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ABSTRACT

Title of Dissertation: Optimal Risk Sensitive Control of

Semi-Markov Decision Processes

Jay P. Chawla, Doctor of Philosophy, 2000

Dissertation directed by: Professors Steven I. Marcus and Mark A. Shayman
Department of Electrical and Computer Engineering

In this thesis, we study risk sensitive cost minimization in semi-Markov decision

processes. The main thrust of the thesis concerns the minimization of average risk

sensitive costs over the in�nite horizon. Existing theory is expanded in two direc-

tions: the semi-Markov case is considered, and non-irreducible chains are consid-

ered. In particular, the analysis of the non-irreducible case is a signi�cant addition

to the literature, since many real-world systems do not exhibit irreducibility under

all stationary Markov policies. Extension of existing results to the semi-Markov

case is signi�cant because it requires the de�nition of a new dynamic program-

ming equation and a technically challenging adaptation of the Perron-Frobenius

eigenvalue from the discrete time case.

In order to determine an optimal policy, new concepts in the classi�cation

of Markov chains need to be introduced. This is because in the non-irreducible



case, the average risk sensitive cost objective function permits extremely unlikely

events to exert a controlling inuence on costs. We de�ne equivalence classes of

states called `strongly communicating classes' and formulate in terms of them a

new characterization of the underlying structure of Markov Decision Problems and

Markov chains.

In the risk sensitive case, the expected cost incurred prior to a stopping time

with �nite expected value can be in�nite. For this reason, we introduce an assump-

tion: reachability with �nite cost. This is the fundamental assumption required to

achieve the major results of this thesis.

We explore existence conditions for an optimal policy, optimality equations, and

behavior for large and small risk sensitivity parameter. (Only non-negative risk

parameters are discussed in this thesis { i.e. the risk averse and risk neutral cases,

not the risk seeking case.) Rami�cations for the risk neutral objective function

are also analyzed. Furthermore, a simple solution technique we call `recursive

computation' to �nd an optimal policy that is applicable to small state spaces is

described through examples.

The countable state space case is explored, and results that hold only for a

�nite state space are also presented. Other, related objective functions such as

sample path cost are analyzed and discussed.

We also explore �nite time horizon semi-Markov problems, and present a gen-

eral technique for solving them. We de�ne a new objective function, the mini-

mization of which is called the `deadline problem'. This is a problem in which the

probability of reaching the goal state in a set period of time is maximized. We

transform the deadline problem objective function into an equivalent �nite-horizon

risk sensitive objective function.
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Chapter 1

Introduction and Overview

1.1 Introduction

For the criterion of average or discounted risk neutral costs on the in�nite horizon,

policy or value iteration can be used to �nd optimal policies for semi-Markov

decision processes (see, e.g., Ronald Howard's books [22] and [21]). However,

when the time between transitions varies over a continuous time interval and is

not exponentially distributed, and either the time horizon is �nite or the cost

function to be optimized is not a linear sum of costs, the standard framework for

solving MDPs is no longer applicable. (There are trivial exceptions, such as when

the time between transitions is restricted to the positive integers, a case covered by

Howard and Matheson [23] for a risk sensitive objective function.) In this thesis,

we extend treatment of semi-Markov decision processes to the risk sensitive cost

criterion, both on the �nite and the in�nite horizon.

The main contribution of this thesis is in laying the theoretical groundwork

for a study of optimal average cost policies on the in�nite horizon when the stan-

dard irreducibility assumption is removed. We focus on the risk sensitive objective

function because it has interesting and useful properties, including robustness un-

der parameter uncertainty. There has been considerable research in the area of
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risk sensitive control recently (see Section 1.3), and in this thesis we aim to push

progress forward in terms of the complexity and scope of problems to which the

risk sensitive optimality criterion can be applied. Future researchers may build

on these results to determine e�cient and convergent solution techniques for these

optimization problems.

1.2 Motivation for study

In this thesis, we focus on optimizing the objective function of average risk sensitive

costs on the in�nite horizon. Aside from the mathematical interest of the problem,

there are many practical reasons to pursue this avenue of study. The most direct

reason is that sometimes one needs to avoid costly realizations and is willing to

sacri�ce somewhat in terms of average (risk neutral) performance. In this regard, a

risk sensitive criterion objective has an advantage over a minimax objective since it

balances risk with average performance. (Note: In [13], another objective function

is proposed that balances the same tradeo�: mixed risk neutral/minimax control.)

One of the most natural applications of risk sensitive control is in maximiz-

ing �nancial return. This is because �nancial returns are inherently multiplicative,

rather than additive { if one earns 5% in a year, one's portfolio value is multi-

plied by 1:05. In [6], risk sensitive portfolio managment is studied. A �nite state

space and discrete time formulation is used to model a number of factors including

macroeconomic conditions, and portfolio performance is optimized with respect to

the risk sensitive average cost objective function on the in�nite horizon. Even for

a �nite time frame, a controller for the average cost objective function will perform

well since performance converges yielding nearly optimal behavior on a �nite time

horizon. Another common objective function used in portfolio analysis is mean-

variance control in which the mean gain plus minus a factor times the variance of

the gain is maximized. This is similar to risk sensitive control, in fact it constitutes

the �rst two terms of the Taylor series expansion of the exponential. However, it
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leads to undesirable behavior including history-dependence of the optimal policy,

as we will later illustrate in an example.

In general, aside from the advantage of minimizing risk (i.e., reducing the

probability of a very costly realization), a risk sensitive controller outperforms a

risk neutral controller when system parameters are not known with certainty or

they are not constant (see e.g., [39], [15], [8], [3], [12], and [13]). This is due to the

connection between risk sensitive and robust control �rst pointed out by Glover

and Doyle in [17]. (For references to subsequent literature, see [15].)

In [8], a variational representation is used to connect risk-sensitive and robust

control. It is shown that for a stochastic di�erential game, strategies that are

nearly maximizing for the robust problem can be used to de�ne nearly minimizing

controls for the risk-sensitive problem with small risk parameter. In [15], some

robustness properties of a risk sensitive controller are stated and proved, including

a stochastic small gain theorem.

In [3], a framework is created for solving robust control problems using a risk

sensitive controller. Speci�cally, for the case in which there are uncertainties in

system parameters, a risk sensitive control problem is formulated and solved using

an information state. The optimal controller for this problem performs robustly.

In [39], a risk sensitive criterion is used to perform decision theoretic diagnosis

with application to communication network failures. The reason a risk sensitive

criterion is used is because network parameters are changing and can only be

estimated. The robustness of a risk sensitive controller allows it to perform well

under those conditions.

Note: For more information about risk sensitive control of partially observed

MDPs (POMDPs) including large and small risk limit results, see [16]. See the

seminal paper [41] for the risk neutral POMDP case. We assume full state obser-

vations throughout this thesis.
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1.3 Background in the literature

There is a rich literature in risk sensitive control stretching back over half a century.

In this background section we focus on results in the literature that are of direct

relevance to our work.

In [35], Puterman covers a wealth of issues involving MDPs, SMDPs, dy-

namic programming, existence of optimal policies, policy iteration, value iteration,

and linear programming. The average cost case is covered in depth, including the

semi-Markov case. However, Puterman only covers the risk neutral case. Risk sen-

sitive objective functions are not discussed. However, for the risk neutral case, the

results in the literature are well explained. The Average Cost Optimality Inequal-

ity (ACOI) is described, based on Sennott's work as described in [37]. Another

excellent overview text is [19], which covers much of the same ground as Puterman,

including a detailed discussion of the linear programming approach to solving the

risk neutral average cost control problem. Bertsekas has written two canonical

volumes, [4] and [5], on all aspects of risk neutral optimal control. His texts are an

excellent source for a �rst time reading of the material because they are very intu-

itively written. In addition, they are broad in scope and cover all of the relevant

material.

In [37], Sennott explores optimal policies for Markov decision problems, also

for the risk neutral case only. She shows that in the countable state space case for

bounded costs, that the ACOI holds. ([37], P. 135)

The risk sensitive objective function was �rst addressed by Ronald Howard,

([21], [22], and (with Matheson) [23]) who covered the discrete time, �nite horizon

case. The discounted costs case on the in�nite horizon was covered by Chung and

Sobel in [10]. Unfortunately, in the discounted costs case the optimal policy is

nonstationary in general, although as time gets large it converges to a stationary

policy. Recent work in the area has been done by Coraluppi, [14] who discussed

tradeo�s between various objective functions and further explored the discounted
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costs case. Patek [34] recently considered the risk sensitive stochastic shortest path

problem for a �nite state space in discrete time. He showed the existence of an

optimal stationary policy and proved the convergence of value and policy iteration.

The risk sensitive objective function is `harder' to analyze than the risk neu-

tral objective function in the in�nite horizon case. The reason for this is because

the risk neutral objective function can take advantage of ergodicity in a direct way:

if a stationary Markov policy induces an ergodic distribution, then the average risk

neutral cost on the in�nite horizon is given by the cost function weighted by the

ergodic distribution. In addition, in the limit as the discount factor approaches

1, the discounted risk neutral cost approaches the average risk neutral cost. This

`vanishing discount' approach is described in, e.g. [4] and [35].

In [18], Hernandez and Marcus extend the risk sensitive results by applying

a method similar to the vanishing discount approach to the Isaacs equation of an

ergodic cost stochastic dynamic game. (Note: Fleming and Hernandez used the

Isaacs equation in this way earlier for the �nite state case.) In [9], Cavazos-Cadena

and Fernandez-Gaucherand extend the risk sensitive results in the same way but

without resorting to a limiting argument. In both [18] and [9] the result is that

if costs are bounded over the entire (countable) state space and (simultaneous

Doeblin condition) every policy returns the system to a speci�c recurrent state

within an expected time that is uniformly bounded starting from any state, then

an optimal policy exists and an optimality equality holds for that policy. In [9] it

is additionally pointed out that unique problems arise in the risk sensitive case. In

particular, the expected cost to escape a state need not even be �nite! A simple

example is used to show that because of this potentially in�nite transition cost

unless the risk sensitivity parameter is su�ciently small, the average cost for a

given stationary policy is not necessarily the same starting from every initial state

despite the strong recurrence (Doeblin) condition.

In [31], Di Masi and Stettner extend the results in [18] by retaining the

bounded costs assumption and replacing the Doeblin condition with a very strong

5



assumption on the transition probabilities. (Essentially that the di�erence in tran-

sition probabilities from any two states is uniformly bounded.)

P [Cjx1; a1]� P [Cjx2; a2] � �:

In addition to the results in [18], Di Masi and Stettner also show that the

limit as the risk sensitivity parameter goes to zero from above of the risk sensitive

cost is equal to the risk neutral cost.

In [14], Coraluppi points out that the discounted risk sensitive cost, as the

risk sensitivity parameter goes to 1, approaches the discounted maximum cost.

This was already known to be true in the �nite horizon case.

Balaji, Borkar, and Meyn have made signi�cant contributions to the area

recently. In [2], Balaji and Meyn studied ergodicity for an irreducible Markov

chain with risk sensitive costs. This extends earlier ergodicity work (see [32]) in

the risk neutral costs area. The most important result in [2] shows that if there is a

Lyapunov function that satis�es a growth condition, then the average risk sensitive

cost over the in�nite horizon exists and is independent of the initial state. In [7],

Borkar and Meyn use the results in [2] to prove the existence of an optimal policy.

Their result is quite broad and assumes only three things: the costs are norm-like,

the (countable) state space is irreducible under all Markov stationary policies, and

there exists a policy that induces a �nite average risk sensitive cost.

In [20] and [26], results are presented that show the existence of a sample

path optimal (risk neutral average costs) policy. The conditions are di�erent in

the two references, and will be discussed in section 10.1.

1.4 Contributions of the Thesis

In this thesis, we cover the risk sensitive case in depth. Our results extend the re-

sults in [7] and [2] by covering the semi-Markov case and removing the irreducibility

assumption. In particular, the removal of the standard assumptions that all policies
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are unichain and that the entire state space is irreducible under any policy is a ma-

jor contribution to the literature. Although the risk neutral objective function has

been studied without the irreducibility assumption, we are not aware of any litera-

ture that studies the risk sensitive objective function without a strong irreducibility

assumption. In particular, as Cavazos-Cadena and Fernandez-Gaucherand point

out in ([9], P. 4): \it is well known that a `communicating' condition is necessary in

order to have the optimal average cost be independent of the initial state, and that

a strong recurrence condition is required for the existence of a bounded solution

to the average cost optimality equation." We remove the `communicating' condi-

tion in this thesis and we also remove the strong recurrence condition, allowing

the existence of a sequence of policies that approach null recurrence, and allowing

policies to be null recurrent or not recurrent at all. We are not aware of other

work in which these strong assumptions have been removed in studying the risk

sensitive average costs objective function on the in�nite horizon.

As an aside, we want to point out that the classi�cation and relevance of the

`communicating' aspects of MDPs are di�erent when applied to the study of risk

sensitive versus risk neutral objective functions. We explore that di�erence in this

thesis.

In this thesis, we prove two veri�cation theorems: one for the case of bounded

costs and one for the case of norm like costs. These results are an extension of

the veri�cation theorem result in [18] because they involve semi-Markov decision

problems. Furthermore, we provide a veri�cation theorem in which the bounded

costs assumption of [18] is replaced by a norm-like costs assumption. This veri�-

cation theorem is used in the same way the veri�cation theorem of [18] is used, to

complete a proof of the existence of an optimal policy.

We �nd conditions under which there exists an optimal policy, both for the

strongly communicating case and the not strongly communicating case, based on

two fundamental assumptions: that if a set of states is reachable w.p.1, then it is

reachable with �nite costs, and that costs are norm-like (I.e., for any given bound,
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there are only a �nite number of states with transition costs below the bound.) We

believe that these are natural assumptions to make. The irreducibility assumption

is unnatural because not every policy will hit every state in�nitely many times

w.p.1. The norm-like assumption is natural because the farther the system gets

from its `core' set of states, the more costly it should be. The assumption that a

reachable set of states can be reached with �nite costs is natural both because its

converse is unnatural and because of the fact, pointed out by Cavazos-Cadena

and Fernandez-Gaucherand in [9] that without that assumption the long-term

average cost depends on the initial state. (In our non-irreducible framework, the

corresponding rami�cation is that the long-term average cost within an irreducible

subclass induced by a policy depends on the initial state.)

In order to prove our general results, we had to examine the behavior of

semi-Markov, as opposed to discrete time, processes. The main work in this area

is done in the proof of the veri�cation theorems. We also had to classify commu-

nicating properties of controlled Markov chains in ways previously not relevant to

optimization problems. This work culminates in the strong optimality resuls near

the end of the thesis.

We also cover, as do Di Masi and Stettner (in [31]) the behavior of the

risk sensitive cost as the risk sensitivity parameter goes to zero. However, our

results are much broader, not requiring bounded costs. Furthermore, we eliminate

the irreducibility assumption and describe the limiting behavior, something that

has not been done before for the risk sensitive average cost objective function.

(Although it has been done for the risk neutral case. See e.g., [35].) We also cover

the case where the risk sensitivity parameter goes to 1. In that case (in discrete

time only { we do not cover the semi-Markov case), the average risk sensitive cost

approaches the average maximum cost, when it is de�ned.

We present broad conditions under which a policy's sample path (risk neutral

average) costs equal its expected costs w.p.1. This result can be used to extend

the results in [20] and [26].
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1.5 Organization of the thesis

In Chapter 2, we present the mathematical de�nition of the optimization problem

this thesis addresses: the semi-Markov decision problem formulation. The prop-

erties of the state space, action space, and transition time and cost structure are

de�ned. In addition, some unique features of risk sensitive and risk neutral objec-

tive functions are discussed. Also, some basic notation used throughout the thesis

and some basic properties of time-invariant Markov chains are introduced.

In Chapter 3, we describe the deadline problem. This is a new problem that

apparently has not been described in the literature. The deadline problem is to

�nd the policy that will take the system to the goal state within a prede�ned

time limit with the highest probability. In other words, the speed with which the

system reaches the goal state or its `closeness' if it does not hit the goal state are

irrelevant. All that matters is reaching the goal state within the time limit. The

deadline problem, it is shown, can be reduced to an equivalent risk sensitive control

problem and solved using standard methods.

In Section 3.5, the rate of accrual of costs in an SMDP is further de�ned.

Then in Section 3.6 a simple algorithm is de�ned to solve any �nite horizon SMDP.

It is an extension of the familiar dynamic programming technique to solve a �nite

horizon MDP. Chapter 3, in addition to de�ning and solving the deadline problem,

addresses the problem of �nite horizon SMDPs in general.

In Chapter 4, the objective function this thesis addresses is de�ned: the av-

erage cost risk sensitive objective function on the in�nite horizon. The continuous

time dynamic program (4.2) is introduced as well. Then the two veri�cation the-

orems are presented and proved. The �rst veri�cation theorem, Theorem 4.2.1,

covers the case of bounded costs over the countable state space. It shows that

if the dynamic program (4.2) has a solution, then there exists an optimal policy

de�ned by the dynamic program, and furthermore this optimal policy is station-

ary, Markov, and deterministic. The second veri�cation theorem, Theorem 4.2.2,
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covers the case of norm-like costs. Chapter 4 concludes with a list of assumptions

that will be used in future chapters to prove the main results of this thesis.

In Chapter 5, we de�ne the Perron-Frobenius eigenvalue ��C(), which is

shown to be equal to the long term average cost of a stationary, Markov policy

within one of its strongly communicating classes. Furthermore, the round trip cost

C�!�(�) is de�ned. These core concepts are used to explore behavior for large and

small values of the risk sensitivity parameter and to discover a recursive equality

(5.13) that must hold within a recurrence class induced by a policy with �nite

Perron-Frobenius eigenvalue.

In Chapter 6, the fundamental Assumption 6.1.1 is stated. This assumption

is that the system can be driven from any state to any other state w.p.1, and fur-

thermore it can be driven with �nite expected risk sensitive cost. This assumption

places the risk sensitive average costs control problem on a par with the risk neutral

average costs control problem because it eliminates the problem of in�nite costs to

get between states. (Recall that this problem was pointed out by Cavazos-Cadena

and Fernandez-Gaucherand in [9].) The second theorem in this chapter shows that

even if the dynamic program (4.2) fails to hold because the round trip cost at the

Perron-Frobenius eigenvalue is less than one, then an optimality inequality (6.10)

still holds.

In Chapter 7, reachability, probabilistic reachability, and equivalence classes

of states that can reach each other (strongly communicating classes) are de�ned.

Several lemmas used in later chapters are proved based on these de�nitions. In

Chapter 7 it is demonstrated that the state space is composed of several strongly

communicating classes of states that are self-reachable plus a set of transient states.

Furthermore, some of these strongly communicating classes can reach others, cre-

ating a relationship that de�nes a partial ordering on the strongly communicating

classes themselves.

In Chapter 8, we delve into the heart of this thesis. First an example is used

to illustrate the maximum cost nature of the risk sensitive average cost objective
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function. (Therefore, the optimal control will execute minimaxing over the set of

reachable strongly communicating classes.) Then, Section 8.1 discusses how our

classi�cation of Markov chains di�ers from that used by Puterman in [35] and

why: he applied the classi�cation to the solution of risk neutral average costs and

we apply it to the solution of risk sensitive average costs. Then in Section 8.2,

a series of lemmas culminates in Theorem 8.2.1, which shows that starting from

any initial state there is an optimal policy in the not strongly communicating case.

Section 8.3 is devoted to showing why Theorem 8.2.1 does not hold independent

of the initial state, and further showing that if the optimal policy is independent

of the initial state in the risk sensitive case, it also is in the risk neutral case.

In Chapter 9, the �nite state space assumption is utilized. Theorem 9.1.1,

a powerful result, starts the chapter. Theorem 9.1.1 generalizes Theorem 8.2.1

by showing that there is a policy that is optimal starting from any state. The-

orem 9.1.2, also a powerful result, shows the optimality equations for the not

strongly communicating case. Lemma 9.1.1 is another veri�cation `theorem' like

those in Chapter 4. This lemma holds in the more general not strongly communi-

cating case, though.

In the last two sections, Sections 9.2 and 9.3, we delve into more detail as to

why the optimality equations and the limit of risk sensitive costs as  # 0 look the

way they do. We classify all of the realizations starting from a given state under

a policy and �nd the probability that the realization falls in each class.

In Chapter 10, two topics are discussed: sample path convergence and the

elimination of  from the risk sensitive average cost objective function. In partic-

ular, the discussion in Subsection 10.1.1 is valuable in understanding the thesis as

a whole.

Finally, in Chapter 11, some closing remarks and suggestions for future re-

search are made.
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Chapter 2

The Semi-Markov Formulation

Let (S;A; P; Z) be a semi-Markov control model. Put simply, a semi-Markov model

(also called a semi-Markov decision process or SMDP) consists of a state space, S,

an action space, A, a set of transition probabilities, P , that specify the probability

of transitioning to a given state from a given other state under a given action, and

lastly, Z. Z is what makes the semi-Markov model di�erent from a Markov model.

In a discrete time Markov model, transition times and transition costs are �xed.

In a semi-Markov model, both times and costs are random, and they are described

by a joint probability distribution dependent on the state and the action.

The state space, S, may be either �nite or countably in�nite and endowed

with the discrete topology, and the action or control space A is a Borel space. The

state evolves in continuous time and is piecewise constant. Those times when the

state changes are called decision times, and a control action must be selected at

each decision time. For every x in S, �(x) � A is the set of admissible actions

when the system is in state x. The set of admissible pairs is denoted K = f(x; a) :

a 2 �(x); x 2 Sg. (Clearly, K � S �A.) The state process is continuous from the

right, and immediately after each state change, a new action must be selected from

those admissible actions for the new state, which is completely observed. The state

occupied and action taken at the kth decision epoch are denoted xk; ak respectively.
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The time elapsed between the kth and k + 1th decision epochs, i.e., the `transition

time', is denoted tk.

The manner of choosing an action at the kth decision epoch is a mapping

or decision rule dk : x ! �(x); x 2 S. (Note that dk : S ! A.) A decision

rule may depend on the history hk = (x0; a0; :::; xk�1; ak�1; xk) of the process up to

the kth decision epoch or it may depend only on xk. Such decision rules are called

history-dependent or Markovian, respectively. A decision rule may be randomized,

specifying a probability density qdk on the set of actions. I.e., the probability that

action a 2 �(xk) is chosen at the kth decision epoch is qdk(hk)(a) � 0, with
P
a2�(xk) qdk(hk)(a) = 1 for all possible values of the history. Following [35], we

denote the set of all decision rules at decision epoch k by Dk. There are 4 classes

of decision rules: history dependent and randomized (HR), history dependent and

deterministic (HD), Markov and randomized (MR), and Markov and deterministic

(MD). We denote the class of decision rule by a superscript.

A policy � is a sequence of decision rules, � = (d1; d2; :::) Let �
L denote the

set of all policies of class L; L 2 fHR,HD,MR,MDg. Thus, �L = DL
0 �DL

1 � :::.

We call a policy stationary if dk = d 8k. Also, we can see that

�HR � �HD [ �MR; and �MD � �HD \ �MR:

As soon as an action a is selected, the next state y is determined from the

transition law P , which is a stochastic kernel on S given (x; a). Z is a stochastic

kernel on <+ � <+ given (x; a; y). Z determines the transition time (i.e., the

time between decision epochs) t(x; a; y) and the transition cost c(x; a; y) given

the state and action selected, and the state to which the system transitions. So

transition time and cost are not independent in general. Furthermore, we require

that transition times be positive and transition costs be non-negative.

Throughout the remainder of the thesis, we will assume there is no de-

pendence of the cost and time of a transition on the state transitioned to; i.e.,

t(x; a; y) = t(x; a) and c(x; a; y) = c(x; a). This assumption is made without loss
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of generality, because it can be imposed by adding states to the state space, while

maintaining the �niteness or countability of the state space.

When describing the performance of a policy starting from a given initial

state, we will use the notation E�
x [�] to denote the expected value of a random

variable under policy � starting from state x; and the notation P�
x [�] to denote

the probability of an event under policy � starting from state x.

The following theorem (2.0.1) is taken from [35] (p. 536):

Theorem 2.0.1 Let � = (d1; d2; :::) 2 �HR. Then, for each x0 2 S, there exists

a policy �
0
= (d

0

1; d
0

2; :::) 2 �MR satisfying

P�
0

[xk = j; ak = a; tk = � jx0] = P�[xk = j; ak = a; tk = � jx0]

for k = 1; 2; 3; ::: .

Assumption 2.0.1 (�nite action space) �(x) is �nite 8x 2 S.

Assumption 2.0.2 (compact action space) �(x) is compact 8x 2 S; and P (yjx; a),

Z(t; cjx; a) are continuous in a.

Theorem 2.0.2 Let L : (y; c; t)! < be a measurable function and assume either

Assumption 2.0.2 or Assumption 2.0.1. Then,

inf
dk2DMD

Edk
xk
[L(xk+1; ck(xk; ak); tk(xk; ak))] = inf

dk2DMR
Edk
xk
[L(xk+1; ck(xk; ak); tk(xk; ak))]:

(2.1)

Furthermore, the in�mum is achieved.

Proof:

Since DMD � DMR, left hand side � right hand side.

Now choose dk 2 DMR. Suppose that xk = s. Under dk, there is a probability

density function on ak given by qdk(�). Denote
�Lxk(a) = E[L(xk+1; ck(xk; ak); tk(xk; ak))jak =
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a]. Then, under either Assumption 2.0.2 or Assumption 2.0.1, 9a
0
2 �(xk) such

that �Lx(a
0
) = infa2�(x) �L(a). Therefore,

Edk
xk
[L(xk+1; ck(xk; ak); tk(xk; ak))] =

Z
a2�(xk)

�Lxk(a) � qdk(a)da

� �Lxk(a
0

) = E
d
0

k
xk [L(xk+1; ck(xk; ak); tk(xk; ak))]:

where d
0

k 2 D
MD is the decision rule of taking action a

0
in state s. 2

From Theorems 2.0.1 and 2.0.2, it can be seen that for the purpose of op-

timizing a risk neutral cost criterion we can con�ne our investigation to Markov,

deterministic policies. However, while Theorem 2.0.2 is still applicable in the

risk sensitive case (i.e., Theorem 2.0.2 applies to both multiplicative and additive

dynamic programs), Theorem 2.0.1 is no longer relevant since the nature of the

objective function (product of costs) brings dependency on the joint distribution

of the state, rather than just its distribution at a given decision epoch. Later, we

will see that under certain assumptions the optimal policy for in�nite horizon risk

sensitive average cost problems is a stationary, Markov, deterministic policy.

Clearly, if the time horizon is �nite, the horizon e�ect will bring about a

time dependence in the optimal policy. An interesting question to ask for both

�nite horizon and in�nite horizon problems is \when does an optimal policy have

to depend on accrued costs?"

In [23] it is pointed out that there exists an optimal control that is indepen-

dent of past costs for (total, average, or discounted) risk neutral and risk sensi-

tive objective functions (both �nite and in�nite horizon) in discrete time, i.e., if

t(x; a) � 1 8x; a and c(x; a) is deterministic. This makes intuitive sense, since if the

objective function is risk neutral, the objective is to minimize the expected value

of the sum of future costs regardless of past costs, which are merely additive. And

if the objective function is risk sensitive, future costs are a multiplier to accrued

costs; this multiplier should be minimized regardless of what costs have already
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been accrued. For all of the objective functions we study in this thesis, the use of

past costs to determine actions will not improve performance.

However, there are objective functions in which past costs do a�ect future

actions, i.e., in which an optimal policy must be dependent on past costs. One

such objective function is the square of the total cost, as the following example

demonstrates:

Example 2.0.1 (Cost dependence of optimal control)

X0
X1 X

2

a0 a
1

a
-1

Figure 2.1: Example of system in which optimal control is dependent on prior

costs.

Suppose that, as shown in �gure 2.1, we have a discrete-time, �nite horizon

problem in which transitions are deterministic and independent of the action taken,

there are two time steps, and the system starts in state x0. Suppose that at time

0, only one control is admissible: a0, and at time 1, two controls are admissible:

a1 or a�1. Suppose the costs are as follows:

c(x0; a0) =

8>><
>>:

1 with probability 1
2

100 with probability 1
2

c(x1; a1) = 7

c(x1; a�1) =

8>><
>>:

1 with probability 1
2

11 with probability 1
2
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Suppose further that the objective function is J = E[(c0 + c1)
2], i.e., the objective

function is the square of the total cost. If the cost incurred at time 0 is observed,

then our choice of control at time 1 will depend on the observed cost. It can be

seen that if cost 100 is observed, then we choose control a�1, whereas if cost 1 is

observed, we choose control a1. Therefore, the optimal policy depends on the prior

costs.

Now let's look at an objective function that is useful in �nancial applications:

a weighted sum of the mean + the variance. (As pointed out in the introduction,

this kind of objective function is used, e.g., in �nancial applications, although with

the objective of maximizing bene�ts rather than minimizing costs. However, this

example could be suitably modi�ed to address pro�t maximization.)

Suppose we are trying to minimize E[(c0 + c1) + (c0 + c1)
2]. Then clearly

if  is large enough we would again choose a�1 when cost 100 is observed and a1

when cost 1 is observed. For  small enough, we would choose a�1 no matter what

cost is observed at time 0.

This example brings to mind an interesting point. Observation of accrued

costs in the problems we study is irrelevant to optimizing performance. However,

there are problems and objective functions (such as mean-variance as shown above)

in which cost observation is essential to maximizing performance.

In the following, we will restrict our attention to completely observed risk

sensitive and risk neutral objective functions. We also introduce the completely

observed deadline problem, in which the objective is to reach the goal state within

a time deadline, which also has the property that past costs (actually the past

probabilities of not reaching the goal state { the deadline problem does not deal

with `costs' per se) do not a�ect the optimal policy. From the fact that the deadline

problem has this same `nice' property, we might guess that it can be transformed

into either a risk neutral or risk sensitive problem. We will show that it is in fact

equivalent to a risk sensitive problem in which the `costs' are a function of past
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probabilities of not reaching the goal state.

It is also worth mentioning that the minimax optimal controller obtained

by using as the objective function the maximum possible (additive) cost under a

policy, also has an optimal policy independent of past costs. Again, a relationship

to the risk sensitive problem might be inferred from this fact, and in fact the

minimax objective function is the limit of the risk sensitive objective function

as the risk sensitivity parameter (de�ned later) tends to 1. Also, each of the

objective functions mentioned admits a dynamic programming formulation, which

if taken for the in�nite horizon average cost problem depends only on the current

state.

2.1 Notation for objective functions used in this

thesis

We assume without loss of generality that there is a cost to be minimized, rather

than a reward to be maximized. Furthermore, the capital letter J is used to

represent the objective function to be minimized. A superscript of � indicates

that policy � is used to select actions. A subscript of x0 indicates that the system

begins at time zero just having transitioned to state x0, i.e., at a decision epoch in

state x0. (These two rules of notation hold for expected values as well as objective

functions.) Because we will always be assuming the system starts at a decision

epoch, we will always have a state in the subscript of any objective function or

expectation operator. An objective function with risk-sensitive costs is denoted J ,

and one with risk neutral costs is denoted J . Continuous time is assumed to be

used, but a superscript of ', as in J
0
denotes discrete time. An objective function

is by default average cost, but a bar above the J (as in �J or �J ) denotes a �nite

horizon objective function. An in�nite horizon average cost objective function that

takes the ratio of cost to time in the same number of transitions is denoted with a
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tilde above the J (as in ~J or ~J ). A value function V denotes the in�mum over all

possible policies of the value of the objective function to be minimized. Because all

decisions are made at decision epochs, a value function denotes this in�mum taken

at a decision epoch. For the deadline problem, we will denote the value function

V (R; s) where R is the time remaining until the deadline and s is the state to

which the system has just transitioned.

To summarize the objective function notation,

J�
x0
= risk sensitive objective function

J �
x0
= risk neutral objective function

J
0�
x0

or J
0�
x0
= discrete time

�J�
x0

or �J
�
x0
= �nite time horizon

~J�
x0

or ~J
�

x0
= in�nite horizon ratio of total cost to total time

Jd(R; s) = objective function for the deadline problem

at decision epoch in state s with time R remaining

where the superscript of � means that policy � is used and the subscript of x0

means that the initial state is x0. (For a continuous time objective function, the

system is assumed to begin at a decision epoch.)

The deadline problem will be de�ned in Chapter 3.

2.2 Properties of time-invariant Markov chains

with countable state space

The notation �G for G � S and �y for y 2 S will be used throughout this thesis.

De�ne �G
:
= min(k 2 f1; 2; 3; :::gjxk 2 G) and de�ne �y

:
= �fyg. Recall that the

initial state is denoted x0; we denote �G
:
= min(k 2 f0; 1; 2; 3; :::gjxk 2 G). (Note:

it can easily be shown that �G is a stopping time.)
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If a stationary policy � 2 �MR is applied, then the embedded chain becomes

a time-invariant Markov chain. Following Chapter 4 of [32], for x; y 2 S we de�ne

the relationship x
�
! y to be true if P�

x (�y < 1) > 0 and we de�ne x
�
$ y to be

true if x
�
! y and y

�
! x. If x

�
$ x, then the state x is called probabilistically

self-reachable under stationary, Markov randomized policy �. We denote the set

of all probabilistically self-reachable states under � as PSR� = fx 2 Sjx
�
$ xg.

Property 2.2.1
�
$ is an equivalence relation on PSR�.

If x 2 PSR�, de�ne the communicating class containing x as 
�(x) = fy 2

PSR�jx
�
$ yg = fy 2 Sjx

�
$ yg. (
�(x) is the equivalence class containing x

induced by
�
$.) If z 2 
�(x), w 2 
�(y), and z

�
! w, then we denote 
�(x)

�
!


�(y). For x 2 PSR�, if x
�
! y implies that y 2 
�(x), then we say that 
�(x)

is absorbing. Denote the set of all states that are contained in any absorbing

communicating class as 
a�. 

a
� is absorbing, but not necessarily communicating.

The following Lemma is a formal restatement of an argument contained in

([32], P. 84):

Lemma 2.2.1 For any stationary, Markov policy �, any state x 2 S, and any

�nite set G � S,

lim sup
k!1

P�
x [xk 2 G

c [ 
a�] = 1:

In words, Lemma 2.2.1 says that no matter what the initial state, the system

will eventually either go to in�nity or enter an absorbing communicating class. (Or

possibly both.)

De�ne M� = fx 2 SjP�
x [�x <1] = 1g. Clearly, M� � 
a�, and M� is itself

absorbing.
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Lemma 2.2.2 For any stationary, Markov policy �, any state x 2 S, and any

�nite set G � S,

lim
k!1

P�
x [xk 2 G

c [M�] = 1:

Proof:

By Lemma 2.2.1, all that we are required to show is that

lim
k!1

P�
x [xk 2 G \ (
a� �M�)] = 0:

Since G is a �nite set, so is G \ (
a� �M�). For each x 2 G \ (
a� �M�),

we have that P�
x [�x < 1] < 1. Therefore, we are guaranteed that the state will

eventually leave G \ (
a� �M�) and never return.

2

De�ne �NG =
PN
k=0[I(xk 2 G)] and let �G = limN!1 �NG . The following

Lemma will be useful in establishing a veri�cation theorem for a risk-sensitive

average cost-optimal policy when costs are unbounded.

Lemma 2.2.3 Let � be a Markov, stationary policy, G � S, jGj <1, and x 2 S.

If P�
x [�G =1] = 1, then 9B �M� \G such that P�

x [�B <1] = 1.

Proof:

The result follows immediately from Lemma 2.2.2.

Lemma 2.2.3 says that if the system hits a �nite set an in�nite number

of times w.p.1 (E�
x [�G] = 1 is NOT su�cient since it does not guarantee that

�G = 1 w.p.1.) then it enters an absorbing communicating class that is positive

recurrent under � w.p.1. (Positive recurrent is de�ned below.)

De�nition 2.2.1 A Markov chain is called irreducible if 
�(x) = S 8x 2 S.

For any state x 2 
a�, de�ne d(x) = g:c:d:fn � 1jP�
x [xn = x] > 0g:
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De�nition 2.2.2 ([32]) An irreducible chain is called aperiodic if d(x) = 1 8x 2

S.

The following theorem is taken from [11]:

Theorem 2.2.1 If a time-invariant semi-Markov process (i.e., an SMDP for a

�xed stationary policy � 2 �MR) is irreducible and the states are periodic with

period �, then the cumulative distribution Fx(�) of the transition time t(x; a) is

a step function with jumps in the set f�x; �x + �; �x + 2�; :::g. for some �x �

0. Moreover, if P (x1jx0;�(x0)); P (x2jx1;�(x1)); :::; P (xnjxn�1;�(xn�1) > 0 and

x0 = xn, then �x0 + �x1 + :::+ �xn�1 is equal to an integer multiple of �.

Because of the necessary condition in this theorem, the controlled semi-

Markov process is periodic only under unusual circumstances (e.g., if transition

times are all the same w.p.1, i.e., the discrete time case.) When considering the

convergence of policy and value iteration (which is beyond the scope of this thesis),

we are concerned with periodicity of the embedded Markov chain because many

results require the embedded Markov chain to be aperiodic. Furthermore, the

aperiodicity transformation ([32], P. 371), which is used to transform a periodic

Markov chain to an aperiodic Markov chain, only works in the case of a risk neutral

objective function. However, for our purposes it turns out that certain technical

assumptions can be used instead of the assumption of aperiodicity in order for our

existence and uniqueness results to hold.

De�nition 2.2.3 ([32], P. 500) A subset C � S is called a positive recurrent

subclass induced by stationary, Markov policy � if 8x 2 C, 
�(x) = C and 8A �

C, A 6= ;, limn!1 P�
x [xn 2 A] > 0.

De�nition 2.2.4 ([32], P. 500) A subset C � S is called a null recurrent sub-

class induced by stationary, Markov policy � if 8x; y 2 C, 
�(x) = 
�(y) = C

and limn!1 P�
x [xn = y] = 0.
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Note: It can be easily shown that M� is the set of all absorbing communicating

classes that are also positive recurrent.

If S is a positive (null) recurrent subclass induced by stationary, Markov policy �,

then the induced Markov chain is called positive (null) recurrent.

Note: The limit limn!1 P�
x [xn 2 C] > 0 is guaranteed to exist ([32], P. 230) if


�(x) = C, C is absorbing, and � is stationary and Markov. Furthermore ([32], P.

500), an absorbing, communicating class C induced by Markov, stationary policy

� must be either positive recurrent or null recurrent.

The following de�nition of a positive recurrent subclass can be shown to be

equivalent to De�nition 2.2.3:

De�nition 2.2.5 Given a policy �, a set C � S is called a `positive recurrent

subclass' induced by � if

E�
x [�y] <1; 8x; y 2 C:

and

P�
x [�z <1] = 0; 8x 2 C; z 62 C:
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Chapter 3

Finite Horizon Problems

3.1 The deadline problem

Before we consider the more general cases (risk neutral and risk sensitive objective

functions), let us consider the case of a Semi-Markov Decision Problem (SMDP)

with deterministic but nonuniform time between transitions in which the objective

is to reach the goal state within a given time budget.

For convenience, we track the SMDP in discrete time, i.e., at transition times,

with the state at `time k' being the state after the kth transition. The actual

(continuous) time after the kth transition is equal to the sum of the �rst k state

occupancy (or transition) times.

The problem is as follows: There is a �nite set of states fs0; s1; s2; :::; sng and

a �nite set of mi control actions fa
i
1; a

i
2; :::; a

i
mi
g possible in each state, si. (So the

set of admissible pairs is K = f(si; aik)j0 � i � n; 1 � k � mig.) There is a unique

goal state s0. At each discrete time k, the controller selects an action a(k), where

a(k) is selected from the set �(s(k)), the set of actions that can be taken when

the system is in state s(k). The next state is selected according to the transition

law P , i.e. the probability of transitioning to state y from state x under action

a is given by P (yjx; a). Denote by r(x; a) the set fyjP (yjx; a) > 0g. The time
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elapsed between the kth and k+1th transitions, denoted tk, depends on the current

state and the action selected, i.e., tk = g(s(k); a(k)) where g(�; �) is a deterministic

function of its arguments. (So the transition kernel Z is degenerate with no costs

and with deterministic transition times.) The objective is to reach the goal state

s0 while keeping the total time spent below a budgeted (or deadline) time, B.

Once the goal state is reached, the process terminates. We also make the

assumption

Assumption 3.1.1 (A1) For any pair of states (si; sj), there exists a policy that

takes the system from si to sj with nonzero probability in a �nite number of tran-

sitions.

Because the state space if �nite, (A1) is equivalent to the assumption that

you can drive the system from si to sj w.p.1 given an in�nite amount of time.

The problem starts at time 0 in an arbitrarily selected non-goal state. At

transition time k, if time X has elapsed prior to time k, we say that the cost

budget remaining, denoted R(k), is B � X. Thus, R(0) = B. Let us de�ne the

value function, V �(R; s) = the probability of not reaching the goal state within

budget by following policy � given that the system just transitioned to state s

with time R remaining.

De�ne the optimal value function V (R; s) = inf�2�HR V
�(R; s). By Theorem

A, we have that V (R; s) = inf�2�MR V �(R; s). A policy �� is said to be optimal if

V ��(R; s) � V�(R; s); 8�; R; s; i.e., if V ��(R; s) = V (R; s).

Let us now examine some properties of the optimal value function:

We see that

V (R; s0) =

8>><
>>:

0 if R � 0

1 if R < 0
(3.1)

And for s 6= s0,

25



V (R; s) = 1; if R � 0 (3.2)

Lemma 3.1.1

V (R; s) = inf
a2�(s)

X
x2r(s;a)

P (xjs; a)V (R� g(s; a); x); if R > 0 (3.3)

Proof:

V (R; s) = inf�2�MR V �(R; s). Because we are considering only Markov

policies, we can decompose a given � into � = �(R) [ f�(r)jr < Rg. And

�(R) = dR(s) for some randomized decision rule dR. (I.e., a policy � 2 �MR can

be decomposed into its decision rule at each time. That decision rule is just a

randomized mapping from state to action.) We have by de�nition of V ,

V (R; s) = inf
dR(s)2DMR;f�(r)jr<Rg

V dR(s)[f�(r)jr<Rg(R; s)

= inf
dR(s)2DMR

inf
f�(r)jr<Rg

V dR(s)[f�(r)jr<Rg(R; s)

= inf
dR(s)2DMR

X
a2�(s)

qdR(a) � fP (s0js; a) � I[g(s; a) > R]+

X
x6=s0

P (xjs; a) inf
f�(r)jr<Rg

V f�(r)jr<Rg(R� g(s; a); x)g

= inf
dR(s)2DMR

X
a2�(s)

qdR(a)�fP (s0js; a)�I[g(s; a) > R]+
X
x6=s0

P (xjs; a)V (R�g(s; a); x)g

= inf
dR(s)2DMR

X
a2�(s)

qdR(a)�fP (s0js; a)�V (R�g(s; a); s0)+
X
x 6=s0

P (xjs; a)V (R�g(s; a); x)g

= inf
dR(s)2DMR

X
a2�(s)

qdR(a) �
X

x2r(s;a)

P (xjs; a)V (R� g(s; a); x)g:

And the Lemma follows by Theorem 2.0.2. 2
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Lemma 3.1.2 There exists an optimal policy �� Furthermore, �� is Markov and

deterministic.

Proof:

Because �(s) is compact and P (xjs; a); g(s; a) are continuous in a; the in�-

mum in (3.3) is achieved. Since it is achieved, and since there are a �nite number

of possible realizations since the budgeted time B <1, the policy of choosing the

in�mum in (3.3) is the optimal decision rule, i.e., its value function is the optimal

value function. Clearly, this decision rule is Markov and deterministic. 2

Lemma 3.1.3 V (R; s) is a piecewise constant, nonincreasing function of R, with

V (R; s) = 1 for R < 0 and limR!1 V (R; s) = 0. Furthermore, V (R; s) is contin-

uous from the right in R.

Proof:

ForR � 0, the required conditions hold by (3.2). Also, the required conditions

hold for V (�; s0) by (3.1). Let us proceed with a proof by induction on R. Let

� = minx2S;a2�(x) g(x; a). Assume the required conditions hold 8s 8R < n� with

0 � n 2 <. We will show that the required conditions hold 8s 8R < (n+ 1)�. For

simplicity, if a function is piecewise constant, nonincreasing and continuous from

the right, we call it a PCNICR function.

Let us examine the value of V (R; �s) for some state �s. By the DP (3.3), we

see that over the interval [n�; (n + 1)�], V (�; �s) is, for each R, the minimum over

the set of admissible actions of
P
x2r(�s;a) P (xj�s; a) � V (R� g(�s; a); x). This term is

the weighted average of PCNICR functions, so it is PCNICR. Furthermore, the

minimum of a �nite set of PCNICR functions is PCNICR. Therefore, we see that

V (�; �s) is PCNICR over the interval [n�; (n+1)�], and the induction is established.

2
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3.2 The deadline problem with incremental costs

Instead of viewing the value function in Chapter 3 as the probability of not reaching

the goal state by the deadline time, it could be viewed as the expected value of

the cost, where the MDP terminates when the goal state is reached, and the only

cost ever incurred is a cost of 1 for not being in the goal state when the deadline

time is reached. Let us call this deadline penalty cost DLP and allow it to take

on values other than 1. Furthermore, in this section, we add an incremental cost

equal to � times the time elapsed prior to reaching the goal state in excess of the

budgeted time.

De�ne �(s) as the optimal value function for the stochastic shortest path

problem of reaching the goal state in the shortest time. �(�) can be found using

standard methods. It can be seen that �(s0) = 0.

Lemma 3.2.1 The value function iteration (for R > 0) for the deadline problem

with incremental costs is

V (R; s) = min
a2�(s)

X
x2r(s;a)

P (xjs; a) � V (R� g(s; a); x);R > 0 (3.4)

with the boundary conditions

V (R; s) = DLP + � � (�(s)� R);R < 0

V (0; s0) = 0

V (0; s) = DLP + � � �(s); s 6= s0

Proof:

The boundary conditions are the only part that needs to be proved, since the

dynamic program was shown to be true in Lemma 3.1.1. The boundary conditions

are seen to hold since the penalty DLP is assessed if the goal state has not been

reached before R = 0. And the incremental penalty is � times the additional time

required to reach the goal state. 2
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Notice that we obtain the value function iteration of the original problem

without incremental costs if we set DLP = 1 and eliminate the incremental cost

term.

Lemma 3.2.2 If incremental costs are included, then V (R; s) is piecewise linear,

nonincreasing, and continuous from the right (PLNCR) in R, with V (R; s) =

DLP + �R for R < 0 and limR!1 V (R; s) = 0.

Proof:

Given the boundary conditions (the value of V (R; s) for R � 0 from Lemma

3.2.1, we see that the lemma is satis�ed for R � 0.

As in Lemma 3.1.3, we proceed by induction:

Let � = minx2S;a2�(x);y2r(s;a) g(x; a) Assume that the conditions of the lemma

are satis�ed 8s 8R � n� where 0 � n 2 <. We will show that the conditions of

the lemma are then satis�ed 8s 8R � (n + 1)�.

Let us examine the value of V (R; �s) for some state �s. By the DP (equation

3.4), we see that over the interval [n�; (n+1)�], V (�; �s) is, for each R, the minimum

over the set of admissible actions of
P
x2r(s;a) P (xjs; a) �V (R�g(s; a); x). This term

is the weighted average of PLNCR functions, so it is PLNCR. Furthermore, the

minimum of a �nite set of PLNCR functions is PLNCR. Therefore, we see that

V (�; �s) is PLNCR over the interval [n�; (n+ 1)�], and the induction is established.

2

3.3 The discrete time deadline problem without

incremental costs

Suppose we ignore the continuous time between transitions and focus on the objec-

tive of reaching the goal state within B transitions, i.e., suppose we set g(�; �) = 1.

The de�nition of V (R; s) is unchanged: V�(R; s) = the probability of not reaching
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the goal state within R transitions by following policy �.

In order to examine this system more easily, let us transform it into an

equivalent �nite horizon, risk-sensitive MDP. The objective function for a risk-

sensitive MDP (with risk sensitivity parameter  = 1 and time horizon R) is

�J
0�
d (R; x0) = E�

x0
[e
PR�1

i=0
c(xi;ai)]

where the d subscript is for `deadline problem'.

Since no costs are de�ned for the deadline problem, and in fact the objective

function of the deadline problem is the probability of not reaching the goal state

within the time budget, we set the costs for the equivalent risk sensitive problem

to be the log of the probability of not reaching the goal state in a single transition.

Since such a framework doesn't make sense once the goal state is reached, we

eliminate the goal state and set the boundary cost for each state to 1; i.e. V (0; s) =

1 8s.

We must transform the transition probabilities in order to eliminate the goal

state. (Note: Assumption A1 guarantees that the following procedure is well-

de�ned.)

For each (s; a), set r(s; a) = r(s; a)�fs0g and set P (xjs; a) =
P (xjs;a)

1�P (s0js;a)
. And

set the transition cost to c(s; a) = log(1� P (s0js; a)).

It can be seen that the deadline problem (3.3) is equivalent to the following

optimization problem in the transformed system:

V (R; s) = min
a2�(s)

[ec(s;a)
X

x2r(s;a)

P (xjs; a)V (R � 1; x)]

which is the standard D.P. equation for a risk sensitive control problem. Standard

value iteration for a completely observed risk sensitive MDP can then be used to

�nd the optimal policy �(R).

The following facts are standard for a �nite state, discrete time risk sensitive

control problem ([23]):
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1. There exists a number � < 1 such that, 8 R1; R2 > �, �(R1) = �(R2).

Furthermore, they each equal the stationary policy that optimizes the in�nite

horizon risk-sensitive average cost

J
0�
x0

= lim
R!1

1

R
log[ �J�

d (x0; R)];

denoted �AC .

2. �(R) is a contraction mapping from V (R) to V (R � 1), and the largest

eigenvalue of �AC is less than or equal to the largest eigenvalue of any other policy.

3. Let WMAX
AC denote the eigenvector corresponding to the largest eigenvalue

of �AC , and let wMAX
AC be the eigenvalue. Then there exists a constant  such that

limR!1
V (R)

[wMAX
AC

]R
= WMAX

AC .

3.4 The deadline problem for a general SMDP

Now suppose that transition times are arbitrarily distributed, i.e., instead of �t =

g(s; a), we have a general density function fs;a(�) on �t such that �t > 0 w.p.1

8fs; ag and E[�t] <1 8fs; ag.

Lemma 3.4.1 Equations 3.1 and 3.2 still hold, but equation 3.3 is replaced by

V (R; s) = min
a2�(s)

X
x2r(s;a)

P (xjs; a)
Z R

�=0
V (R� �; x)fs;a(�)d� ; if R > 0 (3.5)

Proof:

The boundary conditions hold trivially. (3.5) can be shown to be true by

arguments similar to those used in the proof of Lemma 3.1.1. 2

This dynamic program is very di�cult to solve directly, so we will construct

the optimal value function to the deadline problem as the limit of a sequence of

value functions of truncated deadline problems. Recall that V (R; s) is de�ned as
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the probability of not reaching the goal state within the time remaining under the

optimal policy.

The truncated deadline problem has an additional constraint: the goal state

must be reached not only within the deadline time, but also within k transitions. If

k is given, the problem is called the k-truncated deadline problem. De�ne V k(R; s)

as the probability of not reaching the goal state within k transitions in the time

remaining under the optimal policy to the k-truncated deadline problem.

We can see that equations 3.1 and 3.2 hold 8k, and a recursion to determine

V k(R; s), in terms of V k�1(R; s) is

V k(R; s) = min
a2�(s)

X
x2r(s;a)

P (xjs; a)
Z R

�=0
V k�1(R� �; x)fs;a(�)d� ; if R > 0 (3.6)

Clearly,

V 0(R; s) =

8>><
>>:

0 if s = s0

1 if s 6= s0

;

so V k(R; s) can be solved by convolving known functions, adding, and taking a

minimum over admissible actions.

In order for this recursion to converge to the optimal value function, we need

to assure that only a �nite number of transitions take place in a �nite time interval.

Assumption 3.4.1 ([35])

There exist � > 0 and � > 0 such that

P [�t � �] � 1� �

8x 2 S and a 2 �(x).

Lemma 3.4.2 Under Assumption 3.4.1, for any R 2 <+, limk!1 V k(R; s) =

V (R; s).

Proof:
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Let R < 1 be given. Under policy � starting from initial state s, let T (k)

denote the time elapsed in the �rst k transitions. Out of the �rst k transitions, let

the number that have transition times exceeding � be denoted by B(k). Denote

G = dR
�
e; i.e., G is the least integer that is no less than R

�
. We have

P [T (k) > R] � P [B(k) > G]

and by Assumption 3.4.1,

P [B(k) � G] �
GX
i=0

(1� �)k�i(�)i:

Clearly, limk!1 P [B(k) � G] = 0, so we have that limk!1 P [T (k) > R] = 1.

The optimal value function can be bounded by

V k(R; s)� P [T (k) < R] � V (R; s) � V k(R; s)

And limk!1 P [T (k) < R] = 0. 2

We have now an algorithm for approximating the value function of the dead-

line problem to arbitrary precision.

This algorithm can be applied to the deadline problem with deterministic

transition times to obtain the exact value function. It is clear that V (R; s) =

V k(R; s) for k > R
�
where � = minx;a g(x; a).

3.5 Rate of accrual of costs in an SMDP

In order to study a �nite or in�nite horizon control problem with costs, one must

know more than the joint density function on total cost and time to complete a

transition. One must know the rate of accrual of costs. This is because in a �nite

horizon control problem, the time limit may be reached at a time other than a

transition time. And in an in�nite horizon control problem, the limit must be

reached uniformly, not just at transition times.
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c(x; a), the total transition cost between decision epochs, and t(x; a), the

transition time betweem decision epochs, have a joint density function given by Z.

Let Gx;a(�) denote the rate of accrual of costs, and in addition, let h(x; a) denote

a one time cost that takes place at the time of transition. We have

c(x; a) = [h(x; a) +
Z t(x;a)

0
Gx;a(�)d� ] w.p.1.

We assume that Gx;a(�) � 0 w.p.1 8� � 0 and that h(x; a) � 0 w.p.1. Note

that h(x; a) does not depend on the transition time or the accrued costs up to the

transition time.

Given that the total cost of transition is generated in this way, we can see

that

E[f(c(x; a))jt(x; a) = A1] � E[f(c(x; a))jt(x; a) = A2]; if A1 � A2: (3.7)

for any monotone increasing function f(�): This fact will be useful later on in

proving Lemma 4.2.2 and Theorem 4.2.2 by bounding the costs.

For simplicity, we will combine G(�) and h(�; �) into g(�)
:
= G(�)+ a delta

function of magnitude h(�; �) at each transition time. Thus, the total (risk neutral)

cost up to time T is given by
R T
0 g(t)dt.

It should be noted that a joint probability density function on c(x; a) and

t(x; a) is general enough to model rates of accrual of costs other than the one we

adopt here.

3.6 The cost minimization problem for a �nite-

horizon SMDP

A �nite horizon cost minimization problem can take one of two forms:

�J�
x0
(T ) =

1

T
lnE�

x0
[e
R T
t=0

g(t)dt] (3.8)
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or

�J
�
x0
(T ) = E�

x0
[
Z T

t=0
g(t)dt];

where the time horizon is T .

We can extend the same procedure to solve either of these problems that we

used to solve the deadline problem for a general SMDP.

De�ne

�J�x0(T ) = inf
�2�HR

�J�
x0
(T );

and similarly for �J
�
x0
(T ). Existence and dynamic programming results simi-

lar to Lemma 3.1.2 and Lemma 3.1.1 can be shown in both the risk sensitive and

risk neutral cases.

Recall the de�nition of the `k-truncated' deadline problem. We de�ne the

k-truncated �nite horizon, risk sensitive, cost minimization problem in terms of its

objective function as follows:

�J�kx0 (T ) = E�
x0
[e
R T
t=0

g(t)hk(t)dt];

where nt(t) = the number of transitions that have taken place up to time t,

hk(t) =

8>><
>>:

0 if nt(t) � k

1 if nt(t) < k

;

and we have gotten rid of the log and the normalization in (3.8) for simplicity

(and without a�ecting the optimal policy).

It is easily seen that �J�0x0 (T ) = 0. Furthermore, the following recursion can

be shown to hold:

�J�ks (T ) = min
a2�(s)

fP [t(x; a) > T ] � E[e
R T
t=0

g(t)dtjt(x; a) > T ]+

X
x2r(s;a)

P (xjs; a)
Z T

�=0
E[ec(s;a)jt(x; a) = � ] �J�k�1s (T � �)fs;a(�)d�g:
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Similarly, for the risk neutral case it can be shown that

�J
�k
s (T ) = min

a2�(s)
fP [t(x; a) > T ] � E[

Z T

t=0
g(t)dtjt(x; a) > T ]+

X
x2r(s;a)

P (xjs; a)
Z T

�=0
E[c(s; a)jt(x; a) = � ] �J

�k�1
s (T � �)fs;a(�)d�g

and �J
�0
x0
(T ) = 0.
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Chapter 4

Average Costs over the In�nite

Horizon

4.1 Average cost objective functions

Risk neutral control problems have been well explored in both the �nite horizon

and in�nite horizon cases. For the in�nite horizon, the semi-Markov risk neutral

cost case can be solved through value and policy iteration for both average and

discounted costs. This case was �rst studied in [22]; it is examined in more detail

in [5]; and [35] gives a thorough treatment with references. In the average cost

case, the objective function is given by:

J �
x0
= lim sup

T!1

1

T
E�
x0
[
Z T

0
g(t)dt] = lim sup

T!1

E�
x0
[
R T
0 g(t)dt]

T
;

where g(t) is the rate of accrual of cost at time t. Under suitable conditions (see,

e.g., the veri�cation theorems in this chapter), it can be shown that if the policy

is unichain and stationary, the limsup above can be replaced by a lim and that the

limit can be taken at the sequence transition times,

J �
x0
= lim

N!1
E�
x0
[

PN
i=0 c(xi; ai)PN
i=0 t(xi; ai)

]
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= lim
N!1

E�
x0
[
1
N

PN
i=0 c(xi; ai)

1
N

PN
i=0 t(xi; ai)]

where N is the number of decision epochs that have occured, c(xi; ai) is the total

cost accrued between the ith and i + 1th decision epochs, and t(xi; ai) is the total

time elapsed between the ith and i+1th decision epochs. It can be shown ([35],[5])

that the above is the same as

~J
�

x0
=

limN!1
1
N
E�
x0
[
PN
i=0 c(xi; ai)]

limN!1
1
N
E�
x0
[
PN
i=0 t(xi; ai)]

,

i.e., the ratio of the limits is the limit of the ratio.

In Chapter 10, we will show that the expectation operator can be removed

in these limits under the proper conditions.

Risk sensitive control was �rst described in [23], the discounted costs case

was explored in [10], and a good survey is given in [30]. Solving the discrete time,

discounted, risk sensitive cost case is di�cult. In fact, it is shown in [10] that the

solution in the discounted cost case is not stationary because the risk factor is

di�erent at every time, so policy iteration cannot be used. (See in particular PP.

56-57 of [10] and references therein.) Note that ([43]) the discounted costs case

degenerates to the risk neutral case as t!1.

In discrete time, the average risk sensitive cost over the in�nite horizon is

de�ned (see [30]) as

J
0�
x0

= lim
T!1

1

T
lnE�

x0
[e
PT�1

t=0
c(xt;at)];  > 0:

Results for this case are well understood, but the semi-Markov case does not

appear to have been studied in the literature.

De�ne the risk-sensitive ratio objective function as follows:

~J�
x0
= lim sup

N!1

1

E�
x0
[
PN�1
k=0 tk]

lnE�
x0
e
PN�1

k=0
c(xk;ak);  > 0 (4.1)

The actual risk sensitive objective function for an SMDP is
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J�
x0
= lim sup

T!1

1

T
lnE�

x0
[e
R T
0
g(t)dt]

and J�
x0
6= ~J�

x0
in general because the numerator and denominator cannot be sep-

arated in the average cost risk-sensitive semi-Markov case. (This is because the

exponential and logarithm are not linear operators.)

The central focus of this thesis will be to examine the risk sensitive objective

function J�
x0
.

Of course, other objective functions can be used. For example, in section 10.2

of chapter 10, we will examine the following objective function:

J�
x (no ) = lim

N!1
lnE�

x [e
1
N

PN�1

k=0
c(xk;ak)]:

This objective function is similar to the risk sensitive objective function with

the interesting property that the term 1
N

has been taken inside the expectation

and the exponential, resulting in the cancellation of the parameter . It turns out

that it exists if and only if the risk sensitive objective function exists for at least

one value of  > 0, and its value is related to the value of the risk neutral objective

function.

4.2 A dynamic program for the risk sensitive

semi-Markov average cost case

In [18], the following dynamic programming equation is considered for the discrete

time risk sensitive control problem:

e�+W (x) = min
a2�(x)

ec(x;a)
Z
eW (y)P (dyjx; a); 8x 2 S

where �(x) is the set of actions available in state x, c(x; a) is the cost of taking ac-

tion a when in state x, and P (dyjx; a) is the transition probability density function

for taking action a in state x.
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In [18], su�cient conditions are found for the existence of a bounded solution

(�;W (x)) to the dynamic program, where � is the average cost and W (x) is the

certainty equivalent of being in state x. Furthermore, the convergence properties

of value and policy iteration have been explored in the literature (see, e.g., [30] for

a survey, and [7] for a recent result.)

A natural extension of the discrete time dynamic programming equation into

continuous time would be:

eW (x) = min
a2�(x)

E[efc(x;a)��t(x;a)g]
Z
eW (y)P (dyjx; a); 8x 2 S (4.2)

Lemma 4.2.1 If (4.2) holds, then

E�
x0
[e
PN

i=0
c(xi;�(xi))��

PN

i=0
t(xi;�(xi))] � E�

x0
[�N

i=0f
eW (xi)R

eW (y)P (dyjxi;�(xi))
g]: (4.3)

Furthermore, if �� is a stationary, Markov, deterministic policy such that ��(x)

minimizes (4.2) for each x 2 S, then (4.3) holds with equality for � = ��.

Proof:

We use induction on N . By rearranging terms and replacing the minimum

with the appropriate inequality in (4.2), we get

E[efc(x;a)��t(x;a)g] �
eW (x)

R
eW (y)P (dyjx; a)

; 8x 2 S (4.4)

The fact that (4.3) holds for N = 0 follows directly from (4.4). Now, suppose

that (4.3) holds for N .

E�
x0
[e
PN+1

i=0
c(xi;�(xi))��

PN+1

i=0
t(xi;�(xi))]

= E�
x0
[e
PN

i=0
c(xi;�(xi))��

PN

i=0
t(xi;�(xi))�

E[efc(xN+1;�(xN+1))��t(xN+1;�(xN+1))gjxN+1]]
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� E�
x0
[�N

i=0f
eW (xi)R

eW (y)P (dyjxi;�(xi))
g � E[efc(xN+1;�(xN+1))��t(xN+1 ;�(xN+1))gjxN+1]]

� E�
x0
[�N

i=0f
eW (xi)R

eW (y)P (dyjxi;�(xi))
g �

eW (xN+1)R
eW (y)P (dyjxN+1;�(xN+1)

]:

Finally, all of the inequalities above are replaced by equality if � = ��. 2

The following assumptions are used in Theorem 4.2.1 to bound the costs

between decision epochs:

Assumption 4.2.1 9L > 0 such that L < E[e��t(x;a)] 8x; a:

Assumption 4.2.2 9U <1 such that E[ec(x;a)] < U 8x 2 S; a 2 �(x):

The following theorem is an extension of Theorem 2.1 in [18], which covers

the discrete time case.

Theorem 4.2.1 (Veri�cation Theorem) Suppose fW (x); �g is a bounded so-

lution to the dynamic program (4.2) and that Assumptions 4.2.1 and 4.2.2 hold.

Let �� be a stationary, Markov, deterministic policy such that ��(x) minimizes

the dynamic program for each x 2 S.

Then, J��(x0) = � 8x0, and furthermore �� is optimal with respect to the

objective function J�
x0
8x0 2 S.

Proof:

First, we are guaranteed that ��(x) exists since �(x) is compact and the joint

density funtion on (c(x; a); t(x; a)) is continous in a.

From Lemma 4.2.1, (4.3) holds, and holds with equality for � = ��.

In order to bound the right hand side of (4.3), we note that, by the Markov

property of the underlying Markov chain,
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E�
x0
[
Z
eW (y)P (dyjxN ;�(xN )) ��

N
i=0f

eW (xi)R
eW (y)P (dyjxi;�(xi))

g] = eW (x0) (4.5)

.

SinceW (�) is bounded, 9�1 < LB < UB <1 such that LB � W (x) � UB

8x 2 S.

Substituting eLB �
R
eW (y)P (dyjxN+1;�(xN+1)) into (4.5), we obtain

E�
x0
[eLB � �N

i=0f
eW (xi)R

eW (y)P (dyjxi;�(xi))
g] � eW (x0) � eUB:

Noting that (4.3) holds with equality for � = �� and setting B2 = eUB�LB <

1, we get

E��

x0
[e
PN

i=0
c(xi;�

�(xi))��
PN

i=0
t(xi;�

�(xi))] � B2; 8N; x0 (4.6)

.

Now substituting eUB �
R
eW (y)P (dyjxN+1;�(xN+1)) into (4.5), we obtain

E�
x0
[eUB � �N

i=0f
eW (xi)R

eW (y)P (dyjxi;�(xi))
g] � eW (x0) � eLB:

Combining with (4.3) and denoting B1 = eLB�UB > 0, we get

B1 � E�
x0
[e
PN

i=0
c(xi;�(xi))��

PN

i=0
t(xi;�(xi))]; 8�; N; x0: (4.7)

Let tN be the N th transition time, i.e., tN =
PN�1
i=0 t(xi;�

�(xi)). Therefore

we have the equality

E��

x0
[e
PN

i=0
c(xi;��(xi))��

PN

i=0
t(xi;��(xi))] = E��

x0
[ef
R tN
t=0

g(t)dt��Tg]

.

We see from (4.7) and (4.6) that

B1 � E��

x0
[ef
R tN
t=0

g(t)dt��Tg] � B2; 8N; x0
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which describes the limiting behavior of the objective function for policy �� at

transition times. (4.7) tells us that no other policy does better than �� at transition

times, i.e., for the underlying discrete-time Markov chain. We have,

B1 � [ef
R tN
t=0

g(t)dt��Tg]; 8N; x0 (4.8)

.

Let N(t) be the number of transitions that have occured prior to time t.

Therefore, we have that

tN(t) � t � tN(t)+1

Similarly, we have

E��

x0
[e
PN(T )

i=0
c(xi;�

�(xi))��
PN(T )+1

i=0
t(xi;�

�(xi))]

� E��

x0
[ef
R T
t=0

g(t)dt��Tg]

� E��

x0
[e
PN(T )+1

i=0
c(xi;�

�(xi))��
PN(T )

i=0
t(xi;�

�(xi))]

And so by assumptions A1.1 and A1.2, we see that

L �B1 < E��

x0
[ef
R T
t=0

g(t)dt��Tg] < U �B2; 8T:

Therefore,

L �B1 <
E��

x0
[e
R T
t=0

g(t)dt]

e�T
< U �B2; 8T:

Taking the natural log of all three sides of the inequality, then dividing by

T and then taking the limit as T ! 1, we see that J��(x0) = � 8x0. And a

similar argument from (4.8) shows that J�
x0
� � 8x0;�. 2

Lemma 4.2.2 If Assumption 4.2.1 holds, then 9� < 1 such that E[ec(x;a)] �

� � E[efc(x;a)��t(x;a)g] for all x; a.
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Proof:

Let Bx;a
:
= E[efc(x;a)��t(x;a)g] and denote z

:
= e��t(x;a). We know from

Assumption 4.2.1 that L < E[z]. And since 1 > t(x; a) > 0 w.p.1, we also

know that 0 < z < 1. Let f(�) be the probability density function for z; i.e.,

P [a < z < b] =
R b
a f(z)dz. (Note that f(�) exists because it is given in terms of the

joint density Z on c(x; a) and t(x; a).)

Claim:

P [z > L
4
] � L

2
.

Proof of claim:

Suppose that P [z > L
4
] < L

2
. Then,

E[z] =
Z 1

0
zf(z)dz =

Z L
4

0
zf(z)dz +

Z 1

L
4

zf(z)dz

�
Z L

4

0

L

4
f(z)dz +

Z 1

L
4

1f(z)dz �
L

4
+
L

2
< L;

contradicting Assumption 4.2.1.

Let h(z) = E[ec(x;a)j[e��t(x;a) = z]. By (3.7), h(�) is monotone increasing.

Also, E[zh(z)] =
R 1
0 zh(z)f(z)dz = Bx;a and E[h(z)] =

R 1
0 h(z)f(z)dz = E[ec(x;a)]

by de�nition.

We have

E[ec(x;a)] =
Z 1

0
h(z)f(z)dz

=
Z L

4

0
h(z)f(z)dz +

Z 1

L
4

h(z)f(z)dz

�
Z L

4

0
f(z)h(

L

4
)dz +

4

L

Z 1

L
4

zh(z)f(z)dz

� P [z �
L

4
]h(

L

4
) +

4

L

Z 1

0
zh(z)f(z)dz
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�
P [z � L

4
]

P [z � L
4
]

Z 1

L
4

h(z)f(z)dz +
4

L
Bx;a

�
1
L
2

Z 1

L
4

h(z)f(z)dz +
4

L
Bx;a

�
1
L
2

4

L

Z 1

L
4

zh(z)f(z)dz +
4

L
Bx;a

�
8

L2

Z 1

0
zh(z)f(z)dz +

4

L
Bx;a = (

4

L
+

8

L2
)Bx;a:

So the lemma is true for � = 4
L
+ 8

L2
. 2

The following assumption is called the norm like condition on the cost func-

tion in [7]:

Assumption 4.2.3 limx!1 infa2�(x) E[e
fc(x;a)��t(x;a)g] =1.

Theorem 4.2.2 (Veri�cation Theorem for unbounded costs) Suppose that

fW (x); �g is a solution to the dynamic program (4.2) and that fW (x)g is �nite

for each x and bounded below. Suppose furthermore that Assumption 4.2.1 and

Assumption 4.2.3 hold. Let �� be a stationary, Markov, deterministic policy such

that ��(x) minimizes the dynamic program for each x 2 S.

Then, J��(x0) = � 8x0, and furthermore �� is optimal with respect to the

objective function J�
x0
8x0 2 S.

Proof:

Equations (4.3) and (4.5) still hold, and again (4.3) holds with equality for

� = ��. Since the term
R
eW (y)P (dyjxN+1;�

�(xN+1)) is bounded below, (4.6)

holds true, but with a di�erent bound for each initial state:
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E��

x0
[e
PN

i=0
c(xi;�

�(xi))��
PN

i=0
t(xi;�

�(xi))] � B2(x0); 8N: (4.9)

B2(x0) < 1 depends on the initial state, x0, since e
W (x0) is no longer bounded

above 8x0.

Because W (�) is not bounded above, (4.7) does not hold. Instead, we substi-

tute the stopping time vn(A)
:
= the nth visit time to set A � S (i.e., the time of

the nth transition to A) into (4.3), yielding

E�
x0
[e
Pvn(A)

i=0
c(xi;�(xi))��

Pvn(A)

i=0
t(xi;�(xi))]

� E�
x0
[�vn(A)

i=0 f
eW (xi)R

eW (y)P (dyjxi;�(xi))
g]: (4.10)

If A has �nitely many elements, then
R
eW (y)P (dyjxi;�(xi)) is �nite by As-

sumption 4.2.3, so it is bounded above. Therefore, if we also have that P�
x0
[�A <

1] = 1, then we obtain this analog of (4.7):

B1(x0; A) � E�
x0
[e
Pvn(A)

i=0
c(xi;�(xi))��

Pvn(A)

i=0
t(xi;�(xi))]: (4.11)

Note: we need P�
x0
[�A <1] = 1 in order to insure that vn(A) <1 w.p.1, which

causes the right hand side of (4.10) to be well de�ned.

Let C = fxjE[efc(x;�
�(x))��t(x;��(x))g] � 1. By Assumption 4.2.3, C has

�nitely many elements. Therefore, (4.11) holds for C = A.

Let rA(i) = max[t � ijs(t) 2 A] with rA(i) de�ned to be �1 if the system

has never taken a state in A. We see then that

E�
x0
[e
PN

i=0
c(xi;�(xi))��

PN

i=0
t(xi;�(xi))]

= E�
x0
[e
PrC (N)

i=0
c(xi;�(xi))��

PrC(N))

i=0
t(xi;�(xi))]+

E�
x0
[e

PN

i=rC(N)+1
c(xi;�(xi))��

PN

i=rC(N)+1
t(xi;�(xi))]:
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The �rst term on the right hand side is bounded below by B1(x0; C) and the

second term is bounded below by 1 by the de�nition of C since the states through

which the system evolves in the second summation are in Cc. Therefore, we have

B1(x0; C) � E�
x0
[e
PN

i=0
c(xi;�(xi))��

PN

i=0
t(xi;�(xi))]: (4.12)

(4.12) and (4.9) give us the behavior of �� at at transition times and show

that no policy does better than �� at transition times.

As in the proof of Theorem 4.2.1, let N(t) be the number of transitions that

have occured prior to time t. Therefore, we have that

tN(t) � t � tN(t)+1

Similarly, we have

E�
x0
[e
PN(T )

i=0
c(xi;�(xi))��

PN(T )+1

i=0
t(xi;�(xi))]

� E�
x0
[ef
R T
t=0

g(t)dt��Tg]

� E�
x0
[ef
PN(T )+1

i=0
c(xi;�(xi))��

PN(T )

i=0
t(xi;�(xi))g] (4.13)

for any policy �.

And so by assumption A1.1 and (4.12), we see that

L �B1(x0) < E��

x0
[ef
R T
t=0

g(t)dt��Tg]; 8T:

Therefore,

L �B1(x0; C) <
E�
x0
[e
R T
t=0

g(t)dt]

e�T
; 8T:

for all policies �.

Now, we have to bound the cost function above under ��. By (4.9), we know

that

E��

x0
[e
PN(T )+1

i=0
c(xi;�

�(xi))��
PN(t)+1

i=0
t(xi;�

�(xi))] � B2(x0): (4.14)
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Let

ET = e
PN(T )

i=0
c(xi;�

�(xi))��
PN(t)

i=0
t(xi;�

�(xi))

By (4.14), we see that

E��

x0
[ET e

c(xN(t)+1;�
�(xN(t)+1)��t(xN(t)+1;�

�(xN(t)+1)] � B2(x0):

Now, let us examine the behavior of

FT = E��

x0
[ET e

c(xN(t)+1;�
�(xN(t)+1)]:

We see that

FT = E��

x0
[ETE[e

c(xN(t)+1;�
�(xN(t)+1)jET ]

= E��

x0
[ET

X
s2S

P [xN(t)+1 = sjET ]E[e
c(s;��(s))]]

� E��

x0
[ET

X
s2S

P [xN(t)+1 = sjET ]�E[e
c(s;��(s))]��t(s;��(s))]

= �ET+1 � B2(x0)

where the last inequality follows from Lemma 4.2.2.

Combining this with (4.13) gives us that

E�
x0
[ef
R T
t=0

g(t)dt��Tg] � �B2(x0):

By taking logs and limits, etc., we see that J��(x0) = � 8x0 since x0 was

arbitrary. And also J�
x0
� � 8x0;�.

2

So the dynamic program (4.2) can be used to �nd an optimal policy. (4.2) is

often referred to as the optimality equation. There is also an optimality inequality:
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eW (x) � min
a2�(x)

E[efc(x;a)��t(x;a)g]
Z
eW (y)P (dyjx; a); 8x 2 S (4.15)

The optimality inequality does not guarantee optimality of the policy it de-

�nes by minimizing its right hand side, but it does provide an upper bound on

performance as the following corollary to Theorem 4.2.2 demonstrates.

Corollary 4.2.1 Suppose that fW (x); �g is a solution to the optimality inequality

(4.15) and that fW (x)g is �nite for each x and bounded below. Suppose further-

more that Assumption 4.2.1 and Assumption 4.2.3 hold. Let �� be a stationary,

Markov, deterministic policy such that ��(x) minimizes the right hand side of

(4.15) for each x 2 S.

Then

J��(x0) � � 8x0: (4.16)

In Chapter 5, we will �nd conditions under which the policy de�ned by the

optimality inequality is optimal and has optimal cost �, i.e., (4.16) holds with

equality.

Lemma 4.2.3 Under policy �� as de�ned in the statement of Theorem 4.2.2,

9B � 
a \ C such that P�
x [�B <1] = 1.

Proof:

Claim:

P��

x0
[�C =1] = 1 8x0 2 S.

Proof of claim:

Let Cmin
C = infx2C E[e

fc(x;��(x))��t(x;��(x))g]. Since C has �nitely many ele-

ments, the in�mum is achieved. Thus, Cmin
C > 0. Let

Cmin
Cc = inf

x2Cc
E[efc(x;�

�(x))��t(x;��(x))g]:
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Because the cost is norm-like (Assumption 4.2.3), there are �nitely many states

with cost less than M for any M < 1. Therefore, the in�mum is achieved. By

de�nition of C, Cmin
Cc > 1.

We have

E��

x0
[e
PN

i=0
c(xi;�

�(xi))��
PN

i=0
t(xi;�

�(xi))]

� E��

x0
[(Cmin

C )
PN

i=0
I(xi2C) � (Cmin

Cc )
PN

i=0
I(xi2Cc)]

(4.9) implies that 8x0 2 S,

E��

x0
[(Cmin

Cc )N(
Cmin
C

Cmin
Cc

)
PN

i=0
I(xi2C)

= E��

x0
[(Cmin

C )
PN

i=0
I(xi2C) � (Cmin

Cc )
PN

i=0
I(xi2C

c)] � B2(x0); 8N:

or,

E��

x0
[(
Cmin
C

Cmin
Cc

)
PN

i=0
I(xi2C)] � B2(x0)(C

min
Cc )�N ; 8N:

For N large enough, B2(x0)(C
min
Cc )�N is arbitrarily small. We see that

P��

x0
[
NX
i=0

I(xi 2 C) �
N

N � 1

log(B2(x0)(C
min
Cc )�N)

log(
Cmin
C

Cmin
Cc

)
] �

N � 1

N

And so, P�
x0
[�C =1] = 1.

And the claim is proved.

The Lemma follows from Lemma 2.2.3 . 2

4.3 Foundational assumptions for existence of op-

timal policies

Consider an SMDP with countable state space such that the set of all actions

admissible in state x, �(x), is compact for all states x. The following theorem is

found in [36]:

50



Theorem 4.3.1 (Tychono�'s Theorem) Let fSig for i = 0; 1; 2; :::, denote a

collection of compact sets. Then S = �1
i=0Si is compact.

We therefore see that the set of all stationary, Markov, deterministic policies

is compact.

Recall Assumption 3.4.1, taken from [35], which guarantees that there will

be a �nite number of transitions in any �nite time interval. We rewrite it here

with t(x; a) in place of �t, to clarify its meaning in our context.

Assumption 3.4.1 (Restated) There exist � > 0 and � > 0 such that

P [t(x; a) � �] � 1� �

8x 2 S and a 2 �(x).

An immediate consequence of Assumption 3.4.1 is

E[e��t(x;a)] � U�
:
= (1� �) + �e���; 8x; a:

Assumption 4.3.1 There exist �
0
> 0 and �

0
<1 such that

P [t(x; a) � �
0

] � �
0

8x 2 S and a 2 �(x).

An immediate consequence of Assumption 4.3.1 is

E[e��t(x;a)] � L�
:
= �

0

e���
0

; 8x; a:

In fact, Assumption 4.2.1 is equivalent to Assumption 4.3.1.

Assumption 4.3.2 limx!1mina2�(x) E[c(x; a)] =1.
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Note: Assumption 4.3.2 is equivalent to Assumption 4.2.3 given that As-

sumption 4.3.1 is true.

Assumption 4.3.3 r(x), the set of all states reachable from x in one transition,

is �nite for each x 2 S.

The following Lemma assures us that we need only consider policies that

induce a positive recurrent subclass.

Lemma 4.3.1 Let � 2 �HR be a stationary policy. If P�
x [�M�

<1] < 1, then

lim
T!1

1

T
lnE�

x [e

R T
t=0

g(t)dt] =1; 8x 2 S:

Proof:

For 0 < � < 1, de�ne A� = fxjE[efc(x;�(x))��t(x;�(x))g] � 2g. By Assump-

tion 4.3.2, A� has �nitely many elements 8�. By Lemma 2.2.2, limk!1 P�
x [xk 2

Ac� [M�] = 1, we see that P�
x [9N <1j8k > N; xk 2 Ac�] � 1� P�

x [�M�
<1] >

p > 0. Therefore, P�
x [limk!1 e

PN

i=0
c(xi;�(xi))��

PN

i=0
t(xi;�(xi))] � 1:5N ] > p > 0

since 1:5 < 2.

Therefore, limN!1E�
x [e


PN

i=0
c(xi;�(xi))��

PN

i=0
t(xi;�(xi))] � 1, and by the rea-

soning contained in the proofs of Theorems 1 and 2, the average cost is at least �.

Since � was arbitrary, the Lemma is proved. 2

Corollary 4.3.1 Let � 2 �HR be a stationary policy. If P�
x [�M�

<1] < 1, then

lim
T!1

1

T
E�
x [
Z T

t=0
g(t)dt] =1; 8x 2 S:
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Chapter 5

Perron-Frobenius Eigenvalue

The main thrust of this chapter is to de�ne the Perron-Frobenius eigenvalue and the

round trip cost. As will be explained in Section 11.2, the di�culty of establishing

the value of a policy lies in the fact that the state space is countable. By reducing

the problem to a �nite one, viz. the round trip cost, we reduce the problem

to one that is tractable. This chapter focuses on the behavior within a positive

recurrent class of an uncontrolled Markov chain. The results here will be used

later on in establishing results for controlled Markov chains where the irreducibility

assumption has been removed.

5.1 De�ning the Perron-Frobenius Eigenvalue and

the Round Trip Cost

In [2], a kernel was de�ned for use in determining the average cost in a risk sensitive

MDP. Here, we adapt the kernel to the semi-Markov setting. Denote the kernel

de�ned for x; y 2 S by

P̂�
;�(x; y) = E[e(c(x;�(x))��t(x;�(x))]P (yjx;�(x)):

Again adapting from [2], de�ne the Perron Frobenius eigenvalue (pfe) ��C()
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for a policy � that induces a positive recurrent subclass C � S as

��C()
:
= inf(� 2 <j

1X
k=0

P̂�
;�(�; �) <1);  > 0

for � in a positive recurrent subclass C of �. (Note that choice of � is

arbitrary, and the value of ��C() is the same for any � 2 C. (This will become

evident later on when it is proved that the optimal long term average cost starting

from anywhere in C is given by ��C().) We set ��C() = 1 if the above in�mum

is over a null set. Equivalently, (see [2] and references therein)

��C() = inf(� 2 <jE�
� [e


P���1

k=0
fc(xk;�(xk))��t(xk ;�(xk))gI(�� <1)] � 1);  > 0:

(5.1)

De�ne D�
C(�) = fj��C() < 1g. Also de�ne ��C

:
= sup(j��C() < 1). If

��C <1, then by Fatou's Lemma ([2]), we have that D�
C = (�1; ��C ).

Note that the above is all de�ned with respect to � and its positive recurrent

subclass. � may induce more than one positive recurrent subclass, and these

results apply to each subclass separately.

De�ne

C�!�(�)
:
= E�

� [e

P���1

k=0
fc(xk;�(xk))��t(xk;�(xk))gI(�� <1)]:

We know by (5.1) that ��C() = inf(� 2 <jC�!�(�) � 1). Therefore,

C�!�(��C()) � 1 and because d
d�
C�!�(�) < 0, C�!�(�) < 1 for � > ��C().

But what is the behavior of C�!�(�) for � � ��C()?

Lemma 5.1.1 If C�!�(��C()) < 1, then C�!�(�) =1 8� < ��C().

Proof:

Because the embedded Markov Chain induced by � on C is recurrent, we

know that I(�� <1) = 1 w.p.1. Therefore
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C�!�(�) = E�
� [e


P���1

k=0
fc(xk;�(xk))��t(xk ;�(xk))gI(�� <1)]

= E�
� [e


P���1

k=0
fc(xk;�(xk))��t(xk;�(xk))g]

= E�
� [e


R T�
t=0

fg(t)��gdt]

= E�
� [e

fC(T�)��T�g];

where C(T )
:
=
R T
t=0 g(t)dt. Let the cumulative distribution function of T� be

denoted FT�(�) = P�
� [T� � � ]. We then get

C�!�(�) =
Z 1

t=0
E�
� [e

C(t)jT� = t]e��tdFT�(t):

And therefore,

d

d�
C�!�(�) =

Z 1

t=0
�E�

� [e
C(t)jT� = t]te��tdFT�(t);

which is negative and decreasing in �.

Suppose that C�!�(��C()) < 1. Because d
d�
C�!�(�) is negative and decreas-

ing in �, we know that d
d�
C�!�(�) = �1 for � � ��C(). Therefore C

�!�(��C()) =

1 for � < ��C().

2

Lemma 5.1.1 illustrates the fact that C�!�(�) is decreasing in �, and that

its rate of decrease is decreasing. Let us call C�!�(�) the round trip cost for � at

�. The reason we are concerned with the round trip cost is because it allows us

to reduce an in�nite problem (the long term average cost) to a �nite problem (the

cost to return to a state). It is this property that makes the round trip cost so

important, and so interesting.
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Before we proceed with our development, let us pause for an explanation and

a look ahead: The behavior of a Markov chain in a positive recurrent class can be

classi�ed by whether the round trip cost at ��C() is 1 or whether it is less than one.

(Fact: this classi�cation is the same for all � 2 C.) We will show that the round

trip cost is continuous from the right, decreasing, and has at most one point of

discontinuity: the point where it jumps to 1. Therefore the value of 1 is achieved

if any �nite value greater than or equal to 1 is achieved before the jump to in�nity

(if there is a jump to in�nity.) Now, let's continue with the development:

The round trip cost at � = 0 is either �nite or in�nite. If it is �nite, then

clearly it is greater than one since each state transition has positive cost. Therefore,

if C�!�(0) <1, then the value C�!�(�) = 1 is achieved since C�!�(�) is a smooth,

decreasing function of �. (See �gure 5.1.)

If C�!�(0) = 1, then because it is a decreasing function of �, there is

a value �i such that C�!�(�) = 1 for � < �i and C
�!�(�) < 1 for � > �i. If

C�!�(�i) =1, then we say the semi-Markov chain is Type I, and if C�!�(�i) <1,

we say the semi-Markov chain is Type II.

Figures 5.2 and 5.3 show the round trip cost as a function of � for a Type I

and a Type II chain, respectively.

Lemma 5.1.1 (which corresponds to �gure 5.4) covers the case of a semi-

Markov chain with �i = ��C(); that is the case in which C�!�(��C()) < 1. In all

other cases, (i.e., the cases shown in �gures 5.1, 5.2 and 5.5,) the value C�!�(�) = 1

will be achieved. Note: it is also possible that �i = ��C() and C
�!�(��C()) = 1.

This would correspond to �gure 5.3 in which the round trip cost at �i is 1.

When does a semi-Markov chain exhibit Type II behavior? In order to answer

that question, we will look at some examples and solve a matrix equation for

C�!�(�).

In �gures 5.6, 5.7, and 5.8, transition probabilities refer to the probability of the

transition being made in a round trip, not the probability of the transition being
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λ

C    (λ)
θ  θ

1

λ c
π (γ)

Figure 5.1: Type I semi-Markov chain { round trip cost is �nite at � = 0.

made given that the current state is the state from which the transition occurs.

For example, in �gure 5.7 P5 is the probability that it takes exactly 5 transitions

to return to the base state.

The values inside the circles denote the occupancy cost of a state. For ex-

ample, in �gure 5.8, the round trip cost at � = 0 is 2 with probability P1, 6 with

probability P2, 12 with probability P3, etc..

Let us look at �gure 5.6. It is clear from inspection that C�!�(10) =

e(5�10) = e�5 . This is because c � � = �5 at the �rst step and 0 at each
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C    (λ)
θ  θ

λ

λ

infinite

i

1

λc
π (γ)

Figure 5.2: Type I semi-Markov chain { round trip cost grows asymptotically.

subsequent step (if there is more than one step) in a round trip. Let � < 10 be

given and let us determine the round trip cost:

C�!�(�) =
1X
k=1

E[e
Pk�1

i=0
(c(i)��)j�� = k] � P [�� = k]

=
1X
k=1

ef5+10�(k�1)���kg � P [�� = k]

= e�5 � f1� (
1

4
+
1

9
+

1

16
+ :::g+

1X
k=2

e�5 � e(k�2)(10��) �
1

k2
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infinite

λ

λ

C    (λ)
θ  θ

i

Figure 5.3: Type II semi-Markov chain { round trip cost grows discontinuously.

(C�!�(�i) <1)

> e�5
1X
k=2

e(k�2)(10��) �
1

k2
;

and because the exponential dominates 1
k2
, we see that C�!�(�) =1 for � < 10.

The Markov chain in �gure 5.6 is therefore an example of a Markov chain of

Type II.

The Markov chain depicted in �gure 5.7 has norm-like costs. But we can

still get the same behavior for C�!�(�) as in �gure 5.6 by setting the value of Pi
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infinite

λ

λ

C    (λ)
θ  θ

i

1

= λ c
π (γ)

Figure 5.4: Type II semi-Markov chain { (�i = ��C())

appropriately. If we set [
Pi
k=1 k] � Pi

:
= 5 + 10 � (k � 1) � I[k > 1] � 1

k2
, then the

behavior of C�!�(�) is identical in �gures 5.6 and 5.7 and the Markov chain in

�gure 5.7 is therefore of Type II.

The Markov chain depicted in �gure 5.8 has a �nite number of possible

transitions into and out of each state in addition to having norm-like costs. Fur-

thermore, if the value of Pi is the same 8i in �gures 5.7 and 5.8 and the value of

the risk sensitivity parameter  is twice as big in �gure 5.7 as in �gure 5.8, then

the values of C�!�(�) are identical in each �gure. This is because the Markov

chain in �gure 5.8 has an equal probability of having a round trip of twice the
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λ

λ

C    (λ)
θ  θ

i

1

c
π (γ)λ

Figure 5.5: Type II semi-Markov chain { (�i < ��C())

length and twice the cost as the Markov chain in �gure 5.7. Therefore, if we set

[
Pi
k=1 k] � Pi

:
= 5+ 10 � (k� 1) � I[k > 1] � 1

k2
, then the Markov chain of �gure 5.8 is

of Type II.

5.2 Round trip cost when the state space is �nite

We have seen examples in which Markov chains with a countable state space exhibit

behavior of Type II. Let us examine what happens in a Markov chain with �nite

state space. Because the state space is �nite, we can derive a matrix formula for

C�!�(�). In order to do so, we will have to introduce some notation. In this

subsection a vector will be denoted with a^above; a matrix will be denoted with
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...
1-(1/4+1/9+1/16+1/25+...)

1/4 1/9 1/16 1/25 1/36
10 10 10 10 105

Figure 5.6: Example of Type II Markov Chain.

...1 2 3 4 5 6

P
1

P2 P
3

P
4 P5

P
6

Figure 5.7: A Markov Chain with norm-like costs.

a�above, and a scalar will have neither above. I.e., x̂ is a vector; �x is a matrix,

and x is a scalar. De�ne the vector operator � as follows: ĉ = â� b̂ if ĉi = âi � b̂i,

i.e., � represents element-wise multiplication. Let an irreducible, time-invariant

semi-Markov chain be given with n+ 1 states, labeled � and fz1; :::; zng.

Denote w(�) = C�!�(�); p� = P [xk+1 = �jxk = �]; and p̂i = P [xk+1 =

zijxk = �], i.e., the ith element of p̂ is P [xk+1 = zijxk = �].

Denote Ŵi(�) = Ezi[e

P���1

k=0
c(xk)��t(xk)]; P̂ �

i = P [xk+1 = �jxk = zi]; and

�Pij = P [xk+1 = zjjxk = zi].

We denote the transition costs as �c(�) = E[efc(�)��t(�)g] and �̂Ci(�) =

E[efc(zi)��t(zi)g]. De�ne the diagonal matrix CC(�) such that
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3

3
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P
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2 P
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5

Figure 5.8: A Markov Chain with norm-like costs and �nite transitions into and

out of each state.

CCij(�) =

8>><
>>:

�̂Ci(�) if i = j

0 otherwise

We then obtain the following equations to solve for w(�) and Ŵ (�):

w(�) = �c(�)[p� + p̂T Ŵi(�)]; (5.2)

Ŵ (�) = �̂C(�)� [ �PŴ (�) + P̂ �]: (5.3)

Equation (5.3) can be rearranged to give

�̂C(�)� P̂ � = [I � CC(�) �P ]Ŵ (�); (5.4)

yielding

Ŵ (�) = [I � CC(�) �P ]�1[�̂C(�)� P̂ �]; (5.5)

if [I � CC(�) �P ] is nonsingular.

Equation (5.2) then gives us the value of w(�). For a given value of �, in

order for the round trip cost w(�) to be between 0 and1, we need for the solution

Ŵ (�) to equation (5.4) to exist and be such that 0 < Ŵi(�) <1 8i.

We make the following assumptions:
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Assumption 5.2.1 8x 2 S, 0 < E[ec(x)] <1.

Assumption 5.2.2 8x 2 S, E[t(x)] > 0.

Note: Assumption 5.2.2 is identical to Assumption 3.4.1 restricted to a

semi-Markov chain instead of an SMDP.

Under these assumptions, �c(�) and �̂C(�) are smooth functions of �, and

are bounded away from 0 and1 for � � 0. Because the elements of [I�CC(�) �P ]

vary continuously as a function of �, equation (5.4) has a solution for Ŵ (�) that

varies continuously with �. Furthermore, due to this continuous variation, the

following two statements are true:

1: If (5.4) has a solution for Ŵ (�) for � = �
0
, then (5.4) has a solution for Ŵ (�)

8� in an open interval containing �
0
.

2: If (5.4) has a solution for � = �
0
such that Ŵ (�

0
) > 0, then 9 an open interval

L containing �
0
such that Ŵ (�) > 0 8� 2 L.

From the above two statements, it is clear that if 0 < w(�
0
) <1, then there

is an open interval L containing �
0
such that 0 < w(�) < 1 8� 2 L. Therefore,

the semi-Markov chain either has �nite round trip cost at � = 0 (as in �gure 5.1)

or is of Type I (as in �gure 5.2.)

The above argument becomes even simpler in the discrete time case because

the matrix [I � CC(�) �P ] has all constant entries with ��s on the diagonal. Its

inverse then has entries which are rational functions of �, so it has a pole at the

largest eigenvalue of [I�CC(0) �P ]. This pole causes the round trip cost to grow to

in�nity asymptotically, making the Markov chain type I if it does not have �nite

round trip cost at � = 0.

In the countable state space case, the same matrix equations ( (5.2) and

(5.4) ) hold, but due to the fact that they are in�nite matrices, the argument
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in the above paragraph no longer holds. We have already shown examples of

Markov chains with countable state space that are of Type II. Of course, there are

Markov chains (and SMDPs) with countable state space that are of type I. For an

SMDP with in�nite round trip cost at � = 0, there is a simple characteristic of the

distribution of the round trip cost that determines whether the SMDP is of type I

or type II.

The round trip cost is given by

C�!�(�) =
Z 1

t=0
E[e

R t
�=0

g(�)d� jT� = t]dP [T� � t]e��t:

If the round trip cost at � = 0 is in�nite, then

E[e
R t
�=0

g(�)d� jT� = t]dP [T� � t] = e�if(t);

where f(t) is a sub-exponential function, i.e.

Z 1

t=0
f(t)eatdt =1 8a > 0:

It is easy to show that the SMDP is of Type I if

Z 1

t=0
f(t)dt =1;

and Type II if

Z 1

t=0
f(t)dt <1:

Furthermore, if the SMDP is of Type II, then 9�
0
such that C�!�(�) = 1 i�

Z 1

t=0
f(t)dt � 1

because C�!�(�) is a continuous and decreasing function of � from the right. (If

the SMDP is of Type I, then there is also such a �
0
. Finally, if the round trip

cost at � = 0 is �nite, then it is also greater than one because costs are positive.

Therefore, 9�
0
such that C�!�(�) = 1.
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In summary, the only condition under which 6 9�
0
such that C�!�(�

0
) = 1

is when the positive recurrent class induced by � has countably many elements,

the SMDP is of Type II, and the round trip cost at �i is strictly less than 1, as in

�gure 5.4.

This is important because when there is such a �
0
, it is the Perron-Frobenius

eigenvalue and the `nice' recursive equation (4.2) (with only one admissible action

per state { this is an uncontrolled Markov chain) holds.

5.3 Average cost on the in�nite horizon

Now that we have explored the behavior of the round trip cost, the basis for

determination of average cost, we can proceed with analysis of the average cost.

Lemma 5.3.1 is proved by Balaji and Meyn in [2] (Proposition 3.3 on page

9) for the discrete time case. Their proof is built on the foundation of Kingman's

subadditive ergodic theorem. ([24] and [25]). However, Kingman's subadditive

ergodic theorem does not apply to the semi-Markov case. As he says ([24], P.

499): \In this paper T will be taken as the set of non-negative integers, although

interesting problems arise when T is in the interval (0;1)." [Emphasis added]

Furthermore, Kingman discusses the continuous parameter process in [25] and

explains why his ergodic theorem no longer applies in that case.

In the following lemma, we state and prove the semi-Markov case without

use of Kingman's theorem. We do this by using separate techniques to bound the

limit above and below, to the same value.

Note: unless stated otherwise, � is a stationary, Markov policy and C is a positive

recurrent class induced by �.

Lemma 5.3.1 If x 2 C and  < ��C , then J
�
x = ��C().

Proof:

Choose � 2 C. De�ne
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V (x) = E�
x [e


P���1

k=0
fc(xk ;ak)��

�
C
()t(xk ;ak)g], x 2 C:

By Fatou's Lemma, V (�) � 1. If V (�) = 1, then V (�) satis�es the following

recursive equation:

V (x) = E[efc(x;�(x))��
�
C
()t(x;�(x))g] �

X
z2r(x;�(x))

P (zjx;�(x))V (z): (5.6)

If V (�) � 1, then V (�) satis�es

V (x) = E[efc(x;�(x))��
�
C ()t(x;�(x))g] �

X
z2r(x;�(x))

P (zjx;�(x))maxfV (z); I(�)g: (5.7)

Claim:

V (x) is bounded away from zero (I.e., lnV (x) is bounded below) on C.

Suppose that V (�) is not bounded away from zero on C.

De�ne CC = fxjE[efc(x;�(x))��
�
C
()t(x;�(x))g] � 1. We know by (5.7) that if

x 2 C � CC, then 9y 2 C such that V (y) < V (x). Therefore, infx2C V (x) =

infx2CC V (x). And since CC has �nitely many elements by Assumption 4.3.2, we

see that the in�mum is achieved. Since V (�) is not bounded below, there must be

a z 2 CC such that V (z) = 0.

Let ZZ = fx 2 CjV (x) = 0g. By (5.7), if x 2 ZZ, then 8y 2 r(x;�(x)),

maxfV (y); I(�)g = 0. This imples that y 2 ZZ and that y 6= �.

Since the embedded Markov Chain induced by � on C is communicating

(recurrent implies communicating), we know that � can be reached from z. But

this is a contradiction, and the claim is proved.

Claim:

V (x) <1 8x 2 C.
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Proof of claim:

Suppose 9y 2 C such that V (y) =1. Because the embedded Markov chain

induced by � on C is recurrent, 9h <1 and p > 0 such that P�
� [fxh = yg\f�� >

hg] = p. Therefore,

V (�) = E�
� [e


P���1

k=0
fc(xk;ak)��

�
C
()t(xk ;ak)g]

� E�
� [e


P���1

k=0
fc(xk;ak)��

�
C
()t(xk ;ak)gjfxh = yg \ f�� > hg]P�

� [fxh = yg \ f�� > hg]

= E�
� [e


P���1

k=0
fc(xk ;ak)��

�
C
()t(xk ;ak)gjfxh = yg \ f�� > hg] � p

= E�
� [e


Ph

k=0
fc(xk;ak)��

�
C
()t(xk ;ak)gjfxh = yg\f�� > hg]�E�

y [e

P���1

k=0
fc(xk;ak)��

�
C
()t(xk ;ak)g]�p

= E�
� [e


Ph�1

k=0
fc(xk;ak)��

�
C
()t(xk ;ak)gjfxh = yg \ f�� > hg] � V (y) � p

� ( inf
x2C;a2�(x)

E[efc(x;a)��
�
C
()t(x;a)g])h � V (y) � p =1;

where the last equality follows because p > 0, V (y) =1, and the fact that we

know fromAssumption 4.3.2 and Assumption 4.3.1 that infx2C;a2�(x) E[e
fc(x;a)���

C
()t(x;a)g] >

0 is achieved.

But this is a contradiction of the fact that V (�) � 1 and the claim is proved.

If V (�) = 1, then policy � is the policy �� named in the statement of Theorem

4.2.2 for the trivial MDP with �(x) being the only admissible action in state x

if we substitute � = ��C() and use (5.6) in place of the dynamic program (4.2).

Furthermore, the claim showed that V (�) is bounded below. Also, Assumption 4.2.1

follows from Assumption 4.3.2, and Assumption 4.2.3 follows from Assumption

4.3.1 and Assumption 4.3.2. Therefore, Theorem 4.2.2 gives the desired result.

In general (for V (�) � 1), we observe the following: Since (5.7) holds, we

know that (4.15) holds with W (x)
:
= ln[maxfV (z); I(�)g]. Therefore, we know
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by appealing to Corollary 4.2.1 with an argument analogous to the one in the

paragraph above that J�
x � ��C().

Claim:

J�
x � ��C().

Proof of claim:

If V (�) = 1, then the claim is true by the earlier argument. If V (�) < 1, then

we know by Lemma 5.1.1 that C�!�(�) =1 8 � < ��C()).

sub-claim:

If V (�) < 1 and � < ��C(), then

lim
N!1

E�
x [e
PN

k=0
fc(xk ;ak)��t(xk;ak)g] =1:

Proof of sub-claim:

lim
N!1

E�
x [e
PN

k=0
fc(xk;ak)��t(xk;ak)g]

= lim
N!1

E�
x [e
P���1

k=0
fc(xk;ak)��t(xk ;ak)g � e

PN

k=��
fc(xk;ak)��t(xk;ak)g]

= E�
x [e
P���1

k=0
fc(xk;ak)��t(xk;ak)g]�

1X
M=1

P [�� =M ]� lim
N!1

E�
x [e
PN

k=M
fc(xk;ak)��t(xk;ak)gj�� =M ]

= V (x) �
1X

M=1

P [�� =M ] � lim
N!1

E�
x [e
PN

k=M
fc(xk;ak)��t(xk;ak)gj�� =M ]:

For any M <1, we know that

lim
N!1

E�
x [e
PN

k=M
fc(xk;ak)��t(xk ;ak)gj�� =M ] = lim

N!1
E�
� [e
PN�M

k=0
fc(xk ;ak)��t(xk;ak)g]

= lim
N!1

E�
� [e
PN

k=0
fc(xk;ak)��t(xk;ak)g]:

Therefore,
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lim
N!1

E�
x [e
PN

k=0
fc(xk;ak)��t(xk;ak)g]

= V (x) � lim
N!1

E�
� [e
P���1

k=0
fc(xk;ak)��t(xk ;ak)g � e

PN

k=��
fc(xk;ak)��t(xk;ak)g]

= V (x) � E�
� [e
P���1

k=0
fc(xk;ak)��t(xk ;ak)g] �

1X
M=1

P [�� =M ]�

lim
N!1

E�
� [e
PN

k=M
fc(xk;ak)��t(xk;ak)gj�� =M ]

= V (x) � C�!�(�) �
1X

M=1

P [�� =M ] � lim
N!1

E�
� [e
PN

k=M
fc(xk;ak)��t(xk;ak)gj�� =M ]:

For any M <1, we know that

lim
N!1

E�
� [e
PN

k=M
fc(xk;ak)��t(xk;ak)gj�� =M ] = lim

N!1
E�
� [e
PN

k=1
fc(xk;ak)��t(xk;ak)g:

Therefore,

lim
N!1

E�
x [e
PN

k=0
fc(xk;ak)��t(xk ;ak)g] = V (x)�C�!�(�)� lim

N!1
E�
x [e
PN

k=0
fc(xk;ak)��t(xk;ak)g]:

Since V (x) > 0 and C�!�(�) =1, we must have

lim
N!1

E�
x [e
PN

k=0
fc(xk ;ak)��t(xk;ak)g] =1;

and the sub-claim is proved.

By the sub-claim and Lemma 8.2.4 (2), we know that if � < ��C()), then

J�
x � �. And the claim is proved.

The Lemma follows from the claim and the argument just preceding the

claim.

2
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Lemma 5.3.2 If ��C > 0, then ��C() is a nondecreasing function of  over  2

(0; ��C).

Outline of Proof:

Let 1; 2 be given such that 0 < 1 < 2 < 1. Jensen's inequality can be

used to show that ��C(2) � ��C(1).

2

Lemma 5.3.3 If ��C > 0, then ��C() is continuous over  2 (0; ��C ).

Proof:

Claim:

8� 2 C, E�
� [e
P���1

k=0
(c(xk;�(xk))��t(xk ;�(xk)))] is increasing in  for  2 (0; ��C ).

Proof of claim:

The claim follows because the exponential function is increasing.

Claim:

d
d
[E�

� [e
P���1

k=0
(c(xk;�(xk))��t(xk ;�(xk)))] exists and is �nite and increasing for

 2 (0; ��C).

Proof of claim:

Denote

C(�)
:
=

���1X
k=0

c(xk;�(xk))� �t(xk;�(xk)):

By taking the Taylor series of ex and the fact that the expected value of the

sum is the sum of the expected values, we have

d

d
[E�

� [e
C(�)]] = E�

� [C(�) � e
C(�)]: (5.8)

C(�) > 0 w.p.1 since T� < 1 w.p.1 by positivity of the chain induced by �

on C. Therefore, d
d
[E�

� [e
C(�)]] is greater than zero for  2 (0; ��C ). Since the

derivatives of both E�
� [C(�)] and E

�
� [e

C(�)] are positive, they are both increasing

71



in . Furthermore, since eC(�) and C(�) are increasing in terms of each other,

we have that E�
� [C(�) � e

C(�)] is increasing. Therefore, by (5.8), we see that

d
d
[E�

� [e
C(�)] is increasing for  2 (0; ��C).

All that remains to be shown is that d
d
[E�

� [e
C(�)] < 1 for  2 (0; ��C).

Suppose not, i.e., suppose 9
00
< ��C such that d

d
[E�

� [e
C(�)]j=00 = 1. Then for

any  > 
00
, we have that E�

� [e
C(�)] = 1, which contradicts 

00
< ��C . And the

claim is proved!

The Lemma is a consequence of this claim.

2

De�ne ��C(0)
:
= inf(� 2 <jE�

� [
P���1
k=0 (c(xk;�(xk)) � �t(xk;�(xk)))I(�� <

1)] � 0).

Lemma 5.3.4 Suppose that ��C > 0. Then,

lim
#0

��C() = ��C(0):

Proof:

Since ��C > 0, we know by (5.1) that 9
0
> 0 and 0 < �

0
<1 such that

E�
� [e


0P���1

k=0
fc(xk;�(xk))��

0
t(xk;�(xk))gI(�� <1)] � 1: (5.9)

By the fact that C is a positive recurrent subclass under �, we know that

I(�� <1) = 1 w.p.1. And by Jensen's inequality, we obtain

E�
� [

0
���1X
k=0

fc(xk;�(xk))� �
0

t(xk;�(xk))g] � ln(1) = 0:

Since this holds true for any 
0
> 0; �

0
< 1 such that (5.9) holds, we see

that

inf(� 2 <jE�
� [
���1X
k=0

(c(xk;�(xk))� �t(xk;�(xk)))I(�� <1)] � 0) � ��C()8 > 0
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and therefore

inf(� 2 <jE�
� [
���1X
k=0

(c(xk;�(xk))� �t(xk;�(xk)))I(�� <1)] � 0) � lim
#0

��C():

Suppose that

inf(� 2 <jE�
� [
���1X
k=0

(c(xk;�(xk))� �t(xk;�(xk)))I(�� <1)] � 0) < lim
#0

��C():

Then 9�� > 0 such that

E�
� [
���1X
k=0

fc(xk;�(xk))� ��t(xk;�(xk))g] � 0 (5.10)

and 9�
0
> �� such that

E�
� [e


P���1

k=0
fc(xk;�(xk))��

0
t(xk;�(xk))gI(�� <1)] � 18 > 0; (5.11)

where the second inequality follows since ��C() is increasing 80 <  < ��C . (We

select �
0
� lim#0 �

�
C().)

Recall the notation of Lemma 5.3.3 and the Taylor series in terms of the

expectation of the moments of C(�). From the expansion, we get

lim
#0

E�
� [e

C(�
0
)]� 1


= E�

� [C(�
0

)] � 0;

where the inequality follows from (5.11). But since E�
� [C(�)] is decreasing in �

and �
0
> ��, we have a contradiction of (5.10).

2

Lemma 5.3.5 If � induces a null recurrent subclass C � S, then ��C() = 1

8 2 [0;1).

Proof:

Since the induced Markov Chain over C is null recurrent, the long term

average risk neutral cost, ��C(0) = 1. Thus by Lemma 5.3.2 and Lemma 5.3.4,

��C() =1 8 > 0.
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2

The above lemma is important because it shows that no policy that does

not induce a positive recurrent class can have a �nite risk sensitive average cost

starting from any state.

5.4 Performance for a large risk sensitivity pa-

rameter

For a discrete time, �nite horizon MDP, it is well known that the cost of a policy

approaches the `maximum cost' as the risk sensitivity parameter approaches 1,

where the `maximum cost' is the cost of the most expensive realization that occurs

with nonzero probability.

In this thesis, we have generalized the cost structure in two ways: we consider

average cost over the in�nite horizon instead of �nite horizon cost, and we consider

an SMDP instead of an MDP. Determining what happens in an SMDP as  !1

is a very tricky technical problem that we will not explore further. Instead, we will

generalize the result to the average cost case over the in�nite horizon for an MDP.

Before stating the result, we need to introduce some notation:

Suppose that stationary policy � 2 �MD induces a �nite irreducible class

C � S. De�ne an admissible cycle for policy � as a �nite sequence of states,

starting and ending at the same state, such that each transition occurs with nonzero

probability under policy �, i.e.,  = fx0; x1; x2; :::; xng is an admissible cycle if

1. x0 = xn

2. xi+1 2 r(xi;�(xi)); i = 0; 1; 2; :::; n� 1

Because we are considering MDPs, we assume that the cost of transition out

of a state is �xed with probability one. Denote the cost of transitioning out of a

state by �C(x).

(Alternately, we could allow transition costs to be non-deterministic as long as
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there is an upper bound B such that 0 < c(x;�(x)) < B w.p.1 8x 2 C. Then it is

easy to show that lim!1
1

lnE[ec(x;�(x))] = supfC 2 <+jP [c(x;�(x)) � C] > 0g,

and for the purpose of determining performance with large sensitivity parameter

we can just set c(x;�(x))
:
= supfC 2 <+jP [c(x;�(x)) � C] > 0g.)

De�ne the average cycle cost C(fx0; x1; x2; :::; xng) = 1
n

ln[�n�1
i=0 �C(xi)].

The average cycle cost can also be expressed as C( ) = 1
n

Pn�1
i=0 ln[�C(xi)].

Denote the set of all admissible cycles for policy � as 	kl� (where 	kl is

pronounced `cycle',) and de�ne the maximum average cycle cost � as follows:

� = sup
 2	kl�

C( ):

A cycle fx0; x1; x2; :::; xng is called non-redundant if xi 6= xj 8i 6= j such

that i; j 2 f1; 2; :::; ng. I.e., a cycle is non-redundant if it contains no sub-cycles.

Denote the set of all non-redundant cycles admissible under policy � as 	kl�nr.

Lemma 5.4.1

� = sup
 2	kl�nr

C( ):

Proof:

	kl�nr � 	kl�, so � � sup 2	kl�nr C( ).

Suppose that  = fx0; x1; x2; :::; xng 2 	kl�.

Claim:

9 
0
2 	kl�nr such that C( 

0
) � C( ).

(sketch of) Proof of claim:

The following procedure will terminate in �nite time and generate a  
0
2

	kl�nr that satis�es the claim:

1. Let set � =  .

2. If � 2 	kl�nr, then set  
0
= � and terminate the procedure.

3. Because � = fx0; x1; x2; :::; xng 62 	kl�nr, 9a; b 2 f1; 2; :::; ng, a < b such that

xa = xb.
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Set

� 1 = fx0; x1; :::; xa�1; xa; xb+1; xb+2; :::; xng

and set

� 2 = fxa; xa+1; :::; xb�1; xbg:

4. If C( � 1) > C( � 2), then set � = � 1. Otherwise, set � = � 2.

5. Go to step 2.

And the claim can be seen to be true.

The claim shows that � � sup 2	kl�nr C( ).

2

Lemma 5.4.1 shows that the supremum in the de�nition of � is achieved

because there are only a �nite number of non-redundant cycles for jCj <1.

For z 2 C, de�ne 	kl�z � 	kl� as the set of all admissible policies for

policy � that start and end at state z. Clearly, 	kl�z \ 	kl�w = ; for z 6= w and

	kl� = [z2C	kl�z .

Lemma 5.4.2 For any z 2 C,

� = sup
 2	kl�z

C( ):

Proof:

By Lemma 5.4.1, there is a nonredundant cycle  � such that C( �) = �.

 � 2 	kl�w for some w 2 C. If z = w, we are done. Suppose z 6= w. By

irreducibility, there is a cycle  zw = fx0; x1; :::; xng such that x0 = xn = z and

xi = w for some i.

De�ne a sequence of cycles as follows:  1 =  �.  2 =  � �, or the concate-

nation of  � with itself.  k+1 =  k �. I.e.,  k is the concatenation of  � with

itself k times. Clearly C( k) = � 8k.
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We will now prove the Lemma by construction: we will de�ne a sequence of

cycles f kzwjk = 0; 1; 2; 3; :::g such that  kzw 2 	kl�z 8k and limk!1C( kzw) = �.

De�ne  0
zw =  zw. De�ne  

k
zw by taking  zw, removing an instance of w, and

replacing that instance with  k.

Suppose that  zw has length n1 and  
� has length n2. Algebra tells us that

C( kzw) =
n1C( zw)+k�n2�

n1+k�n2
. Therefore limk!1C( kzw) = �.

2

Lemma 5.4.3 Suppose that stationary policy � 2 �MD induces a positive recur-

rent subclass C � S with jCj <1, that all transition times t(x;�(x)) � 1 w.p.1,

and that all transition costs are deterministic; i.e., the process is a discrete time

Markov chain.

Then lim!1 J�
x () = � 8x 2 C.

Proof:

We know that

J�
x () = lim

N!1

1

N
lnE�

x [e

PN

k=1
c(xk)] � lim

N!1

1

N
ln[e

PN

k=1
c(ek)];

where fe1; e2; :::g is the most expensive admissible sample path.

lim
N!1

1

N
ln[e

PN

k=1
c(ek)] = lim

N!1

1

N

NX
k=1

c(ek) = �;

so we see that lim!1 J�
x () � �.

We now must show that lim!1 J�
x () � �, which is equivalent to the fol-

lowing statement:

lim
!1

��C() � �:

Because  is no longer �xed, we augment the notation for C�!�(�) by chang-

ing it to C�!�
 (�).

By de�nition (and adapting for the deterministic costs and uniform, discrete

transition times),
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C�!�
 (�) =

X
 2	kl�

�

P [ ]eC( )e��: (5.12)

Let f 1;  2; :::g be a sequence of cycles in 	kl�x such that limi!1C( i) = �.

De�ne a sequence of positive real numbers as follows: �i =
i
i+1
C( i). We see

that limi!1 �i = �.

From (5.12), we obtain

lim
!1

C�!�
 (�i) = lim

!1

X
 2	kl�

�

P [ ]eC( )e��i �

lim
!1

P [ i]e
C( i)e��i = P [ i] lim

!1
e

1
i+1

C( i) =1:

Therefore we must have C�!�
 (�i) > 1 for  large enough.

Recall that � � ��C() if C
�!�
 (�) � 1. Therefore �i � ��C() for  large

enough. Since limi!1 �i = �, that means that � � ��C() and the Lemma is

proved.

2

Corollary 5.4.1 If Assumption 4.2.1 and (A2.2) hold and a policy � induces a

recurrent class C such that jCj =1, then

lim
!1

J�
x () =1:

Proof:

Lemma 5.4.3 shows that as  !1, the long term average risk sensitive cost

approaches the worst cycle cost. If there are in�nitely many states and norm-like

costs, the worst cycle cost is in�nity. This holds for a semi-Markov process as well

as a Markov process.

2
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5.5 The risk neutral case and its relation to the

risk sensitive case

The distinctions between semi-Markov chains with �nite round trip cost at � = 0,

of Type I, and of Type II, all hold in the risk neutral case as well. When looking

at �gures 5.1 through 5.5, simply change `1' to `0', since in the risk neutral case

we are seeking a round trip cost of zero. All else remains the same. (We state this

without proof because its proof is quite similar to the proof in the risk sensitive

case.)

The following lemma is the risk neutral version of Lemma 5.3.1.

Lemma 5.5.1 Suppose that � induces a positive recurrent subclass C � S and

that ��C > 0.

Then,

lim
T!1

1

T
E�
x [
Z T

t=0
g(t)dt] = ��C(0); x 2 C:

Proof:

The proof of this lemma mirrors precisely the proof of Lemma 5.3.1, through

appropriate modi�cations to cover the risk neutral, instead of the risk sensitive,

case. For that reason, the proof is omitted.

2

It is worth noting that if the risk neutral round trip cost at ��C(0) is zero,

then the dynamic program (risk neutral version of 4.2) has a solution. The result

then follows from Theorem 11.4.6 and Proposition 11.4.7 in [35]. (To see this,

note that policy � con�ned to C is unichain according to Puterman's de�nition.)

Of course the case where the round trip cost at ��C(0) is less than zero (i.e., the

semi-Markov chain is of Type II with risk neutral costs and lim�#�i C
�!�(�) < 0)

must be covered di�erently, as in the proof of Lemma 5.3.1.
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Example 5.5.1

In order to illustrate the fact that under the conditions of Lemma 5.3.4 and

Lemma 5.5.1, the long term average risk sensitive cost approaches the long term

risk neutral cost as the risk sensitivity parameter approaches zero from above,

let us examine a simple example. Suppose we have a Markov chain with two

states: s1 and s2. Suppose that c(s1) = the cost of a transition from s1 = 1, and

c(s2) = 2. Suppose furthermore that p(s1js1) = the probability of transitioning

from s1 to itself = p(s2js1) = :5. Suppose furthermore that p(s1js2) = 1, so that

the system always transitions to state s1 from state s2. Clearly, the Markov chain is

irreducible and positive recurrent. Therefore the conditions of Lemma 5.5.1 hold.

If we can show that the risk sensitive average cost is de�ned for some  > 0, then

the conditions of Lemma 5.3.4 also hold.

.5

.5

1
s 1 s 2

2

c(s  ) = 11
c(s  ) = 2

Figure 5.9: A simple Markov Chain.

It is well known ([1]) that the average risk neutral cost is the expected value

over the ergodic distribution of the transition cost. The balance equations are:

P (s1) = P (s1) � p(s1js1) + P (s2) � p(s1js2)

P (s2) = P (s1) � p(s2js1) + P (s2) � p(s2js2);

which have solution

P (s1) =
2

3
;P (s2) =

1

3
:
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Therefore �(0) = P (s1) � c(s1) + P (s2) � c(s2) =
4
3
, and the risk neutral, long

term average cost is 4
3
.

Let us now determine the risk sensitive long-term average cost through a technique

we will call recursive computation:

By (4.2), we obtain:

eW (s1) = efc(s1)��()g[p(s1js1)e
W (s1) + p(s2js1)E

W (s2)]

eW (s2) = efc(s2)��()g[p(s1js2)e
W (s1) + p(s2js2)E

W (s2)]

Since only relative values of the value function (W (�)) are relevant, we arbi-

trarily set W (s1) = 0. Then, we substitute in values to obtain:

1 = ef1��()g[
1

2
+
1

2
eW (s2)]

eW (s2) = ef2��()g[1 � 1]:

Now we substitute the second equation into the �rst, yielding

1

2
+
1

2
ef2��()g = ef�()�1g:

Now let x = e�() and obtain a quadratic for x:

x2e� �
1

2
x�

1

2
e2 = 0;

yielding by the Pythagorean Theorem

x =
1
2
�
q

1
4
+ 2e

2e�
:

The negative root doesn't make sense because the exponential in the de�ni-

tion of x guarantees that x > 0. Therefore, we obtain

�() =
1


ln[

1
2
+
q

1
4
+ 2e

2e�
]:
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Clearly then, �C = 1 > 0. Application of L'hopital's rule gives us that

lim#0 �() =
4
3
, which is the risk-neutral long-term average cost, as predicted by

Lemma 5.3.4.

Another application of L'hopital's rule shows us that lim"0 �() =
3
2
.

So Lemma 5.4.3 predicts that the long-term average maximum cost is 3
2
. Let

us examine �gure 5.9. It is clear that the worse transition from state s1 is to state

s2. This yields a Markov Chain that alternates deterministically between s1 and

s2, yielding a cost of
3
2
, as expected.

This simple example illustrates the application of Lemmas 5.3.4 and 5.4.3,

and further shows the di�culty of solving exactly for the long term average risk

sensitive cost. Had there been more than a few states, solution of equation (4.2)

would have required the use of approximation techniques.

5.6 A dynamic program for the case

C�!�(��C()) < 1

This dynamic program covers both the case where round trip cost at ��C() is 1

and the case where round trip cost at ��C() is less than 1. It can be extended in

the obvious way to cover the risk neutral case. (Note: this theorem and its proof

are related to Lemma 5.3.1 and its proof.)

Theorem 5.6.1 Assume that Assumption 4.3.2 holds. If for some � 2 S, policy

� induces a positive recurrent subclass C containing �, and ��C() < 1, then 9

a solution fW�(�)g, �nite for each x 2 C and bounded below, to the following

functional equation:

eW�(x) = E[efc(x;�(x))��
�
C
()t(x;�(x))g]

Z
maxfeW�(y); I(y = �)gP (dyjx;�(x)); 8x 2 C;

(5.13)
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with W�(�) = ln[C�!�(��C())] � 1.

Proof: De�ne W�(x)
:
= lnfE�

x [e
P��

k=0
fc(x;a)���

C
()t(x;a)gg]. By de�nition, (5.13)

holds.

Claim W�(�) � 0.

Proof of claim:

Since the embedded Markov chain induced by � on C is positive recurrent,

we know that E�
� [��] <1. Therefore, �� <1 w.p.1. By (5.1) and Fatou's Lemma,

we have that W�(�) � 0.

Claim

W�(x) <1 8x 2 C.

Proof of claim:

Suppose 9x 2 C s.t. W�(x) = 1. (So we know that eW�(x) = 1. Then,

by (5.13), any y 2 C such that x 2 r(y;�(y)) must also have W�(y) = 1. By

induction, any z 2 C such that x is reachable in �nitely many steps without �rst

hitting � with nonzero probability from z must also have W�(z) = 1. Since the

embedded Markov chain induced by � on C is recurrent, we must have that either

W�(�) =1. This contradicts W�(�) � 0 and the claim follows.

Because of the norm-like cost assumption Assumption 4.3.2, we know that

CCh = fx 2 CjE[ec(x;�(x))��
�
C
()t(x;�(x))] � hg has �nitely many members for any

h > 0.

Claim

infx2CC2 W�(x) = infx2CW�(x).

Proof of claim:

Choose x 62 CC2. Since x 62 CC2, we know that E[ec(x;�(x))��
�
C
()t(x;�(x))] >

2. So by (5.13) we get

eW�(x) > 2
Z
maxfeW�(y); I(� = y)gP (dyjx;�(x)) � 2

Z
eW�(y)P (dyjx;�(x)):
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And so eW�(x) > 2 infx2CW�(x). And the claim is proved.

Claim

fW�(x)jx 2 Cg is bounded below.

Proof of claim:

Suppose 9z 2 C s.t. W�(z) = �1. Therefore

E�
z [e


P���1

k=0
fc(xk;ak)��t(xk;ak)g] = 0:

We know by the norm-like cost Assumption 4.3.2 that 9B > 0 such that

E[efc(x;a)��t(x;a)g] � B 8x; a.

Therefore

0 = E�
z [e


P���1

k=0
fc(xk;ak)��t(xk ;ak)g] � E�

z [B
�� ]

=
1X
k=0

BkP�
z [�� = k];

which implies that P�
z [�� = k] = 0 8k, and therefore P�

z [�� <1] = 0, which

contradicts irreducibility of C under �, and therefore there cannot be any z 2 C

with W�(z) = �1.

The previous claim tells us that infx2CC2 W�(x) = infx2SW�(x). This in�-

mum must be �nite since CC2 has �nitely many members.

2

Note: If W�(�) = 0 (i.e, if C�!�(��C()) = 1), then (5.13) reduces to

eW�(x) = E[efc(x;�(x))��
�
C
()t(x;�(x))g]

Z
eW�(y)P (dyjx;�(x)); 8x 2 C; (5.14)

Lemma 5.6.1 Suppose that stationary � 2 �MD induces a positive recurrent class

C � S and that W (�) satis�es (5.13).

Then 8x; y 2 C
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E�
x [e


P�y

k=0
[c(xk;a)��t(xk;a)]] � eW (x)�W (y);

with equality if W (�) = 0, i.e., if C�!�(��C) = 1.

Proof:

We rewrite (5.13) using (AH) and the fact that the state space is countable

as

eW (x) = E[efc(x;�(x))��
�
C
()t(x;�(x))g]�

X
y2r(x;�(x))

maxfeW (y); I(y = �)gP (yjx;�(x)); 8x 2 C: (5.15)

This is a set of linear equations in feW (x)jx 2 Cg. For notational simplicity,

we will denote P (jji;�(i))
:
= pij and E[efc(x;�(x))��

�
C
()t(x;�(x))g]

:
= ci. And if

j 62 r(i;�(i)), we set pij = 0. We can then rewrite (5.15) as

eW (i) = ci
X

pij maxfeW (j); I(y = �)g: (5.16)

Because C is a positive recurrent subclass induced by �, we know that 8i; j 2

C, P�
i [�m <1] = 1: So if we let Cim

s denote the set of all �nite sequences of states

in C that start with i, contain m only once, and end with m; then we have the

following identities:

X
ss2Cims

P (ss) = 1;

and

E�
i [e


P�m

k=0
[c(xk;�(xk))��t(xk ;�(xk))]] =

X
ss2Cims

P (ss)C(ss): (5.17)

where ss = fss(N); ss0; ss1; :::; ssss(N)�1g denotes an element of Cij
s of length

ss(N) with ss0 = i and ssss(N)�1 = j; P (ss) = �
ss(N)�1
k=0 pssk;ssk+1 is the probability

of sequence ss, and C(ss) = �
ss(N)�1
k=0 cssk is the cost of sequence ss.
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Claim:

eW (i)�W (m) �
X

ss2Cims

P (ss)C(ss); i;m 2 C;

with equality if W (�) = 1.

Proof of claim:

We proceed by induction.

We apply (5.16) to each eW (j) on the right hand side. Repeating this process

recursively yields

eW (i) = [
X

ss2Cims

P (ss)C(ss)]maxfeW (j); I(y = �)ge�N�(ss)�W (�);

where N�(ss)
:
= the number of times � appears in ss except the �rst and last

elements of ss. I.e., N�(ss)+ I(i = �)+ I(j = �) = the number of times � appears

in ss.

And the claim follows because W (�) � 1.

The above claim, combined with (5.17) yields that

E�
i [e


P�m

k=0
[c(xk;�(xk))��t(xk ;�(xk))]] = eW (i)�W (m)eN�(ss)�W (�):

2

Corollary 5.6.1 If W (�) = 1, then 8�1; �2 2 C and all x 2 C, W�1(x) =W�2(x) �

W�1(�2).

From this it can be inferred that if the round trip cost at ��C is 1 for �, then

it is 1 for any state; and conversely, if it is � 1 for �, it therefore must be � 1 for

any state.

In fact, we can extract similar results to Corollary 4.3 if (5.13) holds not just

over a positive recurrent class, but over all of S; i.e.,
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eW (x) = E[efc(x;�(x))��t(x;�(x))g]
Z
maxfeW (y); I(y = �)gP (dyjx;�(x)); 8x 2 S:

(5.18)

For D;F � S, de�ne ��x (E; F ) = P�
x [�E < �F ]. If either E or F contain only

one element, they may be replaced in the notation by that single element.

Lemma 5.6.2 Suppose that (5.18) holds. Let A � S and let � be a Markov, sta-

tionary policy. Suppose that P�
x [�A <1] = 1. Then, E�

x [e

P�A

k=0
c(x;�(x))��t(x;�(x))] �

P
y2A �

�
x (y; A� y)eW (x)�W (y); with equality if W (�) = 1.

Proof:

We follow the same notation used in Lemma 5.6.1 and extend it slightly. For

x 2 s, A � S, and B � S, let Cx;A;B
s denote the set of all �nite sequences of states

in S that start with x, contain no state in A[B except possibly for the last state,

and have a last state contained in A.

Because we are given that P�
x [�A <1] = 1, we know that

X
y2A

��x (y; A� y) =
X
y2A

X
ss2Cx;y;A�ys

P (ss) =
X

ss2Cx;A;As

P (ss) = 1;

and

E�
x [e


P�A

k=0
[c(xk;�(xk))��t(xk ;�(xk))]] =

X
ss2Cx;A;As

P (ss)C(ss) =

X
y2A

X
ss2Cx;y;A�ys

P (ss)C(ss) �
X
y2A

��x (y; A� y)eW (x)�W (y);

where the �nal inequality can be proven through the same procedure used to

prove the claim within the proof of Lemma 5.6.1. 2
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Chapter 6

An Optimal Policy Under the

Assumption of Reachability with

Finite Expected Cost

6.1 Reachability with �nite expected cost

The following assumption will be needed to help guarantee the existence of an

optimal policy in Theorem 6.1.1. In words, it means that one can get from any

state to any other state with �nite expected cost for the risk parameter .

Assumption 6.1.1 () 8x; y 2 S, 9 a policy �x!y such that E�x!y

x [e
P�y

k=0
c(xk;ak)] <

1.

Note: Because E[c(x; a)] is bounded below away from zero, we also have that

E�x!y

x [�y] <1.

This assumption is designed to prevent the accrual of in�nite expected costs

going between states in the optimal policy. Without it, as pointed out in [9], the
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cost of a stationary Markov policy may depend on the initial state. The following

example is adapted from [9]:

Example 6.1.1 (In�nite cost to escape a state)

Suppose a discrete time Markov chain has 2 states: x1 and x2. The cost

of being in state x1 is c(x1) = c, and the cost of being in state x2 is c(x2) = 0.

The state x2 is absorbing, i.e., p(x2jx2) = 1. Therefore we know that J(x2) = 0.

Suppose that p(x1jx1) = p and p(x2jx1) = 1� p. The expected risk sensitive cost

to get from x1 to x2 is given by

Ex1 [e

P�x2�1

k=0
c] =

1X
k=1

ekcP [�x2 = k]

=
1X
k=1

1� p

p
ekcpk =

1X
k=1

1� p

p
(pec)k;

which is �nite only if pec < 1. Suppose that pec > 1. Then we get

J(x2) = lim
N!1

1

N
lnEx1 [e


PN�1

k=0
c(xk)]

= lim
N!1

1

N
lnEx1 [e


P�x2�1

k=0
c] = lim

N!1

1

N
ln

N�1X
k=1

1

p
(pec)k

= lim
N!1

1

N
ln[

1

p

pec � (pec)N

1� pec
]

= lim
N!1

1

N
ln[(pec)N ] = ln[pec] > J(x1) = 0;

and so the value of the objective function depends on the initial state.

De�nition 6.1.1 A policy �
0
is called `shortest path optimal' to reach state y if

8� 2 �HR,

E�
0

x [e
P�y�1

k=0
c(xk;ak)] � E�

x [e

P�y�1

k=0
c(xk;ak)]; 8x 2 S:

If the above inequality only holds for a particular x 2 S, then �
0
is called

`shortest path optimal' from x to y.
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The following lemma demonstrates that Assumption 6.1.1 guarantees the

existence of shortest path optimal policies.

Lemma 6.1.1 Under assumption 6.1.1() and given Assumptions 4.3.3 and 2.0.2;

for any � 2 S, there exists a Markov, stationary policy ��
 such that

E
��
x [e

P���1

k=0
c(xk;ak)] <1; 8x 2 S:

Furthermore, 8� 2 �HR,

E
��
x [e

P���1

k=0
c(xk;ak)] � E�

x [e

P���1

k=0
c(xk;ak)]; 8x 2 S;

i.e., ��
 is shortest path optimal.

Proof:

Given x 2 S, we know by assumption 6.1.1() that there exists a policy that

drives the system to � with �nite cost. Let

Q(x; a)
:
= inf

�2�HR
E�
x [e


P���1

k=0
c(xk;ak)ja(0) = a]; x 6= �;

and let

v(x)
:
= inf

�2�HR
E�
x [e


P���1

k=0
c(xk;ak)] = inf

a2�(x)
Q(x; a); x 6= �: (6.1)

We have

Q(x; a) = E[ec(x;a)] �
X

z2r(x;a)

P (zjx; a)v(z); x 6= �: (6.2)

where we de�ne Q(�; a)
:
= 0 8a 2 �(�). Since the transition law P (xjs; a)

is continuous in a for a �xed s and by Assumption 4.3.3, we see that Q(x; a) is a

continuous function of a. Therefore, it achieves its in�mum at a�(x). De�ne the

policy ��
(x)

:
= a�(x) 8x.

Claim:
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��
 minimizes E�

x [e

P���1

k=0
c(xk;ak)] over all policies for each x 2 S.

Proof of claim:

We see from (6.1) and (6.2) that

v(x) = inf
a2�(x)

E[ec(x;a)] �
X

z2r(x;a)

P (zjx; a)v(z); x 6= �: (6.3)

And the in�mum is achieved since [a2�(x)r(x; a) is �nite by Assumption 4.3.3;

and �(x) is compact and P (yjx; a); P (cjx; a) are continuous in a by Assump-

tion 2.0.2. The policy ��
 is the policy �� named in the statements of Lemma

4.2.1 and Theorem 4.2.2 if we substitute � = 0 and use (6.3) in place of the

dynamic program (4.2). By Lemma 4.2.1, (4.3) then holds.

We know from Theorem 4.2.2 that (4.9) holds for policy ��
 for any value of

N .

Because costs accrue until � is reached, we have

E��

x0
[e
PN

i=0
c(xi;�

�(xi))��
PN

i=0
t(xi;�

�(xi))] � ( inf
x2S��

E[ec(x;a)])N � P
��
x [�� � N ]:

By (4.9), the right hand side must be �nite 8N . Since infx2S�� E[e
c(x;a)] > 0,

that requires that P
��
x [�� <1] = 1.

Therefore, we can substitute the stopping time �� in place of N in (4.3). We

get the desired result, that ��
 is optimal and that it has value function v(x).

The claim is proved.

Finally, because v(x) is optimal, we have that

E�
x [e


P���1

k=0
c(xk;ak)] = v(x) � E�x!�

x [e
P��

k=0
c(xk;ak)] <1:

2

The following Theorem is the major result of this chapter and the founda-

tional result for the later developments in this thesis. It means that if Assump-
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tion 6.1.1() holds, then there is a single stationary, Markov, deterministic policy

that is optimal from any initial state and the value of the objective function under

that policy is the same at any initial state. It corresponds to the classical risk

neutral average costs result (see, e.g., [35]) that if a chain is communicating, then

there is a single stationary, Markov deterministic policy that is optimal and the

value of the objective function is the same at any state.

Theorem 6.1.1 Suppose that assumptions 3.4.1, 4.3.1, 4.3.2, and 4.3.3 hold.

Suppose furthermore that assumption 6.1.1() holds for all  < �. Then, for

any  < �, there exists a stationary, Markov, deterministic policy �� such that

�� = lim
T!1

1

T
lnE��

x0
[e
R T
t=0

g(t)dt] � lim
T!1

1

T
lnE�

x0
[e
R T
t=0

g(t)dt]; 8� 2 �HR; x0 2 S:

Proof:

Let  < � be given.

By Lemma 4.3.1, if a policy does not enter M in �nite time w.p.1, then it

has in�nite average cost. So let us consider the policies that induce a nonemptyM

and enter it in �nite time w.p.1 from any initial state. Let �(x) = f� 2 �HRjx 2

M(�)g.

For � 2 �(x), de�ne ACx(�) = inf(� 2 <jE�
x e
P�x�1

k=0
fc(xk;ak)��t(xk;ak)g � 1).

De�ne H(x) = inf�2�(x) ACx(�).

Claim:

If infx2SH(x) <1, then it is achieved.

Proof of Claim:

Select an arbitrary x
0
2 S such that H(x

0
) < 1. We know that any policy

that achieves ACx(�) < H(x
0
) must induce a recurrent class that has a nonempty

intersection with the set ZH(x
0
), where

Za = fxj min
a2�(x)

E[e(c(x;a)�a�t(x;a))] � 1g:

Therefore, infx2SH(x) = infx2Z
H(x

0 )H(x):
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By Assumption 4.3.2, ZH(x0) has �nitely many elements, so the in�mum is

achieved.

And the claim is proved.

Let � = argminx2S H(x). And de�ne ��
:
= H(�).

By de�nition ofH(x), 9 a sequence of policies f�ig1i=1 such that limi!1AC�(�i) =

��.

Furthermore, by the logic contained in the proof of the above claim, each

policy �i must induce a positive recurrent class that has a nonempty intersection

with Za for some a large enough. Let us say that policy �i induces a positive

recurrent class containing x
0

i 2 Za. Therefore, by de�nition of ACx(�) and Lemma

5.6.1,

E�i
x
0
i

[e
P�

x
0
i

�1

k=0
fc(xk;ak)�AC�(�i)t(xk;ak)g] � 1:

We will now de�ne a stationary, Markov, deterministic policy �
0

i such that

E
�
0

i

x
0
i

[e
P�

x
0
i

�1

k=0
fc(xk;ak)�AC�(�i)t(xk;ak)g] � 1: (6.4)

Let

V AC�(�i)(x; a)
:
= inf

�2�HR
E�
x [e


P�

x
0
i

�1

k=0
fc(xk;ak)�AC�(�i)t(xk ;ak)gja(0) = a];

and let

vAC�(�i)(x) = inf
a2�(x)

V AC�(�i)(x; a): (6.5)

We have

V AC�(�i)(x; a)

= E[efc(xk;ak)�AC�(�i)t(xk;ak)g] �
X

z2r(x;a)

P (zjx; a)maxfI(z = �); vAC�(�i)(z)g: (6.6)
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Since the transition law P (xjs; a) is continuous in a for a �xed s and by As-

sumption 4.3.3, we see that V AC�(�i)(x; a) is a continuous function of a. Therefore,

it achieves its in�mum at a�(x). De�ne the policy �
0

i(x)
:
= a�(x) 8x.

Claim:

�
0

i minimizes E�
x [e


P�

x
0
i

�1

k=0
fc(xk;ak)�AC�(�i)t(xk ;ak)g] over all policies for each x 2

S.

Proof of Claim:

We have from (6.5) and (6.6) that

vAC�(�i)(x)

= inf
a2�(x)

E[efc(xk;ak)�AC�(�i)t(xk ;ak)g] �
X

z2r(x;a)

P (zjx; a)maxfI(z = �); vAC�(�i)(z)g:

(6.7)

And the in�mum is achieved by a�(x)
:
= �

0

i(x). It can be seen by an argu-

ment analogous to the proof of Lemma 4.2.1 that led to (4.3), that the following

inequality holds:

E�
x [e


PN

i=0
c(xi;�(xi))�AC�(�i)

PN

i=0
t(xi;�(xi))]

� E�
x [�

N
i=0f

vAC�(�i)(xi)R
maxfI(z = �); vAC�(�i)(y)gP (dyjxi;�(xi))

g];

with equality for � = �
0

i.

If we substitute for N the stopping time ��, we obtain (by recursive cancella-

tion of the numerator and denominator on the right hand side of the inequality),

E�
x [e


P��

i=0
c(xi;�(xi))�AC�(�i)

P��
i=0

t(xi;�(xi))] � vAC�(�i)(x);

with equality for � = �
0

i. And the claim is proved.

Since �
0

i must do at least as well as �i, (6.4) holds.
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Since x
0

i 2 Z� 8i and Za has �nitely many elements, there must be a subse-

quence fo(i)g such that x
0

o(i) = ! 8i.

By Tychono�'s Theorem (Theorem 4.3.1), f�
0

o(i)g has a limit point: the

stationary, Markov, deterministic policy �
0

�.

Because �
�
0

i
 � �� 8i, there exists a subsequence of fo(i)g, fh(i)g, such that

�
�
0

h(i+1)
 � �

�
0

h(i)
 8i.

Therefore, by Fatou's lemma we see that

E�
0
�

! e
P�!

k=0
c(xk;ak)��

�t(xk;ak)] � 1: (6.8)

Claim:

9!
0
2 S such that

E
�
0
�

!
0 [�!0 ] <1

and

E
�
0
�

!
0 e


P�

!
0

k=0
c(xk;ak)��

�t(xk;ak)] � 1:

Proof:

If P�
0
�

! [�! <1] = 1, then we know from (6.8) and Lemma 5.3.1 that J�
0
�

! �

��. Therefore by Lemma 5.3.5 we know that the equivalence class containing !

must be positive recurrent, and the claim follows by setting !
0
= !.

Suppose P�
0
�

! [�! < 1] < 1. Therefore there must be a state !
0
2 S that is

in a positive recurrent class induced by �
0

� and such that P�
0
�

! [�!0 < 1] > 0 and

P
�
0
�

!
0 [�! <1] = 0.

(6.8) then implies that

E�
0
�

! e
P�!

k=0
c(xk;ak)��

�t(xk ;ak)j�!0 < �!] <1:

Therefore we have

1 > E
�
0
�

!
0 e


P�!

k=0
c(xk;ak)��

�t(xk;ak)] = E
�
0
�

!
0 e


P1

k=0
c(xk;ak)��

�t(xk;ak)]
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Just as in the proof of the sub-claim in Lemma 5.3.1, it can be shown that

E
�
0
�

!
0 e


P1

k=0
c(xk;ak)��

�t(xk;ak)]

= E
�
0
�

!
0 e


P�

!
0 �1

k=0
c(xk;ak)��

�t(xk;ak)] � E�
0
�

!
0 e


P1

k=0
c(xk;ak)��

�t(xk ;ak)]:

Since this is less than 1, we must have

E
�
0
�

!
0 e


P�

!
0 �1

k=0
c(xk;ak)��

�t(xk;ak)] � 1;

and the claim is proved.

Let QQ = the recurrent class of �
0

� containing !
0
.

Clearly, ���QQ() = ��, so by Lemma 5.3.1, J��
x = �� 8x 2 QQ.

In the proof of Lemma 5.3.1 it was shown that 9 a function V (x), bounded

away from zero and �nite for each x 2 S, such that (5.7) holds (with �
:
= !

0
).

De�ne W (x) = lnV (x) in (5.7).

De�ne

��(x) =

8>><
>>:

�
0

�(x) if x 2 QQ

�!
0

 if x 62 QQ

where �!
0

 is as de�ned in Lemma 6.1.1.

Let us extend (5.7) by de�ning

W (x)
:
= lnfE��

x [e
P���1

k=0
fc(x;a)���t(x;a)gg]; 8x 2 S;

with

eW (x) = E[efc(x;�
0
�(x))��

�t(x;��(x))g]
Z
maxfeW (y); I(y = !

0

)gP (dyjx;�(x)); 8x 2 S:

(6.9)

First, let us show that W (x) < 1 8x 2 S. Because QQ is absorbing under

��, W (x) is the same as the value given by (5.7) (with �
:
= !

0
) for x 2 QQ. For

x 2 QQc, we have
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eW (x) = E��
x [e

P���1

k=0
fc(x;a)���t(x;a)g]

= E��
x [e

P�QQ�1

k=0
fc(x;a)���t(x;a)g � e

P���1

k=�QQ
fc(x;a)���t(x;a)g

]

= E
�!
x [e

P�QQ�1

k=0
fc(x;a)���t(x;a)g � E�

0
�

x�QQ
[e
P���1

k=�QQ
fc(x;a)���t(x;a)g

jfx0; x1; :::; x�QQg]]

� E
�!
x [e

P�QQ�1

k=0
fc(x;a)���t(x;a)g � E

�!
x�QQ

[e
P���1

k=�QQ
fc(x;a)���t(x;a)g

jfx0; x1; :::; x�QQg]]

= E
�!
x [e

P���1

k=0
fc(x;a)���t(x;a)g]

� E
�!
x [e

P���1

k=0
c(x;a)] <1:

Claim: W (x) is bounded below over S.

Proof of Claim:

Suppose thatW (�) is not bounded below. De�ne CC = fxjE[efc(x;��(x))��
�t(x;��(x))g] �

1. We know by (6.9) that if x 2 CCc, then 9y 2 S such thatW (y) < W (x). There-

fore, infx2SW (x) = infx2CCW (x). And since CC has �nitely many elements by

Assumption 4.3.2, we see that the in�mum is achieved. Since W (�) is not bounded

below, there must be a z 2 CC such that W (z) = �1.

By de�nition of W (�), this means that

E��
z [e

P�
!
0

k=0
fc(x;a)���t(x;a)g = 0:

By the norm-like cost assumption Assumption 4.2.3, we know that there is a

lower bound B > 0 such that

E[efc(x;a)��
�t(x;a)g � B; 8x; a:
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Therefore

E��
z [e

P�
!
0

k=0
fc(x;a)���t(x;a)g � E��

z [�
�
!
0

k=0B

=
1X
k=0

BkP��
z [�!0 = k];

and therefore

0 =
1X
k=0

BkP��
z [�!0 = k];

which means that P��
z [�!0 = k] = 0 8k, or P��

z [�!0 <1] = 0, which contra-

dicts irreducibility of the embedded Markov chain, and the claim is proved.

And so we see that WW (x) = maxfW (x); ln(I(x = !
0
))g satis�es the condi-

tions of Corollary 4.2.1, and we get that

J��
x � ��; 8x 2 S:

Also, by de�nition of � and ��, we know that for any policy � 2 �HR and

any x 2 S, ACx(�) � ��. Therefore, J�
x � ��.

Therefore �� 2 �MD is an optimal stationary policy with cost ��, and the

Theorem is proved.

2

De�ne the optimality inequality as

eW (x) = inf
a2�(x)

E[efc(x;a)��
�t(x;a)g]

Z
maxfeW (y); I(y = !

0

)gP (dyjx; a); 8x 2 S:

(6.10)

Corollary 6.1.1 Suppose that assumptions 3.4.1, 4.3.1, 4.3.2, and 4.3.3 hold.

Suppose furthermore that assumption 6.1.1() holds for all  < �.

Then, for any  < �, there exists a stationary, Markov, deterministic policy

�� such that �� solves the optimality inequality (6.10) and
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�� = lim
T!1

1

T
lnE��

x0
[e
R T
t=0

g(t)dt] � lim
T!1

1

T
lnE�

x0
[e
R T
t=0

g(t)dt]; 8� 2 �HR; x0 2 S:

Furthermore, if W (!
0
) = 1, then then policy �� solves the dynamic program

(4.2).

Proof:

We saw in the proof of Theorem 6.1.1 that �� achieves, starting from any

state, the smallest cost that any policy can achieve. is satis�ed. Furthermore,

we know by de�nition of �
0

� that �� minimizes the optimality inequality (6.10)

8x 2 QQ. But �� may not minimize the optimality inequality 8x 2 S (that is for

x 62 QQ { i.e. there may be a bias). So we de�ne �� as the policy that minimizes

the optimality inequality. The existence and properties of �� guarantee that �
�

exists and satis�es (6.10).

If W (!
0
) = 1, then (6.10) reduces to (4.2)

2

Note: As shown in Chapter 5, W (!
0
) = 1 if any of the following conditions are

met:

1. jSj <1.

2. The round trip cost (of policy �� to !
0
) at � = 0 is �nite.

3. The Semi-Markov chain induced by �� is of Type I.

6.2 Borkar's Convex Analytic Approach

In Section 5.3 of [1] (see also references cited therein), section 5.7 of [19], and

[26]; Borkar's approach is described. Under a simple continuity assumption in the

transition kernel and the assumption of norm-like costs (see Assumption 4.3.2)

and under the (major) assumption that all policies have S as their sole recurrent

class, there is a stationary, Markov risk neutral optimal policy, and furthermore
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that policy is sample path optimal. But the strong irreducibility assumption can

be removed. In particular, as shown by Lasserre in [26], if that assumption is

completely removed, then there is an initial state x0 and a stationary Markov

policy �sp such that the optimal average risk neutral cost starting from any state

under any policy is achieved w.p.1 by every sample path starting from x0 under

policy �sp. To fully understand this (italicized) statement, it would be helpful to

read the rest of this thesis. In particular, the reader is referred to Subsection 10.1.1.

Let us look again at Theorem 6.1.1. All that was added (except assumptions

to handle the problems induced by covering the semi-Markov case) was Assump-

tion 6.1.1. This assumption, in a sense, puts the risk sensitive problem on the

same footing as the risk neutral problem. This is because in the risk neutral ob-

jective function, one need not worry about a state which takes �nite expected cost

just to transition out of the state. Other than that assumption, our strong result

(Theorem 6.1.1) has assumptions no stronger than Borkar's and Lasserre's results.
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Chapter 7

Reachability and Probabilistic

Reachability

In this chapter we do not concern ourselves with costs, but with reachability: is

there a policy that can take the system from state x to state y w.p.1? Barring

that, is there one that can do it with nonzero probability? Also, for a given policy,

how do the states communicate?

De�ne the logical relationship R(C;D); C;D � S to be true if 8x 2 C,

9�
0

x 2 �HR such that P�
0
x

x [�D <1] = 1. For simplicity, if either C or D contains

only one element, we may substitute that element in the notation. For example,

if C = fxg and D = fyg, we have that R(x; y) is true if 9�
0
2 �HR such that

P�
0

x [�y < 1] = 1. Also, de�ne the logical relationship R�(C;D) to be true if

P�
x [�D <1] = 1 8x 2 C.

Lemma 7.0.1 If R(x; y) and R(y; z), then R(x; z).

Proof:

We de�ne �x!z as the policy which follows �x!y until y is reached and �y!z

thereafter.
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Note: Lemma 7.0.1 also holds true if x; y; and/or z are sets rather than single

elements of the state place.

De�ne the set of all self-reachable states SR as x 2 SR i� R(x; x). Note that

Lemma 7.0.1 holds true if R(�; �) is replaced by R�(�; �). De�ne SR� as x 2 SR�

if R�(x; x). De�ne the relation � on SR as x � y i� R(x; y) and R(y; x).

Lemma 7.0.2 � is an equivalence relation.

Proof:

� is reexive because it is de�ned on SR.

� is symmetric by de�nition.

� is transitive by Lemma 7.0.1.

Therefore, X = SR [ SRc. Furthermore, SR is the union of (at most count-

ably many) disjoint equivalence classes under �.

De�nition 7.0.1 An equivalence class @ under �, i.e. a set such that for some

x 2 S, @ = fy 2 Sjx � yg is called a `strongly communicating class'.

Assumption 7.0.1 If not R(x; y), then 8 policies �, P�[s(t2) = yjs(t1) = x] = 0 8

times t1; t2 such that t1 < t2.

In other words, under Assumption 7.0.1, the system can either reach y from

x in �nite expected time under some policy or with probability 1, or the system

will not reach y from x under any policy. In the development to follow, we will not

be assuming Assumption 7.0.1, because it is a restrictive (although convenient)

assumption.

Assumption 7.0.2 8s 2 S, R(s; SR).

In other words, every state can reach SR.
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Note: if both Assumption 7.0.1 and Assumption 7.0.2 are true, then 8s 2 S,

9x 2 SR such that R(s; x).

For x 2 SR, denote the strongly communicating class containing x as @(x).

Lemma 7.0.3 if z 2 @(x), w 2 @(y), and R(x; y), then R(z; w).

Proof:

Repeated application of Lemma 7.0.1 is su�cient.

An immediate corollary to Lemma 7.0.3 is that for x; y 2 SR, R(x; y) implies

R(@(x);@(y)).

If x; y 2 SR, R(x; y) and not R(y; x), then we denote @(x) � @(y). Also,

de�ne @(x) � @(x).

Lemma 7.0.4 � is a partial ordering on the strongly communicating classes induced

by � on SR.

Proof:

We are given that x; y; z 2 SR and none are in the same strongly communicating

class.

R(x; y) and R(y; z) implies R(x; z) by Lemma 7.0.1. Also, R(x; z) implies

not R(z; x) since x and z are in di�erent strongly communicating classes.

Therefore, @(x) � @(y) and @(y) � @(z) implies @(x) � @(z).

Also, � is reexive by de�nition.

2

Lemma 7.0.5 If Assumption 7.0.1 and Assumption 7.0.2 hold and 6 9y such that @(x) �

@(y), then the set @(x) is invariant, i.e., under any policy � and any z 2 @(x),

P�
z [xn 2 @(x)] = 1 8n > 0.

Proof: Suppose that the conclusion is false, i.e., suppose that 9z 2 @(x), y 62 @(x)

and a 2 �(z) such that P (yjz; a) > 0. Therefore, by Assumption 7.0.1, R(z; y).
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If y 2 SR, then we have @(x) � @(y), which contradicts an assumption. If

y 62 SR, then by Assumption 7.0.2 combined with Assumption 7.0.1, 9w 2 SR s.t.

R(y; w). If w 2 @(x), then y 2 @(x), contradicting our supposition. If not, then

@(x) � @(w), contradicting an assumption.

De�ne T , the set of all transient states, as follows: x 2 T if 8�, P�
x [xk !

1] > 0, i.e. if not R(x; SR). T is empty i� (J3) is true. Also, T is empty if S is

�nite.

De�ne x < y if R(x; y) but not R(y; x). For x; y 2 SR, we see that x < y i�

@(x) � @(y).

De�ne Rp(x; y) to be true if R(x; y) is not true and 9� 2 �HR such that

P�
x [�y < 1] > 0. It is interesting to note that cases can be constructed in which

Rp(x; y) is true and

sup
�2�HR

P�
x [�y <1] = 1:

Clearly, Rp(x; y) implies not R(x; y). Also, the following condition holds i�

Assumption 7.0.1 is not true: 9s; y 2 S such that Rp(x; y).

We say that x! y is true if 9� 2 �HR such that x
�
! y is true. By de�nition,

we have that x! y i� either R(x; y) or Rp(x; y).

We say that R
0
(x; C) is true if R(x; C) is true and 8D � C such that D 6= C,

R(x;D) is not true. Clearly, if R
0
(x; C) is true, then Rp(x;D) is true for all

proper subsets D of C. Also, de�ne R
0�(x; C) to be true if R�(x; C) is true and

8D � C such that D 6= C, R�(x;D) is not true. And de�ne Rp�(x; y) to be true

if 0 < P�
x [�y <1] < 1. Finally, de�ne R

00
(x;A) to be true if 9� 2 �HR such that

R
0�(x;A) is true. Clearly, R

00
(x;A) implies R(x;A).

Lemma 7.0.6 If R(x; C) and jCj <1, then 9D � C such that R
0
(x;D).

Proof:

The following procedure will construct D � C with the desired property:
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1. Set D0 = C and i = 0.

2. If there is an element z 2 Di such that R(x;Di � fzg) is true, then set Di+1 =

Di � fzg and increment i. If there is no such element z, then set D = Di and

terminate the procedure.

3.

Repeat step 2.

Step 2 guarantees that R
0
(x;D). The procedure is guaranteed to terminate

since jCj <1.

2

Lemma 7.0.7 If R
0
(x;D), then 8y 2 D, not R(y;D � fyg).

Proof:

Suppose 9y 2 D such that R(y;D � fyg). Then 9�1 such that R�1(x;D)

and 9�2 such that R�2
(y;D � fyg). De�ne policy �3 as the policy that follows

policy �1 until �y and policy �2 is afterwards. We then have R(x;D�fyg), which

contradicts R
0
(x;D).

2

Lemma 7.0.8 If R�(x; C), then 9D � C such that R
0�(x;D).

Proof:

Order the states in C from 1 to N (i.e., fzigNi=1), where N =1 if jCj =1.

We construct D according to the following procedure:

1. F0 = C; j = 0

2. If R�(x; Fj � fzjg), then set Fj+1 = Fj � fzjg. Otherwise, set Fj+1 = Fj.

3. Increment j. If j � jCj, then go to step 2.

If jCj <1, then the procedure terminates when j = jCj+1. Set D = FjCj+1.
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If jCj =1, then the procedure does not terminate. De�ne D � C as follows:

zi 2 D if zi 2 Fi+1. (I.e., D = limi!1 Fi.)

It is clear that D 6= ; in either case.

Claim:

P�
x [�D <1] = 1:

Proof of claim:

If jCj < 1, then the claim is evident by inspection of step 2. If jCj = 1,

then

P�
x [�D <1] = P�

x [�limi!1 Fi <1]:

The procedure guarantees that Fi+1 � Fi 8i <1. Therefore,

P�
x [�Fi <1] � P�

x [�Fi+1 <1]:

Therefore, by the monotone convergence theorem, we have

P�
x [�limi!1 Fi <1] = lim

i!1
P�
x [�Fi <1]:

Again, by inspection of step 2, we know that P�
x [�Fi <1] = 1 8i <1.

And the claim is proved.

Claim:

If zi 2 D for some i, then R�(x;D � fzig) is not true.

Proof of claim:

By step 2 of the procedure for constructing D, we know that R�(x; Fi�fzig)

is not true, which means that P�
x [�Fi�fzig <1] < 1. Since D � Fi, we know that

P�
x [�D�fzig <1] � P�

x [�Fi�fzig <1] < 1:

And the claim is proved.
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The Lemma follows directly from the two preceding claims.

2

Lemma 7.0.9 If x 2 D � S and 9� 2 �HR such that R�(x;D) and P�
x [�D =

�x] < 1, then R(x;D � fxg).

Proof:

If R�(x;D�fxg), then we are done. If not, then de�ne �
0
as the policy that

follows � until x is reached. Upon reaching x, the history is erased and � is again

followed. Each time that x is reached, the history is reinitialized and � is again

followed.

Since P�
x [�D = �x] < 1, eventually w.p.1 D will be reached before x. There-

fore, R�
0

(x;D � fxg) and we are done.

2

Lemma 7.0.10 If A � B � S, R(A; x), and 9 policy �1 such that R�1(x;B) and

P�1
x [x�B 62 A] > 0; then R(x;B � A).

Proof:

Because R(A; x), 9 �2 2 �HR such that R�2(y; x) 8y 2 A.

De�ne policy �
0
as the policy that follows �1 until B is reached. Then, if

x(�B) 2 A, follow policy �2 until x is reached. Then repeat.

Because P�1[x(�B) 62 A] > 0, policy �
0
will eventually hit B � A, starting

from x.

2
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Chapter 8

The Not Strongly Communicating

Case

An SMDP is called not strongly communicating if 9x; y 2 S such that not R(x; y).

In a not strongly communicating SMDP, it is not necessarily the case that the

optimal average (risk sensitive or risk neutral) cost is the same starting from any

state. Furthermore, the value function in the not strongly communicating case

exhibits minimax behavior. The following example illustrates both of these points:

Example 8.0.1

Suppose we have a Markov chain with 2 states, S = fx1; x2g. Each state

transitions back to itself w.p.1, and the cost is 1 in state x1 and 2 in state x2. So

the average cost for any value of  is 1 from state x1 and 2 from state x2, i.e.,

J(x1) = 1; J(x2) = 2.

Now, let's introduce control to the situation. Suppose there is a third state,

x3, where there are 2 possible actions in state x3, �(x3) = fa1; a2g. Suppose

that c(x3; a1) = 1:6, p(x3jx3; a1) = 1, c(x3; a2) = 5, and de�ne pi
:
= p(xijx3; a2); i =

1; 2; 3: Suppose that we set pi =
1
3
; i = 1; 2; 3. Then, it is clear that the optimal risk-

neutral policy is to choose action a2 (called policy �2), and the expected average
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cost is J �2(x3) = 1:5. Choosing action a1 (policy �1) yields an average cost of

J �1(x3) = 1:6. If the cost criterion is risk-sensitive average cost with  > 0, then

again we see that the J�1(x3) = 1:6. If action a2 is chosen, then there is a transient

period during which the state remains x3, followed by the MDP settling into either

state x1 or x2 with equal probability. Even if we assume that the transient period

in state x3 does not raise the average cost (N.B.: this assumption is true for 

small enough, as will be shown later.) we see that the average risk-sensitive cost is

J�2(x3) = lim
N!1

1

N
ln[

1

2
e
PN

k=0
1 +

1

2
e
PN

k=0
2]: (8.1)

Clearly, the term 1
2
e
PN

k=0
1 becomes insigni�cant compared to the term

1
2
e
PN

k=0
2 for N large, so we have

J�2(x3) = lim
N!1

1

N
ln[

1

2
e
PN

k=0
2] = 2:

It should be clear that as long as p2 > 0, we will have J�2(x3) = 2 and the

optimal policy will be �1. We can see that (8.1) is equivalent to

J�2(x3) = max
x2r(x3;a2)

J(x):

So we see that in the not strongly communicating case, the control action

chosen in a state which can lead to two or more states that can't reach each

other is the action that minimizes the maximum of the average cost for any of the

states reached in one step. This is a minimax behavior enforced by a risk-sensitive

criterion with �nite risk parameter.

8.1 On the classi�cation of Markov chains

We classify SMDPs into two categories: strongly communicating and not strongly

communicating. An SMDP is called strongly communicating if R(x; y) 8x; y, and

it is called not strongly communicating otherwise. Theorem 6.1.1 gives su�cient
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conditions for the existence of an optimal policy with cost independent of initial

state for an in�nite horizon, risk sensitive objective function for a strongly com-

municating SMDP. Theorem 9.1.1 gives su�cient conditions for the existence of

an optimal policy for an in�nite horizon, risk sensitive objective function for the

general case including the not strongly communicating case. As already shown in

Example 8.0.1, there is no guarantee in the not strongly communicating case that

the optimal cost is independent of the initial state. We classify SMDPs by whether

all states are reachable w.p.1 from all other states. The reason we do this is, as

illustrated in Example 8.0.1, if a state is only probabilistically reachable from an-

other state, a minimax rule applies. (I.e., the optimal controller will minimize the

worst case strongly communicating class in which it can (with nonzero probability)

end up.) This is di�erent from the risk neutral case, in which an averaging rule

applies to the value function.

Our classi�cation scheme di�ers from the scheme Puterman uses for MDPs

(see [35], P. 348). (Note: Puterman's scheme is directly comparable to ours since

our classi�cations apply to the embedded Markov chain, and therefore apply to

MDPs.) We will not use Puterman's classi�cation scheme, but we describe it here

and contrast it with our scheme. The reason our classi�cation scheme is di�erent

than Puterman's is because he is concerned with risk neutral costs. He classi�es

MDPs in two ways ([35]):

1. On the basis of probabilistic reachability (i.e., the property x! y).

2. On the basis of probabilistic reachability under any stationary policy (i.e., 8�,

x
�
! y).

The �rst property is important to Puterman because in the risk neutral case,

each recurrent class that is probabilistically reachable from a given state under

the optimal policy contributes to the long run costs starting from that state. (In

contrast, minimaxing is used in the risk sensitive case we are concerned with.)
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The second property is important to Puterman because if every policy induces a

single recurrent class, certain classical analytical techniques become useable. By

contrast, we are extending certain results to the case where a policy may induce

multiple recurrent classes.

That said, here are Puterman's de�nitions ([35], P. 348):

An MDP is called

recurrent if P�(x; y) > 0 8 stationary � 2 �MD; x; y 2 S.

unichain if 8 stationary � 2 �MD, PSR� 6= ; and 8x 2 PSR�, 
�(x) = PSR�.

communicating if x! y 8x; y 2 S.

weakly communicating if PSR 6= ;, PSR absorbing, and 8x 2 PSR, 
(x) =

PSR.

multichain if 9 a stationary � 2 �MD such that PSR� 6= ; and 9x; y 2 PSR�

such that 
�(x) 6= 
�(y) and both 
�(x) and 
�(y) are absorbing under �.

From now on, we will use our own de�nitions, not Puterman's.

8.2 Optimal policies in the not strongly commu-

nicating case

This section, at over 30 pages, is the longest section in the thesis. It is also the heart

of the thesis, where all the other results come together. The optimal policy for

the strong communicating case determined in Theorem 6.1.1 is combined with the

reachability (w.p.1) properties found in the last chapter. The sequence of lemmas

and increasingly complex notation in this section culminates in �nal result of this

section, Theorem 8.2.1, which is a strong and nontrivial result. Theorem 8.2.1

completely eliminates the irreducibility assumption and �nds an optimal policy
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for a given initial state. This theorem is the centerpiece of the thesis.

The following assumption guarantees the existence of optimal policies in the

not strongly communicating case as will be shown later in the strong results The-

orem 8.2.1 and Theorem 9.1.1. In words, Assumption 8.2.1 means that if a set

can be reached with probability 1, then it can be reached with �nite expected risk

sensitive cost when the risk sensitivity parameter is  (or less).

Assumption 8.2.1 () If R(x; C) is true, then 9� 2 �HR such that R�(x; C) is

true and

E�
x [e
P�C

k=0
c(xk;ak)] <1:

Lemma 8.2.1 If x; y 2 SR, y 2 @(x), and Assumption 8.2.1() is true, then

inf
�2�HR

J�
x = inf

�2�HR
J�
y :

Proof:

Suppose that inf�2�HR J
�
x < inf�2�HR J

�
y . Then, 9 a policy �x such that

8� 2 �HR, J�x
x < J�

y .

Since y 2 @(x), we know that R(y; x) is true. So by Assumption 8.2.1(),

9�y!x 2 �HR such that E�y!x
y [e

P�x
k=0

c(xk;ak)]
:
= F <1.

De�ne policy �y as follows. (Where �y(k)(x) is the action taken if the system

is in state x at the kth decision epoch.)

�y(k) =

8>><
>>:

�y!x(x) if k < �x

�x if k � �x

where the policy �x begins its history at time �x. I.e., the behavior of policy �y

subsequent to reaching state x does not depend on how x was reached.

We have

J�y
y = lim sup

T!1

1

T
lnE�y

y [e
R T
0
g(t)dt]
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= lim sup
T!1

1

T
lnfE�y

y [e
R T_Tx
0

g(t)dt � E�x
x [e

R T
T_Tx

g(t)dt
jTx]]g

� lim sup
T!1

1

T
lnfE�y

y [e
R T_Tx
0

g(t)dt � E�x
x [e

R T
0
g(t)dt]]g

= lim sup
T!1

1

T
lnfE�y

y [e
R T_Tx
0

g(t)dt] � E�x
x [e

R T
0
g(t)dt]g

� lim sup
T!1

1

T
lnfE�y

y [e
R Tx
0

g(t)dt] �E�x
x [e

R T
0
g(t)dt]g

= lim sup
T!1

1

T
lnfF �E�x

x [e
R T
0
g(t)dt]g

= lim sup
T!1

1

T
lnE�x

x [e
R T
0
g(t)dt] = J�x

x ;

where for a; b 2 <, we de�ne

a _ b =

8>><
>>:
a if a < b

b if a � b

and Tx is the �rst hitting time of state x in continuous time, i.e. Tx =
P�x�1
k=0 t(x; a).

So we have J�y
y � J�x

x , which is a contradiction.

2

For x 2 SR, de�ne �(x) � �(x) as follows:

a 2 �(x) i� R(x; a) � @(x).

From the de�nition of @(x) it can be deduced that �(x) 6= ; 8x 2 SR.

For x 62 SR, de�ne �(x) = �(x).
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Let us de�ne a new SMDP, called the restricted SMDP, by restricting al-

lowable actions in state x to those contained in �(x). We denote the restricted

SMDP by putting a�over the P or E operator. If x 2 SR, then 8� 2 �HR and

all 0 � k <1, �P�
x [xk 2 @(x)] = 1.

Because each strongly communicating class in SR is communicating, we know

from Theorem 6.1.1 that if assumptions 3.4.1, 4.3.1, 4.3.2, and 4.3.3 hold and

assumption 6.1.1() (Note: 6.1.1() is a consequence of Assumption 8.2.1()) holds

for all  < � with S
:
= @(x) for the restricted SMDP, then for any  < �, there

exists a stationary, Markov, deterministic policy ��
@(x) and a constant 0 < ��@(x) <

1 such that

��@(x) = lim
T!1

1

T
ln �E

��
@(x)

x0 [e
R T
t=0

g(t)dt] � lim
T!1

1

T
ln �E�

x0
[e
R T
t=0

g(t)dt]; 8� 2 �HR; x0 2 @(x):

Furthermore, if we de�neW (x) as in (5.13) with � = ��
@(x), then policy �

�
@(x)

solves the dynamic program (4.2) for all s 2 S
:
= @(x).

The following Lemma is clearly true:

Lemma 8.2.2 For x 2 SR,

inf
�2�HR

J�
x � ��@(x):

Proof:

See the preceding discussion.

Assumption 8.2.2 8x 2 S, 9D � SR such that jDj <1 and R(x;D).

For �
0
2 �HR and A � S, we de�ne the set of restricted policies �r(�

0
; A)

as follows:

� 2 �r(�
0
; A) if �(k) = �

0
(k) 8k < �A.

I.e., � 2 �r(�
0
; A) if it is identical to �

0
prior to the �rst hitting time of set

A.
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We de�ne �R(x;A) as follows:

�R(x;A) = [f�jR�(x;A)g�
r(�; A):

I.e., � 2 �R(x;A) if P�
x [�A <1] = 1.

Lemma 8.2.3 Let D � SR, and let R(x;D) and Assumption 8.2.1() be true.

Then,

inf
�2�R(x;D)

J�
x � sup

y2D
inf

�2�HR
J�
y :

Proof:

Assumption 8.2.1() assures us of the existence of a �
0
2 �R(x;D) such that

E�
0

x [e
P�D

k=0
c(xk;ak)]

:
= F <1:

Since �
0
2 �R(x;D), we know that P�

0

x [�D <1] = 1. Let

Fy
:
=

8>><
>>:
E�

0

x [e
P�D

k=0
c(xk;ak)j�D = �y] if P

�
0

x [�D = �y] > 0

0 if P�
0

x [�D = �y] = 0
:

Therefore, we have F =
P
y2D P

�
0

x [�D = �y]Fy. So clearly, Fy <1 8y 2 D.

For each y 2 D, let f�y
mg

1
m=1 be a sequence of policies such that

lim
m!1

J�ym
y = inf

�2�HR
J�
y :

De�ne �
0

m 2 �r(�
0
; D) as the policy that follows �y

m (and erases the history

{ i.e., starts fresh with no history) upon reaching y 2 D if �y = �D. Since �
0
takes

the system to D w.p.1, �
0

m is well de�ned.

Claim:

lim
m!1

J�
0
m

x � sup
y2D

inf
�2�HR

J�
y :

Proof of claim:
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Sub-claim:

If P�
0

x [�y = �D] > 0, then

lim
T!1

1

T
lnfE�

0
m

x [e
R T
t=0

g(t)dtjTy = TD]g � lim
T!1

1

T
lnfE�ym

y [e
R T
t=0

g(t)dt]g:

Proof of Sub-claim:

lim
T!1

1

T
lnfE�

0
m

x [e
R T
t=0

g(t)dtjTy = TD]g

= lim
T!1

1

T
lnfE�

0
m

x [e
R Ty
t=0

g(t)dt � e
R T
t=Ty

g(t)dt
jTy = TD]g

� lim
T!1

1

T
lnfE�

0
m

x [e
R Ty
t=0

g(t)dtjTy = TD] �E
�ym
y [e

R T
t=0

g(t)dt]g

= lim
T!1

1

T
lnfFy � E

�ym
y [e

R T
t=0

g(t)dt]g

= lim
T!1

1

T
lnfE�ym

y [e
R T
t=0

g(t)dt]g;

where the last equality follows since Fy <1.

And the sub-claim is proved.

J�
0
m

x = lim
T!1

1

T
lnfE�

0
m

x [e
R T
t=0

g(t)dt]

= lim
T!1

1

T
lnf
X
y2D

P�
0
m

x [�y = �D] �E
�
0
m

x [e
R T
t=0

g(t)dtjTy = TD]g

� lim
T!1

1

T
lnf
X
y2D

P�
0
m

x [�y <1] � sup
y2D

E�
0
m

x [e
R T
t=0

g(t)dtjTy = TD]g

= lim
T!1

1

T
lnfsup

y2D
E�

0
m

x [e
R T
t=0

g(t)dtjTy = TD]g
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= sup
y2D

lim
T!1

1

T
lnfE�

0
m

x [e
R T
t=0

g(t)dtjTy = TD]g

� sup
y2D

lim
T!1

1

T
lnfE�ym

y [e
R T
t=0

g(t)dt]g;

where the last inequality follows from the sub-claim.

The claim follows by taking the limit as m!1.

The lemma follows directly from the claim since �
0
2 �R(x;D).

2

Lemma 8.2.4 The following three implications are true:

1. If Assumption 4.2.1 (equivalently, Assumption 4.3.1) holds and

lim sup
N!1

E�
x [e
PN

k=0
fc(xk;ak)��t(xk ;ak)g] = 0;

(equivalently, lim supT!1 e��TE�
x [e
R T
t=0

g(t)dt] = 0)

then J�
x � �.

2. If Assumption 3.4.1 holds and

lim sup
N!1

E�
x [e
PN

k=0
fc(xk ;ak)��t(xk ;ak)g] =1;

(equivalently, lim supT!1 e��TE�
x [e
R T
t=0

g(t)dt] =1)

then J�
x � �.

3. If Assumption 4.3.1 and Assumption 3.4.1 hold and

0 < lim sup
N!1

E�
x [e
PN

k=0
fc(xk;ak)��t(xk;ak)g] <1;

then J�
x = �.
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Proof:

Assume that

lim sup
N!1

E�
x [e
PN

k=0
fc(xk;ak)��t(xk;ak)g] = 0

is true. Label the time of the N th decision epoch (in continuous time) tN . We

obtain

lim sup
N!1

E�
x [e

��tN � e
R tN
t=0

g(t)dt] = 0:

or equivalently

lim sup
N!1

E�
x [e

��tN+1 � e
R tN+1
t=0

g(t)dt] = 0: (8.2)

Assume that Assumption 4.2.1 is true. Therefore E[e��t(xN+1;aN+1)] > L > 0.

So we have

E�
x [e

��tN+1 � e
R tN+1
t=0

g(t)dt

= E�
x [e

��tN � e
R tN+1
t=0

g(t)dt � E[e��t(xN ;aN )jxN ]]

� E�
x [e

��tN � e
R tN+1
t=0

g(t)dt � L]:

Combining this with (8.2), we get

0 � lim sup
N!1

E�
x [e

��tN � e
R tN+1
t=0

g(t)dt � L]

or, removing the L,

0 � lim sup
N!1

E�
x [e

��tN � e
R tN+1
t=0

g(t)dt]:

Since ez � 0 8z 2 <, this must hold with equality, so we obtain

lim sup
N!1

E�
x [e

��tN � e
R tN+1
t=0

g(t)dt] = 0: (8.3)
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Let N(t) be the number of transitions that have occured prior to time t. We

get

lim sup
T!1

E�
x [e

��T � e
R T
t=0

g(t)dt]

� lim sup
T!1

E�
x [e

��TN(t) � e
R TN(t)+1
t=0 g(t)dt] = 0;

where the equality follows from (8.3). Again, since ez � 0 8z 2 <, we must

have that

lim sup
T!1

E�
x [e

��T � e
R T
t=0

g(t)dt] = 0

or

lim sup
T!1

e��TE�
x [e
R T
t=0

g(t)dt] = 0: (8.4)

Now suppose that

J�
x = lim sup

T!1

1

T
lnfE�

x [e
R T
t=0

g(t)dt]g > �:

Then,

lim sup
T!1

(
1

T
lnfE�

x [e
R T
t=0

g(t)dt]g � �) > 0:

Or,

lim sup
T!1

1

T
(lnfE�

x [e
R T
t=0

g(t)dt]g � �T ) > 0:

Or,

lim sup
T!1

1

T
lnfE�

x [e
R T
t=0

g(t)dt] � e��Tg > 0:

By (8.4), the term inside the natural log approaches 0 in the limit. Therefore

the limit looks like ln(0)
1

= �1
1
, so we know that it must be � 0. This is a

contradiction, and so implication 1 is proved.
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Assume that

lim sup
N!1

E�
x [e
PN

k=0
fc(xk;ak)��t(xk;ak)g] =1

is true. We obtain

lim sup
N!1

E�
x [e

��tN � e
R tN
t=0

g(t)dt] =1: (8.5)

Assume that Assumption 3.4.1 is true. Therefore E[e��t(xN+1 ;aN+1)] < U < 0.

So we have

E�
x [e

��tN+1 � e
R tN
t=0

g(t)dt]

= E�
x [e

��tN � e
R tN
t=0

g(t)dt � E[e��t(xN ;aN )jxN ]]

< E�
x [e

��tN � e
R tN+1
t=0

g(t)dt � U ]:

Combining this with (8.5), we get

1 � lim sup
N!1

E�
x [e

��tN+1 � e
R tN
t=0

g(t)dt � U ]

or, removing the U ,

1 � lim sup
N!1

E�
x [e

��tN+1 � e
R tN
t=0

g(t)dt]:

Clearly this holds with equality so we obtain

lim sup
N!1

E�
x [e

��tN+1 � e
R tN
t=0

g(t)dt] = 0: (8.6)

We get

lim sup
T!1

E�
x [e

��T � e
R T
t=0

g(t)dt]

� lim sup
T!1

E�
x [e

��TN(t)+1 � e
R TN(t)
t=0 g(t)dt] =1;
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where the equality follows from (8.6).

Since this equation must hold with equality, we get

lim sup
T!1

E�
x [e

��T � e
R T
t=0

g(t)dt] =1

or

lim sup
T!1

e��TE�
x [e
R T
t=0

g(t)dt] =1: (8.7)

Now suppose that

J�
x = lim sup

T!1

1

T
lnfE�

x [e
R T
t=0

g(t)dt]g < �:

Then,

lim sup
T!1

(
1

T
lnfE�

x [e
R T
t=0

g(t)dt]g � �) < 0:

Or,

lim sup
T!1

1

T
(lnfE�

x [e
R T
t=0

g(t)dt]g � �T ) < 0:

Or,

lim sup
T!1

1

T
lnfE�

x [e
R T
t=0

g(t)dt] � e��Tg < 0:

By (8.7), the term inside the natural log approaches 1 in the limit. There-

fore the limit looks like ln(1)
1

= 1
1
, so we know that it must be � 0. This is a

contradiction, and so implication 2 is proved.

The proof of implication 3 is a simple extension of the proofs of the �rst two

implications and is omitted for brevity.

2

Corollary 8.2.1 If Assumption 3.4.1 and Assumption 4.3.1 hold,
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J�
x = lim sup

T!1

1

T
lnfE�

x [e
R T
t=0

g(t)dt] = �;

and �l; �u 2 < are such that �l < � < �u, then the following two equalities

hold:

lim sup
N!1

E�
x [e
PN

k=0
fc(xk;ak)��ut(xk;ak)g] = lim sup

T!1
e��TE�

x [e
R T
t=0

g(t)dt] = 0:

and

lim sup
N!1

E�
x [e
PN

k=0
fc(xk;ak)��lt(xk;ak)g] = lim sup

T!1
e��TE�

x [e
R T
t=0

g(t)dt] =1:

Proof:

The corollary follows from Lemma 8.2.4 3 and the fact that

lim sup
N!1

E�
x [e
PN

k=0
fc(xk;ak)��t(xk;ak)g]

is decreasing in �.

2

Lemma 8.2.5 If x; y 2 S, �
0
2 �HR, and

P�
0

x [�y <1] > 0;

then

J�
0

x � inf
�2�HR

J�
y :

Proof:

J�
0

x = lim
T!1

1

T
lnE�

0

x [e
R T
t=0

g(t)dt]

= lim
T!1

1

T
lnfE�

0

x [e
R T
t=0

g(t)dtjTy <1]P�
0

x [Ty <1]+
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E�
0

x [e
R T
t=0

g(t)dtjTy =1]P�
0

x [Ty =1]g

� lim
T!1

1

T
lnE�

0

x [e
R T
t=0

g(t)dtjTy <1]

� lim
T!1

1

T
lnE�

0

x [e

R T
t=Ty

g(t)dt
jTy <1]: (8.8)

Denote ���y
:
= inf�2�HR J

�
y . By optimality of ���y and Corollary Equiv-

converse, the following holds 8� < ���y

lim
T!1

E�
0

x [e��(T�Ty)e

R T
t=Ty

g(t)dt
jTy = K <1] =1:

Therefore,

lim
T!1

E�
0

x [e��T e
R T
t=0

g(t)dtjTy <1]

= lim
T!1

E�
0

x [e��Tye
R Ty
t=0

g(t)dt � E�
0

x [e��(T�Ty)e

R T
t=Ty

g(t)dt
jTy]jTy <1]

= lim
T!1

E�
0

x [e��Tye
R Ty
t=0

g(t)dt � 1jTy <1];

which =1 unless

E�
0

x [e��Tye
R Ty
t=0

g(t)dtjTy <1] = 0:

So we have two cases:

Case 1:

lim
T!1

E�
0

x [e��T e
R T
t=0

g(t)dtjTy <1] =1:

In this case, we have by Lemma 8.2.4 (2) that

lim
T!1

1

T
lnE�

0

x [e

R T
t=Ty

g(t)dt
jTy <1] � ���y :
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And by (8.8), the lemma is satis�ed in Case 1.

Case 2:

E�
0

x [e��Tye
R Ty
t=0

g(t)dtjTy <1] = 0:

In this case, we have 8� < ���y that

0 = E�
0

x [e��Tye
R Ty
t=0

g(t)dtjTy <1]

� E�
0

x [e��Ty jTy <1]:

If Ty < 1 w.p.1, then 9Z < 1 such that P [Ty < Z] > 1
2
. But then no

matter what Z is, we get

E�
0

x [e��Ty jTy <1] > 0:

This is a contradiction, and so the lemma is satis�ed in case 2.

2

Corollary 8.2.2 If x; y 2 S, �
0
2 �HR, and

P�
0

x [�y <1] > 0;

then

J�
0

x � lim
T!1

1

T
lnE�

0

x [e
R T
t=0

g(t)dtjTy <1]:

Proof:

E�
0

x [e
R T
t=0

g(t)dt]

= E�
0

x [e
R T
t=0

g(t)dtjTy <1] � P [Ty <1] + E�
0

x [e
R T
t=0

g(t)dtjTy =1] � P [Ty =1]:

Therefore,
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J�
0

x = lim
T!1

1

T
E�

0

x [e
R T
t=0

g(t)dt] =

= maxf lim
T!1

1

T
E�

0

x [e
R T
t=0

g(t)dtjTy <1]; lim
T!1

1

T
E�

0

x [e
R T
t=0

g(t)dtjTy =1]g

� lim
T!1

1

T
lnE�

0

x [e
R T
t=0

g(t)dtjTy <1]:

2

Lemma 8.2.6 Let D � SR, and let R
0
(x;D) and Assumption 8.2.1() be true.

Then,

inf
�2�R(x;D)

J�
x = sup

y2D
inf

�2�HR
J�
y :

Proof:

By Lemma 8.2.3, left hand side � right hand side.

By Lemma 8.2.5 and the fact that P�
x [�y < 1] > 0 8y 2 D (i.e., the fact

that R
0
(x;D) is true), left hand side � right hand side.

2

Corollary 8.2.3 Let D � SR. If R(x;D) and Assumption 8.2.1() are true and

inf
�2�R(x;D)

J�
x < sup

y2D
inf

�2�HR
J�
y ;

then not R
0
(x;D), i.e., 9C � D, C 6= D such that R(x; C).

We know that we can decompose SR as follows:

SR = [Qi=1@(si), where si 62 @(sj) for i 6= j, and 0 � Q � 1. If Q =1, then

there are countably many strongly communicating classes in SR. If 1 � Q < 1,

then there are �nitely many strongly communicating classes. If Q = 0, then all

states are transient under any policy.
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Each si is a representative of the strongly communicating class that contains

it. De�ne the function � : SR! [Qi=1fsig as follows: If y 2 @(si), then �(y) = si.

The function �(�) is well-de�ned.

We do not choose each si arbitrarily from its strongly communicating class.

We choose each si from its strongly communicating class in such a way that the

following is true: 8x 2 @(si), p
��
@(si)

x [
P1
k=0 I(xk = si) = 1] = 1. I.e., an optimal,

Markov, deterministic, stationary policy exists for the restricted SMDP on @(si)

such that si is in its positive recurrent class. The proof of Theorem 6.1.1 guarantees

our ability to choose each si in such a way that this condition is satis�ed. The

reason we enforce this condition on si is to guarantee that a stationary, Markov,

deterministic optimal policy on the restricted SMDP can hit si.

Lemma 8.2.7 If D \ @(y) = ;, then 8x 2 S and any two nonempty subsets

U1; U2 � @(y), R(x;D [ U1) i� R(x;D [ U2).

Proof:

First we prove the more general transitivity result that if D;B;C � S,

R(x;D [ B), and R(B;C), then R(x;D [ C):

Let �1 be such that P�1
x [�D[B < 1] = 1. Let �2 be such that 8y 2 B,

P�2
y [�C < 1] = 1. De�ne �3 to be the policy that follows �1 until B is reached.

Then, the history is forgotten and policy �2 is followed. We have

P�3
x [�D[C <1] � P�1

x [�D[B <1] � inf
y2B

P�2
y [�C <1] = 1 � 1:

To obtain the lemma, note that R(U1; U2) and R(U2; U1) are both true by

de�nition of @(�). And the lemma follows.

2

De�ne A = [Qi=1fsig, and let 2A = fDjD � Ag. De�ne 2A(x) � 2A as

follows:

D 2 2A(x) i� R(x;D) and D 2 2A.
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N.B.: 2A(x) 6= 2Ax if we de�ne Ax
:
= fy 2 AjRp(x;D)g or even Ax

:
= fy 2

AjR(x;D)g. In fact, 2A(x) is not necessarily a power set of anything.

Lemma 8.2.8 Given Assumption 8.2.2, 2A(x) 6= ; 8x 2 S

Proof:

Let x 2 S be given. By Assumption 8.2.2, 9D � SR such that jDj <1 and

R(x;D). Let C = [x2D�(x). By Lemma 8.2.7, we have R(x; C). By Lemma 7.0.6,

9F � C such that R
0
(x; F ). By construction, F 2 2A(x). Therefore, the Lemma

is true.

2

Lemma 8.2.9 Let Assumption 4.3.2 and Assumption 4.3.1 be true and let � 2

�HR be an arbitrary policy. If J�
x <1, then P�

x [�SR =1] = 1.

Proof:

Let J�
x = F <1. De�ne

CCF = fx 2 Sj inf
a2�(x)

E[ec(x;a)�2Ft(x;a)] � 1g:

By Assumption 4.3.2 and Assumption 4.3.1, we know that CCF contains a �nite

number of elements.

By Corollary 8.2.1, we know that

lim sup
N!1

E�
x [e
PN

k=0
fc(xk;ak)�2Ft(xk ;ak)g] = 0: (8.9)

Claim:

P�
x [�CCF =1] = 1:

Proof of claim:

If not, then (8.9) is violated. (We have previously proved similar claims (e.g.

claim in Lemma 4.2.3) in detail and the proof of this one is omitted.)
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And the claim is proved.

Claim:

P�
x [�CCF\SR =1] = 1: (8.10)

Proof of claim:

By the de�nition of SR it is clear that for any �nite subset G � SRc, P�
x [�G =

1] = 0.

So we have

1 = P�
x [�CCF =1] = P�

x [�CCF\SR =1] + P�
x [�CCF\SRc =1]

= P�
x [�CCF\SR =1] + 0:

And the claim is proved.

The Lemma follows easily from this claim.

2

Corollary 8.2.4 Let Assumption 4.3.2 and Assumption 4.3.1 be true and let � 2

�HR be an arbitrary policy. If J�
x < 1, then 9B � SR, jBj < 1 such that

R�(x;B).

Proof:

By the second claim in the proof of Lemma 8.2.9, we know that there is a

�nite set CCF � S such that P�
x [�CCF\SR =1] = 1. Therefore, R�(x; CCF \SR)

and the corollary holds.

2

Lemma 8.2.10 Let Assumption 8.2.1() be true.

Then 8x 2 S,
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inf
�2�HR

J�
x = inf

D22A(x)
sup
s2D

inf
�2�HR

J�
s :

Proof:

By Lemma 8.2.3, it is clear that

inf
�2�R(x;[Qi=1fsig)

J�
x = inf

�2[
D22A(x)

�R(x;D)
J�
x � inf

D22A(x)
sup
s2D

inf
�2�HR

J�
s :

since �R(x;[Qi=1fsig) � �HR, we get

inf
�2�HR

J�
x � inf

�2�R(x;[Q
i=1fsig)

J�
x � inf

D22A(x)
sup
s2D

inf
�2�HR

J�
s :

Let �
0
2 �HR such that J�

0

x <1 be given. By Lemma 8.2.9, we know that

P�
0

x [�SR = 1] = 1. Clearly then, R�
0

(x; SR). And by Lemma 7, 9C � SR such

that R
0�
0

(x; C).

Then, by Lemma 8.2.5

J�
0

x � sup
y2C

inf
�2�HR

J�
y ; (8.11)

Let D = [y2C�(y). By Lemma 7.0.1, we know that 8y 2 SR,

inf
�2�HR

J�
y = inf

�2�HR
J�
�(y):

Therefore,

sup
y2C

inf
�2�HR

J�
y = sup

y2C
inf

�2�HR
J�
�(y)

and by (8.11),

J�
0

x � sup
s2D

inf
�2�HR

J�
s ;

By Lemma 8.2.7, R(x; C) implies R(x;D). Therefore, D 2 2A(x) and

sup
s2D

inf
�2�HR

J�
s � inf

D22A(x)
sup
s2D

inf
�2�HR

J�
s ;
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and the Lemma is satis�ed.

2

Lemma 8.2.10 is useful for �nding the in�mum of achievable cost for a state

x 62 SR in terms of the in�mum of achievable cost for the states in SR. If x 2 SR,

the statement of the theorem can be simpli�ed to

inf
�2�HR

J�
x = inf

�2�HR
J�
v(x):

Therefore for x 2 SR, it is clear that

inf
�2�HR

J�
x � inf

D22A(x)�f�(x)g
sup
s2D

inf
�2�HR

J�
s :

Lemma 8.2.11 Let Assumption 8.2.1() be true and let x 2 SR.

If

inf
�2�HR

J�
x < inf

D22A(x)�f�(x)g
sup
s2D

inf
�2�HR

J�
s ;

then

inf
�2�HR

J�
x = ��@(x):

Proof:

First, we note that the assumption of the lemma implies 9� > 0 such that

inf
�2�HR

J�
x + � < inf

D22A(x)�f�(x)g
sup
s2D

inf
�2�HR

J�
s : (8.12)

We know that for the restricted SMDP (i.e., actions must be in �(x)),

inf�2�HR J
�
x = ��@(x). Therefore, for the regular SMDP (any actions in �(x)),

inf
�2�HR

J�
x � ��@(x): (8.13)

All that remains to be shown is that 8� 2 �HR,

J�
x � ��@(x): (8.14)
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Let �
0
2 �HR be given.

If P�
0

x [ak 2 �(xk)] = 1 8k < 1, then �
0
is admissible under the restricted

SMDP and therefore (8.14) holds.

Suppose that 9k < 1 such that P�
0

x [ak 2 �(xk)] < 1, and 8i < k, P�
0

x [ai 2

�(xi)] = 1.

Denote Xk
:
= fy 2 SjP�

0

x [xk = y] > 0g.

Claim:

Xk � @(x).

Proof of claim:

Since policy �
0
by de�nition takes only actions that are admissible under the

restricted SMDP prior to time tk, the claim is true.

So there must be y 2 @(x) and a p > 0 such that

P�
0

x [xk = y; ak 62 �(y)] = p:

Therefore,

p = P�
0

x [xk = y] � P�
0

x [ak 62 �(y)jxk = y];

And we get the following two inequalities:

P�
0

x [xk = y] > 0;

and

P�
0

x [ak 62 �(y)jxk = y] � p:

By Corollary 8.2.2, we get

J�
0

x � inf
�002�HRjP�

00

y [a0 62�(y)]�p

J�
00

y ; (8.15)

since �
0
can do no better than the in�mum.
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Because for any such policy �
00
, an action that is not in �(y) is selected with

probability at least p > 0, we know that

P�
00

y [�@(x) <1] < 1:

Therefore, R�
00

(y;@(x)) and R
0�
00

(y; f�(x)g) are not true for any such policy

�
00
. It is clear that if D 62 2A(y), then R

0�
00

(y;D) is not true for any such policy

�
00
. Let 2A(y)

00
denote the set of all sets D 2 2A such that 9�

00
such that P�

00

y [a0 62

�(y)] � p with R�
00

(y;D) true.

Therefore we have

f�(x)g 62 2A(y)
00

(8.16)

and

2A(y)
00

� 2A(y) = 2A(x): (8.17)

Then by an argument analogous to the argument used to obtain a lower

bound in Lemma 8.2.10, we get that

inf
�002�HRjP�

00

y [a0 62�(y)]�p

J�
00

y = inf
D22A(y)00

sup
s2D

inf
�2�HR

J�
s

� inf
D22A(x)�f�(x)g

sup
s2D

inf
�2�HR

J�
s

> inf
�2�HR

J�
x + �; (8.18)

where the last inequality follows from (8.12); and the second to last inequality

follows from (8.16) and (8.17).

From (8.15) and (8.18), we see that if a policy does not select actions within

the restricted SMDP at all times w.p.1, then it cannot come to within � of the

optimal cost. Therefore, the optimal cost is no better than the best that can be

achieved within the restricted SMDP, or
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inf
�2�HR

J�
x � ��@(x):

The Lemma follows from the above inequality combined with (8.13)

2

Note: Lemma 8.2.11 makes intuitive sense: If you do better by not making

the system leave the strongly communicating class it is in than you do by making

the system leave the strongly communicating class it is in, then the best you can

do is the optimal cost for the restricted SMDP, which is the SMDP that ensures

that the system does not leave the strongly communicating class it is in.

Corollary 8.2.5 If inf�2�HR J
�
x < ��@(x), then

inf
�2�HR

J�
x = inf

D22A(x)�f�(x)g
sup
s2D

inf
�2�HR

J�
s :

But there is another possibility. It is possible to have

��@(x) = inf
�2�HR

J�
x = inf

D22A(x)�f�(x)g
sup
s2D

inf
�2�HR

J�
s :

This occurs when the best cost you can attain by making the system leave

@(x) is the same as the best cost you can attain by making the system stay in

@(x).

It follows that the only way in which you will bene�t (in terms of long term

average cost) by having the system leave the strongly communicating class it cur-

rently occupies is if the condition of Corollary 8.2.5 holds. In the other case, i.e.

when ��@(x) = inf�2�HR J
�
x , the best cost within the restricted SMDP is the best

possible cost.

Lemma 8.2.12 Let D1; D2 2 2A. If R(x;D1), s 2 D1, s 62 D2, and R(s;D2),

then 9D3 � D1 [D2 � fsg such that R(x;D3).
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Proof:

If R(x;D1 � fsg), then set D3 = D1 � fsg and we are done.

Suppose that not R(x;D1�fsg). Therefore, 9� 2 �HR such that R�(x;D1)

and P�
x [�s = �D1 ] > 0. Because R(s;D2), we know that 9�

0
2 �HR such that

R�
0

(s;D2). Let �
00
be the policy that follows � until �D1 . Then, if �D1 = �s, the

history is erased and policy �
0
is followed. It is clear that R�

00

(x;D1 [D2 � fsg),

which implies that R(x;D1 [D2 � fsg).

2

De�ne B � [Qi=1fsig as follows:

si 2 B if

��@(si) = inf
�2�HR

J�
si
:

De�ne

2B(x) = fD
0

2 2A(x)jD
0

� Bg:

So 2B(x) is the largest subset of 2A(x) for which the optimal policy can be

achieved within the restricted SMDP for each s in each D.

Given 0 < F <1, de�ne CF � [Qi=1fsig as follows:

si 2 CF if 9y 2 @(si) such that

inf
a2�(y)

E[efc(y;a)�Ft(y;a)g] � 1:

Clearly, if Assumption 4.3.1 and Assumption 4.3.2 are true then jCF j <1.

De�ne

2C
F

(x) = fD
0

2 2A(x)jD
0

� CFg:

Lemma 8.2.13 If 9� 2 �HR and x 2 S such that J�
x < 1, then 9F > 0 such

that 2C
F

(x) 6= ;.
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Proof:

Let � > 0 be given.

De�ne ZQ = fzj infa2�(z) E[efc(z;a)�(J
�
x +�)t(z;a)g] � 1:

Suppose 2C
J�x +�

(x) = ;. Then if y is a self-reachable state that is probabilis-

tically reachable from x, we have

inf
a2�(y)

E[efc(y;a)�(J
�
x +�)t(y;a)g] > 1:

Therfore, ZQ � SRc.

By the de�nition of J�
x and by Corollary 8.2.1, we know that

lim
T!1

E�
x [e


PT

k=0
fc(xk;ak)�(J

�
x +�)t(xk;ak)g] = 0:

Therefore, we must have that

P�
x [�ZQ =1] = 1:

By Lemma 2.2.2, this means that ZQ \ SR 6= ;.

This is a contradiction, so the Lemma is proved.

2

Lemma 8.2.14 If Assumption 4.3.1 and Assumption 4.3.2 are true, x 2 S, and

9� 2 �HR such that J�
x <1, then the in�mum over 2A(x) in

inf
�2�HR

J�
x = inf

D22A(x)
sup
s2D

inf
�2�HR

J�
s (8.19)

is achieved. Furthermore, 9 D 2 2B(x) that achieves the minimum.

Proof:

Let �
0
be a policy such that J�

0

x <1. From the proof of Lemma 8.2.13, we

know not only that for any F > J�
0

x , 2C
F

(x) 6= 0, but that R�(x;[si2CF@(si)) for

any policy � such that J�
x � J�

0

x .

Since Assumption 4.3.1 and Assumption 4.3.2 are true, we know that
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fxj infa2�(x) E[e
fc(x;a)�Ft(x;a)g] � 1g is �nite for any F . Therefore, there are only

�nitely many D 2 2A(x) such that D 2 2C
F

(x), so the minimum in (8.19) must be

achieved.

Claim:

2B(x) \ 2C
F

(x) 6= ;. Furthermore, the minimum in (8.19) is achieved by a

D 2 2B(x) \ 2C
F

(x)

Proof of claim:

Suppose that 2B(x) \ 2C
F

(x) = ;. and that D
0
2 2C

F

(x) achieves the mini-

mum in (8.19). Let D0
:
= D

0
.

Now, we will generate an in�nite sequence fDigj1i=0, with Di 6= Dj for i 6= j,

Di 2 2C
F

(x), and Di achieves the minimum in (8.19) 8i. Since 2C
F

(x) is �nite,

that is a contradiction.

Let Di be given. De�ne Di+1 as follows:

Because Di 62 2B(x), 9y 2 Di such that ��@(y) > inf�2�HR J
�
y . Therefore

(since we've shown the in�mum over D 2 2A(y) is achieved in 2C
F

(y), 9 �D 2 2A(y)

such that R(y; �D) and

inf
�2�HR

J�
y = sup

s2 �D

inf
�2�HR

J�
s : (8.20)

By Lemma 8.2.12, 9Di+1 � Di[ �D�fyg such that R(x;Di+1). Furthermore,

by (8.20) and the inductive hypothesis, we know that Di+1 achieves the minimum

in (8.19).

Now we need to show that Di 6= Dj for i 6= j. By construction, we know

that R(Di; Di+1) and therefore R(Di; Dj) if i < j. We also know that Di 6= Di+1.

Therefore, if Di = Dj for i 6= j, then ji � jj > 1. Therefore, if i < j, we have

R(Di; Di+1) and R(Di+1; Dj). Since Di = Dj, that means R(Di+1; Di).

Sub-Claim:

If A;B 2 2A, A 6= ;, B 6= ;, R(A;B), and R(B;A), then A = B.

136



Proof of sub-claim:

Suppose otherwise. Then 9si 2 A�B. By the assumption of the sub-claim,

we have R(si; B) and R(B; si) By the de�nition of @, this means that B � @(si).

But then B = ;, which is a contradiction.

And the sub-claim is proved.

By the sub-claim, we then have that Di = Di+1, which is a contradiction.

Therefore, we have constructed an in�nite sequence of sets fDig1i=0, with

each Di 2 2C
F

(x), with Di 6= Dj for i 6= j. But this is impossible because 2C
F

(x)

is a �nite set! Therefore, there must be an i < 1 such that Di�2
B(x)x. By

construction, this Di achieves the minimum in (8.19).

And the claim is proved.

The D from the statement of the claim is the D 2 2B(x) stated in the

conclusion of the lemma, and the lemma is proved.

2

Lemma 8.2.15 Let Assumption 8.2.1() be true.

Then 8x 2 S,

inf
�2�HR

J�
x = inf

D22A(x)
sup
s2D

��@(s):

Proof:

We know that inf�2�HR J
�
s � ��@(s) because �(x) � �(x). Therefore, we have

by Lemma 8.2.10 that

inf
�2�HR

J�
x = inf

D22A(x)
sup
s2D

inf
�2�HR

J�
s � inf

D22A(x)
sup
s2D

��@(s):

Lemma 8.2.14 tells us that 9D
0
2 2B(x) such that

inf
�2�HR

J�
x = sup

s2D0
inf

�2�HR
J�
s :

Since D
0
2 2B(x), we see that
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inf
�2�HR

J�
x = sup

s2D
��@(s):

Therefore inf�2�HR J
�
s � ��@(s) and the Lemma is proved.

2

This lemma makes intuitive sense. The best you can do is the best you

can do by moving the system to a reachable set and then following the restricted

SMDP. This is true because eventually a control must stay within an strongly

communicating class; otherwise the trajectory would go to in�nity and the cost

would be in�nite.

For D 2 2A, de�ne �(D) = sups2D �
�
@(s).

If Assumption 4.3.2 holds, then for anyK <1, there are only a �nite number

of si such that ��@(s) < K. Therefore, if Assumption 4.3.2 holds and jDj =1, then

�(D) =1.

Theorem 8.2.1 Suppose that Assumptions 3.4.1, 4.3.1, 4.3.2, and 4.3.3 hold and

that Assumption 8.2.1() holds for all  < �.

Then, for any  < � and any x 2 S, there exists a stationary, Markov,

deterministic policy ��
x such that

inf
D22A(x)

�(D) = lim
T!1

1

T
lnE��x

x [e
R T
t=0

g(t)dt] � lim
T!1

1

T
lnE�

x [e
R T
t=0

g(t)dt]; 8� 2 �HR:

Proof:

By Lemma 8.2.15, we know that

inf
D22A(x)

�(D) � lim
T!1

1

T
lnE�

x [e
R T
t=0

g(t)dt]; 8� 2 �HR:

We will now construct a stationary policy �� 2 �MD that achieves the min-

imum cost, infD22A(x) �(D).
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By Lemma 8.2.14, 9D
0
2 2A(x) such that �D0 = infD22A(x) �(D). By Lemma

7.0.6, 9D� � D
0
such that R

0
(x;D�). Because D� � D

0
, we know that �D� �

�D0 = infD22A(x) �(D). (Clearly this must hold with equality.) Lemma 7.0.7 tells

us that 8s 2 D�, not R(s;D� � fsg).

Claim:

9 a stationary policy �D�

x 2 �MD such that E�D
�

x
x [e

P�D
k=0

c(xk;ak)] <1.

Proof

By Assumption 8.2.1(), 9 a policy �
0
such that E�

0

x [e
P�D

k=0
c(xk;ak)] <1.

Let us create a `modi�ed' SMDP by altering the state space: eliminate every

state y 2 D and replace them with state d. Denote the transition probabilities for

the modi�ed SMDP by giving them a ' superscript. 8x; a, de�ne P
0
[xk+1 = djxk =

x; ak = a] =
P
y2D P [xk+1 = yjxk = x; ak = a]. The transition probabilities out of

state d are irrelevant, and set P
0
= P otherwise.

Essentially, all we have done to `modify' the SMDP is aggregate all of the

states in D into one state, called d.

By Lemma 6.1.1, 9 a Markov, stationary policy �d
 such thatE

�d
x [e

P�d
k=0

c(xk;ak)] <

1 in the modi�ed SMDP.

This same policy in the original SMDP satis�es the claim, so set �D�

x = �d


and the claim is proved.

For each s 2 [Qi=1fsig, by Theorem 6.1.1, there is a stationary optimal policy

��
s for the restricted SMDP over @(s), i.e. the SMDP that has admissible actions

only in �(x). De�ne the stationary policy ��
� over x 2 SR as follows:

��
�(x) = ���

�(x)(x);

where ���
�(x) denotes the stationary, Markov, deterministic optimal policy for the

restricted SMDP on @(�(x)). (This policy is derived in Theorem 6.1.1.)

Clearly, for x 2 SR, J���
x = ��@(x). (For x 62 SR, J���

x is not de�ned because

��
� is not de�ned.)
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De�ne @
0
(D)

:
= [s2D@(s), and de�ne

��
x =

8>><
>>:

��
�; if x 2 @

0
(D�)

�D�

x ; otherwise

Denote �� = �(D�).

Claim:

E��x
x [e

P�D�1

k=0
fc(xk;ak)��

�t(xk;ak)g] <1:

Proof of claim:

We get

E��x
x [e

P�D�1

k=0
fc(xk;ak)��

�t(xk;ak)g]

= E��x
x [e

P�
@
0
(D)

�1

k=0
fc(x;a)���t(x;a)g � e

P�D�1

k=�
@
0
(D)

fc(x;a)���t(x;a)g

]

= E���
x [e

P�
@
0
(D)

�1

k=0
fc(x;a)���t(x;a)g�

E�D
�

x
x�
@
0
(D)

[e

P�D�1

k=�
@
0
(D)

fc(x;a)���t(x;a)g

jfx0; x1; :::; x�
@
0
(D)
g]]

� E���
x [e

P�
@
0
(D)

�1

k=0
fc(x;a)���

@(x�
@
0
(D)

t(x;a)g

�

E�D
�

x
x�
@
0
(D)

[e

P�D�1

k=�
@
0
(D)

fc(x;a)���
@(x�

@
0
(D)

)
t(x;a)g

jfx0; x1; :::; x�
@
0
(D)
g]]

� E���
x [e

P�
@
0
(D)

�1

k=0
fc(x;a)���

@(x�
@
0
(D)

t(x;a)g

�

E���
x�
@
0
(D)

[e

P�D�1

k=�
@
0
(D)

fc(x;a)���
@(x�

@
0
(D)

)
t(x;a)g

jfx0; x1; :::; x�
@
0
(D)
g]]

= E���
x [e

P�D�1

k=0
fc(x;a)���

@(x�
@
0
(D)

)
t(x;a)g

]
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� E���
x [e

P�D�1

k=0
c(x;a)] <1:

And the claim is proved.

Claim:

8� > ��,

E��x
x [e

P1

k=0
fc(xk;ak)��t(xk ;ak)g] = 0:

Proof of claim:

E��x
x [e

P1

k=0
fc(xk;ak)��t(xk ;ak)g]

= E��x
x [e

P�D�1

k=0
fc(xk;ak)��t(xk ;ak)g � e


P1

k=�D
fc(xk;ak)��t(xk;ak)g]

=
1X
m=1

P��x
x [�D = m]E��x

x [e
Pm�1

k=0
fc(xk;ak)��t(xk;ak)g � e

P1

k=m
fc(xk;ak)��t(xk;ak)gj�D = m]

(since m <1, we can replace it with 0)

=
1X
m=1

P��x
x [�D = m]E��x

x [e
Pm�1

k=0
fc(xk;ak)��t(xk;ak)g�

X
s2D

P��x
x [xm = sjm = �D]E

��x
s [e

P1

k=0
fc(xk;ak)��t(xk ;ak)g]j�D = m]

(de�ne s
0
= argmaxs2D �

�
@(s))

�
1X
m=1

P��x
x [�D = m]E��x

x [e
Pm�1

k=0
fc(xk;ak)��t(xk;ak)g�

E
��x
s
0 [e

P1

k=0
fc(xk;ak)��t(xk;ak)g]j�D = m]

= E
��x
s
0 [e

P1

k=0
fc(xk;ak)��t(xk ;ak)g]�
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1X
m=1

P��x
x [�D = m]E��x

x [e
Pm�1

k=0
fc(xk;ak)��t(xk ;ak)gj�D = m]

= E
��x
s
0 [e

P1

k=0
fc(xk;ak)��t(xk ;ak)g] � E��x

x [e
P�D�1

k=0
fc(xk;ak)��t(xk;ak)g]

� E
��x
s
0 [e

P1

k=0
fc(xk;ak)��t(xk;ak)g] � E��x

x [e
P�D�1

k=0
fc(xk;ak)��

�t(xk;ak)g]

(from the de�nition of ��
�)

= E
���
s
0

s
0 [e

P1

k=0
fc(xk;ak)��t(xk ;ak)g] � E��x

x [e
P�D�1

k=0
fc(xk;ak)��

�t(xk;ak)g]:

We know from the previous claim that

E��x
x [e

P�D�1

k=0
fc(xk;ak)��

�t(xk;ak)g] <1:

Also, we know from Corollary 8.2.1 that

E
���
s
0

s
0 [e

P1

k=0
fc(xk;ak)��t(xk;ak)g] = 0:

And the claim follows.

From the above claim and Lemma Equiv, we know that J��x
x � ��, and the

theorem is proved.

2

Theorem 8.2.1 is a powerful result. However, although the optimal policy is

stationary, Markov, and deterministic; it still might depend on the initial state.

This is a phenomenon that is not restricted to a risk sensitive objective function {

in fact the optimal policy depends on the initial state for a risk neutral objective

function whenever it does for a risk sensitive objective function (with su�ciently

small ) for the same SMDP. Figure 8.1 illustrates a Markov decision process for

which the optimal policy depends on the initial state. (It will be explained in the

next section.)
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It is interesting to note that if we augment the state with the initial state,

we can then get a single policy that is optimal from any initial condition. So the

entire history dependence of an optimal policy can be summarized in one piece of

informaition: the initial state, or equivalently, the optimal cost achievable from

that initial state.

For a risk neutral objective function, not only might the optimal policy de-

pend on the initial state, but there might not be an optimal policy at all. In

fact, Theorem 8.2.1 does not hold for a risk neutral objective function. I.e., there

are some SMDPs in which there is an optimal policy for a risk sensitive objective

function but not for a risk neutral objective function.

To illustrate these points, we shall now provide some concrete examples. As

a consolation, we note that it will be shown in the next chapter that in the �nite

state case, these problems go away for both risk neutral and risk sensitive objective

functions.

Example 8.2.1 (Examples of problems that occur when S =1)

Figure 8.1 shows a complex MDP with an in�nite state space. SR consists

of 2 states, which we call z9 and z10, labeling each by its cost. (In the following

examples, c(x; a) does not depend on a, so we write it as c(x).) There are also

3 separate columns of states. We label the states in the left-hand column the `a'

states: fa1; a2; a3; :::g; where again each state is labeled according to its transition

cost. The states in the middle column are labeled fb1; b2; b3; :::g, again according to

their transition costs. The states in the right hand colum are labeled fc1; c2; c3; :::g.

The cost of transitioning out of state cn is f(n), where f(�) is de�ned according to

the following recursion:

f(1) = 1; f(n+ 1) = 2f(n):

The transition probabilities are as labeled, although P [xk+1 = an+1jxk =

an] = 2�n is not labeled in order to prevent crowding of the diagram. As can be
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Figure 8.1: An MDP for which no single policy is optimal from every initial state.

seen from the diagram, transitions are deterministic except from the `a' states,

where they are random. j�(x)j = 1 if x 2 fz9; z10g[fa1; a2; a3; :::g[fc1; c2; c3; :::g.

However, j�(x)j = 2 if x 2 fb1; b2; b3; :::g. Let us call the two admissible actions

in state bn action A9 and action A10. c(bn; A9) = c(bn; A10) = n. The transition

probabilities for action A10 are shown with the broken lines, while the transition

probabilities for action A9 are shown with solid lines, just like the uncontrollable

transition probabilities from the other states.

Note: The MDP de�ned in �gure 8.1 is well formulated (i.e., does not incur

in�nite costs for all policies from any initial state,) since the cost to reach the b

states from any a state is �nite and you can drive the system to the 10 state in 1

step with cost 1 from any b state. Since the 10 state is self-reachable, there is a
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policy to reach SR with �nite cost.

8.3 Properties of optimal policies for the SMDP

in Example 8.2.1

In this section, we explore an example that illustrates the limitations of Theo-

rem 8.2.1. We also explore the behavior of the risk neutral objective function in

the same example draw generalizations from it.

8.3.1 The risk sensitive case

De�ne policy �9 to be the policy that always chooses action A9; and de�ne policy

�10 to be the policy that always chooses action A10. Clearly, both are stationary,

Markov, deterministic policies.

The techniques of the proof of Theorem 8.2.1 can be used to show that

8x 2 fa1; a2; a3; :::g,

J�10
x = 10 � J�

x ; 8� 2 �HR:

Similarly, the same techniques can be used to show that 8x 2 fb1; b2; b3; :::g,

J�9
x = 9 � J�

x ; 8� 2 �HR:

However, it can be seen that if �
0
is a policy that chooses action A10 in state

bn, then J
�
0

bn
= 10 > 9. Therefore, policy �10 is not optimal if the initial state is

in fb1; b2; b3; :::g.

Now, let us solve for the value of J�9
an
. (For simplicity, we assume n = 1, but

the result is the same for any n.)

J�9
a1

= lim
N!1

1

N
lnE�9

a1
[e
PN

k=0
c(xk;ak)]:
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We can see that

E�9
a1
[e
PN

k=0
c(xk;ak)] � E�9

a1
[e
PN

k=0
c(xk;ak)�I(xk2fc1;c2;:::;cng)]

=
N�1X
n=1

P [xn+1 = cn] � e
f(n)

�
N�1X
n=1

(2�n�1)n+1ef(n);

since the transition probabilities are bounded below by 2�n�1 and it takes n + 1

transitions to reach state cn.

A sum of positive terms is bounded above by its last term. Therefore,

J�9
a1
� lim

N!1

1

N
ln(2�n�1)n+1ef(n)

� lim
N!1

1

N
� (n + 1)2 + f(n) =1;

by de�nition of f(n).

In fact, the above development also shows something stronger: that if �
00

chooses action A9 for an in�nite number of states 2 fb1; b2; :::g, then J
�
00

an
=1.

Therefore it can be seen that any policy that is optimal for all x 2 fb1; b2; b3; :::g

(and there is only one: �9) leads to in�nite cost if used starting at any state

in fa1; a2; a3; :::g. Similarly, any policy that is optimal starting at any state in

fa1; a2; a3; :::g must choose action A9 for only a �nite number of states, and there-

fore is not optimal for all initial states in fb1; b2; b3; :::g.

So we see that Figure 8.1 shows an example of an MDP that meets the

conditions of Theorem 8.2.1 for which there is no policy that is optimal starting

from every state. This is true no matter what the value of  > 0.
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8.3.2 The risk neutral case

Let's see what happens when  = 0, i.e., in the risk neutral case. Clearly, if the

initial state is not in fa1; a2; a3; :::g, then policy �9 is optimal and the optimal

cost is 9. In order to examine the behavior of the cost if the initial state is in

fa1; a2; a3; :::g, we assume without loss of generality that the initial state is a1.

(The same thing happens for any other an, as will become evident.)

De�ne policy �n as the policy that chooses actionA9 if x 2 fb1; b2; :::; bn�1; bng;

and action A10 otherwise. We therefore have limn!1�n = �9 and �0 = �10.

Because P [xk+1 = an+1jxk = an] = 2�n, we see that for any � 2 �HR,

P n :
= P�

a1
[�an <1] = �n�1

i=1 2
�i > 0, while limn!1 P n = 0.

It can be shown that

9 < J �n

a1
� 9 + P n:

Therefore, we see that limn!1J �n

a1
= 9.

However, the same development that showed us that J�9
a1

=1 also shows us

that J �9
a1

= 1. And as in the risk sensitive case, if �
00
chooses action A9 for an

in�nite number of states 2 fb1; b2; :::g, then J �
00

an
= 1. Also, we know that any

policy �
000
that chooses action A9 for only a �nite number of states 2 fb1; b2; :::g

gives cost J �
000

an
> 9.

So we have that inf�2�HR J
�
an

= 9, and that J �
an
> 9 8� 2 �HR. There is

no optimal policy if the initial state is in fa1; a2; a3; :::g!

Example 8.3.1

The following is a simpler example in which there is no optimal risk neutral

policy.

In each state of the Markov chain in �gure 8.2, there are two admissible

actions. Action AA0 gives the transition probabilities shown with the solid lines;

action AA1 gives the the transition probabilities shown with the dashed lines.

147



1
1

1

1

1

1

2-1 1- 2-1

2

2

2

2

1- 2

1- 2

1- 2

1- 2

-2 -2

-3 -3

-4 -4

-5 -5

9
10

1

2

3

4

5

Figure 8.2: An MDP illustrating why Theorem 8.2.1 does not work for a risk

neutral objective function.

It can be seen through a development similar to the one in Section 8.3.1 that

a risk neutral policy can achieve cost as close to 9 as desired, but no policy achieves

a 9 cost.

Every policy achieves a risk sensitive cost of 10 except those policies that have

a nonzero probability of always choosing action AA0. Such policies give in�nite

cost for both risk neutral and risk sensitive objective functions.

Therefore we see that it is possible for an optimal risk sensitive policy to exist

when an optimal risk neutral policy does not. This is because of the maximiza-

tion (over strongly communicating classes) property of the risk sensitive objective

function.
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Chapter 9

Optimal Policies and Optimality

Equations for the Finite State

Space Case

We now know that there is an optimal policy starting from any initial state. In this

chapter we show that for the �nite state space case, there is a single policy that is

optimal from all initial states. Furthermore, there is a pair of optimality equations

that hold. These optimality equations are important because they form the basis

for computation of an optimal policy. (However, we do not address computation

in this thesis.) Furthermore, now that we have examined optimality principles,

we come full circle to extend the discussion of Chapter 5 and address the general

behavior of a Markov chain.
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9.1 Optimality equations and a policy optimal

from any state

In Theorem 8.2.1, we learned that the optimal cost starting from state x is given

by

J�x
:
= inf

�2�HR
J�
x = inf

D22A(x)
�(D):

We use this property in Theorem 9.1.1 to �nd a policy that is optimal from

any initial state for jSj <1. First we introduce some notation.

There is a natural ordering on the states s 2 fs1; s2; :::; sQg, de�ned by si < sj

if i < j. Similarly, we de�ne a lexicographic ordering on the sets of states in 2A:

If D1; D2 2 2A, de�ne D1 < D2 if 9si 2 D1 �D2 such that 8j < i, sj 62 D2 �D1.

De�ne ~Z(x)
:
= fD 2 2A(x)jR

0
(x;D)g \ fD 2 2B(x)j�(D) � �(D

0
)8D

0
2

2A(x)g.

We know from the proofs of Lemmas 8.2.14 and 8.2.15 that ~Z(x) 6= ;.

De�ne D�(x) 2 ~Z(x) to be the D in ~Z(x) that comes �rst in the lexicographic

ordering. It is important to point out that this could have been chosen as the D�

in the proof of Theorem 8.2.1, a fact that will be used in the proof of Theorem

9.1.1, which extends Theorem 8.2.1.

Theorem 9.1.1 Suppose that assumptions 3.4.1, 4.3.1, 4.3.2, and 4.3.3 hold and

that Assumption 8.2.1() holds for all  < �. Suppose also that jSj <1.

Then, for any  < �, there exists a stationary, Markov, deterministic policy

�� such that 8x 2 S

inf
D22A(x)

�(D) = lim
T!1

1

T
lnE��

x [e
R T
t=0

g(t)dt] � lim
T!1

1

T
lnE�

x [e
R T
t=0

g(t)dt]; 8� 2 �HR:

Proof:

Theorem 8.2.1 tells us that for each x there is an optimal policy. Recall the

de�nition of that optimal policy from the proof of Theorem 8.2.1:
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��
x =

8>><
>>:

��
�; if x 2 @

0
(D�(x))

�D�(x)
x ; otherwise

Recall that ��
� is the optimal policy under the restricted SMDP, and �D�(x)

x

is the shortest path optimal policy to reach D�(x).

In order for a policy to be optimal starting from state x, Lemma 8.2.15 shows

us that all it has to do is achieve cost �(D�(x)). One way to do that (the way

used by policy ��
x) is to drive the system to @

0
(D�(x)) with �nite cost and then

follow policy ��
�. We will now de�ne a policy that does at least that well starting

from any intitial state. This policy opportunistically drives the system towards

D�(x) when it is in state x. If it moves to another state y in which D�(y) comes

before D�(x) in the lexicographical ordering, it will then drive the system to D�(y).

Because there are only �nitely many states, the system reaches @
0
(B) with �nite

expected cost starting from any initial state.

De�ne

�� =

8>><
>>:

��
�; if x 2 @

0
(B)

�D�(x)
sp ; otherwise

(9.1)

Here we de�ne �D
sp to be the stationary, Markov, deterministic policy that

drives the system to D with minimum expected cost. This policy is shown to exist

in the proof of Theorem 8.2.1.

Because jSj <1, we know that Q <1. Therefore jBj <1. As in previous

proofs, it can be shown that Assumption 8.2.1() implies that 8x 8y such that

R�
D�(x)
sp (x; y),

E�
D�(x)
sp

x [e
P�y

k=0
c(xk;ak)I[�y <1]] <1:

De�ne

MM = max
x2S

max
yjR

�
D�(x)
sp (x;y)

E�
D�(x)
sp

x [e
P�y

k=0
c(xk;ak)I[�y <1]]:
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Because jSj <1, we know that MM <1.

Claim:

8x 2 S,

E��

x [e
P�

@
0
(B)

k=0
c(xk;ak)] �MM (2Q):

Proof of claim:

By (9.1), if the system is in state x, policy �D�(x)
sp is followed until either

@
0
(B) is reached or a y is reached such that D�(y) 6= D�(x). Clearly if such a y

is reached, then D�(y) comes before D�(x) in the lexicographic ordering. Upon

reaching such a y, policy �D�(x)
sp is followed until either @

0
(B) is reached or a z is

reached such that D�(z) 6= D�(y). And so on. Eventually @
0
(B) must be reached

since 2A has �nitely many members. In fact, j2Aj � 2jAj = 2jQj. Therefore, At most

2jQj policy changes take place before @
0
(B) is reached. Since the expected total

cost accrued between each policy change is bounded above by MM , the expected

value of the total cost accrued before B is reached is bounded above by MM (2Q).

And the claim is proved.

It is evident by (9.1) that P��

x [��@(�B) � �(D�(x))] = infD22A(x) �(D).

Therefore, policy �� takes the system with �nite expected cost to a strongly

communicating class that has optimal long term average cost less than or equal to

the best possible cost that can be achieved starting at the initial state, so

J��

x = inf
D22A(x)

�(D);

and the theorem is proved.

2

Recall that for x 2 SR, @(x) = fy 2 SRjR(x; y) and R(y; x)g. For x 62 SR,

de�ne @(x) = ;.

De�ne 0(x) = fy 2 SjR(y; x)g, and de�ne (for A � S, x 2 S)
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�(x;A) =

8>><
>>:

supz2A�0(x) �(z); if A� 0(x) 6= ;

�(x); otherwise
(9.2)

Note that @(x) � 0(x).

In order to understand the optimality equations of Theorem 9.1.2, (9.3) and

(9.4), we must understand what �(x;A) is. In words, �(x;A) is the worst �(�)

one can get in the subset of A from which x is not reachable; or �(x) if that

subset is the empty set. If A is replaced with r(x; a), the set of states reachable in

one transition from x under action a, then �(x;A) is the worst �(�) for those one-

transition reachable states (under a) from which x is not reachable. In other words,

(9.3) says that once the system leaves an strongly communicating class, since it

can't get back w.p.1, the maximum cost rule applies. (9.4) is just the standard

dynamic programming equation adapted for a nonconstant �. It is important to

understand this in order to interpret the following results.

The following results (Theorem 9.1.2 and Lemma 9.1.1) are similar to the

results in Puterman's Section 9.1 ([35]). In particular, there are dual optimality

equations in both the risk sensitive and risk neutral cases. However, there is no

equivalent to Theorem 9.1.2 in [35], and there is no equivalent to Proposition 9.1.1

([35], P. 445) in the risk sensitive case due to the di�ering natures of the risk

neutral and risk sensitive cases.

Also note: If jSj = 1 then complications arise in Theorem 9.1.2. This is

because the bias term (W (x)) cannot be reconciled consistently with the fact that

� depends on x. In the risk neutral case, this problem is avoided because instead of

maximizing costs between di�erent possible strongly communicating classes, costs

are averaged in the risk neutral case.

Theorem 9.1.2 Suppose that assumptions 3.4.1, 4.3.1, 4.3.2, and 4.3.3 hold and

that Assumption 8.2.1() holds for all  < �. Suppose also that jSj <1.

Then, for any  < �, there exists two functions � : S ! <+ and W : S ! <,

and four constants, �1 < K1 < K2 <1 and 0 < K3 < K4 <1 such that
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K1 < W (x) < K2; 8x 2 S

and

K3 < �(x) < K4; 8x 2 S:

Furthermore, the following two equations hold:

�(x) = inf
a2�(x)

�(x; r(x; a)) (9.3)

eW (x) = inf
a2Gx

E[efc(x;a)��(x)t(x;a)g]
Z
eW (y)P (dyjx; a); (9.4)

where Gx � �(x) is de�ned as Gx = argmina2�(x)�(x; r(x; a)). Moreover, the

in�mums in both equations are achieved.

Proof:

Let ��; D�(x) be as de�ned in the proof of Theorem 9.1.1.

De�ne �(x)
:
= inf�2�HR J

�
x = �D�(x) = J��

x .

Claim:

�(x) = inf
a2�(x)

�(x; r(x; a)):

Proof of claim:

Given x 2 S, let a�
:
= ��(x). It can be seen that for any stationary, Markov

policy �,

J�
x = sup

y2r(x;�(x))

J�
y :

Therefore we know that 8y 2 r(x; a�), J��

y � J��

x . By de�nition of �(�; �),

this gives us
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�(x) = J��

x � �(x; r(x; a�)) � inf
a2�(x)

�(x; r(x; a)):

Now we must show the reverse inequality to be true.

Suppose 9a 2 �(x) such that �(x; r(x; a)) < �(x). Therefore 9a
0
2 �(x) such

that supz2A�0(x) �(z) < �(x). De�ne AA
:
= A \ 0(x). 8y 2 AA, we know that

R(y; x). Therefore by Lemma 7.0.10 we have that R(x;A�0(x)). By Assumption

8.2.1(), 9 a policy �x!A�0(x) such that E�x!A�0(x)

x [e
P�A�0(x)�1

k=0
c(xk;ak)]

:
= C <1.

Since the system can reach A � 0(x) from x with �nite expected cost, we

have that

�(x) = inf
�2�HR

J�
x � sup

y2A�0(x)
inf

�2�HR
J�
y

= sup
y2A�0(x)

�(y) < �(x);

which is a contradiction. And the claim is proved.

De�ne �HR;Gx = f� 2 �HRj w.p.1, ak 2 Gxk 8kg.

For x 2 S, de�ne

W (x)
:
= lnf inf

�2�HR;Gx
E�
x [e


P�B

k=0
fc(xk;ak)��(xk)t(xk ;ak)g]g:

Claim:

W (�) is bounded above and below over S.

Proof of claim:

We know that

eW (x) = inf
�2�HR

E�
x [e


P�B

k=0
fc(xk;ak)��(xk)t(xk;ak)g] � (9.5)

inf
�2�HR

E�
x [e


P�B

k=0
c(xk;ak)] <1;
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where the last inequality follows from the fact that policy �� reaches B with

�nite cost starting from any state x 2 S.

Therefore, W (�) is bounded above.

We know from (9.5) that there is a dynamic program for W (�):

eW (x) = inf
a2Gx

E[efc(x;a)��(x)t(x;a)g]
X

y2r(x;a)

P [yjx; a]eW (y):

Suppose that 9x 2 S such that W (x) = �1.

We see from the dynamic program that 9a�(x) 2 Gx such that W (y) = 0

8y 2 r(x; a�(x)).

De�ne policy �0 to be the policy that chooses action a�(x) 8x such that

W (x) = 0. It can be seen that �0 induces a recurrent class C0 such that C0 � @(si)

for some si 2 A.

If si 62 B, then �(x) < ��@(x) 8x 2 C0. Furthermore �B = 1 w.p.1 since

B \ C0 = ;, so we can write

0 = eW (x) = E�0

x [e
P1

k=0
fc(xk;ak)��(xk)t(xk;ak)g]; x 2 C0;

by substituting �B =1 into (9.5).

Since the optimal policy on C0 can do no better than an average cost of ��@(x)

and �0 can do no better than the optimal policy, we get by Corollary 8.2.1 that

E�0

x [e
P1

k=0
fc(xk;ak)��(C

0)t(xk;ak)g] =1; x 2 C0;

where we have substituted �(C0)
:
= �(x) since each x 2 C0 has an identical

value of �(x) due to the fact that C0 2 @(si) for some si 2 A. But this contradicts

W (x) = 0!

Therefore we must have that si 2 B. If si 2 C0, then P�0

x [�si <1] = 1. But

we have seen in previous proofs that for any � <1,

E�0

x [e
PS

k=0
fc(xk;ak)��t(xk ;ak)g > 0;

where S is any stopping time for which P [S <1] = 1.
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Therefore, we must have that si 62 B. This tells us that

E�0

x [e
P1

k=0
fc(xk;ak)��(C

0)t(xk;ak)g] = 0:

Pick a state y 2 C0. The above eqation is true i� Cy!y
 (�(C0)) < 1. But

since C0 <1, we know that Cy!y
 (�(C0)) = 1, a contradiction. And the claim is

proved.

The in�mum in (9.3) is achieved because the action space is compact.

Claim:

The in�mum in (9.4) is achieved.

Proof of claim:

Gx is compact because the transition probabilities are a continuous function

of a.

And the claim is proved.

The theorem follows from the above claims.

2

Note that the value of �(�) within a strongly communicating class is constant.

That is, �(x) = �(y) if y 2 @(x). Recall the de�nition of �(x;A) from equation 9.2.

If A is set equal to r(x; a) for some action a 2 �(x) as in equation 9.3, and if

A � 0(x) = ;, then it is clear that r(x; a) � @(x). In equation 9.3, the reason

that �(x;A) was set to �(x) in the case when r(x; a) � @(x) is because of the fact

that �(�) is constant within a strongly communicating class. The �rst optimality

equation, equation 9.3, does not explicitly ensure that �(�) is constant within

a strongly communicating class. In order to cause the optimality equations to

enforce that condition, equation 9.2 could be changed to the following:

�(x;A) =

8>><
>>:

supz2A�0(x) �(z); if A� 0(x) 6= ;

supz2A �(z); otherwise
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This de�nition is also correct (since the two reduce to each other because �(�)

is constant within a strongly communicating class), and can be substituted into

equation 9.3, with the result that Theorem 9.1.2 will still hold true. The proof

that Theorem 9.1.2 is true under this alternative de�nition of �(�; �) is omitted

for the sake of brevity. In an actual dynamic programming situation using the

optimality equations for either value or policy iteration, it might be easiest to do

the following:

1. Solve for all of the strongly communicating classes.

2. Solve for the optimal cost within each strongly communicating class under the

restricted SMDP.

3. Use equation 9.3 on a strongly communicating class merely to identify whether

a `better' set of strongly communicating classes can be reached from it.

Of course, step 3 would have to be applied repeatedly until the algorithm

converged.

Lemma 9.1.1 shows that the optimality equations in Theorem 9.1.2 are wor-

thy of their name. Note that it applies also to the countable state space case,

jSj =1.

Also note: this lemma is the risk sensitive equivalent of Theorem 9.1.2 ([35],

P. 446). It is a more di�cult result because the optimality equations are more

complex in the risk sensitive case.

Lemma 9.1.1 (Veri�cation Lemma) Suppose there exist two functions � : S !

<+ and W : S ! <, with W (�) bounded above and below and �(�) bounded below

away from zero and bounded above, such that (9.3) and (9.4) hold. Suppose fur-

thermore that the in�mums in both equations are achieved.

Then the stationary policy ���
� 2 �MD that minimizes both (9.3) and (9.4)

achieves the optimal cost starting from any initial state, and that cost is given by
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�(�). Speci�cally,

�(x) = J����
x = inf

�2�HR
J�
x :

Proof:

If the initial state, x 2 @
0
(B), then �(x) = ��@(x) and the lemma reduces to

the optimal policy shown in Theorem 6.1.1.

If x 62 B, then ���
� takes the system to B with �nite cost and follws the

optimal policy from Theorem 6.1.1 from there.

Now all that remains to be shown is that ���
� takes the system to an element

of B that is as good as any other policy.

Since under policy ���
� , �(xk+1) � �(xk) w.p.1, we know that �(x�B ) � �(x)

w.p.1..

Assume 9�y 2 �HR such that under �y, �(x�B) < �(x) w.p.1..

Then there must be a y 2 S such that �(y) > �(y; r(y;�y(y))), but this

contradicts the de�nition of �(�). Therefore, under any policy �(x�B ) � �(x)

w.p.1., and the lemma is proved.

2

9.2 Behavior for a �xed Markov, deterministic,

stationary policy (i.e., a reducible Markov

chain)

In Chapter 5, we saw that for a small risk parameter ( # 0), the risk sensitive

cost approaches the risk neutral cost of a stationary, Markov, deterministic policy

within one of the policy's positive recurrent classes. However, if the semi-Markov

process induced by the policy is not irreducible and the initial state is not in a

positive recurrent class, then the relationship between risk neutral cost and risk

sensitive cost for a small  becomes more complex.
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Denote a realization of the embedded Markov chain of the SMDP as ~o. ~o =

fx0; x1; x2; :::g. We say that ~o 2 @ao(z) if 9N <1 such that xj 2 @(z) 8j > N .

We say that ~o 2 @eo(z) if �@(si) =1. Therefore @ao(z) � @eo(z).

The following lemma shows that with probability one, a realization will even-

tually be con�ned to one strongly communicating class under any policy that in-

duces a �nite expected long term average risk sensitive cost.

Lemma 9.2.1 If a stationary �
0
2 �MD is such that J�

0

x () <1 for some x 2 S,

then 9D 2 2A(x) such that

X
si2D

P�
0

x [~o 2 @ao(si)] = 1:

Furthermore, if Assumption 4.2.3 holds, then jDj <1.

Proof:

By the proof of Lemma 8.2.13, we know that there is a �nite set ZQ � S such

that P�
0

x [�Z =1] = 1. By Lemma 2.2.2, we can say ZQ � SR. Therefore 9D 2 2A

such that ZQ � @
0
(D). Because the initial state is x, we can say that D 2 2A(x).

Because jZQj < 1 by the norm-like costs assumption (Assumption 4.2.3), we

know that jDj <1.

We have

P�
0

x [�@0(D) =1] = 1:

Therefore we know that

P�
0

x [~o 2 [s2D@
e
o(s)] = 1

because @
0
(D) being hit in�nitely many times implies that @(s) is hit in�nitely

many times for some s 2 D.

It can be seen that if ~o 2 @eo(s), then 9x 2 @(s) such that �x =1. Therefore

we have that
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P�
0

x [ sup
x2@0(D)

I(�x =1)] = 1: (9.6)

Claim:

P�
0

x [~o 2 @ao(�(x))j�x =1] = 1:

Proof of claim:

Recall that �
0
is stationary, Markov, and deterministic. Suppose that

P�
0

x [~o 2 @ao(�(x))j�x =1] < 1:

Then, 9y 62 @(x) such that

P�
0

x [�y <1] > 0;

which means that

P�
0

x [�y <1j�x =1] = 1:

Therefore,

P�
0

x [�y =1j�x =1] = 1:

Therefore,

P�
0

y [�x <1] = 1

which implies that y 2 @(x), a contradiction!

And the claim is proved.

The lemma follows from (9.6) and the above claim.

2

In this section we are examining cost performance of a �xed stationary,

Markov, deterministic policy. For that reason, we need to do more than con-

sider strongly communicating classes @(z) for z 2 SR. Since we are considering a
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�xed stationary policy � 2 �MD, we need to consider the equivalence classes in-

duced by �. For z 2 SR�, de�ne @�(z) = fx 2 SjR�(x; z) and R�(z; x)g. Clearly

@�(z) � @(z).

Similarly, for a realization ~o of the embedded Markov chain of the SMDP, we

say that ~o 2 @a�(z) if 9N <1 such that xj 2 @�(z) 8j > N .

We also say that ~o 2 @e�(z) if �@�(si) =1. Therefore @a�(z) � @e�(z).

The following corollary extends Lemma 9.2.1 to take into account the equiv-

alence classes induced by policy �
0
:

Corollary 9.2.1 If a stationary �
0
2 �MD is such that J�

0

x () < 1 for some

x 2 S, then 9D 2 2A(x) such that

X
si2D

P�
0

x [~o 2 @a�(si)] = 1:

Furthermore, if Assupmtion 4.2.3 holds, then jDj <1.

This leads to a nice lemma that allows us to evaluate the performance of a

given stationary, Markov, deterministic policy starting from a given initial state

in terms of its performance on the irreducible subclasses (@�(s); s 2 SR�) that it

induces.

Lemma 9.2.2 If a stationary � 2 �MD is such that J�
x () <1 for some x 2 S,

then

J�
x = sup

@�(s)jR�(x;@�(s))

J�
s :

Proof:

Recall Lemma 8.2.15:

inf
�2�HR

J�
x = inf

D22A(x)
sup
s2D

��@(s):

If we are dealing with a �xed stationary � 2 �MD, we can see by application

of Corollary 9.2.1 that
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J�
x = sup

@�(s)jR�(x;@�(s))

�@�(s);

where �@�(s)
:
= J�

s , and s is any member of the induced equivalence class

@�(s).

2

The statement of Lemma 9.2.2 illustrates the cost maximization nature of

the in�nite horizon average risk sensitive costs objective function. By contrast, the

risk neutral function averages costs, as stated in the follwing lemma:

Lemma 9.2.3 If a stationary � 2 �MD is such that J �
x < 1 for some x 2 S,

then

J �
x =

X
@�(s)jR�(x;@�(s))

P [~o 2 @a�(s)] � J
�
s :

9.3 Behavior for large or small risk sensitive pa-

rameter

We saw in Chapter 5 that within a positive recurrent class induced by at stationary,

Markov, deterministic policy, the limit of the risk sensitive cost as  # 0 is the risk

neutral cost; and the limit of the risk sensitive cost as  " 1 is the maximum

cost. Lemma 9.2.2 shows that the maximum property holds when starting from

a transient state, so that Lemma 5.4.3 still holds over the entire state space, not

just within a positive recurrent class induced by policy �.

However, as illustrated by the di�erences between Lemmas 9.2.2 and 9.2.3,

we see that Lemma 5.3.4 does not hold starting from a transient state. In fact, we

can generalize Lemma 5.3.4 as follows:
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Lemma 9.3.1 If a stationary � 2 �MD is such that J�
x () <1 for some x 2 S,

then

lim
#0

J�
x = sup

@�(s)jR�(x;@�(s))

J �
s :

Proof:

This follows directly from Lemma 5.3.4 and Lemma 9.2.2.

2
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Chapter 10

Some Other Objective Functions

In this chapter, we consider some new objective functions to lend context to the

ones we have studied.

10.1 Sample path convergence

In this thesis, we have studied objective functions determined by the expected value

of some measure of average performance on the in�nite horizon. It is appropriate

to ask: \when is that measure of performance achieved with probability 1?" In

([1], PP. 286-288), the sample path average cost is de�ned. Here, we change the

notation slightly to conform to our pattern. We also retain the MDP formulation,

holding transition times to be constant.

J(s)�x
:
= lim sup

N!1

1

N

N�1X
t=0

c(xt; at):

A policy �� is de�ned to be sample path risk neutral average cost optimal or

almost surely risk neutral average cost optimal if there is a constant �� such that

J(s)�
�

x = ��w:p:1;
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and

J(s)�x � ��w:p:18� 2 �HR:

(In [1], they used an arbitrary initial distribution on the state instead of x

as the initial state, but in an MDP that is irreducible under all policies (which is

assumed in [1]), the two are equivalent.

The following lemma describes su�cient conditions for a policy to achieve

the risk neutral cost with probability 1:

Lemma 10.1.1 Suppose that

E�
0

� [e
P���1

k=0
c(�k;ak)] <1 (10.1)

for some state � 2 S under a stationary policy �
0
2 �MD.

Suppose furthermore that E[c(x;�
0
(x))] is bounded above and below away

from zero 8x 2 @�0 (�).

Then 8y 2 @�0 (�), we get

J(s)�
0

y = J �
0

� w:p:1:

Note: Lemma 10.1.1 and its corollary are true so long as costs are non-

negative. However, the proof ows more easily if costs are assumed to be bounded

away from zero, so we proceed that way.

Before we prove Lemma 10.1.1, let us introduce a useful theorem ([32], P.

368):

Geometric drift towards C

There exists an extended real-valued function V : S ! [1;1], a measurable

set C, and constants � > 0; b <1,

�V (x) � ��V (x) + bIC(x); x 2 S: (10.2)
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where

IC(x) =

8>><
>>:

1 if x 2 C

0 if x 62 C

Theorem 10.1.1 ([32]) If (10.2) holds, then for any r 2 (1; (1 � �)�1) there

exists � = 1
r
� 1 + � > 0 such that

V (x) � Ex[
�C�1X
k=0

V (�k)r
k] � ��1r�1V (x) + ��1bIC(x): (10.3)

Proof of Lemma 10.1.1:

By (10.1), it can be shown (through a process very similar to the proof of

Theorem 5.6.1) that 9 a solution fW�(�)g, �nite for each x 2 @�0 (�) and bounded

below, to the following functional equation:

eW�(x) = E[ec(x;�(x))]
Z
feW�(y)�[1�I(y = �)]+I(y = �)gP (dyjx;�(x)); 8x 2 @�0 (�);

(10.4)

with W�(�) = ln[C�!�(0)] � 1.

Because costs are bounded below away from zero, we know that 9 a constant

cmin > 0 such that E[ec(x;�(x))] � ecmin 8x 2 @�0 (�).

Therefore by (10.4), we get that

eW�(x) � ecmin
Z
feW�(y) � [1� I(y = �)] + I(y = �)gP (dyjx;�(x)); 8x 2 @�0 (�):

De�ne V (x)
:
= eW�(x) � [1� I(x = �)] + I(x = �).

Substituting, we get

V (xk) � ecminE[V (xk+1)]� C�!�(0)I(xk = �):

or taking di�erentials by de�ning �V (xk)
:
= V (xk+1)� V (xk), we get

�V (x) �
1� ecmin

ecmin
V (x) +

C�!�(0)

ecmin
I(x = �):
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This is the geometric drift condition (10.2) with 1 > �
:
= ecmin�1

ecmin
> 0 since

cmin > 0. Theorem 10.1.1 tells us that (10.3) holds under �
0
with C

:
= f�g.

Clearly this implies that

E�
0

x [V (x���1)r
���1] � ��1r�1V (x) + ��1bI(x = �):

Also, since 0 < � < 1, we know that (1� �)�1 > 1, so we can select r > 1.

By de�nition of cmin, we know that V (x���1) � ecmin, so we obtain

E�
0

x [ecminr���1] � ��1r�1V (x) + ��1bI(x = �):

Substituting x = � and setting K
:
= r � e�cminf��1r�1V (�) + ��1bg, we get

E�
0

� [r�� ] � K:

This provides us with a simple geometric bound on ��:

P�
0

� [�� � n] �
K

rn
(10.5)

J �
0

� must exist because (10.1) holds. Let us de�ne, as usual, ��
0

@
�
0
(�)
(0) =J �

0

� .

It is evident from (10.1) that E�
0

� [
P���1
k=0 c(xk; ak)] <1. Let's now determine

a �nite bound on E�
0

� [f
P���1
k=0 c(xk; ak)g

2].

We know that costs are bounded above, say by cmax. Therefore
P���1
k=0 c(xk; ak) �

�� � cmax, and we get

E�
0

� [f
���1X
k=0

c(xk; ak)g
2] � E�

0

� [f�� � cmaxg
2]:

By (10.5), we get

E�
0

� [f
���1X
k=0

c(xk; ak)g
2] �

1X
n=0

(ncmax)2
K

rn
<1 (10.6)

because r > 1 and the exponential dominates the quadratic.

We now know that
P���1
k=0 c(xk; ak) has �nite expected value and �nite vari-

ance. Therefore the strong law of large numbers applies to
P1
k=0 c(xk; ak). The
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strong law of large numbers is stated in, e.g., ([27], P. 280). [27] also covers long-

term time averages such as the long term average risk neutral cost. (See [27], P.

299.) It can easily be seen from that discussion that the lemma is true.

2

The result Lemma 10.1.1 holds true under less strict conditions. For example,

costs do not have to be bounded above. A simple growth condition on the cost

function will su�ce.

Here are 4 such conditions:

Assumption 10.1.1 (basic growth condition) 9B <1 such that �c(x) � B

8x 2 @�0 (�).

Assumption 10.1.2 (basic shrinkage condition) 9B <1 such that �c(x) �

�B 8x 2 @�0 (�).

Assumption 10.1.3 (advanced growth condition) 9B < 1 and 1 < d < 1

such that �[c(x)]
1
n � B 8x 2 @�0 (�).

Assumption 10.1.4 (advanced shrinkage condition) 9B < 1 and 1 < d <

1 such that �[c(x)]
1
n � �B 8x 2 @�0 (�).

Corollary 10.1.1 Suppose that

E�
0

� [e
P���1

k=0
c(�k;ak)] <1

for some state � 2 S under a stationary policy �
0
2 �MD.

Suppose furthermore that E[c(x;�
0
(x))] is bounded below away from zero

8x 2 @�0 (�) and that one of the above four assumptions holds.

Then 8y 2 @�0 (�), we get

J(s)�
0

y = J �
0

� w:p:1:
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Proof:

The only modi�cation to the proof of Lemma 10.1.1 occurs in equation (10.6).

For the basic growth or shrinkage conditions, we end up with the exponential

dominating the cubic instead of the exponential dominating the quadratic. For

the advanced conditions, it is the exponential dominating the n+ 1th power.

2

10.1.1 Rami�cations of sample path convergence { opti-

mality

Lemma 10.1.1 and its corollary can be seen to hold under very general circum-

stances. The growth conditions listed above are certainly not unreasonable, and

our foundational Assumption 6.1.1 leads to the ful�lment of the assumption of

�nite round trip cost at � = 0. So for most of the systems we have analyzed, we

can now see that stationary, Markov, deterministic policies yield a �xed sample

path average cost and furthermore the optimal risk neutral policy is optimal in the

sample path optimality criterion stated at the beginning of this section as well.

This result is really not surprising. The existence of the risk sensitive cost

ensured the geometric convergence of the embedded Markov chain, which in turn

insured a �nite variance in the risk neutral round trip cost. Then, sample path

convergence followed by the strong law of large numbers.

Let us compare the result we have just obtained with comparable results

from the literature. In [20], a similar method of proof (i.e., geometric convergence

to �nd �nite variance and then invoke the strong law of large numbers) is used.

However, they assume the geometric convergence directly and add an assumption

bounding the transition costs by a measurable function with certain properties.

In [26], a very powerful result is presented. (Recall the discussion of Sec-

tion 6.2.) Lasserre builds on Borkar's convex analytic approach to prove that if

the costs are norm-like and the transition probabilities are continuous in the action
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selected, then there is an initial state x0 and a stationary Markov policy �sp such

that the optimal average risk neutral cost starting from any state under any policy

is achieved w.p.1 by every sample path starting from x0 under policy �sp. This is a

strong result and we are now able to interpret it. The optimal policy is simply any

optimal (risk neutral average expected costs) policy, and the initial state is any

state in the `best' strongly communicating class induced by that policy. Lasserre

points out not only the naturalness of the norm-like costs assumption (which ap-

plies equally to the assumptions in this thesis), but also the fact that his result is

most useful when you can choose your starting state. Of course! If you can, you

choose to start in the best strongly communicating class.

It is interesting to point out that because the risk neutral costs converge w.p.1

on every sample path, so do the risk sensitive sample path costs. This is because

with the expectation operator removed, the exponential and the logarithm cancel

out. \Why then is the risk sensitive average cost di�erent than the risk neutral

average cost?," one is compelled to ask. The answer is simple: large deviations. It

is these deviations that the optimal risk sensitive controller strives to avoid.

For an explanation of this di�erence between sample path and expected risk

sensitive costs, see, e.g., [40] and [33]. Laplace's Law is explained on pages 12-13

of [40]. We put that discussion into our framework as follows:

Suppose we take a large, �xed time T , and determine the probability density

function f(CT ) of the �nite horizon sample path risk sensitive cost of an irreducible

Semi-Markov chain accrued from time 0 to time T . The mode of this probability

density determines the expected risk neutral cost, and the mean of this proba-

bility density determines the expected risk sensitive cost. Laplace's Law states

additionally that the mode of CT � f(CT ) determines the expected risk sensitive

cost.

In [26], it is shown that a linear program can be used to solve for the optimal

policy. This is true based only on the norm-like costs assumption and a simple

continuity assumption on the transition kernel! Unfortunately in the risk sensitive
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case no such result yet exists. Solving for the average risk sensitive cost is a di�cult

task, as demonstrated in [7] in which Borkar and Meyn undertake value and policy

iteration. Even under their strong irreducibility assumptions, the task is di�cult.

10.2 A cost criterion without 

A. Makowski has suggested ([29]) that the risk sensitivity parameter in the long

term average risk sensitive costs objective function could be done away with, and

he has proposed a new objective function:

J�
x (no ) = lim

N!1
lnE�

x [e
1
n

PN�1

k=0
c(xk;ak)]:

Here, we have stated the discrete time version for convenience. All of our

analysis carries over to the semi-Markov case with the usual justi�cation.

Upon �rst examination, the J�
x (no ) objective function would appear to be

no di�erent from the risk neutral J �
x objective function. This is because the `risk

sensitivity parameter' 1
N

approaches zero as N ! 1. Lemma 5.3.4 would then

apply, yielding the risk neutral objective function.

This �rst blush analysis turns out to be essentially correct in the irreducible

case, but matters become more complicated in the not strongly communicating

case. Let us take apart this objective function and examine the pieces. In order

to do so, we de�ne the cumulative density function of a random variable u to be

Fu(t) = P [u � t]

J�
x (no ) = lim

N!1
ln
Z 1

t=0
etdF 1

N

PN�1

k=0
c(xk;ak)

(t)

= ln
Z 1

t=0
etdF

limN!1
1
N

PN�1

k=0
c(xk;ak)

(t); (10.7)

where the last equality can be justi�ed by convergence of J �
x .

This is very interesting. Contrast it with Lemmas 9.2.2 and 9.2.3. Lemma 9.2.2

shows that the long run average risk sensitive cost starting from a transient state is
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given by the maximum cost of any recurrent subset reachable by the initial state.

Lemma 9.2.3 shows that the long run average risk neutral cost starting from a

transient state is given by the average of the costs of the reachable recurrent sub-

sets weighted by the probability of reaching them. The `no ' objective function

gives another di�erent result:

Lemma 10.2.1 If a stationary � 2 �MD is such that J�
x () <1 for some x 2 S

and some  > 0, then

J�
x (no ) = ln

X
@�(s)jR�(x;@�(s))

P [~o 2 @a�(s)] � e
J �

s :

Proof:

See (10.7) and preceding arguments. Note that the fact that J�
x () <1 for

some  > 0 implies that J �
x exists.
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Chapter 11

Closing Remarks and Suggestions

11.1 Summary of major results

� In Chapter 3, we de�ned the `deadline problem,' reduced it to an equivalent

risk sensitive problem, and formulated a generalized solution technique for �nite

horizon optimization problems of an SMDP.

� In Chapter 4, we de�ned a dynamic program for an average cost risk sensitive

SMDP. We then proved 2 veri�cation theorems that de�ne an optimal policy.

� In Chapter 5, we solved for the cost of a Markov chain within one of its equiva-

lence classes.

� In Chapter 6, we found the optimal policy for a strongly communicating SMDP.

� In Chapter 8, we found an optimal policy starting from each initial state for an

SMDP.

� In Chapter 9, we showed that the optimality equations hold in the �nite state

case. We also solved for the cost of a Markov chain with �nite state space.

� In Chapter 10, we solved for the behavior of some other objective functions and

related their behavior to the behavior of the risk sensitive average cost objective

function
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11.2 On the in�nite and its reduction to the �-

nite

In this thesis, we have addressed the problem of optimizing the risk sensitive aver-

age cost objective function when the state space is countable. We could also have

addressed the more general problem of when the state space is locally compact,

and we conjecture that the same results would hold with slight modi�cations, if

any.

When the state space is in�nite, the technique to solve the problem invariably

becomes reducing it to the �nite case. When the time horizon is in�nite, the time

aspect of the problem can be reduced by making one of the following assumptions:

1. using discounted costs.

2. using average costs.

3. considering a case in which total costs are bounded, e.g., if there is an

absorbing state.

In this thesis, we used average costs. The round trip cost C�!�
 (�) was used

to reduce the problem of analyzing realizations with in�nite durations to analyzing

the �nite problem of realizations that start and end at the same state. This is a

standard technique used in also in the risk neutral case. (See, e.g., [35] or [4].)

In order to reduce an in�nite state space to manageability, one may make

one or more of the following assumptions:

1. There is a �nite `core' set of states that is returned to rapidly from any

state.

2. The costs are norm-like.

3. The costs are bounded.

4. The entire state space is irreducible under all policies.

5. There is a policy that achieves a �nite cost.

And in the risk sensitive case,
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1rs. The cost to get from a state to a another set of states is �nite under some

policy.

Assumption (1) above is called the simultaneous Doeblin condition and is

used, e.g., in [18] along with (3). Assumption (2) can be used with or without (3);

see, e.g., [2] and [7]. (Note: In this thesis, we use (2) without (3), although we could

just as easily use (3) if desired.) Assumption (4) above is the usual assumption.

Assumption (5) is valuable in conjunction with assumption (2) as a starting point

or `bar' under which the optimal policy must fall. (The optimal policy can do no

worse than this other policy, which allows us to focus on a �nite set of strongly

communicating classes.)

The importance of an assumption such as (1rs) is due to the problem of

possibly in�nite cost to get from one state to another as pointed out in [9]. In [9],

the problem was circumvented by assuming that the risk sensitivity parameter 

was `su�ciently small'. Here we avoid the problem with our assumptions 6.1.1 and

8.2.1.

An appropriate and interesting issue to bring up in this section is that, in

the case of norm-like costs, the risk sensitive objective function forces a very disci-

plined behavior on the underlying Markov chain. From the dynamic programming

equation (4.2), we can see that if the average cost � is �nite, then the probability of

transitioning to a `worse' (i.e., W (�) is the same or higher) state is bounded above

by 1
E[efc(x;a)��t(x;a)g]

. This bound becomes very small for states with high transition

costs by Assumptions 4.2.1 and 4.2.3. Therefore we see that under the norm-like

costs assumption, there must be a way to drive the system towards `better' (i.e.,

lower value of W (�)) states with increasingly high probability. One kind of system

that achieves this would be a queueing system in which admission control can be

exercised. The system could be driven down, for example, by blocking all arrivals

once the system is in a `bad enough' state.
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11.3 Future Research

This thesis addresses the properties of the risk sensitive average cost objective

function over the in�nite horizon and related problems. We have examined a large

variety of issues that come up in semi-Markov decision problems in general, and

in particular when the standard irreducibility assumption is removed. Although

we do not concern ourselves with computational methods such as value and policy

iteration, a few remarks will be helpful to the researcher who wishes to pursue this

avenue of exploration.

Policy and value iteration are central to the computation of an optimal policy.

Other methods include recursive computation, which I have used to solve some

simple problems, linear programming (see e.g., [35], [4], [5], [19], [1], and references

therein), which is applicable to the solution of the risk neutral objective function,

even in the partially observed case (see, e.g., [42] and [28]). Policy and value

iteration under the irreducibility assumption have been examined by [7], [4], [35],

and others.

In the not strongly communicating case, we suggest that it would be inad-

visable to begin value or policy iteration without �rst understanding the strongly

communicating class structure of the embedded Markov chain. This means that

each strongly communicating class must be identi�ed and then 2A(x) must be de-

termined for each state x. After that, a framework exists to which one can apply

the existing value and policy iteration results. The most relevant result to consult

at that point would be Theorem 9.1.2, which shows the optimality equations in

the not strongly communicating case. Two good starting points in the literature

would be [35], which covers policy and value iteration in the risk neutral average

costs case, and [7], which covers value and policy iteration in the risk sensitive

average costs case under a strong irreducibility assumption combined with other

assumptions.
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11.4 Speculation on how to determine strongly

communicating classes

In [35], Puterman describes algorithms to classify Markov chains as communicat-

ing, weakly communicating, or general. In Section 8.1, we discussed how Puterman

classi�es MDPs. Similarly, he calls a Markov chain communicating if the trivial

MDP it forms is communicating and weakly communicating if the trivial MDP it

forms is weakly communicating.

In order to classify Markov chains, Puterman makes use of the Fox-Landi

Chain Decomposition algorithm ([35], P. 590) in conjunction with a Model Clas-

si�cation algorithm ([35], P. 351). The Fox-Landi algorithm is used to classify

states of a Markov chain (not an MDP) in one of two categories: `recurrent' or

`transient,' with the obvious de�nitions. However, by inspection it can be seen

that the same algorithm can classify the di�erent strongly communicating classes

within the recurrent states. Similarly, transient states can be traced forward to

see which subset of the recurrent strongly communicating classes they feed into by

an obvious extension of the algorithm. Therefore, we can modify the Fox-Landi

algorithm to give a complete picture of a Markov chain.

The Model Classi�cation algorithm described by Puterman uses the Fox-

Landi algorithm to classify an MDP. However, we are interested in whether the

MDP is strongly communicating, and failing that, what its strongly communicat-

ing class structure is. These questions appear to be di�cult to answer using an

algorithm similar to Puterman's. Therefore, we propose another:

The Fox-Landi algorithm with the aforementioned modi�cations can be used

to �nd @�(x) for all x 2 S and stationary � 2 �MD. We also want to know

whether @�(x) is positive or null recurrent under �. If @�(x) is �nite, it must be

positive recurrent. Otherwise, some technique needs to be used to classify it. Let

us assume that we can classify it in this way.
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We now de�ne an algorithm that we conjecture will determine those stongly

communicating classes for which a policy exists (on the restricted SMDP) that

makes them positive recurrent. (Strongly communicating classes that are null

recurrent under any policy are not of interest.):

1. Choose an arbitrary �1 in the set of stationary, Markov, deterministic policies.

2. For each x 2 S, set @1(x) = @�1(x) if @�1(x) is a positive recurrent class, and

set @1(x) = ; otherwise.

3. set n = 2

4. Choose a �n that hasn't been selected before. If they've all been selected, stop.

5. Combine strongly communicating classes @n�1(�) and @
�n to form the strongly

communicating classes @n(�) as follows:

You can combine two strongly communicating classes if they have a nonempty

intersection to form a larger strongly communicating class. You can continue

doing this recursively until no strongly communicating classes intersect.

6. increment n and go to step 4. If, however, the whole state space is one big

positive recurrent strongly communicating class, stop.

Notice that the above algorithm loops until all stationary, Markov, deter-

ministic policies have been gone through or until the whole state space is one

big positive recurrent strongly communicating class. If the latter happens, then

the SMDP is strongly communicating. If the former, then we have characterized

SR, and the transient states can be traced forward to determine which subsets of

SR they can reach w.p.1 by looping through all stationary, Markov, deterministic

policies using the modi�ed Fox-Landi algorithm.

One obvious aw with the above algorithm is that the set of stationary,
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Markov, deterministic policies might not be �nite. One way to remedy that is

to solve for all (possibly null recurrent) strongly communicating classes �rst by

using the Fox-Landi algorithm, which cares only whether a transition probability

is positive. If this yields a manageable set of strongly communicating classes, a

second pass can be used to �nd those that are positive recurrent. Of course, if

the state space is �nite, things are much simpler and the above algorithm will

converge.

11.5 Computational complexity

Computational complexity is another reason to use the long term average costs

criterion over the discounted costs criterion for a risk sensitive objective function.

In the risk neutral case, the discounted objective function can be solved e�ciently

and has nice properties, such as that the optimal policy is stationary, the rate of

convergence can be calculated based on the discount factor, etc. In the risk sensi-

tive case, as we saw in the introduction to Chapter 4, that [10] demonstrated that

the optimal policy for the discounted risk sensitive objective function is not station-

ary. Furthermore, its computation is very complex, although for large times the

optimal policy converges to the optimal risk neutral average costs policy since the

risk sensitivity factor approaches zero, as pointed out in [43]. Furthermore, in [14]

a chapter is devoted to risk sensitive queueing, in which the discounted criterion

is used. It is shown that this leads to a requirement for a controller with in�nite

memory! In the average costs case, this does not occur. Uniformization is a tech-

nique developed by Serfozo in [38]. It is used to reduce a continuous time Markov

process to a discrete time process, and works for both average and discounted risk

neutral costs on the in�nite horizon. However, the di�culty encountered in [14]

illustrates that uniformization does not simplify the problem in the risk sensitive

discounted costs case. However, in the average costs case, the dynamic program

(4.2) reduces the problem to an equivalent discrete time problem.
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Appendix A

Index of Notation

�(x), Page 12: admissible actions in state x

dk, Page 13: deterministic decision rule mapping state to action

qdk , Page 13: randomized decision rule

�, Page 13: Policy: a set of decision rules, one de�ned for each (continuous or

discrete) time

�LjL 2 fHR,HD,MR,MDg, Page 13: the set of all policies of a certain type

t(x; a), Page 13: transition time from state x under action a

c(x; a), Page 13: transition cost from state x under action a

P�
x [�], Page 14: probability of an event under policy � starting at state x

E�
x [�], Page 14: expected value of a random variable under policy � starting at

state x

J; J , etc., Page 19: notation for objective functions

�x, Page 19: �rst hitting time (greater than 0) of x
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�x, Page 19: �rst hitting time of x

�NA ; �A
:
= �1A , Page 21: the number of times the state is in set A out of the �rst

N transitions

�(R), Page 26: decision rule at (discrete or continuous) time R

��C(), Page 54: Perron-Frobenius eigenvalue: cost rate of policy � in positive

invariant suclass C for risk parameter 

��C , Page 54: the smallest value of  that results in ��C() =1

C�!�(�), Page 54: round trip cost (I.e., cost to return) for state � when discounted

by �

��C(0), Page 72: risk neutral (I.e.,  = 0) cost rate of policy �

ss, Page 85: a sequence of states with �nite length

R(C;D), Page 101: logical relationship: true if 9 policy to drive state from C to

D w.p.1

SR, Page 102: the set of all `self-reachable' states x such that R(x; x)

�, Page 102: an equivalence relation: x � y if R(x; y) and R(y; x)

@(x), Page 103: the equivalence class containing x

R
0
(x; C), Page 104: C is reachable but no proper subset of C is reachable

�(x), Page 113: admissible actions in state x that will keep the system in @(x)

w.p.1

��@(x), Page 114: the optimal cost attainable while staying in the same equivalence

class forever

si, Page 126: a single representative of an equivalence class
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A, Page 126: the set of all representatives of equivalence classes

2A, Page 126: the set of all subsets of A

2A(x), Page 126: the set of all members of 2A that are reachable from x

B, Page 134: B � A: si 2 B if the optimal cost from si can be achieved without

leaving @(si)

2B(x), Page 134: D 2 2B(x) if D 2 2A(x) and D � B

�(D), Page 138: the optimal cost that can be achieved by staying within the

worst equivalence class represented in D

0(x), Page 152: the set of all states from which x can be reached

~o, Page 160: a sequence of states with in�nite length

@ao(x), Page 160: the set of all in�nite sequences of states that enter @(x) and

stay there

@eo(x), Page 160: the set of all in�nite sequences of states that hit @(x) in�nitely

many times

@�(x), Page 162: the set of all states that are in the equivalence class induced by

� which contains x

@a�(x), Page 162: the set of all in�nite sequences that enter @�(x) and stay there

@e�(x), Page 162: the set of all in�nite sequences of states that hit @�(x) in�nitely

many times

J(s)�x , Page 165: the sample mean of costs over the in�nite horizon
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