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We develop and test new methodologies to best estimatdl@@s on the
Earth’s surface by assimilating observations of atmosphericcG@xentration, using
the Local Ensemble Transform Kalman Filter. We perform QbsgrSystem
Simulation Experiments and assimilate simultaneously atmospheservations and
atmospheric carbon observations, but no surface fluxes of carbon. For the
experiments, we modified an atmospheric general circulation modélansport
atmospheric C®and coupled this model with a dynamical terrestrial carbon Imode
and a simple physical land model.
The state vector of the model prognostic variables was auginbgt¢he
diagnosed carbon fluxes CF, so that the carbon fluxes were updatede by

background error covariance with other variables. We designed tiipes of

analysis systems: a C-univariate system where CF errorswgrked only with CQ, a



multivariate system where all the error covariances argled, and a one-way
multivariate analysis where the wind is included in the carbar eavariance, but
there is no feedback on the winds. With perfect model experimententeay
multivariate analysis has the best results in, @@alysis. For the imperfect model
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With those, we obtained a high-quality analysis of surface ft®es. Furthermore,
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Chapter 1: Introduction

The atmospheric CQOconcentration has increased from about 280 parts per
million (ppm) in the beginning of industrial age to more than 380 ppm tddgyré
1.1). Since the released €@ the atmosphere traps long-wave radiation emitted
from the Earth’s surface, the global surface temperaturenbesased as much as 0.6
+ 0.2°C during the last century (Houghton et al, 2001). Thus, an dstnudtfuture
atmospheric C@concentration has been highlighted as essential for the foojet

the future climate.
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Figure 1. 1. Time Series of atmospheric COconcentration: (Samiento and Gruber,
2002; Barnola, 1999, and Keeling et al., 2000)

From the comparison of growth rates between the fossil fuelsemsgs and
atmospheric C@concentration, it has been found that only about half of the emitted

CO, remains in the atmosphere and the rest of it sequestered tgnthend the



ocean (Sarmiento et al., 2002). Moreover, the increase rate ofphiEnicsCQ has a
significant variability on interannual timescales (Figure 1.2). Thahm#ee capacity
of the land and ocean GQuptakes are varying substantially with time and are

strongly connected with the climate.
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Figure 1. 2. Time series of Growth rate in atmospheric C@Q(red) for past 25 years, and
increase rate of released C®by fossil fuel emission (yellow). Shaded green portion
stands for the total surface CQ uptake and blue vertical shading indicates EI Nino
years.

This is a highly nonlinear problem which has complex interactiams
feedbacks among all the components of land, ocean and atmosphere: zhe CO
remaining in the atmosphere is determined by the uptake of theutahthe ocean,
the atmospheric C{roncentration changes the global temperature due to its radiative
properties, and the global warming caused by the increaseddadave an obvious
influence on the capacity of GQuptake over the land and the ocean through

biogeochemical processes.



So far, many studies have been done with in-situ measurements intarde
understand the global carbon cycle. As one of those studies, ManningeakiagK
(2006) estimated global oceanic and land biotic carbon sinks from theureeeent
of atmospheric &N, ratio and CQ concentration over the period of 1989-2003.
Observations come from the three stations of Scripps Institutioncear@graphy
global flask sampling network, which have the longest records in tinorke The
OJ./N; ratio and CQ@ concentration can characterize the fossil fuel combustion,
terrestrial sinks and ocean uptake based on the knowledge in the dhmoueases.
This allows calculating how much of anthropogenic,@ission is sequestered by
land and by ocean quantitatively. The resultant 10-year ocaaditand biotic sinks
during each period of 1990-2000 and 1993-2003 show that the ocean uptake has
relatively constant value around 2.0 PgC/yr whereas the land bidtioncaink has
much greater natural variability, from 1.2 PgC/yr to 0.5 PgC/yhes€& values are
global total estimates.

In addition, there are studies to estimate the time-averagedi®@@s over
the ocean (Mikaloff Fletcher et al., 2007, Gruber et al., 2009). rAsst recent work,
Gruber et al. (2009) estimates the contemporary net air-seafl@Ousing an
inversion of interior ocean carbon observations using 10 ocean geneudhtmrc
models (Mikaloff Fletcher et al., 2006, 2007). The spatial distribution of ocE&hic
fluxes has been estimated reasonably for 23 oceanic regionsutijgssing in the
tropics, uptake in midlatitudes, and relatively small fluxes inhilgé latitudes even

though the uncertainty in the Southern Ocean is high.



On the other hand, the terrestrial carbon uptake still remainsyhugkkrtain
in terms of its spatial and temporal variations accordinghéoctimate. However,
Tans et al. (1990) has highlighted a terrestriap G@ake in the northern hemisphere
to explain the north-south gradient of atmospheric, €@nhcentration. Moreover,
there is much research to emphasize understandings@fdestration over the land
(Bousquet et al., 2000; Gurney et al., 2002; DeFries et al., 2002; Rodentagck et
2003; Friedlingstein et al., 2006) in order to figure out the interanraradbility of
atmospheric C® (Figure 1.2) and to project the potential reservoir of, @Othe
future.

One of the most important issues on the carbon cycle is the tenaporéhe
spatial pattern of COsources and sinks at the Earth’s surface. It is necetssaeg
those patterns with a finer resolution enough to understand the imeractd
feedback between the climate change and the biogeochemicalsgmcekhis is an
essential question in order to understand the changes in surfadeix& under the
current climate and to project the future climate.

Thus, the purpose of this study is to explore the feasibilitgstimating
surface CQ fluxes by assimilating remotely sensed atmospherig Ql§3ervations
using one of the advanced data assimilation methods, the Local EasBra$form
Kalman Filter (LETKF; Hunt et al., 2007). We investigate thalysis system to
estimate surface COfluxes and atmospheric GOconcentration as well as
atmospheric variables simultaneously on a fine temporal and spedial Because
this is the first test of a new methodology, this work isitkoh to simulated

observations for an Observing System Simulation Experiment (OSSHly if the



results are promising in this simple approach, we will startkivgr with real

observations.

1.1. Problemsin the estimation of surface CO, fluxes

There is a direct observation network of surface @@es, FLUXNET (Figure 1.3),
a global collection of micro-meteorological flux measuremetesssi The flux tower
sites measure the exchanges of carbon dioxide betweenriaresisystems and the
atmosphere. However, the observed fluxes are representative ©famgang from
square meters to square kilometers. Besides, there are no dtamettwods for
aggregating flux data into various temporal scales (daily, mgntinlyannual time
periods) so that there are various methods used at each sitenfuraé scaling
(http://www.fluxnet.ornl.gov/fluxnet/index.cfm). For these reasons, dhiaset was
unlikely to be directly used for the global analysis of surfaC® fuxes with an
atmospheric global circulation model, although it could provide goodniation for
the validation of the resultant analysis. Recently, Stoclkdil.ef2008) attempted to
use this dataset to a land-surface model CLM3.5 which has been coithi®&CAR
CAM3.5 model. Data from 15 sites are used to improve the model handtady
suggests that FLUXNET is a valuable tool to develop and validatesiafate model.

In addition, atmospheric GQroncentrations have not been observed densely
enough to estimate the global distribution of JC&urces and sinks. In situ
measurements of G@oncentrations at ground stations have been used to monitor the

carbon dioxide in the atmosphere (GLOBALVIEW- £@ata from ESRL/NOAA,;
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Figure 1.4). The network of surface stations provides high precisfonmation
about variations of COfluxes in the global scale. This dataset has been used for a
number of previous studies on the carbon cycle and hence it has ceuqttibeixtend

our understanding on this field. However, the observations are Bp#tialsparse

and temporally heterogeneous for representing the regional easiaif surface CO
fluxes and understanding surface {Xihks and sources in finer scales.

Recently, more C® estimations have become available through remote
sensing measurements such as the Atmospheric Infrared Sound&r;, @tiRhine et
al.,, 2008), the Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY:; Buchwitz et al., 2005), the £d&dicated Orbiting
Carbon Observatory (OCO; Crisp et al., 2004) and the GreenhouseOjssrsing
Satellite (GOSAT; Maksyutov et al.,, 2008, Hamazaki, 2008). Both QOO
GOSAT were designed specifically to estimate the totalnanlof CQ mixing ratio
which has a high sensitivity to the g@ear the surface. Unfortunately, the launch of
OCO failed, while GOSAT was successfully launched and shouid distributing
data in mid 2009. These observations are expected to provide valualpheaitibn
on global CQ, much more comprehensive than the measurements (such as ground-
based flask data) available so far.

In early studies on CQOsources and sinks, atmospheric inversion methods
have been applied using an atmospheric transport model. The point-based
measurement of ESRL/NOAA (GLOBALVIEW- GPhas been used for inferring
surface CQ fluxes within a Bayesian framework (Gurney et al., 2004; R6édénétec

al., 2003). The atmospheric transport model uses wind fields frouea ganalysis,



so that the impact of possible wind errors in the, @@nsport is effectively not
considered. Since the available spatial coverage of concentratsors aedt enough
to constrain the flux estimatea;priori information about the fluxes has been pre-
calculated from other sources of information, such as indepentEagurements or
model simulations. Then, the system determines the surfagdi€lid® minimizing
the difference between modeled and observed concentrations and betedetegr
fluxes and their prior estimates. With this optimization, iaide to reduce the
uncertainties in the surface ¢®ux fields from the a-priori estimates. The spatial
and the temporal resolution of the resulting estimates ardirsited, due to the ill-
posedness of the problem and to the limited number of available nmeastse
(Gurney et al., 2004).

In an alternative approach to inversion methods, data assimilatiomdaes
have recently been used to optimize the use of the observatioree fanalysis of
surface CQ fluxes on the globe. Two advanced methods for data assimilation, 4-
dimensional variational data assimilation (4D-Var) and Ensemblend€a Filter
(EnKF) are being used or considered for use in operational numerezher
prediction centers. Both of them have been considered for the éstirn&ttarbon
surface fluxes, and this thesis is devoted to the use of aybetycefficient EnKF
method, the LETKF. As described below, the applications of dataiktsn so far
have been “univariate”, i.e., they perform the analysis of only carboables and
assume the winds are given from an independent analysis. By toimrasur
approach we propose to perform “multivariate” data assimilatassimilating

simultaneously both the carbon variables and the standard atmospheaigegari



including winds, an approach that we will show allows estimating wimgértainties
and “errors of the day” and therefore improves the carbon variables analysis.
Peters et al. (2005) applied an ensemble Kalman filter techiiiEn@RF;
Whitaker and Hamill, 2002) for estimating weekly £fuxes on the surface. They
assimilated ESRL/NOAA GLOBALVIEW-C® data, and used the forward
integration of TM5 chemistry transport model for the J@recast. The transport
model was ran offline (univariately) with the meteorologicalds from the European
Centre for Medium Range Weather Forecast (ECMWF) model. fate wector of
the analysis contains surface £fluxes at multiple time steps since observed, CO
concentration variations contain a history of sources and sinks. Unksorface
fluxes are optimized with atmospheric observations, linked togetheughrthe
atmospheric transport model, which is the observation operator wittensamble-
based data assimilation system. That is, the Kalman gainxnustermines the
surface CQ flux fields to minimize the combination of the observation errorthe
surface flask measurements and the model errors. Here, the modelreremsumed
to be caused by the errors in the surface @ fields, which force the transport
model, while the system assumes a “perfect” transport. Then, the Kalmanagax m
is used to update only the mean state vector of surfagdl®@s. Instead of taking
account of uncertainties from the ensemble background, the covarianderst of
surface CQ fluxes is prescribed as a 3D variational technique. Thus, trethioch
could not take the advantage of ensemble forecast of estimatiogs“ef the day”
with respect to the surface @@uxes. This means that their approach misses an

important advantage of ensemble Kalman filter techniques. Althoughutidate a



prior estimate from the analysis, the system was inigdlizy a flux estimate from
the CASA biosphere model (Randerson et al., 1997) over the land and tiraSraka
et al. (2002) ocean fluxes. This work was the first trial toamsensemble based data
assimilation technique for estimating surface,Gl0xes, and the results provided
satisfactory flux estimates for the relatively largeioagl scales resolved by the
surface flask measurement including aircraft measurements.

Another study with the Ensemble Transform Kalman filter techn{&I&F:
Bishop et al., 2001) has been examined by Feng et al. (2008). This clseistry
transport model and scene-dependent averaging kernels of the @&iraments
(Crisp et al.,, 2004) as an observation operator to assimilate the By CQ
observation from the OCO. This is an Observing System Siioil&xperiment
(OSSE) so that it assimilates simulated observations. Tlagle rthe state vector
consist of the surface GOfluxes of 144 regions on the globe at the current
assimilation time step but also at the previous 11 time stepsarsiothe approach
taken by Peters et al. (2005). The basic concept of optimizatiaiso like that in
Peters et al. (2005), calculating the adjustment to the background basthe
difference between model and observations and their uncertaintiesr the
ensemble-based data assimilation framework. However, the anafysstainties
have been estimated by the ensemble Transform Kalman Hgtertlam, which is
different from Peters et al. (2005) that used prescribed analysestainties. In this
experiment, they start frora-priori fluxes estimated as having similar distribution

but values 80% higher than the “true value”, and could reduce uncertamties
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flux estimates by 20-70% on the 144 regions overall, compared to {iréeora
uncertainties.

On the other hand, Baker et al. (2006) developed a four dimensional
variational data assimilation approach, 4D-Var, to address the pralflesurface
CO, flux estimation, and also tested it through the use of OSSEsy dptimized
time-varying boundary values of surface Cilixes over a long measurement span
by the adjoint-based iterative descent method. The cost funct®refimed by the
combination of a difference between the simulated, @Oncentration and the
observed C@over the analysis windova-priori errors of atmospheric G@nd CQ
fluxes, and dynamic constraint between the, €Gncentration and the flux. As a
result, they could correct the errors in a priori estimate whin the observation
errors and a priori flux covariance are assumed to be known pgrfaatd the
transport model errors are ignored. From experiments they pedototest the
sensitivity to the observation error and a prior constraint on the fluxes, they cahclude
that the accuracy of “bottom-up” transport model is important evemenwthere are
dense observations of GO

Recently, the European GEMS (Global Monitoring for Environment and
Security) project has been building a comprehensive monitoring aedating
system for atmospheric composition on both global and regional scales
(Hollingsworth et al., 2008). For the data assimilation of cadyote in this project,
it introduced a two-step process such as the atmosphericiarfatsand then a flux

inversion based on 4D-Var approach.
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Since the observation density of atmospheric, GOncentration should
increase with upcoming satellite data in addition to increasirfgcgimeasurements,
it is not computationally feasible to use the direct inversion nmgl@pproach that
has contributed to the understanding,&0Ources and sinks on the global scale at the
earlier stage (Gurney et al. 2004; Rddenbeck et al., 2003). As thenoexising
methods, either ensemble Kalman filter or variational datandasbn approaches
should be the technique of choice due to the computational efficierarydition to
many other advantages. So far, previous studies from both advanced data
assimilation methods have usagriori estimates of surface G@uxes, and none of
them deals with the transport error of atmospheric, €@nhcentration forced by
surface CQfluxes.

For our work, we introduced a new technique for the carbon cycle data
assimilation using the Local Ensemble Transform Kalman HiHent et al., 2007),
in a way that does not need transport inversiora-priori information. In our
approach, we assimilate simultaneously all the atmosphericblesiaand CQ
variables instead of using the reanalysis data of atmospheriablesri when
assimilating CQ@. From the background state of ensembles, we can deal with “errors
of the day” and further allow the error covariance among thardigal variables to
reflect the distribution of uncertainties caused by each ofblagaThe details of the
new method are described in Section 1.3.

This work is a part of the project on “Carbon Data Assinafatwith a
Coupled Ensemble Kalman Filter” supported by the Climate Chd&hgdiction

Program in Department of Energy. The objective of the projeéotastimate surface
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CO;, fluxes by assimilating atmospheric €@bservation from space, and the research
has been organized into two components: one is a simulation (GppE)ach to
develop and to test various new approaches in data assimilatran thei LETKF
coupled to a small primitive equations global atmospheric model, arathtbeis an
application of methodologies tested by the simulation approach coulpéng=TKF

to a higher resolution Community Atmospheric Model (CAM) and witl, raot
simulated observations. The work of this thesis is devoted to thelasiom
component in this project. Thus, all the experiments here are \@igp&ystem
Simulation Experiments (OSSEs). Dr. Junjie Liu is carrying tbet real model,
CAM3.5, real observations component, AIRS and GOSAT, of the project timele

direction of Prof. Inez Fung (UC Berkeley).

1. 2. SPEEDY-C and SPEEDY-VEGAS

In the OSSEs, there should be a long model integration, known as a “nature
run” assumed to be the “truth”. From the nature run, we can sentied
observations which will be assimilated in the analysis. On the b#mel, we need to
make forecasts to create the background for the analysis.sarhe model can be
used for both the nature run and the forecast model, or it is possitse todifferent
model for the forecast from that for the nature run. If wethissame model for both
the nature run and the forecast, and the forecast starts frompettuebed initial
conditions that are not the same as the nature run, then theudemdirthe forecast
from the nature run can be attributed as coming only from the iodraditions. On

the other hand, when we use a different model for the forecastHudrfot the nature
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run, model errors should be considered as well in addition to the eaosed by
initial condition. These experimental designs provide a very gooddasdsess the
performance of a new data assimilation method because in 8&,Q@@8like in real
life, we know the truth and we can control the errors.

In this study, we modified an intermediate-complexity atmosphgziteral
circulation model, SPEEDY (Molteni, 2003), to simulate atmospher@, C
concentration with a given forcing of surface Lfluxes. For the perfect model
experiments, the modified SPEEDY is used for both the nature ruthamhsemble
forecast. Then, we coupled a dynamic terrestrial carbon mod&A8EZeng et al.,
2005), and a physical land surface model, SLand (Zeng et al., 2000)S&EEDY
with atmospheric C@prognostic. The coupled atmosphere-vegetation-land model is
used for the nature run while the modified version of SPEEDY comtittumake the
ensemble forecasts in the imperfect model experiment. Theafsir model does not
make any changes in surface {fldxes since the surface G@uxes are the forcing
term constant with time. The nature run, however, calculateuutfece CQ fluxes
every six hours through the interaction among the atmosphere, ttheaad the
vegetation. Thus, the changes in the surface {L@ analysis only come from the

data assimilation, not from the forecast model.

1.3. LETKEF for carbon cycle data assimilation

1.3.1. Formulation of LETKF

LETKF (Hunt, 2005, Hunt et al., 2007) is an advanced ensemble Kalman filter

data assimilation scheme. It is a square-root ensemble filter in whiobtkevations

14



are assimilated simultaneously to update the ensemble meam thbilensemble
perturbations are updated by transforming the forecast perturbatiomsgh a

transform matrix term as in Bishop et al. (2001). The analysiene independently
at every grid point using observations from a local region, ssthisme is expected

to be efficient for parallel computing systems.

b@i) _ b(i) -
Ya = H[g]x[g] =1, ...,k (1.1)
b b(i b
Yig = {y[él) _y[g]} (1.2)
Xy = D08 = X0y | (1.3)

Here, xg(]i’ is the i-th member of ensemble forecasf, the observation operator,

and y{ the i-th member of background observation ensemble. Subscript [g]

indicates that the values are estimated globally and the dimrge the vectors
represent the mean of ensembles. Let the number of ensemblestfdye&a the
number of observatioris the dimension of state vector First, the analysis system
calculates the ensemble forecast on the observation locationg Hisithe global

observation operator (Equation 1.1), and then computes the observation indoement

every ensemble membeY;

o (Equation 1.2). On the other hand, the deviation of

each ensemble forecast from their mean is calculated (EquaBpnThese processes

are done globally initially before going to the computation for each fzatah.

Now, the analysis mean statEaQ and the analysis error covariancé®() are
calculated by the ensemble forecast and the observation locdted @ach of the

local patch (Equation 1.4-1.6).

X =X + X°K (y° —y°) (1.4)
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K=[(Y))TRIY®+(k-DI]H(Y")'R™ (1.5)
- 1
X2 = X [(k-1)P?]2 (1.6)
P =[(YO)RHY 4 (k-1 [ (1.7)
Here, K is the Kalman gain matrix in ensemble space, Rnsl the observation
error covariance, an®?®is the analysis error covariance matrix in the ensemble

space. This is the system to analyze the state vedattdrich contains normally the

meteorological variables such as wind, temperature, humidity and surfaagg@ress

1.3.2. Carbon cycle data assimilation: multivariate vs. univariate asalys

The state vector in the analysis is augmented by adding tfecesuCQ
fluxes, which are then updated through the background error covariaraygraach
similar to parameter estimation (Baek et al., 2006). In theuiatron of LETKF,

background error of surface G@uxes are not involved explicitly in calculating the

Kalman gain matrixK , since they are not observed (Equation 1.5). But, background
errors of surface COfluxes result in background error of atmospheric ,CO
concentration. That is, the background errors of atmospheric@t@entration are
partially a result of the errors in surface £fOrcing. ThusK is determined in a
way to minimize the errors of other dynamic variablesudicig the atmospheric GO
as well as the C&Xlux error.

According to choices of variables which are included into the géatti®r, X, ,
with surface CQ fluxes, various ways to estimate surface,Gldxes are possible.

When we make an analysis state vector with only the atmosph@sicabcentration
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in addition to the surface GOfluxes, the Kalman gain is calculated by only
assimilating atmospheric Gbservations univariately. As mentioned before, the
errors of surface COfluxes implicitly affect the computation of the Kalman gain
matrix. Then, the surface G@uxes are updated by multiplying a background error
covariance matrix of atmospheric €@nd surface COfluxes to the Kalman gain
matrix (Equation 1.4). If the analysis state vector is designatst include the wind
fields, in addition to atmospheric G@nd surface COfluxes, then the analysis can
reflect the background error covariance among those variablestitpate surface
CO, fluxes multivariately. In our analysis system, atmospheaciables are
assimilated simultaneously using the simulated rawinsonde obses/ats a version
of LETKF used in Liu (2007).

In order to see how the background error covariance of the atmospheric
variables with the surface G@uxes effects on the analysis of surface,GlOxes,
we designed various data assimilation techniques into the LHEmdkework and

those are introduced in Chapters 2 and 6.

1.3.3. Analysis in a presence of model error: bias correction and adapt®imfl

Since there is no model to represent the true state of atmospbeditions
perfectly, it is necessary to deal with the errors of faseenodel in reality. The
model bias is due to the discrepancies of a forecast modeaswchoarse resolution,
imperfect parameterization, etc. This study applies the loweasional method
introduced by Danforth et al. (2007) to the bias correction of atmeospheric

variables.
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In practice, the ensemble forecast tends to underestimate théaintgen its
state estimate because of model errors and nonlinearities. |ddds to the
underestimation of the uncertainties from the forecasts. As ut,réise analysis
overfits the background state estimate and gives too littlehiveagthe observations.
This inconsistency becomes larger over time, so that the infiormaf observations
is less and less used by the analysis and, eventuallydd teaan analysis that has
little relationship with the observations, known as “filter divergénc&hus, it is
necessary to inflate the background covariance (or the anabsasiance) during
each data assimilation cycle to increase a model error covariance.

For the covariance inflation, multiplicative inflation has been agpin this
work (Anderson and Anderson, 1999). It is carried out by multiplying the
background perturbation from the ensemble mean by a constant lfEger than
one. It is common to tune the inflation parameter manually in dalélecide a
reasonable value for the analysis system. But this tuning im&xpeand becomes
further infeasible if the inflation factor should depend on the regionadable.
Thus, Li et al. (2009) introduced a method for adaptive inflation estima Since
the estimation of adaptive inflation is dependent on the observation, ¢éh®nsaper
also estimates the observation error simultaneously. The methpdmiegented in
this paper has been found to be essential to the carbon cycledatidaéien because
it is necessary to deal with the inflation for the atmosphebg €&parately from the
meteorological variables.

Furthermore, we also consider the inflation for the surface filt®es which

do not have observations. The adaptive inflation of Li's paper is ctethéo the
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existence of observations so it cannot be applied to estimataftaton for the
surface CQ flux forecast without observations. Thus, we applied a simpldiorila
method to surface CQOluxes. It is basically to make the ensemble spread of amalys
correspond to the background ensemble spread at each analysisitiiar to

Zhang et al., 2004).

1.4. Outline of the thesis

Chapter 2 has the description of the model which we modified for tidg and
the three types of data assimilations for the carbon cgcdeei LETKF framework.
To test the performance of a new data assimilation sysktemexperiments are first
done under the simple scenario given by the perfect model assumptiert, N
Chapter 3 shows how a coupled atmosphere-vegetation-land model was temstruc
to estimate the time-varying surface £fluxes over the land. In Chapter 4, the
imperfect model experiments are carried out with a method fercoiaection, and an
adaptive inflation and observation error estimation. The advanced adafiavien
techniques are also applied to the perfect model simulation in CHaptérom the
findings in Chapter 5, we introduce a new multivariate data dasion system in
Chapter 6 and see the effect of “variable localization” in tHETKF data
assimilation. Chapter 7 has a summary and lessons we leandedisausses some

future research directions.
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Chapter 2: Carbon Cycle Data Assimilation in the Peect

Model Simulation Using SPEEDY-C

2.1. Introduction

In reality, no forecast model is good enough to completely ignodeherror,
and we will have to address this serious issue, especiallydararbon cycle. But, in
this chapter, we want to address the pure performance off amaysis system for
CO, variables with no model error or bias. To do this, we run “iddntige”
Observing System Simulation Experiments (OSSESs) using & smaplel with CQ.
One run, called the “nature run”, serves as the “truth” forettperiment. Since we
will use the same model for the truth and for the forecast, ther@ model error. A
second run, using an ensemble data assimilation system, can thenpaeecbta the
truth. Thus, we build one forecast system for,@8d use it to create nature run as
well as to run the ensemble forecast for a data assimilabidhas it allows us to
avoid the effects of model error for the moment.

In order to simulate the GQ@oncentration in the atmosphere, we modified an
intermediate-complexity atmospheric general circulation mod@EEDY (Molteni,
2003). Next, we investigated a new analysis system for thercaycle and tested it
under the perfect model simulation to assess the performance cleadyabsence of

model error.
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Section 2.2 introduces the model we chose and a detailed description of
modification we have done. Section 2.3 introduces the three types a@isdatalation
we have tested in LETKF framework. Section 2.4 describes theiegoeal design.
The results are shown in Section 2.5. Finally, there is sumofaGhapter 2 in

Section 2.6.

2.2. Model: SPEEDY-C

The SPEEDY model (Molteni, 2003) is a global atmospheric, primitive
equations general circulation model (AGCM). Its simplified ptyisi
parameterization schemes are computationally efficient, but amairthe basic
characteristics of a state-of-the-art AGCM with complexspdsy The version used
for this study has triangular truncation T30 (corresponding to about ka®0
horizontal resolution) with 7 sigma levels.

The original version of SPEEDY has five dynamical variablesiak (U) and
meridional (V) wind components, temperature (T), specific humiditygnd surface
pressure (Ps). To use the model for this study, we added twablesri one is
atmospheric carbon dioxide (GQOwhich is treated as a tracer, so that it is affected
only by the two processes of advection and diffusion, and the otheuidaae flux
of carbon dioxide (CF) which is a source and sink of the atmospharimorc
Basically, CF is not changed in the model and only plays theafofercing the
atmospheric C® Later, it will be updated only by the analysis step of data
assimilation. Chemical processes for the atmospheric carlwmdelihave been

ignored since C®is one of the inert gases in the atmosphere. Moreover, there is no
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feedback between the integrated £0d radiative properties. Thus, the model reads
the surface C®fluxes as a forcing and allows it to be transported and mixed
(Equation 2.1). From now on, the SPEEDY model that contains these caléiaal

variables will be referred to as “SPEEDY-C".

oCo,

+3(CO,) =CF 2.1)

Equation (2.1) shows the way to calculate the tendency of atmospl@rim C
SPEEDY-C, where3(CO,) represents the atmospheric 3-dimensional trangpuait

mixing, and the forcing ternCF, on the right-hand side of Equation (2.1) indisate
the surface fluxes of GO In reality, the forcing should include fossikfuemission,
land surface fluxes, ocean fluxes, and fluxes duartd use changes. In this chapter,
since we are testing the ability of data assinulato estimate surface G@uxes, we
choose a very simple scenario: the source of sr@&@ fluxes is only caused by
fossil fuel emissions, which we assume to be comgtatime (Andres et al., 1996).
Due to a problem with SPEEDY dynamics, based oneatsyd discretization,
the total amount of atmospheric €@ not conserved exactly by atmospheric
transports, and there is a small but significamk sof CQ, concentrated in the
Southern Hemisphere stratosphere. Since lack ofecvation is a well known
generic problem, especially for spectral models| &ns desirable to conserve total
CO,, we opted for making a simple correction. Aftee tnodel reads the surface £O
flux fields, they are converted to the atmosph€&@ and then transported and mixed
in the atmosphere. Thus, we could calculate howchmthe total amount of
atmospheric C®should be with the given forcing of surface £ilix fields. We

also computed the actual amount of global atmosphe®O, in the SPEEDY-C
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simulation. From this, we could estimate the rafithe total amount of atmospheric
CO, which the model should have to what the modelalgtinas. By multiplying the
atmospheric C@by this ratio at every grid point and every tinteps we can get an
increase of simulated atmospheric Oncentration with a given forcing. Although
this is not an ideal correction, it maintains comagon of total CQ, but with a small

global redistribution.

2.3. Three types of data assimilation techniques

So far, estimations of surface fluxes of carbonenbgen made univariately,
with inversion methods or with data assimilatiostsyns that assume that the wind is
given by a reanalysis, and do not couple,@®@d wind errors (Chapter 1). Here we
will compare such univariate approach with a maltiate approach in which the
estimated errors of GOare coupled with the other atmospheric estimatedrse
within the background error covariance. As famasknow, this is the first time that
this has been done, even in simulation mode. SmeeCQ errors estimated in the
EnKF data assimilation may have large samplingrerrave found it desirable to
create a “one-way” multivariate system in which Gfrors do not provide feedback

to the winds.

2.3.1. Carbon-univariate data assimilation

For the carbon-univariate (C-univariate) data assimilation, atmospheric
CO, concentration and surface g@uxes are updated only by these two variables,

and are not affected by other atmospheric variablEsat is, there are two separate
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analysis systems: one for the atmospheric variabtes the other for the G@elated
variables. These two systems never talk to eduodr @luring the analysis (similar to
the univariate C@assimilation that assumes winds are given by amatmanalysis).
The system for the atmospheric variables has dynarariables (state vector)
x, =(,V,T,q,Ps), while the one for the COvariables hax, =(CO,,CF) as a
state vector in the analysis cycle (Equation 161}1.Figure 2.1 is a schematic plot to
show the background error covariance matrices frsethose analyses. Diagonal
components of those matrices indicate the erraanee of each variable while the
off-diagonal components are the correlation betwten variables. Black boxes
indicate that there is no correlation allowed be&mvéhe variables. From this, the
pink box of Figure 2.1(a) allows only the backgrduerror covariance between
atmospheric C@and surface C&Xluxes to produce their analyses while the eradrs
all atmospheric variables are coupled in a greendbédhe plot. As indicated above,
this approach is similar to the “carbon-univariadgproaches that have been used so
far to perform carbon data assimilation (Peteid.eR005; Baker et al., 2006; Feng et
al., 2008) or inversions (Bousquet et al. 2000;@yret al. 2004; Rdenbeck et al.,

2003).

2.3.2. One-way multivariate data assimilation

Next, we consider ane-way multivariate data assimilation in which the
atmospheric C® concentration and surface g@uxes are updated by these two
carbon variables as well as the wind fields, wttie wind field in addition to other

atmospheric variables such as temperature, spéuifiadity and surface pressure is
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CF C

(@)

CF

Update U, V, T, q, Ps

CF C

(b)

CF

(c) =———————————

Update U, V, T, g, Ps, C, CF

Figure 2. 1. Schematic plots of the background error covariance atrix for (a) C-
univariate, (b) 1-way multivariate, (c) multivariate data asamilations. (C: atmospheric
CO,, CF: surface CGQ, fluxes)
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not affected by these two carbon-related variabfesindicated above, this is done to
minimize spurious feedback due to sampling ernothe estimation of C£errors.

This method also has two analysis systems, and system for the
atmospheric variables is exactly same as one irCHumivariate data assimilation.
For the CQ variables, however, we made the state vector,6f (U,V,CO,,CF) to
allow the flow-dependent errors estimated for thedwields to provide feedback to

the CQ variables. However, the wind field from the as&ywith x, is discarded
and we update only GCand CF from the system af,. That is, the pink box of

Figure 2.1(b) includes the background error of whod we only save the analyses of
CO, and CF from the pink box. The wind fields are afed by the green box as in
the C-univariate analysis. Thus, information froine wind field is given to the

carbon-related variables but the information fro@,@ariables does not cause any
change in the analysis of the wind field as welbdger atmospheric variables. This
method was designed because the atmospheragdd€ansported and diffused by the
wind field, but is not influenced by the other aspberic variables in the forecast
model, and at the same time it prevents samplingin the CQ estimation from

contaminating the winds.

2.3.3. Multivariate data assimilation

In this method (which is the standard approach waatld be taken in EnKF
systems), all the dynamical variables are includezhe vectorx so that the analysis
of every variable is determined by the backgroumebrecovariance among all

variables. In other words, there is only one asialygystem and the state vector
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isx=(U,V,T,q,Ps,CO,,CF). Thus, the background error covariance matrixthes

shape of Figure 2.1(c).

With this methodology, we allow the atmosphericG@be analyzed by the
updated background error of wind field simultandpusot using reanalysis winds
like most of the other previous studies. Furtheenmowe can assimilate
simultaneously all the atmospheric variables ang @Diables. This is because we
do not use any inversion to calculate the backe¢tajy of atmospheric GO
concentration in order to estimate surface, @@xes using the wind fields. Most of
research on this issue uses the inversion methotin(. 2002) which requires the
wind fields, mainly from a reanalysis, in order éstimate surface COfluxes,
whereas we do assimilate atmospheric, €oncentration and other meteorological
variables simultaneously so that we calculate the@mién gain matrix with a

background error of all the dynamic variables idahg surface Cofluxes.

2.4. Experimental Design

Under the perfect model assumption, the SPEEDY-G used to create a
“nature” (truth) run. We create observations frims nature run by adding random
perturbations. At the same time, SPEEDY-C withmiegnostic variables including
atmospheric C@concentration is used as the forecast model irctwthie CF over
land is updated only by the analysis. Again, theedast model does not have a

dynamical forecast equation for CF, so the forech§lF is persistence (starting from
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Figure 2. 2. (a) A true state of surface C®fluxes which includes only anthropogenic
emission as a constant forcing with time, (b) Initial condition bsurface CO, fluxes
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the analysis value). All the experiments hereyanktlude fossil fuel emission

(Andres et al., 1996) with a total of 6 PgC/yr asoastant forcing with time. The

spatial distribution of this forcing is shown ingkire 2.2(a). This is what we want to
estimate through the analysis.

The initial conditions of (U, V, T, q, Ps, GIdor the 20-ensemble forecast are
created by adding random perturbations to a statiee truth run which were chosen
randomly in time. The standard deviation of thed@n perturbations used for the
initialization depend on the scale of each variablen/s for U and V, 1 K for T, 0.1
g/kg for g, 1 hPa for Ps, and 1.0 ppmv for COhe initial condition of the surface
CO, fluxes has been generated separately as follovesn f20 fields of CQ
concentration in the lowest three layers at anhittanes, we subtract the one-day
prior state of C@ concentration, and then convert the units of ike& ffrom the
ppmv/day to the kg/fts (Figure 2.2). This approach was found necessacause
initializing the fluxes with random numbers (as first attempted to do) failed to
converge to satisfactory results. As suggested Unya#@ski et al., 2006, when the
spatial scale of initial perturbation is too smt@llrepresent physically meaningful
signals, EnKF can result in erroneous solutionso avoid underestimating the
uncertainty in the ensemble space, a constant SEptoative inflation was applied.
This value had been previously found to be optifmathe atmospheric variables data
assimilation (Liu, 2007). The assimilation cyadlee is every six hours.

The observations for all the experiments were satedl by adding random
perturbations to the “nature” run, with the samegnide of random perturbations

as those used for the initial conditions. For atospheric variables, observations
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have the spatial distribution of the rawinsondevoek, where coverage of grid points
is about 9 % globallfFigure 2.3). Atmospheric GQoncentration is observed at
every other grid so that the coverage is about #b%e horizontal, an optimistic
assumption because we wanted to explore the paltefitEnKF first in a favorable
scenario. According to the vertical resolution dbCobservations, we performed
three kinds of experiments: “ALL LEVELS”, “OCO + IRS”, and “OCO”

experiments with different vertical resolusions.

OBSERVATION STATIONS (REALISTIC NETWORK NOBS=415)
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Figure 2. 3. Distribution of rawinsonde observation network.

2.4.1. “ALL LEVELS"” experiment
At first, the atmospheric CQconcentration was assumed to be observed at
every vertical level. For this case, all threeadassimilation approaches introduced

in Section 2.3 were tested.
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2.4.2. "OCO + AIRS” experiment

Since the OCO instrument was known to be most semsio the CQ
concentration in the lower troposphere (Crisp et 2004) and C@retrieval from
AIRS (Maddy et al., 2008) has instead the largemtssivity in the middle
troposphere near 7~9 km in the vertical (Figurg,2l#e experiments in this section
were designed to have the £Observation at only two layers, the lowest layer
(6=0.95) and at the mid-troposphere=(.34). For this case, only the one-way
multivariate data assimilation was performed.

These experiments were performed before the OCfixhatailed, but since
we will still have access to GOSAT measurementsr(&izaki et al., 2008) and other
prospective satellite measurements which have sos@nost sensitive to atmospheric

CO, near the surface, this experimental set-up ilsistgortant.
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Figure 2. 4. Representative vertical averaging kernels fotcolumn CO, soundings using
near IR absorption of reflected sunlight in the 1.61-Im C@band (blue) and thermal IR
emission near 14.3 Im (red). Thermal IR soundings are lesersitive to near-surface
CO; because of the small surface—atmosphere temperature contragtrisp et al., 2004)
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2.4.3. "OCQO” experiment

In order to see how important it is to have goodasueements near the
surface for the analysis of surface L£L@uxes, we only assimilate the GO
observations on the lowest layer where OCO was kntmabe most sensitive. For

this, only the one-way multivariate data assimiliatwas done.

2.5 Results

We want to point out that the initial conditionsfrface CQfluxes used here
does not include ang-priori information. Figure 2.2 shows that the initiatfage
CO; fluxes have not only a different spatial pattemt &lso an inconsistent magnitude
compared to the true state. This is in contraminfiother previous studies which

require a reasonable initial estimation for surf@s fluxes.

2.5.1. Performance of SPEEDY-C

In order to see whether SPEEDY-C simulates atmasp@®©, reasonably well,
we made a comparison with the results of an exmrinrmade with NCAR CCM
(Community Climate Model) provided by Dr. Fung.rgtj one needs to point out that
NCAR CCM is a much more sophisticated model thafeEPY-C in terms of
physics and dynamics, and its resolution is alsghdn. CCM has a spectral
resolution of T42 (2.8°%2.8°) in the horizontal ad@ layers in the vertical.
Considering these differences, the results showRigare 2.5 suggest that carbon

simulations with SPEEDY-C are sufficiently realistor this study.
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Figure 2.5 shows the result of an experiment whiels only fossil fuel
emission with 6 PgC/yr and has been started fram #tate of atmospheric GOThe
top panels are an annual mean of atmosphericd@€r the third year on the surface
layer from SPEEDY-C (left) and NCAR CCM (right), carbottom panels are a
vertical cross section of zonal mean Gfncentration at the beginning of third year
(left: SPEEDY-C, right: NCAR CCM). From this figeir we can see the spatial
distribution of CQ simulated by SPEEDY-C generally agrees with tHfaNGAR
CCM even though the mixing tends to be strongeSREEDY-C with a deeper

surface layer. Also, SPEEDY-C represents the metled CQ within deeper surface

(a) Conc_lowest layer for 3rd yr

12 3 4 5 6 7 8 9 101112131415 16 17 18 19 Fossil Fuel Coqwnntration (omarmw)
on smulated o NOAR £
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Figure 2. 5. Comparison of SPEEDY-C with NCAR CCM: annual man of atmospheric
CO; concentration in the surface layer for third year in (a)SPEEDY-C, and (b) NCAR
CCM, and the vertical cross section of zonal mean at the bieging of 3° year
simulation in (c) SPEEDY-C, and (d) NCAR CCM. The expriment starts from zero
state of CQ, in the atmosphere with a fossil fuel emission of 6 PgClyr. (Uunppmv)
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layer. Also, SPEEDY-C represents the well-mixed, @@hin a hemisphere and a
large gradient between hemispheres as in NCAR C@Nl.a general understanding
of CO, transport in the atmosphere, we also confirmed @@ mixing within a

hemisphere takes about three months and it talag abyear to have significant GO

mixing between hemispheres.

2.5.2. Analysis of C@variables with LETKF

2.5.2.1. “ALL LEVELS"” experiment

The three types of data assimilation introduce8eotion 2.3 are examined in
the ALL LEVELS experiments to allow comparing theriprmance of each data
assimilation scheme. Figure 2.6 shows the globslSRerror of the dynamic
variables from three of the analyses. The stand@ndspheric variables are analyzed
similarly well with the rawinsonde distribution observations through the three data
assimilation methods, while the results of O@riables vary for each of schemes.
As we expected, the results of the atmospheriabbes from the C-univariate data
assimilation are exactly the same as those fromaife-way multivariate data
assimilation.

For the carbon-related variables, the carbon-umsiteadata assimilation fails
to analyze both CQand CF and we have “filter divergence”. Since @hanivariate
data assimilation for the GQariables has only these two variables in the ¢emind
error covariance matrix while there is no obsepratior CF, the system seems to

suffer from the lack of information so that the lgss of atmospheric CO
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Figure 2. 6. RMS error of analysis from three types of dat assimilation: uncoupled
(green), multivariate (blue), and one-way multivariate (red) daa assimilation for (a) U
(m/s), (b) V (m/s), (c) T (K), (d) g (kg/kg), (e) atmosphé CO, (ppmv) on the lowest
layer of model, and (f) surface CQfluxes (10° kg/m?/s).
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(b) UnivariateDA[ALL LEVELS]
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I
280 280.5 261 2615 262 262.5 263 2635 264 2645 265 RMSE=1.92e+00

RMSE=6.57e—01 RMSE=2.80e—01

RMSE=3.06e—01 RMSE=3.08e—01

Figure 2. 7. (a) True state of atmospheric CQon the lowest layer of model after two
months from the start of analysis, and the resultant analys of it from (b) uncoupled

data assimilation under ALL LEVELS experiment, (c) multivariate data assimilation
under ALL LEVELS experiment, (d) one-way multivariate data assimilation under
ALL LEVELS experiment, (e) one-way multivariate data assimildgion under

OCO+AIRS experiment, and (f) one-way multivariate data assiilation under OCO

experiment. The number in the left —bottom of each figure is RI8 error [unit: ppmv]
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RMSE=9.65e—-09 RMSE=9.67e—09

Figure 2. 8. (a) True state of surface CQfluxes after two months from the start of
analysis, and the resultant analysis of it from (b) uncoupd data assimilation under
ALL LEVELS experiment, (c) multivariate data assimilation under ALL LEVELS
experiment, (d) one-way multivariate data assimilation unde ALL LEVELS
experiment, (e) one-way multivariate data assimilation unde©CO+AIRS experiment,
and (f) one-way multivariate data assimilation under OCO epgeriment. The number in
the left —bottom of each figure is RMS error [unit: 10°%kg/m?%s]
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concentration performs poorly even with observaiahevery other grid point. That
is, the carbon-related system of £&hd CF does not have enough constraints so that
a bad analysis of one variable can cause negaedbfck to the other variable when
one of them goes wrong (for example, as shown gures 2.7(b) and 2.8(b), when
the errors in CQfluxes overwhelm the analysis). Moreover, tha@uotr experiments
use a fixed inflation factor with time so the arsady system cannot use the
observation information flexibly. For these reasothe analyses of both GO
variables diverge at the end. We tried to incraaBiation for the C-univariate data
assimilation in order to stabilize the filter, hbe analyses of CQvariables actually
diverged even faster with larger inflation fact¢Fsgure 2.9). That is because the
large inflation factor gives less contribution afrécast to the analysis while the
observation is insufficient to constrain €@ariables. Thus, the analysis system for
CO, variables has difficulties in combining informatidrom both forecast and

observation with a large inflation factor.

(a) CO2 on lev1

01JAN 10JAN 01JAN 10JAN

Figure 2. 9. RMS errors for the first 10 days of (a) CQ@ concentration on the lowest
layer and (b) surface CQ fluxes from the C-univariate (uncoupled) data assimétion
with 5% (red: control), 15% (green), and 30% (blue) of multiplicative inflation.
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On the other hand, the multivariate data assimifatias better performance
than the C-univariate one in terms of both RMS re(féigure 2.6) and spatial
distribution (Figures 2.7 and 2.8). Since the rrmf all variables are coupled, the
analyses of C@variables can have more constraint from the olagienv of other
variables. Thus, the analyses of £Of@riables converge to the true state unless the
estimate of surface COluxes gets far from the true state. Indeed, \&eehmore
stable and better performance on both atmosphedigc d@©ncentration and surface
CO; fluxes from the multivariate data assimilationrtieom the uncoupled one. The
analysis of surface Cfluxes, however, has rather large spurious negatalues
over the eastern US (Figure 2.8(c)) and these $lugsult in the degradation of the
atmospheric C@analysis (Figure 2.7(c)).

The performance of one-way multivariate data adatman is optimal for the
CO, variables (Figure 2.6). The negative values ofase CQ fluxes shown in the
multivariate data assimilation disappear in thisesoe so that the analyses of LO
variables have fairly good agreement with the wtege overall (Figure 2.7(d) and
Figure 2.8(d)). This result reveals that the maltiate data assimilation allows
undesirable sampling error feedback between the @@ables and the atmospheric
variables. The atmospheric €@ influenced only by the wind field and therens
relationship of CQ@ with temperature, humidity and surface pressuedd fin our
nature run. Thus, the coupled error covariancesvdsn these irrelevant
meteorological variables and @Qariables could make spurious values in the

multivariate data assimilation, while the one-wayltiwariate data assimilation
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Figure 2. 10.Ensemble spread of atmospheric C@analysis on the lowest layer of model
from (a) the uncoupled data assimilation, (b) the multivaiate data assimilation, and (c)
the one-way multivariate data assimilation, after two months ofanalysis under ALL

LEVELS experiments [unit: ppmv]
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Figure 2. 11. Ensemble spread of COfluxes analysis at the surface from (a) the
uncoupled data assimilation, (b) the multivariate data assiitation, and (c) the one-way
multivariate data assimilation, two months of analysis under ALL LEVELS
experiments [unit: 10°kg/m?/s]
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allows the wind field to give essential informatiem CQ, variables and is not
affected by their sampling errors.

Figure 2.10 and Figure 2.11 show the ensemble dpoédhe analysis for
atmospheric C@®concentration and surface g@uxes. Since the uncoupled data
assimilation diverges, the ensemble spread haga lalue without overall physical
meaning. On the other hand, both multivariate datamilations have a larger spread
over the ocean rather than over the land becaws®libervations of atmospheric
variables are based on the rawinsonde distributibimch is mainly over the land. In
this context, the multivariate data assimilatios kess spread over the land than the
one-way multivariate because the uncertainties@f variables are linked to those of
not only wind fields but also the other atmosph&adables in the multivariate data
assimilation. In addition, the area where the afpheric transport is active, over
North Atlantic Ocean, is emphasized with the lasgesad of both atmospheric €0

and surface C&Xluxes.

2.5.2.2. “OCO + AIRS” experiment and “OCO” experiment

We examined only the one-way multivariate datanasaiion for these two
experiments since we found it was the optimal wagralyze C@according to the
results from ALL LEVELS experiments. Since we tise same observations of the
atmospheric variables, and in the one-way multatarapproach the analysis of the
standard atmospheric variables is not changed $iyndating atmospheric CQthe
results of atmospheric variables in the analysstiae same in these two experiments

as those shown in the Section 2.5.2.1. Figurde&-[f) and Figure 2.8 (e)-(f) show
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that both of OCO+AIRS and OCO experiments have @valge results with the
ALL LEVELS experiment in the one-way multivariatatd assimilation scheme. The
RMS error for the atmospheric G@oncentration becomes a little larger with 0.026
ppmv and 0.028 ppmv at the end of two-month anslysnder OCO+AIRS
experiment and OCO experiment, respectively, thaat tinder the ALL LEVEL
experiment. This is really a minor degradation wloa@e considers the observation
error of 1.0 ppmv. The accuracy of surface,@0xes is not degraded visibly either.
Indeed, the RMS error is only 2.2x30kg/nf/s larger in OCO experiment than the
ALL LEVEL experiment after two months of data assgation. This means that the
observation of C® concentration near the surface plays a very inaportole in
estimating surface CQOluxes.

From the little difference between the results GICO+AIRS” and “OCO”
experiments, one may conclude that AIRS,@Dservations may not be useful for
estimating surface COfluxes. However, this may be also due to theesyatic
shortcomings of the forecast model we used. SBIEEEDY-C has only seven
vertical layers and the parameterization of coneacscheme is relatively simple, the
forecast model can underestimate the potential apAIRS CQ retrievals, which
have a strong sensitivity in the upper tropospheog,near the surface. Indeed, the
simulated AIRS C@observations do not significantly improve the aspiteric CQ
analysis at the levels where the observations arenade in our experiments. With
the realistic system of LETKF/CAMS3.5, however, axperiment with AIRS CQ@
retrievals shows some improvement of analysis anecast in the atmospheric €O

fields not only at the level of highest averagirgriel but also extending to other
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vertical layers (Liu et al., 2009). CAMS3.5 is maephisticated model with higher
resolution compared to SPEEDY-C: 2%61.9° horizontal resolution and 26 vertical

levels up to 3.5 hPa. Improved deep convectiorerses (e.g., Neale et al. 2008)
could also improve the vertical mixing of atmosph€O; in the forecast so that the
AIRS observation may constrain the atmospheri¢ B&ter. Pak and Prather (2001)
suggested that satellite observations of, @Cthe upper troposphere could provide a
major constraint for the net carbon fluxes overttbgical land within their inversion
method. In summary, although AIRS gOnformation has little effect on
constraining the surface fluxes in the SPEEDY moitlehay be more effective in a
more advanced system.

Thus, from the “OCO+AIRS” and “OCQO” experiments, wa&nnot conclude
that the AIRS CQretrieval is not able to improve the g@nalysis near the surface,
but we only stress that the instrument which hahdn sensitivity of C@near the
surface can be more useful for analyzing the atmersp CQ near the surface and

surface CQ@fluxes.

2.6. Summary and discussions

First, we developed a model, SPEEDY-C, to simu&taospheric C® by
modifying an atmospheric GCM of intermediate comijile the SPEEDY model.
We confirmed that the performance of SPEEDY-C iangporting carbon is
reasonable compared to the results of the NCAR CONe comparison supports the
use of SPEEDY-C for the OSSEs in this study givet it is a very fast model, and

that we can address many questions about datailssimmethods for atmospheric
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carbon and surface fluxes that would be unfeasieng a high-resolution,
computationally expensive GCM.

We then investigated three types of analyses biibgi different groups of
state vectors in the Local Ensemble Transform KalifRéter (LETKF) formulation
and testing them through OSSEs: carbon-univariataltivariate, and one-way
multivariate data assimilation. Multivariate €@ata assimilation experiments were
performed for the first time, and the results iakc that multivariate EnKF
assimilation is much more effective in estimatirgghbatmospheric C£and surface
carbon fluxes, even in the absence of observatongsrior estimations of surface
fluxes. Of the two multivariate schemes appliedeh@®ne-way multivariate data
assimilation has better results than the fully naatiate analysis because it permits
the error statistics of only the relevant variablesinteract with in terms of CO
analyses. According to the “OCO+AIRS” and the “OC&periments, it can be
concluded that the surface ¢fuxes can be estimated reasonably if the atmagphe

CO, concentration can be observed near the surface.
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Chapter 3: Coupling SPEEDY-C to VEGAS with SLand

3.1. Introduction

Human activities have increased the emission of @@ the atmosphere
since the industrial revolution. About half ofeated C@is absorbed at the surface
by land or ocean, and the rest of it remains inatmosphere (Figure 1.2). The
amount of CQ uptake at the surface, however, has significamipteal variability
with respect to the climate whereas the anthropogemission does not fluctuate
much with the seasons, but rather increases moicatlyn For example, one can
easily see that the global @Qrowth rate during El Nifio (La Nifia) years becomes
larger (smaller) in Figure 1.2. This relation beén the variability of atmospheric
CO, and ENSO has been confirmed by many previous edu(Bacastow, 1976;
Keeling and Revelle, 1985; Braswell et al., 199a&ymker et al., 1999; Jones et al.,
2001; Zeng et al., 2005). Thus, £@bsorption capacity of land and ocean causes
this difference between the emission and the medrvariability of atmospheric GO
concentration, shown as the green shading in Fitj&e And the amount of uptake
by land and ocean surface exhibits both seasonainéerannual variability, which is
obviously related to the climate.

Thus, the response of land and ocean uptakes iea glimate condition is
very important to project future climate in ternfshow much land and ocean would
uptake atmospheric GOreleased from human activities, and how long these

reservoirs can contain it. From a number of swdased on the ground based
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measurements, the regional distribution of surfaCe fluxes had been estimated on
continental scales and there has been progressiderstanding the global and
regional carbon cycles. But, we still need mortaited understanding of where and
how much the atmospheric @&inks and releases by land and ocean take plate ev
under the current climate. It is not a trivial pk@m to understand because the climate
and the C@exchange process over land and ocean are linkeddo other in rather
complex ways of interactions and feedbacks. Ireothords, the problem is highly
nonlinear.

In the previous studies on the oceanic,@Ptake, many of them agree on
relatively modest contribution of ocean to the ahility of atmospheric CO(Knorr,
2000; Bousquet et al., 2000; Feely et al., 2002ldrRbeck et al., 2003). On the other
hand, the atmospheric G@Qptake by the land surface is responsible for robshe
variability of atmospheric CQ(Bousquet et al., 2000; Gurney et al., 2002; Defeit
al., 2002; Rodenbeck et al., 2003; Friedlingste¢ial.e 2006). The surface G@uxes
over the land change with larger amplitudes depenadin the climate conditions,
whereas the oceanic GQluxes are considered to have less variabilitythe
interannual time scales.

Based on this finding we decided to develop a aadipkmosphere-vegetation
model in order to create a more realistic “natungth time-varying surface CO
fluxes over land. Therefore, we coupled the SPEED¥hodel with the dynamic
terrestrial carbon model VEgetation-Global-Atmosgh8oil, VEGAS, (Zeng et al,
2005), which is turn coupled to the physical landace model Simple-Land, SLand

(Zeng et al., 2000). With this system, we expectitnulate surface CQOluxes that
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evolve seasonally and interact with climate anoesaliFor the oceanic G@uxes,
we have used the prescribed monthly means estirbgt@dkahashi et al. (2002) with
a global mean rate of -2 PgClyr. It is reasonalsiumption because the variability
of surface CO2 flux is dominant over the land omititerannual time scale.

This coupled system should not only create a meadéstic nature run with
variable surface carbon fluxes, but also make nmran imperfect model OSSE
possible. In a simulation mode of assimilationexpents, we can use the coupled
system as the nature while the uncoupled SPEED Yoe@ehtontinues to be used for
the ensemble forecast. Thus, this coupled systlEwsaus to deal with the model
error and to see the performance of data assionlah the case where the model
error is one of the serious problems, as it ihereal world.

Section 3.2 describes the way we coupled SPEEDWHG VEGAS and
SLand, and there is a short summary on a spin-npgmection 3.3. Results are
shown in Section 3.4 and we summarize and disdqwessdaupling work in Section

3.5.

3.2. Methods

3.2.1. Interface among atmosphere, vegetation, and land models
SPEEDY-C is coupled with VEGAS-SLand as descrilbesichematic Figure
3.1. Details of each model are described in Zérad. €2000) for SLand, Qian (2008)

for VEGAS, and Molteni (2003) for SPEEDY. In tlgsction, the interface among
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SPEEDY-C

gf,vegc,Zrough,ali

S La n d = Ts, Ts2,Runf,Swet > VEGAS

Figure 3. 1. Schematic diagram of interface among the coupledomponents of
atmosphere (SPEEDY-C), vegetation (VEGAS), and lad surface (SLand). Variables in
the interface are described in section 3.2.1. (Prec-preciption, Tairs-temperature near
the surface, gairs-specific humidity near the surface, Vsiind speed near the surface,
Rsnet-net shortwave radiation at the surface, Evap-evaporation, Fs-sensible heat, Ts-
surface temperature at layer 1 (top layer), Swet-soil wetnes3s2-soil temperature at
layer 2, Runf-runoff, gf-growth factor, vegc-vegetation cove Zrough-roughness length,
ali-leaf area index, FSWds-downward shortwave radiation at th surface, NEPa-surface
CO; fluxes between atmosphere and land, vegcmc-annual mean of vegematcover)

the coupled components necessary to develop aemgyktem is discussed. First,
SPEEDY-C gives SLand the information of precipdati the temperature, specific
humidity, and wind speed near the surface, andn#teshortwave radiation at the
surface. In turn, SLand provides SPEEDY-C with evapon, sensible heat, surface
temperature, and soil wetness over the land. Wealtulate the surface fluxes over
ocean with the formulation in the original versioh SPEEDY because VEGAS-
SLand is designed only for the land surface praseds the interface between SLand

and VEGAS, SLand provides VEGAS with soil tempematuunoff, and soil wetness

while VEGAS returns the CQdependent growth factor, vegetation cover, rougbne
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length, and leaf area index to SLand. Lastlyhminhterface between atmosphere and
vegetation, SPEEDY-C provides temperature neaaserbnd downward shortwave
radiation at the surface to VEGAS, and VEGAS caltrd the surface GQOluxes
between the atmosphere and vegetation and upth&teggetation cover annually. In
order to accelerate the spin-up process, the tiepedf the vegetation model is set up
as one day while SPEEDY and SLand have the sangestiep of 20 minutes. Thus,
the input variables of atmosphere and land modelthe VEGAS are averaged at

every 00Z daily.

3.2.2. Additional boundary conditions
Since VEGAS-SLand requires the boundary forcingopiographic gradient
and ice cover, those fields are obtained by infatpw a fine-grid data (GLOBE task

team, 1999; Peltier, 1994) to the SPEEDY-C resotu¢Figure 3.2).

3.2.3. Adjustment of land-sea mask

SPEEDY has a fractional land-sea mask whereas \&Gkand use an
integer mask. Both models use unity for the lamd zero for the ocean surface. But
SPEEDY has fractional numbers around the coastie®veen land and ocean,
proportional to the ratio of land and ocean in teoharea. Thus, we made VEGAS-
SLand accept any point where the land-sea maskP&EDY is not zero as a land
surface point.

Furthermore, SLand computes the variables only taret and VEGAS only

over land without ice so that the index of land &rand computation and that for
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VEGAS have been calculated according to the laadrsask computed in a way
described above and ice-cover boundary informatidhen, these indices are given
for the input of VEGAS and SLand systems to recognwhether the grid point

belongs to land with no ice, ocean, or ice-covéaed.

I — | [—— . )
01 02 03 o4 05 08 07 08 08 003 006 008 042 015 098 021 024 037 02 033 038 038

Figure 3. 2. Additional boundary forcing for VEGAS: (a) ice coverdata with 1°x1°
resolution (Peltier, 1994), (b) a gradient of topography datawith 1°x1° resolution
(GLOBE task team, 1999), (c) ice cover data interpolated to SPEEDBgrid T30
resolution, and (d) a gradient of topography interpolated to SPEEDY gd system.

3.2.4. Soil moisture and tropical rainfall over land
The original version of SPEEDY uses a seasonélinging climatology for
the soil moisture fields. Before performing theigling, we compared the prescribed

soil wetness of original SPEEDY with that from SHaViIEGAS offline run forced by
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(a) Soil wetness from LV spin-up

(b) Soil wetness of SPEEDY

60N
30N

EQ

Figure 3. 3. Annual mean of soil wetness in (a) VEGAS-SLdn(LV) offline simulation
forced by SPEEDY climatology, (b) the prescribed boundary coriion used in the
original version of SPEEDY. (unit: dimentionless)
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a climatology of atmospheric variables from SPEEDd found that the soil
wetness of SPEEDY is significantly different frolmt of SLand (Figure 3.3). By
definition, soil wetness (Swet) is the relative | seater saturation as a ratio of
modeled soil moisture (mm) to the maximum valueictvhis 500 mm in SLand and
350mm in SPEEDY, so that Swet varies from O to The prescribed boundary
forcing in SPEEDY has highly saturated soil moistawer the tropical land whereas
SLand-Vegas has a maximum value of soil wetness tlesn unity. Zeng et al.
(2008) validated the modeled soil moisture by SLandseasonal, interannual and
longer timescales. However, it turned out that $IREEDY is tuned in such a way
that it requires large areas where the soil masisiisaturated in order to maintain a
realistic precipitation over the tropical land, bilis large soil moisture is not
realistic. Indeed, with the modeled soil moistaadculated by SLand, the fully
coupled atmosphere-vegetation-land model did ne¢ hainfall over the tropical land
and those areas became dry like deserts. Thus)adeto tune the modeled soll
moisture from SLand before giving it to the atma=mghand vegetation components.
We made the soil wetness saturated over the tropitet SPEEDY produce realistic
precipitation by multiplying the soil moisture witBaussian weights dependent of
latitude between -20°S and 20°N. This resultea pattern of soil moisture similar to
the original SPEEDY climatology and produced reabtdas ranges of rainfall over the

tropical land.
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3.3. Spin-u

It is necessary to obtain an equilibrium statéhefcoupled system through the
spin-up run. Here, it is assumed the equilibritatesis reached when the annual
mean of NEP (Net Ecosystem Productivity) convetgegero. Because the SLand-
VEGAS is computationally economic compared to SPEEDd we need to run the
soil and vegetation models for hundreds of yeasrder to have the convergence of
vegetation and soil variables to the proper staasoffline spin-up run of SLand-
VEGAS was done first with the atmospheric forcifgSl’EEDY climatology and
then we run a fully coupled system.

We ran the SPEEDY for nine years to get seasonallying climatology of
variables such as precipitation, temperature, §ipdaimidity, wind, and radiation at
the surface, which were then used to force the ¥¢iga-Land model. Under the
given SPEEDY climatology, the SLand-VEGAS offlinenslation continued for 600
years. During the first 200 years, an “accelefatactor was used to help the soil
carbon pool reach the equilibrium state relativielgt. From the late states of the
variables of SLand-VEGAS offline run, we let thdlfyucoupled system run for 30
years where the prescribed ocean fluxes of B&e been included with a magnitude

of -2 PgClyr (Takahashi et al. 2002) and with ntheapogenic fluxes.
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3.4. Results

3.4.1. Offline Land-Vegetation spin-up run

Figure 3.4 shows that the vegetation-land modslreached an equilibrium
state of Gross Primary Productivity (GPP), Net RmynProductivity (NPP), Net
Ecosystem Productivity (NEP), Carbon in vegetatenmy carbon in soil. The global
total GPP converges to 110 PgCl/yr, NPP to 55 Pg@égetation carbon pool to 550
PgC, and soil carbon to about 2000 PgC. Theseamparable with those resulted
from Zeng et al. (2005) which includes the experitrferced by the observed record
of real atmospheric variables: The global total G&P22 PgC/yr, NPP is 58 PgClyr,
vegetation carbon pool is 550 PgC, and soil carbd850 PgC. Figures 3.5 and 3.6
show the spatial pattern of NEP, NPP, GPP, respiatarbon in different vegetation
pools, and soil resulting from the offline spin-upn. These results are also
reasonable compared to the results in Zeng et2805) which used the same

vegetation and land model with real atmospherienizions.

3.4.2. Fully coupled atmosphere-vegetation-land spin-up run

The global total GPP is about 90 PgC/yr, NPP adOuPgC/yr at the end of
30-year run. NEP converges to zero annual meajui&i3.7). Compared to the
result of NPP from the offline simulation, NPP frahe coupled spin-up simulation
has a relatively smaller value. We could find teason of this from the difference of
precipitation over land between the offline simgatand coupled run (Figure 3.8).
The climatology of SPEEDY used for the forcing e toffline spin-up has generally

larger precipitation over land than the precipatatcalculated by interactive mode of
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Figure 3. 4. Time series of global total of major variables i’VEGAS during offline
spinup simulation with SPEEDY climatology: (a) GPP (GrossPrimary Productivity:
black), NPP (Net Primary Productivity: green), and NEP (NetEcosystem Productivity:
yellow), (b) Cleaf (leaf carbon: black), Croot (root carbon:green), and Cwood (wood
carbon: vyellow), (c) Csfast (fast soil carbon:black), Csmed(intermediate soil
carbon:green), and Csslow (slow soil carbon: yellow), (d) Cliotal biosphere carbon, i.e.
soil carbon + vegetation carbon: black) , Cvege (vegetation carbogreen), and Csoll
(soil carbon: yellow). Values are averaged annually.
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Figure 3. 5. Annual mean fields of NEP (kg/flyr), NPP (kg/m?yr), GPP (kg/m’yr), Ra
(autotrophic respiration, kg/m?%yr), Rh (heterotrophic respiration, kg/m?yr), and Cb
(kg/m?) for the last year of 600-year Land-Vegetation offline spin-up.
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Figure 3. 6. Same as Figure 3.5 except for Cvege, Csoil, Cleaffa8s Cwood, and
Csslow (unit: kg/n?).
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coupled simulation. Especially over the southemefica, there is large dry area in
the coupled simulation compared to the climatolagy SPEEDY. Thus, this
environment in the coupled system could not havemagh vegetation as the
atmospheric condition with SPEEDY climatology satthNPP converged to a lower
level in the coupled spin-up simulation than in ¢fi@ne run.

Vegetation carbon pool has a value of 380 PgC sailccarbon is about 1780
PgC after 30 years. Figure 3.9 shows the spasdiltltion of NEP in each season.
In general, the results indicate that the vegetatiptakes atmospheric G@uring
growing season whereas the land surface releasgs@Qhe atmosphere during the
vegetation decaying season. Although it is necgsta deal with details of the
results more carefully in order to use the nature for other applications, for our
purposes we intend to use the coupled system imalaion where the only
requirement is that the “nature” produce surfacdhaa fluxes with a reasonable
seasonal variability, and that the “forecast” mobdel significantly different, as it
happens in the real world, and the coupled systeah we developed satisfies this

requirement.
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Figure 3. 7. Time series of monthly mean of global total (a) FP, (b) NPP, and (c) NEP
for last 20 years’ fully coupled spin-up.
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Figure 3. 8. (&) Annual mean of precipitation from SPEEDY dinatology (nine-year
mean) and (b) last 10-year mean precipitation of coupled FREEDY-VEGAS-SLand
simulation for 30 years (unit: mm/d).
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Figure 3. 9. Seasonal mean of NEP (surface carbon flux) in (BYJF, (b) JJA, (c) MAM,
and (d) SON of last year in the fully coupled atmosphergegetation-land spin-up.
(positive: carbon sources, negative: carbon sinks)

3.5. Summary

We coupled SPEEDY-C with a terrestrial dynamicboar model (VEGAS)
and a simple physical land model (SLand). Amoreydbmponents of atmosphere,
land, and vegetation, the heat, water, and enehgyes are obtained through
coupling. Then, we made a spin-up run to get amlibgum state of land and
vegetation with the SPEEDY-C atmosphere througbffiime simulation of land and
vegetation and a fully coupled simulation of theenponents in order. Since the

coupled model produces reasonable, @Gxes over land, it is possible to use it as
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“nature”, since it has a more realistic carbon eyslith time-varying CQ fluxes
which we will try to estimate through EnKF dataiasktion using the SPEEDY-C
model. The coupled system can also be used fer ctimate studies associated with

CO, and dynamic vegetation, although users must beeathiat the soil moisture was

tuned in the tropics.
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Chapter 4: Imperfect Model Simulation: Bias Correcton,

Adaptive Inflation and Estimation of Observation Errors

4.1. | ntroduction

In Chapter 2, we have seen the performance of LEE®K estimating surface
CO, fluxes under the perfect model scenario. Witheny direct observation @-
priori information of surface carbon fluxes, data assitidh could produce a
reasonable estimate of these fluxes in the muitit@ranalysis system. Now, it is
necessary to consider a more realistic case inhwthe model error cannot be
ignored. Chapters 2 and 3 show we can use fopthizose two different models: the
SPEEDY-C and the SPEEDY-VEGAS. Thus, we are abléot OSSEs (Observing
System Simulation Experiments) under the imperfacdel assumption by using
SPEEDY-C for the forecast model and SPEEDY-VEGASIfe nature run.

In order to deal with model errors, we applied tadditional techniques: a
bias correction and an adaptive inflation. Fivgt, implemented a simple model bias
correction which is similar to that introduced bwaridorth et al. (2007). Next, we
applied an advanced method, a simultaneous estimati adaptive inflation and
observation errors, introduced by Li et al. (20B8reafter referred as LI09). With
this method, we could estimate an adaptive inflatie well as the observation errors

within the data assimilation (“online”). Both metks are introduced in Section 4.3
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which also includes discussions on the difficultigfs estimating inflation for a
variable for which there are no remote observatguth as surface G@uxes.

This chapter is organized as follows: The expertadetesign is discussed in
Section 4.2. Section 4.3 describes a method t@ciothe model bias and shows the
results from that. Next, an adaptive inflation hieique applied to our case is
presented in Section 4.4 and the results are shhastly, Section 4.5 has a summary

of this chapter.

4.2. Experimental Design

The coupled atmosphere-land-vegetation model, BSREFEGAS,
introduced in Chapter 3 is now used for the nature while the SPEEDY-C in
Chapter 2 is used for the ensemble forecast. Simeeanalysis occurs every six
hours, we forced the nature run to update surfa@@gfldxes over the land every six
hours by changing the time step of vegetation m&deh one day to six hour when
we created the nature run. In the nature run; fiQes over land are calculated by
the coupled model, whereas those over the oceapreseribed monthly (Takahashi
et al., 2002) with a rate of -2 PgC/yr. In the erfect model simulation, there is no
fossil fuel emission in the nature run.

Initial conditions of (U, V, T, q, Ps, GDfor the 20-ensemble forecast were
created by adding 20 random perturbations to thesta@es which were chosen
randomly in time from the one-year nature run,rashe perfect model simulation.
For the surface COfluxes, the states at another 20 timesteps froenntiture run

were chosen, and random perturbations were adddwetn. The magnitudes of the
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random perturbations added to (U, V, T, g, Psp)CGdDe the same as those used for
the perfect model experiment in Chapter 2. Forsindace CQ fluxes, a standard
deviation of the random perturbation is 1.0%40kg/m2/s. Again, the initial
conditions of surface C{fluxes do not have ang-priori information as shown in
Figure 4.1.

For the imperfect model simulation, we set a fixedltiplicative inflation of
8% for all the dynamic variables for the controlnrand the bias correction
experiment without an adaptive inflation techniqué.ater, for the experiments
including adaptive inflation and observation errestimation, the initial guesses of
observation errors were given as twice the trueeslTable 4.1), and the inflation
started from 10% at the initial time. The way a@a#ons of (U, V, T, q, Ps, Cp
were generated is same as the case of perfect miotdhbtion (Chapter 2). Here we
only examined “ALL LEVEL” experiment described ire&ion 2.4.1, and only the 1-
way multivariate data assimilation has been exadhisiace we found it had an

optimal performance in Chapter 2.

4.3. Bias correction

4.3.1. Methodology

Under the imperfect model simulation, one can ekpesignificant difference
of climatologies between the forecast run and thatine run. With an imperfect
model, as when the true atmosphere is compared avitiodel, the difference in

climatology is not associated with forecast errdte to the errors in the initial
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Figure 4. 1. (a) True state of surface C@fluxes at the initial time step, (b) initial
condition for surface CO, fluxes. (unit: 10°%kg/m?s). (positive: CQ, sources, negative:
CO; sinks)
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Figure 4. 2. Schematic plot to describe the low-dimensionabrrection of model bias:
blue arrow stands for nature (or reanalysis), and green arnas indicate every 6 hour
forecast stating from the nature run. The departures of6-hour forecasts from the
nature run happen to be caused by the discrepancy betwedre forecast and the nature
runs. The two-month averaged field of those departures is cadered as the model bias,
and hence it is subtracted from the background at every analysgtep.

condition, but it indicates a presence of systerratiors in the forecast model. It is
caused by the model deficiencies such as inacctwatangs and parameterizations
(Danforth et al., 2007). We applied the methodavé-dimensional correction in
Danforth et al. (2007) for estimating and corregtimodel bias. Figure 4.2
schematically describes the simple way model lsasiimated. We made a series of
6 hour forecasts which restart from the initial dibions of the nature run every six
hours. Thus, the time average of these departarebe considered as an estimate of
the forecast bias. We calculate this model biasr @vperiod of two months. The
model bias is then subtracted from the 6 hour stbefore every analysis step. The
bias correction is applied to only the atmospheagables, not to the CQrariables.
We do not know in the real world the truth (“natiydut the extensive experience
with atmospheric data assimilation and the reaealylata sets assure we have good
enough estimates of the 4D-state of the atmosphanables u, v, T, g and ps to
correct their biases with this method. On the otrend we do not yet have “GO

reanalyses” that we could use to correct the mbidsl of CQ forecasts.

68



4.3.2. Results from the bias correction experiment
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Figure 4. 3. Estimated model bias from the low-dimensionalorrection in (a) wind (m/s)
(shading: divergence, unit: 10/s), (b) T(K), (c) q (g/kg) on the lowest layer, and (d)
surface pressure (Pa), for two months of analysis period @del minus nature, positive:
forecast overestimates, negative: forecast underestimates)

Figure 4.3 shows that major features of the moaed Bppear over the tropics
where soil moisture fields were increased in th&BEPY-VEGAS over the tropical
land in the coupled system in order to improvegtexipitation pattern as described
in Section 3.2.4. The differences in soil moistdominate the differences between
the nature run. The forecast model has biaseslafive divergence and higher

surface pressure over the equatorial land comgartee nature run. Moreover, there
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is lower temperature and higher precipitation otle land near 20S. |If one

compares the climatologies of soil moisture, evapon, and precipitation in the
forecast model with those in the nature run (Figdr4), the model bias can be
explained as follows: High (low) soil moisture ometequatorial land ignites the
strong (weak) evaporation and convection, whiclresponds to the strong (weak)
convergence on the surface layer. That causes (less) precipitation over the area.
The strong (weak) evaporation can explain the loigh) temperature, high (low)
humidity on the lowest layer.

After correcting for this estimated model bias, wletained a remarkable
improvement in the analysis of variables that hawservations such as wind,
temperature, humidity and even atmospheric, €@ncentration (Figure 4.5). It is
encouraging that we obtained an improvement onatineospheric C@ analysis
without correcting its bias. This is because thmaspheric CQ transport is
predicted better after the model bias of wind ig@cted. Since the atmospheric £O
is also linked to the surface G@uxes, however, the analysis of the atmospheég C
can get a negative effect from a poor analysihefsurface Coflux fields. Indeed,
the analysis of surface G@uxes still diverged with time even though theg aetter
due to the indirect effect from the bias correctafnwind. Figure 4.6 shows the
spatial distribution of analysis errors in the Zowand, the atmospheric CQbn the
lowest layer, and the surface €fux fields without and with bias correction. Bia
correction clearly gets rid of the most of the maaalysis errors in the wind fields.

Other meteorological variables also benefit frora tias correction remarkably as
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Figure 4. 4. Difference of the climatologies between the fore¢amsodel (SPEEDY-C) and
the nature run (SPEEDY-C coupled with VEGAS-SLand); (2 soil moisture (mm), (b)
evaporation (W/m?), and (c) precipitation (mm/d). (positive: the forecast hadarger
values than the nature run, negative: the forecast has less valuesitithe nature)
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Figure 4. 5. RMS errors of (a) U (m/s), (b) V (m/s), (c) TK), (d) g (kg/kg), (e)
atmospheric CO, (ppmv) on the bottom layer, (f) surface CQfluxes (10° kg/m?/s) in the
analysis. Red lines indicates the control run, and blueinies result from the bias
correction.
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Figure 4. 6. The spatial distribution of errors in the analgis (analysis minus truth):
zonal wind (m/s) (a) without bias correction, (b) with big correction, atmospheric CQ
(ppmv) on the bottom layer (c) without bias correction, () with bias correction, and
surface CO, fluxes (10° kg/m%s) (e) without bias correction, and (f) with bias correction,
after two month of data assimilation.
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indicated by the RMS errors (Figure 4.5). Since #timospheric CQis observed
every other grid point, the analysis without biasrection is not too bad in general,
but the bias correction of wind fields obviouslypraves the analysis of atmospheric
CQO; fields. In the Figures 4.6 (e) and (f), the globmps of surface COflux
analysis have very noisy errors all over the reggoen after the bias correction
although the spatial phases of positive and negaignals seem generally matched

with true state and the strength of these noisyadggis slightly weaker.

4.4. Adaptive inflation

So far, a multiplicative covariance inflation o%8(obtained by tuning the
inflation parameter in the atmospheric analysidesy$ has been used in order to
prevent the analysis system from underestimatiegbéickground error covariance,
which is fixed in time. With a constant multipltcge covariance inflation, the bias
correction made a significant improvement on metiegical variables in Section
4.3. However, the improvement in the £@nalysis was only marginal in the
imperfect model experiment. Now, we implement dapdive inflation technique
which can reflect the observations efficiently acdoag to the quality of the analysis
and the background in time. Also, we deal withitifeation of the atmospheric GO
separately from that of other meteorological vdaapin addition to using a different
inflation on each vertical layer. The adaptivdatnbn technique allows us to avoid
tuning these inflation factors, since it would berywexpensive or even infeasible to

find reasonable levels of all these inflation fastby manually tuning.
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4.4.1. Methodology for variable having observation

The basic idea on the adaptive inflation comes ftd@®. Let's assume that
the background error covariande®, and the observation error covarianBg, are
correctly specified. If the errors of the backgrduand the observations are not
correlated, then one can write an equation thatteglthe observational increments
(that we can measure) and the error covariancislaws:
<d,d!  >=HP°H" +R  (4.1)

(o]

whered_ , is the difference between observations and theesponding background
at the observation space and the brackets ind@at@verage over many cases.
However, we know that it is necessary to inflate #° since it tends to be
underestimated in practice. Thu®’ in Equation (4.1) should be multiplied by the
inflation factor,A (larger than unity). From this, and transposifd ) the adaptive
inflation can be obtained as

A= dgpdos —Tr(R)
Tr(HP°H")

(4.2)

However, we cannot use this equation to estimateecause (4.1) or (4.2) are based
on the assumption that the observation error cameé is accurate, something not
true in practice. IR is not known precisely, the use of (4.2) fails heseaits errors
are compensated by the value/of

Another diagnostic on background errors comes fiteencombination ofl
and analysis-minus-background, , (Desroziers et al., 2005). From this method,
the relationship

<d, dI  >=HP°H' (4.3)
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has been derived by Desroziers et al. (2005), anehtion (4.3) produces another

alternative formulation of an estimate of the ihfia:

— d;——bdo—b
Tr(HP°H)

(4.4)
after multiplying the background error covariancatmx by the inflation factor and
transposing as before. Equation (4.2) and (4.4) hei referred to as OMBand
AMB*OMB estimations, respectively.

In addition, LI0O9 pointed out that it is necessarjhave a correct observation
error covarianceR , for an accurate estimate of adaptive inflatioonfr those

methods. Thus, LIO9 calculates the observatioorersimultaneously from the

relationship forR proven by Desroziers et al. (2005):
<d, d;, >=R (4.5)
where d, , (d,, ) are the difference between the observation analysis

(background) in observation space. Taking thesprase of Equation (4.5) allows

estimating the observation errors as follows:
i

(62) =(do ) o)/ P =D (Y =YY =Y P, (4.6)
j=1

where y] is the value of observatignand y;, y? are their analysis and background

at the observation spage Equation (4.6) calculates the variance of anysstiof
observations with p; observations, and LI09 called OMA*OMB estimation.

LIO9 estimated the adaptive inflation factor andsetvation error variance
simultaneously with temporal smoothing (Kalnay 20@®pendix C) in order to

reduce the problem of sampling error. That is, cene tune a “forgetting” parameter
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k > 1.0 which inhibits temporally drastic changeghe estimated adaptive inflation
and observation errors. Thus, the final estimates determined by a balance
between the estimates at the previous and thertuanalysis time steps according to
the magnitude ok. Since the ratio of the weight for the currertireate to that for
the previous one is -1, the resultant estimates of adaptive inflagmoid observation
errors forget the previous estimates less dscreases. LI09 mentioned that the final
estimate is not sensitive to this forgetting parmeand our work also confirmed
that.

While LIO9 tested for the atmospheric variables astimated both inflation
and observation errors assuming one value of iafidbr all model grids, we applied
this technique to our carbon cycle data assimitasigstem and estimated the adaptive
inflation and observation errors on each vertiegkl separately. In addition, for the
atmospheric C@on the lowest layer, the inflation over the lamdl dhe ocean were
estimated separately. That is because the obsmrvatwork of wind fields is dense
over the land (Figure 2.3) so that it tends to seppthe ensemble spread of not only
the wind field but also the atmospheric £@ver land (Figure 4.7) if we use the same
inflation for all grid points at the lowest layeraamospheric C® The spread in
Figure 4.7 represents the value after multiplyimg inflation factor to the background
ensemble spread, which is used directly for thdyaisacycle, in a test experiment
using a single value of inflation for the atmosph €O, on the lowest layer. Figure
4.7(c) indicates that there is a lack of ensemptead over the land in atmospheric
CO, background. This result can be explained as i@ioatmospheric CQOis

transported by the wind fields so that the improweitdd analysis reduces the
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Figure 4. 7. Spread of background ensemble in (a) zonal winJ), (b) meridional wind
(V), and (c) atmospheric CQ concentration after three weeks of data assimilation unde
the experiment using a single inflation for the atmospheric C@at the lowest layer.
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uncertainty of atmospheric GOHowever, the wind observations are located ngainl
over land. Therefore, the analysis cycle of ong-waultivariate data assimilation
reduces the ensemble spread of atmosphericad@lysis more over land than over
the oceans when we use the horizontal averageagpftiad inflation. However, C9O
observations, which have a uniform distributiorthe horizontal, should be reflected
in the analysis not only over the ocean but alser aie land. That is because the
lowest layer's CQ@ concentration is directly related to the surfa€a @uxes and we
have to resolve the dominant variation of surfa® fluxes over land as precisely as

possible.

4.4.2. Adaptive inflation for a variable having no observation

Now, we need to take account of the inflation fadtw a variable which has
no observation such as the surface,@lOxes in our case. That is because the
method prescribed in Section 4.4.1 is based on umegsobservational increments,
and therefore is only valid for variables that ameserved, but one important
component of state vector in this study, namelyaser CQ fluxes, does not have

observations (at least no remotely sensed obsen&ti

We conducted first several sensitivity experimemtgh different fixed
inflations for the surface COfluxes. We found that a relatively large inflatjon
compared to the inflation for other dynamic varesbbf analysis, made the analysis
diverge and only smaller values such as less tBarképt the analysis stable. We
now give a mathematical argument in support of éxigerimental result, namely that

unobserved variables should have a smaller infiatian observed variables.
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Consider the simplest case of a state vector wish fowo components: one

observed &), the other not observed(). State vectok, includesx, andx,,,

and the observation operator H should be H=(1 OjhabHx, =Vy,,:Y, =Y, Since
X, is not observed. Let=(A, A,)" be the vector of inflation factors (>1), then

<(y01—yb1)2>:a§1+Ala§1. We could calculate the inflation factons, , and

observation errorg? , by the method in Section 4.4.1, but the equatdmsiot give
any information abouk, and A, .

Within the LETKF,

X, —X, = K(y,—Hx,) whereK =P"H" (HP’HT +R)™ and

2
pb :( Ep1 gblszj (4.7)

Ep1€p2 Ep2

(\/E‘%l)z
Then, P°H” :( £or j and K = Vs 8
O'gl"'(\/A—lgm)2

Assume thato’, is
Ep1€n2

perfectly known and small compared (QAlgbl)z, then we can approximate

Yo — Hx, = (Y, — Vi )= —&,. From the equation (4.7),

( z )
(X, — Xblj _ (\/A—lé‘l;,l)2 /[0'01 + (\/A—lgbl)z} (y01 _ ybl) (4.8)
Xa2 ~ Xp2 \/A—lgbl\/A—ZgbZ /[aﬁl + (Jxlgbl)z}
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If the filtering is working properly, we can alsossame that

Xop = Xop = Eap — Ep = —0&,, With 6 <1. Then,

Xap = Xpp = —08p, = Algbl\/A—ZgbZ /[0'51 + (\/A—lgblj:| }(“%1)-
According to the assumption of o2 << (\/A_lgbl)2 ,

0€,, = Algbl\/A_ngzl[(\/A—lgbl)z}}gbl. From this equation, we find that

/5

Tz: 0 <1, that is, the inflation for the variable having abservation should be
A1
smaller than that for the variables having obsémat Although this derivation is

proven wheno?, << (,/Algbl)z, in reality, this assumption may not be alwaytru

But, empirically, we have experienced a failuresafface CQ flux analysis in the
imperfect model experiments when using a similataoger inflation factor for the
surface CQ@ flux compared with those for the other observedialdes. This

empirical evidence supports the result of the diawn.

So far, we have proven that the inflation for theface CQ fluxes should be
less than that for other variables having obsewwati Then, the issue is how to
adaptively estimate the inflation for a variableiethdoes not have an observation.
Here, what we tried is basically to let the globakemble spread of the analysis be
the same as that of the forecast. The temporabnmg introduced in the previous
Section 4.4.1 has been also applied with the saahe\of the forgetting parameter.
The formulation is similar to the inflation of cav@nce relaxation method (Zhang et

al., 2004). We calculate the inflation for evenydgpoint at every analysis time.
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Then, we will see the magnitude of estimated irdlatind whether it will be less than

the inflation of other variables having observagion

4.4.3. Results from the adaptive inflation technique

First, it is essential to calculate the observagorors accurately in order to
have reasonable estimates of the adaptive inflatiomhus, we first checked the
observation error estimate from the OMA*OMB metho@lables 4.1 and 4.2 show
that the online estimate of observation error agrgwertical layer has a good
convergence to the true value, although the ingisdss of each is set at a double of
the true value. Furthermore, the estimates comwketg the reasonable range of the
true value very quickly, only after several daysapélysis.

By estimating adaptive inflation as explained iecttons 4.4.1 and

4.4.2 in addition to the bias correction, we cogdéd a very good analysis of surface
CO; fluxes as well as an improvement in the analysistber variables. As in the
results of LI09, using OMBor AMB*OMB to estimate the inflation also have
similar performance. In the RMS error plot of Higu4.8, it is possible to avoid filter
divergence in the analysis of surface Gl0xes after implementing adaptive inflation
estimation. Owing to the stable analysis of swafélax forcing, the analysis of
atmospheric C® concentration fields has been improved as wellhe Bpatial
distribution of surface COfluxes compared to the true state (Figure 4.9jaistly
improved compared to the case without adaptivetioih and only bias correction.
Figure 4.10 represents the improvement from thetadainflation and observation

error estimation in terms of RMS errors for allighies and several regions. From
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Table 4. 1. Estimated observation error standard deviations, using theMB? method
(results after two months of analysis).

Vark True | nitial Estimated observation error for each vertical layer

able | value | Guess | ovel 1 | level 2 | level 3 | level 4 | level 5 | level 6 | level 7
u 1 2 1.076 1.111 1.091 1.168 1.221 1.208 1.026
\Y 1 2 1.042 1.108 1.117 1.159 1.220 1.192 1.055
T 1 2 1.059 1.017 1.059 1.056 1.075 1.068 1.008
q 0.1 0.2 0.272 0.165 0.120 0.114 0.112 0.102 0.100

co2 1 2 1.000 0.958 0,962 0.973 0.964 0.974 0.972
Ps 100 200 105.701

Table 4. 2. Estimated observation error standard deviations, using theMB*OMB
method. (results after two months of analysis)

Vari- true | titial Estimated observation error for each vertical layer

able | value | Guess | 1evel 1 | level 2 | level 3 | level 4 | level 5 | level 6 | level 7
u 1 2 1.135 1.132 1.131 1.202 1.272 1.230 1.031
\' 1 2 1.072 1.142 1.126 1.173 1.211 1.171 1.065
T 1 2 1.068 1.036 1.051 1.077 1.087 1.047 1.031
q 0.1 0.2 0.302 0.197 0.128 0.120 0.112 0.101 0.101

co2 1 2 1.000 1.012 1.011 1.018 0,994 1.008 1.005
Ps 100 200 111.352

the chart, one can say that the impact of adaphflation and observation error
estimate is huge in the analysis of £fDrface fluxes. Since the contamination from
the poor analysis of surface g@uxes is removed by the adaptive inflation, the
atmospheric C@analysis gets improved (Figures 4.8 and 4.10)soAit improves
the analysis of all atmospheric variables excepsfecific humidity. The quality of
the humidity analysis is not improved as much as dther variables and this is

partially attributed to the observation error estienfor the humidity. Tables 4.1 and

83



(@)

U_RMSE[m/s] z=1 (b) 1 V_RMSE[m/s] z=1

10 0

9 1 9 1

81 81

7 - 7 1

6 6 1

51 5+

4+ 41

31 3-‘

2 1 21

11 1

T SIANT TIAN VAR TUAGIAN 1FEB 67EBT TFEa BFed Federes O%ﬁr; SIANT TUAN GUA 1A AN 178 67FBT IFER6FER 1FERbTED

(c) : T_RMSE[T] z=1 (d) q_RMSE[kq/kq] z=1
6sd 000244
el 0.0022
B84 0.002 4
Sl 0.0018 1
AS1 0.0016 1
S0 [ S S S S S A S 0.0014 1
SO 0.00121
S S 0.0008
TT-1 | S S O e.0006 0 o
1_‘ T S S S SRR 0.0004 1 s \Wdl,‘.;&,v_;.,;&"’i“\—”
0.5 { S s s g 00002 {1+ it
O%w 6JAN11JAN GJAND1JANDGJAN 1FEB 6FEB! 1FER 6FER 1FERGFER 0%/}:; GJANT TUAN 64N 1 JANRGJAN 1FEB 6FEBT 1FER 6FE@1FERGFER
(e) C _RMSE[ppmv] z=1 (f) ; sfc Cflux_RMSE[*10"-8kg/m2/s]
1.8 i b b 4.5
P . R
149 de bbb 351
1.2' oo R o S o 3'
X S TI/EAIE TETCIT SUPINT SYPR NYE S 21
064 151
|

0.4 1& L e
0-2- e R o o . 05' o o B o oo o
O;(Jﬁr; 6JANT1JAN 6JAN 1 JANRGJAN 1FEB 6FEBT1FEE 6FER1FERGFER D;(Jﬁr; 6JAN11JAN 6JAN 1JANGJAN 1FEB 6FEB11FER 6FER1FERGFER

Figure 4. 8. RMS errors of (a) U, (b) V, (c) T, (d) q, (extmospheric CQ, at the level of
6=0.95, and (f) surface CQ fluxes in the analysis. (blue: with bias correction and
adaptive inflation with the OMB? method, red: with bias correction and adaptive
inflation with the AMB*OMB method, green: with bias corr ection, but no adaptive
inflation)
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Figure 4. 9. Same as Figure 4.8, except for surface ¢flux fields. (unit: 10° kg/m?s)
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Figure 4. 10. RMS error for two months of analysis: (a) globaldtal, (b) Northern

Hemisphere, (c) Southern Hemisphere, and (d) Tropics (28°~ 20°N). Yellow bar
indicates CTRL experiment, green bar results from the kas correction experiment, blue
bar is from the experiment of the bias correction plusadaptive inflation of the OMB?

method, and red bar presents the result of the bias coection plus adaptive inflation of
the AMB*OMB method. (unit: m/s for U and V, K for T, g/kg for q, ppmv for

atmospheric CO, (C), 10%kg/m?s for surface CQ fluxes (Cflx))
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4.2 show that the estimate of observation errorgfdés not accurate enough on the
bottom two layers (Table 4.1 and 4.2), but it deesdegrade it either.

For the surface COflux analysis, the adaptive inflation techniqued®adhe
crucial impact eliminating spurious noises as vl helping produce reasonable
results under the imperfect model assumption widobs not include any priori
information and direct observation. In detail, eould see the AMB*OMB method
has slightly better results in the analysis of atef CQ fluxes in terms of RMS error
and spatial distribution. Analysis from the AMB*@Vvimethod is closer to the true
state especially over the Southern Africa, SoutheAca, and Asia compared to the
OMB? method (Figure 4.9).

Even though the final analyses from both AMB*OMB thred and OMB
method have similar performances, we found thaitr thstimated inflations are
somewhat different from one another. Figure 4.44 the estimated inflation factors
from OMB? method and Figure 4.12 from AMB*OMB method. Inmngeal, OME
method has larger magnitude of estimated inflateoms the values are varying with
time more drastically than AMB*OMB. The reason whg OMB method has more
noisy patterns in the time series of resultantatidh parameters (Figure 4.11) is
because the term of R], tracer of observation error covariance matsxsubtracted
explicitly in the formulation. Every analysis steplculates the observation error
statistics and uses them for estimating adaptiffation explicitly in OMB2 method.
Although the estimates of observation error havg geod agreement to the standard

deviation of true observation errors through OMA*BNhethod, actual deviation of
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Inflation for atmospheric variables
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Figure 4. 11. Time series of resultant adaptive inflationsA—1) through the OMB?
method for (a) meteological variables for all vertical levels(b) atmospheric CQ on the
bottom layer (red: over land, blue: over ocean), and (c) atmo$geric CO, on upper
levels
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Figure 4. 12. Same as Figure 4.11, except for AMB*OMB method.
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observation error estimate from the real obsermagoror cannot be sometimes
negligible and the differences are fluctuated wvtithe. Thus, the resultant inflation
varies more strongly depending on the estimateeérghton errors.We note that if

the estimated adaptive inflation has a negativelevah both methods, we set the
value as zero and then apply the temporal smootsonthat there is never negative

inflation applied to the background.

For the inflation of atmospheric GQon the lowest layer, both methods
produced larger values over the land than overottean. This result is consistent
with what we expected. Because of larger inflanbthe atmospheric C{bver the
land, the analysis can reflect the observation nower the land where the variation
of surface CQ@ fluxes is dominant in the nature. The succesp&rformance of
adaptive inflation is attributed to the reasonabktimate of observation errors
because the calculation of adaptive inflation cewnt the accurate observation error
estimate. LI0O9 showed that we cannot have goadtsesom the adaptive inflation if
the estimation of observation error is not correct.

Moreover, the adaptive inflation for surface £lixes has also generated a
reasonable value overall. Figure 4.13 displaysatrerage of adaptive inflation over
the analysis period and it turns out that the avkare the variation of surface @O
fluxes are relatively large has more inflation otee land while the inflation over
ocean has relatively small values. Furthermore,rttagnitude of inflation for the
surface CQ@fluxes is generally less than that for other @ga having observations,

compared to Figure 4.11 and 4.12. This is phylsiad quantitatively reasonable
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Figure 4. 13. Resultant adaptive inflation A —1) for surface CO, fluxes for two months
of analysis period, coupled with (a) th@MB? method, and (b) the AMB*OMB method.
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based on our discussion in Section 4.4.2 suggestiag the adaptive inflation

technique of this variable works properly.

4.5. Summary

One-way multivariate data assimilation has beetete under an imperfect
model assumption. Since the climatology of theaurgatun is significantly different
from that of the forecast model, the ensemble Kalrfikker cannot represent the
analysis properly. Thus, we implemented the lomeatsional bias correction of
Danforth et al. (2007) and got a significantly iroped analysis of atmospheric
variables and atmospheric @O Even with a good analysis of these variables,
however, we could not meet an acceptable rangec@iracy in surface COflux
analysis which was too noisy.

After several sensitivity experiments with diffetemflation factors for
surface CQ fluxes, we found that using a small inflation Burface carbon helped
the analysis not to diverge; and then we provedhematically that inflation for
unobserved variables should be smaller than tmahé&observed. This brought us to
think about adaptive inflation estimation. We exaad the advanced technique of a
simultaneous estimation of adaptive inflation aribeyvation error introduced by
LIO9 for the variables having observations. In thean time, we also investigated
another adaptive inflation method for surface,@0xes which are never observed in
our experiments. With these adaptive inflation hnes, we could get much more
stable and reasonable analysis of surface it@es. As our mathematical derivation

suggested, we found that inflation for surface,@0xes should be smaller than for

92



other variables, while the inflation of atmospheti®, tends to be larger than that of
other atmospheric variables, especially near tmlaset Moreover, the inflation of
atmospheric C@is estimated to be relatively large at the begignof the analysis
period because the random initial condition of acef CQ flux causes an incorrect
forecast of atmospheric G@o that analysis system should consider the oasenv
more during the first several days. In a similaanmer, the inflation of the surface
layer's atmospheric CQs larger over the land than over the ocean. Eha¢cause a
variability of surface C@ fluxes is dominant over land and it is reflectedthe
observed atmospheric G@ the lowest layer. Thus, the analysis systeoukhbe
sensitive to the COobservation over the land more than over the oteamder to
estimate surface CQOluxes precisely.

Lastly, we also calculated the observation erhmough LI09’s method and
the accuracy of estimated observation error wasellxt, with the analysis
converging close to the true value even thoughirttiml guess of it was set to be
double the true value for each variable. We shqudeht out that this correct
estimation of observation error is essential in imgthe adaptive inflation work well
enough for the C@Panalyses, and most importantly, it should be exttg useful
with real CQ data assimilation, where the estimates of observatrors will be very

uncertain.
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Chapter 5: Application of Adaptive Inflation and
Estimation of Observation Errors to the Perfect Mocel

Simulation

5.1. Introduction

Recall that in Chapter 2 we found that the C-unata data assimilation with
a fixed inflation factor had diverging G@nalysis, and that increasing the inflation
only increased the rate of divergence. In Chapteve found that for an imperfect
model, the use of model bias estimation and adamilation/observation errors was
able to recover a very reasonable estimation dasercarbon fluxes. We therefore
decided to apply the technique of adaptive inflatamd observation error estimation
to the perfect model simulation to check whether #daptive inflation can avoid
filter divergence in the C-univariate data assitrolawork and how much it impacts
both C-univariate and one-way multivariate datanaigstion for CQ, analysis. We
would also like to see whether the other atmosphatiables are also improved by

implementing adaptive inflation.

5.2. Experimental Design

The basic setting of the experiments is same asdahahapter 2 (section
2.4.1) in terms of the initial conditions and obsdions except for estimating the

adaptive inflation and observation errors. Morepwnly two types of analysis,
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carbon-univariate data assimilation and 1l-way maltate data assimilation, are
examined in this chapter. The initial guessesbskovation errors have been given as
twice the true values, and the inflation startsnfrb0% at the initial time. Since the
OMB? method had a comparable performance with the AMBBOfor the CQ
analysis, we show the result from the OMmBethod estimating adaptive inflation
coupled with the OMA*OMB method for simultaneoudimstion of observation
errors here. For the adaptive inflation of thdae CQ fluxes, we applied the same
techniques described in Section 4.3.3. Since ithis simple case, we do not use
different inflation in the horizontal even for tle#mospheric C®and surface CO
fluxes. That is, one constant of adaptive inflati® estimated for each vertical layer

and for each variable.

5.3. Results

For the atmospheric variables, the improvemenadpnb by adaptive inflation
is not significant enough to be visually apparéngre 5.1 and Figure 2.5). This is
somewhat different from LI0O9’s result in which tremospheric analysis had
significant improvements with the same method. sTisi because LI09 assumed
atmospheric observations at every other grid paimtreas our observation network
has much less density (rawinsonde distributionufgg2.3). While there is no
remarkable improvement of the atmospheric analyikis, system with adaptive
inflation and observation error estimation is watkiproperly and has major impacts

on the analysis of CQvariables. Indeed, adaptive inflation and obssinaerror
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estimates makes significant improvement on the &t@lysis of the C-univariate data
assimilation, which had diverged with fixed inftati for the CQ variables (blue lines
in Figure 5.1 and green lines in Figure 2.5). ©Oa other hand, 1-way multivariate
data assimilation also has better results, buaagemarkable as the improvement on
the carbon-univariate data assimilation.

Figures 5.2 and 5.3 show a comparison of 1-way iwauiate data
assimilation and C-univariate data assimilationhwdand without the adaptive
inflation technique in the global maps of atmosph&€0O, on the lowest layer and
surface CQ fluxes after two months of analysis. First, thema@spheric CQ fields
(Figure 5.2) show that 1-way multivariate analysil has better result than the C-
univariate in terms of both RMS error and spatiatrtbution. In the RMS error, it is
0.297 ppmv in 1-way multivariate data assimilatwith adaptive inflation and 0.325
ppmv in the C-univariate, but one can say both goed enough considering the
observation error of atmospheric €ncentration is 1.0 ppmv. This technique has
a huge impact on the C-univariate data assimilatibith diverged due to a failure of
analyzing surface Cluxes noted in Chapter 2. Spatial distributibaywever, has a
more similar pattern to the true state in the 1-wayltivariate analysis where the
patterns are smooth, while the analysis from then®ariate data assimilation has
smaller scale signals. From this figure, we cantbe positive impact of wind fields
on the analysis of atmospheric €O

In the analysis of surface G@uxes, both analysis methods have a very good
agreement with the true state. When we use a ff&tion, there are spurious small

signals spread all over even in the one-way muiat@ data assimilation
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(Figure 5.3 (d)). Applying the adaptive inflatiomost of those small fluctuating
spots disappear. On the other hand, the C-unteadiata assimilation has a smaller
RMS error than the 1-way multivariate. This isiagaour expectations based on the
previous results without the adaptive inflationhieique. Taking a look at the
resultant analysis of Figure 5.3 (b) carefully cemgnl to Figure 5.3 (c), we see
spurious signals over northern Asia and near thmsaurce region in US. They
seem caused by the wind fields because these @manant in the 1-way multivariate
data assimilation. This suggests that the muiat@arsystem allows for a spurious
covariance between the surface carbon fluxes andiids, and provides an idea for
the next chapter on a new multivariate data asatril system in which we perform
for the first time “variable localization” in EnKF.

Next, we checked the time series of estimated adapnhflation and
observation errors (Figures 5.4-5.8). For the apheric CQ analysis, there are
large values of inflation initially and then a cemgence level of inflation around 5-
10% for the C-univariate and 15-20% for the 1-wawltiwariate. Figure 5.4 also
provides several of new insights. First, the Cvanate data assimilation only
includes the observation of atmospheric ,G® the CQ analysis matrix so that
surface CQ fluxes should be updated by the atmospheric @CQhe lowest layer.
Since there is no prior information on surface,@lOxes, large inflation is essential
in order to give more weight to the observationantithe background CGQhat is
forced by the wrong surface G@ux fields at the initial time. But this largeflation

IS not necessary after reaching a converged stat@i@mce CQ analysis. This can be
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Adaptive Inflation for atmospheric CO2

OMB2 [Univariate, K=1.03]
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Figure 5. 4. Time series of estimated adaptive inflation foatmospheric CO, on each
vertical layer in (a) C-univariate data assimilation and (b)one-way multivariate data
assimilation through OMB? method. (levl: ¢ =0.950, lev2: ¢ =0.835, lev3: ¢ =0.685,
lev4d: ¢ =0.510, lev5:¢ =0.340, lev6: ¢ =0.200, lev7: ¢ =0.080)
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Adaptive Inflation for atmospheric variables
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Figure 5. 5. Time series of estimated adaptive inflatiorof meteorological variables for
each vertical layer.

supported by Figure 2.9 which shows the divergafic@-univariate data assimilation
with fixed large inflation.
There are some jumps over the time series of adaptflation (Figure 5.4).

They are related to observation error estimatesthé OSSEs, the observations for
the variables are simulated with the specific stathcerror deviations as defined in
Section 2.4.1. For example, the standard deviaifosbservation error in the zonal
wind (U) sets 1 m/s. This means that the true mbsen error can be quite larger or
smaller than 1 m/s over the analysis period evengh it happens rarely. Then, the
observation error estimates cannot catch thoseesudeépartures and possibly affect
the adaptive inflation estimate. Thus, we have es@uints where the adaptive

inflations sometimes increase over the analysimger
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Table 5. 1. Estimated observation error standard deviations in @nivariate analysis
result after two months of analysis).

Estimated observation error for each vertical layer

- True
Variable value

level1 | level 2 | level 3 | level 4 | level 5 | level 6 | level 7

U 1 1.048 1.066 1.066 1.089 1.129 1.127 1.025

% 1 1.048 1.052 1.067 1.093 1.126 1.118 1.029

T 1 1.032 1.028 1.033 1.042 1.042 1.043 1.002

q 0.1 0.119 0.12 0.112 0.111 0.109 0.103 0.098

Cco2 1 1.039 1.010 1.008 1.009 1.017 1.008 1.012

Ps 100 | 106.020

Table 5. 2. Same as Table 5.1, except for one-way multivariate anay&esult after two
months of analysis).

Estimated observation error for each vertical layer

. True
Variable value

level 1 | level 2 | level 3 | level 4 | level 5 | level 6 | level 7

u 1 1.048 1.066 1.066 1.089 1.129 1.127 1.025

v 1 1.048 1.052 1.067 1.093 1.126 1.118 1.029

T 1 1.032 1.028 1.033 1.042 1.042 1.043 1.002

q 0.1 0.119 0.12 0.112 0.111 0.109 0.103 0.098

Co2 1 0.983 0.964 0.963 0.972 0.972 0.972 0.958

Ps 100 106.020

In addition, the reason why the resultant inflatddrone-way multivariate data
assimilation tends to be greater than that of G-amate data assimilation can be
explained as follows: the C-univariate data assiticih has fewer constraints than the
one-way multivariate in the GQnalysis so that the ensemble spread does nakshri
after the analysis step compared to that of thevmmemultivariate system. We have

already seen this feature from Figure 2.10 and ihXdhapter 2. Thus, the inflation
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estimated adaptively is generally larger in thedywhan the C-univariate after the
first several days. For the atmospheric varialiles estimated inflation is about 10%
for both analysis systems (Figure 5.5).

Since this is a perfect model case, the estimatfaybservation error is more
precise than that of Chapter 4 (Tables 5.1 and S5AH)variables at all vertical levels
have a very good convergence to a value closeetdrtie value of observation error
in both the C-univariate and one-way multivariatééadassimilation. Figures 5.6 and
5.7 show the time series of estimated observatimr,eand we can see how fast the
estimation converged to the true value. This feshvergence of estimated
observation error was also confirmed in the imp#nieodel experiments.

The adaptive inflation for the surface €@uxes converges to a very small
value such as 0.45% in C-univariate data assimilatind 1.13% in the one-way
multivariate data assimilation (Figure 5.8). Thaue is far different from what we
used in the experiments of Chapter 2. From thig, can say that the adaptive
inflation for surface C@ fluxes results in a smaller magnitude than thaseahy

other variables. Again, this is consistent with @asoning.
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Estimated OBS error for atmospheric CO2

onlineR_OMB2 [Univariate, K=1.03]
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Figure 5. 6. Time series of estimated observation error foatmospheric CG, in (a) C-
univariate, (b) one-way multivariate data assimilation for every vertical lgel.
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(a) onlineR_OMB2 [1way_multivariate, K=1.03]
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Figure 5. 7. Same as Figure 5.6, except for (a) zonal wind, (Ipesific humidity, and (c)
surface pressure
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Adaptive Inflation for surface CO2 fluxes

(a) Adaptive_infl_CF [Univariate, K=1.03]
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Figure 5. 8. Time series of adaptive inflation foisurface CG, fluxes in (a) C-univariate, (b) one-
way multivariate data assimilation.
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5.4. Summary and discussion

We applied the adaptive inflation techniques viedtin the previous chapter
to the perfect model simulation in order to see howch it could affect the C-
univariate data assimilation which failed to makeva-month analysis. The results
are surprisingly good for the C-univariate analyswich are even better than the
one-way multivariate data assimilation although footh techniques adaptive
inflation improves the results.

Analyzing the estimated adaptive inflation, we cbske that the C-univariate
data assimilation requires large inflation for asploeric CQ at the beginning of
analysis and very small inflation for surface £idixes in order to maintain a stable
system. A time series of adaptive inflation in -aveey multivariate data assimilation
also shows a similar tendency, but these condittsasmore needed in C-univariate
data assimilation because the analysis of surfaOe fltixes relies on only one
variable, atmospheric GOn the lowest layer. Therefore, it is essentmluse the
observation information flexibly, especially in t@eunivariate data assimilation.

From the results in this chapter, we realized thatcorrelation between wind
fields and surface COfluxes may not be as useful as we had origindigught.
Rather, spurious signals appear near the majocsaegion since the transport of
atmospheric C@is significant by wind. This tells us that thoutie impact of wind
on atmospheric CQs obvious, the surface G@luxes may not be directly linked to

the wind field in a physical sense.
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Chapter 6: New Approach for Multivariate Data

Assimilation in Carbon Cycle Data Assimilation

6.1. Introduction

In Chapter 5, we confirmed that the C-univariad¢adassimilation under the
perfect model simulation also has a very good perdmce estimating surface €O
fluxes with a huge help from an advanced techniqtieadaptive inflation and
observation error estimation. The surprising rethdt instigates this chapter is that
the C-univariate data assimilation had an evenebgterformance than the 1-way
multivariate data assimilation in the analysis offace CQ fluxes. This was
contradictory to our expectations built on previBnswledge. What we found in the
surface CQ@ analysis of 1-way multivariate data assimilatioaswthat there were
erroneous signals near the major source regionsheaydapparently came from their
relation to the wind fields. We came to realizattsurface C® fluxes are not
directly related to the wind fields while atmospheZO, concentration on the lowest
layer is obviously linked to both wind fields angrface CQ fluxes. That is, the 1-
way multivariate data assimilation used in the mes chapters includes the
covariance between surface £@uxes and wind fields. Therefore it resulted in
having spurious signals over the region where th@spheric CQ is dominantly
transported by wind, not where €@ actually released or absorbed. Thus, we
developed a new multivariate data assimilation esystwhich can include the

uncertainty of wind variables to the g@nalysis in a physically based way.
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6.2. New approach for multivariate data assimilation

It is common practice in EnKF to introduce “spdoealization” into the
background error covariance (Houtekamer et al.126famill et al., 2001; Gaspari
and Cohn, 1999). This is because background ensepwdsturbations have error
covariances that are good estimates of real ctioetafor relatively short distances
up to about 500-1000km. At longer distances, thekdpaund errors are also
apparently correlated, but these correlations @serpndom due to sampling errors,
and can seriously harm the analysis. In the widalgpted technique of “space
localization” to solve the problem of long distanspurious correlations, the
background error covariance terms are multiplied ebyGaussian function that
decreases with the distance between the two giiickoavhose error covariance is
being computed and becomes zero at distances |tmgeabout 1000km.

The results that we obtained suggest applyingdhgesconcept to covariances
of variables that are not physically correlatedider to reduce spurious correlations.
While the atmospheric GOconcentration is determined by both wind fieldsl an
surface CQ fluxes, the surface COfluxes are not really dependent on the wind
fields. Thus, we zero out the error covarianceveeh wind fields and surface GO
fluxes in the previous multivariate data assimilati This is a new methodology
which we can denote *“variable localization” becaubke system localizes the
variables that the wind fields can affect. On diieer hand, since C-univariate data
assimilation has no correlation between,G@riables and atmospheric variables in
the background error covariance matrix (Figure &)1(so we stick to the same

formulation for comparison with the new method.
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6.2.1. New 1-way multivariate data assimilation with variable ipatbn

In the multivariate data assimilation backgroumdbre covariance that we
discussed in Chapter 2 and reproduce schematicafigure 6.1, we need to modify
the covariances corresponding to the one-way vauitite approach (Figure 6.1(b))
and the fully multivariate approach (Figure 6.1(c))

In the nature, the effect of wind on atmospheric, @Omportant but that of
temperature, humidity and surface pressure is nBimilarly, the winds do not
transport surface fluxes of carbon. For theseoregsve built a new analysis system
based on the 1l-way multivariate data assimilatibirst, the system for the
atmospheric variables is the same as the previaugylmultivariate analysis (green
box in Figure 6.1(b) and (d)); for updating £@nalysis, the background error
covariance between surface £fluxes and wind field (pink box in Figure 6.1(d$)
zeroed out (pink box in Figure 6.1(d)). Thus, apiweric CQ is analyzed by the
error correlations among the variable itself, wiirelds, and surface COfluxes,
whereas the surface G@uxes are updated by the background error comeeavith
only atmospheric C® With this system, we can still include the unaities of
wind fields to help the analysis of atmospheric;@Devery vertical level. But there

is no direct effect of the wind errors on the scef&Q fluxes.

6.2.2. New multivariate data assimilation with variable localization

In order to do “variable localization”, we have zero out the covariance
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Figure 6. 1. Schematic plots of background error covariance maitt in (a) C-univariate,
(b) previous one-way multivariate, (c) previous multivariate, (§ new one-way
multivariate, and (e) new multivariate data assimilation.
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between surface CQOluxes (CF) and atmospheric variables (U, V, TPq) (Figure
6.1(e)). Thus, we let the errors of all atmospherriables be coupled with the
background error of atmospheric &Cbut restrict the influence of atmospheric
variables on surface GQluxes. For the analysis of surface L£fluxes, we only
include the covariance between atmospherig @®the lowest layer and surface £0

fluxes.

6.3. Experimental Design

We test both new multivariate data assimilatiorieootuced above under the
perfect model simulation and imperfect model simiafain that order. For the
perfect model simulation, the setting is the sameaction 5.2 except for using a
different inflation of atmospheric Cver land and ocean as well as estimating an
adaptive inflation of surface GOluxes at every grid point. Here, both adaptive
inflation techniques are tested. In addition, wiedt the experiment having less
observation density of atmospheric £€bncentration; it assumes the observation
every four by four grid points, so the coveragabsut 6.3 % in the horizontal. On
the other hand, the imperfect model simulation bagn done with the same

experimental design of Section 4.2.

6.4. Results

As usual, there is not significant difference bstw the performance of the
OMB? and the AMB*OMB methods, therefore we show thailteom only one of

them.
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6.4.1. Perfect model simulation with variable localization

The result from the AMB*OMB method for the adagtiinflation is shown
here since it is comparable to that from the G\iethod. From the chart of RMS
error in Figure 6.2, both new multivariate analybese less RMS error for GO
variables compared to Figure 5.1. As we expecthd, performance for the
atmospheric variables is similar to the previousces we did not change the error
covariance matrix for these variables, but the gkanin the C@ analysis are
significant. We cannot see a visible degradatioynere in the analysis of surface
CO; fluxes from both new multivariate data assimilatimethods compared to that
from the C-univariate analysis. Meanwhile, theelevel is much improved in terms
of CQO, analysis compared to Figure 5.1 (e) and (f).

In case of atmospheric GOthe errors were about 0.3 ppmv in both C-
univariate and 1-way multivariate data assimilatibigure 5.1) and these were good
enough results since the observation error is fprfivp However, the analysis error
has been further reduced to less than 0.2 ppmualfdhree analysis schemes. The
result that there is a significant improvement eventhe C-univariate data
assimilation, shows the impact of using differenilation for the CQ variables in the
horizontal as that is the only difference betwdsm gettings of Chapters 5 and 6 in
the C-univariate analysis experiments. Indeedjzbotally different inflation for
CQO; also helped the C{analysis under the imperfect model simulation hagter 4,
because the variability of G@ver land is much larger than that over the o@=awe

discussed.
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Figure 6. 2. RMS errors of (a) U (m/s), (b) V (m/s), (c) TK), (d) g (kg/kg), (e)
atmospheric CQ, on the lowest layer, (f) surface C@ fluxes. Green indicatesC-
univariate data assimilation, red results from new one-way multivariateanalysis, and
blue from new multivariate analysis.
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Figure 6. 3. surface CQ fluxes: (a) True state, analysis from (b) th&-univariate, (c) the
new one-way multivariate, and (d) the new multivariate ded assimilation after two
months of analysis. (unit: 10 kg/m?/s)

The differences of Figure 6.2(e) from Figure 5.1¢@rify the importance of
horizontally different inflation for C@data assimilation.

Returning to the performance of the new multivardata assimilation, Figure
6.3 shows that the new 1-way multivariate datanaigstion has less RMS error at the
end of the analysis and the spatial distributioal$® closer to the true state than with
the C-univariate. For example, the new 1-way maitate data assimilation does
have less spurious forcing near the eastern USis Gan be attributed to the
uncertainty of wind over these regions helping ectrthe atmospheric G@ields, so
that 1-way multivariate data assimilation has nowsignal of surface COflux

analysis closer to the true state. That is, siheel-way multivariate system contains
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the correlation between atmospheric L£&hd wind, correction of the atmospheric
CO, analysis owing to the wind error information cas dmphasized around major
source regions and where the network of wind olsdeEm is dense enough.
Moreover, only both multivariate data assimilatime able to catch the very small
source over eastern Australia. These results,aelievie, convincingly shows that the
new l-way multivariate system developed here isbiés algorithm we can find to
estimate surface GAluxes.

Reducing the observation density from 25% to 6.8%,0bservations are 15°
far from each other in longitude. The analysesuwface CQ from both the C-
univariate and the one-way multivariate data adatran results in slightly larger
RMS errors (Figure 6.4) than the case with densemition network. Still, the one-
way multivariate analysis has a smaller error tilam C-univariate although the
difference is not significant. Besides, the signsilart to become somewhat noisy
near major source regions. However, the errordeaed the spatial distributions are

still comparable to the true states.

6.4.2. Imperfect model simulation with variable localization

In general, the results from the OMBiethod is usually similar to that from
the AMB*OMB method in terms of RMS errors in theperfect model experiment.
We will show results from the experiment with théiB? method. There is a
comparison of C@analyses among the previous 1-way multivariatéyarsa the new

1-way multivariate, the previous multivariate, thmew multivariate, and the
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Figure 6. 4. (a) True state of surface CPfluxes after two months of analysis, and the
analysis of surface CQ fluxes in (b) C-univariate , and (c) one-way multivariate data
assimilation with the CO, observation at every four grid point (6.3% coverage).
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Figure 6. 5. Atmospheric CQ on the bottom layer: (a) truth, analysis in (b)C-univariate,
(c) old one-way multivariate, (d) new one-way multivariate, (epld multivariate, (f) new

multivariate data assimilation.
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C-univariate analysis (Figures 6.5 and 6.6) in tewwh both RMS error and spatial
distribution. We confirmed for the imperfect modeat both of the new multivariate
data assimilation systems also estimate better sgpetial distribution for C®
variables than the previous multivariate systems.

First, one can see that the atmospheric, GDalysis is improved after
implementing the new 1-way multivariate data adsitign when comparing Figure
6.5(c) to Figure 6.5(d). Again, since there arkatieely dense observations of
atmospheric Cg) the analysis of COfrom all the methods (Figure 6.5 (b), (d), and
(f)) are good enough and the difference among tleenot significant: 0.04 ppmv.
However, the improvement on the fully multivariagsimilation from Figure 6.5 (e)
to Figure 6.5 (f) is remarkable and this tells battnegative impact on the @O
analysis can be caused by coupling the errors releirant variables such as
temperature, humidity, surface pressure.

From the analysis of surface g@®uxes, one can clearly see the impact of
variable localization introduced in the new multiaée system. Taking a look at
Figure 6.6 (d), and (f), the contamination from ttw@upled error of surface GO
fluxes with other atmospheric variables is redusephificantly in both multivariate
data assimilation systems without variable locaéilra(compare to Figure 6.6 (c) and
(e)). It is evident that the deviation of analys@m the true state is more serious in
the multivariate data assimilation than the 1-wayltivariate one, especially over
Africa, northern Europe, and northern Asia. Thiesgures convince us that the new

concept of multivariate data assimilation with aate localization introduced here is
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an important finding in estimating surface £fluxes by reflecting information of
atmospheric variables in a physically meaningfuywa

Indeed, the improvement of GGlux analysis is very significant. With the
new idea of multivariate analysis with variabledbzation, 1-way multivariate data
assimilation has an optimal performance on estimgasurface C@fluxes in RMS
error and spatial distribution. Moreover, the nwaltiate analysis of Figure 6.5(f) is
much better than the previous multivariate analygich allows a correlation with
errors of all variables. That is, unphysical clatien among irrelevant variables
caused a degradation of analysis and this was mersmus in the previous
multivariate analysis rather than 1-way multivagiatata assimilation because the
one-way multivariate reduced the sampling errothi covariances. This result is
clearly consistent with our understanding.

The simultaneous estimation of the trakie of observation errors in the new
multivariate systems is as good as before forfahee methods (Table 6.1, 6.2 and
6.3). Since the atmospheric analysis of 1-way ivaritate data assimilation should
be the same as the C-univariate one, we confirimadthe estimation of observation
error and adaptive inflation gives the same restdtsthe atmospheric variables.
From the charts of adaptive inflation for atmosph€&O, (Figure 6.7, 6.8, and 6.9),
we could see that the multivariate data assimitat®mds to have larger inflation than
the 1-way multivariate, which has also slightlygear inflation than the C-univariate
one. This is because the multivariate data assiimil has more constraint in the
analysis of CQ so that the system requires larger inflation tuoe the sampling

error.
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Table 6. 1. Estimated observation error standard deviations in new ongay
multivariate analysis

Estimated observation error for each vertical layer

Vari- True | Initial

able value | Guess level1 | level 2 | level 3 | level 4 | level 5 | level 6 | level 7
U 1 2 1.076 1.111 1.091 1.168 1.221 1.208 1.026
Vv 1 2 1.042 1.108 1.117 1.159 1.220 1.192 1.055
T 1 2 1.059 1.017 1.059 1.056 1.075 1.068 1.008
q 0.1 0.2 0.272 0.165 0.120 0.114 0.112 0.102 0.100

co2 1 2 1.000 0.959 0.962 0.973 0.964 0.974 0.972
Ps 100 200 108.043

Table 6. 2.Same as Table 6.1, except f@-univariate data assimilation

Estimated observation error for each vertical layer

Vari- True | Initial

able value | Guess level 1 | level 2 | level 3 | level 4 | level 5 | level 6 | level 7
U 1 2 1.076 1.111 1.091 1.168 1.221 1.208 1.026
v 1 2 1.042 1.108 1.117 1.159 1.220 1.192 1.055
T 1 2 1.059 1.017 1.059 1.056 1.075 1.068 1.008
q 0.1 0.2 0.272 0.165 0.120 0.114 0.112 0.102 0.100

COo2 1 2 1.000 0.946 0.949 0.954 0.946 0.957 0.960
Ps 100 200 108.043

Table 6. 3.Same as Table 6.1, except for multivariate data assimilation

Estimated observation error for each vertical layer

Vari- True | Initial

able value | Guess level 1 | level 2 | level 3 | level 4 | level 5 | level 6 | level 7
u 1 2 1.118 1.134 1.131 1.204 1.268 1.249 1.045
Vv 1 2 1.064 1.139 1.134 1.206 1.272 1.216 1.085
T 1 2 1.074 1.035 1.049 1.079 1.082 1.072 1.031
q 0.1 0.2 0.295 0.173 0.126 0.125 0.117 0.104 0.102

CO2 1 2 1.000 0.979 0.975 0.981 0.978 0.986 0.980
Ps 100 200 108.968

123



e
=)

(a) levi lev2 levd ———lev4d ———lev5 leve ----- lev?
0.7 t
0.6 11
5 E
Q 11
S 0.5 7
K| 1 N
= |
£ [ 1
T 0.4 i
2 | |
|
E i (|
= 0.3 4 -
7} hl
w
M
1
0.2 1t
il Ak 1
il |,‘"L J.'J,‘N\- -_..MI-‘. | 1
L1 ﬁ”v-}—\i' = T —Lp— W
01 LAVAZS! D A i +'3"( il N "'-“1\"\".-.
‘\V- s I TN ar, i N W
0 L }..‘ﬁm‘..‘ o o B—

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232
analysis steps

—_
(o)
~—
-

land == =ocn+ice

0.9

0.8

0.7

0.6

0.5

0.4

Estimated inflation

0.3

0.2

0.1

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232
analysis steps

0.9

lev2 levd ———levd — ——lev5s lev6 ----- lev7

—_
2

0.8

0.7

Estimated inflation

analysis steps

Figure 6. 7. Time series of resultant adaptive inflations 4 —1) for (a) meteorological
variables for all vertical levels, (b) atmospheric CQ on the bottom layer, and (c)
atmospheric CG; on upper levels, in theC-univariate data assimilation
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Figure 6. 9. Same as Figure 6.7, except for the new multivariate datasasilation.
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6.5. Summary and discussion

From the work of the previous chapter, we fourat the analysis of surface
CQO; fluxes in one-way multivariate analysis was slighivorse than that in C-
univariate analysis, a result that we tracked desvthe coupling in the background
error covariance of surface carbon fluxes and Viglds. Thus, we developed a new
concept of both one-way multivariate and multiviriadata assimilation which
removes the correlation between surface, GlOxes and wind fields (“variable
localization”). Then, we tested these new analgs&hods in both a perfect model
case and an imperfect model simulation.

In the perfect model simulation, we could see bmiaus improvement of
both new multivariate and new one-way multivaridé¢a assimilations from the old
multivariate ones when we did not allow the backgib error of meteorological
variables to be coupled with surface £fluxes. However, the wind field still
provides its error information to analyze atmosphé&O, concentration in both
multivariate analysis systems. Therefore, the yamlof surface C®fluxes in the
new one-way multivariate data assimilation becorhetter than that of the C-
univariate, although the results from the C-unif@riwere already good. This is
because the background error of the wind field halpalyze atmospheric G@here
the atmospheric CQs transported near the major source regions.t iShahy a new
one-way multivariate has less incorrect signalpeesilly near the eastern US where
the old one-way multivariate has more spuriousagn

Under the imperfect model simulation, both new tiatiate data

assimilation methods also work well and clearly ioye the spatial distribution of

127



surface CQ@flux analysis. While the new one-way multivaridi@a assimilation has
the best results, the improvement on the multitargata assimilation with the new
concept is remarkable. This result is consisteih wur knowledge because the
previous multivariate analysis includes a largetiporof interacting errors among
wind, temperature, humidity, surface pressure, apheric CQ and surface CO
fluxes. The reason why the multivariate data agaiion is still worse than the one-
way multivariate data assimilation is that erroratinospheric C®is still coupled
with temperature, humidity and surface pressurthgbthese correlations do not help
analyze surface CQluxes.

We obtained a significant improvement of 1-way rnvaliate data
assimilation in the experiments allowing for noretation between wind errors and
surface CQ flux errors, which is a valid assumption under exyperimental setting.
In these experiments, there is no coupling betvatsmsphere and ocean and we use
a prescribed oceanic G@ux. In reality, however, the error correlatibetween the
wind fields and the surface G@uxes over the ocean can be important because the
air-sea net flux of C@strongly depends on the surface wind speed (Takales al.,
2002; Feely et al.,, 2004). Thus, we may need tosider the error correlation
between wind fields and surface £fluxes over the ocean for a realistic case. ,Still
the variable localization tried in this chaptevesy valuable finding, which is useful
for the case where we need to neglect the erroar@we between irrelevant
variables and thus reduce substantially sampliry®r

Lastly, there is one problem remaining: the apgeae of “hot spots” in the

surface fluxes of carbon over land in the Southdemisphere (Figure 6.6), which
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was a feature observed mostly in the C-univariadéa cassimilation, before we
implemented the new multivariate systems. With tev multivariate analysis
methods, these hot spots also appear in the resolts both multivariate data
assimilations. This is an interesting case of dlotilter divergence” where the
estimation of the surface fluxes keeps slowly grapin time. We have tracked this
problem to model bias in carbon, which we haveawmotected, and will discuss how

we believe it can be handled in the future planSiudipter 7.
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Chapter 7: Summary and Lessons Learned

The purpose of this study is to evaluate the fdagilof estimating surface
CO;, fluxes by assimilating remotely sensed atmosph@@g observations withoud-
priori information. For the Observing System Simulatiop&iments, we developed
two forecast systems: SPEEDY-C and SPEEDY-VEGASIth\Wese systems, we
developed or applied many advanced techniquesaddbund necessary in order to
produce accurate analysis of surface,@lOxes. We obtained encouraging results
using the Local Ensemble Transform Kalman FilteETKF, Hunt et al., 2007)
combined with these additional techniques. Thigkwis part of a collaborative
project with Prof. Inez Fung and Dr. Junjie Liu,avare developing a “real” system
coupling the LETKF with the CAM model and will user results to assimilate real

observations from AIRS and GOSAT.

7.1. Development of SPEEDY-C and SPEEDY-VEGAS

In order to simulate atmospheric €@oncentration, we first developed the
SPEEDY-C model which is modified from SPEEDY (Molite2003). We added a
tracer for atmospheric GOwith only two processes: advection and diffusion.
SPEEDY-C does not have any physical process fédasiCQ fluxes, so we assume
it is constant (use a persistence forecast fostinace CQfluxes). Thus, SPEEDY-
C reads the surface G@uxes as a forcing term and the released GQransported

and mixed in the atmosphere. Next, SPEEDY-C wagpled with a terrestrial
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carbon model (VEGAS: Zeng et al., 2005) and phydared model (SLand: Zeng et
al., 2000). With this coupled SPEEDY-VEGAS mode¢ could compute the time-
varying CQ fluxes over land based on the interaction withcspheric conditions, as

well as do experiments of data assimilation underimperfect model assumption.

7.2. C-univariate vs. multivariate data assimilation with a fixed inflation factor

Within the LETKF framework, it is possible to coaepthe background
(forecast) errors of variables which helps the ysalof variables related to each
other in nature. Thus, we developed several tygbasultivariate analysis systems
for the CQ data assimilation and compared them to the C-uiatea data
assimilation. In C-univariate data assimilatiome tanalysis system for the
atmospheric C® and surface CPO fluxes assimilates only the observations of
atmospheric C@ Thus, the Kalman gain for the atmospheric,@@d surface CO
fluxes are determined by only the atmospherig C@hcentration on the lowest layer.
We note that until now, only C-univariate approacheve been used in both
simulation and real observation data assimilatiomwersion studies of atmospheric
CO, and surface carbon fluxes.

Multivariate data assimilation allows the backgrdwerrors of variables to be
coupled in the analysis. In the “one-way multiagel’ data assimilation, the errors of
wind fields are provided in the analysis for thenaspheric CQ and surface CO
fluxes, whereas the analysis of winds and othereametogical variables are not
affected by CQ@variables. This reduces the impact of samplimgrerin CQ on the

atmospheric variables. By contrast, the multivaridtata assimilation allows the
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interaction of errors from all the variables in @ogalysis, so the analysis can include
unnecessary or unphysical correlations among thi@blas in a physical sense, for
example, the relationship between the surface fl®es and surface pressure.
Results show that the one-way multivariate datamalsgion has the best
overall performance in analyzing G@ariables. That is because it makes full use of
beneficial information given to the G@nalysis which is the errors of wind fields, in
addition to those of atmospheric €@oncentration. When we use a fixed inflation
factor, one-way multivariate analysis performs dretthan the C-univariate data
assimilation, which blows up. An advantage of @rs+ multivariate data
assimilation is to constrain the g@nalysis with the information of wind field errors
in addition to the atmospheric G@elds. For a similar reason, the multivariatéada
assimilation works better than the C-univariateadassimilation. That is, the
multivariate data assimilation has more constraites CQ, variables from
observations of all the variables because the ®rave coupled in this analysis
method. Thus, it helps the analysis to not blovaltipough the coupled errors do not
have a meaningful relationship. Because one-waytivadkte data assimilation
prevents some irrelevant correlation among theab#s, the multivariate data
assimilation has a worse analysis of QO@riables than the one-way multivariate
analysis. In the nature run, atmospheric, @letermined by wind fields through the
transport and mixing, but does not change any o#tterospheric variables. The
methodology of the one-way multivariate data adsition fits the physics in the

model.
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7.3. Bias correction, adaptive inflation and observation error estimation

For the imperfect model simulation, we use the tmdipatmosphere-
vegetation-land model for the nature run and th&EPY-C for the ensemble
forecasts. Since the climatology of the forecasteh is significantly different from
that of the nature run, we applied a bias corracto the standard atmospheric
variables, and adaptive inflation to the LETKF foe carbon data assimilation. With
the bias correction, the analyses of atmospheritablas and atmospheric GO
concentration improved significantly, but the sagaCQ fluxes were not estimated
properly. Implementing an adaptive inflation teicjug introduced by Li et al.
(2009), the analysis estimates the surface fiQes very well, while the analysis of
atmospheric variables and atmospheric, @@re further improved. In addition, the
method of adaptive inflation used for this studyineates the observation error
simultaneously, and the accuracy of estimated @htien error is satisfactory. This
is important for CQ applications since it is not clear what the accyraf remotely
sensed atmospheric G@easurements will be.

From the results using bias correction and adai&ion, we learned many
things: (i) The analysis of atmospheric £f@quires relatively large inflation in the
initial stage because the random initial conditidrsurface CQ@ fluxes can make the
ensemble forecast far from the true state. Thaugelinflations let the analysis reflect
the observation more than the ensemble forecasthmtanalysis makes a reasonable
estimate of surface GOluxes so that the ensemble forecast can prodessonable
fields of atmospheric CO(ii) It is better to estimate independent infbatifactors for

the atmospheric CQover the land and over the ocean at the lowest lagince the
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dominant variation of surface G@uxes occurs over the land, it is necessary ke ta
into account the observations of atmospheri¢ 6¢&r land more than over the ocean.
However, the analysis of wind tends to reduce teemble spread of atmospheric
CO, over the land more than over the ocean, becawselbkervations of the wind
field are located mainly over the land. Thus, Heparate adaptive inflation of
atmospheric C@®over the land and over the ocean has a betteorpshce on
estimating surface COluxes. The estimated inflation results have éangpalues over
the land than over the ocean as we expected. Thi) inflation for the surface GO
fluxes should be less than the other variables. eWferienced that the analysis has
blown up when we used any similar or larger inflatfactors for the surface GO
fluxes compared to those for other variables. Mathtecally, we have proven that the
inflation of variables having no observations sklobke smaller than those having
observations. Then, a simple adaptive inflatiorthoé for the surface CCfluxes
has been examined and the results confirm thainfteion is smaller than that of

other variables.

7.4. Variable localization in the multivariate data assimilation

When the adaptive inflation technique was appliedtite perfect model
experiment, we found the contamination caused leydinect correlation between
wind fields and surface CGOluxes. This contamination makes the performaoice
the one-way multivariate data assimilation worsanththe C-univariate data
assimilation. Thus, we developed a new multivariabalysis approach which we

denote ‘“variable localization” where the correlaso between the errors in
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atmospheric variables and in surface,Gl0xes (which are physically implausible)
are zeroed out. In the new one-way multivariatea @ssimilation with the variable
localization, the error information for the winckliils is used to analyze atmospheric
CO,, while only the error information of the atmosphé€O, concentration is used to
update the surface G@lux analysis. Likewise, new multivariate dataiaslations
with variable localization were tested, blocking #orrelation of errors in the surface
CO;, fluxes with errors in all the atmospheric variabie the analysis. Still, the new
multivariate analysis includes some unnecessarkeledions among variables: for
example, coupled errors between the atmospherica@® humidity.

Table 7.1 summarizes the methods we have examiliezhe reads the row
starting from W, it can be explained as followse thind fields (W) are analyzed
using the errors of the wind fields (W) coupledhwmihose of temperature, specific
humidity and surface pressure (O) in the C-unitar{&€-uni) and both of the 1-way
multivariate data assimilation (1way) and the l-wayltivariate with the variable
localization (1way-L). For the multivariate datasemilation without variable
localization (Multi), the analysis of wind field$M) are determined by the coupled
error covariance of all the atmospheric variabled @& variables whereas the wind
fields from the multivariate with the variable Idication (Multi-L) are analyzed

without the error correlation with surface €fluxes (CF).
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Table 7. 1. Comparison of all methods: C-univariatgC-uni), Multivariate (Multi), Multivariate
with a variable localization between winds and sudce CQ fluxes (Multi-L), 1-way multivariate
(1way), 1-way multivariate with a variable localizaion (1way-L). W indicates the wind fields,
and O includes temperature, specific humidity, andsurface pressure, C is the variable of
atmospheric CO, and CF the surface CQ fluxes. The contents of the table present the er
information used for the analysis of each variabldW, O, C, CF) in each method (C-uni, Multi,
Multi-L, 1way, 1way-L).

C-uni Multi Multi-L | 1way | 1way-L
W wyv) WO |wocC WOC | WO WO
O,qrs| WO |WOC WoC WO WO
Ctmco,) | C WOCCF | WOC WC WC

C WOC C WC C

With the experiment of Multi-L and 1way-L shownTiable 7.1, we could see
significant improvement of surface GCOflux analysis compared to the old
multivariate analyses (Multi and 1lway). The newe-ovay multivariate data
assimilation (1way-L) thus results in the best perfance we were able to obtain in
estimating surface COluxes compared to the C-univariate and the newivawmiate
data assimilations. A remaining problem is thatfee CQ flux field in the
imperfect model experiments have “hot spots” ovee fand in the Southern
Hemisphere which are too strong compared to theftuxes, indicating the presence

of a subtle “local EnKF divergence”. We addressoasible remedy as part of our

future work.
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7.5. Future plans

Since we do not have these “hot spots” in the perfeodel case, they can be
assumed to be caused by the model bias of atmasp@€s, which we did not
correct in the imperfect model set-up. This wasficmed by performing a bias
correction for atmospheric G@tarting from the nature run and comparing the@ h
forecasts with it as described in Chapter 4. Reratmospheric variables we know
that Reanalyses are accurate enough to capturd fbiades, so this technique can be
applied in the “real world”, but we cannot assurhattwe will have available a
Reanalysis that contains atmospheric,@@th enough accuracy to use as “nature”
and correct the Cfbias. Nevertheless, the results confirmed theraesef the “hot
spots” when we corrected the bias of the modeimedéd from the nature run,
although in reality we do not have any availabléaslet on the atmospheric €@
correct the model bias through the low-dimensiamatection method (Figure 7.1).
Thus, another method for correcting bias of atmesphCQ will be tested and
applied. The basic idea of the bias correctiorsimilar to the low-dimensional
correction. First, the analysis assimilating tt@@spheric CQ observation will be
done without a bias correction of atmospheric,@® we have done here. Next, we
will make 6-hour forecasts which starts from thalgsis obtained from the previous
step. Then, the analysis increment between thsasand the forecast will give
information about the model bias of atmospheric,,CQhis is a possible way to
estimate the model bias of atmospheric,@® long as we have the observations, so

this can be applicable to the real case.
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Figure 7. 1. Surface CQ fluxes: (a) true state, (b) one-way multivariate data
assimilation with an adaptive inflation of the OMB* method but no bias correction for
atmospheric CO,, and (c) same as (b) but with a bias correction for atmpseric CO,

using the low-dimensional method.
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This work has been done under the assumptionatedtave information on
atmospheric C@concentrations near the surface. However, itoisyet clear the
extent that this we will become true. OCO was goin provide the column-
integrated dry air mole fraction data, althoughittegrument had high sensitivity near
the surface. The Japanese satellite GOSAT witl pifeduce the column-based data
of CO, concentration, and it also has absorption bandsitsee to the atmospheric
CO, near the surface. Thus, if we have the columa dhatmospheric COthen we

will calculate the observation increment usingakeraging kernel of the dataset. Let

a model forecast br® (a CQ vertical profile), then
k
y® =h(x")=AT(Hx") = a (Hx}) (7.1)
i=1

wherek is the number vertical level$] the spatial interpolation operator® the
model predicted C©Ocolumn mixing ratio,A the averaging kernel, and the
element ofA ati-th vertical level. That is, the observation operatgrinterpolates

x® to the observation location and also calculatesniodel forecast as a weighted
column CQ based on C@® profile according to the averaging kernel which is
normalized (the sum @& is equal to unity). We can localize the columssatvation

increment ta-th vertical level by thé-th averaging kernel element as follows:

Ay? =a x(y°-y°) (7.2)

And thej-th ensemble forecast column €@ thei-th vertical level bya, as well:

Ay} =a xy] (7.3)
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Then, we substitute the observation increment of, QBquation 7.2) in
Ay° = y° — y° of Equation (1.4)x? =x° + XK (y° —y®), for each vertical layer. The
Kalman gain matrix,K , is calculated as a function of the observatiod #me

forecast error statistics with Equation (1.5), &edice we determine the analysis,

in Equation (1.4). In addition, Equations (1.6)dafl.7) provide an estimate of
analysis uncertainty. In this we can distribute tbservation increment of G@o
each vertical layer and assimilate it in LETKF fework. Indeed, this method has
been already applied to a realistic system, LETK¥VI3.5, when assimilating AIRS

CO, observation and preliminary results are promiglng et al., 2009).

This work has been done to test the performanceEGKF on the carbon
cycle data assimilation before applying it to distia system, LETKF/CAM3.5 using
real CQ and atmospheric observations. Thus, the insiglatsied from this study
will guide the state-of-art data assimilation sgster the carbon cycle and we plan to
participate in this process and contribute to swmvithe problems that will

undoubtedly arise when dealing with real observeatio
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