type 18.48 4.12E-01 

NRF1 INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

12.32 1.91E+00 

NRF1 

K562 

SMART BRLZ 5.41 7.22E-05 
NRF1 INTERPRO bZIP transcription factor, bZIP-1 7.61 3.25E-04 
NRF1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 5.09 3.56E-04 
NRF1 INTERPRO Fos transforming protein 10.35 3.32E+00 

NRF1 INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

8.62 6.21E+00 

REST 

A549 

INTERPRO bZIP transcription factor, bZIP-1 9.87 1.62E-12 
REST INTERPRO Basic-leucine zipper (bZIP) transcription factor 6.36 4.48E-11 
REST SMART BRLZ 6.01 6.72E-11 
REST INTERPRO Fos transforming protein 10.49 2.88E-01 
REST SMART FH 4.58 3.03E+00 
REST INTERPRO Transcription factor, fork head 4.84 3.73E+00 
REST INTERPRO Transcription factor, fork head, conserved site 4.84 3.73E+00 
REST 

Gm12878 

INTERPRO Nuclear hormone receptor, ligand-binding, core 4.49 5.54E-02 
REST INTERPRO Nuclear hormone receptor, ligand-binding 4.49 5.54E-02 
REST SMART HOLI 4.13 6.77E-02 
REST INTERPRO Zinc finger, nuclear hormone receptor-type 4.16 3.33E-01 
REST INTERPRO Steroid hormone receptor 4.16 3.33E-01 
REST SMART ZnF_C4 3.83 3.72E-01 
REST SMART DWA 14.88 5.18E-01 
REST INTERPRO Zinc finger, NHR/GATA-type 3.83 6.17E-01 
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REST INTERPRO CTF transcription factor/nuclear factor 1, N-
terminal 

16.17 6.47E-01 

REST INTERPRO MAD homology 1, Dwarfin-type 16.17 6.47E-01 
REST INTERPRO CTF transcription factor/nuclear factor 1 16.17 6.47E-01 

REST INTERPRO CTF transcription factor/nuclear factor 1, 
conserved site 

16.17 6.47E-01 

REST 

Helas3 

INTERPRO Zinc finger, nuclear hormone receptor-type 4.75 1.07E-01 
REST SMART ZnF_C4 4.37 1.24E-01 
REST INTERPRO Nuclear hormone receptor, ligand-binding, core 4.62 1.33E-01 
REST INTERPRO Nuclear hormone receptor, ligand-binding 4.62 1.33E-01 
REST SMART HOLI 4.25 1.54E-01 
REST INTERPRO Zinc finger, NHR/GATA-type 4.38 2.03E-01 
REST INTERPRO Steroid hormone receptor 4.22 8.22E-01 
REST INTERPRO Vitamin D receptor 6.60 3.44E+00 
REST 

K562 

SMART ZnF_GATA 14.88 3.48E-02 
REST INTERPRO Zinc finger, GATA-type 15.52 5.15E-02 
REST INTERPRO bZIP transcription factor, bZIP-1 6.39 2.17E-01 
REST SMART BRLZ 4.06 2.27E-01 
REST INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.23 3.05E-01 
REST INTERPRO Fos transforming protein 12.42 1.80E+00 
REST INTERPRO Transcription factor Jun 15.52 9.54E+00 
REST INTERPRO Jun-like transcription factor 15.52 9.54E+00 
REST INTERPRO Transcription factor, GATA-1/2/3 15.52 9.54E+00 
REST 

Panc1 
INTERPRO Helix-loop-helix DNA-binding 5.22 6.85E-01 

REST SMART HLH 4.24 1.33E+00 
REST INTERPRO Basic helix-loop-helix dimerisation region bHLH 4.38 1.87E+00 
REST 

Pfsk1 

INTERPRO Zinc finger, nuclear hormone receptor-type 3.41 3.66E+00 
REST INTERPRO Steroid hormone receptor 3.41 3.66E+00 
REST SMART ZnF_C4 3.14 3.95E+00 
REST INTERPRO Nuclear hormone receptor, ligand-binding 3.32 4.33E+00 
REST INTERPRO Nuclear hormone receptor, ligand-binding, core 3.32 4.33E+00 
REST SMART HOLI 3.05 4.66E+00 
REST INTERPRO Zinc finger, NHR/GATA-type 3.14 5.95E+00 
REST 

Sknsh 

INTERPRO DNA-binding RFX 6.74 2.42E+00 
REST SMART DWA 8.71 3.24E+00 
REST SMART BRLZ 2.64 3.89E+00 
REST INTERPRO MAD homology 1, Dwarfin-type 8.08 6.12E+00 

REST INTERPRO CTF transcription factor/nuclear factor 1, 
conserved site 

8.08 6.12E+00 

REST INTERPRO CTF transcription factor/nuclear factor 1 8.08 6.12E+00 

REST INTERPRO CTF transcription factor/nuclear factor 1, N-
terminal 

8.08 6.12E+00 

REST INTERPRO Helix-loop-helix DNA-binding 2.80 7.25E+00 
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REST SMART ZnF_GATA 6.97 7.34E+00 
REST SMART HLH 2.53 9.00E+00 
REST INTERPRO bZIP transcription factor, bZIP-1 3.33 9.88E+00 
REST 

U87 

INTERPRO bZIP transcription factor, bZIP-1 8.49 2.99E-11 
REST SMART BRLZ 5.85 1.45E-10 
REST INTERPRO Basic-leucine zipper (bZIP) transcription factor 5.47 1.92E-09 
REST INTERPRO Fos transforming protein 9.02 5.60E-01 
REST INTERPRO DNA-binding RFX 7.52 1.54E+00 
RFX5 

A549 

INTERPRO bZIP transcription factor, bZIP-1 9.9 1.6E-12 
RFX5 INTERPRO Basic-leucine zipper (bZIP) transcription factor 6.4 4.5E-11 
RFX5 SMART BRLZ 6 6.7E-11 
RFX5 INTERPRO Fos transforming protein 10.5 0.29 
RFX5 INTERPRO Transcription factor, fork head, conserved site 4.8 3.7 
RFX5 INTERPRO Transcription factor, fork head 4.8 3.7 
RFX5 SMART FH 4.6 3 
RFX5 

Gm12878 

SMART BRLZ 3.79 9.00E-07 
RFX5 INTERPRO bZIP transcription factor, bZIP-1 5.35 1.16E-06 
RFX5 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.86 1.17E-06 
RFX5 SMART ETS 4.83 1.14E-04 
RFX5 INTERPRO Ets 4.93 1.48E-04 
RFX5 SMART SAM_PNT 4.46 2.78E+00 
RFX5 INTERPRO Fos transforming protein 6.06 2.96E+00 
RFX5 INTERPRO Sterile alpha motif/pointed 4.55 3.86E+00 
RFX5 SMART HLH 2.30 4.06E+00 
RFX5 INTERPRO Basic helix-loop-helix dimerisation region bHLH 2.35 5.40E+00 
RFX5 INTERPRO Sterile alpha motif-type 4.04 7.47E+00 
RFX5 

H1hesc 

INTERPRO bZIP transcription factor, bZIP-1 6.39 7.68E-07 
RFX5 SMART BRLZ 4.53 1.37E-06 
RFX5 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.23 9.97E-06 
RFX5 INTERPRO Fos transforming protein 7.76 1.09E+00 
RFX5 SMART DWA 8.30 3.91E+00 

RFX5 INTERPRO CTF transcription factor/nuclear factor 1, 
conserved site 

7.76 7.11E+00 

RFX5 INTERPRO MAD homology 1, Dwarfin-type 7.76 7.11E+00 

RFX5 INTERPRO CTF transcription factor/nuclear factor 1, N-
terminal 

7.76 7.11E+00 

RFX5 INTERPRO CTF transcription factor/nuclear factor 1 7.76 7.11E+00 
RFX5 

Helas3 

SMART BRLZ 5.03 5.84E-09 
RFX5 INTERPRO bZIP transcription factor, bZIP-1 6.85 2.30E-08 
RFX5 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.70 6.36E-08 
RFX5 SMART SH2 8.30 8.04E-03 
RFX5 INTERPRO SH2 motif 7.76 2.03E-02 
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RFX5 INTERPRO STAT transcription factor, DNA-binding 7.76 2.03E-02 
RFX5 INTERPRO STAT transcription factor, core 7.76 2.03E-02 
RFX5 INTERPRO STAT transcription factor, protein interaction 7.76 2.03E-02 
RFX5 INTERPRO STAT transcription factor, all-alpha 7.76 2.03E-02 

RFX5 INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

7.76 2.03E-02 

RFX5 INTERPRO EF-Hand type 6.79 7.34E-02 
RFX5 INTERPRO Fos transforming protein 7.76 1.08E+00 
RFX5 

Hepg2 

SMART BRLZ 5.53 1.34E-11 
RFX5 INTERPRO Basic-leucine zipper (bZIP) transcription factor 5.50 4.18E-11 
RFX5 INTERPRO bZIP transcription factor, bZIP-1 7.77 1.51E-10 
RFX5 INTERPRO Fos transforming protein 8.26 8.02E-01 
RFX5 SMART FH 4.47 1.10E+00 
RFX5 INTERPRO Transcription factor, fork head 4.45 1.82E+00 
RFX5 INTERPRO Transcription factor, fork head, conserved site 4.45 1.82E+00 
RFX5 

K562 

SMART BRLZ 3.88 7.30E-06 
RFX5 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.85 1.67E-05 
RFX5 INTERPRO bZIP transcription factor, bZIP-1 4.72 1.84E-03 
RFX5 SMART POU 4.90 1.34E-01 
RFX5 INTERPRO POU-specific 4.87 2.31E-01 
RFX5 INTERPRO POU 4.87 2.31E-01 
RFX5 SMART ZnF_GATA 6.74 1.22E+00 
RFX5 INTERPRO Zinc finger, GATA-type 6.69 2.01E+00 
SRF 

Gm12878 

INTERPRO bZIP transcription factor, bZIP-1 8.41 1.15E-08 
SRF SMART BRLZ 5.25 1.50E-06 
SRF INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.95 8.89E-06 
SRF INTERPRO Fos transforming protein 10.21 3.40E-01 
SRF 

H1hesc 

INTERPRO Winged helix repressor DNA-binding 2.87 4.75E-03 
SRF SMART ETS 5.91 1.12E-02 
SRF INTERPRO Ets 4.85 9.82E-02 
SRF INTERPRO Sterile alpha motif-type 5.75 1.38E+00 
SRF INTERPRO DNA-binding RFX 7.19 1.89E+00 
SRF SMART SAM_PNT 6.56 2.09E+00 
SRF SMART BRLZ 2.86 3.77E+00 
SRF INTERPRO bZIP transcription factor, bZIP-1 3.55 7.19E+00 
SRF INTERPRO Sterile alpha motif/pointed 5.39 7.23E+00 
SRF 

Hepg2 

SMART SH2 7.93 1.15E-02 
SRF INTERPRO STAT transcription factor, protein interaction 7.32 2.94E-02 
SRF INTERPRO SH2 motif 7.32 2.94E-02 
SRF INTERPRO STAT transcription factor, DNA-binding 7.32 2.94E-02 
SRF INTERPRO STAT transcription factor, core 7.32 2.94E-02 
SRF INTERPRO STAT transcription factor, DNA-binding, 7.32 2.94E-02 
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subdomain 

SRF INTERPRO STAT transcription factor, all-alpha 7.32 2.94E-02 
SRF INTERPRO EF-Hand type 6.41 1.06E-01 
SRF SMART BRLZ 2.88 5.23E-01 
SRF SMART ETS 3.97 9.34E-01 
SRF INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.66 1.78E+00 
SRF INTERPRO Ets 3.66 2.39E+00 
SRF INTERPRO Winged helix repressor DNA-binding 2.05 3.55E+00 

SRF INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

6.10 3.65E+00 

SRF 

K562 

INTERPRO bZIP transcription factor, bZIP-1 7.46 1.20E-11 
SRF SMART BRLZ 4.94 1.53E-09 
SRF INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.75 9.78E-09 
SRF SMART ETS 6.79 9.50E-08 
SRF INTERPRO Ets 6.53 3.32E-07 
SRF INTERPRO Winged helix repressor DNA-binding 2.62 1.23E-02 
SRF SMART SAM_PNT 6.79 4.07E-02 
SRF INTERPRO Sterile alpha motif/pointed 6.53 8.86E-02 
SRF INTERPRO Sterile alpha motif-type 5.80 2.39E-01 
SRF INTERPRO Fos transforming protein 7.46 1.20E+00 
SRF INTERPRO Kelch related 7.46 7.48E+00 
TBP 

Gm12878 

INTERPRO bZIP transcription factor, bZIP-1 4.92 3.32E-05 
TBP SMART BRLZ 3.48 1.89E-04 
TBP INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.26 1.08E-03 
TBP SMART IRF 5.58 1.59E-01 
TBP INTERPRO Interferon regulatory factor, conserved site 5.22 3.76E-01 
TBP INTERPRO Interferon regulatory factor 5.22 3.76E-01 
TBP INTERPRO Winged helix repressor DNA-binding 2.09 5.57E-01 
TBP SMART POU 4.06 1.77E+00 
TBP INTERPRO Fos transforming protein 5.97 3.18E+00 
TBP INTERPRO POU 3.80 4.02E+00 
TBP INTERPRO POU-specific 3.80 4.02E+00 
TBP INTERPRO Interferon regulatory factor-3 4.97 8.17E+00 
TBP INTERPRO SMAD domain-like 4.97 8.17E+00 
TBP 

H1hesc 

INTERPRO bZIP transcription factor, bZIP-1 6.27 9.98E-07 
TBP SMART BRLZ 4.03 1.49E-04 
TBP INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.69 1.12E-03 
TBP SMART ETS 5.19 7.69E-03 
TBP INTERPRO Ets 4.75 2.87E-02 
TBP INTERPRO Winged helix repressor DNA-binding 2.27 6.67E-01 
TBP INTERPRO Fos transforming protein 7.61 1.15E+00 
TBP SMART SAM_PNT 5.19 5.32E+00 
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TBP 

Helas3 

SMART BRLZ 4.95 1.40E-14 
TBP INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.81 1.11E-13 
TBP INTERPRO bZIP transcription factor, bZIP-1 5.88 1.09E-09 
TBP SMART SH2 6.05 6.24E-02 

TBP INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

5.88 1.15E-01 

TBP INTERPRO STAT transcription factor, DNA-binding 5.88 1.15E-01 
TBP INTERPRO STAT transcription factor, core 5.88 1.15E-01 
TBP INTERPRO STAT transcription factor, protein interaction 5.88 1.15E-01 
TBP INTERPRO SH2 motif 5.88 1.15E-01 
TBP INTERPRO STAT transcription factor, all-alpha 5.88 1.15E-01 
TBP INTERPRO EF-Hand type 5.14 3.98E-01 
TBP SMART ETS 3.40 9.48E-01 
TBP INTERPRO Ets 3.31 1.80E+00 
TBP SMART SAM_PNT 4.54 2.51E+00 
TBP INTERPRO Fos transforming protein 5.88 3.27E+00 
TBP INTERPRO Sterile alpha motif/pointed 4.41 4.36E+00 
TBP INTERPRO Basic leucine zipper 3.43 7.23E+00 
TBP INTERPRO Sterile alpha motif-type 3.92 8.38E+00 
TBP 

Hepg2 

SMART BRLZ 4.94 1.69E-09 
TBP INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.66 1.63E-08 
TBP INTERPRO bZIP transcription factor, bZIP-1 6.46 5.95E-08 
TBP INTERPRO Fos transforming protein 7.32 1.38E+00 
TBP SMART ETS 3.40 5.62E+00 
TBP SMART SAM_PNT 4.85 6.83E+00 
TBP 

K562 

INTERPRO bZIP transcription factor, bZIP-1 5.37 9.90E-08 
TBP SMART ETS 5.29 4.48E-06 
TBP INTERPRO Ets 4.99 1.72E-05 
TBP SMART BRLZ 3.48 6.28E-05 
TBP INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.29 3.33E-04 
TBP SMART SAM_PNT 5.29 2.31E-01 
TBP INTERPRO Sterile alpha motif/pointed 4.99 5.02E-01 
TBP INTERPRO Sterile alpha motif-type 4.44 1.30E+00 
TBP INTERPRO Winged helix repressor DNA-binding 1.90 3.24E+00 
TBP INTERPRO Fos transforming protein 5.71 3.87E+00 
TCF12 

A549 

SMART BRLZ 3.81 2.21E-09 
TCF12 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.46 5.53E-08 
TCF12 INTERPRO bZIP transcription factor, bZIP-1 4.03 8.64E-05 
TCF12 INTERPRO Basic leucine zipper 3.42 9.37E-01 
TCF12 SMART FH 3.09 4.20E+00 
TCF12 INTERPRO Fos transforming protein 4.56 9.35E+00 
TCF12 Gm12878 SMART IRF 7.76 1.61E-03 
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TCF12 INTERPRO Interferon regulatory factor, conserved site 7.76 2.53E-03 
TCF12 INTERPRO Interferon regulatory factor 7.76 2.53E-03 
TCF12 INTERPRO Winged helix repressor DNA-binding 2.45 1.29E-01 
TCF12 SMART ETS 4.37 1.41E-01 
TCF12 INTERPRO Interferon regulatory factor-3 7.76 1.47E-01 
TCF12 INTERPRO SMAD domain-like 7.76 1.47E-01 
TCF12 INTERPRO Ets 4.37 2.21E-01 
TCF12 INTERPRO bZIP transcription factor, bZIP-1 4.11 3.76E-01 
TCF12 SMART BRLZ 2.35 8.77E+00 
TCF12 

H1hesc 

SMART POU 5.83 2.14E-01 
TCF12 INTERPRO POU-specific 6.17 2.26E-01 
TCF12 INTERPRO POU 6.17 2.26E-01 
TCF12 SMART HMG 4.22 4.88E+00 
TCF12 INTERPRO High mobility group, HMG1/HMG2 4.48 5.50E+00 
TCF12 INTERPRO Helix-loop-helix DNA-binding 2.98 9.08E+00 
TCF12 

Hepg2 

INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.83 2.25E-12 
TCF12 SMART BRLZ 3.73 2.28E-12 
TCF12 INTERPRO bZIP transcription factor, bZIP-1 4.36 2.46E-07 
TCF12 INTERPRO Zinc finger, NHR/GATA-type 2.29 9.92E-02 
TCF12 INTERPRO Steroid hormone receptor 2.24 4.05E-01 
TCF12 SMART HOLI 2.13 5.54E-01 
TCF12 INTERPRO Nuclear hormone receptor, ligand-binding, core 2.18 6.23E-01 
TCF12 INTERPRO Nuclear hormone receptor, ligand-binding 2.18 6.23E-01 
TCF12 SMART ZnF_C4 2.06 1.29E+00 
TCF12 INTERPRO Zinc finger, nuclear hormone receptor-type 2.12 1.47E+00 
TCF12 INTERPRO Vitamin D receptor 2.80 5.19E+00 
TCF12 INTERPRO Basic leucine zipper 2.91 7.88E+00 
TCF7L2 

Hct116 

INTERPRO bZIP transcription factor, bZIP-1 7.44 5.85E-09 
TCF7L2 SMART BRLZ 5.25 2.79E-07 
TCF7L2 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.35 2.28E-05 
TCF7L2 INTERPRO Fos transforming protein 8.43 7.60E-01 
TCF7L2 SMART DWA 10.20 1.84E+00 

TCF7L2 INTERPRO CTF transcription factor/nuclear factor 1, 
conserved site 

8.43 5.48E+00 

TCF7L2 INTERPRO CTF transcription factor/nuclear factor 1, N-
terminal 

8.43 5.48E+00 

TCF7L2 INTERPRO MAD homology 1, Dwarfin-type 8.43 5.48E+00 
TCF7L2 INTERPRO CTF transcription factor/nuclear factor 1 8.43 5.48E+00 
TCF7L2 

Hek293 

SMART HMG 4.87 1.28E-03 
TCF7L2 INTERPRO High mobility group, HMG1/HMG2 4.56 4.56E-03 
TCF7L2 SMART ZnF_GATA 5.76 2.11E+00 
TCF7L2 INTERPRO Zinc finger, GATA-type 5.39 4.64E+00 
TCF7L2 SMART BRLZ 2.09 7.91E+00 
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TCF7L2 

Helas3 

SMART BRLZ 4.54 1.32E-08 
TCF7L2 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.26 1.31E-07 
TCF7L2 INTERPRO bZIP transcription factor, bZIP-1 5.90 2.49E-07 
TCF7L2 SMART ZnF_GATA 7.14 9.67E-01 
TCF7L2 INTERPRO Zinc finger, GATA-type 6.69 1.99E+00 
TCF7L2 INTERPRO Fos transforming protein 6.69 1.99E+00 
TCF7L2 INTERPRO Basic leucine zipper 3.90 3.70E+00 

TCF7L2 INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

5.57 5.22E+00 

TCF7L2 

Hepg2 

INTERPRO Zinc finger, NHR/GATA-type 3.99 3.05E-09 
TCF7L2 SMART ZnF_C4 3.94 1.01E-07 
TCF7L2 SMART HOLI 3.83 2.17E-07 
TCF7L2 INTERPRO Zinc finger, nuclear hormone receptor-type 3.81 4.71E-07 
TCF7L2 INTERPRO Steroid hormone receptor 3.81 4.71E-07 
TCF7L2 INTERPRO Nuclear hormone receptor, ligand-binding 3.70 1.00E-06 
TCF7L2 INTERPRO Nuclear hormone receptor, ligand-binding, core 3.70 1.00E-06 
TCF7L2 SMART HMG 5.78 2.18E-05 
TCF7L2 INTERPRO High mobility group, HMG1/HMG2 5.60 5.62E-05 
TCF7L2 SMART FH 4.82 8.56E-03 
TCF7L2 INTERPRO Transcription factor, fork head, conserved site 4.66 1.95E-02 
TCF7L2 INTERPRO Transcription factor, fork head 4.66 1.95E-02 
TCF7L2 INTERPRO Retinoid X receptor 5.30 3.17E-01 
TCF7L2 SMART ZnF_GATA 6.26 1.51E+00 
TCF7L2 INTERPRO Zinc finger, GATA-type 6.06 2.77E+00 
TCF7L2 

Mcf7 

INTERPRO bZIP transcription factor, bZIP-1 5.29 1.24E-07 
TCF7L2 SMART BRLZ 3.25 6.28E-04 
TCF7L2 SMART HMG 5.03 1.01E-03 
TCF7L2 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.07 2.93E-03 
TCF7L2 INTERPRO High mobility group, HMG1/HMG2 4.76 3.02E-03 
TCF7L2 INTERPRO Zinc finger, NHR/GATA-type 2.52 1.61E-01 
TCF7L2 SMART ZnF_GATA 5.95 2.06E+00 
TCF7L2 INTERPRO Fos transforming protein 5.62 4.03E+00 
TCF7L2 INTERPRO Zinc finger, GATA-type 5.62 4.03E+00 
TCF7L2 

Panc1 

INTERPRO bZIP transcription factor, bZIP-1 
5.35 1.18E-06 

TCF7L2 SMART BRLZ 3.61 9.06E-04 
TCF7L2 INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.94 3.32E-02 
TCF7L2 INTERPRO Fos transforming protein 

6.06 3.03E+00 
USF1 

A549 

INTERPRO bZIP transcription factor, bZIP-1 7.32 1.85E-11 
USF1 SMART BRLZ 4.73 5.25E-09 
USF1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.66 1.64E-08 
USF1 INTERPRO EF-Hand type 7.32 4.09E-03 
USF1 SMART SH2 7.44 1.78E-02 
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USF1 INTERPRO STAT transcription factor, all-alpha 7.32 2.97E-02 
USF1 INTERPRO STAT transcription factor, protein interaction 7.32 2.97E-02 
USF1 INTERPRO STAT transcription factor, core 7.32 2.97E-02 
USF1 INTERPRO SH2 motif 7.32 2.97E-02 
USF1 INTERPRO STAT transcription factor, DNA-binding 7.32 2.97E-02 

USF1 INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

7.32 2.97E-02 

USF1 INTERPRO Fos transforming protein 7.32 1.38E+00 
USF1 INTERPRO Kelch related 7.32 8.44E+00 
USF1 

Gm12878 

INTERPRO bZIP transcription factor, bZIP-1 7.10 1.53E-07 
USF1 SMART BRLZ 4.38 9.73E-06 
USF1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.44 1.49E-05 
USF1 INTERPRO Fos transforming protein 8.62 6.73E-01 
USF1 

H1hesc 

SMART HLH 3.24 1.60E+00 
USF1 INTERPRO bZIP transcription factor, bZIP-1 4.56 1.80E+00 
USF1 SMART BRLZ 3.04 2.47E+00 
USF1 INTERPRO Basic helix-loop-helix dimerisation region bHLH 3.22 2.80E+00 
USF1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.02 4.31E+00 
USF1 INTERPRO Fos transforming protein 8.87 5.44E+00 
USF1 

Hepg2 

INTERPRO bZIP transcription factor, bZIP-1 4.19 3.35E-01 
USF1 SMART HLH 3.00 3.53E-01 
USF1 INTERPRO Basic helix-loop-helix dimerisation region bHLH 3.07 4.53E-01 
USF1 SMART BRLZ 2.82 6.61E-01 
USF1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.88 8.51E-01 
USF1 INTERPRO Helix-loop-helix DNA-binding 2.74 8.47E+00 
USF1 

K562 

SMART BRLZ 4.10 3.15E-02 
USF1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.04 6.46E-02 
USF1 INTERPRO bZIP transcription factor, bZIP-1 5.71 1.17E-01 
USF1 INTERPRO Fos transforming protein 9.70 4.12E+00 
YY1 

A549 

INTERPRO bZIP transcription factor, bZIP-1 5.81 2.96E-06 
YY1 SMART ETS 6.04 5.38E-06 
YY1 INTERPRO Ets 5.73 2.01E-05 
YY1 SMART BRLZ 3.83 9.78E-05 
YY1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.63 4.73E-04 
YY1 INTERPRO Winged helix repressor DNA-binding 2.23 5.28E-01 
YY1 INTERPRO Fos transforming protein 7.05 1.54E+00 
YY1 SMART SAM_PNT 4.65 7.52E+00 
YY1 

Gm12878 

SMART SH2 9.15 4.59E-03 
YY1 INTERPRO STAT transcription factor, DNA-binding 9.02 7.62E-03 
YY1 INTERPRO SH2 motif 9.02 7.62E-03 
YY1 INTERPRO STAT transcription factor, all-alpha 9.02 7.62E-03 
YY1 INTERPRO STAT transcription factor, DNA-binding, 9.02 7.62E-03 
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subdomain 

YY1 INTERPRO STAT transcription factor, core 9.02 7.62E-03 
YY1 INTERPRO STAT transcription factor, protein interaction 9.02 7.62E-03 
YY1 INTERPRO EF-Hand type 7.90 2.80E-02 
YY1 SMART BRLZ 3.33 1.21E-01 
YY1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.28 2.25E-01 
YY1 INTERPRO bZIP transcription factor, bZIP-1 3.72 5.64E+00 
YY1 

H1hesc 

SMART BRLZ 4.99 8.57E-04 
YY1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.41 7.82E-03 
YY1 INTERPRO bZIP transcription factor, bZIP-1 4.99 1.00E+00 

YY1 INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

8.08 7.26E+00 

YY1 

Hct116 

SMART BRLZ 4.64 7.68E-09 
YY1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.41 5.76E-08 
YY1 INTERPRO bZIP transcription factor, bZIP-1 6.11 1.40E-07 
YY1 SMART SH2 7.29 1.80E-02 
YY1 INTERPRO STAT transcription factor, protein interaction 6.93 4.12E-02 
YY1 INTERPRO STAT transcription factor, all-alpha 6.93 4.12E-02 
YY1 INTERPRO STAT transcription factor, core 6.93 4.12E-02 
YY1 INTERPRO SH2 motif 6.93 4.12E-02 
YY1 INTERPRO STAT transcription factor, DNA-binding 6.93 4.12E-02 

YY1 INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

6.93 4.12E-02 

YY1 INTERPRO EF-Hand type 6.06 1.47E-01 
YY1 INTERPRO Fos transforming protein 6.93 1.69E+00 
YY1 

Hepg2 

SMART HMG 6.87 3.71E-05 
YY1 INTERPRO High mobility group, HMG1/HMG2 6.44 1.20E-04 
YY1 SMART DWA 8.11 4.27E+00 

YY1 INTERPRO CTF transcription factor/nuclear factor 1, N-
terminal 

7.61 7.45E+00 

YY1 INTERPRO CTF transcription factor/nuclear factor 1 7.61 7.45E+00 
YY1 INTERPRO MAD homology 1, Dwarfin-type 7.61 7.45E+00 

YY1 INTERPRO CTF transcription factor/nuclear factor 1, 
conserved site 

7.61 7.45E+00 

YY1 

K562 

SMART BRLZ 5.15 7.80E-03 
YY1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 4.20 1.21E-01 

YY1 INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

11.55 2.51E-01 

YY1 INTERPRO bZIP transcription factor, bZIP-1 5.71 4.61E-01 
YY1 INTERPRO E2F Family 11.09 2.66E+00 
YY1 

Nt2d1 
SMART BRLZ 3.09 1.86E-04 

YY1 INTERPRO bZIP transcription factor, bZIP-1 4.04 4.72E-04 
YY1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 2.98 7.03E-04 
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YY1 SMART ETS 4.14 7.56E-04 
YY1 INTERPRO Ets 3.99 2.05E-03 
YY1 SMART HMG 3.92 5.97E-02 
YY1 INTERPRO High mobility group, HMG1/HMG2 3.78 1.37E-01 
YY1 SMART SH2 5.10 1.75E-01 

YY1 INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

4.91 3.55E-01 

YY1 INTERPRO STAT transcription factor, all-alpha 4.91 3.55E-01 
YY1 INTERPRO SH2 motif 4.91 3.55E-01 
YY1 INTERPRO STAT transcription factor, protein interaction 4.91 3.55E-01 
YY1 INTERPRO STAT transcription factor, core 4.91 3.55E-01 
YY1 INTERPRO STAT transcription factor, DNA-binding 4.91 3.55E-01 
YY1 INTERPRO Winged helix repressor DNA-binding 1.90 1.16E+00 
YY1 INTERPRO EF-Hand type 4.30 1.19E+00 
YY1 SMART SAM_PNT 3.83 5.44E+00 
YY1 INTERPRO Fos transforming protein 4.91 6.76E+00 
YY1 

Sknshra 

INTERPRO bZIP transcription factor, bZIP-1 6.39 7.62E-07 
YY1 SMART BRLZ 3.93 2.16E-04 
YY1 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.76 8.42E-04 
YY1 SMART SH2 8.11 9.32E-03 
YY1 INTERPRO STAT transcription factor, DNA-binding 7.76 2.04E-02 
YY1 INTERPRO STAT transcription factor, all-alpha 7.76 2.04E-02 

YY1 INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

7.76 2.04E-02 

YY1 INTERPRO STAT transcription factor, protein interaction 7.76 2.04E-02 
YY1 INTERPRO STAT transcription factor, core 7.76 2.04E-02 
YY1 INTERPRO SH2 motif 7.76 2.04E-02 
YY1 INTERPRO EF-Hand type 6.79 7.36E-02 
YY1 INTERPRO Fos transforming protein 7.76 1.08E+00 

YY1 INTERPRO Transcription factor E2F/dimerisation partner 
(TDP) 

6.47 2.91E+00 

ZNF143 

Gm12878 

INTERPRO Winged helix repressor DNA-binding 2.85 2.17E-05 
ZNF143 SMART ETS 5.27 3.84E-05 
ZNF143 INTERPRO Ets 5.08 1.00E-04 
ZNF143 SMART SH2 6.49 4.27E-02 
ZNF143 INTERPRO STAT transcription factor, core 6.26 8.09E-02 
ZNF143 INTERPRO STAT transcription factor, protein interaction 6.26 8.09E-02 
ZNF143 INTERPRO STAT transcription factor, all-alpha 6.26 8.09E-02 

ZNF143 INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

6.26 8.09E-02 

ZNF143 INTERPRO STAT transcription factor, DNA-binding 6.26 8.09E-02 
ZNF143 INTERPRO SH2 motif 6.26 8.09E-02 
ZNF143 SMART PAX 5.68 1.51E-01 
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ZNF143 INTERPRO Paired box protein, N-terminal 5.48 2.84E-01 
ZNF143 INTERPRO EF-Hand type 5.48 2.84E-01 
ZNF143 SMART SAM_PNT 4.87 1.90E+00 
ZNF143 INTERPRO Sterile alpha motif/pointed 4.69 3.37E+00 
ZNF143 INTERPRO Sterile alpha motif-type 4.17 6.57E+00 
ZNF143 

H1hesc 

SMART SH2 35.70 6.67E-08 
ZNF143 INTERPRO STAT transcription factor, protein interaction 27.71 2.10E-06 
ZNF143 INTERPRO STAT transcription factor, all-alpha 27.71 2.10E-06 
ZNF143 INTERPRO STAT transcription factor, core 27.71 2.10E-06 
ZNF143 INTERPRO SH2 motif 27.71 2.10E-06 

ZNF143 INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

27.71 2.10E-06 

ZNF143 INTERPRO STAT transcription factor, DNA-binding 27.71 2.10E-06 
ZNF143 INTERPRO EF-Hand type 24.25 8.29E-06 
ZNF143 

Helas3 

SMART BRLZ 4.57 2.55E-07 
ZNF143 INTERPRO bZIP transcription factor, bZIP-1 5.51 6.64E-06 
ZNF143 INTERPRO Basic-leucine zipper (bZIP) transcription factor 3.85 1.67E-05 
ZNF143 SMART SH2 7.93 1.10E-02 
ZNF143 INTERPRO STAT transcription factor, all-alpha 6.69 5.28E-02 
ZNF143 INTERPRO SH2 motif 6.69 5.28E-02 
ZNF143 INTERPRO STAT transcription factor, DNA-binding 6.69 5.28E-02 
ZNF143 INTERPRO STAT transcription factor, core 6.69 5.28E-02 

ZNF143 INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

6.69 5.28E-02 

ZNF143 INTERPRO STAT transcription factor, protein interaction 6.69 5.28E-02 
ZNF143 INTERPRO EF-Hand type 5.85 1.87E-01 
ZNF143 INTERPRO Fos transforming protein 6.69 2.01E+00 
ZNF143 INTERPRO DNA-binding RFX 5.57 5.27E+00 
ZNF143 INTERPRO Winged helix repressor DNA-binding 1.88 9.49E+00 
ZNF143 

K562 

SMART SH2 12.31 6.15E-04 
ZNF143 INTERPRO STAT transcription factor, all-alpha 10.49 2.90E-03 
ZNF143 INTERPRO STAT transcription factor, DNA-binding 10.49 2.90E-03 
ZNF143 INTERPRO STAT transcription factor, core 10.49 2.90E-03 

ZNF143 INTERPRO STAT transcription factor, DNA-binding, 
subdomain 

10.49 2.90E-03 

ZNF143 INTERPRO STAT transcription factor, protein interaction 10.49 2.90E-03 
ZNF143 INTERPRO SH2 motif 10.49 2.90E-03 
ZNF143 INTERPRO EF-Hand type 9.18 1.08E-02 

Table 7.13 List of protein domains found as enriched in the identified co-factors. The analysis was 
done using DAVID tool. 

 

TF Cell line GO-term Biological Process (BP) name Enrichment FDR 
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ATF3 A549 GO:0007346 regulation of mitotic cell cycle 6.13 1 
ATF3 A549 GO:0065008 regulation of biological quality 2.82 1 
ATF3 H1hesc GO:0006953 acute-phase response 15.62 0.798 
ATF3 H1hesc GO:0002526 acute inflammatory response 12.5 0.968 
ATF3 H1hesc GO:0001889 liver development 8.01 0.635 
ATF3 H1hesc GO:0044281 small molecule metabolic process 5.79 1 
ATF3 Hepg2 GO:0070345 negative regulation of fat cell proliferation 31.25 0.111 
ATF3 Hepg2 GO:0070344 regulation of fat cell proliferation 31.25 0.0555 
ATF3 Hepg2 GO:1900739 regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 31.25 0.69 
ATF3 Hepg2 GO:1900740 positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 31.25 0.591 
ATF3 Hepg2 GO:1901028 regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway 31.25 0.517 

ATF3 Hepg2 GO:1901030 
positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling 
pathway 31.25 0.46 

ATF3 Hepg2 GO:0000278 mitotic cell cycle 15.62 0.0584 
ATF3 Hepg2 GO:0007049 cell cycle 11.36 0.196 
ATF3 Hepg2 GO:0007219 Notch signaling pathway 9.62 0.328 
ATF3 K562 GO:0000429 carbon catabolite regulation of transcription from RNA polymerase II promoter 34.09 0.111 
ATF3 K562 GO:0000430 regulation of transcription from RNA polymerase II promoter by glucose 34.09 0.108 
ATF3 K562 GO:0000432 positive regulation of transcription from RNA polymerase II promoter by glucose 34.09 0.105 
ATF3 K562 GO:0000436 carbon catabolite activation of transcription from RNA polymerase II promoter 34.09 0.101 
ATF3 K562 GO:0022037 metencephalon development 34.09 0.0986 
ATF3 K562 GO:0045672 positive regulation of osteoclast differentiation 34.09 0.0958 
ATF3 K562 GO:0019086 late viral transcription 34.09 0.0932 
ATF3 K562 GO:0019083 viral transcription 34.09 0.0908 
ATF3 K562 GO:0060430 lung saccule development 34.09 0.0884 
ATF3 K562 GO:0060575 intestinal epithelial cell differentiation 34.09 0.0862 
ATF3 K562 GO:0045766 positive regulation of angiogenesis 25.57 0.0546 
ATF3 K562 GO:0002763 positive regulation of myeloid leukocyte differentiation 20.45 0.0671 
ATF3 K562 GO:1904018 positive regulation of vasculature development 20.45 0.062 
ATF3 K562 GO:0060395 SMAD protein signal transduction 20.45 0.0575 
ATF3 K562 GO:0045639 positive regulation of myeloid cell differentiation 17.05 0.0589 
ATF3 K562 GO:0032941 secretion by tissue 17.05 0.0881 
ATF3 K562 GO:0031098 stress-activated protein kinase signaling cascade 17.05 0.0834 
ATF3 K562 GO:0007595 lactation 17.05 0.0793 
ATF3 K562 GO:0007612 learning 17.05 0.0755 
ATF3 K562 GO:0051403 stress-activated MAPK cascade 17.05 0.0721 
ATF3 K562 GO:0007589 body fluid secretion 17.05 0.0689 
ATF3 K562 GO:0090287 regulation of cellular response to growth factor stimulus 14.61 0.0975 
ATF3 K562 GO:0007611 learning or memory 13.64 0.049 
ATF3 K562 GO:0003208 cardiac ventricle morphogenesis 12.78 0.0976 
ATF3 K562 GO:0023014 signal transduction by protein phosphorylation 12.78 0.0955 
ATF3 K562 GO:0000165 MAPK cascade 12.78 0.0934 
ATF3 K562 GO:0050890 cognition 12.4 0.0531 
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ATF3 K562 GO:0046903 secretion 10.49 0.0697 
ATF3 K562 GO:0050878 regulation of body fluid levels 10.23 0.018 
ATF3 K562 GO:1902107 positive regulation of leukocyte differentiation 9.74 0.0904 
ATF3 K562 GO:1903708 positive regulation of hemopoiesis 9.47 0.0806 
ATF3 K562 GO:0009314 response to radiation 9.47 0.0605 
ATF3 K562 GO:0002768 immune response-regulating cell surface receptor signaling pathway 9.09 0.0826 
ATF3 K562 GO:0002253 activation of immune response 8.52 0.104 
ATF3 K562 GO:0002757 immune response-activating signal transduction 8.52 0.1 
ATF3 K562 GO:0042493 response to drug 6.6 0.0598 
ATF3 K562 GO:0044765 single-organism transport 5.5 0.0951 
ATF3 K562 GO:0009725 response to hormone 4.87 0.0523 
ATF3 K562 GO:0009628 response to abiotic stimulus 4.87 0.0465 
ATF3 K562 GO:0071495 cellular response to endogenous stimulus 4.45 0.109 
ATF3 K562 GO:0003008 system process 4.45 0.105 
ATF3 K562 GO:0065008 regulation of biological quality 3.69 0.0655 
ATF3 K562 GO:0009719 response to endogenous stimulus 3.56 0.0851 
ATF3 K562 GO:0048584 positive regulation of response to stimulus 3.46 0.0984 
ATF3 K562 GO:0070887 cellular response to chemical stimulus 3.29 0.0727 
ATF3 K562 GO:0051240 positive regulation of multicellular organismal process 2.98 0.0652 
BHLHE40 Gm12878 GO:0032647 regulation of interferon-alpha production 10.71 0.254 
BHLHE40 Gm12878 GO:0032727 positive regulation of interferon-alpha production 10.71 0.236 
BHLHE40 Gm12878 GO:0032728 positive regulation of interferon-beta production 8.57 0.221 
BHLHE40 Gm12878 GO:0051385 response to mineralocorticoid 8.57 0.189 
BHLHE40 Gm12878 GO:0051412 response to corticosterone 8.57 0.166 
BHLHE40 Gm12878 GO:0060333 interferon-gamma-mediated signaling pathway 8.04 0.0469 
BHLHE40 Gm12878 GO:0032648 regulation of interferon-beta production 7.14 0.218 
BHLHE40 Gm12878 GO:0071277 cellular response to calcium ion 6.7 0.359 
BHLHE40 Gm12878 GO:0051592 response to calcium ion 6.7 0.269 
BHLHE40 Gm12878 GO:0060337 type I interferon signaling pathway 6.43 0.153 
BHLHE40 Gm12878 GO:0002761 regulation of myeloid leukocyte differentiation 4.59 0.22 
BHLHE40 Gm12878 GO:0019221 cytokine-mediated signaling pathway 4.41 0.163 
BHLHE40 Gm12878 GO:0009612 response to mechanical stimulus 4.17 0.187 
BHLHE40 Gm12878 GO:0045637 regulation of myeloid cell differentiation 3.73 0.184 
BHLHE40 Gm12878 GO:0043207 response to external biotic stimulus 3.25 0.246 
BHLHE40 Gm12878 GO:0009607 response to biotic stimulus 3.15 0.163 
BHLHE40 Gm12878 GO:0006464 cellular protein modification process 3.11 0.216 
BHLHE40 Gm12878 GO:0036211 protein modification process 3.11 0.204 
BHLHE40 Gm12878 GO:1903706 regulation of hemopoiesis 2.9 0.221 
BHLHE40 Hepg2 GO:0032922 circadian regulation of gene expression 7.32 0.316 
BHLHE40 Hepg2 GO:1901564 organonitrogen compound metabolic process 4.57 0.329 
BHLHE40 Hepg2 GO:0033500 carbohydrate homeostasis 4.07 0.221 
BHLHE40 Hepg2 GO:0042593 glucose homeostasis 4.07 0.177 
BHLHE40 Hepg2 GO:0048608 reproductive structure development 2.86 0.391 
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BHLHE40 Hepg2 GO:0048878 chemical homeostasis 2.86 0.355 
BHLHE40 Hepg2 GO:0003006 developmental process involved in reproduction 2.52 0.342 
BHLHE40 Hepg2 GO:0044710 single-organism metabolic process 2.44 0.275 
BHLHE40 Hepg2 GO:0044702 single organism reproductive process 2.22 0.192 
BHLHE40 Hepg2 GO:0022414 reproductive process 2.12 0.268 
BHLHE40 Hepg2 GO:0065008 regulation of biological quality 2.1 0.355 
BHLHE40 K562 GO:0071773 cellular response to BMP stimulus 14.06 1 
BHLHE40 K562 GO:0071772 response to BMP 14.06 0.893 
BHLHE40 K562 GO:0030097 hemopoiesis 9.01 0.336 
CEBPB Gm12878 GO:0060333 interferon-gamma-mediated signaling pathway 8.33 0.000105 
CEBPB Gm12878 GO:0045075 regulation of interleukin-12 biosynthetic process 8.33 0.0224 
CEBPB Gm12878 GO:0038061 NIK/NF-kappaB signaling 8.33 0.0218 
CEBPB Gm12878 GO:0007249 I-kappaB kinase/NF-kappaB signaling 8.33 0.0213 
CEBPB Gm12878 GO:0032648 regulation of interferon-beta production 6.94 0.0232 
CEBPB Gm12878 GO:0043122 regulation of I-kappaB kinase/NF-kappaB signaling 6.94 0.0222 
CEBPB Gm12878 GO:0060337 type I interferon signaling pathway 6.67 0.00131 
CEBPB Gm12878 GO:0032735 positive regulation of interleukin-12 production 6.67 0.0635 
CEBPB Gm12878 GO:0032728 positive regulation of interferon-beta production 6.67 0.0624 
CEBPB Gm12878 GO:0032479 regulation of type I interferon production 6.06 0.00328 
CEBPB Gm12878 GO:0002221 pattern recognition receptor signaling pathway 6.06 0.00262 
CEBPB Gm12878 GO:0002224 toll-like receptor signaling pathway 6.06 0.00219 
CEBPB Gm12878 GO:0002756 MyD88-independent toll-like receptor signaling pathway 6.06 0.00187 
CEBPB Gm12878 GO:0034142 toll-like receptor 4 signaling pathway 6.06 0.00164 
CEBPB Gm12878 GO:0034138 toll-like receptor 3 signaling pathway 6.06 0.00146 
CEBPB Gm12878 GO:0035666 TRIF-dependent toll-like receptor signaling pathway 6.06 0.00131 
CEBPB Gm12878 GO:0032655 regulation of interleukin-12 production 5.95 0.0324 
CEBPB Gm12878 GO:0051607 defense response to virus 5.95 0.0317 
CEBPB Gm12878 GO:0032481 positive regulation of type I interferon production 5.83 0.00709 
CEBPB Gm12878 GO:0034162 toll-like receptor 9 signaling pathway 5.83 0.00658 
CEBPB Gm12878 GO:0048011 neurotrophin TRK receptor signaling pathway 5.56 0.0244 
CEBPB Gm12878 GO:0034166 toll-like receptor 10 signaling pathway 5.56 0.0235 
CEBPB Gm12878 GO:0002755 MyD88-dependent toll-like receptor signaling pathway 5.56 0.0226 
CEBPB Gm12878 GO:0034134 toll-like receptor 2 signaling pathway 5.56 0.0218 
CEBPB Gm12878 GO:0034146 toll-like receptor 5 signaling pathway 5.56 0.021 
CEBPB Gm12878 GO:0038179 neurotrophin signaling pathway 5.56 0.0203 
CEBPB Gm12878 GO:0038124 toll-like receptor TLR6:TLR2 signaling pathway 5.56 0.0197 
CEBPB Gm12878 GO:0038123 toll-like receptor TLR1:TLR2 signaling pathway 5.56 0.0191 
CEBPB Gm12878 GO:0019221 cytokine-mediated signaling pathway 5.39 0.000361 
CEBPB Gm12878 GO:0098542 defense response to other organism 4.55 0.0514 
CEBPB Gm12878 GO:0002218 activation of innate immune response 4.44 0.0219 
CEBPB Gm12878 GO:0002758 innate immune response-activating signal transduction 4.44 0.0206 
CEBPB Gm12878 GO:0002253 activation of immune response 4.17 0.0193 
CEBPB Gm12878 GO:0002757 immune response-activating signal transduction 4.17 0.0188 
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CEBPB Gm12878 GO:0002252 immune effector process 4.17 0.036 
CEBPB Gm12878 GO:0007169 transmembrane receptor protein tyrosine kinase signaling pathway 4.17 0.0353 
CEBPB Gm12878 GO:0009615 response to virus 4.17 0.0347 
CEBPB Gm12878 GO:0045089 positive regulation of innate immune response 3.92 0.0249 
CEBPB Gm12878 GO:0031349 positive regulation of defense response 3.92 0.0244 
CEBPB Gm12878 GO:0001819 positive regulation of cytokine production 3.85 0.00237 
CEBPB Gm12878 GO:0045088 regulation of innate immune response 3.62 0.019 
CEBPB Gm12878 GO:0050778 positive regulation of immune response 3.57 0.0242 
CEBPB Gm12878 GO:0002764 immune response-regulating signaling pathway 3.51 0.0512 
CEBPB Gm12878 GO:0051707 response to other organism 3.51 0.0503 
CEBPB Gm12878 GO:0006915 apoptotic process 3.47 0.0245 
CEBPB Gm12878 GO:0012501 programmed cell death 3.47 0.0235 
CEBPB Gm12878 GO:0008219 cell death 3.33 0.0214 
CEBPB Gm12878 GO:0071407 cellular response to organic cyclic compound 3.26 0.0442 
CEBPB Gm12878 GO:0016265 death 3.21 0.0275 
CEBPB Gm12878 GO:0001817 regulation of cytokine production 3.12 0.0197 
CEBPB Gm12878 GO:0031347 regulation of defense response 2.96 0.0292 
CEBPB Gm12878 GO:0050776 regulation of immune response 2.94 0.0204 
CEBPB Gm12878 GO:0006952 defense response 2.72 0.0161 
CEBPB Gm12878 GO:0019538 protein metabolic process 2.45 0.0237 
CEBPB Gm12878 GO:0002682 regulation of immune system process 2.28 0.0214 
CEBPB Gm12878 GO:0002376 immune system process 2.23 0.0204 
CEBPB Gm12878 GO:0007166 cell surface receptor signaling pathway 2.03 0.0252 
CEBPB Gm12878 GO:0006950 response to stress 1.82 0.0658 
CEBPB Gm12878 GO:0006366 transcription from RNA polymerase II promoter 1.8 0.00629 
CEBPB Gm12878 GO:0007165 signal transduction 1.63 0.05 
CEBPB H1hesc GO:0070345 negative regulation of fat cell proliferation 53.57 0.00883 
CEBPB H1hesc GO:0070344 regulation of fat cell proliferation 53.57 0.00588 
CEBPB H1hesc GO:1900739 regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 53.57 0.263 
CEBPB H1hesc GO:1900740 positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 53.57 0.22 
CEBPB H1hesc GO:1901028 regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway 53.57 0.188 

CEBPB H1hesc GO:1901030 
positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling 
pathway 53.57 0.165 

CEBPB H1hesc GO:0000278 mitotic cell cycle 26.79 0.0129 
CEBPB H1hesc GO:0007049 cell cycle 19.48 0.015 
CEBPB H1hesc GO:0032388 positive regulation of intracellular transport 14.61 0.273 
CEBPB H1hesc GO:1903829 positive regulation of cellular protein localization 14.61 0.248 
CEBPB H1hesc GO:0033043 regulation of organelle organization 8.93 0.196 
CEBPB Helas3 GO:0036499 PERK-mediated unfolded protein response 11.72 1 
CEBPB Helas3 GO:0034976 response to endoplasmic reticulum stress 7.81 1 
CEBPB K562 GO:0050817 coagulation 7.09 0.0222 
CEBPB K562 GO:0007596 blood coagulation 7.09 0.0111 
CEBPB K562 GO:0007599 hemostasis 6.45 0.0189 
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CTCF Hct116 GO:1901741 positive regulation of myoblast fusion 37.5 1 
CTCF Hct116 GO:1901739 regulation of myoblast fusion 37.5 1 
CTCF Hct116 GO:0051149 positive regulation of muscle cell differentiation 14.06 1 
CTCF Hct116 GO:0010720 positive regulation of cell development 5.36 1 
CTCF Hek293 GO:0009719 response to endogenous stimulus 4.66 1 
CTCF Hepg2 GO:0030513 positive regulation of BMP signaling pathway 62.5 0.941 
CTCF Hepg2 GO:0090100 positive regulation of transmembrane receptor protein serine/threonine kinase signaling pathway 46.88 0.878 
CTCF Hepg2 GO:0030510 regulation of BMP signaling pathway 41.67 0.753 
CTCF Hepg2 GO:0090092 regulation of transmembrane receptor protein serine/threonine kinase signaling pathway 31.25 1 
CTCF Huvec GO:0006974 cellular response to DNA damage stimulus 11.72 1 
CTCF K562 GO:0070345 negative regulation of fat cell proliferation 34.09 0.0832 
CTCF K562 GO:0070344 regulation of fat cell proliferation 34.09 0.0416 
CTCF K562 GO:1900739 regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 34.09 0.575 
CTCF K562 GO:1900740 positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 34.09 0.493 
CTCF K562 GO:1901028 regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway 34.09 0.431 

CTCF K562 GO:1901030 
positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling 
pathway 34.09 0.383 

CTCF K562 GO:0003334 keratinocyte development 34.09 0.345 
CTCF K562 GO:0072210 metanephric nephron development 34.09 0.314 
CTCF K562 GO:0000278 mitotic cell cycle 17.05 0.0393 
CTCF K562 GO:0007049 cell cycle 12.4 0.106 
CTCF K562 GO:0042127 regulation of cell proliferation 2.89 0.0642 
CTCF Mcf7 GO:0030097 hemopoiesis 14.42 1 

CTCF Sknshra GO:1901522 
positive regulation of transcription from RNA polymerase II promoter involved in cellular response to 
chemical stimulus 31.25 1 

EP300 A549 GO:0007267 cell-cell signaling 13.39 1 
EP300 A549 GO:0044700 single organism signaling 12.78 0.996 
EP300 A549 GO:0023052 signaling 12.78 0.747 
EP300 A549 GO:0007154 cell communication 11.36 0.222 
EP300 Gm12878 GO:0060333 interferon-gamma-mediated signaling pathway 7.46 0.000314 
EP300 Gm12878 GO:0002223 stimulatory C-type lectin receptor signaling pathway 7.31 0.00148 
EP300 Gm12878 GO:0002220 innate immune response activating cell surface receptor signaling pathway 7.31 0.00144 
EP300 Gm12878 GO:0032481 positive regulation of type I interferon production 6.82 0.000217 
EP300 Gm12878 GO:0060337 type I interferon signaling pathway 6.82 0.000203 
EP300 Gm12878 GO:0002260 lymphocyte homeostasis 6.82 0.041 
EP300 Gm12878 GO:0071260 cellular response to mechanical stimulus 6.82 0.0405 
EP300 Gm12878 GO:0032728 positive regulation of interferon-beta production 6.82 0.04 
EP300 Gm12878 GO:0050851 antigen receptor-mediated signaling pathway 6.82 0.0396 
EP300 Gm12878 GO:0002429 immune response-activating cell surface receptor signaling pathway 6.63 0.00089 
EP300 Gm12878 GO:0032479 regulation of type I interferon production 6.2 0.000473 
EP300 Gm12878 GO:0051607 defense response to virus 6.09 0.0201 
EP300 Gm12878 GO:0050778 positive regulation of immune response 5.68 1.71E-06 
EP300 Gm12878 GO:0002218 activation of innate immune response 5.68 0.000142 
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EP300 Gm12878 GO:0002758 innate immune response-activating signal transduction 5.68 0.00013 
EP300 Gm12878 GO:0050871 positive regulation of B cell activation 5.68 0.00934 
EP300 Gm12878 GO:0045089 positive regulation of innate immune response 5.51 7.93E-05 
EP300 Gm12878 GO:0019221 cytokine-mediated signaling pathway 5.51 6.94E-05 
EP300 Gm12878 GO:0031349 positive regulation of defense response 5.51 6.17E-05 
EP300 Gm12878 GO:0002221 pattern recognition receptor signaling pathway 5.42 0.00437 
EP300 Gm12878 GO:0002224 toll-like receptor signaling pathway 5.42 0.00427 
EP300 Gm12878 GO:0002756 MyD88-independent toll-like receptor signaling pathway 5.42 0.00418 
EP300 Gm12878 GO:0034142 toll-like receptor 4 signaling pathway 5.42 0.0041 
EP300 Gm12878 GO:0034138 toll-like receptor 3 signaling pathway 5.42 0.00401 
EP300 Gm12878 GO:0035666 TRIF-dependent toll-like receptor signaling pathway 5.42 0.00393 
EP300 Gm12878 GO:0002253 activation of immune response 5.33 0.000225 
EP300 Gm12878 GO:0002757 immune response-activating signal transduction 5.33 0.000212 
EP300 Gm12878 GO:0034162 toll-like receptor 9 signaling pathway 5.11 0.0181 
EP300 Gm12878 GO:0050864 regulation of B cell activation 5.11 0.0179 
EP300 Gm12878 GO:0045088 regulation of innate immune response 4.82 5.00E-05 
EP300 Gm12878 GO:0071375 cellular response to peptide hormone stimulus 4.65 0.032 
EP300 Gm12878 GO:0002697 regulation of immune effector process 4.65 0.0316 
EP300 Gm12878 GO:0098542 defense response to other organism 4.65 0.0312 
EP300 Gm12878 GO:0002764 immune response-regulating signaling pathway 4.49 0.00109 
EP300 Gm12878 GO:0050776 regulation of immune response 4.26 5.84E-06 
EP300 Gm12878 GO:0001819 positive regulation of cytokine production 4.26 0.000151 
EP300 Gm12878 GO:1901699 cellular response to nitrogen compound 4.26 0.000755 
EP300 Gm12878 GO:0002696 positive regulation of leukocyte activation 4.26 0.00924 
EP300 Gm12878 GO:0071345 cellular response to cytokine stimulus 4.26 0.00908 
EP300 Gm12878 GO:0051251 positive regulation of lymphocyte activation 4.26 0.00893 
EP300 Gm12878 GO:0009615 response to virus 4.26 0.0221 
EP300 Gm12878 GO:0051249 regulation of lymphocyte activation 4.08 0.00108 
EP300 Gm12878 GO:0002684 positive regulation of immune system process 4.02 1.11E-05 
EP300 Gm12878 GO:0050867 positive regulation of cell activation 4.01 0.0142 
EP300 Gm12878 GO:0002768 immune response-regulating cell surface receptor signaling pathway 3.98 0.0335 
EP300 Gm12878 GO:0006915 apoptotic process 3.91 0.00159 
EP300 Gm12878 GO:0012501 programmed cell death 3.91 0.00155 
EP300 Gm12878 GO:0071417 cellular response to organonitrogen compound 3.84 0.0094 
EP300 Gm12878 GO:0045087 innate immune response 3.75 0.00247 
EP300 Gm12878 GO:0008219 cell death 3.75 0.00241 
EP300 Gm12878 GO:0045580 regulation of T cell differentiation 3.73 0.0482 
EP300 Gm12878 GO:0002694 regulation of leukocyte activation 3.61 0.00372 
EP300 Gm12878 GO:0016265 death 3.61 0.00364 
EP300 Gm12878 GO:0051707 response to other organism 3.59 0.0318 
EP300 Gm12878 GO:0031347 regulation of defense response 3.57 0.00091 
EP300 Gm12878 GO:0048534 hematopoietic or lymphoid organ development 3.55 0.00843 
EP300 Gm12878 GO:0050865 regulation of cell activation 3.47 0.00473 
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EP300 Gm12878 GO:0001817 regulation of cytokine production 3.46 0.00121 
EP300 Gm12878 GO:0002682 regulation of immune system process 3.3 1.74E-06 
EP300 Gm12878 GO:0006952 defense response 3.15 0.000271 
EP300 Gm12878 GO:0043207 response to external biotic stimulus 3.1 0.00745 
EP300 Gm12878 GO:0034097 response to cytokine 3.07 0.046 
EP300 Gm12878 GO:0009607 response to biotic stimulus 3.01 0.009 
EP300 Gm12878 GO:1903706 regulation of hemopoiesis 2.99 0.00539 
EP300 Gm12878 GO:0080134 regulation of response to stress 2.89 0.000459 
EP300 Gm12878 GO:0002376 immune system process 2.88 1.34E-05 
EP300 Gm12878 GO:0050678 regulation of epithelial cell proliferation 2.84 0.0464 
EP300 Gm12878 GO:1901698 response to nitrogen compound 2.77 0.0114 
EP300 Gm12878 GO:0035556 intracellular signal transduction 2.56 0.00908 
EP300 Gm12878 GO:0006955 immune response 2.56 0.0411 
EP300 Gm12878 GO:0007166 cell surface receptor signaling pathway 2.49 0.000124 
EP300 Gm12878 GO:0048584 positive regulation of response to stimulus 2.47 0.00109 
EP300 Gm12878 GO:0070887 cellular response to chemical stimulus 2.36 0.000449 
EP300 Gm12878 GO:0019538 protein metabolic process 2.34 0.0372 
EP300 Gm12878 GO:0006950 response to stress 2.22 0.000487 
EP300 Gm12878 GO:0042221 response to chemical 2.15 0.000125 
EP300 Gm12878 GO:0051240 positive regulation of multicellular organismal process 2.15 0.000457 
EP300 Gm12878 GO:0008284 positive regulation of cell proliferation 2.13 0.03 
EP300 Gm12878 GO:0071310 cellular response to organic substance 2.04 0.0456 
EP300 Gm12878 GO:0048583 regulation of response to stimulus 2.01 0.000588 
EP300 Gm12878 GO:0051716 cellular response to stimulus 1.95 0.00378 
EP300 Gm12878 GO:0010033 response to organic substance 1.84 0.03 
EP300 Gm12878 GO:0050896 response to stimulus 1.75 0.000749 
EP300 Gm12878 GO:0007165 signal transduction 1.73 0.00889 
EP300 Gm12878 GO:0051239 regulation of multicellular organismal process 1.71 0.00111 
EP300 Gm12878 GO:0045595 regulation of cell differentiation 1.7 0.0161 
EP300 Gm12878 GO:0006366 transcription from RNA polymerase II promoter 1.66 0.0269 
EP300 Gm12878 GO:0048522 positive regulation of cellular process 1.25 0.00956 
EP300 Gm12878 GO:0048518 positive regulation of biological process 1.22 0.0269 
EP300 H1hesc GO:0060174 limb bud formation 12.1 1 
EP300 Helas3 GO:0008637 apoptotic mitochondrial changes 31.25 0.591 
EP300 Helas3 GO:0070059 intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress 31.25 0.517 
EP300 Helas3 GO:0034976 response to endoplasmic reticulum stress 15.62 0.175 

EP300 Helas3 GO:1990440 
positive regulation of transcription from RNA polymerase II promoter in response to endoplasmic reticulum 
stress 15.62 0.42 

EP300 Helas3 GO:0043620 regulation of DNA-templated transcription in response to stress 10.42 0.578 
EP300 Helas3 GO:0043618 regulation of transcription from RNA polymerase II promoter in response to stress 10.42 0.385 
EP300 Helas3 GO:0001889 liver development 9.62 0.41 
EP300 Helas3 GO:0001819 positive regulation of cytokine production 6.01 0.452 
EP300 Hepg2 GO:0051385 response to mineralocorticoid 14.42 0.000601 
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EP300 Hepg2 GO:0051412 response to corticosterone 14.42 0.000534 
EP300 Hepg2 GO:0006805 xenobiotic metabolic process 14.42 0.0386 
EP300 Hepg2 GO:0035902 response to immobilization stress 14.42 0.0375 
EP300 Hepg2 GO:0048145 regulation of fibroblast proliferation 10.3 0.00573 
EP300 Hepg2 GO:0048146 positive regulation of fibroblast proliferation 9.62 0.0345 
EP300 Hepg2 GO:0032570 response to progesterone 9.01 0.0111 
EP300 Hepg2 GO:0071277 cellular response to calcium ion 9.01 0.0106 
EP300 Hepg2 GO:0051592 response to calcium ion 9.01 0.0101 
EP300 Hepg2 GO:0007565 female pregnancy 8.24 0.0584 
EP300 Hepg2 GO:0051384 response to glucocorticoid 8.01 0.0192 
EP300 Hepg2 GO:0031960 response to corticosteroid 8.01 0.0185 
EP300 Hepg2 GO:0014074 response to purine-containing compound 6.79 0.00124 
EP300 Hepg2 GO:0071248 cellular response to metal ion 6.66 0.014 
EP300 Hepg2 GO:1901654 response to ketone 6.66 0.0134 
EP300 Hepg2 GO:0009612 response to mechanical stimulus 6.41 0.00194 
EP300 Hepg2 GO:0051591 response to cAMP 6.31 0.00655 
EP300 Hepg2 GO:0046683 response to organophosphorus 6.31 0.00618 
EP300 Hepg2 GO:0043401 steroid hormone mediated signaling pathway 6.18 2.59E-07 
EP300 Hepg2 GO:0071241 cellular response to inorganic substance 6.18 0.02 
EP300 Hepg2 GO:0097305 response to alcohol 6.07 0.00271 
EP300 Hepg2 GO:0031668 cellular response to extracellular stimulus 6.01 0.0589 
EP300 Hepg2 GO:0009755 hormone-mediated signaling pathway 5.85 3.51E-07 
EP300 Hepg2 GO:0030522 intracellular receptor signaling pathway 5.69 3.75E-07 
EP300 Hepg2 GO:0010038 response to metal ion 5.09 0.0511 
EP300 Hepg2 GO:0006629 lipid metabolic process 4.81 0.0288 
EP300 Hepg2 GO:0006367 transcription initiation from RNA polymerase II promoter 4.16 5.25E-05 
EP300 Hepg2 GO:0006352 DNA-templated transcription, initiation 4.08 5.67E-05 
EP300 Hepg2 GO:0048545 response to steroid hormone 3.98 0.0383 
EP300 Hepg2 GO:0010467 gene expression 3.93 8.44E-05 
EP300 Hepg2 GO:0042493 response to drug 3.72 0.0529 
EP300 Hepg2 GO:0051090 regulation of sequence-specific DNA binding transcription factor activity 3.61 0.0598 
EP300 Hepg2 GO:0014070 response to organic cyclic compound 3.46 0.00602 
EP300 Hepg2 GO:0010243 response to organonitrogen compound 3.42 0.0449 
EP300 Hepg2 GO:0032870 cellular response to hormone stimulus 3.39 0.0846 
EP300 Hepg2 GO:0033993 response to lipid 3.35 0.00352 
EP300 Hepg2 GO:1901698 response to nitrogen compound 3.25 0.0594 
EP300 Hepg2 GO:0071495 cellular response to endogenous stimulus 3.14 0.043 
EP300 Hepg2 GO:1901700 response to oxygen-containing compound 3.05 0.00191 
EP300 Hepg2 GO:0009725 response to hormone 2.94 0.0582 
EP300 Hepg2 GO:0009628 response to abiotic stimulus 2.94 0.0569 
EP300 Hepg2 GO:0003006 developmental process involved in reproduction 2.74 0.0598 
EP300 Hepg2 GO:0022414 reproductive process 2.64 0.00858 
EP300 Hepg2 GO:0071310 cellular response to organic substance 2.64 0.0283 
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EP300 Hepg2 GO:0044710 single-organism metabolic process 2.64 0.0724 
EP300 Hepg2 GO:0009719 response to endogenous stimulus 2.58 0.0546 
EP300 Hepg2 GO:0010033 response to organic substance 2.4 0.00622 
EP300 Hepg2 GO:0007165 signal transduction 2.3 0.000186 
EP300 Hepg2 GO:0042221 response to chemical 2.13 0.0247 
EP300 Hepg2 GO:0051716 cellular response to stimulus 2.12 0.0427 
EP300 T47d GO:0022037 metencephalon development 31.25 1 
FOS Gm12878 GO:0007219 Notch signaling pathway 4.71 0.168 
FOS Helas3 GO:0007267 cell-cell signaling 4.63 1 
FOS Helas3 GO:0044700 single organism signaling 4.42 0.813 
FOS Helas3 GO:0023052 signaling 4.42 0.542 
FOS Helas3 GO:0009653 anatomical structure morphogenesis 1.73 0.766 
FOS Huvec GO:0032647 regulation of interferon-alpha production 10.71 0.413 
FOS Huvec GO:0032727 positive regulation of interferon-alpha production 10.71 0.367 
FOS Huvec GO:0060333 interferon-gamma-mediated signaling pathway 9.38 0.000565 
FOS Huvec GO:0032728 positive regulation of interferon-beta production 8.57 0.265 
FOS Huvec GO:0060337 type I interferon signaling pathway 7.5 0.00492 
FOS Huvec GO:0032648 regulation of interferon-beta production 7.14 0.371 
FOS Huvec GO:0019221 cytokine-mediated signaling pathway 6.3 0.000744 
FOS Huvec GO:0032481 positive regulation of type I interferon production 5.36 0.383 
FOS Huvec GO:0045088 regulation of innate immune response 3.73 0.289 
FOS Huvec GO:0050776 regulation of immune response 3.15 0.271 
FOS Huvec GO:0006952 defense response 3.03 0.0598 
FOS K562 GO:0070345 negative regulation of fat cell proliferation 34.09 0.0832 
FOS K562 GO:0070344 regulation of fat cell proliferation 34.09 0.0416 
FOS K562 GO:1900739 regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 34.09 0.575 
FOS K562 GO:1900740 positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 34.09 0.493 
FOS K562 GO:1901028 regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway 34.09 0.431 

FOS K562 GO:1901030 
positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling 
pathway 34.09 0.383 

FOS K562 GO:1901724 positive regulation of cell proliferation involved in kidney development 34.09 0.345 
FOS K562 GO:0000278 mitotic cell cycle 17.05 0.0393 
FOS K562 GO:0007049 cell cycle 12.4 0.133 
FOS K562 GO:0007219 Notch signaling pathway 10.49 0.223 
JUN Mcf10a GO:0031100 organ regeneration 17.58 1 
JUN Gm12878 GO:0055072 iron ion homeostasis 37.5 0.0605 
JUN Gm12878 GO:0006879 cellular iron ion homeostasis 37.5 0.282 
JUN Gm12878 GO:0046916 cellular transition metal ion homeostasis 37.5 0.257 
JUN Gm12878 GO:0055076 transition metal ion homeostasis 28.12 0.0597 
JUN Gm12878 GO:0098771 inorganic ion homeostasis 16.67 0.0672 
JUN Gm12878 GO:0055080 cation homeostasis 16.67 0.0448 
JUN Gm12878 GO:0006873 cellular ion homeostasis 16.07 0.286 
JUN Gm12878 GO:0030003 cellular cation homeostasis 16.07 0.25 
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JUN Gm12878 GO:0060249 anatomical structure homeostasis 16.07 0.222 
JUN Gm12878 GO:0055065 metal ion homeostasis 14.06 0.263 
JUN Gm12878 GO:0050801 ion homeostasis 13.64 0.0686 
JUN Gm12878 GO:0042592 homeostatic process 5 0.231 
JUN H1hesc GO:0006260 DNA replication 9.68 0.804 
JUN Helas3 GO:0045672 positive regulation of osteoclast differentiation 53.57 0.0507 
JUN Helas3 GO:0002763 positive regulation of myeloid leukocyte differentiation 42.86 0.000943 
JUN Helas3 GO:0045639 positive regulation of myeloid cell differentiation 26.79 0.00432 
JUN Helas3 GO:0031098 stress-activated protein kinase signaling cascade 26.79 0.0287 
JUN Helas3 GO:0051403 stress-activated MAPK cascade 26.79 0.0265 
JUN Helas3 GO:0023014 signal transduction by protein phosphorylation 20.09 0.0432 
JUN Helas3 GO:0000165 MAPK cascade 20.09 0.0413 
JUN Helas3 GO:0034166 toll-like receptor 10 signaling pathway 17.86 0.0523 
JUN Helas3 GO:0002755 MyD88-dependent toll-like receptor signaling pathway 17.86 0.0504 
JUN Helas3 GO:0034134 toll-like receptor 2 signaling pathway 17.86 0.0487 
JUN Helas3 GO:0034146 toll-like receptor 5 signaling pathway 17.86 0.0471 
JUN Helas3 GO:0038124 toll-like receptor TLR6:TLR2 signaling pathway 17.86 0.0456 
JUN Helas3 GO:0038123 toll-like receptor TLR1:TLR2 signaling pathway 17.86 0.0441 
JUN Helas3 GO:0034162 toll-like receptor 9 signaling pathway 16.07 0.0556 
JUN Helas3 GO:0007611 learning or memory 16.07 0.0541 
JUN Helas3 GO:0002761 regulation of myeloid leukocyte differentiation 15.31 0.0254 
JUN Helas3 GO:1902107 positive regulation of leukocyte differentiation 15.31 0.0222 
JUN Helas3 GO:0000302 response to reactive oxygen species 14.61 0.0682 
JUN Helas3 GO:0002221 pattern recognition receptor signaling pathway 14.61 0.0666 
JUN Helas3 GO:0002224 toll-like receptor signaling pathway 14.61 0.065 
JUN Helas3 GO:0002756 MyD88-independent toll-like receptor signaling pathway 14.61 0.0635 
JUN Helas3 GO:0034142 toll-like receptor 4 signaling pathway 14.61 0.062 
JUN Helas3 GO:0034138 toll-like receptor 3 signaling pathway 14.61 0.0607 
JUN Helas3 GO:0038093 Fc receptor signaling pathway 14.61 0.0593 
JUN Helas3 GO:0038095 Fc-epsilon receptor signaling pathway 14.61 0.0581 
JUN Helas3 GO:0050890 cognition 14.61 0.0569 
JUN Helas3 GO:0035666 TRIF-dependent toll-like receptor signaling pathway 14.61 0.0557 
JUN Helas3 GO:0006468 protein phosphorylation 14.29 0.0241 
JUN Helas3 GO:0016310 phosphorylation 13.39 0.029 
JUN Helas3 GO:0034097 response to cytokine 12.86 0.000702 
JUN Helas3 GO:0045089 positive regulation of innate immune response 12.61 0.0277 
JUN Helas3 GO:0031349 positive regulation of defense response 12.61 0.0259 
JUN Helas3 GO:1903708 positive regulation of hemopoiesis 11.9 0.0294 
JUN Helas3 GO:0045088 regulation of innate immune response 11.65 0.00951 
JUN Helas3 GO:0006796 phosphate-containing compound metabolic process 11.28 0.0351 
JUN Helas3 GO:0006793 phosphorus metabolic process 11.28 0.0333 
JUN Helas3 GO:0050778 positive regulation of immune response 10.2 0.0406 
JUN Helas3 GO:0045637 regulation of myeloid cell differentiation 9.32 0.0449 
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JUN Helas3 GO:0031347 regulation of defense response 8.64 0.0257 
JUN Helas3 GO:0045087 innate immune response 8.57 0.055 
JUN Helas3 GO:0010035 response to inorganic substance 7.94 0.0572 
JUN Helas3 GO:0050776 regulation of immune response 7.88 0.0267 
JUN Helas3 GO:1902105 regulation of leukocyte differentiation 7.39 0.0734 
JUN Helas3 GO:0048511 rhythmic process 7.39 0.072 
JUN Helas3 GO:0006955 immune response 6.7 0.0408 
JUN Helas3 GO:0035556 intracellular signal transduction 6.43 0.0197 
JUN Helas3 GO:0006952 defense response 5.82 0.051 
JUN Helas3 GO:0051704 multi-organism process 5.82 0.0495 
JUN Helas3 GO:0002376 immune system process 5.28 0.00748 
JUN Helas3 GO:0080134 regulation of response to stress 5.05 0.0687 
JUN Helas3 GO:0070887 cellular response to chemical stimulus 3.87 0.0659 
JUN Helas3 GO:0010033 response to organic substance 3.68 0.0244 
JUN Helas3 GO:0042221 response to chemical 3.26 0.0411 
JUN Hepg2 GO:1901700 response to oxygen-containing compound 5.28 0.952 
JUN K562 GO:0070345 negative regulation of fat cell proliferation 28.85 0.144 
JUN K562 GO:0070344 regulation of fat cell proliferation 28.85 0.0721 
JUN K562 GO:1904018 positive regulation of vasculature development 17.31 0.277 
JUN K562 GO:0000278 mitotic cell cycle 14.42 0.0837 
JUN K562 GO:0007049 cell cycle 10.49 0.279 
JUND Gm12878 GO:0060333 interferon-gamma-mediated signaling pathway 7.65 0.00011 
JUND Gm12878 GO:0007259 JAK-STAT cascade 7.65 0.00414 
JUND Gm12878 GO:0060338 regulation of type I interferon-mediated signaling pathway 7.65 0.144 
JUND Gm12878 GO:0060397 JAK-STAT cascade involved in growth hormone signaling pathway 7.65 0.128 
JUND Gm12878 GO:0060337 type I interferon signaling pathway 6.89 7.40E-05 
JUND Gm12878 GO:0019221 cytokine-mediated signaling pathway 6.3 1.56E-07 
JUND Gm12878 GO:0051607 defense response to virus 5.47 0.216 
JUND Gm12878 GO:0002697 regulation of immune effector process 4.87 0.0697 
JUND Gm12878 GO:0098542 defense response to other organism 4.87 0.0598 
JUND Gm12878 GO:0032481 positive regulation of type I interferon production 4.59 0.229 
JUND Gm12878 GO:0007166 cell surface receptor signaling pathway 2.05 0.0779 
JUND H1hesc GO:0008340 determination of adult lifespan 31.25 1 
JUND H1hesc GO:1901983 regulation of protein acetylation 18.75 1 
JUND Helas3 GO:0001759 organ induction 62.5 0.941 
JUND Helas3 GO:0060272 embryonic skeletal joint morphogenesis 41.67 0.934 
JUND Helas3 GO:0009954 proximal/distal pattern formation 14.42 1 
JUND Hepg2 GO:0055088 lipid homeostasis 7.89 0.604 
JUND Hepg2 GO:0033500 carbohydrate homeostasis 6.58 0.412 
JUND Hepg2 GO:0042593 glucose homeostasis 6.58 0.206 
JUND Hepg2 GO:0048878 chemical homeostasis 4.32 0.606 
JUND Hepg2 GO:0042592 homeostatic process 3.51 0.705 
JUND Hepg2 GO:0003006 developmental process involved in reproduction 3.06 0.649 
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JUND Huvec GO:0045333 cellular respiration 31.25 1 
JUND Huvec GO:0002223 stimulatory C-type lectin receptor signaling pathway 13.39 1 
JUND Huvec GO:0002220 innate immune response activating cell surface receptor signaling pathway 13.39 1 
JUND Huvec GO:0050778 positive regulation of immune response 7.44 0.91 
JUND K562 GO:0045766 positive regulation of angiogenesis 21.63 0.565 
JUND K562 GO:0035162 embryonic hemopoiesis 21.63 0.283 
JUND K562 GO:1904018 positive regulation of vasculature development 17.31 0.462 
JUND K562 GO:0001776 leukocyte homeostasis 14.42 0.543 
JUND K562 GO:0043627 response to estrogen 8.88 0.581 
JUND Gm12878 GO:0032647 regulation of interferon-alpha production 18.75 0.0958 
JUND Gm12878 GO:0032727 positive regulation of interferon-alpha production 18.75 0.0821 
JUND Gm12878 GO:0060333 interferon-gamma-mediated signaling pathway 16.41 1.35E-05 
JUND Gm12878 GO:0032728 positive regulation of interferon-beta production 15 0.0317 
JUND Gm12878 GO:0060337 type I interferon signaling pathway 13.12 9.52E-05 
JUND Gm12878 GO:0032648 regulation of interferon-beta production 12.5 0.0735 
JUND Gm12878 GO:0019221 cytokine-mediated signaling pathway 8.82 0.000382 
JUND Gm12878 GO:0002252 immune effector process 6.7 0.208 
JUND H1hesc GO:0031647 regulation of protein stability 7.94 1 
JUND Helas3 GO:0006094 gluconeogenesis 53.57 1 
JUND Helas3 GO:0061394 regulation of transcription from RNA polymerase II promoter in response to arsenic-containing substance 53.57 0.659 
JUND Helas3 GO:0016051 carbohydrate biosynthetic process 53.57 0.439 
JUND Helas3 GO:0019319 hexose biosynthetic process 53.57 0.329 
JUND Helas3 GO:0046364 monosaccharide biosynthetic process 53.57 0.263 
JUND Hepg2 GO:0060174 limb bud formation 10.71 0.66 
JUND Hepg2 GO:0060441 epithelial tube branching involved in lung morphogenesis 8.57 0.663 
JUND Hepg2 GO:0031018 endocrine pancreas development 5.36 1 
JUND Hepg2 GO:0033500 carbohydrate homeostasis 4.17 0.748 
JUND Hepg2 GO:0042593 glucose homeostasis 4.17 0.561 
JUND K562 GO:0070345 negative regulation of fat cell proliferation 15.62 1 
JUND K562 GO:0070344 regulation of fat cell proliferation 15.62 0.51 
JUND K562 GO:0000278 mitotic cell cycle 7.81 1 
JUND Sknsh GO:0007259 JAK-STAT cascade 8.93 0.00622 
JUND Sknsh GO:0060397 JAK-STAT cascade involved in growth hormone signaling pathway 8.93 0.304 
JUND Sknsh GO:0042542 response to hydrogen peroxide 5.58 0.671 
JUND Sknsh GO:0000302 response to reactive oxygen species 4.87 0.619 
JUND Sknsh GO:0006979 response to oxidative stress 3.91 0.633 
MAFK H1hesc GO:0070345 negative regulation of fat cell proliferation 46.88 0.0141 
MAFK H1hesc GO:0070344 regulation of fat cell proliferation 46.88 0.00942 
MAFK H1hesc GO:1900739 regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 46.88 0.176 
MAFK H1hesc GO:1900740 positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 46.88 0.16 
MAFK H1hesc GO:1901028 regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway 46.88 0.146 

MAFK H1hesc GO:1901030 
positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling 
pathway 46.88 0.135 
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MAFK H1hesc GO:0044843 cell cycle G1/S phase transition 35.16 0.028 
MAFK H1hesc GO:0000082 G1/S transition of mitotic cell cycle 35.16 0.0224 
MAFK H1hesc GO:0000278 mitotic cell cycle 23.44 0.0257 
MAFK H1hesc GO:0044772 mitotic cell cycle phase transition 20.09 0.119 
MAFK H1hesc GO:0044770 cell cycle phase transition 20.09 0.105 
MAFK H1hesc GO:0007049 cell cycle 17.05 0.0196 
MAFK H1hesc GO:2001235 positive regulation of apoptotic signaling pathway 14.06 0.225 
MAFK H1hesc GO:1903047 mitotic cell cycle process 11.03 0.115 
MAFK Hepg2 GO:0040020 regulation of meiotic nuclear division 46.88 1 
MAFK Hepg2 GO:0045836 positive regulation of meiotic nuclear division 46.88 0.878 
MAFK Hepg2 GO:0090427 activation of meiosis 46.88 0.585 
MAFK Hepg2 GO:0051446 positive regulation of meiotic cell cycle 46.88 0.439 
MAFK Hepg2 GO:0051445 regulation of meiotic cell cycle 46.88 0.351 
MAFK Hepg2 GO:0035880 embryonic nail plate morphogenesis 46.88 0.293 
MAFK Hepg2 GO:0071407 cellular response to organic cyclic compound 8.15 0.406 
MAFK Imr90 GO:0045945 positive regulation of transcription from RNA polymerase III promoter 41.67 1 
MAFK K562 GO:0051385 response to mineralocorticoid 20.83 0.000626 
MAFK K562 GO:0051412 response to corticosterone 20.83 0.000313 
MAFK K562 GO:0032570 response to progesterone 13.02 0.00401 
MAFK K562 GO:0071277 cellular response to calcium ion 13.02 0.00356 
MAFK K562 GO:0051592 response to calcium ion 13.02 0.00321 
MAFK K562 GO:0007565 female pregnancy 11.9 0.0279 
MAFK K562 GO:0051384 response to glucocorticoid 11.57 0.00584 
MAFK K562 GO:0031960 response to corticosteroid 11.57 0.00539 
MAFK K562 GO:0051591 response to cAMP 9.11 0.00215 
MAFK K562 GO:0046683 response to organophosphorus 9.11 0.00161 
MAFK K562 GO:0014074 response to purine-containing compound 8.58 0.00178 
MAFK K562 GO:0009612 response to mechanical stimulus 8.1 0.00242 
MAFK K562 GO:0071248 cellular response to metal ion 8.01 0.0317 
MAFK K562 GO:1901654 response to ketone 8.01 0.0302 
MAFK K562 GO:0071241 cellular response to inorganic substance 7.44 0.0417 
MAFK K562 GO:0010038 response to metal ion 6.13 0.104 
MAFK K562 GO:0042493 response to drug 6.05 0.00142 
MAFK K562 GO:0034097 response to cytokine 5.83 0.0141 
MAFK K562 GO:0032496 response to lipopolysaccharide 5.79 0.13 
MAFK K562 GO:0032870 cellular response to hormone stimulus 4.9 0.0144 
MAFK K562 GO:0010035 response to inorganic substance 4.63 0.132 
MAFK K562 GO:0010243 response to organonitrogen compound 4.39 0.0272 
MAFK K562 GO:0009628 response to abiotic stimulus 4.25 0.00471 
MAFK K562 GO:1901698 response to nitrogen compound 4.17 0.0332 
MAFK K562 GO:0044267 cellular protein metabolic process 3.84 0.134 
MAFK K562 GO:0009725 response to hormone 3.83 0.0276 
MAFK K562 GO:0071495 cellular response to endogenous stimulus 3.62 0.0846 
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MAFK K562 GO:0033993 response to lipid 3.35 0.0606 
MAFK K562 GO:0014070 response to organic cyclic compound 3.33 0.13 
MAFK K562 GO:0006366 transcription from RNA polymerase II promoter 2.25 0.0145 
MAZ Gm12878 GO:0060333 interferon-gamma-mediated signaling pathway 13.89 5.43E-07 
MAZ Gm12878 GO:0032647 regulation of interferon-alpha production 13.89 0.123 
MAZ Gm12878 GO:0032727 positive regulation of interferon-alpha production 13.89 0.113 
MAZ Gm12878 GO:0070345 negative regulation of fat cell proliferation 13.89 0.105 
MAZ Gm12878 GO:0070344 regulation of fat cell proliferation 13.89 0.0984 
MAZ Gm12878 GO:0060337 type I interferon signaling pathway 12.5 5.37E-07 
MAZ Gm12878 GO:0032728 positive regulation of interferon-beta production 11.11 0.0646 
MAZ Gm12878 GO:0032648 regulation of interferon-beta production 9.26 0.117 
MAZ Gm12878 GO:0019221 cytokine-mediated signaling pathway 8.99 4.14E-07 
MAZ Gm12878 GO:0051607 defense response to virus 7.94 0.143 
MAZ Gm12878 GO:0098542 defense response to other organism 6.31 0.126 
MAZ Gm12878 GO:0001819 positive regulation of cytokine production 4.81 0.0134 
MAZ Gm12878 GO:0016032 viral process 4.63 0.169 
MAZ Gm12878 GO:0044764 multi-organism cellular process 4.63 0.162 
MAZ Gm12878 GO:0044403 symbiosis, encompassing mutualism through parasitism 4.63 0.155 
MAZ Gm12878 GO:0045088 regulation of innate immune response 4.23 0.131 
MAZ Gm12878 GO:0001817 regulation of cytokine production 3.91 0.0679 
MAZ Gm12878 GO:0050776 regulation of immune response 3.68 0.0924 
MAZ Gm12878 GO:0035556 intracellular signal transduction 3.06 0.0999 
MAZ Gm12878 GO:0007166 cell surface receptor signaling pathway 3.05 0.000251 
MAZ Gm12878 GO:0051704 multi-organism process 3.02 0.124 
MAZ Gm12878 GO:0007165 signal transduction 2.21 0.000959 
MAZ Gm12878 GO:0006950 response to stress 2.17 0.127 
MAZ Hepg2 GO:0030335 positive regulation of cell migration 7.94 1 
MAZ Hepg2 GO:0040017 positive regulation of locomotion 7.94 1 
MAZ Hepg2 GO:2000147 positive regulation of cell motility 7.94 1 
MAZ K562 GO:2000352 negative regulation of endothelial cell apoptotic process 41.67 0.376 
MAZ K562 GO:0060575 intestinal epithelial cell differentiation 41.67 0.323 
MAZ K562 GO:0050817 coagulation 16.67 0.134 
MAZ K562 GO:0007596 blood coagulation 16.67 0.0672 
MAZ K562 GO:0007599 hemostasis 15.15 0.0697 
MAZ K562 GO:0001701 in utero embryonic development 8.77 0.562 
MAZ K562 GO:0043009 chordate embryonic development 8.77 0.449 
MAZ K562 GO:0050878 regulation of body fluid levels 8.33 0.347 
MAZ K562 GO:0009792 embryo development ending in birth or egg hatching 8.33 0.309 
MAZ K562 GO:0009790 embryo development 7.58 0.41 
MXI1 Gm12878 GO:0032647 regulation of interferon-alpha production 14.42 0.219 
MXI1 Gm12878 GO:0032727 positive regulation of interferon-alpha production 14.42 0.187 
MXI1 Gm12878 GO:0032728 positive regulation of interferon-beta production 11.54 0.0966 
MXI1 Gm12878 GO:0060333 interferon-gamma-mediated signaling pathway 10.82 0.00347 
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MXI1 Gm12878 GO:0060337 type I interferon signaling pathway 10.1 0.00154 
MXI1 Gm12878 GO:0032648 regulation of interferon-beta production 9.62 0.221 
MXI1 Gm12878 GO:0098542 defense response to other organism 6.56 0.208 
MXI1 Gm12878 GO:0019221 cytokine-mediated signaling pathway 5.94 0.0602 
MXI1 Gm12878 GO:0051707 response to other organism 4.55 0.397 
MXI1 Gm12878 GO:0033554 cellular response to stress 2.74 0.286 
MXI1 H1hesc GO:0006260 DNA replication 17.65 0.0627 
MXI1 H1hesc GO:0033044 regulation of chromosome organization 7.88 0.236 
MXI1 H1hesc GO:0006259 DNA metabolic process 7.35 0.0995 
MXI1 Helas3 GO:0006260 DNA replication 16.07 0.293 
MXI1 Helas3 GO:0045600 positive regulation of fat cell differentiation 15.31 0.178 
MXI1 Helas3 GO:0045598 regulation of fat cell differentiation 8.24 0.398 
MXI1 Helas3 GO:0016032 viral process 7.44 0.319 
MXI1 Helas3 GO:0044764 multi-organism cellular process 7.44 0.24 
MXI1 Helas3 GO:0044403 symbiosis, encompassing mutualism through parasitism 7.44 0.192 
MXI1 Helas3 GO:0044419 interspecies interaction between organisms 6.09 0.387 
MXI1 Helas3 GO:1901698 response to nitrogen compound 4.69 0.405 
MXI1 Hepg2 GO:0070345 negative regulation of fat cell proliferation 20.83 0.206 
MXI1 Hepg2 GO:0070344 regulation of fat cell proliferation 20.83 0.137 
MXI1 Hepg2 GO:0006953 acute-phase response 15.62 0.319 
MXI1 Hepg2 GO:0002526 acute inflammatory response 12.5 0.553 
MXI1 Hepg2 GO:0007005 mitochondrion organization 10.42 0.136 
MXI1 Hepg2 GO:0000278 mitotic cell cycle 10.42 0.257 
MXI1 Hepg2 GO:0006952 defense response 3.62 0.352 
MXI1 K562 GO:0051385 response to mineralocorticoid 11.72 0.00491 
MXI1 K562 GO:0051412 response to corticosterone 11.72 0.00368 
MXI1 K562 GO:0051384 response to glucocorticoid 7.81 0.00748 
MXI1 K562 GO:0031960 response to corticosteroid 7.81 0.0068 
MXI1 K562 GO:0032570 response to progesterone 7.32 0.0402 
MXI1 K562 GO:0071277 cellular response to calcium ion 7.32 0.0379 
MXI1 K562 GO:0051592 response to calcium ion 7.32 0.0359 
MXI1 K562 GO:0009612 response to mechanical stimulus 5.86 0.00482 
MXI1 K562 GO:0051591 response to cAMP 5.86 0.00584 
MXI1 K562 GO:0046683 response to organophosphorus 5.86 0.00511 
MXI1 K562 GO:0071241 cellular response to inorganic substance 5.86 0.0121 
MXI1 K562 GO:0014074 response to purine-containing compound 5.51 0.00807 
MXI1 K562 GO:0071248 cellular response to metal ion 5.41 0.0541 
MXI1 K562 GO:0042493 response to drug 4.16 0.00593 
MXI1 K562 GO:0010035 response to inorganic substance 3.91 0.034 
MXI1 K562 GO:0032870 cellular response to hormone stimulus 3.79 0.00844 
MXI1 K562 GO:0048545 response to steroid hormone 3.64 0.0515 
MXI1 K562 GO:0009725 response to hormone 3.35 0.00504 
MXI1 K562 GO:0009628 response to abiotic stimulus 3.11 0.0125 
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MXI1 K562 GO:0010243 response to organonitrogen compound 3.08 0.0822 
MXI1 K562 GO:0071495 cellular response to endogenous stimulus 3.06 0.0302 
MXI1 K562 GO:1901698 response to nitrogen compound 2.93 0.121 
MXI1 K562 GO:0014070 response to organic cyclic compound 2.81 0.0536 
MXI1 K562 GO:0009605 response to external stimulus 2.51 0.136 
MXI1 K562 GO:0033993 response to lipid 2.51 0.131 
MXI1 K562 GO:0009719 response to endogenous stimulus 2.45 0.061 
MXI1 K562 GO:0071310 cellular response to organic substance 2.31 0.111 
MXI1 K562 GO:0006366 transcription from RNA polymerase II promoter 2.19 0.000519 
MYC A549 GO:0007259 JAK-STAT cascade 17.86 6.43E-05 
MYC A549 GO:0060397 JAK-STAT cascade involved in growth hormone signaling pathway 17.86 0.0162 
MYC A549 GO:0002705 positive regulation of leukocyte mediated immunity 17.86 0.112 
MYC A549 GO:0002708 positive regulation of lymphocyte mediated immunity 17.86 0.0958 
MYC A549 GO:0002699 positive regulation of immune effector process 11.9 0.113 
MYC A549 GO:0040014 regulation of multicellular organism growth 8.93 0.245 
MYC A549 GO:0002697 regulation of immune effector process 8.12 0.11 
MYC A549 GO:0019221 cytokine-mediated signaling pathway 7.35 0.012 
MYC Gm12878 GO:0070345 negative regulation of fat cell proliferation 37.5 0.0605 
MYC Gm12878 GO:0070344 regulation of fat cell proliferation 37.5 0.0303 
MYC Gm12878 GO:1900739 regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 37.5 0.47 
MYC Gm12878 GO:1900740 positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 37.5 0.403 
MYC Gm12878 GO:1901028 regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway 37.5 0.353 

MYC Gm12878 GO:1901030 
positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling 
pathway 37.5 0.314 

MYC Gm12878 GO:0000278 mitotic cell cycle 18.75 0.0252 
MYC Gm12878 GO:0007049 cell cycle 13.64 0.0857 
MYC Gm12878 GO:0007219 Notch signaling pathway 11.54 0.145 
MYC H1hesc GO:0060174 limb bud formation 18.75 0.575 
MYC H1hesc GO:0042246 tissue regeneration 14.06 0.74 
MYC H1hesc GO:0021781 glial cell fate commitment 14.06 0.555 
MYC H1hesc GO:0021510 spinal cord development 14.06 0.444 
MYC H1hesc GO:0045165 cell fate commitment 4.29 0.32 
MYC Hepg2 GO:0048732 gland development 3.4 1 
MYC Huvec GO:0000075 cell cycle checkpoint 37.5 1 
MYC Huvec GO:0000077 DNA damage checkpoint 37.5 1 
MYC Huvec GO:0031570 DNA integrity checkpoint 37.5 0.931 
MYC Huvec GO:0006974 cellular response to DNA damage stimulus 11.72 0.782 
MYC Huvec GO:0035556 intracellular signal transduction 7.5 1 
MYC K562 GO:0060575 intestinal epithelial cell differentiation 41.67 0.753 
MYC K562 GO:0034698 response to gonadotropin 17.86 1 
MYC K562 GO:0071371 cellular response to gonadotropin stimulus 17.86 0.706 
MYC K562 GO:0007267 cell-cell signaling 7.94 0.848 
MYC K562 GO:0044700 single organism signaling 7.58 0.82 
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MYC K562 GO:0023052 signaling 7.58 0.683 
MYC Mcf7 GO:0000429 carbon catabolite regulation of transcription from RNA polymerase II promoter 31.25 1 
MYC Mcf7 GO:0000430 regulation of transcription from RNA polymerase II promoter by glucose 31.25 1 
MYC Mcf7 GO:0000432 positive regulation of transcription from RNA polymerase II promoter by glucose 31.25 1 
MYC Mcf7 GO:0000436 carbon catabolite activation of transcription from RNA polymerase II promoter 31.25 1 
MYC Mcf7 GO:0036342 post-anal tail morphogenesis 31.25 0.828 
MYC Mcf7 GO:0019086 late viral transcription 31.25 0.69 
MYC Mcf7 GO:0019083 viral transcription 31.25 0.591 
NRF1 H1hesc GO:0000278 mitotic cell cycle 8.15 0.569 
NRF1 H1hesc GO:0010927 cellular component assembly involved in morphogenesis 8.15 0.474 
NRF1 H1hesc GO:0030030 cell projection organization 5.75 0.948 
NRF1 H1hesc GO:0022607 cellular component assembly 4.76 0.489 
NRF1 H1hesc GO:0071840 cellular component organization or biogenesis 2.31 0.494 
NRF1 H1hesc GO:0016043 cellular component organization 2.31 0.371 
NRF1 Helas3 GO:1901566 organonitrogen compound biosynthetic process 46.88 1 
NRF1 Hepg2 GO:0070345 negative regulation of fat cell proliferation 31.25 0.0555 
NRF1 Hepg2 GO:0070344 regulation of fat cell proliferation 31.25 0.037 
NRF1 Hepg2 GO:1900739 regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 31.25 0.69 
NRF1 Hepg2 GO:1900740 positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway 31.25 0.591 
NRF1 Hepg2 GO:1901028 regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway 31.25 0.517 

NRF1 Hepg2 GO:1901030 
positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling 
pathway 31.25 0.46 

NRF1 Hepg2 GO:0006260 DNA replication 25 0.0132 
NRF1 Hepg2 GO:0000278 mitotic cell cycle 15.62 0.0438 
NRF1 Hepg2 GO:0007049 cell cycle 11.36 0.157 
NRF1 K562 GO:0051385 response to mineralocorticoid 34.09 6.75E-06 
NRF1 K562 GO:0051412 response to corticosterone 34.09 5.63E-06 
NRF1 K562 GO:0045672 positive regulation of osteoclast differentiation 34.09 0.075 
NRF1 K562 GO:0009629 response to gravity 34.09 0.0734 
NRF1 K562 GO:0060430 lung saccule development 34.09 0.0719 
NRF1 K562 GO:0032570 response to progesterone 21.31 0.000121 
NRF1 K562 GO:0071277 cellular response to calcium ion 21.31 0.000113 
NRF1 K562 GO:0051592 response to calcium ion 21.31 0.000107 
NRF1 K562 GO:0002763 positive regulation of myeloid leukocyte differentiation 20.45 0.0218 
NRF1 K562 GO:0007565 female pregnancy 19.48 0.00222 
NRF1 K562 GO:0051384 response to glucocorticoid 18.94 0.000224 
NRF1 K562 GO:0031960 response to corticosteroid 18.94 0.000212 
NRF1 K562 GO:0051591 response to cAMP 17.05 9.79E-07 
NRF1 K562 GO:0046683 response to organophosphorus 17.05 4.89E-07 
NRF1 K562 GO:0031098 stress-activated protein kinase signaling cascade 17.05 0.0396 
NRF1 K562 GO:0007612 learning 17.05 0.0387 
NRF1 K562 GO:0051403 stress-activated MAPK cascade 17.05 0.0377 
NRF1 K562 GO:0014074 response to purine-containing compound 16.04 6.12E-07 
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NRF1 K562 GO:0071248 cellular response to metal ion 15.73 7.87E-05 
NRF1 K562 GO:0071241 cellular response to inorganic substance 14.61 0.000107 
NRF1 K562 GO:0007611 learning or memory 13.64 0.0104 
NRF1 K562 GO:0009612 response to mechanical stimulus 13.26 2.36E-05 
NRF1 K562 GO:1901654 response to ketone 13.11 0.00156 
NRF1 K562 GO:0045639 positive regulation of myeloid cell differentiation 12.78 0.0859 
NRF1 K562 GO:0023014 signal transduction by protein phosphorylation 12.78 0.0842 
NRF1 K562 GO:0000165 MAPK cascade 12.78 0.0826 
NRF1 K562 GO:0044706 multi-multicellular organism process 12.4 0.0156 
NRF1 K562 GO:0050890 cognition 12.4 0.0152 
NRF1 K562 GO:0010038 response to metal ion 12.03 0.000283 
NRF1 K562 GO:0044703 multi-organism reproductive process 11.36 0.0218 
NRF1 K562 GO:0042493 response to drug 9.9 2.97E-06 
NRF1 K562 GO:0097305 response to alcohol 8.97 0.0101 
NRF1 K562 GO:0010035 response to inorganic substance 8.84 0.000271 
NRF1 K562 GO:0010243 response to organonitrogen compound 8.07 1.32E-05 
NRF1 K562 GO:0007623 circadian rhythm 8.02 0.0712 
NRF1 K562 GO:1901698 response to nitrogen compound 7.67 1.92E-05 
NRF1 K562 GO:0048545 response to steroid hormone 7.05 0.00681 
NRF1 K562 GO:0032870 cellular response to hormone stimulus 7.02 0.00133 
NRF1 K562 GO:0034097 response to cytokine 6.82 0.0349 
NRF1 K562 GO:0009725 response to hormone 6.26 9.18E-05 
NRF1 K562 GO:0014070 response to organic cyclic compound 6.14 0.000103 
NRF1 K562 GO:0009628 response to abiotic stimulus 5.57 0.00121 
NRF1 K562 GO:0071495 cellular response to endogenous stimulus 5.19 0.00868 
NRF1 K562 GO:0009719 response to endogenous stimulus 5.09 7.67E-05 
NRF1 K562 GO:0033993 response to lipid 4.87 0.00282 
NRF1 K562 GO:0051704 multi-organism process 4.45 0.07 
NRF1 K562 GO:1901700 response to oxygen-containing compound 4.32 0.00147 
NRF1 K562 GO:0009605 response to external stimulus 4.26 0.0276 
NRF1 K562 GO:0010033 response to organic substance 3.34 0.00228 
NRF1 K562 GO:0070887 cellular response to chemical stimulus 3.29 0.0396 
NRF1 K562 GO:0042221 response to chemical 2.96 0.00661 
NRF1 K562 GO:0051716 cellular response to stimulus 2.81 0.0372 
REST A549 GO:0051385 response to mineralocorticoid 17.05 0.000962 
REST A549 GO:0051412 response to corticosterone 17.05 0.000642 
REST A549 GO:0051384 response to glucocorticoid 11.36 0.00111 
REST A549 GO:0031960 response to corticosteroid 11.36 0.000947 
REST A549 GO:0031098 stress-activated protein kinase signaling cascade 11.36 0.0196 
REST A549 GO:0007612 learning 11.36 0.019 
REST A549 GO:0051403 stress-activated MAPK cascade 11.36 0.0183 
REST A549 GO:0032570 response to progesterone 10.65 0.00505 
REST A549 GO:0071277 cellular response to calcium ion 10.65 0.00479 
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REST A549 GO:0051592 response to calcium ion 10.65 0.00457 
REST A549 GO:0071241 cellular response to inorganic substance 9.74 0.000381 
REST A549 GO:0007565 female pregnancy 9.74 0.0363 
REST A549 GO:0071248 cellular response to metal ion 9.18 0.00106 
REST A549 GO:0007611 learning or memory 8.52 0.0153 
REST A549 GO:0023014 signal transduction by protein phosphorylation 8.52 0.0608 
REST A549 GO:0000165 MAPK cascade 8.52 0.0593 
REST A549 GO:0050890 cognition 7.75 0.022 
REST A549 GO:0034166 toll-like receptor 10 signaling pathway 7.58 0.0854 
REST A549 GO:0002755 MyD88-dependent toll-like receptor signaling pathway 7.58 0.0837 
REST A549 GO:0034134 toll-like receptor 2 signaling pathway 7.58 0.082 
REST A549 GO:0034146 toll-like receptor 5 signaling pathway 7.58 0.0804 
REST A549 GO:0038124 toll-like receptor TLR6:TLR2 signaling pathway 7.58 0.0789 
REST A549 GO:0038123 toll-like receptor TLR1:TLR2 signaling pathway 7.58 0.0774 
REST A549 GO:0051591 response to cAMP 7.46 0.00316 
REST A549 GO:0046683 response to organophosphorus 7.46 0.00287 
REST A549 GO:0010038 response to metal ion 7.02 0.00431 
REST A549 GO:0014074 response to purine-containing compound 7.02 0.00398 
REST A549 GO:0009612 response to mechanical stimulus 6.63 0.00453 
REST A549 GO:0045598 regulation of fat cell differentiation 6.56 0.0503 
REST A549 GO:1901654 response to ketone 6.56 0.0489 
REST A549 GO:0010035 response to inorganic substance 5.68 0.00171 
REST A549 GO:0097305 response to alcohol 5.38 0.0417 
REST A549 GO:0010243 response to organonitrogen compound 4.93 0.000958 
REST A549 GO:1901698 response to nitrogen compound 4.69 0.000866 
REST A549 GO:0042493 response to drug 4.4 0.0203 
REST A549 GO:0048545 response to steroid hormone 4.11 0.0616 
REST A549 GO:0009725 response to hormone 3.83 0.00474 
REST A549 GO:0009628 response to abiotic stimulus 3.83 0.00443 
REST A549 GO:0014070 response to organic cyclic compound 3.41 0.0197 
REST A549 GO:0009605 response to external stimulus 3.35 0.0119 
REST A549 GO:0033993 response to lipid 3.35 0.0114 
REST A549 GO:0006952 defense response 3.33 0.0495 
REST A549 GO:0051726 regulation of cell cycle 3.13 0.0686 
REST A549 GO:1901700 response to oxygen-containing compound 3.12 0.0046 
REST A549 GO:0009719 response to endogenous stimulus 3.05 0.0111 
REST A549 GO:0003006 developmental process involved in reproduction 2.94 0.0578 
REST A549 GO:0022414 reproductive process 2.91 0.00418 
REST A549 GO:0071310 cellular response to organic substance 2.64 0.0646 
REST A549 GO:0010033 response to organic substance 2.51 0.00832 
REST A549 GO:0070887 cellular response to chemical stimulus 2.46 0.0626 
REST A549 GO:0042221 response to chemical 2.22 0.0279 
REST A549 GO:0051716 cellular response to stimulus 2.19 0.0572 
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REST A549 GO:0050896 response to stimulus 1.8 0.0776 
REST K562 GO:0060575 intestinal epithelial cell differentiation 93.75 0.0753 
REST K562 GO:0014888 striated muscle adaptation 62.5 0.125 
REST K562 GO:0014887 cardiac muscle adaptation 62.5 0.112 
REST K562 GO:0014897 striated muscle hypertrophy 62.5 0.102 
REST K562 GO:0014896 muscle hypertrophy 62.5 0.0937 
REST K562 GO:0014898 cardiac muscle hypertrophy in response to stress 62.5 0.0865 
REST K562 GO:0043500 muscle adaptation 62.5 0.0803 
REST K562 GO:0003299 muscle hypertrophy in response to stress 62.5 0.075 
REST K562 GO:0003300 cardiac muscle hypertrophy 62.5 0.0703 
REST K562 GO:0051890 regulation of cardioblast differentiation 46.88 0.102 
REST K562 GO:0051891 positive regulation of cardioblast differentiation 46.88 0.0975 
REST K562 GO:0045766 positive regulation of angiogenesis 46.88 0.0934 
REST K562 GO:0003281 ventricular septum development 46.88 0.0897 
REST K562 GO:0003012 muscle system process 46.88 0.0862 
REST K562 GO:0071773 cellular response to BMP stimulus 37.5 0.133 
REST K562 GO:0071772 response to BMP 37.5 0.128 
REST K562 GO:1904018 positive regulation of vasculature development 37.5 0.124 
REST K562 GO:0055023 positive regulation of cardiac muscle tissue growth 37.5 0.12 
REST K562 GO:0055025 positive regulation of cardiac muscle tissue development 37.5 0.116 
REST K562 GO:0003215 cardiac right ventricle morphogenesis 37.5 0.113 
REST K562 GO:0003279 cardiac septum development 37.5 0.109 
REST K562 GO:0060045 positive regulation of cardiac muscle cell proliferation 37.5 0.106 
REST K562 GO:0050817 coagulation 28.12 0.119 
REST K562 GO:0007596 blood coagulation 28.12 0.0796 
REST K562 GO:0007599 hemostasis 25.57 0.0819 
REST K562 GO:0043627 response to estrogen 21.63 0.0942 
REST K562 GO:0008584 male gonad development 18.75 0.128 
REST K562 GO:0008406 gonad development 18.75 0.112 
REST K562 GO:0001701 in utero embryonic development 14.8 0.105 
REST K562 GO:0043009 chordate embryonic development 14.8 0.0996 
REST K562 GO:0050878 regulation of body fluid levels 14.06 0.111 
REST K562 GO:0009792 embryo development ending in birth or egg hatching 14.06 0.106 
REST K562 GO:0009790 embryo development 12.78 0.111 
REST K562 GO:0042493 response to drug 12.1 0.171 
REST K562 GO:0022603 regulation of anatomical structure morphogenesis 7.5 0.0735 
REST K562 GO:0048646 anatomical structure formation involved in morphogenesis 5.6 0.115 
REST Panc1 GO:1901741 positive regulation of myoblast fusion 46.88 0.293 
REST Panc1 GO:1901739 regulation of myoblast fusion 46.88 0.251 
REST Panc1 GO:0051149 positive regulation of muscle cell differentiation 17.58 0.501 
REST Panc1 GO:0030183 B cell differentiation 15.62 0.248 
REST Panc1 GO:0042113 B cell activation 14.06 0.287 
REST Panc1 GO:0045666 positive regulation of neuron differentiation 8.93 0.245 
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REST Panc1 GO:0010720 positive regulation of cell development 8.04 0.0469 
REST Panc1 GO:0060284 regulation of cell development 4.46 0.34 
REST Panc1 GO:0045597 positive regulation of cell differentiation 4.43 0.136 
REST Panc1 GO:0051094 positive regulation of developmental process 3.45 0.393 
REST Panc1 GO:0051240 positive regulation of multicellular organismal process 3.19 0.275 
REST Pfsk1 GO:0042445 hormone metabolic process 62.5 1 
REST Pfsk1 GO:0010817 regulation of hormone levels 35.71 1 
REST Pfsk1 GO:0007154 cell communication 11.36 1 
REST U87 GO:0045672 positive regulation of osteoclast differentiation 53.57 0.0732 
REST U87 GO:0055072 iron ion homeostasis 35.71 0.0816 
REST U87 GO:0002763 positive regulation of myeloid leukocyte differentiation 32.14 0.0579 
REST U87 GO:0023014 signal transduction by protein phosphorylation 26.79 0.0129 
REST U87 GO:0000165 MAPK cascade 26.79 0.00647 
REST U87 GO:0031098 stress-activated protein kinase signaling cascade 26.79 0.0313 
REST U87 GO:0051403 stress-activated MAPK cascade 26.79 0.0287 
REST U87 GO:0045639 positive regulation of myeloid cell differentiation 20.09 0.0593 
REST U87 GO:0034166 toll-like receptor 10 signaling pathway 17.86 0.0743 
REST U87 GO:0002755 MyD88-dependent toll-like receptor signaling pathway 17.86 0.0706 
REST U87 GO:0034134 toll-like receptor 2 signaling pathway 17.86 0.0673 
REST U87 GO:0034146 toll-like receptor 5 signaling pathway 17.86 0.0642 
REST U87 GO:0038124 toll-like receptor TLR6:TLR2 signaling pathway 17.86 0.0614 
REST U87 GO:0038123 toll-like receptor TLR1:TLR2 signaling pathway 17.86 0.0588 
REST U87 GO:0034162 toll-like receptor 9 signaling pathway 16.07 0.077 
REST U87 GO:0007611 learning or memory 16.07 0.0741 
REST U87 GO:0002761 regulation of myeloid leukocyte differentiation 15.31 0.0445 
REST U87 GO:0000302 response to reactive oxygen species 14.61 0.0941 
REST U87 GO:0002221 pattern recognition receptor signaling pathway 14.61 0.091 
REST U87 GO:0002224 toll-like receptor signaling pathway 14.61 0.088 
REST U87 GO:0002756 MyD88-independent toll-like receptor signaling pathway 14.61 0.0853 
REST U87 GO:0034142 toll-like receptor 4 signaling pathway 14.61 0.0827 
REST U87 GO:0034138 toll-like receptor 3 signaling pathway 14.61 0.0803 
REST U87 GO:0038093 Fc receptor signaling pathway 14.61 0.078 
REST U87 GO:0038095 Fc-epsilon receptor signaling pathway 14.61 0.0758 
REST U87 GO:0050890 cognition 14.61 0.0738 
REST U87 GO:0007179 transforming growth factor beta receptor signaling pathway 14.61 0.0718 
REST U87 GO:0035666 TRIF-dependent toll-like receptor signaling pathway 14.61 0.07 
REST U87 GO:0006468 protein phosphorylation 14.29 0.0344 
REST U87 GO:0016310 phosphorylation 13.39 0.0319 
REST U87 GO:0043620 regulation of DNA-templated transcription in response to stress 13.39 0.0839 
REST U87 GO:0043618 regulation of transcription from RNA polymerase II promoter in response to stress 13.39 0.082 
REST U87 GO:0051345 positive regulation of hydrolase activity 13.39 0.0802 
REST U87 GO:0006796 phosphate-containing compound metabolic process 11.28 0.0476 
REST U87 GO:0006793 phosphorus metabolic process 11.28 0.0444 
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REST U87 GO:0045637 regulation of myeloid cell differentiation 9.32 0.0593 
REST U87 GO:0006464 cellular protein modification process 8.64 0.0462 
REST U87 GO:0036211 protein modification process 8.64 0.0385 
REST U87 GO:0043412 macromolecule modification 8.37 0.0341 
REST U87 GO:0010035 response to inorganic substance 7.94 0.0715 
REST U87 GO:1902105 regulation of leukocyte differentiation 7.39 0.0812 
REST U87 GO:0044267 cellular protein metabolic process 7.05 0.0508 
REST U87 GO:0033554 cellular response to stress 5.54 0.0328 
REST U87 GO:0019538 protein metabolic process 5.25 0.0707 
REST U87 GO:0080134 regulation of response to stress 5.05 0.0834 
REST U87 GO:0070887 cellular response to chemical stimulus 3.87 0.0918 
REST U87 GO:0042221 response to chemical 3.26 0.058 
REST U87 GO:0007165 signal transduction 2.72 0.0792 
RFX5 Gm12878 GO:0051385 response to mineralocorticoid 11.36 0.0173 
RFX5 Gm12878 GO:0051412 response to corticosterone 11.36 0.00867 
RFX5 Gm12878 GO:0002762 negative regulation of myeloid leukocyte differentiation 11.36 0.183 
RFX5 Gm12878 GO:0048146 positive regulation of fibroblast proliferation 7.58 0.183 
RFX5 Gm12878 GO:0032570 response to progesterone 7.1 0.133 
RFX5 Gm12878 GO:0071277 cellular response to calcium ion 7.1 0.114 
RFX5 Gm12878 GO:0051592 response to calcium ion 7.1 0.0999 
RFX5 Gm12878 GO:0051384 response to glucocorticoid 6.31 0.14 
RFX5 Gm12878 GO:0031960 response to corticosteroid 6.31 0.13 
RFX5 Gm12878 GO:0051591 response to cAMP 4.97 0.154 
RFX5 Gm12878 GO:0046683 response to organophosphorus 4.97 0.123 
RFX5 Gm12878 GO:0002761 regulation of myeloid leukocyte differentiation 4.87 0.167 
RFX5 Gm12878 GO:0014074 response to purine-containing compound 4.68 0.109 
RFX5 Gm12878 GO:0009612 response to mechanical stimulus 4.42 0.137 
RFX5 Gm12878 GO:0007178 transmembrane receptor protein serine/threonine kinase signaling pathway 3.98 0.19 
RFX5 Gm12878 GO:0045637 regulation of myeloid cell differentiation 3.95 0.129 
RFX5 Gm12878 GO:0042493 response to drug 3.67 0.127 
RFX5 H1hesc GO:0051385 response to mineralocorticoid 15.62 0.00311 
RFX5 H1hesc GO:0051412 response to corticosterone 15.62 0.00155 
RFX5 H1hesc GO:0070345 negative regulation of fat cell proliferation 15.62 0.0681 
RFX5 H1hesc GO:0070344 regulation of fat cell proliferation 15.62 0.0638 
RFX5 H1hesc GO:0006260 DNA replication 12.5 0.0197 
RFX5 H1hesc GO:0051384 response to glucocorticoid 10.42 0.00168 
RFX5 H1hesc GO:0031960 response to corticosteroid 10.42 0.00147 
RFX5 H1hesc GO:0032570 response to progesterone 9.77 0.0153 
RFX5 H1hesc GO:0071277 cellular response to calcium ion 9.77 0.0139 
RFX5 H1hesc GO:0051592 response to calcium ion 9.77 0.0127 
RFX5 H1hesc GO:0007565 female pregnancy 8.93 0.0842 
RFX5 H1hesc GO:0051591 response to cAMP 7.81 0.00112 
RFX5 H1hesc GO:0046683 response to organophosphorus 7.81 0.000841 
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RFX5 H1hesc GO:0000278 mitotic cell cycle 7.81 0.13 
RFX5 H1hesc GO:0014074 response to purine-containing compound 7.35 0.00122 
RFX5 H1hesc GO:1901654 response to ketone 7.21 0.0156 
RFX5 H1hesc GO:0007179 transforming growth factor beta receptor signaling pathway 7.1 0.0649 
RFX5 H1hesc GO:0007049 cell cycle 7.1 0.0613 
RFX5 H1hesc GO:0009612 response to mechanical stimulus 6.94 0.00176 
RFX5 H1hesc GO:0071248 cellular response to metal ion 6.01 0.117 
RFX5 H1hesc GO:0071241 cellular response to inorganic substance 5.58 0.15 
RFX5 H1hesc GO:0006259 DNA metabolic process 5.21 0.0883 
RFX5 H1hesc GO:0097305 response to alcohol 4.93 0.107 
RFX5 H1hesc GO:0042493 response to drug 4.54 0.0151 
RFX5 H1hesc GO:0010035 response to inorganic substance 4.05 0.119 
RFX5 H1hesc GO:0032870 cellular response to hormone stimulus 3.68 0.103 
RFX5 H1hesc GO:0014070 response to organic cyclic compound 3.12 0.0787 
RFX5 H1hesc GO:0033993 response to lipid 2.79 0.152 
RFX5 Helas3 GO:0007259 JAK-STAT cascade 13.39 0.000447 
RFX5 Helas3 GO:0006953 acute-phase response 13.39 0.00925 
RFX5 Helas3 GO:0060397 JAK-STAT cascade involved in growth hormone signaling pathway 13.39 0.00854 
RFX5 Helas3 GO:0043603 cellular amide metabolic process 13.39 0.0352 
RFX5 Helas3 GO:0002705 positive regulation of leukocyte mediated immunity 13.39 0.0344 
RFX5 Helas3 GO:0002708 positive regulation of lymphocyte mediated immunity 13.39 0.0337 
RFX5 Helas3 GO:0070345 negative regulation of fat cell proliferation 13.39 0.033 
RFX5 Helas3 GO:0070344 regulation of fat cell proliferation 13.39 0.0324 
RFX5 Helas3 GO:0002699 positive regulation of immune effector process 11.16 0.00584 
RFX5 Helas3 GO:0002526 acute inflammatory response 10.71 0.017 
RFX5 Helas3 GO:0051385 response to mineralocorticoid 10.71 0.0165 
RFX5 Helas3 GO:0051412 response to corticosterone 10.71 0.016 
RFX5 Helas3 GO:0007565 female pregnancy 9.57 0.00848 
RFX5 Helas3 GO:0002703 regulation of leukocyte mediated immunity 8.93 0.034 
RFX5 Helas3 GO:0071277 cellular response to calcium ion 8.37 0.0127 
RFX5 Helas3 GO:0051592 response to calcium ion 8.37 0.0122 
RFX5 Helas3 GO:0051384 response to glucocorticoid 7.44 0.0198 
RFX5 Helas3 GO:0031960 response to corticosteroid 7.44 0.0193 
RFX5 Helas3 GO:0000302 response to reactive oxygen species 7.31 0.00881 
RFX5 Helas3 GO:0002697 regulation of immune effector process 7.31 0.00835 
RFX5 Helas3 GO:0071241 cellular response to inorganic substance 6.7 0.00797 
RFX5 Helas3 GO:0044703 multi-organism reproductive process 6.7 0.012 
RFX5 Helas3 GO:0019221 cytokine-mediated signaling pathway 6.3 0.00392 
RFX5 Helas3 GO:0071248 cellular response to metal ion 6.18 0.0156 
RFX5 Helas3 GO:0044706 multi-multicellular organism process 6.09 0.0423 
RFX5 Helas3 GO:0007179 transforming growth factor beta receptor signaling pathway 6.09 0.0416 
RFX5 Helas3 GO:0051591 response to cAMP 5.86 0.00958 
RFX5 Helas3 GO:0046683 response to organophosphorus 5.86 0.00912 
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RFX5 Helas3 GO:0014074 response to purine-containing compound 5.51 0.0119 
RFX5 Helas3 GO:0034097 response to cytokine 5.36 0.00233 
RFX5 Helas3 GO:0009612 response to mechanical stimulus 5.21 0.0166 
RFX5 Helas3 GO:0006979 response to oxidative stress 5.02 0.0406 
RFX5 Helas3 GO:0016310 phosphorylation 5.02 0.0398 
RFX5 Helas3 GO:0010035 response to inorganic substance 4.96 0.0041 
RFX5 Helas3 GO:0010038 response to metal ion 4.73 0.0515 
RFX5 Helas3 GO:0050778 positive regulation of immune response 4.46 0.0333 
RFX5 Helas3 GO:0050776 regulation of immune response 4.33 0.00432 
RFX5 Helas3 GO:0045088 regulation of innate immune response 4.08 0.0483 
RFX5 Helas3 GO:1901698 response to nitrogen compound 3.68 0.00881 
RFX5 Helas3 GO:0043207 response to external biotic stimulus 3.65 0.0253 
RFX5 Helas3 GO:0032870 cellular response to hormone stimulus 3.55 0.0304 
RFX5 Helas3 GO:0009607 response to biotic stimulus 3.55 0.0297 
RFX5 Helas3 GO:0010243 response to organonitrogen compound 3.52 0.0155 
RFX5 Helas3 GO:0006952 defense response 3.49 0.00886 
RFX5 Helas3 GO:0051704 multi-organism process 3.49 0.00806 
RFX5 Helas3 GO:0042493 response to drug 3.46 0.0603 
RFX5 Helas3 GO:0031347 regulation of defense response 3.46 0.0593 
RFX5 Helas3 GO:0035556 intracellular signal transduction 3.21 0.0105 
RFX5 Helas3 GO:0014070 response to organic cyclic compound 3.21 0.01 
RFX5 Helas3 GO:0009605 response to external stimulus 3.11 0.0082 
RFX5 Helas3 GO:0009725 response to hormone 3.01 0.0272 
RFX5 Helas3 GO:0009628 response to abiotic stimulus 3.01 0.0266 
RFX5 Helas3 GO:0007166 cell surface receptor signaling pathway 2.94 0.00116 
RFX5 Helas3 GO:0071495 cellular response to endogenous stimulus 2.91 0.0517 
RFX5 Helas3 GO:0071310 cellular response to organic substance 2.83 0.00895 
RFX5 Helas3 GO:0033993 response to lipid 2.63 0.0612 
RFX5 Helas3 GO:0002682 regulation of immune system process 2.59 0.0422 
RFX5 Helas3 GO:0070887 cellular response to chemical stimulus 2.58 0.00898 
RFX5 Helas3 GO:1901700 response to oxygen-containing compound 2.45 0.0407 
RFX5 Helas3 GO:0010033 response to organic substance 2.23 0.0162 
RFX5 Helas3 GO:0051716 cellular response to stimulus 2.21 0.0111 
RFX5 Helas3 GO:0042221 response to chemical 2.1 0.0171 
RFX5 Helas3 GO:0006950 response to stress 2.09 0.0621 
RFX5 Helas3 GO:0042127 regulation of cell proliferation 1.93 0.0596 
RFX5 Helas3 GO:0007165 signal transduction 1.84 0.0424 
RFX5 Helas3 GO:0050896 response to stimulus 1.75 0.0355 
RFX5 Hepg2 GO:0060441 epithelial tube branching involved in lung morphogenesis 15 1 
RFX5 K562 GO:0045766 positive regulation of angiogenesis 13.39 1 
RFX5 K562 GO:0045765 regulation of angiogenesis 7.94 1 
SRF Gm12878 GO:0055072 iron ion homeostasis 41.67 0.56 
SRF Gm12878 GO:0071456 cellular response to hypoxia 20.83 0.817 
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SRF Gm12878 GO:0036294 cellular response to decreased oxygen levels 20.83 0.409 
SRF Gm12878 GO:0071453 cellular response to oxygen levels 17.05 0.528 
SRF Gm12878 GO:0007219 Notch signaling pathway 14.42 0.679 
SRF Gm12878 GO:0001666 response to hypoxia 12.5 0.609 
SRF Gm12878 GO:0036293 response to decreased oxygen levels 12.5 0.533 
SRF Gm12878 GO:0050877 neurological system process 7.35 0.55 
SRF Hepg2 GO:0007259 JAK-STAT cascade 11.03 0.00159 
SRF Hepg2 GO:0006953 acute-phase response 11.03 0.0838 
SRF Hepg2 GO:0060397 JAK-STAT cascade involved in growth hormone signaling pathway 11.03 0.0629 
SRF Hepg2 GO:0043603 cellular amide metabolic process 11.03 0.431 
SRF Hepg2 GO:0002705 positive regulation of leukocyte mediated immunity 11.03 0.377 
SRF Hepg2 GO:0002708 positive regulation of lymphocyte mediated immunity 11.03 0.335 
SRF Hepg2 GO:1901605 alpha-amino acid metabolic process 11.03 0.302 
SRF Hepg2 GO:0002526 acute inflammatory response 8.82 0.235 
SRF Hepg2 GO:0019221 cytokine-mediated signaling pathway 5.19 0.0598 
SRF Hepg2 GO:0044281 small molecule metabolic process 4.29 0.308 
SRF Hepg2 GO:0006952 defense response 2.64 0.393 
SRF K562 GO:0070345 negative regulation of fat cell proliferation 12.5 0.256 
SRF K562 GO:0070344 regulation of fat cell proliferation 12.5 0.228 
SRF K562 GO:0051385 response to mineralocorticoid 10 0.175 
SRF K562 GO:0051412 response to corticosterone 10 0.14 
SRF K562 GO:0071277 cellular response to calcium ion 7.81 0.245 
SRF K562 GO:0051592 response to calcium ion 7.81 0.163 
SRF K562 GO:0051384 response to glucocorticoid 6.94 0.173 
SRF K562 GO:0031960 response to corticosteroid 6.94 0.149 
SRF K562 GO:0007179 transforming growth factor beta receptor signaling pathway 6.82 0.244 
SRF K562 GO:0006979 response to oxidative stress 4.69 0.288 
SRF K562 GO:0051591 response to cAMP 4.69 0.264 
SRF K562 GO:0046683 response to organophosphorus 4.69 0.244 
SRF K562 GO:0006366 transcription from RNA polymerase II promoter 1.8 0.262 
TBP Gm12878 GO:0032647 regulation of interferon-alpha production 19.74 0.0815 
TBP Gm12878 GO:0032727 positive regulation of interferon-alpha production 19.74 0.0698 
TBP Gm12878 GO:0032728 positive regulation of interferon-beta production 15.79 0.0339 
TBP Gm12878 GO:0060333 interferon-gamma-mediated signaling pathway 14.8 0.000847 
TBP Gm12878 GO:0032648 regulation of interferon-beta production 13.16 0.0591 
TBP Gm12878 GO:0060337 type I interferon signaling pathway 11.84 0.00299 
TBP Gm12878 GO:0032481 positive regulation of type I interferon production 7.89 0.453 
TBP Gm12878 GO:0019221 cytokine-mediated signaling pathway 6.97 0.0708 
TBP H1hesc GO:0051606 detection of stimulus 17.86 1 
TBP Helas3 GO:0007259 JAK-STAT cascade 15.62 0.00016 
TBP Helas3 GO:0060397 JAK-STAT cascade involved in growth hormone signaling pathway 15.62 0.0288 
TBP Helas3 GO:0002705 positive regulation of leukocyte mediated immunity 15.62 0.17 
TBP Helas3 GO:0002708 positive regulation of lymphocyte mediated immunity 15.62 0.146 
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TBP Helas3 GO:0071499 cellular response to laminar fluid shear stress 11.72 0.326 
TBP Helas3 GO:0034616 response to laminar fluid shear stress 11.72 0.301 
TBP Helas3 GO:0006953 acute-phase response 11.72 0.279 
TBP Helas3 GO:0045577 regulation of B cell differentiation 11.72 0.261 
TBP Helas3 GO:0045579 positive regulation of B cell differentiation 11.72 0.244 
TBP Helas3 GO:0002699 positive regulation of immune effector process 10.42 0.198 
TBP Helas3 GO:0042542 response to hydrogen peroxide 7.81 0.338 
TBP Helas3 GO:0034599 cellular response to oxidative stress 7.1 0.138 
TBP Helas3 GO:0002697 regulation of immune effector process 7.1 0.123 
TBP Helas3 GO:0019221 cytokine-mediated signaling pathway 6.43 0.0333 
TBP Helas3 GO:0006979 response to oxidative stress 5.86 0.166 
TBP Helas3 GO:2000026 regulation of multicellular organismal development 1.94 0.353 
TBP Hepg2 GO:0065008 regulation of biological quality 3.26 1 
TBP K562 GO:0070345 negative regulation of fat cell proliferation 14.42 1 
TBP K562 GO:0070344 regulation of fat cell proliferation 14.42 0.656 
TCF12 Gm12878 GO:0060333 interferon-gamma-mediated signaling pathway 13.39 1.52E-06 
TCF12 Gm12878 GO:0045075 regulation of interleukin-12 biosynthetic process 13.39 0.0111 
TCF12 Gm12878 GO:0032647 regulation of interferon-alpha production 13.39 0.0636 
TCF12 Gm12878 GO:0097028 dendritic cell differentiation 13.39 0.0612 
TCF12 Gm12878 GO:0002753 cytoplasmic pattern recognition receptor signaling pathway 13.39 0.059 
TCF12 Gm12878 GO:0045084 positive regulation of interleukin-12 biosynthetic process 13.39 0.057 
TCF12 Gm12878 GO:0001773 myeloid dendritic cell activation 13.39 0.0551 
TCF12 Gm12878 GO:0043123 positive regulation of I-kappaB kinase/NF-kappaB signaling 13.39 0.0533 
TCF12 Gm12878 GO:0043011 myeloid dendritic cell differentiation 13.39 0.0516 
TCF12 Gm12878 GO:0032727 positive regulation of interferon-alpha production 13.39 0.0501 
TCF12 Gm12878 GO:0032648 regulation of interferon-beta production 11.16 0.00584 
TCF12 Gm12878 GO:0060337 type I interferon signaling pathway 10.71 2.06E-05 
TCF12 Gm12878 GO:0032735 positive regulation of interleukin-12 production 10.71 0.031 
TCF12 Gm12878 GO:0032728 positive regulation of interferon-beta production 10.71 0.0293 
TCF12 Gm12878 GO:0032655 regulation of interleukin-12 production 9.57 0.0113 
TCF12 Gm12878 GO:0042108 positive regulation of cytokine biosynthetic process 9.57 0.0104 
TCF12 Gm12878 GO:0051607 defense response to virus 9.57 0.00969 
TCF12 Gm12878 GO:0043122 regulation of I-kappaB kinase/NF-kappaB signaling 8.93 0.0599 
TCF12 Gm12878 GO:0032479 regulation of type I interferon production 8.52 0.00179 
TCF12 Gm12878 GO:0098542 defense response to other organism 8.52 0.00143 
TCF12 Gm12878 GO:0032481 positive regulation of type I interferon production 8.04 0.00844 
TCF12 Gm12878 GO:0019221 cytokine-mediated signaling pathway 7.88 3.03E-05 
TCF12 Gm12878 GO:0042035 regulation of cytokine biosynthetic process 7.21 0.00559 
TCF12 Gm12878 GO:0002252 immune effector process 5.74 0.0419 
TCF12 Gm12878 GO:0009615 response to virus 5.74 0.04 
TCF12 Gm12878 GO:0051707 response to other organism 5.64 0.00827 
TCF12 Gm12878 GO:0071345 cellular response to cytokine stimulus 5.02 0.0621 
TCF12 Gm12878 GO:0001819 positive regulation of cytokine production 4.64 0.0103 
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TCF12 Gm12878 GO:0045088 regulation of innate immune response 4.08 0.0814 
TCF12 Gm12878 GO:0001817 regulation of cytokine production 3.77 0.0377 
TCF12 Gm12878 GO:0043207 response to external biotic stimulus 3.65 0.0429 
TCF12 Gm12878 GO:0009607 response to biotic stimulus 3.55 0.0531 
TCF12 Gm12878 GO:0006464 cellular protein modification process 3.46 0.101 
TCF12 Gm12878 GO:0036211 protein modification process 3.46 0.0984 
TCF12 Gm12878 GO:0019538 protein metabolic process 3.15 0.0192 
TCF12 Gm12878 GO:0006952 defense response 2.91 0.0876 
TCF12 Gm12878 GO:0002376 immune system process 2.64 0.0284 
TCF12 Gm12878 GO:0007166 cell surface receptor signaling pathway 2.45 0.0296 
TCF12 Hepg2 GO:0006869 lipid transport 7.21 0.0334 
TCF12 Hepg2 GO:0015718 monocarboxylic acid transport 7.21 0.0326 
TCF12 Hepg2 GO:0015711 organic anion transport 7.21 0.0319 
TCF12 Hepg2 GO:0001938 positive regulation of endothelial cell proliferation 7.21 0.0312 
TCF12 Hepg2 GO:0015849 organic acid transport 7.21 0.0306 
TCF12 Hepg2 GO:0046942 carboxylic acid transport 7.21 0.03 
TCF12 Hepg2 GO:0006873 cellular ion homeostasis 6.18 0.0101 
TCF12 Hepg2 GO:0030003 cellular cation homeostasis 6.18 0.00943 
TCF12 Hepg2 GO:0001936 regulation of endothelial cell proliferation 6.01 0.0268 
TCF12 Hepg2 GO:0098771 inorganic ion homeostasis 5.61 0.00864 
TCF12 Hepg2 GO:0055080 cation homeostasis 5.61 0.00785 
TCF12 Hepg2 GO:0055065 metal ion homeostasis 5.41 0.0207 
TCF12 Hepg2 GO:0050801 ion homeostasis 5.24 0.00721 
TCF12 Hepg2 GO:0048145 regulation of fibroblast proliferation 5.15 0.0602 
TCF12 Hepg2 GO:0006811 ion transport 5.05 0.0135 
TCF12 Hepg2 GO:0050817 coagulation 5.05 0.0129 
TCF12 Hepg2 GO:0007596 blood coagulation 5.05 0.0122 
TCF12 Hepg2 GO:0071456 cellular response to hypoxia 4.81 0.0344 
TCF12 Hepg2 GO:0036294 cellular response to decreased oxygen levels 4.81 0.0336 
TCF12 Hepg2 GO:0071453 cellular response to oxygen levels 4.59 0.0218 
TCF12 Hepg2 GO:0043436 oxoacid metabolic process 4.59 0.021 
TCF12 Hepg2 GO:0006082 organic acid metabolic process 4.59 0.0204 
TCF12 Hepg2 GO:0007599 hemostasis 4.59 0.0197 
TCF12 Hepg2 GO:0019752 carboxylic acid metabolic process 4.59 0.0191 
TCF12 Hepg2 GO:0050878 regulation of body fluid levels 4.33 0.000713 
TCF12 Hepg2 GO:0001666 response to hypoxia 3.85 0.0275 
TCF12 Hepg2 GO:0036293 response to decreased oxygen levels 3.85 0.0268 
TCF12 Hepg2 GO:0070482 response to oxygen levels 3.82 0.0182 
TCF12 Hepg2 GO:0043401 steroid hormone mediated signaling pathway 3.71 7.44E-05 
TCF12 Hepg2 GO:0009755 hormone-mediated signaling pathway 3.51 0.000119 
TCF12 Hepg2 GO:0043085 positive regulation of catalytic activity 3.39 0.0599 
TCF12 Hepg2 GO:0007623 circadian rhythm 3.39 0.0588 
TCF12 Hepg2 GO:0030522 intracellular receptor signaling pathway 3.23 0.000774 



 303 

TCF12 Hepg2 GO:0048878 chemical homeostasis 3.16 0.00705 
TCF12 Hepg2 GO:0006629 lipid metabolic process 3.09 0.06 
TCF12 Hepg2 GO:0019216 regulation of lipid metabolic process 3.09 0.0589 
TCF12 Hepg2 GO:0007267 cell-cell signaling 3.09 0.0579 
TCF12 Hepg2 GO:0007154 cell communication 3.06 0.00733 
TCF12 Hepg2 GO:0044765 single-organism transport 3.02 0.0123 
TCF12 Hepg2 GO:0048511 rhythmic process 2.98 0.0203 
TCF12 Hepg2 GO:0050790 regulation of catalytic activity 2.88 0.061 
TCF12 Hepg2 GO:0006810 transport 2.84 0.0198 
TCF12 Hepg2 GO:0051234 establishment of localization 2.76 0.0205 
TCF12 Hepg2 GO:1902578 single-organism localization 2.73 0.0185 
TCF12 Hepg2 GO:0050678 regulation of epithelial cell proliferation 2.64 0.0631 
TCF12 Hepg2 GO:0065008 regulation of biological quality 2.53 0.000122 
TCF12 Hepg2 GO:0051179 localization 2.52 0.0201 
TCF12 Hepg2 GO:0006367 transcription initiation from RNA polymerase II promoter 2.5 0.00903 
TCF12 Hepg2 GO:0006352 DNA-templated transcription, initiation 2.45 0.0102 
TCF12 Hepg2 GO:0044710 single-organism metabolic process 2.4 0.00793 
TCF12 Hepg2 GO:0042592 homeostatic process 2.4 0.0305 
TCF12 Hepg2 GO:0010467 gene expression 2.36 0.0142 
TCF12 Hepg2 GO:0009725 response to hormone 2.21 0.0617 
TCF12 Hepg2 GO:0070887 cellular response to chemical stimulus 2.09 0.00882 
TCF12 Hepg2 GO:0044702 single organism reproductive process 1.96 0.0574 
TCF12 Hepg2 GO:0071310 cellular response to organic substance 1.93 0.0651 
TCF12 Hepg2 GO:1901700 response to oxygen-containing compound 1.93 0.0641 
TCF12 Hepg2 GO:0042221 response to chemical 1.88 0.0073 
TCF12 Hepg2 GO:0022414 reproductive process 1.85 0.0626 
TCF12 Hepg2 GO:0010033 response to organic substance 1.84 0.0206 
TCF12 Hepg2 GO:0051716 cellular response to stimulus 1.72 0.0427 
TCF12 Hepg2 GO:2000026 regulation of multicellular organismal development 1.68 0.0215 
TCF12 Hepg2 GO:0048583 regulation of response to stimulus 1.64 0.0635 
TCF12 Hepg2 GO:0050793 regulation of developmental process 1.55 0.0209 
TCF12 Hepg2 GO:0051239 regulation of multicellular organismal process 1.5 0.0526 
TCF7L2 Hct116 GO:0006260 DNA replication 27.27 0.00881 
TCF7L2 Hct116 GO:0030097 hemopoiesis 10.49 0.558 
TCF7L2 Hek293 GO:0021546 rhombomere development 13.24 1 
TCF7L2 Hepg2 GO:0048384 retinoic acid receptor signaling pathway 13.39 0.235 
TCF7L2 Hepg2 GO:0051348 negative regulation of transferase activity 13.39 0.216 
TCF7L2 Hepg2 GO:0009409 response to cold 13.39 0.199 
TCF7L2 Hepg2 GO:0031331 positive regulation of cellular catabolic process 8.93 0.196 
TCF7L2 Hepg2 GO:0009896 positive regulation of catabolic process 7.94 0.242 
TCF7L2 Hepg2 GO:0043401 steroid hormone mediated signaling pathway 6.63 2.19E-06 
TCF7L2 Hepg2 GO:0009755 hormone-mediated signaling pathway 6.27 2.53E-06 
TCF7L2 Hepg2 GO:0030522 intracellular receptor signaling pathway 5.64 4.64E-05 
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TCF7L2 Hepg2 GO:0009894 regulation of catabolic process 5.58 0.289 
TCF7L2 Hepg2 GO:0006367 transcription initiation from RNA polymerase II promoter 4.12 0.00149 
TCF7L2 Hepg2 GO:0006352 DNA-templated transcription, initiation 4.04 0.00157 
TCF7L2 Hepg2 GO:0010467 gene expression 3.9 0.0021 
TCF7L2 Hepg2 GO:0022414 reproductive process 2.61 0.168 
TCF7L2 Hepg2 GO:0007165 signal transduction 2.46 0.000263 
TCF7L2 Hepg2 GO:0044763 single-organism cellular process 1.43 0.204 
TCF7L2 Mcf7 GO:0051348 negative regulation of transferase activity 14.06 0.37 
TCF7L2 Mcf7 GO:0000278 mitotic cell cycle 9.38 0.533 
TCF7L2 Mcf7 GO:0051726 regulation of cell cycle 3.44 1 
TCF7L2 Mcf7 GO:0006367 transcription initiation from RNA polymerase II promoter 3.25 0.43 
TCF7L2 Mcf7 GO:0006352 DNA-templated transcription, initiation 3.18 0.359 
TCF7L2 Mcf7 GO:0065008 regulation of biological quality 2.79 0.727 
TCF7L2 Mcf7 GO:0007165 signal transduction 2.04 0.457 
TCF7L2 Panc1 GO:0006368 transcription elongation from RNA polymerase II promoter 53.57 0.0177 
TCF7L2 Panc1 GO:0006354 DNA-templated transcription, elongation 40.18 0.035 
TCF7L2 Panc1 GO:0034622 cellular macromolecular complex assembly 35.71 0.559 
TCF7L2 Panc1 GO:0065004 protein-DNA complex assembly 35.71 0.489 
TCF7L2 Panc1 GO:0016032 viral process 11.9 0.177 
TCF7L2 Panc1 GO:0044764 multi-organism cellular process 11.9 0.132 
TCF7L2 Panc1 GO:0044403 symbiosis, encompassing mutualism through parasitism 11.9 0.106 
TCF7L2 Panc1 GO:0044419 interspecies interaction between organisms 9.74 0.206 
USF1 A549 GO:0007259 JAK-STAT cascade 12.5 0.000352 
USF1 A549 GO:0006953 acute-phase response 12.5 0.0106 
USF1 A549 GO:0060397 JAK-STAT cascade involved in growth hormone signaling pathway 12.5 0.00991 
USF1 A549 GO:0043603 cellular amide metabolic process 12.5 0.0372 
USF1 A549 GO:0002705 positive regulation of leukocyte mediated immunity 12.5 0.0366 
USF1 A549 GO:0002708 positive regulation of lymphocyte mediated immunity 12.5 0.0359 
USF1 A549 GO:0002699 positive regulation of immune effector process 10.42 0.00655 
USF1 A549 GO:0002526 acute inflammatory response 10 0.018 
USF1 A549 GO:0051385 response to mineralocorticoid 10 0.0175 
USF1 A549 GO:0051412 response to corticosterone 10 0.0171 
USF1 A549 GO:0007565 female pregnancy 8.93 0.0115 
USF1 A549 GO:0002703 regulation of leukocyte mediated immunity 8.33 0.0368 
USF1 A549 GO:0071277 cellular response to calcium ion 7.81 0.0149 
USF1 A549 GO:0042542 response to hydrogen peroxide 7.81 0.0144 
USF1 A549 GO:0051592 response to calcium ion 7.81 0.014 
USF1 A549 GO:0022602 ovulation cycle process 7.14 0.0634 
USF1 A549 GO:0051384 response to glucocorticoid 6.94 0.0237 
USF1 A549 GO:0031960 response to corticosteroid 6.94 0.0231 
USF1 A549 GO:0000302 response to reactive oxygen species 6.82 0.0122 
USF1 A549 GO:0002697 regulation of immune effector process 6.82 0.0116 
USF1 A549 GO:0044703 multi-organism reproductive process 6.25 0.0144 
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USF1 A549 GO:0034097 response to cytokine 6 7.89E-05 
USF1 A549 GO:0019221 cytokine-mediated signaling pathway 5.88 0.00706 
USF1 A549 GO:0071248 cellular response to metal ion 5.77 0.0188 
USF1 A549 GO:0044706 multi-multicellular organism process 5.68 0.0507 
USF1 A549 GO:0009612 response to mechanical stimulus 5.56 0.00655 
USF1 A549 GO:0006979 response to oxidative stress 5.47 0.0137 
USF1 A549 GO:0016310 phosphorylation 5.47 0.0131 
USF1 A549 GO:0051591 response to cAMP 5.47 0.0126 
USF1 A549 GO:0046683 response to organophosphorus 5.47 0.0121 
USF1 A549 GO:0071241 cellular response to inorganic substance 5.36 0.0256 
USF1 A549 GO:0014074 response to purine-containing compound 5.15 0.014 
USF1 A549 GO:0006468 protein phosphorylation 5 0.0362 
USF1 A549 GO:0032496 response to lipopolysaccharide 4.86 0.0186 
USF1 A549 GO:0071345 cellular response to cytokine stimulus 4.69 0.048 
USF1 A549 GO:0010035 response to inorganic substance 4.63 0.00858 
USF1 A549 GO:0006796 phosphate-containing compound metabolic process 4.61 0.0249 
USF1 A549 GO:0006793 phosphorus metabolic process 4.61 0.0243 
USF1 A549 GO:0002237 response to molecule of bacterial origin 4.61 0.0238 
USF1 A549 GO:0019220 regulation of phosphate metabolic process 4.17 0.0388 
USF1 A549 GO:0051174 regulation of phosphorus metabolic process 4.17 0.0382 
USF1 A549 GO:0042493 response to drug 4.03 0.0112 
USF1 A549 GO:0043207 response to external biotic stimulus 3.79 0.0124 
USF1 A549 GO:1901698 response to nitrogen compound 3.75 0.00812 
USF1 A549 GO:0009607 response to biotic stimulus 3.68 0.0127 
USF1 A549 GO:0010243 response to organonitrogen compound 3.62 0.0104 
USF1 A549 GO:0032870 cellular response to hormone stimulus 3.31 0.0386 
USF1 A549 GO:0050776 regulation of immune response 3.31 0.038 
USF1 A549 GO:0035556 intracellular signal transduction 3.25 0.00736 
USF1 A549 GO:0009605 response to external stimulus 3.12 0.00734 
USF1 A549 GO:0009628 response to abiotic stimulus 3.06 0.0142 
USF1 A549 GO:0051726 regulation of cell cycle 3.06 0.0137 
USF1 A549 GO:0071495 cellular response to endogenous stimulus 2.99 0.0242 
USF1 A549 GO:0051704 multi-organism process 2.99 0.0237 
USF1 A549 GO:0033993 response to lipid 2.9 0.013 
USF1 A549 GO:0071310 cellular response to organic substance 2.82 0.00607 
USF1 A549 GO:0009725 response to hormone 2.81 0.0382 
USF1 A549 GO:0014070 response to organic cyclic compound 2.75 0.0421 
USF1 A549 GO:0070887 cellular response to chemical stimulus 2.71 0.00428 
USF1 A549 GO:1901700 response to oxygen-containing compound 2.64 0.0127 
USF1 A549 GO:0002682 regulation of immune system process 2.62 0.0248 
USF1 A549 GO:0007166 cell surface receptor signaling pathway 2.59 0.00643 
USF1 A549 GO:0009719 response to endogenous stimulus 2.43 0.0423 
USF1 A549 GO:0010941 regulation of cell death 2.33 0.0174 
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USF1 A549 GO:0022414 reproductive process 2.29 0.0297 
USF1 A549 GO:0042981 regulation of apoptotic process 2.22 0.0608 
USF1 A549 GO:0010033 response to organic substance 2.21 0.013 
USF1 A549 GO:0051716 cellular response to stimulus 2.18 0.0121 
USF1 A549 GO:0042221 response to chemical 2.07 0.0141 
USF1 H1hesc GO:0043401 steroid hormone mediated signaling pathway 5.36 1 
USF1 Hepg2 GO:0010831 positive regulation of myotube differentiation 11.72 0.559 
USF1 Hepg2 GO:0048384 retinoic acid receptor signaling pathway 11.72 0.489 
USF1 Hepg2 GO:0060509 Type I pneumocyte differentiation 11.72 0.435 
USF1 Hepg2 GO:0060479 lung cell differentiation 7.81 0.314 
USF1 Hepg2 GO:0060487 lung epithelial cell differentiation 7.81 0.21 
USF1 Hepg2 GO:0051149 positive regulation of muscle cell differentiation 7.81 0.564 
USF1 Hepg2 GO:0043401 steroid hormone mediated signaling pathway 4.02 0.406 
USF1 Hepg2 GO:0009755 hormone-mediated signaling pathway 3.8 0.165 
USF1 Hepg2 GO:0010720 positive regulation of cell development 3.57 0.566 
USF1 K562 GO:0060430 lung saccule development 62.5 0.941 
YY1 Gm12878 GO:0060743 epithelial cell maturation involved in prostate gland development 41.67 1 
YY1 Hct116 GO:0051385 response to mineralocorticoid 20.83 6.96E-05 
YY1 Hct116 GO:0051412 response to corticosterone 20.83 6.26E-05 
YY1 Hct116 GO:0032570 response to progesterone 15.62 7.28E-05 
YY1 Hct116 GO:0071277 cellular response to calcium ion 13.02 0.00169 
YY1 Hct116 GO:0051592 response to calcium ion 13.02 0.0016 
YY1 Hct116 GO:0007565 female pregnancy 11.9 0.0161 
YY1 Hct116 GO:0051591 response to cAMP 11.72 2.85E-06 
YY1 Hct116 GO:0046683 response to organophosphorus 11.72 1.90E-06 
YY1 Hct116 GO:0051384 response to glucocorticoid 11.57 0.00334 
YY1 Hct116 GO:0031960 response to corticosteroid 11.57 0.00318 
YY1 Hct116 GO:0014074 response to purine-containing compound 11.03 2.96E-06 
YY1 Hct116 GO:1901654 response to ketone 9.62 0.00172 
YY1 Hct116 GO:0009612 response to mechanical stimulus 9.26 6.64E-05 
YY1 Hct116 GO:0044703 multi-organism reproductive process 8.68 0.0139 
YY1 Hct116 GO:0031668 cellular response to extracellular stimulus 8.68 0.0134 
YY1 Hct116 GO:0042493 response to drug 8.06 6.32E-07 
YY1 Hct116 GO:0071248 cellular response to metal ion 8.01 0.0176 
YY1 Hct116 GO:0043434 response to peptide hormone 7.81 0.00576 
YY1 Hct116 GO:0071241 cellular response to inorganic substance 7.44 0.0252 
YY1 Hct116 GO:1901652 response to peptide 6.94 0.0107 
YY1 Hct116 GO:0034097 response to cytokine 6.67 0.00101 
YY1 Hct116 GO:0097305 response to alcohol 6.58 0.0133 
YY1 Hct116 GO:0006979 response to oxidative stress 6.51 0.0458 
YY1 Hct116 GO:0032870 cellular response to hormone stimulus 6.13 9.53E-05 
YY1 Hct116 GO:0071496 cellular response to external stimulus 6.13 0.0601 
YY1 Hct116 GO:0010038 response to metal ion 6.13 0.0588 
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YY1 Hct116 GO:0010243 response to organonitrogen compound 6.03 4.60E-05 
YY1 Hct116 GO:0009991 response to extracellular stimulus 5.95 0.021 
YY1 Hct116 GO:0032496 response to lipopolysaccharide 5.79 0.0773 
YY1 Hct116 GO:1901698 response to nitrogen compound 5.73 6.08E-05 
YY1 Hct116 GO:0010035 response to inorganic substance 5.4 0.0132 
YY1 Hct116 GO:0009725 response to hormone 5.1 5.12E-05 
YY1 Hct116 GO:0048545 response to steroid hormone 5.03 0.0176 
YY1 Hct116 GO:0014070 response to organic cyclic compound 4.58 0.000436 
YY1 Hct116 GO:0071495 cellular response to endogenous stimulus 4.53 0.00171 
YY1 Hct116 GO:0043207 response to external biotic stimulus 4.42 0.0377 
YY1 Hct116 GO:0009607 response to biotic stimulus 4.29 0.044 
YY1 Hct116 GO:0009628 response to abiotic stimulus 3.83 0.0147 
YY1 Hct116 GO:0009719 response to endogenous stimulus 3.73 0.00104 
YY1 Hct116 GO:0009605 response to external stimulus 3.72 0.00799 
YY1 Hct116 GO:0033993 response to lipid 3.72 0.00767 
YY1 Hct116 GO:0051704 multi-organism process 3.62 0.0481 
YY1 Hct116 GO:1901700 response to oxygen-containing compound 3.52 0.00171 
YY1 Hct116 GO:0071310 cellular response to organic substance 3.23 0.00978 
YY1 Hct116 GO:0070887 cellular response to chemical stimulus 2.76 0.0319 
YY1 Hct116 GO:0051716 cellular response to stimulus 2.48 0.0167 
YY1 Hct116 GO:0010033 response to organic substance 2.45 0.0417 
YY1 Hepg2 GO:0006260 DNA replication 30 0.00562 
YY1 Hepg2 GO:0006259 DNA metabolic process 10.42 0.068 
YY1 K562 GO:0006094 gluconeogenesis 62.5 0.941 
YY1 K562 GO:0061394 regulation of transcription from RNA polymerase II promoter in response to arsenic-containing substance 62.5 0.47 
YY1 K562 GO:0016051 carbohydrate biosynthetic process 62.5 0.314 
YY1 K562 GO:0019319 hexose biosynthetic process 62.5 0.235 
YY1 K562 GO:0046364 monosaccharide biosynthetic process 62.5 0.188 
YY1 K562 GO:0044710 single-organism metabolic process 5.21 0.35 
YY1 Nt2d1 GO:0007259 JAK-STAT cascade 20.83 2.20E-05 
YY1 Nt2d1 GO:0060397 JAK-STAT cascade involved in growth hormone signaling pathway 20.83 0.00553 
YY1 Nt2d1 GO:0002705 positive regulation of leukocyte mediated immunity 20.83 0.0823 
YY1 Nt2d1 GO:0002708 positive regulation of lymphocyte mediated immunity 20.83 0.0686 
YY1 Nt2d1 GO:0006953 acute-phase response 15.62 0.177 
YY1 Nt2d1 GO:0002526 acute inflammatory response 12.5 0.228 
YY1 Nt2d1 GO:0002706 regulation of lymphocyte mediated immunity 12.5 0.215 
YY1 Nt2d1 GO:0042129 regulation of T cell proliferation 12.5 0.204 
YY1 Nt2d1 GO:0040014 regulation of multicellular organism growth 10.42 0.147 
YY1 Nt2d1 GO:0019221 cytokine-mediated signaling pathway 8.58 0.00533 
YY1 Nt2d1 GO:0016310 phosphorylation 6.51 0.179 
YY1 Nt2d1 GO:0007346 regulation of mitotic cell cycle 6.13 0.208 
YY1 Nt2d1 GO:0016032 viral process 5.79 0.26 
YY1 Nt2d1 GO:0044764 multi-organism cellular process 5.79 0.242 
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YY1 Nt2d1 GO:0044403 symbiosis, encompassing mutualism through parasitism 5.79 0.227 
YY1 Nt2d1 GO:0044419 interspecies interaction between organisms 5.68 0.13 
YY1 Nt2d1 GO:0050776 regulation of immune response 4.29 0.185 
YY1 Nt2d1 GO:0051704 multi-organism process 4.08 0.0677 
YY1 Nt2d1 GO:0006952 defense response 3.62 0.176 
YY1 Nt2d1 GO:0035556 intracellular signal transduction 3.33 0.195 
ZNF143 Gm12878 GO:0070345 negative regulation of fat cell proliferation 12.93 0.922 
ZNF143 Gm12878 GO:0070344 regulation of fat cell proliferation 12.93 0.614 
ZNF143 Gm12878 GO:0032269 negative regulation of cellular protein metabolic process 5.03 0.616 
ZNF143 Gm12878 GO:0051248 negative regulation of protein metabolic process 4.31 0.477 
ZNF143 Helas3 GO:0051385 response to mineralocorticoid 13.89 0.0059 
ZNF143 Helas3 GO:0051412 response to corticosterone 13.89 0.00295 
ZNF143 Helas3 GO:0070345 negative regulation of fat cell proliferation 13.89 0.105 
ZNF143 Helas3 GO:0070344 regulation of fat cell proliferation 13.89 0.0984 
ZNF143 Helas3 GO:0051384 response to glucocorticoid 9.26 0.00845 
ZNF143 Helas3 GO:0031960 response to corticosteroid 9.26 0.00634 
ZNF143 Helas3 GO:0032570 response to progesterone 8.68 0.0355 
ZNF143 Helas3 GO:0071277 cellular response to calcium ion 8.68 0.0315 
ZNF143 Helas3 GO:0051592 response to calcium ion 8.68 0.0284 
ZNF143 Helas3 GO:0007565 female pregnancy 7.94 0.151 
ZNF143 Helas3 GO:0071248 cellular response to metal ion 6.41 0.0353 
ZNF143 Helas3 GO:0007179 transforming growth factor beta receptor signaling pathway 6.31 0.126 
ZNF143 Helas3 GO:0051591 response to cAMP 6.08 0.0294 
ZNF143 Helas3 GO:0046683 response to organophosphorus 6.08 0.0245 
ZNF143 Helas3 GO:0071241 cellular response to inorganic substance 5.95 0.0542 
ZNF143 Helas3 GO:0014074 response to purine-containing compound 5.72 0.034 
ZNF143 Helas3 GO:0009612 response to mechanical stimulus 5.4 0.0337 
ZNF143 Helas3 GO:0010038 response to metal ion 4.9 0.139 
ZNF143 Helas3 GO:0010243 response to organonitrogen compound 3.29 0.14 
ZNF143 Helas3 GO:1901698 response to nitrogen compound 3.12 0.181 
ZNF143 K562 GO:0098602 single organism cell adhesion 5.77 1 
ZNF143 K562 GO:0098609 cell-cell adhesion 5.77 0.863 
ZNF143 K562 GO:0016337 single organismal cell-cell adhesion 5.77 0.691 
ZNF143 K562 GO:0035556 intracellular signal transduction 4.04 1 
ZNF143 K562 GO:0065008 regulation of biological quality 3.51 0.472 

Table 7.14 List of Biological Processes (BP) found as enriched among the identified co-factors. The 
analysis was done using GOrilla tool. 
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7.3 Supplementary for Chapter 4 
Supplemental Note 1. Features were selected based on all samples without 
considering the partition of training and testing. The performance of the model 
can be vulnerable due to overfitting. However, we confirmed that our models are 
not vulnerable to overfitting by three measure. First, we determined the fraction 
of common features selected considering with or without test data. The 80-90% 
common features across conditions and across fold indicate that the models are 
not over-trained. Second, we compared the expression variability taking all 
samples with the same measure of taking only training samples. The significantly 
high correlation (0.95-0.97, p.value < 10-16) of expression variability of two 
conditions confirms that the set of selected genes are not going to vary much 
leaving the test data or not. Third, we repeated the feature selection using only 
training samples and rechecked the model performance. The insignificant 
difference of two sets of models using two sets of features affirms the absence of 
overfitting of our models (Figure 7.12). 

 
Figure 7.12 Model performance using feature selection using all samples vs. training samples. 

Supplemental Note 2.  We have shown high performance of models build by 
Adaboost method on a set of features selected by all samples. We perform the 
following 4 comparisons to show that the models are learning useful information. 
First, we have used another machine learning model, Support Vector Machine 
(SVM) to confirm the accuracy of models (Figure 7.13). Second, we randomized 
the expression data and rebuild the model expecting that the accuracy will 
diminish. In particular, along each feature the expression values are randomized 
and the diminished accuracy as shown in Figure 7.14, indicates previous higher 
performance was not any random event. Third, we conducted a block 
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permutation: randomizing the expression value within each platform instead of 
across all samples. Figure 7.15 conveys the same message of Figure 7.14. 

 
 
Figure 7.13 Model performance using SVM. 

 
Figure 7.14 Model performance after randomizing the expression data. 
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Figure 7.15 Model performance after block permutation 
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7.4 Supplementary for Chapter 5 

 
Figure 7.16 Principal component analysis of the mouse_retina data before 
calibration.  
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Figure 7.17 Effect of lamda in predicted output. 
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