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Abstract

Many multimedia presentation applications involve retrieval of objects from more than one
collaborating server. Presentations of objects from different collaborating servers might be inter-
dependent. For instance, we can consider distributed video servers where blocks of movies are
distributed over a set of servers. Here, blocks of a movie from different video servers have to be
retrieved and presented continuously without any gaps in the presentation. Such applications first
need an estimate of the available network resources to each of the collaborating server in order to
identify a schedule for retrieving the objects composing the presentation. A collaborating server
can suggest modifications of the retrieval schedule depending on its load. These modifications can
potentially affect the retrieval schedule for other collaborating applications. Hence, a sequence
of negotiations have to be carried out with the collaborating servers in order to commit for a
retrieval schedule of the objects composing the multimedia presentation. In this paper, we propose
an application sub-layer protocol, Resource Lock Commit Protocol (RLCP), for handling the
negotiation and commitment of the resources required for a collaborative multimedia presentation
application.
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1 Introduction

Multimedia presentation applications might involve retrieval of objects from more than one collaborating
server. As an example, one can consider a distributed multimedia document presentation where objects
composing the document are distributed on more than one server [7]. We can also consider a distributed video
presentation where blocks of movies are distributed on more than one video server [12]. In such applications,
presentation of objects from different servers can be inter-dependent. For instance, in the case of a distributed
multimedia document presentation, an object O1 from a collaborating server C'S1 might have to be presented
at the same time with another object O2 from another server ('52. Here, presentation time instants for
objects O1 and O2 are specified in a relative manner. If O2 is available for presentation only at time ¢,5, then
O1 will also have to be presented at ¢,5. In the case of a distributed video presentation application, blocks of
a movie from different video servers have to be presented continuously without any gaps in the presentation.
Hence, the schedule for presentation of movie blocks has to be determined in such a way that the blocks are
available continuously. These applications have a flexible presentation schedule, 1.e., presentation time instants
of objects are chosen relative to that of other objects composing the presentation. Also, objects (or blocks of a
movie) composing the multimedia presentation may be replicated. In this case, a presentation application has
a choice of the server from which the replicated objects can be retrieved. This choice depends on the available
network resources as well as the load on the collaborating server.

Hence, such collaborative multimedia presentation applications have to determine object retrieval schedules
taking into consideration the dependencies among object presentations. A presentation application determines
a retrieval schedule for objects from each of the collaborating servers as follows :

o Estimate the required network resources in terms of the Quality of Service (QoS) parameters such as
throughput, delay, and delay jitter. The required resources can be specified as a range of values (with
maximum and minimum desirable values).

e Estimate the available network resources to each of the collaborating servers.

e Based on the available network resources, time of object presentation, duration of presentation, available
buffer space (locally to the presentation application), determine the time at which an object is to be
retrieved from a collaborating server.

e A collaborating server determines the required system resources (such as disk bandwidth, buffer space,
and CPU processing time) for retrieving the specified objects. If the required resources are available,
then the server commits for the requested retrieval. If the collaborating server is not able to commit for
the requested object retrieval, then the presentation application can :

— try another server where the object is replicated.

— delay the retrieval of the object presentation. (We are not considering the obvious option of
dropping the object from presentation as of now).

In either case, there can be a modification of the required network resources as well as commitments
from other collaborating servers.

Resource Lock Commit Protocol (RLCP) : In this paper, we propose RLCP as an application
sub-layer that handles network and system resource negotiations in a phased manner. RLCP is oriented to-
wards collaborating applications with flexible presentation schedules. RLCP uses advance resource reservation
features offered by the network service provider. RLCP incorporates object retrieval scheduling algorithms
for this purpose.



One of the main features of RLCP is that it handles negotiation of network resources and the system
resources (such as disk bandwidth, buffer space, and CPU processing time) required at the collaborating
server in subsequent phases. The reason is that object retrieval schedules can be identified only when available
network resources are known. A server handling object retrieval can determine the required system resources
(such as disk bandwidth, buffer space, and CPU processing time) only when objects to be retrieved are known.
This is due to the possibility that multimedia objects can be striped over different disks on a server. Also,
in some instances, objects might have to be realized through some format conversions. Hence, in the first
phase, RLCP identifies available network resources. In the second phase, RLCP identifies the objects that
are to be retrieved from different collaborating servers and negotiates the system resources required for object
retrieval. This two-phase negotiation of required network and system resources have to be carried out with all
the collaborating servers. RLCP can finalize the entire negotiation process only after reaching an agreement
with all the collaborating servers. If there is any disagreement with one or more collaborating servers, RLCP
might have to modify the required resources from other collaborating servers as well. Hence, RLCP executes
a third phase of resource commitment or modification.

Organization of the paper : In the following section, we discuss the features of the collaborating
applications towards which RLCP is oriented. In section 3, we emphasize the need for addressing the depen-
dencies among object presentations before reserving the required resources. In section 4 and 5, we describe
the Resource Lock Commit Protocol and its features. In section 6, we present an example application that
uses RLCP. We compare the features offered by RLCP with those of other application sub-layer protocols in
section 7.

2 Distributed Multimedia Presentation Applications

In this section, we consider two applications : (i) presentation of a distributed multimedia document and (ii)
distributed video presentation. Both these applications carry out multimedia presentations based on objects
retrieved from multiple servers.

2.1 Distributed Multimedia Document Presentation

Let us consider presentation of a multimedia document in which the objects composing the document are
distributed over a set of collaborating servers C'S1 to ('S4, as shown in Figurel. The presentation involves
objects O1 to 04 with presentation times and durations as shown in Figure 2(b). We assume that O2 can
be realized (through some format conversions) from objects O2' or 02”. However, this realization involves
additional CPU processing time. Let us assume that the presentation of objects have to be done according to
the following constraints :

e Object presentations can be started anywhere within a specified interval. For example, O1 can be
presented at any point in the interval ¢,3 — 6t,%,1 + 6t.

e Objects O1 and O2 have to be presented simultaneously, i.e., {,; and #,2 should be the same. In a
similar manner, objects O3 and O4 have to be presented simultaneously.

e Objects O3 and O4 have to be presented tmmediately after the completion of the presentation of objects
O1 and O2.

The application running in system .S, carrying out the presentation, has to download the objects from
the appropriate collaborating servers. For this purpose, the application has to create a retrieval schedule that
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Figure 1: Distributed Multimedia Document Presentation

identifies the time instants at which objects are to be retrieved from the collaborating servers. This retrieval
schedule has to be agreed upon by the applications running at the collaborating servers as well. If any of the
collaborating servers does not agree to the schedule, then the application in system S might have to modify
the retrieval schedule. For instance, let us assume that C'S2 defers delivery of object O2 by At. Then retrieval
of O1 might have to be deferred by a similar time interval (assuming that system S is not able to buffer the
object for the time period). Alternatively, O2 can be realized from 02’ or O2”. If C'S1 or C'S4 can support
the conversion of object into the required format of O2, then S can request one of these collaborating servers
to download the object. Otherwise, presentation of objects O1 and O2 have to be deferred. Since the retrieval
of objects O3 and O4 depends on the presentation of O1 and O2, their retrieval might also be deferred. Hence,
there 1s a dependency in the retrieval schedules of the objects composing the multimedia document.

2.2 Distributed Video Presentation

We can consider a distributed video presentation application where movies may not be stored entirely on a
particular server [12]. Blocks of the same movie may be replicated and stored on many Video-on-Demand
(VoD) servers on the network. A VoD server caters to a set of customers at any point in time. In the case of
the requested movie being not available in the server, the server tries to get blocks of the movie from other
VoD servers.

Figure 2(a) shows a server S serving a customer c¢l. Let us assume that the requested movie has 25 blocks
distributed over this server () and other VoD servers (C'S1 to C'S4). Blocks 516 to 520 are assumed to be
replicated (as shown in italics). The server S has to download blocks 66 to 625 from servers, in order to serve
the customer’s request. Before delivering the requested movie to the customer C'1, the server S has to create
a retrieval schedule for the blocks 66 to 625. This retrieval schedule has to ensure that there is no gap in the
movie presentation for the customer.

Blocks b1 — b6 are available local to the server S and hence can be shipped to the customer directly. The
server S has to get a commitment from other VoD servers for downloading the missing blocks as follows :
b6 — b10 from C'S1, b11 — b15 from C'S3, 16 — 20 from C'52 and 521 — 25 from C'S4. For downloading the
blocks from the VoD servers, the server S has to specify the time at which the blocks are needed by S. In
case, a VoD server is not able to commit for the download at the requested time, the server S can either
try another VoD server or request the same VoD server for another commitment time. In Figure 2(b), let us
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Figure 2: Example 2 : Distributed Video Presentation

assume that the VoD server C'S2 is not able to commit at the requested time 3. Instead, it is able to commit
for the blocks 616 — 520 at time t3/,. The server S has two options :

e Request server C'S1 to provide blocks 616 — 520. If 'S1 is able to commit for the blocks at ¢3, then S
can proceed with the same retrieval schedule.

e Otherwise, S has to identify the minimum delay involved in downloading the blocks 516 — 520 from
either C'ST or C'S2. Assuming that {3 is the earliest time at which the blocks are available, then S
has to delay the movie presentation by the time difference 6t (= t3 —¢3). In this case, S might have
to reschedule requests for the previous blocks as follows : 66 — 510 at ¢; 4+ 6¢, b11 — b15 at {2 + 6t and
b21 — b25 at t4 + 6t.

In this example also, there is a dependency among the objects (blocks of a movie) that are to be retrieved.

3 Need for Addressing Dependencies Among Resources

The example application scenarios discussed above, show dependencies among network and system resources
as follows.

e Retrieval schedule for the objects composing a multimedia presentation depends on the available network
resources to each of the collaborating servers.

e Also, there may be a dependency among the objects that are to be retrieved from the different collab-
orating servers. Hence, a retrieval schedule for a multimedia presentation needs agreement from more
than one participating collaborating servers. In the case where, one or more collaborating servers are not
able to commit for the requested schedule, the retrieval schedule might have to be modified. This mod-
ification of the retrieval schedule might mean modification of the agreements with other collaborating
Servers.



e Objects composing a multimedia presentation might have to be processed by collaborating servers, say

for format conversions. Objects might be striped over different disks in the server. Hence, until the
retrieval schedule is finalized by the presentation application (running in S in Figure 1 and 2), the
collaborating servers will not be able to identify the resources (e.g., disk bandwidth, buffer space, and
processing time) required for delivering the multimedia objects.

Replication of objects composing a multimedia presentation provides the application a choice of the
collaborating server(s) from which the replicated objects can be retrieved. Hence, in the case of a
collaborating server denying an object retrieval request, the presentation application can try another
source for the same object.

Hence, the retrieval schedule to be determined by the presentation application depends on the following

factors :

4

e Object presentation specifications such as time instants and duration of presentation.
e Available network QoS such as throughput, delay, and delay jitter.

e Local system (where the presentation application is being executed) resources such as available buffer

space, disk bandwidth, and processing time.

e Available system resources such as buffer space, disk bandwidth, and processing time at the collaborating

SErvers.

Resource Lock Commit Protocol

In this section, we propose a three-phase application sub-layer protocol called Resource Lock Commat Protocol
(RLCP) for creating retrieval schedules for collaborating applications (such as distributed document presen-
tation and distributed video presentation) involving dependent resources. Such applications are assumed to
have a flexible presentation schedules , i.e., presentation time instants of objects are chosen relative to that of
other objects composing the presentation. RLCP assumes advance resource reservation features to be offered
by the network service provider. RLCP is a receiver initiated protocol (as opposed to a sender initiated one).
RLCP proceeds in the following phases.

¢ Network resource negotiation phase : Here, RLCP identifies and locks network resources to each

of the collaborating servers.

System resource negotiation phase : In this phase, RLCP identifies schedule for retrieving objects
composing the multimedia presentation based on the available network resources. Using this retrieval
schedule, RLCP negotiates the required system resources (i.e., disk bandwidth, buffer space, and CPU
processing time) from each of the collaborating servers.

Commitment or Modification Phase : As discussed before, agreement from all the collaborating
servers is required for finalizing the retrieval schedule. If all the collaborating servers agree to the object
retrieval requests, RLCP can commit to the use of the requested network and system resources. If any
of the collaborating servers disagree, RLCP might have to modify the requested resources to (some or all
of) the servers. This commitment or modification of the requested resources (both system and network)
is carried out in the third phase.

We assume the notion of lock and commit of a resource (such as network throughput or disk bandwidth)

as follows. Locking of a resource makes a temporary reservation of the required resource whereas commutting



Collaborating
Application Server
Network Network

Resource Resource
RLCP Manager Manager RLCP

ec{\O“

o
Gualelss
Wit Qo

©

Figure 3: Phase 1 of RLCP (in “accept” mode)

for a resource can be considered as an agreement to use the resource at the requested time (and for the
requested duration). Locked resources can be released after a time out period, if no commitment is made
by the requesting application. Modification of the requested resources can be in terms of the quantity or the
required time.

4.1 Different Phases of RLCP

Now, we discuss the three different phases in which RLCP proceeds to negotiate network and server resources
for creating a multimedia presentation.

Network resource negotiation phase : In the first phase, RLCP requests the network service
provider to identify the available network resources for communication with each of the collaborating servers.
RLCP can make an initial estimate of the required network resources using some heuristic algorithms such
as the ones discussed in [8]. The network resources are also locked (temporarily reserved) for communication
with the collaborating servers. The message exchange (with “accept” of connection request) in the first phase
is shown in Figure 3. The application issues a request to the network service provider for estimating the
available QoS to a collaborating server (event 1). The network service provider makes an admission and
reservation request to the network (event 2). If the requested network resources are available, the network
issues an admission and reservation accept to the peer network service provider at the collaborating server
(event 3).

The peer network service provider issues an admission and reservation lock request to the network for
locking the available resources temporarily (event 4). The network locks the resources for the connection
and issues an admission and reservation lock accept to the initiating network service provider (event 5). The
initiating network service provider then informs the application that a connection to the collaborating server is
available with the locked QoS (event 6). If the requested network resources are not available, then the request
will be rejected by the network (not shown in Figure 3). The interactions discussed here are for advance
resource reservation.
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Figure 4: Phase 2 of RLCP (in “accept” mode)

System resource negotiation phase : In the second phase, the initiating RLCP computes a retrieval
schedule based on the available network resources. This retrieval schedule identifies : (i) the collaborating
server from which each object is to be retrieved, and (ii) the time at which each object is to be retrieved.
Algorithms for generating retrieval schedules for different multimedia presentation applications are discussed
in [2, 8, 7, 12]. These algorithms can be appropriately incorporated in the RLCP for computing retrieval
schedules based on the available network resources. The initiating RLCP then issues an object retrieval request
to the collaborating server (event 7, in Figure 4). This request identifies the objects that are to be retrieved
from the collaborating server as well as the times at which the objects are required. The collaborating server
identifies the system resources (such as disk bandwidth, buffer, and processing time) required for honoring
the requested schedule. If the requested resources are available, they are locked for use by the presentation
application. Then, the collaborating server issues an object retrieval accept to the initiating application (event
8). If the requested resources are not available due to prior commitment, then the server issues an object
retrieval reject. (If the requested resources are locked but not committed, then the server can indicate it to
the requesting application so that it can retry at a later point in time. One can also think in terms of giving
a priority to this request by considering 1t as the next candidate for the requested resources if the locked
resources are released).

Commitment or modification phase : If all the collaborating servers agree to provide the requested
resources for objects retrieval, then RLCP can commit to use the locked resources. If any of the collaborating
servers modify the resource request (by rejecting or by suggesting changes according to the available resources),
then RLCP might have to modify the requested resources to some or all of the collaborating servers. This
modification is decided using retrieval scheduling algorithms [7]. As discussed earlier, the modification can be
one of the following.

e Request another collaborating server, if object(s) is(are) replicated. This implies an increase in the
resource requirements (at network and application level) for the new collaborating server.

e Request the object(s) at a modified time, when the load on the collaborating server is lower. This
implies that resource commitments for other collaborating servers might have to delayed appropriately.
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Figure 5: Phase 3 of RLCP

For handling the above modifications, RLCP provides a third modification phase as shown in Figure
5. In this phase, the presentation application checks the commitment offered by the collaborating servers.
If all the servers commit to the requested schedule, then RLCP sends resource commit request to all the
collaborating servers (events 9-12). If any of the servers is not able to commit for the requested schedule,
then the presentation application initiates a modify object retrieval request (event 9). RLCP also computes the
modifications required in the allocated network resources. The modifications can be in terms of (i) the quantity
of the required resources, (ii) time at which the resources are required, or (iii) both. These modifications go as
modify network resources request to the network service provider (event 10). If the network is able to accept
the modifications, then it issues modify network resources accept to the peer network service provider (event
11). If the collaborating server is able to honor the request, it issues a modify object retrieval accept (event 12).
If any of locked resources (at network or application level) are not required in the modified retrieval schedule,
the presentation application can release them explicitly (events 9-12).

As can be imagined, phase 3 might have to be executed a few times before the desired retrieval schedule
is finalized. The number of iterations for finalizing the retrieval schedule (and hence the number of executions
of phase 3) is very much dependent on the type of multimedia presentation application (i.e., the number of
objects composing the presentation, the number of collaborating servers, and the number of servers on which
objects are replicated). Tt also depends on the type of retrieval scheduling algorithms used. Appendix T carries
a brief discussion on identifying the number of iterations for finalizing the retrieval schedule of an example
multimedia presentation using algorithms discussed in [7].

Handling Retrieval of Replicated Objects :  Retrieval of replicated objects can be handled in
different ways :

e RLCP can make an estimate of the available network resources to all the servers and choose the one
that suits the presentation schedule (and the availability of local system resources, such buffer space).
This approach has the advantage from the application point of view in that it can select the best source
for an object. However, it leads to an increase in traffic at the network level.
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o Alternatively, RLCP can make an estimate to one of the servers (chosen using some heuristics, say, load
distribution on the collaborating servers). This approach minimizes the network traffic but the chosen
object source may not be the best one. (RLCP has to try other servers one by one, if the chosen server
is not able to handle the request)

Depending on the implementation, application can request the RLCP to exercise one of the available options
for retrieving replicated objects.

4.2 RLCP and its Architectural Position

Figure 6 shows the finite state machine (FSM) associated with the RLCP that initiates a multimedia presen-
tation. When a multimedia presentation is executed, RLCP makes an initial estimate of the required network
resources. Then, the RLCP initiator moves to the state of identifying network throughput. After getting the
QoS available to the required collaborating servers, RLCP determines the retrieval schedule and sends out
object retrieval requests. If all the collaborating servers agree for the retrieval requests, then the multimedia
presentation can be initiated (as denoted by the state Retrieve and Present Objects). Otherwise, RLCP goes
through a phase of modifying the object retrieval schedule (as denoted by the state Modify Object Retrieval).
The FSM associated with RLCP of the collaborating server is shown in Figure 7. If the object retrieval request
can be honored, the collaborating RLCP moves to the state Resources Locked. When a request for modifying
an object retrieval schedule is received, the collaborating RLCP stays in the same state after sending a mes-
sage to the initiator regarding the acceptance or rejection of the request. When the initiator commits to the
retrieval schedule, the collaborator moves to the state Object Retrieval Commait. After the retrieval of objects
is completed, the collaborating RLCP moves to the Idle state.

RLCP is architecturally located at the application sub-layer, as shown in Figure 8. This implies that
RLCP can use any resource reservation protocol that provides advance resource reservation capabilities. Only
modification that will be necessary is that during the connection request time the resources need not be
allocated, only locked.

5 RLCP Services

10
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Service Parameters

Requests R_InitiatePresentation | Presentation Configuration
R _PresentationDelay Accept/Reject

Responses | R_RejectPresentation | Reason

R _DelayStart Time

Table 1: RLCP Services to Multimedia Presentation Applications

Service Parameters
Requests R_SendObject Objectld, TimeRequired
R_-ModifyObjectSend Time Objectld, TimeRequired
Responses | R_SendObjectResponse Accept, Reject, Delay
R_ModifySendTimeResponse | Accept, Reject, Delay

Table 2: Services For Interacting With Peer RLCP

As shown in Figure 9, RLCP takes as input the temporal relationships and characteristics of the objects (such
as their sizes) composing the multimedia presentation that is to be initiated. It interacts with the network
service provider, disk, and buffer manager for reserving the required resources.

Interaction With a Multimedia Presentation Application :  The interface provided by the
RLCP to a multimedia presentation application is in terms of a set of requests and a set of responses, as sum-
marized in Table 1. Here, an application can initiate a multimedia presentation using R_Initiate Presentation
request. RLCP uses one of the retrieval schedule generation algorithms discussed in [2, 8, 7, 12], in order
to identify the object retrieval times and the collaborating servers from which objects are to be retrieved.
If the start of the presentation has to be delayed or if the presentation cannot be initiated, RLCP responds
with R_DelayStart or R_RejectPresentation. Application can make use of the request R_PresentationDelay to
convey its acceptance or rejection of the delay in initiating the presentation. Other services can be incorpo-
rated into RLCP for handling user interactions during the multimedia presentation and for handling dynamic
network behavior, similar to the services offered in [11].

Interaction With Peer RLCP : For carrying out a multimedia presentation, RLCP interacts with
peer collaborating RLCPs. The requests made to collaborating RLCPs and their responses are summarized in
Table 2. Initiating RLCP makes requests for object retrievals from the collaborating RLCP using the services
R_SendObject and R_ModifyObjectSendTime. The collaborating RLCP responds with R_SendQObjectResponse
and R_ModifySendTimeResponse. The collaborating RLCP interacts with disk and buffer managers in order
to reserve the bandwidth and buffer space required for the requested object retrieval.

Interaction With Network Service Provider : Interaction of RLCP with the network service
provider is in terms of :

e Requests for network connections with required QoS at the specified for a given duration.

e Modification of the requested time and duration of a network connection.

12
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Figure 10: Requesting Network Resources to Collaborating Servers

e Confirmation for using the requested resources from the network service provider.

6 Using Resource Lock Commit Protocol : An Example

Let us consider the distributed video presentation example discussed in Section 2.2. Server S has to identify
a retrieval schedule for presenting a movie at time ¢y for a customer cl. It has to download the movie blocks
b6 — b25 from collaborating VoD servers C'S1,CS52,CS3 and C'S4. As shown in Figure 10, in the first phase,
server S requests the network service provider to give an estimate of the available network resources. Based
on the available network resources, S creates an initial retrieval schedule. (In this example, we assume that
RLCP contacts servers with replicated objects one after another). Let us assume that the initial schedule is
as follows :

e Blocks b1 — b5 are available locally. Movie presentation starts at time ¢5. Based on the initial start time
and the playing time of the previous blocks, the retrieval schedule for other blocks are determined as
follows.

e Blocks 66 — 510 to be delivered by C'S1 at time #;.

e Blocks 511 — b15 to be delivered by C'S3 at time 5.
e Blocks 516 — 520 to be delivered by C'S2 at time 3.
e Blocks 521 — 25 to be delivered by C'S4 at time 4.

The server S identifies and requests for network resources to the collaborating servers, as shown in Figure
10. Then, S makes object retrieval requests to the collaborating servers based on the above initial schedule,

13



2
0] [b16-b20] [b11-b15] [b21-h25)

PERE

Network

Resource

Manager
N

ETWORK

Network
Resource
Manager

RLCP
0] 0] @) @)

([b6-b10],t1) ([b16-b20],t3) ([b11-b15],t2) ([b21-b25],t4)

. [b1-b5]

Figure 11: Making Object Retrieval Requests

as shown in Figure 11. If all the collaborating servers are able to allocate the required resources for object
retrieval, then they i1ssue object retrieval commitsto S. The locked network resources for the video presentation
are also allocated, as shown in Figure 11.

As discussed in Section 2.2 let us assume that C'S2 is not able to commit for the blocks 516 — 620 at time
t3. Instead, it is able to commit for the blocks at ¢3/. Then, S can try to check whether C'S1 can provide
the blocks at t3. If C'S1 can commit for the blocks at ¢3, then S can finalize the retrieval schedule for the
movie presentation. Otherwise, S has to delay the movie presentation by 8t (= t3 — ¢3). This implies that
commitments for other movie blocks also have to be delayed by ét. Hence, S executes phase 3 of RLCP, as
shown in Figure 12. Here, request for movie blocks are modified as follows : 66 — 510 at ¢; + 6, b11 — b15 at
to + 6t, b16 — 620 at t3/ and 621 — 025 at t4 + 6t. Modifications required for the network resources are also
computed and appropriate requests are issued. Figure 12 shows acceptance of the request for modification of
the requested resources. Hence, S can finalize the retrieval schedule as the desired one.

7 Comparison With Existing Protocols

Handling of negotiation of required resources for multimedia applications have mostly been dealt at the
transport protocol level [1]. Requirements at the application level makes resource negotiation a more complex
task. Few protocols have been suggested for handling resource negotiation and object retrievals in distributed
multimedia applications :

e Application and Network Synchronization Protocol (ASP and NSP) [2].
e Multimedia Application Protocol (MMAP) [11].
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Figure 12: Modifying the Requested Resources

e Negotiation and Resource Reservation Protocol (NRP) [13].

Application and Network Synchronization Protocol : 1In [2], a set of protocols - one at ap-
plication service level (Application Synchronization Protocol (ASP))and another at the network service level
(Network Synchronization Protocol (NSP)) - have been proposed for providing synchronization of objects as
a network service. Application Synchronization Protocol (ASP) is proposed for providing specific services
pertaining to the retrieval of complex multimedia objects from multiple sources across a network for playout
at a single site. This protocol has an associated Network Synchronization Protocol (NSP) which provides a
general network interface and functionality for many applications. These protocols are aimed at synchronizing
object presentations rather than handling resource negotiations for multimedia presentation applications.

Multimedia Application Protocol (MMAP) : The main emphasis of MMAP is that computing
the QoS requirements, negotiating it with the network service provider and handling the dynamic behavior
of the user and the network service provider can be provided as a generic protocol service interface [11]. The
services provided by MMAP addresses these issues and hence MMAP services can be used by an orchestrated
presentation application. However, MMAP does not handle dependencies among object presentations and
does not address the collaborative nature of multimedia presentations discussed in this paper.

Negotiation and Resource Reservation Protocol (NRP) : has been proposed in [13] for de-
scribing application level QoS with an end-to-end view spanning the whole distributed application. NRP
carries out negotiation based on client specified QoS value ranges and given resource availabilities on endsys-
tems and communication links. NRP helps in translating Application-QoS specified in terms of media specific
characteristics (such as video frame size : 480 * 360) into network QoS. It proceeds in three phases : (i)
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Mapping Application-QoS to network level QoS, (ii) Fixing QoS values for each communication link and (iii)
Relaxing resource reservation according to final QoS values. NRP helps in matching device capabilities (such
as video frame sizes) to available network resources. In our approach, we propose RLCP to help in finalizing
retrieval schedules for objects from more than one collaborating server. The negotiation of the schedule takes
into consideration the dependencies among object presentations. Hence, the purpose of RLCP is different

from that of NRP.

8 Summary

Negotiating and reserving the resources required by a multimedia application at the network as well as ap-
plication level is a complex task. This task is very much application dependent. In this paper, we consider
an interesting class of multimedia application : presentation of media objects distributed in a set of collabo-
rating servers. A key requirement of these applications is the creation of a retrieval schedule that will help
in identifying the objects to be downloaded from each collaborating server at the desired time. This retrieval
schedule depends on the availability of resources at the network and the application level. Hence, determining
a retrieval schedule implies negotiation and reservation of resources at network and application level.

We propose RLCP as an application sub-layer protocol for handling creation of retrieval schedules for
distributed multimedia presentation applications. RLCP helps in resource reservation at network and appli-
cation level. RLCP proceeds in a phased manner, by estimating the available network resources first. It then
computes an initial retrieval schedule for each of the collaborating server based on the available network QoS.
This retrieval schedule is propagated to the collaborating server for validation in the second phase. In this
phase, the required system resources (such as disk bandwidth, buffer space, and CPU processing time) are also
identified and locked. If the schedule is accepted by all the collaborating servers, RLCP finalizes the schedule.
Otherwise, it executes a sequence of resource modification phase till the retrieval schedule can be finalized.
RLCP can use services offered by any network protocol supporting advance reservation capabilities such as
Tenet suite of protocols [4] or ST2+ [10].
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Appendix I

As discussed earlier in the paper, the number of iterations for finalizing the retrieval schedule
(and hence the number of executions of phase 3) is very much dependent on the type of multimedia
presentation application (i.e., the number of objects composing the presentation, the number of
collaborating servers, and the number of servers on which objects are replicated). It also depends
on the type of retrieval scheduling algorithms used. In this section, we provide an example where an
estimate can be made regarding the worst case number of modification requests made by Phase 3 of
RLCP. Here, we consider the retrieval scheduling algorithm discussed in [7].

Let a multimedia document D contain two objects ol and 02 with presentation schedules as shown
in Figure 13. In this figure, st and et denote the start and the end times of the object presentations
respectively. Let req(o) denote the identified retrieval schedule for an object in the second phase of
RLCP. During each interval shown in Figure 13, the following conditions must hold.

e The total size of the objects stored at the local buffers must be less than the local buffer size.

e The required throughput for each object must fit into the throughput identified in the first
phase of the RLCP protocol for that object.
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Figure 13: Schedule validation process

The following algorithm uses feedbacks to make the necessary modifications in either the presen-
tation or the retrieval schedule, as appropriate[7] :

Algorithm:

1. Sort the events (the vertical dashed-lines in the figure), and identify the number of intervals (num;p:).

2. Set the borders of the intervals as unmarked. (When a border is marked, the event that corresponds
to the border can not be changed).

Satisfied = True;

VPirstInterval<i<LastInterval( F'ailNoli] = 0);

ThisInterval = LastInterval;

while Satis fied and (ThisInterval > FirstInterval) do

S O e W

(a) Check if the interval ThisInterval is valid
(b) while ThisInterval is not valid do

i. FailNo[ThisInterval] = FailNo[ThisInterval] + 1;

ii. if FailNo[ThisInterval] > MaxFails then return empty schedule

1. Create k alternative feedbacks, each modifying either the presentation schedule or the retrieval
schedule (here we do not discuss how the feedback is generated). Note that the values that
are already marked must be kept constant in feedbacks.

1v. Send all feedbacks to the schedule modifier.

v. while schedule modifier returns no schedule and (ThisInterval < LastInterval) do



ThisInterval = ThisInterval + 1;
FailNo[ThisInterval] = FailNo[ThisInterval] + 1;

if FailNo[ThisInterval] > MaxFails then return empty schedule
Set the borders of the interval Thisinterval as notmarked

Create k alternative feedbacks. Note that the values that are already marked must be
kept constant in feedbacks.

F. Send feedbacks to the schedule modifier.
. Check if the interval ThisInterval is valid

(¢) 1f mterval ThisInterval is valid then

1. Set the borders of the interval as marked
1. ThisInterval = ThisInterval — 1

(d) else
1. Satisfied = False

7. if Satisfied then return the schedules

=00 8w

8. else return empty schedule

This algorithm starts from the last interval and proceeds towards the first interval. It generates
feedbacks whenever either the buffer or the throughput conditions is not satisfied, and modifies the
presentation and retrieval schedules accodingly. The details of the algorithm can be found in [7].
Here, we will not go into the details of the algorithm, but we note that each interval in the schedule
gets modified at most Max Fails times, as the algorithm proceeds (steps 6(b) : (ii) and (iii)).

In general, let a document D contain n objects (o01...0,). Then, the presentation and retrieval
schedules of the above algorithm would have at most 3 x n intervals. Hence, the above algorithm
would issue 3 X MaxFails x n feedback creation requests before it halts. Each feedback creation
causes k alternative feedbacks. If rep(o;) is the number of servers in which an object o; is replicated,
then each alternative feedback causes at most Y ., ,, rep(o;) modification messages to the servers.

Since the retrieval scheduling algorithm generates atmost 3 x MaxzFails x k x n feedbacks, the
number of modification requests generated by RLCP in the third phase will be atmost

3x MaxFails X k xn X Z rep(o;).
1<i<n

Note that, if rep(o;) is bounded by some constant, i.e. it is in O(1), for all objects (01 ...0,) in
the document, then the number of modification requests is in O(n?).
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