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Abstract

We propose an improved shape from shading (SFS) algorithm which is an extension of the
recently published algorithm by Zheng and Chellappa [13]. A markedly more accurate esti-
mate of the azimuth of the illumination source is presented. Depth reconstruction has been

improved upon by using a new set of boundary conditions and adapting a more sophisticated
technique for hierarchical implementation of the SF'S algorithm. Errors at the boundaries of
images and in rotation of the reconstructed images have been corrected. Typical results on

synthetic and real images are presented.
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1 Introduction

We present an improved version of the SF'S algorithm suggested recently by Zheng and Chel-
lappa [13]. A significantly improved azimuth angle estimator of the illuminant is demon-
strated. Some of the reconstruction errors obtained by the authors of [13] have been elimi-
nated by adopting a more sophisticated hierarchical implementation of the SFS algorithm.
Essentially our algorithm is the same as that in [13] but by changing boundary conditions
and preserving the reflectance map between resolution layers during reconstruction we have
been able to remove warping and rotation errors in image reconstructions. The notation

used in this report is similar to that used in [13].

To estimate the illuminant direction from the images we first need a model relating image
intensity to illuminant source. In computer vision research, one of the most commonly used
image formation models is the Lambertian model [6, 7, 8]. Assuming orthographic projection
with the z axis parallel to the optical axis of the camera and the positive z direction pointing

toward the camera, the Lambertian model can be written as

R(p,q) = ncosb;+ oo
= n(ﬁ.[_:)—l—ao

= n(cos(a — 7)sin Fsin T + cos B cosv) + oo (1)

where 7 is the composite albedo, which includes factors such as strength of the illumination
and reflectivity of the surface. 8;, the incidence angle, is the angle between the surface normal
and the direction toward the light source. L= (cos T sin, sin 7 sin 7, cos ) is the unit vector
in the illuminant direction where 7, called the azimuth of the illuminant, is the angle between

T _

L and the z-z plane. ~, the slant angle, is the angle between L and the positive z axis (5 —~
is the elevation of the illuminant). N = (Ng, Ny, N.) = (cos asin 3, sinasin 3, cos 3) is the
surface normal at position (z,y,z(x,y)), where a = a(x,y) and § = B(x,y) are the azimuth

and slant angles of the surface normal at (x,y,z(x,y)). oo is the bias brightness, which

depends on background illumination, digitizer calibration, and so on.

Under the assumptions of a Lambertian surface, point light source, and uniform albedo,

the reflectance map is determined by the parameters 7,v, 7, and oy.
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The organization of this report is as follows: Section 2 presents the improved estimation
of the azimuth angle of illuminant. We have used a different set of boundary conditions for
the edge and corner pixels of an image for this azimuth estimation. A good improvement

over the azimuth estimates of [13] has been achieved for the same images used in [13].

Section 3 presents the changes that we incorporated into the SFS algorithm and its
modified implementation. The SFS algorithm essentially remains the same except that now
the reflectance map is preserved in transition across the pyramidal layers. Also the boundary

conditions have been changed while reconstructing the height map.

In Section 4, we present typical examples illustrating the improved results obtained. We
first show some simple geometric shaded objects and SFS results on these. A cylinder and
hyperbola are used because some doubts were expressed in [13] about the implementation
of SFS on such objects. Then we show how warping and rotation errors in reconstruction
of the Mozart image can be removed using our modified algorithm. Results for some other

multiple-object and occluded images are also shown. Conclusions are given in Section 5.

2 Improved Estimation of Azimuth Angle of Illuminant

The image model that has been used is that of Section II(A) of [13]. We have concentrated
on the local voting method [13] because it has given more consistent results than the other
contour-based method [13] for a variety of images. For completeness we shall first describe
the local voting estimator and then describe the changes made to the estimation technique

that have led to significantly improved estimation.

We start with the assumption that for any image point (o, yo, (%0, ¥0)), its neighbors can
be approximated by a spherical patch [13] with (a(xo, y0), b(x0, ¥o), ¢(x0, yo)) being the center
of the sphere, and r(xq, yo) the radius of the sphere (here the sphere is a local approximation;
the radius and center of the sphere depend on the local surface shape); a and 3 are the tilt

and slant angles of the surface normal.

For a small increment along the direction § = (éx,6y), the corresponding increment in

(o, B) is (bavs, 635) and the following relations hold:

dx = —rsinfsinada, + 1 cos 3 cos adf3, (2)
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by = —rsinfcosada, + rcos 3sin ad s (3)
sin 363, = —

Vi- (=) = ()
sin 3 cos adx — sin 3 sin ady

= (4)

r cos 3

On the other hand, from the image model (1), an increment in intensity due to (das, 63;) is
61 = n[—sin(a — 7)sin B sinyda, + cos(av — 7) cos Fsin v 35 — sin 3 cos 76 Fs). (5)
Substitution of (3-5) into (6) leads to

oI, = nl(cosasin Fsinyda, + sin acos Fsinv6 ;) sin T +

(— sin asin Bsin yda; + cos v cos Fsin ¥ 35) cos T —

sin 3 cos adx + sin 3 sin ady

rcos [3 cos 7]

siny cos T — cosy tan 3 cos «

=3

(6x, oy)

sin~sin 7 — cosy tan 3 sin «

Let § take different directions yielding

dl = BX
where
1, | [ Say Sy |
e 61, | B Oxy Oy 7
_5]N_ _5:1;4 (5y4_
T n | sinycosT — cosytan 3 cos

sin~y sin 7 — cos~y tan 3 sin «

N is the number of measured directions for 3, and %, and gy, are the 2 and y components of

the local estimate of the azimuth of the illuminant. X can be solved using

X = (B'B)"'BYI.
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We have chosen B for eight directions (i.e. N = 8) around any pixel position in the image

in such a way that B is given by

o 120 2 1 2 g 2
021 2 o 2 ]

The new boundary conditions that we have used for computing B are explained in Fig-
ure 1. For any pixel (marked by an X) on the boundary its eight neighbors (marked by
circles) for computing B are shown in Figure 1. For the four corner pixels the eight neigh-
boring pixels are also shown in Figure 1. Therefore the equations for the eight pixels to be

used are given as

It is shown in [13] that

Ty + 17,
and
YL .
EIy{N2 n 2} =sin7.F (%) (8)
L L
where

sin~y cos [ — cos ~y sin [3 cos «

re) = [ s [ y: da. (9

in*ycos?f3 + cosZysin® 3 — % sin 2 sin 23 cos

E. {#%}
T = arctan (&) ) (10)

Ew,y{f;Tszi}

We have chosen such boundary conditions because the boundary pixels are more likely
to be correlated along the boundary rather than inside the image. The same logic is applied
to the corner pixels where the weights are higher for boundary pixels rather than for inside
pixels. By incorporating such a change in the azimuth estimator in [13] we obtained very
good estimates of the azimuth. For the Mozart image the 7 obtained in [13] for a ground
truth of 7 = 45 degrees was 31.03 degrees whereas our estimate is 44.67823 degrees. We
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have successtully tested this estimation scheme on a number of images and also on a number

of azimuth angles of the Mozart image.

It should be pointed out that when doing local estimation, points where dI = 0 have been
ignored. Physically, these points correspond to a planar patch, where no estimation of the
azimuth of the illuminant can be made based on local intensity information. Theoretically,
errors are expected in this method due to the local spherical approximation. An extreme
example is the case of a cylindrical surface, which cannot be approximated by spherical
patches. For a cylindrical surface, the gradient of the image intensity, and hence the esti-
mated azimuth of the illuminant, is always toward the direction perpendicular to the axis
of the cylinder. However, as the local estimates on symmetric parts of a cylinder will cancel
each other, the net error caused by a cylindrical patch is usually negligible [13]. This was
a doubt expressed by Zheng and Chellappa [13] which we have verified by our algorithm to
hold true. It will be shown in the next section that the local estimates do indeed cancel out

and the algorithm is robust to reconstruction of a cylinder.

3 Modified SFS Algorithm

The formulation of the algorithm remains the same as that in Section III(A) of [13]. We
have modified the hierarchical implementation of the algorithm as described below. In the
implementation, the image resolution is reduced by a factor of 2 between adjacent resolution
layers. The image size for the lowest resolution layer is 32. Let the variables with a tilde (7)
stand for the shape descriptors of the higher resolution layer while the variables without a

tilde denote those of the lower resolution layer. The transition rules are the same as in [13].

For the implementation of the algorithm the more sophisticated pyramidal approach due
to Peleg and Ron [14] has been used. A brief description of the technique is made here. For
each image pixel the tangent of the elevation angle of the source, defined as T in [14], is

computed as

T = /p*+ ¢* :tan(oz]\?s) (11)



Given T', R [14] is computed from the image intensities as

R:,/HlT2 (12)

Based on the value T as computed in (12), the suggested algorithm for building the gray

level pyramid for SF'S purposes is as follows [14]:

1. Tg is calculated from the given input image I, using (12).

2. A Gaussian pyramid Ty, ..., T, _1 is built, whose base is Tj. The pyramid has N levels,

chosen such that 7T, _; will have significant shape information.

3. Using (12) the gray level image R; is calculated for every pyramid level T;. The images
R; constitute a gray level pyramid, which is the estimate of the reduced resolution

surface reflectance.

4. The multi-resolution SFS algorithm is performed using the R; pyramid. First, (p,_1,
¢n-1) are computed from R,_; using the SFS algorithm. The obtained low resolution
derivatives (p;, ¢;) are then expanded into (p;—1,¢i—1) to be used as initial guesses for
the computation of the (p,q) derivatives at level ¢ — 1 of the pyramid. The process is

repeated until the (p, q) derivatives are computed for full resolution images.

4 Experimental Results

4.1 Azimuth Angle Estimates

To illustrate the utility of our illuminant direction and albedo estimators, we first tested the
algorithm on a number of synthetic images. The tested images include 1) ellipses with ratio
of major axis (parallel to the x axis) to minor axis equal to 2, 2) hyperbolas, 3) cylinders,
and 4) a Mannequin image. For each case (except the Mannequin), the test images were
generated using n = 200, oy and various combinations of 7 and ~. Figure 2 shows typical
test images synthesized using 7 = 45°, v = 45°, n = 200, and oo = 0.

Figures 3, 4, and 5 show the estimates of the azimuth angle for the hyperbola, cylinder,

and Mannequin images respectively. The plots in these three figures are presented in the
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following order: (a) Estimation of 7 for images generated with v = 45°, n = 200, oy = 0, and
T =0° 15° 30°,..., 345°. (b) Estimation of 7 for images generated with 7 = 45, n = 200,
oo =0, and v = 0°, 15°, 30°,..., 345°.

As evident from these three figures the azimuth angle has been estimated to a high degree
of accuracy for all the test images. It is a significant improvement over the corresponding

results in [13]. The results for azimuth angle estimation for all images are summarized in

Table 1.

Table 1: Azimuth Angle Estimates for Various Images

Image 7 | v | 7(estimated)
Sphere 48° 1 90° 44.64°
Ellipse 48° 1 90° 44.64°
Ellipse 48° 1 90° 44.64°
Parabola | 48° | 90° 44.64°
Hyperbola | 48° | 90° 44.64°
Cylinder | 48° | 90° 44.64°
Sphere 48° | 45° 44.64°
Ellipse 48° | 45° 44.64°
Ellipse 48° | 45° 44.64°
Parabola | 48° | 45° 44.64°
Hyperbola | 48° | 45° 44.64°
Cylinder | 48° | 45° 44.64°
Mozart 45° | 45° 44.68°
Mozart 30° | 45° 29.46°
Mozart 15° | 45° 13.78°
Mannequin | 45° | 45° 44.58°
Mannequin | 30° | 45° 28.47°
Mannequin | 15° | 45° 13.74°

4.2 SFS Experiments

We tested our SF'S algorithm on a number of images. In all the experiments we let 4 = 1 and
Nmax for the highest resolution layer be 500. The iterations start from (p,¢,7) = (0,0,0)
and the partial derivatives of the reflectance map, R, and R,, are computed numerically.
All the images presented in our examples are 256 x 256. The 3-D plots of height maps are
reduced to 64 x 64 for clarity of presentation.
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Figure 8 shows the comparison of the SFS results obtained here and in [13] (see Fig-
ure 5(j)—(1) of [13]) on the Mozart image. Warping errors are evident in the reconstructions
of [13], especially in Figure 5(j) which is the reconstructed ¢ map. Their ¢ map and ours
are shown in Figure 8(a) and (b) respectively. It is clear that by preserving the reflectance
map and modifying boundary conditions we have been able to remove warping errors in
reconstruction. More evidence of this for other real images is in the following paragraphs.

Also note that the curls in the hair of Mozart are more pronounced in our map.

Figure 9 shows the SES results on the synthetic Mannequin image. Figure 9(a) is the
input image whose parameters have been estimated to be 7 = 44.68°, v = 45°, n = 250, and
oo = 0. Figure 9(b) shows the image reconstructed by the SFS algorithm. A 3-D plot of (b)
is shown in Figure 9(c). Figures 9(d) and (e) compare the p map of the ground truth and that
obtained by SFS. Figures 9(f) and (g) compare the ¢ map of the the ground truth and that
obtained by SFS. A comparison of the reconstructed (7, p,q) with the ground truth shows
that the errors in the background region and a rotation distortion present in results of [13]
(refer to Figures 5(eh.j,l,n) of [13]) have been removed. We attribute this to the preserving

of the reflectance map between resolution layers and the change in boundary conditions.

Figure 10(a) shows the input Lenna-2 image. The reflectance map parameters estimated
by our algorithm are 7 = 7.74°, v = 59.52°, n = 192.01, and oo = 3. Figure 10(b) is the
height map obtained by the SFS algorithm. Figure 10(c) shows the image reconstructed from
the estimated parameters. Figure 10(d) shows a 3-D mesh plot of the height map obtained
by SFS. Figure 10(e) and (f) show the p and ¢ maps obtained from SFS. Figures 10(g)—(i)
show images synthesized from the reconstructed (p, ¢) maps using the parameters v = 59.52°,
n = 192.01, and 09 = 3 and 7 equal to 97.74°, 187.74°, 277.76° respectively, corresponding
to illumination from the direction opposite or orthogonal to the estimated direction for the
input image. It can be seen from Figures 10(b)—(e) that the shapes of the face and shoulder
are recovered correctly and that features such as nose, lips, cheeks, chin, etc., are easily
identified. The images synthesized from the SF'S result using different illuminant directions

are consistent.

Figure 11 shows another SFS experiment performed on multiply-occluded pepper images.
Figure 11(a) shows the original image and Figure 11(b) shows the contour of the original
8



image. Figure 11(c) shows the height map obtained from SFS. The SFS estimated parameters
were 7 = 20.82°, v = 58.02°, n = 225.78, and o9 = 0. The image reconstructed by the SFS
algorithm is shown in Figure 11(d) and its corresponding contour in Figure 11(e). For
clarity the 3-D mesh plot (Figure 11(f)) of the reconstructed image is shown on a blow-up.
As seen the contour maps are very similar and the mesh plot follows the contour of the
multiple peppers quite well. An extensive comparison of 200 contour levels in each map was
performed to determine whether the original and the reconstruction matched. They differ

only in two levels; hence we conclude that the reconstruction of the height is accurate.

5 Conclusion

A more reliable and robust shape from shading algorithm based on the SFS algorithm given
by Zheng and Chellappa has been presented. Boundary conditions have been modified in
their algorithm and a more sophisticated hierarchical implementation of the algorithm has
been implemented. As a result very good estimates of the azimuth angle of the illuminant
have been obtained for a number of test images. Reconstruction errors around the boundary
and rotational errors have been removed. A number of reconstructions have been performed

for various images to verify the removal of these errors in reconstruction.
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Figure 2: Typical synthetic images used in estimating illuminant direction. The images

shown are synthesized using the Lambertian reflectance map model with parameters 7 = 45°,
~ = 45° n = 200, and o9 = 0.
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Figure 3: Estimation of azimuth angle for images of a hyperbola.
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() (d)

Figure 6: SFS experiment on the hyperbola image. (a) The input image. (b) True height
map of image in (a). (c¢) The image synthesized with the SFS result. (d) SFS reconstructed
height map.



(a)
()

Figure 7: SFS experiment on the cylinder image. (a) The input image. (b) True height
map of image in (a). (c¢) The image synthesized with the SFS result. (d) SFS reconstructed
height map.

(d)
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Figure 8: Comparison of our results on the Mozart image to that of Zheng and Chellappa [13].
(a) The SES reconstructed ¢ map by Zheng and Chellappa [13]. (b) The SFS reconstructed
¢ obtained by us.
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(a) (b)

(d) (e)
(2)

Figure 9: SFS experiment on the Mannequin image. (a) The input image. (b) The image
generated from the SFS result using the estimated reflectance map parameters as the input
image. (c¢) A 3-D plot of the reconstructed height map. (d) True Z, map. (e) The SFS
reconstructed p map. (f) True Z, map. (g) The SFS reconstructed ¢ map.



ol )
e

Figure 9: SFS experiment on the Mannequin image (Contd.) (h) The image synthesized from
the true height with 7 = 135°. (i) The image synthesized from the SFS result with 7 = 135°.
(j) The image synthesized from the true height with 7 = 225°. (k) The image synthesized
from the SF'S result with with 7 = 225°.
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(i)

Figure 10: SFS experiment on Lenna-2 image (contd.). (e) The SFS reconstructed p map.
(f) The SFS reconstructed ¢ map. (g), (h) and (i) are images synthesized from the recon-
structed (p, ¢) maps using 7 equal to 97.74°, 187.74°, and 277.26°, respectively, corresponding
to illumination from the directions opposite or orthogonal to the estimated direction for the
input image.
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Figure 11: SFS experiment on the peppers image. (a) The input image. (b) Contour map
of the image in (a). (¢) The height map obtained from SFS. (d) The image synthesized with
the SFS result. (e) SFS reconstructed contour map.
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f) 3-D mesh plot of the height
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Figure 11: SFS experiment on the peppers image

map of the reconstructed image.
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