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This thesis describes performance testing of 3W Modellmotoren’s 100i-B2 

which is a two-stroke gasoline engine presently being used to power a commercially 

produced Unmanned Air Vehicle (NAVMAR’s Mako).  Since the engine was 

originally manufactured for use in radio controlled model aircraft, the only 

performance information provided by the manufacturer is its rated power output of 

9.3 Hp at 8500 RPM.  However, much more detailed information is required for the 

UAV application in order to select propellers and engine operating points that 

maximize the range, endurance, and load-carrying capacity.  This thesis reports the 

first detailed characterization of this engine’s performance in the open literature that 

includes measurements of power output, specific fuel consumption, exhaust and 

cylinder head temperatures, and exhaust gas composition as a function of engine 

speed.  The measurements show that the peak power output is 9.32 Hp at 8500 RPM 

with a brake specific fuel consumption of 0.797 lb/Hp-hr.  The maximum BSFC of 



0.668 lb/Hp-hr is achieved during ¼ throttle operation at 6500 RPM with a power 

output level of 5.08 Hp.  Exhaust gas composition measurements indicate that the 

carburetor controls mixture ratio effectively across the entire operating range of the 

engine unlike smaller model engines.  A preliminary attempt was also made to 

simulate the engine numerically in order to identify areas where the engine design 

could be improved.  The simulation suggests that while the engine’s performance is 

near optimal, it might be possible to gain additional power by decreasing the exhaust 

port duration. 
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Chapter 1:  Introduction 

 

1.1  Background

Unmanned Air Vehicles (UAVs) are currently being utilized by the military 

for surveillance, reconnaissance, and combat missions.  UAVs have been in military 

service since the 1940s where they originally served as target drones and primitive 

cruise missiles in World War II [1].  Their use as surveillance platforms began in the 

1970’s during the Vietnam War with the AQM-34 Firebee albeit in a limited role 

using pre-programmed flight paths for reconnaissance over North Vietnam and China 

[2].  The majority of missions involved taking still photographs and some included 

real-time video surveillance [3].  As technology has evolved, the size and weight of 

cameras and video equipment, avionics systems, communications equipment, etc. has 

decreased and awareness of the potential capabilities involving new roles and 

applications of UAVs is now being recognized [1].   

The mainstream implementation of these aircraft for military applications is 

still in its infancy as most branches of the military have just begun flying UAVs 

within the past 10 years.  As shown in Table 1.1, nearly all of the smaller UAVs 

(generally fewer than 2500 lb. gross weight) used for shorter range, low altitude 

missions are powered by reciprocating piston engines. 
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UAV 
Gross 
Weight 

(lb) 

Wingspan 
(ft) Engine Make Engine Type Power/ 

Thrust Fuel Type 

Global 
Hawk 26,750 116.2 Rolls Royce 

AE-3007H Turbofan 7,600 lb JP-8 

X-45A  
(J-UCAS) 12,189 33.8 

Honeywell 
F124-GA-

100 
Turbofan 6,300 lb JP 

Fire 
Scout 3,150 27.5 Rolls Royce 

250-C20W Turboshaft 420 Hp JP-5/JP-8 

Eagle 
Eye 2,850 15.2 P&W 200-55 Turboshaft 641 Hp JP/Diesel 

Predator 2,250 48.7 Rotax 914 F Reciprocating 
Piston 115 Hp AVGAS 

Hunter 1,620 29.2 Moto Guzzi 
(x2) 

Reciprocating 
Piston 

57 Hp 
(x2) MOGAS 

Snow 
Goose 1,400 6.8 Rotax 914 

UL 
Reciprocating 

Piston 110 Hp MOGAS/ 
AVGAS 

Pioneer 452 17 Sachs SF 
350 

Reciprocating 
Piston 26 Hp AVGAS 

Shadow 327 12.8 UEL AR-741 Rotary 38 Hp MOGAS 

Mako 130 12.8 3W 100 Reciprocating 
Piston 9.5 Hp MOGAS 

Table 1.1:  Current and developmental UAVs [4] 
 

Since the predominant mission of these vehicles is surveillance and 

reconnaissance, maximizing range and/or endurance is extremely important.  The 

range of a fixed wing aircraft is given by the Brequet range equation [5]: 











=

f

iR
thp m

m
D
L

g
QR lnηη (Eq. 1.1) 

In this expression, QR is the energy density of the fuel, R is the range, ηp is the 

propulsive efficiency, ηth is the engine’s thermodynamic efficiency, g is the 

acceleration due to gravity, L/D is the vehicle’s lift to drag ratio, and mi and mf are the 

vehicle’s initial and final masses.  Eq. 1.1 shows that maximizing the product of the 

propulsive and thermal efficiency ηpηth maximizes the range of the aircraft.  This is 
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accomplished by selecting the optimum propeller/engine combinations and operating 

points which, in turn, requires knowledge of the operating maps of the engine and 

propeller.  Unfortunately, complete operating maps showing power, torque, and 

specific fuel consumption as a function of engine speed are usually not available for 

the engines used in these small UAVs.  Usually, manufacturers only report peak 

power with the exception of one company [6].  Moreover, there is rarely any 

independent verification of the reported performance.  Another important limitation is 

that most of these small engines consume gasoline instead of tactical fuels like DF2, 

JP4, or JP10.  The United States military recognizes this fact and has listed as one of 

the main objectives on the Unmanned Aircraft Systems Roadmap for 2005-2030 by 

the Office of the Secretary of Defense is to “develop and field reliable propulsion 

alternatives to gasoline-powered internal combustion engines on UA ‘Unmanned 

Aircraft’, specifically their replacement with heavy fuel engines.”  Modifying current 

engines or designing new engines to consume tactical fuels like JP10 would simplify 

the logistic chain and increase vehicle range because the energy densities of these 

fuels is a factor of 13% greater than gasoline [7]. 

In order to improve upon engine performance, an understanding is needed of 

what the limits of present technology are.  There have been some efforts to survey the 

current state of technology for small gasoline-fueled piston engines.  In 1997, the 

Manchester Metropolitan University’s Department of Chemistry performed a market 

analysis of the 2-stroke combustion engine industry [8].  Although the published data 

from the report is fairly limited, they did perform a review of the various application 

areas in which 2-stroke engines are used.  One of them was remotely piloted military 
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aircraft where they listed that most small UAVs powered with 2-stroke gasoline 

engines have an engine displacement between 440-600 cm3 and a power of roughly 

50 kW/liter.  Currently, the Department of Defense (DOD) has several unmanned 

vehicle programs utilizing small gasoline fueled engines.  These include prominent 

vehicles like the Predator, Pioneer, and Hunter as well as some lesser known vehicles 

such as the Gnat, Hummingbird, Neptune, Mako, and Tern UAVs [4].  With the 

exception of the Predator vehicle which is powered by a Rotax engine, the 

performance maps for the rest of the engines being employed by this size class of 

UAVs are not published and most likely are not known. 

1.2  Existing Work

There have been some efforts at the university level investigating small piston 

engines (generally under 100 Hp) in order to gain additional scientific understanding 

of the combustion process and engine design for the purpose of maximizing 

performance and efficiency while reducing emissions.  The Engine Research Center 

(ERC) at the University of Wisconsin-Madison is currently conducting research 

involving optical diagnostic and imaging methods and computational fluid dynamics 

(CFD) [9, 10, 11, 12].  Their main focus is on spark ignition and diesel (compression 

ignition) engine analysis through the use of computer modeling and experimental 

tests.  By combining the experimental data with the results of the numerical analysis 

through CFD, the ERC is seeking to improve the capabilities of the engine simulation 

analysis and apply it to real world applications.  The center consists of eight engine 

test stations, each with an electrical dynamometer and control system.  A picture of 

one such station is shown below. 
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Figure 1.1:  Engine test station at ERC [13] 
 

The ERC is currently testing and conducting research on a number of engines 

with full instrumentation and metering of various properties such as fuel and air flow 

rates and oil and water temperature and pressure.  The engines include three large and 

two small single-cylinder diesel engines, five single-cylinder gasoline engines 

including 3 small engines, an optical gasoline engine, and a multi-cylinder diesel 

engine equipped with transient operation capabilities [13]. 

 The Department of Mechanical Engineering at Kettering University recently 

tested a 500 cc. 2-stroke snowmobile engine manufactured by Yamaha operating on 

gasoline and on 10% and 85% ethanol-gasoline blends [14].  A Land & Sea water-

brake dynamometer was used to measure torque and power while the engine’s 

emissions were sampled by a Horiba MEXA 7100D exhaust gas analyzer.  Although 

the main objective for their research was to determine the reduction in emissions and 

the consequences of using and storing ethanol, they published the power and torque 
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output from the engine while running at a 10% ethanol blend following the EPA 5-

mode (Engine speed ‘% of max’:  100, 85, 75, 65, idle) testing protocol for off-road 

engines.  The published data for engine speed and torque as well as the calculated 

power corresponding to each data point is shown in Table 1.2.  The results show that 

blending gasoline with ethanol reduced carbon monoxide production considerably 

over using gasoline only. 

 

Mode 
Engine Speed 

(RPM) 
Brake Torque 

(Nm) 
Calculated Power 

(kW) 
1 7000 56.9 41.71071255 
2 5950 29 18.06975632 
3 5250 18.8 10.33604913 
4 4550 10.8 5.146031911 
5 idle 0 0 

Table 1.2:  Performance data for 5-mode EPA test [14] 
 

At the University of Malaya, the Department of Engineering recently 

compared performance results from a 1.5 L gasoline engine that they retrofitted to run 

on compressed natural gas (CNG) with the stock performance [15].  An AG 150 

(Froude Consine) eddy-current dynamometer was used for testing the car engine 

manufactured by Proton Magma.  The testing was performed in two modes: in the 

first mode, the engine was held at a steady state condition at full or wide open throttle 

(WOT) while the speed was varied from 1500 to 5500 RPM, in the second mode, the 

speed was held constant at 2500, 3000, and 3500 RPM while the load was adjusted 

from 25 to 65% of max engine load.  Engine performance including the brake mean 

effective pressure (BMEP), brake specific fuel consumption (BSFC), and emissions 

were measured and recorded.  The results show that there was a 16% decrease in 
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BMEP in switching to CNG due to the longer ignition delay and lower flame speed, 

however the BSFC improved by decreasing on average of 18% due to the higher 

heating value of CNG and a leaner burning than that of the gasoline.  The emissions 

were also improved by running CNG as all constituents but NOX decreased in value. 

There has also been university research on smaller scale piston engines.  This 

class of engines (‘glow’ fuel engines typically producing less than 1 to 2 Hp) has 

traditionally been reserved for the hobby enthusiast but has been gaining interest in 

the research community for commercial and military applications.  At the University 

of Maryland, the research has focused primarily on performance measurements and 

possible scaling laws of these engines [16].  Of interest are their power output and 

efficiency and general performance trends as the engine size decreases.  As shown in 

Figure 1.2, a custom dynamometer was designed and built to test the engines and 

acquire reliable performance data.  Preliminary assessment of these engines is that 

they do not correspond to the performance data published by the manufacturers as the 

measurements obtained have been consistently lower than what is reported [17]. 
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Figure 1.2:  Dynamometer for measuring engine performance [16] 
 

At the University of California, Irvine, current research is focused on 

developing portable power systems for autonomous technology [18].  Devices that 

require high power to weight ratios such as micro air vehicles and mobile robots will 

most likely require combustion supplied power.  One possible solution is with small 

R.C. glow fuel engines.  Similar to the dynamometer at the University of Maryland, a 

custom small engine dynamometer was constructed to measure the power and 

efficiency of these engines [19].  A schematic of the dynamometer is shown in Figure 

1.3.  Early results indicate poor efficiency performance and other techniques such as 

film combustion may be a solution. 
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Figure 1.3:  Small engine dynamometer schematic [18] 
 

The University of California, Berkeley, is also researching portable power 

systems but has taken a different approach with the micro-size MEMS Rotary Engine 

Power System [20, 21].  As shown in Figure 1.4, they are constructing a hybrid power 

system consisting of an AC generator and a rotary internal combustion engine.  The 

objective is to develop a power supply with a 5 to 15 percent increase in power output 

over existing battery technology.  The development of the project is ongoing so the 

results are still pending. 

 

Figure 1.4:  Model of MEMS Rotary Engine Power System [22] 
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Nevertheless, despite all of the active research at universities and institutions, 

the author is not aware of any research aside from the current paper that addresses a 

gasoline UAV piston engine of an intermediate size (approximately 10 to 20 Hp). 

1.3  Approach

This thesis describes the complete characterization of the 100i-B2 engine 

manufactured by 3W Modellmotoren and currently used in two UAV programs by the 

military (NAVMAR’s Mako and BAI Aerosystems’ Tern UAVs).  This engine was 

selected for testing because it is used in active systems and does not have a 

comprehensive performance database.  The performance measurements reported 

include engine power, torque, specific fuel consumption, cylinder head and exhaust 

gas temperature, and exhaust gas composition –  CO2, CO, O2, NO, NOx, and 

unburned hydrocarbon concentrations.  The development of the instrumentation, 

fixtures, and testing procedures are described.  In addition, a numerical simulation of 

the engine developed by other researchers in our laboratory is used to make a zero-th 

order assessment of how the engine’s performance would be affected by varying the 

intake and exhaust port timing and a few other simple design changes [23]. 
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Chapter 2:  Experimental Apparatus 

2.1  Dynamometer System

An engine dynamometer was used to measure the performance of the 3W 

100i-B2 engine.  The apparatus consists of three main components: a custom built 

engine stand to mount the engine on, a water-cooled eddy current brake used to apply 

a load, and a data acquisition and control system for collecting data and controlling 

the engine and the brake.  Figure 2.1 is a photograph of the dynamometer system with 

labels identifying the major parts.  The engine to be tested is mounted on a movable 

support stand that consists of three plates; two side plates and a center plate upon 

which the engine is bolted to.  This enables the dynamometer to accommodate a 

range of different sized UAV engines.  The support stand slides along a grooved base 

plate to maintain alignment while providing various mounting locations for the 

different engine sizes.  The engine drives the absorber through a 60 Hp rated 

Goodyear Eagle Pd belt drive system that serves as a 3:1 step down transmission.  

This is necessary because the maximum absorber operating speed is 4000 RPM 

whereas the maximum speed of the engine being tested, a 3W 100i-B2, is 8500 RPM.  

A Lovejoy SX90-6 flexible disc coupling between the engine and the transmission 

compensates for small amounts of angular, axial, and parallel misalignment between 

the engine’s crankshaft and the transmission drive shaft.  Two custom machined 

adapters are used to connect the crankshaft to the disc coupling while a combination 

of keys/keyways and set screws are used to hold the coupling in place. 
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Figure 2.1:  Photograph of dynamometer system and its major parts 
 

Figure 2.2 is an assembly diagram of the engine support and transmission 

system illustrating the principal components. Belt tension is adjusted using a lead 

screw attached to a sliding carriage plate situated inside a larger stationary support 

plate.  The carriage plate was machined of brass to minimize friction and subsequent 

abrasion between it and the larger steel stationary plate.  The grooved base plate 

attaches directly to the carriage plate so that side loads associated with belt tensioning 

are not transferred to the engine crankshaft.  The transmission sprockets are attached 

to their respective shafts using B-Loc B800 series shaft/hub locking devices.  The 

drive shafts are each supported by two Koyo ball bearings, which are housed in 

pillow blocks, while retaining rings placed next to each bearing prevent the shafts 

Speed Sensor Absorber 

Load Cell Moment Arm Cooling Ducts 

Engine Transmission 

Spinner 
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from sliding in the axial direction.  An additional plate bolted between the two pillow 

blocks provides further reinforcement.  A T.B. Woods Sure-Flex 6J flexible coupling 

between the output drive shaft and the absorber compensates for slight misalignments 

between the transmission and absorber. 

 

Figure 2.2:  Diagram of transmission main components 
 

The absorber is a water-cooled eddy current brake manufactured by Ostradyne 

Corporation with a maximum operating speed of 4000 RPM and a maximum power 

rating of 50 Hp.  As shown in Figure 2.3, the absorber operates on the Foucault 

principle [24] which states that as a metallic mass (conductor) is traversed by an 

external magnetic field, an electro-magnetic force is induced.  Electric currents 

known as eddy currents are produced in the conductor and in turn create a magnetic 

flux that opposes the external magnetic field.  The stronger the magnetic field, the 

stronger the eddy currents developed and the larger the opposing magnetic force is.  

Lead Screw 

Carriage Plate 

Sprockets and Belt 

Flexible Couplings 

Grooved Base Plate 
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In the case of the Ostradyne absorber, the conductor is the stator and the magnetic 

field is produced by exciting a coil located inside the stator.  The strength of the 

magnetic field is varied by a rotor in the shape of a toothed wheel.  As the teeth of the 

wheel cross the magnetic field, the strength of the field varies inducing eddy currents 

in the stator.   

 

Figure 2.3:  Diagram illustrating the main components of a typical eddy current 
brake [25] 

 

The eddy currents convert the engine’s power into heat so cooling water is 

circulated through cooling chambers around the stator so as not to overheat.  The 

torque applied by the absorber is adjustable from zero to its maximum rated load by 

controlling the amount of current passing through the coil in the stator.  The exciting 

current transmitted to the absorber is constant and completely independent of the 

engine speed; therefore the braking torque is also independent of speed.  The amount 

of current supplied to the coil can be controlled using a manual control unit as shown 

in Figure 2.4, or an external analog signal.  The latter approach is taken here in which 
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a computer running custom LabView software supplies the control signal.  This 

allows the dynamometer to be operated in various modes which will be described 

later. 

 

Figure 2.4:  Control unit for exciting the eddy current dynamometer 
 

The moment arm restraining force (and hence the engine torque) is measured 

using an Omega LCCA-100 S-beam load cell with a maximum capacity of 100 lb and 

10 VDC excitation.  The excitation voltage is provided by a 12 VDC power supply 

and a National Semiconductor LM2937 voltage regulator.  A schematic of the 

electrical circuit is shown in Figure 2.5. 

 

12V
DAQ pin 25 ch6+

DAQ pin 58 ch6-

DAQ pin 68 ch0+
DAQ pin 34 ch0-

12V
DAQ pin 25 ch6+

DAQ pin 58 ch6-

DAQ pin 68 ch0+
DAQ pin 34 ch0-

Figure 2.5:  Load cell electrical circuit diagram [26] 
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As shown in Figure 2.6, the upper end of the load cell is attached to the 

absorber housing through a 9.25 inch long moment arm while the lower end of the 

load cell is connected to the dynamometer base.  The load cell measures the force 

required to prevent the absorber housing (stator) from rotating and the product of this 

force and the moment arm length gives the torque applied to the engine. 

 

Figure 2.6:  Load cell attached to moment arm and dynamometer base 
 

The speed sensor is a Fairchild Semiconductor H21B1 optical interrupter 

switch that uses an infrared emitting diode coupled with a silicon photodarlington 

detector.  As seen in Figure 2.7, this sensor detects the passages of notches in a disk 

mounted to the absorber’s output shaft.  There are 12 notches on the disk so that one 

absorber shaft revolution corresponds to 12 pulses from the infrared emitting diode.  

The speed of the absorber shaft is the number of pulses per second divided by the 
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number of notches on the disk.  The number of pulses per second is measured using a 

counter-timer channel on a National Instruments 6036E data acquisition board after 

the signal is buffered by a hex inverter.  A circuit diagram is shown in Figure 2.8.  

The engine speed is the speed of the absorber shaft times the transmission step down 

ratio (3 in this case). 

 

Figure 2.7:  Speed sensor mounted next to notched disk 
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Figure 2.8:  Speed sensor electrical circuit diagram [26] 
 

K-type (Chromel Alumel) thermocouples are used for measuring cylinder 

head, exhaust gas, and auxiliary temperatures and are wired to an isothermal cold 

junction block.  The junction block has copper terminals with copper wire connecting 

it to the data acquisition board.  This, in effect, produces an additional thermocouple 

consisting of copper chromel and copper alumel.  By connecting each wire on the 

isothermal junction block as shown in Figure 2.9 and measuring the temperature of 

the block, the additional voltage produced by the copper chromel and copper alumel 

thermocouple is accounted for.   

 

Figure 2.9:  Isothermal junction block (represented by dotted line) [26] 
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Figure 2.10 shows the wiring diagram for the K-type thermocouples and 

associated connections on the junction block.  A National Semiconductor LM35C 

temperature sensor is used to measure the temperature of the block and is also used 

for the ambient room temperature.  Figure 2.11 displays the circuit diagram for the 

temperature sensor.   

 

Figure 2.10:  Thermocouple wiring diagram [26] 
 

Figure 2.11:  LM35C temperature sensor circuit diagram [26] 
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Figure 2.12 shows the custom graphical user interface (GUI) created using 

LabView software.  The interface displays the engine’s speed (RPM) on a 

tachometer,  a streaming torque chart, calculated horsepower, throttle and load 

settings, amount of fuel left, thermocouple temperatures, and ambient room 

conditions among other items. 

 

Figure 2.12:  LabView custom graphical user interface (GUI) 
 

The interface also allows the operator to control the engine’s speed and torque 

by varying the throttle position and/or load applied by the eddy current absorber.  

This can be performed manually (open loop control) by manipulating the throttle set 
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and dyno set control sliders on the interface panel, or automatically (closed loop 

control) using a PI control scheme.  Each PI scheme has two modes and each mode 

has two separate control techniques.  The PI control uses a proportional (P) gain to 

decrease the response time and an integral (I) gain to eliminate the steady state error.  

The effect of changing these two parameters is seen in Table 2.1.  The correct gains to 

use are found on an engine by engine basis since all engines have different operating 

characteristics.  The tuning of these gains is done by trial and error usually starting 

with small gains and slowly increasing the values until the engine becomes unstable 

(i.e. speed oscillates, over speeds, stalls, etc.).  When this happens, the gains have 

been set to high and will need to be lowered to return to stable operation. 

 

Effects of changes in parameters 
Parameter Rise Time Overshoot Settling Time S.S. Error

P Decrease Increase Small Change Decrease
I Decrease Increase Increase Eliminate

Table 2.1:  Performance effects of parameters [27] 
 

These automatic modes facilitate the acquisition of constant torque and 

constant throttle setting performance curves.  In the first mode (speed control), the 

throttle set slider is bypassed and the computer controls engine speed by varying the 

throttle while the operator controls the torque by varying the load using the dyno set 

slider.  Alternatively, the dyno set slider can be bypassed so that the computer 

controls the speed by varying the load while the operator controls the torque by 

varying the throttle with the throttle set slider.  In the second mode (torque control), 
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the throttle set slider is bypassed and the computer controls the torque by varying the 

throttle while the operator controls the engine speed by varying the load using the 

dyno set slider.  Conversely, the dyno set slider can be bypassed so that the computer 

controls the torque by varying the load while the operator controls the speed by 

varying the throttle with the throttle set slider.  An additional mode is also available 

but not used for the current testing.  This mode is for motoring an engine, which is the 

process of turning the engine over or running it without fuel or spark ignition by 

means of a coupled electric motor.  The mode controls the speed of the motor by 

varying the current sent to the motor’s electric coils. 

It should be noted that this particular engine is inherently unstable on the 

dynamometer because we are interested in operating points in the front half of the 

torque curve as shown in Figure 2.13.  To understand why these points are unstable, 

consider what happens when the engine is running at a speed corresponding to Point 

A and there is a slight increase in speed.  The engine’s torque also increases as a 

function of speed and is now greater than the braking torque that is being applied.  

This causes the engine to accelerate toward Point B and it will continue increasing its 

speed unless the braking torque is increased to match the torque output of the engine.  

If the engine is at Point A and it experiences a slight decrease in speed, the engine’s 

torque is now less than the torque being applied to it.  This causes the engine to 

decelerate toward Point C and it will continue to decrease its speed until it stalls 

unless the braking torque is decreased to match the engine’s torque.  Therefore, the 

braking torque must be continuously adjusted so that the load being applied to the 

engine matches its torque output in order to maintain a constant speed.  It is not 
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possible to make these adjustments manually and therefore the engine can only be 

operated on the dynamometer when the computer’s speed control is turned on. 

 

Figure 2.13:  Engine’s operating portion of torque curve 
 

2.2  Engine Configuration

The engine, as can be seen in Figure 2.14, was tested as supplied by the 

manufacturer with a standard two-pipe exhaust system and no modifications of any 

kind.  Table 2.2 lists the engine’s technical specifications and operating 

characteristics.  Procedures for engine break-in, startup, and leaning were followed as 

stated by the manufacturer in the engine operating manual.  All measurements were 

performed using the factory specified mixture settings. 
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Figure 2.14:  3W 100i-B2 Engine [28] 
 

Cylinder capacity  97.3 ccm / 5.83 cu.in  

Power 6.8 kW / 9.3 HP  

Bore dia. 44 mm / 1.73 in  

Stroke 32 mm / 1.26 in  

Speed range 1200 - 8500 min-1 / rpm  

Weight 3190g / 7.0 lbs - incl. ignition 

Crankshaft 3 Ball bearings 

Connection rod Needle bearings on both ends 

Gasoline-Version 1 : 50 - 1 : 80 Mix  

IIS – Ignition  4.8 V  

Propeller 2-bladed: 
24x10; 24x12; 26x10; 28x10; 30x8  
3-bladed: 
20x14; 22x11; 22x12; 24x10; 24x12; 
26x10 

Table 2.2:  3W 100i-B2 Engine Specifications [29] 
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2.3  Data Acquisition System

The data acquisition system also operates in the LabView environment and is 

integrated with the dynamometer control system.  Analog signals from the torque 

sensor, speed sensor, and thermocouples are polled using the National Instruments 

6036E data acquisition board.  The accuracies for the analog inputs on the 6036E 

board are displayed in Table 2.3. 

 

Table 2.3:  Accuracy information for the National Instruments 6036E data 
acquisition board [30] 

 

Digital RS232 signals from the fuel scale are sent and received through the 

host PC’s RS232 port using the LabView software. Data collection at a particular 

operating point is initiated by clicking a button on the user interface.  The data is 

acquired at a frequency of 1 Hz. for a user-specified length of time (usually 2 1/2 

minutes) and stored in the PC’s memory until the test time has elapsed.  Two files are 

then created and saved to the user specified directory.  One file is a second by second 

log of all the data collected and the other file is a result file with averaged data values.  
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The keys for each file are presented in Table 2.4.  Finally, the data acquisition board 

is also equipped with two analog output channels, which are used to generate the 

control signals for the absorber current and the throttle servo. 

 

Table 2.4:  Protocol for data files 
 

2.4  Starting System

A plastic propeller spinner attached to the opposite end of the transmission 

input drive shaft allows the engine to be started using a standard model aircraft starter 

motor (Figure 2.15).  The conical rubber adapter of the motor is pressed over the 

spinner to turn the engine.  The starter motor is removed when the engine starts.  The 

LOG FILE KEY  RESULT FILE KEY 

Each test begins with a line 
containing:   Each line represents a test containing: 

year,month,day,hour (24hr),minute of 
test  

year,month,day,hour (24hr),minute of 
test 

average torque over test (ft-lb) 
average speed over test (RPM) Followed by a line for every second of 

the test containing:  average power over test (Hp) 
average fuel consumption over test (lbs 

fuel/Hp-hr) 
time (millisecond value)  fuel used in test (grams) 

fuel in tank (grams)  test length (s) 
torque (ft-lb)  average load cell voltage (mV) 

tachometer (RPM)  average load cell excitation voltage (V) 
cylinder head temp (deg C)  average head temp (deg C) 
exhaust gas temp (deg C)  average exhaust temp (deg C) 
cold junction temp (deg C)  average auxiliary temp (deg C) 

auxiliary temp (deg C)  average cold junction temp (deg C) 
power (Hp)  ambient air humidity (%) 

load cell (mV)  ambient air pressure (bar) 
load cell excitation voltage (V)  ambient air temperature (deg C) 
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engine throttle is actuated using a Hitec digital servo mounted behind the engine.  The 

servo is controlled remotely through the LabView software program and an analog 

output on the National Instruments board.  The board also provides the power for the 

servo so that no battery pack or receiver is needed. 

 

Figure 2.15:  Starter motor and nose cone used to start engine 
 

2.5  Fuel System

Fuel is supplied to the engine from a 1500 cc tank resting on an Acculab VIR-

4800 portable scale equipped with an RS-232 output as shown in Figure 2.16.  The 

data acquisition system polls the RS-232 output at 10Hz enabling the weight of the 

fuel tank to be measured as a function of time.  The Du-Bro tygon fuel line runs from 

the tank to the fuel inlet located on the engine’s carburetor.  As seen in Figure 2.17, 

the carburetor is equipped with an integral diaphragm-type fuel pump that is driven 
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by the change in pressure between the crankcase and the environment through one 

engine cycle.  As a result, no external fuel pump or pressurization of the fuel tank is 

necessary. 

 

Figure 2.16:  Fuel tank and scale with RS232 output 
 

Figure 2.17:  Carburetor with internal diaphragm fuel pump 
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2.6  Emissions Measurement System

The exhaust gas is sampled using a Vetronix PXA-1100 gas analyzer (Figure 

2.18).  The analyzer uses a non-dispersive infrared (NDIR) gas measurement bench 

and O2 and NOX sensors which measure the concentrations of five chemical species: 

CO, CO2, O2, NOX, and total hydrocarbons (HC).  It also calculates the air/fuel ratio 

based on the species concentration measurements for CO, CO2, and O2. As seen in 

Figure 2.19, the analyzer includes a sample hose that runs from the analyzer’s intake 

port to a custom machined exhaust collector to measure the total exhaust output from 

both cylinders.  The exhaust is sampled at a rate of 2Hz and the data is stored as a 

‘snapshot’ on the analyzer.  The data is then uploaded via an RS-232 output to the 

host PC using TechView software.  The memory is limited on the gas analyzer and 

there is only enough room to hold five snapshots.  Under the current configuration 

used for the testing, each snapshot represents a single test point.  Therefore after 

acquiring five test points, the engine must be stopped so that the data can be uploaded 

to the computer.  This clears the analyzer’s memory so that it is capable of storing 

additional snapshots. 

 



30 
 

Figure 2.18:  Exhaust gas analyzer with LCD display 
 

Figure 2.19:  Custom machined exhaust plenum 
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2.7  Cooling System

The cooling air for the engine is normally supplied by the propeller’s wash 

and the relative motion of the UAV through the air.  Since the engine is under 

stationary conditions on the ground, a cooling system was designed to prevent the 

engine from overheating.  It consists of two sets of three blowers (Toro Electric Super 

Blower Vac, Model 51591) mounted on either side of the test platform that deliver air 

across each cylinder via two manifold/duct systems - one for each cylinder.  A 

photograph of one set of blowers with its duct system is presented in Figure 2.20. 

 

Figure 2.20:  Photograph of blowers and duct system 
 

Surface-mount K-type thermocouples (Omega CO3-K) attached to each 

cylinder between the cooling fins monitor the cylinder head temperature.  Additional 

thermocouples are attached inside the muffler to monitor the exhaust gas temperature.  
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Figure 2.21 shows the attachment points of the cylinder head and exhaust manifold 

thermocouples.  Each thermocouple is connected to an isothermal junction block, 

where a National Semiconductor LM35C temperature sensor is used to compensate 

for the cold junction block and obtain ambient air temperature.  All thermocouples are 

polled by the LabView software. 

 

Figure 2.21:  Photograph of thermocouple attachment points 

Cylinder Head 
Thermocouple 

Exhaust Manifold 
Thermocouple 
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Chapter 3:  Experimental Procedure 

 

3.1  Preparation

A check-list is used to prepare for each experiment.  The list starts with 

charging the batteries for both the engine starter and the ignition system the night 

before as they require eight and fifteen hours, respectively, for a full charge.  On the 

day of the test, each experiment begins by following the prescribed steps: 

1. Turn on the exhaust gas analyzer.  This is done first because the internal, 

infrared gas detectors and sample chamber need to warm up before the 

analyzer can be used.  The process takes approximately fifteen minutes to 

complete the warm up cycle and the user can focus on other tasks while it is 

initializing itself.  After the warm up is complete, the gas analyzer’s 

measurement bench (HC, CO, CO2), O2 and NOX sensors, and sample hose 

must be purged with fresh air in order to remove any residual hydrocarbons 

and moisture that can foul the measurement reading.  Then the gas analyzer is 

zeroed so that the measurement bench and sensors read zero relative to the 

ambient air.  The analyzer must also be purged and zeroed after using it for an 

extended period of time and notifies the user by displaying a message on the 

LCD screen when the action is needed.  The particular length of elapsed time 

depends on various factors such as the type of engine, the engine speed, and 

the throttle setting among other items. For this specific engine experiment the 
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analyzer usually required a purge and zero about every ten to fifteen minutes 

of continuous testing and was generally done in between collecting data sets. 

2. Prepare a fresh mixture of fuel consisting of a 50:1 ratio of regular unleaded 

gasoline and synthetic two-stroke oil (Homelite Exact Mix was used for this 

experiment).  The fuel tank is filled through the breather tube and the fuel line 

is then connected to the carburetor.  After the scale is zeroed, the fuel tank is 

placed on it. 

3. Check the calibration of the throttle servo to make sure that the throttle 

(butterfly valve) is able to fully open and close so that the engine can go from 

an idle up to WOT. 

4. Check the cooling system to make sure the blowers have electric power and 

that the manifold/duct system’s connections are tight and are not leaking any 

air. 

5. Check the propeller cone to make sure it is bolted securely to the end of the 

driveshaft. 

6. Check the tension of the transmission belt using a belt tension gauge.  A 

Goodyear Small Industrial Eagle Pd Gauge, shown in Figure 3.1, is used to 

measure the tension by first placing a straight edge across the top of the belt 

so that it extends the entire span of the belt from one sprocket to the other.  

Next, the gauge is placed in the center of the belt and at the middle of the belt 

span between the sprockets.  A force is then applied to the gauge until the belt 

deflection, relative to the straight edge, corresponds to a predetermined value 

on the gauge’s scale.  If the measured force equals the target deflection force 
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then the belt is properly tensioned, if the force does not equal the target value 

then the tension is either increased or decreased to provide the desired 

deflection force.  Figure 3.2 is a diagram of the tensioning procedure.   

 

Figure 3.1:  Belt gauge used for tensioning [31] 
 

Figure 3.2:  Tensioning diagram [31] 
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7. Check all sensors and wires for secure attachment and proper clearance from 

moving parts, hot surfaces, etc.  These include the fuel tank’s output cable, the 

cylinder head and exhaust gas thermocouples, the exhaust gas analyzer probe, 

the speed sensor, and the load cell. 

8. Attach the ignition wires to the spark plugs, connect the ignition box to the 

engine’s magnetic sensor, and then turn the ignition on. 

9. Turn on the power supply and cooling water for the dynamometer’s absorber 

and the exhaust fan and cooling blowers for the engine. 

10. Start the LabView program and record the ambient conditions (i.e. room 

temperature, barometric pressure, and relative humidity).  The load cell used 

for the torque measurements is zeroed by the LabView program each time it is 

started so that background interference is not measured.  Sources of 

interference include cooling water running through the absorber, airflow from 

the exhaust fan and cooling blowers, and vibrations from the blowers. 

3.2  Operation

After completion of the preparation check list, the engine is started and the 

LabView speed controller is set to a predetermined value (generally 4000 RPM) for 

the purpose of warming up the engine.  Each test point is measured at a set speed with 

a fixed throttle position.  In this manner, a test matrix is compiled and constant 

throttle setting performance curves are able to be obtained.  A typical test begins with 

the engine being brought up to WOT and the speed set to the engine’s maximum of 

8500 RPM.  Once the engine’s torque, temperature, exhaust emissions, and other 

properties have stabilized, data is acquired for 150 seconds by the LabView system at 
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1 Hz. and the Vetronix gas analyzer at 2 Hz.  The engine’s speed is then set to 

subsequent test points at 1000 RPM decrements in order to cover the available 

operating RPM range for that particular throttle setting (i.e. 8500, 7500, 6500, etc.)  

At each test point, the engine requires approximately 1 to 2 minutes to stabilize 

before data is collected.  The throttle position is then changed and the RPM range is 

swept again in a similar fashion.  The testing repeats itself for the following throttle 

settings: WOT, ¾, ½, and ¼ throttle.  The testing is concluded after each throttle 

setting has spanned its available operating RPM range. 

3.3  Data Analysis

The data acquired from each sensor is stored in two files.  The “log” file 

contains the raw data acquired each time the LabView software polls the sensors and 

the “result” file that contains the time averaged values for each test point.  The data 

from the result file is averaged with data collected in other identical tests to calculate 

an overall average. 

The principal engine performance measurements [32] are torque, power 

output, and efficiency.  The torque produced by the engine is given by: 

dF ×=Γ (Eq. 3.1) 

Where F is the force measured by the load cell and d is the length of the moment arm 

(9.25 in).  The power output is given by: 

ω×Γ=P (Eq. 3.2)

Where Γ is the engine torque and ω is the angular speed of the output shaft.  The 

overall efficiency of the engine is: 
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Qm
P

f&
=η (Eq. 3.3)

Where P is the power output, fm& is the fuel mass flow rate, and Q is the energy 

density of the fuel (44.5 MJ/kg) [33].  Alternatively, the efficiency can also be 

reported in terms of the brake specific fuel consumption (BSFC). 

P
m

BSFC f&= (Eq. 3.4) 

Other measurements include cylinder head and exhaust gas temperature and 

exhaust gas composition.  The latter consists of measurements of CO, CO2, O2, NOX,

and total hydrocarbons (HC).  Air/fuel ratio is computed from the exhaust gas 

composition measurements by solving a chemical equilibrium balance.  The general 

hydrocarbon combustion reaction per mole of fuel is defined as follows [33]. 
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(Eq. 3.5) 

For the combustion reaction in a gasoline engine, ignoring negligible products, the 

equilibrium balance can be approximated as: 
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Where: 

α
β=z (Eq. 3.7) 

Performing a carbon-oxygen balance and solving for the equivalence ratio, yields the 

following expression: 
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Where α, β, and γ represent the number of carbon, hydrogen, and oxygen atoms 

present in the unburned fuel (for gasoline α=7, β=17, γ=0) [33], and yi denotes 

concentrations of the various product constituents in mole percent.  Knowing the 

equivalence ratio and that the stoichiometric air/fuel ratio for gasoline is 14.7 [34], 

the actual air/fuel ratio is then solved for. 

φ
7.14

=F
A (Eq. 3.9) 

3.4  Performance Correction 

Since engine performance varies with atmospheric conditions, the WOT data 

for power output must be corrected to a reference or standard condition so that 

measurements made on different days may be compared.  The formula for corrected 

engine power is [35]: 

oc bpCAbp ×= (Eq. 3.10) 

Where bpc is the corrected brake power, CA is the atmospheric correction factor, and 

bpo is the observed brake power.  Since friction power (the power required to drive 

the engine without combustion) is unknown, an 85% mechanical efficiency is 

assumed [35].  Using this assumption, the calculation of the atmospheric correction 

factor is: 
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Where Pd is the dry air portion of the observed total inlet air supply pressure and To is 

the observed inlet air supply temperature.  Pd is determined from the saturation vapor 

pressure (Es), the relative humidity (RH), and the total barometric pressure (Ptot).  The 

saturation vapor pressure is given by [36]: 










+
×

×= o

o

tc
tc

s cE 2

1

100 (Eq. 3.12) 

Where c0, c1, and c2 are constants equal to 6.1078, 7.5, and 237.3 respectively.  The 

actual vapor pressure (Pv) is calculated using the relative humidity. 

sv ERHP ×= (Eq. 3.13) 

Finally, it is possible to calculate the dry air pressure: 

vtotd PPP −= (Eq. 3.14) 

3.5  Uncertainty Analysis

An uncertainty factor also needs to be placed on the data, due to the 

systematic and random errors present in the experiment.  Standard procedures [37] 

are used to determine the 95% confidence interval for the measurements.  The 

uncertainty for a particular measurement is: 
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Where B is the total systematic error in the measurement and S x is the random error 

present.  The total systematic error (B) is found using: 
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Where bi is each elemental systematic error and K is the total number of systematic 

error sources.  The random error is given by: 
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Where N is the number of measurements, pN and pX are the previous measurement 

number and measurement value recorded by the instrument during the experiment, 

and pX is given by: 
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1 (Eq. 3.18) 

The uncertainty in a result (like power output) which is calculated from several 

measured quantities is found by: 

( ) ( )22
11 kk MMR δθδθδ ++= L (Eq. 3.19) 

Where δM κ is the uncertainty in each measurement and θκ is the sensitivity 

coefficient of the result to changes in the particular measured quantity.  Table 3.1 lists 

systematic uncertainties for the major components of the dynamometer system. 

 

Instrument Function Uncertainty Units 
NI 6036E data acquisition board Acquire and log data 0.00756 volts 

Omega LCCA-100 S-beam load cell Measure engine torque 0.165 newtons
Fairchild H21B1 optical interrupter 

switch Measure engine speed 0.0001 seconds

Acculab VIR-4800 scale 
Measure fuel 
consumption 0.1 grams 

Omega CO3 K-type thermocouple 
Measure engine 

temperatures 1.8 
degrees 

C

Vetronix PXA-1100 gas analyzer 
Measure exhaust 

concentrations 5
% of 

reading 

Table 3.1:  Measuring instruments and uncertainties 
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Chapter 4:  Experimental Results 

4.1  Discussion

Figure 4.1 shows engine torque, power, fuel/air ratio, and efficiency as a 

function of engine speed at four throttle settings:  WOT, ¾, ½, and ¼ throttle.  The 

results represent averages computed using data from 19 separate test runs. The data 

show that the engine produces its rated power output of 9.3 Hp [29] at its maximum 

operating speed of 8500 RPM at WOT. At this operating point, the overall efficiency 

is 14.0% (BSFC = 0.797 lb/Hp-hr), and the air/fuel ratio is 15.38.  The ‘best 

economy’ operating point occurs at 6500 RPM and WOT where the power output is 

7.7 Hp, the overall efficiency is 16.1% (BSFC = 0.695 lb/Hp-hr), and the fuel/air ratio 

is 16.59.  All of the data used to generate Figures 4.1 and 4.2 are presented in Tables 

4.1 and 4.2. 

The engine’s torque curve is similar in shape to those of much larger engines. 

It increases non-linearly with speed until reaching a peak value after which it starts 

declining.  However, at all throttle positions the data show a small decrease in torque 

at 5500 RPM that cannot be attributed to experimental uncertainty alone. 

The air/fuel ratio data show that decreasing the throttle setting (i.e. closing the 

throttle) decreases the air/fuel ratio at operating speeds above 4000 RPM.  This 

occurs because closing the throttle obstructs the flow of air into the engine (thereby 

decreasing the air flow rate) but does not affect the fuel flow rate that is set by (and 

increases linearly with) the operating speed of the engine.  There is not a substantial 
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increase in power output between ¾ and WOT because the air/fuel ratio is greater 

than 14.7, the value for stoichiometric combustion of gasoline with air.  Closing the 

throttle below ¾ lowers the air/fuel ratio below that required for complete combustion 

and the engine loses power because there is not enough oxygen to react with all the 

fuel.   

At engine speeds below 4000 RPM, the throttle becomes less effective 

because the flow rate and pumping losses are lower.  This allows the engine to ingest 

air more easily and the air/fuel ratio increases well above the stoichiometric value.  

The burning rate of the mixture peaks at the stoichiometric air/fuel ratio but decreases 

non-linearly with increases or decreases in air/fuel ratio.  As a result, it is not possible 

to operate the engine at low speeds and high throttle settings because the burning rate 

of the high air/fuel ratio mixture is too low. 
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Figure 4.1:  Engine Performance at various throttle settings 
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Figure 4.3 shows the gas concentration levels sampled from the engine’s 

exhaust.  Hydrocarbon, Carbon Monoxide, Carbon Dioxide, and Oxygen are plotted 

versus engine speed for different throttle settings.  The results are consistent with the 

observations noted previously.  CO concentration decreases with increasing throttle 

setting while CO2 concentration increases.  This makes sense because opening the 

throttle increases the availability of oxygen and facilitates the conversion of CO to 

CO2. CO increases with engine speed because the gas temperature increases which in 

turn increases the rate at which CO2 in the exhaust can dissociate back to CO. 

The oxygen concentration decreases with increasing engine speed until about 

5500 RPM because the fuel flow rate is increasing and more oxygen is being 

consumed to react with the fuel.  Once the mixture ratio approaches stoichiometric 

conditions, the chemical reaction rate is near its maximum and the time required to 

complete chemical reaction is a constant value.  Increasing the speed of the engine 

decreases the residence time of the mixture in the cylinder.  As the engine speed 

increases, the Damkohler number [38] (defined as the ratio of the residence time to 

the chemical conversion time) decreases: 

L

TDa τ
τ= (Eq. 4.1) 

Where τT is the residence time (length of time fuel/air mixture is in the cylinder after 

combustion has started) and τL is the chemical conversion time (length of time for 

fuel/air mixture to completely burn).  The residence time starts at top dead center 

(TDC) or 360° when combustion begins and stops 100° later when the exhaust port is 

opened and the mixture exits the cylinder.  The residence time is calculated from the 

known engine speed (X): 
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While the chemical conversion time is calculated as follows: 

L

L
L S

δτ = (Eq. 4.3) 

Where δL is the laminar flame thickness and SL is the laminar flame speed (estimated 

values are δL = 0.2 mm and SL =33 cm/s) [32].  When the Damkohler number 

approaches small values incomplete combustion begins to occur.  A plot of the 

Damkohler number as a function of engine speed is shown in Figure 4.2. 
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Figure 4.2:  Damkohler number as a function of engine speed 
 

Incomplete combustion means less chemical reaction has occurred and 

therefore more oxygen, more unburned hydrocarbons, and less CO2 are present in the 

exhaust.  The fact that unburned HC and O2 concentrations begin to rise between 

5500 and 6500 RPM (where Damkohler number is approximately 5) suggests that 
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incomplete combustion may be beginning in this region.  Less combustion in the 

cylinder means less power produced and could partially explain why the efficiency of 

the engine peaks around 6000 RPM. 
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Figure 4.3:  Exhaust gas concentrations at various throttle settings 
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Cylinder head and exhaust manifold temperatures (Figure 4.4) increase with 

increasing engine speed in this experiment because the cold-side thermal boundary 

conditions are fixed – the room temperature is constant as is the velocity of the air 

flow over the cylinder heads – while the fuel consumption (and hence the overall heat 

release rate) increases with engine speed.  The differences between cylinder head and 

exhaust manifold temperatures at ¾ and WOT are small because the air/fuel ratio is 

relatively close to stoichiometric and combustion temperatures are relatively uniform.  

Decreasing the throttle setting lowers the air/fuel ratio below stoichiometric, which 

reduces the combustion temperature, and hence the temperature of the cylinder heads 

and exhaust manifold. 

 

Figure 4.4:  Cylinder head and exhaust manifold temperatures at various 
throttle settings 
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Throttle 
Position

Speed 
(RPM) Uncertainty Torque 

(lb-ft) Uncertainty Power 
(Hp) Uncertainty Air/Fuel 

Ratio Uncertainty Efficiency 
(%) Uncertainty

8500 6.2 5.72 0.07 9.32 0.11 15.38 0.21 14.0 0.2 

7500 6.1 6.21 0.08 8.94 0.11 15.76 0.23 15.3 0.2 

6500 18.7 6.15 0.09 7.70 0.11 16.59 0.40 16.1 0.2 
WOT 

5500 18.7 5.64 0.08 5.99 0.09 16.25 0.28 16.2 0.2 

8500 5.2 5.51 0.07 9.11 0.10 14.36 0.26 13.4 0.1 

7500 4.8 6.00 0.07 8.75 0.10 14.66 0.29 14.4 0.2 

6500 7.1 5.98 0.07 7.54 0.09 15.15 0.35 15.9 0.2 

5500 8.4 5.77 0.07 6.16 0.08 15.04 0.20 15.5 0.2 

3/4 

4500 14.3 5.62 0.08 4.92 0.07 15.86 0.10 14.6 0.2 

8500 8.4 5.06 0.07 8.36 0.11 12.55 0.15 13.4 0.2 

7500 13.9 5.54 0.07 8.07 0.11 12.65 0.09 14.1 0.2 

6500 8.6 5.83 0.07 7.37 0.08 12.99 0.10 14.8 0.2 

5500 10.7 5.57 0.07 5.95 0.08 12.94 0.15 15.3 0.2 

4500 8.4 5.58 0.07 4.88 0.06 14.04 0.12 14.3 0.2 

1/2 

3500 15.8 5.11 0.07 3.47 0.05 16.87 0.24 13.9 0.2 

8500 16.6 3.54 0.07 5.85 0.11 11.64 0.18 15.2 0.3 

7500 15.5 3.79 0.08 5.53 0.11 12.17 0.26 16.0 0.3 

6500 24.1 4.02 0.11 5.08 0.14 13.56 0.46 16.7 0.5 

5500 38.1 3.62 0.11 3.88 0.12 13.18 0.29 15.8 0.5 

4500 9.5 3.83 0.06 3.36 0.06 15.77 0.24 15.2 0.3 

3500 17.0 4.13 0.07 2.81 0.05 17.18 0.47 15.1 0.3 

1/4 

2500 41.5 3.61 0.18 1.75 0.09 20.33 0.27 12.8 0.7 

Table 4.1:  Engine performance data and associated uncertainties 
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Throttle 
Position

Speed 
(RPM) Uncertainty HC 

(ppm) Uncertainty CO 
(%) Uncertainty CO2 

(%) Uncertainty O2 (%) Uncertainty

8500 6.2 8096 404 1.65 0.09 7.26 0.36 9.33 0.50 

7500 6.1 7729 388 1.07 0.06 7.79 0.39 9.12 0.46 

6500 18.7 6665 336 0.45 0.03 8.40 0.42 8.74 0.44 
WOT 

5500 18.7 6657 334 0.46 0.03 8.70 0.44 8.38 0.42 

8500 5.2 8382 425 2.98 0.16 6.56 0.33 9.07 0.46 

7500 4.8 8176 411 2.42 0.12 7.01 0.35 8.94 0.45 

6500 7.1 7195 362 1.70 0.09 8.00 0.40 8.26 0.41 

5500 8.4 7040 356 1.84 0.10 8.03 0.41 8.08 0.41 

3/4 

4500 14.3 8023 405 1.09 0.06 7.50 0.38 9.52 0.48 

8500 8.4 7489 382 5.60 0.29 6.26 0.31 7.21 0.36 

7500 13.9 7563 382 5.29 0.27 6.50 0.32 7.20 0.36 

6500 8.6 6912 349 4.74 0.25 7.19 0.36 6.81 0.34 

5500 10.7 6433 326 4.83 0.25 7.38 0.37 6.36 0.32 

4500 8.4 7677 387 3.19 0.17 7.17 0.36 8.12 0.41 

1/2 

3500 15.8 7439 378 0.91 0.05 7.23 0.37 10.04 0.51 

8500 16.6 4291 216 7.43 0.38 7.47 0.38 3.91 0.20 

7500 15.5 4393 224 6.36 0.34 7.96 0.41 4.23 0.21 

6500 24.1 3753 192 4.99 0.27 8.20 0.42 5.15 0.26 

5500 38.1 4132 210 5.00 0.27 8.41 0.43 4.84 0.25 

4500 9.5 4639 235 2.54 0.14 8.14 0.41 7.40 0.38 

3500 17.0 5474 282 1.38 0.08 7.72 0.39 8.94 0.45 

1/4 

2500 41.5 5846 299 0.11 0.01 6.77 0.35 11.22 0.57 

Table 4.2:  Emissions data and associated uncertainties 
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Chapter 5:  Engine Simulation 

 

5.1  Configuration

An attempt was also made to simulate the 3W 100i-B2 engine using a custom 

written computer code based on MatLab software.  MatLab was utilized to solve the 

coupled set of ordinary differential equations (ODE’s) describing heat, mass, and 

momentum exchange within the cylinder and crankcase.  These equations are solved 

simultaneously and integrated over one engine cycle with respect to the crank angle. 

The equations that govern what is physically occurring inside the engine 

include the equation of state for an ideal gas, the first and second laws of 

thermodynamics, conservation of mass and energy, work output, and a forcing term 

which in this case is the change in cylinder volume as a function of time.  The 

equation of state for a perfect gas is given as: 

mRTPV = (Eq. 5.1) 

Where P, V, m, and T are the pressure, volume, mass, and temperature of the gas.  R

is the specific gas constant and has a value of 287 J/(kg-K) for air at standard 

atmospheric conditions.  The first law of thermodynamics relates the change in 

energy (dE) in the system (engine) to the amount of heat transferred (dQ) and the 

amount of work done (dW). 

dWdQdE −= (Eq. 5.2) 

The second law of thermodynamics states that processes must occur in a certain 

direction and that leads to the increase of entropy principle: 
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T
dQdS ≥ (Eq. 5.3) 

Where dS is the change in entropy, dQ is the net heat flux to the system, and T is the 

temperature of the system.  The net heat flux to the system (dQ) is equal to the heat 

input (Qin) minus the heat lost (Qout). 

outin QQdQ −= (Eq. 5.4) 

Conservation of mass states that any change in mass (dm) within the system must 

equal the amount of incoming mass (min) minus the amount of mass leaving the 

system (mout). 

outin mmdm −= (Eq. 5.5) 

The work output from the system is determined by multiplying the pressure and the 

change in volume: 

PdVdW = (Eq. 5.6) 

The complete system of equations in matrix form as shown in Figure 5.1 is solved 

simultaneously for both the cylinder and the crankcase. 
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Figure 5.1:  System of governing equations 
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The user specifies the engine dimensions, fuel and air parameters, 

environmental conditions, thermodynamic properties, and initial conditions inside the 

engine.  The program then outputs pressure, volume, temperature, charge mass, heat 

content, and internal energy as a function of the crank angle as well as a pressure-

volume (PV) diagram.  The indicated power of the engine can be calculated by 

integrating the PV curve to obtain the indicated work per cycle [32]: 

∫= pdVW ic, (Eq. 5.7) 

In this equation, p is the instantaneous pressure inside the cylinder and dV is the 

change in volume per crank angle degree.  Since the engine being tested has two 

cylinders and the program is setup to handle a single cylinder engine, the values 

calculated are for one cylinder while the indicated power is calculated by doubling 

the computed work.  The indicated power is given by the following equation: 

R

ic
i n

NW
P ,= (Eq. 5.8) 

Where N is the crankshaft rotational speed and nR is the number of crank revolutions 

per power stroke.  In this case, for a two-stroke engine, nR equals 1.  The indicated 

power differs from the brake power because it does not include the power required to 

overcome the effects of friction inside the engine due to the piston-cylinder 

interaction, bearings, etc. and the power needed to drive engine accessories.  For that 

reason, the indicated power is always greater than the brake power.  This can be seen 

from the following equation: 

fbi PPP += (Eq. 5.9) 
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Where Pi is the indicated power which is the power the engine would produce in an 

ideal situation where there is no friction or other power losses associated with 

operating the engine, Pb is the brake power which is the power that the engine makes 

in the ‘real world’ and what is measured on the dynamometer, and Pf is the power 

required to overcome friction.  The mechanical efficiency of the engine is given by: 

i

f

i

b
m P

P
P
P

−== 1η (Eq. 5.10) 

For the purposes of comparing the simulation’s predictions to the dynamometer 

measurements, the engine is assumed to have a 75% mechanical efficiency at WOT 

which is a reasonable value for this type of engine [32].  Based on this assumption 

and the brake power (9.32 Hp) obtained from experimental testing, the indicated 

power for this engine was calculated to be 12.43 Hp. 

5.2  Results

While the simulation results exhibited the correct trends, the magnitudes of 

torque, power, etc. predicted did not match experimental values.  Therefore, scaling 

factors were implemented so that the numerical results would resemble the 

performance of the actual engine.  In view of that fact, the intent here is not to predict 

the actual performance of the engine but rather to use the simulation to examine the 

effects of changing operating parameters on the engine’s performance. 

The simulation was used to run calculations corresponding to WOT at the 

engine’s maximum operating speed of 8500 RPM.  These calculations were 

performed to establish a set of values to be used as a baseline for comparison when 

the engine’s parameters are changed.  The parameters that are adjusted for this 
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particular simulation include, but are not limited to, the following:  transfer port 

timing and duration, exhaust port timing and duration, and ignition timing. An in-

depth analysis is used to discuss likely reasons for the increase or decrease in 

performance.  The analysis incorporates figures used to characterize the baseline case 

which include property values in both the cylinder and crankcase while the figures 

corresponding to modified cases display the properties in the cylinder. 

The results from the simulation, as seen if Figure 5.2, show that the effect on 

indicated power output due to the parameter variation is minimal suggesting the 

engine is quite optimized. 
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Figure 5.2:  Effect of parameter variations on indicated power 
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Delaying the time that the transfer port opens shows a negligible gain in 

power, while advancing the time results in a decrease in power output (~ 0.75 Hp).  

Advancing the exhaust port timing also decreased the power output, this time by a 

substantial amount (~ 2.5 Hp).  However, delaying the exhaust port timing resulted in 

a modest power gain (~1.5 Hp) signifying that it may be possible to increase the 

engine’s performance by shortening the length of time that the exhaust port is open.  

The simulation also indicates there is no potential gain in performance by advancing 

or delaying the ignition timing as each modification caused a slight decrease in power 

output. 

5.3  Baseline Analysis

Figure 5.3 shows the cylinder and crankcase volumes over the entire engine 

cycle as the piston moves from bottom dead center (BDC) at 180° to top dead center 

(TDC) at 360° and then back to BDC.  The figure shows that the program displays the 

correct values and behavior for the changes in volume with respect to the crank angle. 
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Figure 5.3: Cylinder and crankcase volume for 3W 100i-B2 
 

Figure 5.4 shows the pressure ratio as a function of crank angle.  The cylinder 

pressure increases during the compression stroke as the piston moves toward the top 

(TDC).  At 360° or TDC there is a large spike in pressure attributed to heat release 

due to combustion of the fuel/air mixture.  The combustion process is modeled as a 

linear heat release curve using the heating value and mass of the fuel in the cylinder.  

The exact duration of combustion in the engine is unknown so a 10° interval is 

assumed.  The pressure ratio attains a maximum value of roughly 49 at about 370° or 

10° after TDC assuming combustion has completed and then decreases with the 

expansion or power stroke. 
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Figure 5.4: Pressure ratio at WOT and engine speed of 8500 RPM 
 

Figure 5.5 shows the charge temperature as a function of crank angle.  As can 

be seen there is a slight increase in temperature as the piston moves toward TDC.  

This is due to the compression of the charge in the cylinder. At TDC, the temperature 

experiences a sharp increase due to the heat release from combustion.  After reaching 

a peak value of slightly over 2000 K, the temperature then decreases during 

expansion until the exhaust port opens at 460°.  After the port opens, the temperature 

decreases at a faster rate due to the gases escaping from the exhaust port. 
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Figure 5.5:  Temperature at WOT and engine speed of 8500 RPM 
 

The charge mass is shown in Figure 5.6.  At BDC, the charge mass decreases 

in the cylinder until the piston reaches 260°.  This is because the exhaust port is still 

open which allows a portion of the incoming charge mass to flow out of the cylinder 

along with the exhaust gases.  After 260°, the charge mass stays constant in the 

cylinder since both the transfer and exhaust ports are closed.  The mass remains 

constant until the exhaust port opens again at 460°.  The crankcase on the other hand, 

has an increase in charge mass from BDC to TDC.  This is because the upward 

motion of the piston increases the crankcase volume.  This lowers the pressure in the 

crankcase drawing air through the carburetor and a fresh charge into the crankcase.  

The charge stored in the crankcase compresses when the piston begins to move down 
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causing the intake valve to close.  When the transfer port opens at 480°, the 

pressurized fresh charge flows from the crankcase into the cylinder.   
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Figure 5.6:  Charge mass at WOT and engine speed of 8500 RPM 
 

Figure 5.7 and 5.8 show the enthalpy and internal energy inside the engine.  

Both plots show that as combustion occurs, there is a spike in both the enthalpy and 

internal energy associated with the fuel being burned. 
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Figure 5.7:  Enthalpy at WOT and engine speed of 8500 RPM 
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Figure 5.8:  Internal energy at WOT and engine speed of 8500 RPM 
 

Figure 5.9 is a PV diagram of the charge in the cylinder.  As stated earlier, the 

area enclosed by the curve represents the amount of work produced by the engine.  

The area divided by the time required to complete the cycle (proportional to engine 

speed) gives the indicated power. 
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Figure 5.9:  PV diagram for WOT and engine speed of 8500 RPM 
 

Figure 5.10 shows the power and torque curves for the engine at WOT 

predicted using the simulation.  The engine’s speed was varied and new values for 

power were calculated each time the program was run.  The torque values were then 

computed from the power and speed. The plot shows a linear increase in power from 

idle at 1500 RPM all the way up to the maximum operating speed of 8500 RPM.  

Meanwhile the torque remains fairly constant at approximately 7 to 7.5 lb-ft.  The 

largest power output of 12.43 Hp is shown to occur at the maximum operating speed. 
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Figure 5.10:  Power and torque curves at WOT 
 

5.4  Parameter Variation Analysis

The first parameter to be adjusted was the transfer port timing and duration.  

The timing of the port’s opening was advanced and delayed by 20° from its current 

point to effectively increase and decrease the length of time that the port is open.  As 

seen in Figure 5.11, the pressure is lower throughout the cycle when the transfer port 

is opened sooner and closed later (increased duration).  A possible explanation could 

be a reverse flow of the fresh charge into the crankcase since the transfer port closes 

after the compression stroke has started.  As the piston moves to TDC, the pressure in 

the cylinder becomes greater than the pressure in the crankcase causing some of the 
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fresh charge to flow back into the crankcase.  The longer the transfer port is held 

open, the greater the reverse flow is into the crankcase leaving a smaller amount of 

fresh charge in the cylinder for combustion. When the port duration is decreased, the 

pressure closely follows the baseline profile suggesting the current configuration is 

approximately optimum.   
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Figure 5.11:  Effect of transfer port opening duration on pressure ratio 
 

Figure 5.12 shows the effect of changing the timing and duration of the 

transfer port opening on the cylinder gas temperature.  The behavior is similar to the 

pressure: as the time increases in which the port is open, the temperature decreases 

slightly across the entire cycle.  Also note that since the transfer port opens earlier, 
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the temperature experiences a visible drop at 460° compared to the other profiles.  

This is probably due to the exhaust and transfer ports opening at the same time 

compared to the other configurations where the exhaust port opens before the 

transfer.  Having both ports open at the same time allows the hot exhaust gases to 

escape and the fresh charge which lowers the temperature in the cylinder at a faster 

rate.  On the other hand, a decrease in port duration does not have much of an effect 

on the temperature when compared with its current state. 
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Figure 5.12:  Effect of transfer port opening duration on temperature 
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Figure 5.13 shows the charge mass profiles for the different transfer port 

timing and durations.  Again, the effect of transfer port timing shows the same 

general trend as with the temperature and pressure plots. 
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Figure 5.13:  Effect of transfer port opening duration on charge mass 
 

Figure 5.14 shows PV diagrams for the different transfer port timings.  The 

area under each curve was integrated for each to compute the indicated power.  The 

indicated power decreased from the baseline estimate of 12.43 Hp to 11.66 Hp for the 

increased port duration, while decreasing the duration saw a very slight increase to 

12.48 Hp. 
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Figure 5.14:  PV diagram for different transfer port opening durations 
 

The next parameter to be adjusted was the exhaust port timing and duration.  

The timing of the port’s opening was also advanced and delayed by 20° from its 

current point to effectively increase and decrease the length of duration that the 

exhaust port is open.  As seen in Figure 5.15, the pressure profiles follow a similar 

pattern to when the transfer port was adjusted.  When the exhaust port duration is 

increased, the pressure ratio drops but if the duration is decreased then the peak 

pressure ratio increases. 
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Figure 5.15:  Effect of exhaust port opening duration on pressure ratio 
 

Figure 5.16 shows the cylinder gas temperature for varying exhaust port 

timing and duration.  Again, the pattern is similar to that seen in the temperature 

profiles when the transfer port was adjusted.  Increasing the time that the port is open 

lowers the temperature, while decreasing the port duration increases the temperature.  

The effect of changing the exhaust port timing is evident by examining the rate and 

time at which the temperature decreases during the expansion stroke.  The sooner the 

exhaust port is opened, the earlier the temperature starts to decrease.  It also increases 

the rate at which it decreases. 
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Figure 5.16:  Effect of exhaust port opening duration on temperature 
 

Figure 5.17 shows the effects on charge mass for varying lengths of exhaust 

port duration.  From the plot, it shows that the exhaust port timing has a stronger 

impact on the amount of mass available for combustion than the transfer port timing.  

Because the engine scavenges the exhaust gas with the fresh charge (the incoming 

fuel-air mixture is used to help push the exhaust gas out of the cylinder), a portion of 

the fresh charge will flow out the exhaust port along with the exhaust gas.  As the 

exhaust port is left open longer, it allows more fresh charge to flow out.  This ‘short 

circuiting’ lowers the amount of fresh charge mass left in the cylinder.   
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Figure 5.17:  Effect of exhaust port opening duration on charge mass 
 

Figure 5.18 shows PV diagrams for the different exhaust port timing and 

durations.  The area under each curve was integrated to find the indicated power.  The 

indicated power decreased from the baseline estimate of 12.43 Hp to 9.84 Hp for the 

increased port duration, while decreasing the duration saw an increase to 13.8 Hp.  

The exhaust port timing and duration seems to have a stronger influence on the 

engine’s performance than the transfer port timing and duration. 
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Figure 5.18:  PV diagram for different exhaust port durations 
 

The next parameter to be adjusted is the ignition timing which determines the 

starting point for the combustion process.  The ignition timing is advanced and 

retarded by 10° from the current angle of 360° or TDC.  Figure 5.19 shows the effects 

of changing the timing on the cylinder pressure.  By advancing the ignition, the 

pressure not only peaks earlier but also slightly higher at a ratio of approximately 52 

compared to the baseline ratio of 49.  When the ignition is retarded, the pressure 

drops to a ratio of approximately 41.  The temperature profiles behave similarly as 

shown in Figure 5.20.  As the ignition is advanced, the temperature peaks earlier and 

higher than in the baseline case, and is lower when the ignition timing is retarded.  

However, the change in temperature is relatively small, with approximately a 40 K 
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increase with advance and a 55 K decrease with retard in ignition with respect to the 

baseline peak temperature of approximately 2060 K. 
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Figure 5.19:  Effect of ignition timing on pressure ratio 
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Figure 5.20:  Effect of ignition timing on temperature 
 

Figure 5.21 shows that the change in charge mass with respect to crank angle 

is not affected by the ignition timing.  This makes sense because the charge mass 

should be mainly influenced by the port timing. 
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Figure 5.21:  Effect of ignition timing on charge mass 
 

Figure 5.22 shows PV diagrams for the different ignition timings.  The area 

under each curve is integrated to find the indicated power.  The results show that 

indicated power decreases with respect to the baseline value of 12.43 Hp for both 

cases.  With the ignition advanced, the decrease in power was slight (-0.05 Hp).  With 

the ignition retarded, the drop in power was somewhat larger (-0.47 Hp) but still close 

to the baseline indicated power.  The results indicate that ignition timing appears to 

be near the optimal value and that engine performance is not extremely sensitive to it. 
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Figure 5.22:  PV diagram for different ignition timing settings 
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Chapter 6:  Conclusion 

 

6.1  Experimental Measurement

A two-stroke gasoline engine presently powering a small, commercial UAV 

has been tested.  Although it was not possible to acquire data for all possible 

combinations of operating speed and throttle position, the primary portion of the 

performance curve where the engine normally operates in was obtained.  The 

maximum power output measured for the 3W 100i-B2 engine is 9.32 Hp at 8500 

RPM and this value matches the manufacturer’s claim for peak power within 0.2%.  

The overall efficiency of the engine is approximately 16% which is less than the 30% 

efficiency conventional-scale aero piston engines are able to achieve [39].  The 

reduced efficiency is in agreement with other experimental results obtained 

independently with smaller internal combustion engines [40].  The results also 

indicate that the dynamometer measurements are repeatable for separate runs and 

have an uncertainty for most test points of +/- 0.1 Hp and +/- 0.3% efficiency.  The 

exhaust gas signature (HC, CO, CO2, O2) was characterized with an emissions 

analyzer and is consistent with the performance observations.   

6.2  Computer Simulation

The engine was simulated using a MatLab code by specifying the engine 

dimensions and operating parameters.  While the simulation did not correctly predict 

the actual performance of the engine, it did provide some insight into methods for 
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enhancing the performance of the engine.   The simulation was scaled so that the 

power matched the indicated power calculated from the experimental testing, and the 

transfer port and exhaust port timing/duration and the ignition timing were varied in 

order to see what effect there was on engine performance.  The simulation indicates 

that the engine is reasonably well optimized but that it might be possible to gain 

additional power (~ 1.5 Hp) by decreasing the exhaust port duration.  This would 

shorten the exhaust blowdown phase on the power stroke and effectively capture 

more power from the expanding exhaust gases by keeping a higher pressure on the 

piston for a longer period of time.  Decreasing the exhaust port duration would also 

shorten the amount of time the port is open on the compression stroke allowing for a 

higher pressure to build in the cylinder to generate increased power. 

6.3  Future Work

Future testing on the engine in the short term could involve varying the 

air/fuel mixture to see what effect it has on performance.  At present time it is 

unknown whether the air/fuel ratio, which is currently set at the manufacturer’s 

recommended setting, is optimized for peak performance from the engine.  Longer 

term work might incorporate replacing the engine’s carburetor with a throttle body 

fuel injection system.  The amount of fuel lost due to scavenging is unknown but as 

with similar 2-stroke engines of this size, the trapping efficiency is fairly poor.  A 

throttle body would allow for more precise control over the amount of fuel being 

delivered to the cylinder and should result in increased efficiency.  At ¼ and ½ 

throttle operation where the air/fuel ratio is rich in the higher RPM range, it should be 

possible to increase the efficiency from approximately 16% to nearly 20% by 



80 
 

allowing the engine to operate at a stoichiometric ratio and thus consuming less fuel.  

As shown in the following equation, the amount of fuel decreases by about 18% since 

the engine is running at stoichiometric: 
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Where F/Astoich equals 0.068 and F/Aactual is approximately 0.083 for ¼ and ½ throttle 

settings at speeds above 5500 RPM. 

 Future engine simulation work would concentrate on predicting the actual 

performance of the engine without having to scale the results to match the 

experimental data.  Current limitations with the modeling used for heat release during 

combustion need to be corrected in order to obtain quantitative agreement with 

experimental data.  If accurate performance values can be calculated, the simulation 

would prove to be very useful as a guide for understanding what might occur when 

testing or modifying new engines. 
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