SRC TR 89-46

Operational Relational Model -
Implementation Through
Specification

By

R. J. Cochrane

Operational Relational Model —
Implementation Through Specification

Roberta Jo -Cochrane
Fall 1988

1. Abstract

Our research evolves around the specification and implementation of the Operational Rela-
tional Model, (ORM), a model based on Update Dependencies [MARK1]. The intension and
extension dimensions are explored through the construction of a self-describing system. The
result, the implementation of ORM, will consist of a production system for specifying opera-
tlons as an integral part of the conceptual schema of the database.

2. Introduction

Operational Relational Model, (ORM), is a data model that includes operation specification as
an integral part of the conceptual schema design. ORM is an extension of the relational
model which includes Update Dependencies as its operation specification language.

This paper serves as a summary of the ORM implementation through specification. It begins
with a brief introduction to Update Dependencies followed by a discussion of the ORM imple-
mentation. The Appendices contain the complete specification of ORM minus the semantic
actions for the control strucuture.

3. Overview of Update Dependencies

Update Dependencies is a formalism for specifying database operations for controlling updates
[MARK1]. Similar to the concept of abstract data structures, this formalism provides an
abstraction facility that allows the database designer to group together data operations. In
this fashion, the knowledge required to maintain integrity constraints while performing an
update request is encoded in the database. Update Dependencies is a unique approach to
integrity constraint specification in that the user defines the correct evolution, (i.e. the correct
transition from one valid state to another), rather than the valid states of the database.

The remainder of this section describes operation specification and execution in Update
Dependencies as presented in [MARKI].

Each operation specification has the following form:

define op <iop - - <_dependency 17> .
- < dependency_2> .

< dependency N'>.

where N =>=1 and < op> is the name of the operation being defined. So, an operation is
defined by one or more < dependencies >. '

Each « dependency > is a condition followed by zero or more implied operation invocations.
It is given by the form:

< cond > ,
<“impl_opl™ ,

’

<impl opM>

where M >=0, <(cond> is a condition, and <impl_op>> is the invocation of an operation.
Valid conditions are comprised of a subset of first order logic plus predicates for testing the
existence of qualified tuples and the instantiation of predicates.

There are four types of operations: user, abstract, primitive, and I/O. User and abstract
operations must be defined by an operation specification. Primitive and I/O operations are
supplied primitive language constructs.

User operations allow the user to group together abstract operations, user operations, and
conditions that must be satisfied before invoking a sequence of these operations.

Abstract operations allow the designer to group together conditions that must be satisfied and
operations that must be performed when a relation is updated. There are four categories of
these operations: insert, delete, modify, and get. The database designer should specify an
operation from each of these categories for each relation in the database.

There are primitive operations for adding and removing tuples from relations, and one for
obtaining a new surrogate value. Primitive operations are restricted to occur only within the
definition of abstract operations. Furthermore, a primitive operation invocation over a rela-
tion, R1, is restricted to occur only within the definition of abstract operations defined over
the same relation, R1. This strict hierarchy forces the definition and use of abstract opera-
tions to perform the primitive update operations on the database.

The 1/0 operations consist of read, write and break. Break is for temporarily suspending the
system during an operation execution.

An operation execution succeeds when at least one of its < dependencies™> succeeds. A
< dependency > succeeds if the condition evaluates to true and all the <impl_ops> succeed.
The execution of an operation is analogous to computing a query in logic programming. Each
< dependency > can be thought of as a clause body where the corresponding clause head is
defined as the < op> under which the dependency occurs.

The order in which < dependencies>- are chosen for execution is nondeterministic and chosen
at run-time. The evaluation of conditions and execution of implied operations is left—to—
right. A closed world interpretation is assumed for the evaluation of conditions, (i.e. facts
derived from the positive facts in the database are true, and facts that cannot be derived in
such a fashion are assumed false).

Example

The following example is based on the suppliers-parts—shipments database, consisting of the
following relations:

SUPP(S#:suppl_num, SNAME:suppl_name)

PART(P#:part_num, PNAME:part_name)

SHIP(S#:supp!_num, P#:part_num, QTY:integer)

There are referential integrity constraints from S# and P# in SHIP to S# in SUPP and P# in
PART respectively. This example is an operation specification for the insertion of a shipment

that enforces referential integrity.
1nsert(SHIP(S#—S P#=P, QTY=Q))

nonvar(S) and nonvar(P) and nonvar(Q) and
SUPP(S#=S) and PART(P#=P),
add(SHIP(S#=S, P#=P, QTY=Q)).

.~ nonvar(S) and nonvar(P) and nonvar(Q) and
not SUPP(S#=S),
insert(SUPP(S#==S)),
insert(SHIP(S#=S, P#=P, QTY=Q)).

= nonvar(S) and nonvar(P) and nonvar(Q) and
SUPP(S#=S) and not PART(P#=P),
insert(PART(P#=P)),
insert(SHIP(S# =S, P#=P, QTY=Q)).

— var(S)

write("Input supplier number"),

read(S),

insert(SHIP(S#—S, P# =P, QTY=Q)).
- var(P),

write("Input part number"),

read(P),

insert(SHIP(S#=S, P#=P, QTY=Q)).
— var(Q),

write("Input quantity"),

insert(SHIP(S#—=S, P#=P, QTY—Q)).

One of the first three dependencies will apply when all the parameters needed to insert the
tuple have been specified. One of the last three cases are executed if the corresponding attri-
bute value has not been instantiated. In this case the user is prompted for the appropriate
value, and recursion is used to insert the shipment with the new information.

The first dependency is the case when the values of the part number and supplier number

satisfy the referential integrity constraint. In this case the indicated shipment is added to the
relation SHIP.

The second dependency is the case when the supplier number does not satisfy the referential
integrity constraint. In this case we have chosen to try to insert the supplier with the given
supplier number into the database. If this insertion succeeds, recursion is used to attempt to
insert the shipment again.

Similarly, the third dependency is the case when the part number does not satisfy the referen-
tial integrity constraint. Again, we have chosen to try to insert the part with the indicated
supplier number into the database, followed by a recursive call to the insert shipment opera-
tion. The test to insure that the supplier number satisfies referential integrity is not needed,
but added to avoid unnecessary computation.

4. Implementation of ORM Through Specification

The implementation of ORM consists of the specification of four parts utilizing four
specification languages. The four parts consist of the syntax, meta-schema, semantic actions,
and control structure. The specification languages employed are LEX, YACC, Update Depen-
dencies, and the Relational Data Model.

The syntax of the ORM language (Appendix A) is defined by YACC and LEX specifications.
YACC and LEX will automatically generate a parser for this language.

The ORM implementation includes a conceptual meta-schema that defines all schemata
(Appendix B) and all operations on schemata that can be defined in terms of the Relational
Data Model and Update Dependencies. This meta-schema is defined in terms of the Rela-
tional Data Model and Update Dependencies. Thus, the intension of the meta-schema can be
stored in the extension of the meta-schema, (i.e. as part of the meta-schema data).

The meta-schema is a refinement of the meta-schema developed in [MARK?] that includes the
explicit representation of the internal structure of conditions and expressions. The meta-
schema is designed with the goal of representing every aspect of the definitions explicitly.
Intuitively, such exact modeling will make queries and operations on the database expensive.
However, this representation is flexible and advantageous for future research and develop-
ment, such as enabling an update to the schema to he propagated to operations affected by
the update.

We are currently in the process of specifying the semantic actions for the ORM language.
Our goal is to utilize, as much as possible, the power of Update Dependencies for specifying
and implementing these semantic actions. All data definition statments have been imple-
mented as simple insertions on the relations in the meta—schema and are thus invocations of
meta-schema operations (Appendix C).

We are currently investigating the difficult issue of specifying the operation execution in
Update Dependencies. Our results will strongly affect the control structure, in that the con-
trol structure will consist of those parts of the operation execution which are not specified in
Update Dependencies. If the search strategy and the unification algorithm are specified in
Update Dependencies, these algorithms are modifiable within Update Dependencies and alter-
native strategies can be specified by the database designer. Furthermore, once it is clear how
to specify the semantic actions for operation execution, we need to identify the necessary ini-
tial contents of the meta-schema. '

We have found that the specification of the semantic actions in Update Dependencies has been
greatly simplified by defining views on the meta-schema. We first defined the interpreter’s
view of the meta-schema and the abstract operations needed to perform updates on these
views. The semantic actions consist of invocations of these abstract operations on the defined
views.

5. Future Research

The specification and implementation of the Operational Relational Model raises many addi-
tional interesting questions:

6.

Can a theory be developed for proving correct evolution of the database based on this
formalism? /

Is there a way to efficiently organize the dependency clauses in an operation specification
to improve operation execution? Would it be of any benefit to specify post conditions
for each dependency clause?

Can we avoid tuple at a time access to the database, and how?

Can an algebra be developed for specifying the combination of operation specifications,
such as merging two operation specifications that are defined over the same operation?

Many language constructs, such as iteration and alternation have a direct translation to
Update Dependencies [MARK1]. How should these language constructs be supported by
ORM?

Conclusion

Update Dependencies provides a formalism for operational database specification. Analysis
indicates that this formalism is very powerful, and provides the basis for many more research
issues [MARK1]. We are implementing an extension of the relational model, ORM, utilizing
Update Dependencies as the operation specification language. The goal is to employ a very
simple control structure for the model’s language interpreter, specifying most of the semantic
actions in Update Dependencies.

References

[MARK]| Mark, L., Roussopoulos, N., "Operational Specification of Update Dependencies", Depart-

ment of Computer Science and Systems Research Center, University of Maryland, College
Park, Maryland, Technical Report TR-87-37, 1987.

[MARK?| Mark, L., "Self-Describing Database Systems - Formalization and Realization", Depart-

ment of Computer Science, University of Maryland, College Park, Maryland, Technical
Report TR-1484, April 1985.

Appendix A — Syntax

The syntax of the specification language is defined as follows, where non—terminals are in cap-
ital letters:

10

30
40

60
70
80
90
110
120
130

140

150
160

170
180

190
200
210
220

230

240

250
260

270
280
290
300

315
317

320

PROG

OP_LIST

INTERACT_OP

DOM_DEF

DOM NAME LIST

DOM_TYPE,

PRIM_TYPE

REL_DEF
VIEW_DEF

OPER_DEF

ABSTR_OP_DEF

COND_ALT SEQ

ABSTR_ALT_SEQ

—

I

OP_LIST

OP_LIST INTERACT OP
INTERACT _OP

DOM_DEF
REL_DEF

VIEW DEF
OPER_DEF
ABSTR_OP_CALL.
USER_OP_CALL.

1 O OP_CALL.

deﬁne__dom DOM_NAME LIST:DOM_TYPE.

DOM_NAME_LIST, DOM_NAME
DOM_NAME

DOM_NAME
PRIM_TYPE

integer
char(int_lit)
surrogate
real

define_rel REL_NAME(ATTR_DOM_LIST).
define_view REL_NAME(ATTR_VAR_LIST) COND_ALT_SEQ

define_op ABSTR_OP_DEF
define_op USER_OP_DEF

get(REL_NAME(ATTR _VAR_LIST)) ABSTR_ALT_SEQ
insert(REL_NAME(ATTR_VAR_LIST)) ABSTR_ALT SEQ
delete(REL_NAME(ATTR_ VAR _LIST)) ABSTR ALT SEQ
modify(REL_NAME(ATTR VAR LIST; ATTR_VAR_LIST))
ABSTR_ALT SEQ

:— COND_ALT_SEQ COND.
:— COND.

:— ABSTR_ALT SEQ ABSTR_ALT.

330

340
350

360
370

380
390
400

410
420
430
440

450
460
470

480
500
510

520
530

535

540
550

560
565

570
580

590
600
610
620
625
627

630

ABSTR_ALT

ABSTR_OP_SEQ

ABSTR_IMPL_OP

ABSTR_OP

PRIMIT OP

10 op

USER_OP_DEF

USER ALT SEQ

USER_ALT

USER_OP SEQ

USER IMPL_OP

USER_OP

COND

—

=

:— ABSTR_ALT.

COND, ABSTR_OP_SEQ
COND

ABSTR_OP_SEQ, ABSTR_IMPL,_OP
ABSTR_IMPL_OP

ABSTR_OP
PRIMIT_OP
1 O OP

get(REL_NAME(ATTR EXPR_LIST))
insert(REL_NAME(ATTR_EXPR_LIST))
delete(REL_NAME(ATTR EXPR_LIST))

modify(REL_ NAME(ATTR_EXPR LIST; ATTR_EXPR_LIST))

add(REL_NAME(ATTR EXPR_LIST))
remove(REL_NAME(ATTR EXPR_LIST))
new(DOM_TYPE , VARIABLE)

write(EXPR)
read(VARIABLE)
break

OP_NAME(REL NAME(ATTR_VAR_LIST)) USER_ALT SEQ
OP_NAME(REL_NAME(ATTR_VAR _LIST; ATTR_VAR_LIST))
USER_ALT SEQ

OP_NAME(ATTR_VAR LIST)) USER_ALT SEQ

:— USER_ALT_SEQ USER_ALT.
:— USER_ALT.

C'OND, USER_OP_SEQ
CIOND

USER_OP_SEQ, USER_IMPL_OP
USER_IMPL_OP

ABSTR_OP
USER_OP
1.0 OP

OP_NAME(REL_NAME(ATTR_EXPR_LIST))
OP_NAME(REL_NAME(ATTR_EXPR LIST; ATTR_EXPR LIST))
OP_NAME(ATTR_EXPR_LIST))

(conp)

640
650
660
680
690
700
713
716

720
721
722
723
724
725

730
740

810
820
830

835
836
837

848
860
870
880
890
900
910
925

950

960

970

980

990
1000
1010

COMP_OP

ATTR_DOM_LIST

ATTR_EXPR_LIST

ATTR_VAR_LIST

EXPR

REL_NAME
ATTR_NAME
DOM_NAME
OP_NAME

CONST

- =i ===—==]

__:H:

e

I

—=

not COND

COND and COND
REL_NAME(ATTR_EXPR_LIST)
EXPR COMP_OP EXPR
var(VARIABLE)
nonvar(VARIABLE)

ATTR_DOM_LIST, ATTR_NAME:DOM_TYPE
ATTR_NAME:DOM_TYPE

ATTR _EXPR _LIST, ATTR_NAME=EXPR
ATTR_NAME=EXPR
epsilon

ATTR_VAR LIST, ATTR NAME=VARIABLE
ATTR_NAME=VARIABLE

.
epsilon

EXPR+EXPR
EXPR—EXPR
EXPR*EXPR
EXPR/EXPR
(EXPR)
~EXPR
CONST
VARIABLE

identifier
identifier
identifier
identifier
str lit

int_lit
real lit

A3

1020

1030
1040
1050
1060

1070
1080
1090

2000
2010
2010

VARIABLE

ABSTR_OP_CALL

1 O _OP_CALL

USER_OP_CALL

— ==

- IHI

identifier

get(REL_ NAME(ATTR_EXPR_LIST))
insert(REL_NAME(ATTR_EXPR_LIST))
delete(REL_NAME(ATTR_EXPR_LIST))

modify (REL_NAME(ATTR_EXPR_LIST; ATTR EXPR_LIST))

write(EXPR)
read(VARIABLE)
break

OP_NAME(REL_NAME(ATTR_EXPR_LIST))

OP_NAME(REL NAME(ATTR EXPR_LIST; ATTR_EXPR_LIST))
OP_NAME(ATTR_EXPR_LIST))

A4

Appendix B — Meta Schema

The meta-schema for the Operational Data Model is presented in a graphical notation defined
as follows:

Boxes represent relations, with attribute names in the interior of the subdivisions of the
boxes, and the relation name on the exterior of the box near the box.

Solid Circles represent surrogate domains, with the domain name on the interior of the cir-
cle.

Dashed Circles represent lexical domains, with the domain name on the interior of the cir-
cle.

Lines between an attribute field of a relation and a domain indicates that the attribute
takes its values from the domain.

Double headed lines over attribute fields indiciates that the attribute fields constitute a
primary key for the relation.

Universal Quantifier, ¥, over an attribute indicates that a totality constraint exists for
that attribute over the attributes corresponding domain.

The Meta-Schema consists of two parts: the conceptual schema and the external schema.
The conceptual schema, presented first, contains the base relations of the meta-schema. The
external schema, presented last, contains views derived from the meta-schema for interfacing
with the compiler. In general the external schema contains views that are joins over the base
relations with most of the surrogates projected out, giving a lexical view of the meta schema.

Both the conceptual schema and the external schema are presented in four logically grouped
pages, labeled by the logical group. The first logical group consists of the relations/views
that comprise the relational model extended to include a strongly typed semantic net of
domains. The second logical group consists of the relations/views that comprise the storage
of operation definitions specified in Update Dependencies. The third and fourth logical group
define the storage of conditions and expressions, respectively, that can occur in the operation
definitions.

/ \
! \
. 1
cond clause . variable |
\ !
\ y;
~ - 4
v ~|
«—+—>» >
cond view view att vrbl
cond_alts vavs
P \'4 v v
< 2 <—‘-—>
rname rel relation attribute att aname
reln | attn
4 T ~ rd -7 ~
/ \ &t s AN
/ \ / A\
i . \ ! . \
1 relation name rel dom att attribute name
\] \ 1
\ / \ /
v rdas - g
~ » s ~ - _ /
-~ -7 = ~ v V
AN
\ > ¢ ¢ >
\
integer ;] len dom [~ domain — 1 dom dname dtype
/ -
it field len domnt
//'(‘\\ //'“ﬁ\\
v & —» a N rd N
/ AN / \
I 3 \ i . \
super | category sub t domain name ! | domain type !
\ / A 7
\. ‘/ \ /
sem_net N L N s
category

RELATIONS, DOMAINS, ATTRIBUTES

and
VIEWS

B.2

v -7 N
[—

op_spec |op_name ~‘*'pperaution name

op type N /
cond clause cond PP

[————_d
op_ operation 1 .
spec specification op_spec | re
op_rel
dependencies | dep v
—»
def
P att op_spec type vrbl
A formal parm J
dep . h)
/ \
4\ . li \
attribute | parm type
N \ /
imp \ /
(ordered) op . .
dep 1
1 gy
Py imp op att expr type
implied S e
actual _parm
operation
imp_op expr [expression
imp_op Write_pg.?ln“m‘g_ i
break op
- - eoammm—— -
OPERATIONS mpop | vrhl
domain
read parm
NOTES
dependencies are abstr alt or user alt
s = — P E—
parm type == {retrieval, replacement}
operation type == { add, remove, new, write, read, .
modify, get, insert, delete 1mp_op dom vrbl
break, user defined} né;:f)arm

B.3

A
N

- ~
s N
4 \
/ \
[} . i
. variable 1 vrbl
\ /
N /
cond cond clause
s/ h N
/ \
/ \
I SO
var_nonvar flag
\ /
\‘\ ! . 4 .
.. - instantiation
cond |
rel
- negation
5 A]|
K N
/ \
1 . y
| comparison test
\ operators /
\ /
A 7 exists
~ rd
et e <___
exprl |comp_op| expr2 cond exist_test
S §— >
expr test att

teas

Condition Clause

B.4

| —

cond

bool

/
{
)

./l

boolean_cond J

e ~

boolean

expr

neg_expr

S—>

vrbl

const type expr [expression expr
const_expr var_expr
super exprl op expr2
sub_expr
/ - b \\
/ \
! \
' binary op)
\ /
\ L
Expressions

B.5

Appendix C - Semantic Actions

This section contains the semantic actions that accompany the syntax of the specification
language. It i1s comprised of two parts: the annotated syntax, and the meta-schema
definitions and operations.

As can be expected, this appendix is very large (71 pages) and is not included here. It
can be obtained from the authors upon request.

C.1.1

