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On-line monitoring of beam quality for high-intensity particle beams requires

non-invasive transverse phase space diagnostics. Such diagnostics are in high de-

mand for use in heavy ion accelerators and free-electron lasers (FELs). A technique

to measure emittance using multi-turn resonant excitation of the quadrupole en-

velope mode has been demonstrated at the University of Maryland Electron Ring

(UMER).

The rms Kapchinsky-Vladimirsky (KV) equations predict the time-evolution

of particle beam envelopes. Linear perturbations to the matched envelope solution

of these equations excite normal modes at space-charge-dependent natural frequen-

cies. This experiment employs periodic, impulsed perturbations to drive resonant

excitations of these modes. Steady state resonance structure in the form of a lat-

tice is predicted using analytic solutions of a delta-kicked simple harmonic oscillator

(SHO). Numerical simulations of this SHO along with simulations from the WARP

envelope solver and particle-in-cell (PIC) codes are documented.



This dissertation presents the first proof-of-principle experimental resonant

excitation of the quadrupole envelope mode in a high-intensity particle beam. To

excite the mode experimentally, an rf-driven electric quadrupole is constructed and

installed in UMER. The quadrupole fields are driven by a tunable resonant tank

circuit designed and built for this experiment. After resonant excitation, the knock-

out imaging method is used to collect 3 ns synchronized transverse time slice images

of the beam. Image moments are analyzed and show good agreement with simu-

lation. Emittance can then be inferred from the measured natural frequencies of

the envelope modes utilizing a conversion obtained through simulation. A direct

emittance measurement is performed using a conventional pinhole scan at injection

as an experimental validation of the envelope resonance method.
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If I have seen further it is by standing on the shoulder of giants.

–Isaac Newton
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Chapter 1: Introduction

1.1 Motivation

In accelerator physics, there are two axes of progress, the energy frontier and

the intensity frontier. The energy frontier is concerned with the discovery of new

physics at higher and higher energies. Currently the Large Hadron Collider (LHC)

is working to make improvements to the standard model and determine whether

supersymmetry is physical. In the intensity frontier, the goal is to increase a beam’s

particle density. This is important for several reasons. For colliders [1, 2], a greater

density of particles enables more collisions per interaction, leading to rare events oc-

curring on a reasonable time scale. For medical applications [3], a greater quantity

of various radioisotopes can be produced from higher beam intensities, permitting

the diagnosis and treatment of a greater number of patients. For industrial applica-

tions [4,5], higher density beams enables a more efficient irradiation and production.

These are just a few examples reflecting the demand for higher intensity beams.

To achieve high-intensity beams, it is important to maintain beam control

and beam quality. For example, the Large Hadron Collider (LHC) [2] seeks large

charge per unit area (brightness) to increase the number of collisions per second

(luminosity). In another example, the Dual-Axis Radiographic Hydrodynamic Test
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(DARHT) Facility [6] requires a minimal beam spot size on their target to optimize

their radiography. As a final example, free-electron lasers (FELs) [7, 8] require a

small transverse beam phase space to improve the gain of the laser.

To monitor the quality of high-intensity beams, diagnostics are needed to

measure emittance, a beam quality indicator. Ideally, these diagnostics should be

non-invasive, so that the beam can be used after it is characterized and not destroy

the diagnostic in the process. However, as outlined in the next section, emittance is

notoriously difficult to measure for high-intensity beams.

1.2 A Brief History of Emittance Measurement

Traditional methods of measuring emittance are invasive and of limited accu-

racy. Such measurement methods include quadrupole scans, pepper pots, and wire

scanners [9, 10].

In the quadrupole scan, the size of the beam is measured in response to the

adjustment of an upstream quadrupole magnet strength. By populating a response

matrix, the Courant-Snyder parameters β, γ, and α can be determined [11]. These

parameters determine the size and orientation of the trace space ellipse described

by

γx2 + 2αxx′ + βx′2 = εx, (1.1)

where εx is the beam emittance. This is a non-invasive measurement, but it assumes

that beam forms a trace space described by an ellipse, which is only true under linear

forces. For intense beams, the measurement is associated with significant systematic
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errors [10]. Intense beams are characterized by large amounts of space-charge or self-

fields that distort particle trajectories and confound the emittance measurement.

In the pepper pot measurement, the beam is intercepted by mask with a lat-

tice of small apertures. The apertures fragment the beam into an array of beamlets

in which the remaining particles move in straight lines, no longer affected by self-

forces. The transverse velocity spread of each beamlet is measured by a downstream

fluorescent screen. The beam’s trace space (and hence emittance) is reconstructed

from images. The pepper pot method is often used for intense beams, but is an in-

vasive technique. Additionally, a pepper pot mask has to be specifically constructed

for each beam; the smaller the beam radius, the denser and smaller the arrayed

apertures. This often leads to overlapping beamlet images causing uncertainty in

the measurement. This can create problems when different beams are used in the

same beam line.

In the wire scanner method, a wire is moved quickly across the beam that

produces secondary particle shower. The shower is detected outside the vacuum

chamber by a scintillator and photo-multiplier assembly. Transverse position and

velocity are measured simultaneously from the photo-multiplier assembly, and emit-

tance can then be determined. There are several limitations to this method. First,

it is invasive. It also has a small signal-to-noise ratio. Finally, the wire needs

to move quickly across the beam so that the measurement is limited to a single

transverse beam slice. This leads to mechanical limitation when implementing this

experimentally for short beam pulses.
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1.3 The Envelope Mode Resonance Method

Collectively, particles define the beam envelope, the transverse edge of the

beam bunch. The beam envelope is a dynamic structure that oscillates with the

period of the accelerator lattice, the periodic arrangement of magnets used to focus

the beam. Great care is taken to “match” the envelope to the lattice, such that

the envelope flutter is periodic and has a constant average size. In intense beams, a

beam disturbed from the matched case can cause a superposition of two oscillatory

normal modes, the even or “breathing” mode and the odd or “quadrupole” mode.

The frequencies of these modes scale with I/ε, where I is the beam current and ε is

the beam emittance. If the beam current and the frequency of either mode can be

measured, the emittance can be determined.

This dissertation details a successful measurement of the quadrupole envelope

frequency by applying periodic, impulsed quadrupole perturbations to the beam

using an rf-driven electric quadrupole specifically constructed for this task. After

encountering several quadrupole perturbations, transverse beam slice images were

collected using the combination of a fast camera (3 ns) and a fast phosphor screen.

The rms beam sizes of these images determine the growth of the envelope due to the

quadrupole perturbations. By tuning the rf frequency, the resonance structure of the

envelope growth can be determined. The emittance can be inferred by identifying

the frequencies of the resonances. This method is both sensitive and non-invasive.
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1.4 Organization of the Dissertation

The focus of this dissertation is the experimental measurement of the quadrupole

envelope mode frequency of an electron beam in a high-intensity circular accelerator.

In chapter 2, it is shown how the dynamics of the quadrupole mode in an alternating-

gradient lattice directly depends on the current and emittance, thus providing a way

of determining the emittance from the mode frequency. The particle-core model of

the beam is also introduced, and it is shown how envelope mode excitations can

lead to resonant halo growth and beam degradation.

Chapter 3 introduces the experiment by deriving and simulating the delta-

kicked harmonic oscillator. Theoretical results are compared to simulations with

the introduction of a python-based code called WARP, detailing results from both

its envelope solver and its particle-in-cell (PIC) code. Predicted values of quadrupole

mode frequency from the envelope solver provide a metric for beam emittance. PIC

codes show how halo formation is an indication of resonant envelope excitation

over long beam lifetimes. In this way, halo measurement can be used as a possible

envelope resonance diagnostic for high-intensity accelerators over long time scales.

Chapter 4 details the experimental apparatus used in this dissertation, as well

as a detailed introduction to the University of Maryland Electron Ring (UMER).

This includes the design, simulation, construction, bench tests, and installation of

an rf-driven electric quadrupole and the resonant tank circuit that drives it. Great

care is taken to theoretically and experimentally explore the fields generated by the

quadrupole, and to ensure that it produces the fields calculated in chapter 3 for all

5



values of rf frequency.

Chapter 5 details the knockout method, the primary diagnostic used in this

dissertation. A technical discussion of the fast phosphor screens, time delay mech-

anism, and gated camera is included. Other UMER diagnostics such as the wall

current monitor (WCM) and beam position monitors (BPMs) are introduced.

Chapter 6 contains the experimental results and compares them with the

simulations of chapter 3. It is shown that multi-turn resonant excitation of the

quadrupole envelope mode provides a sensitive, non-invasive measurement of emit-

tance. The conventional pinhole scan is also introduced, which is a method to

directly determine the emittance at injection by using a small aperture and a down-

stream phosphor screen to measure the transverse velocity spread in the beam. This

provides an experimental validation of the envelope resonance method.

Chapter 7 provides a summary of the dissertation along with ideas and sug-

gestions for future research.

Appendix A discusses a steering method used to optimize the values of magnet

current in UMER’s injection line. Appendix B describes a technique used to match

the UMER beam on the first turn with injection line quadrupole magnets using the

steering solution of Appendix A.

Appendix C includes a discussion of the application of quadrupole pick-ups

to measure beam size, and an explanation of the knockout method as the preferred

diagnostic at UMER.
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Chapter 2: Envelope Resonance in an Alternating-Gradient Lattice

To derive the theory of envelope resonance, it is first necessary to understand

both the characteristic beam parameters and the time-evolution of charged particle

beams. The underlying physics of these beams are described by the classical theory

of electrodynamics [33].

2.1 Coordinate Definition

As a single particle moves with a velocity v = βc, it oscillates transversely

about the beam’s equilibrium orbit. In circular accelerators, it is convenient to

employ a new coordinate system (x, y, s), where s is the co-moving longitudinal co-

ordinate of the equilibrium orbit. Since a particle’s longitudinal position is uniquely

determined at a time t, the time-evolution of a particle’s transverse motion ẋ = dx
dt

is expressed naturally in terms of its longitudinal spacial-evolution in the lab frame

x′ = dx
ds

. The coordinate transformation is

ẋ =
dx

ds

ds

dt
= x′ṡ,

ẍ = ẋ′ṡ+ x′s̈ = x′′ṡ2.

(2.1)

Here it is assumed that the longitudinal velocity is constant, thus s̈ = 0. Since a

particle’s trajectory is slightly offset from the equilibrium orbit, it is not precisely
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true that v = ṡ. Inspecting Figure 2.1, a geometrical argument is used to see that

v = ṡ
(
1 + x

R
). However, since x� R, the paraxial approximation, ṡ ≈ v = βc.

Figure 2.1: A particle’s trajectory compared to the velocity of the lon-
gitudinal coordinate system of the beam’s equilibrium orbit [34].

2.2 Fundamental Particle Beam Quantities

In order to discuss the dynamics of charged particle beams, certain fundamen-

tal quantities must be defined. The first quantity is the particle distribution func-

tion, or PDF. This function f = f(x, y, s, x′, y′, s′) describes the density of the beam

at all points in 6-dimensional phase space. The paraxial approximation assumes

the transverse and longitudinal dynamics are decoupled, and the 4-dimensional

transverse PDF of the beam slice across the distance ∆s = s2 − s1 is examined

independently of the longitudinal dynamics. The new PDF is

f = f(x, y, x′, y′) =

∫ +∞

−∞

∫ s2

s1

f(x, y, s, x′, y′, s′)dsds′. (2.2)
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The moments of this particle distribution function are defined as

Mpqrs =

∫∫∫∫
beam

xpyq(x′)r(y′)sf(x, y, x′, y′)dxdydx′dy′. (2.3)

The number of particles in a given time slice is defined as the 0th moment M0000 ≡ N .

The 2nd moments in x and y, M2000 and M0200, are used to define the rms beam sizes

x2rms = 〈x2〉 =
M2000

N
, (2.4a)

y2rms = 〈y2〉 =
M0200

N
. (2.4b)

These values are important when describing the beam quality. Two measures of the

beam quality are called the emittance ε and the brightness B. The rms emittance

in x is given by

ε̃2x = 〈x2〉〈x′2〉 − 〈xx′〉2. (2.5)

This value is related to the area of trace space (x′ vs. x) in a beam slice as shown in

Figure 2.2, and it is conserved under linear forces (Fx ∝ x). It is often useful to define

the normalized rms emittance, ε̃nx = βγε̃x, where γ is the relativistic 1/
√

1− β2 and

β is the relativistic v/c. ε̃nx is preserved under longitudinal acceleration described

by Liouville’s Theorem [37]. In a particle accelerator, an increase in emittance over

time generally indicates a deterioration of beam quality. As explained in chapter

1, emittance is often difficult to measure in the lab, and this dissertation

introduces a new method to measure it.

Another measure of the beam quality is called the brightness. It is inversely

proportional to the emittance and generally a measure of the density of phase space.
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Figure 2.2: Emittance εx is defined as the area of a beam’s transverse
particle distribution in trace space. Though the ellipse evolves in time
according to the magnet lattice, its area is preserved at all times under
linear forces (Fx ∝ x) [41].

The normalized average brightness is given by

B̄n =
2I

π2εnxεny

, (2.6)

where I is the beam current and εnx = 4ε̃nx for a beam with uniform particle density.

Two parameters that characterize the intensity of the beam are the generalized

perveance K and the intensity parameter χ. K is a measure of the self-fields or

space-charge intensity of the beam and is directly proportional to the beam current

I. The generalized perveance is given by

K =
I

I0

2

(βγ)3
. (2.7)

I0 is the characteristic current, defined by I0 = (4πε0mc
3)/q. For electrons, I0 ≈ 17

10



kA. Since K is proportional to (βγ)−3, space charge becomes negligible at high en-

ergies, where γ � 1. Proportional to the generalized perveance is the dimensionless

intensity parameter χ, defined by

χ =
K

k20a
2
, (2.8)

where k0 is the betatron oscillation wave number in the absence of space charge

and a is the average beam radius. In the next section, these values will be used to

describe beam transport in an alternating-gradient lattice.

2.3 Beam Transport in an Alternating-Gradient Lattice

In an alternating-gradient lattice structure, or FODO lattice, quadrupole mag-

nets are used to focus the beam. Quadrupole magnets provide stronger focusing than

axisymmetric fields. Because a quadrupole magnet focuses in one plane and defo-

cuses in the other, the lattice geometry requires each sequential quadrupole magnet

to be rotated by 90◦ with respect to the one before it. Since the beam envelope size

is maximized as it passes through focusing fields and minimized as it passes through

defocusing fields, The net result is a focused beam.

A particle moving through an alternating-gradient lattice will experience a

trajectory described by

x′′ + κx(s)x−
2K

X(X + Y )
x = 0, (2.9a)

y′′ + κy(s)y −
2K

Y (X + Y )
y = 0, (2.9b)

where κx(s) and κy(s) are the lattice focusing functions. X and Y are the time-

11



Figure 2.3: The alternating-gradient lattice focusing function plotted
above the (matched) X and Y envelope functions.

dependent rms Kapchinsky-Vladimirsky (KV) envelope equations that evolve ac-

cording to

X ′′ + κx(s)X −
2K

X + Y
− ε2x
X3

= 0, , (2.10a)

Y ′′ + κy(s)Y −
2K

X + Y
−

ε2y
Y 3

= 0., (2.10b)

where X and Y are defined by the rms beam sizes

X ≡ Xrms(s) =
√
〈X2〉s, (2.11a)

Y ≡ Yrms(s) =
√
〈Y 2〉s. (2.11b)

Space-charge decreases a charged particle’s oscillation frequency through a force

that opposes the lattice focusing force κxx. The phase advance is defined by the
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amount a single particle oscillates over a lattice period. It is calculated by

σ = 360◦
S

λ
. (2.12)

This value, measured in degrees, decreases with increasing space charge. Thus, the

space-charge undepressed phase advance constant σ0 is equivalent to the zero-current

limit for an intense beam. It is useful to define the normalized phase advance σ/σ0

as a measure of space-charge intensity. This dimensionless ratio is related to the

beam parameters already defined by

σ

σ0
=
√

1 + u2 − u, (2.13)

where

u =
KS

2εσ0
. (2.14)

In this way, space-charge, measured by the normalized phase advance, scales by a

factor of I/ε. Figure 2.4 shows the time-evolution of the matched rms envelope

and single particle trajectories in an alternating-gradient lattice for depressed and

undepressed phase advances akin to the values used in the experiment detailed in

this dissertation.

In particle beams, it is often convenient to consider the collective dynamics of

the beam as well as the motion of a single particle. This dissertation focuses on the

dynamics of the envelope described by the equations 2.10a and 2.10b. The theory of

envelope dynamics was first derived in 1959 by Kapchinsky and Vladimirsky [12] and

later generalized to the rms case in 1971 by Lapostolle [13] and Sacherer [14]. The

generalization provided the freedom to explore any non-uniform charge distribution
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Figure 2.4: Depressed (black) and undepressed (red) single particle
trajectories plotted within the matched envelope X(s) in the plane
y = 0. This alternating-gradient lattice has phase advances σ0 = 80◦

and σ = 16◦ [42].

with elliptical symmetry. A conceptual drawing of a collection of particles that make

up the beam envelope is shown in Figure 2.5. In the next section, the mismatch

consequences of these equations will be examined.

2.4 Perturbations on the Matched KV Envelope Solutions

Although there are no known analytic solutions to the envelope modes in

an alternating-gradient lattice, the smooth approximation provides a simplified ap-

proach that results in an analytic solution. This solution is presented and then

followed by an analysis of the more complex alternating-gradient lattice structure.

2.4.1 The Smooth Approximation

In the focusing channel of the smooth approximation, the focusing functions

κx(s) and κy(s) depicted in Figure 2.3 are replaced by the constant κ0 = k20. The
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Figure 2.5: Conceptual drawing of a beam passing through a waist,
plotted with snapshots of its corresponding trace space ellipse [43].

undepressed wave number (or spatial frequency) k0 is defined as

k20 =
σ2
0

S2
, (2.15)

where σ0 is the phase advance of particle oscillations in the absence of space charge

and S is the lattice period. In a matched beam, the axisymmetric property of the

smooth approximation implies that the average envelope functions X̄(s) and Ȳ (s)

be equal to the matched radius R̄ =
√
ε/k =

√
εS/σ, where ε = ε̃x = ε̃y for a

matched beam. In this case, the envelope equation becomes

k20R̄−
K

R̄
− ε2

R̄3
= 0. (2.16)
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With a mismatch, X̄ and Ȳ differ from R̄ and the envelope equations become

X̄ ′′ + k20X̄ −
2K

X̄ + Ȳ
− ε2

X̄3
= 0, (2.17a)

Ȳ ′′ + k20Ȳ −
2K

X̄ + Ȳ
− ε2

Ȳ 3
= 0. (2.17b)

Now that the transverse dimensions are considered independently, distinct perturba-

tions are applied separately to each envelope function. These perturbations reflect

the degree of the mismatch, and are written as

X̄(s) = R̄ + δX(s), (2.18a)

Ȳ (s) = R̄ + δY (s), (2.18b)

where δX, δY � R̄. Substituting 2.18 into 2.17 and keeping only the first order

terms of the expansion, the new envelope equation is

δX ′′ + AδX +BδY = 0, (2.19a)

δY ′′ + AδY +BδX = 0, (2.19b)

where

A =
3σ2

0 + 5σ2

2S2
, (2.20a)

B =
σ2
0 − σ2

2S2
. (2.20b)

These equations still have coupled transverse motion. A change of coordinates

will uncouple the transverse modes into two oscillatory equations of motion. These

new coordinates are defined by

R+ ≡ δX + δY, (2.21a)

R− ≡ δX − δY. (2.21b)
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The new equations of motion are

R′′+ + k2+R+ = 0, (2.22a)

R′′− + k2−R− = 0. (2.22b)

Equation 2.22a describes the time evolution of the even or “breathing” mode. Equa-

tion 2.22b describes the time evolution of the odd or “quadrupole” mode. Their wave

numbers are

k+ =
√

2k20 + 2k2, (2.23a)

k− =
√
k20 + 3k2, (2.23b)

and their phase advances are

σ+ =
√

2σ2
0 + 2σ2, (2.24a)

σ− =
√
σ2
0 + 3σ2. (2.24b)

These phase advances occur for a mismatch that reflects the pure mode launching

conditions. All other cases are expressed as a superposition of these two modes. The

pure modes are plotted in Figure 2.6 as a function of the normalized phase advance.

At the zero space-charge limit where σ/σ0 approaches 1, the envelope mode phase

advances converge to twice the phase advance of an undepressed particle oscillation.

A more thorough analysis in the smooth approximation [16] studies the effect

of perturbations applied to the generalized perveance K, the emittance ε and the

focusing function κ. The resulting envelope mode frequencies and phase advances

remain the same.
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Figure 2.6: Normalized envelope mode phase advances plotted as a func-
tion of σ/σ0 in the smooth approximation.

Equation 2.24 shows the envelope mode dependence on the normalized phase

advance, σ/σ0. Equations 2.13 and 2.14 characterize the dependence of the normal-

ized phase advance on current (through the generalized perveance) and emittance.

Chapter 3 will quantify the emittance dependence in high-intensity circular acceler-

ators. This explicit dependence of envelope mode phase advance on emittance leads

to a novel emittance diagnostic.

2.4.2 Envelope Modes in an Alternating-Gradient Lattice

For an alternating-gradient lattice (FODO), the analysis becomes more com-

plicated and there is no closed form solution. A numerical solution is reached by

repeating the perturbation analysis in the previous section for rms envelope equa-
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tions with time-dependent focusing functions.

Applying mismatch perturbations to the matched envelopes X0 and Y0 analo-

gous to equation 2.18, the new system of equations becomes

δX ′′ + a1x(s)δX + a0(s)δY = 0, (2.25a)

δY ′′ + a1y(s)δY + a0(s)δX = 0, (2.25b)

where

a0(s) =
2K

(X0(s) + Y0(s))2
, (2.26a)

a1x(s) = κx0(s) +
3ε2

X4
0 (s)

+ a0(s), (2.26b)

a1y(s) = κy0(s) +
3ε2

Y 4
0 (s)

+ a0(s). (2.26c)

This coupled system of second order differential equations can be written in

matrix form as a system of four first order differential equations

δR′(s) = A(s) · δR(s), (2.27)

where

δR =



δX

δX ′

δY

δY ′


, (2.28)

and

A(s) =



0 1 0 0

−a1x(s) 0 −a0(s) 0

0 0 0 1

−a0(s) 0 −a1y(s) 0


. (2.29)
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If the emittance, generalized perveance, and focusing functions are free to be per-

turbed, an additional vector,

δP =


0

−δκx + 2 δK
X0+Y0

+ 2 εxδεx
X3

0

−δκy + 2 δK
X0+Y0

+ 2 εyδεy
Y 3
0

 , (2.30)

is added to the right-hand side of equation 2.27. This vector represents driving

perturbations of the envelope modes. Since only normal mode oscillations are be-

ing considered in this dissertation, δP = 0 without loss of generality, as only the

homogeneous solution contributes.

Let δR(s) be the homogeneous solution to equation 2.27. Due to the peri-

odicity of A(s), Floquet’s theorem implies the existence of a transfer matrix that

advances the solution by a lattice period S. By choosing appropriate initial condi-

tions δR(s0) and iterating through the lattice, a numerical solution is

δR(s0 + nS) = M(s0 + S|s0)n · δR(s0), (2.31)

where M ≡M(s0+S|s0) represents the 4x4 transfer matrix across one lattice period

for any initial starting position defined as s = s0. The eigenvalues and eigenvectors

of M,

M(s0 + S|s0) · En(s0) = λnEn(s0), (2.32)

provide information about the stability and launching conditions of the envelope

modes. The eigenvectors depend on the initial condition s = s0 and are normalized

according to En · E∗n = 1. Because equation 2.27 is real and Hamiltonian, M is a
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real, symplectic matrix. The resulting eigenvalues occur in complex conjugate and

reciprocal pairs. Four symmetry classes arise from equation 2.32, corresponding to

different stability conditions in the envelope modes. This dissertation is concerned

with the stable case; the other cases only exist in alternating-gradient lattices for

σ0 > 90◦ [11, 15, 16, 37], whereas the UMER lattice is fixed at σ0 = 76◦ to avoid

instabilities.

Figure 2.7: Polar representation of the stable symmetry class solution
for equation 2.32. All eigenvalues lie on the unit circle, with angles
corresponding to the phase advances of each mode. The subscripts B
and Q represent the breathing and quadrupole modes, respectively, in
an alternating gradient lattice for σ0 < 90◦.

Due to the complex nature of the alternating-gradient lattice envelope mode

coordinates, the modes are not easily decoupled, and exciting a pure mode requires

careful initial (or launching) conditions that have a sensitive dependence on σ0.

Numerical studies [16] have shown that for a FODO lattice of σ0 = 76◦ as for

UMER, mid-quad excursion ratios (δX/δY ) are approximately 2.1 and -1.9 for the

breathing and quadrupole modes, respectively. A picture of the pure modes from
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reference [15] is shown in Figures 2.8 and 2.9.

Even though the alternating-gradient lattice solution is more complicated than

the smooth approximation in terms of the evolution of mode coordinates δX and δY ,

the smooth approximation gives nearly identical frequencies. Therefore, equation

2.24 is used to accurately predict mode phase advances in an alternating-gradient

lattice [37]. In the next section, it will be shown how the frequencies of these modes

can lead to halo growth and beam degradation.

Figure 2.8: X and Y envelope and single particle trajectories for a pure
breathing envelope mode mismatch in an alternating-gradient lattice for
σ0 = 60◦ and σ = 21◦ [15].

2.5 Halo Resonance Conditions

Halo generation degrades beam quality. It can cause beam current loss, emit-

tance growth, and reduced beam brightness. Beam quality is crucial to a high

22



Figure 2.9: X and Y envelope and single particle trajectories for a pure
quadrupole envelope mode mismatch in an alternating-gradient lattice
for σ0 = 60◦ and σ = 21◦ [15].

intensity particle accelerator.

In the particle-core model of beam halo [45], a halo particle is defined as

a particle that has an amplitude of oscillation that exceeds the core radius of a

uniform, oscillating core. These particles experience a different space-charge force

depending on whether they are inside or outside of the core. For a particle oscillating

in the horizontal plane of a uniform density beam,

Fsc =


Kx(s)
X(s)2

, |x(s)| < X(s)

K
x(s)

, |x(s)| ≥ X(s)

(2.33)

These space-charge forces are directed away from the center of the core. As a

result, a particle that moves toward the center of the core is decelerated; a particle

moving away from the center of the core is accelerated. In the case of an envelope
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mode, a halo particle experiences a net space-charge impulse as it enters and exits

the core at different core radii. By integrating equation 2.33, it is seen that a particle

gains the most energy if it enters the core when X(s) is a maximum and exits the

core when X(s) is a minimum. This condition becomes resonant when it occurs

repeatedly, as shown in Figure 2.10.

Figure 2.10: Conceptual drawing of a halo particle oscillating under a
resonant condition.

For a particle to continually gain energy in this way, it must oscillate at half

of an envelope mode frequency,

kβ,res =
1

2
kB,Q. (2.34)

As a halo particle oscillates with an amplitude larger than the core, it experi-

ences less of a space-charge depression, which in turn increases its wave number kβ.
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As shown in Figure 2.11, a particle in the core oscillates at a frequency too small

to meet the resonance condition, while a particle of large amplitude will oscillate

at a frequency that is too large. At a specific amplitude between these extremes,

the resonant amplitude, a halo particle will experience a nonlinear parametric reso-

nance that increases its energy and its amplitude. However, this resonant amplitude

growth causes the wave number of the particle to fall out of the resonant condition,

limiting resonant growth [46].

Figure 2.11: Particle oscillation frequencies plotted with the 1/2-
frequency envelope modes. The resonance condition is satisfied when
particles have a large enough amplitude to oscillate at half the value of
an envelope mode frequency.

In this dissertation, the experimental characterization of the resonance struc-
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ture of the quadrupole envelope mode in an alternating-gradient lattice is described.

The results provide a greater insight to future accelerator projects that desire to

minimize beam loss and maximize beam quality. In Chapter 3, the onset of beam

halo formed by an envelope mode oscillation is used as an emittance diagnostic for

high-intensity circular accelerators with long beam lifetimes.
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Chapter 3: Envelope Resonance Simulations

The primary simulation tool used by UMER scientists is a python-based deck

called WARP [47], that contains both an envelope solver and a particle-in-cell (PIC)

code that accounts for space-charge in intense beams. In this chapter, results from

both the envelope solver and PIC codes are examined, along with the results of a

reductionist model of envelope resonance.

3.1 Reductionist Model

3.1.1 Analytic Solution

In physics, it often helps to simplify a complex system by using a reduc-

tionist model to highlight the fundamental dynamics. In this particular case, the

quadrupole envelope mode equation of motion in the smooth approximation (equa-

tion 2.22b) is linearized as a 1-dimensional simple harmonic oscillator. Even though

the coordinate R− includes both transverse dimensions as shown in equation 2.21b,

the quadrupole perturbation applied to the electron beam couples the two coordi-

nates. Since the beam only experiences the perturbation on a short (0.86 ns) time

scale once per turn (197 ns), the driving term in the system is approximated as a
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“delta-kicked” simple harmonic oscillator described by

R̈ + ω2
0R = A0cos(ωt+ φ)

∑
n

δ(t− nT ), (3.1)

where R is defined as R− for the quadrupole mode and R+ for the breathing mode.

This is written in exponential form

R̈ + ω2
0R = Ã0Re[e

iωt]
∑
n

δ(t− nT ), (3.2)

where

cos(ωt+ φ) = Re[ei(ωt+φ)], (3.3)

and

Ã0 = A0e
iφ. (3.4)

Since the transient behavior of the system is not relevant to this dissertation,

equation 3.2 is solved with Fourier analysis. The Fourier representation of the

solution is

R̂(ω′) =

∫ ∞
−∞

R(t)e−iω
′tdt. (3.5)

Integrating equation 3.2 over all time, the equation of motion is expressed in

terms of the Fourier solution as

−ω′2R̂ + ω2
0R̂ + Ã0

∑
n

eiωnT e−iω
′nT = 0. (3.6)

Solving for R̂,

R̂(ω′) =

Ã0

∑
n

e−inT (ω
′−ω)

ω′2 − ω2
0

=

Ã0

∑
n

e−inT (ω
′−ω)

(ω′ − ω0)(ω′ + ω0)
. (3.7)

Taking the inverse Fourier transform,

R(t) =
1

2π

∫ ∞
−∞

R̂(ω′)eiω
′tdω′, (3.8)
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R(t) =
Ã0

2π

∑
n

∫ ∞
−∞

e−inT (ω
′−ω)eiω

′t

(ω′ − ω0)(ω′ + ω0)
dω′, (3.9)

R(t) =
Ã0

2π

∑
n

einωT
∫ ∞
−∞

eiω
′(t−nT )

(ω′ − ω0)(ω′ + ω0)
dω′. (3.10)

This integral is solved with a contour integration around the poles ω′ = ω0 and

ω′ = −ω0. For t − nT > 0, the contour closes above as shown in Figure 3.1.

Applying the residue theorem for t > nT , the integral in 3.10 becomes

Figure 3.1: Contour integration.

2πi

[
1

2ω0

eiω0(t−nT ) +
1

−2ω0

e−iω0(t−nT )
]

= −2π

ω0

sin(ω0(t− nT )). (3.11)

If t− nT < 0, then R(t) = 0, so instead of summing over all n, the sum is now over

n < t/T . Taking the real part of ei(nωT+φ), the solution of equation 3.2 is

R(t) = −A0

ω0

∑
n<t/T

cos(nωT + φ)sin(ω0(t− nT )). (3.12)
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3.1.2 Steady State Behavior

As n → ∞, the behavior of the delta-kicked simple harmonic oscillator con-

verges to a steady state solution. Assuming the quad-kick has been applied for a

sufficient amount of time in the past, the solution 3.12 is written as

R(t) = −A0

ω0

∞∑
n=−∞

cos(nωT + φ)sin(ω0(t− nT )). (3.13)

Writing this in exponential form and re-arranging terms,

R(t) = − A0

4iω0

∞∑
n=−∞

(ei(ω−ω0)nT ei(ω0t+φ) − e−i(ω−ω0)nT e−i(ω0t+φ)

−ei(ω−ω0)nT e−i(ω0t−φ) + e−i(ω−ω0)nT ei(ω0t−φ)).

(3.14)

The sum across infinity implies that the solution can be written in terms of the

Dirac comb,

IIIT (t) ≡
∞∑

n=−∞

δ(t− nT ) =
1

T

∞∑
n=−∞

e2πint/T . (3.15)

From the terms in equation 3.14,

∞∑
n=−∞

e±i(ω−ω0)nT =
2π

|ω − ω0|

∞∑
n=−∞

δ(T − nτ−) = τ−IIIτ−(T ), (3.16a)

∞∑
n=−∞

e±i(ω+ω0)nT =
2π

ω + ω0

∞∑
n=−∞

δ(T − nτ+) = τ+IIIτ+(T ), (3.16b)

where

τ− ≡
2π

|ω − ω0|
, (3.17)

τ+ ≡
2π

ω + ω0

. (3.18)

Substituting equations 3.16a and 3.16b into equation 3.14,

R(t) = − A0

2ω0

[τ−IIIτ−(T )sin(ω0t+ φ) + τ+IIIτ+(T )sin(ω0t− φ)]. (3.19)
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Note that the resonance conditions occur for ω±ω0 = 2πn/T , which provides a

lattice of resonances for the three frequencies in the system: the driving perturbation

frequency ω, the natural frequency ω0, and frequency at which the perturbation

occurs Ω ≡ 2π/T . For Ω/2π = 5 MHz, a plot of the resonance structure lattice is

shown in Figure 3.2.

Figure 3.2: Resonance structure lattice showing lines of resonance for
varying values of driving frequency and natural frequency for Ω/2π = 5
MHz.
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3.1.3 Leapfrog Simulations of the Reductionist Model

The differential equation 3.2 was integrated using the leapfrog algorithm. This

algorithm employs half-integer time steps for velocity so that phase space is pre-

served. To match experimental conditions, T = 197 ns. After integrating for 20

turns, the resulting behavior is shown in Figure 3.3.

For the experiment described in this dissertation, the diagnostic chamber is

fixed at a single location in the ring. This means that a graph such as Figure

3.3 cannot be recovered experimentally. It is possible to determine where there is

resonant growth from a fixed location by scanning through different phases φ. Then

the amplitude of the resulting sine wave (e.g. Figure 3.4) is a measure of the growth

in the envelope as a function of turn.

Using the same diagnostic location as Figure 3.4, the envelope growth is plotted

as a function of driving frequency ω for ω0/2π = 37 MHz. This is shown in Figure

3.5. This result matches predictions from the resonance structure lattice in Figure

3.2.

After 19 quad-kicks, there are clear, well-defined resonance peaks for a given

value of ω0. Consistent with the steady state solution of equation 3.19, as n→∞,

the peaks become narrower and taller, resulting in a delta function wave train.

3.2 Introduction to WARP

WARP [47] is a python-based code used by accelerator physicists to account for

space-charge dynamics in a beam. This code contains both an envelope solver and
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Figure 3.4: Plot of x(t) for ω = ω0 over a φ phase scan at the location
t = 19.5T = 3842 ns (n=19).

a particle-in-cell (PIC) code. The envelope solver integrates equation 2.10 giving

numerical values of the envelope evolution in the presence of space-charge. This

is traditionally used to provide a quick, matched envelope solution for the beam

parameters used in the PIC code. However, it is used in this dissertation as an

alternating-gradient simulation of the mode resonances.

The PIC code incorporates three descriptions: a 3-D description, an axisym-

metric description, and a transverse slice description. The transverse slice descrip-

tion is used in this dissertation to show the growth of halo as a function of longitu-

dinal displacement for a mode-excited beam.
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Figure 3.5: Envelope growth as a function of driving frequency ω/2π for
n = 19 and ω0/2π = 37 MHz. The spacing between resonance peaks
match the results of the resonance structure lattice shown in Figure 3.2.

3.3 Envelope Solver

3.3.1 Matching the Beam

A matched beam solution as shown in Figure 2.3 can be found through an

iterative method. Using the envelope solver, the rms envelope equations are inte-

grated over one lattice period S. Starting at the center of a quadrupole magnet, the

initial envelope velocities x′0 and y′0 are 0. Thus, only the initial envelope displace-

ments x0 and y0 are unknown, which are equivalent to the values of the envelope
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displacements at the end of the lattice period. New values of x0 and y0 are found by

averaging over the initial and final envelope displacement values. Using these new

initial values, the envelope is again plotted for a lattice period in an iterative pro-

cess. Generally, the matched envelope solution converges quickly, using an iteration

number on the order of n = 7.

3.3.2 Mode Frequency Characterization

Applying an initial mismatch to the matched envelope displacements, the

quadrupole and breathing modes are excited independently. These pure modes are

simulated by applying mismatches proportional in x and y. The envelope is inte-

grated over the equivalent of 1000 turns at UMER. The alternating-gradient lattice

oscillations are sampled at a rate of once per lattice period. The mode frequencies

are found by applying a fast fourier transform (FFT) to the results. For the 21 mA

beam, the frequency as a function of mismatch is shown in Figures 3.6 and 3.7.

For a 10% mismatch, the frequencies predicted for four UMER mask settings

are shown in Table 3.1. These frequencies in terms of their phase advances are plot-

ted in Figure 3.8 alongside the predicted frequencies in the smooth approximation

(Figure 2.6).

3.3.3 Modeling the Experiment

In simulation, a turn in UMER can be modeled as 36 FODO lattice periods.

After each simulated turn, a sinusoidally varying impulsed perturbation is applied
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Figure 3.6: Quadrupole envelope mode frequency for the 21 mA beam
as a function of initial mismatch. Blue represents an even mismatch and
red represents an odd mismatch.

to the envelope velocity variables env.apenv and env.bpenv, analogous to the right-

hand side of equation 3.2. This perturbation is transversely antisymmetric, modeling

the excitation of the quadrupole field. Sampling once per lattice period, 20 turns of

this applied perturbation are shown in Figure 3.9.

A location in the ring (mid-drift) is selected for the measurement of the growth.

The envelope displacements are measured for a phase scan across 2π radians. This

is shown in Figure 3.10. The maximum of this phase scan is taken, and the x

and y envelope displacements as a function of turn are shown in Figure 3.11. By

inspection, it is clear that as the number of turns n→∞, the peaks approach delta

functions.

37



Figure 3.7: Breathing envelope mode frequency for the 21 mA beam as
a function of initial mismatch. Blue represents an even mismatch and
red represents an odd mismatch.

The mode excitation is amplitude dependent. If the perturbation is too large,

the dynamics become nonlinear. It is important to only apply a small quadrupole

excitation to the beam to stay within the linear regime. A simulation of the ampli-

tude dependence is shown in Figure 3.12, where the red line represents the chosen

amplitude strength.

3.3.4 Emittance Dependence

The initial emittance in the envelope solver is defined to be 30 mm-mrad. A

perturbation applied to this value alters the normalized phase advance according

to equations 2.13 and 2.14. The mode frequency dependence on phase advance is
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Table 3.1: Envelope Mode Frequencies, in MHz

Beam Current Quadrupole Mode Frequency Breathing Mode Frequency

0.6 mA 65.5 65.5

6 mA 48.1 53.6

21 mA 36.9 48.0

40 mA 33.7 46.0

Figure 3.8: Envelope solver mode phase advances (circles) are plotted
alongside the predicted values from the smooth approximation.

given in equation 2.24. Finding the mode frequencies using an FFT as described in

Section 3.3.2, the frequency dependence on the emittance is determined. A plot of

this is shown in Figure 3.13.
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Figure 3.9: Envelope solver simulation of the X (blue) and Y (red)
envelope perturbed once per turn, sampled once per lattice period. The
rf quadrupole frequency is 37 MHz.

The equation for a fit line for the quadrupole mode is

f0,Q = 0.219ε+ 30.33. (3.20)

This is used to infer the emittance from the measured frequency in the experiment.

The slope of the quadrupole mode fit is nearly twice that of the breathing mode

slope. This means that exciting the quadrupole envelope mode provides a factor of

two more sensitive emittance diagnostic than exciting the breathing envelope mode.

Since the natural mode frequency is emittance-dependent, the resonance struc-

ture lattice can be simulated using this envelope solver. This is shown in Figure

3.14. This compares well with the results shown in Figure 3.2.
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Figure 3.10: rms beam size as a function of initial rf quadrupole phase
after 19 passes through the quad for ω0 = ω. As is shown, the Xrms and
Yrms beam sizes are 180◦ out of phase, indicating a quadrupole excitation.

3.4 PIC Code

Particle-in-cell (PIC) codes require the definition of a grid mesh and the initial

particle distribution. Particles are then subject to the integration and interpolation

of sources and fields in the mesh. In this way, collective space-charge effects are

accounted for. The process is iterated as the beam evolves in time.

3.4.1 Matching Technique

The match values obtained from the envelope solver for each beam setting are

imported into the PIC code. Due to the complexities of the beam distribution func-
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Figure 3.11: Yrms as a function of rf quadrupole frequency and turn
number. As n→∞, the resonant peaks approach delta functions. Xrms

(not shown) exhibits the same structure.

tion, the envelope match solution is only an approximation of the correct values for

the match. Using the WARP functions hpxrms() and hpyrms() from histplotsdoc(),

the beam envelope generated from the PIC code was plotted. Plotting these values

over one lattice period, the iteration method described in section 3.3.1 was repeated

with the PIC code until results converged.
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Figure 3.12: Xrms as a function of RF quadrupole amplitude and turn
number. If the amplitude is too high, the behavior becomes nonlinear. A
maximum amplitude is chosen (red line) such that the resonant growth
is linear.

3.4.2 Beam Halo Formation

Though more computationally expensive, the usefulness of the PIC code over

the envelope code is reflected in the evolution of the transverse phase space dis-

tribution over time. For halo studies, 500,000 particles are initially arranged in a

semi-Gaussian distribution. After integration, a picture of the transverse beam in

both configuration and phase space is recorded.

The experiment simulated in section 3.3.3 is repeated for the PIC code, ap-
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Figure 3.13: Frequency dependence on emittance in the envelope solver
simulation.

plying a larger perturbation to particles with a larger displacement from the center

of the beam pipe. Once again, dipole fields are neglected, modeling the ring as a

LINAC that repeats every 36 FODO periods. Perturbing the beam once per ring

“turn” for 20 turns, the beam distribution is shown in Figure 3.15 for a both a

resonant and an off-resonant quadrupole frequency. It is shown that on a resonance

there is a halo formation, while off resonance there is not. This indicates that the

presence of a halo is an indication of resonant mode envelope excitation over long

beam lifetimes.
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Figure 3.14: Simulated quadrupole mode resonance structure plotted as
a function of emittance and rf quadrupole frequency. A change in the
emittance directly relates to a change in the natural mode frequency.
This result compares to the predicted resonance structure depicted in
Figure 3.2.
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Figure 3.15: WARP PIC results for 500,000 particles perturbed for 20
turns. Configuration space (a) and phase space (b) is plotted for a
beam perturbed off resonance (2) and on resonance (3) from its initial
conditions (1).
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Chapter 4: Experimental Apparatus

An electric quadrupole was built and installed into the University of Maryland

Electron Ring (UMER). A tuned tank circuit in an rf box drives the quadrupole.

UMER is described followed by a detailed discussion of both the quadrupole and

the tank circuit.

4.1 The University of Maryland Electron Ring

The University of Maryland Electron Ring (UMER) is a facility used to study

scaled dynamics of intense electron beams over long time scales. A diagram of the

ring is shown in Figure 4.1. UMER is a 10 keV electron storage ring with the

electron acceleration at the electron gun. The UMER beam parameters are given

in Table 4.1.

Table 4.1: UMER Beam Parameters

Beam Energy 10 keV Energy Spread 10 eV

Circumference 11.52 m Pipe Diameter 2 in

Circulation Period 197 ns Initial Pulse Length ∼100 ns

FODO Period 0.32 m Bunch Repetition Rate 60 Hz
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Figure 4.1: Diagram of the University of Maryland Electron Ring (UMER).

The electron beam is injected using thermionic emission from a gridded Pierce-

type e-gun. A schematic of the gun circuit is shown in Figure 4.2. A voltage of 10

kV is applied between the cathode and the anode, and a negative bias voltage is ap-

plied to the cathode grid to control the beam’s current and shape. A pulsed voltage

is applied to the cathode, overpowering the bias voltage and allowing electrons to

pass. The typical pulse length is 100 ns at injection, but this can be adjusted over

a range of 25 to 140 ns. The cathode grid is a mesh of 0.0254 mm diameter wires

spaced 0.15 mm apart. As the beam passes through this mesh, part of the beam gets

intercepted by the grid, directly affecting the transverse particle distribution. The

space-charge-dependent line density in the region between grids creates a “virtual
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Figure 4.2: Simplified diagram of the UMER gridded gun. The cathode
is pulsed at 60 Hz for 100 ns to allow beam injection into the ring. A
variable bias voltage is used to test an assortment of emittance values.

cathode” that affects the transverse velocity distribution of the beam [49]. This

velocity distribution depends on the bias voltage of the cathode grid that can be

adjusted between 10-40 V. Hence, changing the bias voltage will change the emit-

tance. This phenomenon has been carefully studied through analytic calculations

and WARP simulations [28,48].

An aperture wheel downstream from the cathode contains several aperture

settings for beam current selection. Current scales with the square of the beam

radius, so doubling the aperture size increases the current by a factor of 4. The

UMER mask settings are listed in Table 4.2.

The injection section contains several dipole and quadrupole magnets used

for matching and steering. Injection steering is described in detail in Appendix
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Table 4.2: UMER Aperture Settings

Apert. Radius r0 (mm) Current I (mA) Emitt. ε (mm-mrad) Intensity χ

0.25 0.6 7.6 0.275

0.875 6 25.5 0.605

1.5 21 30.0 0.901

2.85 78 86.6 0.968

Full Beam 104 97.3 0.978

A. Downstream from the injection line, a pulsed dipole steers the beam on to the

equilibrium orbit of the ring. The ring itself is structured as a 36-sided polygon, with

each side consisting of a single alternating-gradient lattice (FODO) period. Each

polygon “corner” contains a 10◦ dipole bending magnet for steering, see Figure

4.1. At the beam energy of 10 keV, the Earth’s magnetic field accounts for 20%

of the ring steering. Diagnostic chambers consist mostly of beam position monitors

(BPMs) to measure the beam transverse displacement. In ring chamber (RC) 10,

an ac-coupled wall current monitor (WCM) tracks the beam current turn-by-turn.

The diagnostics used in this dissertation are described in detail in Chapter 5.

For the work detailed in this dissertation, an rf-driven electric quadrupole was

built and installed in RC9. The next section details the design and construction of

the quadrupole.
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4.2 The Electric Quadrupole

4.2.1 The Design of the Quadrupole

A time-varying rf electric quadrupole provides the necessary fields to drive the

quadrupole envelope mode in the electron beam. The quadrupole consists of four

electrodes with surfaces that approximate hyperbolas placed symmetrically around

the center of the beam pipe. To produce the fields that hyperbolic surfaces generate

near the center of the pipe, cylindrical surfaces with an electrode-to-gap radius

ratio of 1.1468 are used [59,60]. Since the beam pipe radius is 1 inch, the electrode

radius must be machined to 1.1468 inches. The electrodes can be machined within

a tolerance of ± 0.001 inches. The electrode-to-gap radius ratio is 1.147 as shown

in Figure 4.3.

The quadrupole replaces the Beam Position Monitor (BPM) located at Ring

Chamber 9 (RC9). The chamber has a diameter of 3.74” with a longitudinal opening

of 2.8”.

The quadrupole fits within the ring chamber and produces the necessary fields

to excite the beam resonance. CAD drawings for the designed quadrupole are shown

in Figures 4.4 and 4.5. Ceramic washers are used to electrically isolate the four

electrodes, and a ceramic shelf provides the necessary structure to rigidly align the

quadrupole in the chamber. Two holes in the ceramic shelf fit over 0.125” rods in the

ring chamber for additional alignment and stabilization. The electrodes themselves

are designed with angled edges to conform to the structure of the chamber. Opposing
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Figure 4.3: To approximate the quadrupole fields produced by hyperbolic
surfaces, electrodes with cylindrical surfaces with an electrode-to-gap
radius ratio is 1.147 are used [59].

electrodes are connected electrically to each other by using 0.01” thick copper sheet

and each set of electrodes is electrically connected to the rest of the circuit by

copper wires crimped and soldered to the back of the electrodes and fed up and out

of vacuum through a 2.75” 2-pin ceramic feedthrough. The final assembly is shown

in Figure 4.6.

The quadrupole is a capacitor in the tank circuit. To estimate the quadrupole

capacitance, it is necessary to examine all the components contributing to its value.

Figure 4.7 shows the capacitance between the elements of the quadrupole, where the

solid green lines represent the capacitance between the electrodes and the dashed

red lines represent some of the parasitic capacitances. The capacitive components
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Figure 4.4: CAD drawing showing side (a) and top (b) of the quadrupole
inside the BPM chamber. All dimensions are in inches.

Figure 4.5: Solidworks [51] drawing showing the ceramic shelf dimen-
sions. This shelf is bolted to the top quadrupole electrode and rests on
the BPM chamber shelf, with holes for the chamber’s 0.125” pins cut
wider for easier installation and to account for thermal expansion. All
dimensions are in inches.

of the quadrupole are in parallel so the equivalent capacitance is

CEQ = C12 + C13 + C24 + C34 + Cpara, (4.1)
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Figure 4.6: The electric quadrupole

where C12 = C13 = C24 = C34 = Celec are the capacitances between the electrodes

and Cpara are the lumped parasitic capacitive components. Thus CEQ becomes

CEQ = 4Celec + Cpara. (4.2)

4.2.2 Required Electrode Voltage

The electric field must be large enough to deflect the beam and produce a

net angular change between ∆x′ = 10−3 rad and ∆x′ = 10−1 rad after traversing

the quadrupole. During a single pass, a particle in the beam is acted upon by the

quadrupole field for ∼ 0.857 ns, and the quadrupole can be treated as a thin lens.

The trace space change in x and x′ for a charged particle traversing the quadrupole
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Figure 4.7: Circuit diagram of most of the capacitive components of
the quadrupole. The solid gray lines represent the electrical connections
made by copper sheet and wire, while the green and red lines represent
the capacitances. The dashed lines represent the parasitic capacitance
due mostly to the close proximity of the chamber wall.

is x2
x′2

 =

1 0

1
f

1


x1
x′1

 . (4.3)

Since the transverse displacement of the particle does not change, only the slope is

considered. The change in slope is derived as

x′2 =
x1
f

+ x′1,

x′2 − x′1 ≡ ∆x′ =
x1
f
,

=⇒ ∆x′

x1
=

1

f
,

(4.4)
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where 1
f

= κl. l is the length of the quadrupole1 and Reiser [37] shows that the

focusing strength κ is

κ =
qE0

γmav2
=

V0
Vba2

. (4.5)

Here, Vb is the beam voltage (10 kV), a is the beam pipe radius (2.54 cm), and V0

is the voltage on the electrodes. Making the appropriate substitutions and solving

for V0,

V0 =
∆x′

x1l
Vba

2. (4.6)

For a maximum beam radius of 5 mm, an applied voltage between V0 = 25.4 V

and V0 = 2.54 kV is needed on each electrode. In order to achieve this voltage, the

quadrupole will be connected to a resonant circuit, driven with a function generator

in series with a small amplifier.

4.2.3 Quadrupole Simulations

ANSYS R© Maxwell 3D [52] provides an electrostatic simulation of quadrupole

fields. With this program, the contribution of both the fringe fields from the

quadrupole and the parasitic capacitance from the beam chamber walls can also

be simulated. A picture of the simulated quadrupole inside the BPM chamber is

shown in Figures 4.8 and 4.9.

The results of the simulations are shown in Figures 4.10 and 4.11. Figure

4.10 shows the transverse electric field as a function of longitudinal displacement at

different transverse displacements on the y=0 axis. The nearly flat top field shown

12” or 5.08 cm
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Figure 4.8: Maxwell 3D simulation of the electric quadrupole in the
chamber pipe. The quadrupole electrodes are depicted as solid surfaces
while the chamber is mostly transparent.
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Figure 4.9: Maxwell 3D simulation of the electric fields from the
quadrupole. This view is looking down the beam pipe through the
quadrupole.

58



Figure 4.10: Maxwell 3D simulation results. Transverse electric field is
plotted as a function of longitudinal displacement. Transverse displace-
ment is confined to one dimension, labeled as x.

in this figure reflects the uniform field experienced by the beam as it traverses

the quadrupole. Figure 4.11 shows the longitudinal electric field along the same

integration paths. This figure shows the electric fringe fields in the quadrupole,

applying a longitudinal perturbation to the beam. An analysis of this perturbation

is explored in the following section.

The voltage as a function of transverse displacement from the center axis of

the quadrupole was also simulated. The longitudinal position is fixed at the center

of the quad. The results are shown in Figure 4.12.
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Figure 4.11: Maxwell 3D simulation results. Longitudinal electric field
plotted as a function of longitudinal displacement. The separate lines
represent different transverse displacements from 0 to 5 mm, confined to
one dimension.
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Figure 4.12: Maxwell 3D simulation of the voltage inside the quadrupole
as a function of transverse displacement from the center.

4.2.4 Magnetic Fringe Fields

Electromagnetic fields affect the charged particles in the beam according to

the Lorentz force

⇀

F = e(
⇀

E +
⇀
v ×

⇀

B), (4.7)

where e is the elementary charge due to an electron and
⇀
v is the beam’s

velocity, with magnitude βc.

To completely understand how the fields generated by the quadrupole affect
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the beam dynamics, it is necessary to calculate the magnetic fields generated by

the time-varying electric fringe fields. For the 21 mA beam, the quadrupole fields

will oscillate at a frequency near 37 MHz, giving an oscillation period of 27 ns.

Since a particle takes 0.857 ns to traverse the quadrupole, it only experiences 0.031

field oscillations in a given pass. Even at the zero space charge limit for envelope

mode frequencies (56.5 MHz), a particle only experiences 5.6% of a field oscillation

on a single pass. Thus, for a simplified analysis, it is assumed that the particle

experiences a static quadrupole field. However, for generality, the time-dependance

of the fields is considered.

Maxwell’s equations in vacuum are

∇ ·
⇀

E = 4πρ, (4.8a)

∇ ·
⇀

B = 0, (4.8b)

∇×
⇀

E = −∂
⇀

B

∂t
, (4.8c)

∇×
⇀

B = µ0

(
ε0
∂
⇀

E

∂t
+

⇀

J

)
. (4.8d)

The static electric fields shown in Figures 4.10 and 4.11 provide the basis for the

magnetic field calculation. These are the spatially-varying amplitudes of an electric

field that varies sinusoidally in time. The time-dependence is

⇀

E(x, y, s, t) =
⇀̃

E(x, y, s)eiωt. (4.9)

The magnetic field takes the same form. Thus,

⇀

B(x, y, s, t) =
⇀̃

B(x, y, s)eiωt. (4.10)
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The most direct way to calculate the magnetic fields in this case is to use

Faraday’s Law (Equation 4.8c). Since the time-dependence of
⇀

B is known, the

right-hand side is directly linearized to

−∂
⇀

B

∂t
= −iω

⇀

B. (4.11)

The curl of
⇀

E is evaluated with the Levi-Civita tensor as

∇×
⇀

E = εijk∇jEkei = (∂yEs− ∂sEy)x̂− (∂xEs− ∂sEx)ŷ+ (∂xEy − ∂yEs)ŝ, (4.12)

where ei = (x̂, ŷ, ŝ) is the orthonormal basis spanning the coordinate system de-

scribed in section 2.1.1. The term ∂yEs determined from the data in Figure 4.11 is

approximately 6.5% of the value of ∂sEy at its maximum value. Similarly, the term

∂xEs is approximately 9.2% of the value of ∂yEs. Thus, to first order, ∂yEs ≈ 0 and

∂xEs ≈ 0. Furthermore, using the paraxial approximation introduced in chapter

2, it can be assumed that the beam’s velocity is directed in the s-direction. By

inspection of equation 4.7, the s-component of the magnetic field will not apply a

force to the beam. Thus, the ŝ terms of equation 4.12 can be neglected. Finally,

the left-hand side of equation 4.8c is

∇×
⇀

E = ∂sExŷ − ∂sEyx̂. (4.13)

Solving for
⇀

B,

⇀

B =
i

ω
(∂sExŷ − ∂sEyx̂), (4.14)

where i represents the π
2

temporal phase shift between the magnetic and electric

fields. This magnetic field will be used in the next section to show the affect of the

beam’s trajectory on these fringe fields.
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4.2.5 Particle Tracing

Using the fields from the Maxwell 3D simulations for both the x and y dis-

placements, the electric fields are numerically differentiated using the finite difference

method

∂sEx,y = lim
ds→0

Ex,y(s+ ds)− Ex,y(s)
ds

. (4.15)

After solving for the magnetic field within the quadrupole using equations 4.14

and 4.15, equation 4.7 is used to find the force acting on a particle at any point in

space. The leapfrog integration method is then used to trace the particle’s path as

it passes through the magnetic fields generated by the quadrupole. The results are

shown in Figure 4.13.
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For this particular case, the force due to electric fields, space charge, and

the Earth’s magnetic field are neglected in order to investigate how the magnetic

fields generated by the quadrupole influence the particle’s motion. By inspection

of equations 4.14 and 4.7, a particle initially displaced in x or y will experience a

force in the same direction as its displacement. Therefore the horizontal and vertical

fringe field effects are uncoupled.

Two interesting observations are made about the particle trajectories. First,

the magnetic fringe fields cause the beam spot size to increase in x but decrease in y,

creating an ellipse in configuration space. However, this effect is small compared to

the beam radius. For the amplitude of the fields, a particle initially displaced 5 mm

will experience approximately a 0.3 mm transverse displacement. A 5 mm radius

beam entering with a circular transverse cross section will exit with an elliptical cross

section with an eccentricity of 0.45. For particles entering parallel to the axis, they

will exit with a ∆x′ ≈ 0. This result ensures no halo growth due to the magnetic

fields in the quadrupole.

4.3 Bench Measurements of the Quadrupole

To get an accurate measurement of quadrupole capacitance and voltage applied

to the electrodes, the quadrupole was placed inside a BPM bench chamber that has

identical dimensions to the vacuum chamber at RC9. A picture of the quadrupole

in this bench chamber is shown in Figure 4.14.
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Figure 4.14: (a) BPM bench chamber, (b) a top-down view of the
quadrupole, and (c) a side “beam view” of the quadrupole inside the
chamber.

4.3.1 Capacitance Measurement

An Agilent E5061B impedance analyzer [63] was used to evaluate the capaci-

tance of the quadrupole as a function of frequency after installation. Measurements

were taken over the range of frequencies used in the experiment, and the capacitance

increases monotonically with frequency. At 36.9 MHz2 the quadrupole capacitance

is about 23.7 pF.

2the predicted resonant frequency for the 21 mA quadrupole mode
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4.3.2 Quadrupole Potentials and Circuit Tuning

An oscilloscope was used to measure the voltages applied to the quadrupole

elements. The oscilloscope is triggered by the sinusoidal signal produced by the

function generator; oscilloscope probes were attached to the screws of the electrodes

for a measurement of the applied voltage to the electrode from the function generator

through the tank circuit.

There is an 8.6% difference in electrode amplitudes due to the greater para-

sitic capacitance on the left and right electrodes compared to the top and bottom

electrodes. To investigate this further, a copper wire probe was used to measure

the peak-to-peak (p-p) voltage inside the quadrupole. The result is shown in Figure

4.15. There are still quadrupole fields, but the saddle point of the Voltage mesh

plot is 4.27± 0.05 mV for an applied primary circuit p-p voltage of 5 V, providing

an unwanted voltage difference between the center of the quadrupole and the beam

pipe outside of the quadrupole. This voltage bias is also shown in the Maxwell 3D

simulations (Figure 4.12). Since electric fields (and force) are proportional to the

gradient of the electric potential, a particle experiences an undesired longitudinal

force as it enters and exits the quadrupole. This force is small compared to the

desired result, but a series of measurements confirm that it grows linearly with the

input voltage to the quadrupole. When enough voltage is applied to the quadrupole

to drive the resonance as simulated in Figure 4.12, we get a potential of greater than

1 V at a zero transverse displacement, providing a substantial gradient “potential

hill” as the beam traverses the quadrupole.
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Figure 4.15: Measured voltage inside the quadrupole as a function of
transverse displacement from the center. The black line and red line
represent the geometric and electrical centers, respectively. The dis-
placement between these centers is 0.7± 0.2 mm.

To correct for the electrode voltage imbalance, an additional trim capacitor is

added to the side of the circuit with the greater peak-to-peak voltage value on the

electrodes. This capacitor is fixed to the floor of the rf box and stabilized with a

ceramic standoff.

A Poisson Superfish [61] simulation was run with mismatched electrode volt-

ages to further explore the impact of the mismatch. The results of the simulation

show that the mismatch causes the zero potential lines to shift outward from the

center, forming hyperbolas. This is shown in Figure 4.16.
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Figure 4.16: Poisson Superfish simulation of (a) a standard electric
quadrupole and (b) a significant voltage mismatch between the elec-
trodes.

The bench tests showed the difficulty in having the center of the quadrupole

at zero volts. A series of simulations were run with Poisson Superfish to explore

this phenomenon. It is found that balancing the voltages on the electrodes is a very

sensitive adjustment. This is illustrated in Figure 4.17. After setting the center

quad voltage as close to zero as possible, new probe data were taken. These data

are shown in Figures 4.18 and 4.19.

In addition to the voltage imbalances between the electrode pairs, there is a

small (9.75% and 14.26%) mismatch between the horizontal and vertical electrodes

due to the different electrical connections. The copper sheet that connects the

electrodes in the bench chamber produces capacitive component to the electrodes

close to the sheet. Poisson Superfish simulations were run to see the effect this would
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Figure 4.17: The zero voltage displacement from the center of the
quadrupole is plotted as a function of electrode voltage ratio. A small
difference from a matched electrode voltage produces a substantial dis-
placement of the zero voltage.

have on the quadrupole voltages and fields, and no measurable effect was found.

In the next section, the rf box setup used to drive the rf electric quadrupole

will be described in detail.

4.4 The Radio-Frequency (rf) Box

The electric quadrupole is driven by a tank circuit enclosed in an rf box. It is

imperative to maintain a constant peak voltage across the quadrupole electrodes at

all driving frequencies.
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Figure 4.18: Voltage on the Top and Left electrodes from Ch. 1 and 2,
respectively, after adjusting for the parasitic capacitance.

4.4.1 Introduction to Resonant Tank Circuits

A tank circuit is a driven resistor, inductor, capacitor (RLC) circuit that

resonates at a characteristic frequency. The inductance of the circuit has a reactance

proportional to the driving frequency, while the capacitance of the circuit has a

reactance inversely proportional to the driving frequency. The complex impedance

of a series RLC circuit [55] is

z = R + i
(
ωL− 1

ωC

)
, (4.16)

with magnitude

Z =

√
R2 +

(
ωL− 1

ωC

)2
. (4.17)
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Figure 4.19: Measured voltage inside quadrupole after compensating for
parasitic capacitance. The center voltage is now −0.2 ± 0.05mV for a
voltage input of 400mV. The bumpiness in the plot reflects the noise in
the pk-pk oscilloscope measurement near V=0.

Here, R is the effective “ac” resistance of the circuit, ω is 2π times the driving

frequency, and ωL = XL and 1
ωC

= XC are the inductive and capacitive reactances,

respectfully. The impedance is minimized when the reactances are equal and ω0L =

1
ω0C

, where ω0 = 2πf0 is the value of the resonant frequency. The resonant frequency

is

f0 =
1

2π
√
LC

. (4.18)

Since losses in the series tank circuit primarily occur in the inductive coil, the

quality factor Q of the circuit primarily depends on the inductance of the coil [55]
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and is given by

Q =
ωL

R
=

f0
∆f

. (4.19)

This is a measure of the quality of the resonant peak. It is the inverse of the

fractional bandwidth and is defined as the ratio of energy stored in the circuit to

energy dissipated per cycle at resonance [57]. The Q value is also important in

determining the attenuation rate α and exponential time constant τ of the circuit.

They are related by

α =
1

τ
=
ω0

2Q
. (4.20)

In an RLC circuit, there is a time-varying voltage drop across each compo-

nent. However, the voltages are out of phase with each other. The phasor diagram

provided in Figure 4.20 illustrates this. The length of the phasor corresponds to

the voltage amplitude, while its projection on the y-axis as it rotates at the driving

frequency ω corresponds to the voltage value at time t.

Figure 4.20: Phasor diagram for the series RLC circuit [56].

The resistive phasor is in phase with the current phasor. However, the current
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phasor is out of phase with both the inductive and the capacitive phasors by π/2,

lagging and leading, respectively. Since the phasors are out of phase, their ampli-

tudes cannot be added as scalars. The phasors are added as vectors. The angle

that the summed voltage phasor makes with the current phasor is denoted φ, and

this value goes to 0 at resonance as the capacitive and inductive voltage amplitudes

match [56].

V0 = | ~V0| = | ~VR0 + ~VL0 + ~VC0| =
√
VR02 + (VL0− VC0)2

=
√

(I0XR)2 + (I0XL − I0XC)2 = I0
√

(XR)2 + (XL −XC)2

(4.21)

The amplitude of the time-varying current is

I0 =
V0√

R2 + (ωL− 1
ωC

)2
=
V0
Z
. (4.22)

At the resonant frequency, the current is I0 = V0
R

.

To simplify the tank circuit used in the experiment, the circuit components

are first considered as a lumped inductance, capacitance, and resistance in series.

The values of these components will be revisited in a later section. To minimize the

resistance in the circuit, the secondary (or main) circuit is inductively coupled to a

primary driving circuit that provides the power necessary to excite the resonance.

The driving term in the secondary circuit is the mutual inductance from the primary

circuit. The circuit diagram is shown in Figure 4.21.

The time-dependent equation is

V (t)− VR(t)− VL(t)− VC(t) = 0. (4.23)

The voltage values across the lumped circuit components are VR(t) = I(t)R, VL(t) =

LdI(t)
dt

, and VC(t) = Q(t)
C

=
∫
I(t)dt

C
. The driving circuit components will be denoted
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Figure 4.21: Simplified tank circuit diagram with lumped circuit components.

with subscript 1 and the secondary circuit components with subscript 2. Applying

equation 4.23 to the circuit in Figure 4.21,

V (t)− I1R1 − L1
dI1
dt

+M
dI2
dt

= 0, (4.24)

M
dI1
dt
− I2R2 − L2

dI2
dt
−
∫
I2dt

C2

= 0. (4.25)

M is the mutual inductance between circuits 1 and 2, and thus the inductance term

in equation 4.25 is the driving term for the circuit. In the first circuit, the driving

voltage V (t) produced is sinusoidal, and can be represented as V (t) = Re[V0e
i(ωt+φ)],

where φ is the phasor angle shown in Figure 4.20. At resonance, φ = 0 without loss

of generality. To find the currents in the two circuits, an ansatz,

I1 = Re[Aeiωt], (4.26)

I2 = Re[Beiωt], (4.27)

is made for the solution of equations 4.24 and 4.25. After substituting equations
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4.26 and 4.27 into equations 4.24 and 4.25,

[A(R1 + iωL1)−BiωM ]eiωt = V0e
iωt, (4.28)

[B(R2 + i(ωL2 −
1

ωC2

))− AiωM ]eiωt = 0. (4.29)

By inspection, it is seen that the first few terms of each of these equations contain

the complex impedances of each circuit, z1 = R1 + iX1 and z2 = R2 + iX2, where

X1 = ωL1 and X2 = ωL2 − 1
ωC2

. Therefore, 4.28 and 4.29 simplifies to

Az1 −BiMω = V0, (4.30)

Bz2 − AiMω = 0. (4.31)

Solving this system of equations,

A =
V0

z1 + ω2M2

z2

, (4.32)

B =
iωMV0
z1z2

. (4.33)

These are the current amplitudes in circuits 1 and 2, respectively.

4.4.2 Design of the rf Box

A copper box (12”x12”x12”) was constructed to enclose the rf circuit and

isolate the radio frequency. 0.25” aluminum angle was used to form a rigid structure

for the copper, with 0.01” gauge copper sheet bolted and soldered around the inside

edges of the box to maintain uniform conductivity.

The rf circuit consists of an air-core inductor in parallel with both capacitor

components: the capacitive quadrupole and a vacuum-variable capacitor. The vari-

able capacitor serves to tune the resonant frequency of the circuit, spanning about
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5 MHz in the frequency domain. An Agilent E5061B impedance analyzer [63] was

used to measure the capacitive range for the variable capacitor in the frequency

ranges of the experiment. The measurement shows a range of capacitance values

between 33.7 pF and 89.4 pF at a frequency of 36.9 MHz. This capacitor is sus-

pended in the rf box with ceramic standoffs, and an insulated plastic rod to tune

the circuit is fed through to the outside of the box and connected to the capacitor’s

tuning knob with a barrel connector.

The air-core inductor in the primary circuit was constructed with 0.25” copper

tubing wound around a 2” diameter mandrill on a lathe. A series of inductors were

made for each resonant value as determined in envelope simulations of Chapter 3.

As long as the coil length-to-radius ratio is greater than 0.67, the inductance (in

µH) of a single-layer air-core inductor is

L =
0.394r2N2

9r + 10l
, (4.34)

where r is the coil radius in cm, N is the number of turns in the coil, and l is the

coil length in cm [62]. This equation is used to construct the inductor using the

capacitance values that have already been measured.

As an example, the inductance value for the 21 mA beam resonance is found

by adding the measured lumped quadrupole capacitance and the median value of

the variable capacitance, using equation 4.18, and solving for L. This value is

L =
1

(Cquad + Cvar)(2πf0)2

=
1

(23.7pF + 61.5pF )(2π(36.9MHz))2
= 0.32µH.

(4.35)

A 2” diameter mandrill is used to construct the inductors, and the length and
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number of turns must be varied in order to achieve the desired inductance. The Q

value is largely determined by the inductive component in a resonant circuit, and

the optimal Q occurs when the length of the coil is equal to its diameter [62]. Thus,

an inductor of length 2” is used, and the necessary number of turns is

N =

√
L(9r + 10l)

r
√

0.394
=

√
0.22(9(2.54) + 10(5.08))

2.54
√

0.394
= 2.52. (4.36)

To form the inductor of the primary circuit, 0.25” copper tubing was formed

into a 3” diameter half-turn. This inductance provides the driving mutual induc-

tance of the secondary circuit. A schematic of the rf tank circuit is shown in figure

4.22. After all of the circuit components were constructed, ceramic standoffs were

used to position the components near the center of the box. Carefully cut 0.01” cop-

per sheet with rounded corners is used as the wiring between circuit components.

To position the rf box on the 6” flange at RC9, “Fingers” are cut into the bottom

of the box alongside an array of holes for the screw heads of the flange. The fingers

are bent up and the 23
4
” flange fits in the opening, secured with a hose clamp. A

picture of the constructed circuit is shown in Figure 4.23.

4.4.3 Required Power Input

Using the values from the previous section for the rf box design, the power

input needed for the circuit and the expected Q value is determined. Ohm’s power

law for an AC circuit states that

P = I2rmsRAC . (4.37)
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Figure 4.22: Schematic of the rf tank circuit.

Figure 4.23: Constructed rf tank circuit.

At resonance, the coupling impedance between the primary and secondary circuits

is a purely resistive 50Ω. This means that all power is transmitted to the secondary

circuit, and there is no reflected power. In this case, P is the input power from
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the primary circuit, and is the power dissipated in the resistance of the secondary

circuit. Because the current density in the capacitors is much smaller than the

current density in the inductor, it can be assumed that the resistive losses primarily

occur in the inductor [58].

The resistance in the inductor’s copper tubing is due to the skin effect [54].

This resistance is due to the frequency dependent skin depth in the copper tubing,

and is described by

RAC

d
=

1.044

π

√
f0. (4.38)

This resistance density, in mΩ/inch, is for 0.25” copper tubing of length d at fre-

quency f0, in MHz. Using the conservation of energy,

1

2
LI2 =

1

2
CV 2, (4.39)

and substituting Vpeak =
√

2Vrms, the required input power (4.37) is written as

P =
RACCV

2
peak

2L
. (4.40)

With the inductor example used for equations 4.35 and 4.36 (0.22 µH), RAC ≈ 31.3

mΩ. Substituting this and C = 85.2 pF into equation 4.40, the power input needed

is between 4.87 mW and 26.9 W. Using equation 4.19, the theoretical Q value is

1556. This value will be compared to the measured value in the next section.

4.5 Bench Tests of the rf System

Using an Agilent E5071C Network Analyzer, bench tests were performed on

the tank circuit. In network theory, S-parameters measure the power transmitted to

81



the load. S11 measures the reflected power at the same port as the input, and S12

measures the power received at port 1 relative to the power input at port 2. The

FWHM of the resonant peak in an S12 measurement provides a measured value of

Q. The results of these measurements are shown in Figure 4.24.

Figure 4.24: S11 and S12 measurements of the circuit at 36.9 MHz. The
measured Q value is 313.

Another way to determine the Q of the circuit is to measure the time it takes,

τ , for the voltage to drop by 1/e after removing power to the circuit. This time can

be measured on the oscilloscope.

Q =
1

2
τω0. (4.41)

At 36.9 MHz, the oscilloscope output from the rf antenna is plotted in Figure 4.25.

The time constant is consistent with the measurement by the network analyzer
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shown in Figure 4.24, a Q of ∼ 310

Figure 4.25: Scope measurement of the rf circuit using the rf antenna.
The measured Q value is ∼310.

Using the measured Q, RAC = 37.7 mΩ, a more accurate value calculated using

equation 4.19. The input power into the tank circuit is 2 W by direct measurement.

The voltage on each quadrupole electrode can be determined using

V0 =
2LP

CRAC

. (4.42)

V0 = 630 V. Using the conservation of energy, I0 = 10.3 A. In terms of the required

electrode voltage described in section 4.2.2, the induced ∆x′ = 0.025 radians, which

falls between the predicted values of ∆x′ = 0.001 radians and ∆x′ = 0.1 radians.
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Another measure of power transfer is the Standing Wave Ratio (SWR). The

SWR is the ratio of power transmitted to the circuit of the power reflected from

the circuit. At resonance, this value should be 1.0. The geometry of the coupling

loop from the primary circuit dictates the robustness of the resonance. Therefore, a

coupling clip as seen Figure 4.23 is adjusted until the SWR is 1.0. The measurement

is shown in Figure 4.26. This is a quick way to see how much power is being trans-

mitted to the circuit at a given frequency, and therefore it is used while collecting

data during an experiment. This will be outlined in Chapter 6.

Figure 4.26: SWR Measurement of the power transfer at the 36.9 MHz
resonance. With an SWR of 1.01, nearly all power is transmitted from
the primary to the secondary circuit.
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4.6 Installation in UMER

To prepare the quadrupole for installation into vacuum, it was chemically

cleaned at the UMD Fablab using acetone, methanol, deionized water, and dry

nitrogen.

The quadrupole was installed into RC9 as depicted in Figure 4.27. A Hipot

test was used to ensure there was no dielectric breakdown up to 700 V between the

quadrupole electrodes and ground and the electrodes themselves. After verifying

the soundness of the electrical connections, the vacuum was brought down to 1.0e-

5 Torr using first a roughing pump and a turbo pump. After the vacuum reached

1.0e-5 Torr, a series of ion pumps at each ring station were turned on around UMER

to reach the final pressure of 2.0e-8 Torr.

85



Figure 4.27: Installing the quadrupole at RC9.
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Chapter 5: Diagnostics

5.1 The Knockout Imaging Method

Upon exciting the quadrupole envelope mode in the electron beam, it is nec-

essary to measure the growth of R− to characterize the mode. An effective imaging

diagnostic of the UMER beam called the knockout method [23] is used. This method

has been shown to accurately measure the beam loss profile in the electron beam [65].

A diagram of the knockout method is shown in Figure 5.2. By using a digital tim-

ing system, a 300 ns, 3 kV electric dipole pulse can knock the entire beam from its

equilibrium orbit and into a fast phosphor screen. This screen does not have any

image hysteresis or “memory”, thus a properly timed gated camera can capture a 3

ns time slice profile of the beam.
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5.1.1 Timing System

A well-choreographed timing system for the knockout method was put into

place to capture precise images of the electron beam slices. This is detailed in

Figure 5.1. The values for the delay box are given in Table 5.1. Using this time

delay, the beam can be knocked out at any turn.

Figure 5.2: Schematic drawing of the beam knockout method. The blue
dashed line represents the beam on a previous turn where the electric
dipole field is off. The dipole is pulsed for 300 ns, deflecting the entire
beam into the phosphor screen.

5.1.2 Fast Phosphor Screens

The fast phosphor screens used in this experiment produce light with intensity

proportional to the intensity of the incident electron beam. The light is produced

within a 3 ns response time, permitting very precise time slice images of the beam.

There are three fast phosphor screens installed in UMER located at RC4, RC8, and

RC14. In Chapter 3, it was shown how the data for this experiment can be collected

from one location in the ring. For this dissertation, only the phosphor screen at RC8
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Table 5.1: Time Delay Box Settings

Channel Width (µs) Delay (s)

A 4.96 0.00834754

B 0.850 0.00834654

C 136 0.00824115

D 295 0.0080886

E 15.0 0.008347481

F 0.200 Variable/Phase locking

G 0.500 0.00834833 (5th turn KO)

H 0.500 0.00834713

is used.

It is necessary to align the phosphor screens at a 45 degree angle between

the electron beam and the camera to get the most accurate picture of the beam.

To calibrate this angle, the backside of the screen is equipped with fiducial marks

as shown in Figure 5.3. Each fiducial mark is 5 mm across, but by perspective

the horizontal marks are imaged more closely together. Using a simple geometric

argument, the screen is at the desired 45 degree angle when the horizontal fiducial

marks are 5√
2

mm apart. This is found from imaging the fiducial marks with the

PIMAX camera as shown in Figure 5.3, and measuring the pixel distances. Once

the 45 degree angle is found, the screen must be rotated 180 degrees so that it is

ready to image the beam. This 180 degree angle is added (or subtracted) from the
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position of the screen that was empirically determined to be at 45 degrees.

Figure 5.3: Fiducial marks on the back of the phosphor screen located at
RC8. These are used to ensure there is a 45◦ angle between the camera
and screen.

To position the phosphor screen, the beam position monitor (BPM) is first

lifted up out of the beam pipe line. The phosphor screen is then slowly raised until

it intercepts a portion of the beam, called scraping. A good diagnostic to measure

the beam scraping is from the wall current monitor (WCM) located at RC10. Ideally

the phosphor screen should be as close to the beam as possible without scraping it

on any turn.
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5.2 PIMAX Camera

Once the screen was in place, a 16-bit PIMAX2 ICCD camera developed by

Princeton Instruments was used to image the beam [66]. This camera has a 512 x 512

pixel imaging array with pixel resolution on the order of 50 µm. The pixel resolution

was determined by the number of pixels across the 5 mm vertical separation of the

fiducial marks in Figure 5.3. This camera is also equipped with a 3 ns minimum

gate width, permitting thin time slice images of the 100 ns1 beam bunch.

The PIMAX camera was secured in place on an optical breadboard as shown

in Figure 5.4. The camera is angled down to get a clear picture of the off-line fast

phosphor screen. A black cloth (not pictured) is used to shield the camera from

external light.

5.2.1 Camera Noise

To determine camera noise, light from the beam incident on the phosphor

screen, a piece of computer paper was stapled to a piece of black construction paper

with a hole punched in it. A flashlight illuminated the paper from behind, and

the contrast provided a round beam-like image similar to the light produced by the

phosphor from incident electrons. The setup is shown in Figure 5.5. Images were

taken every 1.5 s for 30 minutes to see whether there is any noise in the electronics.

From the images, the moments of the “beam-like” image were taken. The

centroids are shown in Figure 5.6 and the sizes are shown in Figure 5.7. It is shown

1at injection

92



Figure 5.4: Camera setup for the experiment. Camera is angled down to
capture the beam on the phosphor screen. During experiments, a black
cloth (not pictured) is used to shield the camera from external light.

that the error fluctuation is smaller than a pixel size, suggesting consistent shot-

to-shot data collection. This result shows that errors in the phosphor screen beam

measurements are not due to the camera apparatus.

5.3 Other UMER Diagnostics

This section describes other necessary UMER diagnostics. These include the

wall current monitor (WCM) and beam position monitors (BPMs). Current mea-

surement in the WCM is important for calculating the space-charge ratio I/ε, and

the BPMs helped to steer and match the beam (see Appendices A and B).
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Figure 5.5: Experimental setup to measure the noise in the camera. The
flashlight shining on the construction paper provides a beam-like image
for the camera to capture. A black cloth (not pictured) is used to shield
the camera from external light.

5.3.1 Wall Current Monitor (WCM)

A Wall Current Monitor (WCM) is used to measure electron beam current in

UMER. Located in RC10, a diagram of the WCM is shown in Figure 5.8. The beam

generates an image current in the beam pipe wall as it travels past the WCM. The

equivalent resistance value of the WCM is 4.545 Ω, so the current is calculated from

the scope by the equation

IWCM =
VWCM

4.545Ω
. (5.1)

The WCM is “ac-coupled” and can only measure the change in current over time,

thus making it difficult to measure a “dc” beam. In UMER, bunch-end erosion
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Figure 5.6: Centroids of the “beam-like” camera images. Images were
taken at 2 second intervals for 30 minutes.

causes the head and tail of the beam to expand and pass through each other, losing

information about the current [23]. However, it has been shown that this information

is recovered using the knockout method [65].

5.3.2 Beam Position Monitors (BPMs)

Beam position monitors (BPMs) are housed at nearly every diagnostic ring

chamber in UMER. An image of the BPM assembly is shown in Figure 5.9. Four

BPM electrodes are arranged in a quadrupolar configuration around the beam pipe,

labeled top, bottom, left, and right. As the beam passes through a BPM, the

BPM picks up a voltage between each electrode and the charges in the bunch. This

voltage is proportional to the distance between the beam bunch and the electrode.

95



Figure 5.7: Sizes of the “beam-like” camera images. Images were taken
at 2 second intervals for 30 minutes.

Figure 5.8: Diagram of UMER’s wall current monitor (WCM) located
at RC10. The image current from the beam divides through the ground
loop and resistors (red), and the resulting voltage drop is measured by
the scope [25].
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A scope records the voltages from each of these electrodes. A comparison between

the voltage values of the top and bottom electrodes and the right and left electrodes

provide information about the location of the beam centroid to the center of the

pipe. Once again, the BPMs are ac-coupled diagnostics, so it becomes difficult to

measure beam displacement after the beam fills the ring.

Figure 5.9: Diagram of beam position monitor (BPM) in UMER. A
phosphor screen assembly is attached the bottom for use in first-turn
matching experiments (see Appendix B) [25].
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It doesn’t matter how beautiful your theory is, it doesn’t matter how smart

you are. If it doesn’t agree with experiment, it’s wrong.

–Richard P. Feynman

Chapter 6: Experimental Observations of Envelope Resonance

In this chapter, experimental techniques are detailed and agreement to theory

and simulations is explored. Multi-turn resonance is experimentally demonstrated

using the rf-driven quadrupole and tank circuit described in Chapter 4 and the

knockout imaging method described in Chapter 5.

6.1 Measurement Methods

Upon aligning UMER’s knockout diagnostic system, beam measurements were

taken. First, a background image is taken with the beam turned off. The intensity

values from this image are subtracted from each beam image such that the image

only contains intensity from beam-generated light. This background image con-

tains less than 0.1% of the light intensity produced by the phosphor screens in an

experiment.

The current from the wall current monitor (WCM) was then recorded. A

sample picture of the 21 mA beam WCM signal1 of the Vbias = 30 V beam is shown

1converted to current using R = 4.545 Ω
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in Figure 6.1. Though reproducible, the zero-current baseline drifts in time. It is

believed that this is due to ground loops in the electronics. Since the experiment

is performed on a time-slice in the center of the beam, the current of the beam for

each turn is measured from the center of the beam pulse to the zero-current baseline.

The WCM data shows a longitudinal space-charge rarefaction wave that reaches the

center of the beam pulse by turn 6. Due to this effect, the beam current in the

center of the beam is reduced by 5.3% between turns 5 and 6. Since the space-

charge-depressed normalized phase advance σ/σ0 scales by I/ε (see equation 2.13),

the space-charge-dependent envelope mode frequencies are affected by current loss.

This greatly complicates the experiment. Thus, to avoid a time-dependent envelope

mode frequency, the beam measurements for this experiment were taken before turn

6. Simulation results suggest that the resonance peaks become more well defined

(taller, narrower) as the number of quadrupole perturbations, n, tends to infinity.

Therefore, it is best to choose an n as large as possible. Limited by longitudinal

space-charge effects, the data were collected on turn 5, following four consecutive

quadrupole perturbations in turns 1-4. The time delay settings for the knockout

image at turn 5 are shown in Table 5.1.

The knockout imaging method was used to collect beam slice images. Due

to both the response time of the fast phosphor screen and the time-resolution of

the PIMAX camera, 3 ns beam slice images of the beam are resolved. For a bunch

length of 100 ns, this is 3% of the beam pulse, sampled at the center of the pulse

to avoid the longitudinal space-charge effects at the ends. These beam slice images

were taken on turn 5. To check the reproducibility of the beam measurements,
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Figure 6.1: 21 mA beam current measured from the WCM. Bias voltage
is 30 V. Beneath each beam pulse turn is the peak beam current, in mA,
measured from the center of the beam to the time-dependent 0-current
baseline. The red percentages represent the current lost from injection.

images were collected every 1.8 seconds for 30 minutes and image moments2 were

computed. The results are shown in Figures 6.2 and 6.3. There is a long-term drift

in the beam centroids on the order of 4.8% over 30 minutes, however, the rms beam

size does not drift. This is a desirable result because the valuation of the envelope

mode resonance depends on precise measurements of the Xrms and Yrms beam size.

The standard deviations calculated from these data are σX,rms = 0.137 pixels and

σY,rms = 0.174 pixels, where each pixel is 50 µm. These values are used for rms

2beam centroid and size
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beam size error analysis.

Figure 6.2: Drift behavior in the centroid moments of the 5th turn knock-
out images. Images were taken at 1.8 second intervals for 30 minutes.

After setting up the camera and recording a background image, the tank circuit

in the rf box was tuned to the desired driving frequency. This was accomplished by

measuring the standing wave ratio (SWR) of the secondary tank circuit by connect-

ing the primary circuit inductor L1 to the Agilent network analyzer. The average

SWR value recorded during the experiment is 1.05, which means that 99.9% of

the input power is transmitted to the circuit [71]. Transmitting all input voltage

through to the rf circuit ensures that there is no impedance mismatch which can

lead to transmission line losses.

The rf pulse train is phase locked to UMER’s master oscillator and turned on

sufficiently early to allow the tank circuit to attain a steady state before the beam
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Figure 6.3: Drift behavior in the rms beam spot size moments of the 5th

turn knockout images. Images were taken at 1.8 second intervals for 30
minutes.

interacts with the quadrupole. The input power to the tank circuit is adjusted

through the function generator. Each time the frequency is changed, the input

power must be adjusted such that a constant peak voltage is maintained across the

quadrupole electrodes. To monitor input power, an rf antenna measures the relative

radiated power in the tank circuit and displays it as a voltage on an oscilloscope. A

constant peak electric field at all rf driving frequency is the goal.

Unfortunately, there is no way to directly measure the voltage developed on

the quadrupole. A probe directly attached to the electrodes would act as an electric

load, consuming electric power. To determine the correct voltage to transmit to the

tank circuit. The rf driving frequency was set to the calculated value of resonance
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(36.9 MHz), and 3 ns transverse beam slice images were measured for a range of input

voltages. The Xrms and Yrms beam size moments were calculated and plotted as a

function of peak-to-peak rf antenna amplitude in Figure 6.4. It is seen that after 500

mV, the envelope growth becomes nonlinear. Thus, to avoid nonlinearities, a peak-

to-peak voltage output of 500 mV was chosen. This value provides the maximum

rms envelope perturbation while remaining in the linear regime.

Figure 6.4: Normalized rms beam size as a function of peak-to-peak
rf antenna amplitude for an applied rf frequency of 36.9 MHz. Hori-
zontal dashed lines represent the linear regime, and the vertical dashed
line represents the chosen rf amplitude, used for all experiments in this
dissertation.
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Since the tunable capacitor must be adjusted by hand, the experiment cannot

be entirely automated. However, once the resonant frequency of the tank circuit is

set to the desired value, a 360◦ sweep across rf phase is automated using a Matlab

script, permitting an image collection rate of 10 images per minute. The lowest

rf frequency (longest period) used in the experiment is 35.6 MHz, a period of 28.1

ns. The range is established by the inductor in the secondary tank circuit. For

one phase scan, twenty images are captured, corresponding to a time delay step

of 28.1/20 = 1.4 ns. In terms of rf phase, this is 2π/20 = 0.31 radians. The

camera integrates over 50 iterations of 3 ns exposures to produce a single image.

A 1.5 s delay is programmed between images to allow the camera to complete the

integration.

In Figure 6.5, an rf phase scan of images is shown for two frequencies, 37 MHz

(on resonance) and 38 MHz (off resonance). Each image represents an rf phase

progression of 36◦. Due to mismatch in the UMER beam, the beam is skewed

and non-circular at RC8 on the 5th turn. Since the beam has a larger vertical

than horizontal rms size, the radially-dependent electric forces in the quadrupole3

apply a greater perturbation to the beam in the vertical direction. As a result,

the quadrupole mode perturbation shows up most prominently in the vertical axis.

Vertical translations exist for both frequencies. This can be due to the beam not

traversing the center of the quadrupole or the unstable adjustment of the quadrupole

voltage (see section 4.3.2). However, a beam size perturbation is only evident in

the resonant case. The applied peak-to-peak perturbation in the beam excited on

3see Figure 4.10
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resonance is ∼ 22% of the rms beam size in the vertical direction. This perturbation

can be difficult to see, so a set of horizontal dashed lines are included to train the

reader’s eye to the applied perturbation. As the vertical perturbation compresses

the beam (see images 4-8 in the top row), horizontal wisps resembling beam halo

are seen. This is a simultaneous expansion in the horizontal rms beam size and

compression in the vertical beam size, characteristic of a quadrupole perturbation.

The range of frequencies used in this experiment is 35.6 MHz to 40.6 MHz,

with a frequency step of 0.2 MHz. With 20 images taken per frequency, 520 beam

slice images are taken per experiment. The frequency range is limited to 5 MHz

due to using a single inductor for the experiment. Multiple inductors could have

been used to increase this range, but disturbing the rf box during an experiment

may introduce errors in the circuit components (trim capacitor, rf antenna, etc.). A

frequency range was empirically chosen to have two full resonant peaks present at

Vbias = 30 V. Peak spacing is a good measure of agreement between simulation and

experiment.

6.2 Data Analysis

The images are processed through a Matlab script. After the background

image is subtracted from each beam slice image, the moments as described in Chap-

ter 2 are calculated numerically using an algorithm from reference [72]. After the

image moments are found, the beam is then cropped and the image moments are

re-calculated. To ensure a consistent comparison between images, the cropping win-
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dow is only calculated for the first image and then held constant. The cropping

window is calculated by

wstart = wcenter − 2.5wrms, (6.1a)

wlength = 5wrms, (6.1b)

where w represents x or y. The oversized window ensures that the entire beam is

captured even for images from beams with resonant perturbations that exhibit large

transverse centroid displacements.

After the moments are re-calculated, the rms beam size results for a single rf

phase scan are plotted. This is shown in Figure 6.6. The out-of-phase rf oscillation

between x and y is characteristic of a quadrupole perturbation. It is seen that the

Xrms phase oscillation is not quite 180◦ out of phase as was shown in the envelope

solver simulation. This is believed to be due to the skew of the beam. The magnet

lattice of the ring imparts angular velocity to a skewed beam that couples x and y

[44]. The larger perturbation in the y direction reflects what is seen in the transverse

beam slice images of Figure 6.5. Since the perturbation is larger in y than in x, the

following results will solely explore Yrms values to identify the resonance structure

of the quadrupole envelope mode.

For each phase scan as shown in Figure 6.6, the ∆Yrms value is recorded

and plotted as a function of frequency. For Vbias = 30 V, the results of ∆Yrms

as a function of rf frequency are plotted on top of normalized simulation results

in Figures 6.7 and 6.8. Both Figures show good agreement between experiment

and simulation. Figure 6.7 shows the peak displacement comparison between the
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Figure 6.6: Example of rms beam size moment calculation of an exper-
imental rf phase scan. The vertical (y) has a larger radius and thus a
larger amplitude oscillation than the horizontal (x). The out-of-phase
oscillation between the two dimensions is characteristic of a quadrupole
mode perturbation.

envelope solver simulation and the experiment. They differ by 0.0 MHz and 7%

for the frequency and peak widths, respectively. The peak displacement between

the toy model simulation and the experiment is 0.25 MHz, and the peak widths

differ by 21%. Figure 6.8 shows the peak displacement comparison between the

envelope solver simulation and the experiment. They differ by 0.4 MHz and 7% for

the frequency and peak widths, respectively. The peak displacement between the

toy model simulation and the experiment is 0.2 MHz, and the peak widths differ by

9%. Considering the toy model is a simplified smooth focusing approximation, this

is a remarkable result.
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Figure 6.7: Experimental resonance structure for Vbias = 30 V plotted
on top of normalized simulation results for f0 = 36.9 MHz. Each point
represents the change in rms beam size across a phase scan at each
frequency.

The peaks in Figures 6.7 and 6.8 are not at the resonant frequency values,

however their positions converge to delta functions at these values as the number of

quadrupole perturbations tends to infinity.

It is seen that there is a degeneracy in determining the value of natural

quadrupole mode frequency from the plots. This is further clarified in the disper-

sion relation plot of Figure 6.9. Using resonant mode excitation, it is not possible

to determine the resonance peak that represents the true natural frequency. How-

ever, tomographic measurements of the emittance demonstrated at UMER [28] have
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Figure 6.8: Experimental resonance structure for Vbias = 30 V plotted
on top of normalized simulation results for f0 = 39.2 MHz. Each point
represents the change in rms beam size across a phase scan at each
frequency.

determined that the natural mode frequency lies closest to the peak at 39.2 MHz,

corresponding to the simulation results in Figure 6.8. An experimental measure-

ment of the emittance at injection, called the pinhole scan method, will be used to

confirm that the experimentally measured natural mode frequency corresponds to

the peak at 39.2 MHz.
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Figure 6.9: Resonance structure plot for the values of rf driving frequency
used in this dissertation. Simulation values of natural frequency as used
for Figures 6.7 and 6.8 reflect a degeneracy in the resonance structure.

6.3 Emittance Determination

Section 3.3.4 discussed how emittance can be inferred from the envelope solver

simulations. Using the measured value of frequency f0, the unnormalized emittance

is calculated by

εI0 = 4.58f0 − 138.8, (6.2)

the units of which are in mm-mrad. This emittance is only valid for the current

used in the simulation, I0. To find the actual emittance, it must be normalized as

ε = εI0
I

I0
, (6.3)
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Figure 6.10: Experimental results of inferred emittance from measured
values of resonant frequency for a range of bias voltages. The degeneracy
in the measurement is shown for the two possible values of quadrupole
mode frequency. The error bars reflect 5-10% measurement uncertainty.

where I is the current measured in turn five by the wall current monitor.

To test the emittance dependence on the mode frequency, the experiment and

analysis are performed for a range of bias voltages. As explained in Section 4.1

and [49], the emittance is dependent on the bias voltage between the cathode and

the cathode grid. There is no absolute dependence of emittance on bias voltage,

but a change in bias voltage will cause a change in emittance. Upon finding the

resonant frequency values from the resonance structure plots, the emittance for each

bias voltage is calculated. The results are plotted in Figure 6.10.

The error σε from the current is determined from the percent loss by beam

current spreading out in the ring due to space-charge (see Figure 6.1). The method
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Table 6.1: Quadrupole mode envelope resonance method results

Grid Bias (V) Emitt. ε (mm-mrad) σε,lower (mm-mrad) σε,upper (mm-mrad)

10 38.2 2.8 1.8

20 37.4 2.1 1.5

30 40.6 3.9 2.3

35 39.7 3.0 1.9

of determining error in the envelope mode frequency value f0 is biased toward the

tendency for the simulation peaks to preferentially shift as the number of quadrupole

perturbations tends to infinity. The error for the emittance ε is propagated from

these two measurement errors [67]. This value is found to be 5-10% of its actual

value, a weighted error as described in the previous section. Values of the emittance

and errors are shown in Table 6.1.

6.4 Pinhole Experiment

Measurements of the velocity spread of the beam were performed using the

pinhole scan technique [28]. The pinhole is the first UMER aperture setting listed

in Table 4.2. The pinhole is 0.25 mm in diameter, producing a beam with negli-

gible space-charge. The particles in this beam move in straight lines. As shown

in Figure 6.11, a phosphor screen 28.4 cm downstream intercepts the beam. The

beam centroid and spot size moments were measured from the resulting image and

compared to the results of the quadrupole envelope resonance method. The pinhole
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Figure 6.11: Conceptual drawing of the pinhole scan emittance measure-
ment technique.

method is analogous to the pepper pot method of measuring emittance, except there

is a moveable pinhole instead of a lattice of pinholes. This technique is preferable

because it avoids overlapping beams.

Figure 6.12 shows sample images collected for the pinhole scan experiment

for various aperture wheel settings. The hatch pattern in the images is a result of

the interaction of the beam with the anode grid. A 1◦ rotation of the geared knob

turns the aperture wheel by a small amount. Since the diameter of the wheel is

large compared to the diameter of the beam, the 1◦ knob rotation corresponds to a

linear translation of the pinhole by 0.1 mm. The smallest increment the knob can

be rotated is 2◦. The full beam radius can be measured with a single pinhole scan.

Propagating the beam through the pinhole aperture is equivalent to inspecting thin
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(0.25 mm) slices in y of the beam’s trace space.

Since the aperture of the 21 mA beam is located at its center, emittance

measurements are also taken relative to the center of the full beam. To find the full

beam’s center, the pinhole displacements for the edge of the beam are averaged.
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Let L be the displacement between the aperture and the screen. x0 and y0 are

defined as the coordinates of the 0 mm displacement beamlet’s centroid moment. xc

and yc are defined as the coordinates of any given beamlet’s centroid moment. The

aperture coordinate system is defined as (x,y). A movement in the aperture wheel

corresponds to a movement in the y direction. Thus, the divergence y′ is

y′ =
(y0 − yc)−∆y

L
, (6.4)

and it can only be calculated in the y direction. The beam divergence was calculated

for the images in Figure 6.12, and the results are plotted in Figure 6.13. The scatter

is a direct result of the grid intercepting the beam. Beam images were taken for

±1.5 mm corresponding to the beam radius of the 21 mA beam.

Figure 6.13: Phase space plot of the Vbias = 10 V beamlets. The scatter
is a direct result of the grid intercepting the beam.
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Emittance can be directly calculated from the moments of the pinhole images.

As defined in Chapter 2, the emittance of the beam is

εy = 4
√
< y2 >< y′2 > − < yy′ >2, (6.5)

which can be written as

ε =
√

(r0r′p)
2 − (r20tanφ)2, (6.6)

which is a coordinate-independent emittance. r0 is the beam radius at the aperture,

which is 1.5 mm for the 21 mA beam, r′p is the ratio between the beamlet size to

the beam aperture (rb/rpinhole), and tanφ is defined as

tanφ = −< yy′ >

< y2 >
, (6.7)

which is just the slope of the fit line for the points in Figure 6.13. A table of these

values for a range of bias voltages is given in Table 6.2.

Table 6.2: Pinhole scan method results

Grid Bias (V) tanφ r′p Emitt. ε (mm-mrad) σε (mm-mrad)

10 -4.68 25.8 37.2 2.08

20 -4.89 26.5 38.2 1.89

30 -4.18 26.1 38.0 2.21

35 -4.66 25.4 36.6 2.71

The error is propagated, and the values of emittance from the pinhole scan

are plotted on top of the emittance values from the envelope excitation method in

Figure 6.14. This is not a direct comparison for several reasons. In an accelerator
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experiment, emittance growth is inevitable. Thus, a measurement at injection will

invariably have a lower value of emittance than for a measurement in the 5th turn.

The measurements are taken ∼ 0.9 µs apart from each other during the lifetime of

the beam. Additionally, any defect in the steering or matching can lead to emittance

growth through the application of transverse energy to the beam. The values are

relatively constant within the first ∼ 0.9 µs. This implies no significant emittance

growth in the first 5 turns of UMER. The error in the pinhole scan is comparable to

the error in the envelope resonance method. The benefit of the envelope resonance

method, however, is the ability to measure emittance at any point in the ring,

provided sufficient quadrupole perturbations have been applied.

Table 6.3: Exp. results of pin. scan and env. res. methods compared side-by-side.

Vbias (V) εpin (µm) σε,pin (µm) εres (µm) σε,res,l (µm) σε,res,u (µm)

10 37.2 2.08 38.2 2.8 1.8

20 38.2 1.89 37.4 2.1 1.5

30 38.0 2.21 40.6 3.9 2.3

35 36.6 2.71 39.7 3.0 1.9
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Figure 6.14: Emittance measurements from the pinhole scan at injection
plotted with emittance measurements from envelope mode excitation in
the 5th turn. Measurements are at times ∼ 0.9 µs apart from each other
in the lifetime of the beam. The degeneracy shown in Figure 6.10 is
resolved.
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Chapter 7: Conclusion and Outlook

7.1 Summary

As particle accelerators increase in intensity, it is imperative to maintain good

beam quality. For high energy physics, heavy ion applications, and free-electron

lasers, the greatest challenge is to mitigate emittance growth during beam trans-

port. To monitor emittance growth, a sensitive, non-invasive emittance diagnostic

is required.

This dissertation reports successful demonstration of a sensitive, non-invasive

emittance diagnostic using pulsed quadrupole envelope mode resonant excitations at

the University of Maryland Electron Ring (UMER). The resonant growth structure

is explored theoretically as well as in simulation and experiment. The resulting

frequency measurements are used in concert with predictions from WARP envelope

solver simulations to measure emittance. This method of measuring emittance can

be applied to any circular accelerator or storage ring with intense-beam dynamics.

Periodic, impulsed perturbations were applied to the 21 mA UMER beam

using an rf-driven electric quadrupole. The knockout imaging method captured 3

ns beam image slices at the center of the beam after four successive quadrupole

perturbations. Image moments were calculated from these slices, and the envelope
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mode frequency was identified. The emittance could then be inferred from the

measured beam current and mode frequency using simulation results from numerical

rms envelope integration. This works because the natural frequency of an envelope

mode ω0 depends explicitly on I/ε. The experiment was performed for a series of

cathode-to-grid bias voltages.

There is good agreement between the delta-kicked simple harmonic oscillator

model, rms envelope simulations, and experiment. The pinhole scan provides an

experimental validation of the envelope resonance emittance measurement. It is

shown that emittance can be measured with a 5-10% experimental uncertainty using

the envelope resonance method, which is a comparable error to the pinhole scan

method. The benefit to the envelope method is that it can be used to measure

emittance at any location in the ring, provided sufficient quadrupole perturbations

have been applied. Also, it is non-invasive when using long quadrupole pick-ups [18].

7.2 Future Work

7.2.1 Improvements on the Current Work

To reduce error in the current work, a better matching solution needs to be

achieved that eliminates the skew in the beam. Barnard and Losic [44] studied

envelope mode oscillations in a beam with angular momentum. Albeit a small per-

turbation, the mode frequencies depend on the skew, so a correction would improve

the accuracy of the experiment. Unfortunately, current matching methods at UMER

only involve systematic corrections in the first turn (see Appendix B).
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To eliminate the degeneracy, the symmetry of the delta-kicked simple harmonic

oscillator can be broken by using non-periodic impulsed perturbations. This can be

implemented with the addition of another quadrupole placed at another location

in the ring that does not diametrically oppose the first quadrupole’s location. The

resulting resonance structure (see Figure 7.1) shows a taller peak at the fundamental

frequency, eliminating the degeneracy shown in this dissertation.

Figure 7.1: Degeneracy eliminated by breaking the periodicity of the
impulses. This is simulation data from the integration of the delta-kicked
SHO. Frequency structure is shown after 20 turns and 40 perturbations
(two quadrupoles at different ring locations oscillating in phase with each
other).

To permit non-invasive measurement of emittance, multi-plate BPMs can be

used. Measuring beam size with a 4-plate BPM is difficult, but attainable [17,18,32].

A discussion of using UMER’s BPMs for rms beam size measurements is provided
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in Appendix C. 6-plate BPMs, however, more easily measure the rms beam spot

size of a beam, allowing a non-invasive way to measure the resonant growth of the

envelope [70]. This is very useful for emittance measurement, as the emittance

is measured before the beam is used in an experiment. As an example, if the

emittance in an intense particle beam needs to be adjusted for a target, the emittance

diagnostic provides a real-time feedback mechanism of beam quality.

A digital micromirror device (DMD) is a digitally-controlled mirror lattice that

has been proven as a successful way to measure beam halo in space-charge-dominated

electron beams [19]. As shown in Chapter 3, measuring halo is an effective method

of measuring resonant growth for intense beams with long lifetimes. Using this

device, envelope excitations followed by halo measurements can be used to determine

whether the beam is excited on resonance.

7.2.2 Ideas for Future Experiments

The work in this dissertation solely explores the quadrupole mode oscillation

in the UMER 21 mA current electron beam. An extension is to investigate a range

of beam intensities. It would be interesting to experimentally reproduce the phase

advance plot shown in figure 3.8. Inductors have already been constructed to reach

the rf frequency domains predicted for each of these intensities, and the rf amplitude

would need to be modified according to equation 4.6. The most anticipated difficulty

would be to find a steering and matching solution (see appendices A and B) such

that there is minimal current loss as the beam is being perturbed.
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It is not possible to perform the experiment for very high or low current beams.

For beam currents larger than 21 mA, the longitudinal rarefaction wave will severely

restrict the number of turns over which the perturbation can be applied. For UMER

beams with a currents less than 6 mA, the frequencies of the envelope modes are

close to the 1/2 integer resonance for particle oscillations. Perturbing this frequency

will cause beam degradation and the emittance measurement would become invasive.

Furthermore, the beam radius for small current beams would require large electrode

voltages. The UMER “pencil beam” (0.6 mA) would need a peak-to-peak voltage of

over 12 kV. Due to unavoidable transverse centroid displacements in the quadrupole,

the beam would most likely not survive the kick.

While the envelope resonance method is not a plausible diagnostic for certain

UMER currents, the emittance of the 6 mA beam can be characterized. The rar-

efaction wave does not reach the center of the beam until the 15th turn, so with an

appropriately matched beam, perturbations could be applied for 13 turns. This is

a factor of 3 greater than the experiment detailed in this dissertation, and it should

result in narrower, taller resonance peaks and possibly the formation of a beam halo.

Lund and Bukh [16] calculate several interesting results that would be inter-

esting to explore experimentally. The mode frequencies depend on the focusing

functions. Thus, perturbations on a alternating-gradient lattice structure should

alter the oscillation frequency of an envelope mode. Bernal [73] has studied alter-

native lattice structures at the University of Maryland Electron Ring. It would be

interesting to study the frequency dependence on the lattice focusing function and

compare experimental and simulation results. Lund and Bukh [16] also described
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the launching conditions for pure mode oscillations. Initial quadrupole mode exci-

tation at injection has been measured at GSI [18] in 2014, and Hao [19] attempted

pure mode injections at UMER. However, the lack of phase control makes it impos-

sible to measure the mode frequency at one point in the ring, and the number of

diagnostics in UMER leaves the oscillation period under-determined1.

One final experiment that would be interesting to perform is a chaotic dy-

namics experiment. The beam, kicked hard enough, exhibits nonlinear behavior.

The delta-kicked harmonic oscillator derived in Chapter 3 is used to study Hamil-

tonian chaos, specifically standard map bifurcations. By applying large quadrupole

perturbations to the UMER beam at RC9 over long time scales (6 mA beam), the

standard map can be explored.

1see Appendix C
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Appendix A: Injection Steering in UMER

Steering the beam in the injection line is important to maintain beam quality

in the ring. The goal is to steer the beam on to the equilibrium orbit of the ring

without losing current. There are many possible steering solutions, but the method

used in this dissertation minimizes the angle and displacement of the beam centroid

from the center of the pipe in the injection line and uses the last few dipoles to kick

the beam on to the desired orbit in the ring using the BPM traces as an empirical

reference. Not only does this minimize the required magnet current, but it also

provides a systematic approach to steering.

To benchmark the steering solution, the quadrupole magnets are used. If

the beam is off-center as it passes through a quadrupole magnet, the magnet will

impart a dipole kick to the beam. The beam is imaged using a gated camera and

a phosphor screen located at RC1. A Matlab GUI is used on the camera control

computer at the control desk to calculate the beam centroid of the camera image. If

the application of a small current perturbation in the quadrupole causes the beam

centroid to shift on the phosphor screen, the beam does not pass through the center

of the quadrupole. A dipole upstream from the quadrupole is adjusted iteratively

until a solution is found. This analysis is completed independently in x and y since
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the transverse dimensions are uncoupled to first order.

With an equal number of dipole and quadrupole magnets, it is possible to

steer through the center of all the quadrupole magnets. However, as it is seen from

trajectory 1 in figure A.1, this solution requires a large amount of dipole current and

results in large beam excursions. A different method involves a four step process

that begins by considering the dipoles in groups of two.

Figure A.1: This illustrates the four step process for centering the beam
centroid horizontally in the injection line using pairs of steering dipoles
(SD) and quadrupoles (Q). Step 1 (trajectory 1) steers the beam through
the center of Q1. Step 2 (trajectory 2) is to turn SD2 off and steer
through the center of Q2. Step 3 averages the two currents using equation
A.1 to steer the beam through the center of SD2. Finally, step 4 uses
SD2 to steer through the center of Q2, minimizing both displacement
and angle.

• Step 1: Use the upstream dipole to steer through the center of the first

quadrupole.

• Step 2: Turn off the downstream dipole and steer through the center of the
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second quadrupole.

• Step 3: Steer through the center of the downstream dipole by appropriately

averaging the current values from step 1 and 2 using longitudinal distances

between magnets.

• Step 4: Use the downstream dipole to steer through the center of the second

quadrupole.

This process is repeated for each subsequent dipole. Since in UMER the

magnets are not equally spaced along the injection line, step 3 is a bit tricky and

requires the ratio

ISD1 =
L1IQ2 + L2IQ1

L1 + L2

, (A.1)

where the subscripts 1 and 2 represent the upstream and downstream magnet com-

ponents, respectively. IQ1 and IQ2 represent the currents required in the dipole SD1

to steer through the center of Q1 and Q2, respectively. L1 is the longitudinal dis-

placement between Q1 and SD2, and L2 is the longitudinal displacement between

SD2 and Q2.

The longitudinal displacements in the injection line are shown in figure A.2.

It is worth noting that between SD3 and SD4 there are two quadrupole magnets.

In this instance, it is best to use intuition to decide the quadrupole through which

to steer.

The final horizontal and vertical steering currents used in the dipoles are shown

in table A.1 for the 6 mA and 21 mA operating currents.
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Figure A.2: Longitudinal displacements between magnet components in
the UMER injection line. All displacements are in cm, measured to the
center of each component with a tolerance of ±0.5 cm.

Table A.1: Dipole Currents, in Amps

6mA 21mA

Dipole Horizontal Vertical Horizontal Vertical

SD1 -0.55 1.6 0.85 1.97

SD2 -0.44 -0.15 -0.63 -1.25

SD3 0.19 0.85 -0.05 -0.8

SD4 -0.66 -1.6 0.3 1.5

SD5 0.2 -0.02 -0.7 0.4

SD6 0.5 1.0 1.0 -0.5

SDR6 -0.9 0.0 0.0 0.5
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Appendix B: First-Turn Matching Technique

To reduce error in the experiment, a transverse matching algorithm was em-

ployed before taking data [19,27]. As in Appendix A, this method is applied to the

injection section of the ring, and it is implemented after a steering solution to send

the beam through the center of the quadrupole magnets is found. All beam sizes in

this section are defined as the 2xrms transverse beam size in x or y

This method involves an iteration of the matched beam sizes Xm and Ym by

filling a response matrix Rwij with the change in x or y (subscript w) beam size

at various locations (subscript i) in the ring after changing a quadrupole magnet

current (subscript j). It is defined as

Rwij =
∂wi
∂Ij

, (B.1)

where w can be either the x or y dimension. It is used to calculate the tensor ∆,

where

E = R∆, (B.2)
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expanded as 

X1

Y1

X2

Y2

. . .

Xn

Yn



=



Rx11 Rx12 Rx13 Rx14 1 0

Ry11 Ry12 Ry13 Ry14 0 1

Rx21 Rx22 Rx23 Rx24 1 0

Ry21 Ry22 Ry23 Ry24 0 1

. . . . . . . . . . . . . . . . . .

Rxn1 Rxn2 Rxn3 Rxn4 1 0

Ryn1 Ryn2 Ryn3 Ryn4 1 0





∆I1

∆I2

∆I3

∆I4

Xm

Ym



. (B.3)

Xn in the tensor E are the beam sizes at the location n, ∆Ik is the change in current

at quadrupole magnet k, and Xm and Ym are the current matched beam sizes. ∆

is calculated using

∆ = (RTR)−1RTE. (B.4)

The improved solutions to the currents in quadrupole magnets 1-4 are given by

I1−∆I1, I2−∆I2, I3−∆I3, and I4−∆I4. This process is iterated until a solution

is found.

The analysis was performed at the UMER ring for the 21 mA electron beam.

The ring chambers used for matching were 1, 2, 5, and 12. A few combinations of

quadrupole magnets were used in the above analysis to find the best solution. After

a solution was found, the process was iterated again for further improvement. The

first two iterations are shown in figures B.1 and B.2. Over iterations, the solution

converges to a more consistent beam size across all 4 ring chambers.
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Figure B.1: Xrms and Yrms beam size as a function of ring chamber on
the 1st iteration.

Figure B.2: Xrms and Yrms beam size as a function of ring chamber on
the 2nd iteration.
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Appendix C: Using Quadrupole Pick-ups to Measure Envelope Mode

Frequency at UMER

Beam size has been measured with quadrupole pick-ups at accelerators across

the world [17, 18, 32]. This Appendix will explain the difficulty in using this diag-

nostic at the University of Maryland Electron Ring (UMER).

Figure C.1 shows a measurement taken from two plates of a beam position

monitor (BPM) after four rf quadrupole perturbations at UMER. The base signal

is subtracted out, and all that is left is the perturbation applied by the quadrupole.

It seems that the information needed is available in this plot to resolve the natural

frequency of the envelope oscillations. However, the sine wave distribution reflects

the applied rf frequency, not the natural frequency of the beam, since it is sampling

along the longitudinal length of the beam as it passes. Since the BPMs are so short

(< 2”), time-dependent oscillations cannot be recovered from a single BPM. With

only 12 working BPMs, the Nyquist-Shannon theorem suggests that the system

is under-determined and cannot be recovered. The quadrupole pick-up used in

the GSI experiment was long enough (216 mm) to sample an entire period of an

envelope mode oscillation. Although possible with more BPMs, it would be difficult

to precisely recover the mode frequency with discretized measurements of beam size.
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The center of the beam would need to be tracked within a 3 ns time slice to get

resolution equal to the method presented in this dissertation.

Figure C.1: Beam position monitor (BPM) data of the top and bottom
plates taken after 4 perturbations with the rf quadrupole. The base
BPM signal is subtracted out.

Furthermore, figure C.1 shows data from the top and bottom plates. The 90◦

phase shift between the signals implies that the largest contribution from the rf

quadrupole is transverse translation, not expansion and contraction. An envelope

mode should have an in-phase oscillation in the top and bottom plates, as illustrated

in figure 2.10. Due to this beam “wiggle” in time, it would be very difficult to resolve

a natural frequency. The wiggle frequency would reflect the applied rf frequency of

the quadrupole, which is close to or equal to the natural frequency of the mode os-

cillation. Fourier analysis would result in two overlapping frequency peaks, with the
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smallest amplitude being the desired natural frequency of the envelope oscillation.
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Appendix D: RF Box Construction

This appendix outlines construction details of the rf box. The box was con-

structed using six pieces of 1/8” thick copper sheet (12”x12”). 0.25” aluminum angle

was used to form a rigid structure for the copper, with 0.01” gauge copper bolted

and soldered around the inside edges of the box to maintain uniform conductivity.

Pictures of the box’s assembly are shown in Figure D.1.

Figure D.1: Pictures of the rf box construction. (a) 0.25” Aluminum
angle is used to keep a rigid structure. (b) 0.01” copper sheet is bent
and placed between the edges and aluminum angle. (c) The copper sheet
is soldered to the box sides to maintain uniform conductivity.
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Such that the box can be secured on the 6” to 23
4
” flange, “Fingers” are cut

into the bottom of the box alongside an array of holes for the screw heads of the

flange. This is pictured in figure D.2. The fingers are bent up and the 23
4
” flange

fits in the opening, secured with a hose clamp.

Figure D.2: 0.5” fingers are cut into the copper sheet at the bottom of
the rf box to secure the box on top of the 6” flange at RC9. The array of
holes shown around the fingers are positioned for screw head and washer
clearance of the 6” flange.

The trim capacitor was secured by bolting one end to the bottom of the box

and securing the top of the capacitor using ceramic standoffs as shown in figure

D.3. Due to the thick (1/8”) copper sheet, the trim capacitor maintained its rigid

structure.

The air-core inductor in the primary circuit was constructed using 0.25” copper

tubing wound around a 2” diameter mandrill on a lathe shown in figure D.4. The

length of the coil is easily modified once the mandrill is removed by compressing

the loops in an accordion-like manor. A tubing cutter was used to remove excess

copper from the end of the coil.
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Figure D.3: Trim capacitor constructed by bolting a sheet of copper to
the floor of the rf box, stabilized with ceramic standoffs.

Figure D.4: Constructing inductors out of 0.25” copper tubing using a
2” diameter mandrill mounted on a lathe.
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