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Dynamic pricing problems have received considerable attention in the opera-

tions management literature in the last two decades. Most of the work has focused

on structural results and managerial insights using stylized models without consider-

ing business rules and issues commonly encountered in practice. While these models

do provide general, high-level guidelines for managers in practice, they may not be

able to generate satisfactory solutions to practical problems in which business norms

and constraints have to be incorporated. In addition, most of the existing models

assume full knowledge about the underlying demand distribution. However, demand

information can be very limited for many products in practice, particularly, for prod-

ucts with short life-cycles (e.g., fashion products). In this dissertation, we focus on

dynamic pricing models that involve selling a fixed amount of initial inventory over

a fixed time horizon without inventory replenishment. This class of dynamic pricing

models have a wide application in a variety of industries. Within this class, we study

two specific dynamic pricing problems with commonly-encountered business rules



and issues where there is limited demand information. Our objective is to develop

satisfactory solution approaches for solving practically sized problems and derive

managerial insights.

This dissertation consists of three parts. We first present a survey of existing

pricing models that involve one or multiple sellers selling one or multiple products,

each with a given initial inventory, over a fixed time horizon without inventory

replenishment. This particular class of dynamic pricing problems have received

substantial attention in the operations management literature in recent years. We

classify existing models into several different classes, present a detailed review on

the problems in each class, and identify possible directions for future research.

We then study a markdown pricing problem that involves a single product and

multiple stores. Joint inventory allocation and pricing decisions have to be made

over time subject to a set of business rules. We discretize the demand distribution

and employ a scenario tree to model demand correlation across time periods and

among the stores. The problem is formulated as a MIP and a Lagrangian relaxation

approach is proposed to solve it. Extensive numerical experiments demonstrate that

the solution approach is capable of generating close-to-optimal solutions in a short

computational time.

Finally, we study a general dynamic pricing problem for a single store that

involves two substitutable products. We consider both the price-driven substitution

and inventory-driven substitution of the two products, and investigate their impacts

on the optimal pricing decisions. We assume that little demand information is

known and propose a robust optimization model to formulate the problem. We



develop a dynamic programming solution approach. Due to the complexity of the

DP formulation, a fully polynomial time approximation scheme is developed that

guarantees a proven near optimal solution in a manageable computational time for

practically sized problems. A variety of managerial insights are discussed.
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Chapter 1

Introduction

Dynamic pricing and related problems have attracted significant attention by

researchers in the operations management area in the last two decades (see survey

papers by McGill and van Ryzin 1999, Bitran and Caldentey 2003, Elmaghraby

and Keskinocak 2003, and McAfee and te Velde 2007, and books by Talluri and van

Ryzin 2005, and Phillips 2005). These problems arise from various industries includ-

ing, for example, airline companies (selling seats), hotel companies (selling rooms),

cruise companies (selling cabins), rental car companies (renting cars), or retailers

(selling seasonal products or non-seasonal products). The dynamic pricing literature

can be generally classified into research on models without inventory replenishment

and research on models with inventory replenishment. Models without inventory

replenishment deal with problems where there is an initial amount of inventory to

be sold over a finite planning horizon by adjusting prices, where the initial inventory

is either given in advance as a problem input parameter or to be determined as a

decision variable.

This dissertation consists of three essays. First, in Chapter 2, we present a

comprehensive survey of literature on dynamic pricing models with a fixed amount of

initial inventory over a fixed time horizon without inventory replenishment, and then

in Chapters 3 and 4, we study two specific practical dynamic pricing problems within

this category of problems, respectively. Both of our problems involve a number of

commonly-encountered business rules and practical issues that have received little

attention in the literature. Furthermore, there is limited demand information in

both problems. Our objective is to develop satisfactory solution approaches for

solving practically sized problems and derive managerial insights. Our first problem

is a markdown pricing problem that involves a single product and multiple stores.
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Joint inventory allocation and pricing decisions have to be made over time subject

to a set of business rules. Our second problem is a general dynamic pricing problem

for a single store that involves two substitutable products.

Most existing dynamic pricing literature studies structural results and man-

agerial insights using stylized models. While these models, in general, may provide

useful and high-level guidelines for managers in practice, they oversimplify practical

situations in order to derive neat theoretical results. Consequently, the solutions

generated by these models may not be satisfactory in many practical situations and

the insights derived may not hold if the underlying assumptions fail. None of the pa-

pers in the existing literature have considered all the commonly-used business rules

that we consider in our problems. Solutions generated by ignoring these rules may

cause significant revenue loss and may not even be feasible in many circumstances.

Next, we present a summary of each of the three parts of the dissertation in

the following subsections.

1.1 A Survey on Dynamic Pricing Models

Dynamic pricing is a commonly-used tool in revenue management and it en-

ables a firm to increase revenue by compensating for statistical fluctuation of uncer-

tain demand, better matching supply with demand, responding to shift of reservation

price, and achieving customer segmentation. Since its early success in the airline

industry, dynamic pricing has now been commonly adopted in many other industries

as well. Numerous success stories of dynamic pricing applications in practice have

motivated a substantial amount of research in the revenue management literature.

In the past two decades particularly in the past a few years, we have witnessed a

rapidly growing body of literature that addresses a wide variety of dynamic pricing

problems. In Chapter 2, we survey existing dynamic pricing models that involve

one or multiple sellers selling one or multiple products, each with a given initial

inventory, over a fixed time horizon without inventory replenishment. Four key

features distinguish this particular problem class from other classes of pricing prob-

2



lems. First, the initial inventory of each of the products involved is given, and in

most models to be reviewed, is not a decision variable. In some models, the amount

of initial inventory is a decision variable to be determined at the very beginning

of the selling horizon. Second, inventory replenishment is not allowed during the

selling horizon. Third, the selling horizon is prespecified and finite. At the end of

the selling horizon, any unsold items will perish and can only be salvaged. This

is also referred to as “perishability” of the product(s). Fourth, pricing decision in

general involves determining a sequence of prices over time rather than specifying

a single static price for the entire horizon. Thus, the pricing models surveyed in

Chapter 2 all involve multiple time periods rather than a single time period. This

particular class of dynamic pricing problems arise in various industries including,

e.g., airlines, hotels, car rentals, cruise lines, long-distance bus service, broadcast

advertising, sports and entertainment, medical service, freight transportation, and

retail industries. We classify existing models into several classes and sub-classes.

For each class and sub-class, we present detailed review of existing models. We

classify and compare existing models according to some common features studied

and summarize their solution approaches and results. We also identify topics and

issues that have been ignored in the existing literature and propose them for future

research.

1.2 Markdown Pricing with Multiple Stores

Most of the existing pricing models have focused on problems with a single

product and a single store. Examples include, Gallego and van Ryzin (1994), Bi-

tran and Mondschein (1997), Feng and Xiao (1999, 2000a, 2000b), Zhao and Zheng

(2000), and Smith and Achabal (1998). To the best our knowledge, Bitran et al.

(1998) is the only paper that considers a model with multiple stores. Their model,

however, does not incorporate many practical constraints that are commonly seen in

retail industries. In addition, when modeling demand, they assume that the demand

is independent across time which may not be true in many practical situations. Fur-

3



thermore, their solution procedure can only handle problems with a small number

of stores. In contrast, we propose a model in Chapter 3 that is more practical than

the model studied by Bitran et al. (1998) and propose a solution approach capable

of generating near-optimal solutions for large-scale problem instances. More specif-

ically, in Chapter 3 we study a real-world problem faced by a retailer that involves

joint decisions of inventory allocation and markdown pricing of a single product

at multiple stores subject to a number of business rules. At the beginning of the

markdown planning horizon, there is a certain amount of inventory of a product at a

warehouse that needs to be allocated to many retail stores served by the warehouse

over the planning horizon. In the same time, a markdown pricing scheme needs

to be determined for each store over the planning horizon. The complete demand

distribution information is assumed to be unknown. We use demand scenario tree

to approximate the demand distribution, which enables us to model demand corre-

lation across time periods and among stores. We formulate the problem as a MIP

and develop a Lagrangian relaxation based approach which is implemented on a

rolling horizon basis. Extensive computational tests demonstrate that our approach

is efficient for solving practically sized problems (50-100 stores) and also the per-

formance of our approach is significantly better under all circumstances compared

to a number of benchmark approaches commonly used in practice. A number of

interesting managerial insights are also discussed.

1.3 Dynamic Pricing with Two Substitutable Products

A number of existing papers consider pricing of multiple products, including

Kuyumcu and Popescu (2006), Tang and Yin (2007), Karakul and Chan (2008),

Thiele (2009), Adida and Perakis (2006). But only a few of them explicitly model

the demand interdependency among products. These papers include, Gallego and

van Ryzin (1997), Bitran et al. (2006), Maglaras and Meissner (2006), Dong et al.

(2009), Zhang and Cooper (2009), Akcay et al. (2010), and Suh and Aydin (2011).

All these papers assume that price can be reset at any time point and none of them

4



explicitly take into consideration of the inventory-driven substitution when one of

the products runs out of stock but the price of this product has to stay unchanged.

In addition, most of the existing dynamic pricing models assume the precise knowl-

edge of the underlying probability distribution of a random demand and assume

risk neutrality of the decision maker. However, this may not be the case when

little sales data is available especially in the case of products with a short-selling

season. For this reason, recently there is an increasing research interest in the op-

erations management area to use models that require limited demand information

only. Examples include Lan et al. (2008) and Ball and Queyranne (2009) for airline

revenue management problems, Perakis and Roels (2008) for the newsvendor model,

and Thiele (2006a, 2006b, 2009), and Eren and Maglaras (2009) for pricing prob-

lems. In Chapter 4 we consider a problem involving all these issues discussed above.

Specifically, we consider a dynamic pricing problem with two substitutable products

which involves a number of business rules and issues commonly seen in practice. A

given amount of inventory of each product has to be sold over a short selling season

without inventory replenishment. Prices of the products can be re-set periodically

according to some business rules. There are both price-driven substitution effect

and inventory-driven substitution effect between the two products. Demand corre-

lation exists between the two products in each time period and across time periods.

However, there is not enough information to precisely estimate the underlying prob-

ability distributions of the demand functions. We use a number of lower and upper

bounds (instead of a point estimate or a probability distribution function) to char-

acterize the demand of each individual product, the aggregate demand of the two

products in each period, and the aggregate demand of the two products across

multiple time periods. A robust optimization model is developed in which we max-

imize the worst-case performance. We develop a dynamic programming algorithm

to solve the max-min problem. To speed up the DP algorithm, we further develop

a fully polynomial-time approximation scheme (FPTAS) which guarantees a proven

near optimal solution. Our extensive computational experiments demonstrate the

effectiveness and robustness of the proposed approaches. We also generate a set

5



of interesting managerial insights on how the price elasticities, demand uncertainty

level, and some other problem parameters impact on the optimal price paths of

the products. These insights can help store managers make better pricing decisions

when facing high demand uncertainty due to lack of information.

6



Chapter 2

A Survey of Dynamic Pricing Models

2.1 Introduction

Dynamic pricing is one of the most fundamental and commonly used revenue

management tools. It enables a firm to increase revenue by better matching sup-

ply with demand, responding to shift of demand pattern, and achieving customer

segmentation. Since its early success in the airline industry, dynamic pricing has

now gained popularity in many other industries as well including, e.g., hotel, car

rental, cruise lines, long-distance bus service, broadcast advertising, sports and en-

tertainment, medical service, freight transportation, and retail industries. Over the

past two decades, numerous success stories of dynamic pricing applications have

motivated various dynamic pricing models and a rapidly growing body of research

on these models in the operations management literature.

We classify dynamic pricing models into two classes: models with inventory

replenishment (denoted as WR) and models with no inventory replenishment (de-

noted as NR). Models with inventory replenishment deals with problems where in-

ventory can be replenished (via production or ordering) periodically over the selling

horizon. Models without inventory replenishment deal with problems where there

is an initial amount of inventory to be sold over a finite planning horizon without

adding new inventory, and the initial inventory is either given exogenously or to be

determined as a decision variable. Our focus in this survey is on NR problems, and

hence we are not going to delve into WR problems. For NR problems, we further

classify them based on the nature of competition and the type of customers involved

as follows. In terms of the nature of competition, a majority of existing papers study

problems with a single firm with no competition (denoted as NC), whereas only a

handful of papers consider problems with multiple firms with competition (denoted
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as WC). In terms of the type of customers, early research is mainly focused on

problems with myopic customers (denoted as MC), whereas most recent research is

more focused on problems with strategic customers (denoted as SC). Myopic cus-

tomers are those who always make a “buy-or-leave” decision at the time of arrival.

More specifically, at the time of arrival, if their valuation is higher than the selling

price, they buy the product immediately; and otherwise they leave the store (in this

case, the demand is lost for the firm). Strategic customers are those who always

make a “buy-or-wait” decision at the time of arrival by considering possible future

price and product availability in order to maximize their expected utility or surplus.

Even if their valuation is higher than the current selling price, they may still wait

and buy at a later time if they expect to have a higher utility or surplus at a later

time. We classify NR problems into the following three sub-classes: (1) problems

with no competition and myopic customers (NR-NC-MC); (2) problems with no

competition and strategic customers (NR-NC-SC); (3) problems with competition

(NR-WC), which includes problems with myopic customers and problems with

strategic customers.

Gallego and van Ryzin (1994) and Bitran and Mondschein (1997) are two

representative early studies in the operations management literature that address

NR problems. They both consider a NR-NC-MC problem with a single product

and a single store. Since then, NR problems have attracted a rapidly increasing

research interest in the literature especially in the last five years. Not only NR-NC-

MC problems with a single product and a single store, but also their extensions with

multiple products or multiple stores, and new classes of problems, including NR-

NC-SC and NR-WC, have received considerable attention. Practical issues that

were largely ignored before, such as business rules and demand learning, are also

investigated more recently. Given that many new models and results have appeared

in the recent literature, we believe that a comprehensive survey on this important

class of problems is necessary.

In this chapter, we present a comprehensive review on problems with a finite

amount of initial inventory and a fixed time horizon in each of the three problem
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classes, i.e., NR-NC-MC, NR-NC-SC, and NR-WC. We will also point out

possible directions for future research. More specifically, we survey dynamic pric-

ing problems that involve one or multiple firms selling one or multiple products,

each with a finite amount of initial inventory (or capacity), over a fixed time hori-

zon without inventory replenishment. Four key features distinguish this particular

problem class from other types of pricing problems. First, the initial inventory of

each of the products involved is finite, and in most studies to be reviewed, is given

and not a decision variable. In some studies, there might be a one-time opportunity

for inventory procurement in the very beginning. In this case, the amount of initial

inventory is a decision variable. Second, once the selling season starts, inventory

replenishment is not allowed. Third, a given deadline is present for the selling sea-

son (i.e., finite time horizon). In the end of the time horizon, any unsold items will

perish and can only be salvaged, which is also referred to as “perishability” of the

product(s). Fourth, pricing decision is dynamic in general, i.e., it involves deter-

mining a sequence of prices over time rather than specifying a single static price

for the entire horizon. Thus, the pricing models surveyed in this chapter all involve

multiple time periods rather than a single time period. It is possible that in some

extreme cases, the optimal price in each period can be identical.

Numerous dynamic pricing problems involving selling a fixed amount of in-

ventory over a fixed time horizon without inventory replenishment can be found in

a variety of industries, including travel industry (e.g., airlines selling seats, hotels

selling rooms, rental car agencies renting cars, cruise line companies selling cabins),

entertainment industry (e.g., theaters selling tickets), and retail industry (e.g., re-

tailers selling seasonal and fashion products in their selling seasons, or clearing the

inventory of consumer electronic products at the end of their life-cycles). Clearly in

all these examples, the initial inventory (or capacity) is fixed and there is a deadline

for the selling season. In the airline example, airlines typically commit a particular

type of aircraft to a particular flight, and thus the number of seats on each flight

is fixed. Most airlines start to sell seats three to eleven months ahead of departure

time. After the departure time (deadline), any unsold seats have no value. In the

9



retail example, as most of the fashion apparel are made overseas and then shipped

to the US, often times the production lead time can be more than six months.

The actually selling season, on the other hand, may only last six to eight weeks.

Therefore, retailers typically make a one-time order long before the beginning of the

selling season. Once the selling season starts, there is no opportunity to replenish

the inventory if the demand turns out to be higher than expected. On the other

hand, any unsold items at the end of the season can either be donated to charity or

liquidated via a discount sales channel. In either case, the retailer can only receive

a substantially lower salvage value compared to the product’s regular selling price.

There are several existing reviews on some classes of dynamic pricing problems

that overlap with the problem classes we review in this survey. Elmaghraby and

Keskinocak (2003) review pricing problem classes WR and NR. Within problem

class NR, they mainly focus on NR-NC-MC problems with a single product and

a single store. Bitran and Caldentey (2003) provide a limited review on pricing

problem class NR-NC-MC. They mainly focus on the case with a single product

and a single store. McAfee and te Velde (2007) give a limited review on problem

class NR-NC-MC which is exclusively focused on the airline industry. Shen and

Su (2007) present a review of literature on customer behavior within the areas of

revenue management and auction. They cover problem class NR-NC-SC and also

problem class NR-NC-MC with multiple products. In contrast, we provide a

detailed review on each of the problem classes NR-NC-MC, NR-NC-SC, and

NR-WC. Within problem class NR-NC-MC, we review problems with a single

product, problems with multiple products, as well as problems with multiple stores.

We note that there are no existing papers that consider problems with both multiple

products and multiple stores. For problem classes NR-NC-SC and NR-WC, all

existing papers consider single-product-single-store problems. In our survey, we

review 58 papers in detail, of which 16 also appear in Shen and Su (2007), 9 appear

in Elmaghraby and Keskinocak (2003), 12 appear in Bitran and Caldentey (2003),

6 appear in McAfee and te Velde (2007), and 29 have not been reviewed by any of

these four existing survey papers.
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The following types of dynamic pricing problems are out of the scope of this

survey and hence not reviewed: pricing problems involving replenishment of in-

ventory (e.g., Chen and Simchi-Levi, 2004a, 2004b, Federgruen and Heching, 1999,

2002), pricing problems involving production decisions (e.g., Yano and Gilbert 2004,

Deng and Yano 2006, Geunes et al. 2006, Ahn et al. 2007), pricing problems with in-

finite time horizon (e.g., Chintagunta and Rao, 1996, Raman and Chatterjee, 1995),

and pricing problems with a single period where a single price is to be determined

(e.g., Kuyumcu and Popescu, 2006, Thiele, 2009, Karakul and Chan, 2008, and

Tang and Yin, 2007). Note that in the revenue management literature, although

capacity control problems (e.g., Talluri and van Ryzin, 2004, Netessine and Shum-

sky, 2005) are closely related to dynamic pricing problems, they are not the focus

of this survey and hence not reviewed.

The remainder of this chapter is organized as follows. We first in Section 2.2

review papers that consider dynamic pricing problems NR-NC-MC. We review

papers with single-product-single-store, multi-product, and multi-store in Sections

2.2.1, 2.2.2, 2.2.3, respectively. We then in Section 2.3 review dynamic pricing

problems NR-NC-SC. Next, in Section 2.4 we review papers that study the dy-

namic pricing problems NR-WC. Finally we conclude this survey in Section 2.5

and identify possible directions for future research.

2.2 Models with No Competition and Myopic Customers

Existing literature can be categorized into three types in terms of the way

they model the time horizon. Type (i): continuous time horizon where the price

changes can occur at any point in time. Type (i) assumption is suitable for most

internet stores where prices can be easily adjusted at any time point at a small

(or no) cost. Type (ii): discrete time horizon where the price changes can only

occur at the beginning of each time period. Type (ii) assumption is appropriate

for most physical stores where price changes may incur a significant cost and the

prices are usually adjusted according to a fixed schedule, e.g., weekly. Type (iii):
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discretized continuous time horizon where the time horizon consists of many discrete

time intervals. The length of each interval is sufficiently small such that there is

at most one customer arrival within each time interval. Type (iii) assumption is

essentially a discrete approximation of type (i) assumption.

In terms of the allowable prices, existing models can be generally categorized

into two types. Type (i): continuous allowable prices, i.e., any price can be used

(in some cases, there might be a lower and an upper bounds for the allowed prices).

Type (i) assumption represents an ideal situation where firms have complete flex-

ibility in setting up the prices. Type (ii): discrete allowable prices, i.e., the price

can only be chosen from a pre-determined discrete set of price points. Type (ii)

assumption represents a typical situation where firms tend to follow a sound pricing

strategy, e.g., customers are much more willing to buy at certain price points (e.g.,

Allen 2011). Therefore, only a small number of price points are used. For example,

in the retail industry, the price for a particular camera model may only be chosen

from the set {$249, $299, $349, $399, $449, $499}.

2.2.1 Single Product and Single Store

In this section, we review papers that consider the dynamic pricing problem

with single product and single store. We first describe the general problem using

some common notations. We consider the problem where a firm holds N units of

initial inventory for a single product at the beginning of the selling horizon. The

length of the selling horizon T is fixed. Inventory replenishment during the selling

horizon is not allowed. Unsold items will perish at the end of the selling horizon. In

that case, the firm can only receive a small salvage value s for each unit of unsold

item. Most papers assume that s = 0 except Smith et al. 1998, Smith and Achabal

1998, Chatwin 2000, Gupta et al. 2006, and Chun 2003. The problem in which s > 0

can be converted to an equivalent problem with s = 0 if s is a constant regardless of

the number of unsold items (see Gallego and van Ryzin, 1994). Due to the relative

short selling season, the majority of the papers ignore inventory holding costs and

time discounting except Smith et al. (1998) who explicitly incorporate inventory
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holding costs in their model. The objective is to determine the optimal price over

time (possibly a dynamic pricing scheme) in order to maximize the total expected

revenue collected over the entire time horizon, denoted by the corresponding value

function V (N, T ). For any intermediate state where the remaining inventory is n

and remaining time is t, we denote the value function as V (n, t).

To the best of our knowledge, in the operations management literature, the

first paper that investigates the problem described above is Gallego and van Ryzin

(1994). Since then, the pricing problem for a single product and a single store has

received extensive attention in the literature. Other papers include Feng and Gallego

(1995, 2000), Bitran and Mondschein (1997), Feng and Xiao (1999, 2000a, 2000b,

2006), Zhao and Zheng (2000), Chatwin (2000), Smith and Achabal (1998), Smith

et al. (1998), Anjos et al. (2005), Gupta et al. (2006), McAfee and te Velde (2008),

Monahan et al. (2004), Chun (2003), Aydin and Ziya (2009), Neelakantan et al.

(2007), Besbes and Zeevi (2009), Lin (2006), Sen and Zhang (2009), and Levin et

al. (2007). In what follows, we first (in Section 2.2.1.1) describe the demand models

commonly used in the literature and categorize the literature according to some

common model assumptions, and we then (in Section 2.2.1.2) review each paper in

details and summarize their solution approaches and major results.

2.2.1.1 Demand Models and Categorization of Existing Literature

Demand models can be generally categorized into two types, i.e., deterministic

model and stochastic model. For deterministic models, the aggregate demand D

within a period of time (for discrete time case) or the demand rate λ at certain point

in time (for continuous time case) can be represented as a deterministic function of

price p, time t and possibly other variables. Other variables may include on-hand

inventory level, sales to date, advertisement, etc. We will specify these variables

when we review each paper in details in Section 2.2.1.2.

Within the group of stochastic models, we further categorize them into three

types. Stochastic model (i) (referred to as general Poisson model hereinafter): de-

mand arrives following a Poisson process with demand intensity λ, which is a func-
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tion of price p and time t, λ = G(p, t). Stochastic model (ii) (referred to as Poisson

reservation price model hereinafter): customers visit the store following a Poisson

process with given intensity Λt at time point t. Each customer has a reservation

price upon arriving at the store, if the posted price p is below her reservation price,

she will make a purchase, otherwise not. The distribution of reservation price at

any given time t is known with cumulative distribution function F(p, t). Therefore

the purchasing probability is F̄(p, t) = 1− F(p, t). Poisson reservation price model

explicitly models customers’ purchasing behavior. Clearly, we can view Poisson

reservation price model as a special case of general Poisson model if we make the

following transformation, λ = ΛtF̄(p, t). Stochastic model (iii) (referred to as general

aggregate model hereinafter): aggregate demand D within a certain period of time

can be represented as a stochastic function of price p and time t, D = H(p, t). Note

that general Poisson model and Poisson reservation price model are for continuous

time case only while general aggregate model is for discrete time case only.

For each type of demand model, we further categorize them into two types, i.e.,

time-invariant model and time-varying model (also referred to as homogeneous/time-

independent and nonhomogeneous/time-dependent demand in some papers). In the

following, we use a two-field notation (α|β) to specify the type of demand models.

α = {D,P,R,A} indicates whether demand model is a deterministic model (α = D),

general Poisson model (α = P), Poisson reservation price model (α = R), or gen-

eral aggregate model (α = A). β = {I,V} indicates whether demand model is a

time-invariant model (β = I) or time-varying model (β = V). For example, we

use P|I to represent a stochastic demand model, i.e., general Poisson model with

time-invariant demand rate.

Most papers assume that given a price, one can either perfectly predict the

demand (deterministic demand model) or knows exactly the demand distribution

(stochastic demand model). In practice, often times this may not be case due

to lack of demand information before the season starts and fast-changing market

conditions. Several papers (Besbes and Zeevi 2009, Sen and Zhang 2009, and Lin

2006) investigate the dynamic problem assuming that firms do not have precise
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knowledge about the underlying demand. So either they do not know the demand

function, or they know the demand function without knowing the exact parameter

values. In such cases, to improve the performance firms have to update their demand

forecast according to the real-time sales information. We treat these models as a

separate group and call them demand learning (DL) model. Table 2.1 categorizes

the existing models based on their model assumptions, i.e., time horizon, allowable

prices, and demand model. Detailed review of each paper is provided in the next

section, Section 2.2.1.2

2.2.1.2 Review of Existing Literature

In the following, we review the literature based on the type of problems stud-

ied. We review problems with continuous time horizon & continuous allowable

prices, continuous time horizon & discrete allowable prices, discrete time horizon &

continuous allowable prices, and discrete time horizon & discrete allowable prices

in Sections 2.2.1.2.1, 2.2.1.2.2, 2.2.1.2.3, and 2.2.1.2.4, respectively. In a separate

section (Section 2.2.1.2.5), we review all papers that incorporate demand learning

regardless of other model assumptions. Some papers may appear in multiple sections

if they involve multiple problems. Within each type of problems, we first consider

the case with time-invariant demand function and then with time-varying demand

function. Within each type of demand function, we first review deterministic prob-

lems, followed by stochastic problems. Note that each type of problem may not cover

a complete combination of all possible demand models. For example, for problems

with discrete time horizon, none of the papers explicitly consider a time-invariant

demand model since it can be treated as a special case of time-varying model.

2.2.1.2.1 Continuous Time Horizon & Continuous Allowable Prices

We first consider the case where the demand intensity is time-invariant and a func-

tion of price p only, i.e., λ = G(p). For the deterministic case, Gallego and van

Ryzin (1994) show that a single price is optimal. For the corresponding stochastic

model (general Poisson model), they derive the following monotonicity properties

15



Table 2.1: Overview of Existing Models with Single Product and Single Store

Time horizon Allowable prices Demand model Paper(s)

Continuous Continuous D|I Gallego and van Ryzin, 1994

D|V Gallego and van Ryzin, 1994

Anjos et al., 2005

Smith and Achabal, 1998

P|I Gallego and van Ryzin, 1994

McAfee and te Velde, 2008

P|V Gallego and van Ryzin, 1994

Levin et al. 2007

R|I Aydin and Ziya, 2009

R|V Bitran and Mondschein, 1997

Zhao and Zheng, 2000

DL Besbes and Zeevi, 2009

Lin, 2006

Continuous Discrete D|I Gallego and van Ryzin, 1994

D|V Gallego and van Ryzin, 1994

P|I Gallego and van Ryzin, 1994

Feng and Gallego, 1995

Feng and Xiao, 1999, 2000a, 2000b

Chatwin, 2000

P|V Gallego and van Ryzin, 1994

Feng and Gallego, 2000

Feng and Xiao, 2006

Chatwin, 2000

R|I Aydin and Ziya, 2009

R|V Zhao and Zheng, 2000

DL Lin, 2006

Discrete Continuous D|V Gupta et al., 2006

R|V Bitran and Mondschein, 1997

A|V Gupta et al., 2006

Chun, 2003

Monahan et al., 2004

Discrete Discrete A|V Smith et al., 1998

Neelakantan et al., 2007

DL Sen and Zhang, 2009
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for a particular state (n, t).

• Property (i): V (n, t) is strictly increasing and concave in n;

• Property (ii): V (n, t) is strictly increasing and concave in t;

• Property (iii): the optimal price p∗(n, t) is strictly decreasing in n;

• Property (iv): the optimal price p∗(n, t) is strictly increasing in t.

For a special case where the demand intensity is an exponential function of price,

i.e., λ = ae−αp where a, α are given parameters, they obtain a closed form optimal

solution. For the general case, they demonstrate that a single price policy is asymp-

totically optimal when the volume of the expected sales goes to infinity. McAfee

and te Velde (2008) investigate the same problem with constant demand elasticity,

i.e., λ = ap−ε where ε is the demand elasticity. They derive the closed form op-

timal solution for this particular demand function and show that their solution is

even simpler compared to the one obtained by Gallego and van Ryzin (1994) with

exponential demand function. They also show that with constant demand elastic-

ity, social efficient solution that maximizes the total gain from selling all products,

which is believed to be the consequence of competitive market, is also achieved in

a monopoly market. Finally, they show that if initially there are more customers

than available number of items, then at the average prevailing capacity, delaying

the purchase is unprofitable for the customer.

Aydin and Ziya (2009) consider a case where the firm makes a personalized

pricing based on individual customer’s signal (the firm can infer customer’s willing-

ness to pay based on this signal), in addition to inventory level n and remaining

time t as other papers have considered. They formulate the problem as a stochas-

tic dynamic program by discretizing the continuous time horizon. They show that

under some strong conditions, the optimal price is increasing in the signal revealed

by the customer.

When the demand intensity is time-varying, if the demand rate can be rep-

resented as the following multiplicative form, λ = G1(t)G2(p), Gallego and van

17



Ryzin (1994) show that the problem can be transformed into an equivalent prob-

lem with time-invariant demand rate by redefining the time horizon. Therefore, all

the results derived for the time-invariant case still hold true (for both deterministic

and stochastic cases). Anjos et al. (2005) and Smith and Achabal (1998) focus on

the deterministic version of this problem. Similar as the Poisson reservation price

model for the stochastic case, Anjos et al. (2005) assume that the demand rate at

any time t depends on the instantaneous arrival rate Λt and the probability that a

customer makes the purchase P(p, t). Therefore, the instantaneous demand rate at

time t is ΛtP(p, t). They show that under certain conditions, the optimal pricing

strategy can be characterized by a family of continuous pricing functions. Smith and

Achabal (1998) incorporate the on-hand inventory level in their demand function

in addition to price p and time t. They assume that the inventory effects are one-

sided, i.e., low inventory decreases sales while high inventory has no impact on sales.

For a multiplicative separable demand function with exponential price sensitivity,

i.e., λ = K(t)Y(I)e−αp where K(t) capture seasonal effects and Y(I) capture the

impact of on-hand inventory I, they obtain closed form solution. They show that

the optimal price should be adjusted to compensate exactly for any reduction due

to seasonal effects. They also find that when the demand is impacted by inventory,

one should use higher initial price early in the season and offer deeper discount in

the end. Their model was implemented at three major retail chains and two of them

were considered as highly successful.

Bitran and Mondschein (1997) study the same problem as Gallego and van

Ryzin (1994) with Poisson reservation price model. As discussed in Section 2.2.1.1,

the equivalent demand intensity at time t for the Poisson reservation price model

is ΛtF̄(p, t), where Λt is customers’ arrival rate and F(p, t) is the cumulative distri-

bution function for the reservation price. They show that if the reservation price

distribution is time-invariant (the arrival rate Λt can still be time-varying), i.e.,

F(p, t) = F(p), Properties (iii) & (iv) hold. This is consistent with the above find-

ing by Gallego and van Ryzin (1994) if we view F̄(p) as G2(p) and Λt as G1(t).

Under the same condition, they also show that a single price is optimal when the

18



initial inventory N is large enough (greater than any possible total demand for the

entire time horizon).

Zhao and Zheng (2000) use a very similar modeling framework (e.g., Poisson

reservation price model) as Bitran and Mondschein (1997) to investigate the same

problem. They show that for the general case where the reservation price distribu-

tion F(p, t) is time-varying, Properties (i) & (iii) still hold. However, Properties (ii)

& (iv) may not always be valid, e.g., the value function V (n, t) may not be concave

in t in certain cases. They prove that ∆V (n, t) = V (n, t)− V (n− 1, t) is increasing

in t and show that under certain sufficient conditions, Property (iv) still holds. This

condition requires that the probability that a customer is willing to pay a premium

does not increase over time. They justify the use of dynamic pricing as a tool to

compensate for (i) normal statistical fluctuation of demand and (ii) shifts of reser-

vation price. Their numerical results demonstrate that compared to the single-price

policy, the optimal dynamic pricing can improve the revenue by 2.4% to 7.3% due

to (i) and up to 100% due to (ii).

Levin et al. (2007) consider a dynamic pricing model by incorporating price

guarantee policy. Customers tend to delay their purchase due to future price uncer-

tainty while firms may provide price guarantee policy (by charging a fee) to induce

customers to buy earlier. At each point in time, the firm simultaneously determine

the optimal price and price guarantee policy. To develop an analytically and com-

putationally practical model, they discretize the continuous time horizon. The sales

revenue at each time point depends not only on the remaining inventory and time,

but also on the entire sales and policy history. This makes it difficult to formulate

the problem as a dynamic program. Instead, they formulate the problem as a non-

linear program with the entire problem being optimized together. In their numerical

experiments, they were only able to solve problems with very small size. They fur-

ther develop a myopic lower-bounding heuristic. Their numerical experiments show

that price guarantee policy may increase the revenue by either generating extra sales

or collecting fees and the improvement is quite significant.
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2.2.1.2.2 Continuous Time Horizon & Discrete Allowable Prices

We first consider the case where the demand intensity is time-invariant. For the de-

terministic case, Gallego and van Ryzin (1994) show that the optimal solution is to

use two adjacent prices (chosen from multiple predetermined prices) with each price

being applied to a portion of the time horizon. For the corresponding stochastic

case, they propose a stopping-time heuristic (ST heuristic) based on the determin-

istic solution, i.e., start from one of the two prices obtained from the deterministic

solution and switch to the other one once a certain number of items has been sold or

a certain time has elapsed. They demonstrate that the ST heuristic is asymptotically

optimal when the volume of expected sales goes to infinity.

Feng and Gallego (1995) develop the optimal policy for the problem where

only two prices are used and prespecified. They consider three cases: (i) a markup

case in which one can switch from the initial price p1 to a given higher price p2

(p1 < p2) at certain time; (ii) a markdown case in which one can switch from the

initial price p1 to a given lower price p2 (p1 > p2) at certain time; or a markup or

markdown case in which one can switch from the initial price p to either a given

lower price p1 or a given higher price p2 (p1 < p < p2) at certain time. They show

that a threshold policy is optimal, i.e., it is optimal to increase (resp., decrease) the

initial price once the remaining time falls above (resp., below) the time threshold

which is dependent on the on-hand inventory level. Feng and Xiao (1999) extend

this problem to incorporate the risk. In their extended model, they add a term (a

linear function of the variance of the revenue) to the objective function (originally it

only includes the expected revenue) to reflect decision-makers’ risk attitude (either

risk-averse or risk-prone). They obtain the exact solution (time thresholds) in closed

form for their extended model.

The problem is further extended by Feng and Xiao (2000a) to the case where

there are K (K ≥ 2) predetermined prices with p1 < p2 < . . . < pK . The price can

only change monotonically, i.e., either from p1 to pK (markup case) or from pK to

p1 (markdown case). For this extension, the authors find the exact optimal solution

(again a threshold policy). They show that the value function V (n, t) is increasing
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and piece-wise concave in both n and t. The optimal time thresholds are also

monotonic in the number of remaining inventory n. Feng and Xiao (2000b) consider

another case where reversible price changes are allowed, i.e., both markdown and

markup are allowed. They show that only a subset of given prices that form a

concave envelop is potentially optimal. They derive the optimal time thresholds for

this case. For the same case, Chatwin (2000) prove that Properties (i), (ii), (iii),

and (iv) all hold.

Aydin and Ziya (2009) investigate the personalized dynamic pricing problem

with two given prices p1 and p2. For each individual customer, according to their

signal, the firm either charge the customer p1 or p2. They prove that a threshold

policy is optimal and show that the optimal threshold is monotonic in both inventory

n and time t.

The problem with time-varying demand intensity is investigated by Chatwin

(2000), Zhao and Zheng (2000), Feng and Gallego (2000), and Feng and Xiao (2006).

Chatwin (2000) prove that Properties (i), (ii), (iii), and (iv) all hold if the the prices

and demand are piecewise constant functions of time t. Zhao and Zheng (2000) use

Poisson reservation price model. For the general case where the optimal price may

fail to be monotonic in t for any given inventory level n, they propose a stochastic

dynamic program by discretizing the continuous time horizon to obtain the optimal

solution. For the special case where the optimal policy is time-monotonic, they

develop a procedure to obtain the exact solution, i.e., the optimal time thresholds.

Feng and Gallego (2000) is an extension of Feng and Xiao (2000b). They consider

two problems. In the first problem, both the price and demand intensity are time-

dependent. In the second problem, they consider a Markovian case where both

the price and demand intensity also depend on the sales to date, i.e., the demand

intensity may increase with sales due to word of mouth or decrease with sales due to

the finite population effect. For both problems, they develop efficient algorithms for

computing the optimal time thresholds. Feng and Xiao (2006) consider an integrated

problem in which the inventory allocation (to different micro-markets) and pricing

decisions are optimized together. The optimal policy involves a set of time thresholds
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that depends on inventory, price and demand intensity.

2.2.1.2.3 Discrete Time Horizon & Continuous Allowable Prices

Gupta et al. (2006) consider a deterministic model with demand function in time

period t Dt = Kte
−βtpE[ξt] where Kt measures the market size, ξt is a random

variable and E[ξt] is its expected value, βt is a parameter and its inverse (1/βt)

represents the mean reservation price. They derive the closed form solution and

demonstrate that the mean reservation price is the one that determines the relative

prices in different periods, the higher the mean reservation price, the higher the

optimal price in that period. For a special case where the mean reservation price

is identical in each period, i.e., βt is independent of t, a single price is optimal

for all periods. This finding is consistent with the one by Gallego and van Ryzin

(1994) (see Section 2.2.1.2.1) for the continuous time case if we view e−βtp as G(p).

Their numerical results show that implementing a single-price policy to the general

problem where the mean reservation price varies across time can be near optimal

under the following two situations: (i) the mean reservation price in each period is

close; or (ii) the mean reservation price drops dramatically at the end of the season.

Gupta et al. (2006) also consider a stochastic model with similar demand func-

tion Dt = Kte
−βtpξt where ξt is a random variable that allows demand in different

periods to be arbitrarily correlated. For this stochastic problem, they obtain several

upper and lower bounds on the expected revenue based on the deterministic solu-

tion and develop a heuristic solution approach. They also show that markets with

smaller variability of demand tend to be more profitable. Chun (2003) uses nega-

tive binomial distribution to model uncertain demand in each period and propose a

dynamic program to solve the problem.

Bitran and Mondschein (1997) investigate a problem in which the price change

can only occur at certain point in time and the price change can only be monotonic,

i.e., nonincreasing or nondecreasing. They use Poisson reservation price model to

represent uncertain demand. The problem is formulated as a stochastic dynamic

program. To solve this DP, they discretize the continuous allowable price into a set
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of closely adjacent price points. Their numerical experiments reveal some insights

that are consistent with common industrial practice: (i) the impact of periodic

price change and monotonic pricing are negligible as long as an appropriate number

of price changes are implemented; (ii) higher uncertainty in the reservation price

distribution leads to higher initial price, deeper discount thereafter, higher total

expected revenue and more unsold items at the end of the time horizon.

Monahan et al. (2004) study the dynamic pricing problem with multiplicative

demand function for period t Dt = Atp
−ε, where ε is the price elasticity of demand

and At is an iid random variable. They formulate the problem as a stochastic dy-

namic program. They show that the dynamic pricing problem can be converted to

an equivalent dynamic stocking factor problem that is independent of the inventory

level. And thus the original dynamic pricing problem can be solved by iteratively

solving T single-period optimization problem. They further develop several struc-

tural results including, for example, Property (iv) holds if At is stationary. These

structural results also enable them to develop efficient algorithm for solving the

problem.

2.2.1.2.4 Discrete Time Horizon & Discrete Allowable Prices

Smith et al. (1998) and Neelakantan et al. (2007) are the only two papers that

fall within this category in the existing literature. Smith et al. (1998) use discrete

scenarios to model uncertain demand and consider three possible demand scenar-

ios, i.e., most likely, high and low. They use a multiplicatively separable demand

function that models the impact of seasonal effects, price and advertisement. The

problem is formulated as a mixed integer program and solved by a commercial solver.

Unlike most other papers in the literature, they incorporate inventory holding costs

and consider two commonly-used business rules for promotion plan: (i) markdown

in two consecutive periods are not allowed; (ii) the total number of markdowns

allowed for the entire planning horizon cannot exceed an upper limit. Their case

study that involves a major department store chain demonstrates that compared to

the buyer’s original plan, one can increase the profit by roughly more than 20% if
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one employs the optimal plan obtained from their model.

Neelakantan et al. (2007) develop two models for a clearance markdown pricing

problem, i.e., a risk-neutral model and a risk-sensitive model. For the risk-neutral

model in which they maximize the total expected revenue, the problem is formulated

as a dynamic program. For the risk-sensitive model in which they maximize the

total expected revenue subject to a constraint that the variance of the revenue

cannot exceed a given limit, the problem is formulated as an integer program. They

demonstrate by a case study that their models can be used in practice.

2.2.1.2.5 Pricing Models with Demand Learning

All the papers we have reviewed in Sections 2.2.1.2.1 through 2.2.1.2.4 assume that

given a price at a particular time, one can either perfectly predict the demand

(deterministic case) or knows precisely the demand distribution (stochastic case).

In practice, this may not always be the case especially in the context we consider

for this survey, i.e., relatively short selling season, lack of information, and rapidly-

changing demand pattern. In such a situation, implementing the optimal solution

from a model with inaccurate demand information may incur significant revenue

loss. Therefore, it is important and critical to update the initial estimate of demand

according to the real-time sales data. There are several papers (i.e., Besbes and

Zeevi 2009, Lin 2006, and Sen and Zhang 2009) that incorporate demand learning

in the pricing decision. All three papers assume that demand arrives following a

Poisson process. However, the exact way they model other unknown information is

different.

Besbes and Zeevi (2009) study two problems with continuous time horizon

and continuous allowable prices. In the first problem, they assume that the demand

function belongs to a broad functional class and satisfy some regularity conditions,

but the exact functional form is unknown. In the second problem they assume

that the demand functional form is known with unknown parametric values. For

the first problem, they propose a learning and pricing policy that consists of two

phases, exploration phase and exploitation phase. In the exploration phase, different

24



price points are tested and the corresponding demand realizations are observed. In

the exploitation phase, a single price is used and this single price corresponds to

the “optimal” price based on observations in the exploration phase. For the second

problem, a similar approach is proposed in which the number of price points tested

is equal to the number of unknown parameters. For both problems, they use regret

to measure the performance and derive lower bounds on the regret. They show their

approaches is capable of achieving a regret that is close to the lower bounds.

Lin (2006) uses the Poisson reservation price model to characterize the un-

derlying demand. They assume that customer reservation price distribution F(p, t)

is given while customer arrival rate Λ is unknown. They use gamma distribution

to characterize firms’ knowledge about the customer arrival rate Λ before the sell-

ing season starts and update the distribution by incorporating real-time sales data.

They show that the total number of customers within a period of time follows a

negative binomial distribution. Based on their updated knowledge about the ar-

rival rate, they propose a variable-rate policy based on the optimal solution from

a surrogate model. When determining the price, this approach only considers the

number of future customers while ignores their arrival times. Their numerical exper-

iments demonstrate that the variable-rate policy achieves almost optimal solution

and is also quite robust even when the initial knowledge about customers’ arrival

rate deviates significantly from its true value.

Sen and Zhang (2009) assume discrete time horizon and discrete allowable

prices. The demand is assumed to consist of two components, i.e., base demand

Λ and a multiplier ψ(p) that captures how demand changes with price. The exact

functional form of ψ(p) is unknown and assumed to be one of the given K functions

with certain probability. The exact value of base demand Λ is also unknown with

a given Gamma distribution. They use Bayes’ rule to update the knowledge about

both Λ and ψ(p). They show that the demand in each period follows a linear com-

bination of K negative binomial distribution. Based on the updated distribution,

they propose a dynamic program to solve for the optimal price in each period. Their

numerical results show that compared to the pricing model without demand learn-
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ing, their model is particularly beneficial when the initial estimate of demand rate

is inaccurate, the actual demand mismatches supply, and demand is price-sensitive.

2.2.2 Multiple Products

Until very recently dynamic pricing problems that involve multiple products

or/and multiple stores have received very little attention in the operations manage-

ment literature. To the best of our knowledge, Gallego and van Ryzin (1997) is the

first paper that investigates the dynamic pricing problem involving multiple prod-

ucts. In the last a few years there is an increasing amount of research interest in

this problem. Recent papers that consider the dynamic pricing problems with mul-

tiple products include Akcay et al. (2010), Dong et al. (2009), Zhang and Cooper

(2009), Suh and Aydin(2011), Maglaras and Meissner (2006), Bitran et al. (2006),

Liu and Milner (2006), and Chen and Chen (2010). In the following, we first (in

Section 2.2.2.1) give an overview of research by categorizing the existing literature

according to some common model assumptions. We then (in Section 2.2.2.2) review

each paper in details and summarize and compare their results.

2.2.2.1 Demand Models

We first describe the general problem using some common notations. Consider

a firm that sells N products, indexed by n = 1, 2, . . . , N . At the beginning of the

selling horizon, the firm is endowed with initial inventory Cn for product n. The

length of the selling horizon T is fixed. Due to the long production lead time and

relatively short selling horizon, no inventory replenishment is allowed during the

selling horizon if any product stocks out. Any unsold items at the end of the horizon

have zero salvage value. Problems with non-zero salvage value can be converted

to an equivalent zero-salvage-value problem. In line with common assumptions in

the pricing literature with short selling horizon, inventory holding cost and time

discounting are ignored.

In the case where there are multiple (substitutable or complementary) prod-
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ucts, the demand of one product not only depends on its own price and availability,

but also the prices and availabilities of other products. Customers make a pur-

chasing decision by comparing the prices and other non-price characteristics (e.g.,

quality, styles, features) of all products and choose the one that maximizes their util-

ity. Clearly, changing the relative prices of different products may change customers’

decisions with regard to which product to purchase (this is called price-driven substi-

tution). When their preferred product is out of stock, customers might be willing to

choose other products that are still available (this is called inventory-driven substitu-

tion) or leave the store without purchasing anything. In such a situation, optimizing

the price for each individual product independently may result in a sub-optimal so-

lution. In order to achieve the maximum possible total revenue, one needs to jointly

optimize the prices of all products by taking into account the inventory levels of all

products and the demand interdependency among all products. All papers in the ex-

isting literature consider substitutable products. We are unaware of any paper that

investigates the dynamic pricing problem with complementary products. This can

be an interesting topic for future research. Chen and Chen (2010) is the only paper

that explicitly models both price-driven substitution and inventory-driven substitu-

tion. All other papers model price-driven substitution only. Chen and Chen (2010)

is also the only paper that uses a robust optimization framework in which they max-

imize the worst-case revenue. All other papers assume risk-neutrality and maximize

the expected revenue.

In the existing literature, all papers assume that demand is stochastic. When

modeling uncertain demand, a common assumption made is that customers arrive

following a Poisson process except one paper, i.e., Chen and Chen (2010). They

use a set of lower and upper bounds to model uncertain demand. This requires

only limited demand information instead of full knowledge about the probability

distribution. We will discuss their demand model in details in the next section

when we review each paper in details. For the rest of the papers, in general the

demand model can be further categorized into three types according to the spe-

cific way they model the arrival rate. Demand model (i): the vector of demand
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arrival rates (or intensities) λ̄ = (λ1, . . . , λN) is a function of time t and the price

vector r̄ = {r1, r2, . . . , rN} at time t, i.e., λ̄ = Λ(p̄, t). This includes the special

case where the demand arrival rates are time-invariant. The demand function Λ(·)

satisfies some regularity conditions. Demand model (ii): the total demand arrival

rate λt at time t for all products is given as an exogenous variable, and the prices of

all products jointly determine the purchasing probability for a particular product,

Pn, n = 1, . . . , N , where
∑N

n=0 Pn = 1 and P0 denotes the non-purchasing probabil-

ity. The purchasing probability Pn is modeled differently in each paper and we give

a detailed summary and comparison in the next section. Demand model (iii): the

total demand arrival rate λt at time t for all products is a function of the common

price r at time t. The probability that customers choose a particular product is

given. Demand model (iii) only applies to a specific setting where all products have

to be priced the same. For example, the same shirt with different colors or/and sizes

are usually priced the same in most retail stores. Note that demand models (i) and

(ii) are essentially equivalent if we let λn = λtPn, n = 1, . . . , N . Similarly if we do

the same transformation, demand model (iii) can also be treated as a special case

of model (i) under the condition that all products have to use a common price r.

Table 2.2 categorizes the existing models based on their model assumptions,

i.e., time horizon, allowable prices, and demand model. Detailed review of each

paper is provided in the next section (Section 2.2.2.2).

2.2.2.2 Review of Existing Literature

Gallego and van Ryzin (1997), and Maglaras and Meissner (2006) use demand

model (i) to characterize the uncertain demand. The former assumes continuous

time horizon and continuous allowable prices. The latter uses discretized time hori-

zon and assumes continuous allowable prices. They both assume that there is a

given initial stock of M (M is the number of resources and M = 1 in Maglaras and

Meissner, 2006) resources that can be used to produce N products. Due to the in-

tractability of the proposed stochastic problem, they both rely on the solution to the

deterministic counterpart of the stochastic problem to construct heuristics. Gallego
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Table 2.2: Overview of Existing Models with Multiple Products

Time horizon Allowable prices Demand model Paper(s)

Continuous Continuous Poisson model (i) Gallego and van Ryzin (1997)

Poisson model (ii) Bitran et al. (2006)

Poisson model (iii) Liu and Milner (2006)

Discrete Discrete Bounds-based Chen and Chen (2010)

Discretized continuous Continuous Poisson model (i) Maglaras and Meissner (2006),

Poisson model (ii) Akcay et al. (2010), Dong et al. (2009)

Suh and Aydin (2011)

Discretized continuous Discrete Poisson model (ii) Zhang and Cooper (2009)

Poisson model (i): price-dependent individual arrival rate

Poisson model (ii): price-independent total demand rate and price-dependent purchasing probability

Poisson model (iii): price-dependent total demand rate and price-independent purchasing probability

and van Ryzin (1997) show that the deterministic problem provides an upper bound

on the stochastic problem. Based on the solution to the deterministic problem, they

propose two heuristics. Heuristic 1 (make-to-stock policy): follow the deterministic

price path and preassemble a certain amount of units of each product according to

the deterministic solution. Heuristic 2 (make-to-order policy): follow the determin-

istic price path and assemble and sell products in the order they are received. They

prove that both heuristics are asymptotically optimal as the expected sales volume

approaches infinity. Maglaras and Meissner (2006) show that the dynamic pricing

problem introduced by Gallego and van Ryzin (1997) and the capacity control prob-

lem introduced by Lee and Hersh (1993) can be reduced to a common formulation

in which the firm controls the aggregate capacity consumption rate. Based on the

deterministic solution, they propose three heuristics. Heuristic 1: apply the static

price obtained from the deterministic problem over the entire planning horizon (cor-

responding to Heuristic 2 in Gallego and van Ryzin, 1997). Heuristic 2: apply the

static price together with capacity control (make certain products unavailable when
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the aggregate consumption rate exceeds its nominal value). Heuristic 3: apply the

static price and resolve the deterministic problem on a rolling horizon basis. They

show that all three heuristics are asymptotically optimal under the same condition

as shown by Gallego and van Ryzin (1997).

Akcay et al. (2010), Dong et al. (2009), Zhang and Cooper (2009), Bitran et

al. (2006), and Suh and Aydin (2011) use demand model (ii) to characterize the

uncertain demand. Bitran et al. (2006) assume continuous time horizon and all other

papers use discretized continuous time horizon. Zhang and Cooper (2009) assume

discrete allowable prices and all other papers assume continuous allowable prices.

They all assume that customers are utility-maximizer. Given a set of products,

n = 1, . . . , N , customers will choose product n with probability Pn = Pr(Un =

maxm∈{1,...,N} Um), where Un denotes customers’ utility for a particular product n.

Bitran et al. (2006) use two parameters to characterize a customer’s purchasing

behavior, the non-purchase utility U0 and her budget w. These two parameters are

unknown to the firm and follow a given distribution F (w,U0). They also assume

that the utility for each product Un, n = 1, . . . , N is known and can be ranked as

follows, U1 > U2 > . . . > UN . Given the prices for all products rn n = 1, . . . , N , a

customer will choose the product with the highest utility among those with a price

below her budget. Therefore, the probability of choosing product n is F (rn−1, Un)−

F (rn, Un). To overcome the difficulty in solving the proposed stochastic problem,

they investigate two special cases of the original problem. In special case 1, they

assume that there is unlimited initial inventory. In special case 2, they assume

that the demand is deterministic. They show that the deterministic solution is

asymptotically optimal.

In Akcay et al. (2010), Dong et al. (2009), Zhang and Cooper (2009), and Suh

and Aydin (2011), a customer’s utility for a particular product n can be represented

by a linear function Un = θqn − rn + µξ, where qn is a general quality measure for

product n, θ and ξ are two independent random variables, θ measures customers’

sensitivity to quality qn, and µ is a scalar. These three papers differ in how these

parameters are specified. Table 2.3 summarizes the parameter specification in each
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paper. Note that the specification in the H model of Akcay et al. (2010), Dong

et al. (2009), and Suh and Aydin (2011) results in the well-known multinomial

logit (MNL) model. All four papers formulate the problem as a stochastic dynamic

program.

Table 2.3: Parameter Specification of Different Choice Models

θ µ ξ Paper

Uniform distribution 0 N.A. Akcay et al. (2010), V model

Deterministic Positive Gumbel distribution Akcay et al. (2010), H model

Dong et al. (2009)

Suh and Aydin (2011)

Deterministic Positive Truncated normal distribution Zhang and Cooper (2009)

Akcay et al. (2010) consider two choice models. In the V model, customers’

valuations of the product attributes are uniform, e.g., customers always prefer a

deluxe room over a standard room if the prices are the same. In the H model,

customers’ valuations of product attributes are idiosyncratic, e.g., some customers

may prefer a blue shirt while others may prefer a white shirt if everything else is

the same. They show that the V model and the H model have different pricing

policy structure. For the V model, they show that the optimal price for a product

is driven by its aggregate inventory which equals the total inventory of all products

with higher quality plus its own inventory. For the H model, they show that the

optimal price for a product is driven by its individual inventory. They also develop

a polynomial time exact algorithm for the V model.

Dong et al. (2009) show that the optimal price of a product is the sum of the

marginal value of inventory (in later periods) and the profit margin of an immediate

sale (in the current period). They demonstrate by numerical examples that the

monotonicity properties that hold in the single product case (as shown by Gallego

and van Ryzin, 1994) may not hold in the multi-product case, i.e., the optimal price

31



may not necessarily decrease with time or inventory level. They also show that

full-scale dynamic pricing significantly outperforms a unified static pricing or mixed

dynamic pricing when the inventory is scarce.

Zhang and Cooper (2009) recognize the computational challenge in solving

their model directly due to multi-dimensionality. Hence, they propose five heuristics.

These heuristics are based on price pooling, inventory pooling, value approximation

and policy approximation. Their numerical experiments reveal that: (i) the revenue

loss by using a common price for all products can be quite significant; (ii) revenue

loss due to restricting the price changes to be at pre-specified time points is small.

Suh and Aydin (2011) use a similar model framework as Dong et al. (2009).

But they focus on the case with two products. They show that the marginal value

of a product increases in the remaining time but decreases with its own inventory

and the other product’s inventory. The optimal price, however, does not hold the

monotonicity property, i.e., the optimal price is not monotonic in the remaining

time and the other product’s inventory level. This is consistent with the finding by

Dong et al. (2009) for the multiple-product case.

Liu and Milner (2006) use demand model (iii) to characterize the uncertain

demand. They assume continuous time horizon and continuous allowable prices.

Their model differs from all other models in an additional constraint that requires

all products to have a common price at any time despite the fact that the demand

for each product might be different. This problem arises in certain situations where

the products only differ in some minor attributes. In this case, firms are reluctant

to annoy the customers by pricing those products differently. For example, when

a firm sells the same type of shirt with different colors or sizes, they are usually

priced identically. They demonstrate that the monotonicity property that holds for

the single-product case may not hold in their case, i.e., the optimal price may not

necessarily increase with a reduction in inventory. This creates challenge for solving

the proposed problem. Therefore, they examine two special cases. For special

case 1 where the demand rate is a deterministic function of the price, they show

that a N -segment policy is optimal (recall N is the number of products). To be
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more specific, the planning horizon can be divided into N segments. Within each

segment, a single price is charged to deplete the inventory of a particular product.

They show that the price is decreasing over time. The solution to the deterministic

problem provides an upper bound for the original stochastic problem. For special

case 2 where the demand is stochastic but only a single price markdown is allowed,

they show a threshold policy is optimal. Specifically, the higher price is charged

first. Whenever the remaining time falls below the threshold (which depends on

the current inventory level), it is optimal to switch to the lower price. The solution

provides an lower bound for the original problem. For the general problem, they

develop four heuristics based on the solution obtained from the two special cases.

They show that these heuristics perform well and are asymptotically optimal.

Chen and Chen (2010) assume discrete time horizon and discrete allowable

prices. In their paper, they consider two substitutable products. In contrast to

all other papers, they assume that there is not enough information to accurately

characterize the underlying demand distribution. Instead, they use three types of

bounds to model uncertain demand for any given prices: (i) lower and upper bounds

for the demand of each individual product; (ii) lower and upper bounds for the total

demand of the two products; and (iii) lower and upper bounds for the total demand

of the two products from period 1 to period t. These bounds define the uncertainty

space and enable them to model demand substitution between the two products

and across time periods. Their model also differs from all other models in that it

incorporates commonly-used business rules. These rules are due to established mar-

ket norms and have been largely ignored in the existing literature. They develop

a robust optimization framework in which they maximize the worst-case revenue.

They formulate the problem as a dynamic program. They demonstrate that lower

demand may not necessarily generate lower revenue, which implies that the entire

uncertainty space needs to be searched in order to find the worst-case demand. This

creates computational challenge for solving large problems. To expedite the running

speed, they further develop a Fully Polynomial Time Approximation Scheme (FP-

TAS) that delivers a proven near-optimal solution in a manageable computational
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time for practically sized problems. Their numerical experiments show that com-

pared to the risk-neutral solution that maximizes the expected revenue, the robust

solution not only increases the worst case revenue, but also significantly reduce the

variance of total revenue generated, while the mean revenue loss is small.

2.2.3 Multiple Stores

In a case where a single firm operates multiple stores, pricing and inventory

decisions need to be coordinated among stores and optimized jointly in order to

maximize the total revenue. To the best of our knowledge, in the existing litera-

ture there are only two papers that investigate the dynamic pricing problems with

multiple stores, i.e., Bitran et al. (1998) and Chen et al. (2011).

Both papers assume discrete time horizon. Bitran et al. (1998) assume contin-

uous allowable prices while Chen et al. (2011) assume discrete allowable prices. In

terms of the demand model, Bitran et al. (1998) use Poisson process to model un-

certain demand. Although their solution approach does not rely on this assumption,

it does require precise knowledge about the underlying demand distribution. Chen

et al. (2011), on the other hand, use scenario tree to model uncertain demand. This

requires only limited demand information as opposed to the full knowledge about the

probability distribution. It also enables them to model demand correlation across

time periods and among stores.

Retail chains make pricing and inventory decisions differently. Even for the

same retail chain, pricing and inventory decisions are made differently for different

products. There are two types of pricing mechanisms commonly seen in practice

(Hruschka, 2007, and Shankar and Bolton, 2004). Pricing mechanism (i): all stores

on the same retail chain use a common price for the same product. Pricing mecha-

nism (ii): different prices are used for different store locations but stores within the

same geographical region have to use similar prices. Pricing mechanism (i) allows

firms to maintain a corporate image while pricing mechanism (ii) gives firms more

flexibility in setting up the prices according to the demand pattern of each indi-

vidual store, and thus increase their total revenue. These two mechanisms coexist
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in practice even for the same retail chain. For example, at the beginning of the

selling season, products are priced the same (regular selling price) but at the end

of the season, different discounts are applied at different store locations according

to the corresponding sales pattern. There are three types of mechanisms commonly

encountered in practice for inventory allocation. Inventory allocation mechanism

(i): initial inventory is allocated to each store in the very beginning without fur-

ther inventory redistribution among stores. Inventory allocation mechanism (ii):

inventory is allocated to each store in the very beginning and then it is rebalanced

among stores to respond to the sales pattern at each individual store. Inventory

allocation mechanism (iii): inventory is mostly kept in the central warehouse and it

is delivered to each store period by period according to the sales pattern. In terms

of pricing and inventory decisions, these two papers complement each other. Bitran

et al. (1998) investigate pricing mechanism (i) and inventory allocation mechanisms

(i) and (ii). Chen et al. (2011) investigate pricing mechanism (ii) and inventory

allocation mechanism (iii).

In terms of mathematical formulation and solution approach, Bitran et al.

(1998) formulate the problem as a stochastic dynamic program. Due to the di-

mensionality issues, they develop several heuristics based on their stochastic DP

formulation. They show that their methodology significantly outperforms the ex-

pertise of a product manager of a large retail chain in Chile. Chen et al. (2011)

formulate the problem as a mixed integer program. They propose a Lagrangian re-

laxation approach, which decomposes their original large problem into many small

problems. They also demonstrate that their approach performs significantly better

than those commonly used in practice. Both papers have found that when the de-

mand uncertainty is high, one should start with higher initial price and then adjust

the price according to the realized demand. Chen et al. (2011) show that in the

multiple-store case, two price markdowns are in general enough to achieve satisfac-

tory performance as long as one chooses the right price as well as the right time

to make a price change. This result extends the finding by Gallego and van Ryzin

(1994) who show that in the single-store case, one price change is in general enough.
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Chen et al. (2011) also quantify the revenue impact of using pricing mechanism

(i) versus mechanism (ii). They demonstrate by numerical experiments that it may

incur significant revenue loss if one has to use a common price for all stores in a

situation where stores vary significantly in terms of price-sensitivity. Their numeri-

cal results also imply that one should offer more price markdowns, deeper discount

for stores that are more price-sensitive. Correspondingly, one should allocate more

inventory to those stores relative to their expected demand.

2.3 Models with No Competition and Strategic Customers

Early work on dynamic pricing as those reviewed in Section 2.2 assumes that

customers are myopic in the sense that they make purchasing decisions purely based

on the current product price and availability. Customers will purchase a product as

long as the product is available and their valuation of that product is higher than

the selling price at the time of arrival without considering possible future price and

availability. In other words, the demand can be represented as a function of current

price only.

Often times, this may not be the case in a real market where customers can

easily observe and predict (with certain level of accuracy) the price dynamics ac-

cording to their own shopping experience or with the aid of advanced information

technology. For example, as markdown pricing becomes a common practice for con-

sumer electronics products at the end of their life-cycles or fashion apparel at the

end of their selling season, experienced customers who expect a decreasing price

pattern may only purchase in the “clearance period” to maximize their surplus.

Even in a situation where the price path may not be monotone over time such as

in the airline industry, customers may still be able to find an “appropriate” time

to purchase by resorting to some online deal forum or prediction websites. For

instance, if one searches the price for an airline ticket from the airfare prediction

website Bing Travel (http://www.bing.com/travel/), it not only provides a list of

prices from different websites, but also predicts whether the fare will increase, stay
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steady, or drop (see Figure 2.1). In such a situation, some customers may behave

strategically in the sense that they may delay their purchase in anticipation for a

possible price reduction in the future. Such customers are referred to as strategic

customers in this chapter, and are also referred to as rational customers or forward-

looking customers in other papers. When determining the price schedule over time,

ignoring such strategic customer behavior may result in sub-optimal solutions and

cause substantial revenue loss.

Figure 2.1: Airfare Prediction at Bing Travel

Research on dynamic pricing problems with consideration of strategic customer

behavior first appeared in the economics literature. Stokey (1979) is the first paper

that looks into this issue. She considers a continuous time model where the price may

change continuously over time and shows that price discrimination is not the optimal

strategy for a large class of consumer utility function. Other papers include, for

example, Stokey (1981) and Harris and Raviv (1981). All these papers either assume

infinite initial inventory (Stokey, 1979, 1981) or focus on the design of optimal market

mechanism (Harris and Raviv, 1981), so they are out of the scope of this survey and
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are not reviewed.

Dynamic pricing by incorporating customer behavior has received little at-

tention in the operations management literature until very recently. In the last

several years, we have observed a rapidly increasing interest in this area. Papers

that study the dynamic pricing problem with explicit consideration of strategic cus-

tomer behavior include Zhang and Cooper (2008), Su (2007, 2010), Aviv and Pazgal

(2008), Dasu and Tong (2010), Elmaghraby et al. (2008), Elmaghraby et al. (2009),

Levin et al. (2010), Levina et al. (2009), Yin et al. (2009), Liu and van Ryzin

(2008), Cachon and Swinney (2009), Lai et al. (2010), Bansal and Maglaras (2009),

Ovchinnikov and Milner (2011), Gallego et al. (2008), and Cho et al. (2008). In

the following, we first (in Section 2.3.1) categorize the existing literature according

to common modeling assumptions. We then in Section 2.3.2 summarize some of the

major findings and managerial insights from the existing literature. In the end (in

Section 2.3.3), we review each paper in detail.

2.3.1 Categorization of Existing Literature

In a dynamic pricing problem with strategic customers, the demand can no

longer be simply represented as a function of current price only. A commonly-

adopted approach is to use a game theoretic framework where the firm acts as a

Stackelberg leader and determines the sales policy (e.g., pricing, initial-inventory

decisions) first, and then the customers act as followers and choose when to buy

to maximize their expected utilities by taking the firm’s decision as well as other

customers’ decisions into account. In such a setting, both the firm’s sales policy and

the resulting demand shall be viewed as the consequence of the equilibrium of the

game between the firm and the customers.

To model such a game, a majority of the existing papers use a two-period model

where the first period can be viewed as the regular selling season when a premium

price is charged, and the second period can be viewed as a clearance season when

a discount price is charged. A two-period model is adequate to capture the main

elements of this game if one’s objective is to derive general high-level managerial
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insights. To better represent a real market and provide a satisfactory solution to a

real-world problem, some papers use a multi-period model with a general number of

periods (e.g., Dasu and Tong, 2010) or a continuous time horizon model (e.g., Levin

et al., 2010).

There are two types of pricing policies studied in the literature, a preannounced

pricing policy and a contingent pricing policy. In a preannounced pricing policy, the

firm determines and announces all the prices for the entire selling season at the very

beginning without considering possible future sales. In a contingent pricing policy,

the firm dynamically adjusts the price over time according to the realized sales

history and level of remaining inventory. In a market setting where all customers

are myopic, a contingent pricing policy is clearly better than a preannounced pricing

policy as the preannounced policy lacks the flexibility in reacting to sales realization.

In a market setting where customers may behave strategically, it is not immediately

clear which policy is better. For example, under a contingent pricing policy, a large

number of customers may decide to wait as they anticipate that the firm may use a

much lower price near the end of the season; whereas under a preannounced pricing

policy, if the firm commits upfront to only a small price discount in the markdown

period, it may discourage strategic waiting and thus increase sales in the regular

season. In the existing literature, some papers consider markdown pricing only

where the price is non-increasing over time. Whereas some other papers consider a

more general pricing setting where the price is allowed to go up or down.

In some situations, a firm’s sales policy may also involve rationing decisions

(i.e., control the product availability and fulfill only a fraction of demand). By lim-

iting the product availability in the sales period, the firm can discourage strategic

waiting and induce more customers to purchase in the regular selling season. Typi-

cally there are two ways to achieve this: (i) limit the initial inventory (or capacity);

or (ii) fulfill only a fraction of demand in the markdown period even if there is suffi-

cient inventory. We refer to the former as initial inventory rationing and the latter

as sales rationing.

In Table 2.4, we categorize existing literature based on their assumptions on
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time horizon as well as the firm’s pricing and rationing policies considered by each

paper. In addition to pricing and rationing, firm may also use other tools such as

quick response (Cachon and Swinney, 2009), inventory display format (Yin et al.,

2009), price matching (Lai et al., 2010), and reservation regime (Elmaghraby et

al., 2009) to mitigate the negative impact of strategic customer behavior. We will

discuss these tools when we review individual papers in Section 2.3.3

Given a firm’s sales policy, the demand is determined by both the customers’

arrival process and their purchasing behavior. A customer’s purchasing behavior

is primarily determined by the customer’s type (myopic or strategic), her valua-

tion of the product and risk attitude. In the following, we summarize how these

characteristics are modeled in the existing literature.

There are four types of customer arrival process considered in the literature.

Type (i) (which we call static arrival process): the total number of potential cus-

tomers is known and all customers are present at the beginning of the selling season.

Type (i) arrival process is most commonly assumed in the existing literature. Type

(ii) (which we call Poisson arrival process): customers arrive following a Poisson pro-

cess with a given rate. Type (iii) (which we call random aggregate arrival process):

the aggregate number of potential customers in each period is represented by a ran-

dom number (or a combination of random and deterministic numbers). Type (iv)

(which we call continuous constant arrival process): customers arrive continuously

according to a deterministic flow with a given constant rate.

In terms of customer composition, most papers assume that all customers are

strategic while the remaining assume that there is a mixture of strategic and myopic

customers. We note that in the general models of Su (2007), Levin et al. (2010) and

Levina et al. (2009), all customers are strategic. However, in a limiting case, the

customers in their models can become myopic. In Su (2007) where waiting incurs

a waiting cost b per unit time, when b = ∞, a customer will purchase the product

without waiting if her valuation is higher than the current selling price and hence

behave like a myopic customer. In Levin et al. (2010) and Levina et al. (2009),

a customer’s utility from a future purchase is discounted by a factor β ∈ [0, 1] per
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Table 2.4: Modeling Firm’s Policy

Time Horizon Pricing Scheme Rationing Paper(s)

Two-period Markdown Contingent Initial-inventory Cachon and Swinney, 2009

Lai et al., 2010

No Aviv and Pazgal, 2008

Preannounced Initial-inventory Liu and van Ryzin, 2008

Yin et al., 2009

Sales Zhang and Cooper, 2008

Ovchinnikov and Milner, 2011

Gallego et al., 2008

No Aviv and Pazgal, 2008

Elmaghraby et al., 2009

General Contingent Initial-inventory Su, 2010

No Su, 2010

Multi-period Markdown Preannounced Initial-inventory Dasu and Tong, 2010

No Elmaghraby et al., 2008

Dasu and Tong, 2010

General Contingent Initial-inventory Dasu and Tong, 2010

No Dasu and Tong, 2010

Preannounced Sales Bansal and Maglaras, 2009

Continuous General Contingent No Levin et al., 2010

Levina et al., 2009

Cho et al., 2008

Preannounced Initial-inventory Su, 2007

Sales Su, 2007
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decision period. In a limiting case where β = 0, future purchase has zero value to a

customer and hence the customer can be viewed as a myopic customer.

The vast majority of the papers assume that customers know their own valu-

ation of the product over the entire course of the selling season. Levin et al. (2010)

and Levina et al. (2009), on the other hand, assume that customers only know their

valuation of the product in the current period and the valuations of the product

in future periods are unknown and independent of their valuation in the current

period.

In terms of the firm’s knowledge about the customers’ valuations, there are two

cases: deterministic and stochastic. In the deterministic case, customers’ valuations

are known to the firm. In other words, given any price p, the firm knows exactly

the number of customers whose valuation is higher than p. In this case, if all

customers are myopic, the demand can be represented as a deterministic function of

the price. It should be noted that even in the deterministic case, the firm does not

know each individual customer’s valuation. There are a few exceptions (e.g., the

base model in Elmaghraby et al., 2009) where all customers are assumed to have

an identical valuation. In this case the firm does know each customer’s valuation.

In the stochastic case, customers’ valuations are unknown to the firm and follow

a given probability distribution that is known to the firm. Most papers assume

that customers’ valuations stay constant over time while a few papers assume that

the valuations may decline over time. The latter case is prevalent in the sales of

electronic products at the end of their life-cycles and fashion or seasonal products

at the end of the season. Note that in Levin et al. (2010) and Levina et al. (2009),

customers’ valuation is independent across time.

Given a firm’s pricing policy, a strategic customer chooses when to purchase

the product in order to maximize her expected utility. A commonly-used utility

function is defined as u = (v − p)γ, where u is the customer’s utility, v is the

customer’s valuation of the product and p is the selling price. The case with γ = 1

models the situation where the customer is risk-neutral and maximizes her expected

consumer surplus, v − p. The case with 0 ≤ γ < 1 models the situation where the
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customer is risk-averse.

Table 2.5 classifies existing literature based on the structure of the strategic

customer behavior which consists of customer arrival process, customer composition,

firm’s knowledge about customers’ valuation, and customers’ risk attitude.

Table 2.5: Modeling Strategic Customer Behavior

Firm’s Knowledge about

Arrival Process Composition Customer Valuation Risk Attitude Paper(s)

Static All strategic Deterministic Constant Risk-averse Bansal and Maglaras, 2009

Risk-neutral Elmaghraby et al., 2008

Stochastic Constant Risk-averse Liu and van Ryzin, 2008

Risk-neutral Dasu and Tong, 2010

Elmaghraby et al., 2008

Gallego et al., 2008

Declining Risk-neutral Gallego et al., 2008

Independent N/A Levin et al., 2010

Levina et al. 2009

Mixed Deterministic Constant Risk-neutral Zhang and Cooper, 2008

Stochastic Constant Risk-neutral Gallego et al., 2008

Poisson All strategic Deterministic Constant Risk-neutral Elmaghraby et al., 2009

Stochastic Constant Risk-neutral Elmaghraby et al., 2009

Yin et al., 2009

Declining Risk-neutral Aviv and Pazgal, 2009

Mixed Stochastic Constant Risk-neutral Cho et al., 2008

Random aggregate All strategic Stochastic Constant Risk-neutral Gallego et al., 2008

Mixed Deterministic Constant N/A Su, 2010

Ovchinnikov and Milner, 2011

Declining Risk-neutral Lai et al., 2010

Stochastic Declining Risk-neutral Cachon and Swinney, 2009

Continuous constant All strategic Deterministic Constant Risk-neutral Su, 2007
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2.3.2 Main Findings and Managerial Insights

In this section, we summarize the main findings and managerial insights re-

ported in the existing literature, structured around the the following four questions:

(i) how does strategic customer behavior impact a firm’s profit? (ii) how does strate-

gic customer behavior affect a firm’s optimal pricing decision? (iii) how effective can

a rationing policy be? (iv) are there other strategies that can help a firm mitigate

the impact of strategic customer behavior? In Section 2.3.3, we present a detailed

discussion of main results in each existing paper.

2.3.2.1 Impact of Strategic Customer Behavior on a Firm’s Profit

Dynamic pricing enables a firm to achieve market segmentation and hence

increase its profit by exploiting heterogeneity of customer valuations and setting

different prices for different time periods. However, when customers anticipate a

certain pricing pattern, some of them may delay their purchase if they expect that a

future purchase may generate a higher utility. Aviv and Pazgal (2008) demonstrate

by a numerical example that more than 60% of customers whose valuation of the

product is higher than the selling price at the time of arrival may end up waiting

in anticipation for a lower price. This type of strategic behavior will certainly

suppress the benefit of customer segmentation and thus substantially hurt a firm’s

revenue performance even if the firm properly accounts for it when determining

the optimal pricing policy, as demonstrated by many papers, e.g., Aviv and Pazgal

(2008), Cachon and Swinney (2009), Levin et al. (2010). One may expect that

when the initial supply is very limited, customers become more concerned about

the product availability in the clearance period and their behavior is close to the

myopic case. However, Aviv and Pazgal (2008) show that, even in this case, the firm

cannot avoid the negative impact of strategic customer behavior (more than 20% of

revenue loss in their numerical example). It is interesting to note that unlike in the

myopic case, when customers behave strategically, holding more initial inventory

may actually decrease the revenue that a firm can collect (Levin et al., 2010).
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When making optimal pricing decisions, ignoring strategic customer behavior

by incorrectly assuming that customers are myopic may result in significant revenue

loss. For example, Zhang and Cooper (2008), Dasu and Tong (2010), Aviv and

Pazgal (2008), and Cachon and Swinney (2009) show through numerical examples

in the context of their specific models that the firm’s profit loss due to ignoring

strategic customer behavior can reach up to 11%, 13%, 21%, 90%, respectively.

Revenue loss due to ignoring strategic customer behavior cannot be avoided even if

demand learning can be incorporated (Levina et al., 2009).

Although strategic waiting by high-valuation customers hurts a firm’s profit,

strategic waiting by low-valuation customers, on the other hand, may benefit the

firm as shown by Su (2007) and Cho et al. (2008). The net impact depends on

the composition of customer population and other model parameters. Su (2007)

argues that as more strategic low-valuation customers choose to wait, it increases

the competition for product availability in the clearance period when the initial

inventory is limited, and thus induces high-valuation customers to purchase earlier at

a higher price. Therefore, it helps the firm achieve market segmentation and extract

more revenue. Similarly, Cho et al. (2008) argue that low-valuation customers who

find that the product price is higher than their valuation might be able to purchase

the product later if they strategically choose to wait instead of leaving immediately.

This will increase the sales in the clearance period and thus may increase the total

revenue collected by the firm.

2.3.2.2 Impact of Strategic Customer Behavior on a Firm’s Optimal

Pricing Decisions

When strategic customers are present, intuition suggests that the firm should

reduce the difference between the regular price and the markdown price, as it may

induce more customers to purchase at the regular price. This is formally proved by

Cachon and Swinney (2009) in the context of their two-period model where the price

for the first period is given. In addition, Liu and van Ryzin (2008) show that when
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customers are risk-neutral, a single price policy is optimal; however, when customers

are risk-averse, a high-low type of pricing policy (high price in the regular season

and low price in the clearance season) is always optimal.

Levin et al. (2010) demonstrate that the monotonicity properties (i) - (iv)

described in Section 2.2 for problems with myopic customers only may not hold in

general when strategic customers are present except for two special cases: customers

have limited rationality or initial initial inventory exceeds potential demand. Su

(2007) shows that a pure markup, a pure markdown, or a mixed pricing policy may

be optimal depending on the composition of the customer population and some

other problem parameters.

Aviv and Pazgal (2008) show that when customers differ substantially in their

valuation and their valuations decline slowly over time, dynamic pricing may not be

effective in achieving market segmentation. In other words, a static fixed-price policy

in this case can be near-optimal. Su (2010) proves that the presence of speculators

may benefit the firm. In a situation where the firm is unable to implement a dynamic

pricing policy due to fairness and equity consideration, the presence of speculators

in the resale market enables the firm to achieve the benefit of dynamic pricing while

actually maintaining a fixed-price over the entire selling season.

It is clear that when customers are all myopic, an optimal contingent pricing

policy always performs better than or at least equally well as preannounced pricing

policies. Levin, et al. (2010) show through numerical examples that preannounced

policies always perform worse than fully dynamic ones by up to 4% when initial

inventory is low, and by up to 1% when initial inventory is high. Aviv and Pazgal

(2008) find in the context of their model that preannounced policies perform essen-

tially the same as contingent policies. However, when facing strategic customers,

a preannounced pricing policy could perform better than a contingent pricing pol-

icy depending on market characteristics under which the firm operates. Dasu and

Tong (2010) show that neither policy dominates the other and the performance gap

between the two is small (up to 1.6%) based on their numerical experiment. Aviv

and Pazgal (2008) find that a preannounced pricing policy outperforms a contin-
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gent pricing policy under certain conditions, including when the initial inventory is

high and the customers are highly heterogeneous. Levin et al. (2010) show that

the relative performance of the two policies depend on the initial inventory level.

Specifically, when the initial inventory is low, a contingent pricing policy outper-

forms a preannounced pricing policy; whereas when the initial inventory is high, the

reverse is true. Cachon and Swinney (2009) find that although a preannounced pric-

ing policy can be substantially better than a contingent policy in certain cases, for

the vast majority of the numerical examples they tested, a contingent pricing policy

outperforms a preannounced pricing policy. Under a price matching policy, Lai et al.

(2010) show that a contingent pricing policy performs better than a preannounced

pricing policy.

2.3.2.3 Effectiveness of Rationing

As we have discussed earlier, rationing can be achieved either by limiting the

initial inventory (e.g., Liu and van Ryzin, 2008) or by controlling the sales in the

clearance period even if inventory is available (e.g., Zhang and Cooper, 2008). Zhang

and Cooper (2008) find that rationing policy may only provide secondary benefit

for improving a firm’s revenue compared to the pricing policy. Rationing policy

only works when the prices are given and not optimal, and it never completely

compensates for improper pricing decisions. Liu and van Ryzin (2008) show that

under their model assumptions, rationing is not profitable when customers are risk

neutral. However, when customers are risk averse, they show that when the prices

are given, rationing tends to be an optimal strategy when the number of high-

valuation customers is large, the level of risk-aversion is high and the price difference

between the regular season and markdown season is large. However, when the firm

has the flexibility to optimize the prices, rationing is always an optimal strategy.

They also show that rationing may not work in a competitive market.
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2.3.2.4 What Else May Play a Role When Strategic Customers Are

Present

In addition to pricing and rationing, firms may adopt other strategies to miti-

gate the negative impact of strategic customer behavior. Examples of other strate-

gies include quick response (i.e. making an additional order of inventory at the

beginning of the first period after observing the first-period demand) (Cachon and

Swinney, 2009), hiding inventory information (Yin et al., 2009, and Dasu and Tong,

2010), price matching (Lai et al., 2010), and use of a reservation regime (i.e., the

firm allows a customer to reserve the product for purchase in the clearance period

and the customer is obligated to buy it if the product remains unsold in the clear-

ance period.) (Elmaghraby et al., 2009). It was found that quick response and price

matching strategies are very effective in reducing the negative impact of strategic

waiting and improving a firm’s profit. Numerical examples (Cachon and Swinney,

2009, Lai et al., 2010) demonstrate that one can increase the profit by up to 25%

and 35% if one adopts quick response, and price matching, respectively. On the

other hand, hiding inventory information only improves the revenue slightly (up to

around 1.2% in Dasu and Tong, 2010, and up to 1.7% in Yin et al., 2009). It is

also interesting to note that by allowing the customers to reserve the product in

the clearance period, it will always improve the firm’s revenue while it may reduce

customers’ expected surplus when all customers have identical valuation and behave

strategically (Elmaghraby et al., 2009).

2.3.3 Review of Existing Literature

In this section, we present a detailed review of existing literature. For each

paper, we first describe the model considered and then summarize its major findings

and managerial insights.

Aviv and Pazgal (2008), Zhang and Cooper (2008), and Liu and van Ryzin

(2008) all consider two-period markdown pricing problems with strategic customers.

In Aviv and Pazgal (2008), customers arrive to the store following a Poisson pro-
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cess with a given rate λ. Each customer j has a valuation of the product which

depends on her base valuation Vj drawn from a given probability distribution and

time of purchase t, Vj(t) = Vj · e−αt, where α is the rate of decline. All customers

behave strategically and choose when to purchase the product in order to maxi-

mize their expected consumer surplus. The authors investigate both contingent and

preannounced pricing strategies. Their major findings include the following: (i) if

the starting time of price markdown can be optimally chosen, when the variance

of customers’ base valuations is small while the rate of decline is large, price seg-

mentation in the case of strategic customers can be as effective as in the case of

myopic customers; (ii) if the starting time of price markdown is fixed, when the

variance of customers’ base valuations is large while the rate of decline is small,

strategic customer behavior may significantly suppress the benefits of price segmen-

tation; (iii) the firm cannot avoid the negative impact of strategic customer behavior

even when the initial inventory level is low; (iv) in the case of myopic customers,

the preannounced pricing strategy performs equally well as the contingent pricing

strategy; (v) in the case of strategic customers, under certain conditions, the pre-

announced pricing strategy is advantageous to the firm compared to the contingent

pricing strategy; (vi) in most cases where the preannounced pricing strategy signif-

icantly outperforms the contingent pricing strategy, its performance is similar to a

fixed-price strategy; (vii) ignoring strategic customers when determining the optimal

pricing policy can be quite costly. In Zhang and Cooper (2008), the firm determines

both pricing and (sales) rationing policies. Only a proportion of the customers are

strategic while the remaining are myopic. All customers arrive at the beginning of

the first period. The authors characterize the demand as a deterministic function of

price and specifically focus on two types of demand functions, linear and exponential.

They consider both cases of infinite initial inventory and finite initial inventory. For

each case, they consider flexible pricing (i.e. prices are decision variables) and fixed

pricing (i.e. prices are given). Their primary insights include the following: (i) when

the initial inventory is infinite, if the firm can choose the optimal prices, rationing

does not improve revenue; (ii) ignoring strategic customer behavior results in lower
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prices in both periods, and significant revenue loss especially when the proportion

of strategic customers is large; (iii) when the prices are given, rationing may benefit

the firm; (iv) rationing can never completely compensate for the revenue loss due to

improper pricing decisions. In Liu and van Ryzin (2008), the firm determines both

the pricing and (initial-inventory) rationing policies. The prices for the two periods

are preannounced. All customers are strategic. A given number of customers are

present at the beginning of the selling season with each customer’s valuation drawn

from a common probability distribution. The firm is risk neutral and maximizes the

expected profit. Customers are risk-averse and maximize their expected utility by

deciding when to purchase the product. The authors show that: (i) when the prices

are given, in general, rationing tends to be an optimal strategy for the case with

large number of high-value customers, high level of risk-aversion and large price dif-

ference between the two periods; (ii) when the firm can optimally choose the prices,

then rationing is always an optimal strategy; (iii) competitive market does not favor

rationing as an optimal strategy.

Elmaghraby et al. (2008), Dasu and Tong (2010), and Bansal and Maglaras

(2009) all consider multi-period dynamic pricing problem where the firm has K

units of a single product to sell to N potential customers which are all strategic

and present at the beginning of the selling season. In Elmaghraby et al. (2008),

each customer has a valuation of the product which is constant over time and each

customer may demand multiple units which can be satisfied across multiple time pe-

riods. The firm preannounces a markdown pricing scheme and the initial inventory

before the season starts. The authors consider two settings, a complete information

setting where the firm knows the set of customer valuations, but does not know

each individual customer’s valuation, and an incomplete information setting where

the firm knows that customers’ valuations are drawn from given nonoverlapping

intervals. Their major findings include: (i) under complete information setting, a

two-step pricing is optimal; (ii) under incomplete information setting, if at most one

price will occur within each customer’s valuation range, then at most three price

steps are needed; (iii) under both settings, the buyer will submit all-or-nothing bid
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at each price step. In Dasu and Tong (2010), each customer has a valuation of the

product drawn from a given probability distribution and her valuation remains con-

stant over time. They examine both preannounced and contingent pricing policies.

Their main findings include the following: (i) when initial inventory exceeds de-

mand (K ≥ N), a single price (static pricing) is optimal; (ii) for both preannounced

and contingent pricing schemes, the structure of the Bayesian Nash Equilibrium

is a threshold-type; (iii) ignoring strategic customer behavior will result in signifi-

cant revenue loss; (iv) when customers are strategic, neither preannounced pricing

scheme nor contingent pricing scheme dominates the other and their performance

gap is small; (v) preannounced pricing scheme with two or three price changes can

generate close-to-optimal revenue; (vi) firms benefit slightly from hiding the initial

inventory level. In Bansal and Maglaras (2009), before the selling season starts, the

firm preannounces its sales policy consisting of the price pt and sales rationing fill

rate rt for each period t. There are N customer types and each type i differs in

its valuation vi and risk aversion parameter γi. Given the firm’s policy, customers

strategically time their purchase to maximize their expected utility (vi− pt)γirt. All

customers within the same type will make the same decision and there is no strate-

gic interaction among customers. They show that their dynamic pricing problem

can be formulated as static mechanism design problem. They also demonstrate that

when customers’ risk aversion is low, a two-price policy is near-optimal.

Su (2007) studies a general deterministic dynamic pricing problem with con-

tinuous time horizon. The monotonicity of price change is not explicitly required;

instead, it is driven endogenously by customers’ purchasing behavior. Customers

arrive continuously over time with a deterministic constant rate and differ in two

dimensions: valuation (high or low) and waiting cost (patient or impatient). Pric-

ing and rationing policies are preannounced before the selling season starts. Upon

arrival, each customer chooses to purchase immediately, exit the market, or wait for

a lower price with waiting cost incurred per unit time. His main findings include:

(i) the structure of the optimal pricing policies (pure markup, pure markdown, or

mixed) is driven by the composition of customer population, which provides al-
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ternative explanations for why markups are common in the travel industry while

markdowns are common in the fashion industry; (ii) strategic customer behavior

may benefit the firm because patient-low-type customers compete with high-type

customers for product availability, which discourages high-type customers from wait-

ing; (iii) optimal selling policy is socially efficient in the sense that the sum of the

firm’s revenue and total consumer surplus is maximized.

Levin et al. (2010) and Levina et al. (2009) all study stochastic dynamic

pricing problems with continuous time horizon and the following main characteris-

tics: (i) all customers are strategic and arrive at the beginning of the horizon, (ii)

customers’ valuations at each time point are drawn from a common known time-

varying probability distribution and are independent across time, (iii) contingent

pricing scheme is used, (iv) no rationing is consider. Levin et al. (2010) consider a

monopoly market where the firm has K units to sell to N potential customers. Each

individual customer controls its shopping intensity and the aggregate demand in-

tensity is the sum of each individual’s shopping intensity. Each customer purchases

at most one unit and times their purchase (by controlling the shopping intensity)

to maximize their expected present value of utility. To make the problem tractable,

the authors discretize the continuous time horizon and formulate the problem as

a stochastic dynamic game. Their primary findings include: (i) the monotonicity

properties (i) - (iv) described in Section 2.2 for problems with myopic customers

do not hold in general; (ii) the monotonicity properties hold when customers have

limited rationality or when initial inventory exceeds potential demand (K ≥ N);

(iii) in the presence of strategic customers, revenue may not necessarily increase as

the initial inventory increases; (iv) ignoring strategic customer behavior may result

in significant revenue loss except for the case when the initial inventory is relatively

low; (v) contingent pricing outperforms (underperforms) a preannounced pricing

policy when initial inventory is low (high); (vi) when initial inventory is a decision

variable, strategic customer behavior results in lower optimal initial inventory; (vii)

proper initial inventory decision can partially compensate for the impact of strategic

behavior. Levina et al. (2009) extend the work by Levin et al. (2010) by incor-
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porating demand learning. In their model, the customer behavior is specified by a

constant parameter vector which may include unknown components. The knowledge

about the distribution of these unknown components is updated periodically accord-

ing to the realized sales data by some algorithm. Pricing decisions are re-optimized

by using simulation-based optimization. Their approach does not require specific

distributional assumptions. Computational results demonstrate that the proposed

approach is robust to deviation from actual market if learning is incorporated. They

also show that ignoring strategic customer behavior may result in inferior solution

even if demand learning is incorporated.

Several papers consider some other strategies jointly with dynamic pricing

and rationing decisions in the presence of strategic customers, including Cachon

and Swinney (2009) considering quick response, Lai et al. (2010) considering price

matching, Elmaghraby et al. (2009) considering reservation regime, and Yin et al.

(2009) considering inventory display format. All these papers consider markdown

pricing in a selling horizon with two time periods. Cachon and Swinney (2009)

consider a problem where the firm has the capability of quick response (i.e. making

an additional order of inventory at the beginning of the first period after observing

the first-period demand). There are three types of customers: myopic customers

who always buy in the first period, bargain-hunting customers who only buy in

the second period, and strategic customers who choose when to buy to maximize

their expected utility. Strategic customers’ valuation is known in the first period

and follows a given distribution in the second period. The total population in the

first period (myopic and strategic customers together) is a random variable while

the composition is known. The first-period price is given. The firm makes the

ordering decision before the season starts and determines the second-period price

after observing the first-period demand. The firm may have an opportunity to

use the quick response strategy (i.e order more after the first-period demand is

realized). They show that: (i) when strategic customers are present, firms tend to

order less, raise the markdown price, and make less profit compared to the case

where all customers are myopic; (ii) ignoring strategic customers may result in
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significant revenue loss especially in the case where the firm does not have quick

response capability; (iii) quick response is more valuable in the case of strategic

customers than myopic customers and the difference can be quite significant; (iv)

a contingent pricing policy is in general better than a preannounced pricing policy.

Lai et al. (2010) investigate the impact of posterior price matching (PM) policy

on a firm’s profit and optimal pricing and initial inventory decisions. Under a

PM policy, the firm will refund the difference if the price is marked down in a

future period. There are two types of customers by their valuation, high-valuation

and low-valuation customers with valuation VH , VL, respectively, where VL stays

unchanged while VH decreases to Vh in the second period. The number of low-

valuation customers is infinite whereas the number of high-valuation customers is a

random variable. A certain percentage of the high-valuation customers are strategic.

The authors find that: (i) the PM policy induces strategic customers to purchase

earlier, and thus makes it possible for the firm to set a higher price in the regular

selling season; (ii) PM policy significantly improves the firm’s profit if the fraction

of strategic customers and their valuation decline over time are both modest; (iii)

when the variance of the number of high-valuation customers is high, the PM policy

also increases customer surplus; (iv) with PM policy, a contingent pricing scheme

performs better than a preannounced pricing scheme. Elmaghraby et al. (2009)

analyze two operating regimes, a “no reservation regime” (NR) and a “reservation

regime” (WR), in a preannounced markdown pricing setting. They assume that the

firm has a single unit of a product for sale at the regular price ph over a continuous

time horizon [0, T ]. If the product is not sold by the end of the season, it will be sold

at a clearance price pl (ph ≥ pl). Customers arrive following a Poisson process with

a rate that depends on ph and pl. They consider a base model where all customers

have an identical valuation, and an extended model where there are two customer

classes with two distinct valuations. Upon arrival, if the product is still available,

customers can choose to buy the product at ph, wait until the end of the season and

enter a lottery, or reserve the product. In the latter case, if the product is available

at the end of the season, the customer who reserved the product is obligated to
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buy it. They analyze the firm’s revenue and the customers’ expected surplus under

two regimes and show that under WR (compared to NR): (i) given prices ph, pl, if

customers behave strategically, the firm will be better off while the customers will

be worse off; (ii) given ph, if the firm can optimize pl, the firm will be better off, and

the customers will be worse (better) off if they are very (not) sensitive towards the

markdown price; (iii) when there are two classes of customers, the firm will be better

(worse) off while the customers will be worse (better) off if there is a large (small)

percentage of high-valuation customers. Yin et al. (2009) compare the impact of two

inventory display formats on a firm’s optimal profit in a markdown pricing setting

with strategic customers: display all (DA) and display one (DO). Under DA, the

firm displays all available units; while under DO, the firm only displays one unit at

a time if the product is still available. The firm preannounces a regular price ph for

regular season [0, T ] and markdown price pl for end-of-season sale if the product is

still available. Customers arrive following a Poisson process with given rate λ. A

certain percentage of the customers have high valuation v1 while the rest have low

valuation v0. They demonstrate by numerical examples that: (i) DO format creates

an increased sense of inventory scarcity and induces high-valuation customers to

purchase earlier, and hence improves the firm’s profit; (ii) the revenue improvement

of DO format compared to DA format is generally small; (iii) changing the display

format from DA to DO and simultaneously reoptimizing the prices can improve

the firm’s revenue significantly more than changing the display format alone; (iv)

changing the display format only recovers a small amount of revenue loss due to

strategic customer behavior.

Su (2010) considers a two-period pricing problem in the presence of specula-

tors. There are four types of customers: myopic customers, strategic customers,

random customers, and low-value customers. Each type of customers has a known

valuation. The numbers of myopic customers and strategic customers are known.

The number of random customers is unknown and realizes at the beginning of the

second period. The number of low-value customers is infinite. Myopic customers

always purchase in the first period, random customers and low-value customers only
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purchase in the second period, while strategic customers choose when to purchase.

In addition, there are speculators who may purchase the product in the first period

purely for resale in the second period at a higher price. The author finds that: (i)

the presence of speculators can benefit the firm; (ii) speculative resale enables the

firm to achieve the benefit of dynamic pricing while maintaining a single price; (iii)

speculative behavior leads to lower initial inventory if initial inventory is a decision

variable.

Ovchinnikov and Milner (2011), and Gallego et al. (2008) are the only two

papers that consider a dynamic pricing problem with multiple seasons. They both

assume that in each season there are two periods representing a regular selling pe-

riod and a markdown period, respectively. The firm determines the prices for both

periods and a sales rationing policy for the markdown period. It is assumed that

customers’ purchasing behavior in a season is impacted by the firm’s decisions in the

past seasons. In Ovchinnikov and Milner (2011), there are two types of customers

with different valuations which are known to the firm. All low-valuation customers

and a given fraction of the high-valuation customers are strategic and choose to wait

and buy in the second period. The fraction of high-valuation customers who are

strategic changes over season as the firm changes the amount of inventory offered in

the markdown period in each season. The evolution of the purchasing behavior over

time can be characterized by a learning function. The authors focus on two types

of function: a self-regulating learning function and a smoothing learning function.

They show that: (i) when customer’s purchasing behavior follows a self-regulating

function, the firm’s optimal policy is to allocate some inventory for the markdown

period in each season; (ii) when customer’s purchasing behavior follows a smooth-

ing learning function, the firm should periodically allocate some inventory to the

markdown period over a number of seasons, and then allocate no inventory to the

markdown period in the following season; (iii) for the case where there are three

types of customer with overbooking allowed, the optimal policy may increase the

revenue by 5-15%; (iv) allowing (disallowing) overbooking is beneficial if there are

few (many) high-value customers. In Gallego et al. (2008), the total number of
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potential customers is given. Customers’ valuations follow a known distribution.

All customers are strategic and maximize their expected surplus. Customers up-

date their beliefs about inventory availability in the markdown period of a season

according to the inventory availabilities in the past seasons. They first study the

equilibrium setting and show that a single-price policy for the whole season is op-

timal. They also show that a markdown pricing can be optimal if (i) there is a

mixture of strategic customers and myopic customers; (ii) the total number of po-

tential customers is unknown; or (iii) customers’ valuation distribution is unknown.

The authors then study the dynamic non-equilibrium setting where the aggregate

total demand is a Poisson random variable. Their numerical experiments show that

(i) when the total demand is unknown, it is optimal for the firm to limit the second-

period inventory and the behavior of this optimal inventory limit depends on how

customers update their belief on the inventory availability in the markdown period;

(ii) customers’ learning behavior from season to season can significantly increase the

variability of sales revenue.

Cho et al. (2008) extend the work by Gallego and van Ryzin (1994) to in-

corporate strategic customer behavior. In their work, they focus on the impact of

strategic waiting on the customers’ benefits under the assumption that the firm’s

pricing decisions follow Gallego and van Ryzin (1994) in which strategic customer

behavior is not considered. They consider two policies that customers will follow

when making a purchasing decision: (1) threshold time policy (i.e., for any k units

of inventory remaining, purchase if and only if the remaining time is below some

threshold tk), and (2) threshold price policy (i.e., for any k units of inventory re-

maining, purchase if and only if the price is below some threshold pk). They show

that these two policies are equivalent. They show through simulation that strategic

waiting can benefit both the customers and the firm. Customers who cannot afford

the price at the time of arrival may purchase the product later if the price drops

below their valuations. Therefore, strategic waiting enables the firm to retain some

potential customers and increase the total sales.

57



2.4 Models with Competition

Dynamic pricing problems with competition have received relatively little at-

tention in the literature. We are aware of a handful of papers that consider dynamic

pricing decisions facing competition and fall within the framework of this survey,

including Dasci and Karakul (2009), Gallego and Hu (2009), Granot et al. (2007),

Xu and Hopp (2006), Perakis and Sood (2006), and Levin et al. (2009). All papers

consider a general dynamic pricing problem where price change is not required to be

monotone over time. Levin et al. (2009) is the only paper that considers strategic

customer behavior and all other papers assume that customers are myopic. In Table

2.6, we categorize existing models according to their modeling assumptions includ-

ing time horizon (two-period, multi-period with a general number of time periods,

or continuous), pricing policy (contingent or preannounced), demand (stochastic or

deterministic), and market (duopoly or oligopoly). In what follows, we review each

of the papers in detail.

Table 2.6: Overview of Existing Models with Competition

Time horizon Pricing Policy Demand Market Paper(s)

Two-period Contingent Deterministic Duopoly Dasci and Karakul, 2009

Preannounced Deterministic Duopoly Dasci and Karakul, 2009

Multi-period Contingent Stochastic Duopoly Granot et al., 2007

Preannounced Stochastic Oligopoly Perakis and Sood, 2006

Continuous Contingent Stochastic Oligopoly Levin et al., 2009

Xu and Hopp, 2006

Gallego and Hu, 2009
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2.4.1 Review of Existing Literature

Dasci and Karakul (2009) consider a two-period dynamic pricing problem in

a duopoly market. The two firms hold an equal amount of initial inventory of an

identical product at the beginning of the selling season. The number of customer

arrivals in each period is given and all customers in the same period have identical

valuation. However, customers arrive in different periods may differ in their valua-

tion. So there are two customer classes. The authors compare two pricing schemes,

a dynamic pricing scheme in which the two firms first simultaneously determine

the first-period prices and then simultaneously determine the second-period prices

according to the first-period sales, and a fixed-ratio pricing scheme in which the two

firms simultaneously determine the first-period prices only and the second-period

price of each firm is a given fixed ratio of its first-period price. The problem is

modeled as a dynamic game between the two firms when the firms use the dynamic

pricing scheme, and as a static game when the firms use the fixed-ratio pricing

scheme. They find that: (i) for most cases in a duopoly market, the fixed-ratio pric-

ing policy outperforms the dynamic pricing policy in terms of the expected profit

for both firms; (ii) under dynamic pricing scheme, due to the fact that there are

two customer classes and each firm desires to serve the more lucrative class, the

two firms cannot reach a collusive solution (i.e., the two firms will not cooperate to

increase their revenue) even if the initial inventory is low; (iii) in equilibrium, one

firm assumes the role of a low-cost high-volume alternative while the other assumes

the role of a high-cost low-volume alternative; (iv) under dynamic pricing scheme,

there is less competition in the second period as the firms become more asymmetric

(the low-cost firm that wins in the first period becomes the smaller competitor in

the second period).

Gallego and Hu (2009) extend the work by Gallego and van Ryzin (1994)

to an oligopoly market. They formulate the problem as a stochastic game on a

continuous time horizon. They assume that customers arrive following a Poisson

process with the given time-varying total arrival rate λ(t). The probability that
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a customer purchases from a particular firm is jointly determined by the prices

set by all firms. Due to the intractability of the proposed stochastic model, they

focus on the corresponding deterministic differential game and prove the existence

of open-loop and closed-loop Nash equilibria. Based on the equilibrium solutions

to the differential game, they further propose pricing heuristics and demonstrate

that these heuristics are asymptotic equilibrium for the stochastic game. Their

numerical examples show that (i) when a firm’s initial inventory is lower, the firm

tends to price higher; as a result, other firms respond by increasing their prices too;

(ii) in case where irrational firms deviate from their equilibrium strategies, they

consistently suffer more than rational firms; (iii) when irrational firms with limited

initial inventory maximize their revenue rates, rational firms may suffer or benefit

depending on their initial inventory and price-sensitivity relative to other firms; (iv)

when irrational firms use market clearing price when they have abundant initial

inventory, all rational firms suffer.

Granot et al. (2007) consider a multi-period dynamic pricing problem in a

duopoly market. They assume that customers’ valuations follow a given distribution

which is known to the firms. Customers are assumed to follow a zigzag shopping

behavior. That is, a customer visits only one store in each period. If the price she

observes in that store is below her valuation, she will buy the product; and otherwise

she will visit the other store in the next period. This process will continue until she

has found a price below her valuation or the selling season ends. The authors show

that: (i) under competition, the prices set by each firm and the corresponding profit

are significantly lower than the ones under monopoly market; (ii) price decreases

exponentially over time under competition; (iii) these effects of competition increase

(decrease) as the total fraction of the market the two firms can satisfy increases

(decreases).

Xu and Hopp (2006) consider a continuous-time dynamic pricing problem in

a monopoly and oligopoly market, respectively. They assume that customers arrive

following a geometric Brownian motion and the demand function is isoelastic. For

the monopoly case, they derive a closed-form optimal solution. They show that all
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stochasticity in customer arrivals is absorbed into the optimal pricing policy and thus

the resulting inventory trajectory is deterministic. They also show that dynamic

pricing coupled with optimal initial inventory decision substantially outperforms

static pricing coupled with optimal initial inventory decision. For the oligopoly

case, their problem is a pricing and inventory decision game. They establish a weak

perfect Bayesian equilibrium for the game. They find that cooperative pricing can

be achieved even in a non-cooperative setting. However, competition among firms

drive each firm to overstock, and thus hurts firms’ profits. They show that when

competition is not too severe, contingent pricing outperforms preannounced pricing;

and when competition becomes very intense, preannounced pricing performs better.

Perakis and Sood (2006) use a robust framework to study a multi-period dy-

namic pricing problem in an oligopolistic market. They assume that demand for

each firm in a given period is a function of the prices set by all firms in that period.

The exact values of demand function parameters, however, are unknown and be-

long to a known uncertainty set. They propose a robust policy that maximizes the

revenue for each firm under the most adverse instances of parameters within their

uncertainty set. Due to the lack of a concave objective function, they propose a vari-

ational inequality reformulation. They prove the existence of equilibrium policies

and develop an iterative learning algorithm for computing the market equilibrium

policies. Their numerical results show that: (i) typically prices are higher in periods

where the demand sensitivity is lower; (ii) by using a robust policy, firms’ payoffs

are much less sensitive to the uncertain parameters as compared to the policies that

ignore uncertainty in parameters and simply use nominal values; (iii) compared to

other firms that use a policy based on nominal values of uncertain parameters, firms

that use robust policy can obtain a payoff that has much less variation while the

mean payoff is slightly lower; (iv) a firm can balance the tradeoff between smaller

variation and larger mean payoff by adjusting the budget of robustness in the opti-

mization model.

Levin et al. (2009) extend the work by Levin et al. (2010) to an oligopolistic

market. It is assumed that there are M firms and each firm m has Km units of dif-
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ferentiated product m to sell to a total of N potential customers. Customers belong

to S segments and all customers within the same segment have a valuation drawn

from a common distribution. The problem is formulated as a stochastic dynamic

game. At the beginning of each period, all firms first simultaneously choose the

prices and then all customers choose their shopping intensities. Their numerical ex-

periments demonstrate that: (i) the impact of strategic customer behavior increases

with increased competition among firms; (ii) firms that ignore strategic customer

behavior can incur significant revenue loss; (iii) firms that provide better quality

products are generally less affected; (iv) strategic customer behavior reduces price

variability over time (i.e., leads to a flatter price path over time) but increases the

price variability at the end of the season for the stronger firm that provides better

quality product.

2.5 Future Research Directions

In Sections 2.2 to 2.4, we have provided a state-of-the-art review of dynamic

pricing models with finite initial inventory and fixed time horizon without inventory

replenishment. Among the various types of problems we have reviewed, problems

with strategic customers and problems with multiple products have received the

most attention in recent years. Other topics such as pricing under competition and

pricing with demand learning have also started to gain popularity.

The following issues are commonly encountered in practice, and yet have re-

ceived very little or no attention in the dynamic pricing literature. We believe that

these issues are worth of investigation in future research.

2.5.1 Business Rules and Constraints

In their survey paper, Elmaghraby and Keskinocak (2003) pointed out “An-

other disconnect between most of the academic literature and practice is the incor-

poration of business rules into pricing decisions.” Most papers in the existing litera-

ture largely ignore commonly-used business rules and practical constraints and build

62



highly stylized models in order to make their formulation mathematically tractable.

This allows them to obtain structural results and derive general managerial insights.

As a consequence, the resulting solution might be appealing from a theoretic point

of view, but may not be optimal and sometimes may not even be feasible from a

practical point of view. For example, most papers allow unlimited price changes

and do not set a limit on the magnitude of each price change. This gives the firm

more freedom in dynamically adjusting the price according the realizations of un-

certain demand. However, frequent price changes and substantial price differences

from one period to another period may significantly change customers’ purchasing

behavior when customers behave strategically. Consequently, it may also change the

underlying demand function as assumed to be given exogenously in most papers.

In such a case, the solution which is optimal for the original demand function may

no longer be optimal for the new demand function. Moreover, in a situation where

only limited number of price changes are allowed, the solution obtained from the

model that ignores such a constraint is infeasible. Dynamic pricing models that

consider business rules have received very little attention in the existing literature.

We are only aware of a few papers that incorporate this issue including, e.g., Chen

et al. (2011) for a joint inventory allocation and markdown pricing problem with

multiple stores and Chen and Chen (2010) for a robust general dynamic pricing

problem with two competing products. We believe that incorporating business rules

and constraints in a dynamic pricing model will allow us to better understand the

problem and generate more practical insights which might be substantially different

from the ones generated from previous models that ignore such constraints.

2.5.2 Strategic Customers with Bounded Rationality

Dynamic pricing problems with strategic customers have received substantial

attention in the last several years. However, most papers (two exceptions are Levina

et al., 2009, and Levin et al., 2010 for a special case of their model) assume that

all customers are fully rational and highly sophisticated in the sense that they are

always able to obtain necessary information, correctly expect the firm and other
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customers’ behavior and make their optimal decisions accordingly. In a practical

situation, this may not be the case. For example, a customer may never know the

firm’s inventory information, the potential market size, or other customers’ valuation

distribution. Given limited information, they may not be able to predict the firm

and other customers’ behavior. In addition, even if all the information is available,

customer’s decision making process is in general straightforward and rarely involves

solving complicated optimization problems as assumed in the existing models. More-

over, often times, their decision making is also subject to psychological biases and

cognitive limitations (Shen and Su, 2007). This is referred to as bounded rationality

or limited rationality in the literature. Therefore, assuming that customers are fully

rational and highly sophisticated may not be appropriate in practice. An alter-

native approach is to build a descriptive model based on sales data, survey or lab

experiments to characterize customers’ actual purchasing behavior. For more details

about modeling bounded rationality, one may refer to Su (2008) for a newsvendor

problem and Simon (1982) and Conlisk (1996) for a review of the evolution and

development of limited rationality.

2.5.3 Non-equilibrium Market Situation

When modeling strategic customer behavior, all papers except Gallego et al.

(2008) and Ovchinnikov and Milner (2011), study the equilibrium situation where

both the firm and the customers can correctly anticipate the other’s optimal behavior

and make their decisions accordingly. Often times, it is in the firm’s interest to

prevent such an equilibrium situation by deviating from its optimal equilibrium

behavior and making their strategy unpredictable to the customers. For example,

although airfare in general increases as the departure time gets closer, airlines may

occasionally offer last minute tickets at a deep discount to attract low-valuation high-

flexibility customers to fill up unsold seats. However, whether or not and at what

time these last minute deals will be offered never follow any pattern. This prevents

high-valuation inflexible customers from taking advantage of such last minute deal

and induces them to pay higher price earlier in order to secure a seat. It is natural
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to ask how the customers’ behavior and the firm’s profit will be impacted in such

a non-equilibrium situation. Gallego et al. (2008) and Ovchinnikov and Milner

(2011) are the only two papers in the existing literature that study such dynamic

non-equilibrium behavior. They both consider a setting with multiple seasons in

which customers adaptively update their beliefs about the product availability in the

markdown period in each season according to the firm’s policies in previous seasons.

Both papers limit their attention to a two-period markdown pricing problem for each

season and make special assumptions on customer valuation distribution. We believe

that it might be interesting to investigate a multi-period general dynamic pricing

problem (involved in each season) with more general form of customer valuation

distribution.

2.5.4 Complementary Products

As we have noted in Section 2.2.2, in the multi-product case, all existing papers

consider substitutable products only. We are unaware of any existing literature

that considers dynamic pricing problems with complementary products. If a firm

sells multiple complementary products, the demand of one product is positively

correlated with the demand of other products. Thus, unlike in the substitutable

product case, reducing the price of one product in this case will increase the demand

of this product and may also increase the demand of other products (Walters, 1991).

For example, reducing the price of a particular camera model may also increase

the demand of its accessories. In addition, unlike in the substitutable product

case where customers generally purchase one of the products, in the complimentary

product case, customers may purchase multiple products together according to their

total price (Wang, 2006). For example, often times customers purchase a camera,

a camera case, and memory cards together. In this case, the commonly-adopted

consumer discrete choice model in the substitutable product case may no longer

be suitable. Therefore, modeling customers’ purchasing behavior may require a

different modeling framework. Moreover, compared to the substitutable product

case, the availability of one product in this case may have a more significant impact
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on the demand of its complementary products. For example, once a particular

camera model is sold out, the demand for its accessories may also drop to zero.

We believe that dynamic pricing problems with complementary products is a very

interesting direction for future research.

2.5.5 Empirical Verification and Validation

Most of the existing models that we have reviewed make assumptions on cus-

tomer purchasing behavior which are not verified by real data. The solutions and

insights from most of the existing papers have not been tested in a real market.

Although most papers claim that their models and solutions may significantly im-

prove the firm’s profit, the actual impact in practice is unclear due to the lack of

empirical verification and validation. In particular in the case with strategic cus-

tomers, different modeling assumptions may lead to conflicting conclusions. In this

case, empirical work is especially needed in order to better understand customer

purchasing behavior and derive more relevant insights. We believe that empirical

work certainly deserves more attention in future research.
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Chapter 3

Markdown Optimization at Multiple Stores

3.1 Introduction

Markdown pricing is a common technique used by sellers to match supply

with demand for time sensitive goods. Consumer electronics products and fashion

apparel retailers are two examples of sellers that adopt this technique. According

to the National Retail Federation, marked-down goods, which accounted for just

8% of department-store sales three decades ago, now account for over 20% of sales

(Merrick 2001). The primary objective of markdown pricing is to manipulate the

prices based on the demand in a situation where the demand for the product at a

given price drops monotonically over time. Usually for time sensitive goods such

as digital cameras, the demand drops steadily with time towards the end of the

product life-cycle. Hence the sellers have to lower the prices to stimulate sales. But

the extent of this markdown is very critical. If the sellers do not reduce the price

sufficiently, there may be excess inventory at the end of the life-cycle that has to be

discarded or sold at a very low salvage value. On the other hand, if the price level

is set too low, all the items may sell very quickly resulting in a reduction in possible

revenue. So a balanced approach is very important in ensuring high revenue for the

firm.

In this chapter, we study a markdown pricing problem commonly faced by

many large retailers that we have worked with in the last several years. Based on

our extensive experience with industry, this problem contains most commonly en-

countered issues involved in markdown optimization in practice. Below we describe

our problem and show that several aspects of the problem are new and have received

little attention in the markdown pricing literature. The precise mathematical nota-

tion and problem formulation are given in Section 3.2.

67



We consider a typical large retailer consisting of several warehouses and hun-

dreds of stores in its supply chain. Each warehouse serves many stores. For example,

a warehouse in the state of New York may be responsible for allocating inventories

to fifty different stores owned by the retail chain in the north-eastern United States.

Near the end of a selling season for some products, the retailer has to get rid of the

remaining inventory of the products at each warehouse in a limited amount of time

before the selling season ends. The retailer needs to allocate the existing inventory

of each warehouse to the multiple stores served by the warehouse and in the same

time determine a markdown pricing scheme at each store subject to a number of

business rules. It is impractical to consider all the stores and all the products to-

gether in a single model. A commonly used approach in practice is to decompose

the markdown decisions by warehouses and products so that each warehouse of the

retailer is independent and each product is dealt with separately in making inven-

tory allocation and markdown decisions. Therefore, we consider the problem of a

single warehouse and a single product in this chapter, which is described as follows.

At the beginning of the markdown planning horizon, there is a given amount

of inventory of a product in a central warehouse which needs to be allocated to a

set of stores over time. The length of the markdown planning horizon is typically

short, varying from a couple of weeks to no more than 3 months, because the retailer

needs to get rid of the current product as soon as possible in order to (i) minimize

the impact of the current product on the sales of one or more new products being

introduced; and (ii) have sufficient shelf space for the new products. In addition

to the inventory allocation decision, the retailer needs to determine a markdown

pricing scheme for each store over the planning horizon. There are a discrete set of

allowable prices that can be used for the product at all the stores. For example, if

the regular price of a digital camera is $159.99, then the allowed markdown prices

could be $143.99, $127.99, $111.99, $95.99, and $79.99, which represent 10% off,

20% off, 30% off, 40% off, and 50% off, respectively, from the regular price. We

note that although in theory the price of a product can be set to any number within

a certain interval, there are certain price points at which consumers become much
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more willing to buy, and hence retailers that follow a sound pricing strategy often

use a small set of popular price points for a product (e.g., Allen 2011). At a store,

price changes can only occur at the beginning of a time period, where a period

typically consists of one to two weeks, and once a change occurs the new price

should remain unchanged for the entire time period. For that reason, the planning

horizon is assumed to consist of a discrete number of time periods, and the pricing

decision at a store is to set a price for each time period. The inventory allocated

to the stores and the prices set at the stores over time must follow a set of business

rules given below:

i) Each store must be allocated at least a given minimum amount of inventory

in the first period.

ii) The prices set at each store must be non-increasing over the time.

iii) The number of markdowns allowed at each store cannot exceed a given upper

limit.

iv) In each period, if there is a markdown from the price used in the previous

period, the price change must be within given lower and upper limits (e.g., at

least 10% and at most 30% off the current price).

v) There may exist clusters of stores (e.g., stores in a given geographical area)

for which the prices during any period must be within a given range from

each other. That is, in each period, the difference between the maximum and

minimum prices among the stores within the same cluster must not exceed a

given upper limit (e.g., within $10).

These rules are due to established market norms and the costs associated with

implementing markdowns, and may also be desirable from a consumer’s standpoint.

Rule (i) is not enforced in later periods because normally customers do not expect

the availability of the product in the future periods once they realize the product is

on sale. Rule (ii) is simply because of the nature of markdown pricing. Rules (iii)

and (iv) reflect the fact that frequent price changes and significant price difference
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from one period to the next may confuse the consumers. It has been long understood

(Hall and Hitch 1939) that frequent price changes can even make a retailer appear

unfair or dishonest, as customers try to interpret the retailer’s motives behind a

price change. Rule (iii) is also reasonable in order to ease markdown implementation

and save the associated implementation costs. Rule (v) allows stores to price the

same product differently with the constraint that stores within a cluster have to use

similar prices. This minimizes the possibility of closely located stores competing

for customers. As pointed out by Hruschka (2007) and Shankar and Bolton (2004),

many large retailers do allow different prices at different stores in the same chain for

the same product. In fact, many retailers, e.g., Walgreen, Target and Radioshack,

explicitly specify on their websites that pricing may vary by store location. This

gives a retailer flexibility in pricing their products at different stores based on store

specific characteristics such as demographics, location, and competition.

Since there are daily shipments of regular products from the warehouse to each

store, markdown items can often get a free ride. Therefore, there is no shipping cost

for the markdown items from the warehouse to the stores. In each period, only

necessary amount of inventory is shipped to the stores to satisfy the demand in that

period. Therefore, the inventory is mostly kept at the warehouse and the holding

cost over a short planning horizon is negligible and not considered. At the end of

the planning horizon, any unsold items are typically either sold at a deep discount

through a liquidation channel, or donated to some charities. In the latter case, the

company may receive some tax benefit. Hence, there is a salvage value for the unsold

items in both cases. The problem is to decide how many units to be allocated to

each store in each period and what price to use in each period at each store so that

the total expected revenue (sales revenue + salvage value) of all the stores over the

planning horizon is maximized subject to the required business rules.

Although the problem we consider does not involve shipping and inventory

costs, as justified above, we show in Section 3.7 that for situations where shipping

and inventory costs need to be considered, our problem formulation and solution

approach (developed in Sections 3.2 and 3.3) can be easily modified to handle such
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situations.

3.1.1 Related Literature

Three main characteristics distinguish the problem we consider from most of

the markdown pricing problems considered in the literature: (1) incorporation of

business rules, (2) joint consideration of multiple stores, and (3) practical demand

modeling. Most existing models in the dynamic pricing literature (including the

markdown pricing literature) are stylized, oversimplify practical issues, and do not

consider most of the business rules that we consider in this chapter and are commonly

encountered in practice. In reviewing dynamic pricing literature, Elmaghraby and

Keskinocak (2003) write that “another disconnect between most of the academic

literature and practice is the incorporation of business rules into pricing decisions”,

and justify the use of commonly accepted rules in practice. Due to the nature of

markdown pricing, rule (ii) is considered in all existing markdown pricing problems.

However, only few papers have incorporated one or two of the other rules that we

consider. Bitran and Mondschein (1997) consider rule (iii), and Perakis and Harsha

(2010) consider rules (iii) and (iv). However, both papers consider a single store

only.

Elmaghraby and Keskinocak (2003) also note that one of the most important

missing links between the academic markdown pricing literature and the real world is

the need to consider multiple stores or sales channels, with possibly different demand

patterns simultaneously. Multi-store problems are clearly more complex than single-

store ones because two levels of decisions, inventory allocation and pricing, have to be

made jointly. Furthermore, pricing decisions at different stores are coupled because

of business rule (v) and hence the problem cannot be decomposed by stores even

after the inventory allocation is done.

Bitran et al. (1998) is the only markdown pricing paper we are aware of that

considers a model with multiple stores. As in our model, there are a finite number

of discrete time periods in their model so that price changes are periodic and a

price once set for a period stays unchanged during that period. However, our model
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differs from theirs in a number of dimensions. First of all, the practical constraints

on inventory allocation and markdown pricing (i.e., rules (i), (iii), (iv), and (v))

involved in our model do not exist in their model. Secondly, they allow continuous

choices of prices such that any price can be used, whereas in our model (as in most

retail settings in practice) there is a finite and discrete set of pre-selected price levels

that can be used. Thirdly, they require that all the stores use the same price in each

period, whereas we allow prices to be different at different stores as long as business

rule (v) is satisfied. Fourthly, in their model, all the inventory allocated to a store

for the entire planning horizon is delivered to the store at the very beginning of

the planning horizon, whereas we deliver a necessary amount of inventory to each

store period by period. Fifthly, although in our computational experiments, we

use a demand function in order to draw some managerial insights, our model itself

does not require an explicit demand function and makes no assumptions about the

demand distributions. Their model assumes Poisson arrival and employs the concept

of reservation price to model the random demand. Finally, the approach we develop

(in Section 3.2) allows demand correlation across stores and across time periods. In

their model, demand for a given price in a given period at a given store is independent

of the demand in other time periods and independent of the demand at other stores.

In addition to those modeling differences, our solution approach is different from

theirs. They use dynamic programming. Since the number of possible states is

prohibitively large, they propose heuristics based on a state-aggregation technique

applied to the DP formulations. In their computational experiment, only problems

with a small number of stores are tested. Their DP formulations can generate

optimal solutions for problems with 2 stores, and their heuristics are evaluated by

comparing to the optimal solution based on 2-store problems and to a policy used

in practice by a fashion retail chain based on 8-store problems from the retail chain.

We formulate our problem as mixed integer programs and develop a Lagrangian

relaxation based decomposition approach which is capable of solving much larger

problems (e.g., 50 stores) which are often faced by large retail chains in practice.

Furthermore, the demand modeling approach we use in our problem is more
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practical than in most existing markdown pricing problems in the literature. Most

papers reviewed in this section do not consider possible demand correlation across

time periods, and assume that the demand distribution at each time point is inde-

pendent and known precisely in advance. However, in practice, demand over time is

often correlated, and the probability distribution of the demand is often not known

precisely and needs to be re-estimated over time as more market information be-

comes available over time. Therefore, in our problem, we allow demand correlations

across time, do not assume precise demand distribution, and use a rolling horizon

approach in which the demand is updated over time. Our demand modeling details

are discussed in Section 3.2. In the literature, Feng and Gallego (2000) and Gupta

et al. (2006) are the only two papers that consider demand correlation across time.

Feng and Gallego (2000) model the demand correlation across time by assuming

that the demand intensity at any time point is a function of the total sales up to

this time point. Gupta et al. (2006), on the other hand, employs a random compo-

nent in the demand function that explicitly models the interdependency of demand

in different periods.

Next, we review other relevant literature briefly. For a more detailed re-

view, see the survey articles by Elmaghraby and Keskinocak (2003) and Bitran and

Caldentey (2003). Existing markdown pricing models can be classified into several

different classes in terms of number of stores considered (one or multiple), number

of products (one or multiple), nature of price changes (continuous or periodic), na-

ture of allowed prices (discrete or continuous), assumption on demand (deterministic

or stochastic), customer behavior (myopic or strategic), and nature of competition

(monopoly or competitive). As discussed earlier, all the existing markdown pricing

models, except the one considered by Bitran et al. (1998), involve a single store.

In terms of the nature of price changes, some papers (e.g., Gallego and van Ryzin

1994, Bitran and Mondschein 1997, Feng and Gallego 1995, 2000, Feng and Xiao

1999, 2000a, 2000b, Smith and Achabal 1998, and Chatwin 2000) study problems

with continuous price changes allowed such that the price can be changed at any

point in time, whereas some others (e.g., Federgruen and Heching 1999, Smith et
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al. 1998, Mantrala and Rao 2001, and Neelakantan et al. 2007) consider problems

with periodic price changes such that a price once set for a period stays unchanged

during that period. In terms of allowed prices, there are papers (e.g., Gallego and

van Ryzin 1994, Bitran and Mondschein 1997, Smith and Achabal 1998, Zhao and

Zheng 2000, and Anjos et al. 2005) that allow continuous prices such that any price

can be used, and papers (e.g., Chatwin 2000, Smith et al. 1998) that require prices

to be chosen from a finite and discrete set of pre-selected price levels. There are a

few papers (e.g., Dong et al. 2009, Zhang and Cooper 2009) that study the pricing

problem involving multiple products, and most others study the problem with only

a single product.

Most of the models in the markdown pricing area including those reviewed

above and our model assume that customers are myopic and hence the demand in

a period is independent of the prices in the previous periods. When the customers

behave strategically, they consider both the current price and possible price changes

in the future. This scenario is inherently more difficult to analyze. Aviv and Pazgal

(2008), Elmaghraby et al. (2008), and Zhang and Cooper (2008) are a few studies

that take into account the strategic behavior of customers. Most of the literature

study the dynamic pricing problem in a monopoly setting in which a firm’s objective

is to maximize its own revenue without considering the impact from other firms that

sell similar products. When there is competition in the market, the problem becomes

much more complex. Papers that investigate the pricing problem in a competitive

market include Gallego and Hu (2007), Perakis and Sood (2006), and Levin et al.

(2009).

3.1.2 Organization of The Chapter

The remainder of this chapter is organized as follows. In Section 3.2, we intro-

duce necessary notation, model stochastic demand using discrete demand scenarios,

and formulate our problem as a mixed integer program (MIP). As we show in Chap-

ter A of the appendix, our problem is NP-hard even if the demand is deterministic

and there is only a single store or a single time period. Therefore, the overall prob-
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lem is computationally intractable and it is unlikely that one can derive an optimal

solution to the MIP formulation of the problem within a reasonable amount of com-

putational time. We thus focus on heuristic solution approaches. In Section 3.3, we

propose an optimization based heuristic solution approach implemented on a rolling

horizon basis. We develop a Lagrangian relaxation based decomposition approach

to solve the problem involved at the beginning of each period under the rolling hori-

zon approach. In Section 3.4, we describe several benchmark markdown approaches

that are commonly used in practice. In Section 3.5, we conduct an extensive set of

computational experiments under various practical situations, and demonstrate that

our approach outperforms the benchmark approaches under various circumstances.

In Section 3.6 , we discuss a number of managerial insights derived from our com-

putational study. These insights can help managers make better markdown pricing

decisions in practice. Finally, we conclude this chapter in Section 3.7 by discussing

how some other practical issues can be formulated and solved in a similar way.

3.2 Problem Formulation

We define the following notation to be used when we formulate our problem:

1, . . . , T : Markdown time periods, where T is the length of the planning horizon.

N = {1, . . . , n}: Set of n retail stores.

I0: Total inventory available at the warehouse to be allocated to the stores

at the beginning of the planning horizon.

Imin
r : Minimum amount of inventory that has to be assigned to store r ∈ N ,

according to business rule (i).

M = {1, . . . ,m}: Set of m allowable price levels.

p1: Regular price before markdown.

pj: Price corresponding to allowed price level j, for j ∈M . We assume without

loss of generality that p1 > p2 > ... > pm.

Drjt: The demand corresponding to price level j for store r in period t.

uj: The minimum price level that can be set for a period according to business
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rule (iv) if there is a price drop from the previous period and if the price

level j is used in the previous period.

vj: The maximum price level that can be set for a period according to business

rule (iv) if there is a price drop from the previous period and if the price

level j is used in the previous period.

R: Maximum number of markdowns allowed for any store over the planning

horizon, according to business rule (iii).

Q: Number of store clusters. A store cluster includes at least two stores. All the

stores within a cluster are required to have prices in each period that satisfy

business rule (v).

Cq: The qth store cluster, which is a subset of N , for q = 1, . . . , Q.

nI : Number of independent stores (stores that do not belong to any store cluster,

i.e., stores in N \ (C1 ∪ · · · ∪ CQ)).

G: Number of price clusters used to model business rule (v). A price cluster is

the collection of prices that are within the allowed range from each other by

business rule (v). If the rule requires that all the stores in a given store cluster

should use prices within a range of 10% from each other, then a price cluster

would consist of prices that are at most 10% away from each other. Given the

m allowable prices, all the price clusters can be enumerated.

Eg: The gth price cluster, for g = 1, . . . , G.

s: Salvage value per unsold item at the end of the planning horizon.

The demand Drjt at each store r in each period t is a stochastic function of

the price pj used. However, the probability distributions of the demand functions

are not completely known beforehand for the following reasons. First, market dy-

namics often change over time, and hence it can be very difficult, if not impossible,

to generate an accurate distribution for demand in a future period. This is the case

especially at the beginning of the planning horizon when little information is known.

Second, the product has always been sold at the regular price and hence the retailer

has no historical sales data of the product at the markdown prices. Although histor-
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ical data from the clearance sales of similar products may be used to construct the

probability distribution of the demand for the product of interest, such distribution

is only a rough approximation.

Consequently, it is crucial to incorporate up-to-date market information which

becomes available over time as markdown sales progress into the decision process.

Therefore, we approach our problem using a rolling horizon framework where at

the beginning of each period τ , demand distributions in the remaining periods are

re-estimated by utilizing the latest market information, and the problem consisting

of the remaining periods τ, τ + 1, ..., T is re-solved and the solution is implemented

for the current period τ only. A detailed description of our solution approach is

given in Section 3.3.

In the following, we model stochastic demand using discrete scenarios and

formulate our problem at the beginning of a particular time period τ as a mixed

integer program (MIP) with the demand scenarios.

3.2.1 Demand Scenario Tree

As we discussed earlier, it is difficult to know the precise probability distribu-

tions of stochastic demand functions. In fact, even if accurate demand distributions

can be obtained, incorporating them into an optimization model that involves mul-

tiple stores and multiple periods can make the model extremely difficult to solve.

Therefore, we do not try to precisely characterize stochastic demand functions. In-

stead, we approximate the stochastic demand over a given planning horizon by a

finite number of demand scenarios. The demand scenarios can be viewed as a repre-

sentative set of forecasts on possible demand realizations over the planning horizon.

The actual demand realization over the planning horizon may not match exactly

any of the scenarios used because the number of possible demand realizations is

normally far more than the number of scenarios used.

Using demand scenarios to model uncertain demand is a common technique

employed in the literature. Examples include Eppen et al. (1989) and Lucas et

al. (2001) for production capacity planning problems, Smith et al. (1998) for a
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seasonal product pricing and advertisement planning problem, Bent and van Hen-

tenryck (2004) and Hvattum et al. (2006) for vehicle routing problems, and Chang

et al. (2005) for a natural disaster preparedness problem. Estimating a limited

number of possible demand scenarios is much easier than characterizing the entire

distribution. Furthermore, as we will show later in our computational experiments,

approximating the random demand with a discrete set of scenarios can still yield

satisfactory solutions.

The demand scenarios together form a tree structure. In the demand scenario

tree, the root node represents the beginning of the planning horizon and the terminal

nodes represent the end of the planning horizon. Any intermediate nodes represent

the end of one period and start of the next period. Each arc represents a possible

demand outcome in a particular time period t. A path from the root node to a

node at the end of period t represents the demand evolution from the beginning of

the planning horizon until the end of time period t. A path from the root node to

a terminal node represents a complete demand evolution over the entire planning

horizon, which is called a demand scenario. Associated with each scenario, there is

an estimated probability that indicates how likely the actual demand realization is

represented by this particular scenario. Decisions are made at the root node of the

tree (i.e., beginning of the planning horizon) before knowing which demand scenario

is going to occur.

One of the advantages of using a demand scenario tree is that it enables us to

model demand correlation across time periods. In the problem we consider, there

is limited demand information at the beginning of the planning horizon. More

information becomes available over time. Realized demand in one period often

contains important market information which should be used to forecast possible

demand in the future periods. For example, if the realized demand is high in one

period, it is very likely that the demand in the next several periods is going to be

high as well. Using a demand scenario tree enables us to model such dependency

across time periods.

Figure 3.1 illustrates an example of demand scenario tree for the case with a
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single store, two time periods, and two allowable price levels, p1 = 50 and p2 = 40.

The two numbers in the parenthesis on each arc represent the demand values under

the two prices p1 and p2, respectively. There are two possible demand outcomes

in time period 1, representing, for example, good or bad market conditions in this

period, with the respective demand values (60, 120) or (40, 80). Again there are

two possible demand outcomes in time period 2 and these outcomes depend on the

demand realization in time period 1. If the demand realization in period 1 is high,

as represented by the outcome (60, 120), then the two possible outcomes in period

2 are (75, 130) and (55, 110), respectively. In contrast, if the demand realization

in period 1 is low, as represented by the outcome (40, 80), then the two possible

outcomes in period 2 are (45, 90) and (35, 70), respectively. Altogether, there are

four different scenarios in this example. As we can see from this simple example,

using the tree structure, we are able to model a situation where there are demand

correlation across time periods.

Figure 3.1: A Simple Example of Demand Scenario Tree

In our rolling horizon approach, whenever we roll ahead for one time period,
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we re-forecast the demand based on the latest market information and create a new

scenario tree for the remaining time periods. Suppose that we are at the beginning

of time period τ . Using all the information available up to the current time point, a

new demand scenario tree is created for the remaining planning horizon consisting

of periods τ, τ + 1, . . . , T . We define the following notation to describe this scenario

tree. See Section 3.5.1.3 for details on how a demand scenario tree is constructed in

our computational experiments.

Ω: The set of scenarios in the demand scenario tree.

Pω: The probability associated with scenario ω, with 0 < Pω ≤ 1 and
∑

ω∈Ω Pω = 1.

Dω
rjt: The demand at store r for price level j in period t under scenario ω.

A(t): The set of arcs in period t in the scenario tree, for t = τ, . . . , T .

Γαt : The set of scenarios that share a common arc α in period t in the scenario

tree, for α ∈ A(t) and t = τ, . . . , T . We denote Γαt = {ωα1 , ωα2 , . . . , ωα|Γαt |},

where ωαi ∈ Ω, for i = 1, . . . , |Γαt |, and |Γαt | is the number of scenarios in Γαt .

For the example shown in Figure 1, Ω = {1, 2, 3, 4}, A(1) = {a, b}, A(2) =

{c, d, e, f}, Γa1 = {1, 2}, and Γb1 = {3, 4}.

3.2.2 Formulation

In this section we give an approximate mixed integer programming (MIP)

formulation for the problem we face at the beginning of each period. Suppose that

we are at the beginning of a particular period τ and we have created a new demand

scenario tree for the remaining planning horizon consisting of periods τ, τ+1, . . . , T .

Suppose that the price level used in period τ − 1 for store r is j0r, the remaining

number of allowable markdowns is R0r (which is R minus the number of markdowns

already implemented in the first τ − 1 periods), and the total amount of remaining

inventory in the warehouse is I ′0 (which is I0 minus the total amount of inventory

already allocated to the stores in the first τ−1 periods). Our problem is to determine

how much inventory to allocate to each store and which price level to use in each

store in each of the remaining periods τ, τ + 1, . . . , T so that the total expected

80



revenue is maximized.

Our formulation incorporates the given demand scenarios and treats the in-

volved decisions in the following way: (i) Pricing decisions for all the periods are

made at the root node (i.e., at the beginning of period τ) independent of the sce-

narios; (ii) Inventory allocation decisions across time are made based on the actual

demand realizations, and are hence scenario dependent. We note that the pricing

decision for the current period τ is indeed independent of the scenarios because in

reality the prices for period τ are set before the actual demand realization in period

τ is known. However, the pricing decision for future periods τ + 1, ..., T that we

make at the beginning of period τ should be scenario dependent because in reality

the pricing decisions for a future period t (t > τ) depend on what have happened

(i.e., the actual demand realizations) in periods τ, τ + 1, ..., t− 1.

So our formulation does not formulate our problem precisely; instead it is an

approximation. However, it should be noted that in our overall solution approach

(described in Section 3.3.1) which is rolling horizon based, after we solve our formu-

lation at the beginning of each period τ , only the solution for the current period τ

is implemented. This means that even though pricing decisions for future periods

are also included in our formulation, they are not implemented. Since we solve a

new formulation (which incorporates the latest demand information) every time we

move one time period forward, the pricing decisions that are implemented in each

period are in fact made based on the actual demand realizations up to the beginning

of this time period.

Another formulation where the pricing decisions are scenario dependent is

given in Chapter B of the appendix. As we show in the appendix, the formulation

with scenario-dependent pricing decisions is much larger in scale and much more time

consuming to solve than our approximate formulation. Furthermore, in the appendix

we show that under the same overall rolling horizon based solution framework, the

revenue gain by using the formulation with scenario-dependent pricing decisions

(relative to the approximate formulation) is small (varying from 0.6% to 2.3%).

For these reasons, we adopt the approximate formulation and use it in our overall
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solution approach described in Section 3.3.1. Below, we describe our approximate

formulation.

Before giving the complete formulation, we discuss briefly how the various

business rules are formulated. We define the following decision variables to formulate

business rules (i) - (iv):

Iωr : Non-negative continuous variable denoting the total inventory allocated to

store r across all the periods τ, . . . , T under scenario ω

Xrjt: Binary variable indicating whether price level j is selected at store r in

period t

Hrj: Binary variable indicating whether markdown price level j(j > j0r) is

ever used at store r in the periods τ, . . . , T . This variable is used to model

business rule (iii).

Sωrjt: Non-negative continuous variable indicating the quantity sold at store r for

price level j during period t under scenario ω

It is well known that in general, an integer programming formulation is easier

to solve when it is tightly formulated (i.e., its LP relaxation is tight) even if the

tighter formulation requires a larger number of constraints and variables. Hence, our

goal is to formulate each business rule and each constraint as tight as possible. Rules

(i) (i.e., minimum inventory allocation in the first period) and (iii) (i.e., number

of markdowns allowed) are straightforward. We use the following constraint to

formulate rule (ii) (i.e., non-increasing prices over time):

h∑
j=j0r

Xrj(t+1) ≤
h∑

j=j0r

Xrjt, ∀ r∈N, h∈{j0r, . . . ,m}, t∈{τ, . . . , T − 1} (3.1)

Constraint (3.1) ensures that at each store, for each time period, if a particular price

is chosen, then either that price or a higher one should have been chosen for the

earlier period. Enforcing this for each set of adjacent time periods ensures that price

once decreased will not be increased again.

Rule (iv) (i.e., lower and upper bounds on price change) can be formulated as

82



follows:

Xrjt ≤ Xrj(t+1) +

vj∑
l=uj

Xrl(t+1), ∀ r∈N, j∈{j0r, . . . ,m−1}, t∈{τ, . . . , T −1} (3.2)

This constraint works as follows. If the left hand side of this constraint is 1 (i.e.,

the price level for period t is j), one of the variables specified on the right hand side

should also be 1 (i.e., either Xrj(t+1) is 1, meaning that the price level remains the

same in period t+ 1, or one of Xrl(t+1)’s is 1 for some l within the range prescribed

by rule (iv). If the left hand side is zero, then the constraint is redundant.

To formulate rule (v) (i.e., stores in a store cluster use similar prices), we define

the following decision variables:

Yqgt: Binary variable that takes a value of 1 if the store cluster Cq uses the price

cluster Eg in period t and 0 otherwise

Then rule (v) can be formulated as:

G∑
g=1

Yqgt = 1, ∀ q ∈ {1, . . . , Q}, t ∈ {τ, . . . , T} (3.3)

Yqgt ≤
∑
j∈Eg

Xrjt, ∀ q ∈ {1, . . . , Q}, r ∈ Cq,

g∈{1, . . . , G}, t ∈ {τ, . . . , T} (3.4)

The first constraint, (3.3), ensures that exactly one price cluster is used for each store

cluster in each period. The second constraint, (3.4), guarantees that if a particular

price cluster is used by a store cluster then each store within the cluster uses one of

the prices in that price cluster.

In addition to the constraints discussed above, we need to add the so-called

nonanticipativity constraints for some variables. When two scenarios share the same

demand history up to time period t, all the decisions up to time period t must be

identical for these two scenarios. Since variables Sωrjt’s are scenario and time period

dependent, they must satisfy such nonanticipativity constraints as follows.

S
ωαi
rjt = S

ωαi+1

rjt , ∀ r∈N, j∈{j0r, . . . ,m}, t∈{τ, . . . , T − 1},

i = 1, . . . , |Γαt | − 1, α ∈ A(t) (3.5)
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Now we are ready to give the complete MIP formulation for the problem we

have to solve at the beginning of each rolling horizon consisting of periods τ, τ +

1, . . . , T . We denote this formulation as [MIPτ ].

[MIPτ ] max
∑
ω∈Ω

(
Pω

n∑
r=1

m∑
j=j0r

T∑
t=τ

pjS
ω
rjt

)

+s
∑
ω∈Ω

(
Pω

(
I ′0 −

n∑
r=1

m∑
j=j0r

T∑
t=τ

Sωrjt

))
(3.6)

Subject to:

m∑
j=j0r

Xrjt = 1, ∀ r∈N, t∈{τ, . . . , T} (3.7)

h∑
j=j0r

Xrj(t+1) ≤
h∑

j=j0r

Xrjt, ∀ r∈N, h∈{j0r, . . . ,m}, t∈{τ, . . . , T − 1}(3.8)

Xrjt ≤ Xrj(t+1) +

vj∑
l=uj

Xrl(t+1), ∀ r∈N, j∈{j0r, . . . ,m− 1},

t∈{τ, . . . , T − 1} (3.9)
j∑

l=j0r

Xrlt ≤
vj∑

l=j0r

Xrl(t+1), ∀ r∈N, j∈{j0r, . . . ,m− 1},

t∈{τ, . . . , T − 1} (3.10)

Hrj ≥ Xrjt, ∀ r∈N, j∈{j0r + 1, . . .m}, t∈{τ, . . . , T} (3.11)
m∑

j=j0r+1

Hrj ≤ R0r, ∀ r∈N (3.12)

G∑
g=1

Yqgt = 1, ∀ q ∈ {1, . . . , Q}, t ∈ {τ, . . . , T} (3.13)

Yqgt ≤
∑
j∈Eg

Xrjt, ∀ q ∈ {1, . . . , Q}, r ∈ Cq, g∈{1, . . . , G},

t ∈ {τ, . . . , T} (3.14)

Sωrjt ≤ Dω
rjtXrjt, ∀ r∈N, j∈{j0r, . . . ,m}, t∈{τ, . . . , T},

ω∈Ω (3.15)
m∑

j=j0r

T∑
t=τ

Sωrjt ≤ Iωr , ∀ r∈N, ω∈Ω (3.16)
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S
ωαi
rjt = S

ωαi+1

rjt , ∀ r∈N, j∈{j0r, . . . ,m}, t∈{τ, . . . , T − 1},

i = 1, . . . , |Γαt | − 1, α ∈ A(t) (3.17)
n∑
r=1

Iωr ≤ I ′0, ∀ ω∈Ω (3.18)

Xrjt, Hrj, Yqgt ∈ {0, 1}, Iωr , Sωrjt ≥ 0, ∀ r∈N, j∈{j0r, . . . ,m},

q ∈ {1, . . . , Q}, g ∈ {1, . . . , G} t∈{τ, . . . , T}, ω ∈ Ω(3.19)

In addition, there is one more constraint that we have to add if τ = 1, to

formulate business rule (i), as follows.

Iωr ≥ Imin
r , ∀ r∈N, ω∈Ω (3.20)

In the above formulation, the objective function (3.6) maximizes the total

expected revenue under all scenarios by taking into account the revenue collected

from sales as well as the salvage value. Constraint (3.7) makes sure that each period

each store is allotted one and only one price level. Constraints (3.8) and (3.9) enforce

rules (ii) and (iv), as explained earlier. Constraint (3.10) ensures that the maximum

price drop restriction is not violated. This constraint is redundant for the integer

feasible region as the maximum price drop restriction is included in constraint (3.9),

but adding this constraint makes the LP-relaxation tighter. We demonstrate this

by an example. Consider a problem instance with just one store, where we have

four price levels and two time periods t ∈ {1, 2} (τ = 1 and T = 2). There is no

minimum price drop restriction, but the maximum price drop restricts any jumps of

more than one level during a price change. That is, price can be marked down from

level 1 to level 2, but not to level 3. Now consider a LP-relaxation solution as follows:

X111 = X121 = 0.5, X131 = X141 = 0 for the first period, and X112 = X132 = 0,

X122 = X142 = 0.5 for the second period. It can be easily verified that this particular

solution satisfies (3.9), but not (3.10). Thus the additional constraint (3.10), though

redundant for the integer feasible region, helps tighten the feasible region of the LP

relaxation.

Constraints (3.11) and (3.12) formulate rule (iii). Constraints (3.13) and (3.14)

formulate rule (v). Constraint (3.15) makes sure that in a period we sell at a

85



particular price only if that price has been selected and sales are always no more

than the demand. Constraint (3.16) limits the total sales at a store to the quantity

that has been allocated to that store under any scenario. Constraint (3.17) is the

nonanticipativity constraint as discussed earlier. Constraint (3.18) ensures that the

total quantity allocated across all the stores under any scenario does not exceed the

inventory available at the beginning of period τ . Constraint (3.20) formulates rule

(i) which is enforced in the very first period.

We note that in a period, the inventory may not be sufficient to satisfy the

demand. Under such cases, Sωrjt will be strictly less than Dω
rjt. Also, if there is

inventory available, demand should be satisfied. That is, inventory cannot be held

back for future demands, while refusing current demand. Although this is not

modeled, it is enforced implicitly by the formulation. The reason for this is that

since price markups are not allowed, revenue per unit item is non-increasing over

time at each store. So, in an optimal solution, demand will not be refused when

inventory is available.

3.3 Solution Approach

In the appendix we prove that our problem is NP-hard (i.e., computationally

intractable) even when the demand is deterministic and when there is only a single

store or there is only a single time period. Therefore, it is very unlikely that one

can find an optimal solution to our problem within a reasonable computational time

even if there is no demand uncertainty. This justifies us to use a heuristic approach.

In this section, we propose an optimization based heuristic solution approach imple-

mented on a rolling horizon basis. Below we first describe the overall rolling horizon

based solution approach, followed by the description of a Lagrangian relaxation al-

gorithm for solving the mixed integer programming problem [MIPτ ] involved at the

beginning of each period τ in the overall approach.
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3.3.1 Overall Rolling Horizon Based Approach

Our overall solution approach consists of the following procedures.

Initially, set the current period τ = 1.

Step 1: At the beginning of period τ , use the latest demand information to create

a demand scenario tree for the remaining planning horizon consisting of period

τ, τ + 1, . . . , T (see Section 3.5.1.3 for details on how demand scenario trees are

constructed in our computational experiments). Formulate the problem over this

planning horizon as the MIP formulation [MIPτ ] (described in Section 3.2.2). Solve

this formulation by the Lagrangian relaxation algorithm (described below in Section

3.3.2). This gives a solution that specifies a price to use at each store in each period

(i.e., Xrjt values).

Step 2: Given the solution from Step 1, the part for period τ is implemented as

follows: (i) the prices given in this solution for period τ (i.e., Xrjτ values) are set at

the stores for period τ ; (ii) necessary inventory is shipped daily to each store as sales

progress in period τ . Since as explained in Section 3.1, there are daily shipments of

regular products from the warehouse to each store and markdown items can get a

free ride, we can assume that the demand at each store is satisfied daily if there is

enough inventory. If the available inventory in the warehouse is enough to satisfy

the total demand of all the stores over all the days in period τ , then by the end of

period τ , the total amount of inventory shipped to each store r is equal to the actual

demand of that store in period τ . Otherwise, the total amount of inventory shipped

to each store r is equal to the total demand of that store up to the day (before the

end of period τ) when the inventory in the warehouse is depleted.

Step 3: At the end of period τ , update the available inventory at the warehouse.

If the available inventory at the warehouse is nonzero, then set τ = τ + 1 and go to

Step 1.
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3.3.2 Solving [MIPτ ]

In Step 1 of the overall rolling horizon based solution approach described in the

previous subsection, we need to solve the MIP formulation [MIPτ ] (given in Section

3.2.2) at the beginning of each period τ , for τ = 1, 2, . . . , T . This formulation has

a very large scale for problems with a practical size. For instance, for a problem

with 50 stores, 8 time periods, 8 allowable prices, and 81 scenarios (which is one of

the problem configurations we test in our computational experiments described in

Section 3.5), this MIP formulation includes more than 4,900 integer variables (Xrjt,

Hrj, Yqgt), 260,000 continuous variables (Sωrjt, I
ω
r ) and 260,000 constraints. It is

impractical to solve such a large scale MIP problem directly. Thus, we propose a

Lagrangian relaxation based decomposition approach to get a near optimal solution

for this formulation within a reasonable amount of time.

The idea is to relax certain constraints and add them to the objective function

so that the original problem can be decomposed into smaller problems. We move

constraint (3.18) to the objective function with appropriate penalties (known as

Lagrangian multipliers). The relaxed problem has a new objective function as shown

below in equation (3.21) where λω ≥ 0 is the Lagrangian multiplier for constraint

(3.18) corresponding to scenario ω ∈ Ω.

max
∑
ω∈Ω

Pω

(
n∑
r=1

m∑
j=j0r

T∑
t=τ

pjS
ω
rjt

)
+ s

∑
ω∈Ω

Pω

(
I ′0 −

n∑
r=1

m∑
j=j0r

T∑
t=τ

Sωrjt

)

+
∑
ω∈Ω

λω

(
I ′0 −

n∑
r=1

Iωr

)
(3.21)

The Lagrangian relaxation problem (with objective function (3.21) subject to

constraints (3.7) through (3.17), and (3.19), plus (3.20) if τ = 1) is now decomposed

into Q+nI subproblems. Each subproblem corresponds to a particular store cluster

q or an independent store r.
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The subproblem for store cluster q, for q = 1, . . . , Q, can be stated as follows.

max
∑
ω∈Ω

Pω ∑
r∈Cq

m∑
j=j0r

T∑
t=τ

pjS
ω
rjt

 − s
∑
ω∈Ω

Pω ∑
r∈Cq

m∑
j=j0r

T∑
t=τ

Sωrjt


−
∑
ω∈Ω

∑
r∈Cq

λωIωr (3.22)

Subject to: Constraints (3.7) through (3.17), and (3.19), plus (3.20) if τ = 1,

for store cluster q only. Remove “q ∈ {1, . . . , Q}” in constraints (3.13), (3.14), and

(3.19), and change “r ∈ N” to “r ∈ Cq” in all other constraints.

Similarly, the subproblem for an independent store r ∈ N \ (C1 ∪ · · ·CQ) can

be stated as follows.

max
∑
ω∈Ω

(
Pω

m∑
j=j0r

T∑
t=τ

pjS
ω
rjt

)
− s

∑
ω∈Ω

(
Pω

m∑
j=j0r

T∑
t=τ

Sωrjt

)
−
∑
ω∈Ω

λωIωr (3.23)

Subject to: Constraints (3.7) through (3.12), (3.15) through (3.17), (3.19), plus

(3.20) if τ = 1, for store r only. Remove “r ∈ N” in all these constraints.

For any given set of Lagrangian multipliers λω for ω ∈ Ω, we solve the La-

grangian relaxation problem by solving the Q + nI subproblems as defined above.

The objective function of the Lagrangian relaxation problem (3.21) is the sum-

mation of the objective functions of all the subproblems plus a constant term

sI ′0 +
∑

ω∈Ω λ
ωI ′0. In practice, typically there are only a small number of stores

(no more than 5) in a store cluster. Thus the subproblem for each store cluster is

much smaller than the original problem. Clearly the subproblem for each indepen-

dent store is even smaller.

For any given set of non-negative Lagrangian multipliers λω for ω ∈ Ω, the

optimal objective function value of the Lagrangian relaxation problem provides an

upper bound for the problem [MIPτ ]. The problem of finding the optimal Lagrangian

multipliers that generate the minimum upper bound is called the Lagrangian dual.

A commonly used approach for solving the Lagrangian dual is the subgradient al-

gorithm. In order to implement the subgradient algorithm, one needs to specify
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appropriate initial values and choose a step size in each iteration to iteratively up-

date the values of the Lagrangian multipliers. Appropriate initial values and step

sizes are critical in ensuring the convergence of the subgradient algorithm. Unfor-

tunately, these values are often problem specific and very difficult to find.

The Lagrangian multipliers for our problem, however, have a special economic

interpretation which can be used to identify a range for the possible values of the

optimal Lagrangian multipliers. It can be seen that λω is the expected marginal

revenue of inventory under scenario ω. On one hand, an extra unit of inventory can

generate an additional revenue of at least s (e.g., keep this unit in the warehouse and

sell it at the end of the planning horizon to receive the salvage value). On the other

hand, the maximum additional revenue an extra unit of inventory can generate is

no more than p1, the maximum possible selling price. Therefore, the possible value

of the optimal Lagrangian multiplier λω must be within the range [sPω, p1Pω].

Knowing the range of λω enables us to develop an efficient algorithm for solving

the Lagrangian dual. We search a value within this range for each Lagrangian

multiplier λω in a heuristic way. The value we find for each λω may not be optimal,

but gives a fairly tight Lagrangian upper bound, which enables us to generate near

optimal solutions to [MIPτ ], as shown in our computational experiment described

in Section 3.5. Our idea is very similar to the line search algorithms commonly used

in the nonlinear programming literature (Bazaraa, et al. 1993). It works as follow.

We set the initial value of each Lagrangian multiplier λω to be the middle point

of its possible range, i.e., Pω(p1 + s)/2. We then solve the Lagrangian relaxation

problem. If the resulting solution violates constraint (3.18) for a specific ω, we

increase λω by a step size ξω; otherwise, we decrease λω by ξω. Unlike most commonly

used subgradient algorithms for solving a Lagrangian dual problem where step sizes

typically depend on how much the constraint(s) moved to the objective function is

(are) violated, our algorithm uses pre-determined step sizes which do not depend

on the magnitude by which constraint (3.18) is violated. Below we describe our

algorithm in detail.
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Lagrangian Relaxation Algorithm (LRA) for Solving [MIPτ ]

Step 0: Initialization. For ∀ ω ∈ Ω, set the initial Lagrangian multiplier λω =

Pω(p1 + s)/2 and the initial step size ξω = Pω(p1 − s)/4. Set the initial Lagrangian

upper bound F 0 = ∞. Set the iteration counter K = 1. Set the stopping criterion

counter L = 0.

Step 1: Solve the Lagrangian Relaxation Problem. For iteration K, solve

the Lagrangian relaxation problem by solving each subproblem with the given mul-

tipliers λω’s. This gives a new objective function value F and a new solution. If

F < F 0, make this solution the incumbent solution.

Step 2: Check the stopping criteria. If (F 0 − F )/F 0 < α for some parameter

α (e.g., α = 0.05%), L = L + 1; otherwise, L = 0. If L = 2 or K = 15, stop the

algorithm and take the incumbent solution; otherwise, update the Lagrangian upper

bound, F 0 = min(F 0, F ).

Step 3: Update the Lagrangian multipliers and the step size. For ∀ ω ∈ Ω,

check if the solution obtained in Step 1 violates constraint (3.18). If yes, let λω =

λω + ξω; otherwise let λω = λω − ξω. Reduce the step size by half, i.e., ξω = ξω/2.

Update the iteration counter, K = K + 1, and go back to Step 1.

We note that in this algorithm L is used to keep track of the number of con-

secutive iterations in which the optimal objective value of the Lagrangian relaxation

is not improved by the required minimum percentage value α. It can be seen from

Step 2 that the algorithm is terminated if there is no improvement beyond the min-

imum requirement in two consecutive iterations (i.e., L = 2), or if the total number

of iterations reaches 15.

The solution obtained in this algorithm may not be feasible for the problem

[MIPτ ] since constraint (3.18) might be violated. Therefore, we need to construct

a feasible solution based on the solution generated by this algorithm. This can

be achieved by the following procedure. We first fix the integer variables Xrjt’s,

Hrj’s, and Yqgt’s in the formulation [MIPτ ] with the values from the solution of

this algorithm. This results in a linear programming formulation with continuous

variables Sωrjt’s and Iωr ’s only. We then solve the LP problem by a direct LP solver
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to obtain an optimal solution for variables Sωrjt’s and Iωr ’s.

3.4 Benchmark Approaches

In this section, we first describe four simple markdown pricing policies com-

monly used in practice. We then introduce a sequential approach used by several

companies we have worked with. Finally, we provide an upper bound on the total

revenue one can achieve under a particular demand realization. These benchmark

approaches and upper bound are used in Section 3.5 to evaluate the performance of

our approach described in Section 3.3.

3.4.1 Simple Markdown Pricing Policies

In practice, most companies use simple markdown pricing policies for ease of

implementation. The following four approaches have been widely used (Mantrala

and Rao 2001).

• Simple Policy 1 (referred to herein as P1): Under this policy, regular price p1

is used for the first two periods and then 25% is marked down every two periods

thereafter, i.e., 25% off (i.e., 0.75p1) for periods 3 and 4, 50% off (i.e., 0.5p1) for

periods 5 and 6, and 75% off (i.e., 0.25p1) for the remaining periods. The fact that

the allowable prices are discrete in our problem may not allow us to implement this

policy in an exact way. If this happens, we use the nearest allowable price.

• Simple Policy 2 (referred to herein as P2): Under this policy, regular price p1

is used for the first half planning horizon and then 50% discount is applied to the

remaining planning horizon, i.e., p1 for periods 1 to bT/2c and p1/2 for periods

bT/2c + 1 to T . In the case if p1/2 is not an allowed price, we use the nearest

allowable price.

• Simple Policy 3 (referred to herein as P3): Regular price p1 is applied to the entire

planning horizon.

• Simple Policy 4 (referred to herein as P4): 25% off (i.e., 0.75p1) is applied to

the entire planning horizon. If 0.75p1 is not an allowed price, we use the nearest
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allowable price.

P1 is adapted from the well-known Filene’s markdown policy (Bitran and

Mondschein 1997). P3 and P4 are single price policies. A single price policy is

proved to be asymptotically optimal under certain conditions when there is only

a single store in the problem (Gallego and van Ryzin 1994). While these simple

policies are easy to implement, they do not react to changing market conditions

and are not updated over time. These policies can be implemented at once at the

beginning of the planning horizon and do not require a rolling horizon approach.

3.4.2 Sequential Approach

Several retailers that we have collaborated with use a more sophisticated ap-

proach than the simple policies described in the previous subsection. They use a

so-called sequential approach (referred to herein as SA). Similar to our approach,

this approach is also implemented on a rolling horizon basis. However, it differs

from our approach in the following aspects: (i) it does not model stochastic demand

by a scenario tree; instead, it uses expected demand only and treats the problem

as deterministic; (ii) it makes inventory allocation decision first, followed by pricing

decision (and hence is called “sequential”); and (iii) it uses the same price for all

stores within the same cluster in each time period.

This approach works as follows. Under the rolling horizon framework, assume

that we are at the beginning of time period τ .

Step 1: Available inventory is allocated to each store cluster and each independent

store proportionally to its total expected demand in the remaining horizon (periods

τ through T ) under the price used in the previous period τ − 1. It should be noted

that the determination of such an inventory allocation is solely for determining

the pricing decisions in the second step. Only necessary inventory for one period is

actually shipped to each store in each period as in our approach discussed in Section

3.3.1.

Step 2: A single price is determined for each store cluster and each independent

store and is implemented for the current period τ . The price is determined such
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that it is feasible with respect to the business rules and it yields the highest total

expected revenue if this price is kept in all the remaining periods for this store cluster

or the independent store involved. For example, if there are three allowable prices,

i.e., p1 = 100, p2 = 80, p3 = 60, with the total expected demand in the remaining

horizon being 100, 200, 300 respectively, and if the inventory allocated to this store

cluster (or store) is 180, then we will choose p2 = 80.

3.4.3 Upper Bound

In reality, the actual demand realization in each period is not known until at

the end of this period. However, if we assume that the demand realization across

the entire planning horizon is known at the very beginning of the planning horizon,

then the problem becomes deterministic and can be formulated as [MIP1] with one

demand scenario only which is the actual demand realization. Obviously the optimal

solution we get by solving this deterministic problem cannot be implemented in

reality because it is impossible to know the actual demand realization in advance.

However, the optimal objective value of this problem provides an upper bound of

the total revenue one can achieve in reality for that particular demand realization.

3.5 Computational Experiments

In this section, we conduct computational experiments to address the following

questions:

(i) How good is the Lagrangian relaxation algorithm (LRA) described in Section

3.3.2 for the MIP formulation [MIPτ ] that we have to solve at the beginning of each

period τ? Since [MIP1] is the largest in scale, we focus on [MIP1] and compare

the solution generated by LRA and the optimal solution generated by a commercial

MIP solver.

(ii) How good is our overall solution approach proposed in Section 3.3.1 for our

entire problem? We compare our approach to the benchmark approaches and the

upper bound described in Section 3.4.
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These questions are investigated using an extensive set of randomly generated

test instances. In the following, we first describe how random test problems are

generated in Section 3.5.1, followed by the computational results in 3.5.2 including

Section 3.5.2.1 for (i) and Section 3.5.2.2 for (ii), respectively.

3.5.1 Design of Experiments

Since our problem is motivated by a real-world situation, we design a set of

test problems that capture major characteristics commonly encountered in practice.

Due to commercial confidentiality, we are not allowed to report the real data sets

from the company that we have worked with. We instead generate our own random

data sets that closely follow the structure of the real data. Given that there is a

large number of parameters in our problem, it is not possible to report test results

from varying each of the parameters independently. Hence based on trial runs, we

choose a few key parameters to vary while keep the values of the other parameters

fixed.

Although our solution approach does not require any specific demand distri-

butions, for ease of generating test problems, we may use some specific demand

distributions that closely mimic what might actually happen in reality.

3.5.1.1 Parameter Configurations

We generate test problem instances based on the parameter configurations as

follows.

• Number of time periods, T = 8. A typical time period in practice is for a duration

of one or two weeks, and the entire markdown horizon goes anywhere from a few

weeks to about three months.

• Number of stores, n = 50. The number of retail stores served by a typical ware-

house for the company that we have worked with varies from 30 to about 100, but

in most cases, no more than 50.

• Number of allowable price levels, m = 8. The regular price p1 = 100, and the
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markdown prices are set to be 10%, 20%, ..., 60%, and 70% lower than the regular

price, respectively, i.e., pi = 100− 10(i− 1), for i = 2, . . . , 8.

• For business rule (i), the minimum amount of inventory that must be allocated to

a store in the first period, Imin
r = 10, for every store r ∈ N .

• For business rule (iii), the number of markdowns allowed at each store, R = 5.

• For business rule (iv), we require that in each period if there is a price drop, it

has to drop at least 10% and no more than 30% from the regular price. Given the

allowable prices specified above, this means that the parameters uj and vj associated

with this business rule are: uj = min{j + 1, 8} and vj = min{j + 3, 8}.

• Number of store clusters Q for business rule (v). One way to think of store clusters

is to group together all the stores in a given geographical area. A good measure for

this is the Metropolitan Statistical Area (MSA) as defined by the Census Bureau.

We set the cluster size (i.e., the number of stores in each cluster) to be 3 or 4.

We also assume that about half of the stores belong to a cluster, while the other

half are independent (for example, a store in a small city that has just one store

of its kind). Therefore, among the 50 stores, 25 of them belong to 8 different store

clusters (i.e., Q = 8) while the other 25 are independent (i.e., nI = 25). We allow

the price difference between the stores in a store cluster to be no more than 10%

of the regular price. Given the allowable prices set earlier, we can see that there

are 7 price clusters, i.e., G = 7, and they are: E1 = {100, 90}, E2 = {90, 80}, ...,

E7 = {40, 30}.

• We assume salvage value per unsold item, s = 0. Any problem with a positive

salvage value can be transformed into an equivalent problem with zero salvage value

(Gallego and van Ryzin 1994).

•We employ the following multiplicative demand function to model random demand

Drjt for store r in period t under price pj.

Drjt = θrtdrf(pj)φ(t) (3.24)

This demand function consists of a random variable θrt and three deterministic

terms, i.e., dr, f(pj) and φ(t). They are described as follows.
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◦ θrt is a random component that represents the overall market condition for

store r in period t. The overall market condition θrt is determined by all

random factors that the retailer has little control of. These random factors

include, for example, competition from nearby competitors, regional economy,

and even local weather. The detailed description for generating θrt is given in

Section 3.5.1.2.

◦ dr is the base demand for store r, which can be viewed as the expected

demand at store r in the first period when regular price p1 is used. Base

demand dr for each store is drawn uniformly from the interval [20, 100].

◦ f(pj) is a function that captures how demand varies with the price pj. We

employ a commonly used constant elasticity form f(pj) = (pj/p1)−βr , where

βr > 0 is the price elasticity for store r that measures how sensitive the demand

reacts to a price change. If the demand elasticity is higher, then the demand

increases more quickly for a given price drop. The value of βr should always

be greater than 1 because otherwise revenue would increase with price and

hence there would be no need for markdowns. We allow demand elasticity

βr to be different for different stores because stores at different locations may

face different customer bases. Demand elasticity βr for store r is uniformly

drawn from an interval and fixed over the entire planning horizon. We use

two different intervals in our experiments, i.e., [1.0, 2.0] and [1.0, 3.0]. The

first one represents the situation in which stores are more homogeneous while

the second one represents a more diversified situation.

◦ φ(t) is a function that captures how demand changes over time. We use

the following particular function, i.e., φ(t) = 1, for t = 1, 2, 3, 4, and φ(t) =

1 − 0.1(t − 4), for t = 5, 6, 7, 8. This particular function represents a typi-

cal markdown situation in which demand stays constant for the first several

periods and then starts to decrease.

• Total available inventory I0. We set I0 at three different levels: low, medium,

and high. Each of these levels is set to be the total expected demand of all stores
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over the entire planning horizon if a particular price is used for all the stores in

all the periods. The low level of I0 is equal to the total expected demand if p2

(which is 90% of regular price) is used. The medium level of I0 is equal to the

total expected demand if p4 (which is 70% of the regular price) is used. The high

level of I0 is equal to the total expected demand if p6 (which is 50% of the regular

price) is used. Here, the total expected demand for a given price pj is calculated as∑n
r=1

∑T
t=1 dr(pj/p1)−βrφ(t).

When creating problem instances in our computational tests, we vary two pa-

rameters, βr (from either interval [1.0, 2.0] or interval [1.0, 3.0]) and I0 (low, medium,

or high), while keeping all other parameters fixed, as described earlier.

3.5.1.2 Generating Random Test Instances

A test instance specifies the values for all the parameters of the problem includ-

ing the demand realization over the entire planning horizon. We generate random

test instances in a way that mimics what may actually happen in practice over the

entire planning horizon. However, when we evaluate the performance of our solu-

tion approach, we assume that at each time point we only know the part of the

information contained in a test instance up to that particular time point.

Section 3.5.1.1 describes how we generate the value of each parameter except

the demand realization. In the following we describe how we generate a particular

demand realization over the entire planning horizon (i.e., a particular demand path).

By (3.24), where dr, βr and φ(t) are given as described in Section 3.5.1.1, the

random demand path is uniquely determined by the random variables θrt, for ∀ r ∈

N, t ∈ {1, . . . , T}. Therefore, generating a demand path is equivalent to generating

a particular realization of θrt, for ∀ r ∈ N, t ∈ {1, . . . , T}. In the following,

we describe how to generate a particular realization of θrt by considering possible

demand correlation both across time and across the stores.

To model demand correlation across stores, we assume that the stores can be

classified into two groups N1, N2, where |N1| = |N2| and N1 ∪ N2 = N , such that

the stores within each group are facing a similar market condition (i.e., they have

98



similar θrt values). This is the case when, for example, a subset of stores are closely

located to a major competitor while others are not. We generate the values of θrt

for the stores in the same group following the same probability distribution. The

probability distributions for the two groups are generally different.

In addition, market conditions in consecutive periods are often closely corre-

lated. For example, if the realized market condition for a store in the current period

is good, it is very likely that the market condition for that store in the next several

periods is also going to be good. We model this time correlation by updating the

distribution of θrt based on its realized value of θr,t−1 in the previous period.

Specifically, we generate the values of θrt following a two-step procedure. In

the first step, we generate the overall market condition for each group i = 1, 2 in each

period t represented by a value cit based on the value of overall market condition in

the previous period ci,t−1. In the second step, we generate the market condition θrt

for each individual store r in each period t based on cit.

Step 1: For each store group i = 1, 2, let ci0 = 1, and from t = 1 to T , let cit be a

number uniformly drawn from the interval [ci,t−1 − lt, ci,t−1 + lt], where lt = 1/2t.

Step 2: For ∀ r ∈ Ni, t ∈ {1, . . . , T}, i = 1, 2, let θrt be a number uniformly drawn

from the interval [cit − δt, cit + δt], where δt = 0.1/2t.

In the above procedure, the lengths of the intervals for generating cit and θrt

decrease over time. This represents a typical case in which uncertainty about the

market condition decreases as time progresses and more information is revealed.

3.5.1.3 Generating Demand Scenario Tree

Since our solution approach is implemented on a rolling horizon basis, when-

ever we move forward for one period, we re-generate a demand scenario tree for

the remaining horizon based on the latest market information. Suppose we are at

the beginning of period τ and we need to re-generate a demand scenario tree for

the planning horizon consisting of periods τ, . . . , T . We assume that we know in

advance that the stores are divided into two groups N1 and N2 exactly the same

way as discussed in Section 3.5.1.2, and that we know in advance that the random
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demand follows the function (3.24) (from which the actual demand realizations are

generated in Section 3.5.1.2). In order to generate a demand scenario tree, we need

to know the values of dr, βr, φ(t), and θrt for r ∈ N , t = τ, . . . , T . We assume that

βr and φ(t) are known in advance as described in Section 3.5.1.1. However, we do

not assume that we know the values of dr and θrt exactly. We discuss below how

the values of dr and θrt are generated.

We consider five different cases of dr. In the first case (referred to as E00), we

assume that we know the value of dr exactly with certainty as described in Section

3.5.1.1. This is a reasonable assumption as in many practical situations, even though

one may not know the exact demand distribution, the mean of the distribution can

be estimated accurately. Most pricing literature in fact assume that both mean

and standard deviation of the demand distribution are known. In the remaining

four cases, we assume that we do not know the value of dr exactly, and hence we

may underestimate or overestimate it. Specifically, we consider two cases where we

underestimate dr by 25% or 50% (referred to as U25 and U50, respectively), and

two cases where we overestimate dr by 25% or 50% (referred to as O25 and O50,

respectively).

With dr, βr and φ(t) specified as above, creating a demand scenario tree is now

equivalent to creating a scenario tree of θrt for t = τ, . . . , T . To this end, we first

estimate the latest overall market condition facing each store group Ni, denoted by

parameter ci,τ−1, based on the demand realization in the last period τ−1. Given the

actual demand realization in period τ−1, using the demand function (3.24) and the

price used in each store r, we can get the value of θr,τ−1 for each store r ∈ N . For

i = 1, 2, we take the simple average of θr,τ−1 over all the stores r ∈ Ni as the value

of ci,τ−1. We then use ci,τ−1 to generate scenarios of θrt for r ∈ Ni over the future

periods t = τ, . . . , T . We use the following three methods to generate a scenario

tree. This enables us to evaluate the impact of the demand scenario tree on the

performance of our solution approach.

DR, DN (1 scenario): In this method, we generate a single scenario only. We let

θrt = ci,τ−1, for r ∈ Ni, i = 1, 2, t = τ, . . . , T . This method gives a deterministic
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demand estimate for all the periods. We call this method deterministic rolling

horizon and denote it as DR. In addition to DR, we also test another approach,

denoted as DN. This approach is similar to DR except that the problem is only

solved once at the beginning of the entire planning horizon and the solution is

implemented for all the periods at once without using a rolling horizon approach.

S1 (One period, 9 scenarios): In this method, scenarios are generated based on

the estimated market condition in the first period (i.e., period τ) only. We first define

three values based on ci,τ−1: θ1
iτ = ci,τ−1 + 2lτ/3, θ

2
iτ = ci,τ−1, θ

3
iτ = ci,τ−1 − 2lτ/3.

These three values approximate the possible interval [ci,τ−1 − lτ , ci,τ−1 + lτ ] for

the market condition θrτ in period τ . We then create three scenarios with equal

probability for the possible market condition of the stores within each group Ni

over the entire remaining horizon. That is, we let θrτ = θr,τ+1 = . . . = θrT ∈

{θ1
iτ , θ

2
iτ , θ

3
iτ}, for r ∈ Ni, i = 1, 2. Since the two store groups are independent, this

results in a total of nine scenarios and each of them is associated with probability

of 1/9.

S2 (Two periods, 81 scenarios): In this method, scenarios are created based on

the estimated market condition in the first two periods (i.e., periods τ and τ + 1)

only. We first create three scenarios with equal probability for the possible market

condition in the current period τ . That is, θrτ ∈ {θ1
iτ , θ

2
iτ , θ

3
iτ}, for r ∈ Ni, i = 1, 2,

where, θ1
iτ = ci,τ−1 + 2lτ/3, θ

2
iτ = ci,τ−1, θ

3
iτ = ci,τ−1 − 2lτ/3. Conditioning on each

such scenario in period τ , we further create three scenarios with equal probability

for the remaining periods τ + 1 to T . That is, conditioning on θrτ = θkiτ , k = 1, 2, 3,

we let θr,τ+1 = . . . = θrT ∈ {θk1
iτ , θ

k2
iτ , θ

k3
iτ }, for r ∈ Ni, i = 1, 2, t = τ + 1, . . . , T ,

where, θk1
iτ = θkiτ + 2lτ+1/3, θ

k2
iτ = θkiτ , θ

k3
iτ = θkiτ − 2lτ+1/3. This generates nine

scenarios for the stores in each group, and hence a total of 81 scenarios for all the

stores together. Each one of the scenarios is associated with probability of 1/81.

We note that if the planning horizon consists of period T only, then S2 is

identical to S1. As can be seen, among these three methods, S2 represents the most

accurate estimation of the possible outcomes of the market condition across the

planning horizon.
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3.5.2 Computational Results

In this section, we present the results from our computational experiments.

In Section 3.5.2.1, we show the performance of the Lagrangian relaxation algorithm

(LRA) given in Section 3.3.2 for solving the problem [MIP1] by comparing it to the

commercial CPLEX direct MIP solver. We note that [MIP1] has the largest scale

among all the MIP problems that we have to solve in our overall solution approach.

In Section 3.5.2.2, we show the performance of our overall solution approach with

a rolling horizon implementation for solving the overall integrated inventory alloca-

tion and markdown pricing problem described in Section 3.3.1 by comparing it to

the benchmark approaches and the upper bound described in Section 3.4. All the

programs for the computational tests were written in C++ and all the LP and MIP

subproblems involved were solved by calling the LP/MIP solver of CPLEX 9.0. The

code was run on a PC with a 2.61-GHz AMD Athlon(tm) 64×2 dual core processor

and 3.25-GB memory.

3.5.2.1 Performance of LRA for Solving [MIP1]

The test problem instances are generated following the parameter configu-

rations described in Section 3.5.1.1 with the demand scenario tree generated by

approach S2 as described in Section 3.5.1.3. There are six sets of test problem in-

stances, corresponding to the two cases of intervals for βr, i.e., [1.0, 2.0] and [1.0,

3.0], and three cases of initial inventory levels, i.e., I0 ∈{low, medium, high}. For

each such combination of βr and I0, we generate five problem instances, resulting in

a total of 30 problem instances.

Table 3.1 shows the solution quality and computational time of LRA compared

to the CPLEX direct MIP solver, and the number of iterations of LRA, for problems

with 50 stores. The solution quality of LRA is defined as the ratio of the objective

value of the solution generated by LRA over the optimal objective value generated by

CPLEX. CPLEX was able to solve each problem instance to optimality except one

instance for which the program was terminated when the optimality gap falls within
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0.02%. Table 3.1 shows the median and the worst case values for each performance

measure over the 5 test problems. As can be seen from this table, LRA consistently

generates near-optimal solutions. Both the median computational time and the

variance of the computational time of LRA, on the other hand, are significantly

shorter than those of the CPLEX direct solver. Also the number of iterations used

in LRA is consistent for different configurations of problems.

Table 3.1: Comparison of LRA and CPLEX Direct Solver for [MIP1] with 50 Stores

Solution Quality of LRA Computational Time (s) Num of Iterations

(LRA/CPLEX, %) LRA CPLEX by LRA

βr I0 Median Worst Median Worst Median Worst Median Worst

Low 99.6 99.1 230 315 18670 262783 7 10

1.0-2.0 Medium 99.8 99.5 331 341 9408 *591460 8 10

High 99.1 98.8 363 385 2433 8089 10 11

Low 99.2 99.1 284 291 47343 91176 8 9

1.0-3.0 Medium 98.1 97.4 318 346 6204 185518 9 10

High 99.9 99.8 329 366 796 1200 10 10

∗ Stopped after 591460 seconds

To demonstrate that LRA can be applied to much larger problems, we test

another set of problem instances with 100 stores that are generated in the same

way as the problems with 50 stores. Due to the large sizes of these problems,

we are unable to obtain the optimal solution using CPLEX. Thus, we report the

solution quality of LRA as a ratio of the objective value of the solution over the

Lagrangian upper bound both generated by LRA. Table 3.2 provides a comparison of

the solution quality and the computational time for both problem 50-store and 100-

store problems. As one can see, on one hand, the computational time for problems

with 100 stores is approximately twice that for problems with 50 stores. On the other

hand, the problem size has little impact on the solution quality as LRA generates

equally good solutions for both sets of problems. Therefore, we can conclude that
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LRA is an efficient and robust approach for solving the MIP formulations involved

in our overall approach.

Table 3.2: Performance of LRA for [MIP1]: 50 Stores versus 100 Stores

Solution Quality of LRA

(LRA/UB, %) Computational Time (s)

50 stores 100 stores 50 stores 100 stores

βr I0 Median Worst Median Worst Median Worst Median Worst

Low 98.7 98.4 99.5 98.0 230 315 515 539

1.0-2.0 Medium 99.4 98.8 99.1 98.7 331 341 600 624

High 96.2 95.8 95.8 95.7 363 385 695 788

Low 98.1 97.7 97.9 96.0 284 291 468 503

1.0-3.0 Medium 96.2 95.4 96.2 95.5 318 346 614 669

High 98.9 97.5 97.8 97.1 329 366 668 745

We note that because it is too time-consuming to generate the upper bound

(as described in Section 3.4.3) for the overall problem with more than 50 stores, all

the test problems used in the next subsection involve 50 stores only.

3.5.2.2 Performance of the Overall Solution Approach for the Overall

Problem

In this section, we evaluate the performance of our overall approach described

in Section 3.3.1 for the overall integrated inventory allocation and markdown pricing

problem. We compare this approach with demand scenario tree generated four

different ways (DN, DR, S1 and S2 as described in Section 3.5.1.3) with the five

benchmark approaches (SA, P1, P2, P3 and P4 as described in Section 3.4). As

described earlier, DR, S1, S2 and SA are implemented on a rolling horizon basis,
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whereas DN, P1, P2, P3 and P4 are implemented on a non-rolling horizon basis

(i.e., pricing decisions are determined at the beginning of the entire planning horizon

without re-optimization in later periods). The test problems are generated following

the parameter configurations described in Section 3.5.1. Thus in total we test 30

parameter configurations corresponding to two intervals for βr, i.e., [1.0, 2.0], [1.0,

3.0], three initial inventory levels, i.e., I0 ∈{low, medium, high}, and five cases for

dr, i.e., E00, U25, U50, O25 and O50. For each parameter configuration tested, we

randomly generate 2000 test instances, each corresponding to a different demand

path which is generated as described in Section 3.5.1.2. The reason we use such a

large number of test instances for a given parameter configuration is that we want

to have a fair coverage of possible demand realization.

A test instance specifies the values of all the parameters including the demand

realization over the entire planning horizon. As discussed in Section 3.4.3, when

generating the upper bound for a particular test instance, we assume that the de-

mand realization for the entire planning horizon is known in advance at the very

beginning of the planning horizon. When implementing a rolling horizon approach

(i.e., DR, S1, S2 and SA), however, we assume that only the demand realization

up to the beginning of the current period is known, and use a demand scenario

tree instead of the actual demand realization for the future periods. For the non-

rolling horizon approach, DN, pricing decisions for the entire planning horizon are

determined at the very beginning of the planning horizon based on the information

available at that time, i.e., expected demand for each store in each period under

each price which is estimated at the beginning of the planning horizon. For all the

simple policies (i.e., P1, P2, P3, and P4), pricing decisions for the entire planning

horizon are specified at the very beginning of the horizon regardless of the demand

realization.

For each of the 2000 test instances of a given parameter configuration, we

run each approach as described above to determine the pricing decisions. Once

the pricing decisions are determined, the total revenue achieved by a particular

approach is computed based on the actual demand realization in that test instance.
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For a given parameter configuration, we measure the performance of each approach

relative to the upper bound, defined as the ratio of the average revenue achieved by

this approach over the 2000 test instances divided by the average upper bound over

the same 2000 test instances.

Table 3.3 provides a summary of the performance of all the nine approaches.

Each entry of the table represents the average performance of a particular approach

relative to the upper bound for a particular parameter configuration over the 2000

test instances corresponding to this parameter configuration. As can be seen from

the table, although the benchmark approaches (SA, P1, P2, P3, P4) may have

good performance for a few parameter configurations, the Lagrangian relaxation

based approaches (DN, DR, S1, S2) overall significantly outperform the benchmark

approaches. By employing a Lagrangian relaxation approach, one can often obtain a

solution that is close to the upper bound (at least 90%). In addition, the Lagrangian

relaxation approaches are much more stable than that of the benchmark approaches

across different parameter configurations.

Among all the Lagrangian relaxation approaches, S2 performs the best, fol-

lowed by S1, DR and DN. Comparing the performance of the two single-scenario

approaches DN and DR, we see that by implementing the Lagrangian relaxation

approach on a rolling horizon basis (as in the case of DR), one can obtain a solution

that is closer to the ideal solution. On average, the resulting performance measure

increases by 4.3%, 5.6%, 8.5%, 8.2%, and 16.4% for the case of E00, U25, U50, O25

and O50, respectively. This implies that when the demand is uncertain, implement-

ing a rolling horizon approach can significantly increase the revenue. In addition,

the advantage of a rolling horizon approach over a non-rolling horizon approach is

more significant when the demand estimation is less accurate (as in the case of U50

and O50).

We also observe that among all the Lagrangian relaxation approaches with a

rolling horizon implementation, S1 and S2 outperform DR in the cases of E00, U25,

U50 and when inventory level is low. For all other parameter configurations, S1 and

S2 are either slightly better than DR (the difference in performance measure is less
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Table 3.3: Comparison of Different Markdown Pricing Approaches

Performance Compared to Upper Bound (%)

dr βr I0 Lagrangian Relaxation Approaches Benchmarks

DN DR S1 S2 SA P1 P2 P3 P4

Low 92.7 94.5 96.0 96.3 86.0 81.1 87.5 91.2 88.1

1.0-2.0 Medium 92.1 96.9 97.0 97.6 87.2 86.4 89.1 79.4 88.2

High 92.8 98.5 98.5 98.6 87.0 85.4 76.0 65.9 73.6

E00
Low 91.9 93.9 93.9 95.6 86.4 80.3 86.0 87.0 87.3

1.0-3.0 Medium 91.9 96.6 96.8 97.2 88.1 84.5 84.7 66.3 79.9

High 92.0 98.5 98.3 98.5 87.4 75.3 58.0 44.3 53.3

Low 90.6 91.0 94.1 94.9 82.4 79.6 86.7 97.0 83.5

1.0-2.0 Medium 86.9 95.1 95.2 95.8 85.4 83.7 89.9 85.9 91.8

High 88.2 98.2 98.2 98.3 87.1 88.7 81.7 70.9 79.1

U25
Low 90.5 90.8 92.6 93.8 83.3 79.7 86.0 95.1 83.3

1.0-3.0 Medium 89.8 96.6 96.3 96.5 87.5 83.5 88.4 73.8 87.9

High 90.5 98.4 98.3 98.4 87.2 82.4 64.5 49.3 59.3

Low 88.5 88.6 92.6 93.0 79.9 81.8 89.3 99.5 80.6

1.0-2.0 Medium 79.3 89.9 90.2 90.8 79.6 80.7 87.3 91.8 89.4

High 81.0 98.0 98.2 98.3 88.1 88.5 86.9 75.4 84.2

U50
Low 88.3 88.3 91.4 91.7 81.0 82.0 88.8 99.2 80.5

1.0-3.0 Medium 83.6 93.5 93.1 93.5 84.2 81.9 87.6 80.7 91.2

High 84.9 98.3 98.1 98.1 86.9 85.9 70.4 53.9 64.8

Low 89.6 96.2 96.8 97.0 86.9 84.4 88.1 82.8 88.6

1.0-2.0 Medium 90.2 97.0 97.1 97.3 86.4 86.9 83.2 72.2 80.8

High 91.9 98.8 98.8 98.8 89.5 80.0 70.6 61.1 68.3

O25
Low 87.2 95.4 95.6 96.2 86.6 82.4 85.7 76.0 85.8

1.0-3.0 Medium 86.2 96.7 96.5 96.8 86.0 83.8 75.7 57.9 69.8

High 88.2 98.8 98.6 98.8 89.8 67.4 51.8 39.5 47.6

Low 81.0 96.3 96.8 96.7 86.5 85.5 83.4 73.3 81.8

1.0-2.0 Medium 82.8 97.3 97.5 97.4 87.5 83.5 75.3 65.0 72.8

High 88.5 99.1 99.2 99.1 94.7 75.8 66.8 57.7 64.6

O50
Low 75.2 94.5 95.0 95.1 85.1 82.6 79.5 63.5 76.1

1.0-3.0 Medium 74.3 96.5 96.3 96.6 86.2 78.6 64.3 48.9 59.0

High 82.3 98.9 99.0 98.8 93.9 61.8 47.7 36.0 43.5
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than 1%) or they have similar performance as DR. This can be explained intuitively

as follows.

First, when the inventory is low, few markdowns are needed as the inventory

can be cleared at a price close to the regular price p1. Thus, the pricing decision in

the first period is critical as this price might be applied to the remaining horizon as

well. Consequently, the performance over the entire planning horizon is primarily

dependent on the solution in the first period. On the other hand, the first period

involves the highest uncertainty because no demand realizations have been observed

yet. When high uncertainty is present, approaches that incorporate demand scenar-

ios as in S1 and S2 are likely to generate better solutions than approaches that use

expected demand as in DR. This explains why S1 and S2 have better performance

than DR under low inventory level. When the inventory is high, the inventory can

only be cleared at a low price. Due to business rule (iv), this low price can only be

reached after multiple markdowns. Therefore, the pricing decision in the first period

becomes less critical as decisions in the first period can be corrected in the following

periods. This explains why the advantage of S1 and S2 becomes less significant

when the inventory level is high.

Second, under a low inventory level, the advantage of S1 and S2 over DR

when the base demand dr is underestimated is more significant than when it is

overestimated. The reason is that, when the base demand is underestimated, or

equivalently, when the actual demand is higher than expected, one cannot increase

the price due to business rule (ii) if the price in the first period is set too low. When

the base demand is overestimated, or equivalently, when the actual demand is lower

than expected, however, one can drop the price more quickly in the following periods

if the price in the first period is set too high. Therefore, the pricing decision in the

first period has little impact when demand is overestimated, whereas the pricing

decision in the first period becomes critical when demand is underestimated. Since

S1 and S2 can generate better solutions (including first-period solutions) than DR,

their advantage over DR is more significant when demand is underestimated.

Comparing the performance of the two approaches involving multiple scenar-
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ios, S1 and S2, we see that S2 performs slightly better than S1. This implies that

incorporating a more accurate demand scenario tree in the Lagrangian relaxation

approach can in general improve the performance. However, the extra benefit might

be limited depending on the particular parameter configuration.

Among all the benchmark approaches, although none of them completely dom-

inates the others, SA is the best in terms of consistency and the overall performance

for all parameter configurations. However, by comparing SA and DR, we see that

DR performs consistently better than SA. This indicates that joint consideration of

inventory allocation and pricing (as in DR) can generate considerably more revenue

than a sequential approach where the two decisions are made separately (as in SA).

We can also observe that the performances of the simple markdown pricing policies

are unstable and highly dependent on the parameter configuration. For example, the

performance of P3 can be as good as 99.5% for one parameter configuration while

as bad as 36.0% for another. This makes sense intuitively since simple markdown

pricing policies are predetermined and do not react to changing market conditions.

Therefore, each simple policy may be suitable for only a small subset of particular

situations.

3.6 Managerial Insights

In this section, we investigate the impact of business rules, price sensitivity

of individual stores, and demand uncertainty on the total expected revenue and

the structure of inventory allocation and pricing decisions. To this end, we test

on a variety of parameter configurations. For each parameter configuration tested,

we generate 1000 random problem instances following the same way as described

in Section 3.5.1. Since our tests in Section 3.5.2 have shown that approach S2

outperforms every other approach, we use S2 to solve all the problem instances in

this section.

In the first experiment, we intend to see how the total expected revenue

changes with the allowed number of markdowns (i.e., business rule (iii)). The test
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problems we use have the same parameter configurations as in Section 3.5.1 except

that the number of markdowns allowed (i.e., R) can vary from 1 to 5. Table 3.4

shows the results. The case with R = 1 is used as the base case for which the total

expected revenue is normalized as 1 (or 100%). The last column of the table shows

the total expected revenue of each other case relative to the base case. The table

also shows the average number of markdowns actually used. It is clear that when the

number of allowed markdowns increases from 1 to 2, there is a significant increase

in revenue (approximately 3% for low inventory level case, 5% for medium inventory

level case, and 20% for high inventory level case). Afterwards, the revenue change

is very small. This suggests that in practice, implementing a markdown scheme

that involves 2 markdowns should, in general, yield satisfactory performance. We

note that this is similar to the result derived by Gallego and van Ryzin (1994) for a

single-store problem. They show that for a single-store problem with a discrete set

of allowable prices and a continuous time horizon, a strategy with only two adjacent

prices can be asymptotically optimal under certain limiting conditions.

In the second experiment, we test the impact of the constraint on the prices

used at different stores in the same period. We compare the case where all the

stores have to use a common price in each period (which is the case in the problem

studied by Bitran et al. 1998) and the case where the stores do not have to use a

common price, but instead, the prices used by the stores in the same store cluster

need to fall within a price cluster (which is the case in our problem as specified in

business rule (v)). The test problems we use have the same parameter configurations

as in Section 3.5.1 except that here we use three different store configurations with

different ranges of price elasticity (βr) as shown in the first column of Table 3.5. We

note that the first case has a fixed price elasticity βr = 2.5, which represents the

situation where all the stores are equally price sensitive, and the other two cases have

a larger range of βr representing the cases where the stores are more heterogeneous.

Table 3.5 shows the average revenue gain by allowing different stores to use different

prices following our business rule (v), relative to the case where a common price for

all the stores must be used in each period. As clearly demonstrated in this table, one
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Table 3.4: Impacts of Allowed Number of Markdowns

Allowed Number Actual Number Relative Revenue

I0 of Markdowns of Markdowns (%)

1 0.73 100.0

2 0.93 103.0

Low 3 1.01 103.3

4 1.02 103.2

5 1.02 103.1

1 0.97 100.0

2 1.41 105.2

Medium 3 1.59 105.9

4 1.67 105.6

5 1.65 105.6

1 1.00 100.0

2 1.89 120.4

High 3 2.17 122.7

4 2.19 122.7

5 2.22 122.8

will always be better off by allowing stores to use different prices. In addition, when

stores become more heterogeneous, there is an increasing revenue gain generated

by allowing different prices. The impact is especially significant when the initial

inventory level is low. This suggests that when the stores are not homogeneous in

terms of price sensitivity (which is likely to be the case, for example, when there

is a large number of stores involved), implementing a common price scheme for all

stores can incur a significant revenue loss.

In the third experiment, we investigate the impact of price elasticity of indi-

vidual stores. The test problems we use have the same parameter configurations as
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Table 3.5: Impact of Non-Common Prices

βr I0 Relative Revenue Gain

Low 0.8%

2.5 Medium 0.6%

High 1.2%

Low 7.2%

2.0 - 3.0 Medium 1.2%

High 2.1%

Low 9.1%

1.0 - 4.0 Medium 3.1%

High 4.3%

in Section 3.5.1 except that we use a wider range of price elasticity βr ∈ [1, 4]. We

first examine how pricing decisions should be made for stores with different price

elasticities. Figures 3.2, 3.3, 3.4, and 3.5 show, respectively, the average number of

markdowns, average first period price, average last period price, and average magni-

tude of each price drop for stores with different price elasticities. Each figure shows

the result under three different levels (low, medium, high) of initial inventory I0.

As one can see that stores with higher price elasticity, in general, have more price

markdowns, and lower first and last period prices. This pattern is especially clear

when the initial inventory level is low. This indicates that retailers should offer

more frequent and deeper price discount for stores that are more price sensitive.

The average magnitude of each price drop, on the other hand, is not significantly

impacted by price elasticity, as shown in Figure 3.5. We then examine how inven-

tory should be allocated to stores with different price elasticities. For each store, we

compute the ratio of the percentage of the actual inventory allocated to this store
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to the percentage of the total base demand of this store. If the ratio is greater than

1, it implies that we should allocate more inventory to this store than its actual

proportion based on the base demand. Figure 3.6 shows the results. The figure

clearly demonstrates that stores with higher price elasticity also have higher ratio.

This suggests that we should allocate a higher proportion of inventory to stores with

a higher price elasticity. The observation holds true for all three initial inventory

levels. This implies that in allocating inventory to stores, we should consider not

only base demands of the stores, but also price sensitivities of the store.

Figure 3.2: How the Number of Markdowns Changes with βr

In the last experiment, we examine the impact of demand uncertainty. We

create three sets of 1000 random problem instances. The parameter configurations

used to generate test instances are the same as in Section 3.5.1 except for the

following differences with respect to the range of θrt (which controls the demand

uncertainty). In the first and second set of test instances, the first period market

condition θrt is generated from interval [0.5, 1.5] and [0.75, 1.25], respectively. For

both sets of problems, the interval length for the market condition θrt in each period

after the first period reduces to half of its length in the previous period. The third
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Figure 3.3: How the First Period Price Changes with βr

Figure 3.4: How the Last Period Price Changes with βr
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Figure 3.5: How the Average Markdown Changes with βr

Figure 3.6: How Inventory Allocation Changes with βr
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set of test instances are deterministic where the demand is given as the expected

value. So, in terms of demand uncertainty, these three sets of problems have high,

low and no uncertainty. Figures 3.7, 3.8 and 3.9 show the price paths over time for

these three sets of problems under low, medium and high initial inventory levels,

respectively. Note that the price paths shown in these figures represent the average

price path across all stores over all the random test instances. We first look at the

low inventory level case. As one can see, when demand is deterministic, the optimal

pricing scheme to use is to drop the price to an appropriate level in the very first

period and keep this price for the entire planning horizon. In contrast, when the

demand is highly uncertain, the price drop in the first period should be more modest

and the optimal pricing scheme is to have multiple price drops and each time drop

a little. This results in a lower price in the end. For medium and high inventory

levels, the price paths for the three sets of problems are very close during the first

several periods. And the price tends to be a little lower in the end when demand

uncertainty is higher.

Figure 3.7: Average Price Path under Low Inventory
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Figure 3.8: Average Price Path under Medium Inventory

Figure 3.9: Average Price Path under High Inventory
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3.7 Conclusions and Extensions

In this study, we have considered an integrated inventory allocation and mark-

down pricing problem faced by many large retailers. The problem involves a large

number of stores and a set of business rules which have not been studied in the

literature. We have shown that the problem is NP-hard even with a single store

or with a single time period and when the demand is deterministic. We have pro-

posed a Lagrangian relaxation based solution approach implemented on a rolling

horizon basis for solving our problem. We have developed several different versions

of this approach where the demand scenario tree is generated differently. We have

evaluated the performance of this approach by comparing it to a set of benchmark

approaches commonly used in practice. Our extensive computational experiments

have shown that our approach significantly outperforms the benchmark approaches.

In addition, we have observed a number of interesting managerial insights that can

be used to assist store managers to make better markdown decisions.

We note that our formulation and solution approach can be easily modified

to handle a variety of other practical situations that are not explicitly reflected

in our problem. In our problem, since markdown items get a free ride with the

daily shipments of regular products from the warehouse to each store, shipments of

markdown items do not incur additional shipping costs. Thus, there is no incentive

for making large but infrequent shipments. Instead, in each period we ship just

enough inventory from the warehouse to each store to satisfy the sales of this period

only. This results in a large number of shipments from the warehouse to each store,

but no inventory redistribution between the stores is needed. In situations where

markdown items do not get a free ride and hence associated shipping costs must be

considered, it may be optimal to make large but infrequent shipments. This means

that some stores may have to keep a large amount of inventory that can be used

for multiple periods. Consequently, inventory redistribution between the stores may

be necessary in certain time periods. Our formulation [MIPτ ] can be modified as

follows to accommodate this situation.
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For ease of presentation, we use store r = 0 to represent the warehouse. Define

variable Iωrt to be the inventory available at store r at the beginning of period t

before inventory redistribution under scenario ω, and variable Zω
rst to be the amount

shipped from store r to store s at the beginning of period t under scenario ω ∈ Ω,

for r ∈ N ∪ {0}, s ∈ N , t ∈ {τ, . . . , T} and ω ∈ Ω. The formulation [MIPτ ] is

modified by replacing constraint (3.16) with

m∑
j=j0r

Sωrjt ≤ Iωrt +
∑

s∈N∪{0}

Zω
srt, ∀r ∈ N, t ∈ {τ, . . . , T}, ω ∈ Ω (3.25)

and replacing (3.18) with

Iω0,t+1 = Iω0t −
∑
s∈N

Zω
0st, ∀t ∈ {τ, . . . , T − 1}, ω ∈ Ω (3.26)

Iωr,t+1 = Iωrt +
∑

s∈N∪{0}

Zω
srt −

∑
s∈N

Zω
rst −

m∑
j=j0r

Sωrjt,

∀r ∈ N, t ∈ {τ, . . . , T − 1}, ω ∈ Ω (3.27)

where Iωrτ is the initial inventory at store r at the beginning of the rolling horizon,

which is known and independent of ω. Constraint (3.25) ensures that the sales at

each store in each period is no more than the available inventory, and constraints

(3.26) and (3.27) formulate the relation between the inventory, sales, and redistri-

bution.

Building on the above newly defined variables, we can also incorporate inven-

tory and shipping costs into the problem by simply subtracting the total inventory

cost (a linear function of Iωrt) and total shipping cost (a function of Zω
rst) from the

current objective function (3.6). We can also easily incorporate the costs associated

with the number of markdowns by subtracting a linear function of Hrj from the

current objective function (3.6).

Our Lagrangian relaxation solution approach can also be modified to solve

the revised formulation. We can relax the formulation by moving (3.25), (3.26)

and (3.27) to the objective function with appropriate Lagrangian multipliers. This

will result in a relaxed formulation which can be decomposed by store clusters in a

similar manner as discussed in Section 3.3.2.
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Chapter 4

Robust Dynamic Pricing with Two Substitutable Products

4.1 Introduction

4.1.1 Motivation and Related Literature

Retail stores typically offer a variety of products for customers to choose from.

The demand for one product is influenced not only by its own price, but also by the

prices of the other products sold in the same time. There is a substitution effect (or

complimentary effect) between two products if increasing the price of one product

can increase (or decrease) the demand of another product. Pricing decisions for

multiple products should be made jointly and adjusted over time by exploiting the

possible substitution or complimentary relationships among the products over time.

Pricing and related problems have attracted significant attention by researchers

in the operations management area in the last fifteen years (see survey papers by

McGill and van Ryzin 1999, Bitran and Caldentey 2003, and Elmaghraby and Ke-

skinocak 2003). Most of the work to date so far has focused on single-product prob-

lems which obviously do not model substitution or complimentary effect between

products. Several papers (e.g. Kuyumcu and Popescu 2006, Tang and Yin 2007,

Karakul and Chan 2008, Thiele 2009) consider static pricing of multiple products

in which pricing decisions are made once at the beginning of the planning horizon

and not adjusted over time. Several papers (e.g. Adida and Perakis 2006) study

dynamic pricing of multiple products, in which product prices are adjusted over

time, but assume that the demand of a product is not influenced by the prices of

the other products.

We are aware of a handful of papers only (Gallego and van Ryzin 1997, Bitran

et al. 2006, Maglaras and Meissner 2006, Dong et al. 2009, Zhang and Cooper
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2009, and Akcay et al. 2010) that study multi-product dynamic pricing with the

explicit consideration of demand inter-dependency among the products. They all

consider substitutable products and assume that (i) given a price vector, demand

probability distributions are known and independent across time; and (ii) price

change is allowed at any time during the planning horizon. Demand substitution

is also modeled similarly in all these papers. In Bitran et al. (2006), Dong et

al. (2009), Zhang and Cooper (2009) and Akcay et al. (2010), the total demand

rate (for all the products together) is given exogenously while the product prices

jointly determine the probability of a customer choosing a particular product (or

leaving the store without purchasing any product). In Gallego and van Ryzin (1997)

and Maglaras and Meissner (2006), the demand rate for each individual product is

determined jointly by the product prices through a demand function. In either case,

changing the price of one product may affect the demand of other products, referred

to as price-driven substitution. In addition, they all assume that at the moment

when the inventory of a product becomes zero, the price for this product is set to be

large enough so that the probability that a customer will buy this product is zero.

This modeling approach only works for the case where price change is allowed at

any time. As we discuss below, in most practical situations, price changes can only

occur periodically. In such a case, when the inventory of a product stocks out, there

may exist unmet demand for this product before the price for this product can be

re-set. A fraction of the unmet demand may turn to other products. This type of

substitution, referred to as inventory-driven substitution, is not considered in these

papers. In formulating their proposed model, Maglaras and Meissner (2006), Zhang

and Cooper (2009), Dong et al. (2009) and Akcay et al. (2010) use stochastic

dynamic programming whereas Gallego and van Ryzin (1997) and Bitran et al.

(2006) treat their model as a stochastic control problem. Gallego and van Ryzin

(1997), Maglaras and Meissner (2006), and Bitran et al. (2007) develop heuristic

procedures whereas Dong et al. (2009) and Akcay et al. (2010) are able to solve

small problem instances using their exact DP formulation.

Most of the existing pricing research including the papers reviewed above stud-
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ies structural properties and managerial insights using stylized models. These in-

sights may provide useful general, high-level guidelines for managers in practice.

However, most of the stylized models oversimplify practical situations and do not

closely reflect business norms and rules commonly encountered in practice. El-

maghraby and Keskinocak (2003) write that “another disconnect between most of

the academic literature and practice is the incorporation of business rules into pric-

ing decisions”, and justify the use of commonly accepted rules in practice. Conse-

quently, the insights generated based on a stylized model that ignores common busi-

ness norms and rules do not provide a satisfactory solution to a practical problem.

In fact, such insights may no longer hold when some of the underlying assumptions

change. For example, one of the best-known insights in the single-product dynamic

pricing case (Gallego and van Ryzin 1994) is that when the demand follows a cer-

tain probability distribution and is independent across time, it is optimal to markup

the price after a unit is sold and markdown the price over time if no item is sold.

However, when the demand is not independent across time (as in many practical

situations), this strategy may not work (Su 2007). To deal with a diverse set of

problems in practice, one must use a model which incorporates the business rules

and issues commonly seen in the real world.

Furthermore, most of the existing dynamic pricing models assume the precise

knowledge of the underlying probability distribution of a random demand and as-

sume risk neutrality of the decison maker. However, in practice, it is often difficult

to completely characterize the demand, especially with little sales data available in

the case of products with a short selling season. Even for products long established

in the market, estimating cross elasticities between products can be a daunting

challenge. For this reason, there is an increasing interest in recent years in the op-

erations management area to use models that require limited demand information

only. Examples include Lan et al. (2008) and Ball and Queyranne (2009) for airline

revenue management problems, Perakis and Roels (2008) for the newsvendor model,

and Thiele (2006a, 2006b, 2009), Lim and Shanthikumar (2007), Lim et al. (2008),

and Eren and Maglaras (2009) for pricing problems.
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When modeling demand, Ball and Queyranne (2009) do not require any de-

mand information while Lan et al. (2008) require only lower and upper bounds of

the uncertain demand. Thiele (2006a, 2006b, 2009) requires both the lower and

upper bounds and expected value of the uncertain demand. Eren and Maglaras

(2009) assume that only the support of the distribution of customers’ willingness to

pay is known. Lim and Shanthikumar (2007) and Lim et al. (2008) assume that

the unknown probability distribution of the demand is known to lie within a neigh-

borhood of a given nominal distribution. Perakis and Roels (2008), on the other

hand, require the knowledge of some other parameters of the underlying demand

distribution (e.g., mean, variance, symmetry, unimodality). All these papers de-

velop robust optimization approaches. The objective functions considered in these

papers include both relative performance measures such as maximizing competi-

tive ratio (Ball and Queyranne 2009, Lan et al. 2008, Eren and Maglaras 2009),

and absolute performance measures such as maximizing worst-case revenue (Thiele

2006a, 2006b, 2009, Lim and Shanthikumar 2007, Lim et al. 2008) or minimizing

maximum regret (Perakis and Roels 2008). There are also papers (e.g., Besbes and

Zeevi 2009) that study pricing problems with limited demand information, but use

a framework different from robust optimization. Besbes and Zeevi (2009) consider

a single-product problem under the assumption that the demand function belongs

to a known parametric family with unknown parameters or to a class of functions

without knowing the exact functional form. The sales data up to a time period is

used to “learn the demand” and optimize the pricing policies thereafter.

4.1.2 Our Model

In this chapter, we study a dynamic pricing problem with two substitutable

products involving a set of business rules and practical issues and use a robust

optimization modeling approach to formulate the problem. Because of the short

selling season (e.g. 8 weeks) and long supply lead time (as in the case of fashion

products, some toys, and some high tech products), no inventory replenishment is

possible. The decision maker needs to sell a given amount of inventory of each
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product by periodically adjusting the prices of the products over the selling season.

In practice, price changes can only occur at the beginning of a time period, where a

period typically consists of one to two weeks. Once a price change occurs the new

price should remain unchanged for the entire period. For that reason, the selling

season is assumed to consist of a discrete number of time periods and the decision is

to set a price for each product in each period. In addition, we consider the following

business rules which are widely used in practice:

i) There are a discrete set of allowable prices that can be used for each product

over the selling season (e.g., for a particular digital camera, the allowable price

set is {$269,$249,$229,$199,$179,$159}).

ii) The number of price changes allowed for each product cannot exceed a given

upper limit (e.g., there are no more than 4 price changes over the entire plan-

ning horizon).

iii) In each period, if there is a price change for a product from the price used in

the previous period, the price change must be within a given lower and upper

limits (e.g., at least 10% but no more than 30% markup or markdown).

These rules are due to established market norms and are also desirable from a

consumer’s standpoint. There are certain price points at which consumers become

much more willing to buy, and hence retailers that follow a sound pricing strategy

often use a small set of popular price points for a product (e.g., Allen 2011). Frequent

price changes and significant price differences from one period to the next may

confuse the consumers, who are searching for appropriate prices, not necessarily the

lowest ones. It has been long understood (Hall and Hitch 1939) that frequent price

changes can even make a retailer appear unfair or dishonest, as customers try to

interpret the firms’ motives behind a price change. To the best of our knowledge,

no existing research has considered all these rules in a single pricing model.

In our model, the substitution effect between the two products is driven by

price and availability in the following way. If both products have inventory, the
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demand for each product is driven by the prices of both products (i.e., price-driven

substitution). However, when one of the products is out of stock, a fraction of

the unsatisfied demand for this product will buy the other product (i.e., inventory-

driven substitution), which results in a larger demand for the other product. This is

commonly used in the inventory literature (e.g., Smith and Agrawal 2000, Netessine

and Rudi 2003, Kraiselburd et al. 2004, and Nagarajan and Rajagopalan 2008).

We also consider demand substitution across time periods by assuming that the

total demand of the two products across multiple time periods falls within a cer-

tain interval. None of the above reviewed multi-product pricing literature considers

inter-temporal demand substitution. However, today’s customers are increasingly

sophisticated and extremely adept at finding the best deals. As a result, there often

exists inter-temporal demand substitution which needs to be taken into considera-

tion when a retailer makes pricing decisions (Su 2007, Shen and Su 2007).

Since as discussed above, demand information is often limited in practice, in

our model we do not assume the full knowledge of the demand distribution. Instead,

we assume that in each period t, given a price pair, we know the expected demand

of each product in the current period and the following bounds on the uncertain

demand: (i) a lower bound and upper bound of the demand for each product in the

current period; (ii) a lower bound and upper bound of the total demand of the two

products in the current period; (iii) a lower bound and upper bound of the total

demand of the two products from the first period through the current period. Type

(ii) bounds model uncertainty associated with demand substitution between the two

products in a period. Type (iii) bounds model uncertainty associated with inter-

temporal substitution of the total demand of the two products. From a forecasting

point of view, it is also important to use type (ii) and (iii) bounds. A well-known

principle in demand forecasting is that aggregate forecast is more accurate than

individual ones. Thus, type (iii) bounds are generally tighter and easier to obtain

than type (ii) bounds which are generally tighter and easier to obtain than type (i)

bounds.
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We formulate our model as a robust optimization problem in which we maxi-

mize the worst-case total sales revenue over all possible demand realizations subject

to a number of constraints induced by the given business rules and the nature of

demand substitution described earlier.

4.1.3 Contributions and Organization

Our study contributes to the existing literature in the following three ways.

First, as discussed above, our model is more practical than most existing multi-

product dynamic pricing models. We explicitly consider various business rules,

whereas the existing literature has largely ignored such practical issues and relied

on stylized models. We explicitly model demand substitution between the two prod-

ucts (both price-driven and inventory-driven substitutions) and across time periods,

whereas inventory-driven substitution between the two products and inter-temporal

demand substitution are not considered in most existing dynamic pricing models.

We assume that there is limited demand information and use intervals to charac-

terize demand, whereas demand distributions are precisely known in most existing

models.

Second, we develop a dynamic programming algorithm to solve our problem.

To speed up the DP algorithm, we further develop a fully polynomial-time approx-

imation scheme which guarantees a proven near optimal solution in a manageable

computational time for practically sized problems. For a special case of the problem

where only price markdowns are allowed, we show that the search spaces in the DP

algorithm can be reduced greatly so that the algorithm is capable of generating op-

timal solutions in a reasonable amount of computational time. Extensive numerical

experiments are conducted to show the effectiveness and robustness of the proposed

solution approaches.

Third, we generate a set of interesting managerial insights on how the price

elasticities, demand uncertainty level, number of allowed price changes, and some

other problem parameters impact on the optimal price paths of the products. We

also compare the optimal prices obtained by our max-min approach and a risk-
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neutral approach, and evaluate the value of dynamic pricing. These insights can help

store managers make better pricing decisions when facing high demand uncertainty

due to lack of information.

The rest of this chapter is organized as follows. In Section 4.2, we define

the problem precisely and present a dynamic programming formulation. In Section

4.3, we develop a fully polynomial time approximation scheme (FPTAS) for solving

the DP formulation of the problem. In Section 4.4, we study a special case of the

problem where only price markdowns are allowed and develop structural properties

which are used to reduce the computational time of the DP algorithm. In Section

4.5, computational tests are conducted and the corresponding managerial insights

are discussed. We conclude this chapter in Section 4.6. The proofs for all the lemmas

and theorems are presented in Chapter D of the Appendix.

4.2 Problem Definition and Formulation

4.2.1 Problem Definition

We consider a dynamic pricing problem in which a firm sells two products

(indexed as k = 1, 2) with initial inventory level I1, I2, respectively, over a short

selling season consisting of a finite number of time periods, 1, 2, . . . , T . Typically

in practice, each time period represents one to two weeks. Due to long supply lead

time and short selling horizon, inventory replenishment is not allowed. In line with

most of the existing literature, we do not consider inventory holding cost or time

discounting factor. Any unsold items after the selling horizon have zero value. The

case in which unsold items have non-zero salvage value can be easily converted to the

case with zero-salvage value (see, e.g., Gallego and van Ryzin 1994). Price change

can only occur at the beginning of each period and the price for a product, once set,

has to stay unchanged for the entire time period.

The three business rules (i), (ii) and (iii) discussed in Section 4.1 must be

followed. Following business rule (i) (i.e., discrete set of allowable prices), we denote

the set of allowable prices for product k ∈ {1, 2} as {p1
k, . . . , p

lk
k , . . . , p

mk
k } with
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p1
k > . . . > plkk > . . . > pmkk , where mk denotes the number of allowed price levels for

product k, p1
k denotes the regular selling price of product k, and lk ∈ {1, 2, . . . ,mk}

is a general index that denotes a particular price level for product k, where larger

lk corresponds to a lower price. These prices are predetermined and given as part

of the model input. In the remaining of this chapter, we will use price plkk and

price level lk interchangeably. Following business rule (ii) (i.e., a limited number of

price changes allowed), we define Rk to be the maximum number of price changes

allowed for product k. To model business rule (iii) (i.e., allowed magnitude for a

price change), for each price level lk ∈ {1, 2, . . . ,mk}, we define a corresponding set

of price levels F lk
k to be the set of allowable price levels that can be used for product

k in a period if the price level used in the previous period is lk. We give a simple

example to illustrate the concept. Let us consider the problem where product 1 has

6 possible price levels, {$269, $249, $229, $199, $179, $159}. Suppose that the price

level used in the previous period for product 1 is l1 = 3 that corresponds to $229.

Suppose that business rule (iii) requires that each time if there is a price change,

the change has to be at least 10% but no more than 30% of the original price ($229

in this case). With some simple calculation, one can easily see that the set of the

allowed price levels for the current period is F 3
1 = {1, 3, 4, 5}.

Next we describe how uncertain demand is modeled. Given a price pair (l1, l2)

of the two products in time period t, we denote the uncertain demand of each

product k to be Dl1l2
kt , for k = 1, 2. We assume that we know the expected value of

Dl1l2
kt , denoted as D̄l1l2

kt . As discussed in Section 4.1, we use three types of bounds

to characterize our estimates of the underlying uncertainty space of Dl1l2
1t and Dl1l2

2t .

First, the actual demand Dl1l2
kt is within a known lower bound Ll1l2kt and upper bound

U l1l2
kt , i.e.

Ll1l2kt ≤ Dl1l2
kt ≤ U l1l2

kt , (4.1)

for k = 1, 2, t ∈ {1, . . . , T}, l1 ∈ {1, . . . ,m1}, l2 ∈ {1, . . . ,m2}.

Secondly, the total demand of the two products in period t is also within a known
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lower bound Ll1l2t and upper bound U l1l2
t , i.e.

Ll1l2t ≤ Dl1l2
1t +Dl1l2

2t ≤ U l1l2
t , (4.2)

for t ∈ {1, . . . , T}, l1 ∈ {1, . . . ,m1}, l2 ∈ {1, . . . ,m2}.

which models the uncertainty of demand substitution between the two products

in each period. Since in general estimate of aggregate demand is more accurate

and the corresponding bounds are tighter, we assume that Ll1l2t ≥ Ll1l21t + Ll1l22t and

U l1l2
t ≤ U l1l2

1t + U l1l2
2t , although the results derived in this chapter still work without

this assumption. We also note that we do not require the bounds defined in (4.1)

and (4.2) to be symmetric about the expected values D̄l1l2
kt or D̄l1l2

1t + D̄l1l2
2t .

Finally, to model the uncertainty of inter-temporal demand substitution, we

define γt as a price path from time period 1 to time period t, which specifies a

particular price pair (l1, l2) used in each period τ , for τ ∈ {1, 2, . . . , t}. If (l1, l2)

is the price pair used in period τ in price path γt, we denote (l1, l2, τ) ∈ γt. If

price path γt is used over the periods 1, 2, ..., t, then the total expected demand of

the two products over these periods is known to be
∑t

τ=1

∑
(l1,l2,τ)∈γt(D̄

l1l2
1τ + D̄l1l2

2τ ),

which is denoted as D̄t(γt) with a slight abuse of notation. The actual total demand

of the two products over these periods,
∑t

τ=1

∑
(l1,l2,τ)∈γt(D

l1l2
1τ + Dl1l2

2τ ), which is

unknown, must be in some neighborhood of the expected value D̄t(γt). We assume

that this neighborhood is bounded by a known lower bound and upper bound, each

at most Bt units away from D̄t(γt), where Bt is known and measures the cumulative

uncertainty from period 1 to t. In summary,

D̄t(γt)−Bt ≤
t∑

τ=1

∑
(l1,l2,τ)∈γt

(Dl1l2
1τ +Dl1l2

2τ ) ≤ D̄t(γt) +Bt, (4.3)

for t ∈ {1, . . . , T} and any price path γt

Due to inter-temporal substitution effect, it is expected that the bounds involved

in constraint (4.3) are in general tighter than those involved in constraint (4.2),

i.e. D̄t(γt) − Bt ≥
∑t

τ=1

∑
(l1,l2,τ)∈γt L

l1l2
τ and D̄t(γt) + Bt ≤

∑t
τ=1

∑
(l1,l2,τ)∈γt U

l1l2
τ ,

although we do not make such assumptions in our model.
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The set of possible demand realizations (which we call demand uncertainty

space) in time period t given price path γt is determined by constraints (4.1), (4.2),

and (4.3). Clearly, this set not only depends on the price pair in the current period,

it also depends on the price path up to the current period and the actual demand

realizations in the previous periods. In Section 4.2.2, we will discuss how the demand

uncertainty spaces are represented in our dynamic programming formulation.

In case one of the products stocks out before the end of the planning horizon,

we assume that a known fraction of the unsatisfied customers for this product will

buy the other product (this is the result of inventory driven substitution). We denote

αl1l2t (βl1l2t ) to be the fraction of unsatisfied demand who will switch from product 2

to product 1 (from product 1 to product 2) in period t if product 2 (product 1) is out

of stock when the prices for the products are l1, l2. For ease of presentation, we call

αl1l2t , βl1l2t demand conversion rates. Therefore, if product 1 stocks out in period t un-

der price pair (l1, l2), the actual demand for product 2 will beDl1l2
2t +bβl1l2t (Dl1l2

1t −i1)c,

where Dl1l2
1t , D

l1l2
2t are the initial demands before the inventory-driven substitution ef-

fect and i1 is the available inventory of product 1 at the beginning of period t (hence

Dl1l2
1t − i1 is the unmet demand for product 1). Throughout this chapter, we only

deal with integer-valued demand and inventory. We also assume that αl1l2t pl11 ≤ pl22

and βl1l2t pl22 ≤ pl11 , ∀ t ∈ {1, 2, . . . , T}, lk ∈ {1, 2, . . . ,mk}, which simply states that

one cannot make more profits by intentionally making the inventory of one product

“unavailable” and forcing customers to buy the other product.

We now describe the decision process in our problem. For ease of presentation,

we assume that there are a decision maker who does not know the actual demand

realization in advance and seeks to maximize the total revenue over the planning

horizon in the worst case, and an adversary who controls the actual realization of

demand. At the beginning of each period t ∈ {1, 2, . . . , T} starting from period 1,

the decision maker first chooses an allowable price pair for the two products for the

current period. Then, given this price pair, the adversary picks a particular realiza-

tion of demand for the current period from the set of possible demand realizations

defined by constraints (4.1), (4.2), and (4.3). Next, at the beginning of period t+ 1,
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after having known the actual demand in period t, the decision maker chooses an

allowable price pair for period t + 1, and this process continues until the end of

period T .

We note that our problem is NP -hard even if there is a single product only

and there is no demand uncertainty. The NP -hardness proof given in Chen et al.

(2011) for a single-product deterministic markdown pricing problem can be applied

to this special case of our problem.

4.2.2 Problem Formulation

We formulate our problem as a dynamic programming problem. Constraint

(4.3) which, together with (4.1) and (4.2), defines the possible demand realizations

in a period t, involves the price path γt from period 1 to t. However, it would make

the DP extremely inefficient if we keep track of the price path in the DP. To avoid

this, we introduce a state variable called cumulative demand deviation, and use this

to convert constraint (4.3) into an equivalent constraint such that representing this

equivalent constraint in the DP will not involve the price path explicitly. Given a

price path γτ over the first τ time periods, we define the cumulative demand devia-

tion over the first τ time periods, denoted as dτ (γτ ), to be the cumulative difference

between the actual demand realization and the expected demand over these time

periods, i.e., dτ (γτ ) =
∑τ

j=1

∑
(l1,l2,j)∈γτ (D

l1l2
1j + Dl1l2

2j ) − D̄τ (γτ ). Constraint (4.3)

is equivalent to the constraint that the total demand deviation in the first t time

periods is between −Bt and Bt, i.e.,

−Bt ≤ dt(γt) ≤ Bt (4.4)

Suppose that the cumulative demand deviation in the first t − 1 periods is known

and its value is denoted as d (d can be negative). Then, we have dt(γt) = d+(Dl1l2
1t +

Dl1l2
2t )− (D̄l1l2

1t + D̄l1l2
2t ). Thus constraint (4.4) is further equivalent to

(D̄l1l2
1t + D̄l1l2

2t )−Bt − d ≤ Dl1l2
1t +Dl1l2

2t ≤ (D̄l1l2
1t + D̄l1l2

2t ) +Bt − d (4.5)

Constraints (4.3) and (4.5) are equivalent. However, they require a different set

of parameters. Constraint (4.3) requires to know the price path used, whereas
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constraint (4.5) requires to know the cumulative demand deviation d in the first

t−1 periods and the price pair (l1, l2) in period t. We use constraint (4.5) to replace

(4.3) when we formulate our problem below. This way we do not need to keep track

of the price path; instead we keep track of cumulative demand deviation, which

makes our DP formulation more efficient. We note that the lower bound (upper

bound) in constraint (4.5) can be larger than, equal to, or smaller than that in

(4.2), depending on the values of Bt and d.

Given that price pair (l1, l2) is used in time period t and that the cumulative

demand deviation from period 1 through period t−1 is d, we use Ωl1l2
t,d to denote the

set of possible demand realizations, also called demand uncertainty space for ease of

presentation, in period t. By (4.1), (4.2) and (4.5), we have ,

Ωl1l2
t,d = {(Dl1l2

1t , D
l1l2
2t ) | Ll1l21t ≤ Dl1l2

1t ≤ U l1l2
1t ,

Ll1l22t ≤ Dl1l2
2t ≤ U l1l2

2t ,

Ll1l2t ≤ Dl1l2
1t +Dl1l2

2t ≤ U l1l2
t ,

(D̄l1l2
1t + D̄l1l2

2t )−Bt − d ≤ Dl1l2
1t +Dl1l2

2t ≤ (D̄l1l2
1t + D̄l1l2

2t )

+Bt − d }

We note that when t = 1, since the cumulative deviation before the first period must

be 0, Ωl1l2
1,d is well defined for d = 0, but not defined for d 6= 0. Figure 4.1 shows a

typical shape of a demand uncertainty space Ωl1l2
t,d for given t, d, l1, l2 (which is the

collection of the integer points in the shaded area).

In the following, we present our DP formulation. For ease of presentation,

in the DP formulation below and the corresponding proofs later, we skip some

superscripts and subscripts and simply denote demand for product 1 and 2 asD1, D2,

and cumulative deviation up to time period t − 1 as d. Our DP goes backward

from time period T to 1. We define the value function Vt(i1, i2, l1, l2, r1, r2, d) as

the maximum revenue one can achieve from time period t to T under the following

conditions: (1) initial inventories of the two products at the beginning of time period

t are i1, i2, respectively; (2) the price levels used for the two products in period t−1

are l1, l2, respectively; (3) the remaining number of price changes that are allowed for
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Figure 4.1: Typical shape of a demand uncertainty space, Ωl1l2
t,d

the two products from time period t to T is r1, r2, respectively; (4) the cumulative

demand deviation in the first t−1 periods is d. As one can see, the number of states

is in the order of TI1I2m1m2R1R2Bmax, where Bmax = max{Bt|t = 1, . . . , T}.

The problem can be formulated as a max-min problem with the following

recursive equation.

Vt(i1, i2, l1, l2, r1, r2, d) = max
(l′1,l

′
2)

min
(D1,D2)

{pl
′
1

1 S1 + p
l′2
2 S2 + Vt+1(i′1, i

′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)}(4.6)

subject to: l′1 ∈ F
l1
1 if r1 ≥ 1, or l′1 = l1 if r1 = 0, (4.7)

l′2 ∈ F
l2
2 if r2 ≥ 1, or l′2 = l2 if r2 = 0, (4.8)

(D1, D2) ∈ Ω
l′1l
′
2

t,d , (4.9)

S1 = min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c), (4.10)

S2 = min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c), (4.11)

i′1 = i1 − S1, (4.12)

i′2 = i2 − S2, (4.13)

r′1 = r1 if l′1 = l1, or r′1 = r1 − 1 otherwise, (4.14)

r′2 = r2 if l′2 = l2, or r′2 = r2 − 1 otherwise, (4.15)
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d′ = d+ (D1 +D2)− (D̄
l′1l
′
2

1t + D̄
l′1l
′
2

2t ) (4.16)

In the above formulation, (4.6) defines the value function Vt(i1, i2, l1, l2, r1, r2, d).

The decisions to make include first setting the price pair (l′1, l
′
2) for period t by the

decision maker following constraints (4.7) and (4.8), and then giving the demand

realization (D1, D2) for period t by the adversary following constraint (4.9). All the

other variables are uniquely defined by the remaining constraints (4.10) - (4.16). The

variables S1, S2 are the sales of the two products in period t, and (i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)

together form a state in period t+ 1.

The boundry conditions are as follows:

Vt(0, 0, l1, l2, r1, r2, d) = 0,∀ t ∈ {1, . . . , T}, lk ∈ {1, . . . ,mk}, rk ∈ {0, . . . , Rk}, d ∈

{−Bt−1, . . . , 0, . . . , Bt−1}

VT+1(i1, i2, l1, l2, r1, r2, d) = 0,∀ ik ∈ {0, . . . , Ik}, lk ∈ {1, . . . ,mk}, rk ∈ {0, . . . , Rk}, d ∈

{−BT , . . . , 0, . . . , BT}.

The optimal solution is found by calculating V1(I1, I2, 1, 1, R1, R2, 0).

The above formulation is fairly straightforward. However, we demonstrate in

the following that solving this DP to optimality can be extremely time consuming.

Since the adversary’s goal is to minimize the decision maker’s total revenue,

one may think that the adversary should choose the demand realization (D1, D2) as

low as possible or at least one of the corner points in the demand uncertainty space

Ω
l′1l
′
2

t,d . If this is true, then we can eliminate most of the demand uncertainty space

and look for values of (D1, D2) on the left or/and lower boundary or corner points

of the demand uncertainty space. Unfortunately, this intuition is not valid. We

give an example in Chapter C of the Appendix to show that the worst-case demand

can be in the middle of a demand uncertainty space. This implies that to solve the

DP formulation, we may have to search all possible demand points in a demand

uncertainty space in order to find the worst one. Therefore, in the worst case, the

computational time of the proposed DP is O(TI1I2m
2
1m

2
2R1R2D1,maxD2,maxBmax),

where D1,max and D2,max are the largest possible demand for product 1 and 2 in

any period at any prices. As one can see, the computational time increases with

the amount of initial inventory as well as the magnitude of the demand. Therefore,
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for practical problems with high initial inventory and large demand, it can take an

excessive amount of computational time to solve this DP to optimality.

In the next section, we propose a fully polynomial time approximation scheme

(FPTAS). This approximation scheme guarantees a proven near optimal solution in

a manageable computational time for practically sized problems.

4.3 Approximation Algorithm

In this section, we develop a fully polynomial time approximation scheme

(FPTAS) for solving the DP formulation given in Section 4.2. For any ε > 0, a

FPTAS generates a feasible solution A(I) for any problem instance I such that its

objective value Z(A(I)) is at most ε away from the optimal objective value Z∗(I),

i.e., |Z(A(I))−Z∗(I)| ≤ εZ∗(I), and the computational time used to generate A(I)

is polynomial in the problem input size and 1/ε. A FPTAS is the strongest possible

result one can achieve for a NP -hard problem unless P = NP (e.g. Vazirani 2001,

page 68).

Instead of checking all feasible solutions in the solution spaces of the DP (which

we may have to do in order to find an optimal solution), in our approximation

scheme we only check the solutions in the approximate solution spaces which are

much smaller than the original solution spaces. This will lose some precision but

save the computational time. More specifically, we partition the state spaces and

the demand uncertainty spaces in the DP into smaller spaces and consider a single

solution only in each smaller space. We describe below how this is done.

We partition the space of i1 into intervals of length ∆1, the space of i2 into

intervals of length ∆2, and the space of each of D1, D2, d into intervals of length

∆, where ∆1,∆2,∆ are positive integers. We choose the smallest integer point in

each interval to represent all the points in this interval. The space formed by these

representative points alone form an approximate space. Therefore, for any value

of i1, i2, d in their original state space, there is a corresponding value, denoted as

ĩ1, ĩ2, d̃, in the corresponding approximate space which is the smallest integer point
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in the interval containing i1, i2, d. Similarly, for each possible demand (D1, D2) in

an original demand uncertainty space, there is a corresponding demand, denoted as

(D̃1, D̃2), in the corresponding approximate demand uncertainty space. For example,

if ∆1 = 5, then we divide the space of i1 into intervals [0, 5), [5, 10), ..., and use a

single point ĩ1 = 0 in the approximate space to represent any value of i1 ∈ [0, 5)

in the original space, a single point ĩ1 = 5 in the approximate space to represent

any value of i1 ∈ [5, 10) in the original space, and so on. It can be seen that

ĩ1 ≥ i1 − (∆1 − 1), ĩ2 ≥ i2 − (∆2 − 1), D̃1 ≥ D1 − (∆− 1), D̃2 ≥ D2 − (∆− 1), and

d̃ ≥ d− (∆− 1), for any integer valued i1, i2, D1, D2, d, respectively. It can also be

seen that ĩ1, ĩ2 are always within the original space of i1, i2, but d̃, D̃1, D̃2 may be

out of their original space because d̃, D̃1, D̃2 can be smaller than the lower bound of

d,D1, D2, respectively.

We note that in the remainder of this chapter, the tilde notation applied to a

number x (resulting in x̃) always represents the above described relationship between

x and x̃, i.e. x̃ is the smallest integer point in the approximate space corresponding

to the original space where x belongs. For ease of presentation, we may use symbols

Φ1,Φ2,Φ to express such relationship between a point in the original space and

the corresponding point in the approximate space as follows: ĩ1 = Φ1(i1), ĩ2 =

Φ2(i2), D̃1 = Φ(D1), D̃2 = Φ(D2), d̃ = Φ(d). For example, if ∆1 = 10, i1 = 22, then

ĩ1 = Φ1(i1) = Φ1(22) = 20.

In an approximate state space, no approximation is applied to the other state

variables l1, l2, r1, r2 (i.e., all possible values of these variables are considered). We

use Ω̃l1l2
t,d to denote the resulting approximate demand uncertainty space of an original

demand uncertainty space Ωl1l2
t,d .

Our approximation algorithm uses the same DP as formulated in Section

4.2 except that it is implemented in the approximate state spaces and approx-

imate demand spaces. For ease of presentation, we refer to our approximation

algorithm as AS (which stands for Approximation Scheme) hereinafter. We use

At(̃i1, ĩ2, l1, l2, r1, r2, d̃) to denote the value function with the following recursive re-
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lation.

At(̃i1, ĩ2, l1, l2, r1, r2, d̃) = max
(l′1,l

′
2)

min
(D̃1,D̃2)

{pl
′
1

1 S1 + p
l′2
2 S2 + At+1(̃i′1, ĩ

′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′)}

subject to: l′1 ∈ F
l1
1 if r1 ≥ 1 or l′1 = l1 if r1 = 0

l′2 ∈ F
l2
2 if r2 ≥ 1 or l′2 = l2 if r2 = 0

(D̃1, D̃2) ∈ Ω̃
l′1l
′
2

t,d̃

S1 = min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)

S2 = min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1, D̃1))c)

ĩ′1 = Φ1{̃i1 − S1}

ĩ′2 = Φ2{̃i2 − S2}

r′1 = r1 if l′1 = l1, or r′1 = r1 − 1 otherwise,

r′2 = r2 if l′2 = l2, or r′2 = r2 − 1 otherwise,

d̃′ = Φ{d̃+ (D̃1 + D̃2)− (D̄
l′1l
′
2

1t + D̄
l′1l
′
2

2t )}

The boundary conditions are as follows:

At(0, 0, l1, l2, r1, r2, d̃) = 0, ∀ t, l1, l2, r1, r2, d̃

AT+1(̃i1, ĩ2, l1, l2, r1, r2, d̃) = 0, ∀ ĩ1, ĩ2, l1, l2, r1, r2, d̃.

An approximate solution is found by calculating A1(Ĩ1, Ĩ2, 1, 1, R1, R2, 0).

Since in the AS the revenue calculation is based on approximated values of de-

mand and inventory, the value A1(Ĩ1, Ĩ2, 1, 1, R1, R2, 0) does not represent the actual

revenue one can achieve by implementing the solution from the AS. Thus, we need

to recalculate the revenue obtained by implementing the solution from the AS. To

this end, we define value function Rt(i1, i2, l1, l2, r1, r2, d) to be the actual revenue

obtained by implementing the solution from the AS for the state (i1, i2, l1, l2, r1, r2, d)

in the original state space. The values Rt(i1, i2, l1, l2, r1, r2, d) are computed back-

ward from period T to 1. In period t, for any state (i1, i2, l1, l2, r1, r2, d), its value

Rt(i1, i2, l1, l2, r1, r2, d) is calculated by solving the following optimality equation,

where (l′1, l
′
2) is the given optimal price pair for period t obtained from the AS for

the corresponding approximate state (̃i1, ĩ2, l1, l2, r1, r2, d̃).

Rt(i1, i2, l1, l2, r1, r2, d) = min
(D1,D2)

{pl
′
1

1 S1 + p
l′2
2 S2 +Rt+1(i′1, i

′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)}
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subject to: (D1, D2) ∈ Ω
l′1l
′
2

t,d

S1 = min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

S2 = min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

i′1 = i1 − S1

i′2 = i2 − S2

r′1 = r1 if l′1 = l1, or r′1 = r1 − 1 otherwise,

r′2 = r2 if l′2 = l2, or r′2 = r2 − 1 otherwise,

d′ = d+ (D1 +D2)− (D̄
l′1l
′
2

1t + D̄
l′1l
′
2

2t )

The value R1(I1, I2, 1, 1, R1, R2, 0) is then the actual total revenue of the solution

from the AS.

In the following, we first make some observations about the demand uncer-

tainty spaces. Since these properties are straightforward, we omit the proofs. These

observations will be used later when we prove some properties of the value functions

of the DPs.

Observation 1 For any δ ≥ 0 and d such that Ωl1l2
t,d and Ωl1l2

t,d−δ are nonempty, if

(D1, D2) ∈ Ωl1l2
t,d−δ, but (D1, D2) /∈ Ωl1l2

t,d , then there exists (D′1, D
′
2) ∈ Ωl1l2

t,d such that

D′1 ≤ D1 ≤ D′1 + δ,D′2 ≤ D2 ≤ D′2 + δ and (D1 +D2)− (D′1 +D′2) ≤ δ.

Observation 2 For any δ ≥ 0 and d such that Ω̃l1l2
t,d̃

and Ω̃l1l2
t,d̃+δ̃

are nonempty, if

(D̃1, D̃2) ∈ Ω̃l1l2
t,d̃+δ̃

, but (D̃1, D̃2) /∈ Ω̃l1l2
t,d̃

, then there exists (D̃′1, D̃
′
2) ∈ Ω̃l1l2

t,d̃
such that

D̃1 ≤ D̃′1 ≤ D̃1 + δ̃, D̃2 ≤ D̃′2 ≤ D̃2 + δ̃ and (D̃′1 + D̃′2)− (D̃1 + D̃2) ≤ δ̃.

Observation 3 For any d such that Ωl1l2
t,d and Ω̃l1l2

t,d̃
are nonempty, and ∆ ≥ 1, if

(D̃1, D̃2) ∈ Ω̃l1l2
t,d̃

, then there exists (D′1, D
′
2) ∈ Ωl1l2

t,d such that D′1 − (∆− 1) ≤ D̃1 ≤

D′1 +(∆−1), D′2−(∆−1) ≤ D̃2 ≤ D′2 +(∆−1) and (D̃1 +D̃2)−(D′1 +D′2) ≤ d− d̃.

Observation 4 For any d such that Ωl1l2
t,d and Ω̃l1l2

t,d̃
are nonempty, and ∆ ≥ 1, if

(D1, D2) ∈ Ωl1l2
t,d , then there exists (D̃′1, D̃

′
2) ∈ Ω̃l1l2

t,d̃
such that D̃′1 − (∆− 1) ≤ D1 ≤

D̃′1 +(∆−1), D̃′2− (∆−1) ≤ D2 ≤ D̃′2 +(∆−1) and (D̃′1 + D̃′2)− (D1 +D2) ≤ d− d̃.
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Next we present four lemmas to show some properties of the value functions

Vt(·), At(·), Rt(·) and their relationships. Lemma 1 gives properties of the value

functions Vt(·) of the exact DP while Lemma 2 gives properties of the value func-

tions At(·) of the approximate DP. Each result in each lemma provides an upper

bound on the change of the value function caused by a change of one or two partic-

ular state variables. Based on these results, we then characterize the gap between

At(̃i1, ĩ2, l1, l2, r1, r2, d̃) and Vt(i1, i2, l1, l2, r1, r2, d) in Lemma 3 and the gap between

Rt(i1, i2, l1, l2, r1, r2, d) and At(̃i1, ĩ2, l1, l2, r1, r2, d̃) in Lemma 4. Lemmas 3 and 4 are

the building blocks for the proof of our main result, Theorem 1, given after these

lemmas.

Lemma 1 In any period t, for any δ1, δ2, δ ≥ 0, the following inequalities hold as

long as the value of each state variable involved is within its domain.

(i) Vt(i1 + δ1, 0, l1, l2, r1, r2, d) ≥ Vt(i1, 0, l1, l2, r1, r2, d)

(ii) Vt(i1 + δ1, i2, l1, l2, r1, r2, d) ≥ Vt(i1, 0, l1, l2, r1, r2, d)− p1
1

(iii) Vt(i1 + δ1, i2, l1, l2, r1, r2, d) ≥ Vt(i1, i2, l1, l2, r1, r2, d)− p1
2

(iv) Vt(i1 − δ1, 0, l1, l2, r1, r2, d) ≥ Vt(i1, 0, l1, l2, r1, r2, d)− p1
1δ1

(v) Vt(i1 − δ1, 0, l1, l2, r1, r2, d) ≥ Vt(i1, i2, l1, l2, r1, r2, d)− p1
1(δ1 + i2)− p1

2i2

(vi) Vt(i1 − δ1, i2, l1, l2, r1, r2, d) ≥ Vt(i1, i2, l1, l2, r1, r2, d)− p1
1δ1 − p1

2δ1

(vii) Vt(i1, i2, l1, l2, r1, r2, d− δ) ≥ Vt(i1, i2, l1, l2, r1, r2, d)− p1
1δ − p1

2δ

Lemma 2 In any period t, for any δ1, δ2, δ ≥ 0, the following inequalities hold as

long as the value of each state variable involved is within its domain in the approx-

imate state space.

(i) At(̃i1 + δ̃1, 0, l1, l2, r1, r2, d̃) ≥ At(̃i1, 0, l1, l2, r1, r2, d̃)

(ii) At(̃i1 + δ̃1, ĩ2, l1, l2, r1, r2, d̃) ≥ At(̃i1, 0, l1, l2, r1, r2, d̃)− p1
1

(iii) At(̃i1 + δ̃1, ĩ2, l1, l2, r1, r2, d̃) ≥ At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
2

(iv) At(̃i1 − δ̃1, 0, l1, l2, r1, r2, d̃) ≥ At(̃i1, 0, l1, l2, r1, r2, d̃)− p1
1δ̃1

(v) At(̃i1 − δ̃1, 0, l1, l2, r1, r2, d̃) ≥ At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
1(δ̃1 + ĩ2 + (T − t)(∆1 − 1))− p1

2ĩ2
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(vi) At(̃i1 − δ̃1, ĩ2, l1, l2, r1, r2, d̃) ≥ At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
1δ̃1 − p1

2(δ̃1 + (T − t)(∆2 − 1))

(vii) At(̃i1, ĩ2, l1, l2, r1, r2, d̃+ δ̃) ≥ At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
1(δ̃ + 1)− p1

2(δ̃ + 1)

Lemma 3 In any period t, for any ∆1,∆2,∆ ≥ 1, the following inequality holds as

long as the value of each state variable involved is within its domain in the corre-

sponding state space,

At(̃i1, ĩ2, l1, l2, r1, r2, d̃)

≥ Vt(i1, i2, l1, l2, r1, r2, d)

−(T − t+ 1)p1
1 {max(∆1 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

−(T − t+ 1)p1
2 {max(∆2 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

Lemma 4 In any period t, for any ∆1,∆2,∆ ≥ 1, the following inequality holds as

long as the value of each state variable involved is within its domain in the corre-

sponding state space,

Rt(i1, i2, l1, l2, r1, r2, d)

≥ At(̃i1, ĩ2, l1, l2, r1, r2, d̃)

−(T − t+ 1)p1
1{10(∆− 1) + (T − t+ 1)(∆1 − 1) + 2(∆2 − 1)}

−(T − t+ 1)p1
2{10(∆− 1) + 2(∆1 − 1) + (T − t+ 1)(∆2 − 1)}

Next we show that under some mild conditions on problem parameters and

when ∆1, ∆2 and ∆ are defined properly, the approximation algorithm (AS) con-

structed earlier gives a fully polynomial-time approximation scheme (FPTAS). De-

fine Dmax
j to be the maximum possible demand of product j in any period under

any price level, respectively, for j = 1, 2. Define Dtotal
j to be the minimum possible

total demand of product j over all the time periods if product j is priced at level

mj whereas the other product is priced at level 1 in every time period, for j = 1, 2.

Define Bmax = max{Bt | t = 1, . . . , T}.

We assume that there exists a positive finite integer C0 independent of the

problem parameters such that the following conditions hold.
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(i) max(p1
1, p

1
2)/min(pm1

1 , pm2
2 ) ≤ C0;

(ii) Ij/D
total
j ≤ C0, for j = 1, 2;

(iii) Dmax
j /Dtotal

j ≤ C0, for j = 1, 2;

(iv) Dmax
j /Ij ≤ C0, for j = 1, 2;

(v) Bmax/D
total
j ≤ C0, for j = 1, 2.

(vi) Bmax/Ij ≤ C0, for j = 1, 2.

We allow the value of C0 to be any positive finite integer as long as it is not

problem parameter dependent. We can set C0 sufficiently large (e.g. 100) such

that the above assumptions are easily justified from a practical point of view. Since

the two products are substitutable, one product should not be priced, for example,

100 times, higher than the other product. Similarly, the highest price used for a

product should not be too much (for example, 100 times) higher than the lowest

price used for the product. This justifies (i). To justify the other assumptions, it is

reasonable to assume that under the same price pair, the maximum possible demand

for a product in a period should not be, for example, 100 times, higher than the

minimum possible demand (i.e., U l1l2
kt ≤ 100Ll1l2kt ). By definitions of Dtotal

j and Dmax
j ,

Dtotal
1 ≥

∑T
t=1 L

m1,1
1t , Dtotal

2 ≥
∑T

t=1 L
1,m2

2t , Dmax
1 ≤ max{Um1,1

1t | t = 1, . . . , T}, and

Dmax
2 ≤ max{U1,m2

2t | t = 1, . . . , T}. Thus, Dmax
1 ≤ Um1,1

1τ ≤ 100Lm1,1
1τ ≤ 100Dtotal

1 ,

for some τ ∈ {1, . . . , T}. Similarly, it can be shown that Dmax
2 ≤ 100Dtotal

2 . This

justifies (iii). We can justify (v) similarly. In reality, the available inventory at

the beginning Ij should not be too large relative to Dtotal
j because otherwise there

will be inventory remaining in the end and hence it can be reduced to a lower level

without affecting the solution. Similarly, Ij should not be too small relative to Dmax
j

or allowed cumulative demand deviation Bt because otherwise the problem becomes

trivial. This justifies (ii), (iv) and (vi).

For any given ε > 0, we define the lengths of the intervals ∆1,∆2,∆ used in

our approximation scheme as follows:

∆j = d Ijε

102C2
0T

2 e, for j = 1, 2, and

∆ = max{θ1, θ2, θ3}, where

θj = d D
max
j ε

102C2
0T
e, for j = 1, 2, and
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θ3 = d Bmaxε
102C2

0T
e.

Theorem 1 For any ε > 0, the approximation algorithm AS with the values of

∆1,∆2,∆ defined as above generates a solution that is within a relative error ε from

the optimality with running time O(T 8m2
1m

2
2R1R2/ε

5).

This theorem means that AS is a fully polynomial time approximation scheme (FP-

TAS).

4.4 A Special Case

In this section, we consider a special case of the general problem defined in

Section 4.2. We derive some optimality properties for this special case. These

properties enable us to significantly reduce the search spaces in the DP and solve

practically-sized problems to optimality within a reasonable computational time.

In this special case, we assume that (i) only price markdown is allowed for both

products, i.e., the price used for each product must be non-increasing over the time;

and (ii) the demand for each product is independent across time periods.

Both assumptions are reasonable in many practical settings and are commonly

made in the markdown pricing literature. Markdown pricing is a common technique

used by retailers to sell the remaining inventory of a product in the end of the product

life cycle. According to the National Retail Federation, marked-down goods, which

accounted for just 8% of department store sales three decades ago, now account for

over 20% of sales (Merrick 2001). The primary objective of markdown pricing is to

stimulate sales by lowering the price over time. Marking down the price over time

is proven to be effective for time sensitive goods such as digital cameras for which

the demand drops steadily with time towards the end of the product life cycle.

Assumption (ii) is made in most existing dynamic pricing literature including

the handful of papers that study multi-product dynamic pricing problems (Gallego

and van Ryzin 1997, Bitran et al. 2006, Maglaras and Meissner 2004, Dong et al.

2009, Zhang and Cooper 2009, and Akcay et al. 2010, which are all reviewed in

Section 4.1). Problems with inter-temporal demand correlation are clearly more
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difficult to solve than problems without such correlation. Thus, it is likely that

Assumption (ii) is made in the literature to make the problem more tractable. How-

ever, even if there is no tractability issue, this assumption may have to be made in

situations where there is little information about the inter-temporal correlation so

that the decision maker is not able to characterize such correlation in a meaningful

way. For example, following our demand uncertainty modeling approach described

in Section 4.2.1, due to lack of any meaningful information, the parameter Bt that

measures the cumulative demand uncertainty in the first t time periods is estimated

to be so large that the bounds involved in (4.3) are too loose to be useful (i.e.,

D̄t(γt) − Bt ≤
∑t

τ=1

∑
(l1,l2,τ)∈γt L

l1l2
τ and D̄t(γt) + Bt ≥

∑t
τ=1

∑
(l1,l2,τ)∈γt U

l1l2
τ and

hence constraint (4.3) is dominated by constraint (4.2)).

Assumption (ii) means that there is no inter-temporal demand substitution.

Therefore, when defining demand uncertainty spaces, we no longer consider con-

straint (4.3) (or equivalently constraint (4.5)). The demand uncertainty spaces are

defined by constraints (4.1) and (4.2) only. Given the price pair (l1, l2) for time

period t, we denote the demand uncertainty space in period t as Ωl1l2
t . By (4.1) and

(4.2), we have,

Ωl1l2
t = { (Dl1l2

1t , D
l1l2
2t ) | Ll1l21t ≤ Dl1l2

1t ≤ U l1l2
1t ,

Ll1l22t ≤ Dl1l2
2t ≤ U l1l2

2t ,

Ll1l2t ≤ Dl1l2
1t +Dl1l2

2t ≤ U l1l2
t }

The shape of a demand uncertainty space is similar to that in the case of the general

problem, shown in Figure 4.1.

This special case can be formulated as a DP in a similar way to the DP

formulated in Section 4.2.2 for the general problem. We define the value function

Vt(i1, i2, l1, l2, r1, r2) as the maximum revenue one can achieve from time period t to

time period T under the following conditions: (1) initial inventories of the products

at the beginning of time period t are i1, i2, respectively; (2) the price levels used in

period t−1 are l1, l2, respectively; (3) the remaining number of markdowns that are

allowed for the products from time period t to T is r1, r2, respectively. The recursive
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equation is described as follows.

Vt(i1, i2, l1, l2, r1, r2) = max
(l′1,l

′
2)

min
(D1,D2)

{pl
′
1

1 S1 + p
l′2
2 S2 + Vt+1(i′1, i

′
2, l
′
1, l
′
2, r
′
1, r
′
2)} (4.17)

subject to: l′1 ∈ F
l1
1 ∩ {l1, . . . ,m1} if r1 ≥ 1, or l′1 = l1 if r1 = 0, (4.18)

l′2 ∈ F
l2
2 ∩ {l2, . . . ,m2} if r2 ≥ 1, or l′2 = l2 if r2 = 0, (4.19)

(D1, D2) ∈ Ω
l′1l
′
2

t , (4.20)

S1 = min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c), (4.21)

S2 = min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c), (4.22)

i′1 = i1 − S1, (4.23)

i′2 = i2 − S2, (4.24)

r′1 = r1 if l′1 = l1, or r′1 = r1 − 1 otherwise, (4.25)

r′2 = r2 if l′2 = l2, or r′2 = r2 − 1 otherwise. (4.26)

The boundry conditions are as follows.

Vt(0, 0, l1, l2, r1, r2) = 0,∀ t ∈ {1, . . . , T}, lk ∈ {1, . . . ,mk}, rk ∈ {0, . . . , Rk}}

VT+1(i1, i2, l1, l2, r1, r2) = 0, ∀ ik ∈ {0, . . . , Ik}, lk ∈ {1, . . . ,mk}, rk ∈ {0, . . . , Rk}.

The optimal solution is found by calculating V1(I1, I2, 1, 1, R1, R1).

The above formulation is slightly simpler than the formulation given in Section

4.2.2 for the general problem. Because of the markdown pricing requirement, the

set of allowable prices in period t is F l1
1 ∩ {l1, . . . ,m1} for product 1 and F l2

2 ∩

{l2, . . . ,m2} for product 2. This is reflected in (4.18) and (4.19). In the worst case,

the computational time for the proposed DP is O(TI1I2m
2
1m

2
2R1R2D1,maxD2,max).

In the following, we show two results, Lemma 5 and Theorem 2, for the above

DP formulation. Lemma 5 is used in the proof of Theorem 2. The properties given

in Theorem 2 enable us to consider only a small part of the demand uncertainty

spaces in the DP. This, in turn, significantly reduces the computational time.

Lemma 5, says that if we lower the available inventory of a product by one

unit at the beginning of a time period, the revenue loss is no more than an amount

equal to the price used in the previous period (or the maximum price that can be

used in the current period).
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Lemma 5 In any period t, the following two inequalities hold as long as the value

of each state variable involved is within its domain:

Vt(i1 − 1, i2, l1, l2, r1, r2) ≥ Vt(i1, i2, l1, l2, r1, r2)− pl11 , and

Vt(i1, i2 − 1, l1, l2, r1, r2) ≥ Vt(i1, i2, l1, l2, r1, r2)− pl22 .

Theorem 2 contains two fairly complex results which are elaborated below

after the statement of the theorem. These results essentially mean that given a

price pair in any period, lower demand will always result in a lower revenue.

Theorem 2 Given any state (i1, i2, l1, l2, r1, r2) in the beginning of any period t, for

any feasible price pair (l′1, l
′
2) chosen for period t (i.e., l′1 ∈ F

l1
1 ∩ {l1, . . . ,m1}, and

l′2 ∈ F
l2
2 ∩{l2, . . . ,m2}), and any demand realization (D1, D2), (D1−1, D2), (D1, D2−

1) ∈ Ω
l′1l
′
2

t , the following results hold:

p
l′1
1 min(i1, D1 − 1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c) + p
l′2
2 min(i2, D2

+bβl
′
1l
′
2

t (D1 − 1−min(i1, D1 − 1))c) + Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2)

≤ p
l′1
1 min(i1, D1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c) + p
l′2
2 min(i2, D2

+ bβl
′
1l
′
2

t (D1 −min(i1, D1))c) + Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2), (4.27)

and

p
l′1
1 min(i1, D1 + bαl

′
1l
′
2

t (D2 − 1−min(i2, D2 − 1))c) + p
l′2
2 min(i2, D2 − 1

+bβl
′
1l
′
2

t (D1 −min(i1, D1))c) + Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2)

≤ p
l′1
1 min(i1, D1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c) + p
l′2
2 min(i2, D2

+ bβl
′
1l
′
2

t (D1 −min(i1, D1))c) + Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2), (4.28)

where i′′1 = i1 −min(i1, D1 − 1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c), i′′2 = i2 −min(i2, D2 +

bβl
′
1l
′
2

t (D1− 1−min(i1, D1− 1))c), i′1 = i1−min(i1, D1 + bαl
′
1l
′
2

t (D2−min(i2, D2))c),

i′2 = i2−min(i2, D2 + bβl
′
1l
′
2

t (D1−min(i1, D1))c), i′′′1 = i1−min(i1, D1 + bαl
′
1l
′
2

t (D2−

1−min(i2, D2 − 1))c), and i′′′2 = i2 −min(i2, D2 − 1 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c).

The left side of (4.27) or (4.28) represents the total revenue from period t to

T given that in period t the price pair used is (l′1, l
′
2) and the demand realization is
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(D1−1, D2) or (D1, D2−1). The right side of these inequalities represents the total

revenue from period t to T given that in period t the price pair used is (l′1, l
′
2) and

the demand realization is (D1, D2).

The results of (4.27) and (4.28) imply that given any price pair, for any two

demand realizations (D1, D2) and (D′1, D
′
2) in the demand uncertainty space of the

given price pair, if D′1 ≤ D1, D′2 ≤ D2, then the realization (D′1, D
′
2) will result in

a revenue that is not greater than that generated by the realization (D1, D2). This

observation means that in solving the DP formulation, in any time period t, for any

price pair (l1, l2) chosen by the decision maker, the adversary only needs to consider

the demand realizations which are on the left bottom boundary of the demand

uncertainty space Ωl1l2
t , i.e., integer points on the line segment between point A and

B shown in Figure 4.2. This reduces the worst-case computational time of the DP

from O(TI1I2m
2
1m

2
2R1R2D1,maxD2,max) to O(TI1I2m

2
1m

2
2R1R2 min(D1,max, D2,max)).

Our computational experiment given later (see Section 4.5.3) also shows that the

average computational time for a problem instance is significantly reduced.

Intuitively, one may further expect the worst case demand to be one of the

two end points of the line segment (A or B). However, we can construct an example

to demonstrate that this is not the case. This implies that in the DP algorithm, one

has to search the whole line segment in order to find the worst case demand.

4.5 Computational Results and Managerial Insights

In this section, we conduct four sets of computational experiments. Unless

otherwise stated, all the test problem instances are generated as described in Sec-

tion 4.5.1. In the first set of experiments, described in Section 4.5.2, we evaluate

the performance of the approximation algorithm AS given in Section 4.3. Our com-

putational results show that AS is capable of generating near-optimal solutions in

significantly shorter time compared to the exact DP for practically-sized problems.

In the second set of experiments, described in Section 4.5.3, we demonstrate that the

optimality properties derived in Section 4.4 for the special case enable us to solve
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Figure 4.2: Demand uncertainty space Ωl1l2
t for the special case, where only demand

realizations on the line segment from A to B need to be considered by the adversary

much larger problems to optimality in shorter computational time. In the third set

of experiments, described in Section 4.5.4, we assess the robustness of the max-min

approach that we use by comparing it to a risk-neutral approach which maximizes

the total expected revenue. We show that by employing the max-min approach, one

can signifcantly increase the worst case revenue and decrease the variance of total

revenue at the expense of average revenue generated. However, this average revenue

loss, in general, is very small. In the last set of experiments, described in Section

4.5.5, we derive a set of interesting managerial insights. We show how the optimal

pricing strategies change with problem parameters including price elasticities, de-

mand uncertainty level, number of price changes allowed, and demand conversion

rates. We also compare the optimal prices obtained by our max-min approach and a

risk-neutral approach, and evaluate the value of dynamic pricing. For each compu-

tational experiment, the code was run on a PC with a 2.61-GHz AMD Athlon(tm)

642 dual core processor and 3.25-GB memory.
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4.5.1 Test Problems

We generate test problems that closely follow real-world situations. We use

the following configurations.

• Number of time periods, T = 6. A typical time period in practice is for a duration

of one or two weeks, and the entire selling horizon goes anywhere from a few weeks

to about several months.

• Number of allowable price levels, m1 = m2 = 6.

• Prices of the products. We consider two cases: (1) the two products have compa-

rable prices where the two products have the same price range; (2) the two prod-

ucts have incomparable prices where the price of one product is significantly higher

than the other product. Case (1) represents situations where the two substitutable

products, for example, Canon and Nikon, have similar prices. Case (2) represents

situations where the two substitutable products, for example, Dell and Apple, have

significantly different prices. The regular prices for the two products are set as fol-

lows: for case 1, p1
1 = p1

2 = 100; for case 2, p1
1 = 100, p1

2 = 50. The other allowable

prices are set to be 10%, 20%, ..., and 50% lower than the regular price, respec-

tively, i.e., p2
1 = p2

2 = 90, . . . , p6
1 = p6

2 = 50 for case 1, and p2
1 = 90, . . . , p6

1 = 50,

p2
2 = 45, . . . , p6

2 = 25 for case 2.

• For business rule (ii), the number of price changes allowed, R = 4.

• For business rule (iii), we require that in each period if there is a price change,

it has to be at least 10% but no more than 30% from the regular price. Given the

allowable prices specified above, this means that F j
k = {max(j−3, 1),max(j−3, 1)+

1, . . . ,min(j + 3, 6)− 1,min(j + 3, 6)}.

Although our model does not require any explicit form of demand function,

we use the following functional form to generate the expected demand for a given

price pair (l1, l2) in time period t: D̄l1l2
1t = bf(t)ea10−a11ln(p

l1
1 )+a12ln(p

l2
2 )c and D̄l1l2

2t =

bf(t)ea20+a21ln(p
l1
1 )−a22ln(p

l2
2 )c. This type of demand function is commonly used in the

marketing literature (e.g., Reibstein and Gatignon, 1984). In this function, we set

f(t) = 1.0−0.1(t−1), for t = 1, 2, . . . , T , which captures how demand changes over
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time. This represents a typical situation for many time-sensitive products where de-

mand decreases steadily over time. The parameters a11, a22 are elasticities for which

a larger value indicates that the demand of the product responds more (negatively)

to a price increase of this product. The parameters a12, a21 are cross-elasticities for

which a larger value indicates that the demand of this product responds more (pos-

itively) to a price increase of the other product. The parameters a10, a20 are simply

constants which are used to control the magnitude of the demand generated. When

the two products have comparable prices, we test two scenarios of price elasticities:

scenario 1: a11 = a22 = 2.5, a12 = a21 = 1.5; and scenario 2: a11 = a22 = 1.5, a12 =

a21 = 0.5. These two scenarios represent situations in which the two products are

equally price-sensitive. However, the demand is more sensitive to a price change in

scenario 1 than in scenario 2. When the two products have incomparable prices, we

also test two scenarios: scenario 3: a11 = 2.5, a12 = 1.5, a22 = 1.5, a21 = 0.5; and

scenario 4: a11 = 1.5, a12 = 0.5, a22 = 2.5, a21 = 1.5. These two scenarios represent

situations in which the demand for one product is more sensitive to a price change

than the other product.

The lower and upper bounds for the demand intervals are generated as follows:

Ll1l2kt = b(1−ψ+ε)D̄l1l2
kt c, U

l1l2
kt = b(1+ψ+ε)D̄l1l2

kt c, where ψ is a parameter between

0 and 1 that measures the uncertainty level and ε is a random perturbation. Larger

ψ makes the demand interval wider and hence indicates higher demand uncertainty.

We let ψ = 0.5, which implies that the actual demand for each product can be 50%

lower or higher than the expected demand. To eliminate the possibility of generating

redundant bounds, we have to make sure that the following two conditions hold: (i)

the lower bound of the total demand of the two products Ll1l2t should not be smaller

than the sum of the lower bounds of the demand of the two products Ll1l21t + Ll1l22t ,

because otherwise Ll1l2t becomes redundant; (ii) Ll1l2t should not be greater than

either Ll1l21t +U l1l2
2t or U l1l2

1t +Ll1l22t , because otherwise either Ll1l21t or Ll1l22t will become

redundant. We also have similar conditions for upper bound U l1l2
t . To this end, we

generate the lower and upper bounds for the total demand of the two products in

each period t in the following way: Ll1l2t = bχ(Ll1l21t + Ll1l22t ) + (1 − χ) min(Ll1l21t +
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U l1l2
2t , U

l1l2
1t + Ll1l22t )c, and U l1l2

t = bχ(U l1l2
1t + U l1l2

2t ) + (1− χ) max(Ll1l21t + U l1l2
2t , U

l1l2
1t +

Ll1l22t )c, where χ is a parameter that is randomly generated from the interval between

0 and 1.

We test two initial inventory levels for each product, high and low. The high

initial inventory level for a product is set to be the total expected demand when

this product takes the second lowest price while the other product takes the second

highest price in each period, i.e., I1 =
∑T

t=1 D̄
52
1t and I2 =

∑T
t=1 D̄

25
2t . The low initial

inventory level is simply 60% of the high initial inventory level. In order to control

the problem size so that the computational time of the exact DP is manageable, we

choose the value of a10, a20 such that the high initial inventory for both products

is 100, i.e., I1 = I2 = 100. For the problem instances we test, the magnitude of

total expected demand of the two products in a single period varies from 5 to 85

depending on the price pair chosen and the time period. The average (over all price

pairs and all periods) total expected demand of the two products in a single period

is around 30. We set the total allowed cumulative demand deviation to be 30, i.e.,

Bt = 30, t = 1, 2, . . . , T . This implies that, on average over all price pairs, the

total cumulative demand up to time period t can deviate from its expected value

by at most 100%, 50%, 33%, 25%, 20%, 17% for t = 1, 2, 3, 4, 5, 6, respectively.

Clearly, this models the situation where the aggregate demand is more accurate.

The demand conversion rates are set as αl1l2t = min(0.25 + 0.05 ∗ (l1 − l2), pl22 /p
l1
1 )

and βl1l2t = min(0.25 + 0.05 ∗ (l2 − l1), pl11 /p
l2
2 ).

4.5.2 Performance of the Approximation Scheme

In this set of experiments, we evaluate the performance of the approximation

scheme (AS) given in Section 4.3. We test all the four scenarios of price compara-

bility and price elasticities described in Section 4.5.1. For scenario 1 (where the two

products have comparable prices with a11 = a22 = 2.5, a12 = a21 = 1.5) and scenario

2 (where the two products have comparable prices with a11 = a22 = 1.5, a12 = a21 =

0.5), we test three different initial inventory levels of the two products, (high, high),

(high, low), (low, low). We omit the initial inventory level (low, high) because it has
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similar results to the case (high, low). For scenario 3 (where the two products have

incomparable prices with a11 = 2.5, a12 = 1.5, a22 = 1.5, a21 = 0.5) and scenario 4

(where the two products have incomparable prices with a11 = 1.5, a12 = 0.5, a22 =

2.5, a21 = 1.5), we test four different initial inventory levels, (high, high), (high,

low), (low, high) and (low, low). Therefore, we test a total of 14 combinations of

parameter values. We test AS with two sets of approximation interval lengths. In

the first set, under which the approximation scheme is denoted as AS1, we use the

approximation interval lengths ∆ = 2, and ∆j = 10 if the initial inventory level of

product j is high, and ∆j = 5 if the initial inventory level of product j is low, for

j = 1, 2. In the second set, under which the approximation scheme is denoted as

AS2, we use the approximation interval lengths ∆ = 2, and ∆j = 5 if the initial in-

ventory level of product j is high, and ∆j = 2 if the initial inventory level of product

j is low, for j = 1, 2. For each combination of parameter values, we test 5 randomly

generated problem instances and report the median and worst case performance

measure. In order to make the total computational time manageable for this set of

experiments, we set the uncertainty interval parameter ψ = 0.25 instead of ψ = 0.5

as described in Section 4.5.1. We believe that the results should be similar for other

values of ψ.

The results are reported in Table 4.1. In this table, we report the optimal-

ity gaps of AS1 and AS2, which are defined as the relative difference (in percent)

between the solution obtained by AS1 or AS2 and the optimal solution obtained

by solving the exact DP to optimality. We also report the computational time of

the exact DP, AS1 and AS2. Clearly, both approximation schemes, AS1 and AS2,

generate near-optimal solutions in a significantly shorter time than the exact DP.

For example, for initial inventory level (high, high) in scenario 1, if we apply AS1,

in the worst case of the five problem instances we test, we can obtain a solution

that is only 5.5% lower than the real optimal solution. The computational time,

however, can be reduced from 33815 seconds (more than 9 hours) to 146 seconds

(less than 3 minutes). Furthermore, by comparing the performance of AS1 and

AS2, we found that while the approximation scheme with smaller interval lengths
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(AS2) does not always guarantee a better solution, it does generate a solution with

smaller optimality gap for the vast majority (more than 90%) of the problem in-

stances. The magnitude of this improvement is problem specific with an average

value of 2.5%. This is achieved at the expense of computational time. As one can

see, the computational time of AS2 is approximately 4 to 6 times that of AS1. This

table demonstrates that overall the approximation scheme performs well for all the

problem instances we test.

4.5.3 Performance of the DP for the Special Case

For the special case, we test a set of problem instances that are generated simi-

larly as those tested in Section 4.5.2 except for the fact that (i) there is no constraint

on the cumulative demand deviation (hence, state variable d is not needed); and (ii)

only price markdowns are allowed. Results show that without employing the opti-

mality properties presented in Section 4.4, it takes about 7 to 15 minutes to solve a

test problem instance. On the other hand, if we employ the optimality properties,

each test problem instance can be solved to optimality in no more than 3 minutes.

Note that the initial inventory levels for these test instances are I1 = I2 = 100. To

further demonstrate that the optimality properties are useful for larger problems,

we also test another set of problem instances with higher initial inventory levels, i.e.,

I1 = I2 = 500. Without employing the optimality properties, it takes 2 to 3 days

to solve each problem instance to optimality. However, the computational time is

reduced to about 2 hours if one uses the optimality properties. These results clearly

demonstrate that for the special case we consider in this study, the optimality prop-

erties derived in Section 4.4 enable us to solve much larger problems to optimality

within a reasonable amount of computational time.

4.5.4 Robustness of the Max-Min Approach

In this set of experiments, we compare the performance of our max-min ap-

proach with the risk-neutral approach which maximizes the total expected revenue.
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Because the probability distribution of the demand is explicitly used in calculating

the total expected revenue, the risk-neutral approach requires to know the demand

distribution which is not required in the max-min approach. The risk-neutral ap-

proach can be formulated the same way as (4.6) to (4.16) for the max-min approach

except that the objective function (4.6) should be replaced by the following.

Vt(i1, i2, l1, l2, r1, r2, d) = max
(l′1,l

′
2)

∑
(D1,D2)∈Ω

l′1l
′
2

t,d

Prob(D1, D2){pl
′
1

1 S1 + p
l′2
2 S2

+ Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)}

where Prob(D1, D2) denotes the probability that the realized demand is (D1, D2).

We test two versions of risk-neutral approaches: (i) one assuming that the underly-

ing demand distribution is uniform (denoted as RN-U); (ii) and the other assuming

that the underlying demand distribution is bivariate normal (denoted as RN-N).

These three approaches, i.e., max-min approach (denoted as MM), RN-U, and RN-

N, are tested under a large number (1,000,000) of demand instances that are ran-

domly generated following two distributions, i.e., uniform and normal. It should

be noted that the demand distribution (either uniform or normal) assumed in the

risk-neutral approaches (i.e., RN-U or RN-N) represents the decision maker’s be-

lief about the underlying demand distribution before the actual demand is revealed

while the distribution (again either uniform or normal) used to generate random

demand instances represents the actual demand distribution. When these two coin-

cide, it represents the situation where the information about the underlying demand

distribution is accurate. Same as in Section 4.5.2, we test 14 combinations of param-

eter values. Our purpose here is to demonstrate how the max-min approach MM

compares to the risk-neutral approaches, RN-U and RN-N, in terms of the worst

case, mean, standard deviation and range (max - min) of the revenue generated by

each approach.

The results are summarized in Table 4.2. This table shows the percentage

increase for each performance measure (worst case revenue, mean revenue, standard

deviation and range) if one applies the MM approach as opposed to the RN-U or RN-

N approach. For instance, for initial inventory level (high, high) in scenario 1, when
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the actual demand distribution is uniform, by applying the MM approach as opposed

to the RN-U approach, the mean revenue will decrease by 4.5%. However, the

worst case revenue will increase by 6.8%, and the standard deviation and range will

decrease by 28.9% and 24.6%, respectively. While the actual performance change

might be problem specific, the improvement of the worst case revenue and reduction

of variance are fairly significant for most of the problem instances tested. The

mean revenue loss, on the other hand, is relatively small in general. This table

clearly demonstrates that in most cases by applying the max-min approach, one can

increase the worst case revenue and significantly decrease the variance (measured

by the standard deviation and the range) of the revenue.

One may note that for scenarios 2 and 4 when the initial inventory level is low

for both products, applying the max-min approach increases the standard deviation

of the revenue generated, which is different from the results for other cases. This can

be explained as follows. When the initial inventory level is low for both products,

the risk-neutral approaches (RN-U and RN-N) may simply pick the regular price

as the optimal price in each period for the majority of the demand realizations.

In this case, even under different demand realizations, as long as the total realized

demand is higher than the initial inventory, the revenue is equal to a fixed value,

which is the regular price times the initial inventory. This results in a revenue

distribution that is highly concentrated on this fixed value, which is also the right

end of the corresponding distribution. Clearly, the variance (or standard deviation)

of such a revenue distribution can be very small even if the range is large. The

max-min approach, on the other hand, is more likely to adjust the price over time

in order to protect the worst case scenario. This can lead to different revenue

values under different demand realizations even if the total demand of all these

demand realizations are all higher than the initial inventory level. The resulting

revenue distribution is closer to a normal distribution. Thus, the variance of revenue

distribution generated by the max-min approach is likely to be larger than that

generated by the risk-neutral approach.

To better illustrate the difference between our max-min approach and the
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risk-neutral approach, Figures 4.3 and 4.4 compare the total revenue generated by

two different approaches, MM and RN-U, for initial inventory level (high, high) in

scenario 2 when the actual demand distribution is uniform. Specifically, Figure 4.3

shows the distribution of total revenue generated by these two approaches while

Figure 4.4 shows the corresponding cumulative distribution. Clearly, the revenue

generated by RN-U is distributed over a wider interval while the revenue generated

by MM is more concentrated around its mean. The cumulative distributions of these

approaches show that using the max-min approach lowers the probability (or risk)

of having low total revenue. These observations hold true for other initial inventory

levels in other scenarios of price comparability and price elasticities.

 

Figure 4.3: Distribution of total revenue generated by MM and RN-U for initial inventory level

(high, high) in scenario 2 when the actual demand distribution is uniform

 

Figure 4.4: Cumulative distribution of total revenue generated by MM and RN-U for initial

inventory level (high, high) in scenario 2 when the actual demand distribution is uniform
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Table 4.3 shows the results for larger problem instances under scenario 1,

where the max-min approach is solved by our approximation scheme AS, and the

risk-neutral approaches (RN-U,RN-R) are solved by a similar approximation scheme.

Results for other scenarios are similar, and hence not presented in the table. In these

problem instances, we set the high initial inventory level I1 = I2 = 500. Low initial

inventory level is again 60% of the high initial inventory level, which is 300. In all

the approximation schemes, we use the approximation interval lengths ∆ = 10, and

∆j = 50 if the initial inventory level of product j is high, and ∆j = 25 if the initial

inventory level of product j is low, for j = 1, 2. Other parameters are the same as

described in Section 4.5.1. As can be seen, we have similar results for large problem

instances for which approximation scheme is applied. That is, implementing the

max-min approach can significantly increase the worst case revenue and reduce the

variance of the revenue generated, while the mean revenue loss is small.

4.5.5 Managerial Insights

In this set of experiments, we generate a number of managerial insights by

investigating the following three questions:

Q1: How the optimal price paths of the products and the revenue are impacted by

the problem parameters such as price elasticities, demand uncertainty level,

number of allowed price changes and demand conversion rates?

Q2: How different are the optimal price paths generated by our max-min approach

compared to a risk-neutral approach?

Q3: What is the value of dynamic pricing?

These questions are answered in Sections 4.5.5.1, 4.5.5.2 and 4.5.5.3, respectively.

Unless otherwise stated, we focus on the case with initial inventory level (high, high).

We found that when one of the products has low initial inventory, a good strategy

is to use the regular price for this product and dynamically adjust the price of the

other product according to the realized demand history. Thus the problem reduces
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to a single-product pricing problem. When both products have low initial inventory,

using the regular price for both products will result in a near optimal solution.

4.5.5.1 Impact of Problem Parameters on Optimal Price Paths and

Revenue

We first examine the impact of price elasticities on the optimal price paths of

the two products. For each of the four scenarios of price comparability and price

elasticities described in Section 4.5.1, we conduct simulations to test the optimal

prices obtained by our max-min approach. Figures 4.5 to 4.8 show a typical price

path for each product under each scenario. We can make the following observations.

• For scenario 1 where the two products have comparable prices and both products

are sensitive to price changes, it appears that the best strategy is to use very different

prices (one high and one low) for the two products in each period and then reverse

their prices at certain point of the selling season (see Figure 4.5). This suggests

that one should always promote one product by using a low price while maintaining

a regular price or a price close to it for the other product in each period. This

maximizes the demand of the product being promoted, and thus achieves the highest

possible revenue. When the inventory of the product being promoted drops to a

certain level, one should start to promote the other product.

• For scenario 2 where the two products have comparable prices and both products

are much less sensitive to price changes compared to scenario 1, it appears that

the optimal strategy is to maintain a relatively constant price that is close to the

regular price for both products and mildly adjust the price according to the realized

demand history (see Figure 4.6). This suggests that a static pricing strategy, e.g.,

fixing the prices of both products at the regular price, may result in a satisfactory

performance.

• For scenario 3 where the two products have incomparable prices (the price range

of product 1 is from 50 to 100 and the price range of product 2 is from 25 to 50),

and product 1 is much more sensitive to price changes than product 2, the optimal
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strategy is to maintain a regular price or a price close to it for the less price-sensitive

product, i.e., product 2, and dynamically adjust the price for the more price-sensitive

product, i.e., product 1, according to the realized demand history (see Figure 4.7).

• For scenario 4 which is similar to scenario 3 except that product 2 is much more

sensitive to price changes than product 1, we observe similar results, i.e., the optimal

strategy is to maintain a regular price or a price close to it for the less price-sensitive

product, i.e., product 1, and dynamically adjust the price for the more price-sensitive

product, i.e., product 2, according to the realized demand history (see Figure 4.8).

The results for scenarios 3 and 4 imply that the relative magnitude of price elastici-

ties (as opposed to the relative magnitude of price range) is the primary factor that

determines the optimal pricing strategy.

 

Figure 4.5: Sample Price Path for Scenario 1

 

Figure 4.6: Sample Price Path for Scenario 2
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Figure 4.7: Sample Price Path for Scenario 3

 

Figure 4.8: Sample Price Path for Scenario 4

We also test another scenario which is similar to scenario 3 except that the price

elasticities of both products are higher, i.e., a11 = 3.5, a12 = 2.0, a22 = 2.5, a21 = 2.0.

For this scenario, we have similar findings as in the case of scenario 3, i.e., the

optimal strategy is to maintain a regular price or a price close to it for the less

price-sensitive product while dynamically adjusting the price of the other product

according to the realized demand history. This indicates that when one product is

significantly more price sensitive than the other product, the relative magnitude of

the price elasticities of the products plays a more important role in determining the

optimal pricing strategy than the absolute magnitude of the price elasticites.

We then investigate how the uncertainty level affects the optimal price paths

and the revenue. We test two sets of problem instances, one with uncertainty pa-

rameter ψ = 0.5 as described in Section 4.5.1, and the other one with uncertainty
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parameter ψ = 0.25. We found that when the uncertainty level is lower, price

paths of both products are less responsive to the realized demand history. In this

case, different demand scenarios lead to very similar price paths, and in fact, for

the majority of the demand scenarios, the price paths are identical. In contrast,

when the uncertainty level is higher, optimal price path is fairly sensitive to the

realized demand history. Therefore, for low uncertainty case, a deterministic op-

timization model based on point estimates of demand may perform well, but for

high uncertatinty case (such as in the problem setting we consider in this study),

a model (such as ours) that generates optimal price path dynamically according to

the realized demand history is always preferred. We also found that the worst case

revenue loss due to overestimating the uncertainty level is relatively small, but the

worst case revenue loss due to underestimating the uncertainty level can be fairly

significant. Take scenario 1 for instante, when we set the uncertainty level param-

eter ψ = 0.5 in our max-min model but the actual uncertainty level parameter is

0.25, the worst-case revenue obtained is 2.9% lower than that obtained by using the

actual uncertainty level in the model. On the other hand, if we set the uncertainty

level parameter ψ = 0.25 in our model but the actual uncertainty level parameter is

0.5, the worst-case revenue obtained is 12.8% lower than that obtained by using the

actual uncertainty level in the model. This implies that using an optimization model

with small uncertainty intervals may cause significant revenue loss when the actual

uncertainty level is high. This also suggests that using wide uncertainty intervals is

preferred when it is difficult to accurately estimate these intervals.

We now discuss how the number of allowed price changes affects the revenue.

For each of the four scenarios of price comparability and price elasticities described

in Section 4.5.1, we test four different cases of the number of allowed price changes

(R1 = R2 =1, 2, 3 or 4). All other parameters are the same as the test instances

used in Section 4.5.4. We observe that when the allowed number of price changes

increases from 1 to 2, there is a significant increase (about 15%) in the worst-case

revenue for scenarios 1, 3 and 4. For scenario 2, however, the revenue increase is

much smaller (less than 2%). When the number of allowed price changes increases
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from 2 to 4, we observe that the increase in the worse-case revenue for scenario 2 is

again insignificant (less than 1%). For scenarios 3 and 4, the increase is moderate,

around 2 to 4%, but for scenario 1 the increase is larger, about 8%. Based on this,

we can make the following observations which are consistant with what we have

observed earlier. When both products are little price-sensitive as in scenario 2, the

optimal strategy is to maintain a relatively constant price for each product, and

hence allowing 1 or 2 price changes should, in general, be enough to achieve near-

optimal revenue. On the other hand, when one product (or both products) is price-

sensitive such as in scenarios 3 and 4 (or in scenario 1), one needs to dynamically

adjust the price for that product (or both products) in each period according to

the realized demand history. In this case, limiting the number of price changes to

a small number will likely result in an inferior solution. As we discussed earlier,

the optimal pricing strategy for scenario 1 is to use very different prices for the

two products in each period and switch their prices at certain time. It requires

at least 4 price changes to drop the price of one product to the lowest and then

increase it to the highest due to business rule (iii) involved (i.e., price change must

be between 10% and 30%). This explains why in the case of scenario 1 there is

a significant increase in the worst-case revenue when the number of allowed price

changes increases from 2 to 4. We also observe that when the number of allowed

price changes increases, the increase in mean revenue is much smaller than the

increase in the worst-case revenue. This indicates that for price-sensitive products,

when there is high demand uncertainty involved, allowing enough number of price

changes is necessary especially when one tries to maximize the worst-case revenue.

Next we investigate how the demand conversion rates αl1l2t , βl1l2t impact on the

optimal prices. In addition to testing the same problem instances used in all other

tests where the demand conversion rates are set as αl1l2t = min(0.25 + 0.05(l1 −

l2), pl22 /p
l1
1 ) and βl1l2t = min(0.25 + 0.05(l2 − l1), pl11 /p

l2
2 ), we also test another set of

problem instances where the demand conversion rates are set as αl1l2t = min(0.5 +

0.05(l1 − l2), pl22 /p
l1
1 ) and βl1l2t = min(0.5 + 0.05(l2 − l1), pl11 /p

l2
2 ). Results show that

demand conversion occurs when one product has a sufficient initial inventory to
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satisfy demand in all periods, whereas the other product has a low initial inventory

such that it is insufficient to satisfy the demand. In such a case, the conversion rates

have no impact on the optimal price of the product with low initial inventory. In

fact, using the regular price for this product is optimal. However, the conversion

rates have a fairly significant impact on the optimal price of the product with high

initial inventory. When the conversion rates are higher, the price of the product with

higher initial inventory is also higher compared to the case where the conversion rates

are lower. This can be explained as follows. When the conversion rates are higher,

the “effective demand” (i.e., original demand plus the converted demand) for the

product with high initial inventory is also higher.

4.5.5.2 Max-min versus Risk-neutral

Next, we examine the difference between the optimal prices obtained by our

max-min approach and the risk-neutral approach. It appears that under the risk-

neutral approach, the price for each product is kept at a relatively constant value

with small variation in each period, e.g., 10% price increase or decrease if there is

a price change. In addition, the price path is less responsive to the realized de-

mand history, i.e., price paths are very similar especially in the first several periods

no matter what the realized demand history in the previous periods is. In con-

trast, under the max-min approach, more significant price changes are observed.

For instance, price can increase by 30% in one period and decrease by 30% in the

following period. Price path is more dependent on the realized demand history, e.g.,

two different demand realizations may lead to very different price paths.

4.5.5.3 Value of Dynamic Pricing

Finally, we compare the dynamic pricing strategy with a static pricing strategy

in which a fixed price is used for all periods for each product. Fixed pricing strategy

is commonly used in practice because it is easy to implement. For each of the four

scenarios of price comparability and price elasticities described in Section 4.5.1, we
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test all possible fixed pricing strategies (for the problem instances we test where there

are 6 allowable prices for each product, there are 36 possible fixed pricing strategies)

and pick the best one in terms of the worst-case performance. We compare our

dynamic pricing strategy with this best fixed pricing strategy. Our results show

that for scenarios 1, 2, 3 and 4, there is a 10.5%, 5.5%, 3.5%, 2.5%, respectively,

increase in the worst case revenue by using the dynamic pricing strategy compared

to the best fixed pricing strategy. In reality, even a small percentage increase in

revenue can translate into a fairly significant increase in profit. This implies that a

dynamic pricing strategy such as ours is necessary especially when both products

are price-sensitive (as in scenario 1).

4.6 Conclusions

In this chapter, we have studied a dynamic pricing problem involving two sub-

stitutable products subject to a set of business rules. Due to the lack of information,

it is impossible to precisely characterize the demand distributions. Therefore, we

have modeled the demand of each product, aggregate demand of the two products in

a period, and aggregate demand of the two products over a number of periods using

a set of intervals instead of point estimates or probability distributions. We have

proposed a robust optimization approach that maximizes the worst case total rev-

enue. We have developed a fully polynomial time approximation scheme (FPTAS)

based on a dynamic program (DP) that generates a proven near optimal solution for

practically-sized problems within a reasonable computational time. We have also

studied a special case of the general problem where only price markdowns are al-

lowed. We have shown some optimality properties for this special case which enable

us to consider only a small subset of the solutions in a demand uncertainty space in

the DP, and hence make it possible to solve large problems to optimality within a

reasonable computational time.

We have demonstrated through computational experiments that for a variety

of combinations of model parameter values, our approximation scheme is capable
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of generating near-optimal solutions in a significantly shorter time than the exact

DP algorithm. We have also shown that our robust approach increases the worst

case total revenue and reduces the variance of the total revenue, compared to a risk-

neutral approach. Such an approach is desirable in many practical circumstances

where an important goal is to achieve a certain level of revenue or minimize the risk

of having a total revenue that falls below a given level. In addition, we have derived

a set of interesting managerial insights that can help store managers make better

pricing decisions when facing high demand uncertainty due to lack of information.
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Chapter 5

Conclusion

In this dissertation, we have studied dynamic pricing problems with finite

initial inventory and fixed time horizon without inventory replenishment, which

we refer to as NR problems. This type of dynamic pricing problems have a wide

application in many industries including, e.g., airlines, hotels, cruise lines, rental

car companies, long-distance bus companies, and retail industries. In the past two

decases particularly in the past a few years, we have witnessed a rapidly-growing

body of literature in this area.

This dissertation consists of three essays. In the first essay, we have surveyed

existing NR models. We have clsssified, compared and summarized existing models

according to the nature of competition, types of customers, number of products,

number of stores, time horizon, allowable prices, and demand models. Then we have

studied two specific NR problems in the second and third essays, respectively. In the

second essay, we have studied a markdown pricing problem with a single product

and multiple stores that are served by a central warehouse. In this problem, joint

inventory allocation and markdown pricing decisions need to be made. In the third

essay, we have studied a general dynamic pricing problem with two substitutable

products and a single store. We have modeled substitution effects between the two

products (both price-driven and inventory-driven) and across time periods. In both

problems, we have assumed that there is limited information available so that it

is not possible to accurately estimate the demand values or demand distributions.

To model uncertain demand, we have used scenario-trees in the second essay, and

used a set of lower and upper bounds in the third essay. In both problems, we have

incorporated commonly-used business rules that have been largely ignored in the

existing literature. We have formulated the first problem (the markdown pricing
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problem presented in Chapter 3) as a mixed integer program in which we maximize

the expected revenue. We have solved it by Lagrangian relaxation and proposed it

be implemented on a rolling horizon basis. We have formulated the second problem

(the general dynamic pricing problem presented in Chapter 4) as a dynamic program

in which we maximize the worst-case revenue. We have developed a full polynomial

time approximation scheme that generates a proven near-optimal solution. These

algorithms allow us to solve problems with practical sizes in a reasonable amount

of time. A number of interesting managerial insights have also been discussed for

both problems.

We have found that in the existing literature, the following problems and

issues have received no or little interest and may deserve more attention in future

work: (i) dynamic pricing problems that incorporates business rules; (ii) strategic

customers with bounded rationality; (iii) non-equilibrium market situations; (iv)

dynamic pricing problems with complementary products; and (v) empirical research.
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Appendix A

Problem Complexity

In this section, we prove that our problem is NP-hard (i.e., computationally

intractable) even when the demand is deterministic and when there is only a single

store or there is only a single time period. In the single-store case, business rule (v)

is not applicable. In the single-period case, only one price needs to be determined

for each store, and hence business rules (ii) and (iii) are not applicable. The NP-

hardness of these special cases means that the general case of our problem is also

NP-hard. Thus, there is no simple (i.e., polynomial-time) algorithm that can find

an optimal solution to our problem. This justifies the use of heuristic solution

approaches for our problem. For concepts such as NP-hardness and polynomial-

time algorithms, see the excellent book by Garey and Johnson (1979).

In the following, we first show that the single-store problem with deterministic

demand is NP-hard. In this problem, the demand at each price level in each period

is known exactly, and the objective is to determine how many units of inventory

to allocate to each period and what price level to use in each period such that

the total revenue over the planning horizon is maximized subject to the relevant

business rules. Since there is only one store, for ease of presentation, we omit the

store-related symbol r from the relevant parameters defined earlier, i.e. we will use

Djt to represent the deterministic demand at price level j in period t.

Theorem 3 The problem even with a single store and deterministic demand is NP-

hard.

Proof We prove this by a reduction from the subset sum problem (SS), a known

NP-hard problem (Garey and Johnson 1979).

SS: Given a set of k elements, K = {1, · · · , k}, a positive integer ai associated with

each element i ∈ K and a positive integer H, does there exist a subset Q of K such
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that
∑

i∈Q ai = H?

Define A =
∑

j∈K aj. We construct the following instance for the single-store prob-

lem based on the instance of SS:

• Number of time periods T = k.

• Number of allowable price levels m = 2k, with prices p2i−1 = 1/M i + 1 and

p2i = 1/(M i + ai) + 1, for i = 1, . . . , k, where M is a sufficiently large positive

integer such that M > kA.

• Demand corresponding to each price level is assumed to be time invariant and

denoted as Di for price level i. Let D2i−1 = M i and D2i = M i + ai, for i = 1, . . . , k.

• Available inventory I0 = H +
∑k

i=1M
i.

• Unit salvage value s = 0.

• Maximum number of markdowns allowed R = k.

• For business rule (iv), set uj = 2k and vj = j+1 such that any price level between

j + 1 and m can be set for the next period if the price level for the current period

is j and if there is a price change in the next period, for j = 1, . . . , 2k.

• Threshold value for the total revenue of the problem F = k+I0 = k+H+
∑k

i=1M
i.

We note that in the above constructed instance, the following hold: (i) pjDj =

1 +Dj, for every j = 1, . . . ,m; (ii) demand decreases when the price increases; and

(iii) M i > A +
∑i−1

j=1M
j, for i = 1, . . . , k. Clearly the above instance can be

constructed in polynomial time. In the following, we prove that there is a solution

to the above instance of our problem with the total revenue greater than or equal

to F if and only if there is a solution to the instance of SS.

(If part) If there is a subset Q of K such that
∑

i∈Q ai = H, we construct a solution

to the instance of our problem as follows. Define a set R = {2i | i ∈ Q}∪{2i−1 | i ∈

K \Q}. Clearly there are exactly k elements in R. Rewrite set R = {[1], · · · , [k]},

where the symbol [j], for j = 1, . . . , k, represents the jth smallest element of R (in

other words, ([1], · · · , [k]) is a permutation of the elements of R with [1] < . . . < [k]).
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Use price level [j] for period j, for j = 1, . . . , T . We have

T∑
j=1

D[j] =
∑
j∈Q

D2j +
∑
j∈K\Q

D2j−1 =
∑
j∈Q

(M j + aj) +
∑
j∈K\Q

M j

= H +
∑
j∈K

M j = I0 (A.1)

This means that with the chosen price levels for the k time periods and with the

given total inventory I0, the demand in each period can be satisfied fully, and that

there is no inventory remaining in the end of period T . Thus the total revenue is

equal to

T∑
j=1

p[j]D[j] =
∑
j∈Q

p2jD2j +
∑
j∈K\Q

p2j−1D2j−1 = k +

∑
j∈Q

D2j +
∑
j∈K\Q

D2j−1


= k + I0 = F,

where the last equality is due to (A.1). This means that the constructed solution

for the instance of our problem has the total revenue equal to the threshold F .

(Only If part) Given a solution to the instance of our pricing problem with the total

revenue greater than or equal to F , let [j], D[j], and Sj denote the price level used

in period j, the demand in period j, and the sales volume in period j, respectively,

for j = 1, . . . , k, where [j] ∈ {1, · · · , 2k}. Clearly, Sj ≤ D[j], for j = 1, . . . , k. There

are three possible cases to consider as follows.

Case (i) If
∑k

j=1 Sj < I0, then the total revenue is

k∑
j=1

p[j]Sj =
k∑
j=1

(1/D[j] + 1)Sj ≤ k +
k∑
j=1

Sj < k + I0 = F

This means that the total revenue of the given solution is less than F . So this case

will not happen. This implies that
∑k

j=1 Sj = I0.

Case (ii) If
∑k

j=1 Sj = I0 and if there is some period e ∈ {1, · · · , k} such that

Se < D[e], then the total revenue is

k∑
j=1

p[j]Sj =
k∑
j=1

(1/D[j] + 1)Sj < k +
k∑
j=1

Sj = k + I0 = F
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which again means that the total revenue of the given solution is less than F . So

this case will not happen either. This means that the third case discussed next must

happen.

Case (iii) If
∑k

j=1 Sj = I0 and if Sj = D[j] for each j = 1, . . . , k, then the demand

in each period is fully fulfilled and
∑k

j=1 D[j] = I0. Next we first prove that for each

i = 1, . . . , k, in the given solution there is exactly one period where either price level

2i− 1 or 2i is used.

We show this by induction. We prove by contradiction that there is exactly

one period where either price level 2k − 1 or 2k is used. Suppose that there is no

period where one of these two price levels is used, then the total demand fulfilled

is at most W = k(A + Mk−1) because the demand at any price level other than

2k− 1 and 2k is no more than A+Mk−1. Clearly, W < Mk < I0, which contradicts

with the fact that
∑k

j=1D[j] = I0. Now suppose that there are at least two periods

where one of these price levels is used, then the total demand fulfilled is at least

2Mk > I0, which again contradicts with the fact that
∑k

j=1D[j] = I0. This means

that there is exactly one period where either price level 2k − 1 or 2k is used. Now

suppose that for some u with 1 ≤ u ≤ k−1, there is exactly one period where either

price level 2i− 1 or 2i is used, for each i = k, . . . , u+ 1. We need to prove that the

same result holds for i = u. Given the induction assumption, we can see that the

total demand of the periods where a price level 2u + 1 or higher is used is at least∑k
j=u+1M

j and at most
∑k

j=u+1(A + M j). Suppose that there is no period where

one of the two price levels 2u−1 and 2u is used, then the total demand fulfilled is at

most W =
∑k

j=u+1(A+M j) + u(A+Mu−1), where the first summation is an upper

bound on the total demand of the periods with a price level 2u + 1 or higher, and

the second summation is an upper bound on the total demand of the periods with

a price level 2u− 2 or lower (the number of such periods is u). It can be shown that

W < I0, which contradicts with the fact that
∑k

j=1D[j] = I0. Now suppose that

there are at least two time periods where one of the two price levels 2u−1 and 2u is

used, then the total demand fulfilled is at least W =
∑k

j=u+1 M
j +2Mu > I0, which

again results in a contradiction. This shows that there is exactly one period where
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either price level 2u− 1 or 2u is used. Therefore, by induction, we have proved that

in the given solution there is exactly one period where either price level 2i− 1 or 2i

is used, for i = 1, . . . , k.

Now define set U = {i ∈ K | price level 2i is used in the given solution} and

V = {i ∈ K | price level 2i− 1 is used in the given solution}. By the result proved

above, we can see that U and V are disjoint and U ∪ V = K. Then we have

k∑
j=1

D[j] =
∑
j∈U

(M j + aj) +
∑
j∈V

M j =
∑
j∈K

M j +
∑
j∈U

aj (A.2)

By the fact that
∑k

j=1D[j] = I0, Eq. (A.2) implies that
∑

j∈U aj = H, which means

that the subset U is a solution to the subset sum instance. This shows the “Only If

part”.

Next we show that the single-period problem is NP-hard. If we view each

time period in the single-store problem as a store in the single-period problem,

then the proof of Theorem 3, after it is slightly modified, can be used to prove the

NP-hardness of the single-period problem. Below we show how this can be done.

Theorem 4 The problem even with a single period and deterministic demand is

NP-hard.

Proof We prove this by a reduction from the subset sum problem (SS). Most

part of the proof of Theorem 3 can be used after we redefine some parameters as

follows. Given the instance of SS described in the proof of Theorem 3, we construct

an instance for the single-period problem exactly the same as the instance of the

single-store problem constructed in the proof of Theorem 3, except that (i) number

of time periods T = k is now replaced by number of stores n = k; (ii) demand

functions are store-independent and the same notation Di represents the demand

for price level i at each store; (iii) for business rule (iv) in the first (and only) time

period, set u1 = 2k such that any price level can be set at each store. Both the

“If” part and “Only If” part can be proved exactly the same way as in the proof of

Theorem 3 except that each period j is now replaced by each store j, for j = 1, . . . , k,

and T is replaced by n (n = T = k).
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Appendix B

Formulation with Scenario-Dependent Pricing Decisions

In Section 3.2.2 of this dissertation, we give an approximate MIP formulation

[MIPτ ] for the problem that we need to solve at the beginning of each period τ . In

that formulation, the pricing decisions are modeled as scenario independent. Below

in Section B.1 we give another formulation for the same problem where the pricing

decisions are formulated as scenario dependent (so this is a precise formulation), and

in Section B.2 we compare the computational performance of the two formulations.

B.1 Formulation

In this section we give a formulation, where the pricing decisions are formulated

as scenario dependent, for the problem that we need to solve at the beginning of each

period τ . We use the same notation and decision variables as in Section 3.2 except

that since we now allow pricing decisions to be scenario dependent, we denote the

corresponding binary variables as scenario ω dependent, i.e., we use Xω
rjt, Y

ω
qgt, H

ω
rt

to replace Xrjt, Yqgt, Hrt, respectively. We denote this formulation as [MIPs
τ ], as

opposed to [MIPτ ] introduced in Section 3.2.

[MIPs
τ ] max

∑
ω∈Ω

(
Pω

n∑
r=1

m∑
j=j0r

T∑
t=τ

pjS
ω
rjt

)
+ s

∑
ω∈Ω

(
Pω

(
I ′0 −

n∑
r=1

m∑
j=j0r

T∑
t=τ

Sωrjt

))
Subject to:

m∑
j=j0r

Xω
rjt = 1, ∀ r∈N, t∈{τ, . . . , T}, ω∈Ω

h∑
j=j0r

Xω
rj(t+1) ≤

h∑
j=j0r

Xω
rjt, ∀ r∈N, h∈{j0r, . . . ,m}, t∈{τ, . . . , T − 1}, ω∈Ω

Xω
rjt ≤ Xω

rj(t+1) +

vj∑
l=uj

Xω
rl(t+1), ∀ r∈N, j∈{j0r, . . . ,m− 1},
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t∈{τ, . . . , T − 1}, ω∈Ω
j∑

l=j0r

Xω
rlt ≤

vj∑
l=j0r

Xω
rl(t+1), ∀ r∈N, j∈{j0r, . . . ,m− 1},

t∈{τ, . . . , T − 1}, ω∈Ω

Hω
rj ≥ Xω

rjt, ∀ r∈N, j∈{j0r + 1, . . .m}, t∈{τ, . . . , T}, ω∈Ω
m∑

j=j0r+1

Hω
rj ≤ R0r, ∀ r∈N, ω∈Ω

G∑
g=1

Y ω
qgt = 1, ∀ q ∈ {1, . . . , Q}, t ∈ {τ, . . . , T}, ω∈Ω

Y ω
qgt ≤

∑
j∈Eg

Xω
rjt, ∀ q ∈ {1, . . . , Q}, r ∈ Cq, g∈{1, . . . , G},

t ∈ {τ, . . . , T}, ω∈Ω

Sωrjt ≤ Dω
rjtX

ω
rjt, ∀ r∈N, j∈{j0r, . . . ,m}, t∈{τ, . . . , T}, ω∈Ω

m∑
j=j0r

T∑
t=τ

Sωrjt ≤ Iωr , ∀ r∈N, ω∈Ω

S
ωαi
rjt = S

ωαi+1

rjt , ∀ r∈N, j∈{j0r, . . . ,m}, t∈{τ, . . . , T − 1},

i = 1, . . . , |Γαt | − 1, α ∈ A(t)

X
ωαi
rj(t+1) = X

ωαi+1

rj(t+1), ∀ r∈N, j∈{j0r, . . . ,m}, t∈{τ, . . . , T − 1},

i = 1, . . . , |Γαt | − 1, α ∈ A(t) (B.1)

Xω′

rjτ = Xω′′

rjτ , ∀ r∈N, j∈{j0r, . . . ,m}, ω′, ω′′ ∈ Ω and ω′ 6= ω′′ (B.2)
n∑
r=1

Iωr ≤ I ′0, ∀ ω∈Ω

Xω
rjt, H

ω
rj, Y

ω
qgt ∈ {0, 1}, Iωr , Sωrjt ≥ 0, ∀ r∈N, j∈{j0r, . . . ,m}, q ∈ {1, . . . , Q},

g ∈ {1, . . . , G}, t∈{τ, . . . , T}, ω ∈ Ω

There is one more constraint that one has to add if τ = 1, to formulate business

rule (i), as follows.

Iωr ≥ Imin
r , ∀ r∈N, ω∈Ω

In the above formulation, constraints (B.1) and (B.2) are the non-anticipativity

constraints for X variables. Since pricing decisions for each period are set before

a particular demand scenario for this period is realized, if two scenarios share a
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common arc in one period, the same prices should be used in the following period.

All other constraints are similar to those in [MIPτ ] given in Section 3.2.2.

We note that this formulation is much larger than [MIPτ ] given in Section

3.2.2. The number of integer variables in this formulation is |Ω| times that in

[MIPτ ] whereas the number of continuous variables remains the same as in [MIPτ ].

The number of constraints is slightly less than |Ω| times that in [MIPτ ].

B.2 Computational Results

The Lagrangian Relaxation Algorithm (LRA) described in Section 3.3.2 (for

solving [MIPτ ] given in Section 3.2.2) can also be applied to solving [MIPs
τ ] given in

Section B.1 above. The overall rolling horizon based approach described in Section

3.3.1 can also be easily modified accordingly by replacing [MIPτ ] by [MIPs
τ ] and

using the corresponding LRA algorithm. In this section, we conduct computational

experiments to compare (i) the performance of LRA algorithm applied to the formu-

lation [MIP1] and [MIPs
1], respectively, for the problem at the beginning of the first

period (which is the largest in scale among all the problems that we need to solve);

(ii) the performance of the overall rolling horizon approach based on the formulation

[MIPτ ] and [MIPs
τ ], respectively, for the overall integrated inventory allocation and

markdown pricing problem.

Unless otherwise specified, all test problem instances are created similarly as

in Section 3.5. We first compare the performance of LRA for solving [MIP1] and

[MIPs
1]. Table B.1 summarizes the computational results for problems with 50 stores

and problems with 100 stores, respectively. The solution quality of LRA is defined

as the ratio of the objective value obtained by LRA for [MIP1] or [MIPs
1] over the

corresponding Lagrangian upper bound, represented as a percentage in the table.

For each parameter configuration, we test 10 randomly generated problem instances.

Both the median and the worst case performance are reported in the table.

As clearly indicated in Table B.1, the solutions obtained by LRA for both

formulations (i.e., [MIP1] and [MIPs
1]) are near optimal. The computational time for
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[MIP1] is consistent across all problem instances and is no more than 30 minutes even

in the worst case for problems with 100 stores. On the other hand, the computational

time for [MIPs
1] is many times that for [MIP1] and has much larger variation. In

some cases, LRA may take 20 to 30 hours to solve [MIPs
1] with 100 stores. This may

cause implementation difficulty for practically sized problems. This is one of the

reasons that we use formulation [MIPτ ] instead of [MIPs
τ ] in our solution approach

(given in Section 3.3).

We next compare the solution quality of the overall rolling horizon approach

based on [MIPτ ] and [MIPs
τ ], respectively. To make the computational experiment

manageable, we use test problem instances with 10 stores only because there are a

large number of test problems involved, and for each test problem it requires a large

computation time to solve the formulation [MIPs
τ ] many times across the planning

horizon. For each parameter configuration, we test the average performance over

1000 randomly generated problem instances. We focus on the basic case E00 and use

approach S2 (81 scenarios). Table B.2 shows the relative revenue one can achieve

by using [MIPs
τ ] compared to that by using [MIPτ ]. This table shows that compared

to the formulation [MIPτ ] that we use in our approach, using the more complex

formulation [MIPs
τ ] may increase the revenue by up to 2.3%, 1.6%, and 0.7% for

problems with low, medium and high initial inventory level, respectively. However,

as we have seen in Table B.1, the approach with [MIPs
τ ] is much more time consuming

than that with [MIPτ ]. In fact, for a large percentage of test problems with 50 stores,

the approach with [MIPs
τ ] is not capable of generating a solution in a day (24 hours).

In contrast, the approach with [MIPτ ] is capable of solving every test problem with

50 stores in less than an hour. Therefore, we use the formulation [MIPτ ] in our

approach.
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Table B.1: Comparison of LRA for [MIP1] and [MIPs
1]

Solution Quality of LRA Computational Time (s)

(LRA/UB, %)

[MIP1] [MIPs1] [MIP1] [MIPs1]

n βr I0 Median Worst Median Worst Median Worst Median Worst

Low 98.6 97.5 99.5 98.9 281 310 1173 2303

1.0-2.0 Medium 98.9 97.5 98.9 98.7 311 419 2452 12691

High 96.0 95.5 98.9 98.6 356 471 4597 45730

50
Low 98.2 97.7 99.1 98.4 283 318 1086 9329

1.0-3.0 Medium 96.1 95.2 98.8 98.5 338 393 1789 54177

High 97.4 96.8 97.9 95.3 332 366 1671 26426

Low 98.9 97.8 99.6 99.5 572 702 2524 10510

1.0-2.0 Medium 99.0 97.8 99.0 98.8 730 1254 9660 107598

High 96.1 95.8 99.0 98.7 749 895 29095 68132

100
Low 98.0 97.6 99.2 98.6 565 654 2819 18310

1.0-3.0 Medium 96.2 96.0 98.8 97.9 692 882 13476 97508

High 97.2 96.6 98.5 95.9 714 818 10349 74173

Table B.2: Comparison of the Overall Approach with [MIPτ ] v.s. the Overall Ap-

proach with [MIPs
τ ]

βr I0 Relative Revenue

([MIPsτ ]-based/[MIPτ ]-based,%)

Low 102.0

1.0-2.0 Medium 101.6

High 100.6

Low 102.3

1.0-3.0 Medium 101.6

High 100.7
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Appendix C

Counter Example

As we have discussed in Section 4.2, intuitively, one would expect the worst-

case demand to be always on the left or/and lower boundary of the demand un-

certainty space or one of the corner points. If this is true, we can eliminate a

large portion of the demand uncertainty space and hence significantly reduce the

computational time for the proposed DP. We now show, in the following example,

that this is not the case. In this example, there are two time periods (T = 2),

one allowable price for product 1 (p1
1 = 50) and two allowable prices for product

2 (p1
2 = 50, p2

2 = 45). The initial inventory levels I1 = I2 = 10. The allowed cu-

mulative demand deviations B1 = B2 = 1. We consider a special case in which

αl1l2t = 0, βl1l2t = 0,∀ t, l1, l2. We will show that if the decision maker chooses price

pair (50,50) in the first period, the adversary will choose the middle point of the

corresponding demand uncertainty space to achieve the lowest total revenue. The

expected demand for price pair (50,50) in the first period is (6,6) and the demand

intervals are as follows, i.e., D11
11 ∈ [5, 7], D11

21 ∈ [5, 7], D11
11 + D11

21 ∈ [11, 13]. The

expected demand for price pair (50,50) in the second period is (6,4) and the de-

mand intervals are D11
12 ∈ [5, 7], D11

22 ∈ [2, 6], D11
12 + D11

22 ∈ [8, 12]. Correspondingly,

the expected demand for price pair (50,45) in the second period is (4,6) and the

demand intervals are D12
12 ∈ [2, 6], D12

22 ∈ [5, 7], D12
12 +D12

22 ∈ [8, 12].

Corresponding to price pair (50,50) selected in the first period, the demand

uncertainty space is Ω11
1,0 (note, at the beginning of time period 1, d must be 0), which

is shown in Figure C.1. Demand uncertainty spaces for period 2 corresponding to

two price pairs (i.e., (50,50),(50,45)) and three cumulative demand deviations (i.e.,

d = 1, 0,−1) are shown in Figures C.2 to C.7.

180



 

0 1 2 3 4 5 6 7 8 

0 

1 

2 

3 

4 

5 

6 

7 

8 

D1 

D2 

Figure C.1: Ω11
1,0 = {(D1, D2) | 5 ≤ D1 ≤ 7, 5 ≤ D2 ≤ 7, 11 ≤ D1 +D2 ≤ 13}
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Figure C.2: Ω11
2,1 = {(D1, D2) | 5 ≤ D1 ≤ 7, 2 ≤ D2 ≤ 6, 8 ≤ D1 +D2 ≤ 10}

181



  

0 1 2 3 4 5 6 7 8 

0 

1 

2 

3 

4 

5 

6 

7 

8 

D1 

D2 

Figure C.3: Ω12
2,1 = {(D1, D2) | 2 ≤ D1 ≤ 6, 5 ≤ D2 ≤ 7, 8 ≤ D1 +D2 ≤ 10}
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Figure C.4: Ω11
2,0 = {(D1, D2) | 5 ≤ D1 ≤ 7, 2 ≤ D2 ≤ 6, 9 ≤ D1 +D2 ≤ 11}
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Figure C.5: Ω12
2,0 = {(D1, D2) | 2 ≤ D1 ≤ 6, 5 ≤ D2 ≤ 7, 9 ≤ D1 +D2 ≤ 11}
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Figure C.6: Ω11
2,−1 = {(D1, D2) | 5 ≤ D1 ≤ 7, 2 ≤ D2 ≤ 6, 10 ≤ D1 +D2 ≤ 12}
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Figure C.7: Ω12
2,−1 = {(D1, D2) | 2 ≤ D1 ≤ 6, 5 ≤ D2 ≤ 7, 10 ≤ D1 +D2 ≤ 12}

Given that the decision maker chooses price pair (50, 50) in the first period,

Table C.1 demonstrates why choosing demand (6, 6) will lead to the lowest total

revenue. For example, if the adversary chooses demand (6, 6) in the first period, it

leads to demand deviation of 0, first period revenue of 600 and remaining inventory

of 4 for both products. In the second period, if the decision maker chooses price

pair (50, 50), which results in the demand uncertainty space Ω11
2,0, then the adversary

will choose demand realization (7, 2) to minimize the second period revenue (300

in this case). Correspondingly, if the decision maker chooses price pair (50, 45)

in the second period, which results in the demand uncertainty space Ω12
2,0, then

the adversary will choose demand realization (2, 7) to minimize the second period

revenue (280 in this case). The decision maker knows exactly what the adversary

will choose for each possible price pair. After comparing these two possible price

pairs, the decision maker will choose (50, 50) since 300 > 280, which results in a

total revenue of 900 for two periods (marked with an asterisk in the table) . For

each possible demand in the first period, we can do the same analysis and compute

the corresponding total revenue (marked with an asterisk in the table). Since 900 is

the smallest among all these total revenue numbers, it means that demand (6, 6) is

184



the worst-case demand if the decision maker chooses price pair (50, 50) in the first

period.

Table C.1: Worst-case Demand Analysis

First Period Second Period

Demand Remaining Uncertianty Worst-case Total

Demand Deviation Revenue Inventory Prices Space Demand Sales Revenue Revenue

(6,6) 0 600 (4,4) (50,50) Ω11
2,0 (7,2) (4,2) 300 900*

(50,45) Ω12
2,0 (2,7) (2,4) 280 880

(6,7) 1 650 (4,3) (50,50) Ω11
2,1 (6,2) (4,2) 300 950*

(50,45) Ω12
2,1 (2,6) (2,3) 235 885

(6,5) -1 550 (4,5) (50,50) Ω11
2,−1 (7,3) (4,3) 350 900

(50,45) Ω12
2,−1 (3,7) (3,5) 375 925*

(5,6) -1 550 (5,4) (50,50) Ω11
2,−1 (7,3) (5,3) 400 950*

(50,45) Ω12
2,−1 (3,7) (3,4) 330 880

(7,6) 1 650 (3,4) (50,50) Ω11
2,1 (6,2) (3,2) 250 900

(50,45) Ω12
2,1 (2,6) (2,4) 280 930*

(7,5) 0 600 (3,5) (50,50) Ω11
2,0 (7,2) (3,2) 250 850

(50,45) Ω12
2,0 (2,7) (2,5) 325 925*

(5,7) 0 600 (5,3) (50,50) Ω11
2,0 (7,2) (5,2) 350 950*

(50,45) Ω12
2,0 (2,7) (2,3) 235 835
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Appendix D

Proofs for Lemmas and Theorems

In this section, we prove all the lemmas and theorems given in Sections 4.3

and 4.4. We prove each result contained in each lemma by backward induction. We

show that if the result holds for time period t + 1, it also holds for time period t.

The result for time period T can be proved similary as a special case, and hence is

not proved here.

Lemma 1 In any period t, for any δ1, δ2, δ ≥ 0, the following inequalities hold as

long as the value of each state variable involved is within its domain.

(i) Vt(i1 + δ1, 0, l1, l2, r1, r2, d) ≥ Vt(i1, 0, l1, l2, r1, r2, d)

(ii) Vt(i1 + δ1, i2, l1, l2, r1, r2, d) ≥ Vt(i1, 0, l1, l2, r1, r2, d)− p1
1

(iii) Vt(i1 + δ1, i2, l1, l2, r1, r2, d) ≥ Vt(i1, i2, l1, l2, r1, r2, d)− p1
2

(iv) Vt(i1 − δ1, 0, l1, l2, r1, r2, d) ≥ Vt(i1, 0, l1, l2, r1, r2, d)− p1
1δ1

(v) Vt(i1 − δ1, 0, l1, l2, r1, r2, d) ≥ Vt(i1, i2, l1, l2, r1, r2, d)− p1
1(δ1 + i2)− p1

2i2

(vi) Vt(i1 − δ1, i2, l1, l2, r1, r2, d) ≥ Vt(i1, i2, l1, l2, r1, r2, d)− p1
1δ1 − p1

2δ1

(vii) Vt(i1, i2, l1, l2, r1, r2, d− δ) ≥ Vt(i1, i2, l1, l2, r1, r2, d)− p1
1δ − p1

2δ

Proof We first prove result (i) by backward induction. We show that if result

(i) holds for time period t + 1, it also holds for time period t. In the following

proof, we denote l′1, l
′
2 as the optimal price levels for state (i1, 0, l1, l2, r1, r2, d) in

period t and D∗1, D
∗
2 as the corresponding worst-case demand. To simplify notation,

in all the proofs hereinafter, we denote p∗1 = p
l′1
1 , p

∗
2 = p

l′2
2 and the expected demand

corresponding to price levels l′1, l
′
2 in period t as D̄1, D̄2. We denote D1, D2 as the

worst-case demand in period t for state (i1 + δ1, 0, l1, l2, r1, r2, d) if price levels l′1, l
′
2

are used in that period. Note that (D1, D2), (D∗1, D
∗
2) ∈ Ω

l′1l
′
2

t,d . We also denote
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i′′′1 = i1 + δ1 − min(i1 + δ1, D1 + bαl
′
1l
′
2

t D2c), i′′1 = i1 − min(i1, D1 + bαl
′
1l
′
2

t D2c),

i′1 = i1 − min(i1, D
∗
1 + bαl

′
1l
′
2

t D∗2c), d′′ = d + (D1 + D2) − (D̄1 + D̄2), and d′ =

d+ (D∗1 +D∗2)− (D̄1 + D̄2).

Vt(i1 + δ1, 0, l1, l2, r1, r2, d)

≥ p∗1 min(i1 + δ1, D1 + bαl
′
1l
′
2

t D2c) + Vt+1(i′′′1 , 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t D2c) + Vt+1(i′′1, 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

(by induction and the fact that i′′′1 ≥ i′′1)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t D∗2c) + Vt+1(i′1, 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′) (by definition of D∗1, D

∗
2)

= Vt(i1, 0, l1, l2, r1, r2, d)

Next we prove result (ii) by backward induction. We show in the following that

if result (ii) holds for time period t+1, it also holds for time period t. In the following

proof, we denote l′1, l
′
2 as the optimal price levels for state (i1, 0, l1, l2, r1, r2, d) in

period t and D∗1, D
∗
2 as the corresponding worst-case demand. We denote D1, D2 as

the worst-case demand in period t for state (i1 + δ1, i2, l1, l2, r1, r2, d) if price levels

l′1, l
′
2 are used in that period. Note that (D1, D2), (D∗1, D

∗
2) ∈ Ω

l′1l
′
2

t,d . We also denote

i′′′1 = i1 + δ1 − min(i1 + δ1, D1 + bαl
′
1l
′
2

t (D2 − min(i2, D2)c), i′′′2 = i2 − min(i2, D2 +

bβl
′
1l
′
2

t (D1−min(i1 +δ1, D1)c), i′′1 = i1−min(i1, D1 +bαl
′
1l
′
2

t D2c), i′1 = i1−min(i1, D
∗
1 +

bαl
′
1l
′
2

t D∗2c), d′′ = d+ (D1 +D2)− (D̄1 + D̄2), and d′ = d+ (D∗1 +D∗2)− (D̄1 + D̄2).

Case 1: i2 ≤ D2

Vt(i1 + δ1, i2, l1, l2, r1, r2, d)

≥ p∗1 min(i1 + δ1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 + δ1, D1))c)

+ Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(0, D2))c)− p∗1(α
l′1l
′
2

t i2 + 1)

+ p∗2 min(0, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c) + p∗2 i2

+ Vt+1(i′′1, 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′′) (by result (i) and the fact that i′′′1 ≥ i′′1, i

′′′
2 = 0)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(0, D2))c)
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+ p∗2 min(0, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+ Vt+1(i′′1, 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p∗1 (by assumption that α

l′1l
′
2

t p
l′1
1 ≤ p

l′2
2 )

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(0, D∗2))c)

+ p∗2 min(0, D∗2 + bβl
′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+ Vt+1(i′1, 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

1 (by definition of D∗1, D
∗
2)

= Vt(i1, 0, l1, l2, r1, r2, d)− p1
1

Case 2: i2 > D2

Vt(i1 + δ1, i2, l1, l2, r1, r2, d)

≥ p∗1 min(i1 + δ1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 + δ1, D1))c)

+ Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(0, D2))c)− p∗1α
l′1l
′
2

t D2

+ p∗2 min(0, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c) + p∗2 D2

+ Vt+1(i′′1, 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

1 (by induction and the fact that i′′′1 ≥ i′′1)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(0, D2))c)

+ p∗2 min(0, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+ Vt+1(i′′1, 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

1 (by assumption that α
l′1l
′
2

t p
l′1
1 ≤ p

l′2
2 )

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(0, D∗2))c)

+ p∗2 min(0, D∗2 + bβl
′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+ Vt+1(i′1, 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

1 (by definition of D∗1, D
∗
2)

= Vt(i1, 0, l1, l2, r1, r2, d)− p1
1

We then prove result (iii) by backward induction. We prove that result (iii)

holds for time period t if it holds for time period t + 1. In the following proof,

we denote l′1, l
′
2 as the optimal price levels for state (i1, i2, l1, l2, r1, r2, d) in period

t and D∗1, D
∗
2 as the corresponding worst-case demand. We denote D1, D2 as the

worst-case demand in period t for state (i1 + δ1, i2, l1, l2, r1, r2, d) if price levels l′1, l
′
2
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are used in that period. Note that (D1, D2), (D∗1, D
∗
2) ∈ Ω

l′1l
′
2

t,d . We also denote

i′′′1 = i1 + δ1 − min(i1 + δ1, D1 + bαl
′
1l
′
2

t (D2 − min(i2, D2)c), i′′′2 = i2 − min(i2, D2 +

bβl
′
1l
′
2

t (D1−min(i1+δ1, D1)c), i′′1 = i1−min(i1, D1+bαl
′
1l
′
2

t (D2−min(i2, D2)c), i′′2 = i2−

min(i2, D2+bβl
′
1l
′
2

t (D1−min(i1, D1)c), i′1 = i1−min(i1, D
∗
1+bαl

′
1l
′
2

t (D∗2−min(i2, D
∗
2)c),

i′2 = i2 −min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1)c), d′′ = d + (D1 + D2) − (D̄1 + D̄2),

and d′ = d+ (D∗1 +D∗2)− (D̄1 + D̄2).

Case 1: i2 ≤ D2

Vt(i1 + δ1, i2, l1, l2, r1, r2, d)

≥ p∗1 min(i1 + δ1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 + δ1, D1))c)

+ Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

(by result (i) and the fact that i′′′1 ≥ i′′1, i
′′′
2 = i′′2 = 0)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+ p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+ Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)

= Vt(i1, i2, l1, l2, r1, r2, d)

Case 2: i1 + δ1 < D1, i2 > D2

Vt(i1 + δ1, i2, l1, l2, r1, r2, d)

≥ p∗1 min(i1 + δ1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 + δ1, D1))c)

+ Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c) + p∗1δ1

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)− p∗2(β
l′1l
′
2

t δ1 + 1)

+ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)
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(by result (i) and the fact that i′′′1 = i′′1 = 0, i′′′2 ≥ i′′2)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p∗2 (by assumption that β

l′1l
′
2

t p
l′2
2 ≤ p

l′1
1 )

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+ p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+ Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

2 (by definition of D∗1, D
∗
2)

= Vt(i1, i2, l1, l2, r1, r2, d)− p1
2

Case 3: i1 ≤ D1 ≤ i1 + δ1, i2 > D2

Vt(i1 + δ1, i2, l1, l2, r1, r2, d)

≥ p∗1 min(i1 + δ1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 + δ1, D1))c)

+ Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c) + p∗1(D1 − i1)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)− p∗2β
l′1l
′
2

t (D1 − i1)

+ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

2

(by result (ii) and the fact that i′′1 = 0, i′′′2 ≥ i′′2)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

2 (by assumption that β
l′1l
′
2

t p
l′2
2 ≤ p

l′1
1 )

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+ p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+ Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

2 (by definition of D∗1, D
∗
2)

= Vt(i1, i2, l1, l2, r1, r2, d)− p1
2

Case 4: i1 > D1, i2 > D2

Vt(i1 + δ1, i2, l1, l2, r1, r2, d)
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≥ p∗1 min(i1 + δ1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 + δ1, D1))c)

+ Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

2

(by induction and the fact that i′′′1 ≥ i′′1, i
′′′
2 = i′′2)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+ p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+ Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

2 (by definition of D∗1, D
∗
2)

= Vt(i1, i2, l1, l2, r1, r2, d)− p1
2

We next prove result (iv) by backward induction. We show that if result (iv)

holds for time period t + 1, it also holds for time period t. In the following proof,

we denote l′1, l
′
2 as the optimal price levels for state (i1, 0, l1, l2, r1, r2, d) in period

t and D∗1, D
∗
2 as the corresponding worst-case demand. We denote D1, D2 as the

worst-case demand in period t for state (i1 − δ1, 0, l1, l2, r1, r2, d) if price levels l′1, l
′
2

are used in that period. Note that (D1, D2), (D∗1, D
∗
2) ∈ Ω

l′1l
′
2

t,d . We also denote

i′′′1 = i1−δ1−min(i1−δ1, D1 +bαl
′
1l
′
2

t D2c), i′′1 = i1−min(i1, D1 +bαl
′
1l
′
2

t D2c), i′1 = i1−

min(i1, D
∗
1+bαl

′
1l
′
2

t D∗2c), d′′ = d+(D1+D2)−(D̄1+D̄2), d′ = d+(D∗1+D∗2)−(D̄1+D̄2)

and X = min(i1, D1 + bαl
′
1l
′
2

t D2c). We consider the following two cases.

Case 1: i1 − δ1 ≤ D1 + bαl
′
1l
′
2

t D2c.

Vt(i1 − δ1, 0, l1, l2, r1, r2, d)

≥ p∗1 min(i1 − δ1, D1 + bαl
′
1l
′
2

t D2c) + Vt+1(i′′′1 , 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t D2c)− p∗1(X − i1 + δ1)

+Vt+1(i′′1, 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

1(i1 −X)

(by induction and the fact that i′′′1 = 0, i′′1 = i1 −X)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t D∗2c) + Vt+1(i′1, 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

1δ1
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= Vt(i1, 0, l1, l2, r1, r2, d)− p1
1δ1

Case 2: i1 − δ1 > D1 + bαl
′
1l
′
2

t D2c

Vt(i1 − δ1, 0, l1, l2, r1, r2, d)

≥ p∗1 min(i1 − δ1, D1 + bαl
′
1l
′
2

t D2c) + Vt+1(i′′′1 , 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t D2c) + Vt+1(i′′1, 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

1δ1

(by induction and the fact that i′′′1 = i′′1 − δ1)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t D∗2c) + Vt+1(i′1, 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

1δ1

= Vt(i1, 0, l1, l2, r1, r2, d)− p1
1δ1

Next we prove result (v) by backward induction. We show that if result (v)

holds for time period t + 1, it also holds for time period t. In the following proof,

we denote l′1, l
′
2 as the optimal price levels for state (i1, i2, l1, l2, r1, r2, d) in period

t and D∗1, D
∗
2 as the corresponding worst-case demand. We denote D1, D2 as the

worst-case demand in period t for state (i1 − δ1, 0, l1, l2, r1, r2, d) if price levels l′1, l
′
2

are used in that period. Note that (D1, D2), (D∗1, D
∗
2) ∈ Ω

l′1l
′
2

t,d . We also denote

i′′′1 = i1 − δ1 − min(i1 − δ1, D1 + bαl
′
1l
′
2

t (D2 − min(0, D2)c), i′′1 = i1 − min(i1, D1 +

bαl
′
1l
′
2

t (D2 − min(i2, D2))c), i′′2 = i2 − min(i2, D2 + bβl
′
1l
′
2

t (D1 − min(i1, D1)c), i′1 =

i1 − min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 − min(i2, D
∗
2))c), i′2 = i2 − min(i2, D

∗
2 + bβl

′
1l
′
2

t (D∗1 −

min(i1, D
∗
1))c), d′′ = d+(D1 +D2)− (D̄1 + D̄2), and d′ = d+(D∗1 +D∗2)− (D̄1 + D̄2).

We also denote X1 = min(i1−δ1, D1 +bαl
′
1l
′
2

t (D2−min(0, D2))c), X ′1 = min(i1, D1 +

bαl
′
1l
′
2

t (D2−min(i2, D2))c), X ′2 = min(i2, D2+bβl
′
1l
′
2

t (D1−min(i1, D1))c). We consider

two cases in the following.

Case 1: X1 ≤ X ′1, note that X ′1 −X1 ≤ δ1

Vt(i1 − δ1, 0, l1, l2, r1, r2, d)

≥ p∗1 min(i1 − δ1, D1 + bαl
′
1l
′
2

t (D2 −min(0, D2))c)

+ p∗2 min(0, D2 + bβl
′
1l
′
2

t (D1 −min(i1 − δ1, D1))c)

+ Vt+1(i′′′1 , 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)− p∗1(X ′1 −X1)
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+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)− p∗2X ′2

+ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

1(δ1 − (X ′1 −X1) + i2 −X ′2)− p1
2(i2 −X ′2)

(by induction and the fact that i′′′1 = i′′1 − δ1 + (X ′1 −X1), i′′2 = i2 −X ′2)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+ p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+ Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

1(δ1 + i2)− p1
2i2 (by definition of D∗1, D

∗
2)

= Vt(i1, i2, l1, l2, r1, r2, d)− p1
1(δ1 + i2)− p1

2i2

Case 2: X1 > X ′1, note that X1 −X ′1 ≤ X ′2.

Vt(i1 − δ1, 0, l1, l2, r1, r2, d)

≥ p∗1 min(i1 − δ1, D1 + bαl
′
1l
′
2

t (D2 −min(0, D2))c)

+ p∗2 min(0, D2 + bβl
′
1l
′
2

t (D1 −min(i1 − δ1, D1))c)

+ Vt+1(i′′′1 , 0, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c) + p∗1(X1 −X ′1)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)− p∗2X ′2

+ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

1(δ1 + (X1 −X ′1) + i2 −X ′2)− p1
2(i2 −X ′2)

(by induction and the fact that i′′′1 = i′′1 − δ1 − (X1 −X ′1), i′′2 = i2 −X ′2)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+ p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+ Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

1(δ1 + i2)− p1
2i2 (by definition of D∗1, D

∗
2)

= Vt(i1, i2, l1, l2, r1, r2, d)− p1
1(δ1 + i2)− p1

2i2

We now prove result (vi) by backward induction. We show that result (vi)

holds for time period t if it holds for time period t + 1. In the following proof,

we denote l′1, l
′
2 as the optimal price levels for state (i1, i2, l1, l2, r1, r2, d) in period

t and D∗1, D
∗
2 as the corresponding worst-case demand. We denote D1, D2 as the

worst-case demand in period t for state (i1 − δ1, i2, l1, l2, r1, r2, d) if price levels l′1, l
′
2

are used in that period. Note that (D1, D2), (D∗1, D
∗
2) ∈ Ω

l′1l
′
2

t,d . We also denote

i′′′1 = i1 − δ1 − min(i1 − δ1, D1 + bαl
′
1l
′
2

t (D2 − min(i2, D2)c), i′′′2 = i2 − min(i2, D2 +
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bβl
′
1l
′
2

t (D1−min(i1−δ1, D1)c), i′′1 = i1−min(i1, D1+bαl
′
1l
′
2

t (D2−min(i2, D2)c), i′′2 = i2−

min(i2, D2+bβl
′
1l
′
2

t (D1−min(i1, D1)c), i′1 = i1−min(i1, D
∗
1+bαl

′
1l
′
2

t (D∗2−min(i2, D
∗
2)c),

i′2 = i2 −min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1)c), d′′ = d + (D1 + D2) − (D̄1 + D̄2),

and d′ = d+ (D∗1 +D∗2)− (D̄1 + D̄2). We consider the following four cases.

Case 1: i2 ≤ D2. To simplify notation, we denote X1 = min(i1−δ1, D1 +bαl
′
1l
′
2

t (D2−

min(i2, D2))c), X ′1 = min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c). Clearly, X1 ≤ X ′1 ≤

X1 + δ1.

Vt(i1 − δ1, i2, l1, l2, r1, r2, d)

≥ p∗1 min(i1 − δ1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 − δ1, D1))c)

+ Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)− p∗1(X ′1 −X1)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

1(δ1 +X1 −X ′1)

(by result (iv) and the fact that i′′′1 = i′′1 − δ1 −X1 +X ′1, i
′′′
2 = i′′2 = 0)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+ p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+ Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

1δ1

= Vt(i1, i2, l1, l2, r1, r2, d)− p1
1δ1

Case 2: i1 < D1, i2 > D2

Vt(i1 − δ1, i2, l1, l2, r1, r2, d)

≥ p∗1 min(i1 − δ1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 − δ1, D1))c)

+ Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)− p∗1δ1

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

2δ1
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(by result (iv) and the fact that i′′′1 = i′′1 = 0, i′′2 − δ1 ≤ i′′′2 ≤ i′′2)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+ p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+ Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

1δ1 − p1
2δ1 (by definition of D∗1, D

∗
2)

= Vt(i1, i2, l1, l2, r1, r2, d)− p1
1δ1 − p1

2δ1

Case 3: i1 − δ1 ≤ D1 ≤ i1, i2 > D2

Vt(i1 − δ1, i2, l1, l2, r1, r2, d)

≥ p∗1 min(i1 − δ1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 − δ1, D1))c)

+ Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)− p∗1(D1 − i1 + δ1)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

1(i1 −D1)− p1
2(i1 −D1 +D1 − i1 + δ1)

(by result (v) and the fact that i′′′1 = 0, i′′1 = i1 −D1,

i′′′2 ≤ i′′2 ≤ i′′′2 + (D1 − i1 + δ1))

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+ p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+ Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

1δ1 − p1
2δ1 (by definition of D∗1, D

∗
2)

= Vt(i1, i2, l1, l2, r1, r2, d)− p1
1δ1 − p1

2δ1

Case 4: i1 − δ1 > D1, i2 > D2

Vt(i1 − δ1, i2, l1, l2, r1, r2, d)

≥ p∗1 min(i1 − δ1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 − δ1, D1))c)

+ Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)
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+ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

1δ1 − p1
2δ1

(by induction and the fact that i′′′1 = i′′1 − δ1, i
′′′
2 = i′′2)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+ p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+ Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

1δ1 − p1
2δ1

= Vt(i1, i2, l1, l2, r1, r2, d)− p1
1δ1 − p1

2δ1

Finally we prove result (vii) by backward induction. We prove that result (vii)

holds for time period t if it holds for time period t+1. We denote l′1, l
′
2 as the optimal

price levels for state (i1, i2, l1, l2, r1, r2, d) in period t and D∗1, D
∗
2 as the corresponding

worst-case demand. We denote D1, D2 as the worst-case demand in period t for

state (i1, i2, l1, l2, r1, r2, d− δ) if price levels l′1, l
′
2 are used in that period. Note that

(D∗1, D
∗
2) ∈ Ω

l′1l
′
2

t,d and (D1, D2) ∈ Ω
l′1l
′
2

t,d−δ. We also denote i′′′1 = i1 − min(i1, D1 +

bαl
′
1l
′
2

t (D2 − min(i2, D2))c), i′′′2 = i2 − min(i2, D2 + bβl
′
1l
′
2

t (D1 − min(i1, D1))c), i′1 =

i1 − min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 − min(i2, D
∗
2))c), i′2 = i2 − min(i2, D

∗
2 + bβl

′
1l
′
2

t (D∗1 −

min(i1, D
∗
1))c), d′′′ = d+(D1 +D2)− (D̄1 +D̄2), and d′ = d+(D∗1 +D∗2)− (D̄1 +D̄2).

We consider the following two cases.

Case 1: (D1, D2) ∈ Ω
l′1l
′
2

t,d

Vt(i1, i2, l1, l2, r1, r2, d− δ)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′′ − δ)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′′)− p1

1δ − p1
2δ (by induction)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+ p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

1δ − p1
2δ (by definition of D∗1, D

∗
2)
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= Vt(i1, i2, l1, l2, r1, r2, d)− p1
1δ − p1

2δ

Case 2: (D1, D2) /∈ Ω
l′1l
′
2

t,d . Based on Observation 1, we can find (D′1, D
′
2) ∈ Ω

l′1l
′
2

t,d

such that D′1 ≤ D1, D
′
2 ≤ D2 and (D1 + D2) − (D′1 + D′2) ≤ δ. In the following,

we denote i′′1 = i1 −min(i1, D
′
1 + bαl

′
1l
′
2

t (D′2 −min(i2, D
′
2))c), i′′2 = i2 −min(i2, D

′
2 +

bβl
′
1l
′
2

t (D′1−min(i1, D
′
1))c), d′′ = d+ (D′1 +D′2)− (D̄1 + D̄2), δ′ = (D1 +D2)− (D′1 +

D′2), X1 = min(i1, D1 + bαl
′
1l
′
2

t (D2 − min(i2, D2))c), X2 = min(i2, D2 + bβl
′
1l
′
2

t (D1 −

min(i1, D1))c), X ′1 = min(i1, D
′
1 + bαl

′
1l
′
2

t (D′2 − min(i2, D
′
2))c), X ′2 = min(i2, D

′
2 +

bβl
′
1l
′
2

t (D′1 −min(i1, D
′
1))c). It can be easily verified that δ′ ≤ δ, d′′ = d′′′ − δ′, 0 ≤

X1 −X ′1 +X2 −X ′2 ≤ δ′.

Vt(i1, i2, l1, l2, r1, r2, d− δ)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′′ − δ)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+ p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

1(δ − δ′)− p1
2(δ − δ′)

(by induction and the fact that d′′ = d′′′ − δ′)

≥ p∗1 min(i1, D
′
1 + bαl

′
1l
′
2

t (D′2 −min(i2, D
′
2))c) + p∗1(X1 −X ′1)

+ p∗2 min(i2, D
′
2 + bβl

′
1l
′
2

t (D′1 −min(i1, D
′
1))c) + p∗2(X2 −X ′2)

+Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

1(X1 −X ′1 +X2 −X ′2)

−p1
2(X2 −X ′2 +X1 −X ′1) (by result (vi))

−p1
1(δ − δ′)− p1

2(δ − δ′)

≥ p∗1 min(i1, D
′
1 + bαl

′
1l
′
2

t (D′2 −min(i2, D
′
2))c)

+ p∗2 min(i2, D
′
2 + bβl

′
1l
′
2

t (D′1 −min(i1, D
′
1))c)

+Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

1δ
′ − p1

2δ
′ − p1

1(δ − δ′)− p1
2(δ − δ′)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+ p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)
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+Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′)− p1

1δ − p1
2δ (by definition of D∗1, D

∗
2)

= Vt(i1, i2, l1, l2, r1, r2, d)− p1
1δ − p1

2δ

Lemma 2 In any period t, for any δ1, δ2, δ ≥ 0, the following inequalities hold as

long as the value of each state variable involved is within its domain in the approx-

imate state space.

(i) At(̃i1 + δ̃1, 0, l1, l2, r1, r2, d̃) ≥ At(̃i1, 0, l1, l2, r1, r2, d̃)

(ii) At(̃i1 + δ̃1, ĩ2, l1, l2, r1, r2, d̃) ≥ At(̃i1, 0, l1, l2, r1, r2, d̃)− p1
1

(iii) At(̃i1 + δ̃1, ĩ2, l1, l2, r1, r2, d̃) ≥ At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
2

(iv) At(̃i1 − δ̃1, 0, l1, l2, r1, r2, d̃) ≥ At(̃i1, 0, l1, l2, r1, r2, d̃)− p1
1δ̃1

(v) At(̃i1 − δ̃1, 0, l1, l2, r1, r2, d̃) ≥ At(̃i1, ĩ2, l1, l2, r1, r2, d̃)

− p1
1(δ̃1 + ĩ2 + (T − t)(∆1 − 1))− p1

2ĩ2

(vi) At(̃i1 − δ̃1, ĩ2, l1, l2, r1, r2, d̃) ≥ At(̃i1, ĩ2, l1, l2, r1, r2, d̃)

− p1
1δ̃1 − p1

2(δ̃1 + (T − t)(∆2 − 1))

(vii) At(̃i1, ĩ2, l1, l2, r1, r2, d̃+ δ̃) ≥ At(̃i1, ĩ2, l1, l2, r1, r2, d̃)

− p1
1(δ̃ + 1)− p1

2(δ̃ + 1)

Proof Results (i), (ii), (iii) and (iv) can be proved similarly as Lemma 1 (i), (ii),

(iii), and (iv), and hence the proofs are omitted.

We now prove result (v) by backward induction. We show that if result (v)

holds for time period t + 1, it also holds for time period t. In the following proof,

we denote l′1, l
′
2 as the optimal price levels for state (̃i1, ĩ2, l1, l2, r1, r2, d̃) in period

t and D̃∗1, D̃
∗
2 as the corresponding worst-case demand. We denote D̃1, D̃2 as the

worst-case demand in period t for state (̃i1 − δ̃1, 0, l1, l2, r1, r2, d̃) if price levels l′1, l
′
2

are used in that period. Note that (D̃1, D̃2), (D̃∗1, D̃
∗
2) ∈ Ω̃

l′1l
′
2

t,d̃
. We also denote

ĩ′′′1 = Φ1{̃i1−δ̃1−min(̃i1−δ̃1, D̃1+bαl
′
1l
′
2

t (D̃2−min(0, D̃2)c)}, ĩ′′1 = Φ1{̃i1−min(̃i1, D̃1+

bαl
′
1l
′
2

t (D̃2 − min(̃i2, D̃2))c)}, ĩ′′2 = Φ2{̃i2 − min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 − min(̃i1, D̃1)c)},
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ĩ′1 = Φ1{̃i1 − min(̃i1, D̃
∗
1 + bαl

′
1l
′
2

t (D̃∗2 − min(̃i2, D̃
∗
2))c)}, ĩ′2 = Φ2{̃i2 − min(̃i2, D̃

∗
2 +

bβl
′
1l
′
2

t (D̃∗1 −min(̃i1, D̃
∗
1))c)}, d̃′′ = Φ{d̃ + (D̃1 + D̃2) − (D̄1 + D̄2)}, and d̃′ = Φ{d̃ +

(D̃∗1 + D̃∗2) − (D̄1 + D̄2)}. To simplify notation, we denote X1 = min(̃i1 − δ̃1, D̃1 +

bαl
′
1l
′
2

t (D̃2 − min(0, D̃2))c), X ′1 = min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 − min(̃i2, D̃2))c), X ′2 =

min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1, D̃1))c). We consider the following two cases.

Case 1: X1 ≤ X ′1, note that X ′1 −X1 ≤ δ̃1

At(̃i1 − δ̃1, 0, l1, l2, r1, r2, d̃)

≥ p∗1 min(̃i1 − δ̃1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(0, D̃2))c)

+ p∗2 min(0, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1 − δ̃1, D̃1))c)

+ At+1(̃i′′′1 , 0, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)

≥ p∗1 min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)− p∗1(X ′1 −X1)

+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1, D̃1))c)− p∗2X ′2

+ At+1(̃i′′1, ĩ
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)

−p1
1(δ̃1 − (X ′1 −X1) + (∆1 − 1) + ĩ2 −X ′2 + (T − t− 1)(∆1 − 1))− p1

2(̃i2 −X ′2)

(by induction and the fact that

ĩ′′′1 = Φ1{̃i1 − δ̃1 −X1}, ĩ′′1 = Φ1{̃i1 −X ′1}, ĩ′′2 = Φ2{̃i2 −X ′2})

≥ p∗1 min(̃i1, D̃
∗
1 + bαl

′
1l
′
2

t (D̃∗2 −min(̃i2, D̃
∗
2))c)

+ p∗2 min(̃i2, D̃
∗
2 + bβl

′
1l
′
2

t (D̃∗1 −min(̃i1, D̃
∗
1))c)

+ At+1(̃i′1, ĩ
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′)− p1

1(δ̃1 + ĩ2 + (T − t)(∆1 − 1))− p1
2ĩ2

(by definition of D̃∗1, D̃
∗
2)

= At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
1(δ̃1 + ĩ2 + (T − t)(∆1 − 1))− p1

2ĩ2

Case 2: X1 > X ′1, note that X1 −X ′1 ≤ X ′2.

At(̃i1 − δ̃1, 0, l1, l2, r1, r2, d̃)

≥ p∗1 min(̃i1 − δ̃1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(0, D̃2))c)

+ p∗2 min(0, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1 − δ̃1, D̃1))c)

+ At+1(̃i′′′1 , 0, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)
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≥ p∗1 min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c) + p∗1(X1 −X ′1)

+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1, D̃1))c)− p∗2X ′2

+ At+1(̃i′′1, ĩ
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)

− p1
1(δ̃1 + (X1 −X ′1) + (∆1 − 1) + ĩ2 −X ′2 + (T − t− 1)(∆1 − 1))− p1

2(̃i2 −X ′2)

(by induction and the fact that

ĩ′′′1 = Φ1{̃i1 − δ̃1 −X1}, ĩ′′1 = Φ1{̃i1 −X ′1}, ĩ′′2 = Φ2{̃i2 −X ′2})

≥ p∗1 min(̃i1, D̃
∗
1 + bαl

′
1l
′
2

t (D̃∗2 −min(̃i2, D̃
∗
2))c)

+ p∗2 min(̃i2, D̃
∗
2 + bβl

′
1l
′
2

t (D̃∗1 −min(̃i1, D̃
∗
1))c)

+ At+1(̃i′1, ĩ
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′)

− p1
1(δ̃1 + ĩ2 + (T − t)(∆1 − 1))− p1

2ĩ2 (by definition of D̃∗1, D̃
∗
2)

= At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
1(δ̃1 + ĩ2 + (T − t)(∆1 − 1))− p1

2ĩ2

We next prove result (vi) by backward induction. We show that result (vi)

holds for time period t if it holds for time period t + 1. In the following proof, we

denote l′1, l
′
2 as the optimal price levels for state (̃i1, ĩ2, l1, l2, r1, r2, d̃) in period t and

D̃∗1, D̃
∗
2 as the corresponding worst-case demand. We denote D̃1, D̃2 as the worst-case

demand in period t for state (̃i1− δ̃1, ĩ2, l1, l2, r1, r2, d̃) if price levels l′1, l
′
2 are used in

that period. Note that (D̃1, D̃2), (D̃∗1, D̃
∗
2) ∈ Ω̃

l′1l
′
2

t,d̃
. We also denote ĩ′′′1 = Φ1{̃i1− δ̃1−

min(̃i1 − δ̃1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2)c)}, ĩ′′′2 = Φ2{̃i2 −min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −

min(̃i1 − δ̃1, D̃1)c)}, ĩ′′1 = Φ1{̃i1 − min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 − min(̃i2, D̃2)c)}, ĩ′′2 =

Φ2{̃i2−min(̃i2, D̃2 +bβl
′
1l
′
2

t (D̃1−min(̃i1, D̃1)c)}, ĩ′1 = Φ1{̃i1−min(̃i1, D̃
∗
1 +bαl

′
1l
′
2

t (D̃∗2−

min(̃i2, D̃
∗
2)c)}, ĩ′2 = Φ2{̃i2 − min(̃i2, D̃

∗
2 + bβl

′
1l
′
2

t (D̃∗1 − min(̃i1, D̃
∗
1)c)}, d̃′′ = Φ{d̃ +

(D̃1 + D̃2)− (D̄1 + D̄2)}, d̃′ = Φ{d̃+(D̃∗1 + D̃∗2)− (D̄1 + D̄2)}, X1 = min(̃i1− δ̃1, D̃1 +

bαl
′
1l
′
2

t (D̃2−min(̃i2, D̃2))c), X2 = min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1−min(̃i1− δ̃1, D̃1))c), X ′1 =

min(̃i1, D̃1 +bαl
′
1l
′
2

t (D̃2−min(̃i2, D̃2))c), X ′2 = min(̃i2, D̃2 +bβl
′
1l
′
2

t (D̃1−min(̃i1, D̃1))c).

Clearly, X1 ≤ X ′1 ≤ X1 + δ̃1. We consider the following four cases.

Case 1: ĩ2 ≤ D̃2.

At(̃i1 − δ̃1, ĩ2, l1, l2, r1, r2, d̃)

≥ p∗1 min(̃i1 − δ̃1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)
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+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1 − δ̃1, D̃1))c)

+ At+1(̃i′′′1 , ĩ
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)

≥ p∗1 min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)− p∗1(X ′1 −X1)

+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1, D̃1))c)

+ At+1(̃i′′1, ĩ
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)− p1

1(δ̃1 +X1 −X ′1)

(by result (iv) and the fact that

ĩ′′′1 = Φ1{̃i1 − δ̃1 −X1}, ĩ′′1 = Φ1{̃i1 −X ′1}, ĩ′′′2 = ĩ′′2 = 0)

≥ p∗1 min(̃i1, D̃
∗
1 + bαl

′
1l
′
2

t (D̃∗2 −min(̃i2, D̃
∗
2))c)

+ p∗2 min(̃i2, D̃
∗
2 + bβl

′
1l
′
2

t (D̃∗1 −min(̃i1, D̃
∗
1))c)

+ At+1(̃i′1, ĩ
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′)− p1

1δ̃1

= At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
1δ̃1

Case 2: ĩ1 < D̃1, ĩ2 > D̃2

At(̃i1 − δ̃1, ĩ2, l1, l2, r1, r2, d̃)

≥ p∗1 min(̃i1 − δ̃1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)

+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1 − δ̃1, D̃1))c)

+ At+1(̃i′′′1 , ĩ
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)

≥ p∗1 min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)− p∗1δ̃1

+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1, D̃1))c)

+ At+1(̃i′′1, ĩ
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)− p1

2(δ̃1 + ∆2 − 1)

(by result (iv) and the fact that

ĩ′′′1 = ĩ′′1 = 0, ĩ′′′2 = Φ2{̃i2 −X2}, ĩ′′2 = Φ2{̃i2 −X ′2})

≥ p∗1 min(̃i1, D̃
∗
1 + bαl

′
1l
′
2

t (D̃∗2 −min(̃i2, D̃
∗
2))c)

+ p∗2 min(̃i2, D̃
∗
2 + bβl

′
1l
′
2

t (D̃∗1 −min(̃i1, D̃
∗
1))c)

+ At+1(̃i′1, ĩ
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′)− p1

1δ̃1 − p1
2(δ̃1 + ∆2 − 1) (by definition of D̃∗1, D̃

∗
2)

= At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
1δ̃1 − p1

2(δ̃1 + ∆2 − 1)
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Case 3: ĩ1 − δ̃1 ≤ D̃1 ≤ ĩ1, ĩ2 > D̃2

At(̃i1 − δ̃1, ĩ2, l1, l2, r1, r2, d̃)

≥ p∗1 min(̃i1 − δ̃1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)

+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1 − δ̃1, D̃1))c)

+ At+1(̃i′′′1 , ĩ
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)

≥ p∗1 min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)− p∗1(D̃1 − ĩ1 + δ̃1)

+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1, D̃1))c)

+ At+1(̃i′′1, ĩ
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)

−p1
1(̃i1 − D̃1)− p1

2(̃i1 − D̃1 + D̃1 − ĩ1 + δ̃1 + (∆2 − 1) + (T − t− 1)(∆2 − 1))

(by result (v) and the fact that

ĩ′′′1 = 0, ĩ′′1 = Φ1{̃i1 − D̃1}, ĩ′′′2 = Φ2{̃i2 −X2}, ĩ′′2 = Φ2{̃i2 −X ′2})

≥ p∗1 min(̃i1, D̃
∗
1 + bαl

′
1l
′
2

t (D̃∗2 −min(̃i2, D̃
∗
2))c)

+ p∗2 min(̃i2, D̃
∗
2 + bβl

′
1l
′
2

t (D̃∗1 −min(̃i1, D̃
∗
1))c)

+ At+1(̃i′1, ĩ
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′)− p1

1δ̃1 − p1
2(δ̃1 + (T − t)(∆2 − 1))

(by definition of D̃∗1, D̃
∗
2)

= At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
1δ̃1 − p1

2(δ̃1 + (T − t)(∆2 − 1))

Case 4: ĩ1 − δ̃1 > D̃1, ĩ2 > D̃2

At(̃i1 − δ̃1, ĩ2, l1, l2, r1, r2, d̃)

≥ p∗1 min(̃i1 − δ̃1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)

+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1 − δ̃1, D̃1))c)

+ At+1(̃i′′′1 , ĩ
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)

≥ p∗1 min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)

+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1, D̃1))c)

+ At+1(̃i′′1, ĩ
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)− p1

1δ̃1 − p1
2(δ̃1 + (T − t− 1)(∆2 − 1))

(by induction and the fact that ĩ′′′1 = ĩ′′1 − δ̃1, ĩ
′′′
2 = ĩ′′2)

≥ p∗1 min(̃i1, D̃
∗
1 + bαl

′
1l
′
2

t (D̃∗2 −min(̃i2, D̃
∗
2))c)
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+ p∗2 min(̃i2, D̃
∗
2 + bβl

′
1l
′
2

t (D̃∗1 −min(̃i1, D̃
∗
1))c)

+ At+1(̃i′1, ĩ
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′)− p1

1δ̃1 − p1
2(δ̃1 + (T − t)(∆2 − 1))

= At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
1δ̃1 − p1

2(δ̃1 + (T − t)(∆2 − 1))

We now prove result (vii) by backward induction. We show that result (vii)

holds for time period t if it holds for time period t + 1. We denote l′1, l
′
2 as the

optimal price levels for state (̃i1, ĩ2, l1, l2, r1, r2, d̃) in period t and D̃∗1, D̃
∗
2 as the

corresponding worst-case demand. We denote D̃1, D̃2 as the worst-case demand

in period t for state (̃i1, ĩ2, l1, l2, r1, r2, d̃ + δ̃) if price levels l′1, l
′
2 are used in that

period. Note that (D̃∗1, D̃
∗
2) ∈ Ω̃

l′1l
′
2

t,d̃
and (D̃1, D̃2) ∈ Ω̃

l′1l
′
2

t,d̃+δ̃
. We also denote ĩ′′′1 =

Φ1{̃i1−min(̃i1, D̃1+bαl
′
1l
′
2

t (D̃2−min(̃i2, D̃2))c)}, ĩ′′′2 = Φ2{̃i2−min(̃i2, D̃2+bβl
′
1l
′
2

t (D̃1−

min(̃i1, D̃1))c)}, ĩ′1 = Φ1{̃i1−min(̃i1, D̃
∗
1 + bαl

′
1l
′
2

t (D̃∗2 −min(̃i2, D̃
∗
2))c)}, ĩ′2 = Φ2{̃i2−

min(̃i2, D̃
∗
2 + bβl

′
1l
′
2

t (D̃∗1 −min(̃i1, D̃
∗
1))c)}, d̃′′′ = Φ{d̃+ (D̃1 + D̃2)− (D̄1 + D̄2)}, and

d̃′ = Φ{d̃+ (D̃∗1 + D̃∗2)− (D̄1 + D̄2)}. We consider the following two cases.

Case 1: (D̃1, D̃2) ∈ Ω̃
l′1l
′
2

t,d̃

At(̃i1, ĩ2, l1, l2, r1, r2, d̃+ δ̃)

≥ p∗1 min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)

+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1, D̃1))c)

+At+1(̃i′′′1 , ĩ
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′′ + δ̃)

≥ p∗1 min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)

+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1, D̃1))c)

+At+1(̃i′′′1 , ĩ
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′′)− p1

1(δ̃ + 1)− p1
2(δ̃ + 1) (by induction)

≥ p∗1 min(̃i1, D̃
∗
1 + bαl

′
1l
′
2

t (D̃∗2 −min(̃i2, D̃
∗
2))c)

+ p∗2 min(̃i2, D̃
∗
2 + bβl

′
1l
′
2

t (D̃∗1 −min(̃i1, D̃
∗
1))c)

+At+1(̃i′1, ĩ
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′)− p1

1(δ̃ + 1)− p1
2(δ̃ + 1) (by definition of D̃∗1, D̃

∗
2)

= At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
1(δ̃ + 1)− p1

2(δ̃ + 1)

Case 2: (D̃1, D̃2) /∈ Ω̃
l′1l
′
2

t,d̃
. Based on Observation 2, we can find (D̃′1, D̃

′
2) ∈ Ω̃

l′1l
′
2

t,d̃

such that D̃1 ≤ D̃′1 ≤ D̃1 + δ̃, D̃2 ≤ D̃′2 ≤ D̃2 + δ̃ and (D̃′1 + D̃′2) − (D̃1 +
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D̃2) ≤ δ̃. In the following, we denote ĩ′′1 = Φ1{̃i1 − min(̃i1, D̃
′
1 + bαl

′
1l
′
2

t (D̃′2 −

min(̃i2, D̃
′
2))c)}, ĩ′′2 = Φ2{̃i2 −min(̃i2, D̃

′
2 + bβl

′
1l
′
2

t (D̃′1 −min(̃i1, D̃
′
1))c)}, d̃′′ = Φ{d̃ +

(D̃′1 + D̃′2)− (D̄1 + D̄2)}, δ̃′ = (D̃′1 + D̃′2)− (D̃1 + D̃2), X1 = min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2−

min(̃i2, D̃2))c), X2 = min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 − min(̃i1, D̃1))c), X ′1 = min(̃i1, D̃
′
1 +

bαl
′
1l
′
2

t (D̃′2 −min(̃i2, D̃
′
2))c), X ′2 = min(̃i2, D̃

′
2 + bβl

′
1l
′
2

t (D̃′1 −min(̃i1, D̃
′
1))c). It can be

easily verified that 1 ≤ δ̃′ ≤ δ̃, X ′1 ≥ X1, X
′
2 ≥ X2, (X

′
1 +X ′2)− (X1 +X2) ≤ δ̃′. We

consider the following three possible sub-cases, i.e., (2a) X ′1 = X1; (2b) X ′2 = X2;

(2c) X ′1 −X1 ≥ 1 and X ′2 −X2 ≥ 1, which also implies that X ′1 −X1 ≤ δ̃′ − 1 and

X ′2 −X2 ≤ δ̃′ − 1

Case (2a): X ′1 = X1

At(̃i1, ĩ2, l1, l2, r1, r2, d̃+ δ̃)

≥ p∗1 min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)

+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1, D̃1))c)

+At+1(̃i′′′1 , ĩ
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′′ + δ̃)

≥ p∗1 min(̃i1, D̃
′
1 + bαl

′
1l
′
2

t (D̃′2 −min(̃i2, D̃
′
2))c)

+ p∗2 min(̃i2, D̃
′
2 + bβl

′
1l
′
2

t (D̃′1 −min(̃i1, D̃
′
1))c)− p∗2δ̃′

+At+1(̃i′′′1 , ĩ
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)

−p1
1(δ̃ − δ̃′ + 1)− p1

2(δ̃ − δ̃′ + 1) (by induction and the fact that d̃′′ = d̃′′′ + δ̃′)

≥ p∗1 min(̃i1, D̃
′
1 + bαl

′
1l
′
2

t (D̃′2 −min(̃i2, D̃
′
2))c)

+ p∗2 min(̃i2, D̃
′
2 + bβl

′
1l
′
2

t (D̃′1 −min(̃i1, D̃
′
1))c)− p∗2δ̃′

+At+1(̃i′′1, ĩ
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)− p1

1 (by result (iii) and the fact that ĩ′′′1 = ĩ′′1, ĩ
′′′
2 ≥ ĩ′′2)

−p1
1(δ̃ − δ̃′ + 1)− p1

2(δ̃ − δ̃′ + 1)

≥ p∗1 min(̃i1, D̃
′
1 + bαl

′
1l
′
2

t (D̃′2 −min(̃i2, D̃
′
2))c)

+ p∗2 min(̃i2, D̃
′
2 + bβl

′
1l
′
2

t (D̃′1 −min(̃i1, D̃
′
1))c)

+At+1(̃i′′1, ĩ
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)− p1

1(δ̃ + 1)− p1
2(δ̃ + 1)

≥ p∗1 min(̃i1, D̃
∗
1 + bαl

′
1l
′
2

t (D̃∗2 −min(̃i2, D̃
∗
2))c)

+ p∗2 min(̃i2, D̃
∗
2 + bβl

′
1l
′
2

t (D̃∗1 −min(̃i1, D̃
∗
1))c)
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+At+1(̃i′1, ĩ
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′)− p1

1(δ̃ + 1)− p1
2(δ̃ + 1) (by definition of D̃∗1, D̃

∗
2)

= At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
1(δ̃ + 1)− p1

2(δ̃ + 1)

Case (2b): X ′2 = X2. This case can be proved similarly as case (2a).

Case (2c): X ′1 −X1 ≥ 1, X ′2 −X2 ≥ 1

At(̃i1, ĩ2, l1, l2, r1, r2, d̃+ δ̃)

≥ p∗1 min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)

+ p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1, D̃1))c)

+At+1(̃i′′′1 , ĩ
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′′ + δ̃)

≥ p∗1 min(̃i1, D̃
′
1 + bαl

′
1l
′
2

t (D̃′2 −min(̃i2, D̃
′
2))c)− p∗1(δ̃′ − 1)

+ p∗2 min(̃i2, D̃
′
2 + bβl

′
1l
′
2

t (D̃′1 −min(̃i1, D̃
′
1))c)− p∗2(δ̃′ − 1)

+At+1(̃i′′′1 , ĩ
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)

−p1
1(δ̃ − δ̃′ + 1)− p1

2(δ̃ − δ̃′ + 1) (by induction and the fact that d̃′′ = d̃′′′ + δ̃′)

≥ p∗1 min(̃i1, D̃
′
1 + bαl

′
1l
′
2

t (D̃′2 −min(̃i2, D̃
′
2))c)− p∗1(δ̃′ − 1)

+ p∗2 min(̃i2, D̃
′
2 + bβl

′
1l
′
2

t (D̃′1 −min(̃i1, D̃
′
1))c)− p∗2(δ̃′ − 1)

+At+1(̃i′′1, ĩ
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)− p1

1 − p1
2

(by result (iii) and the fact that ĩ′′′1 ≥ ĩ′′1, ĩ
′′′
2 ≥ ĩ′′2)

−p1
1(δ̃ − δ̃′ + 1)− p1

2(δ̃ − δ̃′ + 1)

≥ p∗1 min(̃i1, D̃
∗
1 + bαl

′
1l
′
2

t (D̃∗2 −min(̃i2, D̃
∗
2))c)

+ p∗2 min(̃i2, D̃
∗
2 + bβl

′
1l
′
2

t (D̃∗1 −min(̃i1, D̃
∗
1))c)

+At+1(̃i′1, ĩ
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′)− p1

1(δ̃ + 1)− p1
2(δ̃ + 1) (by definition of D̃∗1, D̃

∗
2)

= At(̃i1, ĩ2, l1, l2, r1, r2, d̃)− p1
1(δ̃ + 1)− p1

2(δ̃ + 1)

Lemma 3 In any period t, for any ∆1,∆2,∆ ≥ 1, the following inequality holds as

long as the value of each state variable involved is within its domain in the corre-

sponding state space,

At(̃i1, ĩ2, l1, l2, r1, r2, d̃)
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≥ Vt(i1, i2, l1, l2, r1, r2, d)

−(T − t+ 1)p1
1 {max(∆1 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

−(T − t+ 1)p1
2 {max(∆2 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

Proof We prove this lemma by backward induction. We show that if the lemma

holds for time period t + 1, it also holds for time period t. We denote l′1, l
′
2 as

the optimal price levels corresponding to Vt(i1, i2, l1, l2, r1, r2, d), and D∗1, D
∗
2 as the

corresponding worst-case demand. We denote D̃1, D̃2 as the worst-case demand

corresponding to At(̃i1, ĩ2, l1, l2, r1, r2, d̃) if price levels l′1, l
′
2 are used in that period.

Note that (D∗1, D
∗
2) ∈ Ω

l′1l
′
2

t,d , (D̃1, D̃2) ∈ Ω̃
l′1l
′
2

t,d̃
. According to Observation 3, for any

(D̃1, D̃2) ∈ Ω̃
l′1l
′
2

t,d̃
, we can find (D′1, D

′
2) ∈ Ω

l′1l
′
2

t,d such that D′1 − (∆− 1) ≤ D̃1 ≤ D′1 +

(∆−1), D′2−(∆−1) ≤ D̃2 ≤ D′2+(∆−1) and (D̃1+D̃2)−(D′1+D′2) ≤ d−d̃ ≤ (∆−1).

We also denote i′′′1 = ĩ1−min(̃i1, D̃1+bαl
′
1l
′
2

t (D̃2−min(̃i2, D̃2))c), i′′′2 = ĩ2−min(̃i2, D̃2+

bβl
′
1l
′
2

t (D̃1 − min(̃i1, D̃1))c), ĩ′′′1 = Φ1{̃i1 − min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 − min(̃i2, D̃2))c)},

ĩ′′′2 = Φ2{̃i2−min(̃i2, D̃2+bβl
′
1l
′
2

t (D̃1−min(̃i1, D̃1))c)}, i′′1 = i1−min(i1, D
′
1+bαl

′
1l
′
2

t (D′2−

min(i2, D
′
2))c), i′′2 = i2−min(i2, D

′
2+bβl

′
1l
′
2

t (D′1−min(i1, D
′
1))c), i′1 = i1−min(i1, D

∗
1 +

bαl
′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c), i′2 = i2 −min(i2, D

∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c), d′′′ =

d̃+(D̃1 +D̃2)−(D̄1 +D̄2), d̃′′′ = Φ{d̃+(D̃1 +D̃2)−(D̄1 +D̄2)}, d′′ = d+(D′1 +D′2)−

(D̄1+D̄2), and d′ = d+(D∗1+D∗2)−(D̄1+D̄2). Since (D̃1+D̃2)−(D′1+D′2) ≤ d−d̃, or

(D̃1+D̃2)+d̃ ≤ (D′1+D′2)+d, we have d′′′ ≤ d′′. In addition, since d̃ ≥ d−(∆−1) and

(D̃1 +D̃2) ≥ (D′1 +D′2)−2(∆−1), we have d′′′ ≥ d′′−3(∆−1). It can also be verified

that i′′1−i′′′1 ≤ (∆1−1)+(∆2−1)+(∆−1) and i′′2−i′′′2 ≤ (∆1−1)+(∆2−1)+(∆−1).

At(̃i1, ĩ2, l1, l2, r1, r2, d̃)

≥ p∗1 min(̃i1, D̃1 + bαl
′
1l
′
2

t (D̃2 −min(̃i2, D̃2))c)

+p∗2 min(̃i2, D̃2 + bβl
′
1l
′
2

t (D̃1 −min(̃i1, D̃1))c)

+At+1(̃i′′′1 , ĩ
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′′)

≥ p∗1 min(i1, D
′
1 + bαl

′
1l
′
2

t (D′2 −min(i2, D
′
2))c)− p∗1 max(∆1 − 1, 2(∆− 1))

+p∗2 min(i2, D
′
2 + bβl

′
1l
′
2

t (D′1 −min(i1, D
′
1))c)− p∗2 max(∆2 − 1, 2(∆− 1))

+Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′′)
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−(T − t)p1
1 {max(∆1 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

−(T − t)p1
2 {max(∆2 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

(by induction)

≥ p∗1 min(i1, D
′
1 + bαl

′
1l
′
2

t (D′2 −min(i2, D
′
2))c)− p1

1 max(∆1 − 1, 2(∆− 1))

+p∗2 min(i2, D
′
2 + bβl

′
1l
′
2

t (D′1 −min(i1, D
′
1))c)− p1

2 max(∆2 − 1, 2(∆− 1))

+Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− 3p1

1(∆− 1)− 3p1
2(∆− 1)

(by Lemma 1 (vii)) (D.1)

−(T − t)p1
1 {max(∆1 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

−(T − t)p1
2 {max(∆2 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

≥ p∗1 min(i1, D
′
1 + bαl

′
1l
′
2

t (D′2 −min(i2, D
′
2))c)− p1

1 max(∆1 − 1, 2(∆− 1))

+p∗2 min(i2, D
′
2 + bβl

′
1l
′
2

t (D′1 −min(i1, D
′
1))c)− p1

2 max(∆2 − 1, 2(∆− 1))

+Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− 3p1

1(∆− 1)− 3p1
2(∆− 1)

−p1
1 {2(∆1 − 1) + 2(∆2 − 1) + 2(∆− 1)}

−p1
2 {2(∆1 − 1) + 2(∆2 − 1) + 2(∆− 1)} (D.2)

−(T − t)p1
1 {max(∆1 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

−(T − t)p1
2 {max(∆2 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

= p∗1 min(i1, D
′
1 + bαl

′
1l
′
2

t (D′2 −min(i2, D
′
2))c)

+p∗2 min(i2, D
′
2 + bβl

′
1l
′
2

t (D′1 −min(i1, D
′
1))c)

+Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

−(T − t+ 1)p1
1 {max(∆1 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

−(T − t+ 1)p1
2 {max(∆2 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′) (by definition of D∗1, D

∗
2)

−(T − t+ 1)p1
1 {max(∆1 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

−(T − t+ 1)p1
2 {max(∆2 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}
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= Vt(i1, i2, l1, l2, r1, r2, d)

−(T − t+ 1)p1
1 {max(∆1 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

−(T − t+ 1)p1
2 {max(∆2 − 1, 2(∆− 1)) + 2(∆1 − 1) + 2(∆2 − 1) + 5(∆− 1)}

In the above from (D.1) to (D.2), we consider four possible cases. In all four cases,

we assume that (∆1 − 1) + (∆2 − 1) + (∆ − 1) ≥ 1. The case when (∆1 − 1) +

(∆2 − 1) + (∆ − 1) = 0 is trivial because in this case ∆1 = ∆2 = ∆ = 1, which

implies that the approximation scheme AS does not lose any accuracy and hence

At(̃i1, ĩ2, l1, l2, r1, r2, d̃) = Vt(i1, i2, l1, l2, r1, r2, d) and Lemma 3 holds.

Case 1: i′′′1 ≥ i′′1 and i′′′2 ≥ i′′2, according to Lemma 1 (iii), we have

Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

≥ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)− p1

1 − p1
2

≥ Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d
′′)

−p1
1{(∆− 1) + (∆1 − 1) + (∆2 − 1)} − p1

2{(∆− 1) + (∆1 − 1) + (∆2 − 1)}

For case 2: i′′1−{(∆1−1)+(∆2−1)+(∆−1)} ≤ i′′′1 < i′′1 and i′′2−{(∆1−1)+(∆2−1)+

(∆−1)} ≤ i′′′2 < i′′2; case 3: i′′′1 ≥ i′′1 and i′′2−{(∆1−1)+(∆2−1)+(∆−1)} ≤ i′′′2 < i′′2;

and case 4: i′′1 − {(∆1 − 1) + (∆2 − 1) + (∆ − 1)} ≤ i′′′1 < i′′1 and i′′′2 ≥ i′′2, one can

easily verify that the result also holds by applying Lemma 1 (iii) and (vi).

Lemma 4 In any period t, for any ∆1,∆2,∆ ≥ 1, the following inequality holds as

long as the value of each state variable involved is within its domain in the corre-

sponding state space,

Rt(i1, i2, l1, l2, r1, r2, d)

≥ At(̃i1, ĩ2, l1, l2, r1, r2, d̃)

−(T − t+ 1)p1
1{10(∆− 1) + (T − t+ 1)(∆1 − 1) + 2(∆2 − 1)}

−(T − t+ 1)p1
2{10(∆− 1) + 2(∆1 − 1) + (T − t+ 1)(∆2 − 1)}

Proof We prove this lemma by backward induction. We show in the following that

the lemma holds for time period t if it holds for time period t+ 1. We denote l′1, l
′
2
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as the optimal price levels corresponding to At(̃i1, ĩ2, l1, l2, r1, r2, d̃), and D̃∗1, D̃
∗
2 as

the corresponding worst-case demand. We denote D1, D2 as the worst-case demand

corresponding to Rt(i1, i2, r1, r2, l1, l2, d) if price levels l′1, l
′
2 are used in that period.

Note that (D̃∗1, D̃
∗
2) ∈ Ω̃

l′1l
′
2

t,d̃
, (D1, D2) ∈ Ω

l′1l
′
2

t,d . Based on Observation 4, for any

(D1, D2) ∈ Ω
l′1l
′
2

t,d , we have (D̃′1, D̃
′
2) ∈ Ω̃

l′1l
′
2

t,d̃
such that D̃′1− (∆−1) ≤ D1 ≤ D̃′1 +(∆−

1), D̃′2−(∆−1) ≤ D2 ≤ D̃′2+(∆−1) and (D̃′1+D̃′2)−(D1+D2) ≤ d−d̃ ≤ (∆−1). We

also denote i′′′1 = i1−min(i1, D1 + bαl
′
1l
′
2

t (D2−min(i2, D2))c), i′′′2 = i2−min(i2, D2 +

bβl
′
1l
′
2

t (D1 − min(i1, D1))c), ĩ′′1 = Φ1{̃i1 − min(̃i1, D̃
′
1 + bαl

′
1l
′
2

t (D̃′2 − min(̃i2, D̃
′
2))c)},

ĩ′′2 = Φ2{̃i2 − min(̃i2, D̃
′
2 + bβl

′
1l
′
2

t (D̃′1 − min(̃i1, D̃
′
1))c)}, ĩ′1 = Φ1{̃i1 − min(̃i1, D̃

∗
1 +

bαl
′
1l
′
2

t (D̃∗2 −min(̃i2, D̃
∗
2))c)}, ĩ′2 = Φ2{̃i2 −min(̃i2, D̃

∗
2 + bβl

′
1l
′
2

t (D̃∗1 −min(̃i1, D̃
∗
1))c)},

d′′′ = d+(D1 +D2)−(D̄1 +D̄2), d̃′′ = Φ{d̃+(D̃′1 +D̃′2)−(D̄1 +D̄2)}, and d̃′ = Φ{d̃+

(D̃∗1+D̃∗2)−(D̄1+D̄2)}. It can also be verified that Φ1{i′′′1 } ≥ ĩ′′1−{2(∆−1)+(∆1−1)},

Φ2{i′′′2 } ≥ ĩ′′2 − {2(∆− 1) + (∆2 − 1)}, and d̃′′ ≤ Φ{d′′′} ≤ d̃′′ + 4(∆− 1).

Rt(i1, i2, l1, l2, r1, r2, d)

= p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+Rt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2, d
′′′)

≥ p∗1 min(̃i1, D̃
′
1 + bαl

′
1l
′
2

t (D̃′2 −min(̃i2, D̃
′
2))c)

+p∗2 min(̃i2, D̃
′
2 + bβl

′
1l
′
2

t (D̃′1 −min(̃i1, D̃
′
1))c)

−p1
1{(∆2 − 1) + (∆− 1)} − p1

2{(∆1 − 1) + (∆− 1)}

+At+1(Φ1{i′′′1 },Φ2{i′′′2 }, l′1, l′2, r′1, r′2,Φ{d′′′}) (D.3)

−(T − t)p1
1{10(∆− 1) + (T − t)(∆1 − 1) + 2(∆2 − 1)}

−(T − t)p1
2{10(∆− 1) + 2(∆1 − 1) + (T − t)(∆2 − 1)} (by induction)

≥ p∗1 min(̃i1, D̃
′
1 + bαl

′
1l
′
2

t (D̃′2 −min(̃i2, D̃
′
2))c)

+p∗2 min(̃i2, D̃
′
2 + bβl

′
1l
′
2

t (D̃′1 −min(̃i1, D̃
′
1))c)

−p1
1{(∆2 − 1) + (∆− 1)} − p1

2{(∆1 − 1) + (∆− 1)}

+At+1(Φ1{i′′′1 },Φ2{i′′′2 }, l′1, l′2, r′1, r′2, d̃′′)

−p1
1{5(∆− 1)} − p1

2{5(∆− 1)} (D.4)
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−(T − t)p1
1{10(∆− 1) + (T − t)(∆1 − 1) + 2(∆2 − 1)}

−(T − t)p1
2{10(∆− 1) + 2(∆1 − 1) + (T − t)(∆2 − 1)}

≥ p∗1 min(̃i1, D̃
′
1 + bαl

′
1l
′
2

t (D̃′2 −min(̃i2, D̃
′
2))c)

+p∗2 min(̃i2, D̃
′
2 + bβl

′
1l
′
2

t (D̃′1 −min(̃i1, D̃
′
1))c)

−p1
1{(∆2 − 1) + (∆− 1)} − p1

2{(∆1 − 1) + (∆− 1)}

+At+1(̃i′′1, ĩ
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)− p1

1{5(∆− 1)} − p1
2{5(∆− 1)}

−p1
1{4(∆− 1) + (T − t+ 1)(∆1 − 1) + (∆2 − 1)}

−p1
2{4(∆− 1) + (∆1 − 1) + (T − t+ 1)(∆2 − 1)} (D.5)

−(T − t)p1
1{10(∆− 1) + (T − t)(∆1 − 1) + 2(∆2 − 1)}

−(T − t)p1
2{10(∆− 1) + 2(∆1 − 1) + (T − t)(∆2 − 1)}

≥ p∗1 min(̃i1, D̃
′
1 + bαl

′
1l
′
2

t (D̃′2 −min(̃i2, D̃
′
2))c)

+p∗2 min(̃i2, D̃
′
2 + bβl

′
1l
′
2

t (D̃′1 −min(̃i1, D̃
′
1))c)

+At+1(̃i′′1, ĩ
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)

−(T − t+ 1)p1
1{10(∆− 1) + (T − t+ 1)(∆1 − 1) + 2(∆2 − 1)}

−(T − t+ 1)p1
2{10(∆− 1) + 2(∆1 − 1) + (T − t+ 1)(∆2 − 1)}

≥ p∗1 min(̃i1, D̃
∗
1 + bαl

′
1l
′
2

t (D̃∗2 −min(̃i2, D̃
∗
2))c)

+p∗2 min(̃i2, D̃
∗
2 + bβl

′
1l
′
2

t (D̃∗1 −min(̃i1, D̃
∗
1))c)

+At+1(̃i′1, ĩ
′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′) (by definition of D̃∗1, D̃

∗
2)

−(T − t+ 1)p1
1{10(∆− 1) + (T − t+ 1)(∆1 − 1) + 2(∆2 − 1)}

−(T − t+ 1)p1
2{10(∆− 1) + 2(∆1 − 1) + (T − t+ 1)(∆2 − 1)}

= At(̃i1, ĩ2, l1, l2, r1, r2, d̃)

−(T − t+ 1)p1
1{10(∆− 1) + (T − t+ 1)(∆1 − 1) + 2(∆2 − 1)}

−(T − t+ 1)p1
2{10(∆− 1) + 2(∆1 − 1) + (T − t+ 1)(∆2 − 1)}

In the above, from (D.3) to (D.4), we assume that ∆ ≥ 2, and thus we have ∆−1 ≥ 1.

The case when ∆ = 1 is trivial and one can easily verify that the result still holds.
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Since d̃′′ ≤ Φ{d′′′} ≤ d̃′′ + 4(∆− 1), according to Lemma 2 (vii), we have,

At+1(Φ1{i′′′1 },Φ2{i′′′2 }, l′1, l′2, r′1, r′2,Φ{d′′′})

≥ At+1(Φ1{i′′′1 },Φ2{i′′′2 }, l′1, l′2, r′1, r′2, d̃′′)− p1
1(4(∆− 1) + 1)− p1

2(4(∆− 1) + 1)

≥ At+1(Φ1{i′′′1 },Φ2{i′′′2 }, l′1, l′2, r′1, r′2, d̃′′)− p1
15(∆− 1)− p1

25(∆− 1)

From (D.4) to (D.5), we consider four possible cases. In all four cases, we assume

that (∆1−1)+(∆2−1)+(∆−1) ≥ 1. The case when (∆1−1)+(∆2−1)+(∆−1) = 0

is trivial because in this case ∆1 = ∆2 = ∆ = 1, which implies that the approxi-

mation scheme AS does not lose any accuracy and hence Rt(i1, i2, l1, l2, r1, r2, d) =

At(̃i1, ĩ2, l1, l2, r1, r2, d̃) and the lemma holds.

Case 1: Φ1{i′′′1 } ≥ ĩ′′1 and Φ2{i′′′2 } ≥ ĩ′′2, according to Lemma 2 (iii), we have,

At+1(Φ1{i′′′1 },Φ2{i′′′2 }, l′1, l′2, r′1, r′2, d̃′′)

≥ At+1(̃i′′1, ĩ
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)− p1

1 − p1
2

≥ At+1(̃i′′1, ĩ
′′
2, l
′
1, l
′
2, r
′
1, r
′
2, d̃
′′)

−p1
1((∆− 1) + (∆1 − 1) + (∆2 − 1))− p1

2((∆− 1) + (∆1 − 1) + (∆2 − 1))

For case 2: ĩ′′1−{2(∆−1)+(∆1−1)} ≤ Φ1{i′′′1 } < ĩ′′1 and ĩ′′2−{2(∆−1)+(∆2−1)} ≤

Φ2{i′′′2 } < ĩ′′2; case 3: Φ1{i′′′1 } ≥ ĩ′′1 and ĩ′′2 − {2(∆ − 1) + (∆2 − 1)} ≤ Φ2{i′′′2 } < ĩ′′2;

and case 4: ĩ′′1 − {2(∆ − 1) + (∆1 − 1)} ≤ Φ1{i′′′1 } < ĩ′′1 and Φ2{i′′′2 } ≥ ĩ′′2, one can

easily verify that the result also holds by applying Lemma 2 (iii) and (vi).

Theorem 1 For any ε > 0, the approximation algorithm AS with the values of

∆1,∆2,∆ defined in Section 4.3 generates a solution that is within a relative error

ε from the optimality with running time O(T 8m2
1m

2
2R1R2/ε

5).

Proof We first estimate the running time of the approximation algorithm AS. In

AS, we partition the ij dimension into equal intervals of length ∆j and only one value

in each interval is considered, for j = 1, 2. Thus in the algorithm AS, in each period

t, at most dIj/∆je different values of ij are considered, for j = 1, 2. Similarly, in each

period t, at most dBt/∆e different values of d are considered, and at most dDmax
j /∆e
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different values of Dj are considered, for j = 1, 2. Thus, the overall running time of

the algorithm AS is bounded byO(Tm2
1m

2
2R1R2dI1/∆1edI2/∆2edDmax

1 /∆edDmax
2 /∆e

dBmax/∆e). By the way ∆1,∆2,∆ are defined, Ij/∆j = O(T 2/ε) and Dmax
j /∆ ≤

Dmax
j /θj ≤ O(T/ε), for j = 1, 2. Similarly, Bmax/∆ ≤ Bmax/θ3 ≤ O(T/ε). This im-

plies that the overall running time of the algorithm is bounded byO(T 8m2
1m

2
2R1R2/ε

5),

which is polynomial in the problem input size and 1/ε.

Next we show that AS delivers a solution that is within a relative error ε from

the optimality, i.e.,

V1(I1, I2, 1, 1, R1, R2, 0)−R1(I1, I2, 1, 1, R1, R2, 0) ≤ εV1(I1, I2, 1, 1, R1, R2, 0). (D.6)

By Lemma 3, we have

A1(Ĩ1, Ĩ2, 1, 1, R1, R2, 0) ≥ V1(I1, I2, 1, 1, R1, R2, 0)− Tp1
1{3(∆1 − 1)

+2(∆2 − 1) + 7(∆− 1)}

−Tp1
2{2(∆1 − 1) + 3(∆2 − 1) + 7(∆− 1)} (D.7)

Similarly, by Lemma 4, we have

R1(I1, I2, 1, 1, R1, R2, 0) ≥ A1(Ĩ1, Ĩ2, 1, 1, R1, R2, 0)− Tp1
1{T (∆1 − 1)

+2(∆2 − 1) + 10(∆− 1)}

−Tp1
2{2(∆1 − 1) + T (∆2 − 1) + 10(∆− 1)}(D.8)

By (D.7) and (D.8), we have

V1(I1, I2, 1, 1, R1, R2, 0)−R1(I1, I2, 1, 1, R1, R2, 0)

≤ Tp1
1[(T + 3)(∆1 − 1) + 4(∆2 − 1) + 17(∆− 1)]

+Tp1
2[4(∆1 − 1) + (T + 3)(∆2 − 1) + 17(∆− 1)]. (D.9)

Clearly, by definition of Dtotal
1 and Dtotal

2 ,

V1(I1, I2, 1, 1, R1, R2, 0) ≥ pm1
1 min{I1, D

total
1 }, (D.10)

V1(I1, I2, 1, 1, R1, R2, 0) ≥ pm2
2 min{I2, D

total
2 }. (D.11)
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By (D.9), (D.10) and (D.11), in order to show (D.6), it is sufficient to show that

Tp1
1(T + 3)(∆1 − 1)

pm1
1 min{I1, Dtotal

1 }
≤ ε/6, (D.12)

4Tp1
2(∆1 − 1)

pm1
1 min{I1, Dtotal

1 }
≤ ε/6, (D.13)

Tp1
117(∆− 1)

max{pm1
1 min{I1, Dtotal

1 }, pm2
2 min{I2, Dtotal

2 }}
≤ ε/6, (D.14)

4Tp1
1(∆2 − 1)

pm2
2 min{I2, Dtotal

2 }
≤ ε/6, (D.15)

Tp1
2(T + 3)(∆2 − 1)

pm2
2 min{I2, Dtotal

2 }
≤ ε/6, (D.16)

Tp1
217(∆− 1)

max{pm1
1 min{I1, Dtotal

1 }, pm2
2 min{I2, Dtotal

2 }}
≤ ε/6, (D.17)

We prove (D.12), (D.13) and (D.14) in the following. The relations (D.15), (D.16)

and (D.17) can be proved similarly and hence we omit the proofs for them. To prove

(D.12) and (D.13), we consider two cases as follows.

Case 1: If I1 ≤ Dtotal
1 , then by the definition of ∆1 and assumption (i), we have

Tp1
1(T + 3)(∆1 − 1)

pm1
1 min{I1, Dtotal

1 }
≤ T (T + 3)C0(∆1 − 1)

I1

≤ T (T + 3)C0(I1ε)/(102C2
0T

2)

I1

=
T + 3

102C0T
ε ≤ ε/6.

This shows (D.12). The relation (D.13) can be shown exactly the same way by using

the fact that 4 ≤ T + 3.

Case 2: If I1 > Dtotal
1 , then by the definition of ∆1 and assumptions (i) and (ii),

we have

Tp1
1(T + 3)(∆1 − 1)

pm1
1 min{I1, Dtotal

1 }
≤ T (T + 3)C0(∆1 − 1)

Dtotal
1

≤ T (T + 3)C0(I1ε)/(102C2
0T

2)

Dtotal
1

≤ T + 3

102T
ε ≤ ε/6.

This shows (D.12). The relation (D.13) can be shown exactly the same way by using

the fact that 4 ≤ T + 3.

To prove (D.14), by the definition of ∆, it is sufficient to prove the following:

Tp1
117(θj − 1)

max{pm1
1 min{I1, Dtotal

1 }, pm2
2 min{I2, Dtotal

2 }}
≤ ε/6, for j = 1, 2, 3
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.

To this end, we prove the following three results:

Tp1
117(θ1 − 1)

pm1
1 min{I1, Dtotal

1 }
≤ ε/6, (D.18)

Tp1
117(θ2 − 1)

pm2
2 min{I2, Dtotal

2 }
≤ ε/6, (D.19)

Tp1
117(θ3 − 1)

pm1
1 min{I1, Dtotal

1 }
≤ ε/6. (D.20)

To prove (D.18) and (D.20), we consider the following two cases.

Case 1: If I1 ≤ Dtotal
1 , then by the definition of θ1 and assumptions (i) and (iv), we

have

Tp1
117(θ1 − 1)

pm1
1 min{I1, Dtotal

1 }
≤ 17TC0(θ1 − 1)

I1

≤ 17TC0(Dmax
1 ε)/(102C2

0T )

I1

≤ ε/6.

This shows (D.18). Similarly, by the definition of θ3 and assumptions (i) and (vi),

Tp1
117(θ3 − 1)

pm1
1 min{I1, Dtotal

1 }
≤ 17TC0(θ3 − 1)

I1

≤ 17TC0(Bmaxε)/(102C2
0T )

I1

≤ ε/6.

This shows (D.20).

Case 2: If I1 > Dtotal
1 , then by the definition of θ1 and assumptions (i) and (iii), we

have

Tp1
117(θ1 − 1)

pm1
1 min{I1, Dtotal

1 }
≤ 17TC0(θ1 − 1)

Dtotal
1

≤ 17C0T (Dmax
1 ε)/(102C2

0T )

Dtotal
1

≤ ε/6.

This shows (D.18). Similarly, by the definition of θ3 and assumptions (i) and (v),

Tp1
117(θ3 − 1)

pm1
1 min{I1, Dtotal

1 }
≤ 17TC0(θ3 − 1)

Dtotal
1

≤ 17C0T (Bmaxε)/(102C2
0T )

Dtotal
1

≤ ε/6.

This shows (D.20).

To prove (D.19), we consider the following two cases.

Case 1: If I2 ≤ Dtotal
2 , then by the definition of θ2 and assumptions (i) and (iv), we

have

Tp1
117(θ2 − 1)

pm2
2 min{I2, Dtotal

2 }
=

17Tp1
1(θ2 − 1)

pm2
2 I2

≤ 17TC0(Dmax
2 ε)/(102C2

0T )

I2

≤ ε/6.
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Case 2: If I2 > Dtotal
2 , then by the definition of θ2 and assumptions (i) and (iii), we

have

Tp1
117(θ2 − 1)

pm2
2 min{I2, Dtotal

2 }
=

17Tp1
1(θ2 − 1)

pm2
2 Dtotal

2

≤ 17TC0(Dmax
2 ε)/(102C2

0T )

Dtotal
2

≤ ε/6.

Lemma 5 In any period t, the following two inequalities hold as long as the value

of each state variable involved is within its domain:

Vt(i1 − 1, i2, l1, l2, r1, r2) ≥ Vt(i1, i2, l1, l2, r1, r2)− pl11 , and

Vt(i1, i2 − 1, l1, l2, r1, r2) ≥ Vt(i1, i2, l1, l2, r1, r2)− pl22 .

Proof We prove this lemma by backward induction. We show in the following

that if the result holds for time period t + 1, it also holds for time period t. We

denote l′1, l
′
2 as the optimal price levels for state (i1, i2, l1, l2, r1, r2) in period t and

D∗1, D∗2 as the corresponding worst-case demand. We denote D1, D2 as the worst-

case demand in period t for state (i1−1, i2, l1, l2, r1, r2) if price levels l′1, l
′
2 are used in

that period. We also denote i′′′1 = i1−1−min(i1−1, D1 +bαl
′
1l
′
2

t (D2−min(i2, D2))c),

i′′′2 = i2−min(i2, D2+bβl
′
1l
′
2

t (D1−min(i1−1, D1))c), i′′1 = i1−min(i1, D1+bαl
′
1l
′
2

t (D2−

min(i2, D2))c), i′′2 = i2−min(i2, D2+bβl
′
1l
′
2

t (D1−min(i1, D1))c), i′1 = i1−min(i1, D
∗
1 +

bαl
′
1l
′
2

t (D∗2−min(i2, D
∗
2))c), and i′2 = i2−min(i2, D

∗
2 + bβl

′
1l
′
2

t (D∗1−min(i1, D
∗
1))c). We

consider three cases in the following.

Case 1: i1 − 1 ≥ D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c.

Vt(i1 − 1, i2, l1, l2, r1, r2)

≥ p∗1 min(i1 − 1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 − 1, D1))c)

+Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2)− p∗1
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(by induction and the fact that i′′′1 = i′′1 − 1, i′′′2 = i′′2)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2)− pl11 (by definition of D∗1, D

∗
2)

= Vt(i1, i2, l1, l2, r1, r2)− pl11

Case 2: i1 ≤ D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c and min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 −

1, D1))c) = min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1)).

Vt(i1 − 1, i2, l1, l2, r1, r2)

≥ p∗1 min(i1 − 1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 − 1, D1))c)

+Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2)

= p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)− p∗1

+p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c)

+Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2) (note: i′′′1 = i′′1 = 0, i′′′2 = i′′2)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2)− pl11 (by definition of D∗1, D

∗
2)

= Vt(i1, i2, l1, l2, r1, r2)− pl11

Case 3: if i1 ≤ D1 + bαl
′
1l
′
2

t (D2−min(i2, D2))c and min(i2, D2 + bβl
′
1l
′
2

t (D1−min(i1−

1, D1))c) = min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1)) + 1.

Vt(i1 − 1, i2, l1, l2, r1, r2)

≥ p∗1 min(i1 − 1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)

+p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1 − 1, D1))c)

+Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2)

≥ p∗1 min(i1, D1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c)− p∗1

+p∗2 min(i2, D2 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c) + p∗2
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+Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2)− p∗2

(by induction and the fact that i′′′1 = i′′1 = 0, i′′′2 = i′′2 − 1)

≥ p∗1 min(i1, D
∗
1 + bαl

′
1l
′
2

t (D∗2 −min(i2, D
∗
2))c)

+p∗2 min(i2, D
∗
2 + bβl

′
1l
′
2

t (D∗1 −min(i1, D
∗
1))c)

+Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2)− pl11 (by definition of D∗1, D

∗
2)

= Vt(i1, i2, l1, l2, r1, r2)− pl11

Similarly, we can show that Vt(i1, i2 − 1, l1, l2, r1, r2) ≥ Vt(i1, i2, l1, l2, r1, r2) − pl22 .

This completes the proof.

Theorem 2 Given any state (i1, i2, l1, l2, r1, r2) in the beginning of any period t, for

any feasible price pair (l′1, l
′
2) chosen for period t (i.e., l′1 ∈ F

l1
1 ∩ {l1, . . . ,m1}, and

l′2 ∈ F
l2
2 ∩{l2, . . . ,m2}), and any demand realization (D1, D2), (D1−1, D2), (D1, D2−

1) ∈ Ω
l′1l
′
2

t , the following results hold:

p
l′1
1 min(i1, D1 − 1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c)

+p
l′2
2 min(i2, D2 + bβl

′
1l
′
2

t (D1 − 1−min(i1, D1 − 1))c)

+Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2)

≤ p
l′1
1 min(i1, D1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c)

+p
l′2
2 min(i2, D2 + bβl

′
1l
′
2

t (D1 −min(i1, D1))c)

+ Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2), (D.21)

and

p
l′1
1 min(i1, D1 + bαl

′
1l
′
2

t (D2 − 1−min(i2, D2 − 1))c)

+p
l′2
2 min(i2, D2 − 1 + bβl

′
1l
′
2

t (D1 −min(i1, D1))c)

+Vt+1(i′′′1 , i
′′′
2 , l
′
1, l
′
2, r
′
1, r
′
2)

≤ p
l′1
1 min(i1, D1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c)

+p
l′2
2 min(i2, D2 + bβl

′
1l
′
2

t (D1 −min(i1, D1))c)

+ Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2), (D.22)
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where i′′1 = i1 −min(i1, D1 − 1 + bαl
′
1l
′
2

t (D2 −min(i2, D2))c), i′′2 = i2 −min(i2, D2 +

bβl
′
1l
′
2

t (D1− 1−min(i1, D1− 1))c), i′1 = i1−min(i1, D1 + bαl
′
1l
′
2

t (D2−min(i2, D2))c),

i′2 = i2−min(i2, D2 + bβl
′
1l
′
2

t (D1−min(i1, D1))c), i′′′1 = i1−min(i1, D1 + bαl
′
1l
′
2

t (D2−

1−min(i2, D2 − 1))c), and i′′′2 = i2 −min(i2, D2 − 1 + bβl
′
1l
′
2

t (D1 −min(i1, D1))c).

Proof We prove this theorem by backward induction. We show that if the theorem

holds for time period t+1, it also holds for time period t. We consider three possible

cases in the following.

Case 1: min(i1, D1 − 1 + bαl
′
1l
′
2

t (D2 − min(i2, D2))c) = min(i1, D1 + bαl
′
1l
′
2

t (D2 −

min(i2, D2))c) and min(i2, D2 + bβl
′
1l
′
2

t (D1 − 1 − min(i1, D1 − 1))c) = min(i2, D2 +

bβl
′
1l
′
2

t (D1 −min(i1, D1))c), then,

p
l′1
1 min(i1, D1 − 1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c)

+p
l′2
2 min(i2, D2 + bβl

′
1l
′
2

t (D1 − 1−min(i1, D1 − 1))c)

+Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2)

= p
l′1
1 min(i1, D1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c)

+p
l′2
2 min(i2, D2 + bβl

′
1l
′
2

t (D1 −min(i1, D1))c)

+Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2) (note: i′′1 = i′1, i

′′
2 = i′2)

Case 2: min(i1, D1 − 1 + bαl
′
1l
′
2

t (D2 − min(i2, D2))c) = min(i1, D1 + bαl
′
1l
′
2

t (D2 −

min(i2, D2))c)−1 and min(i2, D2 +bβl
′
1l
′
2

t (D1−1−min(i1, D1−1))c) = min(i2, D2 +

bβl
′
1l
′
2

t (D1 −min(i1, D1))c), then,

p
l′1
1 min(i1, D1 − 1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c)

+p
l′2
2 min(i2, D2 + bβl

′
1l
′
2

t (D1 − 1−min(i1, D1 − 1))c)

+Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2)

≤ p
l′1
1 min(i1, D1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c)− pl
′
1

1

+p
l′2
2 min(i2, D2 + bβl

′
1l
′
2

t (D1 −min(i1, D1))c)

+Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2) + p

l′1
1

(by Lemma 5 and the fact that i′′1 = i′1 + 1, i′′2 = i′2)

= p
l′1
1 min(i1, D1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c)
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+p
l′2
2 min(i2, D2 + bβl

′
1l
′
2

t (D1 −min(i1, D1))c)

+Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2)

Case 3: min(i1, D1 − 1 + bαl
′
1l
′
2

t (D2 − min(i2, D2))c) = min(i1, D1 + bαl
′
1l
′
2

t (D2 −

min(i2, D2))c) and min(i2, D2 + bβl
′
1l
′
2

t (D1 − 1 − min(i1, D1 − 1))c) = min(i2, D2 +

bβl
′
1l
′
2

t (D1 −min(i1, D1))c)− 1, then,

p
l′1
1 min(i1, D1 − 1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c)

+p
l′2
2 min(i2, D2 + bβl

′
1l
′
2

t (D1 − 1−min(i1, D1 − 1))c)

+Vt+1(i′′1, i
′′
2, l
′
1, l
′
2, r
′
1, r
′
2)

≤ p
l′1
1 min(i1, D1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c)

+p
l′2
2 min(i2, D2 + bβl

′
1l
′
2

t (D1 −min(i1, D1))c)− pl
′
2

2

+Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2) + p

l′2
2

(by Lemma 5 and the fact that i′′1 = i′1, i
′′
2 = i′2 + 1)

= p
l′1
1 min(i1, D1 + bαl

′
1l
′
2

t (D2 −min(i2, D2))c)

+p
l′2
2 min(i2, D2 + bβl

′
1l
′
2

t (D1 −min(i1, D1))c)

+Vt+1(i′1, i
′
2, l
′
1, l
′
2, r
′
1, r
′
2)

This completes the proof for (D.21). We can prove (D.22) similarly.
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