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Enumeration of Epicyclic-Type
Automatic Transmission Gear Trains

Abstract

An automotive transmission maintains a proper equilib-
rium between the power and torque produced by an en-
gine and those demanded by the drive wheels. Most au-
tomatic transmissions employ some kind of epicyclic gear
mechanisms to achieve the above purpose. The first step
in the design process of such a mechanism involves find-
ing a configuration that provides a set of desired speed
ratios, and meets other dynamic and kinematic require-
ments. In this work, the kinematic structural characteris-
tics of epicyclic gear mechanisms have been identified, and
a methodology is formulated to systematically enumerate
all possible configurations of such mechanisms. This is
achieved by defining a canonical graph to represent the
mechanisms. Graphs of mechanisms with up to ten links
have been generated using this methodology.

1 Introduction

The power from the engine crankshaft of an automobile
is transferred to the drive wheel through a transmission
unit, a final reduction unit, and a differential. The ratio
of the speed of the input shaft (which brings power from
the engine) to that of the output shaft of a transmission
unit is called the speed ratio or the reduction ratio. Most of
the automatic transmission units use epiciclic gear trains”
(EGTs) to achieve the desired reduction ratios. Some of
them use one degree-of-freedom (dof) EGTs. Others use
fractionated mechanisms, each fraction of which is a one-
dof EGT. Tsal, et al. [14] have identified some of the struc-
tural characteristics required by an EGT to qualify for au-
tomatic transmissions, and have shown that of the many
non-isomorphic graphs of the six-link one-dof EGTs, only
six graphs can be used in automatic transmission gear
boxes.

The EGT used in an automatic -ransmission is sup-
ported by bearings housed in the casing. This results in

*A few use countershaft type of arrangement that is typical of
manual transimission. A hybrid type using a combination of both is
also possible.
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a two-dof fractionated mechanisms. Henceforth, we will
call the mechanism formed by an EGT and the casing
of an automatic transmission gear box an Epicyclic Gear

Mechanism (EGM).

2 Graph Reprsentation of an
EGT

The graph representation of an EGT has been described
by Buchsbaum and Freudenstein in their pioneering pa-
per [2]. The characteristics associated with the graph of
an EGT have also been derived in the same paper and
have been termed fundamental characteristics.

2.1 Isomorphism

Two graphs are isomorphic if there exists a one-to-one
correspondence between their vertices and edges which
preserves the iucidence and labeling. The adjacency ma-
trices of two isomorphic graphs can be different depending
on the numbering of their vertices.

A reliable method for identifying isomorphism is to de-
velop a unique code for each graph, such that two isomor-
phic graphs have the same code while two non-isomorphic
graphs have different codes. This usually involves finding
a way of uniquely numbering the vertices. The degree code
formulated in [12] may be cited as an example employing
this idea.

2.2 Pseudo-Isomorphism

Since an edge in a graph represents a joint between two
links, only binary joints can be represented in a graph.
Thus, a trinary joint is represented as two binary joints,
a quarternary joints by three binary joints, and so on.
This, however, creates a problem in uniquely represent-
ing a mechanism. For example, the mechanism shown in
Fig. 1(a) can be reconfigured into the mechanism shown
in Fig. 1(c) by rearranging the revolute joints among its
coaxial links. Though these two mechanisms appear to
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Figure 1  EGTs: (a, c) functional representations, (b,
d) corresponding graph represntations.

be structurally non-isomorphic [10], they are kinemati-
cally equivalent, and for the purpose of structural syn-
thesis are considered the same. The graphs of the two
mechanisms (Figs. 1(b) and (d) respectively) are mathe-
matically non-isomorphic. The graph in Fig. 1(d) can be
formed from the graph of Fig. 1(b), if the thin edge join-
ing the vertices 1 and 2 is replaced by a thin edge of the
same label joining vertices 2 and 3. This method of cre-
ating mathematically non-isomorphic graphs representing
kinematically equivalent EGTs by replacing a thin edge
by another thin edge of the same label is known as vertez
selection and such mathematically non-isomorphic graphs
are called pseudoisomorphic graphs [15]. The problem
of pseudoisomorphism can be averted by imposing some
rules that result in unique arrangement of the edges of the
same label. Such a graph is called a canonical graph [13].

3 Canonical Graph Representa-
tion o

An EGM typically consists of a one-dof EGT supported by
the casing on one axis. Only the links that are connected
to the casing by coaxial revolute joints can be used as
input, output or fixed links [14].

The casing of an EGM is a unique link in its kinematic
structure. Therefore, in the canonical graph representa-
tion of an EGM, the vertex representing the casing will be
marked as the root of the graph. Recall that the coaxial
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Figure 2 EGM employing Simpson gear set: (a) func-
tional representation, (b) conventional graph represnta-
tion, (c) canonical graph representation.

joints in a mechanism can be rearranged without affecting
the mechanism functionally [13]. Among various arrange-
ments of the coaxial joints there exists a unique configu-
ration such that all the thin edged paths originating from
the root and ending at all the other vertices will have
distinct edge labels. This unique graph representation is
called the canonical graph representation. Using canoni-
cal graph representation, the vertices can be divided into
several levels. The casing is denoted as the ground level
vertex. A vertex that is connected by only one thin edge
to the root is defined as a first level vertex. A vertex that
is connected to the root by two thin edges is defined as
the second level vertex and so on. Each vertex at any
particular level is connected to exactly one vertex at the
immediate preceding level by a thin edge. All thin edges
having the same label* must be incident to one common
lower level vertex. Henceforth, all the vertices at a partic-
ular level that are connected to a lower level vertex by thin
edges of the same label, will be referred to as members of a
family. The problem of pseudo-isomorphism doesnot arise
once the canonical graph is defined. The canonical graph
representation of the Simpson gear set shown in Fig. 2(a),
is shown in Fig. 2(c). The second level vertices represent
the planet gears.

4 Structural Characteristics

The canonical graph by virtue of its definition has one
special feature, i.e.

*Note the difference between label and level. A label denotes the
location of the axis of a link in space while the word level denotes
the location of a link in the kinematic chain relative to the casing.






C1: All the thin edges of the same label should be inci-
dent to a common lower level vertex.

All the fundamental characteristics of a graph of an
EGT as described in [2] apply to the canonical graph of
an EGM. These are described in section 4.1 under the
heading General Characteristics. An EGM, besides pos-
sessing the characteristics of an EGT, also has its own
specific characteristics because it is a mechanism that per-
forms some special functions. These characteristics and
their expressions in a canonical graph representation are
discussed in Sections 4.2 through 4.4.

4.1 General Characteristics

The canonical graph of an EGM has no articulation point.
It possesses the following characteristics :

C2: If there are n vertices in the canonical graph of an
EGM then it must have n — | thin edges and n — 3

geared edges, since an EGM is a two-dof mechanism.

C3: The subgraph formed by removing the geared edges
is a tree.
C4: A geared edge can only be incident with one of the

following pairs of vertices.

(a) Two vertices at the same level that are con-
nected to the same lower level vertex by thin
edges of different labels. '

(b) Two vertices at adjacent levels, that are con-
nected by a path of exactly three thin edges
having two different labels.

(¢) Two vertices one at level k and another at level
k —2, if there is a path of exactly two thin edges
between them. For every vertex at level k there
1s only one vertex at level £ — 2, to which it can
be connected by a geared edge.

4.2 Coaxial Links

The first level vertices in the canonical graph of an EGM
represent links that are connected to the casing by coaxial
revolute joints. None of the links.of an EGM should be
connected to the casing by a gear joint*. Therefore,

C5: The first level vertices are connected to the root by
thin edges of the same label.

(C6: No geared edge can be incident to the root.

In an EGM one-of the coaxial links is permanently des-
ignated as the output. The desired reduction ratios are
obtained by changing the input and the fixed links. Also,
it is always possible to achieve a direct drive by locking
all the links in the EGT together such that they rotate
as a single link. Thus if N, links of an EGT are coaxial,
then it is possible to get (N, - 1)(N, - 2) + 1 number of
speed reductions. Therefore,

*Note that it is possible to have one of the links of an EGT
permanently fixed to the casing. This, however, will reduce the
flexibility of obtaining more speed ratios from the gear train.
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(c) (d)

Figure 3: (a) A canonical graph containing a locked chain,
(b) functional representation of the mechanism, (c) graph
obtained by removal of locked chain, (d) functional repre-
sentation of the resulting mechanism.

C7: If N, is the number of required speed reductions (in-
cluding reverse), then the number of first level ver-
tices N, in the canonical graph must satisfy the equa-
tion

Ny <(Ne = 1)(Ne —2) +1 (1)

4.3 Locked Chains

A set of links forming a part of a mechanism is said to
be locked if they undergo no relative motion when the
mechanism is in operation and, hence, can be replaced by
one link without altering the functional characteristics of
the mechanism.

Consider the canonical graph of an EGM shown in
Fig. 3(a) that satisfies all the fundamental characteristics
described in [2]. However, the subgraph formed by remov-
ing vertices 0, 1, 2, 3, and 4 from the graph represents a
kinematically locked chain. This is because the subgraph
has 5 vertices but 4 geared edges. Fig. 3(c) shows a graph
formed by replacing vertices 5, 6, 7, 8, and 9 in Fig. 3(a)
by a vertex 5, that will perform the same functions.

C8: An EGM contains a locked chain if there exists a
subgraph of p verices in the graph of the EGM such
that

(a) the transfer vertex of each geared edge in the
subgraph lies in the subgraph, and






(a) (b)

Figure 4  Canonical graph of an EGM with a binary
carrier represented by vertex no. 6.

(b) the number of geared edges in the subgraph is
more than p — 2.

" A methodology is described in Section 7.2 that prevents
the generation of EGM with locked chains during the enu-
meration process.

4.4 Redundant Links

The other desired feature of a viable mechanism is that
it should not have any redundant link. A link is said to
be redundant, if it is never used as an input, output or a
fixed link, and the removal of such a link does not change
the degrees of freedom of the EGT. Such a link will not
carry power during the operation of the mechanism at any
of its reductions.

A one-dof EGT communicating, that is, giving and tak-
ing power, with the external environment requires at least
an input, an output and a reaction (fixed) link. Thus, to
function effectively it requires at least three ports of com-
munication with the external environment. Similarly, a
two-dof EGT requires at least four ports of communica-
tion, a three-dof EGT requires five ports of communica-
tion, and so on.

In the canonical graph representation of an EGM if
there exists a subgraph that represents an n-dof EGT,
then it must have at least n+2 ports of communication
with the external environment. Otherwise, those links
that can not interact with the external environment would
be redundant. The external environment includes both
the rest of the gear train and the outside world. Two
things are to be noted here.

1. The subgraph of a canonical graph represents an EGT
if and only if the carrier of any gear pair within the
subgraph is also a member of the subgraph. For ex-
ample, the subgraph formed from the canonical graph
of Fig. 4(a) by deleting vertices 0, 1, 2, 4, and 6 does
not represent an EGT.

2. Some of the ports of communication at a first glance
may not be obvious. For example, in the graph shown
in Fig. 4(a), let vertex 1 represent the input link, ver-
tex 2 the fixed link, and vertex 4 the output link.
Consider the subgraph formed by deleting vertices 0,
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Figure 5
from a canonical graph

A tree obtained by removing the geared edges

1,2, 4,5, and 7. It appears as if the subgraph has
only two ports of communication, namely 3 and 8.
However, the carrier represented by vertex 6 is also
a port of communication. This is because vertex 6
is the transfer vertex of the geared pair connecting
vertices 7 and 8, and vertex 7 is external to the sub-
graph. Therefore, the subgraph has actually three
ports of communication.

From the above observations we will derive several con-
ditions that the canonical graph of an EGM must satisfy.
These conditions are necessary, but not sufficient. How-
ever, these conditions drastically reduce the number of
graphs with redundant links during the enumeration pro-
cess. The remaining few can be weeded out by inspection
or by a methodology described later.

4.4.1 Number of Branches

Consider the branches of a tree of a canonical graph em-
anating from vertex Vy as shown in Fig. 5. Let the level
immediately above and arising from V; contain n vertices
V1,Va, ..., V, that belong to one family. Let the branches
emanating from these vertices have N;,N, ... N, vertices,
respectively. Now vertex V;, and the branches emanating
from it form a subgraph that represents an EGT, because
a geared edge joining any two vertex of the subgraph will
have its transfer vertex contained in the subgraph. Let
all such subgraphs be named G;,G3...G,, and let them
have Fy,F, ... F, dof, respectively. Then G; will have N;
- F; geared edges and will require at least F; 4 2 ports of
communication. One port of communication is the ver-
tex V; itself. The rest of the ports of communication will
communicate through gear edges with any of the vertices
Vo to V, other than V;. A geared edge coming from any
port of GG; cannot connect to any vertex other than V; to
V,, of the EGM.






Next consider the subgraph (o formed by vertices V;
to V,, and the branches emanating from V; to V,,. The
minimum number of geared edges that Go should have
in order that none of the links represented by vertices in
the subgraphs GG1,G5 .. .Gy, is rendered redundant can be
calculated by summing the number of geared edges in each
subgraph, and the number of geared edges required by
each subgraph to maintain the minimum number of ports
of communication. Thus the number of geared edges in
(o should be at least

n n n
DWNi+l-F=D+) (F+1)=) N+n (2)
i=1 ) i=1 i=1
The number of geared edges in a subgraph representing
an EGT must be less than the number of vertices by 2 or
more, otherwise it will be locked. Since (7 has Z:?:x N+
n + | vertices, this condition can not be satisfied for the
above case. Therefore, not all the members of a family
can give rise to branches.” If one of the members does not
give rise to any branch, then the number of vertices in
Go will be ?;11 N; + n+ 1 and the minimum number
of geared edges required to prevent redundancy will be
at least S°77)' N; + n — 1. Thus, if one of the members
does not give rise to any branch, the above condition is
satisfied. Also, if more than one member of a family does
not give rise to any branch the above condition can be
satisfied.

Let Vi,Va...V, represent the first level vertices, and
vertex Vj represents the root of the EGM. Since an EGM
has exactly two-dof, the number of geared edges must
be less than the number of vertices by 3. Applying this
condition and following the above logic one can prove that
there must be at least two vertices in the first level which
should not give rise to any branch.

Thus, we get the following two conditions.

(’9: For those vertices located at the higher levels, there
must be at least one member in a family that does

not give rise to any branch.

(10: There must be at least two vertices 1n the first level
that do not give rise to any branch.

As a special case of Condition 1, a vertex cannot give
rise to any branch if it is the only vertex in a family.

4.4.2 Number of Incident Edges

The subgraph formed by vertices 3, 6, and 4 in Fig. 6
represents a one-dof EGT. Hence it should have at least
three ports of communication. But it has only two ports of
communication, namely vertices 3 and 4, and the removal
of vertex 6 does not change the dof of the mechanism.
Therefore, vertex 6 represents a link that is redundant
and can be removed. This is generally true for any link
that is not used as the input, output or fixed link and is
connected by only one revolute joint and one gear joint.
Thus,

Cl11: If a vertex is not located at the first level and is in-
cident by only one thin edge, then it must be incident

by at least two geared edges.
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Figure 6 : (a) A canonical graph containing a vertex (ver-
tex no. 6) representing a redundant link, (b) functional
representation of the mechanism.

Cl12: If avertex is located at the first level and is incident
by only one thin edge, it must be incident by at least

one geared edge.

4.4.3 Floating Carrier

Consider the graph shown in Fig. 7(a). The subgraph
formed by vertices 3, 5, 6, 7 and 8 represents a two-dof
EGT. However, it has only three ports of communication,
namely 3, 5, and 7. Therefore, the links represented by
vertices 6 and 8 are redundant. Note that the vertex 6
represents a binary vertex that is not connected to any
other vertex by a geared edge. According to Condition
C9, a binary vertex of this kind can only occur at the
penultimate level of a branch. If the vertex at the higher
level that is connected to the binary vertex is incident
by two geared edges, then there are two possible ways of
connecting them. These two ways are shown in Figs. 7(a)
and (c). In both these cases the binary vertex, and the
higher level vertex that is incident to it are redundant.
In Fig. 7(c) links represented by vertices 5 and 7 are re-
dundant because the subgraph formed by vertices 1, 5, 6
and 7 represents a one-dof EGT that has only two ports
of communication. Thus,

C13: If a binary vertex in a tree is not at the first level
then of the two vertices that it connects, the higher
level vertex must be incident by more than two geared

edges.

Fig. 4 shows the graph of an EGM that has a binary
vertex, but no redundant links. In this case the higher
level vertex (vertex No. 8) that is connected to the binary
vertex 6 is incident by three geared edges.

5 Graph Enumeration

Most combinatorial enumeration procedures that require
the enumeration of all possible solutions satisfying cer-
tain constraints, are done through the process of genera-
tion and lesting. The procedure is thus divided into two
parts [5]: a generator of all possible solutions and a tester
that selects only those solutions that meet the constraints.
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Figure 7: (a, ¢) Canonical graphs containing vertices (No.
6 & 8 in (a) and No. 5 & 7 in (c)) representing redundant
links, (b, d) functional representation of the mechanisms.

The enumeration procedure described below uses a hier-
archial generation and testing technique. A part of the
canonical graph is generated at each step, and a test is
carried out to prune out those solutions that will not give
rise to canonical graphs with the desired characteristics.

The following observations are made before formulating
an efficient enumeration procedure.

1. The canonical graph has a unique vertex - the root,
with reference to which other vertices are divided into
several levels. Thus, there is already some arrange-
ment among the vertices. One can therefore think of
obtaining a unique arrangement of vertices by adding
some rules. This can then be used to develop a unique
code for each graph that will serve as a reliable tool
for an isomorphism test.

2. The definition of the canonical graph requires the edge
labels to be distributed in a particular way. This
forbids the generation of pseudo-isomorphic graph.

3. Most of the characteristics described in Section 4 are
applicable to the tree of a canonical graph, rather
than the canonical graph as a whole.

4. Characteristic C4, which prescribes the allowable
geared edge connections, presumes the existence of
a labeled tree.

Therefore, it follows that an efficient enumeration proce-
dure can be achieved if it is divided into two phases. In
the first phase labeled trees that will give rise to admissi-
ble canonical graphs are enumerated. In the second phase
geared edges are added to these trees to create the canon-

158

3 3 2
011 00110 01100
i 101?8 s SETINE 4 o110
i 1ot !
4 01001 4 0190
00110 01100 s S 00110
(2 ® ©

Note The matnx beside each graph s the kink to link adjacency matnx.

Figure 8 Graphs in (a) and (b) are isomorphic but not
automorphic, Graphs in (a) and (c) are automorphic.

ical graphs. Each of these phases comprises of various
steps, that are described in Sections 6 and 7, respectively.

6 Enumeration of Trees

The characteristics C1, C2, C5 to C10 are used to formu-

late the procedure for enumerating trees with n vertices.

Step 1. From C7 calculate the minimum number of coax-
ial links required. This gives the minimum number
of vertices that a tree should have at the first level.

Step 2. Distribute the remaining vertices into various
levels. While making such a distribution, remember
that all levels other than the highest level must have
at least 2 vertices in order to satisfy C9.

Step 3. Divide the vertices at each level into families
( see Section 3). At all levels other than the high-
est level there must be at least one family with two
or more members in order to satisfy C9. One must
note that the distribution of vertices into families is
same as the problem of partitioning of integers. An
algorithm to this end can be easily developed by us-
ing the concept of generating functions, explained in
the book by Liu [9].

Step 4. Start adding the vertices of the first level. Ac-
cording to C5 all the vertices at the first level should

be connected to the root with thin edges of the same
label.

Step 5. Next connect the vertices of the second level to
the first level vertices. According to C10, two of the
vertices at the first level should not give rise to any
branch. The definition of a canonical graph requires
the members of the same family to be connected to
the same lower level vertex by edges of the same label.
Therefore, while adding the second-level vertices, add
one family at a time. Start with the family that has
the lagest number of members. If a family of ver-
tices is added in all possible ways a lot of isomorphic
graphs would be generated. To reduce the number
of isomorphic graphs we digress and introduce the
concept of graph automorphism and similar vertices.

6.1 Graph Automorphism

Consider the ggaph shown in Fig. 8. The edges of the
graph are unlabeled and its vertices are numbered. If we
permute the numbering of the vertices, isomorphic graphs






Figure 9 A iree showing similar vertices.

are produced. Most of these isomorphic graphs have their
corresponding vertices numbered differently. However,
some specific permutations produce graphs whose corre-
sponding vertices bear the same number as the original
one. These graphs are called automorphic graphs. For
example, if we number the vertices 1, 2, 3, 4, and 5 of
the graph in Fig. 8(a) as 1, 3, 2, 5, and 4, the resulting
graph as shown in Fig. 8(c) is automorphic. The permu-
tation in this case is denoted by (1)(2,3)(4,5). Elements
2 and 3 are said to form a cycle of length 2, and element
1 a cycle of length 1. All such permutations that produce
automorphic graphs form a group [9]. Each of these per-
mutations is refered to as a member of the group. The
application of any of the members from the group won’t
alter the adjacency matrix of the graph in any way. If
two vertices p and ¢ are contained in the same cycle of
any member of such a permutation group, then vertices
p and ¢ are said to be similar [16]. Thus, one can divide
the vertices of a graph into classes by putting the similar
vertices together. If one wants to add a particular prop-
erty to any vertex, then there can be one choice from a
class of similar vertices since any choice is as good as the
other.

Some very simple rules are prescribed here to identify
some of the similar vertices. These rules won’t prevent
the generation of isomorphic graphs completely, but will
reduce their number drastically. These rules are

S1: Vertices belonging to the same family and incident
by only one thin edge and no other edges are similar.

For example, vertices 2, 3 and 4 in Fig. 9 are similar.

S2: Families that have the same number of members and
are connected to the same lower level vertex form a
cluster. If none of the vertices in a cluster is incident
by more than one thin edge, then all the vertices in
the cluster are similar. For example, vertices 5, 6, 7
and 8 in Fig. 9 are similar. If a vertex is incident by
more than one edge, then the family of vertices to
which that vertex belongs becomes dissimilar, while
the rest of the families in the cluster remain similar.

Whenever a choice for a vertex is to be made for adding a
vertex, or a family of vertices, choose only one vertex out
of a class of similar vertices.

The addition of vertices at the higher levels should pro-
ceed in the same way as the second level vertices. The

159

Table 1  Distribution of vertices of the graphs repre-
senting 9-link EGMs into levels and families: (a) level
distribution, (b) family distribution.

Level ]l | 7165|5441 4

Level I | 121324312
Level 111 1 12
(a)
Levels Distribution of Distribution of
vertices into levels | vertices into families
1 4
11 2 2
11 2 2
1,1
(b)

only difference is that C9 is applicable instead of C10,
1.e., at least one member in each family of vertices should
not give rise to any branches. A test to eliminate isomor-
phic graphs is carried out after completing the addition
of vertices at each level.

The example given below demonstrates the above enu-
meration method.

In this example, trees that can give rise to admissible
canonical graphs which represent 9-link EGMs, capable of
providing four speed reductions, are enumerated.

Step 1. There are nine links. The minimum number of
coaxial links required is four. Therefore, the first level
should have at least four vertices.

Step 2. The remaining vertices can be divided into levels
as shown in Table 1(a).

Step 3. The vertices at each level are further divided into
families. One of the distrubtion is chosen from Ta-
ble 1(a) to demonstrate this step. The distribution
of vertices at each level into families for the chosen
distribution is shown in Table 1(b).

Step 4. This step and the next one are demonstrated by
choosing one of the two distribution of vertices into
families from Table 1(b). The distribution chosen is
shown in Fig. 10(a). Fig. 10(b) and (c) shows the tree
and the corresponding adjacency matrix formed after
addition of the first level vertices. The adjacency
matrix has all its elements zero except for those in
the rows or columns corresponding to the root.

Step 5. In the second level there is only one family with
two members. There is only one choice of vertex
in the first level to which this family can be con-
nected since all the vertices at the first level are sim-
ilar according to S1. The resulting tree is shown in
Fig. 10(d). In terms of the adjacency matrix this
would mean the addition of two rows and columns
to the matrix of Fig. 10(c). The resulting matrix is
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Figure 10  Enumeration of trees for a given family and
level distribution: (a) level and family distribution, (b)
and (c) addition of first level vertices, (d) and (e) addition
of second level vertices, (f) - (i) addition of third level
vertices.

shown in Fig. 10(e). All the elements of the new rows
and columns are zero except for element number* 1.
However, some of the zero labeled elements will be
relabeled g when geared edges are added. Poten-
tial geared edge connections can be found from C4.
The corresponding elements, instead of being set to
zero, are therefore set to z to facilitate the process
of geared edges addition in the second phase. The
elements Asg and Ags are set to zero because there
can be no geared edge between vertices of the same
family according to C4(a). All other elements are
set to x since they satisfy C4(b). This completes the
addition of vertices at the second level.

The addition of the vertices at the third level is il-
lustrated in Fig. 10(f) to 10(i). The dashed lines
across the adjacency matrices divide them into vari-
ous sub-matrices, each containing information about
a particular type of interactions. For example, sub-
matrix [ in'Fig. 10(i) represents the interaction within

*We are following the convention of C programming language in
indexing the elements of rows and columns. The indexing starts
g 4

with the number 0.
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Figure 11
to their priority.

A tree having its vertices numbered according

the third level vertices, submatrix II the interaction
between the third and second level vertices, and sub-
matrix I1I the interaction between the third and first
level vertices. Whether an element of the submatri-
ces I, II, and III can be converted into z or not can
be determined by applying C4(a), C4(b), and C4(c),
respectively.

Before ending this section on enumeration of trees we
note that the generator generates only those trees that
have the desired characteristics. The tester has only to
identify the isomorphic graphs whose number has been
reduced by incorporating some rules in the generator.

6.2 Isomorphism

The issue of developing unique code for identifying iso-
morphic graphs has been addressed by many authors ([1],
[12]). Most of these papers dealt with graphs whose edges
are not labeled. The labeling of edges of a graph has both
its advantages and disadvantages. On one hand, it di-
vides the vertices into classes that we have already named
as families and, therefore, introduces some amount of or-
dering among the vertices. On the other hand, since the
labels are arbitrary they have to be permuted in all pos-
sible ways in order to detect isomorphism. Some papers
have presented graph representations [11] that obviate the
need to explicitly represent the labels of the revolute edges
in the adjacency matrices. This paper achieves the above
objective by proposing four simple rules.

I1 Vertices at the lower levels should have higher priority
than those at higher levels. For example, vertices 1,
2, 3, 4, and 5 in Fig. 11 have higher priority than
vertices 6, 7, 8, 9, and 10. Hereafter, whenever we
say that a vertex has a higher priority than another
it means that the former is numbered lower than the
latter.

I2 Members of a family such as vertices 1, 2, 3, 4, and §
in Fig. 11, should be consecutively numbered.

I3 All members of the families that belong to the same
level and have the same number of members should
be consectively numbered. For example, vertices 8,
9, and 10 in Fig. 11 are consecutively numbered.

I4 Families that have more members, have higher priority
than those having less. Vertices 6 and 7 in Fig. 11
have higher priority than vertices 8, 9 or 10.






Figure 12 Trees having their vertices numbered in order
of their priority.

If we number the vertices following the above rules, then
there is no need to explicitly label the edges. One can
uniquely determine the labels of the edges from the level
and family distributions.

Next we propose a set of rules that decide the priorities
of vertices within a family and the priority of a family of
vertices over another having the same number of mem-
bers. These rules should be applied successively in the
order stated below and should not alter the priorities al-
ready decided by the application of previous rules. These
rules are:

I5 A vertex in a family precedes another vertex if it gives
rise to more families with a higher number of mem-
bers. For example, in Fig. 11 vertex 1 precedes vertex
2, which in turn precedes vertex 3.

I6 To determine the order of families having the same
number of members, the vertices of the families are
compared. If the highest priority vertex of family A
gives rise to more families with a higher number of
members than that of family B, then A precedes B.
If the precedence cannot be determined by comparing
the highest priority vertices of the two families then
the next priority vertices are compared. For example,
vertices 5 and 6 precede vertices 7 and 8 in Fig. 12(a).

To develop the code all labels of the thin edges are re-
placed by 1 in the adjacency matrix. Then, the vertices
are permuted to maximize the number formed by con-
catenating the elements of the upper triangular matrix
(of the adjacency matrix), starting from the leftmost el-
ement of the topmost row and moving along row by row
downwards. This maximized number, along with the level
and family distribution gives a unique code for isomorphic
trees. Since the permutation of similar vertices does not
change the adjacency matrix, only dissimilar vertices of a
family that have the same priority are permuted. Families
that have the same priority are permuted en bloc.

The isomorphism test is applied after completing the
addition of vertices at each level. Rules 11 to 14 are applied
to arrange the vertices in the level that has just been
added, whereas rules 15 and I6 are applied to arrange the
vertices in the immediately preceding level.
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7 Enumeration of EGMs

The adjacency matrices of the trees that have been enu-
merated until now have some of their elements labeled z.
The addition of geared edges means relabeling some of
these z’s as ¢’s, and the rest as zeroes. We describe below
an algorithm to find the transfer vertex associated with
each gear pair, and study the interaction among funda-
mental circuits formed by the addition of geared edges.

7.1 Locating the Transfer Vertex

Consider the tree and its adjacency matrix shown in
Fig. 13. Suppose, a geared edge is added between ver-
tices 7 and 6. To find the associated transfer vertex scan
the row corresponding to the higher level vertex (vertex
7 in this case). If both the vertices are at the same level,
then scan the row corresponding to any of the vertices.

. The column number corresponding to the first non-zero

element that is not an ’x’ or a ’g’ gives the number of
the transfer vertex. In case of the above example element
no. 5 of row 7 gives the number of the transfer vertex. A
fundamental circuit is characterized by the two end ver-
tices of a geared edge and the associated transfer vertex.
Therefore, once the transfer vertex is known, the funda-
mental circuit is in effect known.

7.2 Interaction Among Fundamental Cir-
cuits

The three vertices that characterize a fundamental circuit
form a simple one-dof EGT with three links. In order to
keep track of the interactions among fundamental circuits
we construct a matrix whose column number corresponds
to the vertex number. In the first row of this matrix we
mark the elements that correspond to the characteristic
vertices of the first fundamental circuit by a label, say 1.
For example, if we connect the vertices 7 and 8 of the tree
shown in Fig. 13(b) by a geared edge, then the matrix will
take the form shown in Fig 14(a).

If the next fundamental circuit formed shares two of
its vertices with the existing one then the two fundamen-
tal circuits will constitute a subgraph that represents a
one-dof EGT. In the first row of the above matrix we la-
bel the element corresponding to the non-common vertex.
For example, in Fig. 13(g), due to the fundamental circuit
formed by the addition of the geared edge between ver-
tices 6 and 8 the first row of the above matrix is modified
as shown in Fig. 14(b). However, if the two fundamental
circuits have one vertex in common we add a new row to
the above matrix and label the elements corresponding to
the characteristic vertices of the newly formed fundamen-
tal circuit. Thus, each row of the matrix corresponds to
a subgraph that represents a one-dof EGT.

In general if we consider a graph in which k geared edges
have been added, then the fundamental circuit formed
due to the addition of the k 4 1 geared edge can have the
following relationships with any of the existing subgraphs.

1. It can have one of its vertices in common with a sub-
graph representing a one-dof EGT. In this case add
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Figure 13  Step by step enumeration of EGMs from a

tree - Part 1.

a new row to the matrix, and label the elements cor-
responding to the characteristic vertices of the newly
formed fundamental circuit.

2. It can have two of its vertices in common with a sub-
graph representing a one-dof EGT. In this case, mod-
ify the row corresponding to the existing subgraph
by labeling the element that corresponds to the non-
common vertex of the fundamental circuit that has
just been added. If the modified subgraph now shares
two of its vertices with another existing subgraph
combine the two corresponding rows into one, since
the two subgraph together represent a one-dof EGT.

Repeat this process until no two subgraph have more
than one vertex in common.

A new fundamental circuit formed cannot have three
of its vertices in common with a subgraph representing a
one-dof EGT, otherwise the mechanism will be locked.

The above observations will be used to keep a track of
the subgraphs that are being formed, and to prevent the
occurrence of locked chains.

7.3 Similar Edges

Consider the tree shown in Fig. 13. The similar vertices
in the tree can be identified by applying S1 and S2 as
defined in Section 6.1. Because of the similarity among
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Figure 14 Matrices to keep track of the interaction

among fundamental circuits.

vertices some of the candidate geared edges (represented
by label z in the adjacency matrix) are similar. Some of
these sets of similar geared edges can be identified by the
application of the rule given below.

S3 When several geared edges connect a common vertex
to a set of similar vertices, they form a similar edge
set.

7.4 Addition of Geared Edges

The method of adding geared edges can be formulated as
follows.

Step I. First add geared edges connecting vertices at the
highest level. For every geared edge that is being
added check whether the addition of the geared edge
results in a locked chain by the method described
above. If it does, then set the label z that corre-
sponds to the geared edge in the adjacency matrix to
zero.

Step II. Next add geared edges from the highest level to
the lower levels. Before doing this calculate the min-
imum number of geared edges to be added to each
of the vertices at the highest level from C11. If the
highest level is the second level, then the minimum
number of geared edges to be incident on a first level
vertex as given in C12 should also be taken into ac-
count. Care should be taken that the total number of
geared edges to be added does not exceed that given
by C2. As before, check for locked chains for every
geared edge added.

Step II1. Repeat steps I and II for the next lower level
vertices, i.e, the vertices that are at one level imme-
diately below the highest level.

Repeat step 111 until the second level is reached.

The methodology for addition of geared edges is illus-
trated in Fig. 13. Geared edges are added to the tree
(Fig. 13(b)) starting from the highest level and continu-
ing downward.

At the end of enumeration procedure three EGMs are
formed. They are shown in Fig. 15(d), (e), and (f). The
one shown in Fig. 15(d) has redundant links. This is be-
cause the subgraph formed by vertices 1, 5, 6, 7 and 8
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Step by step enumeration of EGMs from a

represents a one-dof EGT that has only two ports of com-
munication, i.e., vertices 1 and 6. The generation of such
graphs can be prevented if we ensure that every subgraph
(formed at the end of step II) that represents an n-dof
EGT has n + 2 ports of communication. The subgraphs
and their dof can be obtained from the matrix that has
been developed to prevent the occurrence of locked chains.
However, such a verification is not required when geared
edges are added to connect the highest level vertices to
the lower level vertices, since conformation to C11 and
C12 ensures that there will be no redundant links.

7.4.1 Isomorphism

A test to identify isomorphic graphs is performed at the
end of each step. To do this we extend the procedure
described in Section. 6.2. The rules to identify the priority
of vertices are given below. They, however, should not
alter the priority set by rules I1 to 16. Also, the rules
should be applied in the order given below and should
not alter the arrangement set by the previous rules.

I7 The vertex that is connected to vertices at two lev-
els above it with more geared edges has the highest
priority.

I8 Among vertices of same priority in a family, the vertex
that is connected to vertices at one level above it with
more geared edges is given higher priority.

I9 Among vertices of same priority in a family, the vertex
that is connected to vertices at the same level with
more geared edges is given higher priority.

I10 Among vertices of same priority in a family, the ver-
tex that is connected to vertices at lower levels with
more geared edges is given higher priority.

To develop a code for the graph, the g’s in the adjacency
matrix are replaced by 2’s. Then, the vertices are per-
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Table 2 Number of graphs enumerated for EGMs with
up to 10 links.
No. of links | No. of graphs | No. of graphs with

vertices only upto
the second level.

6 1 1
7 7 7
8 22 20
9 157 128
10 899 620

muted to maximize the number formed by concatenating
the elements of the upper triangular matrix as described
in Section 6.2. '

8 Results and Discussions

The results are tabulated in Table 2. It has been men-
tioned that the first level vertices of a canonical graph
represent the potential input, output and fixed links while
the second level vertices represent the planet gears. A re-
view of the work of Larew [7], Levai [8], Gott [4], and Tsali,
et al. [14] had not revealed a single automatic transmis-
sion gear box having a link located on the third or higher
levels. Since no physical reason could be found for this
observation, it was not considered a structural character-
istic of such gearboxes. However, Table 2 also lists the
number of graphs having vertices only upto the second
level. The graphs of 8-link EGMs, are shown in Fig 16.
The graphs and adjacency matrices of all the EGMs with
upto 9-links are documented in [3].

There is only one graph for 6-link EGMs*, which is
in agreement with the result given in [14]. There are
7 graphs for 7-link EGMs, which is one more than that
given in the same paper. This is because that paper has
excluded those graphs in which the geared edges form a
closed loop. The verification for completeness of the set
of graphs enumerated for 8-link EGMs has been accom-
plished in an indirect way. From the set of graphs of 7-link
EGTs generated by Kim and Kwak [6], those that qualify
for automatic transmissions were selected. A total of 20
such graphs were extracted from their paper which is less
than the 22 given in Table. 2. The reason is that there are
exactly 2 graphs of 8-link EGMs (Figs. 16(f) and 16(q))
that have geared edges forming a loop, and those graphs
cannot be generated by the method of Kim and Kwak.

9 Conclusions

The structural characteristics of epicyclic gear mecha-
nisms (EGMs) that are commonly used in automatic
transmissions to obtain various speed ratios have been
identified from the view point of kinematics. A canoni-
cal graph representation for this type of mechanisms has
been defined. A methodology to systematically enumerate

*An n-link EGM contains a (n — 1) link EGT and the casing of

a transmission.
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these graphs has been developed and illustrated through
various examples. Graphs of EGMs with up to 10-link
have been enumerated using this method.

A methodology for automatically sketching the func-
tional schematics of an EGM from its graph representa-
tion has been developed. It will be presented in the ASME
1994 Mechanisms Conference. It is hoped that this work
will provide a basis for the design of future automatic
transmissions.
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Enumeration of Epicyclic-Type
Automatic Transmission Gear Trains

Abstract

An automotive transmission maintains a proper equilib-
rium between the power and torque produced by an en-
gine and those demanded by the drive wheels. Most au-
tomatic transmissions employ some kind of epicyclic gear
mechanisms to achieve the above purpose. The first step
in the design process of such a mechanism involves find-
ing a configuration that provides a set of desired speed
ratios, and meets other dynamic and kinematic require-
ments. In this work, the kinematic structural characteris-
tics of epicyclic gear mechanisms have been identified, and
a methodology is formulated to systematically enumerate
all possible configurations of such mechanisms. This is
achieved by defining a canonical graph to represent the
mechanisms. Graphs of mechanisms with up to ten links
have been generated using this methodology.

1 Introduction

The power from the engine crankshaft of an automobile
is transferred to the drive wheel through a transmission
unit, a final reduction unit, and a differential. The ratio
of the speed of the input shaft (which brings power from
the engine) to that of the output shaft of a transmission
unit is called the speed ratio or the reduction ratio. Most of
the automatic transmission units use epiciclic gear trains*
(EGTs) to achieve the desired reduction ratios. Some of
them use one degree-of-freedom (dof) EGTs. Others use
fractionated mechanisms, each fraction of which is a one-
dof EGT. Tsai, et al. [14] have identified some of the struc-
tural characteristics required by an EGT to qualify for au-
tomatic transmissions, and have shown that of the many
non-isomorphic graphs of the six-link one-dof EGTs, only
six graphs can be used in automatic transmission gear
boxes.

The EGT used in an automatic “ransmission is sup-
ported by bearings housed in the casing. This results in

*A few use countershaft type of arrangement that is typical of
manual transmission. A hybrid type using a combination of both is
also possible.
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a two-dof fractionated mechanisms. Henceforth, we will
call the mechanism formed by an EGT and the casing
of an automatic transmission gear box an Epicyclic Gear
Mechanism (EGM).

2 Graph Reprsentation of an
EGT

The graph representation of an EGT has been described
by Buchsbaum and Freudenstein in their pioneering pa-
per [2]. The characteristics associated with the graph of
an EGT have also been derived in the same paper and
have been termed fundamental characteristics.

2.1 Isomorphism

Two graphs are isomorphic if there exists a one-to-one
correspondence between their vertices and edges which
preserves the incidence and labeling. The adjacency ma-
trices of two isomorphic graphs can be different depending
on the numbering of their vertices.

A reliable method for identifying isomorphism is to de-
velop a unique code for each graph, such that two isomor-
phic graphs have the same code while two non-isomorphic
graphs have different codes. This usually involves finding
a way of uniquely numbering the vertices. The degree code
formulated in [12] may be cited as an example employing
this i1dea.

2.2 Pseudo-Isomorphism

Since an edge in a graph represents a joint between two
links, only binary joints can be represented in a graph.
Thus, a trinary joint is represented as two binary joints,
a quarternary joints by three binary joints, and so on.
This, however, creates a problem in uniquely represent-
ing a mechanism. For example, the mechanism shown in
Fig. 1(a) can be reconfigured into the mechanism shown
in Fig. 1(c) by rearranging the revolute joints among its
coaxial links. Though these two mechanisms appear to
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be structurally non-isomorphic [10], they are kinemati-
cally equivalent, and for the purpose of structural syn-
thesis are considered the same. The graphs of the two
mechanisms (Figs. 1(b) and (d) respectively) are mathe-
matically non-isomorphic. The graph in Fig. 1(d) can be
formed from the graph of Fig. 1(b), if the thin edge join-
ing the vertices 1 and 2 is replaced by a thin edge of the
same label joining vertices 2 and 3. This method of cre-
ating mathematically non-isomorphic graphs representing
kinematically equivalent EGTs by replacing a thin edge
by another thin edge of the same label is known as veriez
selection and such mathematically non-isomorphic graphs
are called pseudoisomorphic graphs [15]. The problem
of pseudoisomorphism can be averted by imposing some
rules that result in unique arrangement of the edges of the
same label. Such a graph is called a canonical graph [13].

3 Canonical Graph Representa-
tion o

An EGM typically consists of a one-dof EGT supported by
the casing on one axis. Only the links that are connected
to the casing by coaxial revolute joints can be used as
input, output or fixed links [14].

The casing of an EGM is a unique link in its kinematic
structure. Therefore, in the canonical graph representa-
tion of an EGM, the vertex representing the casing will be
marked as the root of the graph. Recall that the coaxial
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tion, (c) canonical graph representation.

joints in a mechanism can be rearranged without affecting
the mechanism functionally [13]. Among various arrange-
ments of the coaxial joints there exists a unique configu-
ration such that all the thin edged paths originating from
the root and ending at all the other vertices will have
distinct edge labels. This unique graph representation is
called the canonical graph representation. Using canoni-
cal graph representation, the vertices can be divided into
several levels. The casing is denoted as the ground level
vertex. A vertex that is connected by only one thin edge
to the root is defined as a first level vertex. A vertex that
is connected to the root by two thin edges is defined as
the second level vertex and so on. Each vertex at any
particular level is connected to exactly one vertex at the
immediate preceding level by a thin edge. All thin edges
having the same label* must be incident to one common
lower level vertex. Henceforth, all the vertices at a partic-
ular leve] that are connected to a lower level vertex by thin
edges of the same label, will be referred to as members of a
famaly. The problem of pseudo-isomorphism doesnot arise
once the canonical graph is defined. The canonical graph
representation of the Simpson gear set shown in Fig. 2(a),
is shown in Fig. 2(¢c). The second level vertices represent
the planet gears.

4 Structural Characteristics

The canonical graph by virtue of its definition has one
special feature, i.e.

*Note the difference between label and level. A label denotes the
location of the axis of a link in space while the word Jevel denotes
the location of a link in the kinematic chain relative to the casing.



C1: All the thin edges of the same label should be inci-
dent to a common lower level vertex.

All the fundamental characteristics of a graph of an
EGT as described in [2] apply to the canonical graph of
an EGM. These are described in section 4.1 under the
heading General Characleristics. An EGM, besides pos-
sessing the characteristics of an EGT, also has its own
specific characteristics because it is a mechanism that per-
forms some special functions. These characteristics and
their expressions in a canonical graph representation are
discussed 1n Sections 4.2 through 4.4.

4.1 General Characteristics

The canonical graph of an EGM has no articulation point.
It possesses the following characteristics :

C2: If there are n vertices in the canonical graph of an
EGM then it must have n — 1 thin edges and n — 3

geared edges, since an EGM is a two-dof mechanism.

C3: The subgraph formed by removing the geared edges
is a tree.

C4: A geared edge can only be incident with one of the
following pairs of vertices.

(a) Two vertices at the same level that are con-
nected to the same lower level vertex by thin
edges of different labels. :

(b) Two vertices at adjacent levels, that are con-
nected by a path of exactly three thin edges
having two different labels.

(¢) Two vertices one at level k¥ and another at level
k —2, if there is a path of exactly two thin edges
between them. For every vertex at level k there
is only one vertex at level k — 2, to which it can
be connected by a geared edge.

4.2 Coaxial Links

The first level vertices in the canonical graph of an EGM
represent links that are connected to the casing by coaxial
revolute joints. None of the links.of an EGM should be
connected to the casing by a gear joint*. Therefore,

C5: The first level vertices are connected to the root by
thin edges of the same label.

(6: No geared edge can be incident to the root.

In an EGM one-of the coaxial links is permanently des-
ignated as the output. The desired reduction ratios are
obtained by changing the input and the fixed links. Also,
it is always possible to achieve a direct drive by locking
all the links in the EGT together such that they rotate
as a single link. Thus if N, links of an EGT are coaxial,
then it is possible to get (N, - 1)(N, - 2) + 1 number of
speed reductions. Therefore,

*Note that it is possible to have one of the links of an EGT
permanently fixed to the casing. This, however, will reduce the
flexibility of obtaining more speed ratios from the gear train.
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Figure 3: (a) A canonical graph containing a locked chain,
(b) functional representation of the mechanism, (c) graph
obtained by removal of locked chain, (d) functional repre-
sentation of the resulting mechanism.

C7: If N, is the number of required speed reductions (in-
cluding reverse), then the number of first level ver-
tices N, in the canonical graph must satisfy the equa-
tion

NrS(Ne_l)(Ne—2)+1 (l)

4.3 Locked Chains

A set of links forming a part of a mechanism is said to
be locked if they undergo no relative motion when the
mechanism is in operation and, hence, can be replaced by
one link without altering the functional characteristics of
the mechanism.

Consider the canonical graph of an EGM shown in
Fig. 3(a) that satisfies all the fundamental characteristics
described in [2]. However, the subgraph formed by remov-
ing vertices 0, 1, 2, 3, and 4 from the graph represents a
kinematically locked chain. This is because the subgraph
has b vertices but 4 geared edges. Fig. 3(c) shows a graph
formed by replacing vertices 5, 6, 7, 8, and 9 in Fig. 3(a)
by a vertex 5, that will perform the same functions.

C8: An EGM contains a locked chain if there exists a
subgraph of p verices in the graph of the EGM such
that

(a) the transfer vertex of each geared edge in the
subgraph lies in the subgraph, and



(a) (b)

Figure 4  Canonical graph of an EGM with a binary
carrier represented by vertex no. 6.

(b) the number of geared edges in the subgraph is
more than p — 2.

A methodology is described in Section 7.2 that prevents
the generation of EGM with locked chains during the enu-
meration process.

4.4 Redundant Links

The other desired feature of a viable mechanism is that
it should not have any redundant link. A link is said to
be redundant, if it is never used as an input, output or a
fixed link, and the removal of such a link does not change
the degrees of freedom of the EGT. Such a link will not
carry power during the operation of the mechanism at any
of its reductions.

A one-dof EGT communicating, that is, giving and tak-
ing power, with the external environment requires at least
an input, an output and a reaction (fixed) link. Thus, to
function effectively it requires at least three ports of com-
munication with the external environment. Similarly, a
two-dof EGT requires at least four ports of communica-
tion, a three-dof EGT requires five ports of communica-
tion, and so on.

In the canonical graph representation of an EGM if
there exists a subgraph that represents an n-dof EGT,
then it must have at least n+2 ports of communication
with the external environment. Otherwise, those links
that can not interact with the external environment would
be redundant. The external environment includes both
the rest of the gear train and the outside world. Two
things are to be noted here.

1. The subgraph of a canonical graph represents an EGT
if and only if the carrier of any gear pair within the
subgraph is also a member of the subgraph. For ex-
ample, the subgraph formed from the canonical graph
of Fig. 4(a) by deleting vertices 0, 1, 2, 4, and 6-does
not represent an EGT. ‘

2. Some of the ports of communication at a first glance
may not be obvious. For example, in the graph shown
in Fig. 4(a), let vertex 1 represent the input link, ver-
tex 2 the fixed link, and vertex 4 the output link.
“onsider the subgraph formed by deleting vertices 0,
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from a canonical graph

A tree obtained by removing the geared edges

1, 2, 4, 5, and 7. It appears as if the subgraph has
only two ports of communication, namely 3 and 8.
However, the carrier represented by vertex 6 is also
a port of communication. This is because vertex 6
is the transfer vertex of the geared pair connecting
vertices 7 and 8, and vertex 7 is external to the sub-
graph. Therefore, the subgraph has actually three
ports of communication.

From the above observations we will derive several con-
ditions that the canonical graph of an EGM must satisfy.
These conditions are necessary, but not sufficient. How-
ever, these conditions drastically reduce the number of
graphs with redundant links during the enumeration pro-
cess. The remaining few can be weeded out by inspection
or by a methodology described later.

4.4.1 Number of Branches

Consider the branches of a tree of a canonical graph em-
anating from vertex V; as shown in Fig. 5. Let the level
immediately above and arising from V; contain n vertices
V1,Va, ..., V, that belong to one family. Let the branches
emanating from these vertices have Ny,N; ... N, vertices,
respectively. Now vertex Vi, and the branches emanating
from it form a subgraph that represents an EGT, because
a geared edge joining any two vertex of the subgraph will
have its transfer vertex contained in the subgraph. Let
all such subgraphs be named G;,G2...G,,, and let them
have Fy,F5 ... F, dof, respectively. Then G; will have N;
- F;j geared edges and will require at least F; + 2 ports of
communication. One port of communication is the ver-
tex V; itself. The rest of the ports of communication will
communicate through gear edges with any of the vertices
Vo to Vi, other'than Vi. A geared edge coming from any
port of G; cannot connect to any vertex other than V; to
V,, of the EGM.



Next consider the subgraph Gy formed by vertices V;
to V,, and the branches emanating from V; to V. The
minimum number of geared edges that Gy should have
in order that none of the links represented by vertices in
the subgraphs GG1,G5 ... G, is rendered redundant can be
calculated by summing the number of geared edges in each
subgraph, and the number of geared edges required by
each subgraph to maintain the minimum number of ports
of communication. Thus the number of geared edges in
(7o should be at least

Z(MH—F,-—1)+Xn:(Fi+1)=Zn:N,~+n (2)
i=1 : i=1 i=1

The number of geared edges in a subgraph representing
an EGT must be less than the number of vertices by 2 or
more, otherwise it will be locked. Since GGo has 1, N; +
n + | vertices, this condition can not be satisfied for the
above case. Therefore, not all the members of a family
can give rise to branches. If one of the members does not
give rise to any branch, then the number of vertices in
Go will be E?;ll N; + n+ 1 and the minimum number
of geared edges required to prevent redundancy will be
at least Z?;ll N; + n — 1. Thus, if one of the members
does not give rise to any branch, the above condition is
satisfied. Also, if more than one member of a family does
not give rise to any branch the above condition can be
satisfied.

Let V;,V5...V, represent the first level vertices, and
vertex Vp represents the root of the EGM. Since an EGM
has exactly two-dof, the number of geared edges must
be less than the number of vertices by 3. Applying this
condition and following the above logic one can prove that
there must be at least two vertices in the first level which
should not give rise to any branch.

Thus, we get the following two conditions.

(C9: For those vertices located at the higher levels, there
must be at least one member in a family that does
not give rise to any branch.

(C10: There must be at least two vertices in the first level
that do not give rise to any branch.

As a special case of Condition 1, a vertex cannot give
rise to any branch if it is the only vertex in a family.

4.4.2 Number of Incident Edges

The subgraph formed by vertices 3, 6, and 4 in Fig. 6
represents a one-dof EGT. Hence it should have at least
three ports of communication. But it has only two ports of
communication, namely vertices 3 and 4, and the removal
of vertex 6 does not change the dof of the mechanism.
Therefore, vertex 6 represents a link that is redundant
and can be removed. This is generally true for any link
that is not used as the input, output or fixed link and is
connected by only one revolute joint and one gear joint.
Thus,

C11: If a vertex is not located at the first level and is in-
cident by only one thin edge, then it must be incident

by at least two geared edges.

157

(a) (b)

Figure 6: (a) A canonical graph containing a vertex (ver-
tex no. 6) representing a redundant link, (b) functional
representation of the mechanism.

C12: If a vertex is located at the first level and is incident
by only one thin edge, it must be incident by at least

one geared edge.

4.4.3 Floating Carrier

Consider the graph shown in Fig. 7(a). The subgraph
formed by vertices 3, 5, 6, 7 and 8 represents a two-dof
EGT. However, it has only three ports of communication,
namely 3, 5, and 7. Therefore, the links represented by
vertices 6 and 8 are redundant. Note that the vertex 6
represents a binary vertex that is not connected to any
other vertex by a geared edge. According to Condition
C9, a binary vertex of this kind can only occur at the
penultimate level of a branch. If the vertex at the higher
level that is connected to the binary vertex is incident
by two geared edges, then there are two possible ways of
connecting them. These two ways are shown in Figs. 7(a)
and (c). In both these cases the binary vertex, and the
higher level vertex that is incident to it are redundant.
In Fig. 7(c) links represented by vertices 5 and 7 are re-
dundant because the subgraph formed by vertices 1, 5, 6
and 7 represents a one-dof EGT that has only two ports
of communication. Thus,

C13: If a binary vertex in a tree is not at the first level
then of the two vertices that it connects, the higher
level vertex must be incident by more than two geared

edges.

Fig. 4 shows the graph of an EGM that has a binary
vertex, but no redundant links. In this case the higher
level vertex (vertex No. 8) that is connected to the binary
vertex 6 is incident by three geared edges.

5 Graph Enumeration

Most combinatorial enumeration procedures that require
the enumeration of all possible solutions satisfying cer-
tain constraints, are done through the process of genera-
tion and lesting. The procedure is thus divided into two
parts [5]: a generator of all possible solutions and a tester
that selects only those solutions that meet the constraints.



Figure 7: (a, ¢) Canonical graphs containing vertices (No.
6 & 8in (a) and No. 5 & 7 in (c)) representing redundant
links, (b, d) functional representation of the mechanisms.

The enumeration procedure described below uses a hier-
archial generation and testing technique. A part of the
canonical graph is generated at each step, and a test is
carried out to prune out those solutions that will not give
rise to canonical graphs with the desired characteristics.

The following observations are made before formulating
an efficient enumeration procedure.

1. The canonical graph has a unique vertex - the root,
with reference to which other vertices are divided into
several levels. Thus, there is already some arrange-
ment among the vertices. One can therefore think of
obtaining a unique arrangement of vertices by adding
some rules. This can then be used to develop a unique
code for each graph that will serve as a reliable tool
for an isomorphism test.

2. The definition of the canonical graph requires the edge
labels to be distributed in a particular way. This
forbids the generation of pseudo-isomorphic graph.

3. Most of the characteristics described in Section 4 are
applicable to the tree of a canonical graph, rather
than the canonical graph as a whole.

4. Characteristic C4, which prescribes the allowable
geared edge connections, presumes the existence of
a labeled tree.

Therefore, it follows that an efficient enumeration proce-
dure can be achieved if it is divided into two phases. In
the first phase labeled trees that will give rise to admissi-
ble canonical graphs are enumerated. In the second phase
geared edges are added to these trees to create the canon-
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Figure 8  Graphs in (a) and (b) are isomorphic but not
automorphic, Graphs in (a) and (c) are automorphic.

ical graphs. FEach of these phases comprises of various
steps, that are described in Sections 6 and 7, respectively.

6 Enumeration of Trees

The characteristics C1, C2, C5 to C10 are used to formu-
late the procedure for enumerating trees with n vertices.

Step 1. From C7 calculate the minimum number of coax-
ial links required. This gives the minimum number
of vertices that a tree should have at the first level.

Step 2. Distribute the remaining vertices into various
levels. While making such a distribution, remember
that all levels other than the highest level must have
at least 2 vertices in order to satisfy C9.

Step 3. Divide the vertices at each level into families
( see Section 3). At all levels other than the high-
est level there must be at least one family with two
or more members in order to satisfy C9. One must
note that the distribution of vertices into families is
same as the problem of partitioning of integers. An
algorithm to this end can be easily developed by us-
ing the concept of generating functions, explained in
the book by Liu [9].

Step 4. Start adding the vertices of the first level. Ac-
cording to Cb all the vertices at the first level should
be connected to the root with thin edges of the same
label.

Step 5. Next connect the vertices of the second level to
the first level vertices. According to C10, two of the
vertices at the first level should not give rise to any
branch. The definition of a canonical graph requires
the members of the same family to be connected to
the same lower level vertex by edges of the same label.
Therefore, while adding the second-level vertices, add
one family at a time. Start with the family that has
the lagest number of members. If a family of ver-
tices is added in all possible ways a lot of isomorphic
graphs would be generated. To reduce the number
of isomorphic graphs we digress and introduce the
concept of graph automorphism and similar vertices.

6.1

Consider the il)‘aph shown in Fig. 8. The edges of the
graph are unlabeled and its vertices are numbered. If we
permute the numbering of the vertices, isomorphic graphs

Graph Automorphism
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are produced. Most of these isomorphic graphs have their
corresponding vertices numbered differently. However,
some specific permutations produce graphs whose corre-
sponding vertices bear the same number as the original
one. These graphs are called automorphic graphs. For
example, if we number the vertices 1, 2, 3, 4, and 5 of
the graph in Fig. 8(a) as 1, 3, 2, 5, and 4, the resulting
graph as shown in Fig. 8(c) is automorphic. The permu-
tation in this case is denoted by (1)(2,3)(4,5). Elements
2 and 3 are said to form a cycle of length 2, and element
| a cycle of length 1. All such permutations that produce
automorphic graphs form a group [9]. Each of these per-
mutations is refered to as a member of the group. The
application of any of the members from the group won’t
alter the adjacency matrix of the graph in any way. If
two vertices p and ¢ are contained in the same cycle of
any member of such a permutation group, then vertices
p and g are said to be similar [16]. Thus, one can divide
the vertices of a graph into classes by putting the similar
vertices together. If one wants to add a particular prop-
erty to any vertex, then there can be one choice from a
class of similar vertices since any choice is as good as the
other.

Some very simple rules are prescribed here to identify
some of the similar vertices. These rules won’t prevent
the generation of isomorphic graphs completely, but will
reduce their number drastically. These rules are

S1: Vertices belonging to the same family and incident
by only one thin edge and no other edges are similar.

For example, vertices 2, 3 and 4 in Fig. 9 are similar.

S2: Families that have the same number of members and
are connected to the same lower level vertex form a
cluster. If none of the vertices in a cluster is incident
by more than one thin edge, then all the vertices in
the cluster are similar. For example, vertices 5, 6, 7
and 8 in Fig. 9 are similar. If a vertex is incident by
more than one edge, then the family of vertices to
which that vertex belongs becomes dissimilar, while

the rest of the families in the cluster remain similar.

Whenever a choice for a vertex is to be made for adding a
vertex, or a family of vertices, choose only one vertex out
of a class of similar vertices.

The addition of vertices at the higher levels should pro-
ceed in the same way as the second level vertices. The
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Table 1  Distribution of vertices of the graphs repre-
senting 9-link EGMs into levels and families: (a) level
distribution, (b) family distribution.

Level 1 71651514 14]|4
Level 11 1({21312]4/(3
Level HI 1 1

[\

[ ]

(a)

Levels Distribution of Distribution of
vertices into levels | vertices into families
I 4 4
11 2 2
111 2 2
.1

(b)

only difference is that C9 is applicable instead of C10,
i.e., at least one member in each family of vertices should
not give rise to any branches. A test to eliminate isomor-
phic graphs is carried out after completing the addition
of vertices at each level.

The example given below demonstrates the above enu-
meration method.

In this example, trees that can give rise to admissible
canonical graphs which represent 9-link EGMs, capable of
providing four speed reductions, are enumerated.

Step 1. There are nine links. The minimum number of
coaxial links required is four. Therefore, the first level
should have at least four vertices.

Step 2. The remaining vertices can be divided into levels
as shown in Table 1(a).

Step 3. The vertices at each level are further divided into
families. One of the distrubtion is chosen from Ta-
ble 1{a) to demonstrate this step. The distribution
of vertices at each level into families for the chosen
distribution is shown in Table 1(Db).

Step 4. This step and the next one are demonstrated by
choosing one of the two distribution of vertices into
families from Table 1(b). The distribution chosen is
shown in Fig. 10(a). Fig. 10(b) and (c) shows the tree
and the corresponding adjacency matrix formed after
addition of the first level vertices. The adjacency
matrix has all its elements zero except for those in
the rows or columns corresponding to the root.

Step 5. In the second level there is only one family with
two members. There is only one choice of vertex
in the first level to which this family can be con-
nected since all the vertices at the first level are sim-
ilar according to S1. The resulting tree is shown in
Fig. 10(d). In terms of the adjacency matrix this
would mean the addition of two rows and columns
to the matrix of Fig. 10(¢). The resulting matrix is
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Figure 10  Enumeration of trees for a given family and
level distribution: (a) level and family distribution, (b)
and (c) addition of first level vertices, (d) and (e) addition
of second level vertices, (f) - (i) addition of third level
vertices.

shown in Fig. 10(e). All the elements of the new rows
and columns are zero except for element number* 1.
However, some of the zero labeled elements will be
relabeled g when geared edges are added. Poten-
tial geared edge connections can be found from C4.
The corresponding elements, instead of being set to
zero, are therefore set to z to facilitate the process
of geared edges addition in the second phase. The
elements Ass and Ags are set to zero because there
can be no geared edge between vertices of the same
family according to C4(a). All other elements are
set to z since they satisfy C4(b). This completes the
addition of vertices at the second level.

The addition of the vertices at the third level is il-
lustrated in Fig. 10(f) to 10(i). The dashed lines
across the adjacency matrices divide them into vari-
ous sub-matrices, each containing information about
a particular type of interactions. For example, sub-
matrix I in'Fig. 10(i) represents the interaction within

*We are following the convention of C programming language in
indexing the elements of rows and columns. The indexing starts
with the number 0.

160

Level Famuly Cluster Prionity
0 ©) 0) 0)
1 (12345 | (1.2345) [(H23)45)

I 1(6.7)(8)(9X10) (6.,7)(8,9)(10)] (6,7)(8.9)(10

®)

Figure 11
to their priority.

A tree having its vertices numbered according

the third level vertices, submatrix II the interaction
between the third and second level vertices, and sub-
matrix I the interaction between the third and first
level vertices. Whether an element of the submatri-
ces I, II, and III can be converted into z or not can
be determined by applying C4(a), C4(b), and C4(c),
respectively.

Before ending this section on enumeration of trees we
note that the generator generates only those trees that
have the desired characteristics. The tester has only to
identify the isomorphic graphs whose number has been
reduced by incorporating some rules in the generator.

6.2 Isomorphism

The issue of developing unique code for identifying iso-
morphic graphs has been addressed by many authors ([1],
[12]). Most of these papers dealt with graphs whose edges
are not labeled. The labeling of edges of a graph has both
its advantages and disadvantages. On one hand, it di-
vides the vertices into classes that we have already named
as families and, therefore, introduces some amount of or-
dering among the vertices. On the other hand, since the
labels are arbitrary they have to be permuted in all pos-
sible ways in order to detect isomorphism. Some papers
have presented graph representations [11] that obviate the
need to explicitly represent the labels of the revolute edges
in the adjacency matrices. This paper achieves the above
objective by proposing four simple rules.

I1 Vertices at the lower levels should have higher priority
than those at higher levels. For example, vertices 1,
2, 3, 4, and 5 in Fig. 11 have higher priority than
vertices 6, 7, 8, 9, and 10. Hereafter, whenever we
say that a vertex has a higher priority than another
it means that the former is numbered lower than the
latter.

I2 Members of a family such as vertices |, 2, 3, 4, and 5
in Fig. 11, should be consecutively numbered.

I3 All members of the families that belong to the same
level and have the same number of members should
be consectively numbered. For example, vertices 8,
9, and 10 in Fig. 11 are consecutively numbered.

I4 Families that have more members, have higher priority
than those having less. Vertices 6 and 7 in Fig. 11
have higher priority than vertices 8, 9 or 10.



Figure 12  Trees having their vertices numbered in order
of their priority.

If we number the vertices following the above rules, then
there is no need to explicitly label the edges. One can
uniquely determine the labels of the edges from the level
and family distributions.

Next we propose a set of rules that decide the priorities
of vertices within a family and the priority of a family of
vertices over another having the same number of mem-
bers. These rules should be applied successively in the
order stated below and should not alter the priorities al-
ready decided by the application of previous rules. These
rules are:

I5 A vertex in a family precedes another vertex if it gives
rise to more families with a higher number of mem-
bers. For example, in Fig. 11 vertex 1 precedes vertex
2, which in turn precedes vertex 3.

I6 To determine the order of families having the same
number of members, the vertices of the families are
compared. If the highest priority vertex of family A
gives rise to more families with a higher number of
members than that of family B, then A precedes B.
If the precedence cannot be determined by comparing
the highest priority vertices of the two families then
the next priority vertices are compared. For example,
vertices 5 and 6 precede vertices 7 and 8 in Fig. 12(a).

To develop the code all labels of the thin edges are re-
placed by 1 in the adjacency matrix. Then, the vertices
are permuted to maximize the number formed by con-
catenating the elements of the upper triangular matrix
(of the adjacency matrix), starting from the leftmost el-
ement of the topmost row and moving along row by row
downwards. This maximized number, along with the level
and family distribution gives a unique code for isomorphic
trees. Since the permutation of similar vertices does not
change the adjacency matrix, only dissimilar vertices of a
family that have the same priority are permuted. Families
that have the same priority are permuted en bloc.

The isomorphism test is applied after completing the
addition of vertices at each level. Rules I1 to I4 are applied
to arrange the vertices in the level that has just been
added, whereas rules 15 and 16 are applied to arrange the
vertices in the immediately preceding level.
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7 Enumeration of EGMs

The adjacency matrices of the trees that have been enu-
merated until now have some of their elements labeled z.
The addition of geared edges means relabeling some of
these z’s as ¢’s, and the rest as zeroes. We describe below
an algorithm to find the transfer vertex associated with
each gear pair, and study the interaction among funda-
mental circuits formed by the addition of geared edges.

7.1 Locating the Transfer Vertex

Consider the tree and its adjacency matrix shown in
Fig. 13. Suppose, a geared edge is added between ver-
tices 7 and 6. To find the associated transfer vertex scan
the row corresponding to the higher level vertex (vertex
7 in this case). If both the vertices are at the same level,
then scan the row corresponding to any of the vertices.
The column number corresponding to the first non-zero
element that is not an ’x’ or a ’g’ gives the number of
the transfer vertex. In case of the above example element
no. 5 of row 7 gives the number of the transfer vertex. A
fundamental circuit is characterized by the two end ver-
tices of a geared edge and the associated transfer vertex.
Therefore, once the transfer vertex is known, the funda-
mental circuit is in effect known.

7.2 Interaction Among Fundamental Cir-
cuits

The three vertices that characterize a fundamental circuit
form a simple one-dof EGT with three links. In order to
keep track of the interactions among fundamental circuits
we construct a matrix whose column number corresponds
to the vertex number. In the first row of this matrix we
mark the elements that correspond to the characteristic
vertices of the first fundamental circuit by a label, say 1.
For example, if we connect the vertices 7 and 8 of the tree
shown in Fig. 13(b) by a geared edge, then the matrix will
take the form shown in Fig 14(a).

If the next fundamental circuit formed shares two of
its vertices with the existing one then the two fundamen-
tal circuits will constitute a subgraph that represents a
one-dof EGT. In the first row of the above matrix we la-
bel the element corresponding to the non-common vertex.
For example, in Fig. 13(g), due to the fundamental circuit
formed by the addition of the geared edge between ver-
tices 6 and 8 the first row of the above matrix is modified
as shown in Fig. 14(b). However, if the two fundamental
circuits have one vertex in common we add a new row to
the above matrix and label the elements correspending to
the characteristic vertices of the newly formed fundamen-
tal circuit. Thus, each row of the matrix corresponds to
a subgraph that represents a one-dof EGT.

In general if we consider a graph in which k geared edges
have been added, then the fundamental circuit formed
due to the addition of the k 4 1 geared edge can have the
following relationships with any of the existing subgraphs.

1. Tt can have one of its vertices in common with a sub-
graph representing a one-dof EGT. In this case add
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Step by step enumeration of EGMs from a

a new row to the matrix, and label the elements cor-
responding to the characteristic vertices of the newly
formed fundamental circuit.

2. It can have two of its vertices in common with a sub-
graph representing a one-dof EGT. In this case, mod-
ify the row corresponding to the existing subgraph
by labeling the element that corresponds to the non-
common vertex of the fundamental circuit that has
just been added. If the modified subgraph now shares
two of its vertices with another existing subgraph
combine the two corresponding rows into one, since
the two subgraph together represent a one-dof EGT.

Repeat this process until no two subgraph have more
than one vertex in common.

A new fundamental circuit formed cannot have three
of its vertices in common with a subgraph representing a
one-dof EGT, otherwise the mechanism will be locked.

The above observations will be used to keep a track of
the subgraphs that are being formed, and to prevent the
occurrence of locked chains.

7.3 Similar Edges

Consider the tree shown in Fig. 13. The similar vertices
in the tree can be identified by applying S1 and S2 as
defined in Section 6.1. Because of the similarity among
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Figure 14  Matrices to keep track of the interaction
among fundamental circuits.

vertices some of the candidate geared edges (represented
by label z in the adjacency matrix) are similar. Some of
these sets of similar geared edges can be identified by the
application of the rule given below.

S3 When several geared edges connect a common vertex
to a set of similar vertices, they form a similar edge
set.

7.4 Addition of Geared Edges

The method of adding geared edges can be formulated as
follows.

Step 1. First add geared edges connecting vertices at the
highest level. For every geared edge that is being
added check whether the addition of the geared edge
results in a locked chain by the method described
above. If it does, then set the label z that corre-
sponds to the geared edge in the adjacency matrix to
Z€ero.

Step II. Next add geared edges from the highest level to
the lower levels. Before doing this calculate the min-
imum number of geared edges to be added to each
of the vertices at the highest level from Cl11. If the
highest level is the second level, then the minimum
number of geared edges to be incident on a first level
vertex as given in C12 should also be taken into ac-
count. Care should be taken that the total number of
geared edges to be added does not exceed that given
by C2. As before, check for locked chains for every
geared edge added.

Step III. Repeat steps I and II for the next lower level
vertices, i.e, the vertices that are at one level imme-
diately below the highest level.

Repeat step IH until the second level is reached.

The methodology for addition of geared edges is illus-
trated in Fig. 13. Geared edges are added to the tree
(Fig. 13(b)) starting from the highest level and continu-
ing downward.

At the end of enumeration procedure three EGMs are
formed. They are shown in Fig. 15(d), (e), and (f). The
one shown in Fig. 15(d) has redundant links. This is be-
cause the subgraph formed by vertices 1, 5, 6, 7 and 8
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represents a one-dof EGT that has only two ports of com-
munication, i.e., vertices 1 and 6. The generation of such
graphs can be prevented if we ensure that every subgraph
(formed at the end of step II) that represents an n-dof
EGT has n + 2 ports of communication. The subgraphs
and their dof can be obtained from the matrix that has
been developed to prevent the occurrence of locked chains.
However, such a verification is not required when geared
edges are added to connect the highest level vertices to
the lower level vertices, since conformation to Cl1 and
C12 ensures that there will be no redundant links.

7.4.1 Isomorphism

A test to identify isomorphic graphs is performed at the
end of each step. To do this we extend the procedure
described in Section. 6.2. The rules to identify the priority
of vertices are given below. They, however, should not
alter the priority set by rules Il to 16. Also, the rules
should be applied in the order given below and should
not alter the arrangement set by the previous rules.

I7 The vertex that is connected to vertices at two lev-
els above it with more geared edges has the highest
priority.

I8 Among vertices of same priority in a family, the vertex
that is connected to vertices at one level above it with
more geared edges is given higher priority.

I9 Among vertices of same priority in a family, the vertex
that is connected to vertices at the same level with
more geared edges is given higher priority.

110 Among vertices of same priority in a family, the ver-
tex that is connected to vertices at lower levels with
more geared edges is given higher priority.

To develop a code for the graph, the ¢’s in the adjacency
matrix are replaced by 2’s. Then, the vertices are per-
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Table 2 Number of graphs enumerated for EGMs with
up to 10 links.

No. of links | No. of graphs | No. of graphs with

vertices only upto
the second level.

6 1 1

7 7 7

8 22 20

9 157 128

10 899 620

muted to maximize the number formed by concatenating
the elements of the upper triangular matrix as described
in Section 6.2,

8 Results and Discussions

The results are tabulated in Table 2. It has been men-
tioned that the first level vertices of a canonical graph
represent the potential input, output and fixed links while
the second level vertices represent the planet gears. A re-
view of the work of Larew [7], Levai [8], Gott [4], and Tsai,
et al. [14] had not revealed a single automatic transmis-
sion gear box having a link located on the third or higher
levels. Since no physical reason could be found for this
observation, it was not considered a structural character-
istic of such gearboxes. However, Table 2 also lists the
number of graphs having vertices only upto the second
level. The graphs of 8-link EGMs, are shown in Fig 16.
The graphs and adjacency matrices of all the EGMs with
upto 9-links are documented in [3).

There is only one graph for 6-link EGMs*, which is
in agreement with the result given in [14]. There are
7 graphs for 7-link EGMs, which is one more than that
given in the same paper. This is because that paper has
excluded those graphs in which the geared edges form a
closed loop. The verification for completeness of the set
of graphs enumerated for 8-link EGMs has been accom-
plished in an indirect way. From the set of graphs of 7-link
EGTs generated by Kim and Kwak [6], those that qualify
for automatic transmissions were selected. A total of 20
such graphs were extracted from their paper which is less
than the 22 given in Table. 2. The reason is that there are
exactly 2 graphs of 8-link EGMs (Figs. 16(f) and 16(q))
that have geared edges forming a loop, and those graphs
cannot be generated by the method of Kim and Kwak.

9 Conclusions

The structural characteristics of epicyclic gear mecha-
nisms (EGMs) that are commonly used in automatic
transmissions to obtain various speed ratios have been
identified from the view point of kinematics. A canoni-
cal graph representation for this type of mechanisms has
been defined. A methodology to systematically enumerate

*An n-link EGM contains a (n — 1) link EGT and the casing of
a transmission.



Figure 16

Graphs of 8-link EGMs.

these graphs has been developed and illustrated through
various examples. Graphs of EGMs with up to 10-link
have been enumerated using this method.

A methodology for automatically sketching the func-
tional schematics of an EGM from its graph representa-
tion has been developed. It will be presented in the ASME
1994 Mechanisms Conference. It is hoped that this work
will provide a basis for the design of future automatic
transmissions.
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