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The analysis and modeling of aging human faces has been extensively studied

in the past decade. Most of this work is based on matching learning techniques

focused on appearance of faces at different ages incorporating facial features such

as face shape/geometry and patch-based texture features. However, we do not

find much work done on the analysis of facial wrinkles in general and specific to

a person. The goal of this dissertation is to analyze and model facial wrinkles for

different applications.

Facial wrinkles are challenging low-level image features to analyze. In general,

skin texture has drastically varying appearance due to its characteristic physical

properties. A skin patch looks very different when viewed or illuminated from dif-

ferent angles. This makes subtle skin features like facial wrinkles difficult to be

detected in images acquired in uncontrolled imaging settings. In this dissertation,

we examine the image properties of wrinkles i.e. intensity gradients and geometric

properties and use them for several applications including low-level image process-

ing for automatic detection/localization of wrinkles, soft biometrics and removal of



wrinkles using digital inpainting.

First, we present results of detection/localization of wrinkles in images using

Marked Point Process (MPP). Wrinkles are modeled as sequences of line segments

in a Bayesian framework which incorporates a prior probability model based on the

likely geometric properties of wrinkles and a data likelihood term based on image

intensity gradients. Wrinkles are localized by sampling the posterior probability

using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm. We

also present an evaluation algorithm to quantitatively evaluate the detection and

false alarm rate of our algorithm and conduct experiments with images taken in

uncontrolled settings.

The MPP model, despite its promising localization results, requires a large

number of iterations in the RJMCMC algorithm to reach global minimum result-

ing in considerable computation time. This motivated us to adopt a deterministic

approach based on image morphology for fast localization of facial wrinkles. We

propose image features based on Gabor filter banks to highlight subtle curvilinear

discontinuities in skin texture caused by wrinkles. Then, image morphology is used

to incorporate geometric constraints to localize curvilinear shapes of wrinkles at im-

age sites of large Gabor filter responses. We conduct experiments on two sets of low

and high resolution images to demonstrate faster and visually better localization

results as compared to those obtained by MPP modeling.

As a next application, we investigate the user-drawn and automatically de-

tected wrinkles as a pattern for their discriminative power as a soft biometrics to

recognize subjects from their wrinkle patterns only. A set of facial wrinkles from



an image is treated as a curve pattern and used for subject recognition. Given the

wrinkle patterns from a query and gallery images, several distance measures are

calculated between the two patterns to quantify the similarity between them. This

is done by finding the possible correspondences between curves from the two pat-

terns using a simple bipartite graph matching algorithm. Then several metrics are

used to calculate the similarity between the two wrinkle patterns. These metrics

are based on Hausdorff distance and curve-to-curve correspondences. We conduct

experiments on data sets of both hand drawn and automatically detected wrinkles.

Finally, we apply digital inpainting to automatically remove wrinkles from

facial images. Digital image inpainting refers to filling in the holes of arbitrary

shapes in images so that they seem to be part of the original image. The inpainting

methods target either the structure or the texture of an image or both. There are

two limitations of existing inpainting methods for the removal of wrinkles. First,

the differences in the attributes of structure and texture requires different inpainting

methods. Facial wrinkles do not fall strictly under the category of structure or

texture and can be considered as some where in between. Second, almost all of the

image inpainting techniques are supervised i.e. the area/gap to be filled is provided

by user interaction and the algorithms attempt to find the suitable image portion

automatically. We present an unsupervised image inpainting method where facial

regions with wrinkles are detected automatically using their characteristic intensity

gradients and removed by painting the regions by the surrounding skin texture.
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Chapter 1: Introduction

In this dissertation we present an analysis of facial wrinkles as key facial aging

features for different applications. Wrinkles are important facial features for assess-

ing the age of a subject. An accurate image-based analysis of wrinkles can play

an important role in relevant aging applications. Much of the work done in aging

applications, e.g. age estimation and simulation, is based on the incorporation of

wrinkles as texture features [6–8]. A few attempts have been made to evaluate

wrinkles as edges [9, 10]. However, image-based detection and analysis of wrinkles

has mostly remained unaddressed. This can probably be attributed to the nature

of the artifacts associated with wrinkles as well as the challenges posed by dras-

tically varying skin appearances due to variations in illumination and acquisition

angles [11]. The goal of this dissertation is to focus on modeling of wrinkles as

lines or curves for several applications. We first present a stochastic approach to

detect and localize wrinkles explictly as curves or line segments from facial images

acquired in uncontrolled settings. Then, we present a deterministic approach for

faster and more accurate localization of facial wrinkles. Next, we assess the discrim-

inative power of a group of wrinkle curves as a soft biometrics for the recognition of

subjects from their wrinkle patterns only and conduct experiments on hand-drawn
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and automatically localized wrinkles. Finally, we present our work on detection of

skin texture included in and surrounded by facial wrinkles which are then removed

using image inpainting techniques.

1.1 Modeling of Wrinkles as Marked Point Process for Localization

In the first part of the dissertation we propose a new generative model for wrinkles

on aging human faces using Marked Point Processes (MPP). Wrinkles are considered

as stochastic spatial arrangements of sequences of line segments, and detected in an

image by proper placement of line segments. The MPP model is proposed under

the Bayesian framework where a prior probability model dictates more probable

geometric properties and spatial interactions of line segments. A data likelihood

term, based on intensity gradients caused by wrinkles and highlighted by LoG filter

responses, indicates more probable locations for the line segments. Wrinkles are

localized by sampling MPP using the Reversible Jump Markov Chain Monte Carlo

(RJMCMC) algorithm. We also present an evaluation setup to measure the perfor-

mance of the proposed model. We present results on a variety of images obtained

from the Internet to illustrate the performance of the proposed model. Under our

evaluation framework, the detection rate is observed to be in the range of 80-90%.

As a first example of incorporation of detected wrinkles we evalute them for their

discriminative power as a soft biometrics. We will present a brief overview of that

work in the next section and additional details in Chapter 4.
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1.2 Fast Detection of Facial Wrinkles based on Gabor Features using

Image Morphology and Geometric Constraints

In this part of the dissertation, we present our work on a fast deterministic algo-

rithm based on Gabor filters and image morphology to improve wrinkle localization

results obtained by MPP modeling. We propose image features based on Gabor

filter banks to highlight subtle curvilinear discontinuities in skin texture caused by

wrinkles. Then, image morphology is used to incorporate geometric constraints to

localize curvilinear shapes of wrinkles at image sites of large Gabor filter responses.

Experiments are conducted on two sets of low and high resolution images and results

are compared with those of MPP modeling. The experiments show that not only

the proposed algorithm is significantly faster than MPP modeling but also provides

visually better results. Using localization results, we also highlight main challenges

faced by any algorithm aiming at localizing wrinkles.

1.3 Assessment of Discriminative Power of Wrinkles as Soft Biomet-

rics

In this part of the dissertation, we try to evaluate the discriminative power of wrin-

kles in human faces and specifically in forehead areas as a soft biometrics. Recently,

several micro features of faces e.g. moles, scars have been used in addition to more

common facial features for face recognition. In this work, both hand-drawn and

automatically detected wrinkles using MPP modeling are tested. We treat a set of
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facial wrinkles from an image as a curve pattern and use it for subject recognition.

We try to find possible correspondences between curves from different patterns us-

ing a simple bipartite graph matching algorithm. Several metrics are introduced

to quantify the similarity between two wrinkle patterns. The metrics are based

on Hausdorff distance and the curve-to-curve correspondences. We conduct exper-

iments on data sets of both hand drawn and automatically detected wrinkles. The

recognition rate for these data sets using only the binary forehead wrinkle curve

patterns exceeds 65% at rank 1 and 90% at rank 4.

1.4 Unsupervised Detection and Removal of Wrinkles from Facial

Images using Image Inpainting

Facial retouching or beautification is a famous application of the alteration of wrin-

kle appearance used widely in media and entertainment industry. Recently, with

the popularity of smart phones and social networking, user-friendly applications

for facial retouching have become popular. Professional software usually require

a minimum level of user expertise to achieve the desirable results. On the other

hand, user-friendly smart phone applications are easier to use but offer limited ef-

ficacy in removing facial skin imperfections. In this part of the dissertation, we

present an algorithm to detect facial wrinkles/imperfections which can allow these

skin features to be processed differently than the surrounding skin without much

user interaction. For detection, Gabor filter responses along with texture orientation

field are used as image features. A bimodal Gaussian mixture model (GMM) repre-
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sents distributions of Gabor features of normal skin vs. skin imperfections. Then a

Markov random field model (MRF) is used to incorporate the spatial relationships

among neighboring pixels for their GMM distributions and texture orientations.

An Expectation-Maximization (EM) algorithm is used to classify skin vs. skin

wrinkles/imperfections. Once detected automatically, wrinkles/imperfections are

removed completely instead of being blended or blurred. We propose an exemplar-

based constrained texture synthesis algorithm to inpaint irregularly shaped gaps left

by the removal of detected wrinkles/imperfections. We present results conducted

on images downloaded from the Internet to show the efficacy of our algorithms.

1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows. In chapter 2, we present the

theory and results on detection/localization of facial wrinkles using MPP models.

Then, in chapter 3, we present results on localization of facial wrinkles using Gabor

features and image morphology. In chapter 4, we present results on face recognition

using the binary images of wrinkle curve patterns only. Finally, in chapter 5, we

present results on unsupervised detection and removal of wrinkles and imperfections

from images. Chapter 6 concludes this dissertation and provides future directions

of research.
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Chapter 2: Modeling of Facial Wrinkles using Marked Point Process

(MPP)

2.1 Motivation and Related Work

Wrinkles and fine lines are important facial features for characterizing facial aging.

An accurate image-based analysis of these features can play an important role in

relevant aging applications. Much of the work done in aging applications, e.g. age

estimation and simulation, is based on the incorporation of wrinkles as texture fea-

tures [6–8]. A few attempts have been made to evaluate wrinkles as edges [9, 10].

However, image-based detection and analysis of wrinkles has mostly remained un-

addressed. This can probably be attributed to the nature of the artifacts associated

with wrinkles as well as the challenges posed by drastically varying skin appear-

ance in images due to variations in illumination and acquisition angles [11]. In

this work, we propose a model to detect and analyze wrinkles explicitly. The basis

for our methodology is based on the following observations. First, wrinkles create

the appearance of texture on skin, but at high resolution, wrinkles do not depict

any repetitive/homogeneous pattern. Second, wrinkles cannot be categorized as

boundaries between multiple textures. Third, a wrinkle is usually a discontinuity in
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Figure 2.1: (a) Wrinkles as broken edges (Canny edge detector). (b) False edges

due to illumination discontinuities (Canny edge detector).

inhomogeneous background skin texture. And finally, wrinkles do not always appear

as continuous edges.

It can be argued that an accurate edge detector can detect wrinkles. However,

as shown in Figure 2.1(a,b) and Figure 2.12(a-c), the intensity gradients are well

picked up but no distinction is made between edges due to wrinkles, illumination dis-

continuities or specific skin texture. A method capable of filtering intensity gradients

based on the probability of there being wrinkles is needed. We propose to incorpo-

rate prior semantic information available from typical appearances of wrinkles on

human faces for that purpose. Wrinkles are modeled as a stochastic spatial process

of ‘line segments’ in a Bayesian framework using Marked Point Process (MPP) [12].

The prior information imposes geometric constraints on the spatial arrangements of

line segments. In terms of methodology, our work is related to the work by Soitca

et al. [13] for detection of road networks in satellite images.
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2.2 Marked Point Process (MPP)

A point process is defined with respect to a Poisson measure. A mark is a set of

random parameters associated with a point describing specific properties. In this

work, the points represent line segments and a sequence of connected line segments

represents a wrinkle. A marked point (line segment) is given by wi = (si, mi) where

si = (xi, yi) ∈ S ⊂ R
2 is the location of center of the segment and mi = (li, θi) ∈M

is the mark consisting of two parameters denoting the length and orientation of

the segment, respectively. The continuous space for parameters is given by M =

[lmin, lmax] × [θmin, θmax]. The line segment sequences {w = wi, i = 1, ..., n} can be

considered as a realization of the MPP on the space S ×M . For further details on

MPP, the interested reader is referred to [12]. The probability density of MPP can

be represented by the Gibbs distribution:

f(w) = cβn(w) exp(−U(w)) where U(w) = UP (w) + UD(w). (2.1)

The term c is the normalizing constant, β is the intensity of the point process, n(w)

and U(w) are the number of line segments and the total energy of the realization w,

respectively. The terms UP (w) and UD(w) correspond to the energies contributed

by the prior model and the data likelihood term, respectively.

2.2.1 Prior Model

The prior model determines more likely geometric properties of the line segments

and spatial interactions between neighboring line segments. The parameters {li, θi}
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are sampled from a uniform distribution where the parameters of the uniform dis-

tribution set limits on the geometric properties of the line segments:

li ∼ U([lmin, lmax]) and θi ∼ U([θmin, θmax]). (2.2)

Under the prior model, two segments can interact with each other in spatial domain.

In other words, the segments can influence each other’s probability of being included

in a realization of the MPP due to their spatial proximity. In sections 2.3 and 2.4,

two different prior models with different interactions between line segements under

two MPP models will be discussed in detail.

2.2.2 Data Likelihood Energy

The data likelihood energy determines where line segments are more probable to

appear given data. An image is filtered with a Laplacian of Gaussian (LoG) filter to

highlight the intensity gradients caused by wrinkles. Figure 2.3 shows the LoG filter

response to a low resolution forehead image. We selected the standard deviation

(σ = 0.5) for LoG filters. Let Di denote the pixels corresponding to the segment wi

in image. Two different likelihood energy models were tested for this work where

the likelihood was proportional to the absolute LoG filter responses and the square

of the LoG filter responses respectively. Following are the two terms for the data

likelihood energy of the segment wi under the two models.

UD(wi) = −α
∑
d∈Di

(d). (2.3)
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UD(wi) = −
[
α
∑
d∈Di

(d− dmin)
2

]
. (2.4)

where dmin is the minimum filter response at a site in the image.

2.3 Model 1: Representation as Free and Singly Connected Line Seg-

ments

The first MPP model consists of free line segments (of 3-7 pixels long) and singly

connected line segments where these segments are connected to the free end points of

existing free segments. The two individual geometric properties modeled are length

and connectivity. The model favors line segments with smaller length in pixels and

line segments with larger lengths are penalized as follows.

q1,l = exp−
(
l − lmin

lmin

)
(2.5)

Regarding connectivity, a segment is allowed to be connected on either side by

exactly one line segment which can result in singly or doubly connected segments.

We want to penalize individual free line segments with no connections at all. Let ci ∈

{0, 1, 2} denote the number of connections for the line segment wi. The segments

with more connections are favored as follows.

q1,c(wi) = q(ci + 1) (2.6)

where:

q =

[
q(1) q(2) q(3)

]T
and q(3) ≥ q(2) ≥ q(1) (2.7)
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Figure 2.2: (Left) Rejection interaction. (Right) No rejection interaction.

Figure 2.3: LoG filter response to low resolution forehead image. (a) Original image.

(b) σ = 1
2
√
2
. (c) σ = 1

2
. (d) σ = 1√

2

.

The interaction between line segments is modeled through the term q2(wi, wj). Two

segments have rejection interaction if they are overlapping or lie within a radius r

of each other. This penalizes the overlapping or congested line segments:

q2(wi, wj) = γ
I(wi∼wj ) (2.8)

The parameter γ is the penalty assigned to segments with rejection interaction and

I(wi∼wj) is the indicator function for interacting segments. Figure 2.2 shows examples

of interactions between two line segments.

2.4 Model 2: Representation as Singly and Doubly Connected Line

Segments

The second model has the following differences from the first model.
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1. The free segments are replaced by seed segments. A detailed description of

seed segments will be given in the next section. For this reason, there is no

need to penalize segments with fewer number of connections and the penalty

term q1,c is eliminated.

2. In addition to singly connected line segments, the inclusion of doubly con-

nected line segments is also allowed.

3. The penalization of longer line segments is eliminated so all lenghts of line

segments in the range [lmin, lmax] are equally probable.

4. A rectangular interaction region instead of a circular region is proposed. This

change allows the inclusion of doubly connected line segments which will be

explained in section 2.5.2 later.

2.4.1 Seed Segments

Free line segments in the first model are replaced by seed segments in the second

model. The seed segments are essentially free segments with their placement de-

pendent on image intensity grandients in contrast with the random placement of

free segments in the first model. This ensures faster convergence of the Markov

chain in RJMCMC algorithm as will be explained later. The image sites with

the highest filter responses are selected while keeping a minimum distance rseed

among them. Seed segments are then placed on these sites in the directions per-

pendicular to the highest intensity gradients. This results in the placement of seed

segments uniformly with inter-seed distance rseed. Let a seed segment be given as
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w(θ) =

[
xseed yseed lseed θ

]T
and the corresponding set of pixels be D(w(θ)).

Then the optimal direction of the seed segment θ∗ is found as follows

θ∗ = argmaxθ∈[θmin,θmax]

∑
d∈D(w(θ))

d. (2.9)

Figure 2.5 includes an example of the seed segments.

We propose a rejection interaction under the prior model which penalizes the

birth (addition) of overlapping or congested segments. Let the rejection interaction

between two segments {wi, wj} be denoted by wi
r∼ wj . A rectangular rejection

region of a certain width exists around each existing segment in the configuration.

Figure 2.4(b) shows the rectangular rejection interaction region around an exist-

ing segment w1. The new segment is penalized if it overlaps with the rejection

region of any existing segment. The rejection interaction is modeled through the

term q(wi, wj) as follows. The parameter γ determines the penalty assigned to the

interacting new segment.

q(wi, wj) = γ × I
wi

r∼wj
where I

wi
r∼wj

=

⎧⎪⎪⎨
⎪⎪⎩

1 if wi
r∼ wj

0 if wi � r∼ wj

(2.10)

The total energy for the prior model is given by:

UP (w) =
∑

(wi,wj)∈w
wi

r∼wj

q(wi, wj). (2.11)
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Figure 2.4: (a)Attraction interaction creates doubly connected segment. (b) Rejec-

tion interaction.

2.5 The Reversible Jump Markov Chain Monte Carlo (RJMCMC)

Algorithm

For an MPP, the number of objects is not known a priori and the Metropolis-

Hastings algorithm cannot be used to sample from distributions. Green [14] pre-

sented the Reversible Jump Markov Chain Monte Carlo (RJMCMC) algorithm to

allow configurations of different dimensions, i.e. different numbers of line segments.

The algorithm allows jumps between states in configurations of different dimensions.

Given that the state w is changed to w′, the algorithm requires the matching of

dimensions for two configurations. This is achieved by using an auxiliary random

variable ω, sampled from an arbitrary distribution g(ω), and a bijective transforma-

tion T such that w′ = T (w, ω). The acceptance probability φ of a jump modifying

configuration w to the configuration w′ is then modified by the Jacobian of the

transformation,
∣∣∣ ∂T
∂(w,ω)

∣∣∣, as follows.
φ(w→ w′) = min{1, R} where R =

f(w′)

f(w)g(ω)

∣∣∣∣ ∂T
∂(w, ω)

∣∣∣∣× prob(reverse jump)

prob(forward jump)
.

(2.12)

The term R is called the acceptance ratio and needs to be calculated for every
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move under RJMCMC. Furthermore, simulated annealing is used to reach the global

minimum of the Gibbs energy U(w) in equation (2.1) by replacing the probability

density f(w) by f(w)
1
T in RJMCMC algorithm. The cooling schedule for T is given

by

T =
T0

log(1 + i)
. (2.13)

where i denotes the current iteration and T0 is selected to be 10. The simulation of

point processes involves birth and death moves, where points are either added to or

deleted from the configuration, changing its dimension. The reverse jumps (death)

ensure the reversibility of the Markov chain (See Geyer [15] for a proof and further

discussion). In the following subsections, the calculations of the acceptance ratios

for different moves under the two models are presented in detail.

2.5.1 Calculations of RJMCMC Acceptance Ratios for Model 1

The model 1 represents wrinkles as free line segments and the line segments which

are connected to these existing free line segments. We introduce the following moves

for this model and calculate their corresponding acceptatance ratios.

1. Birth or Death of Free Segments

2. Birth or Death of Connected Segments

Each move invovles the calculation of g(u), T (w, u),
∣∣∣ ∂T
∂(w,u)

| and R. Let {n, nc0,

nc1, nc2} denote the total number of segments and the number of segments having

zero, one and two connections respectively. For the birth of a free segment, let ω
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denote the new free segment added to the configuration and let u be the random

vector sampled from the segment parameter space (S,M) according to uniform

distribution. Then u is given by:

u =

[
xu yu lu θu

]T
(2.14)

and the density function for u denoted by g(u) is given as:

g(u) =
1

ν(S)
× 1

lmax − lmin

× 1

θmax − θmin

(2.15)

where ν(S) is the total measure on image space S. The bijective transformation for

this move is selected to be:

w′ = T (w, u) = {w′
1 = w1, ..., w

′
n = wn, ω = u} (2.16)

Then the Jacobian of the transformation is one. Let PF,birth and PF,death be the

probabilities of choosing birth and death of free segments respectively, PF,death/nc0

is the probability of reverse jump of death of that particular free segment. Then,

according to (2.12), the acceptance ratio for the birth of a free segment can be

written as:

R =
PF,death

nc0
× ν(S)(lmax − lmin)(θmax − θmin)

PF,birth
× f(w′)

f(w)
(2.17)

where the ratio f(w′)
f(w)

= f(w∪ω)
f(w)

is given as follows:

f(w′)

f(w)
= β exp

⎛
⎜⎝q1(ω)

∑
wi∈w
wi∼ω

q2(wi, ω) + α
∑

d∈D(ω)

d

⎞
⎟⎠ (2.18)

For the birth of a connected segment, a new segment is sampled and connected to a

randomly selected segment, with at least one free end, from the configuration. This
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move can also result in doubly connected segments. For the death move, a singly

connected segment is randomly selected which eventually can result in the deletion

of a doubly connected segment. Let (xe, ye) be the coordinates of the free end of

an existing segment to connect the new segment to. Let u = (θu, lu) be the random

vector sampled from mark space M with density function:

g(u) =
1

lmax − lmin

× 1

θmax − θmin

(2.19)

Then the new segment ω is given by:

ω(u) =

[
xω(xe, θu, lu) yω(ye, θu, lu) θu lu

]T
(2.20)

xω = xe ±
lu
2
cos(θu) and yω = xe ±

lu
2
sin(θu) (2.21)

Then it can be shown that the Jacobian of the bijective tranformation is given as

∣∣∣∣ ∂T
∂(w, u)

∣∣∣∣ =
∣∣∣∣ w′

∂(w, u)

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

[
w ω(u)

]T
∂(w, u)

∣∣∣∣∣∣∣∣∣
= 1 (2.22)

Let PC,birth and PC,death be the probabilities of choosing the birth and death of

connected segments respectively. Then PC,birth/(2nc0+nc1) is the probability of the

selection of a particular free end point (xe, ye) for the birth of a singly connected

segment, and PC,death/nc1 is the probability of the reverse jump of death (deletion) of

a connected segment. Then the acceptance ratio for the birth of a singly connected

segment can be written as:

R =
2nc0 + nc1

PC,birth
× PC,death

nc1
× (lmax − lmin)(θmax − θmin)×

f(w′)

f(w)
. (2.23)

where the ratio f(w′)
f(w)

is given in equation 2.18.
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2.5.2 Calculations of RJMCMC Acceptance Ratios for Model 2

The model 2 represents wrinkles as single or doubly connected line segments. We

introduce the following moves for this model and calculate their corresponding ac-

ceptatance ratios.

1. Birth or Death of Singly Connected Segments

2. Birth or Death of Doubly Connected Segments

The birth and death of a singly connected segment is the same as in Model

1 with the corresponding acceptance ratio given in equation 2.23. However, in this

case the likelihood under Model 2 is different and the ratio f(w′)
f(w)

is different from

Model 1 as follows.

f(w′)

f(w)
=

f(w ∪ ω)

f(w)
= β exp

⎛
⎜⎜⎝α

∑
d∈ω

(d− dmin)
2 −

∑
wi∈w
wi

r∼ω

q(wi, ω)

⎞
⎟⎟⎠ . (2.24)

The birth or death of a doubly connected segment is actually a result of spatial

interactions among segments. The attraction interaction is important when a new

line segment is added to the configuration (w) determining if the new segment is

going to be connected at one or both ends. Figure 2.4(a) shows an example of birth

of a doubly connected segment as a result of attraction interaction. The left end

of the existing segment w2 is selected to be connected to the new segment. An

attraction interaction region is defined to be a conic region connected to that end

point. An existing segment in that region (w1 in this case) results in the new segment
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Figure 2.5: Step-by-step process for the detection of wrinkles in an image.

Figure 2.6: (Top) Hand-drawn wrinkles. (Bottom) localization results.

being connected at both sides between the two existing segments. A segment is not

allowed to be connected to more than one segment at either end point.

In the case of the birth of a doubly connected segment, the parameter vector

u for the new line segment ω is simply a function of the neighboring two segments

and is not sampled randomly. In this case g(u) = 1 and u = ω which reduces the

Jacobian of the bijective transformation to one. Then the acceptance ratio for the

birth of a doubly connected segment is given as:

R =
2nc0 + nc1

PC,birth
× PC,death

nc2
× f(w′)

f(w)
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2.6 Experimental Results

For assessing the performance of the detection algorithm in uncontrolled image

settings, images were selected from the Internet and the FG-NET database [16].

Aging results in wrinkles at several regions of a face i.e. forehead, eye, mouth and

nose corners as well as at sagging contours of the skin. For this work, we restricted

to the detection of wrinkles on forehead for two reasons (a) generating the ground

truth by hand-drawing of wrinkles on the foreheads was easier and (b) wrinkles

were more obvious on the forehead in most of the images. For each image, the

forehead was hand cropped to a rectangle and input to the detection algorithm. It

should be mentioned here that the detection of forehead area was not considered

under the scope of this work and user-provided cropping was considered sufficient.

In total we used 36 images with hand-drawn wrinkles as the baseline. Where most

of the wrinkles were obvious, some were less apparent and posed difficulty even for

humans. The image size varied from 86 x 37 as minimum to 290 x 110 as maximum.

Resizing of images was not considered as we wanted to assess the performance of

the detection algorithm on images of different size and resolution.

2.6.1 Localization Results for Model 1

Four different types of moves are allowed under model 1 where each move was

selected with equal probabiliy i.e. 1/4. Under RJMCMC, one iteration performed

one move only. Table 2.1 shows selected values for different parameters of the MPP

model. Figure 2.7 shows localization results for different subjects and Figure 2.6

20



α β γ log qc0 log qc1 log qc2

4000 0.005 5000 −1010 106 1010

Table 2.1: Parameter Values

Figure 2.7: Localization results.

shows the comparison of groud truth vs. localization results for some images. It can

be observed that the localized wrinkles closely resemble the ground truth. However,

the line sequences are broken at some places and do not cover the original wrinkle

completely. At some locations, some overlapping of segments can also be observed.

2.6.2 Localization Results for Model 2

2.6.2.1 Evaluation Setup

Since localization of wrinkles is a new application in the area of image-based analysis

of aging skin, an evaluation setup is required to assess the performance of detection

algorithms. The terminology of ‘detected’, ‘original’ and ‘well-localized’ wrinkles is
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Figure 2.8: Evaluation setup. (top) Calculation for rdetect. (bottom) Calculation for

rfalse.

used. The detected wrinkles are the output of the algorithm. The original wrinkles

are those hand-drawn by a user and the well-localized wrinkles are wrinkles detected

at correct locations. A margin of m = 3 pixels is allowed in localization i.e. a

detected wrinkle is considered well-localized if it is within the distance of m pixels

from the hand drawn wrinkle. This way the margin accounts for small inaccuracies in

the hand-drawing of wrinkles or small displacements in maximum gradient locations.

Morphological dilation with the margin m is used to define the overlap area. A

detected wrinkle is considered well-localized if it lies in the overlap area.

Let nW and nD be the total number of hand drawn and detected wrinkles

respectively. We propose the following ratios for evaluation. Figure 2.8(a) shows

the detailed procedure for determining the ratios.

1. Detection Ratio (rdetect): The ratio of the total length of original wrinkles

within the overlap region of detected wrinkles to the total length of the origi-

nal wrinkles.
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rdetect =

∑
nW

loverlap∑
nW

(loverlap + lmiss)
(2.25)

2. False Alarm Ratio (rfalse): The ratio of the total length of falsely detected

wrinkles to the background area with no wrinkles (ν(S) represents the mea-

sure on image space).

rfalse =

∑
nD

lfalse

ν(S)−
∑

nW
loriginal

(2.26)

3. Miss Ratio (rmiss): The ratio of the total length of missed original wrinkles to

the total length of original wrinkles.

rmiss =

∑
nW

lmiss∑
nW

(loverlap + lmiss)
where rmiss = 1− rdetect (2.27)

The cropped forehead images were input to the RJMCMC algorithm and 2×

104 iterations were used for every image. The probabilities PC,birth and PC,death

were set equal to 0.5 each. Seed parameters {rseed, lseed} were fixed at 9 and 4

pixels respectively. The two parameters γ and α were selected heuristically. A large

value of γ, 150 in this case, suffices to penalize overlapping or congested segments.

The parameter α favors the birth of new segments. Figure 2.11(b) shows a plot

of results with α varying over a scale of 106 for an image (Note that the x-axis

has logarithmic scale). The number of segments increases with α increasing both

detection and false alarm ratios. The optimal values for α were in the range of

0.001-0.03 for smaller images and in the range of 0.00008-0.0005 for larger images.

An unsupervised estimation technique for the parameters, however, is required. The
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Figure 2.9: Detection of wrinkles as line segments and fitted curves with hand-drawn

wrinkles for few subjects.

dynamics of the Markov Chain were similar for every image where the total number

of segments increased sharply in the beginning and then became stable with equal

proportion of birth and death moves. Figure 2.5 shows the different steps in the

algorithm. The increased number of line segments from the initial state of seed

segments can be seen after 5000 iterations.

Figure 2.10 shows the results for some of the 36 test images both as line seg-

ments and curves. Figure 2.11(a) shows the ROC points for the images. Each plot

point is represented by a square whose size is proportional to the size of the image.

Most of the images have detection rates greater than 80% and false alarm rates

around 2.5% on an average. It can be obsereved from the plot that the results

are independent of the image size. The images on the right end of the plot have
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Figure 2.10: Detection of wrinkles as line segments and fitted curves with hand-

drawn wrinkles for few subjects.

relatively lower detection and higher false alarm rates. These are the cases where

the algorithm performed relatively poorly because of three reasons (a) some of the

wrinkles were not obvious and had lower intensity gradients and, as a result, data

likelihood energy values (b) wrinkles were mixed with other skin color irregulari-

ties and (c) the subject had relatively discontinuous wrinkle curves. Overall, the

detection rates were observed to be better in subjects with deeper and continuous

wrinkle curves.
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Figure 2.11: Detection and false alarm ratios for 36 images of different sizes. (Left)

Wrinkles as line segments. (Right) Wrinkles as curves.

Figure 2.12: Canny edge detector. (a) threshold=0.3 (b) threshold=0.2. (c) thresh-

old = 0.1. (d) Curves fitted to seed segments only. (e) Curves fitted to line segments.
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Chapter 3: Fast Detection of Facial Wrinkles based on Gabor Fea-

tures using Image Morphology and Geometric Constraints

3.1 Motivation

Previously, we proposed a model based on Marked Point Processes to localize

wrinkles as line segments/curves [1,2] and observed some limitations. First, the value

of the parameter α varied with image resolution. Second, the simulated annealing

procedure used for optimization warranted a slower cooling schedule and a large

number of iterations of RJMCMC which required considerable computation time.

These factors led us to adopt a deterministic approach based on Gabor features and

image morphology as compared to the stochastic approach of MPP modeling.

3.2 Related Work

Curvilinear strurctures of interest appear in several types of medical and non-

medical images. These structures can either constitute the main objects of an image

or can appear as some sort of anomaly/discontinuity in the main objects of an image.

Few examples of the former are finger prints in finger print images, retinal blood

vessels in fundus camera images and brain sulcal lines in MRI scan images. Few
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examples of the latter are structures like buildings, roads and rivers in aerial images

and cracks in manufactured steel slabs and railway tracks. An extensive survey of

all the related work regarding the detection of curvilinear structures is out of scope

of this work. Here, we review only the methods based on filtering and mathematical

morphology.

Normally, the targeted curvilinear structures have image features very similar

to those of background and pose challenges to the extraction of accurate shapes of

the structures. A thorough survey of detection of cracks in roads can be found in [17]

and detection of blood vessels in retinal images can be found in [18]. In cases where

enough data is available, one set of approaches is to apply machine learning tech-

nquices to learn an appropriate data model. The other set of approaches is to use

filtering (e.g. Gabor filters, Wavelets, Contourlets, Gaussian filters) and/or morpho-

logical processing of data. Several oriented feature detectors have been developed

including steerable Gaussian second-derivative filters, line operators and Gabor fil-

ters. A comparative study can be found in [19] where real Gabor filters were assessed

to be the best detector of oriented features. Figure 3.1 depicts a forehead image

and the corresponding maximum amplitude filtered response from a Gabor filter

banks as a grayscale image. It can be observed that the wrinkle discontinuities are

well highlighted by Gabor filter bank. However, as seen in Figures 3.1(c) and (d),

a simple thresholding of the Gabor filter response is unable to yield well localized

wrinkle curves. Hence, we apply morphological techniques to retrive wrinkle curves

from thresholded Gabor response images.

In cases where prior knowlede about the geometric properties of the objects of
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interest is available, mathematical morphology has been a powerful tool to enhance

and/or identify such objects. Consequently, morphology has been used as segmen-

tation and post-processing technique in detection of curvilinear structures in wide

range of applications. An early piece of work on detection of (blood-vessel like)

curvilinear structures in medical images using morphology was presented by Zana

and Klein in [20]. The so-called vessel-like patterns were defined to have certain

geometric properties of shape, width, connectivity and seperation. These properties

were manipulated by the morphological operations of top-hat, opening and closing

to highlight surch patterns to be analyzed further for their curvature. Landstrom

and Thurley proposed an algorithm based on several morphological operations to

detect cracks in steel slabs from 3D range data [21] while focusing on minimizing

false positives. Lam and Yan used divergence of vector fields to detect vessel like

objects in retinal images and then applied skeletization to remove artifacts [22].

Chambon and Moliard used locally variant thresholding, closing, median/mean fil-

tering and histogram equalization to detect cracks in road pavements [17]. Lelore

and Bouchara used dilation and analysis of pixel-level neighborhoods to reduce false

positives in document image restoration [23].

3.3 Approach

The MPP modeling provided a way to incorporate prior knowledge about wrin-

kles in spatial interaction of line segments. For example, overlapping and congestion

of line segments were penalized. Since such spatial interactive rules were a key to
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Figure 3.1: A simple thresholding of Gabor image features. (a) Original forehead

image. (b) Gabor image features scaled to grayscale. (c) Resulting binary image

with threshold value of 0.5. (d) Resulting binary image with threshold value of 0.3.

distinguishing edges due to wrinkles from those due to other factors, a deterministic

approach incorporating similar rules is expected to perform better for the detection

of wrinkles. In this work, we apply successive thresholding and morphological op-

erations to incorporate geometric characteristics of facial wrinkles. The resulting

geometric constraints can then discriminate between image intensity gradients due

to wrinkles and other factors. Our approach is based on the following assumptions

regarding geometrical and image characteristics of wrinkles.

A1: Wrinkles create intensity gradients which are highlighted by Gabor filter banks.

A2: Wrinkles appear as curvilinear features instead of blob like features.

A3: Wrinkles are continuous and not a series of disconnected curvilinear segments.

A4: Wrinkles are less probable to intersect each other or to be congested in small

areas.
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Figure 3.2: Values of IN(x1, x2) (equation 3.4) in grayscale. (a) p = 1. (b) p = 1.25.

Highlighting of image sites with larger Gabor responses can be observed in (b).

Figure 3.3: Boundary conditions to calculate Gabor features. (a) User-cropped

forehead image embedded in a rectangular region with a margin. (b) Grayscale

image with mirror boundaries. (c) Gabor image features scaled to grayscale.

3.3.1 Gabor Filters and Image Features

Several oriented feature detectors have been developed including steerable

Gaussian second-derivative filters, line operators and Gabor filters. A compara-

tive study can be found in [19] where the real Gabor filters were shown to be the

best detector of oriented features. We use Gabor filter responses as image features

to highlight the curvilinear features of wrinkles in this work. The real Gabor filter

kernel oriented at the angle α is given by
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g(x1, x2) =
1

2πσx1σx2

exp

[
−1
2

(
x

′2
1

σ2
x1

+
γ2x

′2
2

σ2
x2

)]
cos(2πfx′

1) (3.1)

where the parameters σx1 , σx2 denote the scale of the 2D Gaussian envelope, f

denotes the freqency of the sinusoid and γ denotes the spatial aspect ratio which

defines the ellipticity or the elongation of support of Gabor function. The values for

x1, x2 are given as follows:

⎡
⎢⎢⎣x

′
1

x′
2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣ cosα sinα

− sinα cosα

⎤
⎥⎥⎦
⎡
⎢⎢⎣x1

x2

⎤
⎥⎥⎦ (3.2)

Let {gk(x1, x2), k = 0, · · · , K − 1} denote the set of real Gabor filters oriented at

angles αk = −π
2
+ πk

K
where K is the total number of equally spaced filters over the

angular range
[−π

2
, π
2

]
. Let {I(x1, x2); x1 = 1 . . .N1, x2 = 1 . . .N2} denote the input

image in gray scale and IFk (x1, x2) denote the image filtered by the filter gk(x1, x2).

The corresponding maximum amplitude among the filtered responses is given as:

I ′(x1, x2) = max
k

IPk (x1, x2) (3.3)

The maximum amplitude response is normalized to the range [0, 1] according to the

following equations:

I ′′(x1, x2) =

(
I ′(x1, x2)− min

(x1,x2)
I ′(x1, x2)

)p

(3.4)

IN(x1, x2) =
I ′′(x1, x2)

max(x1,x2) I
′′(x1, x2)

(3.5)

where the value of the parameter p is set to be greater than 1 to highlight the

image sites with larger Gabor filter responses. Figure 3.2 includes two images of

32



Figure 3.4: Block diagram of wrinkle localization algorithm.

IN(x1, x2) with p = 1 and p = 1.25 as an example. The set of the normalized

maximum filter response , {IN(x1, x2)}, constitutes image features for automatic

detection of wrinkles. Figure 3.3(a) shows a user-cropped forehead image embedded

in a rectangular image. Figure 3.3(b) depicts the mirror boundary conditions used

to fill the black border around the forehead image in Figure 3.3(a) to eliminate the

boundary artifacts in Gabor response images. Figure 3.3(c) shows the corresponding

maximum Gabor responses in the original forehead image. It can be observed that

high filter responses are caused by both illumination variation, appearing mostly

vertically in the middle of the forehead, and wrinkles.

3.3.2 The Algorithm

Figure 3.4 shows a block diagram for our two-step algorithm. The first step

is based on assumptions ‘A1’ and ‘A2’ and aims at detecting key image sites with

high gradients more probable to be caused by wrinkle than by other factors. This

is done by gradual thresholding and discarding of the thresholded blob-like regions.

The second step is based on assumptions ‘A3’ and ‘A4’. The purpose of this step is
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to trace wrinkle curves out from key image sites detected in the first step. Wrinkle

curves are extended from key image sites while penalizing congestion or intersection

of wrinkle curves. Following, we present details of the incorporation of geometric

constraints using our two-step algorithm.

Figure 3.5: Detection of key wrinkle sites in step ‘A’ of the algorithm.

3.3.3 Step ‘A’: Detection of Key Wrinkle Sites

This step is based on first two assumptions that wrinkles are curvilinear struc-

tures and cause high intensity gradients in the image. In this step, key image sites

with high Gabor filter response, non-overlapping and in curvilinear shapes (instead

of blob-like shapes) are detected. Such sites have higher probability of being part

of a wrinkle. The process is similar to the placement of seed segments under MPP

modeling where a favorable initial state in the RJMCMC algorithm was provided

by placing ‘seed’ segments on image sites with the highest filter responses. For the

detection of key wrinkle sites, successive thresholding of the image {IN(x1, x2)} and
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morphological processing of the resulting binary images are applied.

Let T = {tm|tm ∈ (tmin, 1) ; tm = 1 − m∆t, m = 1, 2, · · · ,M} denote a set

of thresholds. The image {IN(x1, x2)} is quantized in threshold increments of ∆t

resulting in M binary images where the number M is determined by the selection

of tmin ∈ (0, 1). Let each binary image be denoted as im where tm−1 ≤ im <

tm. Each binary image is processed to discard the connected components having

blob-like and non-curvilinear shapes using the ‘eccentricity’ property of connected

components. Let i′m denote the resulting binary images having only curvilinear

portions. The binary images are then combined while keeping a certain distance

among selected connected components. The reason for maintaining a distance is

to prevent consecutively thresholded connected components from aggregating into

non-linear shapes which would normally result from a simple thresholding of Gabor

response image. Let us assume that we want to select connected components rd

pixels apart. Then the images are dilated by a disk, denoted by Drd, of radius rd

and combined using ‘OR’ operation recursively to obtain final key wrinkle sits as

follows:

Ib1 = i′1

Ib2 = (Ib1 ⊕b Drd)
c ∨ i′2

...

IbM = (IbM−1 ⊕b Drd)
c ∨ i′M (3.6)

where symbols ‘⊕b’ and ‘∨’ denote the operations of binary dilation and ‘OR’ respec-
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tively. Figure 3.5 illustrates this process where the top row shows simple thresholded

binary images with several connected components at three different iterations. The

middle row shows images after discarding connected components of high eccentricity

values. The bottom row shows the combined binary image upto that iteration. The

final image, IbM , consists of key wrinkle sites and is processed in the second step of

the algorithm.

3.3.4 Step ‘B’: Tracing Wrinkle Curves from Key Wrinkle Sites

After the key sites have been detected, the next step is to trace the wrinkle

curves from those sites. This step is similar to the birth and death moves of line

segments under MPP model where new line segments are connected to the existing

ones. The processing in this step is based on the last three assumptions regarding

the geometric characteristics of wrinkles as explained follows.

3.3.4.1 Continuity of Wrinkles

The third geometrical property of wrinkles, continuity, is incorporated in two

steps. First, a search area of a certain shape, based on the orientation of connect

component, is searched around each end point of the connected component. If there

exists an end point of a neighboring connected component, the two components

are joined. Figure 3.6(a) demonstrates this step. The component ‘A’ has an end

point of a nearby component ‘B’ in the search area of its left end point. Hence, the

two components are joined by placing the component ‘D’ between their end points.
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Regarding search area of the right end point of the component ‘A’, since there is no

end point of any other component, this end point will be extended in the next step.

The shape of the search area depends on the orientation of the connected component

to ensure smoothly varying wrinkle curves. The search area is a circular region in

case of a single point component (Figure 3.6(b)), vertically oriented conic regions in

case of a component as vertical line (Figure 3.6(c)) and horizontally oriented conic

regions otherwise (Figure 3.6(a)).

If no neighboring components are present, for continutity, the end points of

a connected component are extended to nearby Gabor response maxima. As an

example, in Figure 3.6(b), the component ‘A’ is extended from the right end point

P2. First a conic region of the radius rE and angle θE is searched for the maxi-

mum IN(x1, x2) . If this maximum is greater than tmin, the corresponding point

is considered for extension. Let this point be denoted as P3 in Figure 3.6(d). The

component ‘A’ is then extended by adding line segment P2P3. This process can

be considered similar to the active contours (or ‘snake’) algorithms where an ini-

tial curvilinear segment is drifted to the local maxima along the directions of local

gradients. However, in case of wrinkles, a simpler extension suffices because of two

reasons, (a) the newer extended segments are only a few pixels long and a greedy

algorithm is efficient and (b) the initial location of the line segment is close to the

maximum as it was extended from an existing connected component.
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Figure 3.6: Graphical illustration of the geometric constraints of the connected

components. (a) ’A’ is connected to ’B’ through ’D’ as ’B’ lies in the conic search area

of ’A’. (c) ’A’ is extended beyond site P2 by including P2P3. Site P3 has the maximum

Gabor response in the conic search area. (e) Penalizing congestion/intersetion of

connected components.

3.3.4.2 Penalizing Intersection/Congestion of Wrinkles

In the process of tracing wrinkle curves from key wrinkle sites, assumption

‘A4’ is incorporated to penalize intersection and congestion of wrinkle curves. This

is achieved using binary dilation. A non-overlapping area for every connected com-

ponent is obtained by dilating it with a rectangular region. During extension of

wrinkle curves, any portions overlapping with these areas are discarded. As an

example, Figure 3.6(c) shows two wrinkle curves with their non-overlapping neigh-

borhood. When wrinkle curve ‘C’ is extended, its portion overlapping with the

neighborhood of wrinkle curve ‘A’ is discarded.
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Figure 3.7: Step ‘B’: Extension of wrinkle curves from key wrinkle sites.

Figure 3.8: Three subjects of the same age have visible differences in the appearance

of their wrinkles.

3.4 Results and Discussion

3.4.1 Experiments and Parameter Settings

We conducted experiments on two sets of images. The first set consisted of high

resolution images of public figures downloaded from the Internet. The second set

consisted of the low resolution images used in our previous work [1] for comparison.

Facial wrinkles create a wide variety of image gradients and can vary from being

very light to being very deep across individuals even of the same age. For example,

Figure 3.8 contains images of three public figures taken at the age of 52 illustrating

the differences in wrinkle length and depth. At the same time, depth of wrinkles can

vary significantly within one individual’s face as well. Figure 3.9 depicts an image
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Figure 3.9: Image of a subject having very deep wrinkles around eyes and mouth

and light wrinkles on forehead.

of a subject where wrinkles around eyes and corners of mouth are much deeper than

those on forehead. For this reason we used a larger Gabor filter bank consisting

of sets of frequencies and scales which can highlight wrinkles of varying length and

depth across individuals.

We used images of public figures, mostly celebrities, downloaded from the

Internet as our data set for the reason that medium to high resolution images of

celebrities were more easily available. We also made the interesting observation that

it was relatively more difficult to find images of female celebrities with facial wrin-

kles because of the masking of wrinkles due to skin treatments, photo retouching

or occluding hair styles. We did not conduct experiments on images from currently

available aging databases e.g. FG-Net, FERET, MORPH, due to the low resolution

and/or quality of images. Table 3.1 shows parameter values for the two sets of im-
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ages.

Parameter High Resolution Images Low Resolution Images

Gabor filter frequency, f {0.3, 0.4} 0.05

Gabor filter scale σx1 = σx2 1 {10, 15}

Gabor filter aspect ratio γ 15 10

tmin 0.1 0.1

rd (pixels) 10 7

rN (pixels) 6 4

rE (pixels) rE − 2 rE − 2

Table 3.1: Parameter values for experiments on two sets of images.

3.4.2 Evaluation Setup and Quantitative vs. Qualitative Results

We presented an evaluation set up to assess the detection results quantitatively

in the last chapter. The evaluation framework calculated quantitative results in the

form of detection, false alarm and miss ratios. However, the following observations

were made regarding the limitations of this evaluation setup.

(A): High detection rate did not ensure results of visually high quality where the

term ‘quality’ can be described as the continuity of a wrinkle curve as well as

its smooth curvature looking more similar to real wrinkles.
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Figure 3.10: A plot of false alarm vs. detection rates in percentage for the 105

images of medium resolution.

(B): The hand-drawn wrinkles can be subjective depending on the user perception

of wrinkles. We observed that one user tended to draw more wrinkles than

others. This introduced subjectivity in the quantitative results calculated by

our evaluation setup.

Therefore, although we follow the same evaluation set up for comparison with the

previous results of MPP modeling, we make additional remarks about the quality

of results where appropriate. In general, we observed that a false alarm rate lower

than 0.2% contributed to visually better detection results.

3.4.3 Detection Results in Medium Resolution Images

In this experiment we downloaded images of high resolution, more than ‘1024 x

768’ pixels, of public figures. There were 123 images of 60 subjects of both genders

and different ethnicities and ages. There were one or more images of a subject
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Figure 3.11: A few typical examples of images with a detection rate of > 70%.

(Left) Original (Middle) Hand-drawn (Right) Automatically Localized

depending on quality of the images available on the Internet for that particular

subject. In each image, the face was hand cropped and resized so that the maximum

dimension was equal to 700 pixels. These images presented a variety of appearances

of wrinkles. After running experiments, we seperated 18 images with low detection

results to highlight the typical challenges faced by a detection algorithm. We plotted

the detection and false alarm ratios for the rest of 105 images shown in Figure 3.10.

The detection rate varied from 25% to 85% with the typical rate in the range of 60−

75% whereas the false alarm rate varied from 0.01% to 0.33% with the typical rate

in the range of 0.05 − 0.15%. Based on visual observation of images, qualitatively,

we sorted images in three different categories of having good, intermediate or fair
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Figure 3.12: A few typical examples of images with a detection rate in the range of

50− 65%. (Left) Original (Middle) Hand-drawn (Right) Automatically Localized

visual results where low false alarm rate is as important as high detection rate in

determining the visual quality of results. The qualitative categories of images can

loosely be represented as regions in the plot in Figure 3.10.

Figure 3.11 includes a few examples of images with high detection rates. Fig-

ure 3.12 shows some examples of medium detection rate and Figure 3.13 examples

of low detection rates.
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Figure 3.13: A few typical examples of images with a detection rate of < 50%.

(Left) Original (Middle) Hand-drawn (Right) Automatically Localized

3.4.3.1 Challenges

We observed that the following factors contributed to the degradation of lo-

calization results.

Very light wrinkles : The most common reason for low detection rates was wrinkles’

being very light. Figure 3.14 illustrates some typical examples. It can be seen

in the left column of the figure that in such cases, the intensity gradients caused

by the granular skin texture are comparable to those caused by wrinkles.

Consequently, the algorithm picks non-wrinkle sites as wrinkles as well.
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Figure 3.14: A few typical examples of images with very light wrinkles. (Left)

Gabor features in grayscale. (Middle) Hand-drawn wrinkles. (Right) Automatically

localized wrinkles.

Skin discolorations : This problem was more pronounced in subjects of lighter skin

color which is more prone to having moles and brown/dark spots. The inten-

sity gradients due to the 2D skin features of discoloration are mixed with those

due to the 3D skin features of wrinkles and cause erroneous maxima locations

in Gabor features. Some examples are shown in Figure 3.15. Although our al-

gorithm discards most of such blob-like maxima using eccentricity property of

connected components, a few linear maxima are wrongly classified as wrinkles.
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Figure 3.15: A few typical examples of images with skin discolorations masking wrin-

kles. (Left) Gabor features in grayscale. (Middle) Hand-drawn wrinkles. (Right)

Automatically localized wrinkles.

Illumination and bright spots: Although we selected images with minimum il-

lumination variation from the Internet, due to the uncontrolled acquisition

settings, most of the images had some illumination variation. The variation

caused ‘bright spots’ in images where light is reflected from skin surface due to

oily skin or skin texture. In some cases, such bright spots caused false intensity

gradients. Figure 3.16 illustrates two examples where illumination highlights

irregular skin texture and causes bright spots highlighting erroneous intensity

gradients in Gabor images.
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Figure 3.16: Two examples of images with variant illumination. (Left) Gabor fea-

tures in grayscale. (Middle) Hand-drawn wrinkles. (Right) Automatically localized

wrinkles.

3.4.4 Comparison with Detection Results using MPP Modeling in

Low Resolution Images

Next we conducted experiments on the dataset used in our previous work of

detection of wrinkles using MPP modeling [1]. The dataset consisted of 36 images

with hand-drawn wrinkles as ground truth. The image size varied from 86 x 37 as

minimum to 290 x 110 as maximum. Images were not resized in this experiment for a

better comparison with MPP modeling results. There was a significant improvement

in runtime from 65 seconds on average in case of MPP modeling to 9 seconds on

average in case of current algorithm. Figure 3.17 shows plots of detection/false

alarm rates for the two methods where two distinct clusters of data points can be

observed. MPP modeling classifies more image sites as wrinkles increasing both

detection and false alarm rates whereas the current algorithm has consistent false

alarm rate around 0.01% with varying detection rate. Qualitatively, this results in

a visually better localization results with less false alarm rate. Figure 3.18 includes
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Figure 3.17: Plots of detection results using current algorithm and MPP modeling

for low resolution images used in [1].

example images of five subjects with localization results by both approaches where

the superior performance of the current algorithm can be observed.
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Figure 3.18: Visual comparison of detection results using our algorithm and MPP

modeling for low resolution images used in [1].
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Chapter 4: Assessment of Disriminative Power of Facial Wrinkles as

Curve Patterns

4.1 Motivation

Recently a new area of research in face recognition has focused on analysis of facial

features other than typical features (e.g. eyes, nose, mouth, chin, ears, texture,

geometry). These new features, called facial micro-features, facial marks or facial

soft biometrics, include but are not limited to scars, freckles, moles, facial shape,

skin color, hair color, facial hair, tattoos, eye color, shape of nose, beard, mustache

and wrinkles [24–29]. Detection and analysis of these features have become possible

owing to the availability of high resolution, real-time capturing devices. For exam-

ple, facial freckles, moles and scars have been used in conjunction with commercial

face recognition software for face recognition in cases of occlusion and pose [24,26].

Another interesting application is presented in [28] where recognition between iden-

tical twins was done using proximity analysis of manually annotated facial marks

along with other typical facial features. Miller et al. evaluated the discriminative

power of local texture of periocular (around eye) region vs. full facial texture as a

soft biometric trait [25]. A combination of traits of skin, hair, eye color and presence
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Figure 4.1: Different wrinkle patterns with the similar looking curve for three sub-

jects: The curve has been highlighted.

of glasses, beard and mustache were used by Ouaret et. al [29] to reduce the search

size in a database for face recognition. Although, the above is not an extensive list

of the recent work, it shows the trend and potential in using other facial features

for different applications.

The focus of this work is the evaluation of the discriminative power of wrinkles

in human faces and specifically in forehead areas, as soft biometrics. Where the

uniqueness of the location of facial marks e.g. moles and scars is very obvious,

the same uniqueness of wrinkles is not that obvious and has been an unaddressed

question so far. The assumption of similarity of wrinkles on the forehead and in

areas around the eyes and nose have widely been used in facial aging simulation.

For example, few general sets of wrinkles were used in [8] to simulate wrinkles on

aging faces. An interesting and contradictory observation comes from a very different

area of portrait drawings, sketching, caricatures, etc. of human figures which, most

of the time, include sets of wrinkles very specific to that person. This motivates

us to ask the question if a set of wrinkles has discriminative power enough to be

used as a soft biometric. Usually the uniqueness of the facial wrinkles is not very
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Figure 4.2: Images of four subjects with variations in wrinkle patterns due to age,

expression and/or image acquisition.

obvious because of two reasons (a) facial wrinkles tend to appear in similar areas of

the face i.e. forehead, eye, mouth for most people and (b) the curvature of wrinkle

curves is similar in these locations because of factors such as deformations of similar

facial muscles for expressions, etc. Hence different subjects are probable to have

similar wrinkles in similar facial areas. We propose the hypothesis that, although

individual wrinkles may be similar in different people (e.g. forehead wrinkles, crow

feet), a set of several wrinkles as a pattern can be unique to an individual. For

example, in Figure 4.1, three subjects are shown to have one very similar wrinkle

curve but quite different overall wrinkle patterns. This motivates us to exploit the

relative locations of wrinkle curves as a discriminative feature for wrinkle patterns.

The problem of wrinkle pattern recognition is challenging due to the large intra class

variability caused by several factors. Image acquisition settings play an important

role in the appearance of skin texture and, as a result, visibility of wrinkles. The
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presence of expressions and/or pose increases the intra class variability even further

by causing spatial displacements of wrinkles as well as changes in their curvatures.

Figure 4.2 shows examples of differences in wrinkle patterns for four subjects. We

believe that any attempt at recognizing wrinkle curve patterns has to address the

following variations in curve patterns for a single subject.

1. Missing Curves

2. Discontinuous/Broken Curves

3. Deformed Curves

4.1.1 Related Work

The wrinkle pattern matching problem can be posed as one of matching two sets of

spatially oriented curves. An active area of research is curve and shape matching

in the presence of distortions and affine transformations, However, the focus in this

research is the recognition of a single open/closed curve and not a set of curves as

in our case. A more related, and relatively recent, area of research in computer

vision community is object recognition/localization using a set of curves or lines

[30–32]. For example, Yu and Leung extended the idea of matching points using

Hausdorff distance to matching sets of lines/curves to recognize logos, palm prints

and stationery characters. Sets of line segments were also used by Guerra and

Pasucci to recognize 3D objects using Hausdorff distance between line segment sets.

The method was used to extract specific 3D shapes/line patterns from a given image.

In this work, we define and investigate several metrics, mostly based on Hausdorff
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distance, to match the wrinkle patterns. Our main contribution is the assessment

of the discriminative power of the wrinkles on images with uncontrolled acquisition

settings. The recognition rate with no facial information other than wrinkle patterns

is quite promising. We also present experiments on wrinkles detected automatically

in some images instead of hand drawn wrinkles. The analysis of person specific

wrinkle patterns can also be used in further applications regarding individual aging

patterns in the future.

4.2 Wrinkle Pattern Matching

In this section, we present the methodology used for wrinkle pattern matching. We

take a two step approach to evaluating the similarity between two wrinkle patterns:

1. Find one-to-many curve correspondences between two curve patterns.

2. Given curve correspondences, calculate the overall distance/similarity between

two patterns by combining the distance of each individual correspondence. We

call it the Wrinkle Pattern Distance(dWPD).

Let the two input binary images representing two wrinkle curve patterns be denoted

by {I(x, y); 1 ≤ x ≤ M1, 1 ≤ y ≤ N1} and {J(x, y); 1 ≤ x ≤ M2, 1 ≤ y ≤ N2}. In

binary images the sites corresponding to the wrinkles have value 1 and 0 otherwise.

The set of wrinkle curves is represented by V where each vi ∈ V represents one

curve and the coordinates for the image sites belonging to the curve vi are given by

Sv
i = {s = (x, y), s ∈ R

2}. For the rest of the chapter, let us denote the Euclidean

55



Figure 4.3: Three different patterns of wrinkles for the same subject and right

correspondences between curves based on spatial proximity.

distance between two points a ∈ R
2 and b ∈ R

2 by dE(a, b). We present the above

mentioned two steps in detail in following sections.

4.2.1 Resolving Node/Curve Correspondences

The first task in wrinkle pattern matching is to determine the correspondences

between curves in two wrinkle patterns. The correspondences are decided upon

some similarity metric from the three metrics presented in the next section. Figure

4.3 shows an example of three wrinkle patterns for the same subject. Two of the

patterns have 6 curves each whereas one pattern has four curves only. Ideally we

want our algorithm to achieve right correspondences as shown in Figure 4.3 which

requires many-to-one matching. In Figure 4.3(a) the wrinkles ‘i’ and ‘j’ are matched

to the wrinkle ‘k’ due to spatial proximity. But in Figure 4.3(b) the extra wrinkle ‘m’

is matched to ‘n’ which is already matched to two other wrinkles. This eventually
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increases the mismatch between two patterns. We resolve the curve correspondences

as a bipartite graph matching problem by building a fully connected bipartite graph,

G
(1,2)
B . The two sets of curves from two patterns represent two sets of nodes and the

calculated distances between curves represent edge weights between nodes. Here we

would like to mention that the node correspondence problem is different from the

typical bipartite graph matching as follows:

1. One popular problem in bipartite graph matching is called ‘minimum weight

perfect matching’ where, given equal number of nodes in each partition, ev-

ery node is matched to exactly one other node while minimizing global edge

weights or some other cost function. Our problem does not require the mini-

mization of the overall edge weight functions.

2. When the number of nodes in two partitions is different or when the edges

are not enough inherently for one-to-one matching, the problem is posed as

minimum weight constricted (non-perfect) matching. In this case the graph is

fully connected and many to one matching is allowed also to provide for the

presumable situations where a wrinkle is detected as one curve in one image

vs. more than one curves in the other.

This leads us to the following statement for the node correspondence problem.

Given a bipartite graph, not necessarily having the same number of nodes in

each partition, find an edge for every node with minimum weight until all nodes have

been covered.
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Algorithm 1 Finding node-to-node correspondences

1: procedure Algo2(dv(i, j),C)
2: dsorted ← sorted array of dv(i, j) for all nodes i ∈ V(1) and j ∈ V(2) in

ascending order;
3: C← [];
4: Step 1:
5: while k ≤ length(dsorted) do
6: if still some nodes in (V(1),V(2)) to be visited then
7: (i, j)← nodes corresponding to the edge weight dv(i, j) = dsorted(k);
8: if i not visited OR j not visited then
9: include (i, j) to C;
10: end if
11: else
12: break;
13: end if
14: end while
15:

16: Step 2: Erase extra node associations
17: for k = length(C) to 1 do
18: (i, j)← C(k);
19: if both i, j are included in > 1 correspondences then
20: C(k)← [];
21: end if
22: end for

Since the number of wrinkles in every pattern is low, we use a greedy approach to

solve the problem. Figure 1 presents our algorithm for finding node correspondences.

The algorithm has two main steps. At step 1, the edges having at least one node

not visited, are included in the increasing order the of edge weight. At step 2,

the redundant edges are discarded by erasing the edges having both nodes visited

more than once in the decreasing order of the edge weight. Figure 4.4 shows the

step-by-step illustration of our algorithm and Figure 4.5 show the result of a typical

matching algorithm. Our algorithm is different from a typical algorithms at steps

(c) and (d) specifically. At step (c) the edge between v
(1)
2 and v

(2)
1 is selected, despite
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Figure 4.4: Step-by-step illustration of our algorithm for finding node correspon-

dences.

Figure 4.5: Step-by-step illustration of a generic bipartite graph matching algorithm

with global optimization.

node v
(2)
1 having been included, over the edge between v

(1)
2 and v

(2)
2 due to the lowest

edge weight of 2 among the edges connected to v
(1)
2 . At step (f) the redundant edge

between v
(1)
1 and v

(2)
2 is discarded. Although our algorithm results in larger global

weight of 8 vs. 5 for the typical algorithm, our algorithm results in right spatial

correspondences between curves as can be seen in Figure 4.6.
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Figure 4.6: The curve correspondences achieved using our algorithm.

4.2.2 Wrinkles Pattern Similarity Metrics

In this section, we present four different metrics to compare two curve patterns. We

start with modified Hausdorff distance [33] which has been widely used as a metric

for object recognition based on lines/contours/curves [30–32, 34]. Then we present

three more metrics based on comparison of pairs of curves in curve correspondences.

These metrics compare curve to curve differences in spatial location or shape instead

of binary images as a whole as is done in calculation of modified Hausdorff distance.

Following are the detailed descriptions of the four metrics:

4.2.2.1 Modified Hausdorff Distance dMHD

Given two binary images I(x, y) and J(x, y), let SI = {(x, y); I(x, y) = 1} and SJ =

{(x, y);J(x, y) = 1}. Then the modified Hausdorff distance dMHD(I,J) between

two images is given as:

dMHD(I,J) = max(dD(I,J),dD(J, I)) (4.1)

where the directed distance dD(A,B) is given as follows.

dD(A,B) =
1

|A|
∑
a∈A

minb∈BdE(a, b). (4.2)
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4.2.2.2 Curve Proximity Distance dCPD

We introduce the metric Curve Proximity Distance to quantify the spatial proximity

of two curves. The main difference between dCPD and dMHD is the inclusion of

structure of curves. Given curve correspondences, dCPD is the sum of individual

distances for the two curves in a curve correspondence instead of max-min distance

for the binary images as a whole in dMHD. As we will see in experiments section,

the inclusion of curve structure generally improves recognition rates.

Let li and lj be the lengths of two curves and let lmin = min(li, lj). Then the

Curve Proximity Distance, dCPD(i, j), between the two curves is defined as

dCPD(i, j) = max(dD(S
(1)v
i , S

(2)v
j ),dD(S

(1)v
j , S

(2)v
i )). (4.3)

4.2.2.3 Directed Curve Proximity Distance dDCPD

Figure 4.7 shows the motivation behind introducing this metric by highlighting the

difference between the distance dD calculated from shorter curve to longer curve

(Figure 4.7(a)) and vice versa (Figure 4.7(b)). This metric allows us to investigate

situations where one wrinkle may be represented as one curve in one image vs. more

in the other by restricting the metric from being unnecessarily large as can be seen

in (Figure 4.7(c,d)). The dDCPD(i, j) is defined as follows where lmin = min(li, lj).

dDCPD(i, j) = I(lmin = li)dD(S
(1)v
i , S

(2)v
j

+I(lmin = lj)dD(S
(1)v
j , S

(2)v
i ). (4.4)
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4.2.2.4 Curve Shape Distance dCSD

This metric compares the two curves for their curvature similarity while ignoring

their spatial location in the two curve patterns. The distance is calculated in the

same way as of calculating curve proximity distance, however, the curves are aligned

with each other. For example, Figure 4.8 shows calculation of dCSD for two curves

after aligning them as compared to calculation of dDCPD without any alignment.

The 2D correlation function is used for alignment. For any two nodes v
(1)
i ∈ V(1)

and v
(2)
j ∈ V(2), the distance dCSD(v

(1)
i , v

(2)
j ) is calculated in the following steps.

1. Construct two images I∗ and J∗ from input images such that they have the

curves v
(1)
i and v

(2)
j only respectively.

I∗(x, y) =

⎛
⎜⎜⎝1 if (x, y) ∈ S

(1)v
i

0 otherwise

⎞
⎟⎟⎠ (4.5)

J∗(x, y) =

⎛
⎜⎜⎝1 if (x, y) ∈ S

(2)v
j

0 otherwise

(4.6)

2. Use 2D correlation function to find s∗ = (u∗, v∗) as follows

s∗ = argmax
(u,v)

M1∑
x=1

N1∑
y=1

I∗(x, y)J∗(x+ u, y + j);

1 ≤ u ≤M1 +M2, 1 ≤ v ≤ N1 +N2 (4.7)

3. Translate the image J∗ by s∗ i.e. J∗
t (x, y) = J∗(x+u∗, y+ v∗). Thus the curve
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Figure 4.7: Difference between shorter to longer vs. longer to shorter distances in

dDCPD.

Figure 4.8: (Left) Two registered curve patterns (Middle) Calculation of dCSD

(Right) Calculation of dDCPD.

v
(2)
j will also be translated in J∗. Let us denote the translated curve in J∗

t as

v
(2)
j∗ and the curve in I∗ as v

(1)
i∗ .

4. Then the dCSD(i,j) is equal to the the curve proximity distance dCPD between

v
(1)
i∗ and v

(2)
j∗ .

The overall similarity metric between a probe and a gallery wrinkle pattern, Wrinkle

Pattern Distance, dWPD, is the sum of the distance metric for of all curve corre-

spondences as follows.

dWPD(V
(1),V(2)) =

∑
c=(i,j)∈C

(
dv(v

(1)
i , v

(2)
j )
)
. (4.8)

where d′(·, ·) can be any or a combination of dCSD, dCPD and dDCPD.
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Figure 4.9: Comparison of recognition rates for hand-drawn wrinkles with different

methods.

4.3 Experiments and Discussion

To the best of our knowledge, no data set is available in the computer vision com-

munity for faces with marked wrinkles. For this work, the data were gathered by

selecting images of medium resolution of well-known people from the Internet and

consisted of variations of illumination, acquisition setup, pose, expressions and age.

The data set comprised of 96 images of 16 subjects with 6 images per subjects. The

face images of resolution greater than 200x200 were preferred. The wrinkles were

hand drawn by 4 different users. This also included ‘subjective’ variation in percep-

tion of the wrinkles. The images were registered by the selection of five land marks

on faces i.e. two corners of both eyes and the nose tip. As a next step, the wrinkle

curves were separated from a binary image by finding connected components and

some morphological processing.
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Figure 4.10: Comparison of recognition rates for hand-drawn wrinkles with different

methods.

4.3.1 Experiments on Hand-drawn Wrinkles

Several experiments were conducted on the data set of hand drawn wrinkles with

different combinations of the metric used to find correspondences and the distance

between curve pairs in the correspondences. The cumulative match curves for these

experiments are shown in Figures 4.9, 4.10 and 4.11. In the plot legend ‘(a,b)’ means

that the metric ‘a’ has been used to find curve correspondences in algorithm 1 and

‘b’ has been used to calculate dMPD. Table 4.1 shows the percentage recognition

rates for top 5 ranks. We can see that the methods MHD and (CPD,CPD) have

comparable results and better than the rest of the methods. For further investigation

the images where MHD performed better than (CPD,CPD) and vice versa were

examined. Figure 4.12 shows four pairs of wrinkle patterns where (CPD,CPD) was

able to recognize correctly in contrast with MHD and Figure 4.13 shows four pairs
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Figure 4.11: Comparison of recognition rates for top two methods.

of wrinkle patterns where MHD was able to recognize correctly in contrast with

(CPD,CPD). As a next step, we combined both MHD and (CPD,CPD) i.e. dCPD

was used for finding curve correspondences and dCPD + 2 ∗ MHD was used to

calculate dMPD. The combination improved the recognition rate by 5-6% as can be

seen in Figure 4.11 and in the last row of Table 4.1.

4.3.2 Experiments on Automatically Detected Wrinkles

As a next step, we repeated the experiments on automatically detected wrinkles.

Recently the work in [2] reported automatic detection of wrinkles as line segments

with average detection rate of 80%. We wanted to investigate if the wrinkle patterns

recovered with this detection rate still retain enough discriminative power. However,

the work in [2] detects wrinkles as line segments and the sequences of line sequences

are broken at times. We fit curves through line segments to create wrinkle curves.

The inclusion of line segments in a curve, however, is not trivial, and requires analysis
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Algorithm 2 Fitting Curves to Line Segments representing Detected Wrinkles

1: procedure Algo1 (LineSegmentsV ector,WrinkleCurveV ector)
2: WrinkleCurveV ector ← [];
3: while k ≤ length(LineSegmentsV ector) do
4: seg ← LineSegmentsV ector(k);
5: CurvePoints← [];
6: if seg not visited then
7: newSeg ← seg;
8: go to 18;
9: repeat
10: newSeg ← The segment connected at RIGHT to newSeg OR the

segment present in RIGHT neighboring conic region of newSeg;
11: go to 18;
12: until border of image reached
13: repeat
14: newSeg ← The segment connected at LEFT to newSeg OR the

segment present in LEFT neighboring conic region of newSeg;
15: go to 18;
16: until border of image reached
17: end if
18: Add pixels of newSeg to curvePoints;
19: Mark newSeg as visited; return
20: Mark seg as visited;
21: Append curvePoints to WrinkleCurveV ector;
22: end while
23: end procedure=0
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Figure 4.12: Four pairs of images where (CPD,CPD) performed better than MHD.

Figure 4.13: Four pairs of images where MHD performed better than (CPD,CPD).

of the proximity of the line segments. Figure 2 presents our algorithm to include line

segments to a curve. The vector of line segments is scanned and a new curve is added

whenever an unvisited segment is reached. A sequence of connected line segments

is included to a single curve by default. Then a conic region of a certain length and

angle is searched around each free end point of a sequence of line segments for any

neighboring segments to be included to the same curve. The algorithm outputs the

data structure where each node represents a group of line segments to be included

68



Figure 4.14: (Curves fitted to detected wrinkles as line segments (images were taken

from [2]).

in a single curve. Figure 4.14 shows some examples of the curves fitted to the line

segments.

For detected wrinkles the experiments were conducted on a data set of 12

images with 3 images per subject. Figures 4.15, 4.16 and 4.17 show plots of the

results with different combinations. In case of detected wrinkles, we can observe that

the metric combination based on shape, (CSD,CSD), is performing better than MHD

and the metric combination of (CPD,CPD) both of which had the best performance

rates for hand drawn wrinkles. However the detection rate in this case is lower, 50%,

as compared to 64% for hand drawn wrinkles. When we combine both (CSD,CSD)

and MHD the recognition rate improves to 90% for top 3 rank positions as can be

seen in Figure 4.17.
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Recognition Rate

Method Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

MHD 64% 76% 81% 85% 87%

(CPD,CPD) 64% 74% 80% 81% 88%

(CSD,CSD) 50% 66% 74% 79% 79%

(CPD,CSD) 60% 69% 73% 75% 78%

(DCPD,CPD) 55% 67% 74% 80% 84%

(DCPD,DCPD) 49% 59% 65% 72% 75%

(CPD,CPD)+2xMHD 69 % 82% 87% 92% 93%

Table 4.1:

Figure 4.15: Comparison of recognition rates for detected wrinkles with different

methods.
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Figure 4.16: Comparison of Recognition Rates for detected wrinkles with different

methods

Figure 4.17: Comparison of recognition rates for top 2 methods for detected wrinkles.
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Chapter 5: Simultaneous Detection and Removal of Wrinkles from

Facial Images using Image Inpainting

5.1 Motivation

Digital image inpainting refers to the filling of the gaps of arbitrary shapes

in an image so that they seem to be parts of the original image. Several applica-

tions of digital inpainting have been reported in the last decade. Here we propose

a specific application of digital inpainting to remove facial wrinkles and imperfec-

tions. Traditionally, beautification of skin or facial re-touching in images has been

done by professionals using high-end software e.g. Adobe PhotoshopTM. However,

the application has become more popular in recent years due to the popularity of

smart phones and social networking. As a result, several user friendly smart phone

applications (e.g. Visage LabTM [4], BeautifyTM [35], Perfect365TM [36]) have been

introduced which provide minimum user interaction for facial touch ups. How-

ever, both professional and user-friendly software have limitations. Professional

software require significant user interactions where results are subjective, depending

on user’s expertise. Whereas user-friendly applications targeted for smart phones,

while performing an overall beautification or making up of skin with minimum user
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Figure 5.1: Typical results of facial retouching (reproduced from [3]).

Figure 5.2: Removal of wrinkles by facial retouching (reproduced from [3]).

interaction, do not target specific skin imperfections e.g. deep wrinkles, acne, scars

etc. An example is shown Fig. 5.5, where an overall beautification of skin fades

wrinkles and moles but does not remove them completely. The reason may be that

these applications seem to process all the skin region equally and do not distinguish

between skin vs. skin imperfections. The results can be improved if skin imperfec-

tions are detected as a pre-processing step and then processed differently from the

surrounding skin.

The current state-of-the-art approach for the removal of wrinkles is an image

painting algorithm proposed by Georgiev [37]. The algorithm is based on the widely

used Poisson image editing tool [38] and provides improved seamless image cloning
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Figure 5.3: Reduction of wrinkles by facial retouching (reproduced from [3]).

Figure 5.4: Reduction of wrinkles by facial retouching (reproduced from [3]).

through better handling of lighting variations. The algorithm works behind the

Healing Tool in Adobe PhotoshopTM. Image painting is slightly a different applica-

tion from image inpainting. The former deals with inclusion (painting) of a smaller

image region in a larger image where both source and destination image regions are

provided by the user. The latter deals with the automatic filling of a gap/occlusion,

mostly provided by the user, in an image based on local and/or global image charac-

teristics and does not require a source image. However, both applications share the

requirement of seamless boundaries. Our work is closer to image inpainting than

image painting because both source and destination image areas are selected auto-
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matically. We make the following observations about the current facial retouching

software as a motivation for our proposed work.

1. Significant user interaction is required with the Adobe Healing Tool for the

selection of source and destination skin patches resulting in subjective results

depending on user expertise.

2. In the case of more user-friendly applications, facial retouching results in the

so-called flawless skin. The processing of skin in an image smoothes wrinkles

and skin imperfections but does not remove them completely.

3. Regarding image inpainting techniques, both structure and texture inpainting

techniques are not applicable directly to skin. Wrinkles and skin imperfections

do not appear as edges/boundaries and, hence, structural inpainting is not

appropriate. Also, as wrinkles are not homogeneous texture patterns, texture

inpainting is not effective.

The main contributions of this work are as follows:

1. An algorithm based on the fusion of Gabor features and texture orientation

fields in the framework of Markov field modeling (MRF)is proposed to detect

wrinkles and other imperfections in the surrounding skin.

2. A variation of exemplar-based texture synthesis is proposed to fill the gaps of

irregular shapes.

3. Both detection and inpainting of wrinkles are unsupervised with minimum user

interaction thus minimizing the subjectivity introduced by the user’s expertise.
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Figure 5.5: Typical results of facial retouching for a smart phone application [4].

(a) Original Image. (b) Image after retouching. Note that wrinkles on forehead and

brown spots on cheeks are deemphasized due to blending but still visible.

4. No ‘retouching’ or ‘beautification’ of the rest of the facial skin is done while

inpainting skin wrinkles/imperfections.

The organization of this chapter is as follows. In section 2, we present an

overview of the related work. In section 3, we present the details of our detection

and inpainting algorithms. Experiments and discussion are presented in section 4.

Finally, we conclude the chapter in section 5.

5.2 Problem Statement

Any image inpainting technique for textures has three main steps, (a) finding a suit-

able texture template in the image (b) calculating the warping bewteen the template

and the gap (c) Inpainting the object via texture synthesis. For the particular ap-

plication of wrinkle inpaiting, finding the proper correspondences boils down to
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Figure 5.6: Image features used for segmentation. (a) Forehead image in gray scale.

(b) Maximum Gabor amplitude response (values [4.8, 132] scaled to the gray scale

values [0,255]. (c) Texture orientation field.

automatic detection of regions having wrinkles. Then, based on the fact that skin

texture can vary significantly within a face, the region has to be filled with the skin

texture surrounding wrinkles while compensating for the global lighting variations.

In the next section we present a brief review of recent work in image painting and

inpainting domains related to our goal.

5.3 Related Work

Image inpainting methods target one or both of the structure and texture of an

image. The difference between the image attributes of structure and texture of an

image requires different inpainting methods. A detailed survey of image inpainting

methods can be found in [39–41]. Most texture inpainting methods require user

input or some masking function to highlight the gap/occlusion to be filled (e.g. the

work by Criminisi [42]). Some examples of automatic filling of scratches, rectangular

blocks or random noise can be found in [39, 43, 44]. Shi and Chang introduced a

patch-based multi-resolution/multi-layer approach to restore the paintings damaged

by red scratches [39]. Their approach involved a mechanism to detect the damaged
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areas first where the variance in the color of a patch at a specific resolution was used

to determine if a patch had damaged pixels. In contrast, the inpainting methods

in [43, 44] do not have any explicit detection of gaps to be filled. These techniques

are based on the analysis of different layers containing low vs. high frequency de-

tails. The low frequency layer determines the piecewise smooth regions of the image

and the high frequency layer determines the texture. The recovery of these layers

automatically fills the gaps without their being detected explicitly. In case where

more than one texture is surrounding the gap, sophisticated techniques are used

for combining different textures [42, 45]. Once a suitable combination of different

textures has been found, the gap is filled by existing texture synthesis techniques.

For example, Grossauer [45] used the exemplar-based texture synthesis technique

given in [46] and Criminisi et al. [42] used a synthesis method similar to [47].

The specific application of wrinkle removal is different as wrinkles are not

artifacts or separate objects to be removed. Wrinkles are an inherent part of the skin

and are visible only due to their discontinuous nature in surrounding skin texture.

Recently, the detection of wrinkles as sequences of line segments/curves was reported

by Batool and Chellappa ( [1, 2]). However, this method is not applicable here

because of two reasons. First, wrinkles are localized as curves and the surrounding

folds of skin due to a wrinkle are not detected. Second, the method reported in

[1, 2] is based on line segments and cannot be used to detect other oval like skin

imperfections.

Our wrinkle inpainting approach is based on Poisson editing and a variation

of exemplar-based texture synthesis. However, we use a novel approach to detect
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wrinkles and skin imperfections. In the following section we present our approach

in detail.

5.4 Approach

An image inpainting technique for textures has three main steps, (a) finding

a suitable texture template in the image to fill in the gap with, (b) calculating the

seamless warping between the template and the gap and (c) filling the gap via texture

synthesis. Since we are proposing unsupervised image inpainting, an additional step

is required to detect wrinkles automatically. The process of wrinkling creates deep

creases and causes curvature in the surrounding skin. The resulting skin curvature

causes specific intensity gradients in skin images which look like discontinuities in

surrounding skin textures. An accurate inpainting of wrinkles will require both the

wrinkle crease and the surrounding curved skin to be removed. In section 5.4.1,

we present our approach for detection. Regarding step (a), we select skin patches

surrounding the detected wrinkles. This is due to the fact that the skin texture

can vary significantly within a small region of face. The skin patches closest to the

wrinkles have the most similar looking skin texture. Regarding steps (b) and (c),

we use an exemplar-based texture synthesis method based on the work of Efros and

Freeman [48]. The details of our texture synthesis method are presented in section

5.4.2.
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5.4.1 Automatic Detection of Regions with Wrinkles

We use texture orientation fields proposed by Rao and Schunk [49] and Gabor

filter responses as image features. The orientation fields highlight the discontinu-

ity in the normal flow of skin texture whereas Gabor filter responses highlight the

intensity gradients in any directions. The two types of features are fused using Gaus-

sian Mixture Models (GMM) and Markov random field representation. The GMM

classifies filter responses as a bimodal distribution for skin vs. skin imperfections.

The MRF respresentation allows us to incorporate spatial relationship among GMM

distributions of neighboring pixels and to fuse the orientation fields to reshape the

class probabilities.

5.4.1.1 Computation of Orientation Fields using Gabor Filters

Several oriented feature detectors have been developed including steerable

Gaussian second-derivative filters, line operators and Gabor filters. A compara-

tive study can be found in [19] where the real Gabor filters were assessed to be the

best detector of oriented features. The real Gabor filter kernel oriented at angle α

is given by

g(x1, x2) =
1

2πσx1σx2

exp

[
−1
2

(
x

′2
1

σ2
x1

+
x

′2
2

σ2
x2

)]
cos(2πfx′

1) (5.1)

where
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⎢⎢⎣ cosα sinα

− sinα cosα

⎤
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⎡
⎢⎢⎣x1

x2

⎤
⎥⎥⎦ (5.2)

Let {gk(x1, x2), k = 0, · · · , K − 1} denote the set of real Gabor filters oriented at

angles αk = −π
2
+ πk

K
where K is the total number of equally spaced filters over the

angular range
[−π

2
, π
2

]
. Let {I(x1, x2); x1 = 1 . . .N1, x2 = 1 . . .N2} denote the input

image in gray scale and IPk (x1, x2) denote the image filtered by the filter gk(x1, x2).

Then the orientation field, θI(x1, x2) for the image is computed as follows:

θI(x1, x2) = argmaxkI
P
k (x1, x2) (5.3)

i.e. at every pixel, the orientation field is equal to the orientation angle of the

filter resulting in the maximum filtered response at that pixel. The corresponding

maximum amplitude among the filtered responses is given as:

I ′(x1, x2) = max
k

IPk (x1, x2) (5.4)

The set of the maximum filter response and the orientation angle at every

pixel, {I ′(x1, x2), θI(x1, x2)}, constitutes image features for automatic detection of

wrinkle regions. Fig. 5.6 shows a forehead image with the corresponding maximum

responses and the orientation field. The orientation angle is calculated at every

pixel, however, the orientation field in Fig. 5.6(c) is drawn by placing needles at

every 3rd pixel. Every needle is of length of 3 pixels and is placed in the direction

of the orientation angle.

At high resolution, skin texture appears to be granular resulting in random ori-

entation angles. However, the skin creases of wrinkles and the skin pigments related
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to other imperfections (e.g. brown spot, moles) smooth out the granular skin tex-

ture. As a result, the orientation field depicts two significant properties in wrinkled

regions, (a) a dominant angle of zero degrees and (b) pixels with zero orientation

angle appear in clusters. Fig. 5.10 depicts these two properties of orientation field

due to wrinkles. We exploit these observations to formulate the GMM-MRF model

based, two-class labeling of images into wrinkles and non-wrinkle regions. The next

section describes the model in detail.

Figure 5.7: Binary labeling results. (a) Initial labels obtained after using GMM

functions in MatlabTM. (b) labeling results after 15 iterations of our GMM-MRF

method. (c) labeling results using GMM-MRF method in [5]. (d) Resulting gaps in

the skin image.

5.4.1.2 Gaussian Mixture Model based on Markov Random Field

(GMM-MRF)

The motivation behind using the GMM-MRF model is the fact that the Gabor

filter responses or the texture orientation field, when used exclusively, are important

but insufficient features to detect the wrinkled regions. For example, Fig. 5.8(a)
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shows the result of thresholding Gabor amplitude responses in the range [4.8, 132]

with the threshold value of 35 and Fig. 5.8(b) shows image sites with orientation

angles lying in the range [−5,+5]. Fig. 5.8(c) shows the product of both results and

resembles more closely to the actual wrinkles by reducing false positive in either

of the Fig. 5.8(a) and Fig. 5.8(b). We make the following observations to justify

GMM-MRF modeling.

Figure 5.8: Results of thresholding. (a) Thresholding maximum Gabor amplitude

at value 35. (b) Thresholding orientation field at absolute angle values of less than

5 degrees. (c) Product of images in (a) and (b).

1. GMM: Histograms of Gabor response amplitude I ′(x1, x2) typically follow the

Beta distribution with heavy tails. For example Fig. 5.9 shows the histogram

of the Gabor amplitude response for the image in Fig. 5.6(a). An intelligent

thresholding of Beta distribution can provide a good starting point for any

segmentation technique. Modeling of Gabor responses as Beta distribution

may seem an obvious choice. However, we take the simpler approach of Gaus-

sian mixture models for its more developed theory. A similar approach can be

found in [50] where the authors used the GMM to model Beta distribution for

segmentation of SAR images.

2. MRF: Since class labels do not depend solely on the Gabor response ampli-
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Figure 5.9: Histogram of the Gabor features in Fig. 5.6(b).

Figure 5.10: (Right) Rectangle ’A‘ shows the skin texture used as template whereas

rectangle ’B‘ shows change in skin texture due to a wrinkle. (Left) Orientation field

at high resolution, note that sites corresponding to the wrinkle have orientation

angle of zero degrees.

tude, a simple thresholding of Beta distribution does not work. There is always

some under segmentation or over segmentation present. Texture orientation

field has to be incorporated to aid thresholding by reshaping the probabil-

ity of each class. An MRF framework enables not only the incorporation of

spatial dependencies among neighboring pixels but also the fusion of texture

orientation fields and Gabor amplitude responses.

We first present the GMM and MRF models and then discuss how the MRF model

is used to fuse the orientation field with Gabor amplitude responses.
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Under GMM, the density function for the observation at pixel (x1, x2) is given

as:

f(I ′(x1, x2)|Π,Θ) =
J∑

j=1

πj
x1,x2

Φ(I ′(x1, x2)|µj, σj) (5.5)

where Φ(I ′(x1, x2)|µj, σj) is the standard Gaussian distribution with mean µj and

variance σ2
j and Θ = {(µj, σj); j = 1, · · · , J} is the parameter set of Gaussian mix-

ture distributions. The set of mixing proportions, Π = {πj
x1,x2

; x1 = 1, · · · , N1; x2 =

1, · · · , N2; j = 1, · · · , J} satisfies the following constraints:

0 ≤ πj
x1,x2

≤ 1 and
∑
j

πj
x1,x2

= 1 (5.6)

Let I ′ denote the ensemble of random variables I ′(x1, x2) as follows:

I ′ = {I ′(x1, x2); x1 = 1, · · · , N2; xc = 1, · · · , N2} (5.7)

Then, assuming statistical independence of individual pixel sites, the joint condi-

tional density function of the whole image can be written as:

p(I ′|Π,Θ) =

N1∏
x1=1

N2∏
x2=1

J∑
j=1

πj
x1,x2

Φ(I ′(x1, x2)|µj, σj) (5.8)

According to Bayes’ theorem, the posterior probability can be written as follows:

p(Π|I ′,Θ) ∝ p(I ′|Π,Θ)× p(Π) (5.9)

Gaussian mixture models based on MRF (GMM-MRF) are proposed to impose

spatial smoothness constraints between neighboring pixels [5]. Under MRF models

, the prior distribution of the mixing proportion of a pixel πj
x1,x2

depends on those
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of its neighboring pixels. The prior joint distribution of πj
x1,x2

for all pixels is given

by the Gibbs distribution:

p(Π) =
1

Z
exp(−U(Π)

T
) (5.10)

where Z is the normalization constant, U(Π) is the Gibbs energy function and T is

a constant called temperature. According to (5.8), (5.9) and (5.10), the posteriori

log-density function can be derived as:

L(Π|I ′,Θ) = log p(Π|I ′,Θ)

=

N1∑
x1=1

N2∑
x2=1

log

{
J∑

j=1

πj
x1,x2

Φ(I ′(x1, x2)|µj, σj)

}

+ log p(Π)

=

N1∑
x1=1

N2∑
x2=1

log

{
J∑

j=1

πj
x1,x2

Φ(I ′(x1, x2)|µj, σj)

}

− logZ− U(Π)

T
(5.11)

The expectation maximization (EM) algorithm is usually used to estimate the pa-

rameters of a GMM distribution. However, the inclusion of prior distribution to

GMM via an MRF introduces additional complexity and the M-step of the EM

algorithm cannot be directly applied to estimate the model parameters from the

observations. Various approximations have been introduced in order to tackle this

problem. Recently, Nguyen et. al. [5] introduced a novel way of incorporating spatial

correlations in MRF model which allows a close form solution in the Maximization
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step. They introduced a factor Gj
x1,x2

as follows:

Gj
x1,x2

= exp

⎧⎨
⎩ β

2|Nx1,x2|
∑

i∈{Nx1,x2 ,(x1,x2)}

(zji + πj
i )

⎫⎬
⎭ (5.12)

where Nx1,x2 is the neighborhood of the pixel (x1, x2). The factor Gj
x1,x2

is propor-

tional to the product of both posterior probabilities and prior distributions of the

neighboring pixels and causes smoothing of prior probabilities due to the averaging

process. Nguyen et. al. [5] proposed a new Gibbs energy function based on Gj
x1,x2

as follows:

U(t+1)(Π|Θ) = −
N1∑

x1=1

N2∑
x2=1

J∑
j=1

Gj,(t)
x1,x2

log πj,(t+1)
x1,x2

(5.13)

The factor Gj
x1,x2

is dependent only on the value of the priors and posteriors at the

previous step in the EM algorithm. This allows a simpler, closed-form solution for

the update of mixing proportions πj
x1,x2

as will be shown in section 5.4.1.4 under

detailed description of the EM algorithm.

5.4.1.3 Fusion of Gabor Features and Texture Orientation Field

Under the GMM-MRF model, each pixel shares a global set of parameters

of Gaussian distributions denoted by Θ. However, each pixel has a different set

of mixing proportions, πj
x1,x2

, instead of a global set. In this section, we describe

our modifications to the GMM-MRF model of Nguyen et. al. [5] for the fusion of

texture orientation field and Gabor features. The texture orientation field, θ(x1, x2),

is considered a priori field affecting the prior probabilities of mixing proportions. Let

Ω = {θx1,x2; x1 = 1, · · · , N1; x2 = 1, · · · , N2} denote the set of orientation angles of
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all pixels. Then, incorporating Ω, equation (5.9) can be re-written as:

p(Π,Θ|I ′,Ω) ∝ p(I ′|Π,Θ,Ω)× p(Π|Ω)

∝ p(I ′|Π,Θ)× p(Π|Ω) (5.14)

where:

p(Π|Ω) = 1

Z
exp(−U(Π|Ω)

T
) (5.15)

U(Π|Ω) = −
N1∑

x1=1

N2∑
x2=1

J∑
j=1

Gj
x1,x2

(Ω) log πj
x1,x2

(5.16)

We introduce the factor Gj
x1,x2

(Ω) as a function of the orientation field Ω and is

given as follows:

Gj
x1,x2

(Ω) = exp

⎧⎨
⎩

∑
i∈{Nx1,x2 ,(x1,x2)}

h(j, θi)(z
j
i + πj

i )

⎫⎬
⎭ (5.17)

The factor h(j, θi) controls the mixing proportions of a pixel based on the orientation

field angles in its neighborhood. In the binary case, where j = 0 denotes the

distribution representing background skin and j = 1 denotes the distribution of

wrinkled skin, the factor is defined as:

h(j, θi) =

⎧⎪⎪⎨
⎪⎪⎩

1 for j = 0

β cos θi for j = 1

⎫⎪⎪⎬
⎪⎪⎭ (5.18)

The parameter β has a value greater than 1. So whenever a pixel and its surrounding

neighbors have orientation angles of closer to zero, the value of the factor h(j, θi)

increases. This increases the mixing proportion πj
i and that pixel’s probability of

being included in the wrinkled area.
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Figure 5.11: Seamless stitching of two patches. (a) Patches with side portions to

be overlapped. (b) Minimum square distance boundary cut along the overlapped

portions. (c) Resulting stitching of the two patches.

Figure 5.12: The constrained texture synthesis algorithm divides an irregular shaped

gap into a regular grid of patches. Each patch is then marked to be painted if it

overlaps any pixels of the gap.

Figure 5.13: The sides of a patch used for seamless stitching are based on two

factors; the patch’s location in the grid and if the surrounding patches are marked

to be painted or not.
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5.4.1.4 Expectation Maximization (EM) Algorithm

We use the EM algorithm to find mixing proporations and to maximize the

posterior distribution. At iteration t, the E-step of the EM algorithm requires the

formulation of the following optimization function [51]:

QMAP (Θ,Π|Θ(t),Π(t))

=E
[
log p(I ′|Θ,Π)|I ′,Θ(t),Π(t)

]
+ log p(Π) (5.19)

QMAP (Θ,Π|Θ(t),Π(t))

=

N1∑
x1=1

N2∑
x2=1

J∑
j=1

zj,(t)x1,x2
(log πj,(t+1)

x1,x2

+ logΦ(I ′(x1, x2)|Θ(t),Π(t)))

− logZ+
1

T

N1∑
x1=1

N2∑
x2=1

J∑
j=1

Gj,(t)
x1,x2

(Ω) log πj,(t+1)
x1,x2

(5.20)

where z
j,(t)
x1,x2 is given as follows:

zj,(t)x1,x2
=

π
j,(t)
x1,x2Φ(I

′(x1, x2)|µ(t)
j , σ

(t)
j )∑K

k=1 π
k,(t)
x1,x2Φ(I ′(x1, x2)|µ(t)

k , σ
(t)
k )

(5.21)

The constants Z and T do not effect the optimization function are are set equal to
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1. The modified optimization function is then given as:

QMAP (Θ,Π|Θ(t),Π(t))

=

N1∑
x1=1

N2∑
x2=1

J∑
j=1

zj,(t)x1,x2
(log πj,(t+1)

x1,x2

+ logΦ(I ′(x1, x2)|Θ(t),Π(t)))

+
N1∑

x1=1

N2∑
x2=1

J∑
j=1

Gj,(t)
x1,x2

(Ω) log πj,(t+1)
x1,x2

(5.22)

Gj,(t)
x1,x2

(Ω) = exp

⎧⎨
⎩

∑
i∈{Nx1,x2 ,(x1,x2)}

(z
j,(t)
i + h(j, θi)π

j,(t)
i )

⎫⎬
⎭ (5.23)

In the M-step of EM algorithm, the function QMAP (Θ,Π|Θ(t),Π(t)) is maximized to

obtain the updated values of the parameters {Θ,Π}. After setting the derivative

of QMAP (Θ,Π|Θ(t),Π(t)) to zero, we obtain the following expressions for updating

parameters Θ:

µj,(t+1) =

∑N1

x1=1

∑N2

x2=1 z
k,(t)
x1,x2I

′(x1, x2)∑N1

x1=1

∑N2

x2=1 z
j,(t)
x1,x2

(5.24)

σj,(t+1) =

[∑N1

x1=1

∑N2

x2=1 z
k,(t)
x1,x2

[
I ′(x1, x2)− µj,(t+1)

]2
∑N1

x1=1

∑N2

x2=1 z
j,(t)
x1,x2

] 1
2

(5.25)

The values of parameters Π are obtained using the method of Lagrange multiplier

and are given as follows:

πj,(t+1)
x1,x2

=
z
j,(t)
x1,x2 +G(Ω)

j,(t)
x1,x2∑K

k=1

[
z
k,(t)
x1,x2 +G(Ω)

k,(t)
x1,x2

] (5.26)

For the EM algorithm, values of the parameters Π,Θ are initialized by using

the MatlabTMfunctions to train a GMM with two distributions. Then, following the

91



algorithm given in [5], we proceed with the following steps to complete the automatic

detection of wrinkled region.

1. Evaluate the values zjx1,x2
according to (5.21) using the current parameter

values.

2. Update the factor Gj
x1,x2

(Ω) using (5.23).

3. Update the means µj using (5.24) and variances σj using (5.25).

4. Update the prior distributions πj
x1,x2

using (5.26).

5. Evaluate the log-likelihood in (5.22) and check the convergence of either the

log-likelihood function or the parameter values. If the convergence criterion is

not satisfied, then go to step 2.

At the end of the EM algorithm, every pixel is assigned the label j with the larger

posterior probability value zjx1,x2
.

5.4.2 Automatic Removal of Facial Wrinkles

The detected wrinkled regions are inpainted by surrounding skin texture us-

ing texture synthesis. Texture synthesis techniques can be categorized as para-

metric or exemplar-based. In parametric methods, the parameters of a generative

texture model are learned from a sample texture. A texture image can then be

synthesized by sampling the learned model. The exemplar-based methods focus on

sampling patches from a sample texture and then stitching them seamlessly, incor-

porating neighborhood details, to synthesize larger texture images. The exemplar-
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based methods have become popular in recent years to synthesize 2D texture im-

ages, [42, 46–48].

Our method is based on the exemplar-based texture synthesis method pro-

posed by Efros and Freeman [48]. In their work, Efros and Freeman introduced a

novel method called image quilting for seamless stitching of small patches of the ex-

emplar texture. We use their method to stitch skin patches together to fill the gaps

left by removal of wrinkled regions. Filling of gaps in images using texture syntheis

is also called as ‘constrained texture synthesis’ for the reason that the boundaries

between the original texture and the synthesized texture have to be invisible. In

section 5.4.2.1, we briefly describe the method of Efros and Freeman for seamless

stitching of two patches. Then, in section 5.4.2.2, we present our algorithm of con-

strained texture synthesis to fill gaps. Finally, in section 5.4.2.3, we present our

method of selecting the skin source texture to be inpainted the gaps from.

5.4.2.1 Patch based Image Quilting

Let ST denote a small source texture sample from which the bigger texture

image has to be synthesized. Let T1 and T2 denote two square patches to be stitched

together and lT denote the length of a side of a patch. Let ∆T1 and ∆T2 denote

portions of the patches T1 and T2 from any side as is shown in Fig. 5.11. The

portions are set to be of width l∆ < lT . The problem of seamless stitching of the

two patches then boils down to finding a ragged boundary in the overlapped portions

∆T1 and ∆T2 such that a minimal discontinuity in texture flow is caused across the

93



boundary. This method is illustrated in Fig. 5.11.

Given T1 (the first T1 can be selected randomly from ST ), the first step is

to select a patch, T2, of the same size from ST . This is done by finding one or

more patches from ST having cumulative square difference between the overlapping

regions, ∆T1 and ∆T2 , within a given tolerance. The patch T2 is then selected

randomly from such patches. The next step is to stitch the two patches seamlessly

by founding the best boundary cut.

Let E be a matrix of size lT × l∆ representing the square difference between

∆T1 and ∆T2 as follows:

Ei,j = (∆i,j
T1
−∆i,j

T2
)2 (5.27)

where the superscripts i, j designate the ith row and jth column of the matrix. Then

the ragged boundary is found as the cut through E which minimizes the cumulative

square difference along the boundary and is found through the following steps.

1. Let Ec be a matrix of size lT × l∆ denoting the cumulative square difference

for a boundary cut.

2. Initialize the first row of Ec to be equal to the first row of E i.e. Ei,·
c = Ei,·.

3. Calculate the rest of the elements of Ec as follows:

Ei,j
c = Ei,j +min{Ei−1,j

c , Ei−1,j−1
c , Ei,j−1

c } (5.28)

4. Find the minimum value in the last row of Ec. This is the last element of the

cut with the minimum square distance. The best boundary can be found by
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tracing back vertically the cut from this element to the first row of Ec.

5.4.2.2 Constrained Texture Synthesis to Fill Image Gaps

The removal of wrinkled skin results in several gaps of irregular shapes as

can be seen in Fig. 5.15(b). Filling such gaps requires modifications to the texture

synthesis method presented in the last section which was originally used to synthesize

rectangular texture samples. Fig. 5.16 presents our algorithm to fill irregular gaps

using constrained texture synthesis. The algorithm performs two steps for every

gap detected by the GMM-MRF algorithm. The first step consists of finding the

bounding box for the current gap and fitting it with a rectangular grid of square

patches. Then, each patch in the grid is visited to determine if it overlaps with any

pixel(s) in the gap. Fig. 5.12 illustrates this step. The patches which do not overlap

with the gap are marked as ‘X’ and are not considered in the second step. In the

second step, the patches containing image gap pixels are replaced with the patches

of the source skin texture. Each patch is stitched from two (top and left) or more

sides depending on its location in the grid. Fig. 5.13 illustrates this step. Patches

are visited in a raster scanning manner. Patch ‘A’ is stitched from top and left side

with the rest of the skin image. Patch ‘B’ is stitched from all four sides because

there is no patch to be visited on its right or bottom side. Patch ‘C’ is stitched from

bottom side as there is no patch below it to be visited.
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5.4.2.3 Selection of Texture Source Template

Usually a texture sample image, ST , is provided to a texture synthesis algo-

rithm. However, in our case, to minimize the user interaction, a skin texture source

template has to be determined automatically. Since facial skin texture varies greatly,

for every patch to be inpanited, we use the skin texture nearest to that patch as

a source template. A texture source template is selected so that (a) it is of size

1.3×T , where we choose 1.3 because it is small enough for faster computation time

and big enough to provide a compatible texture source, (b) it does not overlap with

any of the wrinkle gaps and (c) it is nearest to the current patch to be inpainted.

Once an ST is selected this way, a suitable patch, T , can then be found within this

texture source template.

5.4.2.4 Compensation for Skin Tone Variations

This is a post-processing step and is applied specifically to the areas under

eyes. This is due to the fact that the skin under eyes is not only wrinkled, but,

frequently, has discolorations due to sagging, under-eye bags or dark circles as well.

Although image quilting provides seamless stitching of two patches, its main focus

is the overlapping areas δT of the two patches. In under-eye regions, the interior of

such patches may still present a significant skin tone difference. Therefore, a simple

stitching method cannot provide the needed adjustment to the overall tone of the

inpainted patch. This is illustrated in Fig. 5.17 where boundaries of several patches

stitched together are obvious due to the skin tone variation. We use the Poisson
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image painting tool [38] to compensate for this tone variation. In Algorithm I, once

the patch has be stitched, in case of eyes, the Poisson image editing is used as a

post-processing step to compensate for the tone variation. The difference in the

inpainting results with and without Poisson image editing is shown in Fig. 5.17.

5.5 Experiments

5.5.1 Eperimental Setup

Experiments were conducted on two sets of images downloaded from the Inter-

net. The first set consists of images of public figures, e.g. celebrities and politicians,

and was used to remove facial wrinkles. The second set consists of portions of facial

images of other people and was used to remove other skin imperfections. We had

to crop portions of interest (e.g. cheeks, forehead) from these facial images to hide

identities of subjects. All of the images were taken in uncontrolled settings and var-

ied in identity and age of the subjects, illumination and expression. Facial images of

public figures consisted of frontal pose whereas other images consisted of side poses

as well. All of the images were of high resolution, larger than 1024 pixels x 768

pixels, showing detailed texture of skin. Here we make an interesting observation

that facial wrinkles were more prominent in images of male celebrities than those

of female celebrities. Hence, most of our experiments were conducted on images of

male celebrities. Each image was cropped to have face only and then resized so that

the larger dimension was equal to 1100 pixels.
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One of the objectives of this work is to minimize user interaction. The only

user interaction was to provide polygonal areas of skin to be investigated. Fig. 5.18

shows two polygonal areas provided by a user to be inpainted for a facial image.

The only constraint for these patches was to contain skin and no other facial parts.

Since GMM-MRF detection is based on Gabor features which depend on image

gradients, the inclusion of facial features other than skin, e.g. hair, eyes, would

result in erroneous detection results.

Regarding parameters of the Gabor filter bank, the spatial frequency of the

sinusoid, f , was set to be 1
5
cycles per pixels. The variances of the Gaussian envelopes

were chosen to be σx2 = Lσx1 where σx1 was set to 0.5 and L was set to 25. The

value of K was set to be 180. In patch based image quilting the margin width, l∆,

was set to be equal to 1
3
lT whereas the patch size, lT , was set to be 11 pixels.

5.5.2 Results and Discussion

5.5.2.1 Removal of Wrinkles

Figures 5.20, 5.31, 5.24, 5.21, 5.30, 5.29, and 5.25 show the results of removal

of wrinkles in facial images of public figures. In all the figures, the original images

are shown in parts (a), the gaps resulted by GMM-MRF algorithm are shown in

parts (b) and inpainted images are shown in parts (c). The user provided areas

for these images contained wrinkles due to aging on forehead and around eyes and

mouth. Here we would like to mention briefly wrinkles caused by facial expressions.

Facial expressions not only highlight aging wrinkles but also cause extra folds on
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facial skin. These folds of expressive wrinkles are usually wider than than those

of aging wrinkles. When inpainting images for the removal of wrinkles, we make

a distinction between expressive and aging wrinkles. The removal of expressive

wrinkles may result in unnatural looking facial shapes. Fig. 5.24 and Fig. 5.25 show

two examples were wrinkles due to smiling were not removed.

Overall, our experiments demonstrate that most of the wrinkles and skin im-

perfections are detected and inpainted. However, a few with less contrast with the

surrounding skin are not detected. For example, small parts of wrinkles on the up-

per right sides of subjects’ foreheads in Fig. 5.21 and Fig. 5.25 remain undetected.

Similarly, very few wrinkles around the corners of the eyes in Fig. 5.31 and Fig. 5.24

remain undetected as well. Regarding areas under eyes, the algorithm removes most

of the wrinkles while maintaining the skin tone variation due to dark circles. This

effect was desirable as the goal was to remove wrinkles without other beautifica-

tion of the skin. The under eye dark circles remain unaltered due to the skin tone

compensation step described in section 5.4.2.4.

5.5.2.2 Removal of Moles/Dark Spots/Scars

We also applied our algorithm on other types of skin imperfections, e.g. moles,

dark/brown spots, acne, wound scars and freckles. These imperfections also appear

as a disruption in the surrounding texture. Since these images did not contain full

facial images to hide the identities of the subjects, these was resized to have the

maximum dimension equal to 500 pixels instead of 1100 pixels in case of full facial
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images. Figures 5.22 and 5.23 show results of removal of these imperfections for

subjects of different skin color. Overall, the detection is better in images where skin

imperfections have sharper color contrast with the surrounding skin. The imper-

fections are removed irrespective of the cause, color, size and shape. We observe

that acne or wound scars, moles and darker brown spots are detected and removed.

Lighter and smaller brown spots were the most difficult kind of imperfection to

be detected. Figures 5.24 and 5.25 show two subjects with darker skin and several

moles/dark spots on cheeks which are removed along with wrinkles by the inpainting

algorithm.

Fig. 5.27 shows two examples where some of the brown spots/freckles remained

undetected. In part (a), the freckles are over segmented due to their less color con-

trast with the surrounding skin. In part (b), a large brown spot is present along

with few smaller spots. A significant color variation is present within the larger

spot which creates inhomogeneous orientation texture field within the spot and not

equal to zero throughout the spot. Fig. 5.27 (b2) shows the inhomogeneous orien-

tation field. Hence, the areas within the brown spot with nonzero, inhomogenous

orientation field are given lower probability of being an imperfection according to

the factor h(j, θi) in equation (5.17) and are left out.
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5.5.3 Challenges

5.5.3.1 Effect of Age/Sagging Skin

Advanced aging skin shows signs of overall sagging of skin as well in addition to

rough texture and wrinkles. Facial images where subjects had sagging of skin along

with wrinkles posed specific challenges to inpainting. In advanced ages, wrinkles are

present very closely, and the area of the non-wrinkled skin is limited. This results

in the selection of the same patch as a source skin texture for several patches to be

inpainted and results in detectable repetitive patterns in the inpainted skin. Then,

the overall sagging of skin results in changes of facial muscles and shape which are

visible to the eye but not to the GMM-MRF algorithm and hence cannot be detected

and removed. Fig. 5.26 shows images of two subjects where most of the wrinkles

have been removed but the signs of sagging of skin around mouth, jawline and under

eyes remain.

5.5.3.2 Effect of Illumination

The images used in our experiments had a variety of illumination settings.

Overall, small illumination variations did not effect the detection results. However,

in cases of significant illumination variations e.g. due to pose or bright spots on skin,

the intensity changes due to wrinkles were masked by those due to illumination. Two

such examples are presented in Fig. 5.28. In Fig. 5.28(1a,1b), wrinkles are masked

by the dark areas due to low illuminatione and in Fig. 5.28(2a,2b), wrinkles are
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masked by the bright spots. However, in both figures, the wrinkles not masked by

illumination are correctly detected by the GMM-MRF algorithm.

5.5.3.3 Artifacts due to the Repetition of Patches

In few cases, the filling of gaps by the seamless stitching of patches resulted in

artifacts that could be detected by a user. For example in Fig. 5.20(c), Fig. 5.25(c)

and Fig. 5.26(2c), some of the inpainted areas can be detected due to the slight

change in the textures of the inpainted and the surrounding skin. This happens

when the same non-wrinkled, texture source image is the nearest to more than two

patches to be inpainted. The algorithm then uses the same source skin texture

to paint more than one patch. This results in the absence of randomness found

naturally in the slowly varying skin texture. The absence of the randomness and

the consistency of the painted texture looks like an artifact to the eye. It was

observed that a smaller patch size l∆ provided better, natural looking inpainted

skin texture as it is easier to find smaller non-wrinkled, source skin texture patches

to inpaint from.
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Figure 5.14: Removing a wrinkle with texture synthesis. (a) Original skin image. (b)

Template of the gap to be filled. (c) Skin Image after texture synthesis. Comparing

with original skin image in (a), note that wrinkle ‘A’ has been removed since it was

included in the gap whereas part of wrinkle ‘B’ is re-painted. (d) Stitching of skin

patches to fill the gap.

Figure 5.15: A close up view of wrinkle removal. (a) Original Image. (b) Several

wrinkled areas detected by GMM-MRF. (c) Inpainted image after removal of wrin-

kles. (d) Patches from regular grid fitted on one gap which were actually inpainted.
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Figure 5.16: Flow chart for the algorithm to fill gaps using constrained texture

synthesis.

Figure 5.17: Poisson compensation for color variation under eyes. (a) Inpainted skin

without Poisson compensation. (b) Inpainted skin with Poisson compensation.

Figure 5.18: Level of user interaction. Users have to select polygonal skin patches

to remove wrinkles/skin imperfections from.
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Figure 5.19: A typical graph for the objective function vs. iterations of GMM-MRF

function. There is little variation in the function for most images after 10 iterations.

Figure 5.20: Results of wrinkle detection and removal for a subject. (a) Original

image. (b) Detected wrinkled areas. (c) Image after wrinkle removal.
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Figure 5.21: Results of wrinkle detection and removal for a subject. (a) Original

image. (b) Detected wrinkled areas. (c) Image after wrinkle removal.

Figure 5.22: Results of detection and removal of skin imperfections including wound

scars, acne, brown spots and moles. (a) Original images. (b) Detected imperfections.

(c) Images after inpainting.
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Figure 5.23: Results of detection and removal of skin imperfections including wound

scars, acne, brown spots and moles. (a) Original images. (b) Detected imperfections.

(c) Images after inpainting.

Figure 5.24: Results of wrinkle and dark spot detection and removal for a subject

with darker skin. (a) Original image. (b) Detected wrinkled areas and dark spots.

(c) Image after inpainting, most of the dark spots are removed as well.
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Figure 5.25: Results of wrinkle and dark spot detection and removal for a subject

with darker skin. (a) Original image. (b) Detected wrinkled areas and dark spots.

(c) Image after inpainting, most of the dark spots are removed as well.
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Figure 5.26: Results of wrinkle detection and removal for a subject with sagging

skin. (a) Original image. (b) Detected wrinkled areas . (c) Image after inpainting,

most wrinkles are removed but skin sagging is visible.
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Figure 5.27: Challenges in the detection of brown spots. (a) Brown spots are over

segmented due to lower contrast with surrounding skin. (b) Brown spot is not

detected due to the inhomogeneity of texture orientation field within the spot as

shown in (b2).

Figure 5.28: Effect of illumination on detection of wrinkles. (1a,1b) Wrinkles are

masked by bright spots. (2a,2b) Wrinkles are masked by shadows.

Figure 5.29: Results of wrinkle detection and removal for a subject. (a) Original

image. (b) Detected wrinkled areas. (c) Image after wrinkle removal.

110



Figure 5.30: Results of wrinkle detection and removal for a subject. (a) Original

image. (b) Detected wrinkled areas. (c) Image after wrinkle removal.

Figure 5.31: Results of wrinkle detection and removal for a subject. (a) Original

image. (b) Detected wrinkled areas. (c) Image after wrinkle removal.
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Chapter 6: Conclusion

6.1 Summary

In this dissertation, we examined the image properties of wrinkles i.e. intensity

gradients and geometric properties and used them for several applications including

low-level image processing for detection, soft biometrics and digital inpainting for

removal of wrinkles in images. We presented our work on four problems briefly

summarized below:

We presented results of detection/localization of wrinkles in images using Marked

Point Process (MPP). Wrinkles were modeled as sequences of line segments in

a Bayesian framework. Wrinkles were then localized by sampling the posterior

probability using a Reversible Jump Markov Chain Monte Carlo (RJMCMC)

algorithm. We also presented an evaluation algorithm to quantitatively evalu-

ate the detection and false alarm rate of our algorithm and conducted exper-

iments with images taken in uncontrolled settings. The model can allow the

incorporation of wrinkles, otherwise difficult features to capture, explicitly in

future applications.

Next we presented a computationally efficient deterministic algorithm based on Ga-
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bor filters and image morphology to improve wrinkle localization results. We

used image features based on Gabor filter bank to highlight subtle curvilinear

discontinuities in skin texture caused by wrinkles and image morphology to in-

corporate geometric constraints of wrinkle curves. We conducted experiments

on a dataset of medium resolution images downloaded from the Internet. Ex-

periments showed that the proposed algorithm was faster as well as provided

better visualization results.

We presented our work on the investigation of forehead wrinkles as curve patterns

for their discriminative power as a soft biometrics. We experimented with

different metrics based on the shape and spatial proximity of the curves. The

recognition rate achieved by using only the wrinkle patterns and no other facial

features was promising. We also presented the recognition rates on automat-

ically detected wrinkles. This work presented a rudimentary analysis of the

wrinkle curves and the structure of a wrinkle pattern with the information of

relative positions/orientations of the curves was not included. Also a simple

algorithm for finding curve correspondences from two patterns was presented.

We adressed some of the limitations of current facial retouching applications. We

presented an algorithm incorporating Gabor features and texture orientation

field of facial skin in the framework of GMM and MRF representations to

detect wrinkles and other skin imperfections. Then, we presented an algo-

rithm based on examplar-based texture synthesis to automatically inpaint the

irregular gaps left by the removal of skin wrinkles/imperfections. Experiments
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on images downloaded from the Internet show the effectiveness of our algo-

rithms. With minimum user interaction, the algorithms were able to detect

and remove most of the wrinkles/imperfections.

We propose the following directions for extension of this work in future.

6.2 Future Work

1. Regarding MPP modeling, a more elaborate data likelihood term, based on

shearlet or wavelet transform coefficients, can be used to highlight the wrinkle

intensity gradients more accurately. The elements of the shearlet representa-

tion are basically a collection of well-localized waveforms, at various locations,

scales and orientations, and with highly anisotropic shapes. This makes the

shearlet representation particularly well adapted at representing the edges and

intensity gradients at various scales and orientations. In addition, a more elab-

orate prior model incorporating more spatial interaction rules can be proposed.

Finally, a technique to the estimates of MPP parameters can be investigated.

2. Regarding facial biometrics, a global curves pattern matching technique can be

proposed by (a) incorporating structural information i.e. positions/orientations

of curves relative to each other and (b) matching curves in feature/parameter

space (e.g. B-splines) instead of image domain. In addition, the curves pattern

matching can be assessed to do recognition in the presence of expressions or

pose.

3. Regarding removal of facial wrinkles using digital inpainting, the work can be
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extended to address the sagging of skin in more advanced stages of aging as

well as to improve inpainting to address the artifacts caused by repetition.

4. Given a facial image of a particular person, the goal of aging/age progres-

sion/age synthesis/age simulation is to construct facial image of the same

person at a later age. However, most of the age simulation methods model

facial shape variations in adults and elderly as an average, composite or proto-

type face for a specific age group or a specific range of difference in age instead

of learning of a person’s specific aging pattern. In future, spatial point process

modeling can be enhanced to spatio-temporal point process modeling to ana-

lyze the characteristic facial aging pattern of an individual’s facial wrinkles to

develop a facial aging model specific to that individual.
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