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1 IntroductionWe present an improved version of the SFS algorithm suggested recently by Zheng and Chel-lappa [13]. A signi�cantly improved azimuth angle estimator of the illuminant is demon-strated. Some of the reconstruction errors obtained by the authors of [13] have been elimi-nated by adopting a more sophisticated hierarchical implementation of the SFS algorithm.Essentially our algorithm is the same as that in [13] but by changing boundary conditionsand preserving the reectance map between resolution layers during reconstruction we havebeen able to remove warping and rotation errors in image reconstructions. The notationused in this report is similar to that used in [13].To estimate the illuminant direction from the images we �rst need a model relating imageintensity to illuminant source. In computer vision research, one of the most commonly usedimage formation models is the Lambertian model [6, 7, 8]. Assuming orthographic projectionwith the z axis parallel to the optical axis of the camera and the positive z direction pointingtoward the camera, the Lambertian model can be written asR(p; q) = � cos �i + �0= �( ~N:~L) + �0= �(cos(�� � ) sin� sin � + cos� cos ) + �0 (1)where � is the composite albedo, which includes factors such as strength of the illuminationand reectivity of the surface. �i, the incidence angle, is the angle between the surface normaland the direction toward the light source. ~L = (cos � sin ; sin � sin ; cos ) is the unit vectorin the illuminant direction where � , called the azimuth of the illuminant, is the angle between~L and the x-z plane. , the slant angle, is the angle between ~L and the positive z axis (�2 �is the elevation of the illuminant). ~N = (Nx; Ny; Nz) = (cos� sin �; sin� sin�; cos�) is thesurface normal at position (x; y; z(x; y)), where � = �(x; y) and � = �(x; y) are the azimuthand slant angles of the surface normal at (x; y; z(x; y)). �0 is the bias brightness, whichdepends on background illumination, digitizer calibration, and so on.Under the assumptions of a Lambertian surface, point light source, and uniform albedo,the reectance map is determined by the parameters �; ; �; and �0.1



The organization of this report is as follows: Section 2 presents the improved estimationof the azimuth angle of illuminant. We have used a di�erent set of boundary conditions forthe edge and corner pixels of an image for this azimuth estimation. A good improvementover the azimuth estimates of [13] has been achieved for the same images used in [13].Section 3 presents the changes that we incorporated into the SFS algorithm and itsmodi�ed implementation. The SFS algorithm essentially remains the same except that nowthe reectance map is preserved in transition across the pyramidal layers. Also the boundaryconditions have been changed while reconstructing the height map.In Section 4, we present typical examples illustrating the improved results obtained. We�rst show some simple geometric shaded objects and SFS results on these. A cylinder andhyperbola are used because some doubts were expressed in [13] about the implementationof SFS on such objects. Then we show how warping and rotation errors in reconstructionof the Mozart image can be removed using our modi�ed algorithm. Results for some othermultiple-object and occluded images are also shown. Conclusions are given in Section 5.2 Improved Estimation of Azimuth Angle of IlluminantThe image model that has been used is that of Section II(A) of [13]. We have concentratedon the local voting method [13] because it has given more consistent results than the othercontour-based method [13] for a variety of images. For completeness we shall �rst describethe local voting estimator and then describe the changes made to the estimation techniquethat have led to signi�cantly improved estimation.We start with the assumption that for any image point (x0; y0; z(x0; y0)), its neighbors canbe approximated by a spherical patch [13] with (a(x0; y0); b(x0; y0); c(x0; y0)) being the centerof the sphere, and r(x0; y0) the radius of the sphere (here the sphere is a local approximation;the radius and center of the sphere depend on the local surface shape); � and � are the tiltand slant angles of the surface normal.For a small increment along the direction ~s = (�x; �y), the corresponding increment in(�; �) is (��s; ��s) and the following relations hold:�x = �r sin� sin���s + r cos� cos���s (2)2



�y = �r sin� cos���s + r cos � sin���s (3)sin���s = � x�ar : �xr � y�br : �yrq1� (x�ar )2 � (y�br )2= sin � cos��x� sin� sin��yr cos � (4)On the other hand, from the image model (1), an increment in intensity due to (��s; ��s) is�Is = �[� sin(�� � ) sin� sin ��s + cos(�� � ) cos � sin ��s � sin� cos ��s]: (5)Substitution of (3{5) into (6) leads to�Is = �[(cos� sin� sin ��s + sin� cos� sin ��s) sin � +(� sin� sin � sin ��s + cos� cos� sin ��s) cos � �sin � cos��x+ sin � sin��yr cos� cos ]= �r (�x; �y)264 sin  cos � � cos  tan� cos�sin  sin � � cos  tan� sin� 375Let ~s take di�erent directions yielding d~I = B ~Xwhere d~I = 2666666664 �I1�I2...�IN 3777777775 ; B = 2666666664 �x1 �y1�x2 �y2... ...�x4 �y4 3777777775 ;~X = 264 ~xL~yL 375 = �r 264 sin  cos � � cos  tan � cos�sin  sin � � cos  tan � sin� 375 ;N is the number of measured directions for ~s, and ~xL and ~yL are the x and y components ofthe local estimate of the azimuth of the illuminant. ~X can be solved using~X = (BtB)�1Btd~I:3



We have chosen B for eight directions (i.e. N = 8) around any pixel position in the imagein such a way that B is given byB = 0BB@ 1 p22 0 �p22 �1 �p22 0 p220 p22 1 p22 0 �p22 �1 �p22 1CCAtThe new boundary conditions that we have used for computing B are explained in Fig-ure 1. For any pixel (marked by an X) on the boundary its eight neighbors (marked bycircles) for computing B are shown in Figure 1. For the four corner pixels the eight neigh-boring pixels are also shown in Figure 1. Therefore the equations for the eight pixels to beused are given asI(i; j) = I(i; j)� 2[I(i+ 1; j)� I(i; j + 1)� I(i+ 1; j + 1)]� I(i+ 2; j)� I(i; j + 2) (6)It is shown in [13] that Ex;y ( ~xL~x2L + ~x2L) = cos �:F () (7)and Ex;y ( ~yL~x2L + ~x2L) = sin �:F () (8)whereF () = Z
� p(�)d� 12� Z ��� sin  cos� � cos  sin� cos�qsin2cos2� + cos2sin2� � 12 sin 2 sin 2� cos�d�: (9)� = arctan0@Ex;yf ~yL~x2L+~x2L gEx;yf ~xL~x2L+~x2L g1A : (10)We have chosen such boundary conditions because the boundary pixels are more likelyto be correlated along the boundary rather than inside the image. The same logic is appliedto the corner pixels where the weights are higher for boundary pixels rather than for insidepixels. By incorporating such a change in the azimuth estimator in [13] we obtained verygood estimates of the azimuth. For the Mozart image the � obtained in [13] for a groundtruth of � = 45 degrees was 31.03 degrees whereas our estimate is 44.67823 degrees. We4



have successfully tested this estimation scheme on a number of images and also on a numberof azimuth angles of the Mozart image.It should be pointed out that when doing local estimation, points where d~I = ~0 have beenignored. Physically, these points correspond to a planar patch, where no estimation of theazimuth of the illuminant can be made based on local intensity information. Theoretically,errors are expected in this method due to the local spherical approximation. An extremeexample is the case of a cylindrical surface, which cannot be approximated by sphericalpatches. For a cylindrical surface, the gradient of the image intensity, and hence the esti-mated azimuth of the illuminant, is always toward the direction perpendicular to the axisof the cylinder. However, as the local estimates on symmetric parts of a cylinder will canceleach other, the net error caused by a cylindrical patch is usually negligible [13]. This wasa doubt expressed by Zheng and Chellappa [13] which we have veri�ed by our algorithm tohold true. It will be shown in the next section that the local estimates do indeed cancel outand the algorithm is robust to reconstruction of a cylinder.3 Modi�ed SFS AlgorithmThe formulation of the algorithm remains the same as that in Section III(A) of [13]. Wehave modi�ed the hierarchical implementation of the algorithm as described below. In theimplementation, the image resolution is reduced by a factor of 2 between adjacent resolutionlayers. The image size for the lowest resolution layer is 32. Let the variables with a tilde (~)stand for the shape descriptors of the higher resolution layer while the variables without atilde denote those of the lower resolution layer. The transition rules are the same as in [13].For the implementation of the algorithm the more sophisticated pyramidal approach dueto Peleg and Ron [14] has been used. A brief description of the technique is made here. Foreach image pixel the tangent of the elevation angle of the source, de�ned as T in [14], iscomputed as T = qp2 + q2 = tan(� ~Ns) (11)5



Given T , R [14] is computed from the image intensities asR = s 11 + T 2 (12)Based on the value T as computed in (12), the suggested algorithm for building the graylevel pyramid for SFS purposes is as follows [14]:1. T0 is calculated from the given input image I0 using (12).2. A Gaussian pyramid T0; : : : ; Tn�1 is built, whose base is T0. The pyramid has N levels,chosen such that Tn�1 will have signi�cant shape information.3. Using (12) the gray level image Ri is calculated for every pyramid level Ti. The imagesRi constitute a gray level pyramid, which is the estimate of the reduced resolutionsurface reectance.4. The multi-resolution SFS algorithm is performed using the Ri pyramid. First, (pn�1,qn�1) are computed from Rn�1 using the SFS algorithm. The obtained low resolutionderivatives (pi; qi) are then expanded into (pi�1; qi�1) to be used as initial guesses forthe computation of the (p; q) derivatives at level i� 1 of the pyramid. The process isrepeated until the (p; q) derivatives are computed for full resolution images.4 Experimental Results4.1 Azimuth Angle EstimatesTo illustrate the utility of our illuminant direction and albedo estimators, we �rst tested thealgorithm on a number of synthetic images. The tested images include 1) ellipses with ratioof major axis (parallel to the x axis) to minor axis equal to 2, 2) hyperbolas, 3) cylinders,and 4) a Mannequin image. For each case (except the Mannequin), the test images weregenerated using � = 200, �0 and various combinations of � and . Figure 2 shows typicaltest images synthesized using � = 45�,  = 45�, � = 200, and �0 = 0.Figures 3, 4, and 5 show the estimates of the azimuth angle for the hyperbola, cylinder,and Mannequin images respectively. The plots in these three �gures are presented in the6



following order: (a) Estimation of � for images generated with  = 45�, � = 200, �0 = 0, and� = 0�, 15�, 30�; : : : ; 345�. (b) Estimation of � for images generated with � = 45, � = 200,�0 = 0, and  = 0�, 15�, 30�; : : : ; 345�.As evident from these three �gures the azimuth angle has been estimated to a high degreeof accuracy for all the test images. It is a signi�cant improvement over the correspondingresults in [13]. The results for azimuth angle estimation for all images are summarized inTable 1. Table 1: Azimuth Angle Estimates for Various ImagesImage �  � (estimated)Sphere 48� 90� 44:64�Ellipse 48� 90� 44:64�Ellipse 48� 90� 44:64�Parabola 48� 90� 44:64�Hyperbola 48� 90� 44:64�Cylinder 48� 90� 44:64�Sphere 48� 45� 44:64�Ellipse 48� 45� 44:64�Ellipse 48� 45� 44:64�Parabola 48� 45� 44:64�Hyperbola 48� 45� 44:64�Cylinder 48� 45� 44:64�Mozart 45� 45� 44:68�Mozart 30� 45� 29:46�Mozart 15� 45� 13:78�Mannequin 45� 45� 44:58�Mannequin 30� 45� 28:47�Mannequin 15� 45� 13:74�4.2 SFS ExperimentsWe tested our SFS algorithm on a number of images. In all the experiments we let � = 1 andNmax for the highest resolution layer be 500. The iterations start from (p; q; Z) = (0; 0; 0)and the partial derivatives of the reectance map, Rp and Rq, are computed numerically.All the images presented in our examples are 256 � 256. The 3-D plots of height maps arereduced to 64 � 64 for clarity of presentation.7



Figure 8 shows the comparison of the SFS results obtained here and in [13] (see Fig-ure 5(j){(l) of [13]) on the Mozart image. Warping errors are evident in the reconstructionsof [13], especially in Figure 5(j) which is the reconstructed q map. Their q map and oursare shown in Figure 8(a) and (b) respectively. It is clear that by preserving the reectancemap and modifying boundary conditions we have been able to remove warping errors inreconstruction. More evidence of this for other real images is in the following paragraphs.Also note that the curls in the hair of Mozart are more pronounced in our map.Figure 9 shows the SFS results on the synthetic Mannequin image. Figure 9(a) is theinput image whose parameters have been estimated to be � = 44:68�,  = 45�, � = 250, and�0 = 0. Figure 9(b) shows the image reconstructed by the SFS algorithm. A 3-D plot of (b)is shown in Figure 9(c). Figures 9(d) and (e) compare the p map of the ground truth and thatobtained by SFS. Figures 9(f) and (g) compare the q map of the the ground truth and thatobtained by SFS. A comparison of the reconstructed (Z; p; q) with the ground truth showsthat the errors in the background region and a rotation distortion present in results of [13](refer to Figures 5(e,h,j,l,n) of [13]) have been removed. We attribute this to the preservingof the reectance map between resolution layers and the change in boundary conditions.Figure 10(a) shows the input Lenna-2 image. The reectance map parameters estimatedby our algorithm are � = 7:74�,  = 59:52�, � = 192:01, and �0 = 3. Figure 10(b) is theheight map obtained by the SFS algorithm. Figure 10(c) shows the image reconstructed fromthe estimated parameters. Figure 10(d) shows a 3-D mesh plot of the height map obtainedby SFS. Figure 10(e) and (f) show the p and q maps obtained from SFS. Figures 10(g){(i)show images synthesized from the reconstructed (p; q) maps using the parameters  = 59:52�,� = 192:01, and �0 = 3 and � equal to 97:74�, 187:74�, 277:76� respectively, correspondingto illumination from the direction opposite or orthogonal to the estimated direction for theinput image. It can be seen from Figures 10(b){(e) that the shapes of the face and shoulderare recovered correctly and that features such as nose, lips, cheeks, chin, etc., are easilyidenti�ed. The images synthesized from the SFS result using di�erent illuminant directionsare consistent.Figure 11 shows another SFS experiment performed on multiply-occluded pepper images.Figure 11(a) shows the original image and Figure 11(b) shows the contour of the original8



image. Figure 11(c) shows the height map obtained from SFS. The SFS estimated parameterswere � = 20:82�,  = 58:02�, � = 225:78, and �0 = 0. The image reconstructed by the SFSalgorithm is shown in Figure 11(d) and its corresponding contour in Figure 11(e). Forclarity the 3-D mesh plot (Figure 11(f)) of the reconstructed image is shown on a blow-up.As seen the contour maps are very similar and the mesh plot follows the contour of themultiple peppers quite well. An extensive comparison of 200 contour levels in each map wasperformed to determine whether the original and the reconstruction matched. They di�eronly in two levels; hence we conclude that the reconstruction of the height is accurate.5 ConclusionA more reliable and robust shape from shading algorithm based on the SFS algorithm givenby Zheng and Chellappa has been presented. Boundary conditions have been modi�ed intheir algorithm and a more sophisticated hierarchical implementation of the algorithm hasbeen implemented. As a result very good estimates of the azimuth angle of the illuminanthave been obtained for a number of test images. Reconstruction errors around the boundaryand rotational errors have been removed. A number of reconstructions have been performedfor various images to verify the removal of these errors in reconstruction.AcknowledgementOne of the authors (H.S.) is thankful to Deepak Kataria and Nanda Kumar of the De-partment of Computer Science, University of Maryland, for their help in the generation ofsynthetic shaded images and many helpful discussions. The Mannequin image was providedby Dr. Leclerc of the Arti�cial Intelligence Center, SRI.
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Figure 1: Boundary and corner pixel neighbors for computing B.10



Figure 2: Typical synthetic images used in estimating illuminant direction. The imagesshown are synthesized using the Lambertian reectance map model with parameters � = 45�, = 45�, � = 200, and �0 = 0.
11
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HyperbolaFigure 3: Estimation of azimuth angle for images of a hyperbola. (a) Estimation of �for images generated with  = 45�, � = 200, �0 = 0, and � = 0, 15�, 30�; : : : ; 345�.(b) Estimation of � for images generated with � = 45�, � = 200, �0 = 0, and  = 0, 15�,30�; : : : ; 90�. 12
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CylinderFigure 4: Estimation of azimuth angle for images of a cylinder. (a) Estimation of � for imagesgenerated with  = 45�, � = 200, �0 = 0, and � = 0, 15�, 30�; : : : ; 345�. (b) Estimation of �for images generated with � = 45�, � = 200, �0 = 0, and  = 0, 15�, 30�; : : : ; 90�.13
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(a) (b)
(c) (d)Figure 6: SFS experiment on the hyperbola image. (a) The input image. (b) True heightmap of image in (a). (c) The image synthesized with the SFS result. (d) SFS reconstructedheight map.
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(a) (b)
(c) (d)Figure 7: SFS experiment on the cylinder image. (a) The input image. (b) True heightmap of image in (a). (c) The image synthesized with the SFS result. (d) SFS reconstructedheight map. 16



(a) (b)Figure 8: Comparison of our results on the Mozart image to that of Zheng and Chellappa [13].(a) The SFS reconstructed q map by Zheng and Chellappa [13]. (b) The SFS reconstructedq obtained by us.
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(a) (b) (c)
(d) (e) (f)

(g)Figure 9: SFS experiment on the Mannequin image. (a) The input image. (b) The imagegenerated from the SFS result using the estimated reectance map parameters as the inputimage. (c) A 3-D plot of the reconstructed height map. (d) True Zx map. (e) The SFSreconstructed p map. (f) True Zy map. (g) The SFS reconstructed q map.18



(h) (i)
(j) (k)Figure 9: SFS experiment on the Mannequin image (contd.) (h) The image synthesized fromthe true height with � = 135�. (i) The image synthesized from the SFS result with � = 135�.(j) The image synthesized from the true height with � = 225�. (k) The image synthesizedfrom the SFS result with with � = 225�.

19



(a) (b) (c)
(d)Figure 10: SFS experiment on the Lenna-2 image. (a) The input image. (b) The height mapZ obtained by the SFS algorithm. (c) The image synthesized from the reconstructed heightmap with estimated parameters. (d) 3-D mesh plot of the height map obtained throughSFS. 20



(e) (f)
(g) (h)

(i)Figure 10: SFS experiment on Lenna-2 image (contd.). (e) The SFS reconstructed p map.(f) The SFS reconstructed q map. (g), (h) and (i) are images synthesized from the recon-structed (p; q) maps using � equal to 97:74�, 187:74�, and 277:26�, respectively, correspondingto illumination from the directions opposite or orthogonal to the estimated direction for theinput image. 21



(a) 10

20

30

40

50

60

10 20 30 40 50 60(b) (c)
(d) 10

20

30

40

50

60

10 20 30 40 50 60(e)Figure 11: SFS experiment on the peppers image. (a) The input image. (b) Contour mapof the image in (a). (c) The height map obtained from SFS. (d) The image synthesized withthe SFS result. (e) SFS reconstructed contour map.
22



(f)Figure 11: SFS experiment on the peppers image (contd.). (f) 3-D mesh plot of the heightmap of the reconstructed image.
23
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