ABSTRACT

Title of dissertation: DETERMINISTIC ANNEALING FOR
CORRESPONDENCE, POSE, AND
RECOGNITION
Philip J. David, Doctor of Philosophy, 2006

Dissertation directed by: Dr. Daniel DeMenthon
Department of Computer Science

The problem of determining the pose - the position and orientation - of an ob-
ject given a model and an image of that object is a fundamental problem in computer
vision. Applications include object recognition, object tracking, site inspection and
updating, and autonomous navigation when scene models are available. The pose
of an object is readily determined given a few correspondences between features in
the image and features in the model. Conversely, corresponding model and image
features can easily be determined if the pose of the object is known. However, when
neither the pose nor the correspondences are known, the problem of determining
either is difficult due to the fact that a small change in an object’s pose can result
in a large change in its appearance. Most existing techniques approach this as a
combinatorial optimization problem in which the space of model-to-image feature
correspondence is searched in order to find object poses that are supported by large
numbers of image features. These approaches, however, are only practical when the
level of clutter and occlusion in the image is small, which is often not the case in

real-world environments.

This dissertation presents new algorithms that simultaneously determine the
pose and feature correspondences of 2D and 3D objects from images containing
large amounts of clutter and occlusion. Objects are modeled as sets of 2D or 3D
points or line segments, and image features consist of either points or line segments.
In each of the algorithms presented, deterministic annealing is used to convert a
discrete combinatorial optimization problem into a continuous one that is indexed
by a control parameter. This has two advantages. First, it allows solutions to
the simpler continuous problem to slowly transform into a solution to the discrete
problem. Secondly, many local minima are avoided by minimizing an objective
function that is highly smoothed during the early phases of the optimization but
which gradually transforms into the original objective function and constraints at
the end of the optimization. These algorithms perform well in experiments involving

highly cluttered synthetic and real imagery.

DETERMINISTIC ANNEALING FOR CORRESPONDENCE,
POSE, AND RECOGNITION

by

Philip J. David

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2006

Advisory Committee:
Professor Larry Davis, Chair
Professor Rama Chellappa
Dr. Daniel DeMenthon, Advisor
Professor Ramani Duraiswami
Professor David Jacobs
Professor Benjamin Kedem

(© Copyright by
Philip David
2006

ACKNOWLEDGMENTS

I owe special thanks to Daniel DeMenthon, my Ph.D. advisor. His guidance
and patience over the years have made this work possible. He provided encourage-
ment, many good ideas, and was a pleasure to work with.

I have been supported financially by the Army Research Laboratory. It is here
that I have been employed for the duration of my Ph.D. research. I thank Larry
Tokarcik, Barbara Broom, Thomas Mills, Jay Gowens, and all of Army Research
Laboratory management for believing in me and allowing me time away from my
normal job to perform this research.

I thank my wife, Andrea, and our three children, Collin, Brian, and Michelle,
for their constant love and encouragement which I have relied on throughout this
time. It is to them that I dedicate this work. Finally, I am forever indebted to my
parents for their love, patience, and encouragement.

Various parts of this dissertation have been published elsewhere [28, 29, 30,

31, 32, 33, 34, 39|.

il

TABLE OF CONTENTS

List of Figures

1 Introduction

1.1 Introduction
1.2 Overview e
1.3 Camera Models
1.4 Outline.

Related Work
2.1 Image Feature Detection
2.1.1 Point features Lo
2.1.2 Linefeatures,
2.2 Correspondence Estimation
2.3 Calculating Camera Pose from Point Correspondences
2.3.1 Perspective Cameras,
2.3.2 Approximate Cameras
2.4 Calculating Camera Pose from Line Correspondences
2.5 Object Recognition: Correspondence and Pose
2.5.1 Hypothesize-and-Test Approaches
2.5.1.1 Alignment Methods
2.5.1.2 Indexing Methods
2.5.1.3 Pose Clustering Methods
2.5.2 Continuation Methods
2.5.2.1 Deterministic Annealing
2.5.2.2 Graduated Assignmento
2.5.2.3 Expectation Maximization

The SoftPOSIT Algorithm

3.1 The POSIT Algorithm

3.2 Geometry and Objective Function

3.3 Pose from Unknown Point Correspondences
3.3.1 The Pose Problem
3.3.2 The Correspondence Problem
3.3.3 Solving for Pose and Correspondences Simultaneously
3.3.4 Improvements to the Sinkhorn Algorithm

3.4 Random Start SoftPOSIT
3.4.1 Generating Initial Guesses
3.4.2 Search Termination
3.4.3 Early Search Termination

3.5 Experiments with Point Data
3.5.1 Monte Carlo Evaluation
3.5.2 Algorithm Complexity
3.5.3 Run Time Comparison

iii

vi

15
17

19
20
20
24
29
33
34
40
44
20
23
23
61
66
71
72
75
81

3.5.4 Experiments with Images. 127

3.5.4.1 Autonomous Navigation Application 127

3.5.4.2 Robot Docking Application 130

4 SoftPOSIT for Line Endpoints 134
4.1 Geometry of Line Correspondences 134
4.2 Computing Pose and Correspondences 136
4.3 Distance Measureso 137
4.4 Experiments with Line Data 140
4.4.1 Simulated Images oL oL 140

442 Reallmages oo 141

5 SoftPOSIT for Lines 145
5.1 Camera Models o 145
5.2 Pose from Known Line Correspondences 147
5.3 Pose from Unknown Correspondences 149
5.3.1 Optimization with respect to Pose 150

5.3.2 Optimization with respect to Correspondence 154

5.3.3 Computing Pose and Correspondences 155

5.3.4 Alternate Distance Measures 156

5.4 Experiments 158
5.5 Conclusions 160

6 Recognition Using Local Line Neighborhoods 161
6.1 Overview e 161
6.2 Related Work 166
6.3 Line Detection 171
6.4 Generating Pose Hypotheses 174
6.5 Similarity of Line Neighborhoods 179
6.6 Distance Between Lines 182
6.7 Graduated Assignment for Lines 187
6.8 Experimentso e 194
6.9 Conclusions 205

7 View-Based 3D Object Recognition 207
8 Algorithm Comparison 212
8.1 Random Lines on a Sphere 215
8.2 Random Boxes 221
8.3 Conclusions e 226

9 Conclusions 228
A Complexity of RANSAC 233
B Scaled Orthographic Image Points 235

v

237
Bibliography

1.1

1.2

1.3

14

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

4.1

LIST OF FIGURES

Computing the pose of a camera in a hallway 3
Many-to-one and one-to-many feature correspondences 7
Example computation of Soft POSIT for a 15-point model 14
The pin-hole camera model 15
The geometry of line correspondences 46
Geometry of the POSIT algorithm 92
Examples of sinkhorn normalization 106
Comparison of the original and new Sinkhorn algorithms 107
Comparison of pseudo- and quasi-random generators 111
Probability densities for the restart test 116
Randomly generated models and images 119
Projected models and cluttered images 120
More projected models and cluttered images 121
Success rate versus number of model points. 122
Number of starts versus number of model points 123
The runtime of SoftPOSIT versus that of RANSAC 128
Runtime comparison, continued 129
Pose estimation using virtual reality images 130
A small robot docking onto a larger robot 131
Corners detected in the robot image 132
Pose estimation from the robot image 133
The geometry of line correspondences using endpoints 135

vi

4.2

4.3

5.1

5.2

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

7.1

8.1

8.2

8.3

8.4

Evolution of pose and correspondences

Pose estimation ina hallway

The geometry of line correspondences

Application of SoftPOSIT to a cluttered image

Recognizing booksinapile,
Steps of the line detection algorithm
Accuracy of the line detector
Geometry for calculation of the affine transformation
Example affine transformations
The neighborhood of aline
Sampling the position of model and image lines
Comparison of two objective functions
Example application of the pose refinement algorithm
Five booksinapile oo
Experimental setup for recognition of 2D objects
Probability of correct recognition
Recognition of 3D objects from 2D models

The view sets for 2D and 3D objects

View-based recognition of the robot

In- and out-of-image-plane rotations
Example of 3D objects with line segments on a sphere
Rates of recognition for objects constructed from lines on a sphere . .

Example of a 3D object constructed from random boxes

vii

8.5 Second example of a 3D object constructed from random boxes . . . 224

8.6 Rates of recognition for objects constructed from random boxes . . . 225

viii

N O Ot e

oo

10
11
12

LIST OF ALGORITHMS

Sinkhorn’s original algorithmo 0oL 78
Sinkhorn’s algorithm for nonsquare matrices 79
The graduated assignment algorithm 80
EM formulation of the graduated assignment algorithm 83
Outline of the SoftPOSIT algorithm 100
The SoftPOSIT algorithm 101
Sinkhorn’s algorithm modified to minimize weight shifting 104
SoftPOSIT for line endpoints 138
SoftPOSIT for lines 155
Outline of the 2D ranked pose hypotheses algorithm 165
The 2D pose refinement algorithm 196
The view-based 3D object recognition algorithm 210

X

Chapter 1
Introduction

1.1 Introduction

A central problem in computer vision, and one that has been studied for at
least 40 years [126], is that of determining the position (translation) and orientation
(rotation) of a 3D object given a single image of that object. The position and
orientation of the object with respect to the camera’s coordinate system is known
as the object’s pose. A 3D model of the object is assumed to be available for use
in this task. The model consists of a set of precisely known 3D features which,
in the work described here, are 3D points and 3D line segments. It is also as-
sumed that the projections of some of these 3D features can be located in an image
of the object. When the correspondences between the model features and image
features are known, algorithms for solving the pose estimation problem are rela-
tively straightforward and efficient. The problem of determining an object’s pose
when correspondences between model features and image features are not known
is much more difficult, and efficient solutions remain elusive. This later problem
is also known as the model-to-image registration problem or the simultaneous pose
and correspondence problem. This dissertation presents new algorithms for solving
the simultaneous pose and correspondence problem, and evaluates these algorithms

using real and simulated imagery.

There are many vision applications requiring automatic model-to-image reg-
istration. Some of these applications include the following. Object recognition [142]
is the process of identifying the image of an object with a particular model from a
database of models and determining the location in space of the object. This is a
basic capability needed by systems to intelligently interact with their environments.
Such systems may be found assembling parts in a factory, assisting visually impaired
people function in a world where much information is transmitted visually, or im-
proving the safety and effectiveness of soldiers by automatically detecting targets
on the battlefield. In object tracking [104], the 3D position of an object is tracked
throughout a sequence of images, allowing dynamic interaction with the object. Ap-
plications requiring object tracking include automotive parts assembly, autonomous
docking of vehicles, and augmented reality in which a participant’s head must be
tracked in order to provide a virtual environment that moves in sync with the par-
ticipant’s motion. In autonomous navigation |47, 143|, a robot is required to move
about an environment using a map of that environment to guide its movements.
Accurate localization is required for safe movement of the robot, and having an
accurate map is required to obtain accurate localization. Site inspection and map
building [43] is the process of comparing images of an environment to an existing
map of that environment, and then updating the map based on these images. De-
termining the correspondences between model and image features, and the poses of
objects, is a key step in many approaches for solving the above problems.

A model of an object is registered to an image of that object by determining

the pose of the model that allows the projections of the model features to align

ai

—
3

Figure 1.1: The left image shows straight lines automatically detected in an image
of a hallway by image processing algorithms. The right image shows a partial model
of the hallway projected into the image using a pose that aligns the image features
with projected model features.

with features detected in the image. Model features are projected into an image
using a mathematical model of the camera that produced the image along with
an estimate of the camera’s position relative to the scene object. Features in the
image are located with some accuracy that depends on the type of image feature
and on the image processing algorithms used to detect them. Not every model
feature will have a corresponding feature in the image: some model features may be
occluded by the object itself, some may be occluded by other objects in the scene,
and some model features, although they may be visible to the camera, may not be
detected in the image due to inadequate image processing algorithms. These same
image processing algorithms may also produce “clutter” features, which are image
features that don’t correspond to any model features. Figure 1.1 shows an image
of a hallway, the features detected in that image, and a 3D model projected onto
the image using a pose that aligns the corresponding model and image features. A

robot using vision to navigate this hallway would have to deal with data similar to

that shown in this figure. Although the presence of clutter and occlusion greatly
complicates the model-to-image registration problem, the ability to deal with it is
critical to any registration algorithm designed to work in the real world.

When one uses simple model and image features, such as points and lines,
many image features may appear to match equally well to many object features,
and some form of search will be required to determine the correct correspondences.
One advantage of using simple features is that they generally can be found even
in images of environments with little texture, such as the hallway image shown in
Figure 1.1. The use of more descriptive image and model features, such as local color
and texture features, can simplify the matching problem. However, these features
are not useful in certain environments. Consequently, we assume throughout this
work that our object models are 2D and 3D polyhedrals with features being 2D
and 3D points and line segments, and that the image features consist of 2D points
and line segments. 3D polyhedrals can be used to model many real-world objects of
interest, however curves must be approximated using multiple lines.

As mentioned above, object recognition is the process of identifying (or la-
beling) the parts of an image with labels of particular models from a database of
models, and determining the location in space of the identified models. A single
image may contain multiple instances of one or more models from the database. In
the work described here, we sometimes assume that there is exactly one model that
we want to locate in the image, and that the identity of this model is known. An
algorithm that can identify a single object in an image could be used for general
purpose object recognition by cycling through all possible objects that may appear

4

in the image until one is recognized.

Automatic registration of 3D models to images is a difficult problem because it
comprises two coupled problems, the correspondence problem and the pose problem,
each easy to solve only if the other has been solved first:

The correspondence problem. The correspondence problem is a fun-
damental problem in computer vision for which there is as yet no reliable solution.
Solving the correspondence problem consists of finding matching (corresponding) im-
age features and model features, subject to certain constraints. The most common
constraint is that sets of corresponding features must come from the same object. If
the object pose is known, one can relatively easily determine the matching features:
projecting the model in the known pose into the original image, one can identify
matches according to the model features that project sufficiently close to an image
feature. This approach is typically used for pose verification, which attempts to de-
termine how good a hypothesized pose is [61|. For models consisting of point or line
features, the image of any model feature will look like the image of any other model
feature; thus, when the object’s pose is unknown, any model feature may match to
any image feature. The correspondence problem is even more complicated, however,
due to uncertainties associated with the image features. These uncertainties include
errors in the locations of detected features (caused by noise in the image and imper-
fect image processing), occlusion of model features, and spurious features produced
by scene clutter.

The pose problem. Solving the pose (or exterior orientation [73]) prob-

lem consists of finding the rotation and translation of the object with respect to

a camera coordinate system. Given matching model and image features, one can
easily determine the pose that best aligns those matches. For three to five point
matches, the pose can be found in closed-form by solving sets of polynomial equa-
tions [49, 66, 72, 154]. For six or more point matches, linear and approximate
nonlinear methods are generally used [38, 48, 68, 73, 98|.

The classic approach to solving these coupled problems is the hypothesize-and-
test approach [59]. In this approach, a small set of image feature to model feature
correspondences are first hypothesized. Based on these correspondences, the pose of
the object is computed. Using this pose, the model points are back-projected into
the image. If the original and back-projected images are sufficiently similar, then the
pose is accepted; otherwise, a new hypothesis is formed and this process is repeated.
Perhaps the best known example of this approach is the RANSAC algorithm [49] for
the case that no information is available to constrain the correspondences of model
to image points. When three correspondences are used to determine a pose, a high
probability of success can be achieved by the RANSAC algorithm in O(n*m) time
when there are n image points and m model points (see Appendix A for details).

Another reason that the model-to-image registration problem is difficult is
that the dimension of the search space is very large. In general, the model-to-
image correspondence function is a many-to-many mapping: one model feature can
match to zero or more image features, and one image feature can match to zero
or more model features. Both of these cases are illustrated in Figure 1.2 for the
case of line features. When point features are used, one image point can match to
multiple model points (which all lie on a single line of sight), but each model point

6

T 7//*/‘
|

1 /

Figure 1.2: A model of a cube (left) and two possible images, (center and right),
where lines have been extracted. The center image was produced by a pose that
coincidentally aligned the images of two of the model lines; this illustrates the case
of many-to-one model-to-image line correspondences. The right image was produced
by a line detection algorithm that fragmented many of the image lines; this illustrates
the case of one-to-many model-to-image correspondences.

can match at most one image point. So, in the case of point features, the model-to-
image correspondence function is many-to-one. For a many-to-many correspondence
function when m model features are to be matched to n image features, there are mn
binary correspondence variables (with domain “match” or “no match”) that must be
determined. Although finite, the size of this correspondence space is still enormous
for large m and n: 2™, 3D pose space has 6 degrees of freedom (3 for rotation and
3 for translation), but it is continuous and infinite. Thus, the dimension of the full
search space is mn+ 6. Simplifying assumptions are often made to reduce the size of
this search space. For example, by assuming that coincidental alignments of image
lines, as shown in Figure 1.2, do not occur, the model-to-image correspondence
function becomes one-to-many, and the dimension of the search space is reduce to
n + 6. Assuming that the correspondence function is one-to-one does not further
reduce the dimension of the search space.

Most algorithms don’t explicitly search this mn+6 or n+6 dimensional space,

but instead assume that pose is determined by correspondences, or that correspon-

dences are determined by pose, and so search either an n-dimensional correspondence
space (one-to-many model-to-image matches), an m-dimensional correspondences
space (many-to-one model-to-image matches), or a 6-dimensional pose space. The
correspondence space is m- or n-dimensional and discrete while the pose space is
6-dimensional and continuous. There are trade-offs associated with performing the
search in ether of these spaces: search a large dimension finite space, or a smaller
dimension continuous space. The previously best published runtime complexities for
3D model-to-image registration using geometric features are at least O(mn?) [114]
or O(m?n?) [11, 12]. With m and n large, these are still too complex for real-time
operation on modern multi-giga-instruction per second processors.

More recently, the use of rich local feature descriptors has become popular as
a way of reducing the number of correspondences that must be examined. Ideally,
these features should be invariant to changes in illumination, scale, rotation in the
image, and small changes in viewing direction. Researchers attempt to make these
features highly distinctive, so that the number of possible correspondences to a
database of features should be very small. The Harris corner detector [69] was
one of the first distinctive image features used in pose and recognition algorithms;
however, it is not stable to changes in image scale, so it performs poorly when models
and images are of different scales. Schmid and Mohr [130]| developed a rotationally
invariant feature descriptor based on the Harris corner detector. Lowe [97] extended
this work to scale invariant and partially affine invariant features with his SIFT
approach, which uses scale-space methods to determine the location, scale, and

orientation of features, and then, relative to these parameters, a gradient orientation

histogram describing the local texture. Excellent results have been obtained by
approaches using these later rich features when objects have significant distinctive
texture. However, there are many common objects that possess too little distinctive
texture for these methods to be successful. Examples include building facades, thin
objects such as bicycles and ladders where background clutter will be present near
all object boundaries, and uniformly textured objects such as upholstered furniture.
Furthermore, in some vision applications, such as those that use CAD models for
navigation or recognition (see Figure 1.1, for example), the only model features
available to match to images are geometric features. Thus, in many applications,
only the relations between geometric features (such as points and edges) can be used
for matching and object recognition, while the use of rich local feature descriptors
will be of little value. The main goal of this research is therefore to develop efficient

algorithms for model-to-image registration using geometric features.

1.2 Overview

This dissertation develops a number of new algorithms for solving the model-
to-image registration problem. Point and line features are used for both the model
and the image; the model features are 3D and the image features, which are assumed
to have been generated by a perspective camera, are 2D. Our first new algorithm,
which we call SoftPOSIT, integrates an iterative pose estimation technique called
POSIT, developed by DeMenthon and Davis [38], and an iterative correspondence

assignment technique called the graduated assignment algorithm, developed by Gold

and Rangarajan [55, 56|, into a single iteration loop. A global objective function is
defined that captures the nature of the problem in terms of both pose and correspon-
dence and combines the formalisms of both iterative techniques. The correspondence
and the pose are determined simultaneously by applying a deterministic annealing
schedule and by minimizing this global objective function at each iteration step.
Each of the components of the Soft POSIT algorithm are briefly described below.

The POSIT (Pose from Orthography and Scaling with ITerations) algorithm
computes an object’s pose given a set of corresponding 2D image and 3D object
points. The algorithm operates by assuming that the given perspective image points
are close to the images that would be produced by a scaled orthographic camera,
which is an approximation to a perspective camera. Under this assumption, the
camera’s pose can be determined by solving a simple system of linear equations.
Because this assumption is only approximate, the computed pose will also be only
approximate. However, by reestimating the scaled orthographic image points us-
ing the newly estimated pose and repeating the process, the accuracy of the pose
can be improved. This process is repeated until the pose converges. The POSIT
algorithm is fast and, as will be shown below, can be adapted to handle the case of
noncorresponding image and object points.

The graduated assignment algorithm was originally applied to the problem of
graph matching [55], where one seeks a match matriz that defines the correspon-
dences between the nodes in two graphs. These two graphs are called the input and
model graphs; the input graph is a possibly corrupted (with missing and spurious
nodes and links) version of the model graph. The optimal match matrix is required

10

to minimizes an energy function that measures the compatibility of the correspond-
ing nodes and links in the two graphs. This algorithm was later adapted to the
problem of matching two 2D images or two 3D objects, where, in addition to a
match matrix, a linear geometric transformation between the input and model was
also sought |56]. SoftPOSIT is an extension of this algorithm to the more difficult
problem of registration between a 3D object and its perspective image, that [56] did
not address.

For an input graph with n nodes and a model graph with m nodes, the grad-
uated assignment algorithm uses an (n + 1) x (m + 1) binary-valued match matriz
M to represent the matches between nodes in these two graphs. A value of 1 at
M;; represents a match between input node ¢ and model node j. The (n + 1)* row
and (m + 1)* column of M are the slack row and column, respectively, which are
used to account for missing and spurious nodes in the input graph. The process of
matching the input to the model is based on three ideas: graduated nonconvexity,
softassign, and sparsity.

The method of graduated nonconvezity (also known as deterministic annealing
or the continuation method) transforms the discrete search space (for a binary match
matrix) into a continuous search space. The continuous analog of the match matrix
is called the assignment matriz. The continuous space is indexed by a control
parameter that determines the fuzziness of the optimal assignment matrix, and hence
the amount of smoothing implicitly applied to the energy function. The assignment
matrix minimizing the energy function is tracked as this control parameter is slowly
adjusted to force the continuous assignment matrix closer and closer to a binary

11

match matrix. The result is that many poor local minima can be avoided.

Softassign is the process that maps an approximate assignment matrix into a
doubly stochastic assignment matrix. All rows and columns of a doubly stochastic
matriz sum to one, so that the matrix represents a probability function for the
correspondences between input and model nodes. At the end of the graduated
nonconvexity process, when the assignment matrix must be a binary match matrix,
this constraint forces each input node to match at most one model node, and each
model node to match at most one input node. The Sinkhorn algorithm [135|, which
consists of alternating row and column normalizations, is used to ensure that the
doubly stochastic constraint is satisfied. Previously, Rangarajan and Mjolsness [124]
satisfied this constraint in a deterministic annealing framework by integrating the
constraint equations into the energy function using Lagrange multipliers and then
applying a gradient descent optimization algorithm. The Sinkhorn algorithm is a
much more efficient alternative to using Lagrange multipliers, and as shown in [56],
the two methods give identical assignment matrices.

The use of the graduated assignment algorithm for matching problems is moti-
vated by the following. First, the softassign algorithm efficiently enforces the doubly
stochastic constraint on the assignment matrix. Second, the deterministic annealing
process allows poor local minima to be avoided. Third, the algorithm handles spu-
rious and missing data through the use of slack rows and columns in the assignment
matrix. Finally, the approach can be adapted to simultaneously solve for certain
geometric transformations between the data and model.

The main advantage of the Soft POSIT algorithm over other algorithms that

12

register perspective images to 3D models is its efficiency — it combines two algorithms
that each have low computational complexity. Its other advantage is its use of
deterministic annealing to avoid many local optima. Getting trapped in local optima
is a problem that plagues all optimization algorithms. Soft POSIT avoids many local
optima by minimizing an objective function that is highly smoothed during the early
phases of the optimization but which gradually transforms into the original objective
function and constraints at the end of the optimization.

Figure 1.3 shows an example computation of Soft POSIT for a model with 15
points. Notice that it would be impossible to make hard correspondence decisions
for the initial pose (frame 1) where the model image does not match the actual
image at all. The deterministic annealing mechanism keeps all the options open
until the two images are almost aligned.

The SoftPOSIT algorithm described above matches 2D image points and line
segments to 3D model points and line segments. Theses simple geometric features
provide no means to prune correspondences from a search because, when viewed in
isolation, an image point or line segment can be a perfect image of any model point
or line segment, respectively. However, when groups of nearby geometric features are
viewed as a single entity, their appearances become much more distinctive. Shape
contexts are feature vectors that describe the shapes of geometric entities in local
regions of the image [107]; these can be generated even for sets of simple geometric
point and line features. We apply shape contexts to line features for correspondence
recovery and shape-based 2D object recognition. In doing so, the number of cor-
respondences that are examined is drastically reduced, and a correspondence of a

13

® B,
° 3 e
s %{’ el
@
— - o - R
[o I o
o i]
i - o 5 © °
a =3
) o
1 2
2] 2]

Figure 1.3: Evolution of perspective projections for a 15-point object (solid lines)
being aligned by the SoftPOSIT algorithm to an image (dashed lines) with one
occluded point and two clutter points. The iteration step of the algorithm is shown
under each frame.

14

world frame

Xw

C image plane

cameraframe

Figure 1.4: Using a pin-hole camera model, the perspective projection of world point
P; is the image point p;.

single image and model shape context provides a good initial estimate of the ob-
ject’s pose when the correspondence is correct. This initial 2D pose estimate is then
refined using a deterministic annealing algorithm, and then this refined 2D pose is
used to initialize a 3D pose refinement algorithm for full 3D object recognition. This

multi-stage algorithm is described in Chapters 6 and 7

1.3 Camera Models

Let P; be a 3D point in a world coordinate frame with origin O (see Figure 1.4).
If a camera placed in this world frame is used to view P;, then the coordinates of
this point in the camera frame may be written as RP; + T. Here, R is a 3 x 3
rotation matrix representing the orientation of the camera frame with respect to the

world frame, and the translation T is the vector from the camera center C to O,

15

expressed in the camera frame. Let the k0 vow of R be denoted by Ry and let the
translation be T = (1,7, T;)".

We use the standard pinhole camera model for perspective projection and
assume that the camera is calibrated with unit focal length, so that pixel coordinates
can be replaced by normalized image coordinates. Then, the perspective image of a
3D point P; in the world frame is p; = (z;, y;) where

xT; = y, = M (1.1)
sPi + 7T, RsP; + T,

The weak perspective (or scaled orthographic) projection model makes the as-
sumptions that the depth of the viewed object is small compared to the distance of
the object from the camera, and that the object is close to the optical axis. Because
R; is a unit vector in the world coordinate frame that is parallel to the camera’s
optical axis, under the weak perspective assumptions the distance of object points
from the camera center, C, may be approximated by a constant: RsP; + T, is ap-
proximately constant for all 7. This implies that R3P; is approximately constant
for all 7. In the following, to simplify the equations, we assume without loss of gen-
erality, that R3P; ~ 0 whenever the weak perspective assumptions are true. This is
easily satisfied by placing the origin of the world coordinate at the centroid of the
object points. The weak perspective image of a 3D point P; in the world frame is

then p¥ = (2}, y%) where

16

Thus, the weak perspective image of any point is its orthographic projection divided
by the scale factor 7),, hence the name “scaled orthographic projection.” When the
above assumptions are accurate, the weak perspective image of a scene point is an
accurate approximation to its perspective image.

As seen in Equation (1.1), the perspective image and camera coordinates of
a scene point are related by nonlinear equations. The weak perspective projection
model has the advantage that the image and camera coordinates of a scene point
are related by linear equations (Eq. (1.2)). For this reason, the weak perspective
projection model is often used in order to simplify numerical algorithms. However,
indiscriminate use of this approximation when it is not accurate can lead to poor pose
estimates. We use the weak perspective camera model in the iterative SoftPOSIT
algorithm in such a way that this model becomes more accurate as the algorithm

converges to correct solutions.

1.4 OQutline

The rest of this dissertation is organized as follows. Chapter 2 describes pre-
vious work by other authors related to the model-to-image registration problem.
Chapter 3 then presents the Soft POSIT algorithm that uses deterministic annealing
to simultaneously determine the pose of a 3D model of point features and their cor-
respondences to feature points in an image. The algorithm combines the iterative
graduated assignment algorithm [55, 56| for computing correspondences and the

iterative POSIT algorithm [38] for computing object pose under a full-perspective

17

camera model. This algorithm, unlike most previous algorithms for pose deter-
mination, does not have to hypothesize small sets of matches and then verify the
positions of the remaining image features. Instead, all possible matches are treated
identically throughout the search for an optimal pose. The SoftPOSIT algorithm
is then extended in Chapters 4 and 5 to two different algorithms for the case of
matching 3D line segments in the model to 2D line segments in the image. Next, in
Chapter 6, a multi-stage algorithm is presented that first uses shape contexts to rank
affine pose hypotheses and then applies deterministic annealing to refine these poses
to determine more accurate pose and correspondences of the 2D objects. This 2D
algorithm is extended into a view-based object recognition algorithm for 3D objects
in Chapter 7. Experimental results of applying these algorithms to highly cluttered
synthetic and real imagery appear in the chapters where each algorithm is described;
in general, good performance is obtained on some very difficult data. Additionally,
Chapter 8 compares the performance of the three line-based recognition algorithms
on identical data. Finally, the dissertation concludes in Chapter 9 with an summary

of the results and contributions of this work.

18

Chapter 2

Related Work

A large body of previous work is related to the problem of determining the
pose and correspondences of objects. This work dates back at least 40 years [126].
This chapter attempts to give an overview of this work. In order to perform feature-
based pose and correspondence estimation, features must first be detected in images;
this subject is discussed in Section 2.1. Next, Section 2.2 describes methods for
estimating correspondences of point and line features in the absence of information
regarding object geometry. Sections 2.3 and 2.4 discuss methods for computing
the pose of an object (or equivalently, the camera) when it is assumed that the
image-to-model feature correspondences (points and lines, respectively) are known;
some of these techniques will be employed in algorithms described in later chapters
of this dissertation. Methods for object recognition, that is, computing the pose
and correspondences of objects when neither pose nor correspondences are known
in advance, are discussed in Section 2.5. Finally, because the graduated assignment
algorithm is a key component of the new algorithms presented in this dissertation,

it is discussed in detail in Section 2.5.2.2.

19

2.1 TImage Feature Detection

Image features may be global, describing an entire image, or local, describing
only a small region of an image. For the application of pose estimation, local features
are more appropriate as their correspondences to a set of model features allows an
accurate calculation of an object’s pose. A variety of local features may be used for
this purpose, including points, lines, regions, as well as higher-dimensional features.
Corners are generally defined as 2D point features where there is high greylevel
variation in two orthogonal directions. In contrast, edges are locations that have high
greylevel variation in one direction, with low variation in the orthogonal direction.
The biggest problem with image feature detection is the lack of consistent detection

of features from one image to the next.

2.1.1 Point features

Point features in images are generally located using local interest operators,
which select pixels that are good candidates for matching between two images. These
operators use gradient, color, texture, and other local properties. One of the most
widely used operators was the Moravec interest operator [106], which measures how
distinct a region of the image is from its surroundings. Interest operators may be
useful in model-to-image registration when there is reason to believe that interest
points in the image are likely to correspond to some features in models. This may
be the case for corner detectors: corners in an image may correspond to junctions

of model edges. Consequently, a number of corner detectors are reviewed below.

20

The Harris corner detector [69] is a popular method for locating corners in
images. If an input image [is very noisy, it should first be smoothed by convolving
it with a Gaussian. Then, at every point in I, the derivatives I, and I,y are computed.

The local structure matrix at a point is defined as

2L,

T

S
I

LI, I

This matrix is positive semidefinite, so its two eigenvalues will be nonnegative. In
general, the eigenvectors of this matrix encode the edge directions, and the eigen-
values encode the edge magnitudes. At a uniform region in the image, the two
eigenvalues of M will be equal to zero. For a perfect step edge, one eigenvalue will
be large (with the associated eigenvector being orthogonal to the edge), and the
other eigenvalue will be equal to zero. For a corner, both eigenvalues will be large.
Thus, corners can be identified as points in the image where the smaller of the two
eigenvalues is greater than some threshold. Usually, nonmaximal eigenvalues are
suppressed over local windows in the image, so that at most one corner is detected
in any small window. The two eigenvalues don’t actually need to be computed:
their ratio can be determined from the determinant and trace of the matrix M. The
corner response function is defined as R = det(M) — & (trace(M))* where = 0.04.
A corner is then detected at a pixel (z,y) when R(z,y) > 7 for some threshold 7.
The Harris corner detector is very sensitive to image scale, so it’s not good for

use in matching image features when the same feature may have to be located at

21

a different scale in each image. The Harris corner detector is closely related to the
Kanade-Lucas-Tomasi (KLT) feature detector [145]. The main difference is that the
KLT feature detector applies a threshold directly to the smallest eigenvalue, while
the Harris corner detector applies a threshold to the corner response function.

The SUSAN detector [136] is an approach to edge and corner detection, and to
structure preserving noise reduction. SUSAN stands for Smallest Univalue Segment
Assimilating Nucleus. Unlike many other feature detectors, the SUSAN detectors
are nonlinear operators. Each image pixel has associated with it a local similarity
region of pixels (within some circular window) that have brightness values similar to
that of the center pixel. From the area, centroid, and second moment of these local
similarity regions, two dimensional features and edges are detected. This approach to
feature detection does not require the computation of image derivatives or smoothing
for noise reduction; for this reason, it performs well in the presence of noise provided
the noise is below the similarity threshold.

The area of a local similarity region is at a maximum when the center lies
in a flat region of the image surface. It falls to half of this maximum very near
a straight edge and falls even further when inside a corner. This property of a
local similarity region’s area is the main indicator of the presence of the edges and
two-dimensional features. An image that is processed to give as output 1/area has
edges and corner features strongly enhanced with the corner features more strongly
enhanced than edges. The authors claim that the strength of this feature detector
is that its parameters are much simpler and less arbitrary, and therefore easier to
automate, than those for other feature detection algorithms.

22

Lowe [97] developed the Scale-Invariant Feature Transform (SIFT) method to
locate distinctive image features that are invariant to changes in scale and rotation
in the image plane, and partially invariant to changes in 3D viewpoint. These may
be used for 2D object recognition, or 3D object recognition when multiple views of
the object are trained in advance.

The features are created as follows. First, a scale-space representation of the
image is created as a pyramid of difference of Gaussians at different scales convolved
with the input image. The difference of Gaussian is a good approximation to the
Laplacian of Gaussian, which gives the second derivative of a Gaussian-smoothed
image. Zero crossings in the Laplacian will occur where the gradient magnitude is
maximal in the original image. This scale space is searched to find image features
whose locations are invariant to changes in scale. These features will be at local
maxima and minima in the 3D scale space (2D position and scale). The precise
location and scale are found by fitting a 3D quadratic function to the 3D scale
space. The eigenvalues of the Hessian matrix are used to eliminate features that
have large derivatives in only one direction. This scale determines the scale at which
all subsequent computations occur. The orientation of a feature is assigned the
dominant orientation from the gradient orientations of all points in a local window
around the feature. Multiple features are assigned to the same point if there are
multiple dominant orientations at that point. All subsequent computations are
performed relative to this orientation. This location, scale, and orientation forms
a local coordinate system in which to describe the local image region, thus making

the feature vector scale and orientation invariant.

23

The feature vector for each feature point is a 4 x 4 array of gradient orientation
histograms, where each histogram is computed from a 4 x 4 region of pixels in the
neighborhood of the feature point. Each histogram is quantized into 8 possible
directions, and the magnitude of each directional bin is the sum of the magnitudes
of points with the given direction weighted by the distance of the point from the
center of the window. This produces a 4x4x8 = 128 element feature vector. Finally,

the feature vector is normalized to reduce the effects of illumination changes.

2.1.2 Line features

Edges may be defined as local discontinuities in intensity (or some other image
feature such as texture), and lines may be defined as collections of contiguous edges.
Straight lines are collinear and contiguous edges. Line detection is difficult for
a number of reasons: usually, the extent of local operators are small relative to
features they are designed to detect; image data usually deviates from an ideal
model of the events being detected; and, the discrete and quantized nature of images
causes aliasing. Line detectors are subject to the following types of errors: false lines
detected on low-magnitude gradients, curved lines being approximated as straight
lines, and multiple lines erroneously being grouped into a single line. The following
approaches to line detection attempt to deal with these issues.

Canny [21] addresses the problem of detecting edges in noisy images. He gives
an analytical derivation of an “optimal” edge detector. The main contribution of this

paper is that it combines several useful methods into a practical algorithm. Canny

24

formalizes the edge detection problem as a constrained optimization problem. The

constraints that he optimizes are the following:

1. Achieve low error rate: minimize the probability of type I error (missing a true
edge point) and the probability of type II error (incorrectly marking a nonedge
point as an edge). This can be accomplished by maximizing the signal-to-noise

ratio of the detector output.

2. Achieve good localization: the detected point should be as close to the center
of the true edge as possible. The reciprocal of the standard deviation of the

edge location error is maximized.

3. Minimize the number of responses to a single edge: This is implicit in the first
constraint, but it’s made explicit here. This is achieved by forcing the distance
between peaks in the noise response of the detector to approximate the width

of the detectors response to a single step edge.

Through a complicated analysis of 2D continuous step edges, Canny derived a de-
tector that is the sum of four exponential terms. This function, however, is very
similar to the first derivative of a Gaussian, so this is what he implemented.

The Canny edge detector first smooths the image with a 2D Gaussian to reduce
the effects of noise. It then computes the image gradient to locate pixels with high
spatial derivatives. The gradient magnitude and direction at each pixel is computed
from derivatives in the x and y directions. These derivatives are estimated by finite

differences. The algorithm then performs nonmaximal suppression: any pixel whose

25

gradient magnitude is not maximal along its gradient direction is suppressed. The
gradient array is then further reduced by hysteresis thresholding where a high and
low threshold is used: pixels whose gradient magnitude exceed the high threshold
are accepted as edge points; pixels whose gradient magnitude is lower than the low
threshold are rejected; and, pixels whose gradient magnitude is between the two
thresholds are accepted only if there is a path consisting only of pixels above the
low threshold that connects to a pixel above the high threshold. In other words,
each “weak” edge point must be connected to a “strong” edge point by other edge
points (weak or strong).

The gradient of a Gaussian filtered image could be computed in one step by
convolving the image with the derivative of a Gaussian. This is a first-order detector:
edges will occur at peaks in the detector response. A second-order detector would
compute the second derivative of the Gaussian filtered image, or would convolve the
image with a Laplacian of Gaussian, which is approximately a rotationally-invariant
second derivative of a Gaussian. The second derivative operator locates edges at
zero crossings in its output; peaks in the first derivative correspond to zero crossings
in the second derivative. The Laplacian of Gaussian filter can be approximated by
filtering with the difference of two Gaussians.

Once edge points are detected in an image, these must be clustered into straight
lines. The Hough Transform |77, 44] is a popular approach for line detection from
binary edge images. The most common form of the Hough Transform uses a (6, p)
parameterization of line space. In this case, the equation of a straight line is rep-
resented by the equation x cos@ + ysinf = p. With this, each edge point (z,y) is

26

transformed into a sinusoidal curve. Curves corresponding to collinear image points
will have a common point of intersection in (6, p)-space. A discrete accumulator
array is formed and for each point (z,y), all cells in the accumulator array along
it’s (0, p)-curve are incremented. After processing all edge points in the image, ac-
cumulator cells with high counts are identified as corresponding to nearly collinear
subsets of edge points, i.e., long, straight lines. This algorithm is very sensitive to
the quantization of § and p. With finer quantization, better resolution is obtained
at the expense of more computation, however some lines may then be spread over
two or more separate bins. With coarser quantization, the method may find lines
corresponding to unrelated groups of collinear image points.

The Burns et. al. line detector [16] is an approach to extracting straight lines
from intensity images. A goal of their approach is to be able to detect lines of
arbitrarily low contrast. The general approach to is group pixels into line-support
regions on the basis of gradient orientation, and then to extract a straight line
segment from each region. This process can be broken down into the following four

steps:

1. Two small 2 x 2 masks are first used to compute the gradient magnitude and
orientation. Each pixel votes for one of two possible quantized orientations
closest to the gradient orientation of that pixel. Each quantized orientation
determines a set of contiguous pixels of similar orientation; these are called
line-support regions. A pixel votes for the orientation (line-support region)

that provides the longest line through that pixel. The line-support regions

27

with a majority of votes are selected, and their supporting pixels are given
common labels. Every pixel in the image is given the label of one line-support
region; many of these support regions will be very small, corresponding to

lines possibly caused by image noise.

2. For each candidate line support region, a planar surface is fit to the greylevel
values of the associated pixels. The location of the line is then determined by
the intersection of this plane with a horizontal plane whose height is set to the

average intensity of the pixels in that support region.

3. Extract attributes of each line using pixels in the line-support regions: con-

trast, steepness, width, straightness

4. Lines are filtered according to the application requirements. Lines may be

filtered based on length and steepness to remove lines due to noise and clutter.

Lowe [95] extracts straight lines from binary edge images using a recursive subdivi-
sion algorithm. Binary edge points are first linked together into contours by tracking
adjacent edge points. When a junction is encountered along an edge contour, one
of the branches is arbitrarily selected to continue the contour; the other branch is
eventually processed as a separate edge. Each edge contour is then recursively sub-
divided at the point of maximum deviation from a line connecting its endpoints.
This process is repeated until each segment is no more than four pixels in length.
Then, adjacent segments are merged into a single segment whenever the length-
to-deviation ratio of the merged segment is greater than that of either unmerged
segment.

28

2.2 Correspondence Estimation

The problem of determining the correspondences between the features in two
images, or an image and a 2D or 3D model, is very difficult with many applications
in computer vision and image analysis. When features are being matched between
two images, one with m features and the other with n features, some sort of feature
correlation or similarity measure (e.g., [15, 97]) may be used to reduce the mn possi-
ble correspondences to a much smaller number of likely correspondences. However,
when one of the images is replaced by a geometric model described only by points
or lines, this is no longer possible because any point or edge in the model can look
like any point or line in the image. In this case, all mn correspondences must be
considered, and global geometric constraints must be used to separate the correct
from incorrect correspondences.

In combinatorial optimization problems, an energy (or cost) function is defined
in terms of finite set of discrete variables and the goal is to find a state of those
variables that minimizes the energy function [63]. The correspondence problem is
a combinatorial optimization problem: correspondences between n image features
and m model features can be described by an n x m binary matrix; there are
mn binary-valued variables. A variety of general-purpose methods exist to solve
combinatorial optimization problems. These include exhaustive search, dynamic
programming, steepest descent, linear programming, branch-and-bound, simulated
annealing, genetic algorithms, and neural networks, among others [63|. For complex

problems, where the search space grows exponentially with the size of the input,

29

algorithms that are guaranteed to find an optimal solution will require impractical
run times. For the class of NP-complete problems, all known algorithms that are
guaranteed to find an optimal solution require a runtime that increases exponentially
in the size of the input [116]. In these cases, heuristics may be used to reduce the
size of the space actually searched, but this is done at the expense of no longer being
able to guarantee an optimal solution: these heuristic algorithms are easily trapped
in suboptimal local minima.

Ullman [151] stated that a good global correspondence (i.e., for all features)
between two sets of features could be obtained by satisfying the following three local

criteria:

1. The similarity principle requires that corresponding features should have sim-

ilar appearance.

2. The exclusion principle requires that the mapping between the two sets should

be one-to-one.

3. The proximity principle says that, all other factors being equal, the smaller

the distance between two features, the greater the preference for that match.

These principles are valid provided that the two sets of features were observed by
cameras close in pose. A number of authors have developed methods which, given
an initial correspondence (or match) matrix (as defined on page 11), maps this
into a new matrix that better satisfies Ullman’s three principles. Because the use

of correspondence matrices is integral to the 3D and 2D recognition algorithms

30

presented in later chapters of this dissertation, a number of approaches for refining
correspondence matrices are reviewed below.

Scott and Longuet-Higgins [132] present a method for determining the corre-
spondences between two 2D point patterns of different sizes where the only features
of the patterns are the positions of the points. The method uses properties of the
singular value decomposition (SVD) to satisfy the exclusion and proximity principles
set forth by Ullman. Because all points have identical appearance, the similarity
criteria is not considered. The algorithm first builds a proximity matrix G' be-
tween the two sets of points. It then computes the singular value decomposition
of G = VDU". Next, the diagonal matrix D is mapped to a new matrix D' by
replacing every diagonal element with a 1. The matrix P = VD'UT is similar to
G but it has the property that good matches are accentuated and bad matches are
attenuated. Feature 7 is put into correspondence with feature j if P;; is the largest
element in both its row and column. The exclusion principle is satisfied because P
is orthogonal and the sum of squares of the values in each row of P equal to one.
The proximity principle is satisfied because P produces a minimum squared distance
mapping, as witnessed by the fact that the trace of PTG is maximized. Pilu [119]
has extended this method by implementing a correlation-weighted proximity matrix
in place of G.

Shapiro and Brady [133] present a method to determine correspondences be-
tween two patterns of 2D points that have undergone a 2D similarity transformation.
Unlike the Scott and Longuet-Higgins algorithm [132], the Shapiro and Brady algo-

rithm accounts for the structural relationships between the features in an image. In

31

this algorithm, each feature is mapped into a higher dimensional feature space so
that each feature “has knowledge” of its local surrounding features. The algorithm
first analyzes the shape of each pattern to generate its modes. Modes encode the
shape of a point pattern based on the inter-point (within a single image) distances.
A matrix H of inter-point distances is computed for each image. From the singular
value decomposition H = VDV, the eigenvalues of H are computed; these are the
modes of the corresponding image. The columns of V' are its eigenvectors. The jth
row of V' gives the coordinates of the ith feature with respect to modal basis vectors.
To compare images with m and n features, respectively, only the first min{m,n}
components of each feature vector are kept. When the shapes of two images are
similar, features from the two images with the same local shapes will have simi-
lar modal features. The initial correspondence matrix between the two images is
now based on the Euclidean distances between the corresponding feature vectors.
This matrix replaces the initial proximity matrix in the Scott and Longuet-Higgins
algorithm.

Gold and Rangarajan [55] developed the softassign algorithm that maps a
distance matrix into a doubly stochastic assignment matrix. All rows and columns
of a doubly stochastic matriz sum to one, so that the assignment matrix represents
a probability function for the correspondences between the two sets of features. The
assignment matrix is first initialized using an exponential function of the distances
between corresponding feature points. Then, the Sinkhorn algorithm [135], which
consists of alternating row and column normalizations, is used to ensure that the

doubly stochastic constraint is satisfied. In [56], the authors show that iterated row

32

and column normalization used in softassign produces the same results as would be
obtain in solving the equivalent constrained optimization problem with Lagrange
multipliers. The softassign algorithm is a component of the algorithms presented in

later chapters of this dissertation and is describe in more detail in Chapter 3.

2.3 Calculating Camera Pose from Point Correspondences

Photogrammetry [102] is the calculation of lengths and angles from measure-
ments made using one or more images. It involves determining the position and ori-
entation of cameras and objects in a scene. Classical photogrammetry is concerned
with obtaining accurate measurements from noncontact imaging. The discipline of
computer vision is related to photogrammetry, but is also concerned with the speed
and robustness of the reconstructions, for use in real-time systems. There are four
main problems in photogrammetry: absolute orientation, relative orientation, ex-
terior orientation, and interior orientation [73]. The absolute orientation problem
is to determine the position and orientation relating two sets of corresponding 3D
points. The relative orientation (or structure from motion) problem is to determine
the relative position and orientation of two cameras viewing a common scene given
corresponding 2D image points. The exterior orientation (or perspective-n-point,
or pose estimation) problem is the problem of determining the position and ori-
entation (translation and rotation, respectively) of a camera relative to an object
given correspondences between a set of 3D object features and a set of 2D image

features observed by the camera. Finally, the interior orientation (or camera cali-

33

bration) problem is that of determining the internal parameters of a camera (e.g.,
focal length, image center, skew, etc.) from images obtained from the camera. In
order to determine an object’s pose, the internal parameters of the camera must be
known or computed. Sometimes, camera calibration and object pose are combined
into one problem and solved simultaneously (e.g., [148|). We assume throughout
this dissertation that the camera internal parameters are known, so that only the
position and orientation of the camera needs to be determined.

In this and the next section, we discuss approaches for solving the exterior
orientation problem, since solving the simultaneous pose and correspondence prob-
lem will require solving exterior orientation. This section discusses methods that
use point features, and the next section those that use line features. The methods
for point features are divided into two groups: those that use a perspective camera

model, and those that use simpler approximate camera models.

2.3.1 Perspective Cameras

The pose of a camera has six degrees of freedom, three for rotation and three
for translation. The most common geometric camera model is the perspective or
pinhole camera [51]. In this model, scene points project along straight rays through
a single point O (the pinhole, or center of projection) onto a planar image that’s
perpendicular to the camera’s optical axis and a distance f (the focal length) from
O. The point on the image plane at which the camera’s optical axis intersects

the image plane is known as the principal point of the image, and for the pinhole

34

camera model, coincides with the center of the image. Under this model, a scene

point (X,Y, Z) projects to an image point (z,y) according to the equation

]
Il
kh
N

(2.1)

<
I

~

N[~

The pinhole camera model may be used with cameras that don’t exactly fit the above
model (because of image plane skew, an offset principal point, or lens distortion) by
determining the internal parameters of the camera [148] and then transforming the
image according to these parameters so that it appears to have come from a true
pinhole camera.

As shown in Equation (2.1), each point correspondence provides two con-
straints on camera pose. Thus a minimum of three correspondences are necessary
to determine pose. However, in many cases with a small number of correspondences,
the solution is not unique [49, 72]. With three correspondences, there can be up to
four real solutions corresponding to object points in front of the camera, and up to
four false solutions corresponding to object points behind the camera. There is a
unique solution when using four correspondences to coplanar object points. Four
or five correspondences with object points in general position (noncoplanar) admits
up to two real solutions. Finally, six or more correspondences in general position
always has a unique solution.

When a pose computation produces multiple solutions, a number of methods

can be used to reduce these to a smaller number. First, the translation of the object

35

must be such that visible object points are in front of the camera. Second, when a
solid model of the object is available, the pose must not cause visible object points
to be occluded by other parts of the object. Finally, one can check that additional
object points project sufficiently close to their corresponding image points.

The problem of estimating a camera’s pose using correspondences of image and
model points has been extensively studied. There are a large number of solutions to
this problem which may be loosely grouped into three classes: analytic (close-form)
methods, numerical linear methods, and iterative methods. The remainder of this
section gives a brief survey of these methods.

Closed-form methods (|49, 92, 66, 72|) analytically solve small systems of non-
linear equations for the desired pose. The advantages of these methods are that they
are fast because they are noniterative, they require only a few correspondences, and
they don’t require initial guesses for the object’s pose. Their main disadvantages
are they cannot take advantage of large numbers of correspondences to reduce the
effects of noise, and they often give multiple solutions. These methods are only
applicable when a small number of points are involved. For three corresponding
points, the methods generally start by relating the image points to the depths of
the corresponding object points using the law of cosines and then, through various
substitutions and changes of variables, reduce the problem to that of finding the ze-
ros of a polynomial equation in one unknown. Hourd et al. [72] gives a closed-form
solution for four corresponding points. An alternative for four or more correspon-
dences is to apply the above 3-point algorithms to subsets of three correspondences

and then find the common solutions. Because these methods use only a small num-

36

ber of points, they fail to take advantage of the redundancy in large data sets, and
consequently their accuracy is very sensitive to measurement noise and to the order
in which equations are used [66].

Numerical linear methods (|2, 48, 67, 147, 123|, e.g.) solve for object pose
by setting up a system of linear equations whose solution is the desired pose. The
advantages of these methods are that they are relatively fast because they are non-
iterative, they can take advantage of large numbers of correspondences to reduce
the effects of noise, they are not subject to getting trapped in local minima, and
they don’t require an initial guess for the object’s pose. Their main disadvantage
is that, because the error functions minimized by these methods cannot account for
nonlinear problem constraints, the error functions are not geometrically or statis-
tically meaningful, and hence the resulting solutions are often not optimal from a
geometrical or statistical perspective.

Quan and Lan [123] present a linear algorithm to compute pose from a redun-
dant system of polynomial equations for four or more point correspondences. Every
pair of correspondences between an image point and an object point gives rise to a
quadratic constraint on the depths of the two object points in the camera reference
frame. By combining these constraints for three pairs of correspondences, a fourth
degree polynomial in one unknown depth is obtained. For four or more points, a
system of fourth degree nonlinear equations is produced which can be viewed as a
homogeneous linear equation in powers of the unknown depth. By applying SVD
twice for four correspondences, or once for five or more correspondences, the un-

known depths can be solved for. The pose problem is thus reduced to the absolute

37

orientation problem, which has well-known closed-form solutions.

The linear algorithm of Fiore [48] uses an orthogonal decomposition to split
the unknowns (scale, rotation, translation, and object point depths) into two groups
with separate equations. First, the object point depths are found by solving a
system of linear equations defined from six or more point correspondences. Then,
the unknown pose parameters are found by solving an absolute orientation problem
using SVD methods.

Ansar and Daniilidis [2] present another exact linear solution to the pose esti-
mation problem for four or more point or line correspondences, provided the solution
is unique. They first recover the depths of the object points using the geometric
rigidity constraint between all pairs of object points. A change of variables is used
to linearize a system of quadratic equations that relates the depths and distances
between the object points to their corresponding image points. Once the object
point depths in the frame of the camera have been recovered, the camera pose is
found by solving the absolute orientation problem using either unit quaternions |74]
or SVD [75] methods. Their method can also be applied to the case of corresponding
image and object lines.

For a six or more correspondences, the approximate direct linear transform
(DLT) algorithm may be used [67]. This method, by ignoring the orthonormality
constraints on the rotation matrix, produces a set of linear equations whose solution
is an approximation to the 3 x 4 homogeneous camera projection matrix (for a non-
calibrated camera). Proper data normalization is necessary to obtain good results.

Once the camera projection matrix is obtained, the approximate camera rotation

38

and translation can be found in closed-form by decomposing the camera matrix into
its constituent parts [52].

Iterative methods determine object pose by searching for the pose that min-
imizes a nonlinear objective function. These methods start with an initial guess
for the pose and iteratively refine it until some convergence criteria is met. The
advantages of these methods are that they can be very accurate due to the ability
to incorporate any arbitrarily accurate and complex imaging model, and they can
take advantage of large numbers of correspondences to reduce the effects of noise.
Their main disadvantages are that they are often slow to converge, or even worst,
they may diverge, they at best return a local minimizer of the objective function,
and they require a good initial guess of the pose in order to converge to the correct
answer.

Well known nonlinear optimization methods, such as gradient descent, the
Gauss-Newton method, and the Levenberg-Marquardt method, can be used to op-
timize nonlinear objective functions based on geometric constraints in the image or
world. These methods require the calculation of the first and possibly second par-
tial derivatives of the objective function, and consequently can be computationally
intense. The works of Haralick et al. [65], Yuan [154], Lowe [96], and Phong et al.
[118] are examples this approach.

Other iterative methods more carefully integrate the geometry of the pose
problem into the pose refinement steps of the algorithm. The POSIT algorithm
of DeMenthon and Davis [38] uses a scaled orthographic projection (SOP) camera
model to approximate perspective projection. The iteration begins by approximat-

39

ing SOP image points with the measured perspective image points. On each step of
the iteration, the approximate SOP image points are used to compute a new pose
estimate, and then the new pose estimate is used to improve the estimated SOP
image points. When the depth of the object is small compared to the distance of
the object from the camera, the initial approximation is accurate and the iteration
converges to the true pose in a small number of steps. More details of this algorithm
are given in Chapter 3.

In the iterative method of Lu et al. [98], the pose estimation problem is
formulated as that of minimizing the sum of the squared distances between object
points (mapped into the camera reference frame) and their orthogonal projections
onto the lines of sight of their corresponding image points. Their orthogonal iteration
algorithm first minimizes this objective function with respect to rotation by solving
an absolute orientation problem (using SVD) [75] with translation held fixed. Then,
with this new rotation matrix, the translation that minimizes the objective function
is calculated in closed-form. The process is repeated until a fixed point is obtained,
which they show always occurs (even when the object model should not match to

the image).

2.3.2 Approximate Cameras

Although the perspective camera model is an accurate model for a wide variety
of existing cameras, the projection equations are nonlinear because the image of a

scene point is inversely related to the distance of that point from the camera. When

40

the depth of a scene being viewed is small compared to the distance of the camera
from the scene, and when the distance of scene points from the camera’s optical
axis is small, affine models of camera projection provide a good approximation to
perspective projection [68, p. 156]. These approximations result in linear projection
equations, which greatly simplify the calculation of pose.

The simplest affine camera model is the orthographic projection model [68, p.

158], whose projection equations are

(2.2)

Orthographic projection projects points onto the image plane through rays that are
parallel to the camera’s optical axis; the distance of scene points from the camera
has no affect on their projections in the image. Because the size of an object’s image
cannot be modeled with this camera, this model is not often used.

Next, in terms of complexity, is the scaled orthographic projection model |68,

p. 158|, whose projection equations are

(2.3)
y = sY,

where s is a constant isotropic scale factor. This is similar to orthographic projection
except the size of an image can be modeled using the parameter s. When the

average distance of a scene from the camera is Z, and the depth of the scene is

41

small compared to Z (i.e., the object plane is parallel to the image plane), then
taking s = f/Z results in a good approximation to perspective projection by scaled
orthographic projection. The scaled orthographic camera has six degrees of freedom:
three for the 3D rotation, two for the location of the principal point, and one for
the scale factor s. Since each point correspondence (X,Y, Z) <> (z,y) provides two
constraints, three point correspondences are sufficient to compute the camera’s pose
from the linear equations (Eq. 2.3).

The weak perspective projection model is similar to scaled orthographic pro-
jection model except that two scale factors are used, one for the X direction and
one for the Y direction [68, p. 159|. It has seven degrees of freedom and there-
fore requires four point correspondences (really just 3%) to determine the pose of a
camera using this model.

The most general affine camera model has projection equations given by

z = X +aY +a3Z + 1t

Yy = mX +asY +agZ + 1o

where the a; and t; are constants. This model covers the composed effects of an affine
transformation of 3-space, followed by an orthographic projection onto the image,
and then followed by an affine transformation of the image. An salient property
of an affine camera is that parallel lines in a scene are projected to parallel lines
in the image. The orthographic, scaled orthographic, and weak perspective camera

models discussed above are all specific instances of affine cameras. Because the

42

general affine camera has eight degrees of freedom, four point correspondences are
needed to determine the pose of a camera using this general model.

It is well-known [68] that a scaled orthographic or weak perspective image of
a planar object is related to the original object by a 2D affine transformation of
the plane containing that object. Since Z = 0 in this case, the affine projection

equations become

z = X +aY +1
Yy = aX +azY +1s.
For this projection model, which has six degrees of freedom, camera pose can be
computed from the linear equations given by three point correspondences. This
model is accurate, and therefore commonly used, when viewing planar scenes from
a distance.
Finally, it can also be seen [68] that the image of a planar object, taken by
a perspective camera in any position, is related to the original object by a 2D
homographic transformation (i.e., a general 2D projective transformation) of the
plane containing that object. Because a homography has eight degrees of freedom,
four point correspondences are required to determine the pose of a camera using this
model. This is not an affine camera model (the image of parallel lines in the scene
needn’t be parallel in the image), but when homogeneous coordinates are used for

the scene and image points, the projection equations are linear.

43

2.4 Calculating Camera Pose from Line Correspondences

As discussed in the previous section, the pose of a camera can be computed
from correspondences between point features in the object and image. A problem
with matching point features, however, is that it is generally very difficult to reliably
extract them from an image, unless templates are available to correlate to the image.
Reliable point extraction may be possible in some controlled environments (e.g.,
circuit board inspection on an assembly line), but is usually not possible in general
3D environments where a scene point can have drastically different appearances
depending on the camera viewpoint. Line features, on the other hand, can be
reliably extracted from images because they can be located along curves in the
image of maximum intensity gradient, which are easily identified. By fitting a line
model to the image using interpolative methods, a high degree of accuracy in the
position of the line can be obtained. Because most real world objects have some
straight edges that will project to straight lines in an image, it is not very restrictive
to assume that object and image lines will be straight. We therefore make this
assumption in this dissertation.

When using line correspondences, one should not expect that the ends of
the object lines correspond to the ends of the corresponding image lines. Due to
occlusions, shadows, and imperfect line detection algorithms, the ends of object
lines are often not accurately located in images. Thus, the constraint derived from
a correspondence between an image line and object line is that the projection of

the object line should be collinear with that image line. Correspondences between

44

image and object lines produce constraints that are weaker than correspondences
between image and object points. A set of point correspondences can be used in
a line correspondence algorithm by synthesizing a line between each pair of points
in both the image and object. A set of line correspondences, however, can only be
used by a point correspondence algorithm when the object lines provide a sufficient
number of 3D points from their intersections in 3-space.

Image and object lines may be represented in a number of different ways. The
particular representation chosen depends on whether or not the line has finite or
infinite extent, and on the particular requirements of the application. A 2D line has
three degrees of freedom. Possible representations for a 2D line include the three
constants in the equation ax + by 4+ ¢ = 0, two 2D endpoints, a 2D point and a 2D
vector, and the distance of the line from the image origin and the angle it makes
with one coordinate axis. A 3D line has four degrees of freedom. Representations
for 3D lines include two 3D points, a 3D point and vector, two planes, and it’s 4 x 4
Plucker matrix [68].

Due to occlusion of the object and faulty image processing, one should not
expect that the endpoints of an object line will project on or near the endpoints
of the corresponding image line; we can only expect that the projected model line
is collinear with the corresponding image line. In other words, if object line L,
corresponds to image line /;, this constrains L; to lie in the plane passing through
the camera center C and [;. See Figure 2.1. In the following, we assume that the
camera internal parameters are known (pixel coordinates are given in a normalized

image coordinate system), and that the image and object lines are represented by

45

world frame

C image plane

cameraframe

Figure 2.1: When image line /; corresponds to 3D model line L;, L; is constrained
to lie in the plane passing through the camera center C and [;.

their 2D and 3D endpoints, respectively, so that I; = {p;, p;} and L; = {P;, P’}.
The normal to the plane passing through C and [; is n; = (p;, 1) x (p,1)T. This
is also the homogeneous representation of the image line. The constraint that L; lie

in this plane is given by
n; (RP; +T) =0,
(2.4)
n] (RP;+T) =0,
where R is the rotation matrix and T is the translation vector that maps points from
the world reference frame to the camera reference frame. Thus, each image-to-object
line correspondence provides two constraints on the pose of the object. Because pose
has six degrees of freedom, a minimum of three line correspondences are needed to
determine it. Navab and Faugeras [111] have shown that with three object lines

in general position (noncoplanar and not all intersecting at a common point) there

can be up to three distinct solutions to the object’s pose. When the three object

46

lines are coplanar, the three intersections of these lines can be used to reduce the
problem to a perspective-3-point problem, which, as discussed in Section 2.3, can
have up to four distinct solutions. With multiple solutions, the true pose can be
determined using a number of approaches. First, the translation of the object must
be such that visible object lines are in front of the camera. Second, when a solid
model of the object is available, the pose must not cause visible object lines to be
occluded by other parts of the object. Finally, additional object lines can be checked
to determine if the given pose projects them sufficiently close to their corresponding
image lines.

Methods for computing pose from line correspondences may be loosely grouped
into three classes: analytic (closed-form) methods, numerical linear methods, and
iterative methods. The advantages and disadvantages of the various methods are
the same as those for point correspondences as discussed in Section 2.3. The re-
mainder of this section gives a brief survey of algorithms that compute pose from
line correspondences.

Closed-form methods analytically solve small systems of nonlinear equations
for the desired pose. These methods are impractical for more than three line cor-
respondences. Dhome et al. [42] present an analytic method of determining pose
from correspondences between three image lines and three model lines. First, the
rotation is decomposed using a number of intermediate coordinate systems. With
these, an eighth degree polynomial in one unknown is obtained, and from this, the
three rotational parameters are found. When the three object lines are coplanar or

intersect at a common point, this equation is reduced to fourth degree. Thus, there

47

can be four or eight solutions to rotation. Then, given the rotation, the translation
is found by solving a linear system of equations which constrain the rotated points
to lie on the planes defined by the camera origin and the corresponding image lines.

Numerical linear methods solve for pose using only efficient linear algebra. The
approximate direct linear transformation (DLT) algorithm can be applied using
Equation 2.4. Luxen and Forstner [99] use this approach with an uncalibrated
camera with both point and line features. From any combination of six or more
point and line correspondences, they compute the camera projection matrix and
its covariance matrix. From the camera projection matrix, the pose of an object
can be readily found [52|. The method of Ansar and Daniilidis [2]|, discussed in
Section 2.3, is another linear solution to the pose estimation problem for four or
more line correspondences.

Iterative methods are used to find poses that optimizes nonlinear objective
functions. Christy and Horaud [27] describe a method to iteratively compute pose
from line correspondences using a scaled orthographic (weak) camera model. This is
an extension of DeMenthon and Davis’ POSIT algorithm for point correspondences
[38]. When the depth of the object is small compared to the distance of the object
from the camera, the perspective images of the object lines closely approximate the
scaled orthographic projections of these lines. Substituting these approximations
into the linear equations for scaled orthographic projection, the approximate camera
pose can be found. New scaled orthographic image lines are computed and the
process is repeated. The use of a weak perspective camera model requires only
efficient linear algebra on each step of the iteration, but the final pose is still that

48

of the perspective camera. Christy and Horaud’s method minimizes an algebraic
distance on each step, unlike the POSIT algorithm for point correspondences, which
minimizes a geometric error measure on each step [28|.

Liu et. al. [93] determine object pose from line correspondences using a
method that first computes the rotation, and then the translation. By ignoring the
orthonormality constraints and treating the nine elements of the rotation matrix
as independent unknowns, the rotation can be computed with a linear algorithm
given eight or more correspondences. Alternatively, the rotation can be computed
as three Euler angles for three or more correspondences using a nonlinear iterative
algorithm to minimize an objective function. The objective function is linearized
about the current estimate of the object’s pose (e.g., cos(§ + Af) ~ cos @ — Afsin 6
where 6 is the current estimate for a pose parameter and Af is the update to be
solved for), and then on each iteration, linear adjustments to the pose are found
which minimize this function. Once the rotation is found, the translation is solved
from three or more correspondences from linear equations.

Lowe [95] computes pose from line correspondences in his SCERPO system
using Newton’s method to minimize the least squares error between image features
and the corresponding projected object features. The object-to-image projection
equations are reparameterized to simplify the calculation of the partial derivatives
of the error function with respect to the pose parameters.

Kumar [88] shows that better noise immunity can be achieved if the rotation
and translation are solved for simultaneously, as opposed to first rotation and then
translation. His approach minimizes an objective function which is the weighted

49

sum of the squares of the perpendicular distances between the projected 3D object
lines and the corresponding image lines, where either the projected object lines or
the image lines are infinitely extended. The objective function is minimized using
an iterative technique adapted from Horn [76]. This method linearizes the objective
function about the current estimate for the object’s pose, and then on each iteration,
linear adjustments to the pose are found that minimize this function.

Phong et. al. [118] compute object pose using both point and line corre-
spondences. By representing pose using a dual number quaternion, each feature
correspondence gives rise to two quadratic equations whose value is zero at a solu-
tion. They use a trust region optimization method to minimize the sum of squares of
these quadratic equations. The trust region method is similar to Newton’s method,
except that each new solution estimate is required to lie within a given dynamically

determined radius of the previous estimate.

2.5 Object Recognition: Correspondence and Pose

Approaches to object recognition can broadly be classified as model-based or
appearance-based. Model-based approaches model objects by sets of features (e.g.,
points, lines, texture regions, etc.) and their geometric relations and then attempt
to determine a geometric transformation of a model that allows it to be matched
(or aligned, or registered) with part of an image. Appearance-based methods (e.g.,
[150, 80, 110, 112]), in contrast, model objects by sets of images (2D arrays of pixels)

for many different viewpoints and illumination conditions and then attempt to find

90

a model image that matches the input image. (Because models are used in both
of these approaches, perhaps feature-based would be a better designation for the
class of model-based approaches, but model-based is the standard.) The advantages
of model-based approaches is that they allow for a very compact representation of
objects, and the algorithms tend to be more robust to partial occlusion of objects
and to changes in illumination. Appearance-based approaches, in contrast, have
the advantages that searching in image space is generally simpler than searching
through pose space or correspondence space, and modeling objects as sets of images
is simple in principle, requiring no feature extraction from the model or image.
Because this dissertation is concerned with model-based object recognition using
geometric features, we do not discuss appearance-based approaches further.

Some model-based approaches to 3D object recognition do not directly match
3D models to image features, but instead match 2D models to the image features.
In these cases, 3D objects may be represented with a single 3D model or with a
number of view-dependent 2D models. In the case that objects are represented with
a single 3D model, the 3D model will be projected to a 2D model for a particular
view before being matched to an image. These approaches still have the advantages
of compact representation and robustness to partial occlusion, but require searching
over a set of views to find models that match. We call these approaches view-based;
these should not be confused with the appearance-based methods discussed above.

The work of Roberts [126] was one of the first to describe a model-based
method to recognized 3D polyhedral objects from 2D perspective images. In his
system, the greyscale image is first mapped into a set of 2D lines using a process of

ol

edge detection, edge linking, least-squares line fitting, and line filling and merging.
These line segments were then grouped into polygons. Correspondences were formed
between polygons in the image and polygonal faces of models when the image poly-
gon had the same number of sides as a model face; these correspond to nonoccluded
faces of the model. Then, vertices of image polygons were matched to model vertices
with topologically similar surrounding polygons. From these point correspondences,
a 3D to 2D affine transformation was computed that maps the model into the image
and this was used to verify that the edges of the model polygons aligned with the
edges of the corresponding image polygons. The basic steps of Roberts’ approach —
detect features, hypothesize correspondences, calculate pose from correspondences,
and verify models — are still used today in many feature-based approaches to object
recognition.

Knowledge-based approaches to object recognition (e.g., [10, 19, 141]) use ob-
ject and domain-specific knowledge in the recognition process. Contextual scene
knowledge may be used to drive the low-level image processing as well as the high-
level interpretation of the scene. For example, if one knows that an image is an
overhead view of an airport, then special modules can be used to detect runways
and planes; a top-down and bottom-up control architecture will look for runways
wherever planes are detected, and planes wherever runways are detected. Other sen-
sor information, such as color, stereo, motion sequences, acoustic, and 3D range, can
also be integrated into the recognition process. These types of approaches will be
better able cope with the difficult real-world environments that many vision appli-

cations are required to operate in. The general pose and correspondence algorithms

52

that we discuss below may be viewed as one component of these more complete

approaches.

2.5.1 Hypothesize-and-Test Approaches

Almost all approaches to model-based object recognition that match geometric
features take what is called a “hypothesize-and-test” approach [51]. In the “hypothe-
size” step, hypotheses for correspondences between sets of image features and sets of
model features are used to generate hypotheses for the pose of objects relative to the
camera. These pose hypotheses are then used in the “test” step to project the object
models back into the image; the projections that are sufficiently similar to the im-
age “verify” the presence of objects in the scene. The main distinguishing feature of
these model-based methods is how the hypotheses are generated. Hypothesize-and-
test approaches can be loosely grouped into three categories: alignment methods,

indexing methods, and pose clustering methods.

2.5.1.1 Alignment Methods

Alignment methods hypothesize sufficiently large sets of model-to-image fea-
ture correspondences which enable an object’s pose to be calculated. From such
a set of correspondences, the pose of the model is computed that aligns the corre-
sponding features and then the remainder of the model is projected into the image
and its similarity with the image is measured.

When three model-to-image feature correspondences are used to instantiate an

93

object’s pose (as discussed in Section 2.3) and there are no constraints on which of
the m model feature may match which of the n image features, then there are (7§)(%)3!
possible sets of correspondences that can be examined (each of which can give rise
to 4 different poses for the object). It would be intractable to try to examine all of
these correspondence sets for all but very small inputs (small m and n): assuming
that a pose can be tested (verified) against the remaining image points in O(mlogn)
time!, the complexity of this naive alignment algorithm is O(m?n3logn). Geometric
constraints must be used to limit the size of this search space.

A number of general-purpose robust parameter estimation methods have been
developed [49, 128, 146] that can handle gross outliers in the input data. In the
object recognition problem, a gross outlier is an incorrect correspondence between
a model feature and image feature. Fischler and Bolles [49] developed the Random
Sample Consensus (RANSAC) algorithm for robust parameter estimation and ap-
plied the approach to the problem of pose determination given a 3D model and a
single camera image, which they coined the perspective-n-point problem. RANSAC
operates by sampling a small random set of correspondences, computing the cam-
era pose from those correspondences, and then testing if the computed pose is well
supported by the full set of image points. If the computed pose is not supported by
the data, then the process is repeated. Otherwise, the sampling and pose estimation

procedure is repeated up to some maximum number of times. The maximum num-

ber of samples that need to be examined to guarantee with a certain probability that

LGiven a set P of n 2D points, the problem of finding the point in P closest to a 2D query
point is known as the 2D closest point problem in computational geometry. This problem can be
solved in O(logn) time by searching a fast planar point location data structure constructed from
a Voronoi diagram of those points [3].

54

at least one good set of samples is examined can be determined from the sample size
(three in the case of pose estimation) and the ratio of inlier to outlier samples. This
number of samples does not depend on the size of the input or on the number of out-
liers in the data, but only on the ratio of inliers to outliers. For problems where the
probability that a random sample is an outlier is less than 0.5, the required number
of samples turns out to be very small when compared to the size of the search space.
However, in the pose problem, where a sample consists of random model feature
and a random feature point, the chance of a random sample being an outlier is very
nearly 1.0, and as shown in Appendix A, O(n?) triples of correspondences must be
examined in order to ensure with high probability that at least one set is free of
outliers. Hence, the RANSAC algorithm when applied to simple geometric features
is intractable for most practical object recognition problems.

The interpretation tree approach of Grimson and Lozano-Perez [58|, which
is an instance of the more general consistent labeling problem [64], addresses the
problem of locating polyhedral objects from data describing the position and orien-
tation of 3D planar patches. A tree search is used where geometric constraints are
enforced between levels in the tree in order to reduce the size of the search space:
at the kI level of the tree, the kth data patch is assigned to all model faces which
are consistent with individual previous assignments. When a leaf node is reached
and all pairwise constraints are satisfied, then all constraints are used to determine
the global consistency of the set of matches from the root of the tree to that leaf. If
the set is consistent, then the pose of the object is computed and its projection is
verified against the rest of the image.

95

Ayache and Faugeras’s HYPER system [4] uses a tree-pruning approach to
locate partially occluded 2D objects in an image. Models and images are repre-
sented by sets of line segments. The method seeks the similarity transformation
that best matches models to the image. Lines are represented by their midpoint,
length, and orientation relative to the horizontal axis. The ten longest lines in the
model are identified as “privileged” segments. Privileged line segments are used for
initial hypothesis generation because there are fewer of them — so fewer hypotheses
have to be generated — and because the use of long segments results in more accurate
pose estimates. The authors point out that the probability of having all privileged
segments simultaneously occluded is very small, and only one needs to be visible to
identify a model. The algorithm first generates 2D pose hypotheses by matching the
endpoints of each privileged model line segment to the endpoints of each compatible
image line segment. A model segment is compatible with an image segment if the
angle between the model segment and its preceding neighbor is within 30° of the
angle between the image segment and its preceding neighbor, and if the ratio of the
lengths of the two matched lines is close to an a priori estimate of the scale (when
this is available). A 2D similarity transformation is computed for each match. Af-
ter all hypotheses are generated, they are ranked based on the compatibility of the
corner angles and lengths of the matched segments, and then the best hypotheses
are evaluated against the image. A hypothesis is evaluated by augmented it with
additional matching model and image segments. Each model segment, starting with
those closest to the first model segment, is transformed by the current pose and is
matched to the image segment that minimizes a dissimilarity measure. The dissim-

26

ilarity between a model and image segment is a weighted sum of the difference in
orientations of the two segments, the Euclidean distance between their midpoints,
and the relative difference between their lengths. Each time a new match is added
to the current hypothesis, the model’s pose is updated by computing the similarity
transformation that minimizes the weighted sum of the Euclidean distances between
the midpoints of the model segments to the infinitely extended image lines. A qual-
ity measure of the augmented hypothesis is then computed which is the ratio of
the sum of the lengths of the matched image segments to the total length of the
transformed model segments. Hypothesis evaluation is efficiently implemented as a
tree-search using this quality measure in a branch-and-bound technique: as soon as
the maximum possible quality of a branch of the search becomes less than the min-
imum possible quality of a previously evaluated hypothesis, that branch is pruned
from the search. Also, to speed up the process of finding similar image segments,
the image segments are initially sorted based on their orientation. Hypothesis eval-
uation ends when a fixed number of hypotheses have been evaluated, or when a very
high quality hypothesis has been found.

The SCERPO system of Lowe [95] recognizes 3D objects from line features in
single images. It uses the technique of perceptual organization to locate groupings
of image lines that are stable over wide ranges of viewpoints and which are unlikely
to occur by accident; these include lines that have nearby endpoints, are parallel,
or are collinear. Each perceptual grouping in the image is hypothesized to match
to each structure in the object that could give rise to that type of grouping. Then,

a pose estimation and verification procedure is used to either accept or reject that

o7

match. Newton’s method is used for pose estimation to minimize the least squares
error between image features and the corresponding projected object features. The
object-to-image projection equations are reparameterized to simplify the calculation
of the partial derivatives of the error function with respect to the pose parameters,
and the initial guess of the object’s pose is obtained from the poses that allow
object features of the match set to independently project onto the corresponding
image features. After computing an object’s pose, a probabilistic ranking is used to
extend the initial set of feature correspondences into a larger set which is consistent,
with the estimated pose: the least ambiguous correspondences are used prior to
the more ambiguous correspondences. The correspondences and computed pose are
accepted as correct when this set of consistent correspondences is sufficiently large.

Huttenlocher and Ullman’s [79] alignment approach uses an affine (scaled or-
thographic) approximation to perspective projection to recognize 3D objects from
single 2D images. They use point features which consist of corners and inflection
points of image and model contours. The image contours are generated using the
Canny edge detector [21] and edge linking. They show that a triple of corresponding
model and image points determines two possible model poses (under affine projec-
tion) which differ by a reflection about the plane containing the three model points.
When the model and image features also include orientation information (in addi-
tion to position), a third feature point can be inferred from two features, and it
is shown that a pair of corresponding points determines four possible model poses.
All possible pairs of two model and image features are used to solve for possible

poses. Each pose is verified by projecting the edge contours of the model into the

28

image and comparing the projected edges with the nearby image edges. Poses which
project sufficiently many model edges close to image edges of similar orientation are
returned by the algorithm.

A number of authors (e.g., [5, 18, 23|) use linear programming and linear con-
straints from model-to-image point correspondences to find transformations of the
model that satisfy a maximum number of these constraints. Breuel [17, 18] for-
mulates the object recognition problem as one of finding the largest set of model
and image points that can be brought into correspondence through a 2D similarity
transformation (rotation, translation, and scale). He shows that error bounds on
the location of a single image point with respect to the corresponding transformed
model point constrain the set of compatible transformations to a four-dimensional
convex polyhedron. Multiple correspondences constrain the transformation space
to the intersection of the convex polyhedron of the individual correspondences. The
problem of finding the largest set of corresponding model and image features then
becomes one of finding the region in transformation space where the largest number
of these convex polyhedron intersect. A depth-first search of transformation space is
implemented that starts with a region known to include all feasible transformations.
At each branch of the search, the current region is adaptively subdivided into smaller
regions of transformation space. For each new region, the algorithm evaluates an
upper bound on the number of convex polyhedron that may have a nonempty in-
tersection in that region. If this upper bound is smaller than the minimum required
solution, or if it is smaller than the best solution found so far, then that branch

of the search is abandoned; otherwise, the region is subdivided into even smaller

99

regions and the process is repeated. Although not as obvious as the alignment algo-
rithms described above, Breuel’s algorithm also fits the alignment paradigm because
it searches for sets of convex polyhedra — each defined by a correspondence — whose
associated transformations verify the largest number of correspondences.

Extending the work of |5, 18, 23| on the bounded-error recognition problem
from affine to perspective cameras, DeMenthon and Davis [37] proposed an approach
using binary search by bisection of pose boxes in two 4D spaces, but it had high-order
complexity. The approach taken by Jurie [85] was inspired by [37] and belongs to
the same family of methods. In [85], using an affine camera model, an initial volume
of pose space is guessed, and all of the correspondences compatible with this volume
are first taken into account. Then the pose volume is recursively reduced until it can
be viewed as a single pose. As a Gaussian error model is used, boxes of pose space
are pruned not by counting the number of correspondences that are compatible with
the box as in [5, 18, 23, 37|, but on the basis of the probability of having an object
model in the image within the range of poses defined by the box.

Unlike many previous authors, the random-start local search algorithm of Bev-
eridge and Riseman [12] addresses the object recognition problem for full-perspective
camera models. From a randomly generated initial pose, the 3D model is projected
into the image and the set of all possible image-to-model line segment correspon-
dences are generated. These correspondences are required to meet certain position
and shape similarity constraints. A subset of these correspondences is then ran-
domly selected as the starting point of the local search. A steepest descent search

in the space of correspondences is used to find the locally optimal pose and corre-

60

spondence. The quality of a set of correspondences is a function of two error terms:
the residual squared error of the image lines and the corresponding projected model
lines (infinitely extended), and a term that penalizes matches which omit portions
of the model from the match. At each step of the algorithm, neighboring correspon-
dence sets (those that differ by at most one correspondence pair) are first evaluated
and then ranked, the current correspondence set is replaced by the highest rank-
ing neighboring correspondence set, and then a new pose is computed from these
correspondences. A neighboring correspondence set is evaluated by using a weak-
perspective pose algorithm to determine the best pose for those correspondences,
and then computing the goodness of those matches given the pose just computed.
Then, a full-perspective pose algorithm is used to compute the model pose after
making a move to a new set of correspondences. The hybrid algorithm runs much
faster than an algorithm using full-perspective at all stages, and is therefore able to

examine a much larger solution space in a fixed amount of time.

2.5.1.2 Indexing Methods

The shape of the 2D projection of a 3D object depends on the geometric
properties of the 3D object, the pose of that object, and on the internal parameters of
the camera. In order to recognize an object, alignment and pose clustering methods
must hypothesize a set of correspondences and then a pose, and then check the rest
of the model against the image. Because of the variability of an object’s appearance

with pose, a large number of hypothesis may need to be generated in order to find a

61

correct one. Indexing methods for object recognition attempt to reduce this search
by measuring image properties that are invariant to object pose, and then searching
tables that map the invariant image properties into models and their poses |50, 109).

When perspective projection is approximated by an affine camera (see Sec-
tion 2.3.2), the image of a set of coplanar object points will be related to the object
points by an affine transformation [51|. Any three of these coplanar points may be
chosen to form a basis for this 2D space, and the remaining points can be expressed
as a linear combination of the basis vectors in terms of their affine coordinates.
Lamdan et al. [90] showed that the affine coordinates of a point are invariant to
affine transformations provided the same points are used to form the basis vectors.
When homogeneous coordinates are used, the cross ratio of a set of four collinear
points is invariant to perspective projection [91]. A wide range of invariants exist
for various combinations of points, lines, and conics in the plane [109]. These are
useful when simplified camera models are appropriate and objects contain planar
faces. However, Burns et al. [16] have shown that there are no pose-invariant image
features for any number of 3D object points in general position under perspective
projection or weak perspective projection. Still, invariants have been successfully
used in a number of indexing approaches to object recognition.

The geometric hashing method of Lamdan et al. [89] uses affine invariant
features of planar point sets to vote for object hypotheses. Unlike other hypothesize-
and-test methods, a single set of features in geometric hashing can simultaneously
vote for any number of hypotheses. There is an off-line and an on-line phase to
geometric hashing. In the off-line phase, the object models are analyzed in order

62

to build a hash table. For pair of model basis vectors formed by a triple of model
points, the affine coordinates of every other model point are computed and are used
as an index to insert the model and basis points into the hash table. The on-line
phase of the approach consists of selecting triples of image points to form a pair of
basis vectors and then computing the affine coordinates of every other image point
relative to that basis. The affine coordinates are used to look up in the hash table
the identities of objects and basis triples that may generate the given coordinates,
and votes are cast for these objects and basis points. Triples of image points that
don’t correspond to points on a single object should generate random votes, whereas
triples of image points that do correspond to points on a single object should generate
large numbers of votes (one for all other points on the object) for a single object
and basis. After all triples of image features have been examined, the objects and
basis points with the most votes are considered the most likely hypothesis and are
examined in more detail. Geometric hashing searches over sets of image features,
but does not need to search over sets of corresponding model features. For models
with m feature points and an image with n points, this 2D recognition algorithm
has complexity O(m?) for the off-line phase and O(n*) for the on-line phase.
Lamdan [89] extends geometric hashing to the cases of line features and 3D
objects. For example, 3D polyhedral objects may be recognized from 2D images
(generated by an affine camera) by establishing a correspondence between a set of
points on some planar section of the object and a set of their projections in the
image. Once the pose of a planar section of a rigid object is determined, the pose

of the entire object is determined. Hashing is still based on coordinates of points

63

in a plane, but now votes are for (model, plane, model basis) tuples. This approach
requires that there be a sufficient number of model points on any planar section of
a model used for recognition, which may be difficult to achieve.

In geometric hashing, a set of image features is matched to a set of model
features whenever the two sets map to the same location in the index space (the
hash table). To get large clusters, the mapping from the image to the index space
should be such that the images produced by a given set of model features should map
to a single index in the table. This can be accomplished if one can find an invariant
representation of the images of objects. But, as Burns points out, there are no
pose-invariant image features for 3D point objects under perspective projection or
weak perspective projection. Jacobs |83, 84|, however, shows that when two index
spaces are used instead of one, and a linear projection model is used, then the set
of all images of a 3D point model may be represented as a pair of lines in a high-
dimensional space. This leads to a simple, space-efficient approach to indexing:
match the image, which is represented as a pair of high-dimensional points, to pairs
of lines in the high-dimensional space. He shows that indexing becomes significantly
more difficult when it is extended to oriented point features. The hash table is
constructed by mapping ordered sets of connected model points into pairs of lines
in a high-dimensional space; these lines are quantized in the hash table and contain
pointers back to the models and their ordered points. Then, the on-line recognition
process uses the hash table to map ordered sets of connected image points to models
and their ordered point sets. Because each group of image points matches only a

small number of model groups, each of these hypotheses is compared to the image

64

for verification.

Beis and Lowe [9] have developed an indexing algorithm for 3D object recog-
nition that uses non-invariant image features. High-dimension feature vectors are
generally used in order to allow sufficient discrimination among large numbers of
objects. Unlike approaches that use true viewpoint-invariant features, non-invariant
image features may be mapped to entries in the index table that are different from
the model features used to create the index table. Because of this, a nearest-neighbor
search of the index table is needed in order to determine which object and pose hy-
potheses to vote for. They use a kd-tree for the index table, instead of the standard
hash table, because a nearest-neighbor search can be performed in a kd-tree in time
that is logarithmic in the dimension of the index, but requires time that is expo-
nential in the dimension of the index when the search is performed in a hash table.
The off-line stage analyzes sample images of all objects over a range of viewpoints.
Coterminating and parallel line segments are extracted and the angles between adja-
cent segments and their length ratios are used to generate multi-dimensional feature
vectors. These features are partially viewpoint invariant: they are invariant to trans-
lation and rotation in the image plane. The corresponding object and pose is stored
for each feature vector using a separate kd-tree for each type of feature. In most of
their experiments, 240 views of the models were used for training, with up to 10 mod-
els. During the on-line recognition stage, an approximate k-nearest neighbor search
is performed in the kd-tree to find the objects and poses with similar features. The
highest probability hypotheses are the nearest neighbors. The probability of each

object-to-image match is computed based on the number of features and distances

65

between them. The probability that an image feature corresponds to a particular
object feature in a particular pose is proportional to the fraction of training samples
in a small volume centered at the current image feature that were generated by the
hypothesized object feature. After estimating these probabilities, hypotheses are
sorted according to the likelihood of being correct. Hypotheses are verified, from
most likely to least likely, iteratively using two steps: the pose is calculated using
the current set of matching features and then the matches are extended to include
additional image to model correspondences. This process is repeated until no more

matches are added to the match set.

2.5.1.3 Pose Clustering Methods

Pose clustering is a method of object recognition that involves the accumula-
tion of low-level evidence in support of various poses, followed by a peak detection
step that selects the poses with the most support. This works because sets of
correspondences containing outliers tend to vote for random poses, while sets of
correspondence containing only inliers, even though there are many fewer of these,
all vote for approximately the same pose: correct poses are likely to have more votes
than any random incorrect pose.

The best know pose clustering algorithm is the generalized Hough transform
[6, 35, 81, 138, 142, 70] which can be used to detect arbitrary shapes. Originally,
the Hough transform was developed to detect lines and analytically defined curves

in 2D point sets |77, 44|. Evidence is accumulated into an accumulator array that

66

quantizes the space of all possible model parameters. For every pair of image feature
and model, the range of model parameters that could have generated the image
feature is analytically determined and used to increment the appropriate bins in the
accumulator array. Then, by searching the accumulator array for peaks, the model
parameters that best explain the image features are found. The model parameters
corresponding to these peaks should be further analyzed to verify the presence of the
model. This approach was later extended to the problem of detecting arbitrary 2D
shapes (represented by sets of 2D boundary points) that have undergone geometric
transformations including translation, rotation, and scale changes [6, 35, 138, 81].
The approach is similar, except that the shape of a model is described by a table
that maps feature points to the ranges of model parameters that could possibly
generate the feature points. The feature points for both the original and generalized
Hough transform are usually the 2D position and orientation of the boundary points
of the shapes.

The pose clustering technique has been applied to the problem of recogniz-
ing 3D objects from 2D images [134, 139, 144, 92, 114]. Now, instead of repre-
senting objects as collections of boundary points, objects are typically represented
using 3D wire-frame models. Generating candidate poses during the evidence ac-
cumulation phase of the algorithm entails hypothesizing correspondences between
model and image features and then computing the poses that make those correspon-
dences possible. Allowing for a full 6-dimensional rigid transformation of the model
would require a 6-dimensional accumulator array, which is an impractical memory
requirement for any sufficiently fine quantization of pose space. Various approaches

67

have been used to reduce this memory requirement, including hierarchical clustering
[35, 138|, sequential clustering in orthogonal subspaces |7, 144, 92, 114], and non-
binning methods [140] similar to k-means clustering [45]. These methods, however,
are not guaranteed to find the largest clusters in the entire pose space.

The generalized Hough transform is robust to image clutter, partial object
occlusion, and measurement noise. However, it requires a lot of storage and com-
putation. Because standard pose clustering considers all possible correspondences,
it can be very slow. For m model features and n image features, and correspon-
dences defined by three corresponding image-to-model points, there are O(m?n?)
correspondence triples that must be considered. For m and n large, it would be
impractical to examine all of these correspondence triples. These methods can also
require an excessive amount of memory, especially when discretizing a 6-dimensional
pose space to a sufficient resolution. Two methods that have been proposed to re-
duce this problem are coarse-to-fine clustering and decomposing the pose space into
orthogonal subspaces in which clustering can be performed sequentially [35]. The
problem with these optimizations is that the largest clusters in the first (coarse)
clustering step do not necessarily correspond to the largest clusters in the entire
pose space.

Olson [114] has shown that by using a randomized algorithm to judiciously
select triples of point correspondences, the complexity of pose clustering can be re-
duced from O(m?®n?) to O(mn?). He observes that randomly selecting O(n?) pairs
of corresponding features ensures with high probability that at least one pair pro-
vides two correct correspondences. Then, assuming a pair of correct corresponding

68

features was available, the same clusters of poses as would be formed by examining
all triples of correspondences can also be formed by examining only those triples
of correspondences that include this correct pair of correspondences. Clusters for
each of these subproblems (with a fixed pair of correspondences) can be found in
O(mn) time. Combining the O(n?)-time randomized selection of correspondence
pairs with the O(mmn)-time exhaustive generation of single correspondences, gives a
randomized pose clustering algorithm with O(mn?) time complexity.

Olson [115] uses methods of perceptual organization [129] to further improve
the performance of the generalized Hough transform. The key observation that he
makes is that object poses should not be estimated from sets of model-to-image
point correspondences if the image points are likely to have come from different
objects; since all of the model points will belong to a single object, a pose calculated
from such a set of correspondences will be worthless. Based on their connectedness
in an edge image, pairs of image points are identified that are likely to be images
of the same object. Then, only image and model points that are likely to be from
single objects are allowed to form correspondences. This heuristic, while not perfect,
eliminates a large number of incorrect correspondence hypotheses while only pruning
a small number of correct correspondence hypotheses. This heuristic can be applied
to any of the object recognition algorithms described above.

Grimson et al. [60, 62| have estimated the probability of occurrence of false
positive poses (i.e., incorrect poses that receive as much positive evidence as correct
poses), as a function of measurement uncertainty, occlusion, and clutter when the

alignment and pose clustering methods are used to recognize both 2D and 3D ob-

69

jects from point features. In pose clustering, for example, measurement uncertainty
requires a given triple of correspondences to vote for the range of poses consistent
with the errors present in the data. This increases the chances of producing spurious
peaks in the Hough accumulator. The problem becomes even worst when clutter
and occlusion are considered. They conclude that these algorithms are useful mainly
for low-dimensional (i.e, 2D) matching problems, but that they do not scale well
when applied to complex, cluttered scenes.

Many of the hypothesize-and-test algorithms can be optimized in a variety
of ways, sometimes providing significant reduction in complexity. This problem
of false positives may be ameliorated by using more descriptive image and model
features to reduce the number of possible correspondences. However, there is a
trade-off associated with the complexity of the image and model features used to
compute pose hypothesis. Simple image features, such as isolated points and line
segments, are easy to produce from an image, but place few constraints on which
model feature they can correspond to. Consequently, there may be many pose
hypotheses to examine. In contrast, algorithms that match higher-level or more
distinctive features will spend more time locating features in images, but will have
significantly fewer pose hypotheses to consider due to the greater distinctiveness of
the features.

As described on page 23, Lowe [97] has developed an approach to locating
distinctive image features (called SIFT features) that are invariant to changes in
scale and rotation in the image plane, and partially invariant to changes in 3D
viewpoint. These are used for 2D object recognition, or 3D object recognition when

70

multiple views of the object are trained in advance. Features from the reference
images are extracted and stored in a database. Then, each feature from a new image
is matched to the database feature that is closest in terms of the Euclidean distance
of their feature vectors. For a given feature in the new image, if the distances
of the closest and second closest database features are nearly the same, then the
match is thrown out because it is unreliable. An approximate nearest neighbor
search, called Best-Bin-First, is used to find the best matches for each feature.
The algorithm is approximate in that it returns the nearest neighbor with high
probability. The speedup obtained is about two orders of magnitude over normal kd-
tree search algorithms. Because a high percent of the feature matches are outliers, a
generalized Hough transform voting scheme is used to find the most probable object
poses consistent with the feature matches. Each match (a single model-to-image
correspondence) votes for a model, its 2D location, 2D orientation, and scale. For
clusters of three or more matches, an affine approximation of 3D pose is computed,
then the number of matches is extended, and then the pose is refined. This system
works best for planar objects, or 3D objects viewed from within 30° of the training
images. For larger rotations of 3D objects, training images from multiple viewpoints

are required.

2.5.2 Continuation Methods

Most algorithms that perform numerical minimization of a cost function f (x)

require that f(xx4+1) < f(xx) hold on each step of the optimization. These algo-

71

rithms will converge to a local optimum, but depending on the starting point xg, this
may not be a global optimum. xy must typically lie in the basin of attraction of the
global optimum in order to guarantee convergence to it. For many practical prob-
lems, the number of local optima increase with the dimension of the problem [120].
To have a greater chance of converging to the global optimum from an arbitrary
starting point, continuation methods may be used.

Continuation (or homotopy) methods of numerical optimization define an easy
problem for which we know the solution, and a path between this easy problem
and the hard problem that we actually want to solve [125]. The solution to the
easy problem is gradually transformed into the solution of the hard problem by
tracing this path. For example, we can define h(x,A) = f(x) — (1 — A) f(xo). The
minimization of h(x, \) as a function of x with A held fixed can then be solved for A
taking on values between 0 and 1. When A = 0, the solution is clearly x = x;. When
A = 1, the solution is the same as the solution to the original problem. Discussed
below are a number of continuation methods that have been previously applied to

pose and correspondence estimation problems.

2.5.2.1 Deterministic Annealing

Simulated annealing [86] is a stochastic optimization method inspired by an-
nealing in metallurgy, a technique involving heating and controlled cooling of a
material that allows the material to obtain a more stable (lower-energy) structure

with some desirable properties, such as being harder or stronger. When simulated

72

annealing is used for numerical optimization, an iterative process is employed in
which at each iteration step the current solution is replaced by a random nearby
solution with a probability that depends on both the current temperature of the
system and the energy of the new solution relative to the current solution. At
higher system temperatures, higher-energy (less desirable) solutions are more likely
to replace the current solution. However, even at high temperatures, lower-energy
regions of the solution space are favored over higher-energy regions, and therefore
will attract more provisional solutions. As the temperature is slowly lowered toward
zero, the system is attracted more and more to low-energy states. The advantage of
simulated annealing over non-stochastic optimization methods is that the random
perturbations prevent the evolution of the solution from becoming stuck in sub-
optimal local minima: transitions out of local minima are always possible as long
as the system temperature is positive. Simulated annealing is known to converge
to an optimal global solution given a slow enough annealing schedule [54], but it’s
usually too slow for most practical applications with a large number of optimization
variables [82].

Simulated annealing is slow, in part, because it minimizes an energy func-
tion in a discrete variable space and so is unable to use the gradient of the energy
function to speedup the search. Deterministic simulated annealing (or more con-
cisely, deterministic annealing) addresses this problem by performing the search in
an analog variable space that is slowly transformed into the original discrete variable
space by the end of the search [1, 127]. In deterministic annealing, an annealing

parameter (the temperature) determines the smoothness of the energy function. In

73

the beginning, the energy function is convex and the global optimal can easily be
found. As the annealing progresses, the energy function becomes closer and closer
to the unsmoothed energy function; the global optimal may move, and more and
more local optima appear. The global optimal can be tracked from one step to the
next by local optimization methods. Although there is no guarantee that the local
optimal at the end of this trajectory will be the global optimal of the unsmoothed
energy function, the final solution is expected to be good.

In deterministic annealing, an update function is used which, unlike the ran-
dom updates used in stochastic simulated annealing, converges quickly to the final
solution. At each temperature of the annealing schedule, an analog value is found
for each variable which puts the entire system in a minimum energy state. Updat-
ing the state variables at each step can be performed either by repeatedly updating
individual variables until an equilibrium is reached, or by deterministically solving
a system of simultaneous equations that determines the states of all variables at the
given temperature. Deterministic annealing is deterministic because it minimizes
the energy function directly rather than via stochastic simulation of the system
dynamics.

Like stochastic simulated annealing, deterministic simulated annealing seeks a
global optimum; it is does not perform a simple greedy search to the local minimum.
This is accomplished through the use of an energy function that is very smooth at
high temperatures, but which is transformed into the energy function of the original
discrete space problem at low temperatures. In practical problems, deterministic
annealing has been shown to be much faster than simulated annealing (often by a

74

few orders of magnitude) and usually gives very similar solutions [1, 45].
Rangarajan et al. [124, 55] used deterministic annealing to match weighted
graphs, and later extended the approach to matching two point sets of the same
dimension (2D or 3D) under linear transformations. Their graduated assignment
algorithm is discussed in detail in Section 2.5.2.2. Noll and von Seelen [113] use
deterministic annealing for matching 2D shape models to images under 2D similarity
transformations, where both the models and images are represented by sets of line
segments. Liu et al. [94] have used deterministic annealing to match two sets of
3D points under 3D rigid transformations; they integrated a number of rigid motion
constraints into the energy function which help the algorithm to avoid local minima

arising from nonrigid motions.

2.5.2.2 Graduated Assignment

The SoftPOSIT algorithm described later in this dissertation uses a modified
version of the graduated assignment algorithm developed by Gold and Rangarajan
[55]. The graduated assignment algorithm was originally applied to the problem of
graph matching, where one seeks a match matriz that defines the correspondences
between nodes in two graphs, called the input and model graphs below. The optimal
match matrix minimizes an energy function that depends on the compatibility of the
corresponding nodes and links in the two graphs. This algorithm was later adapted
to the problem of 2D and 3D point matching, where, in addition to a match matrix,

a linear geometric transformation between the input and model was also sought

75

[56]. An overview of the graduated assignment algorithm is given below.

The Procrustes algorithm [57] is a well-known method used to find a similarity
transformation that aligns two 2D point sets when correspondences between the two
sets are known. The algorithm works as follows. First, each point set is normal-
ized by shifting the centroids to the origin and scaling so that the sum of squared
distances of points from the origin is unity. This gives the translation and scale
and leaves rotation as the only unknown. The optimal rotation is then computed
as the one that minimizes the sum of squared distances between the corresponding
normalized points, and can be solved for analytically. The graduated assignment
algorithm is an extension of the Procrustes algorithm for point sets of different sizes
and where correspondences are not known in advance.

For an input graph with n nodes and a model graph with m nodes, the grad-
uated assignment algorithm uses an (n + 1) x (m + 1) binary-valued match matriz
M to represent the matches between nodes in these two graphs. A value of 1 at
M;; represents a match between input node ¢ and model node j. The (n + 1)St
row and (m + 1)St column of M are the slack row and column, respectively, which
are used to account for missing and spurious nodes in the input graph. The goal

of the graduated assignment algorithm is to find the assignment matrix M and an

alignment transformation A that maximizes the objective function

E(M,A) =YY" M;Qy (A) (2.5)

i=1 j=1
where @Q;; (A) is a measure of the compatibility of input node i with model node

76

J as a function of the alignment transformation A. Usually, Q;; (A) depends on
the distance between the input node X; and the transformation applied to model
node Y; as in Q;; (A) = — (|X; — A YHI? -). Here, o is a constant that biases
the objective function towards matches, and it acts as a threshold on distance to
determine when a correspondence must be treated as an outlier.

The process of matching the input to the model is based on three ideas: grad-
uated nonconvexity, softassign, and sparsity. The method of graduated nonconvezity
(also known as deterministic annealing or the continuation method) transforms the
discrete search space (for a binary match matrix) into a continuous search space.
The continuous analog of the match matrix is called the assignment matriz. The
continuous space is indexed by a control parameter (denoted by § below) that de-
termines the level of uncertainty (i.e., fuzziness) of the optimal assignment matrix,
and hence the amount of smoothing implicitly applied to the energy function. The
assignment matrix minimizing the energy function is tracked as this control parame-
ter is slowly adjusted to force the continuous assignment matrix closer and closer to
a binary match matrix. The result is that many poor local minima can be avoided.

Softassign is the process that maps a measure of the compatibility between
the input and model nodes into a doubly stochastic assignment matrix. A doubly
stochastic matriz is a square matrix of nonnegative real entries in which the sum of
the entries in each row and the sum of the entries in each column is one. Since all
rows and columns of a doubly stochastic matrix sum to one, the matrix represents
a probability function for the correspondences between input and model nodes. At
the end of the graduated nonconvexity process, this constraint forces each input

7

Algorithm 1 - SINKHORN1: Sinkhorn’s original algorithm for square matrices.

repeat

// Row normalization:
MET = ME/Sn_ ME, 1<i<n,1<j<n.

// Column normalization:
MEF = M S ME,1<i<n, 1<j<n.

until ||M’C+1 — M’“” small

node to match at most one model node, and each model node to match at most
one input node. There are two steps to softassign: the first step initializes the
assignment matrix according to MZ-OJ- = exp (fQi;), and the second step normalizes
this matrix. To ensure that the doubly stochastic constraint is satisfied, a modified
version of the Sinkhorn algorithm [135], which consists of alternating row and column
normalizations, is used to perform the normalization. Sinkhorn’s original algorithm
is shown in Algorithm 1. The modified algorithm uses a slack row and column
that are treated differently from other rows and columns: the slack values are not
normalized with respect to other slack values, only with respect to the nonslack
values. This is necessary in order to allow multiple input nodes to be identified as
clutter and to allow multiple model nodes to be identified as being occluded. This
modified algorithm is shown in Algorithm 2.

Sinkhorn’s original algorithm treats all rows and columns identically; it is
designed only for square matrices without a slack row and slack column. This
original algorithm does not handle outliers or occlusion, and therefore the number

of input and model nodes must be identical. For this case, Sinkhorn proved [135] that

78

Algorithm 2 — SINKHORN2: Sinkhorn’s algorithm modified for matrices with a
slack row and column.

repeat

// Row normalization:

ME = ME/STRIME 1 <i<n, 1<j<m+1.
// Column normalization:

MY = MET /ST ME 1<i<n+1,1<j <m.

until ||M* — M*|| small

any square matrix with positive elements is transformed into a doubly stochastic
matrix by the process of alternating row and column normalizations. In the case
that outliers may be present, however, Zheng and Doermann [155| proved that the
modified Sinkhorn algorithm shown in Algorithm 2 applied to an n x m matrix with
positive elements converges to a matrix in which each row and column, except the
slack row and column, sum to one. This is ideal for handling outliers. Gold et. al.
[56] show that iterated row and column normalization used in softassign produces the
same results as would be obtained in solving the equivalent constrained optimization
problem with Lagrange multipliers.

The concept of sparsity is simply that the entry in the match matrix corre-
sponding to a pair of nodes is zero whenever the two nodes cannot match to each
other. Thus the match matrix will be sparse when there are only a small number of
compatible matches. Pseudocode for the graduated assignment algorithm is shown
in Algorithm 3.

Use of the graduated assignment algorithm for matching problems is motivated

79

Algorithm 3 - GRADUATED ASSIGNMENT: The graduated assignment al-
gorithm.

initialize alignment A, 5 = [.
while 3 < fg,,, do
Qi (A) = = (IX: = A(Y)I* — o)
M} = exp (BQ;)
M3+1,j =

k=0

M£m+1:17 j:17"'7m+]—, izl,...'n,-i-]_

repeat
M = ME/STAME, 1<i<n, 1<j<m+1
M = MEV /SPHME, 1 <i<n+1,1<j<m
k=k+1
until HM’”‘1 - Mk” small
Compute the alignment A that maximizes the objective function in Equation 2.5.
B = Byupdate % P

end

80

by the following. First, the softassign algorithm efficiently enforces the doubly
stochastic constraint on the assignment matrix. Previously, this constraint was
satisfied by inserting it into the energy function via Lagrange multipliers and then
applying a gradient descent optimization algorithm [124]. Second, the deterministic
annealing process allows poor local minima to be avoided. Third, the algorithm
handles spurious and missing data through the use of slack rows and columns in the
assignment matrix. Finally, the approach can be adapted to simultaneously solve

for certain geometric transformations between the data and model.

2.5.2.3 Expectation Maximization

Although the standard expectation maximization (EM) algorithm [105] is not
normally considered a continuation method, it is worth examining because it has
been adapted to be a continuation method by some researchers (discussed below)
and it has a number of similarities to the graduated assignment algorithm. The
EM algorithm is an iterative procedure to find the maximum likelihood estimate for
the parameters @ of a model given some observed data x. The problem is difficult
because, in addition to depending on the observed data, the likelihood function for
0 also depends on some unobserved data y. The maximum likelihood estimate for 0
is therefore 8 = ‘"géna‘” P (x,y | 8) where P (x,y | 0) gives the probability of {x,y}
given the model parameters are 8. The EM algorithm estimates {x,y} and 0 in an

iterative two-step process. In the expectation step, given an estimate for @ and the

observed data x, the expected value of the unobserved data y is computed by max-

81

imizing the expected value of the log-likelihood function. In the mazimization step,
using the expected value for y as if it were observed data, the maximum likelihood
estimate of 8 is computed. These two steps are repeated until the estimates con-
verge. Although computing the likelihood function is usually intractable because
it involves summing over a combinatorial number of probability densities, it has
been shown that the EM algorithm converges to a local maximum of the likelihood
function [40].

The graduated assignment algorithm can be formulated as an EM-like algo-
rithm in a variety of different ways. The following is one formulation in the context
of aligning a set of m model points to a set of n data points. We first define the rel-
evant variables. The model parameters @ represent the parameters of the alignment
transformation. The observed data y consists of the m model points and the n data
points. The unobserved data consists of the (n+ 1) x (m+ 1) matrix M of data-to-
model point correspondences. Given the data points and the model points, we want
to estimate the alignment parameters @ and the correspondence variables M. The
EM formulation of the graduated assignment algorithm is shown in Algorithm 4.

One difference between the graduated assignment algorithm and the EM al-
gorithm is that the graduated assignment iteration uses a parameter 5 that affects
how much smoothing is applied in estimating the unobserved data (the correspon-
dence variables), whereas EM does not. This allows graduated assignment to put
off making hard correspondence decisions until a refined (and likely more accurate)
alignment transformation has been computed. Another difference is in the expecta-

tion step: classical EM would set M* to the correspondence matrix that maximizes

82

Algorithm 4 — EM_ GAA: Expectation maximization formulation of the gradu-
ated assignment algorithm.

1. Let 8° be an initial guess for the unknown alignment 6.

3. (Expectation Step) M* is set to the expected correspondence
matrix given the data points, the model points, and given that
0 = 0. MP is first initialized to a matrix of weighted (by 3)
exponentials of the distances between the data points and model
points transformed by 6*. Then, Sinkhorn’s method is applied to
ensure that M* is doubly stochastic.

4. (Maximization Step) 6" is set to the alignment transformation
that minimizes the sum of the distances, weighted by M*, between
the data points and the aligned model points.

5. If the estimates have not converged, then set £k =k + 1,
B = Bupdate X B, and go to step 3.

the log-likelihood function. Directly computing the maximum likelihood estimate
of M that enforces the one-to-one correspondence constraints is a difficult prob-
lem. Instead, the graduated assignment algorithm initializes M* to a matrix that
is similar to the maximum likelihood estimate of M but which assumes there are
no correspondence constraints, and then uses Sinkhorn’s algorithm to enforce these
constraints. Finally, in the maximization step, 8 will be identical to the EM algo-
rithm’s maximum likelihood estimate of @ provided the measurement errors of the
data points are independent and Gaussian distributed, and provided the objective
function optimized in computing * represents a sum of Euclidean distances between
data points and their corresponding transformed model points [68, p. 86-88]. Thus,
the graduated assignment algorithm has a number of attributes in common with the

EM algorithm.

83

Dellaert et al. [36] use the EM algorithm to solve the structure from motion
problem [78| when point correspondences between frames of an image sequence are
not known in advance. Although the application is different from ours, their ap-
proach has some similarities to the graduated assignment algorithm that is used in
our algorithms. In the context of the EM algorithm as described above, the model
parameters consists of the 3D scene points and the camera pose for each frame in
the sequence; the observed data consists of the positions of the image points in each
frame; and the unobserved data are variables that map each image point in each
frame to one of the scene points. A limitation of their approach is that they assume
that there is no occlusion, no spurious image points, and that all scene points are
seen in each image. The EM algorithm starts with an initial guess for the scene
structure and camera motion. The expectation step calculates the image-to-scene
correspondences (for all frames) that maximizes the log likelihood function. In or-
der to impose the constraint of one-to-one matches between image and scene points,
a Monte Carlo sampling method (the Metropolis algorithm [8]) is used to gener-
ate samples of valid correspondences, and from these the probabilities of individual
correspondences are estimated. In the maximization step, first the previously esti-
mated correspondence probabilities are used to generate a “virtual” image of each
scene point for each frame through a weighted average of the corresponding image
points. Then, a new estimate of scene structure and motion is found by minimizing
the weighted reprojection error over all frames for each scene point and its virtual
image points. To avoid getting stuck in shallow local minima, annealing is integrated
into the EM algorithm by using a large value for a noise parameter at the start of

84

the algorithm and then slowly decreasing its value at each iteration.

85

Chapter 3

The SoftPOSIT Algorithm

This chapter describes the SoftPOSIT algorithm for solving the model-to-
image registration problem for models and images consisting of point features; the
model features are 3D and the image features, which are assumed to have been gen-
erated by a perspective camera, are 2D. Chapters 4 and 5 describe two variations
of the Soft POSIT algorithm for line features. The SoftPOSIT algorithm integrates
an iterative pose estimation technique called POSIT, developed by DeMenthon and
Davis [38|, and an iterative correspondence assignment technique called the grad-
uated assignment algorithm (discussed in Section 2.5.2.2), developed by Gold and
Rangarajan [55, 56|, into a single iteration loop. A global objective function is de-
fined that captures the nature of the problem in terms of both pose and correspon-
dence and combines the formalisms of both iterative techniques. The correspondence
and the pose are determined simultaneously by applying a deterministic annealing
schedule and by minimizing this global objective function at each iteration step.

Each of the components of the Soft POSIT algorithm are described in detail below.

3.1 The POSIT Algorithm

The POSIT algorithm [38] computes an object’s pose given a set of corre-

sponding 2D image and 3D object points. We summarize this algorithm below in

86

its original form with known correspondences, and then present a variant of the al-
gorithm, still with known correspondences, using the closed form minimization of an
objective function. It is this objective function which is modified in the next section
to analytically characterize the global pose-correspondence problem (i.e., without
known correspondences) in a single equation.

Consider a pinhole camera of focal length f and an image feature point p
with its two Euclidean coordinates x and y and its three homogeneous coordinates
(wx,wy,w)". This point p is the perspective projection of the 3D point P with
homogeneous coordinates (X,Y,Z,1)7 in the frame of reference of an object with
origin F.

In our problem, there is an unknown coordinate transformation between the
object and the camera, represented by a rotation matrix R = [R; Ry R3]7 and a
translation vector T = (1, Ty, T,)". The vectors RT, R, R are the row vectors
of the rotation matrix; they are the unit vectors of the camera coordinate system
expressed in the model coordinate system. The translation vector T is the vector
from the center of projection O of the camera to the origin P, of the object expressed

in the camera coordinate system. The coordinates of the perspective projection p

can be shown to be related to the coordinates of the world point P by

wr /RT [T,
PP
wy | = | fRT [T, ;
1
w R T,

87

where PyP = (X,Y, Z)7 is the vector from Py to P. The homogeneous image point
coordinates are defined up to a multiplicative constant; therefore the validity of the
equality is not affected if we multiply all the elements of the perspective projection

matrix by the same term 1/7,. We also introduce the scale factor s = f/T,. We

obtain
wx sRT sT, PP
= (3.1)
wy sRY sT, 1
with

In the expression for w the dot product Rs - Py P represents the projection of
the vector Py P onto the optical axis of the camera. Indeed, in the world coordinate
system where P is defined, Rj3 is the unit vector of the optical axis. When the
depth range of the model along the optical axis of the camera is small with respect
to the model distance, R3 - Py P is small with respect to 7,, and therefore w is
close to one. In this case, perspective projection gives results that are similar to the
following transformation:

z sRT sT, PP
= : (3.3)

Yy sRT sT, 1

This expression defines the scaled orthographic projection p' of the 3D point P. The
factor s is the scaling factor of this scaled orthographic projection. When s = 1,

this equation expresses a transformation of points from a world coordinate system

88

to a camera coordinate system, and uses two of the three world point coordinates
in determining the image coordinates: this is the definition of a pure orthographic
projection. With a factor s different from one, this image is scaled and approximates
a perspective image because the scaling is inversely proportional to the distance 7T,
from the camera center of projection to the object origin F.

The general perspective equation (3.1) can be rewritten as

[XYZl] ot :[waz wy}- (3.4)

sTy STy

Assume that for each image point p with coordinates x and y the corresponding
homogeneous coordinate w has been computed at a previous computation step and
is known. Then we are able to calculate wx and wy, and the previous equation
expresses the relationship between the unknown pose components sR;, sRo, sT},
sT,, and the known image components wz and wy and known world coordinates
X, Y, Z of PyP. If we know m world points Py, k = 1,...,m, their corresponding
image points pg, and their homogeneous components wy, then we can then write two
linear systems of m equations that can be solved for the unknown components of
vectors sR, sR, and the unknowns s7;, and s7}, provided the rank of the matrix of
world point coordinates is at least 4. Thus, at least four of the points of the model
for which we use the image points must be noncoplanar. After the unknowns sR;
and sRy are obtained, we can extract s, Ry, and Ry by imposing the condition that

R; and Ry must be unit vectors. Then we can obtain R3 as the cross-product of

89

R; and Ros:

s = (||sRu|| ||sR2[|)/* (geometric mean),
R, = (sR1)/s, Ry = (sRy)/s, (3.5)
R; =R; X Rs.

T is then easily found from s, sT;, and sT}:

T, = (sTy)/s, T, = (sT,)/s, T, = f/s. (3.6)

An additional intermediary step that improves the performance and quality of
the results consists of using the unit vectors R} and R/, that are mutually perpen-
dicular and closest to R; and R; in the least square sense. These vectors can be
found by singular value decomposition (SVD) (see the Matlab code in [39]).

How can we compute the wy components required to compute the right-hand
side rows (wgZg, wxyx) corresponding to image point pp? We saw that setting wy, = 1
for every point is a good first step because it amounts to solving the problem with a
scaled orthographic model of projection. Once we have the pose result for this first
step, we can compute better estimates for the wy using equation (3.2). Then we can
solve the system of equations (3.4) again to obtain a refined pose. This process is
repeated, and the iteration is stopped when the process becomes stationary.

The POSIT algorithm is usually faster than competing linear algorithms. Even
though it is iterative, each step of the iteration is very fast, having only to invert
a 4 x 4 matrix and perform some other simple matrix algebra, and the iteration

typically converges in 3-5 steps. Although the direct linear transform algorithm [67]

90

has to invert a 2m x 12 matrix only one time (for m feature correspondences), it is
typically slower than POSIT. In comparison to nonlinear methods, POSIT is faster

and doesn’t need an initial guess.

3.2 Geometry and Objective Function

We now look at a geometric interpretation of this method in order to propose
a variant using an objective function. As shown in Figure 3.1, consider a pinhole
camera with center of projection at O, optical axis aligned with Oz, an image plane
IT at distance f from O, and an image center (principal point) at c¢. Consider
an object, the origin of its coordinate system at P, a point P of this object, a
corresponding image point p, and the line of sight L of p. The image point p’ is the
scaled orthographic projection of object point P. The image point p” is the scaled
orthographic projection of point P obtained by shifting P to the line of sight of p
in a direction parallel to the image plane.

One can show (see Appendix B) that the image plane vector from c to p/, is

cp' =s(Ry- PobP+T,,Ry- PP +T,).

In other words, the left-hand side of equation (3.4) represents the vector ¢p’ in the
image plane. One can also show that the image plane vector from c¢ to p” is ep” =
(wz, wy) = wep. In other words, the right-hand side of equation (3.4) represents the
vector ¢p” in the image plane. The image point p” can be interpreted as a correction

of the image point p from a perspective projection to a scaled orthographic projection

91

Az L

P PL M "
H Po P’ p” n’
Tz T
C p/ p p//
f
R3 A
O

Figure 3.1: Geometric interpretation of the POSIT computation. Image point p/,
the scaled orthographic projection of world point P, is computed by one side of
the POSIT equations. Image point p”, the scaled orthographic projection of point
Pron the line of sight of p, is computed by the other side of the equation. The
equations are satisfied when the two points are superposed, which requires that the
world point P be on the line of sight of image point p. The plane of the figure is
chosen to contain the optical axis and the line of sight L. The points Py, P, P', and
p’ are generally out of this plane.

92

of a point Pp, located on the line of sight at the same distance as P. P is on the
line of sight L of p if, and only if, the image points p’ and p” are superposed. Then
cp’ = ¢p”, i.e. equation (3.4) is satisfied.

When we try to match the points P of an object to the lines of sight Ly
of image points py, it is unlikely that all or even any of the points will fall on
their corresponding lines of sight, or equivalently that ep}, = ¢pj or p;pj = O.
The least squares solution of equations (3.4) for pose enforces these constraints.
Alternatively, we can minimize a global objective function E equal to the sum of

the squared distances di =| p;p} |* between image points pj, and pj}:

2
B = =Y |en, - el

= > .((Q1- Sk — wrmk)® + (Q2 - Sk — wikix)?)

(3.7)

where we have introduced the vectors Q,, Q,, and Sy with four homogeneous coor-

dinates to simplify the subsequent notation:

Q; = (My, My, M3, My) = s(Ry, Ty),
Q2 = (N1, No, N3, Ny) = s(Ro, 1), (3.8)

Sk = (P()Pk,,].)

We call Q; and Q, the pose vectors.
Referring again to Figure 3.1, notice that p’p” = sP’P” = sP Py,. Therefore
minimizing this objective function consists of minimizing the scaled sum of squared

distances of model points to lines of sight, when distances are taken along directions

93

parallel to the image plane.
This objective function is minimized iteratively. Initially, the w; are all set to

one. Then the following two operations take place at each iteration step:

1. Compute the pose vectors Q; and Q, assuming the terms wy, are known (equa-

tion (3.7)).

2. Compute the correction terms wy, using the pose vectors Q; and Q, just com-

puted (equation (3.2)).

We now focus on the optimization of the pose vectors Q; and Q,. The pose vectors
that will minimize the objective function E at a given iteration step are those
for which all the partial derivatives of the objective function with respect to the
coordinates of these vectors are zero. This condition provides 4 X 4 linear systems

for the coordinates of Q; and Q, whose solutions are

Q1 = ZSkST Zwk.’L‘kSk (39)

Q. = Z SkSp) ™ Z WYk Sk)- (3.10)

The matrix L = (3, SkS;) is a 4 x 4 matrix that can be precomputed. Given Q,
and Q,, the rotation matrix R and translation vector T are easily calculated from
Equations 3.5, 3.6, and 3.8.

With either method, the point p” can be viewed as the image point p “cor-
rected” for scaled orthographic projection using w computed at the previous step
of the iteration. The next iteration step finds the pose such that the scaled or-

94

thographic projection of each point P is as close as possible to its corrected image
point.
3.3 Pose from Unknown Point Correspondences

When correspondences are unknown, each image feature point p; can poten-
tially match any of the model feature points Py, and therefore must be corrected

using the value of w specific to the coordinates of Py:

Therefore for each image point p; and each model point P, we generate a corrected

image point p7;, aligned with the image center ¢ and with p;, and defined by

cp;.’,c = wiCp;. (3.12)

We make use of the squared distances between these corrected image points
p}’k and the scaled orthographic projections pj, of the points P, whose positions are

provided by

Q1 - S
cp;, = : (3.13)
Q2 - S
These squared distances are
2
d?k = ‘P;J’Z =(Q1-Sk— wkﬂﬁj)Q + (Qz2 - Sk — wk?/j)Za (3.14)

95

where z; and y; are the image coordinates of the image point p;, Si is the vector
(Sk1, Sk2, Ska, Ska)T = (PoPyg,1)7, and Q; and Q, are pose vectors introduced in
the previous section and recomputed at each iteration step. The term wy is defined
by equation (3.11).

The simultaneous pose and correspondence problem can then be formulated

as a minimization of the global objective function

E = Z?:l 22"21 Mjk djzk

- Z?:I Yo Mk (Qq - Sk — wizj)? + (Q2 - Sk — wiy;)?)

(3.15)

where the M, are weights, equal to zero or one, for each of the squared distances d?k,
and where n and m are the number of image and model points, respectively. The M,
are correspondence variables that define the assignments between image and model
feature points. Note that when all the assignments are well-defined, this objective
function becomes equivalent to the objective function defined in equation (3.7).
This objective function is minimized iteratively, with the following three op-

erations at each iteration step:

1. Compute the correspondence variables assuming everything else is fixed (see

below).

2. Compute the pose vectors Q; and Q,assuming everything else is fixed (see

below).

3. Compute the correction terms wy using the pose vectors Q, and Q, just com-
puted (as described in Section 3.2).

96

This iterative approach is related to the general expectation-maximization (EM)
algorithm [105] (see Section 2.5.2.3). In EM, given a guess for the unknown pa-
rameters (the pose in our problem) and a set of observed data (the image points in
our problem), the expected value of the unobserved variables (the correspondence
matrix in our problem) is estimated. Then, given this estimate for the unobserved
variables, the maximum likelihood estimate of the parameters are computed. This

process is repeated until these estimates converge.

3.3.1 The Pose Problem

We now focus on finding the optimal pose vectors Q; and Q,, assuming the
correspondence variables M), are known and fixed. As in the previous section, the
pose vectors that will minimize the objective function E at a given iteration step
are those for which all the partial derivatives of the objective function with respect
to the coordinates of these vectors are zero: 0E/0Q; = 0 and 0E/Qy = 0. This
condition provides 4 x 4 linear systems for the coordinates of Q; and Q, whose

solutions are

m

ZM’SkST Zkz jkwkaSk) (316)

3

ZMkSkST ZZ M;jxwyy;Sk), (3.17)

with My = >0 | Mjy. The terms SiS; are 4 x 4 matrices. Therefore computing
Q; and Q, requires the inversion of a single 4 x 4 matrix, L = (3_5, M/S;S;), a

fairly inexpensive operation (note that because the term in column £ and slack row

97

n+1 (see below) is generally greater than 0, M} = Z?Zl My, is generally not equal

to 1, and L generally cannot be precomputed).

3.3.2 The Correspondence Problem

We optimize the correspondence variables M, assuming that the parameters
d?, in the expression for the objective function E are known and fixed. Our aim
is to find a zero-one assignment matriz, M = {M,}, that explicitly specifies the
matchings between a set of n image points and a set of m model points, and that
minimizes the objective function E. M has one row for each of the n image points
p; and one column for each of the m model points P;. The assignment matrix must
satisfy the constraint that each image point match at most one model point, and
vice versa (i.e., X;M;; = ¥;M;, = 1 for all j and k). A slack row n+ 1 and a slack
column m + 1 are added. A one in the slack column m + 1 at row j indicates that
image point p; has not found any match among the model points. A one in the slack
row n+1 at column £ indicates that the model point P is not seen in the image and
does not match any image points. The objective function F will be minimum if the
assignment matrix M matches image and model points with the smallest distances
d?k. This problem can be solved by Gold and Rangarajan’s Graduated Assignment
Algorithm [55, 56]. The iteration for the assignment matrix M begins with a matrix
M? in which element M}, is initialized to exp(—f(d%, — «)), with 8 very small,
and with all elements in the slack row and slack column set to a small constant.

The parameter o determines how far apart two points must be before considering

98

the points unmatchable. The continuous matrix M° converges toward the discrete

matrix M due to two mechanisms that are used concurrently:

1. First, the matrix normalization technique due to Sinkhorn [135] (described
in Section 2.5.2.2) is applied. When each row and column of a square corre-
spondence matrix is normalized (several times, alternating) by the sum of the
elements of that row or column respectively, the resulting matrix has positive

elements with all rows and columns summing to one.

2. The term S is increased as the iteration proceeds. As [increases and each row
or column of M? is renormalized, the terms M. J(-)k corresponding to the smallest
d?k tend to converge to one, while the other terms tend to converge to zero.
This is a deterministic annealing process [53] known as softmaz [14]. This is
a desirable behavior, since it leads to an assignment of correspondences that

satisfy the matching constraints and whose sum of distances in minimized.

3.3.3 Solving for Pose and Correspondences Simultaneously

This combination of deterministic annealing and Sinkhorn’s technique in an
iteration loop was called the Graduated Assignment Algorithm by Gold and Ran-
garajan [55, 56]; this algorithm was discussed in detail in Section 2.5.2.2 in the
context of graph matching. The matrix M resulting from an iteration loop that
comprises these two substeps is the assignment that minimizes the global objective
function £ = Y77 | 37" | My diy. An outline of the SoftPOSIT algorithm is given

in Algorithm 5. As this outline shows, the two substeps to compute correspondences

99

Algorithm 5 - SOFTPOSIT: Outline of the SoftPOSIT algorithm.

initialize the pose vectors Q; and Q, and the certainty factor 5.

repeat

e Compute the distances dj; between all pairs of image and model points.

e Compute the correspondence variables M given dj, 3, Qq, and Qa.

Compute the pose vectors Q; and Q, that minimize the objective function
assuming known but uncertain correspondences M.

Compute the scaled orthographic correction terms wy using Q; and Q.

Increase the certainty factor .

until convergence.

are interleaved in the iteration loop of Soft POSIT, along with the substeps that op-
timize the pose and correct the image points by scaled orthographic distortions.
More detailed pseudocode for the SoftPOSIT algorithm is shown in Algorithm 6.
Use of the graduated assignment algorithm for matching problems is motivated
by the following. First, the softassign algorithm efficiently enforces the doubly
stochastic constraint on the assignment matrix. Previously, this constraint was
satisfied by inserting it into the energy function via Lagrange multipliers and then
applying a gradient descent optimization algorithm [124]. Second, the deterministic
annealing process allows poor local minima to be avoided. Third, the algorithm
handles spurious and missing data through the use of slack rows and columns in the
assignment matrix. Finally, the approach can be adapted to simultaneously solve

for geometric transformations between the data and model.

100

Algorithm 6 - SOFTPOSIT: The SoftPOSIT algorithm.

Inputs: A list of n image feature points: p; = (zj,y;)7

A list of m world points: Sy, = (X, Yz, Zg, 1)7 = (Po Py, 1)T
Outputs: Rotation matrix: R = [R; Ra R3]"

Translation vector: T = (T, Ty, T;) "

Assignments between image and world points: M = {M;}

B =P (Bo = 0.0004 if nothing is known about the pose,
larger if an initial pose can be guessed)

Q; and Q, are initialized using the expected pose or a random pose within an expected
range.

repeat (Deterministic annealing loop)

d?k = (Q1-Sg —wrj)? + (Q2-Sg —wyy;)? for 1<j<mnand1<k<m

M]Qk = exp(—ﬂ(d?,c —a))forl1<j<nand1<k<m

Mijmi1 =Mpp1p=1for1<j<n+land1<k<m+1

repeat (Sinkhorn normalization)
Mjl'k = Mfk/zzn;ll Mjl'ck
Mfk“ = Mj,./ Z?Ll M,

until HM’H'1 — Mk” small

L= (E;cnzl Mllcsksg) with Mllc = Z?:l My,

Qi = L1 (3o ket Mjrwe z8k), Qo = L™ (XGo) Yokey Mjrwg y;Sk)

s = (11(Qu1, @iz, Qua) | (@21, @2z, Q))2

R1 = (Q11, Q12,@13)/3, Ro = (Qa1,Q22,@23)/s, R3 =Ry X Ry

Ty = (sTy)/s, Ty = (sTy)/s, T, = f/s

wy, =R3-PoPr/T,+1,1<k<m

/3 = ﬂupdateﬂ (,Bupdate =~ 1.05)

until ,8 > ,Bfinal (6f’mal ~ 0. 5)

101

3.3.4 Improvements to the Sinkhorn Algorithm

Sinkhorn’s original algorithm [135], SINKHORN1, shown in Algorithm 1,
treats all rows and columns identically. It cannot make a matrix doubly stochastic
when the matrix is not square, that is, when the number of image features is different
from the number of model features; this is the normal case when real imagery is
involved. The modified Sinkhorn algorithm, SINKHORN2, shown in Figure 2, uses
a slack row and column that are treated differently from other rows and columns: the
slack values are not normalized with respect to other slack values, only with respect
to the nonslack values. This is necessary in order to allow multiple image features
to be identified as clutter and to allow multiple model features to be identified as
being occluded. A problem with SINKHORNZ2, however, is the following. Suppose
that the nonslack value M, at row j and column £ is a maximum in both its row
and column. After normalizing row j, it is possible that M;; is now smaller than
the slack value for column k. When column & is then normalized, M;; can be made
smaller than the slack value for that row. The same thing can happen when rows
and columns are normalized in the opposite order. As an example, consider the

initial assignments matrix

1.0 0.7 0.8
My=1{07 1.0 08

0.8 0.8 0.0

102

where all of the slack values are 0.8. The assignments corresponding to the main
diagonal are consistent with the one-to-one matching constraints and are better than

the non-diagonal and slack matches. SINKHORN2 will normalize M; to

0.32 0.23 0.45

M, 0.23 0.32 0.45

0.45 0.45 0.00

M, is doubly stochastic, but now the slack assignments are greater than all of
the nonslack assignments. Therefore, no assignments should be made based on
M,. This matrix is inconsistent with the original assignment matrix. Intuitively,
this behavior is undesirable: nonslack values that start off maximal in both their
row and column should remain maximal in their row and column throughout the
Sinkhorn normalization process. The purpose of Sinkhorn normalization is not to
shift assignment weights around, but only to normalize the assignments so that
they approximate a probability distribution. The annealing process, not Sinkhorn
normalization, is used to enforce the one-to-one matching constraint by shifting
weights within an assignment matrix. A secondary problem with SINKHORNZ2 is
that the order of normalization (row first or column first) can have a significant effect
on the final normalization, especially when there is potential for “weight shifting” as
described above.

We have developed a new normalization algorithm called SINKHORN3 that

minimizes undesirable weight shifting. The main difference with SINKHORNZ2 is

103

Algorithm 7 — SINKHORNS3: Sinkhorn’s algorithm modified to minimize undesirable
weight shifting in matrices with a slack row and column.

1 =20
M4 Mm+1 e 0 0 0 0 '
R = {(T’,c, Y) | MO, > MC, and M9, > MY, for all j # r and k ;éc}
repeat
]k = k/E"HM;S, 1<ji<m,1<k<n+1. (Normalize rows)
for each (r,c,\,u) € R (Adjust specific slack rows)
M’rIn—H c IUM'/I'C
end for
M}, = M’k/EmHMZk, 1<j<m+1,1<k<n. (Normalize columns)
for each (r,c,\,u) € R (Adjust specific slack columns)
My =AM,
end for
1=1+1

M;k:(Mj’.k+M]’.’k>/2,1§j§m+1,1§k§n—|—1

until |M? — M*1|| small

that in SINKHORN3 certain slack values are adjusted after each row and column
normalization: After performing row normalizations, the values in the slack row
are set so that their ratio to the nonslack value in each column which was previ-
ously maximum is the same as this ratio was prior to row normalization. A similar
thing is done after column normalizations. In addition, to eliminate the effect of
normalization order, rows and columns are normalized independently on each step
of the iteration and then the two normalized matrices are combined into one. The
pseudocode for algorithm SINKHORN3 is shown in Algorithm 7. When applied to

the matrix M, from the above example, the new algorithm produces the matrix

104

0.40 0.28 0.32

Mz = {028 040 0.32

0.32 0.32 0.00

Mj is doubly stochastic and is much better than A, in terms of representing the
original assignment matrix M;.

Figure 3.2 compares the normalization properties of algorithms SINKHORN2
and SINKHORN3 when applied to a number of 3 x 3 assignment matrices. As this
figure shows, there are times — when the initial assignments are ambiguous — that it
is reasonable and desirable for a matrix normalization algorithm to shift the weights
in an assignment matrix; SINKHORN3 appears to behave appropriately in these
cases.

SINKHORNS3 by design maintains the “preferred” assignments better than
SINKHORNZ2, but it’s not clear if SINKHORN3 also produces a doubly stochastic
matrix. To compare the normalization quality of SINKHORN3 to SINKHORN2,
we define the distance that an n X m nonnegative matrix M (with slack row and

column) is from being doubly stochastic by

dgs (M) = nz_: (Zm: My, — 1) + mz_: (Zn: My, — 1) . (3.18)

k=1 \j=1

As shown in Figure 3.3, SINKHORN3 does not always produce a doubly stochastic

matrix, while SINKHORN2 does, but the final result is a good approximation: the

105

. . . After normalization After normalization
Original Matrix

with SINKHORN2 with SINKHORN3
1.0 0.7]0.8 0.32 0.23 | 0.45 0.40 0.28 | 0.32
a) 0.7 1.0(0.8 0.23 0.32]0.45 0.28 0.40 | 0.32
0.8 0.8 0.0 0.45 0.45 | 0.00 0.32 0.32 | 0.00
0.7 0.5 0.6 0.29 0.32 | 0.39 0.35 0.34 | 0.30
b) 0.5 0.1]0.6 0.32 0.10 | 0.59 0.32 0.09 | 0.57
0.6 0.6 0.0 0.39 0.59 | 0.00 0.30 0.57 | 0.00
1.0 0.5]0.1 0.40 0.54 | 0.06 0.39 0.57 | 0.04
c) 0.5 0.10.1 0.54 0.29 | 0.17 0.57 0.26 | 0.17
0.1 0.1]0.0 0.06 0.17 | 0.00 0.04 0.17 | 0.00

Figure 3.2: Comparison of the results of applying algorithms SINKHORN2 and
SINKHORNS3 to a number of 3x 3 assignment matrices with slack rows and columns.
(In each matrix, a horizontal and vertical line separates the slack row and column,
respectively, from the rest of the matrix.) In (a), the two assignments along the
diagonal of the original matrix should be preferred since all of the off-diagonal el-
ements are less than the slack values. These assignments, however, are lost by
SINKHORN2 because all of the normalized non-slack values are less than any of
the normalized slack values; SINKHORN3 correctly maintains these diagonal as-
signments. In (b), the assignment at the upper left corner of the original matrix (the
only assignment larger than the slack values) is lost by SINKHORN2 because the
normalized value is less than all of the normalized slack values; again, SINKHORN3
correctly maintains this assignment. In (c), the original assignments are ambigu-
ous because there are three values in the original matrix that are larger than slack.
Even though the upper left assignment is the largest of these, both SINKHORN2
and SINKHORN3 normalize the matrix so that the off-diagonal assignments are
preferred; this is a reasonable result.

106

oy

OI
=
o

=

O‘
i
o

Distance from doubly stochastic

oy

O‘
N
=]

10—25 |

Sinkhorn2 \

101 Sinkhorn3 > .
T T | |

|
0 5 10 15 20 25 30 35 40 45 50
Iteration step number

Figure 3.3: This plot compares the doubly stochastic qualities of matrices normal-
ized with algorithm SINKHORN2 to the same matrices normalized with algorithm
SINKHORN3. 10000 random assignment matrices (random sizes between 10 x 10
and 100 x 100, not necessarily square, with random values) were normalized with
SINKHORN2 and SINKHORN3 and the distance of the normalized matrix from
being doubly stochastic (as determined by Equation 3.18) was measured after every
set, of row and column normalizations. The solid lines give the median distances,
the upper dashed lines the maximum distances, and the lower dashed lines the min-
imum distances, for all matrices as a function of the iteration step number. The
vertical axis represents the distance of the matrix from being doubly stochastic, and
the horizontal axis gives the iteration step number. Results for SINKHORN2 are
shown as solid and dashed red lines in this plot, and results for SINKHORN3 as
solid and dashed blue lines. Although SINKHORN3 does not always produce a
doubly stochastic matrix, the final result is a good approximation

107

mazimum distance from doubly stochastic after 50 normalization steps is 3.6 x 107
for SINKHORN2 and 1.1 x 10~2 for SINKHORNS3; the median distance from dou-
bly stochastic after 50 normalization steps is 6.7 x 1072* for SINKHORN2 and
1.7 x 107 for SINKHORN3. As a consequence of this and its better nonweight-
shifting property, we have observed better convergence to correct solutions when
algorithm SINKHORNS3 is used instead of algorithm SINKHORN2. Consequently,
algorithm SINKHORNS3 is used in place of SINKHORN2 in all experiments de-

scribed in this paper.

3.4 Random Start SoftPOSIT

The SoftPOSIT algorithm described above performs a deterministic annealing
search starting from an initial guess for the object’s pose. Because this is a local
search, there is no guarantee of finding the global optimum. The probability of
finding the globally optimal object pose and correspondences starting from an initial
guess depends on a number of factors including the accuracy of the initial guess, the
deterministic annealing cooling schedule, the number of model points, the number
of image points, the number of occluded model points, the amount of clutter in the
image, and the image measurement noise. A common way of searching for a global
optimum, and the one taken here, is to run the search algorithm starting from a
number of different initial guesses, and keep the first solution that meets a specified
termination criteria. Our initial guesses range over the range of [—m, 7| for the three

Euler rotation angles, and over a 3D space of translations known to contain the true

108

translation. In this section, we describe our procedure for generating initial guesses
for pose when no knowledge of the correct pose is available, and then we discuss our

termination criteria.

3.4.1 Generating Initial Guesses

Given an initial pose that lies in a valley of the cost function in the parameter
space, we expect the algorithm to converge to the minimum associated with that
valley. To examine other valleys, we must start with points that lie in them. One
possibility for generating new starting poses is to use a multi-dimensional pseudo-
random number generator.

However, this leads to a set of problems. First, a pseudo-random number
generator will generate points that may cluster together or be widely spread apart
in the parameter space. Thus we may revisit some regions of the space that have
already been studied, or might miss some regions altogether. A possible solution
to allow for rejection of some of the generated initial parameter values. However,
this adds a layer of complexity to the software, and further does not provide a
mathematical guarantee that the space is in some sense being optimally covered.
Indeed since each search for correspondence and pose is relatively expensive, we
would like to have a mathematical statement that allows us to make the claim that,
for a given number of starting points, our starting points sample the parameter
space in some optimal manner.

Another problem with such searches is that sometimes the minima may lie

109

in valleys that are likely to be of complex shape, or some of the minima may be
embedded in a subdimensional manifold in the space. If the sampling is to be
successful in recovering these minima, not only must the distributions of the initial
guesses sample the parameter space well, so also their subdimensional projections.
Intuitively, the points must be distributed such that any subvolume in the space
should contain points in proportion to its volume (or other appropriate measure).
This property must also hold for projections onto a manifold.

Fortunately, there are a set of deterministic points that have such proper-
ties. These are the quasi-random, or low discrepancy sequences. These points are
optimally self-avoiding, and uniformly space filling. Uniformity of a distribution of
points can be characterized by the mathematical definition of discrepancy. Let a
region with unit volume have N points distributed in it. Then, for uniform point dis-
tributions, any subregion with volume o would have /N points in it. The difference
between this quantity and the actual number of points in the region is called the
“discrepancy.” Quasi-random sequences have low discrepancies and are also called
low-discrepancy sequences. The error in uniformity for a sequence of N points in the
k-dimensional unit cube is measured by its discrepancy, which is O((log N)* N 1) for
a quasi-random sequence, as opposed to O((loglog N)/2N~1/2) for a pseudo-random
sequence [108].

Figure 3.4 compares the uniformity of distributions of quasi-random points
and pseudo-random points. Figure 3.4a shows a set of random points generated in
(0,1)? using a pseudo-random number generator. If the distribution of points were
uniform one would expect that any region of area larger than 1/512 would have at

110

least one point in it. As can be seen, however, many regions considerably larger
than this are not sampled at all, while points in other regions form rather dense
clusters, thus oversampling those regions. Figure 3.4b shows the same number of
quasi-random points for the same area. These points do not clump together, and

fill the spaces left by the pseudo-random points.

(a) (b)

Figure 3.4: 512 points in (0,1)” generated with (a) a pseudo-random number gen-
erator, and (b) a quasi-random number generator.

We use a standard quasi-random generator [121] to generate quasi-random
6-vectors in a unit 6D hypercube. These points are scaled to cover the expected

ranges of translation and rotation.

3.4.2 Search Termination

Ideally, one would like to repeat the search from a new starting point whenever
the number of model-to-image correspondences determined by the search is not
maximal. With real data, however, one usually does not know what this maximal

111

number is. Instead, we repeat the search when the number of model points matching
to image points is less than some threshold ¢,,. Due to occlusion and imperfect image
feature extraction algorithms, not all model points will be detected as features in

an image of that object. Let the fraction of detected model features be

number of model points detected as image features

P = total number of model points

In the Monte Carlo simulations described below, pg is known. With real imagery,
however, p; must be estimated based on the scene complexity and on the reliability
of the image processing algorithm in detecting model features.

We terminate the search for better solutions when the current solution is such
that the number of model points matching to any image point is greater than or
equal to the threshold ¢, = ppgm where p determines what percent of the detected
model points must be matched (0 < p < 1), and where m is the total number of
model points so that pym is the number of detected model points. p accounts for
measurement noise that typically prevents some detected model features from being
matched, even when a good pose is found. In the experiments discussed below, we
take p = 0.8. This test is not perfect, as it is possible for a pose to be very accurate
even when the number of matched points is less than this threshold; this occurs
mainly in cases of high noise. Conversely, a wrong pose may be accepted when the
ratio of clutter features to detected model points is high. It has been observed,
however, that these situations are relatively uncommon.

We note that Grimson and Huttenlocher [61] have derived an expression for

112

a threshold on the number of matched model points necessary to accept a local
optimum; their expression is a function of number of image and model points and
of the sensor noise, and guarantees with a specified probability that the globally

optimal solution has been found.

3.4.3 Early Search Termination

The deterministic annealing loop of the Soft POSIT algorithm iterates over a
range of values for the annealing parameter 8. In the experiments reported here,
B is initialized to By = 0.0004 and is updated according to 5 = 1.05 x S, and the
annealing iteration ends when the value of 5 exceeds 0.5. (The iteration may end
earlier if convergence is detected.) This means that the annealing loop can run
for up to 147 iterations. It is usually the case that, by viewing the original image
and, overlayed on top of this, the projected model points produced by SoftPOSIT,
a person can determine very early on in the iteration (e.g., around iteration 30)
whether or not the algorithm is going to converge to the correct pose. It is desired
that the algorithm make this determination itself, so that whenever it detects that
it is likely heading down an unfruitful path, it can end the current search for a
local optimum and restart from a new random initial condition, thereby saving a
significant amount of processing time.

A simple test is performed on each iteration of SoftPOSIT to determine if
it should continue with the iteration or restart. At iteration ¢ of SoftPOSIT, the

match matrix M’ = {M;,} is used to predict the final correspondences of model to

113

image points: upon convergence of Soft POSIT, one would expect image point j to
correspond to model point k if M}, > M; , for all u # j and all v # k (however,
this is not guaranteed). The number of predicted correspondences at iteration i,
¢;, is just the number of pairs (j, k) that satisfy this relation. We then define the
match ratio on iteration i as r; = ¢;/(pqsK) where py is the fraction of detected model
features as defined above.

The early termination test centers around this match ratio measure. This
measure is commonly used [61] at the end of a local search to determine if the
current solution for correspondence and pose is good enough to end the search for the
global optimum. We, however, use this metric within the local search itself. Let C
denote the event that the Soft POSIT algorithm eventually converges to the correct
pose. Then, the algorithm restarts after the i1 jteration if P(C | r) < aP(C)
where 0 < o < 1. That is, the search is restarted from a new random starting
condition whenever the posterior probability of eventually finding a correct pose
given r; drops to less than some fraction of the prior probability of finding the
correct pose. Notice that a separate posterior probability function is required for
each iteration 7 because the ability to predict the eventual outcome using r; changes
as the iteration progresses. Although this test may result in the termination of some
local searches which would have eventually produced a good pose, it is expected that
the total time required to find a good pose will be less. Our experiments show that
this is indeed be the case; we obtain a speedup by a factor of 2.

The posterior probability function for the i iteration can be computed from

P(C), the prior probability of finding a correct pose on one random local search,

114

and from P(r; | C) and P(r; | C), the probabilities of observing a particular match

ratio on the i1 iteration given that the eventual pose is either correct or incorrect,

respectively:

PC)P(ri | C)

PO = 5Pt ¢) + POPE T

P(C), P(C), P(r; | C), and P(r; | C) are estimated in Monte Carlo simulations
of the algorithm in which the number of model vertices and the levels of image
clutter, occlusion, and noise are all varied. The details of these simulations are
described in Section 3.5.1. To estimate P(r; | C) and P(r; | C), the algorithm is
repeatedly run on random test data. For each test, the values of the match ratio
r; computed at each iteration are recorded. Once a Soft POSIT iteration completes,
ground truth information is used to determine whether or not the correct pose was
found. If the pose is correct, then the recorded values of r; are used to update
histograms representing the probability functions P(r; | C); otherwise, histograms
representing P(r; | C) are updated. Upon completing this training, the histograms
are normalized. P(C) is easily estimated based on the percent of the random tests
that produced the correct pose. We also have P(C) = 1 — P(C). A few of these

estimated probability functions are shown in Figure 3.5.

115

03 T T T T T T T T T 03 T T

— P(CP [N — P(CP 1)

— - P(r|CP) - - P(r|cP)
P P

(1) (1)
P(r |-CP) P(r [-CP)

Probability
o
~
T
o
o

o

[
o
[

] = I I i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r (match ratio) r(match ratio)

(a) (b)

Figure 3.5: Probability functions estimated for (a) the first iteration, and (b) the
315 iteration, of the SoftPOSIT algorithm.

3.5 Experiments with Point Data

3.5.1 Monte Carlo Evaluation

The random-start SoftPOSIT algorithm has been extensively evaluated in
Monte Carlo simulations. The simulations and the performance of the algorithm
are discussed in this section. The simulations are characterized by the five parame-
ters: my, m, P4, Pe, and o. n; is the number of independent random trials to perform
for each combination of values for the remaining four parameters. m is the number
of points (vertices) in a 3D model. py is the probability that the image of any par-
ticular model point will be detected as a feature point in the image. p; takes into
account occlusion of the 3D model points as well as the fact that real image process-
ing algorithms do not detect all desired feature points, even when the corresponding

3D points are not occluded. p. is the probability that any particular image feature

116

point is clutter, that is, is not the image of some 3D model point. Finally, o is the
standard deviation of the normally distributed noise in the z and y coordinates of
the non-clutter feature points, measured in pixels for a 1000 x 1000 image, generated
by a simulated camera having a 37 degree field of view (focal length of 1500 pixels).
The current tests were performed with n, = 100, m € {20, 30, 40, 50, 60, 70, 80},
pg € {0.4,0.6,0.8}, p. € {0.2,0.4,0.6}, and o € {0.5,1.0,2.5}'. With these parame-
ters, there were 18,900 independent trials performed.

For each trial, a 3D model is created in which the m model vertices are ran-
domly located in a sphere centered at the origin. Because the Soft POSIT algorithm
works with points, not with line segments, it is only the model vertices that are
important to the current tests. However, to make the images produced by the al-
gorithm easier to understand, each model vertex is connected by an edge to the
two closest of the remaining model vertices. These connecting edges are not used
by the SoftPOSIT algorithm. The model is then rotated into some arbitrary ori-
entation, and translated to some random point in the view of the camera. Next,
the model is projected into the image plane of the camera; each projected model
point is detected with probability p;. To those points that are detected, normally
distributed, zero mean, and standard deviation ¢ noise is added to both the x and
y coordinates of the feature points. Finally, randomly located clutter feature points
are added to the true (non-clutter) feature points, so that 100 x p, percent of the

total number of feature points are clutter; to achieve this, mpgp./(1 — p.) clutter

!Because one of our main application is autonomous navigation in cities, and because image
corner points of the type produced by buildings can be located with an accuracy of 1/10th of a
pixel [13], these values of ¢ are larger than what is expected in real imagery.

117

points must be added. The clutter points are required to lie in the general vicinity
of the true feature points. However, to prevent the clutter points from replacing
missing true feature points, all clutter points must be further than /20 from any
projected model point, whether or not the point was detected. Figure 3.6 shows a
few examples of cluttered images of random models that are typical of those used
in our experiments.

In our experiments, we consider a pose to be good when it allows 80% (p = 0.8
in section 3.4.2) or more of the detected model points to be matched to some image
point. The number of random starts for each trial was limited to 10,000. Thus, if a
good pose is not found after 10,000 starts, the algorithm gives up. Figures 3.7 and 3.8
show a number of examples of poses found by SoftPOSIT when quasi-random 6-
vectors are used as the initial guesses for pose.

Figure 3.9 shows the success rate of the algorithm (percent of trials for which
a good pose was found in 10,000 starts, given no knowledge of the correct pose)
as a function of the number of model points for the case of o = 2.5 and for all
combinations of the parameters p; and p.. (The algorithm performs a little better
for the cases of 0 = 0.5 and ¢ = 1.0.) It can be seen from this figure that, for
more than 92% of the different combinations of simulation parameters, a good pose
is found in 90% or more of the associated trials. For the remaining 8% of the tests,
a good pose is found in 75% or more of the trials. Overall, a good pose was found
in 96.4% of the trials. As expected, the higher the occlusion rate (lower p;) and the
clutter rate (higher p.), the lower the success rate. For the high-clutter tests, the
success rate increases as the number of model points decreases. This is due to the

118

Figure 3.6: Typical images of randomly generated models and images. The blue
points are projected model points and the red points are clutter points. The blue
lines, which connect the model points, are included in these pictures to assist the
reader in understanding the pictures; they are not used by the algorithm. The
number of points in the models are 20 for (a), 30 for (b), 40 for (c), 50 for (d) and
(e), 60 for (f) and (g), 70 for (h), and 80 for (i). In all cases shown here, p; = 1.0
and p. = 0.6. This is the best case for occlusion of the model (none), but the worst
case for clutter. In the actual experiments, p; and p. vary.

119

(c) (d)

Figure 3.7: Some projected models and cluttered images for which SoftPOSIT was
successful. The red points are the image points (including projected model and
clutter) to which the models must be matched. The green points and lines show
the projections of the models in the initial poses (random guesses) which lead to
good poses being found. The blue points and lines show the projections of the
models in the good poses that are found. The blue points that are not near any red
point are occluded model points. Red points not near any blue point are clutter.
Again, the green and blue lines are included in these pictures to assist the reader in
understanding the pictures; they are not used by the algorithm. The Monte Carlo
parameters for (a) and (b) are: m = 30, p; = 0.6, p. = 0.4, 0 = 2.5; and, for (c)
and (d): m =50, p; = 0.8, p. = 0.4, 0 = 2.5.

120

Figure 3.8: More projected models and cluttered images for which SoftPOSIT was
successful. The Monte Carlo parameters for (a) and (b) are: m = 70, p; = 0.8,
pe = 0.4, 0 = 2.5; and, for (¢) and (d): m = 80, pg = 0.6, p. = 0.6, 0 = 2.5.

121

Success rate (%)

UUUUUUDODOO
W

CllHedettael

T L L L L L
30 40 50 60 70 80
Number of model points

N

Figure 3.9: Success rate as a function of the number of model points for fixed values
of pg and p.. (Note that py and p. are denoted D and C, respectively, in the legend
of this figure and in the next few figures.)

algorithm’s ability to more easily match a smaller number of model points to clutter
than a larger number of model points to the same level of clutter.

Figure 3.10 shows the average number of random starts required to find a good
pose. These numbers generally increase with increasing image clutter and occlusion.
However, for the same reason as given in the previous paragraph, the performance
for small numbers of model points is better at higher levels of occlusion and clutter.
Other than the highest occlusion and clutter case, the mean number of starts is
about constant or very slowly increasing with increasing number of model points.
Also, there does not appear to be any significant increase in the standard deviation
of the number of random starts as the number of model points increases. The mean
number of starts over all of the tests is approximately 500; the mean exceeds 1100
starts only in the single the hardest case. Figure 3.5.1 shows the same data but
plotted as a function of the number of image points. Again, except for the two

highest occlusion and clutter cases, the mean number of starts is about constant or

122

2000

1800

1600

1400

1200

1000

Mean number of starts.
IS @ ®
8 3 3
3 3 3

N
S
3

o

SASARSES

40 50 60 70 80
Number of model points

(a)

3000

2500

2000

1500

Std. dev. number of starts

1000

500

30 40 50 60 70 80
Number of model points

(b)

Figure 3.10: Number of random starts required to find a good pose as a function of
the number of model points for fixed values of py and p.. (a) Mean. (b) Standard

deviation.

2000 T
—_ =02
- =0.4

1800 H — =06 4
—+ =02
— =04

1600 H —&— =06 -
- .
e

1400 H 2

1200

Mean number of starts
=
1)
8
3

40 60 80
Number of image points

(a)

3000

2500

2000

1500

Std. dev. number of starts

1000

I
20 40 60 80 100
Number of image points

(b)

Number of random starts required to find a good pose as a function of the number
of image points for fixed values of p; and p.. (a) Mean. (b) Standard deviation.

123

very slowly increasing as the number of image points increases.

3.5.2 Algorithm Complexity

The run-time complexity of a single invocation of SoftPOSIT is O(mn) where
m is the number of object points and n is the number of image points. As shown in
Figure 3.10, the mean number of random starts (invocations of SoftPOSIT) required
to find a good pose in the worst (hardest) case, to ensure a probability of success of at
least 0.95, appears to be bounded by a function that increases linearly with the size
of the input; in the other cases, the mean number of random starts is approximately
constant. That is, the mean number of random starts is O(n), assuming that m < n,
as is normally the case. Then the run-time complexity of SoftPOSIT with random
starts is O(mn?). This is a factor of n better than the complexity of any published
algorithm that solves the simultaneous pose and correspondence problem under a

full perspective camera model.

3.5.3 Run Time Comparison

The RANSAC algorithm [49] is the best known algorithm to compute object
pose given noncorresponding 3D object and 2D image points. In this section, we
compare the expected run time? of SoftPOSIT to that of RANSAC for each of the
simulated data sets discussed in Section 3.5.1.

The mean run time of SoftPOSIT on each of these data sets was recorded

2 All algorithms and experiments were implemented in Matlab on a 2.4 GHz Pentium 4 processor
running the Linux operating system.

124

during the Monte Carlo experiments. As will be seen below, to have run RANSAC
on each of these data sets would have required a prohibitive amount of time. This
was not necessary, however, since we can accurately estimate the number of ran-
dom samples of the data that RANSAC will examine when solving any particular
problem. The expected run time of RANSAC is then the product of that number
of samples with the expected run time on one sample of that data.

The computational complexity of a pose problem depends on the three pa-
rameters m, pg, and p, defined in Section 3.5.1. For each combination of these three
parameters, we need to determine the expected run time of RANSAC for a single
sample of three object points and three image points® from that data. This was
accomplished by running RANSAC on many random samples generated using the
same set, of three complexity parameters. The time per sample for a given problem
complexity is estimated as the total time used by RANSAC to process those samples
(excluding time for initialization) divided by the number of samples processed.

We now estimate how many samples RANSAC will examine for problems of a
particular complexity. In Appendix A, we compute the probability, p, as a function
of m, pg4, and p,, that a random sample of three object points and three image points
consists of three correct correspondences. Then, the number of random samples of
correspondence triples that must be examined by RANSAC in order to ensure with

probability z that at least one correct correspondence triple will be examined is

3Three correspondences between object and image points is the minimum necessary to constrain
the object to a finite number of poses.

125

log(1 — z)

P =40y

Some implementations of RANSAC will halt as soon as the first good sample is
observed, thus reducing the run time of the algorithm. In this case, the expected
number of random samples that will be examined in order to observe the first good
sample is

s2(p) = 1_7

Note that for all values of m, pg, and p. that we consider here, and for z > 0.75
(the smallest observed success rate for SoftPOSIT), so(p) < si1(z,p). A RANSAC
algorithm using s, will always be faster than one using s, but it will not be as robust
since robustness increases with the number of samples examined. In the following,
the run times of SoftPOSIT and RANSAC are compared using both s; and s, to
determine the number of samples that RANSAC examines.

For a data set with complexity given by m, pg, and p., Soft POSIT has a
given observed success rate which we denote by zsriposir(m, pa, pe) (see Figure
3.9). Since we did not run RANSAC on this data, we can’t compare the success
rates of SoftPOSIT and RANSAC for a given fixed amount of run time. However,
we can compare the run time required by both to achieve the same rate of success
on problems of the same complexity by estimating the run time of RANSAC when

its required probability of success is z = 2ZsoptposiT (M, P4, Pc). These run times are

126

shown in Figures 3.11 and 3.12. From these figures, it can be seen that the RANSAC
algorithm requires one to three orders of magnitude more run time than SoftPOSIT
for problems with the same level of complexity in order to achieve the same level
of success. Furthermore, for the majority of the complexity cases, run time as a
function of input size increase at a faster rate for the RANSAC algorithms than
for the SoftPOSIT algorithm. The totality of Monte Carlo experiments described
in Section 3.5.1 required about 30 days for SoftPOSIT to complete. From this
analysis it can be estimated that a RANSAC algorithm which examines s; samples
would require about 19.4 years to complete the same experiments, and a RANSAC
algorithm which examines sy samples would require about 4.5 years. Clearly, it

would not have been practical to run RANSAC on all of these experiments.

3.5.4 Experiments with Images

3.5.4.1 Autonomous Navigation Application

The SoftPosit algorithm was applied to the problem of autonomous vehicle
navigation through a city where a 3D architectural model of the city is registered
to images obtained from an on-board video camera. All imagery was generated by
a commercial virtual reality system. Figure 3.13 shows an image generated by this
system and a world model projected into that image using the pose computed by
SoftPOSIT. Image feature points are automatically located in the image by detecting
corners along the boundary of bright sky regions. Because the 3D world model has

over 100,000 data points, we use a rough pose estimate (as may be generated by

127

20% clutter, 20% occlusion

10 T T T T T
1024 1
//ﬂ
I o
1 e
& 10 = /6// 2 -
5 s P
8 7 R
@ 10°F - y/////'/ E
£ - 7
s v T
T 10" o .
i - a” A
107} : -~ e 4
e b
A
1 0'a L i L i i
20 30 40 50 60 70 80
Number of model points
20% clutter, 60% occlusion
3
10 T T T T T
1024 :
10"t .
0
§ ///6/_:,: '
£ e
g 107 //*’9 e 3
= /Q'// ,///
= i P ///£
5 & .
< 19" e 2
L il e ﬁé///
4 s . el
10°F - /r—ﬁ/ 4
1 0'a L i L i i
20 30 40 50 60 70 80
Number of model points
5 40% clutter, 40% occlusion
10 T r T
10° L et
S
10"t e ey
o o P =
g e
T 10°k o] .
E T
= -
S] P A
T oL o s
g P S
y E— - e
10 e
1 0.3 L L 1 1 L
20 30 40 50 60 70 80

Number of model points

Run time (hours)

Run time (hours)

Run time (hours)

20% clutter, 40% occlusion

Number of model points

2
|
1 i 4
L v o J
s —% - A4
g
Pl _—
i =i T i 1
e -
o _—
1 ¢ 3 _ /E‘/
_— e
A
e S S
b Y A
2 B
L e W ;]
P
A
3 i L i i
20 30 40 50 60 70 80
Number of model points
5 40% clutter, 20% occlusion
2 D
3 - E
S o
4 y £
L A T
// ?///H
o— sl
0 S e s
/ -
[;,/‘ Y
Al T
2 o
L s T]
Vi
3 i L i i
20 30 40 50 60 70 80
Number of model points
40% clutter, 60% occlusion
2
1]
e PR |
,/49/// //b"/
o =
0 s i
3 o e
e - P o
3 e A A
ey 2 //fé—//é/ 5
hig s
.4 /\d/
L /
o
P
e
:?4\ L 1 i 1
20 30 40 50 60 70 80

Figure 3.11: Comparison of the run times of SoftPOSIT to those of RANSAC for
problems with 20-40% clutter and 20-60% object occlusion. The SoftPOSIT run
times are marked with triangles. The RANSAC run times are marked with circles
for the case that the number of samples is determined by sy, and with squares for
the case that the number of samples is determined by ss.

128

Run time (hours)

Run time (hours)

Run time (hours)

Figure 3.12: Comparison of the run times of SoftPOSIT to those of RANSAC for
problems with 60% clutter and 20-60% object occlusion. The SoftPOSIT run times
are marked with triangles. The RANSAC run times are marked with circles for the
case that the number of samples is determined by s;, and with squares for the case

60% clutter, 20% occlusion

L= ///e/—’—@’/// 3
- - =
o -
L s Gt T 4
Y -
7
- /Q‘/” oo
" i AN
[I -
1 e
2 oo i
7
b
_—
2]
3 L i L i i
20 30 40 50 60 70 80
Number of model points
60% clutter, 40% occlusion
/,6\7\\\6/_/_,_4\
L= o 5
yd |
r 5
. —9 5
L kT P 4
" T
r//}f P /u//
, //’ |
L. B ;
P e
i'g ~ A/’A/
L A
//4L¥
Vi
2 Lo -
20 30 40 50 60 70 80
Number of model points
60% clutter, 60% occlusion
o o
e e ///E//
3 T B .
- oy
e s
o e
- - o =AY
P - s
- s
1Lﬂ’// //g///
L ’//‘j"/ =
o
2] /
/
K
3 1 L i i L
20 30 40 50 60 70 80

Number of model points

that the number of samples is determined by s,.

129

(a) (b)

Figure 3.13: Pose estimation from a city image. (a) Original image from a virtual
reality system. (b) World model (white lines) projected into this image using the
pose computed by SoftPOSIT.

an onboard navigation system) to cull the majority of model points that don’t
project into the estimated field of view. Then, those world points that do fall into
this estimated view are further culled by keeping only those that project near the
detected skyline. Although this is not real imagery, the virtual reality system used
is very sophisticated, and as such, should give a good indication of how the system
will perform on real imagery. The figure shows that the correct pose is found, as
indicated by the fact that the world model of the skyline projects close to the skyline

in the image.

3.5.4.2 Robot Docking Application

The robot docking application requires that a small robot drive onto a docking
platform that is mounted on a larger robot. Figure 3.14 shows a small robot docking

onto a larger robot. In order to accomplish this, the small robot must determine

130

Figure 3.14: A small robot docking onto a larger robot.

the relative pose of the large robot. This is done by using SoftPOSIT to align a
3D model of the large robot to corner points extracted from an image of the large
robot.

The model of the large robot consists of a set of 3D points that are extracted
from a triangular faceted model of the robot which was generated by a commercial
CAD system. To detect the corresponding points in the image, lines are first detected
using a combination of the Canny edge detector, the Hough transform, and a sorting
procedure used to rank the lines produced by the Hough transform. Corners are
then found at the intersections of those lines that satisfy simple length, proximity,
and angle constraints. Figure 3.15 shows the lines and corner points detected in
one image of the large robot. In this test there are 70 points in the object; 89% of
these are occluded (or not detected in the image), and 58% of the image points are

clutter. Figure 3.16a shows the initial guess generated by Soft POSIT which led to

131

Figure 3.15: An image of the large robot as seen from the small robot’s point of view.
Long straight lines detected in the image are shown in white, and their intersections,
which ideally should correspond to vertices in the 3D object, are shown in black.

the correct pose being found, and Figure 3.16b shows this correct pose.

132

(b)

Figure 3.16: Pose estimation from a robot image. The initial guess at the robot’s
pose (a) that leads to the correct pose as shown in (b). The lines shown in this
figure are not used by the point-based Soft POSIT algorithm; they are shown to aid
in interpretation of the results. Only the points at the junctions of these lines are
used in the pose calculation.

133

Chapter 4

SoftPOSIT for Line Endpoints

We extend the Soft POSIT algorithm from matching point features to the case
of matching line features: 3D model lines are matched to image line segments in 2D
perspective images. Lines detected in images are typically more stable than points
and are less likely to be produced by clutter and noise, especially in man-made
environments. Also, line features are more robust to partial occlusion of the model.
This algorithm uses the Soft POSIT algorithm for points to determine the pose and
correspondences for a set of image and model lines. An iteration is performed where
at each step the given 2D to 3D line correspondence problem is mapped to a new
2D to 3D point correspondence problem which depends on the current estimate of
the camera pose. Soft POSIT is then applied to improve the estimate of the camera

pose. This process is repeated until the pose and correspondences converge.

4.1 Geometry of Line Correspondences

Each 3D line in an object is represented by the two 3D endpoints of that line
whose coordinates are expressed in the world frame: L; = {P]—, P;} See Figure 4.1.
A line /; in the image is defined by the two 2D endpoints, p; and p}, of the line and
is represented by the plane of sight that passes through /; and the camera center C .

The normal to this plane is n; = (p;, 1)T x (p},1)7, and 3D points P in the camera

134

world frame

c image plane

cameraframe

Figure 4.1: The geometry of line correspondences.

frame lying on this plane satisfy n; P = 0.

Let us assume that image line /; corresponds to object line L;. If the object
has pose given by R and T, then S; = RP; + T and S’; = RP’, + T lie on the plane
of sight through /;. When R and T are erroneous and only approximate the true
pose, the closest points to S; and SQ- which satisfy this incidence constraint are the

orthogonal projections of S; and S} onto the plane of sight of /;:

Sij = RPj + T — (RPJ + T) -y
(4.1)

S, = RP,+ T — (RP, + T) - n,

where we have assumed that n; has been normalized to a unit vector. Under the

approximate pose @ and T, the image points corresponding to object points P; and

135

P’ can be approximated as the images of §ij and g;j:

3. §. S.. .S..
Pij = (Sjéijsw)’ Pi; = (%7“) (42)
z

ijz

4.2 Computing Pose and Correspondences

The pose and correspondence algorithm for points (SoftPOSIT as described in
Chapter 3) involves iteratively refining estimates of the pose and correspondences
for the given 2D and 3D point sets. The current algorithm for lines builds on this
approach by additionally refining in the iteration a set of estimated images of the
endpoints of the 3D object lines. With this estimated image point set, and the set
of object line endpoints, SoftPOSIT is used on each iteration to compute a refined
estimate of the object’s pose.

On any iteration of the line algorithm, the images of the 3D object line end-

points are estimated by the point set

which is computed using equations (4.1) and (4.2). For every 3D endpoint of an
object line, there are n possible images of that point, one for each image line. This
set of 2mn image points depends on the current estimate of the object’s pose, and
thus changes from iteration to iteration. The set of object points used by SoftPOSIT
is fixed and is the set of 2m object line endpoints: Pobj = {Pj, P, 1<;5< m}.
We now have a set of 2mn image points and a set of 2m object points. To

136

use SoftPOSIT, an assignment matrix between the two sets is needed. The initial
assignment matrix for point sets Pimg and Pobj is computed from the distances
between the image and model lines as discussed in section 4.3. If l; and L; have
distance d;;, then all points in Pimg and Pobj derived from /; and L; will also have
distance d;;. Although the size of this assignment matrix is (2mn + 1) x (2m + 1),
only 4mn of its values are nonzero (not counting the slack row and column). Thus,
with a careful implementation, the current algorithm for line features will have the
same run-time complexity as the Soft POSIT algorithm for point features, which was
empirically determined to be O(mn?) (see Section 3.5.2).

Algorithm 8 shows the high-level pseudocode for the line-based SoftPOSIT
algorithm. This algorithm performs a deterministic annealing search starting from
an initial guess for the object’s pose. However, it provides only a local optimum. A
common way of searching for a global optimum, and the one taken here, is to run
the algorithm starting from a number of different initial guesses, and keep the first
solution that meets a specified termination criteria. Our initial guesses range over
[—m,] for the three Euler angles, and over a 3D space of translations containing
the true translation. We use a random number generator to generate these initial

guesses. See Section 3.4 for details.

4.3 Distance Measures

The sizes of the regions of convergence to the true pose is affected by the dis-

tance measure employed in the correspondence optimization phase of the algorithm.

137

Algorithm 8 - SOFTPOSIT LINE ENDPOINTS: High-level pseudocode for
the line-based SoftPOSIT algorithm.

initialize R, T, 3, and Pobj'

repeat

Project the model lines into the image using the current pose estimate.

Compute the distances d;; between the true image lines and the projected
model lines.

Initialize the assignment matrix as M} = exp(—3(d}; — a)).
Normalize M with Sinkhorn’s algorithm (SINKHORN3).
Compute Pimg(R, T) (Equation (4.3)).

Solve for Q; and Qs (Equations (3.16) and (3.17)) using M and the point sets

Pobj and Pimg'

Compute R and T from Q; and Qy (Equations (3.5) and (3.6)).

Set § = Bupdate .

until R and T have converge.

138

The line-based SoftPOSIT algorithm applies SoftPOSIT to point features where the
distances associated with these point features are calculated from the line features.
The two main distinguishing features between the different distance measures are (1)
whether distances are measured in 3-space or in the image plane, and (2) whether
lines are treated as having finite or infinite length. The different distance measures
that we experimented with are described below.

The first distance measure that we tried measures distances in the image plane,
but implicitly assumes that both image and projected model lines have infinite
length. As explained below, this metric applies a type of Hough transform to all
lines (image and projected model) and then measures the Euclidean distance in this
transformed space. The transform that is applied maps an infinite line [to the 2D
point hy(l) on that line which is closest to some fixed reference point ry. The dis-
tance between an image line /; and the projection /; of object line L; with respect to
reference point 7y, is then dj; = ||k (l;) — hy(l;)||- Because this Hough line distance is
biased with respect to the reference point 7, for each pair of image and projected ob-
ject line, we sum the distances computed using five different reference points, one at
each corner of the image and one at the image center: di; = S_o_, ||hx(li) — h(l;)]].

The second distance measure that we tried measures distances in the image
plane between finite length line segments. The distance between image line /; and the
projection [; of object line L; is d;; = AO(l;,1;) + pd(l;, l;) where AB(l;, ;) measures
the difference in the orientation of the lines, d(l;,[;) measures the difference in the
location of the lines, and p is a scale factor that determines the relative importance
of orientation and location. A#(l;,1;) = 1 — |cos(Zl;l;)| where ZI;l; denotes the

139

angle between the lines. Because lines detected in an image are usually fragmented,
corresponding only to pieces of object lines, d(l;, ;) is the sum of the distance of each
endpoint of /; to the closest point on the finite line segment [;. So, for a correct pose,
d(l;, ;) = 0 even when [; is only a partial detection of L,. This distance measure has
produced better performance than the previous measure, resulting in larger regions

of convergence and fewer number of iterations to converge.

4.4 Experiments with Line Data

4.4.1 Simulated Images

Our initial evaluation of the algorithm is with simulated data. Random 3D
line models are generated by selecting a number of random points in the unit sphere
and then connecting each of these points to a small number of the closest remaining

points. An image of the model is generated by the following procedure:

1. Projection: Project all 3D model lines into the image plane.

2. Noise: Perturb with normally distributed noise the locations of the endpoints

of each line.
3. Occlusion: Delete randomly selected image lines.

4. Missing ends: Chop off a small random length of the end of each line. This

step simulates the difficulty of detecting lines all the way into junctions.

5. Clutter: Add a number of lines of random length to random locations in the

140

image. The clutter lines will not intersect any other line.

Figure 4.2 shows our algorithm determining the pose and correspondence of a ran-
dom 3D model with 30 lines, from a simulated image with 40% occlusion of the
model, 40% of the image lines being clutter, and normally distributed noise with
standard deviation 0.15% of the image dimension (about 1 pixel for a 640 x 480
image). As seen in this figure, the initial and final projections of the model differ
greatly, and so it would be difficult for a person to determine the correspondence of
image lines to model lines from the initial projection of the model into the image.
Our algorithm, however, is often successful at finding the true pose from such initial
guesses. Although we have not yet done a quantitative evaluation of the algorithm,
anecdotal evidence suggests that under 50% occlusion and 50% clutter, the algo-
rithm finds the true pose in about 50% of trials when the initial guess for the pose
differs from the true pose by no more than about 30° of rotation about each of the
X, v, and z axis. (The initial rotation of the model shown in Figure 4.2 differs from

that of the true pose by 28° about each of the coordinate axis.)

4.4.2 Real Images

Figure 4.3 shows the results of applying our algorithm to the problem of a
robotic vehicle using imagery and a 3D CAD model of a building to navigate through
the building. A Canny edge detector is first applied to an image to produce a binary
edge image. This is followed by a Hough transform and edge tracking to generate

a list of straight lines present in the image. This process generates many more

141

5 iy

Figure 4.2: Example application of our algorithm to a cluttered image. The eight
frames on the left show the estimated pose at initialization (upper left) and at steps
1, 3, 5, 12, 20, 27, and 35 (left-to-right, top-to-bottom) of the iteration. The thin
lines are the image lines and the bold lines are the projection of the model at the
current step of the iteration. The correct pose has been found by iteration step
35. The right side of this figure shows the evolution of the assignment matrix at
the corresponding steps of the iteration. Because of the way the simulated data
was generated, the correct assignments lie near the main diagonal of the assignment
matrix. Image lines are indexed along the vertical axis, and model lines along the
horizontal axis. Brighter pixels in these figures correspond to greater weight in the
assignment matrix. The correct assignments have been found by iteration step 35.
Unmatched image and object points are apparent by the large values in the last row
and column of the assignment matrix.

142

Figure 4.3: Determining the pose of a CAD model from a real image. Straight
lines are automatically detected in the image (top left). The initial guess for the
pose of the hallway model differed from the true pose by about 14° about each
coordinate axis (top right). The projection of the model after finding its pose with
our algorithm (bottom).

143

lines than are needed to determine a model’s pose, so only a small subset are used
by the algorithm in computing pose and correspondence. Also, the CAD model of
the building is culled to include only those 3D lines near the camera’s estimated

position.

144

Chapter 5

Soft POSIT for Lines

This chapter extends again the SoftPOSIT algorithm from matching point
features to matching line features: 3D model lines are matched to image lines in 2D
perspective images. Christy et al. [27] have established the basic equations linking
perspective and scaled orthographic perspective images of 3D lines. Their equations
assume that the correspondences between model lines and image lines is known.
In model-to-image registration, such correspondences are not known in advance.
We integrate these line constraints with the SoftPOSIT algorithm to produce an
efficient algorithm that solves the model-to-image registration problem in difficult

high-clutter and high-occlusion problems.

5.1 Camera Models

Let X be the coordinates of a 3D point in a world coordinate frame. If a camera
placed in this world coordinate frame is used to view X, then the coordinates of this
point in the camera coordinate frame may be written as X, = RX + t. Here, R is
a 3 X 3 rotation matrix representing the orientation of the camera coordinate frame
with respect to the world coordinate frame, and the translation with respect to the
rotated world frame is t = — RC where C are the coordinates of the camera center

in the world coordinate frame.

145

We assume that the camera is calibrated, so that pixel coordinates can be

replaced by normalized image coordinates. Then, the perspective projection of 3D

points in the world coordinate frame onto the 2D image is accomplished by the 3 x 4

homogeneous camera matrix

P=[R|t

The homogeneous image coordinates of a 3D point X are x = P(XT 1)T. Let the

i*® row of R be denoted by r7 and let the translation be t = (t,, ty,t,)T. Since P is

homogeneous, we can multiply all entries of P by 1/t,. Making the substitutions

I = I'l/tz, J = I'Q/tz, K = rg/tz,

xg = ty/t,, and yo = t,/t.,

we have

IT Zo
JT Yo
K' 1

Thus, the perspective image of a point X is

I’ T
X = JT Yo
K" 1

ITX + Zy
JTX + Yo

K'X+1

(5.1)

(5.2)

We will also need to use the scaled orthographic projection model, which makes

the assumption that the depth of a scene is small compared to the distance of the

146

scene from the camera, and that visible scene points are close to the optical axis.
The scaled orthographic model will be used iteratively in the process of computing
the full perspective pose. Under the scaled orthographic assumption, K-X = 0 since
r3 is a unit vector in the world coordinate frame that is parallel to the camera’s optic

axis. The scaled orthographic projection camera matrix is therefore

IT)
P,w = JT yO
0" 1

5.2 Pose from Known Line Correspondences

The set of points lying on an infinite line L; in 3-space is represented by the
equation

X, = Q; + \D; (5.3)

for A € (—o0,00). Here, ©; is any fixed point on the line (the reference point),
and Dj is the direction of the line. £2;, D;, and X, are all 3-vectors specified with
respect to the world coordinate frame. Figure 5.1 illustrates this situation. A line in
T

the image is represented by a homogeneous point [; = (a;, b;, ¢;) and points (u, v, w)

lying on this line satisfy the equation

a;u + bjv + c;w = 0. (5.4)

If image line /; is the perspective projection of model line L;, then, by com-

147

world frame

X

Image plane
cameraframe

Figure 5.1: The projection of a 3D line into an image. Model line L;, defined by
the point €2; and direction D, projects to image line /;. O is the world coordinate
frame origin, C the camera center of projection, and t is the camera translation.
The camera optical axis is aligned with z..

bining equations (3.1), (5.3), and (5.4), one obtains

a;l- Q +b;J - Qj + a;vo + biyo +¢i(1+n;) = 0 (5.5)
9.5

CLZID]-FbZJDJ-i—CZ,LL] = 0
where 7; = K - Q; and p; = K - D; [27]. It can be seen that n; + 1 is the the
depth of €2, from the camera center in the direction of the optical axis, scaled by
1/t,, and that p; is the length of the projection of the line’s direction vector, D;,
onto the optical axis, scaled by 1/t,. Under the assumptions of scaled orthographic

projection, all 2; and Dj lie in a plane at depth ¢, parallel to the image plane, and

148

so n; = 0 and p; = 0 for all ;.

Given four or more image-to-model line correspondences, Christy et al. [27] use
Equation (5.5) in the iterative POSIT algorithm [38] to solve for object pose (I, J,
K, x4, and yg). On each iteration of this algorithm, the known correspondences and
current estimates for 7; and p; allow the formation of a system of linear equations in
the unknown pose. The least squares solution of this system provides new estimates
for pose, and therefore 7; and p;. This procedure is iterated until n; and px; converge

to fixed values.

5.3 Pose from Unknown Correspondences

In the simultaneous pose and correspondence problem, we aren’t given any line
correspondences, so equation (5.5) can’t be used to solve for pose. Our approach is
to minimize, over all poses and correspondences, the sum of distances between image
lines and the projections of the corresponding model lines. Thus, we assume the
existence of a match matrix M;; where 0 < M;; <1 and 3, M;; = ¥;M;; = 1. The
value of M;; indicates the degree of belief that image line /; corresponds to model
line L;. From equation (5.5), the squared distance between /; and the projection of

L; into the image, as a function of the object pose, may be defined as

d?j = [azIQJ—i-szQj+a,x0+azx0+bzy0+c,(1+77])]2+[a21D]—i—bZJD]—i—c,,u]]z (56)

Then, the registration problem may be formulated as a minimization of the

149

objective function

E = EH: Em: M;;d; (5.7)

i=1 j=1
where m is the number lines in the model and n is the number of lines in the image.
Equation (5.7) needs to be minimized with respect to the correspondence vari-
ables M;; and the pose variables. We do this iteratively, first minimizing the cost
function with respect to pose, and then with respect to the correspondence. This

process is repeated until convergence

5.3.1 Optimization with respect to Pose

Assume that the correspondence variables M;; are fixed. We wish to find I,
J, K, ¢, and yo that minimize E. These are found by solving 0F /01 = 0E/0J =
OE[0xy = 0E/0yy = 0. Let Iy, Ji, i, and Djj, denote the k-th element (1 < k& < 3)

of the respective 3-vector. Then it’s easy to show that

a; Vi

(J,ibiij

@,
\ Gibink

150

where

(1)

ij = ijﬂj + D]‘ij and W = . (58)

Zo

\ %)

Setting OE /0l = 0, we get

Zi,j MZJGZQV]k;
Ez’ .Mijaibiij
! W = =) Myaici(s(1+15) + Djksss)- (5.9)
i Mijai Qi "
\ Zi,j Mijaibink

Equation (5.9) gives three linear equations (k = 1,2, 3) in the unknown pose. Simi-

larly, setting OE/0J; = 0, we obtain the three equations

Zi,j M,-jaibiij
> Mijbi Vi

/ -W = — Z Mijbici(x (1 +n;) + Dyjrps)- (5.10)
Zz’,j Mijaibink &

\ Zi,j Mijb?ij

151

Setting 0F/0xy = 0 we have

> MijaiQ;
K ! ’ -W = —ZMijaici(l—i—nj). (511)
Zi,j Mij“zz b
\ 2 Mijaib

And, from 0F /0y, = 0, we similarly have

Zz’,j Mijaibiﬂj \

Sy Mihi
7 ’ ! -W=-— Z MZ]bZCZ(l + 7’]]) (512)
i Mijaibi "

\ 21]]\/—[ijbz2)

Equations (5.9), (5.10), (5.11), and (5.12) give 8 linear equations in the 8

unknowns of W. These can be written as

AW =B (5.13)

where A is the 8 x 8 matrix

152

with

Ay = %(8iMya?)(Q,;9Q] + D;D]),
Ay = (3 Mya:b;)(2,Q] + D;D]),
Az = X0 (SiMga? %

Ay = I(5M;02)(Q,;Q] +D,D]),

15

As = ;0 (S Mijab; i M;;b?)

Z]z

A6:EJ

and B is the 8-vector

((B Mijasc;) (1 + n;)82; + p;Dy)
(B Myjbic;) (1 + ;)25 + ;D)
EiMijaici

(1+m))
K EzMz]szz

The objective function (eq. 5.7) is then minimized by

W = A"'B.

Having W, the pose of the model is computed as

te =1/ I, te = t.0, ty = 30,

rH= tzI, ro = tzJ, rs =11 X I9.

153

(5.14)

5.3.2 Optimization with respect to Correspondence

We now optimize the correspondence variables M;; assuming the pose of the
object is known and fixed. Our aim is to find a zero-one assignment matriz, M =
{M;;}, that explicitly specifies the matches between a set of m model lines and a set
of n image lines, and that minimizes the objective function E. M has one row for
each of the n image lines /; and one column for each of the m model lines L;. The
assignment matrix must satisfy the constraint that each image line match at most
one model line, and vice versa (i.e., ¥ymy = Xpmy; = 1 for all ¢ and j). A slack
row m+1 and a slack column n+1 are added to handle model occlusion and image
clutter. A value of 1 in the slack column m + 1 at row ¢ indicates that image line [;
has not found any match among the model lines. A value of 1 in the slack row n+1 at
column j indicates that the model line L; is not seen in the image and does not match
any image line. The objective function £ will be minimum if the assignment matrix
M matches image and model lines with the smallest distances dfj. This problem
can be solved by the iterative softassign technique [55, 56]. The iteration for the
assignment matrix M begins with a matrix M, in which element M% is initialized
to exp(—p (dfj — «)), with 8 very small, and with all elements in the slack row and
slack column set to a small constant. The parameter @ determines how large the
distance between two lines must be before considering them unmatchable. See [56]
for an analytical justification. The continuous matrix M, converges toward the
discrete matrix M due to the combination of deterministic annealing with Sinkhorn’s

technique, as described in Section 3.3.2. The matrix M resulting from an iteration

154

Algorithm 9 — SOFTPOSIT _ LINES: High-level pseudocode for the second line-
based SoftPOSIT algorithm.

initialize I, J, x¢, and gy, using Equation (5.1) and an initial estimate of R and T.
initialize 8 = [,.
repeat

e Project the model lines into the image using the current pose estimate.

Using Equation (5.6) (or one of the distance measures described in Sec-
tion 5.3.4), compute the distances d;; between the true image lines and the
projected model lines.

Initialize the assignment matrix as M; = exp(—8(d}; — a)).

Compute M by normalizing M° with Sinkhorn’s algorithm (SINKHORN3).

Compute I, J, xg, and yy using Equations (5.8) and (5.14).

Set = 5update B

until I, J, xo, and y, have converge.

loop that comprises these two substeps is the assignment that minimizes the global
objective function E. These two substeps are interleaved in an iteration loop along

with the substeps that optimize the pose.

5.3.3 Computing Pose and Correspondences

High-level pseudocode for the second line-based SoftPOSIT algorithm is shown

in Algorithm 9.

155

5.3.4 Alternate Distance Measures

The distance measure defined in equation (5.6) has been used with good re-
sults. However, we have observed that the regions of convergence to the true pose
are usually significantly larger when alternate distance measures are employed in
the correspondence optimization phase of the algorithm. Using different distance
measures in the two parts of the algorithm is not a problem for the overall approach
as long as they are monotonically related: a reduction in the value of the objective
function for one distance function is guaranteed to produce a reduction when the
other distance function is used. The two main distinguishing features between the
different distance measures are (1) whether distances are measured in 3-space or in
the image plane, and (2) whether lines are treated as having finite or infinite length.
The different distance measures are described below.

The value of d;; defined in equation (5.6) is the sum of two values: (1) the
squared orthogonal distance of the point 3D point £2; to the plane defined by the
image line /; and camera center, and (2) the squared orthogonal projection of the
line L;’s direction vector, D;, onto the unit vector normal to the plane defined by
the image line /; and the camera center. This distance measure implicitly assumes
that image lines have infinite length, but that model lines have finite length. To be
consistent over all lines in the model, €2; should be chosen as one of the endpoints
of L; and D; should have length equal to the length of L.

The second distance measure that we tried measures distances in the image

plane, but implicitly assumes that both image and projected model lines have infinite

156

length. As explained below, this metric applies a type of Hough transform to all lines
(image and projected model) and then measures the distance in this transformed
space. The transform that is applied maps an infinite line [to the 2D point hg(l) on
that line which is closest to some fixed reference point r;. The distance between an
image line /; and the projection /; of model line L; with respect to reference point
ry is then df; = ||hy(l;) — hi(l;)||. Because this Hough line distance is biased with
respect to the reference point ry, for each pair of lines we sum the distances computed
using five different reference points, one at each corner of the image and one at the
image center: di; = Y n_, ||hx(li) — hx(1;)||. This distance measure produced better
performance than the first by allowing our algorithm to converge to the true pose
from initial guesses that were further from the true pose.

The third distance measure that we tried measures distances in the image plane
between finite length line segments. The distance between image line /; and the
projection [; of model line L, is d;; = A6(l;, ;) + pd(l;, ;) where Af(l;,1;) measures
the difference in the orientation of the lines, d(l;,[;) measures the difference in the
location of the lines, and p is a scale factor that determines the relative importance
of orientation and location. A#(l;,1;) = 1 — |cos(Zl;l;)| where Zi;l; denotes the
angle between the lines. Because lines detected in an image are usually fragmented,
corresponding only to pieces of model lines, d(l;, ;) is the sum of the distance of each
endpoint of /; to the closest point on the finite line segment /. So, for a correct pose,
d(l;,1;) = 0 even when [; is only a partial detection of L;. This distance measure
has produced better performance than either of the previous two, resulting in larger

regions of convergence and fewer number of iterations to converge.

157

5.4 Experiments

This algorithm has been evaluated using simulated data. Random 3D line
models are generated by selecting a number of random points in the unit sphere
and then connecting each of these points to a small number of the closest remaining

points. An image of the model is generated by the following procedure:

1. Projection: Project all 3D model lines into the image plane.

2. Noise: Perturb with normally distributed noise the locations of the endpoints

of each line.

3. Occlusion: Delete randomly selected image lines.

4. Missing ends: Chop off a small random length of the end of each line. This

step simulates the difficulty of detecting lines all the way into junctions.

5. Gaps: Insert one or more random size gaps at random locations in randomly

selected lines. Each of these lines is replaced by two or more smaller lines.

6. Clutter: Add a number of lines of random length to random locations in the

image. The clutter lines will not intersect any other line.

Figure 5.2 shows our algorithm determining the pose of a random 3D model with
40 lines, from a simulated image with 50% occlusion of the model, 60% of the image
lines being clutter, and normally distributed noise with standard deviation 2.5% of
the image dimension (about 1.5 pixels for a 640 x 480 image). The initial rotation
of the model shown in figure 5.2 differs from that of the true pose by 20 — 30°

158

A A

T - IR

\ \
IALEYEN ALY
\— > \— s

AN AL

Figure 5.2: Example application of our algorithm to a cluttered image. The eight
frames show the progress of the algorithm at every 5th step of the iteration. The
projection of the model in it’s initial pose is shown at the upper left, and steps 5,
10, 15, 20, 25, 30, and 35 of the iteration follow in a left to right, top to bottom
order. The bold lines are the image lines and the thin lines are the projection of
the model at the current step of the iteration. The correct pose has been found by
iteration step 35 shown at the lower right.

159

about each of the coordinate axis. As can be seen from this figure, it would be very
difficult for a person to determine the correspondence of image lines to model lines
from the initial projection of the model into the image. Our algorithm, however, is

often successful at finding the true pose from such initial guesses.

5.5 Conclusions

The simultaneous determination of model pose and model-to-image feature
correspondence is very difficult in the presence of model occlusion and image clutter.
Experiments with the line-based SoftPOSIT algorithm show that it is capable of
quickly solving high-clutter, high-occlusion problems, even when the initial guess for
the model pose is far from the true pose. The algorithm routinely solves problems
for which a person viewing the image and initial model projection have no idea how

to improve the model’s pose or how to assign feature correspondences.

160

Chapter 6

Recognition Using Local Line Neighborhoods

This chapter presents an object recognition algorithm that uses model and
image line features to locate complex objects in high clutter environments. In this
approach, corresponding line features are determined by a three-stage process. The
first stage generates a large number of approximate pose hypotheses from corre-
spondences of one or two lines in the model and image. Next, the pose hypotheses
from the previous stage are quickly evaluated and ranked by comparing local image
neighborhoods to the corresponding local model neighborhoods. Fast nearest neigh-
bor and range search algorithms are used to implement a distance measure that
is unaffected by clutter and partial occlusion. The ranking of pose hypotheses is
invariant to changes in image scale, orientation, and partially invariant to affine dis-
tortion. Finally, the graduated assignment algorithm is applied for refinement and
verification, starting from the few best approximate poses produced by the previous

stages.

6.1 Overview

This chapter presents a simple, effective, and fast method for recognizing par-
tially occluded 2D objects in cluttered environments, where the object models and

their images are each described by sets of line segments. A fair amount of perspec-

161

tive distortion is tolerated by the algorithm, so the algorithm is also applicable to
3D objects that are represented by sets of viewpoint-dependent 2D models.

Our approach assumes that at least one model line is detected as an unfrag-
mented line in the image. By unfragmented, we mean that the corresponding image
line is extracted from the image as a single continuous segment between the two
endpoints of the projected model line. This necessarily requires that at least one
model line be unoccluded. Additional model lines must be present in the image for
verification, but these may be partially occluded or fragmented. A potential diffi-
culty with this approach is that line detection algorithms often fragment lines due
to difficulties in parameter selection, and they usually don’t extract lines completely
at the intersections with other lines. The issue of fragmentation resulting from poor
parameter selection can be ameliorated through post-processing steps that combine
nearby collinear lines. However, this has not been necessary in any of our experi-
ments. The issue of line detection algorithms being unable to accurately locate the
endpoints of lines at the intersections with other lines does not cause a problem
because a few missing pixels at the ends of a line does not significantly affect the
computed model transformations (except in the case that the object’s image is so
small as to make recognition difficult regardless of how well the object’s edges are
detected). We show below that our line detector is able to detect a large number
of object lines with very little relative error in their length when compared to the
corresponding projected model lines.

A three-stage process is used to locate objects. In the first stage, a list of ap-

proximate model pose hypotheses is generated. Every pairing of a model line to an

162

image line first contributes a pose hypothesis consisting of a similarity transforma-
tion. When both the model line and the corresponding image line form corner-like
structures with other nearby lines, and the angles of the corners are similar (within
45°), a pose hypothesis consisting of an affine transformation is added to the hy-
pothesis list, one for each such compatible corner correspondence. Typically, each
model-to-image line correspondence contributes a small number of poses (one to six)
to the hypothesis list.

We make use of information inherent in a single line correspondence (position,
orientation, and scale) to reduce the number of correspondences that must be ex-
amined in order to find an approximately correct pose. For m model lines and n
image lines, we generate O(mn) approximate pose hypotheses. Compare this to tra-
ditional algorithms that generate precise poses from three pairs of correspondences,
where there are up to O(m?®n?®) pose hypotheses. An approach such as RANSAC
[49], which examines a very small fraction of these hypotheses, still has to examine
O(n?) poses to ensure with probability 0.99 that a correct precise pose will be found
(see Appendix A). By starting with an approximate pose instead of a precise pose,
we are able to greatly reduce the number of poses that need to be examined, and
still find a correct precise pose in the end.

Most of the pose hypotheses will be inaccurate because most of the generating
correspondences are incorrect. The second stage of our approach ranks each pose
hypothesis based on the similarity of the corresponding local neighborhoods of lines
in the model and image. The new similarity measure is largely unaffected by image

clutter, partial occlusion, and fragmentation of lines. Nearest-neighbor search is

163

used in order to compute the similarity measure quickly for many pose hypotheses.
Because this similarity measure is computed as a function of approximate pose, the
ranking of the pose hypotheses is invariant to image translation, scaling, rotation,
and partially invariant to affine distortion of the image. By combining the process
of pose hypothesis generation from assumed unfragmented image lines with the
neighborhood similarity measure, we are able to quickly generate a ranked list of
approximate model poses which is likely to include a number of highly ranked poses
that are close to the correct model pose.

The final stage of the approach applies a more time-consuming but also more
accurate pose refinement and verification algorithm to a few of the most highly
ranked approximate poses. Gold’s graduated assignment algorithm |55, 56|, modified
for line correspondences, is used for this purpose because it is efficient, tolerant of
clutter and occlusion, and doesn’t make hard correspondence decisions until an
optimal pose is found.

Our three-stage approach allows CPU resources to be quickly focused on the
highest payoff pose hypotheses, which in turn results in a large reduction in the
amount of time needed to perform object recognition. An outline of the algorithm is
shown in Algorithm 10. In the following sections, we first describe related work, and
then describe each step of our algorithm in more detail. Although any line detection
algorithm may be used, Section 6.3 briefly discusses the line detection algorithm that
we use and presents an evaluation of its ability to extract unfragmented lines from
an image. Section 6.4 then shows how approximate pose hypotheses are generated

from a minimal number of line correspondences. Next, in Sections 6.5 and 6.6,

164

Algorithm 10 - RANKED POSE_HYPS: Outline of the 2D object recognition al-
gorithm. The constant N is the number of pose refinements performed; as discussed in
Section 6.8, good performance is obtained with N = 4.

inputs: A set of image line segments,
A set of models, each consisting of a set of 2D line segments.

outputs: 2D poses and model-to-image assignment matrices of recognized objects.

Create a data structure for nearest neighbor and range searches of image lines.
Using a range search, identify corners in each model and in the image.
For each model, identify the line neighborhood of each line segment in that model.
for each model do
H=0. (Initialize hypotheses list to empty)
for each pair of model line [and image line I’ do
C = Pose hypotheses generated from [, ', and nearby corners.
H=HUC.
Evaluate the similarity of model and image neighborhoods for poses C.
end for
P = Sort ‘H based on neighborhood similarity measure.
for2=1to N do
Apply the graduated assignment algorithm starting from pose P (4).
if a sufficient number of line correspondences are found then

An object has been recognized; record the model, it’s pose, and it’s
assignment matrix.

end if
end for

end for

165

we present our method for efficiently comparing local neighborhoods of model lines
to local neighborhoods of image lines. Section 6.7 describes the pose refinement
and verification algorithm that we use. Experiments with real imagery containing
high levels of clutter and occlusion (see Figure 6.1, for example) are discussed in
Section 6.8 and demonstrate the effectiveness of the algorithm; this section also gives
the run-time complexity of the algorithm. We see that our algorithm is faster and
able to handle greater amounts of clutter than previous approaches that use line
features. The approach is able to recognize planar objects that are rotated by up to
60° away from their modeled viewpoint, and recognize 3D objects from 2D models
that are rotated by up to 30° from their modeled viewpoint. The chapter ends with

conclusions in Section 6.9.

6.2 Related Work

Automatic registration of models to images is a fundamental and open prob-
lem in computer vision. Applications include object recognition, object tracking,
site inspection and updating, and autonomous navigation when scene models are
available. It is a difficult problem because it comprises two coupled problems, the
correspondence problem and the pose problem, each easy to solve only if the other
has been solved first.

A wide variety of approaches to object recognition have been proposed since
Robert’s ground-breaking work on recognizing 3D polyhedral objects from 2D per-

spective images [126]. Among the pioneering contributions are Fischler and Bolles’

166

K3

(a) Models. (b) Test image.

(c) 519 detected lines. (d) Recognized books.

Figure 6.1: Recognizing books in a pile. The two models were generated from frontal
images of the books.

167

RANSAC method [49], Baird’s tree-pruning method [5], and Ullman’s alignment
method [152|. These approaches, which hypothesize poses from small sets of cor-
respondences and reject or accept those poses based on the presence of supporting
correspondences, become intractable when the number of model and image features
becomes large, especially when the image contains significant clutter.

More recently, the use of rich feature descriptors has become popular as a way
of reducing the number of feature correspondences that must be examined. The
Harris corner detector [69] has seen widespread use for this purpose; however, it is
not stable to changes in image scale, so it performs poorly when matching models
and images of different scales. Schmid and Mohr [130] have developed a rotationally
invariant feature descriptor using the Harris corner detector. Lowe |97] extended this
work to scale invariant and partially affine invariant features with his SIF'T approach,
which uses scale-space methods to determine the location, scale, and orientation of
features, and then, relative to these parameters, a gradient orientation histogram
describing the local texture. Excellent results have been obtained by approaches
using these rich features when objects have significant distinctive texture. However,
there are many common objects that possess too little distinctive texture for these
methods to be successful. Examples include building facades, thin objects such
as bicycles and ladders where background clutter will be present near all object
boundaries, and uniformly textured objects such as upholstered furniture. In these
cases, only the relations between geometric features (such as points and edges) can
be used for matching and object recognition. Edges are sometimes preferred over

points because they are easy to locate and are stable features on both textured and

168

nontextured objects.

Our approach has some similarities to Ayache and Faugeras’s HYPER system
[4], which we described on page 55. They use a tree-pruning algorithm to determine
2D similarity transformations that best align 2D object models with images, where
both the models and images are represented by sets of line segments. The ten
longest lines in the model are identified as “privileged” segments. The privileged
segments are used for initial hypothesis generation because there are fewer of them
(so fewer hypotheses have to be generated), and because the use of long segments
results in more accurate pose estimates. The authors point out that the probability
of having all privileged segments simultaneously occluded is very small, and only
one privileged segment needs to be visible to identify a model. Although this is
true, we believe that long model lines are just as likely as short model lines to be
fragmented in an image, and therefore we treat all model lines identically and do not
identify any as privileged. In contrast to the HYPER system, our pose hypotheses
are based on affine transformations instead of similarity transformations, we use a
dissimilarity measure (see Section 6.6) to rank hypotheses that is less affected by
line fragmentation because it does not depend on the lengths of lines nor on unique
reference points on the lines, and, instead of a tree search, we use the more robust
and efficient graduated assignment algorithm [55| for pose refinement.

A number of more recent works [103, 22| have also used edges for object recog-
nition of poorly textured objects. Mikolajczyk et al. [103] generalize Lowe’s SIFT
descriptors to edge images, where the position and orientation of edges are used to

create local shape descriptors that are orientation and scale invariant. Carmichael’s

169

approach [22] uses a cascade of classifiers of increasing aperture size, trained to rec-
ognize local edge configurations, to discriminate between object edges and clutter
edges; this method requires many training images to learn object shapes, and it is
not invariant to changes in image rotation or scale.

Gold and Rangarajan [56] simultaneously compute pose and 2D-to-2D or 3D-
to-3D point correspondences using deterministic annealing to minimize a global
objective function. We previously used this method (see Chapters 3-5, [28, 29,
30, 31, 32, 39]) for matching 3D model points and lines to 2D image points and
lines, respectively, and we use it here for the pose refinement stage of our algorithm.
Beveridge [12] matches points and lines using a random start local search algorithm.
Denton and Beveridge [41]| extended this work by replacing random starts with a
heuristic that is used to select which initial correspondence sets to apply the local
search algorithm. Although we use line features instead of point features, Denton’s
approach is conceptually similar to ours in a number of ways. Both approaches first
hypothesize poses using small sets of local correspondences, then sort the hypotheses
based on a local match error, and finally apply a pose refinement and verification
algorithm to a small number of the best hypotheses. Significant differences between
the two approaches are that ours uses lines instead of points, and only zero or one
neighboring features, instead of four, to generate pose hypotheses; so our approach
will have many fewer hypotheses to consider, and each hypothesis is much less likely

to be corrupted by spurious features (clutter).

170

6.3 Line Detection

Line segments in models are matched to line segments in images. Each line
segment in a model or image is represented by its two endpoints. Generation of
model lines may be performed manually by the user, or automatically by applying
image processing to images of the objects to be recognized. We currently automati-
cally locate model and image lines using Kovesi’s implementation [87] of Lowe’s line
detection algorithm [95]. Briefly, this algorithm operates as follows. The Canny
edge detector is first applied. Next, contiguous edge pixels are linked together into
contours and very short contours are discarded. Each contour is then partitioned
into line segments by breaking the contour at edge pixels until no edge pixel is more
than a specified distance from the line connecting the two endpoints of its subcon-
tour; this is done by finding the longest subcontour (starting at the first edge point)
whose maximum distance from the line connecting the endpoints of the subcontour
is less than a threshold. This subcontour is replaced by the line segment, and then
the process is repeated for the remainder of the contour. These steps are illustrated
in Figure 6.2.

In our experience, for images with dense edges, this approach to line detection
performs better than the Hough Transform approach [44]. The high-connectivity
of the edges produced by the Canny edge detector greatly simplifies the process
of fitting lines to those contours when the contour partitioning approach is used.
Line fitting using the Hough Transform, on the other hand, is easily confounded

by spurious peaks generated by coincidental alignment of physically separated edge

171

() (d)

Figure 6.2: Steps of the line detection algorithm. (a) Original image. (b) Binary
edges detected with the Canny edge detector. (c) Edge contours. All edge points
on a single contour are shown in the same color. Very short contours have been
discarded. (d) Line segments produced from partitioning the edge contours.

172

points.

A requirement of our approach, as stated in Section 6.1, is to detect at least one
unfragmented image line segment. An evaluation of the accuracy of our line detector
shows that this requirement is easily satisfied for the types of scenes described in
this chapter. Using six different images of books and office objects (as typified by
images shown throughout this chapter), we manually measured the length of 250
projected model lines and the lengths of the corresponding automatically detected
line segments. All model edges that were partially or fully visible were measured. If
a visible model edge was not detected by our software, then the “corresponding line
segment” was assigned a length of zero. For each model edge, the relative error in
the length of the corresponding detected line segment is calculated as |(I,, — 1;) /|
where [,,, is the length of the projected model line and /; is the length of the detected
line segment. Figure 6.3 shows a plot of the relative error versus the fraction of the
250 model lines that are detected with relative error no greater than that amount.
One can see that 11% of all partially and fully visible model lines are detected
in the images with less than one pixel error in the positions of their endpoints.
Furthermore, 35% of all model lines are detected as image segments where the sum
of the errors in the endpoint positions is no more than 5% of the length of the
corresponding projected model lines; That is, 35% of the visible model lines are
detected with relative error in length that is less than 5%. We find that 5% relative
error is small enough to obtain a good coarse pose hypothesis, and that with 35%
of the model lines having relative errors no larger than this, there will be many

such good hypotheses that will allow the pose refinement stage of the algorithm to

173

Fraction of Lines
© o o o o o o
w N [6)] (o)) ~ (o] o (=)

o
[N

0.1

1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Maximum Relative Error

o Il Il Il

Figure 6.3: The accuracy of our line detector is depicted in this graph, which plots
the relative error versus the fraction of the model lines detected with relative error
no greater than that amount.

recognize an object.

6.4 Generating Pose Hypotheses

We wish to generate a small set of approximate poses that, with high certainty,
includes at least one pose that is close to the true pose of the object. The smaller the
number of correspondences used in estimating a pose, the less likely the estimated
pose will be corrupted by spurious correspondences. But at the same time, using
fewer correspondences will produce a less accurate pose when all correspondences
used by the estimation are correct. From a single correspondence of a model line

to an image line, where the image line may be fragmented (only partially detected

174

due to partial occlusion or faulty line detection), we can compute the 2D orientation
of the model as well as a one-dimensional constraint on its position, but the scale
and translation of the model cannot be determined; this does not provide sufficient
geometric constraints to evaluate the similarity of a local region of the model with
a local region of the image.

On the other hand, if we assume that a particular image line is unfragmented,
then from a single correspondence of a model line to this image line we can com-
pute a 2D similarity transformation of the model. This is possible because the two
endpoints of the unfragmented image line must correspond to the two endpoints of
the model line, and two corresponding points are sufficient to compute a similarity
transformation. A similarity transformation will be accurate when the viewing di-
rection used to generate the 2D model is close to the viewing direction of the object.
However, even when there is some perspective distortion present, approximate sim-
ilarity transformations from correct correspondences are often highly ranked by the
next stage of our approach. Generating hypothesized poses that are highly ranked in
the next stage is the main goal of this first stage since the pose refinement algorithm
used in the final stage has a fairly large region of convergence.

Because we don’t know which endpoint of the model line corresponds to which
endpoint of the image line, we consider both possibilities and generate a similarity
transformation for each. For p; and p, model line endpoints corresponding to image
line endpoints q; and qs, respectively, the similarity transformation mapping the

model to the image is q; = Ap; +t where A = sR and s, R, and t are the scaling,

175

rotation, and translation, respectively, defined by

s = |lai —aqafl /||p1 — pall,
cosf) —sinf

sinf cos@

t = o — Aps,

and where 6 is the rotation angle (in the range —m to 7, clockwise being positive)
from p; — p2 to q1 — Q.

We can obtain more accurate approximate poses with little additional work
when the model line and the unfragmented image line (called the base lines below)
form corner-like structures with other lines: corners in the model should correspond
to corners in the image. Corners in the model are formed by pairs of model lines
that terminate at a common point, while corners in the image are formed by pairs of
image lines that terminate within a few pixels of each other. By looking at corners,
we expand our search to correspondences of two line pairs. However, because we
restrict the search for corner structures in the image to lines that terminate within
a few pixels of an endpoint of a base image line, the number of corners examined for
any base image line is usually quite small. As before, we assume only that the base
image line is unfragmented; other image lines may be fragmented. If a base model
line forms a corner with another model line, which is usually the case for objects
described by straight edges, and if the base image line is unfragmented, then all

model lines that share an endpoint with the base model line should be unoccluded

176

around that endpoint in the image, and therefore there is a good chance that these
other models lines will appear in the image near the corresponding endpoint of the
base image line. Thus, looking at corners formed with the base image lines provides
a way of finding additional line correspondences with a low outlier rate.

The model and image lines which participate in corner structures are efficiently
located using a range search algorithm [101]. The endpoints of all image lines are
first inserted into a search tree data structure. Then, for each endpoint of each image
line, a range search is performed to locate nearby endpoints and their associated
lines. A similar process is performed for the model lines. This preprocessing step is
done once for each model and image. To generate pose hypotheses for a particular
base correspondence, the angles of corners formed with the base model line are
compared to the angles of corners formed with the base image line. An affine pose
hypothesis is generated for any pair of corner angles that are within 45°. As before,
this is repeated for each of the two ways that the base model line can correspond to
the base image line. Note that these affine pose hypotheses are generated in addition
to the similarity pose hypotheses describe above. The similarity pose hypotheses
are kept even though they may be less accurate because the affine pose hypotheses
are more susceptible to being corrupted by spurious correspondences.

An affine pose hypothesis is generated as follows. Let p; and py be the end-
points of the base model line, and q; and gy be the corresponding endpoints of the
base image line. See Figure 6.4. Assume that a pair of corners is formed with the
base lines by model line p and image line ¢ that terminate near endpoints p; and qy,
and have angles 6, and 6,, respectively. We have two pairs of corresponding points

177

«d3 Image Corner

Model Corner

Figure 6.4: Geometry for calculation of the approximate affine transformation.

and one pair of corresponding angles. Since a 2D affine transformation has 6 de-
grees of freedom but we have only 5 constraints (two for each point correspondence,
and one for the angle correspondence), we impose the additional constraint that
the affine transformation must scale the length of line p in the same way as it does
the length of the base model line p;p,. This, defines a third pair of corresponding
points p3 and qs, on p and ¢, respectively, as shown in Figure 6.4. p3 is the second

endpoint of p, and qs is the point collinear with ¢ such that

||P2 - P1|| _ ||P3 - P1||
||(12—(11|| ||CI3—Q1||

qs is found to be

Ips — pill [laz — aul| cosf, —sinb,
P2 — P1||2

q: + (P2 —p1)-

sinf, cos0,

T
The affine transformation mapping a model point p; = [i Di] to the image
z y

178

Qi ai Gz Di, 2
= + } (6.1)

For each correspondence p; <> q; we have two linear equations in the 6 unknowns
ai, Gz, a3, a4, ty, and t,. From the three corresponding points, we can solve for
the parameters of the affine transformation. Figure 6.5 shows the pose hypotheses

generated for a particular correct base correspondence.

6.5 Similarity of Line Neighborhoods

The second stage of the recognition algorithm ranks all hypothesized approx-
imate model poses in the order that the pose refinement and verification algorithm
should examine them; the goal is to rank highly those poses that are most likely to
lead the refinement and verification algorithm to a correct precise pose. This way,
the final stage can examine the smallest number of approximate poses needed to
ensure that a correct pose will be found if an object is present. For this purpose, a
geometric measure of the similarity between the model (transformed by an approx-
imate pose) and the image is computed. To ensure that this similarity measure can
be computed quickly, for any base model line generating a hypothesized pose, only
a local region of model lines surrounding the base line (called the base model line’s
neighborhood) is compared to the image lines. Let M be the set of lines for a single

model and Z be the set of image lines. We define the neighborhood radius of a line

179

Figure 6.5: Pose hypotheses generated for a correct correspondence of a real model and
image line are shown. The model lines (dashed lines and thick solid line) are shown over-
laid on the image lines (thin lines). The one thick solid line in each image shows the base
correspondence: a model line perfectly aligned with an image line. The top row shows the
two similarity transformations, one for each possible alignment of the base lines. The bot-
tom row shows the two affine transformations, one for each possible corner correspondence
of the base lines. These are the complete set of transformations hypothesized for this base
correspondence. Notice the better alignment in the images of the bottom row, resulting
from the use of corner angle correspondences, compared to the upper left image.

180

\ r(l)

Figure 6.6: The neighborhood radius of line [/, in the center of the image, is the
minimum distance r(l) for which both endpoints of N}, lines are within distance
r(l) of I. Here, Ny = 5, but in actual experiments, we take N, = 10. The five
dark lines are the neighbors of line /.

I to be the smallest distance, denoted r(l), such that the two endpoints of at least
Nppy lines (excluding [) are within distance r(I) of I. In all of our experiments, the
value of Ny, is fixed at 10 lines (N}, < [M]). The neighborhood of a model line
l is the set of Ny model lines, N (1), whose endpoints are within distance r () of
[. Figure 6.6 illustrates a line and its neighbors.

For a hypothesized approximate model pose {4, t} generated for a base model
line [, let 7 (N (1), A,t) denote the neighbors of [transformed by the pose {A,t},
and let d (I',1") denote the distance (defined in Section 6.6) between two lines I’ and
I" in the image. Then, the geometric similarity between a model neighborhood N

transformed by the pose {4, t} and the set of image lines Z is

SW.Z, AL = Y)min {Smax,{,r,leirzld(l',l")}. (6.2)

VeT (N, ALt

181

The smaller the value of S (N, Z, A, t), the more “similar” a model neighborhood N/
is to the image Z under the transformation {4, t}. The parameter Smax ensures
that “good” poses are not penalized too severely when a line in the model is fully
occluded in the image. This parameter is easily set by observing the values of
S(N,Z, A t) that are generated for poor poses (that should be avoided), and then
setting Smax to this value divided by Ny,

As explained in Section 6.6, the distance between a single model neighbor and
the closest image line can be found in time O (logn) when there are n image lines.

Since |N'| = Ny, the time to compute S (N, Z, A, t) is O (logn).

6.6 Distance Between Lines

For any image line I’ (which is typically a transformed model line), we wish
to efficiently find the line {” € Z that minimizes d (I',1") in Equation 6.2 that ex-
presses the similarity between a model and image neighborhood. This search can be
performed efficiently when each line is represented by a point in an N-dimensional
space and the distance between two lines is the Euclidean distance between the cor-
responding points in this N-dimensional space. Assuming that we have a suitable
line representation, a tree data structure storing these N-dimensional points can be
created in time O (nlogn) and the closest image line can be found in time O (logn).
This tree structure need only be created once for each image, and is independent of
the model lines.

Thus, we want to represent each line as a point in an N-dimensional space such

182

that the Euclidean distance between two lines is small when the two lines are super-
posed. We would also like the distance function to be invariant to partial occlusion
and fragmentation of lines. Representing a line by its 2D midpoint is insufficient
because two lines can have an identical midpoint but different orientations. We
could use the midpoint and orientation of a line, but a short line superposed on a
longer line (think of the short line as a partially occluded version of the longer line)
could be assigned a large distance because their midpoints may be far. Further,
there is problem associated with line orientation because a line with an orientation
of # should produce the same distance as when its orientation is given as 6 4+ 2k~
for K = 1,2,.... For example, two lines with identical midpoints but orientations
179° and —179° should produce the same distance as if the orientations of the two
lines were 1° and —1°. It is not possible with a Euclidean distance function to map
both of these pairs of angles to the same distance. A solution to these occlusion and
orientation problems is to generate multiple representations of each line.

Let [be a line with orientation # (relative to the horizontal, 0 < § < 7) and
endpoints [z1, y1] and [x9, yo]. When [is a line in the image (I € Z), [is represented

by the two 3D points

[0 Tmid ymid} and [9 =7 Tmid Ymid (6.3)
Te Tm Tm T Tm T'm
where [Zid, Ymia) = [T1 + %2, Y1 + Y] /2 is the midpoint of the line, and ry and 7,

are constant scale factors (described below); these are the 3D points used to create

the data structure that’s used in the nearest neighbor searches.

183

When [is a transformed model line (as in " above), [is represented by the set

of 3D points

0 z; Y 0—m & §i| .
{[_,l‘_,y_],[W,x_,y_],zzl,z,...,Npm} (6.4)
Te Tm Tm Tg "m Tm
where
To — T1,Yo —
N"“:P”Q 1 yl]”“, 65)

A = [3?2 —T1,Y2 — yl]
Npts —1 ’

[Z5, 73] = [w1,91] + (1 = 1) A.

In words, two orientations are used for each transformed model line, but the position
of the line is represented by a series of Ny, points that uniformly sample the length
of the line at an interval w. The reason multiple sample points are required to
represent the position of transformed model lines but not the image lines is that
when {A,t} is a correct pose for the model, the image line, which may be partially
occluded or otherwise fragmented, will in general be shorter than the transformed
model line. In this case, the midpoint of the image line will lie somewhere along
the transformed model line, but the midpoint of the transformed model line may
lie off of the image line. The occlusion problem of the representation is only truly
eliminated by a uniform distribution of sample points along transformed model lines
when there is a sample point [Z;, ;] for every pixel on a transformed model line.
However, we have found that placing a sample point at approximately every 10th
pixel (w = 10 in Equation 6.5) along each transformed model line is sufficient to

184

[Zs, 7s]

(Z5,75]

e\ [Tmid> Ymid]

Figure 6.7: Sampling the position of model and image lines. Image line [is repre-
sented using its midpoint [Zmiq, Ymia] and its orientation 6. Projected model line I’ is
represented using the points {[Z;,7;],¢ = 1,..., Nps} and its orientation §. When
the pose of a model is accurate and a model line and image line correspond, the
midpoint of that image line will be close to some sample point on the projected
model line, and the orientation of the two lines will be similar. This is true even
when the image line is fragmented. In this example, [Zmid, Ymiq] is closest to [Z7, 77].

solve this problem. Then, when a transformed model line I is correctly aligned with
a possibly partially occluded image line [, we will have d (I',1") < w/ry,. Figure 6.7
illustrates how model and image lines are sampled in the process of generating the
points in Equations 6.3 and 6.4.

The scale factors ¢ and r,, are chosen to normalize the contribution of the
orientation and position components to the distance measure. Given a model line [
with neighborhood radius r (1) that is mapped to an image line !’, the radius around
I in which lines corresponding to neighbors of [are expected to be found is defined
to be ' (I,I") = (||l'|| » (1)) / |||, which is just the neighborhood radius of [scaled
by the same amount that [is itself scaled by the mapping. Assume a transformed

model line and an image line are represented by the points [6;, x1, y1] and [0, 2, Y],

185

respectively, as described by Equations 6.3 and 6.4. When the orientation of the
lines differ by 7/2 radians, we want |#; — 0] = 1; when the horizontal distance
between the sample points equals the neighborhood radius of the image line, we want
|z1 — 29| = 1; and, when the vertical distance between the sample points equals the
neighborhood radius of the image line, we want |y; — yo| = 1. The value 7y = 7/2
satisfies the first normalization constraint. However, because image lines will have
different neighborhood radii depending on which model line they correspond to, the
later normalization constraints can’t be satisfied by a constant scale factor, but they

are satisfied for model and image lines of average length by

_ ez 1) (Ciepar 1)
" 2 2 ene

(6.6)

The terms in Equation 6.6 that sum over model lines represent sums over all lines
in all models. Using this value for r,, has worked well in practice.

Finally, for any transformed model line I’, to find the image line ["” that mini-
mizes d (I',1") we simply query the nearest neighbor data structure (generated using
points from Equation 6.3) with all of the points listed in Equation 6.4 and then
use the distance of the closest one. Because the complexity of the nearest neighbor
search is O (logn), the use of multiple points to represent lines does not significantly

slow down the algorithm.

186

6.7 Graduated Assignment for Lines

The final stage of the object recognition algorithm is to apply a pose refinement
and verification algorithm to the few “best” approximate poses. Our refinement and
verification algorithm, which is based on Gold Rangarajan’s graduated assignment
algorithm |55, 56], is efficient (O (mn) complexity for m model lines and n image
lines), robust to occlusion and clutter, and doesn’t make hard correspondence deci-
sions until a locally optimal pose is found.

Given an approximate initial pose Ty = {Ao, to}, we wish to find a 2D affine
transformation 7" = {A, t} that maximizes the number of matches between model
and image lines such that the distance between matched lines does not exceed
a threshold dg,,). For a transformation T and a line [, let us denote by T (I)
the transformation of [by 7. We assume that our initial pose Tj is accurate
enough so that the pose refinement algorithm does not have to consider all pos-
sible correspondences between model lines [and image lines I’ but only those cor-
respondences where d (T (I),1') < do; here, d() is the distance function defined
in Section 6.6 and Jy is an initial distance threshold that allows any reasonably
close correspondence. Limiting the correspondences in this way results in a signif-
icant increase in the speed of this step without affecting the final outcome. Let
I'={leZ|NeMAd(Ty(l),l') <} be the subset of image lines that are ini-
tially reasonably close to any transformed model line.

In order to make this chapter self-contained, the following three paragraphs

summarize material presented in Section 2.5.2.2 about the graduated assignment

187

algorithm.

Given m model lines M = {l;,j =1,...,m}, nimagelinesZ' = {l} ,k = 1,...,n},
and an approximate model pose Ty = { Ay, to}, we wish to find the 2D affine trans-
formation 7" and the (m + 1) x (n + 1) match matriz M that minimizes the objective

function

n

E= Zm: My (d (T (1), 1L)° — 52) . (6.7)

j=1 k=1
M defines the correspondences between model lines and image lines; it has one row
for each of the m model lines and one column for each of the n image lines. This
matrix must satisfy the constraint that each model line match at most one image
line, and vice versa. By adding an extra row and column to M, slack row m + 1
and slack column n + 1, these constraints can be expresses as M, € {0,1} for
1<j<m+1landl Skgn—i-l,Z::Mjizlforlgjgm, and Z:’:lMikzl
for 1 < k < mn. A value of 1 in the slack column n + 1 at row j indicates that the
jth model line does not match any image line. A value of 1 in the slack row m + 1
at column indicates that the kth image line does not match any model line. The
objective function E in Equation 6.7 is minimized by maximizing the number of
correspondences [; < I} where d (T (;),1},) < dfpa]-

Optimizing the objective function in Equation 6.7 as a function of M and
T is difficult because it requires a minimization subject to the constraint that the

match matrix be a zero-one matrix whose rows and columns each sum to one. A

typical nonlinear constrained optimization problem minimizes an objective function

188

on a feasible region that is defined by equality and inequality constraints. The
zero-one constraint on the match matrix is impossible to express using equality
and inequality constraints. The graduated assignment algorithm developed by Gold
and Rangarajan ([55, 56]), however, can efficiently optimize our objective function
subject to these constraints. This algorithm uses deterministic annealing to convert
a discrete problem (for a binary match matrix) into a continuous one that is indexed
by the control parameter 5. The parameter 3 (8 > 0) determines the uncertainty
of the match matrix, and hence the amount of smoothing implicitly applied to
the objective function. The match matrix minimizing the objective function is
tracked as this control parameter is slowly adjusted to force the continuous match
matrix closer and closer to a binary match matrix. This has two advantages. First,
it allows solutions to the simpler continuous problem to slowly transform into a
solution to the discrete problem. Secondly, many local minima are avoided by
minimizing an objective function that is highly smoothed during the early phases of
the optimization but which gradually transforms into the original objective function
and constraints at the end of the optimization.

The objective function is minimized by first computing the variables M}, that
minimizes E assuming that the transformation 7' is fixed, and then computing
the transformation 7' that minimizes E assuming that the M;; are fixed. This

process is repeated until these estimates converge. For a fixed transformation 7T,

189

the continuous match matrix M is initialized by

1 ifj=m+lork=n+1
MY, = (6.8)

exp (=B (d(T (1;),1,)> — 6%)) otherwise,
where ¢ varies between d at the start of the optimization and dg, .1 at the end. Note
that & determines how distant two lines can be before the correspondence becomes

undesirable:

MY, < 1 when d(T (1;),1},)* > &2,
MY =1 when d(T (I;),1})* = 62,

MY, > 1 when d (T (I;),1},)* < 6.

So, for example, when d (T (I;),1;)* > 6, M3, will be given a value less than the
initial slack values of 1 for row j and column £, thus initially making assignment
to slack preferred over the assignment of model line j to image line k. Next, the
match constraints are enforced by applying to M? the Sinkhorn algorithm [135] of

repeated row and column normalizations:

repeat

Mt = M STHIME 1< j<m, 1<k<n+1

Mt = M ST M, 1< j<m+1,1<k<n
until | M+ — M| small
Sinkhorn showed that when each row and column of a square matrix is normal-
ized several times by the sum of the elements of that row or column, respectively

(alternating between row and column normalizations), the resulting matrix con-

190

verges to one that has positive elements with all rows and columns summing to 1,
in other words, a probability distribution. However, this is only approximate for a
non-square matrix such as ours: either the rows or the columns will sum to one,
but not both. When f is small, all elements of M° will be close to the neutral
value of 1; this represents a high degree of uncertainty in the correspondences. As
(3 increases (and presumably the accuracy of the pose as well), the uncertainty in
the correspondences decreases and the elements of M° move towards the values of
0 or co. Thus, the match matrix starts off approximating a continuous probability
distribution when £ is small, and ends up as a binary correspondence matrix when
B is large. Section 3.3.4 describes changes that we have made to the Sinkhorn algo-
rithm as described above that often result in improved convergence of the graduated
assignment algorithm to the local optima.

We also need to compute the affine transformation 7" that minimizes the ob-
jective function E assuming that the continuous-valued match matrix M is held
constant. This is difficult to do directly because of the complex nonlinear relation
between T" and the nearest neighbor distance function d. Instead, we replace d with
a new distance, d’, whose square is the sum of the squared distances of the endpoints
of an image line to the infinitely extended model line. For a model line /; and an

image line [}, the new squared distance between 7' (l;) and [}, is
! 1\2 T/ 1 2 T/ 1
(T (), 5)" = [T 0)" G =T w31)] + [T 1) (bl — T (p2))

where p); and pj, are the two endpoints of [}, and where T (n;) , T (p;1), and T (pj2)

191

denote the normal and two endpoints of T (I;), respectively. The new objective

function is

B = Xm: Y M;, (d’ (T (@), 1) — 52) .
In general, the transformation 7" that minimizes F’ is not guaranteed to minimize E.
In practice, however, because three line correspondences define a 2D affine transfor-
mation [68], one would expect E' and E’ to have approximately the same minimizers
whenever the model has three or more lines in a non-degenerate configuration. Since
the expression for d' (T (I;),14)” involves rotating a vector and transforming a point,
it is easier to reverse the roles of /; and [}, and minimize E’ by computing the inverse
transformation 7" = {A’,t'} that maps image lines into the frame of reference of
the model. This way, the model normal vectors are constants and 1" is applied only
to image points. Then, 7" is computed as the inverse of 7”. The objective function

that is minimized to determine 7" is

E"=3) M Z ((HJT (A +t' —pjn))” - 52) (6.9)

j=1 k=1

where n; = [xnj,ynj] is the unit normal vector of model line I;, p;; = [zj1,y;1] is
one endpoint of model line /;, and p}, = [z};,y,,] is the i*B endpoint (1=1,2) of

image line [}. The transformation

a v #
T = {4t} = , (6.10)
¢ d ¢

192

that minimizes Equation 6.9 can be found by solving the system of six equations

OE" /0! =0, OE"/OY =0, OE"/dc =0,
(6.11)

OE"/dd' =0, OE"/dt, =0, OE"/dt, =0

for o', ¥', ¢, d', t},, and t;. Expanding Equation 6.11, we obtain the linear system

Ax = b where x = (a' b dt t;)T, A is the 6 x 6 symmetric matrix

m n

DD My

j=1k=1

A=

(2 2 2 2 I ’oo 12 02
Tn; (wk1+wk2) Tn; (CRARE ATy Ty (25127

2 ' 7 / ' 2 12 12 J ! J 7
Ty (zklykl +$Ic2yk2) T, (yk1+yk2) Zn;Yn; (%1%1"‘%29&2)

12 12 ' ! ! 7 2 12 12
Tn;Yn; ($k1+$k2) Tn;Yn; (wklyk1+wk2yk2) Yn; (wk1+$k2)

/ 2 12 2
Zn;Yn; (wkly;¢1+w’lc2y;c2) TnjYn; (y;c1+y;c2) Yn; (%1%1"’%2%2)

Loy (2h1+ha) oy (Vh1+ ko) @n;yn; (T +)

K TnjYn; ($;cl+wlk2) Tn;Yn; (y;cl+y;c2) y%j (5”;91‘“”22)

TnjYn; (w;cly;cl—I—w’k?y;Q)
on;yn; (Y2 +9id)
2, (Tt +hoh)
va; (Vi +ui)
Tn;Yn; (Yh1+Yhs)

y%j (y;cl "‘y;ﬁ)

a3, (e %)

@3 (Vi1 +he)
T Yn; (o +ty)
@ (ViaHoie)
2a!2

"y

2!yl

and b is the column 6-vector given by

193

Tn;Yn; () +2%,)
@n;Yn; (Vi +¥ho)
LR AR
vh; (Vo)
227 Yn,

2’2

: (6.12)

(L (Th1 + Tho) \

Tn; (y;cl + y;cQ)

m " Yn; (Th1 T Tho)
b= Z Mjk (xnjle + ynjyjl) ! . (613)
=1 k=t Yn; (Y1 T Yko)
22y,

ST

The unknown x is easily found using standard linear methods.

Figure 6.8 compares the values of E and E’ over a typical application of the
graduated assignment algorithm. Pseudocode for the pose refinement and verifi-
cation algorithm is shown in Algorithm 11. Figure 6.9 shows an example of how
graduated assignment transforms an initial approximate pose into a more accurate

pose.

6.8 Experiments

To validate our approach, we recognized partially occluded 2D and 3D objects
in cluttered environments under a wide variety of viewpoints. All images were
acquired at a resolution of 800 x 600 pixels. 400 to 800 lines were typically detected
in an image, and each model had between 20 and 80 lines. First, we used books
to test the recognition of planar objects. Figure 6.10 illustrates recognition results
when our algorithm is applied to an image of a pile of books. For all but one of the

five recognized books, the pose hypothesis leading to correct recognition was found

194

09 °

0.8

0.7

0.6

W 0.5+

0.3

0.1r

Figure 6.8: Comparison of the two objective functions for a typical minimization by the
graduated assignment algorithm. The solid line is E, which uses the Euclidean distances
to the nearest neighbor, and the dotted line is E’, which uses the sum of the distances of
the image line endpoints to the infinitely extended model lines. The values of E and E’
generally decrease during the optimization process, but they can also rise due to changes
in the assignment variables Mjy.

Figure 6.9: Pose refinement using the graduated assignment algorithm: initial pose (left)

and final pose after applying the algorithm (right).

195

Algorithm 11 - GAA LINES: The graduated assignment algorithm for 2D pose esti-

mation from line segments. This is used for pose refinement and verification in Algorithm
RANKED POSE_HYPS (Alg. 10).

inputs: A list of 2D image line segments,
A list of 2D model line segments,
An initial estimate 7 of the 2D affine transformation of the model.
outputs: The final 2D affine transformation 7" of the model,
The assignment matrix M.
initialize T = Ty, 8 = By, 0 = &y, € = o0, k = 0, mazsteps = 30.
while k < mazsteps and € > emax do
Initialize M° according to Equation 6.8.
Apply Sinkhorn’s algorithm (SINKHORNS3) to M° to produce M.
Compute T}, using Equations 6.10-6.13.
Compute T}, as the inverse of T}.
e = max |T, — T—1].
k=k+1.
§ =06 — (8gp4] — do) /mazsteps.

B = ﬁupdate x .

end

196

0
—
\ =

WV
R

—

= = \
/> 5 \//\?: =X \\\’__:\%%

>§Ud \\i&\,/\g\x;

e e N e VP

(c) 731 detected lines. (d) Recognized books.

Figure 6.10: Five books, some partially occluded, are recognized in a cluttered environ-
ment.

197

in the top 10 hypotheses of the sorted hypothesis list. One book (“Linux”, shown

4th pose hypothesis.

in the lower right of Figure 6.10a) was not found until the 2
This book might be more difficult for our approach to recognize because a large
part of its cover depicts a horse with curved borders, for which detected lines were
inconsistent in images acquired from different viewpoints.

The performance of our algorithm depends on how reliably it can move to
the top of the sorted hypothesis list those pose hypotheses associated with correct
correspondences. To evaluate this, we estimate Py (k), the probability that one of
the first k£ sorted pose hypotheses for a model leads to a correct recognition when
the viewpoint of the recognized object and the viewpoint used to generate its model
differ by an angle of #, assuming that an instance of the model does in fact appear
in the image. Knowing P, (k) allows one to determine how many pose hypotheses
should be examined by the pose refinement process before restarting with a new
model, either of a new object or of the same object but from a different viewpoint.
Because Py (k) is highly dependent on the amount and type of clutter and occlusion
in an image, and because the level of clutter and occlusion present in our test was
held fixed, Py (k) should be interpreted loosely. The six books shown in Figure 6.10a
were used to perform this experiment. All six books were placed flat on a table
along with a number of other objects for clutter. Each book in turn was moved
to the center of the table and then rotated on the plane of the table to 8 different
orientations, where each orientation was separated by approximately 45°. For each
of these orientations, the camera was positioned at angles 0°, 10°, 20°, 30°, 40°, 50°,

60°, and 70° relative to the normal of the table (0° is directly overhead) and at a

198

Figure 6.11: Image of a table of books taken by a camera tilted 50° from vertical.

fixed distance from the center book, and then an image was acquired. The center
books were unoccluded in these experiments. A separate image was also acquired
of each book in an arbitrary orientation with the camera in the 0° position; these
later images were used to generate the book models. Figure 6.11 shows an image
of the books on this table for the camera in the 50° position. We then applied our
algorithm to each model and image pair and determined the position in the sorted
hypothesis list of the first hypothesis that allowed the object to be recognized. Up to
100 hypotheses were examined for each model and image pair. The estimated values
of Py (k) are shown in Figure 6.12. From this we see that, for planar objects whose
orientations differ by up to 60° from the modeled orientation, a probability of correct
recognition of 0.8 can be achieved by examining the first 30 pose hypotheses. By

examining just the top four pose hypotheses, we can achieve a probability of correct

199

P, (K

0.6

0.5

0.4

Figure 6.12: P, (k) is the probability that one of the first k& sorted pose hypotheses for
a model leads to a correct recognition for that model. @ is the difference in viewpoint
elevation between the model and the object. For 8 < 40°, one of the four highest ranked
pose hypotheses always leads to correct recognition. The curves for 8 = 0° thru 40° are

9=0,10,20,30 .40

20 40 60

superposed for k > 4.

200

80

100

recognition of 1.0 for objects whose orientations differ by up to 40° from the modeled
orientations. Thus, a good strategy would be to apply the algorithm using a set of
models for each object generated for every 40° degree change in viewpoint; in this
case, it would be sufficient to represent planar objects by five models in order to
recognize all orientations of up to 80° from the normal.

Finally, we applied our algorithm to three 3D objects. We acquired 17 images
of each object, where the objects were rotated by 2.5° between successive images.
The first image of each object was used to represent the object, and from this a 2D
model was generated by identifying the object edges in that image. Examining only
the top 10 sorted pose hypotheses, all three objects were successfully recognized
from all viewpoints that differed by up to 25° from the modeled viewpoint. Two of
the objects (the monitor and hole punch) were also recognized at 30° away from the
modeled viewpoints. Figure 6.13 shows the object models, the images, the detected
lines, and the final poses of the recognized objects for the most distant viewpoints
that each was recognized. The range of recognizable object orientations could have
been be extended somewhat by examining more pose hypotheses, but at some point
it becomes more cost effective to add a new model for a different viewpoint.

We wish to estimate the maximum number of views (2D models) of a 2D or
3D object that our recognition algorithm must match to an image in order to ensure
with high probability that the object will be correctly recognized if it is present in the
image. Although our experiments involve only a small number of objects, we assume
that these results are representative of a broader class of objects and therefore base

our estimates on them. We ignore perspective effects and represent each object with

201

Figure 6.13: Recognition of 3D objects from viewpoint-dependent 2D models: computer
monitor (top row), stapler (middle row), and hole punch (bottom row). Shown in each

row, from left to right, is the 2D object model, original image, image lines, and model of
recognized object overlaid on the original image. The modeled view of each object differs
from the test view by 20° to 30°.

202

a set of models generated solely by changes in orientation; this should be sufficient
provided the camera is not too close to the scene relative to the depth of the scene
(perspective effects are dealt with in Chapter 7). Thus, the viewpoints of objects
are represented as points on the surface of a unit sphere. To determine the number
of models needed to represent an object, we must partition these viewpoints into
a minimum number of nonoverlapping sets, which we call view sets, such that all
viewpoints within a view set can be recognized by a single 2D model. The 2D model
representing a view set will correspond to the center view of that set. How far a
viewpoint in a view set can be from the center view is the experimentally determined
maximum difference between the object’s orientation and a modeled orientation that
still allows the object to be recognized from that 2D model determines. Let this
maximum difference between object and model orientation be denoted by ©. To be
conservative, based on results described above, we take © = 40° for 2D objects and
© = 21° for 3D objects. (Taking © = 21° for 3D objects results in identical view
sets as when © = 25°.)

The minimum number of 2D models that are needed to represent an object is
then determined by counting the number of identical right-circular cones of angle
© that are needed to fully enclose the upper hemisphere, for the case of 2D objects
(such as books on a table), or the entire sphere, for the case of 3D objects, when
the vertices of the cones are placed at the sphere’s center. (The angle of a right
circular cone is the angle around the vertex of the cone between the cone’s axis and
the conic surface.) One can determine that six cones of angle 40° fully enclose the
upper hemisphere while 44 cones of angle 21° fully enclose the entire sphere. Thus,

203

Figure 6.14: The view sets are shown for © = 40° (a) and ® = 21° (b) that
are needed to recognize 2D and 3D objects, respectively. Six view are needed to
recognize 2D objects from any viewpoint above the plane of the object, and 44
views are needed to recognize 3D objects from any viewpoint. The upper and
lower hemispheres are separated by a black line at the equator. Each colored patch
represents the set of views that can be recognized using a 2D model generated for
the center view in that set corresponding to the “pin”. Each pin is an axis of a right
circular cone whose vertex is located at the center of the sphere and whose angle
is © = 40° in (a) and © = 21° in (b) . All viewpoints of an object that are within
a given cone of viewpoints should be recognizable using the model generated from
the viewpoint along the cones axis. This is a Voronoi diagram on the sphere for the
set of center views; each colored patch is the set of all viewpoints that are closest to
the center view of that patch.

recognizing 2D objects from any viewpoint above the plane of the object requires
at most six 2D models, while recognizing 3D objects from any viewpoint (above or
below the ground plane) requires at most 44 2D models, and recognizing 3D objects
from any viewpoint above the ground plane requires at most 22 2D models. The
view sets for © = 40° and © = 21° are shown in Figure 6.14.

From the above experiments, it is apparent that a relatively small number of

204

pose hypotheses need to be examined by the pose refinement algorithm in order to
reliably recognize objects. We use this to determine the overall runtime complexity
of our algorithm. Assume that we have ¢ models, each containing m lines, and that
the image contains n lines. Initialization of the nearest neighbor data structure and
identification of corners can be performed in O (nlogn) time. For each model, we
generate O (mn) pose hypotheses. The neighborhood similarity of each of these
can be evaluated in O (logn) time. The pose hypotheses can be sorted in time
O (mnlog (mn)). The pose refinement algorithm requires O (mn) time. Thus, the

overall runtime complexity of our algorithm is O (gmn log (mn)).

6.9 Conclusions

This chapter presented an efficient approach to recognizing partially occluded
objects in cluttered environments. Our approach improves on previous approaches
by making use of information available in one or two line correspondences to com-
pute approximate object poses. Only a few model lines need to be unfragmented in
an image in order for our approach to be successful; this condition is easily satisfied
in most environments. The use of one or two line correspondences to compute the
pose of an object allows for a large reduction in the dimensionality of the space that
must be searched in order to find a correct pose. We then developed an efficiently
computed measure of the similarity of two line neighborhoods that is largely unaf-
fected by clutter and occlusion. This provides a way to sort the approximate model

poses so that only a small number need to be examined by more time consuming

205

algorithms. Experiments show that a single view of an object is sufficient to build

a model that will allow recognition of that object over a wide range of viewpoints.

206

Chapter 7

View-Based 3D Object Recognition

View-based object recognition algorithms model 3D objects with sets of 2D
models of the objects in different poses. An object is recognized by matching one of
the 2D models to the image. The advantage of this approach is that it allows a po-
tentially simpler 2D algorithm to be used in place of a more complex 3D algorithm.
Furthermore, when an image contains a large amount of clutter and occlusion, a
2D recognition algorithm should be less susceptible to being trapped in local min-
ima because 2D poses are generally linear transformations with fewer degrees of
freedom than the nonlinear perspective transformations required by 3D algorithms.
The disadvantage of a view-based approach, however, is that because an object’s
appearance can vary greatly with its pose, many 2D models of each object might
need to be examined in order to guarantee success.

We combine our recognition algorithm for 2D objects, RANKED _POSE _ -
HYPS, described in Chapter 6, with either of our line-based 3D recognition algo-
rithms, SOFTPOSIT _LINE _ENDPOINTS or SOFTPOSIT _ LINES, described
in Chapters 4 and 5, respectively, to produce a two-stage, view-based, 3D object
recognition algorithm. This approach requires the availability of 3D CAD models
of the objects to be recognized. These 3D models may be either wire-frame or solid

models. The use of solid models allows hidden-line removal techniques to be used

207

when projecting 3D models into 2D models; 2D models with hidden lines removed
are more accurate and less cluttered than 2D models generated from wire-frame
models, and therefore they should provide more reliable matches in cluttered im-
ages.

The first stage of the view-based 3D recognition algorithm searches for a 3D
camera orientation (i.e., viewing direction) for which the associated 2D model (the
projection of the 3D model) provides a good match to the image. The camera
orientations that must be examined were discussed in Section 6.8. For each camera
orientation, the 3D model is positioned so that the camera axis passes through the
center of the object and then the 3D model is projected into a 2D model. This 2D
model is then matched to the image using RANKED POSE _HYPS. The output
of RANKED POSE HYPS is a 2D pose and an assignment matrix M between
the image lines and the 2D model lines. When a 2D model is found that provides a
good match to the image, the 3D algorithm SOFTPOSIT _LINE ENDPOINTS
(or SOFTPOSIT _LINES) is applied using the assignment matrix M to initialize
the 3D pose of the 3D model. Because the 2D model is a projection of a 3D model,
it is known which line segments in the 2D model correspond to which lines segments
in the 3D model, so one can easily map the assignment matrix M between the
image and 2D model lines to an assignment matrix M’ between the image and the
3D model lines. M is not guaranteed to be perfect, nor does it need to be; the
2D model used to estimate M only approximates the expected appearance of the
identified object. However, it is expected that the majority of the correspondences

described in M will be correct, and therefore, a majority in M’ will also be correct.

208

This should put the initial estimated 3D pose close enough to the true pose so that
the 3D algorithm will avoid local minima and converge to the correct pose.
Algorithm 12 shows the pseudo-code for the 3D view-based object recognition

algorithm. Figure 7.1 shows this algorithm applied to a robot image.

209

Algorithm 12-3D _OBJ_RECOGNITION: A view-based 3D object recognition
algorithm.

inputs: List of 3D models M, each consisting of a set of 3D line segments.
Input image Z, described by a set of 2D line segments.

outputs: List of model-pose pairs.

Create a range search data structure rs for the image lines 7.
for each 3D model msp € M do
for each camera orientation @ (as shown in Figure 6.14) do
Project msp to a 2D model myp using camera orientation .
Apply Algorithm RANKED POSE_HYPS to rs and map.
for each assignment matrix M returned by RANKED POSE_HYPS do
if M describes a sufficient number of matches then
1. Map the 2D model assignments M to 3D model assignments M':

M= M;s if l; € myp is the projection of I, € msp,
gk 0 otherwise.

2. Apply Algorithm SOFTPOSIT _LINE ENDPOINTS or
SOFTPOSIT _LINES but use M’ to compute the initial 3D
rotation R and translation T as described in Section 5.3.1.

3. If a sufficient number of matches are found, then record this model and
its 3D pose.

end
end
end

end

210

—

(e) (f)

Figure 7.1: Example of view-based 3D object recognition. The 3D object recognition
algorithm SOFT _POSIT _LINES is initialized using correspondences computed
in the 2D object recognition algorithm RANKED POSE_HYPS. (a) Original
image. (b) Line segments detected in the image. (¢) The 2D model used in the 2D
algorithm; this was generated from a 3D CAD model using a hidden line removal
algorithm. (d) The 2D affine pose hypothesis that leads to the highest-ranked 2D
pose; the green line is the base correspondence. (e) The highest-ranked 2D pose
after pose refinement. (f) The final 3D pose after initializing the pose using the 2D
correspondences.

211

Chapter 8

Algorithm Comparison

In this chapter, we compare the performance of the three line-based object
recognition algorithms described in Chapters 4, 5, and 6. Experiments are performed
to determine how the success rate of the object recognition task is affected by the
following four parameters: scene clutter rate, object feature detection rate, in-image-
plane rotation of the object, and out-of-image-plane rotation of the object. Let m
be the number of line segments in a 3D model of an object and n be the number of
2D line segments in an image of a scene that includes that object. Then, these four

parameters are defined as follows.

1. The scene clutter rate is defined as C' = (n — my)/n where m; is the number
of image line segments that are projections of some model line segment. The
clutter rate is the percent of image line segments that are not the image of

any model line segment.

2. The object feature detection rate is defined as D = my/mg3. Here, my is the
number of 3D model line segments that have one or more corresponding image
line segments. A model line segment can have multiple corresponding image
line segments when an image line is fragmented by a line detection algorithm.
mg is the number of model line segments that are not fully self-occluded (i.e.,

not fully hidden by other parts of the same object); this is the number of

212

model line segments that should be at least partially visible to the camera
when there are no objects in the scene between the modeled object and the
camera. When simple wire-frame models of objects are used, our system has
no knowledge of the surfaces or volumes of solid objects, so mg will equal m,
the total number of line segments in the 3D model. However, when a solid
model is available, hidden surface removal is performed; in this case, the value
of ms will usually be less than m and will be highly dependent on the object’s
pose. The quantity 1 — D is the percent of model lines that are not detected
as image lines as a result of being occluded by other objects in the scene or
because of deficiencies in the line detection algorithm. Object lines that are
not detected because they are self-occluded do not affect the object detection

rate.

. The in-image-plane rotation of an object, denoted ©, is the angle of rotation

of the object about an axis parallel to the camera’s optical axis.

. The out-of-image-plane rotation of an object, denoted O,, is the angle of
rotation of an object about some axis perpendicular to the camera’s optical
axis. An arbitrary 3D rotation of an object may be decomposed into a one-
degree-of-freedom rotation about a specified axis and a two-degree of freedom
rotation about an axis perpendicular to the first. The in-image-plane rotation
is the first rotation, which is about the optical axis, and the out-of-image-plane
rotation is the second rotation, which is about any axis perpendicular to the

optical axis. These rotations are shown in Figure 8.1. The angle ¢ shown in

213

O,

Figure 8.1: ©; and ©, are the rotational parameters of the experiments. The
camera’s optical axis is assumed to be aligned with the Z-axis in this figure. O, is
the in-tmage-plane rotation, which is the rotation of the object about the Z-axis.
©, is the out-of-image-plane rotation, which is the rotation of the object about the
axis w. w lies in the X-Y plane, so it’s perpendicular to the Z-axis, and is at an
arbitrary angle ¢ with respect to the X-axis.

this figure is not important to our experiments because, as will be described
below, the 3D objects are random and therefore there will be no preferred

angle ¢ that makes the recognition task easier.

These parameters determine the difficulty of an object recognition task. (Other
parameters can also affect the difficulty, but we believe these are the most important
parameters.) As the clutter rate C rises or the detection rate D drops, the problem
generally becomes harder. Because our recognition algorithms always take ©; = 0°
and ©, = 0° as an initial guess for an object’s orientation, the larger ©; or ©,, the
more difficult the recognition task should become.

Simulated 3D objects and simulated images of these objects were used in our
experiments so that the above parameters could be easily controlled. We performed
two sets of experiments: one set in which the 3D models were generated by placing

214

the endpoints of the object line segments on a unit sphere, and the other set in
which the objects were constructed of solid 3D boxes of random size and orientation
(see below for more details). For every combination of the parameters, a number
of independent trials were performed. In each of these trials, a single random 3D
model was generated and an image of that model was created as determined by the
the current parameter values: the object in the required pose was first projected
into the image, some line segments on the image of the object were removed to
simulate occlusion, and clutter line segments were added. Then, given the identical
model and image, each of the three line-based object recognition algorithms were
invoked to determine the pose of the object. Because the true pose of the object was
known, the pose returned by each algorithm was judged correct if the computed 3D
rotation and translation was sufficiently close to the true rotation and translation,

respectively.

8.1 Random Lines on a Sphere

The first set of experiments were performed with random wire-frame objects
constructed by placing the endpoints of the object’s 3D line segments on the unit
sphere. This is accomplished by first picking 36 random points on the unit sphere.
Each point is then connected with a line segment to it’s closest three neighbors.
Finally, 36 of these line segments are randomly selected to form the 3D model.
These are wire-frame objects with no volume or surface information, so hidden

surface removal is not done during the simulated imaging process. Consequently,

215

there is no self-occlusion of these objects. Recognition of these wire-frame objects is
likely more difficult than typically opaque real-world objects because it is possible
for multiple “surfaces” of the wire-frame object to be seen simultaneously along a
single line-of-sight, so that in effect, one or more surfaces of the object can be clutter
for a different surface.

The parameters of the wire-frame experiments ranged over the following values:

C € {0.25, 0.5, 0.75},
D € {04, 0.6, 0.8},
@, € {0°, 10°, 20°, 30°, 40°},

©, € {0°, 10°, 20°, 30°, 40°}.

For every combination of these parameters, approximately seven independent tri-
als were performed. FEach trial consists of invoking the three object recognition
algorithms on identical data. For each trail, a new random object and image was
generated according to the current parameter values. The actual 3D orientation of
the object was determined by ©; and ©, (with ¢ from Figure 8.1 set to zero), and
the 3D translation was randomly selected to keep the projection of the object in
the image. The initial guess used by the recognition algorithms for the pose of the
object is always ©; = 0, ©, = 0, and ¢ = 0, and a fixed translation centered at the
mean translation. In addition to degrading the image due to the clutter and detec-
tion rate parameters as described above, the following processes are also performed

in generating the image of an object:

1. The locations of the endpoints of the projected object line segments are per-
turbed by normally distributed noise with standard deviation equal to 0.25

216

percent of the image width.

2. The ends of the projected object line segments are chopped off to simulate
that image line segments are typically not detected completely at junctions
with other lines (i.e., at corners). The length chopped off the end of each line
segment is uniformly distributed in the range of 0.4 to 0.6 percent of the width

of the image.

3. When any two points on two image lines are closer than 0.25 percent of the
width of the image, then all regions of the shorter line that are within this

distance of the longer line are deleted.

4. Of the projected object line segments that remain (some are totally removed
due to step 3 above, or due to the object feature detection rate), 5 percent
of the internal regions (i.e., not connected to the endpoints) of these lines
are deleted, simulating the fragmentation that commonly occurs with line

detection algorithms.

Figure 8.2 shows a typical wire-frame object, its image, and the correctly recognized
object.

The results of the experiments with the wire-frame objects are shown in Fig-
ure 8.3. One can see that the ranked pose hypothesis (RPH) algorithm performs
significantly better than the two SoftPOSIT algorithms in terms of differences be-
tween the true and expected orientation of objects (as determined by ©; and ©),

the clutter rate, and the object feature detection rate. From Figures 8.3 (a) and (c),

217

Figure 8.2: This is an example of the synthetic data where the endpoints of the
object’s line segments are constrained to lie on a unit sphere. (a) The projection
of the model in a pose with no rotation, which is the initial guess for all of the
recognition algorithms. (b) The image of the object with 50° of in-image-plane
rotation, 20° of out-of-image-plane rotation, a clutter rate of 0.8, and an object
feature detection rate of 0.7. (c) The thick pink lines show the projection of the
model in its correct pose. Occluded object lines are indicated by thick pink lines
that do not align with a red image line. (d) The projection of the model in a pose
as determined by one of the recognition algorithms.

218

Success rate vs. in-image rotation Success rate vs. out-of-image rotation

1 T 1 T T T
SoftPOSIT for Endpoints SoftPOSIT for Endpoints
091 SoftPOSIT for Lines b 091 SoftPOSIT for Lines -
Ranked Pose Hyps. Ranked Pose Hyps.
0.8 | 0.8
0.7 | 0.7
2 @
$ 06 B $ 06
8 8
3 5
@ ?
s s
> 0.5 B > 05
- £
g]
3 04 g S 04
a [
0.3F | 03
02 B 02
01F P 01
0 0 I I I
[20 40 0 10 20 30 40
In-image-plane rotation Out-of-image-plane rotation
(a) (b)
Success rate vs. clutter rate Success rate vs. detection rate
1 T 1 T
SoftPOSIT for Endpoints SoftPOSIT for Endpoints
0.9 SoftPOSIT for Lines — 0.9r- SoftPOSIT for Lines B
Ranked Pose Hyps. Ranked Pose Hyps.
0.8 - 0.8 i
0.7+ - 0.7 B
@ a
S 06l 1 S 061 i
8]
3 @
s S
S osp 4 S 05
3 5
3 3
S 0ap . S 04
a o
031 ~ 0.3 —
0.2 — 0.2 B
01t T — .
0 L 0 i
0.25 05 0.75 0.4 0.6 0.8
Clutter rate Detection rate

() (d)

Figure 8.3: Rates of successful recognition for models constructed from random lines
on a sphere. (a) Success rate as a function of ©; marginalized over O,, C, and D.
(b) Success rate as a function of O, marginalized over ©;, C, and D. (c) Success
rate as a function of C' marginalized over ©;, Oy, and D. (d) Success rate as a
function of D marginalized over O, ©,, and C.

219

we see that the performance of the RPH algorithm is largely unaffected by the in-
image-plane rotation (©;) of the object, and by the clutter rate (C), respectively.
As expected, and as shown in Figure 8.3 (a), the two SoftPOSIT algorithms are
affected by the in-image-plane rotation of the object; this is because, unlike the
RPH algorithm, the model-to-image-feature distance measures that the Soft POSIT
algorithms employ are not invariant to image plane rotations. As shown in Fig-
ure 8.3 (b), The out-of-image-plane rotation has a large impact on the performance
of the RPH algorithm, but smaller impact on the performance of Soft POSIT algo-
rithms. Finally, Figure 8.3 (d) shows that the performance of all of the algorithms
is significantly affected by the object feature detection rate (D).

The probability of successful recognition in a single trial by the RPH algo-
rithm is greater than 0.7 for all out-of-image-plane rotations up to 10°, even when
marginalized over all values of ©, C, and D. For out-of-image-plane rotations up
to 20°, the probability of success is at least 0.35. To increase the probability of
success in recognizing objects rotated by up to 20° out of the image plane and for
any of the tested in-image-plane rotations, clutter rates, or object feature detec-
tion rates, the algorithm may be run multiple times using different initial guesses
for the object’s poses, where each of these poses is in the vicinity of the expected
pose. For example, to ensure with probability 0.99 that at least one trial suc-
cessfully recognizes an object when present, one would need to run the algorithm
log(1 — 0.99)/log (1 — 0.35) ~ 11 times. The expected number of trials before an
object is recognized, however, is only 1/0.35 ~ 3. The two SoftPOSIT algorithms
would not require a much larger number of initial guesses to recognize objects. For

220

example, the SoftPOSIT for Lines algorithm has a probability of success greater
than 0.17 for all out-of-image-plane rotations up to 20°. Consequently, running this
algorithm log(1 — 0.99)/log (1 — 0.17) ~ 25 times with different initial guesses for
the pose of an object would ensure with probability 0.99 that that algorithm would
recognize objects rotated by up to 20° out of the image plane and for any of the

tested in-image-plane rotations, clutter rates, or object feature detection rates.

8.2 Random Boxes

The second set of experiments were performed with objects constructed from
three solid 3D rectangular boxes (cuboids) of random size, position and orientation.
The boxes are required to be close to each other, but are not allowed to intersect.
The length, width, height, position, and orientation of each box is chosen randomly
until three boxes are produced that don’t intersect. Unlike the 3D objects generated
from random line segments on a sphere (Section 8.1), the box objects are solid models
with surface and volume information. This allows our simulated imaging process
to do hidden surface removal. We feel that the box objects are more representative
of man-made objects found in the real world: almost all real objects are opaque
and solid, so that only one surface of the object can be seen along any line-of-sight;
furthermore, many man-made objects can be accurately modeled using collections
of rectangular boxes. The parameters for the box object experiments ranged over

the following values:

221

C € {0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875},
D e {04, 0.5, 0.6, 0.7, 0.8, 0.9},

©, € {0°, 10°, 20°, 30°, 40°},

O, € {0°, 5°, 10°, 15°, 20°, 25°, 30°, 35°, 40°}.

The process of generating images of the random box objects is almost identical
to the process described in Section 8.1 for random lines on a sphere. There are two
differences, however. The first difference is that hidden surface removal is done
when projecting the box objects into an image. The second difference is that, in
addition to the individual random clutter lines that are placed into images, the
images of random clutter boxes are also inserted into the image to create man-
made-like clutter. If one is attempting to recognize man-made objects, then the
background clutter in the scene is also likely man-made and should appear as such
in images of those scenes. Figures 8.4 and 8.5 show typical box objects, their images,
and the correctly recognized objects.

The results of the experiments with the box objects are shown in Figure 8.6.
As with the previous experiments, one can see that the RPH algorithm performs
significantly better than the two SoftPOSIT algorithms in terms of differences be-
tween the true and expected orientation of objects (as determined by ©; and ©,),
the clutter rate, and the object feature detection rate. When the out-of-image-plane
rotation of a box object is no more than 10° from the initial guess, the probability
that the RPH algorithm will successfully recognize that object in a single trial is
0.95, regardless of the in-image-plane rotation, clutter rate, or object feature detec-

tion rate. Comparing Figure 8.6 to Figure 8.3, one sees that the success rate of the

222

(a) (b)

S _
~ , \ ~) \
Vet I

=3
\‘/, 70/
A& //\/\

(c) (d)

Figure 8.4: This is an example of the synthetic data where the objects are con-
structed from 3D boxes of random size and orientation. (a) The projection of the
model in a pose with no rotation, which is the initial guess for all of the recognition
algorithms. (b) The image of the object with 50° of in-image-plane rotation, 20° of
out-of-image-plane rotation, a clutter rate of 0.8, and an object feature detection
rate of 0.7. (c) The thick pink lines show the projection of the model in its correct
pose. Occluded object lines are indicated by thick pink lines that do not align with
a red image line. (d) The projection of the model in a pose as determined by one
of the recognition algorithms.

223

m // \ﬂ%; |
A ’/\’\\\/ \

Figure 8.5: This is another example of the synthetic random 3D box data. The
parameters of this test and the figure subcaptions are the same as described in
Figures 8.2 and 8.4. Notice that it isn’t easy to determine where the object is in the
image when comparing only (a) to (b).

224

Success rate vs. in-image rotation

1 T T T

SoftPOSIT for Endpoints
SoftPOSIT for Lines
Ranked Pose Hyps.

Probability of success

20
In-image-plane rotation

(a)

Success rate vs. clutter rate

1 T T T T

SoftPOSIT for Endpoints
SoftPOSIT for Lines
Ranked Pose Hyps.

Probability of success

031

Te—

0.1

ol L L
0.125 0.25 0.375 0.5

Clutter rate

()

Probability of success

Probability of success

Success rate vs. out-of-image rotation
1 T T T T T T T

SoftPOSIT for Endpoints
SoftPOSIT for Lines R
Ranked Pose Hyps.

o
e
T

o
o
T

o
=
T

0.2~ 1

01— — T -

1
15 20 25
Out-of-image-plane rotation

(b)

Success rate vs. detection rate
1 T T T T

SoftPOSIT for Endpoints
SoftPOSIT for Lines B

Ranked Pose Hyps.

0.9
Detection rate

(d)

Figure 8.6: Rates of successful recognition for models constructed from random 3D
boxes. (a) Success rate as a function of ©; marginalized over O, C, and D. (a)
Success rate as a function of ©, marginalized over ©1, C, and D. (b) Success rate
as a function of C' marginalized over ©4, O, and D. (c) Success rate as a function
of D marginalized over ©;, ©,, and C.

225

RPH algorithm is about 20 percent better on the box objects when compared to its
performance in recognizing random lines on spheres, for all four parameters of the
experiment. Unfortunately, there is not a similar improvement in the performance
of the two SoftPOSIT algorithms. This disparity is possibly due to the fact that
the 2D models that the RPH algorithm initially matches to the image are generated
by projecting the 3D models (in their initial guessed poses) using hidden surface
removal; most of object line segments that are hidden in the image do not appear in
these 2D models. The SoftPOSIT algorithms, on the other hand, do not do hidden
surface removal, but work with the 3D wire-frame (transparent) representations of
the objects. When compared to the RPH algorithm, the SoftPOSIT algorithms are

attempting to match many more model line segments that do not exist in the image.

8.3 Conclusions

We have seen that the ranked pose hypothesis algorithm performs significantly
better than the two Soft POSIT algorithms in terms of differences between the true
and expected orientation of objects (as determined by ©; and ©,), the clutter rate,
and the object feature detection rate. The success of the ranked pose hypothesis
algorithm is due to its use of an affine-invariant matching metric to determine a
number of approximate object poses prior to applying the Soft POSIT deterministic
annealing process to refine the 3D poses and correspondences. The initial guesses
for the 3D poses (as determined from the approximate 2D poses) are often close

enough to the true 3D pose to allow the deterministic annealing process to converge

226

to the true pose and correspondences. Without the initial approximate poses, the
two SoftPOSIT algorithms must start with an initial guess that is often far (relative
to the “landscape” of the objective functions) from the true pose (even for small ©

and ©5) and are consequently often trapped in local minima.

227

Chapter 9

Conclusions

This dissertation explored the use of the deterministic annealing method for
applications of correspondence, pose estimation, and object recognition, using simple
geometric features. All other known algorithms that solve these difficult combinato-
rial optimization problems for perspective cameras and objects in general position
have high-order run-time complexities. One goal of this work was therefore to de-
termine if the continuation method of deterministic annealing could be applied to
produce more efficient algorithms. To this end, we posed the correspondence and
pose estimation problem in terms of the optimization of an energy function that
depends on the 3D pose of a model and on the correspondences between model and
image features. An annealing control parameter was also inserted in the energy
function to provide a controlled level of smoothing of this function.

We started with an algorithm (SoftPOSIT) to register 3D model points to
sets of image points generated by a perspective camera. This is a very difficult
problem because no additional information was associated with either the 3D or
2D points, and all points were considered in isolation (with no shape context).
Still, the SoftPOSIT algorithm was able to register models to images when the
initial guesses for the orientations of the 3D models was off by up to 30° from the

correct orientation. That the algorithm performed this well is somewhat surprising

228

considering that in many of these cases, the human operator had no idea how to
manipulate the 3D model in order to bring it into alignment with the image: a
single image of a cloud of 3D points provides little information about the structure
of those 3D points. The run-time complexity of Soft POSIT with random starts was
empirically determined to be O(mn?) for m model points and n image points. This
is a factor of n better than the complexity of any published algorithm that solves the
pose and correspondence problem for point features under a full perspective camera,
model.

Next, we extended the SoftPOSIT algorithm from matching point features to
the case of matching line features: 3D model line segments were matched to image
line segments in 2D perspective images. Lines detected in images are typically more
stable than points and are less likely to be produced by clutter and noise, especially
in man-made environments. Also, line features are more robust to partial occlusion
of the model. This algorithm used the SoftPOSIT algorithm for points to determine
the pose and correspondences for a set of image and model lines. An iteration was
performed where at each step the given 2D to 3D line correspondence problem was
mapped to a new 2D to 3D point correspondence problem which depended on the
current estimate of the camera pose: using the current pose estimate, the endpoints
of the 3D line segments were first mapped to a set of virtual image points lying on
image lines, and then SoftPOSIT for points was applied to the 3D endpoints and
the virtual image points to improve the estimate of the camera pose.

The SoftPOSIT algorithm was extended a second time from matching point

features to matching line features. This time, instead of mapping the line-based

229

problem into a point based-problem, the pose and correspondence problems were
solved directly using the line features.

In these 3D pose and correspondence algorithms, we encountered some diffi-
culties in using deterministic annealing to smooth the energy function: too little
smoothing at the start of the annealing process would cause the model’s pose to
quickly move to a nonoptimal local minimum; conversely, too much smoothing at
the start of the annealing process would cause the model’s pose to undergo random
changes early in the annealing process, enough so that the model’s pose was no
longer in the basin of attraction of the optimal solution (the correct pose) when the
annealing temperature dropped enough to start enforcing the matching constraints.
In general, we found that a good initial guess for the object’s pose and a judiciously
selected annealing schedule were essential to finding a correct pose.

We surmised that the energy function associated with a 2D correspondence
and pose algorithm using a 2D linear transformation would have fewer local optima
to become trapped in than a 3D algorithm using 3D perspective projection. We
therefore developed a 2D pose and correspondence algorithm for line features. In
this approach, corresponding line features were determined by a three-stage pro-
cess. The first stage generated a large number of approximate pose hypotheses
from correspondences of one or two lines in the model and image. Next, the pose
hypotheses from the previous stage were evaluated and ranked by comparing local
image neighborhoods to the corresponding local model neighborhoods. Fast nearest
neighbor and range search algorithms were used to implement a distance measure

that was unaffected by clutter and partial occlusion. The ranking of pose hypothe-

230

ses is invariant to changes in image scale, orientation, and partially invariant to
affine distortion. Finally, deterministic annealing was applied for refinement and
verification, starting from the few best approximate poses produced by the previous
stages.

To get back to recognizing 3D objects from perspective images, we integrated
the 2D pose algorithm with our line-based 3D algorithms to produce a view-based
3D recognition algorithm. Rough correspondences were obtained from matching 2D
projections of models to the images. We found that using a coarse identification of
an object using an approximate 2D model provided correspondences that usually
were accurate enough to enable a good initialization of the 3D pose algorithms, and
then a good 3D pose could be determined relatively efficiently: since we had a good
initial guess for the 3D pose, the annealing temperature could be more easily set to
prevent the solution from diverging from the correct pose. The runtime complexity
of this recognition algorithm for a single model consisting of m line segments and an
image with n line segments was empirically determined to be O (mnlog (mn)). This
is a factor of n better than the complexity of any published algorithm that solves the
pose and correspondence problem for line features under a full perspective camera
model.

All of our algorithms used simple geometric point and line features. These
features are not very descriptive, but they are easy to locate in images. Many
real applications may have nongeometric information associated with these types of
features (e.g., color, texture properties, etc.) which may be used to eliminate from

consideration many outlier correspondences. This type of information would be easy

231

to integrate into our algorithms, and would provide a significant performance boost.

232

Appendix A

Complexity of RANSAC
The asymptotic complexity of the RANSAC algorithm [49] to model-to-image
registration for a 3D model and a perspective camera is derived in this appendix.

We first define a few parameters. Let:

m be the number of 3D model points,
n be the number of image points,
f be the fraction of model points that are present (non-occluded) in the image,
r be the desired probability of success (i.e., of finding a good pose).
Given a set of data with outlier rate w, it is well known [49] that the number,
k, of random samples of size d of that data that must be examined in order to ensure
with probability z that at least one of those samples is outlier-free is

_ log(1 — z)
log(1 - (1 —w)?)

We need to determine how this number of samples depends on m, n, f, and r for
the hypothesize-and-test algorithm for large values of m and n.

Because we assume that the RANSAC algorithm has no a priori information
about which correspondences are correct, correspondences are formed from randomly
chosen model and image points. We assume that three correspondences are used to

233

estimate the object’s pose. Let s = fm be the number of detected (non-occluded)
model points in the image. For a correspondence to be correct, two conditions must
be satisfied: the object point must be non-occluded, and the image point must
correspond to the object point. The probability that the jth (1 = 1,2,3) randomly
chosen correspondence is correct given that all previously chosen correspondences
are also correct is the probability that these two conditions are satisfied, which is

s—1+1 1
m—i+1 n—i+1

Then, the probability that any sample consists of three correct correspondences is

s(s—1)(s —2) 8 _<£>3.

mim—1)(m—2)nn—1)(n—2) mnd \n

The probability that each of T random samples is bad (i.e., each includes at least

one incorrect correspondence) is

Thus, to ensure with probability r that at least one of the randomly chosen samples

consists of three correct correspondences, we must examine 7' samples where

(i (5)3)3.

234

Solving for T, we get

log (1 —
po losl=r)
log (1 — (%))
Noting that (f/n)® is always less that 10~ in our experiments, and using the ap-

proximation log(l — z) =~ —z for x small, the number of samples that need to be

7~ (7) ()
~\7 s\1—)-

Since each sample requires O(mlogn) time for back-projection and verification (as-

examined is

suming an efficient point location algorithm is used to search for image points'), the

complexity of general RANSAC algorithm is

3
(%) log (%) x O(mlogn) = O(mn®logn).

Appendix B

Scaled Orthographic Image Points

Here we give a geometric interpretation of the relation between perspective
and scaled orthographic image points. Consider figure 3.1. A plane II' parallel to
the image plane II is chosen to pass through the origin P of the object coordinate
system. This plane cuts the camera axis in H (OH = T,). The point P projects on
plane IT" in P’, and the image of P’ on the image plane II is called p'.

A plane I1” also parallel to the image plane IT passes through point P and cuts

the line of sight L at P;. The point P, projects onto the plane II' at P”, and the

235

image of P” on the image plane II is called p".

The plane defined by line L and the camera axis is chosen as the plane of
the figure. Therefore, the image points p and p” are also in the plane of the figure.
Generally Py and P are out of the plane of the figure, and therefore p' is also out of
the plane of the figure.

Consider again the equations of perspective (equations (3.1, 3.2)):

wT sRT sT, Py,P
= . (B.1)

wy sRI sT, 1
with w = R+ PoP/T,+ 1. We can see that ¢p’ = s(Ry - PoP +T,,Ry- PoP +T,).
Indeed the terms in parentheses are the x and y camera coordinates of P and
therefore also of P’, and the scaling factor s scales down these coordinates to those
of the image p’ of P'. In other words, the column vector of the right-hand side of
equation (3.4) represents the vector ¢p’ in the image plane.

On the other hand, ep” = (wz, wy) = wep. Indeed the z-coordinate of P in
the camera coordinate system is R3 - PoP + T, i.e. wT,. It is also the z-coordinate
of Pp. Therefore OPp, = wT,0p/f. The z and y camera coordinates of Pj are
also those of P, and the scaling factor s = f/T, scales down these coordinates to
those of the image p” of P”. Thus ¢p” = wep. In other words, the column vector
of the left-hand side of equation (3.4) represents the vector ep” in the image plane.
The image point p” can be interpreted as a correction of the image point p from a

perspective projection to a scaled orthographic projection of a point Py, located on

the line of sight at the same distance as P.

236

[1]

2]

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

BIBLIOGRAPHY

S.T. Acton and A.C. Bovik, "Generalized Deterministic Annealing," IFEFE
Trans. on Neural Networks, vol. 7, no. 3, pp. 686—699, 1996.

A. Ansar and K. Daniilidis, “Linear Pose Estimation from Points or Lines,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp.
578-589, 2003.

S. Arya, D.M. Mount, N.S. Netanyahu, R.Silverman, and A. Wu, “An Optimal
Algorithm for Approximate Nearest Neighbor Searching,” Journal of the ACM,
vol. 45, no. 6, pp. 891-923, 1998.

N. Ayache and O.D. Faugeras, "HYPER: A New Approach for the Recogni-
tion and Positioning of Two-Dimensional Objects," IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 8, no. 1, pp. 44-54, 1986.

H.S. Baird. Model-Based Image Matching Using Location, MIT Press, Cam-
bridge, MA, 1985.

D.H. Ballard, “Generalizing the Hough Transform to Detect Arbitrary
Shapes,” Pattern Recognition, vol. 13, no. 2, pp. 111-122, 1981.

D.H. Ballard, “Parameter Networks: Towards a Theory of Low-Level Vision,”
in Proc. 7th Int. Joint Conf. on Artificial Intelligence, Vancouver, B.C, pp.
1068-1078, August 1981.

I. Beichl and F. Sullivan, "The Metropolis Algorithm," IEEE Computing in
Science & Engineering, vol. 2, no. 1, pp. 65-69, 2000.

J.S. Beis and D.G. Lowe, “Indexing Without Invariants in 3D Object Recog-
nition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 21, no.
10, pp. 1000-1015, 1999.

B. Besserer, S. Estable, and B. Ulmer, “Multiple knowledge sources and eviden-
tial reasoning for shape recognition,” Proc. IEEFE jth Int. Conf. on Computer
Vision, pp. 624-631, May 1993.

J.R. Beveridge and E.M. Riseman, “Hybrid Weak-Perspective and Full-
Perspective Matching, ”, Proc. 1992 IEEE Conf. on Computer Vision and
Pattern Recognition, pp. 432-438.

237

[12] J.R. Beveridge and E.M. Riseman, “Optimal Geometric Model Matching Un-
der Full 3D Perspective,” Computer Vision and Image Understanding, vol. 61,
no. 3, pp. 351-364, May 1995.

[13] P. Brand and R. Mohr, “Accuracy in Image Measure,” Proc. SPIE, Videomet-
rics I1I, pp. 218-228, October 31— November 4, 1994, Boston, U.S.A.

[14] J.S. Bridle. “Training Stochastic Model Recognition as Networks can Lead to
Maximum Mutual Information Estimation of Parameters”, Advances in Neural
Information Processing Systems, vol. 2, pp. 211-217, 1990.

[15] L.G. Brown, "A Survey of Image Registration Techniques," ACM Computing
Surveys, vol. 24, no. 4, pp. 325-376, 1992.

[16] J.B. Burns, R.S. Weiss, and E.M. Riseman, “View Variation of Point-Set and
Line-Segment Features,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 15, no. 1, pp. 51-68, 1993.

[17] T.M. Breuel, “Model Based Recognition Using Pruned Correspondence
Search,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp.
257-262, 1991.

[18] T.M. Breuel, “Fast Recognition using Adaptive Subdivisions of Transformation
Space,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp.
445-451, 1992.

[19] R.A. Brooks, “Symbolic Reasoning Among 3D Models and 2D Images”. Arti-
ficial Intelligence, Vol. 17, pp. 285348, 1981.

[20] J. Burns, A. Weiss, and E. Riseman, “Extracting Straight Lines,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 8, no. 4, pp. 425-456, 1986.

[21] J.F. Canny, “A Computational Approach to Edge Detection,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 34—43, 1986.

[22] O. Carmichael and M. Hebert, “Shape-Based Recognition of Wiry Objects,”
IEEFE Trans. on Pattern Analysis and Machine Intelligence, vol. 26 , no. 12,
pp- 1537-1552, 2004.

[23] T.A. Cass. “Polynomial-Time Object Recognition in the Presence of Clutter,
Occlusion, and Uncertainty,” Proc. 2nd European Conf. on Computer Vision,
pp. 834-842, Springer-Verlag, 1992.

238

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

T.A. Cass. “Robust Geometric Matching for 3D Object Recognition,” Proc.
12th IAPR Int. Conf. on Pattern Recognition, vol. 1, pp. 477 482, 1994.

T.A. Cass. “Robust Affine Structure Matching for 3D Object Recognition,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp.
1265-1274, 1998.

H.H. Chen, "Pose Determination from Line-to-Plane Correspondences: Exis-
tence Condition and Closed-Form Solutions," IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 13, no. 6, pp. 530-541, 1991.

S. Christy and R. Horaud, “Iterative Pose Computation from Line Corre-
spondences,” Computer Vision and Image Understanding, vol. 73, no. 1, pp.
137-144, 1999.

P. David, D.F. DeMenthon, R. Duraiswami, and H. Samet, “Soft POSIT: Si-
multaneous Pose and Correspondence Determination,” Proc. of the European

Conference on Computer Vision, Copenhagen, Denmark, pp. 698-714, May
2002.

P. David, D. DeMenthon, R. Duraiswami, and H. Samet. "Evaluation of the
Soft POSIT Model to Image Registration Algorithm," Center for Automation
Research Technical Report CAR-TR-974, CS-TR-4340, July 2002.

P. David, D. DeMenthon, and R. Duraiswami, "Simultaneous Pose and Corre-
spondence Estimation for Autonomous Robotic Vehicles," Proc. of the Army
Science Conference, Orlando, FL, December 2002.

P. David, D. DeMenthon, R. Duraiswami, and H. Samet, “Simultaneous Pose
and Correspondence Determination using Line Features,” Proc. IEEE Conf.
on Computer Vision and Pattern Recognition, Madison WI, vol. 2, pp. I11-424—
I1-431, June 2003.

P. David, D. DeMenthon, R. Duraiswami, and H. Samet, "SoftPOSIT: Simul-
taneous Pose and Correspondence Determination," Int. Journal of Computer
Vision, vol. 59, no. 3, pp. 259-284, September-October, 2004.

P. David and D. DeMenthon, "Object Recognition by Deterministic Annealing
of Ranked Affine Pose Hypotheses," University of Maryland Technical Report
CS-TR-4731, July 2005.

P. David and D. DeMenthon, "Object Recognition in High Clutter Images Us-
ing Line Features," Proc. Tenth IEEFE Int. Conf. on Computer Vision, Beijing,
China, pp. 1581-1588, October 2005.

239

[35] L.S. Davis, “Hierarchical Generalized Hough Transforms and Line-Segment
Based Generalized Hough Transforms,” Pattern Recognition, vol. 15, no. 4,
pp. 277285, 1982.

[36] F. Dellaert, S.M. Seitz, C.E. Thorpe, and S. Thrun, “EM, MCMC, and Chain
Flipping for Structure from Motion with Unknown Correspondence”, Machine
Learning, vol. 50, no. 1-2, pp. 45-71, 2003.

[37] D. DeMenthon and L.S. Davis. “Recognition and Tracking of 3D Objects by
1D Search,” Proc. DARPA Image Understanding Workshop, Washington, DC,
April 1993.

[38] D. DeMenthon and L.S. Davis, “Model-Based Object Pose in 25 Lines of Code”,
Int. Journal of Computer Vision, vol. 15, pp. 123-141, 1995.

[39] D. DeMenthon and P. David, “SoftPOSIT: An Algorithm for Registration of
3D Models to Noisy Perspective Images Combining Softassign and POSIT”,
University of Maryland Technical Report CAR-TR-970, May 2001.

[40] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Likelihood from In-
complete Data via the EM Algorithm,” Journal of the Royal Statistical Society,
B, vol. 39, no. 1, pp. 1-38, 1977.

[41] J. Denton and J.R. Beveridge, “Two Dimensional Projective Point Matching,”
oth IEEE Southwest Symposium on Image Analysis and Interpretation, pp.
77-81, April 2002.

[42] M. Dhome, M. Richetin, J.-T. Lapreste, and G. Rives, "Determination of the
Attitude of 3D Objects from a Single Perspective View," IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 11, no. 12, pp. 1265-1278,
1989.

[43] M.W.M.G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, M.
Csorba, “A Solution to the Simultaneous Localization and Map Building
(SLAM) Problem,” IEEE Trans. on Robotics and Automation, vol. 17, no.
3, pp. 229-241. 2001.

[44] R.O. Duda and P.E. Hart, “Use of the Hough Transform to Detect Lines and
Curves in Pictures,” Communications of the ACM, vol. 15, no. 1, pp. 11-15,
1972.

[45] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, 2nd Ed., John
Wiley & Sons, New York, NY, 2001.

240

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

R.W. Ely, J.A. Digirolamo, and J.C. Lundgren, “Model Supported Position-
ing,” Integrating Photogrammetric Techniques with Scene Analysis and Ma-

chine Vision II, SPIE Aerospace Sensing and Dual Use Sensors and Controls,
Orlando, April 1995.

C. Fennema, A. Hanson, E. Riseman, J.R. Beveridge, R. Kumar, “Model-
Directed Mobile Robot Navigation,” IEEE Trans. on Systems, Man and Cy-
bernetics, vol. 20, no. 6, pp. 1352-1369, 1990.

P.D. Fiore. “Efficient Linear Solution of Exterior Orientation,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 23, no. 2 , pp. 140-148, Febru-
ary 2001.

M.A. Fischler and R.C. Bolles, “Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated Car-

tography,” Comm. Association for Computing Machinery, vol. 24, no. 6, pp.
381-395, June 1981.

D. Forsyth, J.L.. Mundy, A. Zisserman, C. Coelho, A. Heller, and C. Rothwell,
"Invariant Descriptors for 3D Object Recognition and Pose," IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 13, no. 10, pp. 971-991, 1991.

D. Forsyth and J. Ponce, Computer Vision: A Modern Approach, New Jersey,
Prentice Hall, 2003.

S. Ganapathy, “Decomposition of Transformation Matrices for Robot Vision,”
Proc. 1984 IEEFE Int. Conf. on Robotics and Automation, vol. 1, pp. 130-139,
March 1984.

D. Geiger and A.L. Yuille, “A Common Framework for Image Segmentation”,
Int. Journal of Computer Vision, vol. 6, pp. 227-243, 1991.

S. Geman and D. Geman, "Stochastic Relaxation, Gibbs Distributions, and
the Bayesian Restoration of Images," IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, vol. 6, pp. 721-741, 1984.

S. Gold and A. Rangarajan, “A Graduated Assignment Algorithm for Graph
Matching”, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18,
pp. 377-388, 1996.

S. Gold, A. Rangarajan, C.P. Lu, S. Pappu, and E. Mjolsness, “New Algo-
rithms for 2D and 3D Point Matching: Pose Estimation and Correspondence”,
Pattern Recognition, vol. 31, pp. 1019-1031, 1998.

241

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

C. Goodall, “Procrustes Methods in the Statistical Analysis of Shape,” Journal
of the Royal Statistical Society B, vol. 53, no. 2, pp. 285—-339, 1991.

W.E.L. Grimson and T. Lozano-Perez, "Localizing Overlapping Parts by
Searching the Interpretation Tree," IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, vol. 9, no. 4, pp. 468-482, 1987.

W.E.L. Grimson, Object Recognition by Computer: The Role of Geometric
Constraint, MIT Press, Cambridge, MA, 1990.

W.E.L. Grimson and D.P. Huttenlocher. On the Sensitivity of the Hough
Transform for Object Recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, no. 3, pp. 255-274, 1990.

W.E.L. Grimson and D.P. Huttenlocher, “On the Verification of Hypothe-
sized Matches in Model-Based Recognition”, IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 13, no. 12, pp. 1201-1213, December 1991.

W.E.L. Grimson, D.P. Huttenlocher, and T.D. Alter, “Recognizing 3D Objects
from 2D Images: An Error Analysis,” Proc. 1992 IEEE Conf. on Computer
Viston and Pattern Recognition, pp. 316-321, June 1992.

M. Grotschel and L. Lovasz, “Combinatorial Optimization: A Survey,” Hand-
book of Combinatorics, North-Holland, 1993.

R.M. Haralick and L.G. Shapiro, “The Consistent Labeling Problem: Part 1,”
IEEFE Trans. Pattern Analysis and Machine Intelligence, vol. 1, no. 2, pp.
173-184, 1979.

R.M. Haralick, H. Joo, C. Lee, X. Zhuang, V.G. Vaidya, and M.B. Kim, “Pose
Estimation from Corresponding Point Data,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 19, no. 6, pp. 1426-1446, 1989.

R.M. Haralick, C. Lee, K. Ottenberg, and M. Nolle, “Analysis and Solutions
of the Three Point Perspective Pose Estimation Problem,” Proc. 1991 IEEFE
Conf. on Computer Vision and Pattern Recognition, pp. 592-598.

R.I. Hartley, “Minimizing Algebraic Error in Geometric Estimation Problems,”
Proc. Sizth Int. Conf. on Computer Vision, pp. 469-476, Jan. 1998.

R.I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
Cambridge University Press, 2000.

242

[69] C.G. Harris and M.J. Stephens, "A Combined Corner and Edge Detector,”
Proc. Fourth Alvey Vision Conference, Manchester, pp. 147-151, 1988.

[70] Y.C. Hecker and R.M. Bolle, “On Geometric Hashing and the Generalized
Hough Transform ,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 24, no. 9, pp. 1328-1338, 1994.

[71] A Hill and C. J. Taylor, “Model-Based Image Interpretation Using Genetic
Algorithms,” Image and Vision Computing, no. 5, pp. 295-300, 1992.

[72] R. Horaud, B. Conio, O. Leboulleux, and B. Lacolle, “An Analytic Solution
for the Perspective 4-Point Problem,” Proc. 1989 IEEE Conf. on Computer
Vision and Pattern Recognition, pp. 500-507.

[73] B.K.P. Horn, Robot Vision, MIT Press, Cambridge, Massachusetts 1986.

[74] B.K.P. Horn, “Closed Form Solution of Absolute Orientation Using Unit
Quaternions,” Journal of the Optical Soc. Am. A, vol. 4, no. 4, pp. 629-642,
1987.

[75] B.K.P. Horn, H. M. Hilden, and S. Negahdaripour, “Closed Form Solution
of Absolute Orientation using Orthonormal Matrices,” Journal of the Optical
Soc. Am. A, vol. 5, no. 7, pp. 1127-1135, 1988.

[76] B.K.P. Horn, “Relative Orientation,” Int. Journal of Computer Vision, vol. 4,
no. 1, pp. 59-78, 1990.

[77] P.V.C. Hough, “Method and means for recognizing complex patterns,” U.S.
Patent 3,069,654, December 1962.

[78] T.S. Huang and A.N. Netravali, “Motion and Structure from Feature Corre-
spondences: A Review,” Proc. of the IEEE, vol. 82, no. 2, pp. 252-268, 1994.

[79] D.P. Huttenlocher and S. Ullman, “Recognizing Solid Objects by Alignment
with an Image,” Int. Journal of Computer Vision, vol. 5, no. 2, pp. 195-212,
1990.

[80] D.P. Huttenlocher, G.A. Klanderman, and W.A. Rucklidge, "Comparing Im-
ages Using the Hausdorff Distance," IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, vol. 15, no. 9, pp. 850-863, 1993.

[81] J. Illingworth and J. Kittler, “A Survey of the Hough Transform,” Computer
Vision, Graphics, and Image Processing, vol. 44, pp. 87-116, 1988.

243

[82] L. Ingber, “Simulated Annealing: Practice Versus Theory", Mathl. Comput.
Modelling, vol. 18, no. 11. pp. 29-57, 1993.

[83] D.W. Jacobs. “Space Efficient 3D Model Indexing,” Proc. 1992 IEEE Conf.
on Computer Vision and Pattern Recognition, pp. 439—444.

[84] D.W. Jacobs, “Matching 3-D Models to 2-D Images,” Int. Journal of Computer
Vision, vol. 21, no. 1/2, pp. 123-153, 1997.

|85] F. Jurie, “Solution of the Simultaneous Pose and Correspondence Problem
Using Gaussian Error Model,” Computer Vision and Image Understanding,
vol. 73, no. 3, pp. 357-373, 1999.

[86] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, "Optimization by Simulated
Annealing," Science, vol. 220, no. 4598, pp. 671-680, 1983.

[87] P. D. Kovesi, “MATLAB Functions for Computer Vision and
Image Analysis,” School of Computer Science & Software FEn-
gineering, The University of Western Australia. Available from:
<http://www.csse.uwa.edu.au/~ pk/research /matlabfns/>.

[88] R. Kumar and A. Hanson, “Robust Methods for Estimating Pose and a Sen-
sitivity Analysis,” Computer Vision and Image Understanding, vol. 60, no. 3,
pp. 313-342, 1994.

[89] Y. Lamdan and H.J. Wolfson. “Geometric Hashing: A General and Efficient
Model-Based Recognition Scheme,” Proc. IEEE Int. Conf. on Computer Vi-
ston, pp. 238-249, 1988.

[90] Y. Lamdan and J.T. Schwartz, "Object Recognition by Affine Invariant
Matching," Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
pp. 335-344, June 1988.

[91] G. Lei, “Recognition of Planar Objects in 3-D Space from Single Perspective
Views Using Cross Ratio,” IEEE Trans. Robotics and Automation, vol. 6, no.
4, pp. 432-437, 1990.

[92] S. Linnainmaa, D. Harwood, and L.S. Davis, “Pose Determination of a Three-
Dimensional Object Using Triangle Pairs,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 10, no. 5, pp. 634—647, Sept. 1988.

[93] Y. Liu, T.S. Huang, and O.D. Faugeras, “Determination of Camera Loca-
tion from 2-D to 3-D Line and Point Correspondences,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 12, no. 1, pp. 28-37, 1990.

244

[94] Y. Liu, L. Li, and Y. Wang, "Free Form Shape Matching Using Deterministic

Annealing and Softassign," Proc. Int. Conf. on Pattern Recognition, vol. 2,
pp. 128-131, 2004.

[95] D.G. Lowe, “Three-Dimensional Object Recognition from Single Two-

[96]

[97]

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Dimensional Images,” Artificial Intelligence, vol. 31, no. 3, pp. 355-395, 1987.

D.G. Lowe, “Fitting Parameterized Three-Dimensional Models to Images,”
IEEFE Trans. Pattern Analysis and Machine Intelligence, vol. 13, no. 5, pp.
441-450, 1991.

D.G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int.
Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

C.-P. Lu, G.D. Hager, and E. Mjolsness, “Fast and Globally Convergent Pose
Estimation from Video Images,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 22, no. 6, pp. 610-622, June 2000.

M. Luxen and W. Forstner, “Optimal Camera Orientation from Points and
Straight Lines,” Proc. of the 23rd DAGM Symposium for Pattern Recognition,
vol. 2191, pp. 84-91, Munich, Germany, 2001.

J. Maciel and J.P. Costeira, "A Global Solution to Sparse Correspondence
Problems," IEEFE Trans. on Pattern Analysis and Machine Intelligence, vol.
25, no. 2, pp- 187-199, Feb. 2003.

C. Merkwirth, U. Parlitz;, 1. Wedekind, and W. Lauter-
born, “TSTOOL User Manual,” University of Gottingen,
http://www.physik3.gwdg.de/tstool /index.html.

E.M. Mikhail, J.S. Bethel, and J.C. McGlone, Introduction to Modern Pho-
togrammetry, New York, John Wiley & Sons, 2001.

K. Mikolajczyk, A. Zisserman, and C. Schmid, “Shape Recognition with Edge-
Based Features,” Proc. British Machine Vision Conference, vol. 2, pp. 779—
788, September 2003.

H. Moon, R. Chellappa, and A. Rosenfeld, “3D Object Tracking Using Shape-
Encoded Particle Propagation,” Proc. 2001 IEEE Int. Conf. on Computer
Vision, vol. 2, pp. 307-314, July 2001.

T.K. Moon, “The Expectation-Maximization Algorithm,” IEEE Signal Pro-
cessing Magazine, vol. 13, no. 6, pp. 47-60, 1996.

245

[106] H.P. Moravec, “Visual Mapping by a Robot Rover,” Proc. of the 5th Int. Joint
Conf. on Artificial Intelligence, pp. 584-600, Cambridge, MA, 1977.

[107] G. Mori, S. Belongie, and J. Malik, “Efficient Shape Matching Using Shape
Contexts,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.
27, no. 11, pp. 1832-1837, 2005.

[108] W.J. Morokoff and R. E. Caflisch, “Quasi-Random Sequences and their Dis-
crepancies”’, SIAM J. Sci. Comput., pp. 1251-1279, 1994.

[109] J.L. Mundy and A. Zisserman, eds., Geometric Invariance in Computer Vi-
ston, Cambridge, MA, MIT Press, 1992.

[110] H. Murase and S.K. Nayar, “Visual Learning and Recognition of 3-D Objects
from Appearance,” Int. Journal of Computer Vision, vol. 14, no. 1, pp. 524,
1995.

[111] N. Navab and O.D. Faugeras, “Monocular Pose Determination From Lines:
Critical Sets and Maximum Number of Solutions,” Proc. 1993 IEEE Conf. on
Computer Vision and Pattern Recognition, pp. 254-260, June 1993.

[112] S.K. Nayar, S.A. Nene, and H. Murase, “Real-Time 100 Object Recognition
System,” Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 2321—
2325, 1996.

[113] D. Noll and W. von Seelen "Object Recognition by Deterministic Annealing,"
Image and Vision Computing, vol. 15, no. 11, pp. 855-860, 1997.

[114] C.F. Olson, “Efficient Pose Clustering Using a Randomized Algorithm,” Int.
Journal of Computer Vision, vol. 23, no. 2, pp. 131-147, 1997.

[115] C.F. Olson, “Improving the Generalized Hough Transform Through Imperfect
Grouping,” Image and Vision Computing, vol. 16, pp. 627-634, 1998.

[116] C.H. Papadimitriou, Computational Complezxity, Addison Wesley, 1994.

[117] M. Petrou, M. Mirmehdi, and M. Coors, “Multilevel Probabilistic Relaxation,”
Proc. of the Eighth British Machine Vision Conference, pp. 6069, 1997.

[118] T.Q. Phong, R. Horaud, A. Yassine, and D.T. Pham, “Object Pose from2-D
to 3-D Point and Line Correspondences,” Int. Journal of Computer Vision,
vol. 15, no. 3, pp. 225-243, 1995.

246

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

M. Pilu, "A Direct Method for Stereo Correspondence based on Singular Value
Decomposition," Proc. of IEEE Conf. on Computer Vision and Pattern Recog-
nition, Puerto Rico, pp. 261-266, June 1997.

J.D. Pinter, “Continuous Global Optimization Software: A Brief Review,”
Optima, vol. 52, pp. 1-8, 1996.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical
Recipes in C: The Art of Scientific Computing, ond

bridge University Press, 1992.

ed., Cambridge: Cam-

S. Procter and J. Illingworth. “ForeSight: Fast Object Recognition using Ge-
ometric Hashing with Edge-Triple Features,” Proc. 1997 Int. Conf. on Image
Processing, vol. 1, pp. 889-892.

L. Quan and Z. Lan, “Linear N-Point Camera Pose Determination,” IEEFE
Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 8, pp. 774-780,
1999.

A. Rangarajan and E. Mjolsness, “A Lagrangian Relaxation Network for Graph
Matching,” Proc. IEEFE Int. Conf. on Neural Networks, vol. 7, pp. 4629-4634,
1994.

S. Richter and R. de Carlo, “Continuation Methods: Theory and Applica-
tions,” IEEE Trans. on Circuits and Systems, vol. 30, no. 6, pp. 347-352,
1983.

L. Roberts, “Machine Perception of Three-Dimensional Solids,” in Optical and
Electrooptical Information Processing, J. T. Tipett, Ed., M.I.T. Press, Cam-
bridge, MA, 1965, pp. 159-197.

K. Rose, "Deterministic Annealing for Clustering, Compression, Classification,
Regression, and Related Optimization Problems," Proc. of the IEEE, vol. 86,
no.11, pp. 2210-2239, 1998.

P.J. Rousseeuw and A.M. Leroy, Robust Regression and Qutlier Detection,
John Wiley and Sons, New York, 1987.

S. Sarkar and K.L. Boyer, “Perceptual Organization in Computer Vision: A
Review and a Proposal for a Classificatory Structure,” IEEE Trans. on Sys-
tems, Man and Cybernetics, vol. 23, no. 2, pp. 382-399, 1993.

247

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

C. Schmid and R. Mohr, “Local Grayvalue Invariants for Image Retrieval,”
IEEFE Trans. on Pattern Analysis and Machine Intelligence, vol. 19 , no. 5 ,
pp- 530-535, May 1997.

C.Schmid, R.Mohr, and C.Bauckhage, “Comparing and Evaluating Interest
Points,” Int. Conf. on Computer Vision, Bombay, pp. 230-235, January 1998.

G. Scott and C. Longuet-Higgins, “An Algorithm for Associating the Features
of Two Images,” Proc. Royal Society of London B, pp. 21-26, 1991.

L.S. Shapiro and J. Brady, “Feature-Based Correspondence: An Eigenvector
Approach,” Image and Vision Computing, pp. 283-288, June 1992.

T.M. Silberberg, D.A. Harwood, and L.S. Davis, “An Iterative Hough Proce-
dure For Three-Dimensional Object Recognition,” Pattern Recognition, vol.
17, no. 6, pp. 621-629, 1984.

R. Sinkhorn, “A Relationship between Arbitrary Positive Matrices and Doubly
Stochastic Matrices”, Annals Math. Statist., vol. 35, pp. 876879, 1964.

S.M. Smith and J.M. Brady. “SUSAN - A New Approach to Low Level Image
Processing,” Int. Journal of Computer Vision, vol. 23, no. 1, pp. 45-78, May
1997.

J.P.P. Starinka and Eric Backera, "Finding Point Correspondences Using Sim-
ulated Annealing," Pattern Recognition, vol. 28, no. 2, pp. 231-240, February
1995.

G. Stockman, S. Kopstein, and S. Benett, “Matching Images to Models for Reg-
istration and Object Detection via Clustering,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 4, no. 3, pp. 229-242, 1982.

G. Stockman and J.C. Esteva, 3-D Object Pose from Clustering with Multiple
Views, Pattern Recognition Letters, vol. 3, pp. 279-286, 1985.

G. Stockman, “Object Recognition and Localization via Pose Clustering,”
Computer Vision, Graphics, and Image Processing, vol. 40, no. 3, pp. 361-387,
1987.

T.M. Strat and M.A. Fischler, “Context-Based Vision: Recognizing Objects
Using Information from both 2D and 3D Imagery,” IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, vol. 13, no. 10, pp. 1050-1065, October 1991.

248

[142] P. Suetens, P. Fua, and A.J. Hanson, “Computational Strategies for Object
Recognition,” ACM Computing Surveys, Vol. 24, No. 1, pp. 5-61, March 1992.

[143] R. Talluri, and J.K. Aggarwal, “Mobile Robot Self-Location using Model-
Image Feature Correspondence,” IFEE Trans. on Robotics and Automation,
vol. 12, no. 1, pp. 63-77, Feb. 1996.

[144] D.W. Thompson and J.L. Mundy, “Three-Dimensional Model Matching From
an Unconstrained Viewpoint,” Proc. IEEE Int. Conf. on Robotics and Au-
tomation, pp. 208-220, 1987.

[145] C. Tomasi and T. Kanade, “Detection and Tracking of Point Features,”
Carnegie Mellon University Technical Report CMU-CS-91-132, April 1991.

[146] P.H.S. Torr and D.W. Murray, “Outlier Detection and Motion Segmentation,”
Proc. SPIE, Sensor Fusion VI, vol. 2059, pp. 432—443, 1993.

[147] B. Triggs, “Camera Pose and Calibration from 4 or 5 Known 3D Points,” Proc.
Int. Conf. Computer Vision, pp. 278284, 1999.

[148] R.Y. Tsai, "A Versatile Camera Calibration Technique for High-Accuracy
3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses,"
IEEFE Journal of Robotics and Automation, vol. 3, no. 4, pp. 323-344, 1987.

[149] P.W.M. Tsang, and A.T.S. Au, “A Genetic Algorithm for Projective Invariant
Object Recognition,” Proc. IEEE TENCON, Digital Signal Processing Appli-
cations, vol. 1, pp. 5863, Nov. 1996.

[150] M. Turk and A. Pentland, “Eigenfaces for Recognition,” Cognitive Neuro-
science, vol. 13, no. 1, pp. 71— 96, 1991.

[151] S. Ullman, The Interpretation of Visual Motion, Cambridge, MA, MIT Press,
1979.

[152] S. Ullman, “Aligning Pictorial Descriptions: An Approach to Object Recogni-
tion,” Cognition, vol. 32, no. 3, pp. 193-254, 1989.

[153] P. Wunsch and G. Hirzinger, “Registration of CAD Models to Images by Iter-
ative Inverse Perspective Matching”, Proc. 1996 Int. Conf. on Pattern Recog-
nition, pp. 78-83.

249

[154] J.-C. Yuan, “A General Photogrammetric Method for Determining Object
Position and Orientation,” IEEE Trans. Robotics and Automation, vol. 5, no.
2, pp- 129-142, 19809.

[155] Y. Zheng and D. Doermann, “Robust Point Matching for Non-Rigid Shapes: A
Relaxation Labeling Approach,” Technical report CS-TR-4633 and UMIACS-
TR-2004-75, Institute for Advanced Computer Studies, University of Mary-
land, 2004.

250

