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Small sample inference with clustered data has received increased attention recently in 

the methodological literature with several simulation studies being presented on the small 

sample behavior of various methods. There are several different classes of methods that 

can be implemented to account for clustering and disciplinary allegiances are quite rigid: 

for instance, recent reviews have found that 94% of psychology studies use multilevel 

models whereas only 3% of economics studies use multilevel models. In economics, 

fixed effects models are far more popular and in biostatistics there is a tendency to 

employ generalized estimating equations. As a result of these strong disciplinary 

preferences, methodological studies tend to focus only a single class of methods (e.g., 

multilevel models in psychology) while largely ignoring other possible methods. 

Therefore, the performance of small sample methods have been investigated within 



   

 

classes of methods but studies have not expanded investigations across disciplinary 

boundaries to more broadly compare the performance of small sample methods that exist 

in the various classes of methods to accommodate clustered data.  

 Motivated by an applied educational psychology study with a few clusters, in this 

dissertation the various methods to accommodate clustered data and their small sample 

extensions are introduced. Then a wide ranging simulation study is conducted to compare 

12 methods to model clustered data with a small number of clusters. Many small sample 

studies generate data from fairly unrealistic models that only feature a single predictor at 

each level so this study generates data from a more complex model with 8 predictors that 

is more reminiscent of data researchers might have in an applied study.  Few studies have 

also investigated  extremely small numbers of clusters (less than 10) that are quite 

common in many researchers areas where clusters contain many observations and are 

there expensive to recruit (e.g., schools, hospitals) and the simulation study lowers the 

number of clusters well into the single digits. Results show that some methods such as 

fixed effects models and Bayes estimation clearly perform better than others and that 

researchers may benefit from considering methods outside those typically employed in 

their specific discipline.  
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Chapter 1: Background and Justification 

1.1 Methodological Background and Statement of the Problem 

In a variety of applied content areas, observations often have a hierarchical 

structure (Raudenbush & Bryk, 2002). Within educational research contexts, students are 

nested in classrooms, schools, or teachers. In public health and social work research, 

children are nested within families and patients are nested within hospitals.  When data 

are sampled in a multi-stage manner or if observations are naturally clustered, modeling 

data while ignoring the clustering will often result in standard error estimates that are 

underestimated if the outcome variable demonstrates dependence based on the clustering 

(i.e., the intraclass correlation is greater than zero; e.g., McNeish, 2014a). When 

clustering is ignored, the residuals will not be identically and independently distributed, 

violating an assumption of single-level models such as the general linear model. This 

dependence will ultimately result in an inflated Type-I error rate for significance tests of 

regression coefficients (e.g., Lohr, 2014; McNeish, 2014a).  

However, in the statistical literature, methods have been developed for addressing 

data that come from a hierarchical structure and can account for the dependence among 

observations. In education and psychological research, multilevel models (MLMs; a.k.a. 

hierarchical linear models, random effects models, random coefficients models, linear 

mixed models; Laird & Ware, 1982) are the most common way to account for the fact 

that observations are nested within higher level units. In biological and public health 

research, generalized estimating equations are more often used to account for clustered 

observations (Liang & Zeger, 1986) although MLMs are fairly common as well (Burton, 

Gurrin, & Sly, 1998). In econometric research, fixed effects models (FEMs; a.k.a. 
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dummy variable regression) is a popular choice to model clustered data (Murnane & 

Willet, 2010) as are cluster robust errors (Petersen, 2009).  

Although the methods used to accommodate clustered data within fields are not 

strictly homogenous, there is certainly much more diversity of methods to account for 

clustering between fields compared to diversity within fields. For instance, in a review of 

a convenience sample of graduate school course syllabi conducted by McNeish and 

Stapleton (2015), 90% of psychology courses related to clustered data and 80% of 

education courses on the same topic did not mention a method other than MLMs based 

upon information provided in the syllabi. Bauer and Sterba (2011) reported a similar 

pattern where 94% of published psychology studies from 2006 to 2011 accounted for 

clustered data with MLMs. Conversely, a survey of published studies in economics by 

Peterson (2009) found that less than 3% of studies model clustered data with MLMs, 

often preferring FEMs or cluster robust errors.  

A major caveat with nearly all methods to accommodate clustering is that 

estimation procedures are asymptotic meaning that they produce desirable estimates 

when the number of clusters is very large but are less trustworthy with fewer clusters. 

Although this asymptotic property is present for a variety of non-clustered analysis 

methods as well, it is particularly problematic with clustered data because due to 

financial, geographic, or sampling limitations, it is often difficult to include many clusters 

in substantive studies. In educational or developmental research, students are nested 

within schools but it can be rather expensive to include many schools in a study. In public 

health, it may be difficult to include many hospitals in a study because hospitals are fairly 

sparsely distributed and one may have to consider a wide radius to locate 30 or 50 
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hospitals. In research on specialized populations, it may be difficult to locate a sufficient 

number of schools such as schools specifically for blind or deaf students (although if the 

number is very small, taking a census might be possible).   

Other methods such as Bayesian Markov Chain Monte Carlo (MCMC) estimation 

or FEMs do not require the asymptotic sample sizes to yield trustworthy estimates. 

However, these methods still present difficult analytic situations in the presence of small 

samples. Although this will be discussed in more detail in subsequent sections of this 

chapter, briefly, the choice of the prior distribution in Bayesian methods can have 

unintended influences with on parameter estimates with small samples and FEMs limit 

the type and number of predictor variables that can be included in the model because, for 

instance, all the degrees of freedom may be consumed.  

The small sample problem has been widely acknowledged. Proposed methods to 

yield valid inferences with small samples have appeared in the literature over the last 20 

years and their methodological properties have been explored. For instance, several 

simulation studies have addressed the small sample properties of only MLMs (e.g., Bell, 

Morgan, Schoenberger, Kromrey, & Ferron, 2014; Browne & Draper, 2006; Hox, van de 

Schoot, & Matthjisse, 2012; Maas & Hox, 2004; 2005) or only for GEEs (e.g., Angrist & 

Pischke, 2008; Cameron, Gelbach, & Miller, 2008; Emrich & Piedmonte, 1992; 

Gunsolley, Gerschell, & Chinchilli, 1995; Lu, Pressier, Qaqish, Suchindran, Bangdiwala, 

& Wolfson, 2007; Morel, Bokossa, & Neerchal, 2003; Pan & Wall, 2002; Westgate, 

2013). However, relatively few studies have compared small sample methods between 

these classes of methods, and, for those that have, the comparison has only been for a 

select subset of available methods  including a comparison of the Kenward-Roger 
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correction with the Morel-Bokossa-Neerchal correction (McNeish & Harring, 2015); the 

Kauermann-Carroll correction and the Mancl-DeRouen correction (Lu et al., 2007); 

Bayesian MCMC and the Kenward-Roger correction (Baldwin & Fellingham, 2013), and 

MCMC to maximum likelihood (ML) estimation and restricted ML estimation for MLMs 

(Browne & Draper, 2006).  

The primary goal of this dissertation is to more widely compare the various 

options for accounting for clustered data with a small number of clusters. Although 

research exists that draws comparisons within classes of methods, given the rather strict 

preference for certain methods in certain disciplines, a particular method or estimation 

scheme from the broader spectrum of methods for modeling clustered data may provide 

superior results compared to methods that are traditionally implemented within specific 

disciplines. As a recent example of such a finding, McNeish (2014b) recently showed 

that GEEs are far more capable of estimating models for clustered data compared to 

MLMs when data were sparse (i.e., there are few observations within each cluster). GEEs 

are rarely used in psychology and modeling sparsely clustered data in that field can be 

improved simply by implementing a different method to account for clustering. 

To outline this dissertation, the remainder of Chapter 1 will introduce an applied, 

motivating example to demonstrate how the analytic context of interest could easily arise 

in common research settings. The middle sections of Chapter 1 will provide an in-depth 

description of the MLMs, GEEs, and FEMs on both a conceptual and mathematical level. 

The latter sections of Chapter 1 will provide detail on various small sample methods for 

each class of methods.
1
 Chapter 2 will then review previous studies that have investigated 

                                                 
1 The middle and late portions of Chapter 1 that introduce and discuss the models of interest could 

conceivably have been included along with the literature review in Chapter 2. However, I reserved Chapter 
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the small sample properties within each class of methods and recommendations that have 

been advanced in the literature. Chapter 3 describes the simulation design for addressing 

these research questions and also presents results for the conditions of this simulation. 

Chapter 4 then discusses a proposed correction to one of the methods that performed less 

than desirably in the simulation. Chapter 5 revisits the motivating example and analyze 

the motivating data set with each of the methods investigated in the simulation. Chapter 6 

summarizes the findings, discuss the similarities and differences between methods, and 

consider the implications of the studies within this dissertation.  

1.2 Motivating Example 

The motivation behind this dissertation arose from an applied educational 

psychology research study which, despite having a moderate number of students within 

each cluster, had a very small number of clusters (classrooms). The data are from an 

Institute of Educational Sciences funded project
2
 that investigated the efficacy of a 

Reading Buddies intervention to assess whether a researcher-designed treatment applied 

at the classroom level affected students’ reading vocabulary compared to students in a 

control group who did not receive the treatment.  

The full data are rather expansive and were collected in order to answer various 

research questions; therefore, illustrative data intended to address only one of the 

research questions is presented. The research question that is illustrated in this data set is 

interested in whether the treatment improved vocabulary skills of kindergarten students 

                                                                                                                                                 
2 to discuss literature that is directly relevant to the specific interest of this dissertation – clustered data 

with small samples. The background information was included in Chapter 1 and thus the introductory 

chapter is rather long and more technical compared to the expository material found in previous EDMS 

dissertations. 

 
2  The research reported here was supported by the Institute of Education Sciences, U.S. Department of 

Education ,through Grant R305A110142 to the University of Maryland. The opinions expressed are those 

of the authors and do not represent views of the Institute or the U.S. Department of Education. 
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after controlling for relevant demographic variables. The data for this research question 

include data on 203 kindergarten students who were clustered within 12 classrooms in a 

semi-urban, Mid-Atlantic, school district. The outcome variable was students’ post-test 

vocabulary scores (as measured by the Peabody Picture Vocabulary Test Growth Score 

Value, PPVT-GSV) which were predicted by treatment group status, with covariates of 

English language learner (ELL) status, PPVT-GSV pre-test score, and relevant 

interactions thereof. Inference on the regression coefficients was the primary interest, so a 

variety of methods were available to model these data (see Section 1.4 for more detail).  

With this particular example, many effects were borderline significant (i.e., p-

values straddling .05 or Bayesian credible intervals that are close to 0). As a result, 

different methods (even with various small sample corrections discussed in Section 1.5) 

would give different conclusions about whether the treatment effect was significant or 

whether it differed for various demographic groups. When attempting to discern which 

method was producing the more trustworthy estimates for this model, the statistical 

literature was lacking in two areas. First, small sample simulation studies very often 

focus on a single framework (e.g., only MLMs or only GEE) and therefore do not provide 

a wealth of useful information when comparing the performance of small sample 

corrections across frameworks. Second, many simulations feature generation models that 

are unrealistically simple and only feature a single continuous predictor at each level. 

This made it difficult to determine how the different types of predictors in the motivating 

example were affected by small samples and also to determine the utility of the various 

corrective procedures to yield trustworthy estimates. As noted in McNeish and Stapleton 

(2014), sample size requirements increase as the size of model increases and simulation 
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results from simple models may not be entirely generalizable to models found in 

substantive research where at least a handful of predictors are usually of interest or are 

included as control variables. The next subsection will provide detail on different 

methods that can be used to accommodate clustered data.  

1.3 Overview of Methods to Accommodate Clustered Data 

1.3.1 Multilevel Models. MLMs account for the clustered nature of data by 

directly modeling the clustering with random coefficients (Laird & Ware, 1982; Stiratelli, 

Laird, & Ware, 1984). Regression coefficients in MLMs consist of two possible types of 

effects: a fixed effect and a random effect. Fixed effects are estimated to represent the 

relation between a predictor and the outcome irrespective to which cluster an observation 

belongs, similar to a standard single-level regression model (Raudenbush & Bryk, 2002). 

For each cluster, a cluster-specific random effect may be estimated (but is not required). 

Random effects capture how much the estimates for a particular cluster differ from the 

fixed effect estimate, allowing the relation between a predictor and the outcome to differ 

for each cluster.  

For instance, consider a model for test scores across many schools that contains 

an overall intercept (a fixed effect) for all schools. However, the sample may contain 

some high performing schools and also some low performing schools for which the 

intercept fixed effect may not be entirely representative. So, a random effect of the 

intercept may be included to more accurately reflect that student performance is partially 

related (although not necessarily causally) upon the school the student attends. The 

variance of the outcome is then partitioned into two-parts (or more if the model has more 

levels in the hierarchy): the Level-1 variance and the Level-2 variance.  The Level-2 
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variance captures the dispersion of the random effects from cluster to cluster – if the 

Level-2 variance is high (based upon, e.g., a large intraclass correlation or significant 

inferential test for the hypothesis that the variance component is equal to 0), then 

knowing to which cluster an observation belongs will be more informative for modeling 

an individual’s score. The Level-2 variance, which is not explicitly modeled in single-

level models, helps to obtain better regression coefficient standard error estimates by 

accounting for the violation of the independence assumption made by single-level 

models. The Level-1 variance is interpreted similarly to error variance in single-level 

models and is largely a measure of how accurate predictions from the model are for 

observations at Level-1. However, note that the error variance in single-level models 

conflates the Level-1 and Level-2 variance into a single source and therefore the 

estimates of error variance from single-level models and Level-1 variance from a MLM 

are will not be identical between models.    

Mathematically, MLMs for continuous outcomes can be written as 

 ,j j j j j  X β Z u εy   (1) 

where 
jy  is an   1jm    vector of responses for cluster j, 

jm is the number of units 

within cluster j, 
jX  is an  jm p  design matrix for the predictors in cluster j (at either 

level in this notation), p is the number of predictors (which includes the intercept), β is a 

p × 1 vector of fixed regression coefficients, 
jZ is an  jm q design matrix for the 

random effects of cluster j, q is the number of random effects ( p q  ), 
ju  is a 1q   

vector of random effects for cluster j , )( jE u 0  and )( jCov u G  where G is q q , and 

jε  is an  1jm   vector of residuals of the observations in cluster j where )( jE  0 ,
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( )jCov   is  j jm m and it is often assumed that  2( )j jCov  ε R I  for cross-

sectionally clustered data, and 
ju  and 

jε  are independent ( ,[ ]j jCov εu 0 ). Longitudinal 

data typically consider more complex structures for jR  because clustering due to 

repeated measures typically has more intricate relations within clusters because all Level-

1 observations are taken from a single person, unlike cross-sectional clustering.  

 To concretize the matrix notation, consider an example of a cluster with 5 

observations with a continuous outcome that is predicted from an intercept, a continuous 

Level-1 variable, a binary Level-2 variable, and a random effect for the intercept. The 

model would be written as 

 

Int. L1Pred. L2 Pred.

20.3 1 2.3 1 15.5 1 1.6

26.1 1 4.5 1 1.2 1 1.6

27.1 1 5.9 1 2.2 1 1.6

27.1 1 7.2 1 1 1.6

20.8 1 1.6 1 1 1.6

j j j j j

Outcome Z u

 

        
       
       
       

        
       
       
       
              

y X β + Z u ε

1.4

1.6

0.8

0.9

0.1

e  
   


   
   

   
   
   
   

      

  

 All predictors regardless of level are contained within 
jX  - if the predictor is at 

Level-2, then the entire column for that predictor will be constant for each cluster (as will 

the random effect vector, 
ju ).  

1.3.1.1 Likelihood estimation. The default estimation for MLMs with continuous 

outcomes in most software routines (SAS Proc Mixed, the lme4 R package, HLM 7) is 

restricted maximum likelihood (REML) which is known to exhibit better finite sample 

properties compared to traditional maximum likelihood, especially for estimates in the G 

matrix (e.g., Browne & Draper, 2006; Cheung, 2013; McNeish & Stapleton, 2014). 

Rather than estimate all parameters simultaneously as in traditional maximum likelihood, 
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the variance components and fixed effects are estimated in different phases. At a basic 

level, first the residuals from OLS are obtained (ignoring possible variance components), 

which by definition are independent of the fixed effects and have a mean of 0. Then 

maximum likelihood is applied to these OLS residuals to estimate the variance 

components. Once the variance components are estimated, then these estimates are used 

in a generalized least squares estimator for the fixed effects. More specifically, the log-

likelihood function for the variance components housed in the G and R matrices can be 

written up to a constant as 

REML T T 1

GLS GLS

1 1 1 ˆ ˆ( ) log log ( ) ( )
2 2 2

j j j j j j j j j j jl    G,R V X V X y - X β V y -X β  

 (2) 

where jV  is the model-based variance of the outcome for cluster j such that 

T( )j j j j jVar  V y Z GZ R  and ˆ
GLSβ   is the generalized least squares estimator of the 

fixed effects, T 1 1 T 1

GLS
ˆ ( )  β X V X X V y .  The improved finite sample performance 

comes from the inclusion of the 
T1

log
2

j j j

X V X  term that accounts for the degrees of 

freedom lost in estimating β.This term is not included in the traditional maximum log-

likelihood formula which is formulated up to a constant for the jth cluster as,  

 
ML T 1

GLS GLS

1 1 ˆ ˆ( ) log ( ) ( )
2 2

j j j j j j j jl   G,R V y - X β V y -X β   (3) 

Stata’s xtmixed procedure, MLwiN, and Mplus use traditional maximum likelihood as 

the default estimation method although xtmixed can implement REML via an optional 

command. 
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Asymptotically, β can be shown to be distributed  ˆˆ )MLMMVN Var, (ββ  where 

 
11

2
T 1

T

1

(ˆ ˆ)
j j

J

MLM

j

LM

j

MVar
l







    
      

     
β Φ X V X

 
(Fitzmaurice, Laird, & Ware, 

2004 p. 92; Raudenbush & Bryk, 2002, p. 59) because by definition the variance 

components are independent of the regression coefficients when normality is upheld (i.e., 

2l
E
 

 
  

0
 

where 
T( , )Vec G R  (Jacqmin-Gadda, Sibillot, Proust, & Thiébaut 2008). 

Note that ˆ
jV is calculated based on the estimates of G and jR noted previously.  

Standard errors are then taken from the square root of the diagonal elements of

(ˆ)MLMVar β  and can be used in inferential tests.   

1.3.1.2 Bayesian MCMC estimation. MLMs naturally extend to a Bayesian 

framework. To briefly contrast frequentist and Bayesian frameworks, frequentists 

consider the data, D, to be random and assume that the parameters in the model, Θ, are 

fixed but unknown quantities. The goal of ML inference, for instance, is to discern the 

values of Θ such that the likelihood that the data came from a population with parameters 

equal to Θ is the greatest. In other words, the inference in ML is performed on the 

likelihood – Pr( | )D  .  Conversely, the Bayesian framework reverses the designation of 

the data and the parameters such that D is considered to be fixed (once collected) and the 

parameters Θ are unknown, random quantities. As such, Bayesian inference is performed 

on a posterior distribution - Pr( | )D . 

More specifically, the posterior distribution is computed through Bayes theorem 

(Bayes & Price, 1763) such that 
Pr( | ) Pr( )

Pr( | )
Pr( )

D
D

D

 
   where Pr( | )D  is the 
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posterior distribution of the parameter(s), Pr( | )D   is the likelihood function (the same 

as used in ML), Pr( ) is the prior distribution of the parameters, and 

Pr( ) Pr( | )Pr( )D D d      is the probability of the data which is more colloquially 

referred to as the evidence upon which inference is based (Kruschke, Aguinis, & Joo, 

2012). The primary importance of Pr( )D  in the denominator is to ensure that probability 

density function of Pr( | )D   integrates to 1 as it does not include any parameters. For 

concision and because the integral is often intractable for models with many parameters 

(but will ultimately be a constant), Bayes theorem is often written as

Pr( | ) Pr( | )Pr( )D D    .  

As the number of parameters in a model increases, computing the posterior 

distribution analytically becomes increasingly difficult or even impossible (Lynch, 2007), 

so numerical integration methods such as MCMC are often implemented instead. Very 

generally, MCMC iteratively draws a series of values (conditional on the previously 

drawn values) in accordance with a particular algorithm (e.g., Gibbs, Metropolis-

Hastings) to approximate the posterior distribution of the unknown, random parameters, 

Θ. In theory, the approximate posterior distribution incrementally improves with each 

successive draw. The ultimate goal is to draw enough values so that the distribution 

reaches convergence or stationarity – a point at which successive draws no longer change 

the distribution and only represent random values from the target posterior distribution. 

There is no set number of iterations that will guarantee convergence for all models and 

convergence is heavily dependent on the size and complexity of the model, the number of 

parameters, and the type of variables involved (continuous, discrete, etc.) (Gelman, 

Carlin, Stern, & Rubin, 2003). Various criteria have been proposed to determine whether 
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convergence has been achieved including graphical plots like trace plots or 

autocorrelation plots (Lynch, 2007), Gelman-Rubin potential scale reduction (PSR) 

values near 1 (Gelman & Rubin, 1992; used by default in Mplus), a non-significant 

Heidelberg-Welch statistic (Heidelberg & Welch,1983), or a non-significant Geweke test 

(Geweke, 1992).  

MLMs naturally extend to the Bayesian framework through what are referred to 

as hierarchical models. In hierarchical models, the parameters that compose a prior 

distribution (called hyperparameters) have a separate prior distribution themselves. For 

instance, consider a simple intercept-only model of the form 0Y   where the prior 

distribution for the intercept parameter 0 is consider to be normal. In a non-hierarchical 

model, the prior distribution for 0 might be written as 0 ~ (0,100)N  where the 

hyperparameters are scalar values. In a hierarchical model, the hyperparameters are also 

assigned a prior (referred to as the hyperprior). For instance, in a hierarchical model, 

0 ~ (0, )N   and ~ Inverse - Gamma(.01,.01) . The model could continue indefinitely 

such that the hyperparameters of the hyperprior would themselves have a hyperprior 

(equivalent to a 3-level model) but the hierarchy would need to terminate with scalar 

values at some point.  

1.3.1.3 The Metropolis-Hastings algorithm. Because the forthcoming simulation 

study estimates Bayesian models in SAS PROC MCMC, the Metropolis-Hastings 

algorithm (MH; Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Hastings 

1970) for MCMC will be overviewed. The steps of MH are as follow: 

1. Specify starting values for each parameter θ or randomly draw a value from the 

prior distribution of each parameter, Pr( ) . 
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2. At each iteration of the algorithm r (r = 1, 2, …, R) , a new value for each 

parameter, θ*, is drawn from a proposal distribution.  

a. A proposal distribution is often set so that values can be easily drawn (e.g., 

multivariate normal, uniform). Lynch (2007) states that proposal 

distributions are often symmetric and centered around the current values 

of the parameter, denoted as 
1r 
. 

3. The density of the posterior is then calculated 
1r  and 

*  such that 

1

Pr( * | )

Pr( | )r

D
P

D





  

4. Compare P to a random draw u from (0,1)Uniform .  

5. 
1

*
r

r

if P u

if P u

 
  

 
 , if P exceeds u then the all the parameters are updated. 

Otherwise, the proposed values are rejected and the parameters retain their value 

from r −1. 

6. The process then continues for R replications (where R is predetermined by the 

researcher).  

The popular Gibbs sampler used in programs such as WinBugs, JAGS, and Mplus is a 

special case of MH such that parameters are updated one at a time, fully conditional on 

the values for all other parameters. As such, P will deterministically be equal to 1 (Lynch, 

2007, p. 114) meaning that the values of Θ are always updated at every iteration. This 

property generally makes Gibbs samplers more efficient than MH and is a primary reason 

why Gibbs sampling is typically preferred. However, the advantage of Gibbs sampling 

over MH only holds provided that the added computational burden of deriving the 

conditional distributions does not exceed the computational burden of rejected MH 
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iterations (Lynch, 2007). When the conditional distributions are difficult to obtain, MH is 

actually more computationally efficient than Gibbs sampling despite the fact that some 

updates are rejected.  

1.3.1.4 MCMC and small samples. MCMC estimation has generally been 

considered advantageous with smaller samples because it does not rely on asymptotic 

sample sizes to produce unbiased estimates (especially for sampling variance estimates), 

it does not give inadmissible estimates (e.g., negative variances) and it does not require 

adjustments or corrections to the likelihood for diminished sample sizes (see, e.g., Hox et 

al., 2012). Despite the potential advantages of MCMC, one must carefully consider prior 

distributions with small samples, particularly for the variance components, because prior 

distributions have an increased impact on posterior distributions when sample sizes are 

smaller (e.g., Gelman, 2006).  

The choice of prior distribution is always a somewhat contentious issue because it 

is specified (objectively or subjectively) by the researcher; however, with small samples 

the issue is intensified. The posterior distribution is formed by combining information 

from the prior (not based upon the data) and the likelihood (based upon the data). For 

larger sample sizes, the likelihood typically is weighted much more heavily compared to 

the prior. Yet, with small samples, the prior is given much more relative weight and has a 

more substantial influence on the posterior compared to larger sample sizes.  

Typical choices for non-informative priors for variance components
3
 in MLMs 

include a uniform prior with a fairly large range for the standard deviation (Gelman et al., 

                                                 
3 This dissertation will only consider the case of non-informative priors but it should be noted that van de 

Schoot, Broere, Perryck, Zondervan-Zwijnenburg, & Van Loey (2015) have shown some promising results 

using informative priors with very small samples. 
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2003) or an inverse gamma prior with small positive hyperparameters on the variance 

(Daniels, 1999). However, Gelman (2006) showed that these choices can actually be 

more informative than intended when the data have few clusters. Gelman found that 

uniform priors tend to overestimate the variance components and inverse gamma priors 

tend to underestimate the variance components and suggested using a half-t or half-

Cauchy distribution (a Cauchy distribution is equivalent to a t-distribution with 1 degree 

of freedom) for the variance components instead when the number of clusters was small.
4
 

Using an applied example, he showed desirable performance using a half-Cauchy 

distribution with only three clusters.  To date, although analytical arguments for half-t 

and half-Cauchy have been made (e.g., Polson & Scott, 2012), the performance (both 

absolute and relative to other priors) of these recommendations have not been 

systematically assessed.  

 1.3.1.5. Assumptions.  When modeling clustered data with MLMs, 8 assumptions 

are made. 

1. All relevant predictors are included in the model  

2. All relevant random effects are included in the model  

3. The covariance structure of the Level-1 residuals (R) is properly specified 

4. The covariance structure of the Level-2 residuals
5
 (G) is properly specified  

5. The Level-1 and Level-2 residuals do not covary ( , )j jCov  u ε 0   

6. The Level-1 and Level-2 residuals both follow a multivariate normal distribution 

                                                 
4 A “half” distribution means that the distribution is truncated at the mean. For the t-distribution, the mean 

is zero and the half-t distribution will only have support over [0,∞), complying with the usual constraint 

that variance components be non-negative.  

 
5 The terms “Level-2 residuals” and random effects are used interchangeably. Level-2 residuals is used 

when talking about the assumptions because it makes some of the assumption more succinctly expressible.  
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7. The predictor variables do not covary with the residuals at any other level 

8. Sample size is sufficiently large for asymptotic inference at each level (this is a 

strict assumption only with likelihood estimation but is still a relevant concern 

with MCMC as well) 

MLMs are more robust to violations of some assumptions compared to others. Verbeke 

and Lesaffre (1997) showed that assuming normality of the Level-2 residuals (even when 

the distribution is non-normal) did not have an egregious impact on any of the point 

estimates in the model so long as all variables have fourth moments. Standard error 

estimates were problematic, however, with small or moderate samples (120 clusters or 

fewer). Jacqmin-Gadda et al. (2007); Litière, Alonso, and Molenberghs (2000); and 

Agresti, Caffo, and Ohman-Strickland (2000) have shown that misspecifiying the 

structure of either the Level-1 or Level-2 residual covariance matrix can have a large 

effect on standard error estimates throughout the model and has a large effect on Type-I 

error rates and power. Standard error estimates of regression coefficients will be biased if 

the random effects (u )  are misspecified (i.e., failing to include all relevant random 

effects) – efficiency is decreased (standard errors are larger than they need to be) which 

decreases the precision of the estimates and may adversely affect power (Agresti et al., 

2000; Ferron, Dailey, & Yi, 2002;  LeBeau, 2013). This dissertation will focus primarily 

on Assumption 8 above and the literature related to this assumption will be reviewed in 

much more detail in Chapter 2.  

1.3.2. Generalized estimating equations. Rather than explicitly modeling the 

clustering mechanism as is done with MLMs, design-based methods (DBMs; e.g., 

cluster-robust errors, generalized estimating equations) essentially view the model as a 
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single-level model and apply statistical corrections (typically based on the so-called 

sandwich estimator; Huber 1967; White 1980) to produce standard error estimates (and 

parameter estimates as well in some cases such as with binary outcomes and GEE) that 

account for the fact that data were clustered (Liang & Zeger, 1986; Zeger & Liang, 

1986). The advantage of DBMs is that the specification of the random effects and their 

covariance structure does not have to be explicitly modeled, meaning that there are far 

fewer assumptions required (Zeger, Liang, & Albert, 1988). This dissertation will focus 

on GEEs as the DBM of choice because cluster-robust standard errors can be specified as 

a special-case of GEEs.  

Conceptually, the first step in the GEE algorithm fits the model assuming the data 

were independent (i.e., not clustered and suitable for single-level models such as OLS or 

logistic regression). Then, using information from the residuals of the independence 

model estimates, the initial values for the working correlation matrix are estimated, in 

accordance with the structure the researcher specified. Then, using the working 

correlation matrix, the covariance matrix of the outcome (within each cluster) is then 

estimated and is used to update the regression coefficient and standard error estimates to 

reflect the dependent relation between observations. The residuals from this updated 

model are then calculated and the process iterates between updating the working 

correlation matrix, the outcome variable covariance matrix, and the model estimates until 

the regression coefficients no longer change between iterations whereby the model is said 

to have converged to a solution. After this convergence, the sandwich estimator is applied 

to account for any potential misspecifications in the covariance structure and the final 
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regression coefficient and standard error estimates are output, with the clustering taken 

into account. 

To explicate the mathematical details, GEE is an algorithmic method to estimate 

generalized linear models that potentially violate the normality and/or independence 

assumption. Briefly, generalized linear models relate   |( )j j jE y X μ  to a linear predictor 

Xβ through a link function g (∙) (McCullagh & Nelder, 1989; McCulloch & Searle, 

2001). In behavioral sciences, common link functions are the identity function for 

normally distributed outcomes, g (
jμ ) = 

jμ , the logit link for binary outcomes, g(
jμ )  = 

log   /( ( ))1j jμ μ  , or the log link for count outcomes, g(
jμ ) = log(

jμ ). The variance of 

jy  is then specified as Var(
jy ) =  (

jμ )  where   is a possibly unknown scale 

parameter (  =1 for binary and Poisson responses) and  (
jμ ) is a known variance 

function [ (
jμ ) = 1 for normally distributed outcomes, (1 )j jμ μ for binary outcomes, 

and
jμ for Poisson distributed outcomes].  

Broadly speaking, estimating equations specify how parameters in a model are 

estimated with salient examples including ordinary least squares and maximum 

likelihood.  When data are independent (i.e., clustering is not informative/ the intraclass 

correlation ≈ 0), the maximum likelihood estimate of the vector of regression coefficients 

β in a generalized linear model can be obtained using independence estimating equations 

such that T

1

ˆ is solved by ) =
J

j j j

j

β (X A S 0  where 
jX is an 

jm × p design matrix for the jth 

cluster, 
1Diag[( ( ),..., ( )]

jj j jmVar Var A  for 
jm  the number of within-cluster units in 

cluster j, and ( )jj j μS Y β for 
jY is an 

jm ×1 vector of outcomes for the jth cluster and 
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( )jμ β  which is based up the regression coefficients (see, e.g., Fitzmaurice, 1995, Liang 

& Zeger, 1986). As seen by the diagonal structure of
jA , this assumes that covariance is 

directly calculable from the model and observations within clusters are not related, which 

introduces bias into the standard errors estimates of the regression coefficients. As in 

MLMs, this issue can be addressed by directly modeling the source of clustering. 

However, Liang and Zeger (1986) generalized independence estimating equation (hence 

the name “generalized estimating equations) to handle situations in which modeling the 

correlation of observations is not desired. Rather, the covariance matrix is iteratively 

updated as a function of unknown parameters. 

Liang and Zeger (1986) define generalized estimating equations for the regression 

coefficients T 1

1

ˆ such that =
J

j j j

j





β D V S 0  where T j

j jj


 


AD X




 and 

1 1
2 2ˆ ( )j j j jV A K α A  for ̂  a scale parameter estimated by 2

1 1

1
ˆ

jmJ

ij

j i

e
N p


 



  , and 

jK  is an 
j jm m  working correlation matrix comprised of unknown parameters α that 

estimate the correlation of observations within clusters rather than it being explicitly 

modeled. The structure of jK is specified by the researcher a priori but its elements are 

updated algorithmically. For cross-sectionally clustered data, an exchangeable structure is 

typically suitable
6
 where 

1
(Y ,Y )

α
ij kj

i k
Corr

i k


 


 meaning that an arbitrary within-

cluster observation has equal correlation with all other observations within the same 

cluster.  The value of α with an exchangeable working structure is conceptually similar to 

                                                 
6 Ballinger (2004) states that “(when) there is no logical ordering for observations within a cluster (such as 

when data are clustered within subject or within an organizational unit but not necessarily collected time), 

an exchangeable correlation structure should be used.” (p. 133).  
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the traditional intraclass correlation (ICC) as calculated with MLMs in an unconditional 

model (Wu, Crespi, & Wong, 2012).  

As mentioned previously, GEE iteratively updates the parameters in the working 

structure, α. First, β̂  is estimated assuming independence. Then, ( )jK α is estimated 

from the errors from the model that assumes independence. The estimation of ( )jK α

depends on the working structure specified by the researcher. For an exchangeable 

structure that is typical with cross-sectional clustering (Horton & Lipsitz, 1999), 

1

1
ˆ e e

ˆ( * )

J

ij ik

j i kN p


  




  where 
1

* 0.5 ( 1)
J

j j

j

N m m


  . Once a value(s) for ̂  is 

obtained, then 
jV can be can be calculated by 

1 1
2 2ˆ ( )j j j jV A K α A . β̂  is then updated 

by 

1

T 1 T 1

1

1 1

ˆ ˆ
J J

r r j j j j j j

j j



 



 

   
     

   
 β β D V D D V S  where r is the index for the iteration. 

When r = 1, ˆ
rβ houses the coefficient estimates under the independence assumption.  

Once the iterative process has successfully converged,  ˆGEEVar β is calculated 

using a sandwich estimator 

1

T 1

1

ˆ ˆ( )
J

j j j

j

Var







 
 
 
β = Φ = D V D (e.g., McCallugh & Nelder, 

1989). The naïve estimator “sandwiches” a quantity that takes the clustering into account. 

In GEE, the middle term is formulated by T 1 T 1

1

J

j j j j j j

j

 



D V S S V D  making  ˆGEEVar β  

equal to  

1 1

T 1 T 1 T 1 T 1

1 1 1

ˆ
J J J

GEE j j j j j j j j j j j j

j j j

 

   

  

    
     
    
  Φ D V D D V S S V D D V D  (7) 



22 

 

where the matrices have the following dimensions: isj jm pD , isj j jm mV , and 

is 1j jm S . It is important to note that convergence may be more difficult to obtain if the 

clusters are very unbalanced or if the working structure is grossly incorrect such that the 

resulting estimates form a non-positive definite matrix (Shults & Ratcliffe, 2007). 

 There is also an extension of GEE often referred to as “GEE2” (Liang, Zeger, & 

Qaqish, 1992; Zhao & Prentice, 1990) that improves efficiency by specifying an 

additional estimating equation for the working correlation matrix and can be helpful for 

situations in which the regression coefficients and the covariance matrix are of interest. 

GEE2 requires assumptions that are similar to MLM and GEE2 is not available in any 

mainstream statistical software (Lipsitz & Fitzmaurice, 2008) and it will therefore not be 

covered in additional detail. It is relevant to note that GEE2 has been an area of research 

in recent years, however.  

1.3.2.1 Assumptions. Modeling with GEE does not require as many assumptions 

as MLMs because GEE do not estimate random effects for each cluster – only four 

assumptions are made: 

1. All relevant predictors are included in the model 

2. Observations between clusters are not related (there is not a higher level of the 

hierarchy) 

3. The working correlation matrix is “reasonably close” to the population structure 

4. Sample size is sufficiently large for asymptotic inferences at the cluster level 

The “reasonably close” phrasing in Assumption 3 is rather vague; to explicate, Zeger et 

al. (1988) found that for an ICC of 0.30 or less, using an independent working correlation 

structure (the most basic structure) resulted in similar estimates to an exchangeable 
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structure, so selection of the working correlation matrix for cross-sectional clustering 

should not present too much issue for data common in behavioral sciences because ICC 

values do not often exceed 0.30 (e.g., Hedges & Hedberg, 2007).   

Also, although not a strict assumption, GEE are only consistent when data are 

missing completely at random (MCAR) based on the classification in Rubin (1976). 

Since standard GEE are estimated with quasi-likelihood methods, likelihood-based 

corrections cannot be applied to data that are missing at random (MAR) (Ghisletta & 

Spini, 2004). While GEE’s constraint to MCAR may cause concern, Fitzmaurice, Laird, 

and Rotnitzky (1993) found that the bias of GEE with MAR data was small. Relative bias 

was found to be less than 5% unless the amount of missing data was quite large (50%) 

and the model was misspecified. Furthermore, the MCAR requirement can be 

circumvented (Carpenter, Kenward, & Vansteelandt, 2006; Clayton, Spiegelhalter, Dunn, 

& Pickles, 1998; Scharfstein, Rotnitzky, & Robins, 1999). For instance, methods such as 

weighted GEE (Chen, Yi, & Cook, 2010; Lipsitz, Ibrahim, & Zhao, 1999; Robins, 

Rotnitzky, & Zhao, 1995) or pre-processing the data with multiple imputation (Rubin, 

1987) can appropriately accommodate MAR data with GEE, provided that certain 

assumptions are met (e.g., specifying a proper imputation model.)  

1.3.3. Fixed effect models. With FEMs (a.k.a. dummy variable regression), 

cluster affiliation indicators (0/1 indicator variables, one for each cluster in the data) are 

included in the model as predictor variables with the goal being to account for the nested 

structure of the data without estimating the random effects, particularly when 

assumptions inherent with random effects are untenable, or estimation may be 

computationally complex (Allison, 2005; Galbraith, Daniel, & Vissel, 2010). When 
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indicators that represent cluster membership are added as predictors, the intercept is often 

removed from the model such that the cluster affiliation variables then represent the 

intercept value for each specific cluster, similar to how each cluster receives a random 

intercept estimate in MLMs. Unlike MLMs, FEMs require far fewer assumptions which 

may be advantageous. With a smaller number of clusters, FEMs also hold the added 

advantage that the cluster affiliation variables account for all heterogeneity at Level-2, 

allying concerns about omitted variable bias at Level-2 that may occur if one has more 

potential predictors than degrees of freedom in alternative frameworks such as MLMs. 

Bias from omitted variables at Level-1 is still a concern, however.   

Notationally, assuming the intercept term has been suppressed, the model can be 

written as  

 
j j j j jC  y X β r ,  (8) 

where 
jy is an 1jm   vector of responses for the jth cluster, 

jX is a 
jm p  design matrix 

of substantive predictors (there is no intercept),β is a p × 1 vector of substantive 

regression coefficients, 
j is the cluster affiliation variable estimate for the jth cluster,  

jC is a cluster affiliation dummy variable for the jth cluster, and 
jr  is the residual that is 

traditionally assumed to be distributed 
2( , )MVN 0 I .  

A limitation of FEMs is that effects of Level-2 predictors cannot be estimated 

directly in the model although inclusion of Level-1 predictors or interactions between 

Level-2 and Level-1 predictors do not pose any problems in estimation (Allison, 2005; 

Gardiner, Luo, & Roman, 2009; Murnane & Willet, 2010). Level-2 predictors and the 

cluster affiliation predictors will be perfectly collinear, meaning that both cannot be 

estimated simultaneously (Murnane & Willet, 2010). Instead, the effects of both 
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measured and unmeasured variables at Level-2 are accounted for within the cluster 

affiliation coefficients (Allison, 2005; Murnane & Willet, 2010).  This does present 

problems if a substantively relevant predictor is included at Level-2 (a common example 

would be a treatment effect in a cluster randomized trial) because it too will be absorbed 

into the cluster affiliation coefficient estimates. However, under the assumption of 

homogeneous slopes of Level-1 predictors across clusters, the treatment effect can be 

recovered using linear contrasts of the cluster affiliation variable coefficients. That is, one 

can inferentially test the treatment effect by taking a weighted average of the cluster 

affiliation estimates for the treatment group and comparing it to a weighted average of the 

cluster affiliation variable coefficient estimates for the control group. Mathematically, 

this can be expressed by calculating Lβ where L is a 1 × p vector designating which 

effects to include and β are the least squares coefficient estimates calculated by 

T 1 T( ) ( )X X X y whose standard error is calculated by T 1 T 2( ) L X X L .  

1.3.3.1. Standard errors for Level-2 predictors. Although the effects for binary 

Level-2 predictors can be estimated through, for instance, an ESTIMATE statement in  

SAS, the standard error estimates will be too small based on software calculations. 

Software programs for implementing OLS assume independent data which is not the case 

for FEMs. As mentioned in the previous section, the standard errors for the ESTIMATE 

statement in SAS are calculated by, 

 T 1 T 2( ) L X X L   (9)  

However, in FEMs, 
2 is not the total variance because the cluster affiliation dummy 

variables have accounted for the variance attributable to Level-2. That is, whereas a 

MLM will consider variation at both Level-1 and Level-2 when calculating standard 
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errors (i.e., 
T V ZGZ R ), FEMs in software have no such mechanism to partition the 

variance and will not recognize that the variation attributable to the cluster affiliation 

dummy variables should be considered unexplained variance at Level-2 instead of fully 

explained variance. Therefore, 
2  is analogous to Level-1 variance in MLMs which will 

necessarily make standard error estimates too small because the multiplicative term is 

only based upon variance at one level. No recommendations could be found in the 

literature to rectify this issue. This issue will be discussed in detail in Chapter 4.  

1.3.3.2. Assumptions.  Because FEMs are extensions of single-level regression 

models and are typically estimated with OLS, the assumptions are quite similar to a 

standard OLS regression model with a few additional caveats that arise from the cluster 

affiliation dummy variables (some of which were noted in Section 1.3.3.). The four 

assumptions are as follow: 

1. All relevant Level-1 predictors are included in the model. 

2. Effects of non-binary Level-2 predictors are not of interest – they cannot be 

included in the model because the cluster affiliation dummy variables are 

assumed to account for all heterogeneity at Level-2. Effects for binary variables 

can be estimated with contrasts.  

3. The residuals are identically and independently distributed conditional on the 

predictors. With cluster affiliation dummy variables, this means that there is not 

an unmodeled level of the hierarchy. Violations of this assumption can be 

common if data are clustered due to repeated measures. Although not entirely 

germane to the type of clustering of interest in this dissertation, three popular 

corrections (Anderson and Hsiao, 1982; Arellano & Bond, 1991; Blundell & 
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Bond, 1998) have been proposed for repeated measure clustering and are included 

in the Stata software program.  

4. Inference to clusters beyond those in the sample is not of interest.  

1.4. Differences Between Methods to Accommodate Clustered Data 

 Although MLMs, GEE, and FEMs are all able to yield estimates that allow for 

appropriate and trustworthy inferences to be made with non-independent data, there are 

some research questions and research scenarios in which one model may or may not give 

pertinent information.  

 Specifically, if researchers are interested in cluster-specific information, then 

MLMs are the only modeling framework that is appropriate. Examples of “cluster-

specific” information include partitioning the variance between levels, prediction or 

inference for specific clusters in the data, or examining contextual effects for specific 

clusters. Cluster-specific questions can similarly be addressed with FEMs; however, the 

inferences are only appropriate to the clusters in the data because clusters are specified as 

fixed effects. In MLMs, clusters are assumed to be a random sample of the broader 

population of clusters and thus inferences are generalizable to the broader population 

rather than the finite sample of clusters as in FEMs.  Consuming degrees of freedom is 

also an omnipresent concern with FEMs and some of the aforementioned scenarios may 

require several additional parameters to be included in the model. GEE is strictly a 

population-average method and cannot make any inferences about specific clusters or 

partition the variance between levels. Contextual effects can be modeled with GEE (Begg 

& Parides, 2003; Berkhof & Kampen, 2004; Snijders & Bosker, 2012, p. 106); however, 
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the interpretation can only be made marginally. Table 1 below summarizes the some of 

the differences between MLMs, GEE, and FEMs.  

Table 1 

Summary of different information reported by MLMs, GEE, and FEMs 

 

  MLM GEE FEM 

 

Covariance 

Accounted By 

 

Fully modeled with 

random effects 

 

Working structure, 

and cluster-robust 

estimator 

 

 

Cluster affiliation 

dummies 

SE Calculation Information Cluster robust 

sandwich estimator 

Closed form with 

OLS 

 

Cluster-Specific 

Inference 

Yes and is 

generalizable to 

population 

No Yes but is restricted 

to clusters in the 

data 

 

Partitions Variance 

Between Levels 

 

Yes No No 

 

Number of Clusters Problematic with     

< 30 if uncorrected 

Problematic with    

< 50 if uncorrected 

Not consistent 

asymptotically 

 

 When the outcome variable is discrete, the differences between methods are much 

more pronounced.  With continuous outcomes, the random effects used with MLMs can 

be integrated out of the likelihood meaning that the likelihood function is averaging over 

the random effects distribution. As a result, the interpretation of the regression 

coefficients with MLMs and continuous outcomes is equivalent to single-level models, 

GEE, and FEMs. For example, the “textbook” regression coefficient interpretation still 

applies for all methods: for a one-unit change in the predictor variable X, the outcome 

variable Y is expected to change by the value of the regression coefficient β, holding all 

other predictors in the model constant. This interpretation can be expressed as, 
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)( |E Y Xj j
. However, when the outcome is discrete, the random effects cannot be 

integrated out of the likelihood function meaning that there are no closed form solution 

(Fitzmaurice, Laird, & Ware, 2012; McCulloch & Searle, 2001). In this scenario, the 

resulting regression coefficients from MLMs no longer would have the textbook 

interpretation. Rather, the MLM coefficients would be interpreted as for a one-unit 

change in the predictor variable X, the outcome variable Y is expected to change by the 

value of the regression coefficient β, holding all other predictors in the model constant 

and given equal values for the random effects. This interpretation can be expressed as 

,( | )E Y X bj j j
.  

 The differential interpretation occurs because of the link function, g (∙) , required 

to relate the linear predictor to a discrete outcome. With continuous outcomes where g (∙) 

is the identity link, | , | )( ( ))) (E g( E EY X b Y Xj j j j j
 because the random effects can be 

integrated out of the likelihood. This cannot similarly be done for non-identity link 

functions and | , | )( ( ))) (E g( E EY X b Y Xj j j j j
 , resulting in differing regression 

coefficients interpretation between MLMs and other methods.  

Thus, with discrete outcomes, the choice of method is closely related to the 

research questions because different methods will yield regression coefficient estimates 

that are representative of different quantities. However, with continuous outcomes, there 

is much more flexibility in which method is used to accommodate clustering if one is 

primarily interested in inferential tests of the regression coefficients. For this reason, this 

dissertation will focus on the case of continuous outcomes where regression coefficients 

are the primary interest because researchers have the greatest number of methods at their 

disposal in such a case.  
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1.5. Overview of Small Sample Corrections 

 In this section, an overview of some of the more commonly implemented small 

sample corrections for MLMs and the sandwich estimator in GEEs will occur. Because 

FEMs are estimated with OLS and thus have a closed form solution, they do not 

encounter the same types of small sample problems as MLMs and GEEs and therefore do 

not necessitate small sample corrections.  

 1.5.1. Kenward-Roger for MLMs. Although multiple small sample corrections 

exist (e.g., Manor & Zucker, 2004; Skene & Kenward, 2010a; Skene & Kenward, 2010b; 

Zucker, Liberman & Manor, 2000), the Kenward-Roger correction (Kenward & Roger, 

1997; 2009) is the most widely implemented and most accessible in mainstream software 

such as SAS or Stata (new in Stata 14 released in April 2015).  

Generally with a small number of clusters there are two concerns with respect to 

the quality of model estimates: (1) ˆ
MLMΦ  is susceptible to downward bias with a small 

number of clusters and (2) the denominator degree of freedom approximations for 

inferential tests can have a large impact of resultant p-values. The effect of (1) is that 

standard errors will be too small, which will inflate the Type-I error rate of inferential 

tests. Kenward and Roger (1997) note that the small sample bias is attributable to two 

sources (a) ˆ
MLMΦ is a biased estimator with a small number of clusters and (b) ˆ

MLMΦ  does 

not take into the account that there is variability in   (recalling that 
T( , )Vec G R ) that 

are used to compute ˆ
MLMΦ . Point (a) had been addressed by Kackar and Harville (1984) 

who had used a Taylor series expansion around  . Kenward and Roger (1997) 

incorporated and expanded upon Kackar and Harville’s approximation, also through 

Taylor Series expansions. Thus, the first step in the Kenward-Roger correction is to 
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eliminate bias from ˆ
MLMΦ . With (2), denominator degrees of freedom in MLMs are often 

a contentious issue because the denominator degrees of freedom can only be exacted 

calculated under a handful of situations (i.e., completely balanced data with simple 

structures for G and R; Schaalje, McBride, & Fellingham, 2002). For instance, in SAS 

PROC MIXED, users have the option of approximating degrees of freedom with five 

different methods, none of which are appropriate across all scenarios. With a large 

number of clusters, this issue is not necessary vital because univariate inferential tests are 

asymptotically
2

1 distributed. However, with a smaller number of clusters where F or t 

tests are used, even small differences in the denominator degrees of freedom can have a 

noticeable impact on p-values.  Thus, the second step of the Kenward-Roger correction 

provides a better denominator degree of freedom approximation through a Satterthwaite-

type procedure.  

The calculation of the classical Kenward-Roger covariance correction from 

Kenward and Roger (1997) is 

 
1 1 1

1ˆ ˆ ˆ ˆ ˆ ˆ( ) 2
4

J c c

KR KR MLM MLM jkl jkl jk jl jkl MLM

j k l

Var w
  

  
   

  
β =Φ =Φ + Φ Q P ΦP N Φ    

  (10) 

where ˆ
MLMΦ is the naïve model-based estimator of ˆ( )Var β and  

 

1 1

T
ˆ ˆ

ˆ
ˆ ˆ
j j

jkl j j j

k l 

  


 

V V
Q X V X , 

1

T
ˆ

ˆ
j

jk j j

k






V
P X X , 

1

T
ˆ

ˆ
j

jl j j

l






V
P X X , 

2

T 1 1
ˆ

ˆ ˆ
ˆ ˆ

j

jkl j j j j

k l 

 



 

V
N X V V X , where jV  is a  function of the parameters  j  (recall that  

T( , )j jVec G R  and is of dimension c × 1) and wjkl is the (k, l)th element of ˆ( )Cov  . 
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The triple summation in Equation 10 performs the Taylor series expansion of each pair of 

parameters in j  and then sums the values over all J clusters. The jklN term was not 

included in Kackar and Harville (1984) and is novel to Kenward and Roger (1997) and is 

a Taylor series expansion about   to account for variability in the estimates of   which 

Kackar and Harville (1984) ignore.  

 The classical Kenward-Roger correction behaves well when the residual 

covariance matrix is linear (i.e., the second derivative of the covariance matrix is 0) as is 

the case with common structures such as compound symmetry or an unstructured matrix. 

However, for non-linear parameterizations present, for instance, in the autoregressive 

error structure, the classical Kenward-Roger correction performs less well. Kenward and 

Roger (2009) addressed this issue with the Kenward-Roger 2 estimate of ˆ( )Var β  such 

that  

 2 KR2 KR

1 , 1

1ˆ ˆ ˆ ˆ ˆ( )
4

imJ

KR jsu ju MLM js MLM

j s u

Var w v
 

   β Φ Φ Φ P Φ   (11) 

where   

 

T 1

T T 1 1

ˆ ˆ
ˆtr 2tr

ˆ ˆ

ˆ
ˆ ˆ ˆ         tr ( )

ˆ

j j

ju j j j j j MLM

u u

j

j j j MLM j j j j MLM

u

v
 





 

      
               

   
      

V V
Ω X V Ω X Φ

V
X Ω X Φ X V V X Φ

  (12) 

and 

 

2

1 1

1 , 1

ˆ
ˆ ˆ

jmJ
j

j j jkl j
j k l k l

w
 

 

 

   
        

 
V

Ω V V   (13) 
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 After calculating ˆ
KRΦ or 

2
ˆ

KRΦ , then the degrees of freedom of the appropriate F 

or t distribution are calculated based on a Satterthwaite-type approximation 

(Satterthwaite, 1946).  For univariate inferential tests of regression coefficients that are 

commonly of interest in MLMs, the Kenward-Roger degree of freedom correction 

reduces to a Satterthwaite approximation such that only the denominator degrees of 

freedom are estimated (for univariate tests, numerator degrees of freedom is known to be 

1). In the classical Kenward-Roger correction or Kenward-Roger 2 correction, the 

denominator degrees of freedom is equal to  

 
T 2

T

ˆ2( )KR 
l Φ l

g Wg
  (14) 

where ν is the denominator degrees of freedom, l is a contrast vector that locates the 

parameter of interest, ˆ( )CovW θ  as obtained from the Hessian matrix, and 

T ˆ( )KR



 
    

l Φ l
g  is the gradient of T ˆ

KRl Φ l  with respect to the parameter of interest, θ. 

Using this same notation, the univariate t-test for a regression coefficient would be 

calculated by 
T

T

ˆ

ˆ
KR

t 
l β

l Φ l
. Should Kenward-Roger 2 be a more appropriate covariance 

approximation, then 
2

ˆ
KRΦ  can be directly substituted for ˆ

KRΦ in Equation 14 without any 

changes.  

For multi-parameter hypothesis tests, the Kenward-Roger correction augments the 

Satterthwaite method by estimating a scaling factor for the Wald F statistic in addition to 

approximating the degrees of freedom. At a very conceptual level, the second step of the 

Kenward-Roger correction compares the properties of the F statistic to the family of F 
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distributions. Then, denominator degrees of freedom are approximated by the F 

distribution whose properties most closely align with the properties of the observed 

statistics.  

A traditional multi-parameter Wald F-test that incorporates the Kenward-Roger 

bias correction is calculated by  

 T T 1ˆ ˆˆ( ( ) (Wald KRF  Lβ) LΦ L Lβ)   (15) 

The Kenward-Roger correction scales this statistic such that 
KR WaldF F


 where λ is a 

scaling factor and  is the numerator degrees of freedom. However, the denominator 

degrees of freedom are still unknown, so the moments of KRF are generated and then used 

to solve for ν. Specifically, 

 
2

4
1





 


  (16) 

where 

 
2

[ ]

2 [ ]

Wald

Wald

Var F

E F
    (17)

7
 

Once the denominator degrees of freedom, ν, are obtained, then the scale factor λ can be 

calculated by 

 
[ ]( 2)WaldE F








  (18) 

                                                 
7 Full derivational details for the moment functions can be found in Kenward and Roger (1997) on pages 

986 to 988 
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 1.5.2. Bias-corrections to the sandwich estimator. Similar to MLMs, the 

sandwich estimator for ˆ
GEEΦ that accounts for clustering in Equation 7 is consistent 

asymptotically; however, it is not unbiased when the number of clusters falls below about 

40 (e.g., Mancl & DeRouen, 2001; Pan & Wall, 2002). Two classes of small-sample bias 

corrected sandwich estimator have been proposed in the literature: residual-based 

corrections and design-based corrections. Residual-based corrections account for small 

sample bias by adding a matrix (or two depending on the correction) to the innermost part 

of middle term in the sandwich estimator (adjacent to the residual matrix, hence the term 

residual-based correction). Residual-based corrections rewrite the sandwich estimator 

from Equation 7 such that  

 

1 1

T 1 T 1 T T 1 T 1

1 1 1

ˆ
J J J

RBC j j j j j j j j j j j j j j j j

j j j

 

   

  

    
     
    
  Φ D V D A D V F S S F V D A D V D  (19) 

Note that two matrices have been added in Equation 19 compared to Equation 7, 
jF and 

jA  where isj p pA  and isj j jm mF . For the classic sandwich estimator, 
jF and 

jA

are identity matrices and are thus not included in Equation 7. However, to correct for 

small sample bias, various correction have proposed different values for 
jF and 

jA . 

 In the Fay-Graubard correction (Fay & Graubard, 2001), 

   
1/2

Diag 1 min ,[ ]j jjc


 A Q I  where 

1

T 1 T 1

1

J

j j j j j j

j



 



 
  

 
Q D V D D V D , c is a 

constant that serves as an upper bound for the correction and 0 1c  , and diagonal 

elements of 
jA are not to exceed 2. In software that include this correction (e.g., SAS 
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PROC GLIMMIX), 3/ 4c   by default. With the Fay-Graubard correction, 
jF  is an 

identity matrix.  

The Mancl-DeRouen correction (Mancl & DeRouen, 2001) sets 
j A I  but 

specifies that T 1( )j j

 F I H  where 

1

T 1 T 1

1

J

j j j j j j j

j



 



 
  

 
H D D V D D V . The Kauermann-

Carroll correction (Kauermann & Carroll, 2001) is very similar but makes small changes 

by taking the square root of the denominator term such that T 1/2( )j j

 F I H . The 

Kauermann-Carroll correction also sets
j A I . Table 2 summarizes the calculations of 

residual-based small sample corrections.  
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Table 2 

Residual-based small sample corrections to the sandwich estimator 

 

Correction jA  
jF  

 

Classical 

 

I 

 

I 

 

Fay-Graubard    
1/2

1 min ,[ ] jjDiag c


 Q I  I 

Kauermann-Carroll I 
T 1/2( )j

I H  

Mancl-DeRouen I 
T 1( )j

I H  

Note: T 1ˆ
j j j j

H D ΦD V    

Note: T 1 ˆ
j j j

Q D V D Φ  , 0 1c   where c is an upper bound for the correction and 

diagonal values of 
jA cannot exceed 2. By default, SAS uses a value of 3/ 4c    

 

 The Morel-Bokossa-Neerchal correction (Morel et al., 2003)  is the primary 

design-based small-sample correction employed in applied studies. Design-based 

corrections have a different form compared to residual-based corrections and include 

additional additive terms to the classical sandwich estimator rather than appending 

matrices to the middle term. Specifically, the Morel-Bokossa-Neerchal correction is 

calculated by,  

1 1

T 1 T 1 T 1 T 1

1 1 1

1

T 1

1

ˆ

            

J J J

MBN j j j j j j j j j j j j

j j j

J

j j j j

j

 

 

   

  







    
     
    

 
 
 

  



Φ D V D D V S S V D D V D +

D V D

 (20) 
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where  
if ( 1)

( )

1/ if ( 1)

j

p
J d p

J p

d J d p




 

 
  

 for p equal to the number of predictors in the model, 

J equal to the number of clusters, d a user-selected constant and 

1

1 T 1 T 1 T 1

1 1

max , tr
J J

j j j j j j j j j
j j

r p


   

 

     
              

D V D D V S S V D . Common values for d 

and r that are also the SAS default are 2 and 1, respectively.  
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Chapter 2: Literature Review 

2.1 Multilevel Models with a Small Number of Clusters 

To estimate MLMs without bias, adequate sample sizes must be obtained since 

MLMs are often estimated with ML methods. Although a specific sample size to ensure 

unbiased estimates cannot been pinpointed, a few guidelines have been suggested such as 

30 clusters with a cluster size of 30 in Kreft (1996), a minimum of 20 clusters (Snijders & 

Bosker, 2012), or 50 clusters with a cluster size of 20 for cross-level interactions or 100 

clusters with 10 units each if the main interest is in the variance components (Hox, 1998; 

2010). From a design perspective, Snijders and Bosker (1993) also advise against MLMs 

if the number of clusters is below 10 although this does not necessarily preclude the use 

of MLMs (Ferron, Bell, Hess, Rendina-Gobioff, & Hibbard, 2009).  However, in applied 

settings, the demands of these recommendations are not always realized, leading to 

potentially biased results. For instance, in a review by Dedrick et al. (2009), using the 

30/30 guideline, of the 99 studies reviewed using MLMs between 1999 and 2003 in 13  

journals from education, psychology and sociology, 21% had sample sizes that would not 

meet the recommendation.  

Twenty studies to date have addressed the issue of sufficient samples to 

estimate MLM parameters without concerns of biased estimates (Austin, 2010; 

Baldwin & Fellingham, 2013; Bell, Morgan, Schoeneberger, Kromney, & Ferron, 

2014 ; Browne & Draper, 2006; Clarke, 2008; Cohen, 1998; Ferron et al., 2009; Hox, 

van de Schoot, & Mathijsse, 2012; Konstantopoulos, 2010; Kreft, 1996; Maas & Hox, 

2004; Maas & Hox, 2005; McNeish, 2014b; Meuleman & Billiet, 2009, Moineddin, 

Matheson, & Glazier, 2007; Mok, 1995; Paccagnella, 2011; Scherbaum & Ferreter, 
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2009; Snijders & Bosker, 1993; Stegmueller, 2013). Of these 20 studies, three 

focused solely on binary outcomes, 14 solely on continuous outcomes, and three 

featured both binary and continuous outcomes – continuous outcomes are the interest 

in this dissertation so the studies focusing only on binary outcomes will not be 

reviewed here. It is also important to mention that although other simulation studies 

not included in this list manipulated the number of clusters, the motive for doing so 

was to investigate the number of clusters as a moderator rather than the primary focus 

of the study. The aforementioned articles feature the number of clusters as a primary 

research focus or provide substantial discussion pertaining to the number of clusters. 

Results of these studies will be broken down by each individual parameter that 

MLMs estimate (fixed effects, Level-2 variance components, Level-1 variance 

components, and the standard error estimates associated with each).  

 2.1.1 Fixed Effect Point Estimates. The point estimates for the fixed effects 

were the least dependent of the model estimates on the number of clusters. Fixed 

effect point estimates associated with predictors at either level are unbiased with 30 

clusters and remain unbiased with as few as 15 clusters (Balwdin & Fellingham, 

2013; Bell et al., 2014; Maas & Hox, 2004, 2005). Whereas the fixed effects 

associated with predictors at Level-1 continue to be unbiased with even smaller 

numbers of clusters, fixed effect estimates associated with Level-2 predictors 

(including cross-level interactions) tend to be overestimated when the number of 

clusters falls below 15 (Baldwin & Fellingham, 2013; Stegmueller, 2013). The main 

effect of other factors such as ICC values and cluster size was not found to affect the 
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bias, or lack thereof, of the fixed effect point estimates nor did their interaction with 

the number of clusters have an impact on bias. 

 2.1.2 Fixed Effect Standard Error Estimates. When the number of clusters 

is small, prior research has found that the resulting standard error estimates will be 

downwardly biased (i.e., underestimated) with standard estimation techniques. Thirty 

clusters have been shown to provide fixed effect standard error estimates without bias 

(Maas & Hox, 2004, 2005). Maas and Hox (2005) ran one condition with 10 clusters 

and 5 units within each cluster to examine the effect of extremely small sample sizes. 

When only 10 sparse clusters were simulated, the non-coverage rate of the 95% 

confidence interval for fixed effect estimates approached 10%, far exceeding criteria 

in Bradley (1978) which stated that non-coverage rates less than 2.5% or greater than 

7.5% are indicative of poorly estimated standard errors provided that point estimates 

are unbiased. The standard errors of Level-2 fixed effects required at least 30 clusters 

to produce unbiased estimates when estimated with standard REML in Maas and Hox 

(2005) and Stegmueller (2013) recommends at least 20 clusters to yield unbiased 

standard errors for cross-level interactions. This shows that 10 clusters is inadequate 

with standard estimation procedures if hypothesis tests of the fixed effects are of 

interest to the researcher because Type-I error rate is essentially twice the nominal 

rate. However, Baldwin and Fellingham (2013), Ferron et al. (2009), and Bell et al. 

(2014) found no bias for the standard error estimates of any fixed effect estimates 

(Level-1, Level-2, within-level interactions, cross-level interactions) with less than 30 

clusters and even with as few as 4 clusters in Ferron et al. (2009) when applying the 

Kenward-Roger correction.  
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The above studies focused mainly on continuous predictors although binary 

predictors function similarly for most cases. However, when the prevalence of a binary 

predictor is highly discrepant (e.g., 90% of values fall in a single category), standard error 

estimates will exhibit more bias, especially if included in an interaction. Bell, 

Schoeneberger, Smiley, Ene, and Leighton (2013) found standard error estimates to be 

inflated with highly discrepant prevalence (i.e., 20% or below for one response category) 

even when using the Kenward-Roger correction. When the highly discrepant binary 

predictor was part of an interaction, especially with another binary variable, standard 

error estimates did not become unbiased until approximately 60 clusters were obtained.  

 2.1.3 Level-1 variance component estimates. The point estimates for the 

Level-1 variance are minimally affected by sample size at either level (Browne & 

Draper, 2006; Maas & Hox, 2004, 2005; Meuleman & Billiet, 2009; Stegmueller, 

2013). Maas and Hox (2005) found the bias in the point estimates for Level-1 

variance to be less than 0.05% across all sample size conditions (the smallest total 

sample size condition was 150), exhibiting a negligible amount of bias. Furthermore, 

Browne and Draper (2006) found bias less than 1% with as few as 6 clusters for both 

ML and REML (the smallest total sample size condition was 108). Standard error 

estimates of the Level-1 variance can be estimated in MLMs but inferential tests are 

rarely of any practical interest so they are often not reported in simulation or applied 

studies. 

 2.1.4 Level-2 variance component point estimates. Maas and Hox (2005) 

found that Level-2 variance components were estimated with upward bias up to 25% 

with 10 clusters each of size 5.  Browne and Draper (2006) compared REML and ML 
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and found that REML estimates of the Level-2 variance produced negligible bias with 

as few as 6 clusters with and an average of 18 units per cluster. The conflicting 

findings between Maas and Hox (2005) and Browne and Draper (2006) with REML 

may be attributable to the different cluster sizes. Clarke (2008) and McNeish (2014b) 

have found that small cluster sizes often result in overestimated Level-2 variance 

components and the overestimation worsens further as the number of clusters 

decreases with REML. 

  On the other hand, ML showed large amounts of downward bias with a small 

number of clusters (Browne & Draper, 2006). When the number of clusters falls below 

30 with ML, Level-2 variance estimates exhibit downward bias in excess of 20% with 6 

clusters, resulting in ICC estimates that may be inaccurate. Similarly, Meuleman and 

Billiet (2009) found downward bias of 10% with 20 clusters in a MLM estimated in the 

SEM framework which uses ML.  

 2.1.5 Level-2 variance component standard error estimates. As a function 

of the number of clusters, the standard error of the Level-2 variance is the most 

affected of all the estimates. As a more technical note, standard errors of the Level-2 

variance components are a fourth order estimator, meaning that a high volume of data 

are required to obtain unbiased estimates (Raudenbush & Bryk, 2002).   

 Although a mixture likelihood ratio test χ
2
  test is the prefered method for a 

hypothesis test of the variance components (e.g., Stram & Lee, 1994), a Z-test can also 

provide some inferential information and is often reported by some popluar software 

programs such as Mplus and SAS (Raudenbush & Bryk, 2002). The Z-test divides the 

variance component point estimate by its standard error, so  if the standard errors are 
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underestimated, the Type-I error rate will be inflated leading to more null hypothesis 

rejections than the nominal rate specifies resulting in the retention of more variance 

components, and ultimtely more complex models than may be necessary. 

With 10 clusters, Maas and Hox (2005) found non-coverage rates of the 95% 

confidence interval for the Level-2 variance standard error estimates to approach 30%, 

six times the nominal rate (the large non-coverage rate may be partially attributable to the 

upward bias in the point estimate rather than purely to underestimated standard errors). 

With 30 clusters, the Level-2 variance components have been found to be estimated with 

a non-coverage rate around 9% for both the Level-2 variance of both slopes and the 

intercept, a rate that contunes to exceed criteria in Bradley (1978). More disconcerting, 

Maas and Hox (2005) found that even with 50 clusters and a cluster size of 30, non-

coverage rates frequently exceeded 8% for the Level-2 variance with REML estimation. 

With ML based on the SEM framework, Meuleman and Billiet (2009) found that the non-

coverage rate of the Level-2 variance exceeded 9% even with 80 clusters.  

No reviewed studies had investigated covariance between variance components at 

Level-2. Currently, no recommendations can be made regarding how covariance 

estimates are affected by the number of clusters. 

 2.1.6 Recommendations from McNeish and Stapleton (2014).  A review paper 

by McNeish and Stapleton (2014) synthesized these studies (as well as a wider range of 

studies including a wider set of conditions) and concluded their article with a set of four 

recommendations for modeling clustered with MLMs and small samples.  

1. Use restricted maximum likelihood (REML) to estimate the variance components 

instead of full maximum likelihood. This is particularly germane to researchers 
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who prefer to model in the structural equation modeling framework because 

programs like Mplus, LISREL, AMOS, and EQS are not capable of implementing 

REML broadly (Cheung, 2013 devised a REML estimator for a limited subset of 

SEM models).  

2. Use the Kenward-Roger correction to estimate the standard errors and 

approximate the degrees of freedom for inferential tests. This option is only 

available in SAS and Stata (starting with version 14).  

3. As an alternative to using the Kenward-Roger correction, because the point 

estimates do not exhibit bias in most situations, bootstrapping could be used 

instead to assess the variability of the point estimates. To date, no known studies 

have compared bootstrapping with the Kenward-Roger correction or investigated 

any potential small sample issues for bootstrapping data with a small number of 

clusters.  

4. Bayesian MCMC may also be a viable soluation that does not rely on corrections 

or approximations. The possible caveat with MCMC with small samples is that 

the appropriate prior distribution to use for the variance components is still an 

area of contention; with small samples, a truly non-informative prior does not 

exist and the choice of prior exudes some effect on the posterior distribution.  

2.2 Generalized Estimating Equations with a Small Number of Clusters 

 Since their inception, GEE have been known to perform rather poorly with a 

small number of clusters and studies have not focused solely on quantifying the amount 

of bias. Although many methods have been advanced to correct the small sample bias of 

the classical sandwich estimator for GEE, relatively few studies have compared the 
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performance of these various corrections to determine situations in which performance is 

relatively better or relatively worse (note that Schochet, 2015 recently published a report 

featuring some comprehensive simulations comparing MLM and cluster-robust errors [a 

separate, but related method to GEE] with a small number of clusters). The three previous 

studies that have investigated these issues with linear models will be reviewed in this 

section. This is an extant literature comparing performing for discrete outcomes as well 

(e.g., Li & Redden, 2015;  Fan, Zhang, & Zhang, 2013; and Westgate, 2013 ). 

 2.2.1 Morel et al. (2003). The primary goal of Morel et al. (2003) was to propose 

the Morel-Bokossa-Neerchal correction; however, the second half of the paper included 

demonstrative simulation studies for conditions that are commonly encountered in cluster 

randomized trials. The simulations featured several models with discrete outcomes 

(which are outside the scope of this dissertation) in addition to linear models. The linear 

model featured two predictor variables and included conditions for 10, 20, 30, 50, 100, 

and 200 clusters. Data were generated such that observations had an ICC of 0.25 and then 

models with an independent and compound symmetric working matrix were fit to each 

generated dataset. As anticipated by Zeger et al. (1988), the results between the 

independent and compound symmetric conditions were rather similar. With 10, 20, or 30 

clusters, the classical GEE operating Type-I error rates for testing whether all predictors 

were simultaneously equal to 0 were approximately 26%, 13%, and 10% respectively and 

Type-I error rates were not well behaved until 100 clusters were present. When the same 

data were analyzed with the Morel-Bokossa-Neerchal correction, the operating Type-I 

error rates did not exceed 6% even with as few as 10 clusters.  
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 2.2.2. Lu et al. (2007).  The primary aim of the Lu et al. (2007) simulation was to 

compare the operating Type-I error rates of classical GEE to two popular small sample 

corrections to the sandwich estimator, the Mancl-DeRouen correction and the 

Kauermann-Carroll correction, for models for cluster randomized trial data where the 

typical focus is on inference for a Level-2 predictor (e.g., treatment effect). Lu et al. 

included 10, 14, 20, 40, and 80 clusters in their simulation which was crossed with cluster 

size conditions of 4, 6, 10, 40, and 80. Data were generated such that observations were 

correlated according to a compound symmetric structure and the working correlation 

matrix was set to be correctly specified. No conditions with misspecified working 

correlation matrices were included.  

 Based on the simulation results, Lu et al. (2007) concluded that the Mancl-

DeRouen correction generally performed better than the Kauermann-Carroll correction 

although this finding was not universal across all conditions. The Mancl-DeRouen 

correction was recommended with moderate or large cluster sizes; however, when cluster 

sizes were 10 or less, the recommended correction was not quite so clear because 

performance differed depending upon which level the predictor was situated . If Level-2 

predictors are of primary interest (as is usually the case with cluster randomized trials), 

the Kauermann-Carroll correction was recommended for a small number of clusters when 

cluster size is 10 or less. If the interest is Level-1 predictors, then the Mancl-DeRouen 

correction was recommended.  

 2.2.3. Fan, Zhang, and Zhang (2012).  Fan, Zhang, and Zhang (2012) have 

conducted the most comprehensive simulation of small sample corrections to the GEE 

sandwich estimator to date. Although their study focused on data that were clustered due 
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to repeated measures, one of their models featured conditions that were somewhat 

informative for the cross-sectionally clustered data of interest in this dissertation and the 

simulation results from this model will be reviewed in this section.  

 The data for this model were generated to have three Level-2 predictors, either 12 

or 24 clusters, each with 4 repeated measures per cluster such that the correlation 

between repeated measures one lag apart was 0.50. Cluster size was equal among all 

clusters and only continuous outcomes were of interest. The models fit to the generated 

data utilized both the proper compound symmetric working correlation structure and the 

overly complex unstructured working correlation matrix (for which there may not be 

enough data to support with smaller samples). The model was then estimated with 

classical GEE and five small sample corrections: Mancl-DeRouen, Kauermann-Carroll, 

Fay-Graubard, Morel-Bokossa-Neerchal, and Fan-Zhang-Zhang. The Fan-Zhang-Zhang 

correction was not reviewed earlier because it has not been extensively studied and it is 

not available in mainstream software without manual programming.  

 When fitting the model with the complex unstructured working correlation 

matrix, the classical GEE estimator had Type-I error rates for the predictor variables that 

were as high as five times the nominal rate and were never below twice the nominal rate 

(likely because the unstructured working matrix requires estimation of many parameters 

which the data are not large enough to support). Although the use of the Mancl-DeRouen 

correction, Kauermann-Carroll correction, and Fay-Graubard correction helped, with the 

unstructured working correlation matrix the Type-I error rates for the predictors was still 

7-20% compared to a nominal 5% rate. The Morel-Bokossa-Neerchal correction 
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performed best in relative terms and at times maintained Type-I error rates near the 

nominal level but had Type-I error rates in the double digits in the 12 cluster conditions.  

 When fitting the model with the proper compound symmetric working correlation 

matrix, the classical GEE estimator had Type-I error rates for the predictor variables 

between 8% and 12%. The  Kauermann-Carroll and Fay-Graubard  corrections again 

improved the Type-I error rates but rates approached 10% with 12 clusters. The Mancl-

DeRouen correction had Type-I error rates that rarely strayed from 5%, echoing a 

comment in the discussion section of Lu et al. (2007) which noted a theoretical rationale 

why the Mancl-DeRouen correction performed better than other methods when working 

correlation matrix was very close to the population covariance matrix.  The Morel-

Bokossa-Neerchal correction performed very well when the working correlation matrix 

was properly specified and, at times, trended towards overcorrecting with Type-I error 

rates near 3%.  

 Fan et al. (2012) also modeled some of their data with a MLM and a Kenward-

Roger correction and found that the Kenward-Roger correction performed the best but 

only if the covariance structures were exactly correct (see Assumptions 3 and 4 in Section 

1.3.1.3.) which is rather difficult to achieve with real world data that has a small number 

of clusters. Fan et al. (2012) recommended Mancl-DeRouen and their own Fan-Zhang-

Zhang correction but noted that more future studies needed to test Fan-Zhang-Zhang 

under broader conditions to determine whether its desirable properties are maintained.  

2.3. Fixed Effect Models with a Small Number of Clusters 

 Inference with FEMs and a small number of clusters is not inherently problematic 

because the model is typically estimated with OLS which encounters fewer small sample 
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issues because it is not iterative and has a closed form solution with continuous 

outcomes. In fact, FEMs are often touted as only being appropriate with a smaller number 

of clusters because the model will become rather unwieldly when there are several dozen 

cluster affiliation variables in the model (Murnane & Willet, 2010). Additionally, FEMs 

are not consistent and produce biased regression coefficients even as J   (Arellano & 

Bond, 1991; Kiviet, 1995; Nickell, 1981). Therefore, previous studies have not 

extensively investigated the performance of FEMs with a small number of clusters, and, 

given the near exclusive use of FEMs in economics and sociology, FEMs have not been 

readily compared to competing methods in the previous literature.  
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Chapter 3: Monte Carlo Simulation Design and Preliminary Results 

3.1. Simulation Design 

To evaluate the performance of methods for modeling clustered data with an 

extremely small number of clusters, the simulation features four conditions for the 

number of clusters (4, 8, 10, 14), two conditions for the number of units within each 

cluster. The average number of units within each cluster is 10 and 25 and there are two 

balance conditions: balanced and unbalanced. In the balanced condition, every cluster 

will have exactly 10 or 25 observations. In the unbalanced condition, clusters will have 

between 7 and 14 observations per cluster or between 17 and 34 observations per cluster. 

The unbalanced cluster sizes were generated such that the probability of each value 

within the interval was uniform. Keeping with the motivating example given in Section 

1.2, the data generation model consists of  a continuous outcome variable (
ijY ) as a 

function of a binary variable (
1 jW ) with 50:50 prevalence at Level-2 (reminiscent of a 

treatment group assigned at Level-2), a continuous variable at Level-1 (
1ijX , reminiscent 

of a pre-test score),  a binary Level-1 variable with 50:50 prevalence (
2ijX , reminiscent 

of biological sex), and a binary Level-1 variable with 25:75 prevalence (
3ijX , 

reminiscent of English language learner status).  In Raudenbush and Bryk (2002) 

notation
8
, the generation model can be formulated as 

                                                 
8 Although the matrix form was presented through Chapter 1 to facilitate discussion and estimation of 

models, I switch to Raudenbush and Bryk  notation in Chapters 3 and 5. This was done because 

Raudenbush and Bryk notation is better suited for discussing specific models because it more easily allows 

for readers to see which effects are located at which levels.  
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The data generation model only included Level-2 variation through the intercept (
0 ju ) 

because models for data with so few clusters would be unlikely to be able to support 

models of much greater complexity and the intent was not to generate data from a model 

that would not be realistic to fit under the circumstances of interest or that may have been 

fraught with convergence issues even if properly specified. The intent was to make the 

number of predictors  realistic in terms of the quantity and level placement, in contrast to 

previous small sample studies that typically include a single continuous predictor at each 

level (e.g., Maas & Hox, 2005; Moineddin et al., 2007), which is unlikely to be sufficient 

for or representative of applied research questions. The variance of the intercept random 

effect was set to 1.625 and the residual variance to 3.00 across all conditions, resulting of 

an ICC of 0.20
9
 in accordance with common ICC values in educational psychology 

research (the area of application motiving the study) seen in practice (Hedges & Hedberg, 

2007). Table 3 shows the Cohen’s d effect sizes for the regression coefficient parameters 

used to generate the data.  Although Cohen’s d are typically reported for differences 

between groups, Cohen’s d is reported because it is often reported in behavioral sciences 

and is readily interpretable. Cohen’s d was calculated based on a conversion of η
2
 

provided in Fritz, Morris, and Richler (2012) such that 

                                                 
9 Readers may note that when using the traditional formula for the ICC, where 00

2

00

ICC
g

g 



, will not 

yield a value of 0.20 with the specified values. However, the ICC is based on an unconditional model such 

that the variance explained by the predictors is lumped into the error terms. After considering the variance 

explained by the predictors, the specified values for the variance components yield an ICC of 0.20.  
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where 

 
2

Total

SS
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
    (22) 

where SS
 is the sum of squares for a particular regression coefficient in an OLS 

regression ANOVA table and TotalSS is the total sum of squares in the OLS regression 

ANOVA table. Because the interest of this study is on linear models with continuous 

outcomes, the regression coefficients will be unbiased if clustering is ignored (e.g., 

McNeish, 2014a). Therefore, determining the values for the regression coefficients in the 

simulation could be simplified by using single-level formula. Approximate population 

values for regression coefficients were chosen based on what the predictors were 

intended to represent and also to represent a range of different effect sizes that might 

occur in behavioral research.  

 

Table 3 

Cohen’s d population effect sizes for predictors in the data generation model 

 

Parameter Variables Representative Effect d 

00  None Intercept 0.00 

01  1 jW  Treatment 0.40 

10  1ijX  Pretest 0.80 

11  1 1j ijW X  Pretest × Treatment 0.05 

20  2ijX  Sex -0.10 

21  1 2j ijW X  Sex × Treatment 0.02 

30  3ijX  ELL -0.30 

31  1 3j ijW X  ELL × Treatment -0.20 
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The generated data were then fit with the 12 possible methods reviewed 

previously; Table 4 lists these methods and the associated SAS procedures. All data were 

generated with PROC IML in SAS 9.3 and subsequently analyzed with PROC MIXED, 

PROC MCMC, PROC GLM, or PROC GLIMMIX. Although PROC GENMOD is 

typically used to fit GEE models with quasi-likelihood methods in SAS, PROC 

GLIMMIX is the only SAS procedure that contains the small sample corrections that are 

of interest in this study. Therefore, the covariance parameters in the GEE models are 

estimated with maximum likelihood rather than the more traditional method of moments 

as outlined in Liang and Zeger (1986).  

Because convergence is an important issue to consider with MCMC, test 

replications were run using a different number of burn-in iterations, recorded iterations, 

and thinning to determine the optimal number to use across the simulation conditions. 

Using 10,000 burn-in iterations, 50,000 recorded iterations, and thinning by 50 was found 

to provide non-significant Geweke’s tests for all parameters and autocorrelations with 

magnitude below 0.10 for all lags beyond Lag 2. Proc MCMC uses Metropolis-Hastings 

sampler rather than a Gibbs sampler so a larger number of iterations compared to other 

software programs are typically required (refer to Section 1.3.1.2.1. for a brief 

discussion). Based on findings in previous studies by Browne and Draper (2006) and 

Gelman (2006), the posterior distribution of the inverse gamma prior and half-Cauchy 

conditions will be summarized with the median and the posterior distribution of the 

uniform distribution will be summarized by the mode. The hyperparameters for the priors 
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were selected with the intention of being non-informative by casting a wide support (see 

Table 4 for hyperparameter values used in the simulation).  

GEE used an exchangeable working structure, recommended when data are 

clustered cross-sectionally (Ballinger, 2004; Horton & Lipsitz, 1999). The exchangeable 

working structure should be a proper specification because, with continuous outcomes, 

GEE with an exchangeable working structure is equivalent (barring differences in 

estimation methods) to a MLM with random intercepts (Twisk, 2004).  

Table 4 

12 analysis methods used in the simulation  

 

Model Estimation Correction/Prior SAS Proc 

Multilevel Model ML --- Mixed/ Glimmix 

 

REML --- Mixed/ Glimmix 

 

REML Kenward-Roger Mixed/ Glimmix 

 

MCMC 
1(0.01,0.01)  MCMC 

 

MCMC U(0,100)  MCMC 

 

MCMC Half-Cauchy (0,16)
†
 MCMC 

GEE GEE ---  Genmod/Glimmix 

 

GEE Mancl-DeRouen Glimmix 

 

GEE Kauermann-Carroll Glimmix 

 

GEE Fay-Graubard Glimmix 

 

GEE Morel-Bokossa-Neerchal Glimmix 

Fixed Effects Model OLS --- GLM/Reg 

 

Note : Models estimated with GEE were fit with an exchangeable working structure  

 
†
A t-distribution with one degree of freedom equivalent to a Cauchy distribution 

 

 

3.2. Outcome Measures 

Four outcome measures were tracked and reported. First, the median relative bias 

was recorded for regression coefficient estimates and variance components (if variance 

components were included in the model) to examine how well each method was able to 
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estimate effects with few clusters.  The median relative bias was reported instead of the 

mean because, due to the small sample focus of this study, some outlying conditions may 

exhibit extreme amounts of bias which will adversely affect the mean but not the median.  

Using criteria from Flora and Curran (2004), estimates with a magnitude of relative bias 

greater than 10% were considered meaningfully biased.  

Second, the bias in the standard errors estimates are reported. Population values 

for sampling variability cannot be directly specified in a simulation design, so the 

standard deviation of regression coefficients provides a “true” value for the sampling 

variability of the regression coefficient estimates, the same quantity the standard error is 

attempting to estimate. The Flora and Curran (2004) criterion is also applicable to 

standard error estimates.  

Third, the coverage of the 95% confidence interval is tracked. This metric 

combines regression coefficient estimate bias and standard error estimate bias to assess 

how they jointly impact Type-I error rates. If regression coefficient estimates are biased, 

the interval will be centered around a biased value. If standard error estimates are biased, 

the length of the interval will be inappropriately narrow or wide.  Based on criteria 

recommended by Bradley (1978), confidence interval coverage rates between [0.925, 

0.975] will be considered to be reasonably close to the nominal rate, suggesting adequate 

Type-I error rates. If coverage rates are poor, it is not possible to directly attribute the 

cause as it could be due to biased standard error estimates, biased regression coefficients, 

or biased variance components.  

Lastly, the statistical power for each effect was documented given that an aim of 

this dissertation is to make recommendations for which method(s) provide the greatest 
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relative power under circumstances of very few clusters. Power was determined 

empirically by tracking the number of replications in which the 95% confidence interval 

did not contain 0. Also related to power, the efficiency of each method will be explored 

through the magnitude of the standard deviation of the regression coefficients. That is, if 

the empirical sampling distribution of the regression coefficients is larger for a particular 

method, the efficiency is reduced and power would be expected to suffer provided that 

standard errors are estimated without bias.  Conversely, if the standard deviation of the 

regression coefficient estimates is smaller for a particular method, that would indicate 

increased efficiency and that the method would be expected to more powerful.  

3.3. Results 

 Results are reported in the following order: parameter estimate bias (Section 

3.3.1), variance component estimate bias (Section 3.3.2), standard error estimate bias 

(Section 3.3.3), confidence interval coverage (Section 3.3.4), empirical power (Section 

3.3.5), and efficiency (Section 3.3.6). Throughout the results section, only the unbalanced 

cluster size condition tables will be reported because (1) the results were quite similar 

between unbalanced and balanced cluster size conditions and (2) to reduce monotony and 

redundancy of the reporting.    

 As presented in Table 8, as in common in models for small sample data, the 

frequentist MLM encountered some convergence difficulties (non-positive definite 

random effect covariance matrices, in particular). Results were compared in two ways: 

(1) where convergent replications for each method were utilized (e.g., the ML results 

could be based on 800 replications whereas the REML replications could be based on 900 

replications) and (2) where only the replications that converged for all methods were 
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utilized (e.g., if method with the fewest convergent models had 800 converged 

replications, then all methods would be reported based on these 800 replications). Results 

between methods of handling non-convergent replications were very close to each other 

(e.g., power within 2%, confidence interval coverage rates within 1%). Therefore, only 

results for the first method where all convergent replications  were used are reported in 

the following subsections.   

 3.3.1 Parameter estimate relative bias. For the most part, there was very little 

bias observed in the estimates of regression coefficients across conditions. Frequentist 

MLMs, GEEs, and FEMs underestimated the cross-level interaction with 4 clusters and 

frequentist MLMs and GEEs underestimated the treatment effect with 4 clusters. For all 

other parameters in all other conditions, the bias was negligible based on Flora and 

Curran’s criterion.  Full results for the unbalanced 7 to 14 cluster size condition are 

shown in Table 5 and results for the unbalanced 17 to 34 cluster size condition are 

presented in Table 6.  Because many of the methods under investigation in this study are 

corrections to variability estimates for appropriate inference, they do not affect the 

regression coefficient estimation. Thus, Table 5 only shows frequentist MLMs estimated 

by ML and REML, Bayesian MLMs, classic GEE, and FEMs because all GEE 

corrections will produce the same point estimates for the regression coefficients.  
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Table 5 

Regression coefficient percent median bias by method for 10 or fewer clusters with 7 to 

14 observations per cluster 

 

Clusters Parameter ML REML IG Uni HCchy GEE FEM 

4 ELL 8 7 0 -1 -3 4 -6 

 

Pretest 1 1 0 0 -1 0 0 

 

Sex -3 -5 9 3 3 -3 -7 

 Sex×Treat -5 -5 -8 -9 -6 -5 -7 

 

Treat -15 -14 3 -2 7 -14 -5 

 

ELL×Treat -55 -53 7 1 4 -36 -1 

 

Pre×Treat -12 -12 1 4 7 -10 8 

 
Intercept 0 0 0 0 0 0 0 

  
       8 ELL 1 0 -1 0 -4 2 -3 

 

Pretest 1 1 1 1 0 1 0 

 

Sex 9 9 8 14 12 8 6 

 Sex×Treat -5 -5 -5 -6 -2 -5 -7 

 

Treat -2 -2 0 0 1 -2 -3 

 

ELL×Treat -6 -6 -3 -3 -1 -7 -1 

 

Pre×Treat 3 -3 -2 -2 0 -3 -4 

 
Intercept 0 0 0 0 0 0 0 

  
       10 ELL 0 -1 0 1 -3 -1 6 

 

Pretest 0 0 0 1 0 0 -1 

 

Sex 5 5 8 16 12 15 -1 

 Sex×Treat -3 -3 -2 -3 0 -3 -4 

 

Treat 0 0 1 1 0 0 2 

 

ELL×Treat 0 0 -1 0 10 0 -4 

 

Pre×Treat -2 -2 -2 -3 -1 -2 -3 

  Intercept 0 0 0 0 0 0 0 

 

Note: ML= Maximum Likelihood REML= Restricted Maximum Likelihood KR = 

Kenward Roger, IG = Inverse Gamma MCMC prior, Uni = MCMC Uniform prior, 

HCchy = MCMC half Cauchy prior, GEE = Generalized estimating equations, 

FEM = Fixed Effect Model 

 

Note: For the Intercept, Pretest × Treatment, and Sex × Treatment effects, absolute bias is 

reported instead of relative bias because the true effects were either zero or very 

close to zero.  
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Table 6 

Regression coefficient percent median bias by method for 10 or fewer clusters with 17 to 

34 observations per cluster 

 

Clusters Parameter ML REML IG Uni HCchy GEE FEM 

4 ELL 9 8 0 2 7 9 9 

 

Pretest 0 0 0 0 1 0 0 

 

Sex 8 5 3 3 -7 9 -6 

 Sex×Treat -5 -5 -13 -13 -11 -9 -8 

 

Treat -12 -10 -2 -4 -6 -10 -1 

 

ELL×Treat 3 -23 -1 -4 -5 -25 -9 

 

Pre×Treat -9 -9 -1 -2 -6 -5 -8 

 
Intercept 8 8 0 0 0 0 0 

  
       8 ELL 0 -1 -1 -1 -2 0 3 

 

Pretest 0 0 0 0 1 0 -1 

 

Sex 4 6 3 5 7 6 3 

 Sex×Treat -6 -5 -8 -8 -6 -5 -7 

 

Treat -2 -2 -1 -1 0 -2 3 

 

ELL×Treat -3 -4 -2 -3 0 -3 -1 

 

Pre×Treat -4 -4 -4 -4 -6 -4 -5 

 
Intercept 2 2 0 0 0 0 0 

10 ELL 0 0 1 0 0 0 3 

 

Pretest 0 0 0 0 0 0 0 

 

Sex 4 2 3 -2 4 2 -3 

 Sex×Treat -9 -9 -9 -9 -7 -9 -8 

 

Treat 0 -1 -1 -1 -2 0 2 

 

ELL×Treat 1 2 2 2 5 2 -3 

 

Pre×Treat -2 -2 -2 -2 -3 -2 -2 

  Intercept 0 1 0 0 0 0 0 

 

Note: ML= Maximum Likelihood REML= Restricted Maximum Likelihood KR = 

Kenward Roger, IG = Inverse Gamma MCMC prior, Uni = MCMC Uniform prior, 

HCchy = MCMC half Cauchy prior, GEE = Generalized estimating equations, 

FEM = Fixed Effect Model 

 

Note: For the Intercept, Pretest × Treatment, and Sex × Treatment effects, absolute bias is 

reported instead of relative bias because the true effects were either zero or very 

close to zero.  

 

3.3.2 Variance Component Estimate Bias. Table 7 reports the variance 

component bias for the intercept random effect (g00)  and the Level-1 residual (σ
2
). Only 6 
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of the 12 methods under investigation estimate Level-2 random effects, so FEMs and 

GEE are not reported in Table 7.  As can be expected based on prior research (e.g., 

Browne & Draper, 2006), the ML intercept variance estimate was highly downwardly 

biased for all conditions of the simulation. Furthermore, as discussed in Ferron et al. 

(2009) and McNeish and Stapleton (2014), REML vastly reduces the estimation bias in 

intercept variance. However, REML begins to falter at about 10 clusters once models 

become even moderately complex (Browne & Draper, 2006 found no discernable bias 

with as few as 6 clusters in a model with no predictors).  

Table 7 

Percent relative bias of variance components for unbalanced cluster conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: ML, REML, and KR do not include non-convergent replications.  

Cluster Size Clusters Parameter ML REML/KR IG UNI HCchy 

7 to 14 4 00g   -85 -20 -50 52 58 

 8  -55 -15 -40 11 -4 

 10  -36 -11 -21 12 -9 

 14  -26 -7 -12 12 -10 

 

     

  

 4 
2  -18 -3 5 2 1 

 8  -10 -1 3 2 2 

 10  -6 0 4 3 2 

 14  -5 0 3 3 3 

Cluster Size Clusters Parameter ML REML/KR IG UNI HCchy 

17 to 34 4 00g  -74 -31 -33 47 50 

 8  -45 -13 -12 7 2 

 10  -32 -9 -7 7 -7 

 14  -24 -9 -5 9 -10 

 

     

  

 4 
2  -7 -1 2 1 1 

 8  -3 0 1 1 1 

 10  -3 -1 1 1 1 

 14  -2 0 1 2 2 
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Note: GEE and FEM are not shown because they do not estimate variance components 

 

Note: ML= Maximum Likelihood REML= Restricted Maximum Likelihood KR = 

Kenward Roger, IG = Inverse Gamma MCMC prior, Uni = MCMC Uniform prior, 

HCchy = half Cauchy MCMC prior 

Note: Based on Browne and Draper (2006), the posterior with an inverse gamma prior 

was  summarized by the median and the uniform prior was summarized by the 

mode. Congruent with Gelman (2006), the posterior with a half-Cauchy prior is 

summarized by the median.   

 

Note: Bold entries indicate bias that exceeded the 10% threshold suggested in Flora and 

Curran (2004) 

 

With small samples, non-positive definite covariance matrices are a common concern. 

Table 8 shows the percent of replications that yielded non-positive definite covariance 

matrices across simulation conditions for ML and REML. These replications are 

excluded from the reported results throughout Section 3.3.  
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Table 8 

Percentage of non-definite covariance matrices by condition 

 

Number of Clusters Cluster Size ML REML/KR 

4 

   

 

10 41 25 

 

7 to 14 42 24 

 

25 24 13 

 

17 to 34 25 14 

8 

   

 

10 13 6 

 

7 to 14 18 9 

 

25 2 0 

 

17 to 34 4 3 

10 

   

 

10 7 3 

 

7 to 14 8 3 

 

25 0 0 

 

17 to 34 1 0 

14 

   

 

10 2 1 

 

7 to 14 2 1 

 

25 0 0 

  17 to 34 0 0 

 

As expected based on Gelman (2006), MCMC with a uniform prior in this 

simulation resulted in very highly upwardly biased intercept variance estimates which 

became less biased as the number of clusters increased (although the choice of 

hyperparameters would of course influence these results to some degree). Unexpected 

based on findings in Gelman (2006) and Polson and Scott (2006), although using a half-

Cauchy prior resulted in more desirable performance as compared to using a uniform 

prior, the bias in the intercept variance was still rather high for the conditions included in 

this study and was more or less on par with an inverse gamma prior, which exhibited 

some downward bias with 10 or fewer clusters, particularly with smaller cluster sizes. 
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With smaller cluster sizes, the half-Cauchy prior performed best with the Kenward-Roger 

correction not too far behind. With larger clusters sizes (particularly with the number of 

clusters in the single digits), the inverse-gamma prior performed approximately equal to 

Kenward-Roger and was on par with the half-Cauchy Prior. The half-Cauchy prior 

produced the best estimates with few clusters and yielded slightly worse results when the 

number of clusters was in the teens compared to when the number of clusters was in the 

single digits.  

3.3.3 Standard error estimate bias.  Table 9 shows the bias of the standard error 

estimates for the unbalanced 7 to 14 cluster size condition and Table 10 shows the same 

quantity for the unbalanced 17 to 34 cluster size condition.  

Table 9 

Standard error estimate percent median bias by method for unbalanced clusters with 7 to 

14 observations per cluster 

 

Clusters Effect ML REML KR IG Uni Hcchy GEE FG KC MBN MD FEM 

4 ELL -21 -13 -12 -5 3 3 -65 -36 -48 -13 -16 -2 

 Pretest -17 -9 -8 -4 4 4 -64 -33 -48 -10 16 -1 

 Sex -14 -5 -4 0 0 0 -61 -28 -43 -4 -6 -5 

 Sex×Treat -9 0 1 1 1 1 -59 -22 -41 -1 0 -4 

 Treat -27 -8 -7 22 80 81 -55 -23 -39 -3 -15 -29 

 ELL×Treat -9 0 1 -4 5 5 -62 -27 -42 -4 -13 0 

 Pre×Treat -8 1 2 1 7 7 -62 -26 -43 -1 40 2 

 Intercept -31 -13 -13 22 103 103 -56 -31 -41 -7 -13 -30 

 
 

            

8 ELL -16 -11 -10 -4 -3 -3 -45 -24 -27 -6 -5 -5 

 Pretest -12 -7 -6 -5 2 2 -44 -23 -26 -3 12 -2 

 Sex -8 -3 -2 0 1 1 -37 -16 -19 4 8 3 

 Sex×Treat -7 -2 -2 3 2 2 -36 -9 -17 4 15 3 

 Treat -16 -4 -4 22 20 15 -33 -8 -16 5 7 -29 

 ELL×Treat -10 -5 -4 -1 -1 -1 -40 -12 -19 0 5 -1 

 Pre×Treat -11 -6 -5 0 2 2 -42 -17 -24 -2 28 -5 

 Intercept -19 -7 -6 6 21 18 -37 -18 -22 3 -1 -28 
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Clusters Effect ML REML KR IG Uni Hcchy GEE FG KC MBN MD FEM 

10 ELL -10 -7 -6 -5 -1 -1 -29 -15 -14 4 5 -5 

 Pretest -10 -6 -5 -5 3 3 -30 -17 -16 3 5 -1 

 Sex -5 -1 -1 0 0 0 -25 -11 -11 10 6 2 

 Sex×Treat -2 2 3 4 3 3 -21 -2 -6 14 15 2 

 Treat -10 -1 0 6 6 6 -19 -1 -6 14 13 -29 

 ELL×Treat -8 -5 -4 -1 -1 -1 -27 -6 -10 6 12 -2 

 Pre×Treat -8 -5 -4 0 1 1 -30 -11 -14 4 16 -4 

 Intercept -10 -1 -1 6 6 6 -20 -6 -7 15 9 -28 

 
 

            

14 ELL -6 -4 -3 -3 0 0 -19 -8 -8 12 4 -1 

 Pretest -9 -6 -6 -5 2 2 -23 -14 -13 7 0 0 

 Sex -1 2 2 3 -2 -2 -15 -5 -4 18 8 -1 

 Sex×Treat -1 1 2 2 2 2 -14 0 -3 17 10 -1 

 Treat -7 0 0 1 -3 -3 -13 0 -3 17 7 -29 

 ELL×Treat -2 1 1 2 -1 -1 -14 1 -2 17 12 -3 

 Pre×Treat -5 -3 -2 -2 0 0 -20 -6 -9 10 5 -3 

 Intercept -10 -3 -3 -1 -4 -4 -16 -8 -7 14 2 -29 

 

Note: ML= Maximum Likelihood REML= Restricted Maximum Likelihood KR = 

Kenward Roger, IG = Inverse Gamma MCMC prior, Uni = MCMC Uniform prior, 

HCchy = MCMC half Cauchy prior, FG = Fay-Graubard, KC = Kauermann-

Carroll, MD = Mancl-DeRouen, MBN = Morel-Bokossa-Neerchal, FEM = Fixed 

Effect Model 

 

Note: Bold entries indicate bias that exceeded the 10% threshold suggested in Flora and 

Curran (2004) 

 

 

Table 10 

Standard error estimate percent median bias by method for unbalanced clusters with 17 

to 34 observations per cluster 

 

Clusters Effect ML REML KR IG Uni Hcchy GEE FG KC MBN MD FEM 

4 ELL -9 -6 -5 0 0 -1 -58 -35 -44 -3 4 -2 

 Pretest -11 -8 -7 -6 -5 -1 -58 -37 -43 -3 36 -2 

 Sex -13 -10 -9 -8 -8 3 -60 -39 -45 -8 6 2 

 Sex×Treat 0 3 4 -2 -2 1 -55 -23 -38 5 39 -1 

 Treat -31 -11 -11 27 62 79 -56 -27 -41 -5 2 -48 

 ELL×Treat 3 7 7 5 6 -2 -55 -22 -37 8 25 -3 

 Pre×Treat -1 2 3 -3 -2 0 -56 -26 -39 5 78 -1 

 Intercept -36 -19 -19 29 97 113 -59 -40 -47 -13 -10 -46 
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Clusters Effect ML REML KR IG Uni Hcchy GEE FG KC MBN MD FEM 

8 ELL -5 -3 -3 -1 -1 -3 -38 -21 -22 3 10 -3 

 Pretest -7 -5 -4 -4 -3 -1 -39 -22 -23 2 17 -2 

 Sex -7 -5 -5 -4 -5 -3 -37 -20 -21 3 9 -4 

 Sex×Treat -1 1 1 1 2 -5 -31 -6 -14 9 25 -3 

 Treat -17 -4 -4 13 22 15 -32 -9 -17 5 11 -46 

 ELL×Treat -1 1 2 2 3 0 -34 -9 -17 7 20 2 

 Pre×Treat -5 -3 -3 -3 -3 0 -36 -11 -19 4 28 -1 

 Intercept -20 -8 -8 10 21 18 -37 -21 -23 1 03 -46 

 
 

            

10 ELL 1 2 3 3 4 -1 -22 -9 -10 13 9 -1 

 Pretest -4 -3 -3 -2 -2 -2 -23 -10 -10 10 11 -3 

 Sex -8 -7 -6 -6 -6 -4 -26 -14 -15 5 2 -3 

 Sex×Treat -2 0 0 0 1 -3 -20 -2 -7 12 14 2 

 Treat -10 -2 -1 7 9 4 -19 -2 -7 12 9 -47 

 ELL×Treat 5 6 6 6 7 2 -17 3 -3 18 18 3 

 Pre×Treat -5 -4 -3 -3 -2 0 -22 -3 -8 9 16 -1 

 Intercept -11 -2 -2 6 2 6 -21 -9 -10 11 5 -46 

 
 

            

14 ELL -3 -2 -1 -1 -2 -5 -17 -8 -8 13 2 -2 

 Pretest 1 2 2 2 2 -4 -12 -2 -2 19 9 -5 

 Sex -4 -3 -3 -3 -3 -2 -16 -8 -8 13 2 0 

 Sex×Treat 0 1 1 1 2 -2 -12 1 -2 18 10 3 

 Treat -7 0 0 5 -5 -5 -11 1 -3 17 7 -46 

 ELL×Treat 1 1 2 2 2 1 -13 0 -3 17 8 -1 

 Pre×Treat -2 -1 -1 -1 -1 0 -14 -1 -4 15 8 -4 

 Intercept -9 -3 -2 3 -7 -3 -15 -6 -6 15 3 -47 

 

Note: ML= Maximum Likelihood REML= Restricted Maximum Likelihood KR = 

Kenward Roger, IG = Inverse Gamma MCMC prior, Uni = MCMC Uniform prior, 

HCchy = MCMC half Cauchy prior, FG = Fay-Graubard, KC = Kauermann-

Carroll, MD = Mancl-DeRouen, MBN = Morel-Bokossa-Neerchal, FEM = Fixed 

Effect Model 

 

Note: Bold entries indicate bias that exceeded the 10% threshold suggested in Flora and 

Curran  (2004) 
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Generalized estimating equations. Immediately in Tables 9 and 10, it can be seen 

that standard GEE, the Kauermann-Carroll correction, and the Fay-Grabuard correction 

do not perform well, especially with 10 or fewer clusters, and are at risk for extremely 

inflated Type-I error rates. The Mancl-DeRouen correction had relative bias for standard 

error estimates that was less prominent although some of the Level-1 predictors were 

problematic for the smallest number of cluster conditions.  The Morel-Bokossa-Neerchal 

correction performed the best of all the GEE methods although the standard error 

estimates tended to be too large with a larger number of clusters which will have an 

adverse effect on power (discussed in Section 3.3.5).  

Fixed effect models. FEMs generally provided very good standard error estimates 

for predictors directly estimated by the model. The relative bias for the standard error 

estimates of the treatment effect and the intercept, which were necessarily estimated 

through linear combinations of the cluster affiliation estimates, was consistently poor and 

did not appreciably change as the number of clusters changed. This shortcoming was 

anticipated based on how the standard errors are estimated in SAS as noted in Section 

1.3.3.1. Chapter 4 is devoted to addressing and correcting this issue so that FEMs are a 

viable choice.  

Multilevel models. As has been demonstrated in previous research (e.g., Browne 

& Draper, 2006; McNeish & Harring, 2015), ML and REML tended to yield standard 

errors that are slightly downwardly biased, especially for predictors involving a variable 

at Level-2. Use of the Kenward-Roger correction was largely able to address this 

limitation and provided standard error estimates that did not exhibit bias except for two 

predictors in the smallest number of cluster condition. Although Ferron et al. (2009) 
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generally found that a Kenward-Roger correction was able to estimate standard errors 

appropriately even for extremely small numbers of clusters, the data generation model in 

this study was much larger and so the slight dip in performance was anticipated (see, e.g., 

McNeish & Stapleton, 2014). 

MCMC methods tended to overestimate standard deviation of the posterior 

distribution (the Bayesian equivalent of standard errors although they are not used in a 

similar manner in inferential tests) of Level-2 predictors with fewer than 10 clusters to a 

greater extent than ML and REML underestimated standard errors in identical conditions. 

An inverse gamma prior yielded the least bias standard deviation estimates while both the 

uniform and half-Cauchy prior resulted in standard deviation estimates that were far too 

large for the treatment effect and the intercept.  

3.3.4 Confidence Interval Converge. Bias in estimates of regression 

coefficients, standard errors, and variance components each affect operating Type-I error 

rates and statistical power. The combination of the potential bias in each of these three 

parameters can be summarized within a single metric – confidence interval coverage. 

Confidence interval coverage tracks the percentage of replications in which the true value 

is included in the 95% confidence interval for each parameter. If regression coefficients 

are biased, the interval will be centered around a biased value and the location of the 

interval will be incorrect. If the standard errors are biased, the length of the interval will 

be incorrect. Based on criteria in Bradley (1978), confidence interval coverage rates 

between 0.925 and 0.975  are acceptable, coverage rates below 0.925 are indicative of 

inflated Type-I error rates, and coverage rates above 0.975 are indicative of deflated 

Type-I error rates. Table 11 shows the confidence interval coverage rates for all 
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regression coefficients in the model for all 12 methods for the unbalanced cluster size 

condition with 7 to 14 observations per cluster and Table 12 shows the confidence 

interval coverage rates for all regression coefficients in the model for all 12 methods for 

the unbalanced cluster size condition with 17 to 34 observations per cluster.  

 

 

Table 11 

Confidence interval coverage of model parameters for the unbalanced cluster size 

condition with 7 to 14 observations per cluster  

 

Clusters Parameter ML REML KR IG Uni HCchy GEE FG KC MD MBN FEM 

4 ELL 91 93 93 94 95 95 51 78 62 89 93 95 

 

Pretest 93 96 96 97 97 97 52 77 62 90 94 94 

 

Sex 93 96 96 96 96 96 52 78 62 87 94 94 

 

Sex×Treat 81 83 83 95 96 96 50 66 61 82 82 94 

 

Treat 75 80 82 97 99 100 74 83 79 87 88 83 

 

ELL×Treat 78 80 80 95 96 95 45 64 57 81 80 96 

 

Pre×Treat 82 84 84 96 97 97 48 66 59 83 83 96 

 Intercept 96 97 91 97 99 99 65 92 69 94 97 83 

              

Clusters Parameter ML REML KR IG Uni HCchy GEE FG KC MD MBN FEM 

8 ELL 93 95 95 95 95 95 67 82 78 88 94 93 

 

Pretest 94 96 96 96 96 95 70 82 78 90 94 95 

 

Sex 94 95 96 96 95 95 72 82 80 89 94 96 

 

Sex×Treat 92 92 94 96 96 96 75 85 83 92 93 96 

 

Treat 88 92 93 95 96 96 84 92 89 95 96 83 

 

ELL×Treat 91 92 93 95 95 95 72 84 82 92 93 95 

 

Pre×Treat 94 95 95 96 96 96 72 86 82 93 94 94 

 Intercept 95 97 95 96 96 96 78 88 83 92 97 85 

              

10 ELL 94 95 95 95 95 95 79 86 85 90 95 94 

 

Pretest 95 96 96 96 96 95 79 85 85 91 96 95 

 

Sex 95 96 96 96 95 96 82 87 86 91 96 96 

 

Sex×Treat 96 96 96 97 96 96 84 91 89 94 97 95 

 

Treat 92 95 96 96 95 95 91 95 93 96 98 85 

 

ELL×Treat 94 95 95 95 96 96 83 90 89 94 96 96 

 

Pre×Treat 94 95 95 95 96 95 81 89 88 94 96 93 

 Intercept 96 97 96 96 94 95 90 93 92 95 98 84 
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Note: ML= Maximum Likelihood REML= Restricted Maximum Likelihood KR = 

Kenward Roger, IG = Inverse Gamma MCMC prior, Uni = MCMC Uniform prior, 

HCchy = MCMC half Cauchy prior, FG = Fay-Graubard, KC = Kauermann-

Carroll, MD = Mancl-DeRouen, MBN = Morel-Bokossa-Neerchal, FEM = Fixed 

Effect Model 

 

Note: Bold entries indicate coverage intervals beyond [.925, .975] from Bradley (1978) 

 

 

 

Table 12 

Confidence interval coverage of model parameters for the unbalanced cluster size 

condition with 17 to 34 observations per cluster  

 

              

              

Clusters Parameter ML REML KR IG Uni HCchy GEE FG KC MD MBN FEM 

14 ELL 94 95 95 95 95 95 86 89 89 92 97 94 

 

Pretest 94 95 96 95 95 95 85 89 89 92 96 96 

 

Sex 95 96 95 96 96 96 87 90 91 94 97 95 

 

Sex×Treat 95 95 96 96 96 96 88 93 93 96 98 95 

 

Treat 92 95 95 95 93 93 91 95 94 96 98 84 

 

ELL×Treat 94 95 96 95 95 95 88 93 92 95 97 95 

 

Pre×Treat 94 96 95 95 95 94 86 91 90 93 97 95 

 Intercept 95 95 95 94 93 93 90 92 92 94 98 84 

Clusters Parameter ML REML KR IG Uni HCchy GEE FG KC MD MBN FEM 

4 ELL 92 93 93 96 96 96 47 68 55 86 92 94 

 

Pretest 94 95 95 96 96 96 50 68 56 88 94 95 

 

Sex 93 94 94 94 95 95 52 71 59 88 92 95 

 

Sex×Treat 82 83 83 95 96 96 49 64 57 82 81 95 

 

Treat 72 77 80 94 100 100 73 81 78 86 86 71 

 

ELL×Treat 83 84 84 96 96 97 51 85 59 82 91 95 

 

Pre×Treat 82 82 83 94 95 95 47 62 56 82 81 95 

 Intercept 95 96 89 94 100 99 59 86 64 93 86 71 

              

8 ELL 94 95 95 96 96 96 70 81 77 88 95 95 

 

Pretest 95 95 95 95 95 95 70 81 78 89 94 94 

 

Sex 94 95 95 94 95 94 70 80 76 88 94 94 

 

Sex×Treat 93 94 94 95 95 95 79 86 84 93 94 94 

 

Treat 89 92 93 95 99 98 86 91 90 96 96 73 

 

ELL×Treat 94 95 95 96 96 96 75 85 81 92 94 95 

 

Pre×Treat 92 92 93 94 94 94 73 83 80 91 93 95 

 Intercept 95 97 95 94 99 99 78 87 82 92 96 71 
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Note: ML= Maximum Likelihood REML= Restricted Maximum Likelihood KR = 

Kenward Roger, IG = Inverse Gamma MCMC prior, Uni = MCMC Uniform prior, 

HCchy = MCMC half Cauchy prior, FG = Fay-Graubard, KC = Kauermann-

Carroll, MD = Mancl-DeRouen, MBN = Morel-Bokossa-Neerchal, FEM = Fixed 

Effect Model 

 

Note: Bold entries indicate coverage intervals beyond [.925, .975] from Bradley (1978) 

3.3.5. Power. Tables 13 and 14 show the empirical power rates for all regression 

coefficients in the model for all 12 methods for the 7 to 14 cluster size and 17 to 34 

cluster size conditions, respectively. Cells that are greyed out indicate that the confidence 

interval coverage rates were too short or too wide, rejection rates are subsequently 

inappropriate, and empirical power is likely to be inappropriately inflated as a result. 

Power will be discussed in a relative manner and is not intended to imply that data with 7 

or 10 clusters is sufficient from a power perspective – rather, the discussion of power will 

focus on which best gives researchers highest probability to uncover true population 

              

              

Clusters Parameter ML REML KR IG Uni HCchy GEE FG KC MD MBN FEM 

10 ELL 96 97 97 96 96 97 80 86 85 90 96 95 

 

Pretest 95 95 95 95 95 95 83 87 87 91 95 94 

 

Sex 94 94 94 94 94 94 81 85 85 90 96 94 

 

Sex×Treat 95 95 96 96 95 96 84 90 90 93 96 95 

 

Treat 91 94 95 95 97 97 91 94 93 96 97 71 

 

ELL×Treat 96 96 96 96 96 96 85 91 90 94 98 97 

 

Pre×Treat 94 95 95 94 94 94 84 90 88 93 95 95 

 Intercept 95 97 96 95 98 98 87 90 90 94 98 69 

              

14 ELL 96 96 96 95 96 96 85 88 88 91 96 95 

 

Pretest 96 96 96 96 96 96 88 91 91 93 97 93 

 

Sex 95 95 95 95 95 95 86 89 89 92 96 96 

 

Sex×Treat 95 95 95 95 95 95 89 93 92 95 97 95 

 

Treat 92 94 95 95 97 97 92 95 94 96 98 70 

 

ELL×Treat 96 96 96 96 96 96 88 93 91 95 97 94 

 

Pre×Treat 94 95 95 95 95 95 88 93 92 94 97 95 

 Intercept 95 96 96 95 97 96 90 92 92 93 97 69 
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effects given the circumstances. Because the population value for the Sex×Treatment 

effect was very close to 0, the “power” for this effect is essentially a Type-I error rate 

(and therefore coincides with the values in Tables 11 and 12).  

Generalized estimating equations.  Power for GEE, Fay-Graubard correction, and 

Kauermann-Carroll correction is almost completely uninterpretable because coverage 

rates were so poor and standard error estimate bias was so great. For conditions where 

one might reasonably expect to detect effects (i.e., where Cohen’s d is 0.20 or larger), 

both the Mancl-DeRouen and Morel-Bokossa-Neerchal corrections had slightly to 

moderately less power than MLMs and FEMs (discussed next). Although the Morel-

Bokossa-Neerchal correction was the only GEE method to generally have yield 

appropriate coverage rates, it appears that the price paid is diminished power. McNeish 

and Harring (2015) similarly had found disparate power between the Kenward-Roger 

correction and the Morel-Bokossa-Neerchal correction with few clusters.  

 

 

 

 

 

 

Table 13 

Empirical power of model parameters for the unbalanced cluster condition with 7 to 14 

observations per cluster  

 

Clusters Parameter |ES| ML REML KR IG Uni HCchy GEE FG KC MD MBN FEM 

4 ELL 0.30 22 16 16 12 11 11 66 42 54 24 20 11 

 

Pretest 0.80 96 95 95 88 88 88 100 97 100 81 97 99 

 

Sex 0.10 8 6 5 5 5 4 50 27 42 14 9 7 

 

Sex×Treat 0.02 19 18 17 5 4 4 50 34 40 18 18 6 

 

Treat 0.40 43 33 26 10 2 2 40 26 31 19 18 39 

 

ELL×Treat 0.20 25 22 22 7 7 8 59 41 46 22 25 7 

 

Pre×Treat 0.05 19 16 16 4 3 3 54 36 43 17 17 5 
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Note: ES = Cohen’s d Effect Size, ML= Maximum Likelihood REML= Restricted 

Maximum Likelihood KR =Kenward Roger, IG = Inverse Gamma MCMC prior, 

Uni = MCMC Uniform prior, HCchy = MCMC half Cauchy prior, FG = Fay-

Graubard, KC = Kauermann-Carroll, MD = Mancl-DeRouen, MBN = Morel-

Bokossa-Neerchal, FEM = Fixed Effect Model 

 

 

Note: Greyed entries indicate coverage intervals beyond [.925, .975] from Bradley (1978) 

and therefore represent non-comparable/inappropriate power estimates 

 

 

 

 

 

 

 

 

 

               

Clusters Parameter |ES| ML REML KR IG Uni HCchy GEE FG KC MD MBN FEM 

8 ELL 0.30 21 19 19 18 17 19 48 37 39 24 18 20 

 
Pretest 0.80 100 100 100 99 99 99 100 99 99 94 100 100 

 
Sex 0.10 9 7 7 7 7 7 31 21 24 13 8 7 

 
Sex×Treat 0.02 7 6 6 5 4 3 26 16 17 8 7 5 

 
Treat 0.40 43 35 29 27 22 29 42 26 29 16 17 61 

 
ELL×Treat 0.20 16 14 14 12 11 13 33 21 23 11 13 11 

 
Pre×Treat 0.05 7 6 6 5 5 4 28 16 20 8 7 8 

               

10 ELL 0.30 28 26 26 25 26 23 43 36 37 28 22 27 

 
Pretest 0.80 100 100 100 100 100 100 100 100 100 99 100 100 

 
Sex 0.10 8 8 8 8 8 8 23 17 17 12 6 7 

 
Sex×Treat 0.02 5 4 4 4 4 4 15 10 11 6 4 5 

 
Treat 0.40 52 45 40 41 39 38 48 34 38 27 24 73 

 
ELL×Treat 0.20 17 15 14 14 13 13 29 18 20 12 11 13 

 
Pre×Treat 0.05 7 7 7 6 6 7 20 11 13 6 5 8 

               

14 ELL 0.30 36 34 34 34 34 31 44 39 39 33 26 35 

 
Pretest 0.80 100 100 100 100 100 100 100 100 100 100 100 100 

 
Sex 0.10 9 9 9 8 8 10 17 14 14 11 7 9 

 
Sex×Treat 0.02 5 4 4 4 4 5 12 7 8 4 2 6 

 
Treat 0.40 66 60 56 58 59 58 61 50 53 45 38 81 

 
ELL×Treat 0.20 18 17 17 17 16 16 28 19 21 15 12 17 

 
Pre×Treat 0.05 8 7 7 7 7 6 17 12 13 7 4 7 
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Table 14 

Empirical power of model parameters for the unbalanced cluster condition with 17 to 34 

observations per cluster  

 

 

Note: ES = Cohen’s d Effect Size, ML= Maximum Likelihood REML= Restricted 

Maximum Likelihood KR =Kenward Roger, IG = Inverse Gamma MCMC prior, 

Uni = MCMC Uniform prior, HCchy = MCMC half Cauchy prior, FG = Fay-

Graubard, KC = Kauermann-Carroll, MD = Mancl-DeRouen, MBN = Morel-

Bokossa-Neerchal, FEM = Fixed Effect Model 

 

Clusters Parameter |ES| ML REML KR IG Uni HCchy GEE FG KC MD MBN FEM 

4 ELL 0.30 33 32 32 26 25 25 74 53 63 31 29 28 

 

Pretest 0.80 100 100 100 94 93 94 100 100 100 84 100 100 

 

Sex 0.10 9 8 8 8 7 8 53 35 46 16 11 7 

 

Sex×Treat 0.02 18 17 17 5 5 4 52 37 43 18 19 5 

 

Treat 0.40 55 42 29 15 4 6 43 28 34 16 18 65 

 

ELL×Treat 0.20 23 22 22 10 9 9 61 43 50 21 23 14 

 

Pre×Treat 0.05 20 19 19 6 6 6 54 38 45 19 20 5 

               

8 ELL 0.30 42 41 41 40 40 39 65 55 57 42 38 42 

 

Pretest 0.80 100 100 100 99 99 99 100 100 100 96 100 1 

 

Sex 0.10 12 12 12 12 11 11 37 27 31 18 11 12 

 

Sex×Treat 0.02 7 6 6 5 5 5 22 15 17 7 7 6 

 

Treat 0.40 56 47 35 35 29 31 52 35 41 22 23 87 

 

ELL×Treat 0.20 22 20 20 19 18 19 45 30 35 19 17 22 

 

Pre×Treat 0.05 10 10 9 8 8 9 29 18 21 10 8 8 

               

10 ELL 0.30 54 53 53 53 51 51 67 60 60 51 45 57 

 

Pretest 0.80 100 100 100 100 100 100 100 100 100 100 100 100 

 

Sex 0.10 16 15 15 15 14 14 31 25 26 19 12 13 

 

Sex×Treat 0.02 5 5 5 5 4 5 16 10 12 7 3 5 

 

Treat 0.40 67 62 54 53 55 58 64 51 55 43 38 91 

 

ELL×Treat 0.20 29 28 28 27 26 56 44 32 36 26 22 30 

 

Pre×Treat 0.05 9 9 9 9 9 8 18 12 13 10 7 10 

               

14 ELL 0.30 69 68 68 68 67 67 76 70 70 63 57 69 

 

Pretest 0.80 100 100 100 100 100 100 100 100 100 100 100 1 

 

Sex 0.10 17 17 17 17 17 17 28 24 24 20 11 15 

 

Sex×Treat 0.02 5 5 5 5 5 5 11 8 8 6 4 5 

 

Treat 0.40 79 76 72 72 75 75 77 68 70 64 57 96 

 

ELL×Treat 0.20 40 39 39 39 36 37 50 41 44 36 30 41 

 

Pre×Treat 0.05 9 9 9 9 9 9 15 11 12 9 6 12 
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Note: Greyed entries indicate coverage intervals beyond [.925, .975] from Bradley (1978) 

And therefore represent non-comparable/inappropriate power estimates 

 

Fixed effect models. Overall, power rates for FEMs were slightly higher than 

other methods while also being able to control the Type-I error rate. This is relative to 

improved efficiency which will be discussed in Section 3.3.6. As noted previously, the 

standard errors for the Level-2 treatment effect are inappropriate so power from the FEM 

is not comparable to other methods in Table 13 and 14. Chapter 4 is dedicated to 

remedying this issue and power will be discussed and compared in that chapter once the 

standard error estimates are correctly estimated.  

Multilevel models. Generally, different types of MLMs performed fairly similarly 

with regard to power for cells in which coverage rates were near the nominal level. The 

Kenward-Roger correction and MCMC with an inverse gamma or half-Cauchy prior 

generally performed well and also maintained appropriate coverage rates. As expected 

from the wide coverage intervals, MCMC with a uniform prior had noticeably smaller 

power for the treatment effect across conditions and the half-Cauchy prior had slightly 

smaller power than the inverse gamma prior. 

3.3.6 Efficiency. Efficiency is a measure of estimators’ optimality which in the 

context of this study means that more efficient estimators will yield smaller sampling 

variability at equal sample sizes. To inspect efficiency, the standard deviation of the 

regression coefficients is reported rather than the mean of the standard error estimates 

because the standard error estimates are known to be biased with the smaller sample sizes 

of interest in this study. Table 15 reports the standard deviation of the regression 

coefficients for the unbalanced 7 to 14 cluster size condition and Table 16 presents the 
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same information for the unbalanced 17 to 34 cluster size condition. Similar to Table 5 

and 6, some methods solely correct sampling variability and regression coefficients 

estimates are identical between various corrections. Therefore, Table 15 and 16 collapse 

KR and REML into one column and all GEE corrections into a one column.  

 

Table 15 

Standard deviation of regression coefficients estimates for the unbalanced cluster 

condition with 7 to 14 observations per cluster  

Clusters Effect ML REML IG Uni Hcchy GEE FEM 

4 ELL 1.18 1.18 1.18 1.18 1.18 1.18 1.05 

 Pretest 0.55 0.55 0.55 0.55 0.55 0.55 0.46 

 Sex 1.01 1.01 1.01 1.01 1.01 1.01 0.90 

 Sex×Treat 1.43 1.43 1.43 1.43 1.43 1.43 1.24 

 Treat 1.69 1.69 1.69 1.69 1.69 1.69 1.60 

 ELL×Treat 1.59 1.59 1.59 1.59 1.59 1.59 1.49 

 Pre×Treat 0.72 0.72 0.72 0.72 0.72 0.72 0.62 

 Intercept 1.25 1.25 1.21 1.21 1.20 1.25 1.12 

 

        8 ELL 0.75 0.75 0.75 0.75 0.75 0.75 0.71 

 Pretest 0.33 0.33 0.33 0.33 0.33 0.33 0.31 

 Sex 0.66 0.66 0.66 0.66 0.66 0.66 0.58 

 Sex×Treat 0.95 0.95 0.95 0.95 0.95 0.95 0.84 

 Treat 1.16 1.16 1.14 1.15 1.15 1.16 1.12 

 ELL×Treat 1.08 1.08 1.08 1.08 1.08 1.08 1.01 

 Pre×Treat 0.49 0.49 0.49 0.49 0.49 0.49 0.42 

 Intercept 0.82 0.82 0.81 0.81 0.81 0.82 0.79 

 

        10 ELL 0.66 0.66 0.66 0.66 0.66 0.66 0.62 

 Pretest 0.30 0.30 0.30 0.30 0.30 0.30 0.26 

 Sex 0.56 0.56 0.56 0.56 0.56 0.56 0.52 

 Sex×Treat 0.83 0.83 0.83 0.83 0.83 0.83 0.75 

 Treat 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 ELL×Treat 0.95 0.95 0.95 0.95 0.95 0.95 0.89 

 Pre×Treat 0.43 0.43 0.43 0.43 0.43 0.43 0.38 

 Intercept 0.69 0.69 0.69 0.69 0.69 0.69 0.69 
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Table 16 

Standard deviation of regression coefficients for the unbalanced cluster condition with 17 

to 34 observations per cluster  

         

Clusters Effect ML REML IG Uni Hcchy GEE FEM 

14 ELL 0.54 0.54 0.54 0.54 0.54 0.54 0.51 

 Pretest 0.24 0.24 0.24 0.24 0.24 0.24 0.22 

 Sex 0.46 0.46 0.46 0.46 0.46 0.46 0.44 

 Sex×Treat 0.65 0.65 0.65 0.65 0.65 0.65 0.62 

 Treat 0.85 0.85 0.85 0.85 0.85 0.85 0.83 

 ELL×Treat 0.76 0.76 0.76 0.76 0.76 0.76 0.73 

 Pre×Treat 0.34 0.34 0.34 0.34 0.34 0.34 0.33 

 Intercept 0.60 0.60 0.60 0.60 0.60 0.60 0.59 

Clusters Effect ML REML IG Uni Hcchy GEE FEM 

4 ELL 0.65 0.65 0.65 0.65 0.65 0.65 0.62 

 Pretest 0.27 0.27 0.27 0.27 0.27 0.27 0.26 

 Sex 0.52 0.52 0.52 0.52 0.52 0.52 0.54 

 Sex×Treat 0.74 0.74 0.74 0.74 0.74 0.74 0.72 

 Treat 1.48 1.48 1.45 1.46 1.46 1.48 1.41 

 ELL×Treat 0.92 0.92 0.92 0.92 0.92 0.92 0.88 

 Pre×Treat 0.37 0.37 0.42 0.42 0.42 0.37 0.37 

 Intercept 1.05 1.05 0.97 0.95 0.96 1.05 1.01 

 

        8 ELL 0.47 0.47 0.47 0.47 0.47 0.47 0.40 

 Pretest 0.19 0.19 0.19 0.19 0.19 0.19 0.17 

 Sex 0.37 0.37 0.37 0.37 0.37 0.37 0.35 

 Sex×Treat 0.55 0.55 0.55 0.55 0.55 0.55 0.49 

 Treat 1.05 1.05 1.04 1.04 1.04 1.05 0.99 

 ELL×Treat 0.66 0.66 0.66 0.66 0.66 0.66 0.59 

 Pre×Treat 0.27 0.27 0.27 0.27 0.27 0.27 0.25 

 Intercept 0.73 0.73 0.72 0.72 0.72 0.73 0.71 
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For the most part, MLMs (Bayesian and frequentist) and GEE produced the exact 

same standard deviations and are about equally efficient when the potential bias of the 

estimates is not factored in. With fewer than 10 clusters, FEMs were about 15-20% more 

efficient than frequentist MLMs and GEE. Increased efficiency results in comparably 

higher power which is a vital concern with a smaller number of clusters. The effect of 

this increased efficiency can be seen in Tables 12 and 13 where the empirical power for 

the FEMs tend to be slightly, but consistently higher, than MLMs and GEE when Type-I 

error rates are well-controlled, especially when the number of clusters is below 10.  

 

 

 

 

 

Clusters Effect ML REML IG Uni Hcchy GEE FEM 

10 ELL 0.41 0.41 0.41 0.41 0.41 0.41 0.36 

 Pretest 0.17 0.17 0.17 0.17 0.17 0.17 0.16 

 Sex 0.33 0.33 0.33 0.33 0.33 0.33 0.32 

 Sex×Treat 0.48 0.48 0.48 0.48 0.48 0.48 0.45 

 Treat 0.91 0.91 0.91 0.91 0.91 0.91 0.88 

 ELL×Treat 0.57 0.57 0.57 0.57 0.57 0.57 0.52 

 Pre×Treat 0.23 0.23 0.23 0.23 0.23 0.23 0.23 

 Intercept 0.64 0.64 0.64 0.64 0.64 0.64 0.63 

 

        14 ELL 0.33 0.33 0.33 0.33 0.33 0.33 0.31 

 Pretest 0.14 0.14 0.14 0.14 0.14 0.14 0.13 

 Sex 0.27 0.27 0.27 0.27 0.27 0.27 0.27 

 Sex×Treat 0.40 0.40 0.40 0.40 0.40 0.40 0.39 

 Treat 0.73 0.73 0.73 0.73 0.73 0.73 0.74 

 ELL×Treat 0.47 0.47 0.47 0.47 0.47 0.47 0.43 

 Pre×Treat 0.20 0.20 0.20 0.20 0.20 0.20 0.19 

 Intercept 0.52 0.52 0.52 0.52 0.52 0.52 0.54 



79 

 

Chapter 4: Correction to Level-2 Treatment Effect Standard Errors in FEMs 

As anticipated in Section 1.3.3.1, the standard error estimates for the overall 

intercept and, more importantly, the Level-2 treatment effect estimates in the simulation 

were consistently downwardly biased. Moreover, the bias was consistent and did not 

change as sample size at either level changed, indicating that the bias is not related to 

sample size. Given that FEMs provide many advantages with few clusters and were one 

of the better performing methods in the simulation study, the ability to obtain proper 

standard error estimates in software for the Level-2 treatment effect (often the most 

important estimate in a cluster randomized trial) would be highly advantageous. To my 

knowledge, a post-hoc adjustment method (or any similar correction) or Level-2 effects 

estimated through linear combinations of regression coefficients has not appeared 

previously in the literature.
10

 Therefore, the remainder of this section will propose a 

method by which standard errors of the Level-2 treatment effect can be unbiased 

estimated.  

Standard errors for effects estimated with linear combinations of regression 

coefficients (the treatment effect and the overall intercept in the generated data in this 

dissertation) will be multiplied by the square root of the design effect (DEFT).  In survey 

statistics, the design effect (DEFF) is a quantity that measures the degree to which 

sampling variability will increase when clustering is present compared to when data are 

independent. For instance, a DEFF of 2 means that sampling variance will be twice as 

                                                 
10 Although, see Plümper & Troeger (2007; 2011) for information on fixed effects vector decomposition, a 

method that claims to be able to estimate effects for all Level-2 predictors in FEMs. This method has faced 

steady criticism, however (e.g., Greene, 2011).  
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large in a model that accounts for clustering than a comparable model that ignores 

clustering. The DEFF in a two-stage random sampling design is calculated as  

 DEFF 1 ( 1) ICCm      (23) 

and 

 DEFT DEFF   (24) 

where m is the average cluster size and ICC is the intraclass correlation calculated from 

the unconditional model (Kish, 1965). If the ICC is 0 (i.e., data are not meaningfully 

clustered), then DEFF = 1 and the Level-1 variance is equal to the total residual variance. 

To correct the standard error estimates for the estimates not explicitly output by the 

model, the standard error estimates output by the software program (which only account 

for Level-1 variance) will be multiplied by the DEFT to account for the residual variance 

present at Level-2 that is accounted for by the cluster affiliation variables. Section 4.1 

will discuss a small simulation study to demonstrate the efficacy of this approach and 

Section 4.2 will display the results of the simulation.    

4.1 Simulation Design 

 The simulation design to demonstrate that multiplying standard error estimates for 

effects calculated by linear combinations of regression coefficient estimates by the DEFT 

is quite similar to the design in Chapter 3. The model is identical to the model used in 

Chapter 3 as are the ICC and number of cluster conditions; however, this simulation will 

feature four cluster size conditions (10, 25, 50, 100) instead of two to illustrate that this 

method is applicable broadly and not only with values consistent with  the “students 

within classroom” context. This section will only use balanced clusters although the 

results will also generalize to unbalanced clusters as well.  
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 From this simulation, the mean of the standard error estimates output by the 

ESTIMATE statement in SAS PROC GLM (which were shown for the unbalanced 

cluster size conditions in Table 9 and 10 to be highly biased) will be compared to the 

standard deviation of the point estimates from the ESTIMATE statement. Then it will be 

shown that applying the DEFT correction vastly reduces the bias and yields rejection 

rates that are at or near the nominal rate. 

4.2 DEFT Simulation Results  

Table 17 below compares the mean of the standard error estimates (Mean SE) 

output by the ESTIMATE statement in SAS PROC GLM to the standard deviation of the 

regression across all replications (SD[Lβ]) for the balanced cluster size conditions. In 

Table 17 it can be seen that the PROC GLM standard error estimates are quite far below 

the population sampling standard deviation. However, when the PROC GLM standard 

errors are DEFT corrected, the standard errors, while still slightly smaller than the 

population value, are much closer to the population sampling standard deviation (bias 

never exceeded -10%).  

Table 18 shows the 95% confidence interval coverage rates using the PROC GLM 

standard errors and the DEFT corrected standard errors. The DEFT corrected confidence 

interval coverage rates are consistently within the acceptable range (although slightly 

smaller than 95%) and are a vast improvement over the PROC GLM coverage rates. 

Table 19 compares the statistical power for the Level-2 treatment effect for the FEM with 

DEFT corrected standard errors and a MLM estimated with MCMC and an inverse 

gamma prior (the only other method that had acceptable confidence interval coverage 

rates for the Level-2 treatment effect across all combinations of sample size conditions). 
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Because of the slightly better efficiency noted in Tables 15 and 16 with an extremely 

small number of clusters (i.e., less than 10), the FEM yielded vastly superior empirical 

power compared to a MLM with an inverse gamma prior. Once the number of clusters 

reached double digits, the difference in power was less noticeable and the inverse gamma 

MLM outperformed the FEM in some conditions. 



83 

 

Table 17 

Comparison of PROC GLM standard error estimates, DEFT corrected standard error estimates, and approximate population 

sampling standard deviation for effects that cannot be explicitly modeled in a fixed effect model.   

 

    Number of Clusters 

    4  8  10  14 

Cluster 

Size Effect 

GLM 

SE 

DEFT 

SE 

SD 

(Lβ) 

 GLM 

SE 

DEFT 

SE 

SD 

(Lβ) 

 GLM 

SE 

DEFT 

SE 

SD 

(Lβ) 

 GLM 

SE 

DEFT 

SE 

SD 

(Lβ) 

10 

    

 

   

 

   

 

   

 

Intercept 0.64 1.08 1.12  0.44 0.74 0.79  0.39 0.66 0.69  0.33 0.55 0.59 

 

Treatment 0.92 1.53 1.60  0.63 1.05 1.12  0.56 0.93 1.00  0.47 0.78 0.83 

25 

 
   

 
   

 
   

 
   

 

Intercept 0.39 0.93 1.01  0.27 0.65 0.71  0.24 0.58 0.63  0.20 0.49 0.54 

 

Treatment 0.55 1.32 1.41  0.38 0.92 0.99  0.34 0.82 0.88  0.29 0.69 0.74 

50 

 
   

 
   

 
   

 
   

 

Intercept 0.27 0.88 0.93  0.19 0.62 0.67  0.17 0.56 0.60  0.14 0.47 0.51 

 

Treatment 0.38 1.25 1.31  0.27 0.88 0.95  0.24 0.79 0.84  0.20 0.66 0.71 

100 

 
   

 
   

 
   

 
   

 

Intercept 0.19 0.86 0.90  0.13 0.61 0.65  0.12 0.54 0.56  0.10 0.46 0.48 

  Treatment 0.27 1.22 1.27  0.19 0.86 0.91  0.17 0.77 0.82  0.14 0.65 0.73 
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Table 18 

Comparison of 95% confidence interval coverage rates based on PROC GLM standard errors 

and DEFT corrected standard errors for estimates not explicitly included in the FEM  

 

    Intercept   Treatment 

No. Clusters Cluster Size GLM DEFT   GLM DEFT 

4 10 83 93 

 
83 93 

 

25 71 93 

 
71 93 

       8 10 85 93 

 
83 93 

 

25 71 93 

 
73 94 

       10 10 85 93 

 
84 94 

 

25 69 93 

 
71 94 

       14 10 84 93 

 
84 94 

  25 69 94   70 93 

 

Note: GLM = fixed effect model with standard errors as output by an ESTIMATE statement in 

PROC GLM, DEFT = fixed effects model with DEFT corrected standard errors 

 

Table 19 

Comparison of empirical power for a MLM estimated with MCMC with an inverse gamma prior 

and a FEM with DEFT corrected standard errors for the Level-2 treatment effect 

 

No. Clusters Cluster Size MLM-IG FEM-DEFT 

4 10 10 28 

 
25 15 32 

    
8 10 27 43 

 
25 35 51 

    
10 10 41 49 

 
25 53 57 

    
14 10 58 59 

 
25 72 67 

  

Note: MLM-IG= MLM estimated with MCMC with in inverse gamma prior, FEM-DEFT = 

fixed effects model with DEFT corrected standard errors
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Chapter 5: Analysis of Motivating Data 

5.1 Data Description 

Returning to the motivating example, the IES Reading Buddies data are modeled with 

each of the 12 competing methods. These data featured 203 students clustered within 12 

classrooms, meaning that each classroom had approximately 17 students (range = 12 to 

24) and students were meaningfully nested within classrooms as evidenced by an ICC of 

0.21 and a unconditional DEFT of 2.09. The continuous outcome variable, PPVT Post-

Test Score, is regressed on five predictors: Treatment Effect (at Level-2), ELL, PPVT 

Pre-Test Score, Treatment Effect × ELL, and Treatment Effect × PPVT Pre-Test Score. 

ELL and PPVT Pre-Test Score were grand-mean centered prior to being included in the 

model in accordance with recommendations in Enders and Tofighi (2007) because the 

primary interest was the treatment effect (located at Level-2). 5.2 Methods  

5.2.1 Multilevel model. In Raudenbush and Bryk notation, the MLM for the 

Reading Buddy data is formulated as 

0 1 2

0 00 01 0

1 10 11

2 20 21

- ( )ij j j ij j ij ij

j j j

j j

j j

PPVT Post Test ELL PPVT Pre -Test PPVT Pre -Test r

Treatment u

Treatment

Treatment

  

  

  

  

    

  

 

 

 (25) 

Because the scale of the outcome variable was larger than in the simulation, the priors are 

changed slightly to maintain their intended uninformative nature. Specifically, the 

uniform prior ranges from 0 to 500 and the scale of the half-Cauchy distribution is 100 

rather than 16. Similar to the simulation, the MCMC models use 10,000 burn-in iterations 

with 50,000 recorded iterations thinned by 50. The Geweke test was not significant for 
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any parameter and the autocorrelations were well behaved, meaning that there is 

reasonable evidence that MCMC chains reached convergence.  

5.2.2 Generalized estimating equations.  The model to be estimated with GEE is 

formulated as follows,   

0 1 2

3 4

5

- ( )

( ) ( )

[( ) ]

ij ij ij

j ij j

ij j ij

PPVT Post Test ELL PPVT Pre -Test PPVT Pre -Test

Treatment ELL Treatment

PPVT Pre -Test PPVT Pre -Test Treatment r

  

 



    

  

  
 (26) 

Because the data are cross-sectionally clustered, the two most logical choices for the 

working correlation structure are an independent or compound symmetric structure. Hin, 

Carey, and Wang (2007) noted that the Rotnizky-Jewell criterion is best for 

distinguishing between these two structures. Using the CriteriaWorkCorr SAS 

macro (Gosho, 2014), the Rotnizky-Jewell criterion values were

12,141.20; 7,542.74IND EXCHRJC RJC  , indicating that the exchangeable structure fits 

the data better (lower values indicate better fit).  

5.2.3 Fixed effect model.  The FEM for these data can be written as,  

1 2

3

4

12

4

1

- ( ) ( )

( )

[( ) ]

ij ij ij

ij j

ij j

k k ij

k

PPVT Post Test ELL PPVT Pre -Test PPVT Pre -Test

ELL Treatment

PPVT Pre -Test PPVT Pre -Test Treatment

Classroom r

 





 



   

 

  



 (27) 

Equation 27 is noticeably different from Equation 25 and 26 in that there is no treatment 

effect or intercept directly estimated in the model. As noted previously, these terms 

cannot be included with the classroom affiliation dummy variables because some terms 

will be perfectly collinear and thus inestimable. However, given that these quantities are 
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directly of interest to the research questions, they can still be estimated using linear 

combinations of the parameters in Equation 27.  

Specifically, the intercept can be estimated by 1 1L β  such that 

 1 1/ 6 1/ 6L  and  
T

1 11 16 β =  where L1 is 1 6  and 11  through  16  

are the classroom affiliation predictors for the control group. The treatment effect can be 

estimated by 2 2L β  such that 

 2 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6 1/ 6      L  

and  

 
T

2 5 6 7 8 9 10 11 12 13 14 15 16           β where 5  through  

10  are the classroom affiliation predictors for the treatment group and 11  through  16

are the classroom affiliation predictors for the control group.  

5.3 Results 

 The resulting estimates are provided in Table 20. Because the FEM accounts for 

all observed and unobserved variables at Level-2, the FEM estimates are conditional on 

different variables and are thus noticeably different from each of the other models. Most 

importantly, the treatment effect with the FEM was about half the other methods and was 

not statistically significant. This difference will be discussed further in Chapter 6.  

Of particular note is the wide amount of variation in the estimate of the intercept 

variance among the multilevel models (range: 5.00 to 9.56). Also, the wide variation of 

statistical significance (or 0 not being in the credible interval for MCMC models) can be 

readily seen: MLMs identified four significant predictors at an alpha level of .05 whereas 

the Kauermann-Carroll correction, Mancl-DeRouen correction, and Morel-Bokossa-
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Neerchal correction (methods with less desirable performance in the simulation) only 

indicated two significant predictors. This particular data analysis has many effects that 

closely straddle a p-value of 0.05 and is thus a good example of how choice of method 

with an extremely small number of clusters can markedly affect the interpretation of the 

analytic outcomes if one adjudicates importance of predictors according to p-values.  

It should be noted that these are empirical data and therefore population parameter 

values, or which model is closest to “truth,” cannot be determined.  
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Table 20 

Comparison of estimates and standard errors/posterior standard deviations from Reading Buddy data across all 12 methods 

 

 Multilevel Models 

Effect ML REML KR IG Uni HCchy 

Intercept 126.1 126.0 126.0 126.1 125.9 126.1 

ELL 3.14 (2.33) 3.26 (2.38) 3.26 (2.43) 3.10 (2.38) 3.32 (2.50) 3.23 (2.35) 

Pretest 0.88
**

( 0.06) 0.88
**

 (0.06) 0.88
**

 (0.06) 0.88
†
 (0.05) 0.88

††
 (0.06) 0.88

††
 (0.05) 

Treat 6.98
**

( 2.37) 6.96
**

 (2.54) 6.96
**

 (2.56) 6.96
††

 (2.54) 6.96
††

 (2.71) 7.13
††

 (2.70) 

ELL×Treat -6.68
*
 (3.19) -6.70

*
 (3.25) -6.70

*
 (3.29) -6.57

†
 (3.24) -6.84

†
 (3.31) -6.82

†
 (3.22) 

Pre×Treat -0.19
**

 (0.07) -0.19
*
 (0.08) -0.19

*
 (0.08) -0.19

††
 (0.07) -0.19

††
 (0.08) -0.20

††
 (0.07) 

       Intercept Var 5.00 7.17 7.17 8.30 9.56 8.87 

Residual Var 62.69 63.99 63.99 65.32 65.01 63.99 

       

 GEE and Fixed Effect Model 

 GEE FG KC MD MBN FEM 

Intercept 126.4 126.4 126.4 126.4 126.4 127.28 

ELL 2.48 (3.03) 2.48 (3.92) 2.48 (3.51) 2.48 (4.09) 2.48 (3.68) 3.97 (2.53) 

Pretest 0.87 
**

(0.06) 0.87 
**

(0.07) 0.87
**

 (0.07) 0.87
**

 (0.07) 0.87
**

 (0.08) 0.88
**

 (0.06) 

Treat 7.18
*
 (2.48) 7.18

*
 (3.06) 7.18

*
 (2.79) 7.18

*
 (3.17) 7.18

*
 (3.06) 3.70 (2.82) 

ELL×Treat -6.74 
*
(3.38) -6.74 

*
(4.26) -6.74 (3.88) -6.74 (4.49) -6.74 (4.38) -6.91

*
(3.38) 

Pre×Treat -0.17
*
 (0.08) -0.17 (0.10) -0.17 (0.09) -0.17 (0.10) -0.17 (0.11) -0.20

**
 (0.08) 

       

Residual Var 69.72 69.72 69.72 69.72 69.72 63.99 
 

*
 p < 0.05, 

**
 p < 0.01, † 95% credible interval does not contain 0, †† 99% credible interval does not contain 0 

 

Note: Standard errors/posterior standard deviations appear in parentheses.  
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Chapter 6: Discussion and Implications 

 The choice of method to accommodate clustering is dependent upon the types of 

questions a researcher wishes to answer. If the research question revolves primarily 

around interpretation of the regression coefficients, based on the results on the simulation 

conducted here, there are clear choices for which methods are preferable when one 

encounters a small number of clusters and has a moderate number of predictors. 

 First, estimating the model with uncorrected GEE is a poor choice as the standard 

error estimates are heavily downwardly biased. Furthermore, most small-sample 

corrections to the sandwich estimator in GEE were also rather ineffective under the 

conditions of this simulation with the exception of the Morel-Bokossa-Neerchal 

correction. However, the Morel-Bokossa-Neerchal correction tended to “over-correct” 

which resulted in standard error estimates that were  higher than the true sampling 

variability which was shown to adversely affect power (as has been shown previously in 

McNeish & Harring, 2015). In substantive research contexts with a small number of 

clusters, a loss of power is not a trivial matter because power will already be diminished 

due to the small number of clusters.  

 Of the MLM methods investigated, MCMC estimation with an inverse gamma 

prior or a MCMC estimation with a half-Cauchy prior were the best choices when 

broadly considering bias, power, and coverage intervals. The magnitude of the bias of the 

MLM with an inverse gamma prior and a MLM with a half-Cauchy prior was about equal 

although that the inverse gamma prior tended towards being downwardly biased and a 

half-Cauchy prior tended towards being upwardly biased. Additionally, the inverse 

gamma prior performed slightly better when the cluster size was smaller (7 to 14 
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observations per cluster) whereas the half-Cauchy prior performed slightly better with 

larger cluster sizes (17 to 34 observations per cluster). It should be noted that, in general, 

MLMs require a large number of assumptions and that each of these assumptions were 

met by the data generation process. With real data, the various assumptions of MLMs 

may not be necessarily upheld. Additionally, with few clusters, the assumptions 

themselves are difficult to test and validate so it can be unclear if the assumptions are 

met. Furthermore, the ubiquitous Hausman specification test (Hausman, 1978) that is 

commonly used to assess the tenability of random effect model violations encounters 

problems with small sample sizes (Schreiber, 2008; Sheytanova, 2014)    

 Perhaps surprising to behavioral science researchers due to their scarce usage, the 

FEM performed extremely well for modeling data with a small number of clusters and a 

moderate number of predictors. With very few clusters, the efficiency of the FEMs 

surpassed all other methods which helped to produce the maximal amount of power. 

Although Bayesian methods are often touted as being advantages with smaller samples, 

FEMs vastly outperformed Bayesian methods in the simulation. For instance, compared 

the power for the treatment affect with only 4 clusters and 25 observations per cluster – 

the empirical power for the half-Cauchy prior was 4% and the empirical power for the 

inverse gamma prior was 10%. Compare those values to the FEM whose empirical power 

was 32%. Although still far short of the 80% (arbitrary) cut-off applied in behavioral 

science, applied researchers would much rather have power near 30% than 4% or 10% 

provided that the regression coefficients are unbiased and Type-I error rates are 

controlled (which was the cased with FEMs in the simulation).  
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 In FEMs, the regression coefficients were estimated without bias, the model 

makes a minimal number of assumptions, and alleviates concerns about omitted variable 

bias at Level-2. The latter of these advantages can be particularly useful for research with 

few clusters. These studies often collect primary data (large scale data sets would not 

likely feature few clusters) and researchers may not always have the funds to collect 

several measures or may not have the insight a priori to note what variables at Level-2 

should have been collected. In the motivating data in Chapter 5, this was rather salient – 

11 of the methods identified the treatment as being significant; however, the FEM 

treatment effect was noticeably smaller and not statistically significant. As is common is 

small sample datasets, the number of measured variables was not highly extensive and 

MLMs and GEE are limited to the variables available in the data. FEMs can account for 

unmeasured Level-2 variables, however, and it seems plausible that an unmeasured 

Level-2 variable might have been related to the treatment effect and, after conditioning 

on this variable, the treatment effect was reduced.  

The main drawback with FEMs is that Level-2 predictors cannot be explicitly 

included in the model because the cluster-affiliation variables account for all variation at 

Level-2. However, in cases where very few clusters are present information at Level-2 is 

often not an explicit research interest. That is, when the number of clusters falls in the 

single digits, the research questions are often not overly concerned with effects at the 

cluster-level and the sample size would not likely be sufficient to make meaningful 

inferences about these effects. The motivating example on vocabulary demonstrated this 

common occurrence – the interest was on the performance of students and the students 

happened to be naturally clustered within classrooms. The classrooms and their 
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characteristics did not play a large role in the broader research interests of the study – 

students were the primary interest and they happen to be naturally clustered within 

schools. This also extends to other disciplines as well – in medical and epidemiological 

studies the interest is very often on patients or individuals who happen to be clustered 

within hospitals or geographic areas. The characteristics of a hospital, for instance, are 

important to take into account but the magnitude of effects at the hospital level and/or 

their statistical significance may not always be directly relevant.  

As extensions of this dissertation, the present simulation study considered models 

with Level-2 variation induced through random intercepts. For models in which multiple 

random effects may be posited, multivariate prior distributions are likely necessary to 

ensure that the resulting MCMC draws produce a positive definite covariance matrix. The 

inverse Wishart distribution is a common prior distribution choice; however, this results 

in drawing values for variances from an inverse gamma distribution.  Wand, Ormerod, 

Padoan, and Fürhwirth (2011) showed that one could create a half-t distribution from a 

mixture of inverse gammas and it could be worthwhile to gauge whether the differences 

between inverse gamma and half-Cauchy generalize to the multivariate extension. 

Additionally, given the strong performance of FEMs, it would be important to determine 

is the treatment effect at Level-2 could still be estimated with linear combinations of the 

cluster affiliation coefficients and whether the DEFT-based standard error estimate 

correction maintains is desirable performance.  

As limitations of the study presented in this dissertation, first, it is important again 

to note that each of the methods compared yield possibly unique information and the 

specific context of the motivating example and simulation design allowed for the 
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interpretation to be the same for all methods. This is not always the case, however. For 

instance, if a researcher was specifically interested in specific clusters or in partitioning 

the variance, their only choice would be to use a MLM.  

Second, the findings were obtained through simulation and are thus only 

applicable to the conditions of the simulation design. Although this is a fact of life for all 

simulation studies, it is particularly salient here. For instance, the cluster size conditions 

were chosen in accordance with values commonly seen in psychology but research with 

few clusters in sociology or demography can look very different where each cluster can 

be a state or country and there are thousands of observations per cluster. Also, the 

generation model induced clustering through a random intercepts and many scenarios 

feature situations in which slopes vary at Level-2 as well. This is particularly important in 

this study because the DEFT correction applied to FEMs (the overall best performing 

method in the study) will only work under the assumption of homogeneous slopes. The 

assumptions of each model were upheld as well which may tenuous with real data and 

GEE may perform better with real data as a result because of the few assumptions that it 

requires. 

 Third, in the data generation model predictors variables were generated 

independently and were not correlated. With real data, demographic variables are almost 

certain to be related to some example, especially the Level-1 demographic variables and 

pre-test scores.   

Lastly, the values for the hyperparameters in the prior distributions of the MCMC 

conditions in the simulation study could have affected the results. Although the values 

were selected to be non-informative, beyond an unbounded uniform prior, choosing 
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hyperparameters will have some effect on the posterior distribution. For instance, the 

uniform prior was bounded by [0,100] but one could easily argue that [0,50] may have 

just as non-informative or that [0,100] was not non-informative enough and changing 

these bounds would have affected the resulting posterior distribution.  

 As a concluding remark based upon the overarching theme of this dissertation, 

researchers may want consider and draw from methods from other disciplines when faced 

with methodological challenges. Methodological work is published in a wide variety of 

outlets which may often include substantive journals with which behavioral science 

methodologists are not familiar. For the problem of interest in this dissertation, methods 

common to the area of application performed decently but could be equaled or improved 

upon fairly readily by considered methods common to economics and sociology. 

Although there are many methodological problems in need of solutions in the behavioral 

sciences, sometimes a viable solution may already be available albeit from a slightly 

different, non-behavioral, science vantage point.  
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