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As the number of processing cores per chip continues to grow, the on-chip

network connecting processors to memory becomes increasingly crucial for perfor-

mance. Future architectures will face scalability concerns as networks will require

more die area and consume more power. The Mesh-of-Trees interconnection network

is a high-throughput, low-latency network that uses pipelined routing decisions to

achieve high performance for single-chip parallel processors that require high band-

width to on-chip memory resources. The network has similar area requirements to

other existing networks, but can utilize more bandwidth due to its unique topology.

Current single-chip parallel processors are developed as synchronous (clocked)

circuits. A recent trend has emerged towards implementing GALS (globally asyn-



chronous, locally synchronous) architectures, which do not require a clock tree span-

ning the entire chip, thus avoiding the considerable challenges of design and man-

aging power consumption.

This thesis presents an asynchronous (clockless) implementation of the Mesh-

of-Trees network that features lower power and area demands, while maintaining

the high throughput and low latency properties of the synchronous network. Two

new asynchronous designs are proposed for the fundamental pipelined components of

the Mesh-of-Trees network (routing and arbitration), which are optimized for power,

area, latency and throughput. Performance and power consumption are evaluated

for asynchronous components in isolation, as well as a projected full network layout.

Two issues top the agenda of CPU design in the emerging many-core era:

programmers’ productivity and power consumption. Through its reliance on the

richest available theory of parallel algorithms, the eXplicit Multi-Threading (XMT)

parallel architecture addresses programmers’ productivity. The motivation for this

work is to provide an effective interconnection network for the XMT architecture in

terms of both performance and power consumption.

In order to provide communication between the asynchronous and synchronous

timing domains, mixed-timing interfaces are implemented. The network, coupled

with mixed-timing interfaces, can be used to implement a GALS architecture, where

different timing domains communicate via the same asynchronous network. Perfor-

mance of the XMT processor with the asynchronous network and mixed-timing

interfaces is measured for several applications.
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Chapter 1

Introduction

The transition from the multi-core era, of dual and quad core processors, to the

many-core era, with tens, hundreds or thousands of cores, presents new development

challenges for programmers. Ease-of-programming needs to be addressed in order

for programmers to harness the processing power provided through parallelism.

The “PRAM-on-Chip” project at the University of Maryland provides a so-

lution to the ease-of-programming challenge for large-scale parallel processors. The

Parallel Random Access Machine/Model (PRAM) is an easy model for parallel al-

gorithmic thinking, accompanied by a rich body of algorithmic theory, second only

to its serial counterpart. The eXplicit Multi-Threading (XMT) processor bridges

the gap between PRAM algorithmic thinking and programming, providing the pro-

grammer with a PRAM-like performance model [34] for algorithmic development.

Rather than focusing on synchronization between threads or architecture-specific

optimizations, programmers are free to express the natural parallelism of an appli-

cation.

The XMT performance model is comprised of three quantities [34]: (i) Com-

putation Depth, given by the number of operations that have to be performed se-

quentially, either by a thread or while in serial mode. (ii) Length of Sequence of

Round-Trips to Memory (or LSRTM) which represents the number of cycles on the
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critical path spent by execution units waiting for data from memory. (iii) Queuing

delay (or QD) which is caused by concurrent requests to the same memory location;

the response time is proportional to the size of the queue.

Items (ii) and (iii) above can be optimized by employing a low-latency, high-

bandwidth interconnection network between processing clusters and memory mod-

ules on chip. Such an interconnection network is critical for maintaining good per-

formance in the XMT execution model. Earlier attempts to support PRAM were

implemented as multi-chip multiprocessors (e.g. TERA-MTA, SBPRAM, NYU Ul-

tracomputer and the IBMRP3), which were constrained by memory access perfor-

mance and had limited success. The XMT processor, implemented as a single-chip

parallel processor, can achieve much higher bandwidth using an on-chip intercon-

nection network, thus pushing the performance bottleneck towards the computation

depth of the algorithm and away from the latency of memory access.

The multi-threaded programming model for XMT algorithms uses “independence-

of-order” semantics (IOS): every thread can proceed at its own pace, independent

of other concurrent threads. IOS reduces synchronization requirements between

threads, allowing processing to advance as data becomes available. This translates

to better system performance. Another consequence of IOS is that processors do

not require tight synchronization with memory modules [35].

The Mesh-of-Trees (MoT) interconnection network [4, 7, 6, 5] was devel-

oped for the XMT processor and provides high throughput and low latency for

multi-threaded, shared-memory applications. The network, implemented using syn-

chronous (clocked) logic, scales well and has good performance under the heavy
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traffic conditions present in XMT. However, as the network grows, power consump-

tion becomes a significant design constraint. Furthermore, chip area that could be

used for larger caches or more processing cores must be devoted to the network.

To address the concern of power and area overheads from the interconnection

network, an asynchronous (clockless) design is investigated. Designers have turned

to asynchronous logic for implementing low-power, robust designs that are resilient

to on-chip variations in the manufacturing process. In addition, asynchronous de-

signs do not require the difficult task of distributing a high-fanout clock network,

which accounts for a large portion of dynamic power consumption.

This thesis presents two new asynchronous designs for the fundamental pipelined

components of the Mesh-of-Trees network (routing and arbitration), which are op-

timized for power, area, latency and throughput. The asynchronous designs are

implemented using a standard cell methodology, with the exception of an arbiter

component not found in standard cell libraries. The basic architecture and opera-

tion are described in detail in Chapter 3, and analytical performance equations are

derived for latency and cycle time.

In order to provide interoperability with different timing domains on a single

chip, mixed-timing FIFOs [12] for synchronous to asynchronous communication are

incorporated at network ports. The mixed-timing FIFOs are implemented using a

standard cell methodology, with the exception of data validity controllers originally

implemented as dynamic logic. To provide communication between the interfaces

of the network, which use a two-phase transition signaling protocol, and the asyn-

chronous interfaces of the mixed-timing FIFO, which use a four-phase return-to-zero
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signaling protocol, new protocol converters are developed and described in Chapter

4.

Asynchronous primitives are evaluated in isolation and compared with syn-

chronous versions from [4, 5]. Area savings of 64% and 84% are reported for routing

and arbitration network primitives. Power consumption was reduced by 7x and 10x

respectively for the same asynchronous network primitives. Mixed-timing FIFO

implementations with protocol converters are evaluted for latency and throughput.

A projected 8-terminal network layout using asynchronous primitives is developed

and evaluated. Limitations in current CAD tools add considerable challenges to

creating a full-network layout, so the projection is created by adding appropriate

wire delays based on a proposed floorplan, explained in detail in Chapter 5. Finally,

the performance of XMT is measured for several applications with the synchronous

and mixed-timing networks.
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Chapter 2

Background

This chapter presents the background and motivation for the current research.

First, the challenge of designing a network for a massively parallel on-chip architec-

ture is discussed in the context of the PRAM-on-chip vision. Then, the topology,

fundamental components, and advantages of the Mesh-of-Trees network [4, 6, 5]

is presented. Finally, we discuss how asynchronous pipelines can be used to re-

duce power consumption while maintaining high performance in the Mesh-of-Trees

network.

2.1 PRAM-On-Chip

The Parallel Random Access Machine (PRAM) is an abstract architecture con-

sisting of multiple processors, each connected with uniform memory access (UMA)

to a global shared memory. Accompanying this model is a rich algorithmic theory

of PRAM algorithms that exploit the natural parallelism in applications. Program-

mers are freed from difficult decomposition or architecture-specific optimizations,

making the PRAM model an easy-to-program parallel programming model.

PRAM research was very active during the 1980s and early 1990s, when theo-

rists developed the second largest body of alrogithmic knowledge, second only to the

serial RAM (Random Access Machine). At the time, large parallel machines were
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implemented as multi-chip multiprocessors, and limited bandwidth and long laten-

cies for communication hurt performance, and halted the advancement of PRAM

research.

As we prepare to enter the era of one billion transistors per chip, new in-

terest has sparked in single-chip parallel processors. The eXplicit Multi-Threading

(XMT) project seeks to take advantage of the surplus of transistors to implement

a PRAM on a single chip. With a high-bandwidth, low-latency on-chip intercon-

nection network, processors and memory can overcome the limitations of earlier

implementations, freeing researchers to pursue the PRAM-on-chip vision.

2.2 On-Chip Interconnection Networks

This section presents some background on on-chip interconnection networks.

These networks are typically used to connect multiple processing elements to other

processors, memory modules, and off-chip peripherals. First, we briefly examine

some commonly-used interconnection networks. Then, the Mesh-of-Trees (MoT) in-

terconnection network, developed for the eXplicit Multi-Threading (XMT) processor

is presented in more detail.

2.2.1 Overview of Existing Networks

Researchers and manufacturers have developed many ways to connect pro-

cessors and memory to implement parallel machines. This section presents several

traditional interconnection networks of varying complexity.
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Figure 2.1: Bus with N = 8 Terminals (Fig. 2.2,[4])

• Bus: The bus is one of the simplest interconnection networks. In a bus ar-

chitecture, a set of N elements share a common channel for communication.

Figure 2.1 shows a bus with N = 8 terminals.

In order to communicate using the bus, one sender, called the master, asserts

new data and destination information onto the bus [15],[1]. Only one termi-

nal is designated the master at any time. All terminals monitor the bus at

every cycle, but only the specified recipient accepts data from the bus. An

arbitration protocol decides which terminal is the master for the next cycle.

• Ring: A ring is a 1-dimensional, circular array of terminals. Each terminal

is connected to two neighbors, with the first and last terminals as adjacent

nodes, shown in Figure 2.2. Each processor has an interface to the ring, where

new packets are injected into the network and traffic is monitored for new,

incoming packets. Packets travel in unidirectional, linear paths from source to

destination. Multiple ring networks were used recently in the Cell Processor

[23] for high-speed communication.

• 2-D Mesh: The 2-dimensional (2-D) mesh is the most common implementation

of the mesh network. 2-D mesh networks connect processing elements arranged

as a m × n grid, where m and n are rows and columns of the grid [15]. Figure

2.3 shows a 4 × 4 2-D mesh network.

7



Figure 2.2: Ring Interconnection Network (Fig. 2.5a,[4])

Figure 2.3: 4×4 2-D Mesh Interconnection Network (Fig. 2.5b,[4])

Each processor has a unique interface to the mesh for injecting and removing

packets from the network. The nodes of the 2-D mesh route packets from

source to destination, and execute an arbitration protocol when congestion

occurs. The interconnection network of the TILE64 processor (Tilera) uses

five 2-D mesh networks for on-chip communication [37].

• Hypercube: Hypercube is a member of the cube or torus family of networks [15].

A hypercube of dimension r has n = 2r nodes, each of which has r = logn

edges. Each node is numbered with a binary string of length r. Two nodes are

connected by an edge if and only if they differ by exactly one bit. Connections

between nodes are bidirectional and routing is non-unique between source and

8



Figure 2.4: Physical Implementation of a 4-dimensional Hypercube (Fig. 2.6,[4])

destination. Figure 2.4 shows a physical layout for a 4-dimensional (r = 4)

hypercube network.

• Butterfly: The butterfly network is one of the most commonly implemented in-

terconnection networks [15]. Figure 2.5 shows a 2-ary 3-fly butterfly network

that connects 23 = 8 nodes. The butterfly network has logarithmic depth,

which is appealing to designers. Unlike mesh and hypercube networks, but-

terfly has unique routing paths from source to destination. The routing path

from node 6 to node 0 is shown in Figure 2.5.

2.2.2 Mesh-of-Trees Interconnection Network

An envisioned PRAM-on-chip requires a high-bandwidth, low-latency inter-

connection network capable of sustaining high throughput for transactions between

parallel processing cores and global shared memory. The Mesh-of-Trees network

(MoT) [4, 6, 5] was designed as part of the eXplicit Multi-Threading (XMT) project

9



Figure 2.5: Butterfly Interconnection Network (N = 8) [15]

and provides such a network for massively parallel on-chip architectures.

A single Mesh-of-Trees network has N senders and N receivers. In the XMT

context, senders are processing clusters and receivers are distributed memory mod-

ules [36]. Networks have unidirectional data flow, therefore two networks are em-

bedded in XMT: one for requests from clusters and the other for responses from

memory modules.

2.2.2.1 Topology

The network consists of set of N fan-out trees, rooted at the senders, and a

set of N fan-in trees, rooted at the receivers. Each tree is a binary tree with depth

logN , having N leaves, shown in Figure 2.6(b). Each of the leaves corresponds to a

unique destination, one of the N receivers. A fan-in tree is also has depth logN , and

N leaves corresponding to each of the N senders, shown in Figure 2.6(c). At this

lowest level, the N2 leaves are connected to form a unique path from each sender to

receiver.
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Figure 2.6: Mesh-of-Trees with 4 Clusters and 4 Memory Modules [4]

Routing decisions are made in a pipelined and decentralized fashion, making

one part of the decision at each level of the fan-out tree. There are no routing

decisions in the fan-in trees. In this way, directing traffic amounts to a binary

decision per stage, up or down. For the example routing paths in Figure 2.6(d), an

N = 4 network requires two decisions (one at the root and one at the first level)

before reaching the leaves and continuing through the fan-in tree to the specified

destination.

This approach has several key advantages. First, Mesh-of-Trees has low inter-

ference. Unless traffic in the network is extremely unbalanced, packets with different

sources and destinations will not interfere. This avoids performance losses due to

contention for shared resources in the network.
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The Mesh-of-Trees network has logarithmic depth, requiring each packet to

traverse 2·logN total stages from sender to receiver. This has the potential to pro-

vide low-latency communication even when scaling to very large networks. Most

importantly, the Mesh-of-Trees network has decentralized routing decisions. Nodes

of the tree communicate only with direct neighbors and require no global synchro-

nization. Additionally, the decision made at each level amounts to a simple routing

or arbitration decision, allowing for low logic depth and faster operation than alter-

native networks [4, 5].

2.2.2.2 Network Primitives

This section describes the basic funcationality of the three fundamental com-

ponents, or primitives, of the MoT network: the routing, arbitration, and pipeline

primitives.

Routing Primitive: The routing primitive, “Primitive A” in Figure 2.7, is

used in the fan-out trees. Each routing primitive accepts data on a single input

port, and directs that data to exactly one of the two output ports. The decision is

made based on one bit of the destination address encoded in the packet. Each port

executes a synchronous handshaking protocol with request, acknowledgment, and

data signals. Stage N asserts “ack” to stage N − 1 when it can accept new data.

When stage N − 1 asserts Request, data will be exchanged at the next clock edge,

completing one transaction.
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Figure 2.7: Synchronous Mesh-of-Trees Primitives [4]

Arbitration Primitive: The arbitration primitive, “Primitive R” in Figure

2.7, is used in the fan-in trees. Each arbitration primitive has two input ports and

a single output port. During each clock cycle, one of the two competing inputs

can be forwarded to the next stage. If there is no contention, then the arbitration

primitive has a latency of one cycle. The arbitration primitives execute a strong

fairness policy by updating the dynamic priority between input ports at every cycle

[4].

In the context of XMT, the network traffic consists mainly of load and store

operations between processing clusters and memory modules. Packets for load op-

erations contain the desired address to be fetched, while store packets must contain

both destination address and data. The data width in the network could be made

large enough to store both address and data, but bandwidth would be wasted for
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load operations. Instead, store packets are sent as consecutive flits, one carrying

data and the other carrying address information.

Multi-flit packets can be handled by the senders and receivers, encoding flits

of a multi-flit packet with identifiers at send-time and reconstructing when all flits

are received. However, this places extra burden on the receiving environment to

buffer incoming flits until all have arrived. Instead, the network is designed with

the specification that multi-flit packets are delivered in consecutive cycles. This is

achieved through “winner-take-all” arbitration, where flits 1 to N − 1 of a multi-flit

packet will bias the arbitration decision for the next cycle, ensuring that the next

flit to advance through the arbitration stage will be from the same input port. Since

all flits are injected into the network in consecutive cycles, this policy guarantees

that multi-flit packets will be delivered in consecutive cycles.

Pipeline Primitive: The pipeline primitive, “Primitive B” in Figure 2.7, is

the simplest of the three, with one input port and one output port. It executes the

same synchronous handshaking protocol as the other primitives. When it can accept

new data, the primitive asserts the “Ack” signal to the previous stage. After the

previous stage has new data and asserts the Request signal, data will be registered

in the pipeline primitive at the next clock edge. Pipeline primitives can be useful

for adding buffering on long wires in the network.
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2.3 Advantages of Asynchronous Design

As single chip parallel processors scale to increasing numbers of cores, the

overheads of interconnection networks become first-class design constraints. Area

overheads of networks reduce the available area that could be used for additional

processors or caches. The added power overheads can be as much as a single core

in a multi-core system [25], making a significant impact on the power budget. The

Mesh-of-Trees network is not immune to these overheads.

One solution that answers the power concern is asynchronous (clockless) logic

design. An asynchronous interconnection network would save on power by elimi-

nating the need for global clock distribution. Since clock power consumption is a

major portion total chip power [13, 20], this can represent significant savings. In-

stead, different localized timing domains can exist on a single chip, glued together

by an asynchronous interconnect fabric. This is typically referred to as a globally

asynchronous, locally synchronous (GALS) architecture [11]. While synchronous

designers employ clock-gating as a method of reducing dynamic power for inac-

tive components on a chip, the asynchronous timing domains naturally provide this

funcationality, only transitioning nets when there is active computation, dubbed

“perfect clock gating”.

Asynchronous designs, since they are self-timed, are also more tolerant of on-

chip variations. Communication is typically localized between neighboring modules,

which are similarly affected by manufacturing process and temperature. This local-

ity property reduces verification efforts for designers. During normal operation,
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asynchronous circuits are more resilient to changes in temperature and voltage con-

ditions and, unlike synchronous implementations, do not have to operate based on

worst-case assumptions.

2.4 Asynchronous Signaling Protocols

As opposed to synchronous circuits, where events occur at specific times, asyn-

chronous circuits are self-timed. Events occur as the result of local channel commu-

nication between adjacent modules. The basic interface between modules consists

of a sender, generating requests (Req), and a receiver, responding with acknowledg-

ments (Ack). In the case of the network, data is also being passed between adjacent

modules.

There are several signaling conventions for control signals (Req and Ack) and

for data. The selection between them depends on the application as well as physical

constraints. This section discusses two signaling protocols for control signals, tran-

sition signaling (or 2-phase) and 4-phase, as well as two data signaling conventions,

delay-insensitive communication and bundled data.

Transition Signaling : Transition signaling is the simplest form of com-

munication between asynchronous modules. A transaction begins with both signal

wires at the same level. The sender generates a request by causing a transition on

the Req wire. The receiver eventually responds by causing a transition on the Ack

wire. At this point, the transaction is complete. This protocol is also known as

Two-Phase Signaling, since either the sender is waiting for acknowledgment, or the
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Figure 2.8: Transition Signaling Protocol [9]

receiver is waiting for the next request.

Figure 2.8 shows two consecutive transactions using transition signaling. Note

that the level of the signals is not important, only whether they are both at the

same level.

Four-phase (Return-to-Zero) Signaling : Four-phase (or return-to-zero)

signaling adds two additional phases to each transaction, indicated by the level

of the request and acknowledgment wires. The extra transitions ensure that the

request and acknowledgment wires return to their quiescent state, where both are

low, before the next transaction can begin. Hence the name “return-to-zero”.

The four phases are referred to as quiescent, requesting, acknowledging, and

clearing in [9]. Initially, both req and ack are low, indicating there is no pending

transaction. Next, a rising edge on req will initiate a transaction between sender and

receiver. The receiver acknowledges the request by asserting the ack wire. Then, by

deasserting the req wire, the sender begins the clearing phase of the protocol. The

receiver acknowledges the clearing signal by also lowering its ack wire, returning to

the quiescent state.
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Figure 2.9: Four-phase Signaling Protocol [9]

Transition signaling typically has higher throughput for global communica-

tion than four-phase, because it requires half of the transitions. Therefore, only one

roundtrip channel communication, rather than two in four-phase signaling. Addi-

tionally, more power is used for four-phase signaling since there are twice the number

of transitions per transaction. On the other hand, logic blocks are typically much

simpler and faster using four-phase signaling. Largely, the decision between the two

is influenced by the functionality of the asynchronous module, which may or may

not be conducive to one or the other.

Dual-Rail, Delay-Insensitive Data Communication : Delay-insensitive

data communication between asynchronous modules uses multiple wires to commu-

nicate each bit of data. Data is only passed after an event occurs for each bit of

data, allowing for correct operation in the face of arbitrary delays on data wires.

This section describes four-phase, dual-rail data communication, a standard proto-

col for passing data asynchronously which combines four-phase signaling and delay-

insensitive protocols. Two-phase dual-rail signaling can also be used, as well as

other encodings such as 1-of-4 (see [9]).

In dual-rail, each bit of data is communicated using two wires, R0 and R1.
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Acknowledgment from the receiver is combined into a single wire, A, for a total

of 2N + 1 wires used to communicate N bits of data. Since this is a four-phase

protocol, initially all wires are deasserted. The protocol advances to the requesting

phase when N transitions have occured, one for each request (R0/R1) pair. The

receiver responds by asserting the single acknowledgment wire, A. Then, once all

request wires have been deasserted, the receiver can deassert the acknowledgment

wire, completing the passing of data.

Bundled Data : Bundled data is a standard protocol for asynchronous data

communication. Data is communicated as one wire per bit accompanied by a single

request signal, forming a signal bundle. First, the sender sets the values of the

data wires, then initiates a request on the Req wire, either by transition signaling or

some other convention. There is a timing constraint associated with this protocol,

known as the bundling constraint. All data wires must be stable and at their correct

values before the bundled Req arrives. Effectively, the bundled request has a setup

constraint, and serves as a local completion signal that is transmitted along with

the single-rail data bundle.

This scheme is advantageous because: 1) it simplifies the datapath wiring,

using one wire per bit, and 2) it simplifies datapath control, having a single wire

assert validity for an entire bundle of data wires. However, unlike delay-insensitive

data communication, a local one-sided timing constraint must be enforced.

Signaling Protocols in the Asynchronous Network : For this research,

we select transition signaling and bundled data protocols for the interfaces of net-

work primitives. Transition signaling is chosen because it is fast, requiring only two
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wire transitions per transaction (see Section 2.4). Bundled data is selected to re-

duce logic and wiring complexity on the datapath, thereby lowering area and power

consumption of the network.

2.5 Asynchronous Transition-Signaling Pipelines

This section presents background on asynchronous transition-signaling pipelines,

the type used to implement the asynchronous Mesh-of-Trees network. Pipelines are

a series of storage elements, with processing logic in between, through which data

can flow.

When no logic processing is required between stages of the pipeline, a FIFO

(first-in, first-out) is implemented. FIFOs can be synchronous, operating according

to a global clock, or asynchronous, with individual stages responding to local events.

The input and output data rate may vary, allowing for flexible exchange of data from

source to destination.

For this research, we focus on asynchronous pipelines. Asynchronous circuits

are event-driven, data advances based on local decisions between adjacent stages,

removing the need for global synchronization.

Transition signaling, or two-phase signaling (Section 2.4), is used as the com-

munication protocol between pipeline stages. Each transaction consists of two tran-

sitions on wires, one for request and one for acknowledgment. The types of pipelines

examined for this research use bundled data, so that valid data appears on data wires

before the request and the acknowledgment is sent after data is safely stored (or con-
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currently in the case of MOUSETRAP (see Section 3.4).

2.5.1 Background

In this section, we look at two transition-signaling asynchronous pipelines,

one that uses phase conversion and one that does not. Each of the pipelines has

performance and area overheads, and for those reasons they are not used in the

design of the pipelined network primitives in the asynchronous network. However,

it is important to understand alternative approaches to appreciate the significance

of the results presented in this thesis.

The classic asynchronous pipeline is the micropipeline [32],[16]. Micropipelines

use transition-signaling and bundled data protocols for pipeline stages. The basic

control of micropipeline FIFO stages is shown in Figure 2.10. Each stage consists

of a storage element, a capture-pass latch, and a Muller C-element.

The Muller C-element acts as an AND operation for events. In this case, data

is captured in the current stage when a new request arrives and the current stage

can accept new data. Later designs of micropipelines used standard latches instead

of more complicated capture-pass latches [16].

There are significant drawbacks to using micropipelines for the asynchronous

interconnection network. The first is the use of non-standard components. Mi-

cropipelines depend on Muller C-elements for control, which are not found in stan-

dard cell libraries. Additionally, toggle elements are used either as part of the

capture-pass latch design [32] or elsewhere in the control logic [16].
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Figure 2.10: Micropipeline without Processing [32]

Another drawback is the throughput of micropipelines. Throughput is a key

for performance of the interconnection network, as well as the performance of the

external modules utilizing the network. Micropipelines provide very robust com-

munication of data, but use a very conservative approach for generating request

and acknowledgment signals. Another approach that trades some robustness for

performance improvement may provide a more optimal solution.

The second approach to phase conversion is to use a storage element com-

patible with transition signaling control. There are several asynchronous FIFO

implementations that use dual-edge-triggered D-flip-flops (DETDFF’s) as storage

elements [9],[38]. Figure 2.11 shows a branch and join FIFO designed using this

methodology. The control logic consists of Muller C-elements and merge elements.

Merge elements act as an OR operation for events, with output transitioning when

either input transitions.

The function of each stage is to register new data following a request transition
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Figure 2.11: Branch and Join FIFO Control [9]

(Rin), given that the Start signal occurred at initialization. Then, new data is

registered only after an acknowledgment is received from the next stage, transition

on Aout, and new data is available from the previous stage, transition on Rin.

The downside to this approach is the dual-edge-triggered flip-flops used for

storage. DETDFF’s are larger than standard latches or capture-pass latches of

micropipelines, and are also slower. While they avoid phase conversion on the

control path, pipelines based on this style have power and performance overheads

that make them less than ideal for a low-power, high-throughput interconnection

network.

2.5.2 MOUSETRAP: High-Speed Asynchronous Pipelines

MOUSETRAP (Minimal Overhead Ultra-high-SpEed TRansition-signaling Asyn-

chronous Pipeline) [31] is a high-performance, asynchronous pipeline that is excel-

lent for fine-grained datapaths. Proposed by Singh and Nowick in [31], the pipeline

modules provides for low-overhead movement of data, as the datapath uses stan-

dard transparent latches (rather than edge-triggered flip-flops) and the simplified
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latch control consisting of a single combinational gate. The basic architecture and

operation of a MOUSETRAP pipeline stage is described later in section 3.4.

The MOUSETRAP pipeline has several key advantages. Adjacent stages in

the pipeline communicate via transition signaling, explained in section 2.4, a fast

handshaking protocol consisting of a single request and acknowledge pair. Bundled

data is used for the datapath (rather than dual-rail), reducing the logic overhead

compared to delay-insensitive signaling, thus obtaining improved area and dynamic

power consumption.

Additionally, each stage has very low latency, as the latches are kept normally

transparent, and data advances quickly through the pipeline. Pipeline stages com-

municate only with neighboring stages, eliminating the need for complicated syn-

chronization, and in comparison to other asynchronous pipelines, MOUSETRAP

generates an earlier completion signal [31], improving throughput by reducing the

time between subsequent requests.

The low area overheads and high-performance of the MOUSETRAP pipelines

make them an ideal candidate for implementing the asynchronous Mesh-of-Trees

network. Next, in Chapter 3, we discuss the fundamental asynchronous circuits of

the network, that feature transition signaling and bundled data, compatible with

high-speed MOUSETRAP pipeline stages.
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2.6 GALS Architectures

Globally-Asynchronous Locally-Synchronous (GALS) architectures [11],[26] com-

bine the advantages of synchronous and asynchronous design methodologies. In a

GALS system, multiple synchronous “islands” communicate via an asynchronous

interconnection network. Synchronous islands operate independently, with different

and unrelated clock inputs. Synchronous modules are designed according to the

proven design methodologies and tools available to synchronous designers. The goal

of this thesis is to demonstrate a low-power, high-throughput asynchronous inter-

connection network capable of integration into a GALS architecture. The vision is

to implement the various processing clusters and memory modules of XMT [36] as

synchronous islands, creating a globally asynchronous system that is lower power

and more flexible while maintaining high performance.

Designers are turning to GALS architectures for several reasons. First, globally

asynchronous systems do not require global clock distribution. Implementing a low-

skew clock tree for large-scale, single-clock systems has proven to be difficult and

requires substantial verification and test resources. Without global synchronization,

the operation of independent synchronous islands becomes orthogonal to the on-chip

communication [24].

The GALS approach creates modularity and reusability for synchronous com-

ponents that can be designed once, and reused in multiple designs. The advance-

ments in process technology, to smaller and smaller feature sizes, has created a

surplus of transistors, allowing for larger designs to fit on a single die. A growing
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trend is implementing system-on-a-chip (SoC) designs that incorporate full systems,

previous requiring several chips, into a single distributed system on a single chip.

The GALS methodology allows developers to design and test synchronous mod-

ules individually and then later incorporate them into larger SoC’s as intellectual

property (IP).

Another advantage of globally asynchronous systems is that they incorpo-

rate the advantages of asynchronous design. Asynchronous logic is event-driven,

spending dynamic power only as the result of requests from adjacent modules. Syn-

chronous logic, without proper clock-gating, uses substantial dynamic power dis-

tributing clock transitions even when the module is at a quiescent state. In this

sense, asynchronous logic provides “perfect clock gating” at all levels of implemen-

tation. Various studies of power consumption in GALS architectures [27],[22] find

advantages to the approach. In addition, the asynchronous communication is more

resilient to on-chip variations (PVT) and has reduced electromagnetic interference.

The current research focuses on a high-performance asynchronous intercon-

nection network for a large-scale, single-chip parallel processor. Typically, asyn-

chronous designs are implemented as extremely low-power systems that do not have

high performance demands. Successful designs, such as Philips’ asynchronous 80C51

microcontroller [18] appears in 100 million products from cell phones and pagers to

electronic passports and smartcards.

However, asynchronous designs can have high-performance, even out-performing

synchronous designs [33],[30],[8],[31]. Synchronous designs have the limitation of

performance at the worst-case timing of all clocked paths. Asynchronous circuits,
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on the other hand, are self-timed and operate according to the average-case per-

formance. GALS architectures combine the flexibility and low-power properties of

asynchronous with the proven ease-of-design and performance of synchronous, pro-

viding an exciting new direction for large-scale system design.

One of the challenges of implementing GALS architectures is the mixed-timing

interfaces required for communication between synchronous and asynchronous mod-

ules. Many approaches have been researched, each having their own advantages and

disadvantages. One method is by using locally-generated pausible clocks for inter-

facing synchronous and asynchronous modules [39]. The scheme proposed in [39]

uses asynchronous finite-state machines to generate a local clock for inserting new

data from a synchronous sender into an asynchronous FIFO. The locally generated

clock may be paused or stretched in order to avoid setup or hold violations with the

clocking signal in the synchronous domain. However, these designs require modi-

fications to receiver clock domains and may have significant performance penalties

when restarting receiver clocks. Additionally, modifications to synchronous envi-

ronemnts, required by pausible clock designs, challenge the reusability property of

GALS architectures that we would like to maintain.

Another approach to designing mixed-timing interfaces, proposed by Chelcea

and Nowick [12], focuses on designing reusable components for high-throughput

communication between different timing domains. Timing domains may be syn-

chronous, with different and unrelated clocks, or asynchronous. The concatenation

of put and get components forms four mixed-timing FIFOs. With proper capacity

at steady-state, the FIFOs can provide throughput of one data item per cycle, with
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put and get components operating independently with no synchronization overhead.

In addition, the FIFOs do not require any modifications to synchronous domains.

For these reasons, the mixed-timing FIFOs from [12] were chosen interfacing the

asynchronous network and eXplicit Multi-Threading (XMT) processor.
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Chapter 3

Asynchronous Primitives

3.1 Overview

The building blocks, or primitives, of the asynchronous Mesh-of-Trees network

are now described in detail. There are three types of primitives used in the network:

a routing primitive (used in the fan-out tree rooted at the sender), an arbitration

primitive (used in the fan-in tree rooted at the receiver), and a pipeline primitive

(used for added storage and buffering on long wires). In this chapter, we detail the

function of each primitive and define analytical performance equations for latency

and throughput.

3.2 Routing Primitive

The routing primitive accepts data from a single input port and forwards the

data to exactly one of two output ports. The fan-out tree, consisting of routing

primitives, is responsible for directing each packet to its appropriate fan-in tree.

The asynchronous routing primitive was designed by Dr. Steven Nowick of Columbia

University. As part of this new research, it is implemented and analytical equations

for performance and timing constraints are derived. This section will discuss the

architecture of the routing primitive, its basic operation, and performance equations.
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Block Diagram : The fanout primitive has one input port and two output

ports, as shown in Figure 3.1. Each operates the transition-signalling protocol with

bundled data. There is an additional input signal, B, which is used to determine

the routing decision. When a new request arrives at the input, the request and data

are conditionally forwarded to one of the outputs.

Architecture of the Routing Primitive: The routing primitive consists

of two sets of data latches, latch controller logic, and toggle elements, as well as ac-

knowledgment generation logic, shown in Figure 3.2. Standard D-type transparent

latches are used instead of clock flip-flops. The latches are normally opaque (dis-

abled), preventing data from passing through. Unlike MOUSETRAP [31] pipeline

stages, which have latches that are normally transparent, the latches of the routing

primitive are opened only after a new request is received. New data appears at the

inputs of both banks of latches, but only one will be made transparent (enabled) for

each new data item. The normally-opaque style guarantees that only correct data

will be forwarded to subsequent stages.

Each bank of latches is accompanied by latch controller logic. The latch con-

trollers are responsible for enabling and disabling the data latches. Each latch
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controller takes as input handshaking signals from the input port (Req, Ack) and

their respective output port (Req0/Req1, Ack0/Ack1). The handshaking signals use

a 2-phase transition signaling protocol that can be in one of two phases: transaction

pending or transaction complete (see section 2.4). The latch controller assesses the

status of each port using XOR and XNOR gates (Figure 3.2), which function as

equality testers for request and acknowledgment signals. The XOR gate partially

enables the latch controller output when there is a pending transaction on the input

port. The XNOR gate partially enables the latch controller output when there is a

completed transaction on the corresponding output port.

The third enabling condition for the data latches depends on the value of B,

the routing signal. B will partially enable exactly one bank of data latches. If the

corresponding latch controller output is also enabled, then the latches will made

transparent, and new data will pass through. The other bank of data latches will

remain opaque, disabled by B.

The toggle element is used to convert an input Req transition to an output

transition on the appropriate port. The toggle output for a specific port will transi-

tion once for every data item routed to that port. Like the data latches, the toggle

element is enabled by the latch controller output and the routing signal, B. In Fig-

ure 3.2, there is an example design of the toggle element, implemented as a T latch.

The toggle latch will only toggle when both the toggle, T, and enable, En, inputs

are high.

The Ack signal to the left environment is generated by the XOR gate shown

at the right in Figure 3.2. In this case, the XOR acts as a merge element [9]
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Figure 3.2: Routing Primitive

for two transition signals, Req0 and Req1. Finally, the structure of the routing

primitive allows for some concurrent operation between the two ports, described in

the following section.

Basic Operation : We will consider a packet routed to port 0 for this ex-

ample. The latch controller behavior is specified by three signal values: w, x0, and

y0.
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• Signal w is the output of an XOR gate that examines the left environment

interface. The XOR is a inequality tester for the Req and Ack signals that gen-

erates a partial enable, w, to both sets of latches in the primitive. The latches

are initally both opaque. When Req transitions on the left input channel, w is

asserted high, partially enabling both latches. When the data passes through

the latches to the appropriate output channel, Ack transitions, deasserting w

and ensuring that the latches are opaque.

• Signal x0 is the output of an XNOR gate that reflects the state of the right

environment interface. Likewise, x1 serves the same purpose for the bottom

interface. The XNOR is an equality tester for the Req0 and Ack0 signals that

partially enables the corresponding set of latches in the primitive. Initially, x0

is asserted, since the right environment may accept a new request. When new

data is forwarded to the right environment at the top interface (port 0), Req0

transitions and x0 is deasserted. When the request is acknowledged, Ack0

transitions and x0 is asserted, partially enabling the next operation.

• Signal y0 combines the w and x0 signals, and is asserted when a new input

item has arrived and the following stage is ready to accept new data (w = 1

and x0 = 1) and deasserted after new data is routed to the following stage (w

= 0 or x0 = 0).

Simulation: Initially, all inputs and outputs are low. w and y0 are initially low

since there are no pending input requests, thus disabling all toggle elements and data

latches. x0 is initially high since there are no pending output requests to port 0. An
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important feature of this routing primitive is that, unlike MOUSETRAP pipeline

stages [31], the latches in the routing primitive are normally opaque (disabled).

The motivation for this approach is to prevent propagation of data bits through

latches until after the routing decision is determined, thus saving dynamic power

from unnecessary transitions.

First, new data and a stable B signal appear at the inputs. It is important that

B is bundled with the Req transition according to the bundling constraint mentioned

in section 2.4. Assuming that B = 0 for this data item, the toggle element and D-

latches for port 0 will each be half enabled.

Next, Req transitions, then w is asserted. w and x0 together fully enable the

latch controller output, y0. With y0 and the correct B signal asserted, the toggle

element output transitions and the latches become transparent (enabled). Note that

when w is asserted, it affects both latch controllers, and y1 will also be enabled.

However, since B = 0, the toggle and latches for port 1 will remain disabled.

The toggle output transition will cause four events to occur in parallel: (1) a

Req0 output transition is passed to the next stage, (2) the Req0 transition is used

as a feedback signal to disable x0, (3) an Ack transition is generated to the left

environment, and (4) the Ack transition is used to disable w.

The end result is that y0 will be deasserted, disabling the toggle and closing the

latches. The data is now safely stored in the current stage, and the left environment

(which was acknowledged) is free to send new data. There is a pending request to

the next stage on port 0, awaiting an Ack0 transition.

Concurrency Feature: An interesting feature of this design is that while a
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request is pending on port 0, awaiting an Ack0 transition, another request heading

to port 1 is able to process a full handshaking transaction, thereby allowing this new

input data to be routed even before the first item has been acknowledged. In fact,

multiple successive input requests to port 1 can be processed in turn, even if port

0 remains stalled. This concurrency between ports can translate to performance

benefits, since transactions to alternating destinations can be handled in parallel.

Reset : Resetting the routing primitive to an initial state is quite simple. It

involves resetting both of the toggle elements to a 0 output. This will set both Req0

and Req1 to 0, as well as reset the Ack signal to 0. Along with inputs Req, Ack0,

and Ack1 set to 0 during reset, the routing primitive will be brought to the proper

initialization state. Additionally, the T latch can be reset by adding extra gates on

the feedback paths within the latch, which will not negatively impact the critical

path delay through the primitive.

3.2.1 Performance Equations and Timing Constraints

This section presents an analytical evaluation of routing primitive performance

and timing constraints. Performance is analyzed by looking at forward latency and

cycle time. Latency is the delay through an empty primitive, and is important

when looking at network performance for an initially empty network as well. Cycle

time is the measure for operation under steady-state input conditions and reflects

performance for a network with medium to high traffic. For cycle time, analytical

equations for two distinct input patterns are created. The first case has consecutive
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packets routed to the same destination, called the single port routing case. The sec-

ond case has consecutive packets routed different destinations, called the alternating

port routing case. The alternating port routing has better cycle time than the single

port due to the concurrent operation of the two ports, and is described in detail

below.

Timing constraints must be satisfied in order to guarantee correct operation of

the routing primitive. These constraints specify some ordering of competing events

and must be handled carefully in implementation. However, the timing constraints

identified in the routing primitive are simple one-sided constraints that are not

difficult to satisfy.

Performance: Performance is analyzed using two key metrics: forward la-

tency and cycle time.

Forward latency is the time it takes a data item to pass through an initially

empty primitive. For the routing primitive, this is the time from a Req transition to

a corresponding Req0 or Req1 transition with valid data on the output channel. The

example path is for data directed to port 0. The path consists of asserting w, y0,

then, in parallel, a transition on the Toggle0 element and opening of corresponding

the data latches.

L = TXORW ↑ + TANDY 0↑ + max(TToggle0, TAND↑ + TLatch) (3.1)

As described in the previous section, this path assumes that new data and a
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Figure 3.3: Cycle Time Diagrams for Routing Primitive directing consecutive pack-
ets to a) Single Port b) Alternating Ports

stable B signal were already present at the inputs of the primitive.

Cycle time is the time interval between successive packets passing through the

primitive. A cycle consists of three events:

1. A Req0 or Req1 transition is passed to the right environment and a correspond-

ing Ack0 or Ack1 transition is returned.

2. The latches are shut and the latch controller is reset, preparing for the next

input.

3. An Ack transition is passed to the left environment and a Req transition with

new data and B arrives at the input.

The routing primitive exhibits significantly different behavior depending on

input patterns. Namely, cycle times may be different if consecutive packets are

destined for alternating destinations. This is due to the fact that while one port is

awaiting acknowledgment, the other is free to complete a full transaction. Figure

3.3 shows graphs representing the two types of cycle times. The variables in the

equations correspond to arcs in the figure.

The primitives operate concurrently, with multiple paths active at the same
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time. There are several synchronization points that require multiple threads to join

in order to proceed. Each join in 3.3 is represented by a max expression in the

cycle time equations. The longest of the joining paths will determine how execution

continues, and ultimately affect the performance of the routing primitive.

In general, A paths, above the horizontal, are forward paths through the right

environment, described above in (1). B, D, E, and F paths are internal to the

primitive, and deal with setting and resetting the latch controller. C paths are

reverse paths that cycle through the left environment with acknowledgment followed

by new request plus data, mentioned in (3).

Paths with subscript 0 and 1 describe transactions on ports 0 and 1, respec-

tively. The equations for cycle time are now presented for two simulation cases:

successive routing to a single port and successive routing to alternating ports.

1. Successive Routing to Single Port: The cycle is measured as the amount of

time between transition of Req0 and the next, shown in Figure 3.3(a). The

equation describes one full cycle on port 0 (input B = 0). The equation is the

same for port 1, exchanging 0 for 1 in the subscripts.

TSingle = D0 + max(A0, max(B0, E) + max(C, F ) + G) (3.2)

A0 = TRightEnv0
+ TXNORX0↑

B0 = TXNORX0↓

C = TLeftEnv

D0 = TANDY 0↑ + TToggle0

E = TXORAck
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F = TXORW ↓

G = TXORW ↑

2. Successive Routing to Alternating Ports: A full cycle of alternating ports is

time between one transition of Req0 and the next, shown in Figure 3.3(b).

The equation describes two full cycles, one to port 0 immediately followed by

one to port 1. The cycle time for a single flit in steady state is therefore half.

TAlternating =
1

2
· max











D0 + max(A0, SA + max(SC , C) + G),

D1 + max(A1, SB + max(SD, C) + G)











(3.3)

A0 = TRightEnv0
+ TXNORX0↑

A1 = TRightEnv1
+ TXNORX1↑

B0 = TXNORX0↓

B1 = TXNORX1↓

C = TLeftEnv

D0 = TANDY 0↑ + TToggle0

D1 = TANDY 1↑ + TToggle1

E = TXORAck

F = TXORW ↓

G = TXORW ↑

SA = max(B0, E)

SB = max(B1, E)

SC = F + G + D1 + S1 + F
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SD = F + G + D0 + S0 + F

Clearly one can see the differences between Figure 3.3(a) and 3.3(b). The

single port cycle is highly serial and requires all operations to complete for each cycle,

before the next cycle can begin. The alternating port case allows for concurrency

between adjacent cycles, improving performance.

Several conclusions can be drawn based on the performance equations. First, in

the case of a very slow left environment, both scenarios evaluate to D+max(B, E)+

C+G. This is expected, with the reverse path dominating the cycle time and setting

the pace for execution.

In the case of a slow right environment, the single port case evaluates to D+A,

while the alternating case evaluates to 1

2
·(D+A) on average. This is expected, since

while awaiting an acknowledgment one port, the other is free to complete multiple

full transactions.

For the case of both environments operating very quickly, both scenarios eval-

uate to D + max(B, E) + F + G. With fast responses from the right environments,

the routing primitive can operate very efficiently, but as acknowledgments are gen-

erated with longer latency, the performance for the single port case quickly falls far

behind. Therefore, the key to good performance at the root, which is critical for

tree performance, is either generating fast acknowledgments from following stages

or biasing the input packets to arrive with alternating destinations. Experimental

results for these and other cases are presented in Chapter 5.

Timing Constraints : There are two simple, one-sided timing constraints
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that are must be satisfied in order to guarantee correct operation.

The first is a bundling constraint on the input port, specifically regarding the

B input. This signal is used as the routing decision for the data packet and should

be stable when a Req transition occurs. Since B is part of the data packet, this

should be guaranteed as part of the general bundling constraint, as described in 2.4.

The second constraint is on the toggle element, if a T latch is used (as indicated

in Figure 3.2). The desired functionality is that the correct toggle element will toggle

once for a corresponding Req. Since a T latch will continue to oscillate when enabled,

it must be disabled after the first transition and before the second can occur.

TToggleF eedback > TXNOR + TAND (3.4)

To accomplish this, the feedback loops, pictured in Figure 3.2, must have

adequate delay.

3.3 Arbitration Primitive

The routing primitive presented in the previous section accepts data on a

single input port and conditionally routes that data to exactly one of two output

ports. The arbitration primitive provides complementary functionality, accepting

data from exactly one of two input ports and forwarding the data to a single output

port, as shown in Figure 3.4.

One distinct challenge in designing an asynchronous arbitration primitive is

that, unlike synchronous design, competing request inputs arrive in continuous time.
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The asynchronous primitive must be able to select between competing requests that

may arrive simultaneously or separated by large intervals. This functionality is

performed by a mutual exclusion element (mutex), an analog arbiter circuit. The

mutex grants access to a shared resource (storage latches) to exactly one of two

competing requests.

Section 3.3.1 describes an earlier design for the arbitration primitive, proposed

by Gill and Singh in [19], and a more optimized version proposed by Carlberg and

Nowick in [3]. Section 3.3.2 discusses four new significant enhancements built on

this framework for: datapath configuration, handling of large packets (i.e. multi-

flit capability), power optimization, and performance-optimized insertion of reset

logic. The challenge of adding functionality and making optimizations to the

existing designs is minimizing the impact on performance. The enhancements are

substantial contributions that add new functionality and reduce dynamic power

consumption, to make the primitive practical for high-performance applications.

3.3.1 Previous Work

Carlberg and Nowick began initial work on the asynchronous interconnect at

Columbia University [3]. The main focus was the development and optimization of

the arbitration primitive. In the following sections, we discuss the two alternative

basic designs developed at Columbia, a throughput-oriented primitive (TPP) and a

latency-oriented primitive (LP), which serve as a foundation for this work. Then,

in section 3.3.2, further enhancements developed at Maryland are described, as well
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Data1
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Ack_In
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Figure 3.4: Block Diagram of an Arbitration Primitive

as analytical performance equations for latency, cycle time and timing constraints.

Block Diagram : An arbiter is used to control access to a shared resource

by selecting exactly one pending request out of many. In the case of the arbitration

primitive, the shared resource is the output port, and the requesters are two other

primitives. As shown in Figure 3.4, the arbitration primitive has two input ports

and a single output port. Transition signaling with bundled data is used for all

communication.

Components : The arbitration primitive was designed as part of a MOUSETRAP-

style pipeline to achieve the goal of low latency and high throughput. As a first-cut

solution, two functional components were combined to form a single “merge-with-

arbitrate” primitive (called throughout this thesis an “arbitration primitive”): 1)

an arbiter and 2) a merge-without-arbitration (MWA) element, based on contribu-

tions from [19]. The arbiter component takes two inputs and allows only one, the

winner, to pass to its respective output in a given operation. The losing input must

wait until it is permitted to advance by the arbiter. The merge-without-arbitration

component combines two input streams into a single output stream, on the con-

dition that the inputs are already guaranteed to be mutually exclusive. Namely,

43



Req0
Ack0

Data0

Req1
Ack1

Data1

Req0
Ack0

Data0

Req1
Ack1

Data1

Req_Out
Ack_In
Data_OutReq_Out1

Ack_In1
Data_Out1

Req_Out0
Ack_In0
Data_Out0

(a) (b)

Figure 3.5: Block Diagrams of (a) an Arbiter and (b) Merge-without-Arbitration
Components

a transaction on one port must fully complete before a request can appear on the

other port.

Since the arbiter component guarantees mutually exclusive activity at its out-

put, the two can naturally be combined to form an initial version of the desired

composite arbitration primitive. Figure 3.5 shows how the the arbitration primitive

can be formed by combining arbitration and merge-without-arbitration functions

from [19].

The two arbitration primitive designs, throughput-oriented primitive (TPP)

and latency-oriented primitive (LP), are presented below [3]. The TPP provides a

faster acknowledgment on the input channels than LP, which may improve through-

put for certain input conditions, however it uses more area, power, and has longer

forward latency. The LP is an optimized version of TPP that reduces the area,

power and forward latency, however has worse cycle time when accepting successive

packets from a single port. Different applications may benefit from using either

of the alternative designs. Each primitive was further optimized as part of this

research. Enhancements are described in detail in section 3.3.2.
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3.3.1.1 Throughput-Oriented Primitive (TPP)

This section presents the structure and function of the Throughput-Oriented

Primitive (TPP), the first of the designs presented in [3]. This design is formed

simply by concatenating the earlier Arbiter and MWA elements from [19]. It is

called the TPP because it provides a fast acknowledgment to the left environment

compared to the alternative design discussed in the next section. The faster ac-

knowledgment completes the transaction with the previous stage faster, which can

improvement throughput.

Architecture of the TPP : The design features seven transparent D-latches

(numbered L1 through L7), as shown in Figure 3.6. Latches L1, L2, L5, L6, L7

are all normally transparent (enabled). Latches L3 and L4 are normally opaque

(disabled).

There is a mutual exclusion element (ME), or mutex, that performs the arbitra-

tion functionality. The mutex is a four-phase, return-to-zero module that operates

as follows: (1) Initially both inputs (Req ME) and outputs (Ack ME) are low (2)

One (or both) Req ME wire(s) transition to high, signaling a request (or requests)

(3) Exactly one Ack ME transitions high, corresponding to the winning request (4)

After some time, the winning Req ME wire transitions low, signaling the end of the

transaction (5) The corresponding Ack ME transitions low, returning the mutex to

its initial state.

Note that during the time the Ack ME wire is high, a request may arrive (or

disappear) on the other port, but will have no effect on the state of the mutex. After
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Figure 3.6: Basic Control of Throughput-Oriented Primitive (TPP)

a transaction is completed, the next transaction may begin immediately.

In addition to the latches and mutex, three XOR gates are used as merge ele-

ments for transition-signaling wires and an XNOR gate is used as a MOUSETRAP

latch control.

Basic Operation : Initially, all inputs and outputs are low. The mutex has

no pending requests, indicating that both mutex output wires are low. L3 and L4

are opaque, since mutex outputs are low, and are outputting low. All other latches

are transparent (enabled), with output low. Therefore, all signal wires are low,

except for the XNOR latch control output, which is high, enabling L5, L6, and L7.

Req0 transitions from low to high, indicating the start of a transaction. Since

L1 and L2 are transparent, Req0 passes through. It is halted at the input of L3,

which is currently opaque. Req0 continues to the input of the XOR, which causes

a transition at its output, generating a request to the mutex. Since there are no
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competing requests, the mutex responds with a transition from low to high on its

acknowledgment output corresponding to Req0.

The rising acknowledgment wire performs two actions in parallel: (1) it closes

L1, latching the current value of Req0 and (2) opens L3, allowing Req0 to pass

through. The opening of L3 spawns three concurrent threads in the primitive: (1)

L3 output is used as an acknowledgment (Ack0) to the previous stage; (2) the same

output continues through a transparent L6, causing a transition on the XOR at

the mutex input, and resetting the mutex; (3) it causes a transition on the XOR

output at the input of L5, which it turn passes through L5, becoming Req Out to

the next stage, as well as closing the L5-7 latches through the feedback loop of the

MOUSETRAP XNOR control.

At this point, the mutex lowers its acknowledgment output, completing its

return-to-zero protocol. As a result, L1 becomes transparent and L3 is made opaque

again. The primitive can now accept a second request on Req0 through the transpar-

ent L1 latch. Note that at any time during this simulation, Req1 is free to transition

and make a request to the mutex. L2 remains transparent and the request can get

all the way to the input of the mutex, but will be stopped at the input of L4, which

provides protection to the MWA stage. An interesting property that results from

this behavior is that the request on the opposing port will win the mutex as soon

it is reset as part of the first transaction. In a heavily loaded scenario, the mutex

defaults to a toggling behiavor that alternating between incoming requests.

Shortly after the Req Out transitions, L5-7 are made opaque, retaining their

values. The Req Out transition will eventually be acknowledged by the next stage by
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a transition on Ack In, which will open L5-7, allowing new values to pass through.

Note that a new input transaction can begin even if there is no acknowledgment

from the right environment.

The primitive can complete two full transactions with the left environment

when there is a stalled right environment. This is due to the fact that an acknowl-

edgment to the left environment (Ack0 or Ack1) is generated early in the cycle, at

the opening of L3 or L4.

In the case where two Reqs occur simulataneously, the mutex will generate

only one acknowledgment, and the operation will continue as described above.

Performance Equations : Analytical performance equations were presented

in [3], but updated equations for latency and cycle time, as well as timing constraints,

can be found later in section 3.3.3.

Datapath : No datapath for the TPP design was presented in the original

report. Figure 3.11 in section 3.3.2 shows the new datapath configuration, including

positioning of the data latches, as well as data mux allocation and control. This

configuration was chosen amongst several alternatives as the best balance of area,

power, and performance.

3.3.1.2 Latency-Oriented Primitive (LP)

This section presents an alternative earlier design, called the Latency-Oriented

Primitive (LP), also presented in [3], that seeks to improve the forward latency of

the primitive. The architecture and basic operation are discussed below. Analytical
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Figure 3.7: Basic Control of Latency-Oriented Primitive (LP)

equations for latency and throughput, as well as timing constraints, can be found

in section 3.3.3.

Architecture of the LP : The design features seven transparent D-latches

(numbered L1 through L7), as shown in Figure 3.7. Note that the forward input-

to-outputs paths now each have one fewer latch than the previous TPP design, while

latches are now added to the left Ack0 and Ack1 paths.

Latches L3, L4, L5, L6, L7 are all normally transparent (enabled). Latches

L1 and L2 are normally opaque (disabled). There is a mutual exclusion element

(ME), which executes the same four-phase return-to-zero protocol described in the

previous section. Like the TPP design, three XOR gates are used as merge elements

for transition-signaling wires and an XNOR gate is used as a MOUSETRAP latch

control. The core structure of the TPP is preserved in this design, with two of the

D-latches relocated.
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Basic Operation : Initially, all inputs and outputs are low. The mutex has

no pending requests, indicating that both mutex output wires are low. L1 and L2

are opaque, since mutex outputs are low, and are outputting low. All other latches

are transparent (enabled), with output low. Therefore, all signal wires are low,

except for the XNOR latch control output, which is high, enabling L5, L6, and L7.

Req0 transitions from low to high, indicating the start of a transaction. It

is halted at the input to L1, since the latch is opaque. Req0 also continues to the

input of the XOR, which causes a transition at its ouput, generating a request to the

mutex. Since there are no competing requests, the mutex responds with a transition

from low to high on its acknowledgment output corresponding to Req0.

The rising acknowledgment wire performs two actions in parallel: (1) it opens

L1, allowing Req0 to pass through, and (2) closes L3, latching the current value of

Ack0. The opening of L1 performs three operations in the primitive: (1) L1 output

continues through a transparent L6, causing a transition on the XOR at the mutex

input, and resetting the mutex; (2) the same L1 output appears at L3 input, which

is currently opaque; (3) it causes a transition on the XOR output at the input of

L5, which it turn passes through L5, becoming Req Out to the next stage, as well

as closing the L5-7 latches through the feedback loop of the MOUSETRAP XNOR

control.

At this point, the mutex lowers its acknowledgment output, completing its

return-to-zero protocol. As a result, L3 becomes transparent and L1 is made opaque.

The opening of L3 causes a transition on its output, generating Ack0 to the left

environment, and completing the transaction. Note that at any time during this
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simulation, Req1 is free to transition and make a request to the mutex. L2 remains

opaque the entire time, preventing Req1 from entering the MWA stage. An interest-

ing property that results from this behavior is that the request on the opposing port

will win the mutex as soon it is reset as part of the first transaction. In a heavily

loaded scenario, the mutex defaults to a toggling behiavor that alternating between

incoming requests.

Performance Equations : Analytical performance equations for the basic

LP primitive design were presented in [3]. In that report, Carlberg showed that

LP saves 1 D-latch delay on the critical path, improving forward latency. Updated

equations for latency and cycle time, as well as timing constraints, can be found in

section 3.3.3.

Datapath : There are two basic operations that must take place on the data-

path: (1) one of the two Data inputs must be selected to advance and (2) data must

be latched to prevent overrun from the previous stage. The selection operation is

performed by a multiplexer, with some logic to generate the select input. Carlberg

presented two alternative approaches in [3] for datapath configuration and now we

present the first, which is used as the foundation for the enhanced LP module.

Figure 3.8 shows the LP design with added datapath. The second output of

the mutex (ME) is chosen for the multiplexer select input (mux sel). If the Req0

input wins the mutex, then mux sel will remain low, allowing Data0 to advance. If

the Req1 input wins the mutex, then mux sel will transition to high, allowing Data1

to advance. There is a timing constraint introduced in the design that challenges the

bundling between selected data and the input to L5. This constraint is addressed
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later in section 3.3.3.

3.3.2 Enhanced Primitives

The effort at Maryland focuses on incorporating the Mesh-of-Trees network as

part of the PRAM-on-Chip project, led by Dr. Uzi Vishkin. The project developed

an on-chip parallel processing architecture, called eXplicit Multi-Threading (XMT),

which requires a high-throughput, low-latency interconnection network for perfor-

mance. In this section, we present further optimizations to LP and TPP modules

for use in XMT. We will use LP as the example for describing the implementation

of the optimizations, then show how they are applied to TPP.

Four new enhancements presented in this section address the key areas of

power consumption, added functionality, and initialization. The first three are opti-

mizations that apply to both TPP and LP arbitration primitives. The fourth applies

only to the TPP primitive.

• Power Optimization: The control logic for the datapath is modified to elimi-

nate unnecessary transitions that increase the dynamic power consumption.

• Multi-Flit Capability: In XMT and other architectures, wide packets are sent

as a series of narrower packets, called flits, to maximize bandwidth utilization.

Multiple flits of a wide packet travel through the network as one contiguous

multi-flit packet. Below, we show how multi-flit capability is added with sup-

port for an arbitrary number of flits per packet. This is a new contributionNo

prior published work exists on transition-signaling asynchronous pipelines

53



• Optimized Reset: With any added functionality, performance may suffer as

a result of added logic on critical paths. The addition of initialization logic,

used to reset the network, is no exception. We present our optimized partial

reset implementation that is sufficient to bring the arbitration primitive to an

initial state.

• TPP Datapath Configuration: Datapath of the TPP arbitration primitive was

not developed as part of [3]. Therefore, several alternative arrangements for

storage latches and multiplexers of the datapath were evaluated for perfor-

mance, area, and power. The resulting configuration, shown in Figure 3.11,

represents the best balance of the three design constraints.

First, new optimizations for power, handling of multi-flit packets, and reset

that apply to both TPP and LP primitives are introduced. Then, datapath config-

uration and application of these new enhancements for TPP are presented. Finally,

section 3.3.3 defines performance equations for latency and cycle time, as well as

timing constraints for each of the enhanced designs.

Power Optimization : Since the majority of cells in the primitive are on

the datapath, reducing unnecessary transitions can deliver significant power sav-

ings. The datapath logic consists of multiplexers and transparent latches. The

multiplexers select between the two data inputs, Data0 and Data1, and provide in-

put to the data latches. The multiplexer selection signal, mux sel, is the focus of

this optimization. Earlier designs of the latch-based mux sel designs [3] for the arbi-

tration primitive allowed the selection signal to transition at multiple times during
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an operation. The power optimization presented below limits the transitions to once

per cycle, thus reducing unnecessary transitions on multiplexers and latches.

The design in Figure 3.8 uses the second output from the mutex (ME) directly

as mux sel. While this is functionally correct, it is not power efficient because the

mutex is reset during each cycle of operation. Any request the Req1 port, will result

in two transitions of mux sel. The first transition from low to high occurs when the

mutex acknowledges the request, and then another transition back to low occurs

when the mutex is reset.

This behavior can cause unnecessary transitions for the multiplexer outputs.

In the case of consecutive packets arriving on the Req1 port, the right bank of data

latches may also experience extra transitions due to the mutex being reset. If the

packets are sufficiently spaced in time, a transparent bank of data latches on the

right may propagate these transitions to future stages.

To eliminate this problem, an SR latch is introduced to drive mux sel, shown

in Figure 3.9. The set (S) and reset (R) inputs are connected to the second and

first outputs of the mutex, respectively. When a request wins the mutex, the correct

value of mux sel will appear at the output of the SR latch. When the mutex is reset

(with both outputs low), the SR latch output will keep the same state.

Note that this optimization applies to both LP and TPP modules.

Multi-Flit Capability : In many architectures, network packets may have

different sizes. The interconnection network, however, has a fixed width for a specific

implementation. Rather than designing a network for the widest packet, which

wastes bandwidth when narrower packets are sent, wide packets can be sent as
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a series of narrow packets, called flits. To ease the process of reconstructing the

original packet at the destination, the entire multi-flit packet remains intact within

the network, traveling one after the other, uninterrupted.

The earlier designs performed arbitration on individual packets which did not

guarantee the order in which packets would advance through the fan-in tree. The

goal of this enhancement is to bias the arbitration decision in a primitive to allow

an entire multi-flit packet to advance intact through the fan-in tree of the network.

This is a new contribution as there is no prior published work on implementing

multi-flit protocols for high-performance asynchronous pipeline primitives.

One packet is defined as one or more flits, where a flit is the smallest granularity

of data that can be sent through the network. In the XMT processor, for example,

a flit contains one word (32 bits) of data, routing address, plus some extra bits used

by the processor. The load word (lw) command requires one flit per packet, the

requested address, while the store word (sw) command requires two flits, one for

destination address and one for data. In the earlier arbitration primitive designs,

reordering was free to occur within the fan-in tree, since arbitration has no explicit

bias towards selecting one request from another. In order to accomodate multi-flit

packets, hardware is added to detect and implement the multi-flit protocol.

Figure 3.9 shows the proposed enhanced design for LP with multi-flit capa-

bility. Each flit now contains an extra bit, called the glue bit, to denote whether

the following flit on the same port is part of the same packet. A multi-flit packet,

therefore, is defined as a series of flits with glue bit equal to one, followed by one flit

with glue bit equal to zero. This definition is useful for a couple of reasons. First,

56



L7

L6

L5

L
D
A
T
A

0

1

mux_sel

S

R

Q

L2

L1

ME

L3

Data_Out

Ack_In

Req_Out

Ack0

Ack1

Req0

Req1

Data0

Data1

L4

L9

L8

glue1

glue0

Figure 3.9: LP with Multi-Flit Capability and Power Optimization

defining a multi-flit packet in a distributed fashion, on a per-flit basis, simplifies the

hardware. Second, by adding this functionality, the network can handle any size of

packet that an application requires.

In order to bias the selection of the mutex, so the next flit of a multi-flit packet

is guaranteed to advance, we employ a method that we dubbed “Kill your rival”.

When the first flit of a multi-flit packet wins the mutex, the opposing request input

to the mutex is forced to zero, or “killed”. This either prevents future requests on

the other port from occuring, or in the case where a request was already pending,

kills the opposing request until the entire multi-flit packet has passed through the

arbitration primitive. Recall from the description of the mutex operation in section

3.3.1.1 that while the mutex has acknowledged one request, another request on the
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opposing port can appear or disappear without affecting the operation. The kill

function is achieved using a NOR gate located at the input of the mutex.

Once the mutex has made a new decision, one of the multi-flit latches, L8 or

L9, is made transparent (enabled) by the corresponding mutex output. The input

to the multi-flit latch is the glue bit from the corresponding Data input, which, if

high, becomes a kill signal to the opposing Req at the mutex. When the mutex

resets, the latch is closed. It is important that the glue bit reaches the NOR gate

input before the mutex is reset, so in the case of a multi-flit packet, a rival input

will be killed, and the next flit to advance will be from the same input port.

While the additional hardware is minimal, two transparent D-latches and two

NOR gates, the NOR gates are on the critical execution path and do have some

impact on performance, as explained in section 3.3.3. Also note that the multi-flit

enhancement applies to both LP and TPP modules.

Optimized Reset : For correct operation, the arbitration primitive must be

initialized so the latches are in the desired known state, the mutual exclusion element

is reset, and request and acknowledgment outputs are deasserted. The addition of

initialization logic can hurt performance if added on critical paths and increases the

area requirements of the design. The goal of this reset implementation is to provide

the necessary functionality while minimizing the performance and area overheads.

To accomplish this goal, a partial reset of control latches is implemented, with some

minor logic additions on non-critical paths. This approach limits performance and

area overheads and is sufficient to bring the primitive to the desired initial state.

The arbitration primitive with added reset logic is shown in Figure 3.10. This
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Figure 3.10: New Enhanced LP Arbitration Primitive with Power Optimization,
Multi-Flit Capability and Optimized Active-Low Reset

functionality is desirable at power-on, to guarantee that the fan-in tree is ready

to accept new packets. A specific application may also find it useful to flush the

network of all packets.

Reset is accomplished by setting the nine control latches to a known state with

known output values. We do this in three parts: resetting the mutex, modifying a

partial set of latches enabled by the mutex, and making the set of latches on the

right intially transparent.

First, the mutex is reset by exploiting the kill your rival functionality imple-
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mented as part of multi-flit capability. The mutex outputs serve as latch enable

signals for latches L1, L2, L3, L4, L8 and L9.

Next, the latches enabled by the mutex outputs are evaluated to decide which

require an active-low asynchronous reset. Transparent latches with reset in the

standard cell library [2] have more delay, and require higher area and power. There-

fore, the effect on performance will be minimized by using the minimum number

of latches with reset. The latches controlled by the mutex outputs can be divided

into two groups: initially enabled and initially disabled. Only the latches that are

initially disabled require an active-low reset, since their output value will not be

known. The initially disabled latches are L1, L2, L8, and L9. The initially enabled

latches (L3 and L4) are transparent, and will propagate values from their input to

output. By limiting the latches with active-low reset, we minimize the performance

penalty. L1 and L2 are the only latches with reset on the critical path of the LP

arbitration primitive.

Finally, latches L5, L6, and L7 are enabled by setting the feedback input of the

XNOR to low (the Ack In will also be low at reset). By enabling these latches, the

deasserted outputs of L1 and L2 will: (1) deassert Req Out through the XOR and

latch L5, (2) deassert Ack0 and Ack1 through L3 and L4 respectively, (3) reset the

mutex XNOR controls, since request inputs Req0 and Req1 will also be deasserted at

reset. This completes the optimized partial reset operation. When the reset signal

transitions to high, the primitive will be in the initial state.

Enhanced TPP : The three enhancements mentioned in the previous sec-

tions all apply to TPP as well. However, the basic throughput-oriented primitive
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(TPP) from [3] lacked datapath configuration for latches and multiplexing. There-

fore, several options for datapath configuration were evaluated and one was chosen.

This section presents the new fully-optimized TPP arbitration primitive with new

datapath and enhancements.

There are three possible locations for the multiplexing of the two data inputs:

before the first level of data latches, in-between the two levels, or after. We refer to

these options as early, mid, and late muxing respectively.

Each of the options was evaluated for area and power costs, as well as ease-

of-design. The early muxing was found to introduce difficult timing constraints,

though it had the lowest area overhead. The late muxing had timing constraints

similar to mid, but required an extra bank of data latches, increasing the area

overhead. For the best balance of ease-of-design and area, the muxes were placed

in-between according to the mid configuration.

Figure 3.11 shows the basic TPP module with mid muxing and data latches.

Two banks of latches are used to store Data0 and Data1 values. Latch L1 and

the Data0 latches share the same enabling signal, and are normally transparent.

The same applies for L2 and Data1 latches. The new enhanced TPP arbitration

primitive with power optimization, multi-flit capability and reset is shown in Figure

3.12.
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3.3.3 Performance Equations and Timing Constraints

This section presents an analytical evaluation of the arbitration primitive per-

formance and timing constraints.

Performance is analyzed by looking at forward latency and cycle time. Latency

is the delay through an empty primitive, and is important when looking at network

performance for an initially empty network as well. Cycle time is the measure for

operation under steady-state input conditions and reflects performance for a network

with medium to high traffic. For cycle time, analytical equations for two distinct

input patterns are created. The first case has packets arriving at the same input

port, called the single port arbitration case. The second case has packets arriving

at both input ports, called the alternating port arbitration case. Both the enhanced

LP (Fig. 3.10) and TPP (Fig. 3.12) arbitration primitives are evaluated under these

input conditions. The alternating port routing has better cycle time than the single

port for both primitives due to concurrent operation between the two ports, and is

described in detail below.

Timing constraints must be satisfied in order to guarantee correct operation of

the routing primitive. These constraints specify some ordering of competing events

and must be handled carefully in implementation. However, the timing constraints

identified in the arbitration primitive are simple one-sided constraints that are not

difficult in practice to satisfy.

Performance: Performance is analyzed using two key metrics: forward la-

tency and cycle time.
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Forward latency is the time it takes a data item to pass through an initially

empty primitive. For the arbitration primitive, this is the time from a Req transition

to a corresponding Req Out transition. The path includes acquiring the mutex, and

generating a new Req Out transition. Latency equations for LP (3.5) and TPP (3.6)

are presented below. The equations displayed are the same as those reported in [3].

LLP = TXNOR↑ + TNOR↑ + TME↑ + TL1G→Q
+ TXOR + TL5D→Q

(3.5)

LTPP = TL1D→Q
+ TXNOR↑ + TNOR↑ + TME↑ + TL3G→Q

+ TXOR + TL5D→Q
(3.6)

Subtracting the two equations shows that the difference is one latch D → Q

delay, and the reason LP is regarded as a latency-optimized primitive.

Cycle time is the time interval between successive flits passing through the

primitive. A cycle of stage N consists of three events:

1. A Req Out transition is passed to the right environment and an Ack In tran-

sition is returned.

2. Stage N resets the mutex, preparing for the next input.

3. An Ack transition is passed to the left environment and a Req transition with

new data arrives at stage N.

The arbitration primitives exhibit different behavior depending on input pat-

terns. Namely, cycle times may be different if consecutive Reqs arrive at the same

port versus arriving at alternating ports. The first case, which exercises a single

port, may occur in a stage if many packets arrive from the same set of sources, also

65



(a) LP Single Port (b) TPP Single Port

(c) LP Alternating Ports (d) TPP Alternating Ports

Figure 3.13: Diagrams of Arbitration Primitive Cycle Times

in the case of multi-flit packets. The alternating case is likely in situations with

heavy load and contention, most notably at the root of the fan-in tree.

The cycle times for the various input patterns are now discussed. The variables

in the equations refer to arcs in Figure 3.13. The primitives operate concurrently,

with multiple paths active at the same time. There are several synchronization

points that require multiple threads to join in order to proceed. Each join in 3.13

is represented by a max expression in the cycle time equations. The longest of

the joining paths will determine how execution continues, and ultimately affect the

performance of the arbitration primitive.

In general, A paths, above the horizontal, are forward paths through the right

environment, described above in (1). This path is shared by both input ports. B, D,
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and E paths are internal to the primitive, and deal with resetting and setting of the

mutex. C paths, below the horizontal, are reverse paths that cycle through the left

environment with acknowledgment and new request plus data, mentioned in (3).

Paths with subscript 0 and 1 describe transactions on ports 0 and 1, respec-

tively. The equations for dual operating modes of the LP and TPP are now pre-

sented, followed by a brief analysis.

1. LP single port: The cycle is measured as the amount of time between one rising

edge of ME0 output and the next, shown in Figure 3.13(a). The equation

describes one full cycle on port 0.

TLP Single = max(A, B0 + C0 + D0 + E0) (3.7)

A = TL5D→Q
+ TRightEnv + TXNOR↑

B0 = TL6D→Q
+ TXNOR↓ + TNOR↓ + TME0↓

C0 = TL3G→Q
+ TLeftEnv0

+ TXNOR↑ + TNOR↑

D0 = TME0↑

E0 = TL1G→Q

F = TXOR

2. TPP single port: The cycle is measured as the amount of time between one

rising edge of the ME0 output and the next, shown in Figure 3.13(b). The

equation describes one full cycle on port 0.

TTPP Single = max(A, E0 + max(B0, C0) + G0 + D0) (3.8)

A = TL5D→Q
+ TRightEnv + TXNOR↑
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B0 = TL6D→Q
+ TXNOR↓ + TNOR↓ + TME0↓

C0 = TLeftEnv0

D0 = TME0↑

E0 = TL3G→Q

F = TXOR

G0 = TL1D→Q
+ TXNOR↑ + TNOR↑

3. LP Alternating Ports: A full cycle when alternating is the amount of time

between one rising edge of the ME0 output and the next, shown in Figure

3.13(c). The subscripts indicate the port associated with the path. The figure

shows a full cycle, with one transaction on port 0 and the next on port 1. The

cycle time for one flit at steady state, therefore, is half of the full cycle time.

TLP Alternating =
1

2
· max































max(E0 + B0 + D0, C1)

+ max(E1 + B1 + D1, C0),

max(A, B0 + D1 + E1)

+ max(A, B1 + D0 + E0)































(3.9)

A = TL5D→Q
+ TRightEnv + TXNOR↑

B0 = TL6D→Q
+ TXNOR↓ + TNOR↓ + TME0↓

B1 = TL7D→Q
+ TXNOR↓ + TNOR↓ + TME1↓

C0 = TL3G→Q
+ TLeftEnv0

+ TXNOR↑ + TNOR↑

C1 = TL4G→Q
+ TLeftEnv1

+ TXNOR↑ + TNOR↑

D0 = TME0↑
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D1 = TME1↑

E0 = TL1G→Q

E1 = TL2G→Q

F = TXOR

4. TPP Alternating Ports: A full cycle when alternating ports is the amount of

time between one rising edge of the ME0 output and the next, shown in Figure

3.13(d). The subscripts indicate the port associated with the path. The figure

shows a full cycle, with one transaction on port 0 and the next on port 1. The

cycle time for one flit at steady state, therefore, is half of the full cycle time.

TTPP Alternating =
1

2
· max





















SA + SB,

max(E0 + SA + B1, SC) + D0,

max(E1 + SB + B0, SD) + D1





















(3.10)

A = TL5D→Q
+ TRightEnv + TXNOR↑

B0 = TL6D→Q
+ TXNOR↓ + TNOR↓ + TME0↓

B1 = TL7D→Q
+ TXNOR↓ + TNOR↓ + TME1↓

C0 = TL3G→Q
+ TLeftEnv0

C1 = TL4G→Q
+ TLeftEnv1

D0 = TME0↑

D1 = TME1↑

E0 = TL3G→Q
+ TXOR

E1 = TL4G→Q
+ TXOR
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F0 = TL1D→Q
+ TXNOR↑ + TNOR↑

F1 = TL2D→Q
+ TXNOR↑ + TNOR↑

SA = max(A, B0 + D1 + E1)

SB = max(A, B1 + D0 + E0)

SC = E0 + C0 + G0

SD = E1 + C1 + G1

Several conclusions can be drawn based on the diagrams in Figure 3.13 and

the equations 3.7 through 3.10. First, given a very slow right environment, all the

cycle times evaluate to A. In the case of a slow left environment, which equates to

light traffic in the network, the reverse paths, C, will dominate the cycle time. Both

of these behaviors are expected in an handshaking pipeline, where each stage is

dependent on receiving requests from the left and acknowledgments from the right.

Another interesting case is a very fast right environment and a very fast left

environment. In this case, LP Single operates very serially, evaluating to B + C +

D+E. The cycle consists of acquiring the mutex, resetting it, then waiting for a new

request from the left. The TPP Single case, which has some concurrency between

internal and reverse paths, will evaluate to G+D+E+B, cycling between accepting

new data, acquiring the mutex, and resetting it. As expected, TPP will have better

throughput than LP in this situation, benefiting from the early acknowledgment to

the left.

The most interesting result in the analyzing the fast environments case is

that TPP and LP both perform the same for alternating inputs, each evaluating
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to B + D + E for both ports. In nodes close to the root of the fan-in tree, where

contention is more likely, this behavior can be exhibited, making both TPP and LP

good candidates for the root primitive.

It is important to note that even under heavy load and a fast right environment,

the single-port performance may be relevant, such as in the case of multi-flit packets.

Given a very fast right environment, TPP will outperform LP in handling multi-flit

packets, since each will operate according to their respective single-port equations

while in multi-flit mode. But depending on the frequency of multi-flit packets in the

traffic, this may not be the common case.

Timing Constraints : There are four timing constraints that must be sat-

isfied for the correct operation of the primitive.

1. Input Bundling Constraint: There is a bundling constraint on the data input

channels. The bundled data communication protocol, discussed in section 2.4,

specifies that new, stable data should arrive at the input before the request

transition. The request transition (Req0 or Req1) then asserts validity for the

data, as well as begins the transfer of data from one stage to the next.

2. Fast Reset of Mutex: There is a race condition between the setting of multi-

flit mode and the resetting of the mutex for the next cycle. This mostly

applies to the case where the right bank of data latches is transparent when

the mutex asserts a new decision. Once the mutex raises an acknowledgment,

in order to guarantee correctness, the multi-flit “kill” signal must be asserted

or deasserted before the mutex can be reset. This ends up being a simple
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constraint to satisfy:

TLatchG→Q
+ TLatchD→Q

+ TXNOR↓ + TNOR↓ > TLatchG→Q
+ TNOR (3.11)

TLatchD→Q
+ TXNOR↓ > 0

This constraint applies to both LP and TPP primitives. For LP, this must

hold for (L1, L6, L8) or (L2, L7, L9) used as the latches in the first equation.

For TPP, substitute (L3, L6, L8) or (L4, L7, L9) for the latch terms in the

first equation. This constraint should be met even with the addition of OR

gates at the outputs of L8 and L9, as in Figures 3.10 or 3.12.

3. Output Bundling Constraint: Another timing constraint is a bundling con-

straint (Section 2.4) on the right bank of data latches, when they are trans-

parent prior to a mutex decision. After a decision is made by the mutex, the

winning Req continues through L5, where it is fed back to the MOUSETRAP

XNOR latch control in order to close the right bank of latches. During this

time, the correct data must be passed through the muxes and data latches, so

the correct values are present when the latches are disabled, storing the data.

TLatchG→Q
+ TXOR + TL5D→Q

+ TXNOR↓ > TSRlatch + TMUX + TLDataD→Q
(3.12)

TLatchG→Q
+ TXOR + TXNOR↓ > TSRlatch + Tmux

This constraint should also be easily satisfied, and not require added delay. Al-

though this should be verified in a post-layout design. The first latch variable

may be (L1, L2) for LP or (L3, L4) for TPP.

4. Data Overrun in TPP Latches: The final constraint appears only in TPP and
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concerns the L1 and L3 (or L2 and L4) latch enables. Since they are controlled

by the same latch enable, the mutex output, there is a chance for data overrun

when L1 is being opened and L3 is being closed.

TL1G→Q
> TholdL3

(3.13)

As long as the paths from mutex output are relatively matched, this should be

easy to satisfy. The gate-to-output delay through the latch usually will exceed

the hold time.

3.4 Pipeline Primitive

This section presents the pipeline primitive, the final element of the network.

For this design, the existing MOUSETRAP high-speed pipeline design presented by

Singh and Nowick in [31] is used. The structure and basic operation is described

below for completeness. More detailed specification can be found in [31].

Block Diagram : The pipeline primitive accepts data from the left and for-

wards it to the right. MOUSETRAP stages can also be added for boosting per-

formance, since they provide a fast acknowledgment to the left after accepting new

data, and can offset inter-primitive latencies by providing buffering on long wires in

the network.

Both interfaces of the pipeline primitive are transition signaling with bundled

data, similar to the routing and arbitration primitives, shown in Figure 3.14. In

fact, the routing and arbitration primitives were designed as MOUSETRAP-style

stages for performance and exhibit similar latch controls as pipeline primitive.
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Figure 3.15: Pipeline Primitive

Architecture of the Pipeline Primitive: The MOUSETRAP pipeline

stage consists of a set of transparent D-latches and a latch controller, which is

comprised of a single standard logic gate, an XNOR.

Basic Operation : Initially, all inputs are low, and the XNOR latch controller

is enabling the transparent latches. First, Data appears at the input of the latches

and is allowed to pass through to the following stage. Sometime after the data is

stable, a Req transition appears at the input and also passes through a transparent

latch.
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After the Req appears at the output, three events occur in parallel:

1. A Req Out is generated to the right environment, signaling that new valid data

is available.

2. An Ack is generated to the left environment, freeing it up to process a new

data itme.

3. The latch controller in the current stage quickly disables the latches (making

them opaque) to protect and store the current data.

The latches will remain opaque, storing the data, until an Ack In is received

from the right environment. At this point, the latches are made transparent and new

data may arrive at the current stage. Detailed description of performance equations

and timing constraints, as well as optimizations, can be found in [31].

75



Chapter 4

Mixed-Timing Network

This chapter presents the mixed-timing Mesh-of-Trees network which con-

sists of the asynchronous network with mixed-timing interfaces at the source and

destination ports. The mixed-timing network provides communication between syn-

chronous domains and the asynchronous network on a single chip. The mixed-timing

interfaces allow the network to communicate with multiple synchronous domains,

providing flexibility in designing large, distributed systems on a chip by remov-

ing the need for global clock distribution. Such implementations are referred to

as globally-asynchronous, locally-synchronous (GALS) systems [11], since multiple

synchronous domains communicate asynchronously.

The goal of the mixed-timing network is to incorporate mixed-timing inter-

faces, while maintaining the same high throughput and low latency properties of the

original asynchronous network. The mixed-timing interfaces should follow the same

design methodology as the asynchronous network primitives, with an emphasis on

standard cell implementations and use of commercial CAD tools. Additionally, the

mixed-timing network should be modular and not require modification to existing

synchronous environments. As a result, the mixed-timing network should be com-

patible with the synchronous interfaces of the XMT processing clusters and memory

modules, allowing for easy integration.
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To achieve these goals, mixed-timing FIFOs proposed by Chelcea and Now-

ick [12] are implemented. The mixed-timing FIFOs provide robust, low-latency

communication between different timing domains, whether they be two domains

operating under arbitrary (i.e. unrelated) clocks, two asynchronous domains, or a

combination of the two. This family of mixed-timing FIFOs is designed in a modu-

lar fashion, and most importantly, do not require modifications to the sender or the

receiver domain. Each FIFO is constructed with a reusable put and get component,

either synchronous or asynchronous. For this research, mixed-timing FIFOs with

three storage cells are used. Based on the results from [12], a 3-place FIFO will keep

area overheads low and avoid frequent stalling from early ‘empty’ detection that

a 2-place FIFO may encounter. In addition, a timing violation was discovered in

the synchronous-asynchronous FIFO cell, and a new modification that is fixes the

violation is proposed.

The chapter is organized as follows. First, the basic architecture and external

interfaces of the mixed-timing FIFOs are discussed. Then the implementation of two

FIFOs used with the network, the synchronous-asynchronous and the asynchronous-

synchronous, are described in detail. The implementations follow the same standard

cell approach as the rest of the network wherever possible. The asynchronous com-

ponent of each of the two FIFOs uses a four-phase, return-to-zero handshaking

protocol, while the network uses transition signaling. Therefore, we specify, de-

sign, and implement new protocol converters for each of the FIFOs to efficiently

convert between two-phase and four-phase asynchronous signaling. These designs

are shown in sections 4.2.1 and 4.3.1.
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4.1 Overview

The primitives described in the previous chapter can be arranged to form a

fully asynchronous Mesh-of-Trees network. However, in many applications, such as

shared-memory parallel architectures, the drivers of the network will be synchronous.

In order to provide communication between synchronous senders and receivers via

the asynchronous network, we implement mixed-timing FIFOs proposed by Chelcea

and Nowick in [12].

Figure 4.1 shows the structure of the mixed-timing network and integration

with synchronous domains. Synchronous domains communicate directly with syn-

chronous interfaces of mixed-timing FIFOs. The synchronous-asynchronous FIFOs

are denoted by S→A and the asynchronous-synchronous FIFOs are denoted by

A→S. Each mixed-timing FIFO communicates to the asynchronous network via

the two-phase to four-phase protocol converters, denoted by PC.

Basic Architecture of Mixed-Timing FIFOs : This section describes

the structure of the mixed-timing FIFOs used in the mixed-timing Mesh-of-Trees

interconnection network. Each mixed-timing FIFO is a circular array, or token ring,

of identical storage cells that communicate with the put and get components on a

shared bus. In addition, adjacent cells pass put and get tokens, which denote which

cell is next for enqueuing or dequeuing data. Figure 4.2 shows the arrangement

of two mixed-timing FIFOs, the synchronous-synchronous and the asynchronous-

asynchronous as presented in [12]. The put and get components of each can be

freely combined form the other two mixed-timing FIFOs which interface between
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Figure 4.1: Mixed-Timing Network: Asynchronous Network with Mixed-Timing
Interfaces and New Protocol Converters

asynchronous and synchronous timing domains.

An important feature of the mixed-timing FIFOs is that data does not move.

Once data is enqueued it remains in place, while the put and get tokens are passed

between the cells. Since data is not passed between cells, the FIFOs have a potention

for low latency and low-power operation. In addition, the modular design allows for

high scalability with very few design modifications.

The synchronous put interface (Fig. 4.2(a)) is clocked by CLKput. The signals

reqput and dataput are the request and data inputs respectively. The full signal is

asserted only when the FIFO is full, signalling to the synchronous interface that

data cannot be inserted at that cycle. The synchronous get interface (Fig. 4.2(a)) is

clocked by CLKget. The signal reqget is the request input to the FIFO. The dataget

signal is data output to the synchronous timing domain. The empty signal is asserted

only when the FIFO is empty, signaling to the synchronous interface that valid data
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Figure 4.2: Architectures of two mixed-timing FIFOs: (a) Synchronous-Synchronous

FIFO and (b) Asynchronous-Asynchronous FIFO [12]
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is not available at that cycle. The validget signal is not used for the mixed-timing

interfaces implemented in this research.

The asynchronous interfaces (Fig. 4.2(b)) are different than the synchronous

in that they are not synchronized to a clock input. The asynchronous put interface

has putreq and putdata inputs that serve as the request and data inputs to the FIFO.

Instead of a full output, the interface simply withholds the putack signal until the

FIFO can accept new data. The asynchronous get interface has a getreq input that

is the request for new data. The getdata signal is the data output to the synchronous

environment. Instead of an empty output, the interface simply withholds the getack

signal until the FIFO can accept new data.

For the network implementation, which is a unidirectional pipelined mesh, it

is advantageous to have the convention that req and data signals have the same

orientation (both inputs for put or outputs for get. This changes the functionality of

the sync get and async get interfaces to sync output and async output respectively.

For sync output, the negated empty signal (not empty) is used as a request output

and the reqget input is renamed to ackget in from the synchronous environment.

For async output, the getreq and getack should be reversed, with the caveat

that an initial request must be generated at initialization. This way, getack becomes

a getreq out and getreq becomes getack in from the asynchronous environment. In

addition, the negated full signal (not full) is used as a synchronous acknowledgment

output. The new interface namings are shown in Figure 4.3 and are reflected in

Figures 4.4 and 4.7 from [12].
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4.2 Synchronous-Asynchronous FIFO Implementation

The synchronous-asynchronous FIFO takes interfaces a synchronous sender

and asynchronous receiver. This section describes how the synchronous-asynchronous

FIFO was implemented for this research. It was determined that a timing violation

may occur under certain scenarios, and a new simple fix is proposed to the design

in [12]. Detailed description of the architecture and operation of the FIFO cells and

interface as a whole can be found in [12].

A synchronous-asynchronous mixed-timing FIFO cell combines the synchronous

put and asynchronous get components from [12], as shown in Figure 4.4. For the

purposes of the network, where we would like req and data signals to have the same

orientation, signals get req and get ack in 4.4 will be used to generate get ack in and

get req out respectively. This does not represent a change in the individual cell, but

in the FIFO as a whole.

Simulations with the synchronous-asynchronous FIFO cell revealed a potential

hazardous scenario that may occur in the design presented in [12]. In certain cases,

invalid or stale data could be delivered to the asynchronous environment. A simple
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solution was identified and the proposed solution were confirmed by Chelcea and

Nowick, and Figure 4.4 shows the modified FIFO cell. In particular, the clocking

signal for REG was modified from CLK PUT to we.

The consequence of modifying the clocking signal is a bundling constraint that

the rising edge of get req out must occur only after there is valid data is present on

get data. This constraint should is easily satisfied in the current implementation.

we+ → get req out+ > we+ → get data

As shown in Figure 4.4, the synchronous-asynchronous FIFO consists of three

main components: synchronous put, asynchronous get, and data validity controller

(DVsa). The synchronous put component is implemented for this research as a edge-

triggered D flip-flop clocked by CLK PUT with en put as an enable signal, an AND

gate, and a bank of edge-triggered D flip-flops clocked by we. For initialization, the

last cell (tail of the circular array of cells) should assert ptok out so the first cell

(head of the circular array of cells) is initialized with the put token.

The asynchronous get component consists of an asymmetric C-element with

two ‘plus’ inputs, an obtain-get-token (OGT) circuit, and a bank of tri-state buffers

at the outputs of the data registers from the synchronous put component. The

asymmetric C-element, for the purposes of this research, was implemented with

standard cell combinational gates, with logic function shown in Figure 4.5(a). This

choice was made to facilitate simulating the mixed-timing FIFO in Verilog using

ARM standard cell timing models for the IBM 90nm process.

The OGT circuit is a burst-mode asynchronous machine that controls the
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Figure 4.4: Synchronous-asynchronous FIFO cell with new modified data register
clocking [12]

movement of the get token between FIFO cells. The burst-mode specifications

are synthesized using the MINIMALIST [17] CAD tool as part of the CaSCADE

asynchronous design environment [28]. During initialization, the first cell (head of

the circular array of cells) should be given the get token by incorporating reset into

the OGT implementation presented in [12]. When the get token is present in a cell

(gtok is asserted), the bank of tri-state buffers in REG are enabled, allowing the

data stored in the registers to be output onto the shared get data bus. Only one cell

can have gtok asserted at any given time.

The data validity controller (DVsa) for the synchronous-asynchronous cell in

[12] was designed using the Petrify CAD tool [14]. For this research, the DVsa was

modeled by a behavioral Verilog description that implemented the signal transition
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Figure 4.5: Gate-level Asymmetric C-element Implementations: (a) with two plus inputs
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graph (STG) specification described in [12].

4.2.1 Two-Phase to Four-Phase Protocol Converter

The asynchronous get interface of the synchronous-asynchronous mixed-timing

FIFO uses a four-phase, return-to-zero handshaking protocol. The asynchronous

Mesh-of-Trees network, however, uses transition signaling, a two-phase handshaking

protocol. In order to interface between the two components, a custom low-latency,

asynchronous protocol converter is designed.

The two-phase to four-phase converter is synthesized as a burst-mode asyn-

chronous machine using the MINIMALIST [17] CAD tool, part of the CaSCADE

asynchronous design environment [28]. The burst-mode specification is a Mealy-

type finite-state machine consisting of a set of states and arcs. A complete set of

input transitions (called the input burst) will yield a complete set of output transi-

tions (called the output burst) and a state transition.

The protocol converter is placed in between the synchronous-asynchronous

FIFO and the root of a fan-out tree, an input to the network. In Figure 4.6(a), the
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mixed-timing FIFO is placed to the left and the fan-out root is placed to the right.

For correct operation, the protocol converter is initialized to state S0 (Fig.

4.6(b)) during reset, where reset is asserted and all req and ack inputs are deasserted.

When reset is deasserted, the burst-mode machine will have the necessary input

burst (get ack-) to cause the rising edge of get req, a request to get new data from

the FIFO, and make a transition to state S1. When the first request is acknowledged,

it will cause the get req out+ output burst to the fan-out root, signaling that valid

data is available. In this way, the initial request to the mixed-timing FIFO “primes

the pump” for future transactions.

To maintain good performance, a MOUSETRAP pipeline stage [31] is added

at the output to the right environment. The MOUSETRAP stage, when empty,

will quickly store the data and acknowledge the mixed-timing FIFO (left inter-

face), allowing the subsequent get request to the asynchronous get component. This

shortens the delay for arcs S1→S2 and S4→S5, improving throughput in many situa-

tions, since the fan-out root will take longer to acknowledge than the MOUSETRAP

pipeline stage.

4.3 Asynchronous-Synchronous FIFO Implementation

The asynchronous-synchronous FIFO takes interfaces an asynchronous sender

and synchronous receiver. This section describes how the asynchronous-synchronous

FIFO was implemented for this research. Detailed description of the architecture

and operation of the FIFO cells and interface as a whole can be found in [12].
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Figure 4.6: (a) Protocol Converter and (b) Burst-Mode Specification for the Synchronous-

Asynchronous Mixed-Timing FIFO

An asynchronous-synchronous mixed-timing FIFO cell combines the asyn-

chronous put and synchronous get components from [12], as shown in Figure 4.7.

The asynchronous-synchronous FIFO consists of three main components: asyn-

chronous put, synchronous get, and data validity controller (DVas). The asyn-

chronous put component consists of an asymmetric C-element with one ‘plus’ input,

a bank of transparent D latches (part of REG), and an obtain-put-token (OPT)

circuit. The asymmetric C-element, for the purposes of this research, was imple-

mented with standard cell combinational gates, with logic function shown in Figure

4.5(b). This choice was made to facilitate simulating the mixed-timing FIFO in

Verilog using ARM standard cell timing models for the IBM 90nm process.

The latches in REG are enabled when we is asserted, allowing put data to pass

through. When we is deasserted, the data is safely stored in the latches. The OPT

circuit is a burst-mode asynchronous machine [17] that controls the movement of

the put token between FIFO cells. During initialization, the first cell (head of the
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Figure 4.7: Asynchronous-synchronous FIFO cell [12]

circular array of cells) should be given the put token by incorporating reset into the

OPT implementation presented in [12].

The synchronous get component consists of an edge-triggered D flip-flop clocked

by CLK get and enabled by en get, an AND gate, and a bank of tri-state buffers. For

initialization, the last cell (tail of the circular array of cells) should assert gtok out

so the first cell (head of the circular array of cells) is initialized with the get token.

The data validity controller (DVas) for the asynchronous-synchronous cell in

[12] was designed using the Petrify CAD tool [14]. For this research, the DVas was

implemented using a behavioral Verilog description that implemented the signal

transition graph (STG) specification described in [12].
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4.3.1 Two-Phase to Four-Phase Protocol Converter

The asynchronous put interface of the asynchronous-synchronous mixed-timing

FIFO uses a four-phase, return-to-zero handshaking protocol. The asynchronous

Mesh-of-Trees network, however, uses transition signaling, a two-phase handshak-

ing protocol. In order to interface between the two components, a custom low

latency, asynchronous protocol converter is designed.

The two-phase to four-phase converter is synthesized as a burst-mode asyn-

chronous machine using the MINIMALIST [17] CAD tool. The burst-mode specifi-

cation is a Mealy-type finite-state machine consisting of a set of states and arcs. A

complete set of input transitions (called the input burst) will yield a complete set

of output transitions (called the output burst) and a state transition.

The protocol converter is placed in between the root of the fan-in tree, an

output of the network, and the asynchronous-synchronous FIFO interface. In Figure

4.8(a), the fan-in root is placed to left and the mixed-timing FIFO is placed to the

right.

For correct operation, the protocol converter is initialized to state S0 (Fig.

4.8(b)) during reset, where reset is asserted and all req and ack inputs are deasserted.

The first input burst will be a rising edge on the put req in signal, indicating there is

valid data to place into the FIFO. Then, a full four-phase handshake will take place

on the FIFO interface, and only after put ack is deasserted, indicating the data is

safely stored, will put ack out transition, completing the put operation.
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Chapter 5

Experimental Results

This chapter presents measurements of performance, area, and power for the

asynchronous network and its components. First, the asynchronous primitives are

evaluated and compared to synchronous primitives from [4, 6, 5]. Then, simulation

results for the asynchronous network and mixed-timing network are reported. Fi-

nally, the mixed-timing network is embedded in the XMT processor and evaluated

using four benchmarks.

5.1 Overview

Simulation results are reported in increasing order of complexity. First, the

asynchronous primitives are evaluated in isolation for latency, throughput, area,

and power. Results for these key metrics are compared to results obtained from the

synchronous primitives developed in [4, 6, 5]. Significant area and power savings are

reported for the asynchronous, with latency and throughput comparable between

the asynchronous and synchronous designs.

Next, small groups of routing and arbitration primitives, arranged as binary

trees, are simulated. The simulations with binary trees give a more accurate in-

dication of behavior in the full network. Results for maximum throughput under

different input traffic conditions are reported. Maximum throughput remains the
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same between isolated primitives and 3-level trees, indicating that performance of

the tree is determined by the root. Successive single port routing and arbitration

represent the worst-case steady-state operation in isolation for both primitives, and

throughput for single port is further reduced in the 3-level trees.

Mixed-timing interfaces with protocol converters are evaluated in isolation for

latency and maximum steady-state throughput, as they are in [12]. The simulation

results presented in [12] are for 0.6-µm HP CMOS technology, while the current

research uses IBM 90nm technology. Results appear consistent with those reported

in [12], with an expected improvement in performance shifting to 90nm technology.

A full 8-terminal asynchronous network is simulated using a projected layout,

as current commercial CAD tools posed limitations for creating a placed and routed

design. To create the projected network layout, wire delays were added between

primitives in an 8-terminal network to approximate the floorplan used for the syn-

chronous Mesh-of-Trees network in [5]. The projected network layout is evaluated

for latency and throughput at varying input traffic rates.

The mixed-timing network is evaluated by simulating the projected network

layout, mixed-timing interfaces, and protocol converters. Maximum throughput

of the mixed-timing network is reported at varying clock frequencies to evaluate

possible bottlenecks for performance created by mixed-timing interfaces.

Finally, the mixed-timing network is embedded into the XMT processor model.

Execution times for several benchmarks are measured and speedup versus the XMT

processor with synchronous network is reported.
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5.2 Tool Flow

One of the goals of this work was to design and simulate the asynchronous

designs using available commercial CAD tools. Each of the circuits was designed

using a standard cell methodology whenever possible. ARM 90nm (CMOS9SF)

SAGE-XTM standard cells were used for primitives and mixed-timing interfaces.

Designs were placed, routed and extracted using the Cadence Encounter R©

digital IC platform. Post-layout simulations were performed on gate-level netlists by

Cadence NC-Verilog with Standard Delay Format (SDF) Annotation at the typical

process corner (1.2V, 25◦C). Power measurements were obtained using Cadence

Voltagestorm, as part of the Encounter R© platform. Burst-mode controllers for the

mixed-timing FIFO protocol converters were synthesized using the MINIMALIST

[17] CAD tool.

The mutual exclusion (ME) element of the arbitration primitive cannot be

implemented using standard combinational gates. In order to incorporate the ME

into the gate-level Verilog simulations, the cell was designed using transistor models

from the IBM 90nm (CMOS9SF) PDK, and simulated in Cadence Spectre at 1.2V

and 25◦C. Delay information was used to create a behavioral Verilog model with

similar timing behavior, described in detail in section 5.3.2.

The XMT processor Verilog model was developed by Xinghzi Wen [36] and

used to simulate the XMT processor with the mixed-timing network. The mixed-

timing network was designed to match the synchronous interfaces of processing

clusters and memory modules in XMT.
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5.3 Asynchronous Primitives

This section presents performance, area, and power measurements for the asyn-

chronous primitives used in the network. Performance is analyzed based on two

key metrics: latency and throughput. Latency is the delay from a request transi-

tion on the input interface to its appearance at the output in an empty primitive.

Throughput is analyzed for various input conditions and is given as a fraction of

the bandwidth, the maximum rate of data transfer in steady-state operation. Max-

imum throughput is measured for primitives in isolation as well as small groups of

primitives.

Area measurements report the area occupied by all standard cells used in each

design. Average power consumption is reported for asynchronous and synchronous

primitives with various steady-state input traffic patterns.

5.3.1 Routing Primitive

The performance, area, and power consumption of the Mesh-of-Trees network

are dependent on the individual network primitives. In this section, we evaluate

the asynchronous routing primitive in isolation and compare to the synchronous

routing primitive in terms of latency, throughput, area, and power consumption.

Then, throughput in a 3-level binary fan-out tree of asynchronous routing primitives

is reported.

Significant area and power savings are reported for the asynchronous. The

asynchronous primitive uses 64% less area than the synchronous. At the steady-
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state operating point with highest average power consumption (alternating routing

destinations), the asynchronous consumed 85% less power on average than the syn-

chronous.

The asynchronous routing primitive has competitive performance when com-

pared with the synchronous primitive. Both asynchronous and synchronous primi-

tives have similar latency. Maximum throughput of the asynchronous primitive is

12% less than synchronous at the maximum clock rate for the post-layout primitive.

Throughput is measured for routing primitives in a 3-level tree under various

steady-state input traffic conditions, described below. The maximum throughput

of the 3-level tree is the same as the routing primitive in isolation, indicating that

fan-out tree performance is determined by the fan-out root primitive.

The routing primitive is comprised entirely of standard cells, as shown in

Figure 3.2 and are placed, routed, and simulated according the tool flow described

in section 5.2. All simulations in this section use an 8-bit datapath.

Routing Primitive in Isolation : The performance, area, and power

consumption of the Mesh-of-Trees network are dependent on the individual network

primitives. In this section, we examine the performance of an asynchronous routing

primitive in isolation, which represents the upper bound for performance in a fan-

out tree of the network. These results, as well as area and power measurements,

are compared to the synchronous routing primitive. First, results for latency and

throughput are presented. Then, area and power figures are reported.

Latency and Throughput: Table 5.1 shows latency and throughput measure-

ments gathered from simulation of the routing primitive in isolation. Throughput
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is measured for three steady-state input conditions. Single refers to consecutive

packets routed to the same output port. Alternating refers to consecutive packets

routed to different output ports. Random refers to consecutive packets with routing

based on a uniformly random distribution. In the context of XMT, where addresses

are hashed before being input to the network, random represents the common case.

For correctness in simulation, a 200ps margin was added between request and

acknowledgment outputs and their subsequent, corresponding inputs. This margin

is an optimistic value for time spent in the left or right environment.

Table 5.1 shows latency and throughput measurements for the asynchronous

routing primitive in isolation. The latency is given in picoseconds, and is measured as

the time between new request and data appearing at the inputs of an empty primitive

and the same request and data appearing at the output. The maximum operating

rate is given in giga-flits per second (Gfps), the number of flits that a routing

primitive can advance per second. The bandwidth is computed by multiplying this

value by the datapath width (bits per flit). In this case, the bandwidth is 13.6 Gbps

for an 8-bit datapath. The relative throughput is the fraction of the bandwidth

utilized under the listed input conditions.

Table 5.1: Latency and Throughput of Routing Primitive in Isolation

Type of Latency Max. Operating Relative Throughput

Primitive (ps) Rate (Gfps) Single Alternating Random

Asynchronous 546 1.70 0.87 1.0 0.93
Synchronous 516 1.93 1.0 1.0 1.0

The throughput is calculated by multiplying the relative throughput by the
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bandwidth. Single and Alternating define the worst and best throughput respec-

tively. The uniformly random case, as expected, falls in the middle the two ex-

tremes, since each is equally likely to occur. The synchronous designs achieves the

same throughput under all input conditions, advancing one flit per clock cycle.

Area and Power Consumption: Table 5.2 shows standard cell area and power

consumption of the routing primitive with 8-bit datapath. The single, alternat-

ing, and random columns correspond to the input conditions in Table 5.1. The

synchronous power measurements were made for a clock rate of 1.70 GHz.

Table 5.2: Area and Power Consumption of Routing Primitives

Type of Cell Area Average Power (mW)

Primitive (µm2) Single Alternating Random

Asynchronous 358.44 0.410 0.502 0.455
Synchronous 988.55 3.065 3.404 3.317

Area: The asynchronous routing primitive has much lower area overhead than

the synchronous, requiring 64% less cell area. Much of this area is saved on the dat-

apath. While the asynchronous routing primitive requires two banks of transparent

latches to store data, the synchronous uses two banks of edge-triggered flip-flops,

according to the approach in [10], with levels of multiplexing and demultiplexing.

Power Consumption: Power consumption is reduced by 85% compared to the

synchronous implementation in the alternating case, which has the highest average

power consumption. This substantial reduction in power is attributed to lower

overheads on the datapath for the asynchronous routing primitive.

Average power consumption is measured only for cases with successive routing
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to specific ports. In these cases, the primitives remain active during the entire

simulation. When the primitives are inactive, the asynchronous primitives do no

consume dynamic power and are at a quiescent state. The synchronous primitives,

however, will continue to spend dynamic power due to clock distribution. The

measured clock power for the synchronous routing primitive was 0.381 mW, which

is substantial compared to the total power consumed by an active asynchronous

primitive.

Routing Primitives in a 3-level Fan-Out Tree: In the Mesh-of-Trees

network, the routing primitives are arranged in a binary tree, called the fan-out tree.

We examine the performance of a small group of routing primitives, arranged as a

3-level binary tree, as an indicator for performance in the full network. Results for

throughput of the 3-level tree appear in Table 5.3.

Note that the 3-level tree has the same bandwidth as the root of the tree,

the single routing primitive. However, the single case throughput has dropped

considerably. The loss of performance is due to the Req→Ack latency in the second-

level primitives of the tree. This path is longer than the 200ps margin used in

the isolated primitive simulation and translates directly to a decline in throughput.

The random case throughput is in the middle of the two extremes, which is expected

since each case will occur half of the time in a uniformly random distribution.

Simulations are performed on post-layout asynchronous routing primitives.

Simulations do not include inter-primitive wiring delays, and thus represent a lower

bound for cycle time in a fan-out tree. Later, in section 5.5, simulation results for a

proposed full network layout with inter-primitive delays are presented.
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Table 5.3: Throughput of Routing Primitives in a 3-level Fan-Out Tree

Max. Operating Relative Throughput

Rate (Gfps) Single Alternating Random

1.70 0.63 1.0 0.79

5.3.2 Arbitration Primitive

The previous section examined the routing portion of the Mesh-of-Trees net-

work. In this section, simulation results for the arbitration portion are presented.

We first evaluate both asynchronous arbitration primitives (LP and TPP) in iso-

lation and compare to the synchronous arbitration primitive from [4, 6, 5]. Com-

parisons are made for the four key metrics of latency, throughput, area, and power

consumption. Then, throughput is evaluated in a simple tree to understand system-

level performance more accurately. In particular, a 3-level binary fan-in tree of

asynchronous arbitration primitives is used in experiments.

The arbitration primitive is comprised of standard cells, with the exception of

the mutual exclusion element. The LP and TPP arbitration primitives are placed,

routed, and simulated according the tool flow described in section 5.2. All simula-

tions in this section use an 8-bit datapath.

Significant area and power savings are reported for the asynchronous. The LP

and TPP arbitration primitives use 84% and 74% less area than the synchronous

primitive respectively. At the steady-state operating point with highest average

power consumption, the asynchronous LP and TPP arbitration primitives consumed

91% and 87% less power on average than the synchronous.
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Performance of the asynchronous primitives is competitive with the synchronous.

The latency-oriented primitive (LP) has similar latency to the synchronous prim-

itive. The throughput-oriented primitive (TPP) has worse latency than both the

LP and synchronous designs, as expected from analytical performance equations

reported in Chapter 3. Maximum throughput of both asynchronous primitives is

competitive with the synchronous at the maximum clock rate for the post-layout

primitive.

Throughput is measured for asynchronous arbitration primitives in a 3-level

tree under various steady-state input traffic conditions, described below. The max-

imum throughput of the 3-level tree is the same as the arbitration primitive in

isolation, indicating that fan-in tree performance is determined by the fan-in root

primitive.

Simulating the Mutual Exclusion Element : The mutual exclusion

element (mutex) is a key component of the asynchronous arbitration primitive. The

mutex is an analog arbiter and is not part of the ARM 90nm standard cell library

[2]. In order to evaluate the behavior of the mutex, a transistor model was designed

using transistor models from the IBM 90nm (CMOS9SF) process, then simulated

using the Cadence Spectre analog design environment.

The delay through the mutex varies depending on when input requests arrive.

Two requests occuring close in time can send the arbiter into a metastable state

that can persist for a long time. In order to incorporate this behavior, the delay

information gathered from simulation was used to calibrate a behavioral Verilog

description used in the gate-level simulations.
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Figure 5.1: Plot of Mutex Delay Function

Since the transistor models and standard cell models have different simulated

delays, even for the same PVT corner, the measured mutex delays were scaled by

the ratio of fanout-of-4 (FO4) delays for the two timing models. This amounted to a

derating factor of 1.66 applied to the measured mutex delays simulated by Spectre.

Arbitration Primitive in Isolation : In this section, we examine the

performance of an asynchronous arbitration primitive in isolation. Results for la-

tency and throughput, as well as area and power measurements, are compared to

the synchronous arbitration primitive. First, results for latency and throughput are

presented. Then, area and power figures are reported.

Latency and Throughput: Table 5.4 shows latency and throughput measure-

ments gathered from simulation of the arbitration primitive in isolation. Throughput

is measured for two input conditions. Single refers to consecutive packets arriving at

the same input port. Alternating refers to packets arriving simultaneously on both

ports, which will be served in alternating order. (Since both requests are allowed to

reach the mutex, as soon as one transaction completes and the mutex is reset, the
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opposing request will immediately be served.)

For the asynchronous primitives, as predicted by their performance equations

given in section 3.3.3, LP has better latency than the TPP design. Both have the

approximately the same throughput with in the alternating arbitration case, which

is common near the root of the fan-in tree in a network with medium to heavy

traffic.

However, in the case of consecutive packets arriving to a single port, LP has

much worse throughput than TPP, operating at 56% of the maximum throughput.

As shown in Figure 3.13, the operation of LP is very serial, and time spent in the left

environment contributes directly to the single-port cycle time. TPP, on the other

hand, generates an earlier acknowledgment, and this added concurrency between the

left environment and the current cell allows for better throughput in the single-port

case.

Table 5.4: Latency and Throughput of Arbitration Primitive in Isolation

Latency Max. Operating Relative Throughput

Type of Primitive (ps) Rate (Gfps) Single Alternating

Asynchronous - LP 489.5 2.04 0.56 1.0
Asynchronous - TPP 567.5 2.07 0.71 1.0
Synchronous 474 2.09 1.0 1.0

The maximum operating rate is given in gigaflits per second (Gfps), the num-

ber of flits the arbitration primitive can advance per second. The bandwidth is

computed by multiplying this value by the datapath width (bits per flit). In this

case, the bandwidth is 16.32 Gbps and 16.56 Gbps for LP and TPP respectively with

102



an 8-bit datapath. The relative throughput is the fraction of the bandwidth utilized

under the listed input conditions. The throughput is calculated by multiplying the

relative throughput by the bandwidth.

Table 5.5: Area and Power Consumption of Arbitration Primitives

Cell Area Average Power (mW)

Type of Primitive (µm2) Single Alternating

Asynchronous - LP 349.3 0.321 0.670
Asynchronous - TPP 584.2 0.607 0.933
Synchronous 2240.3 5.181 7.152

Area: Table 5.5 shows area and power consumption measurements for the

asynchronous LP and TPP arbitration primitives. TPP uses three banks of latches

while LP uses only one bank of latches. Each uses one bank of multiplexers. With

larger datapath widths, the latches and muxes used for on the datapath will occupy

nearly all of the total cell area of the primitive, so the ratio of total cell area for

TPP versus LP will approach the 3-to-1 ratio of latch area.

The asynchronous primitives have an area savings of 84% and 74% for LP and

TPP respectively. Much of this area is saved on the datapath. LP, for example, uses

one bank of transparent latches and one bank of multiplexers to store and direct the

flow of data. The synchronous primitive uses four banks of edge-triggered flip-flops

and several levels of multiplexing and demultiplexing for the same purpose. As the

datapath width increases, the area savings of the asynchronous primitives will also

increase.

Power Consumption: Power consumption is reduced by 91% and 87% for
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LP and TPP primitives respectively compared to the synchronous implementation

in the alternating case, which has the highest average power consumption. This

substantial reduction in power is attributed to lower overheads on the datapath for

the asynchronous routing primitive, especially for the LP primitive. Measurements

of average power consumption for the synchronous primitive were made for a clock

frequency of 2.07 GHz.

Average power consumption is measured only for cases with successive routing

to specific ports. In these cases, the primitives remain active during the entire

simulation. When the primitives are inactive, the asynchronous primitives do no

consume dynamic power and are at a quiescent state. The synchronous primitives,

however, will continue to spend dynamic power due to clock distribution. The

measured clock power for the synchronous routing primitive was 0.791 mW, which

is substantial compared to the total power consumed by an active asynchronous

primitive.

Arbitration Primitives in a 3-level Fan-In Tree:

In the Mesh-of-Trees network, the arbitration primitives are arranged in a bi-

nary tree, called the fan-in tree. We examine the performance of a small group of

arbitration primitives, arranged as a 3-level binary tree, as an indicator for perfor-

mance in the full network. Results for throughput of the 3-level tree appear in Table

5.6.

Table 5.6 shows throughput values for arbitration primitive performance in a

3-level fan-in tree. Similar to the fan-out tree results, the 3-level fan-in tree has

bandwidth equal to the root of the tree, a single arbitration primitive. The 3-level
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fan-in tree with TPP primitives has better throughput in the single case, which is

expected based on the results in Table 5.4.

Table 5.6: Throughput of Arbitration Primitives in a 3-level Fan-In Tree

Type of Max. Operating Relative Throughput

Primitive Rate (Gfps) Single Alternating

LP 2.04 0.53 1.0
TPP 2.07 0.64 1.0

Simulations do not include inter-primitive wiring delays, and thus represent a

lower bound for cycle time in a fan-in tree. Later, in section 5.5, simulation results

for a proposed network layout with inter-primitive delays are presented.

5.4 Mixed-Timing FIFOs

Mixed-timing FIFOs are added at the inputs and outputs of the network in

order to interface the asynchronous network with multiple synchronous senders and

receivers. The mixed-timing FIFO designs are based on the the work by Chelcea

and Nowick [12]. Together, with the addition of new protocol converters described

in Chapter 4, they form the mixed-timing Mesh-of-Trees network.

In this section, we evaluate latency and throughput of the mixed-timing FIFOs

with protocol converters. From [12], latency of a mixed-timing FIFO is defined

as the delay from the input of data on the put interface to its appearance at the

output on the get interface in an empty FIFO. We define the maximum steady-state

frequency as the clock rate where the synchronous put component will never be
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full (for sync-async) or the synchronous get component will never be empty (for

async-sync), given a fast asynchronous environment.

5.4.1 Synchronous-Asynchronous FIFO

The synchronous-asynchronous FIFO interfaces a synchronous sender and an

input port of the asynchronous network. In the mixed-timing network, the synchronous-

asynchronous FIFO has a new, low-latency protocol converter that interfaces the

4-phase handshaking of the FIFO and the 2-phase handshaking of the asynchronous

network primitives. Performance is evaluated by examining latency and maximum

steady-state frequency, the two metrics used for evaluation in [12].

Table 5.7 shows simulation results for the synchronous-asynchronous FIFO

with protocol converter. The synchronous-asynchronous FIFO contains the syn-

chronous put component, which interfaces with the synchronous environment, and

the asynchronous get component, which interfaces with the protocol converter and

root of a fan-out tree. Latency is reported in picoseconds and maximum steady-state

frequency is given in megahertz (MHz).

Table 5.7: Performance of the Synchronous-Asynchronous FIFO with Protocol Converter

Latency (ps) Maximum Steady-State
Frequency (MHz)

967.3 932.8
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5.4.2 Asynchronous-Synchronous FIFO

The asynchronous-synchronous FIFO interfaces an output port of the asyn-

chronous network and a synchronous receiver. In the mixed-timing network, the

asynchronous-synchronous FIFO has a new, low-latency protocol converter that in-

terfaces the 2-phase handshaking of the asynchronous network primitive and the

4-phase handshaking of the FIFO. Performance is evaluated by examining latency

and maximum steady-state frequency, the two metrics used for evaluation in [12].

Table 5.8 shows simulation results for the asynchronous-synchronous FIFO

with protocol converter. The asynchronous-synchronous FIFO contains the asyn-

chronous put component, which interfaces with root of the fan-in tree, and the

synchronous get component, which interfaces with synchronous environment. Due

to the function of the empty controller [12], it takes two full clock cycles after a

put operation in an empty FIFO for Empty to be deasserted. Therefore, latency

varies with the exact moment when data items are enqueued during the clock cycle,

hence the Min and Max columns. Latency is reported in nanoseconds and maximum

steady-state frequency is given in megahertz (MHz).

Table 5.8: Performance of the Asynchronous-Synchronous FIFO with Protocol Converter

Latency (ns) Maximum Steady-State

Min Max Frequency (MHz)

2.95 3.56 843.2
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5.5 Projected 8-Terminal Network Layout

This section presents simulation results for latency and throughput of an 8-

terminal Mesh-of-Trees network. Limitations of commercial CAD tools make a

full place and route of either network infeasible. Therefore, a network projection

is created that adds wire delays extracted from a synchronous network design [5]

between primitives to give an approximation of the performance of a post-layout

asynchronous network.

First, we explain the methodology for creating the network projection. Then,

the simulation environment used to evaluate latency and throughput of the network

is presented. Finally, results are presented for two networks, the asynchronous and

the mixed-timing.

5.5.1 Methodology for Network Projection

In order to approximate the performance of a placed and routed network, a

projection is created. The projection is necessary because current CAD tools do not

support optimizations needed for the asynchronous design.

First of all, current tools do not support bundling constraints or path-length

matching [29], which is used extensively in the network. Additionally, current tools

will not optimize, and therefore not perform proper buffer insertion, on paths with-

out a specified clock or with combinational loops. The asynchronous network has no

clocked elements and primitives have combinational loops. This provides non-trivial

challenges for designing and verifying a full network layout.

108



T5

T7

T3

T1

T4

T6

T2

T0

P3

P2

P1

P0

Figure 5.2: 8-Terminal Network ASIC Floorplan [4]

The projected full network layout consists of individual primitives, treated as

hard macros, with appropriate wire delays inserted in between. Wire delays are

assigned based on a floorplan similar to the one used in [5], where an 8-terminal

synchronous Mesh-of-Trees network was fabricated in March 2007 using the same

ARM standard cells and IBM 90nm technology as in this research.

ASIC Floorplan: Figure 5.2 shows the floorplan of the network ASIC. T0. . . T7

are synchronous terminals used to generate traffic and record throughput and latency

measurements. P0. . . P3 are four partitions of the MoT network. Each partition was

separately placed, routed, and optimized.

Partitions are formed by dividing the MoT network into four physical slices.

Each partition contains two complete fan-in trees, corresponding to the two ter-

minals that it interfaces with. Fan-out trees are split between partitions. Leaf

primitives of the fan-out tree are placed in the partition corresponding to their two
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Figure 5.3: Projected 8-Terminal Network Floorplan

routing destinations. For example, a fan-out leaf primitive that routes to terminals

T2 and T3 is placed in partition P1.

In the network ASIC, primitives are placed and optimized by the CAD tools.

The location of each primitive is limited to the boundaries of the partition, but

the placement within the partition is determined by the tools. For the projected

layout used for the asynchronous network, we make a simplifying assumption to find

reasonable delays for inter-primitive wires.

Projected Network Floorplan: Figure 5.3 shows the floorplan used to assign

wire delays between primitives for the projected network layout. The dimensions are

measured from the layout of the fabricated network ASIC. Since this is an 8-terminal

network, fan-out and fan-in trees are 3 levels deep. The circles at intersections

represent placement locations for routing and arbitration primitives. The shaded
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areas are separation between the partitions.

The path drawn within the network shows fan-out tree connections for a tree

rooted at T1. In this case, the children of the root are placed in partitions P0 and

P2. As with each fan-out tree, the four leaf primitives are all in different partitions.

This way, connections can be made to all eight fan-in trees, which exist entirely

within a partition.

Wire delays are assigned by their distance traveled, using this simplified place-

ment. In the synchronous network, network latency is constant for each source to

each destination, since each packet must traverse a three-level fan-out tree and a

three-level fan-in tree. The clock cycle determines the latency per stage.

Asynchronous circuits are self-timed. In other words, there is no global clock

to synchronize the flow of data through the stages of the network. This means that

the network latency from T1 to T6 will be longer than T1 to T1. In the context

of XMT, which is a uniform memory access (UMA) parallel architecture, this may

challenge the UMA status. However, the majority of time spent in the network is

within the individual primitives, and each point-to-point communication traverses

the same number of primitives.

5.5.2 Simulation Setup

Latency and throughput evaluation of the asynchronous network is conducted

according to the standard interconnection network measurement setup described in

[15]. In this setup, terminals are placed at each port of the network. Terminal

111



instrumentation is responsible three tasks:

1. Generating input packets at specific time intervals

2. Recording input packet count and timing information

3. Recording output packet count and timing information

The simulation is split into three distinct phases: warm-up, measurement, and

drain. The warm-up phase is used to bring the network to equilibrium for the given

input traffic rate. During the measurement phase, packets are tagged with their start

time, and recorded when they exit the network. During the drain phase, packets

are no longer generated, and all remaining packets in the network are recorded until

the network is empty.

The following sections present simulation results for latency and throughput

of the asynchronous network with and without mixed-timing FIFOs.

5.5.3 Asynchronous Network

This section presents average latency and throughput measurements of the

asynchronous network using the terminal instrumentation described in the previ-

ous section. These are the standard evaluation metrics used for interconnection

networks, and experiments are conducted according to [15].

Latency is the time required for a packet to traverse the network, and is

measured as the time from creation of the packet, which occurs before insertion,

until it exits the network at its destination. Throughput is the output data rate,
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Figure 5.4: Throughput and Latency of Projected 8-terminal Asynchronous Network
Layout

called the accepted traffic rate, and is measured as the number of packets exiting

the network during the measurement phase.

Experiments are conducted using uniformly random traffic input into the net-

work. Packets are generated at time invervals based on an exponential distribution,

then inserted into a source queue until they can be inserted into the network. The

mean of the exponential distribution is the offered traffic rate. The count of packets
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exiting the network during the measurement phase is used to compute the accepted

traffic rate. Throughput is plotted as accepted traffic versus offered traffic.

As packets exit the network, their latency from source to destination is recorded

and this is used to assess the average latency of the network. Latency is plotted as

average latency among all terminals versus offered traffic.

The asynchronous network reaches a maximum throughput of 190 Gb/s, with a

32-bit datapath and the projected 8-terminal layout. Increased input traffic beyond

this point results in an exponential increase in the average latency per packet. This

is the point of saturation. Thoughts on improving the maximum throughput of the

network appear in section 6.2.

5.5.4 Mixed-Timing Network

In this section, we present simulation results for the asynchronous network

with mixed-timing interfaces and protocol converters. Two metrics are measured at

varying clock rates in the experiment: maximum throughput and bandwidth utiliza-

tion. Maximum throughput is the highest accepted traffic rate measured for a given

clock frequency, used for synchronous senders and receivers. Bandwidth utilization

is the fraction of the bandwidth, the ideal maximum throughput, utilized during

the experiment.

The purpose of the experiment is to observe how the change in clock fre-

quency affects network performance. This is important because the behavior of

the asynchronous network changes relative to the clock frequency of the external
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synchronous environment. The asynchronous network has a self-timed, data-driven

behavior where each primitive operates based on interactions with immediate neigh-

bors, independent of the clock frequency used for synchronous senders and receivers.

Therefore, changing the clock frequency creates different traffic patterns within the

network, and this experiment highlights one of the differences.

The synchronous network, on the other hand, has a behavior dependent on

the rising edge of the clock signal used for synchronous senders, receivers, and the

network itself. Therefore, the behavior is the same regardless of the clock frequency,

using the same amount of clock cycles to process the same input traffic. The behavior

of the network, relative to a clock cycle, does not change as the frequency of the

clock input changes.

The simulations to measure maximum throughput and bandwidth utilization

at varying clock frequencies use the terminal instrumentation described in section

5.5.2. The synchronous terminals are implemented in Verilog for use with the pro-

jected 8-terminal network layout and mixed-timing FIFOs. The maximum offered

traffic rate is one flit per cycle per port. Packets are generated only at discrete

event times, at the rising edge of the clock, based on a binomial distribution with

probability equal to the desired fraction of the maximum offered traffic rate. For

example, 80% offered traffic rate means that 80% of clock cycles should generate

a new packet. All synchronous components are driven by the same clock for these

experiments.

The expected results with the synchronous network are as follows. The max-

imum throughput will increase linearly as the clock frequency increases – a higher
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clock frequency increases the rate of data transfer throughout the network. By the

same reasoning, the bandwidth of the network, the ideal maximum throughput, also

increases linearly with the clock frequency. The bandwidth utilization, measured as

the fraction of the bandwidth used by the maximum throughput at a given clock

frequency, will therefore remain constant in the synchronous case. Both maximum

throughput and bandwidth increase linearly with the clock frequency.

Figure 5.5 shows the simulation results for maximum throughput and band-

width utilization of the mixed-timing network at varying clock frequencies. In the

region between 200 MHz and 500 MHz, the results match the expected results

from a synchronous network. The maximum throughput increases linearly and the

bandwidth utilization remains constant. However, above 500 MHz, the maximum

throughput ceases to increase and approaches an absolute maximum of 112 Gbps.

This is a new type of saturation point, where the mixed-timing network can no longer

deliver more traffic. The result is that bandwidth utilization will decrease linearly

with increasing clock frequency, as bandwidth increases and maximum throughput

remains constant.

The addition of mixed-timing FIFOs with protocol converters create perfor-

mance bottlenecks for the mixed-timing network. One example is the empty detec-

tion for the asynchronous-synchronous FIFO, described in detail in [12]. In order to

prevent underflow in the FIFO, the empty detector will trigger an early Empty sig-

nal. When this occurs, a stall cycle is inserted at the output of the network, and this

hurts throughput. In the saturation region (above 500 MHz), this case is exercised

regularly, indicating that even with high levels of input traffic, the asynchronous-
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synchronous FIFOs are not supplied with enough data.

Throughput optimizations to asynchronous network may help this situation.

One possible method of increasing performance is adding pipeline stages near root

nodes of the network. Pipeline stages, implemented as MOUSETRAP [31] asyn-

chronous pipelines, provide fast acknowledgment, freeing the sender to start pro-

cessing new data earlier. This provides a “pulling” effect in the network that helps

enter data faster into the network at the fan-out roots, and queue new data for

removal at the fan-in roots. Thoughts on improving the maximum throughput of

the network are discussed further in section 6.2.

5.6 Simulation with the XMT processor

This section presents simulation results for the XMT processor with the mixed-

timing network. We measure execution time for four benchmarks and report speedups

relative to the XMT processor with the synchronous network. The goal of the exper-

iments is to assess how the performance of XMT is affected with the substitution of

the mixed-timing network. Also, XMT provides a real application and traffic load for

the network, as opposed to uniformly random traffic used in previous experiments.

The performance of the XMT processor depends on network latency and the

number of round-trips to memory required by each parallel thread. As shown in

Figure 5.4, the latency of the network is affected by the amount of input traffic and

the saturation throughput of the network. The simulations with four XMT bench-

marks will indicate the advantages and disadvantages of the mixed-timing network

118



when used with the XMT processor. Additionally, the various traffic patterns of the

four benchmarks will each have a different effect on the network performance, and

potentially reveal areas for improvement and optimization.

Simulations were conducted using the XMT Verilog model developed by Xingzhi

Wen [36] and the Verilog model for the mixed-timing network. The following four

XMT benchmarks were simulated:

1. Array Summation (add): An array with 3 million elements is divided into

sub arrays. Each parallel thread computes the sum of a sub array serially.

The resulting sums are added to compute the total for the entire array.

2. Matrix Multiplication (mmul): The product of two 64 × 64 matrices is

computed. Each parallel thread computes one row of the result matrix.

3. Breadth-First Search (bfs): The breadth-first search algorithm described

in [36] is executed on a graph with 100k vertices and 1 million edges.

4. Array Increment (a inc): Each element of an array with 32k elements is

incremented. Each parallel thread increments 8 elements of the array.

Results for speedups with the mixed-timing network are normalized relative

to performance with the synchronous network. Speedups of the four benchmarks

are shown in Table 5.9. Simulations were performed for clock rates of 200 MHz, 400

MHz, and 700 MHz. The synchronous network has speedup of 1.0 in all cases.

The asynchronous network with mixed-timing performs similar to the syn-

chronous network for all the 200 MHz and 400 MHz cases, but has increased execu-
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Figure 5.6: Speedups of XMT with Mixed-Timing Network vs. Synchronous Net-
work for four XMT benchmarks

Table 5.9: Average Network Utilization for Four XMT Benchmarks

add mmul bfs a inc

Avgerage Network Utilization 0.492 0.395 0.091 0.927

tion time on mmul and a inc for 700 MHz simulations. This occurs because these

applications put significant pressure on the network and the input traffic rate at

times surpasses the saturation traffic rate (see Section 5.5.4). This helps make the

case that performance in XMT depends on the network latency [34], which increases

with higher input traffic. Once input traffic surpasses the saturation bandwidth,

performance degrades.

The add benchmark provides steady traffic throughout the execution of the

program that remains below the saturation throughput of the network with mixed-

timing. Therefore, the performance remains comparable to an XMT with the syn-

chronous network. The mmul benchmark has a lower average network utilization
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than add; however, this does not reflect the true pattern of memory access. The

traffic appears in bursts, causing very high traffic, followed by periods of low traffic

as the processing clusters compute the results. In the 700 MHz case, the burst traffic

exceeds the saturation throughput, indicated in Figure 5.5, thereby degrading the

performance of the application.

Breadth-first search (bfs) has the lowest traffic rate of all benchmarks. Since

it operates below the saturation throughput of the network, performance is compa-

rable to the synchronous for all simulations. The extremely high traffic of the a inc

benchmark has a direct correlation to the increase in cycle time at 700 MHz execu-

tion. The average input traffic at 700 MHz will be 164.9 Gb/s, which exceeds the

saturation throughput of 112 Gb/s. The network latency increases exponentially

under that level of traffic, and the performance of the XMT processor suffers.

With further throughput optimizations, discussed later in section 6.2, the asyn-

chronous network may provide enough throughput to maintain good performance

for XMT all benchmarks.

121



Chapter 6

Discussion and Conclusion

This chapter presents a summary of the findings and future directions for

asynchronous Mesh-of-Trees research. First, we present a brief evaluation of the

asynchronous network using four key metrics: area, power, throughput, and latency.

Then, future directions for asynchronous Mesh-of-Trees research are presented. Fi-

nally, we present our closing remarks.

6.1 Discussion

Summary of Contributions: The main contributions of this thesis are the de-

velopment of enhanced asynchronous primitives, analytical performance and timing

constraints equations, protocol converters for interfacing the asynchronous network

and mixed-timing interfaces, implementation and detailed simulation.

The enhancements to the basic network primitives are essential for correct

operation and integration into a larger system. The challenge of incorporating the

optimizations is to minimize the performance penalties that may result from added

logic. The addition of low-overhead multi-flit capability is a new contribution, not

appearing in previous publications on transition-signaling asynchronous pipelines.

Together with power optimizations to the basic design from [3], the enhanced net-

work primitives form a foundation for high-performance, low-power pipelined asyn-
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chronous interconnects.

Detailed simulation involved evaluation of isolated primitives and comparison

to synchronous, as well as the development of a projected 8-terminal network lay-

out for evaluation of a full network. Furthermore, incorporating the mixed-timing

network into the eXplicit Multi-Threading (XMT) Verilog model for co-simulation

was a significant contribution.

This research looked at the problem of developing a high-throughput, low-

latency asynchronous network and compatible mixed-timing interfaces for use in

a shared-memory single-chip parallel processing architecture. Simulations of the

mixed-timing network with the XMT Verilog model represent a non-trivial context

for evaluating the network where low-power and high-performance are first-class

design constraints. A brief evaluation of the asynchronous network is presented

below in terms of area, power, throughput and latency.

Summary of Results: This research demonstrated the advantages of a high-

throughput, low-power asynchronous Mesh-of-Trees interconnection network. The

asynchronous network primitives for routing and arbitration use significantly lower

area than their synchronous counterparts presented in [4, 5]. The asynchronous

primitive consume less power than the synchronous primitives by having lower area

overheads for storage and eliminating the need for clock distribution.

In isolation, the asynchronous primitives have similar performance compared

to the synchronous. In the projected network layout, the asynchronous network

achieved high throughput, but performed worse than the highly-optimized syn-

chronous network layout. Limitations of commercial CAD tools for asynchronous de-
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signs and the projection itself are cited as explanations for the differences. Through-

put optimizations to the network, such as pipeline insertion, should improve overall

network throughput and is discussed in section 6.2.

Throughput of the mixed-timing network was evaluated for different clock

frequencies of synchronous senders and receivers. The simulations revealed some

performance bottlenecks created by mixed-timing interfaces with the unoptimized

asynchronous network. However, throughput optimizations to the basic network

topology should improve maximum throughput in the mixed-timing network.

Area : The asynchronous network has significant area savings compared to

the synchronous network. Reducing area overheads of the network is important at

the system level, as interconnection networks occupy valuable chip area that can

be used for additional processors or caches. Additionally, savings in area contribute

directly to reduced power consumption.

The asynchronous routing primitive used 64% less cell area than the syn-

chronous. The asynchronous arbitration primitives used 84% and 74% less cell area

than the synchronous, for LP and TPP respectively. The substantial area savings

at the primitives should translate to substantial savings at the network level as well.

Since the synchronous and asynchronous networks share the same same topology,

the asynchronous network should have savings comparable to the primitive-level

savings, assuming the same floorplan for the network and layout optimizations (re-

peater insertion, cell resizing, etc).

Much of the savings occur on the datapath of the primitives. The asynchronous

primitives use standard transparent D-type latches to store data, compared to edge-
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triggered flip-flops used by the synchronous. Each latch from the standard cell

library uses 40% less area than the clock registers [2].

At the network-level, the mixed-timing network has mixed-timing interfaces

that add some area overhead. However, as the network scales to larger sizes, the

number of mixed-timing interfaces grows with O(n), while the number of network

primitives grows with O(n2). Therefore, the impact on total network area becomes

less of a factor for large-scale networks. The synchronous network also must dis-

tribute the global clock tree at the network level, and uses considerable area for

buffers and repeaters to maintain the low-skew properties necessary for correct op-

eration. The asynchronous network, however, saves on area used for clock tree

distribution, and proves to be area-efficient at each level of implementation.

Power : The asynchronous network has substantially lower power consump-

tion than the synchronous network. Lower power consumption is important to chip

designers, as high-power designs are increasingly difficult to package and cool ef-

fectively. Power consumption is a first-class design constraint for battery-powered

devices as well. The power savings of the asynchronous network come from the

following areas:

1. Network Primitives: The asynchronous primitives have lower average power

consumption due to the structure of the datapath, cell selection on the data-

path, and the absence of the clock tree. In both the asynchronous and syn-

chronous networks, the elements of the datapath – storage elements and mul-

tiplexers – occupy the largest percentage of area.
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In the synchronous network, data is stored using clock registers arranged using

the latency-insensitive design methodology described in [10]. This method

improves throughput in the synchronous primitives at the cost of additional

power and area. The asynchronous primitives do not require additional storage

or logic to maintain high throughput in the network.

The asynchronous primitives do not require a clock distribution, thereby sav-

ing dynamic power. Clock tree power accounts for 10% of the power consumed

in the synchronous primitives in isolation. The combination of low-overhead

datapath and absence of the clock tree yields 10x power savings for the arbi-

tration primitives and 7x for the routing primitives.

2. No Global Clock Distribution: The asynchronous network does not require a

global clock distribution. The global clock distribution in the synchronous

network consumes approximately 20% of the total power. Without proper

clock gating, the synchronous network will continue to consume dynamic power

from the clock tree even when the network is at a quiescent state (no traffic).

The asynchronous network, on the other hand, provides “perfect clock gating”,

where power is spent only as the result of activity in the network.

This work did not provide a detailed power study of a full network layout, due to

limitations in the commercial CAD tools. However, based on the data collected, the

asynchronous network should provide high throughput using less power than the

synchronous network.
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Throughput and Latency : Throughput and latency were measured for

the network primitives in isolation as well as full 8-terminal networks for both syn-

chronous and asynchronous designs. Simulation results showed that asynchronous

and synchronous primitives had similar performance in isolation. The synchronous

network maximum throughput, however, was much higher than the asynchronous

network for the 8-terminal network simulations. There are proposed optimizations

that should improve maximum throughput in the asynchronous network, described

in section 6.2.

Based on the results presented in section 5.5, the maximum throughput of

the projected 8-terminal network layout is 190 Gbps for a 32-bit datapath. The

synchronous 8-terminal network has maximum throughput of 348 Gbps, operating

at a clock frequency of 1.36 GHz with 32-bit datapath. There are a few explanations

for the large difference.

First, the projected network layout is a pessimistic assumption for inter-

primitive wire delays. Commerical CAD tools will frequently optimize the drive

strength of cells to improve timing by reducing the transition time on the wires.

The synchronous design took full advantage of these optimizations. The projected

network layout for the asynchronous network approached primitives as hard macros,

a pre-placed and routed module that is not optimized internally. Then, delays were

added for wires connecting the primitives. This approach does not allow the cell-

resizing optimizations available to the synchronous design at the layout level.

Second, the inter-primitive wire delays have a larger impact on the asyn-

chronous network than the synchronous. For each cycle of the asynchronous, a
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full handshake takes place between adjacent primitives. The asynchronous network

uses transition signaling, meaning two inter-primitive wire delays are required per

cycle, one for request and one for acknowledgment. In the synchronous, on the other

hand, a timing path between clocked elements has at most one inter-primitive wire

delay. Therefore, long wires between primitives have a larger negative impact on

performance in the asynchronous.

The issue of pessimistic wire delays can be solved by the advancement of CAD

tools for asynchronous design. Future tools that provide increased support for spec-

ifying timing constraints and optimizing placement and latency of clockless paths

will make the design of large-scale asynchronous designs more feasible. Performance

of the asynchronous network would improve beyond the projection with the aid of

commerical CAD tools that could properly place, route, and optimize the layout.

Reducing the negative impact of long inter-primitive wiring delays can be

achieved by inserting asynchronous pipeline stages as buffers for long wires. This

optimization will have a positive impact on the throughput of the asynchronous

network projection and future fully placed and routed asynchronous networks. Fur-

thermore, adding more pipeline stages near the roots of fan-out and fan-in trees may

provide additional throughput improvements. This and other enhancements are the

focus of future work on the asynchronous network.
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6.2 Future Work

This section presents future directions for research on the asynchronous Mesh-

of-Trees interconnection network.

Full Layout and Power Study : As stated in the previous section, the

projected network layout is only a first-cut solution. A full network layout, with

careful attention paid to cell sizing and other gate-level optimizations, would provide

a true measure of the performance of the asynchronous network. In addition, the

asynchronous and synchronous network power consumption can be compared by

assessing the distribution of between clock networks, primitives, and interconnects.

Different size networks should also be placed, routed, and analyzed for performance

and power consumption, CAD tools permitting.

Optimizing Root Nodes : Since the roots of the fan-out and fan-in trees

determine the maximum performance, any optimizations on these primitives may

provide performance benefits. For example, using low threshold voltage (LVT) cells

from the standard cell library instead of the regular cells boost performance but at

the cost of added power consumption. However, the number of root nodes grows as

O(N), where N is the number of terminals of the network. The number of primitives

grows as O(N2). Therefore, increasing the power consumption of these primitives

will have less effect on network power consumption as the design scales up.

Throughput Optimization through Added Pipeline Stages : The key

to improving throughput in the network is optimizing the performance of the root

nodes. In the case of the fan-out root, providing fast acknowledgments to outgoing
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requests allows the routing primitive to operating near maximum throughput for

all input conditions, as shown in Table 5.1. For the fan-in root, best performance

is achieved with requests pending on both inport ports, allowing for acceptance of

alternating requests, shown in Table 5.4.

Adding pipeline stages to the network may improve the maximum throughput.

Pipeline stages inserted at the outputs of the fan-out tree roots, will provide fast

acknowledgment to the root while safely storing the data. This allows the root

primitive to route another packet to the same output port faster than before, since

the acknowledgment arrives faster, thus improving the input throughput. Adding

multiple pipeline stages creates a queue where new packets can be inserted quickly

into the network.

Pipeline stages inserted at the inputs of the fan-in tree roots form a queue

of new data items to be output from the network. Once the first-level arbitration

primitives transfer data to the pipeline stage(s), they receive a fast acknowledgment,

freeing them to process the next data waiting data item.

Experiments should be conducted to assess where pipeline stages should be in-

serted to have maximum impact, as well as determine the optimal number of stages.

The pipeline stages, implemented as MOUSETRAP [19] asynchronous pipelines,

provide the desired functionality. Additionally, each stage is normally transparent

(latches enabled), allowing request and data to advance through an empty queue

with very low latency. Unlike synchronous pipeline stages, which add an entire clock

cycle to the latency of the network, an asynchronous pipeline stage has a latency

equal to one transparent latch when empty. Therefore, multiple stages could be
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inserted with relatively low impact on network latency.

Experiments with Mixed Clock Rates : In chapter 5, the synchronous

domains operating with the mixed-timing network all operated using a single clock.

The mixed-timing network – asynchronous network with mixed-timing interfaces –

is capable of interfacing with multiple synchronous domains that have different and

unrelated clock rates. The proposal for future experiments is to examine the effects

on network performance of multiple synchronous senders and receivers that operate

at different clock frequencies.

Experiments with Dynamic Voltage/Frequency Scaling : Power opti-

mizations such as dynamic voltage and frequency scaling can be applied to indi-

vidual synchronous domains. With each optimization, the clock frequency of syn-

chronous domains can change dynamically from software or hardware methods. The

mixed-timing network allows flexibility at the high-level architecture for multiple

synchronous domains operating at different and unrelated clocks. Furthermore, the

mixed-timing network should gracefully handle dynamically changing frequencies of

individual synchronous domains. Future work should explore the benefits of inte-

grating the mixed-timing network into power-optimized synchronous architectures.

6.3 Conclusion

This thesis presented two new asynchronous designs for the fundamental pipelined

components of the Mesh-of-Trees network. Both designs use transition signaling

(two-phase) for handshaking signals, allowing for fast communication between mod-
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ules since half the transitions are required compared to the more common four-phase

handshaking protocols. Data is stored using standard transparent latches, which

have lower area and power consumption overheads compared to edge-triggered flip-

flops. The architecture and basic operation were presented, as well as analytical per-

formance equations and timing constraints for both designs. The asynchronous rout-

ing and arbitration primitives were evaluated in isolation for area, power, throughput

and latency, and compared to synchronous designs presented in [4, 5].

Due to limits in commercial CAD tools, implementation of a full network

layout was not possible as part of this research. To obtain an approximation for

performance of a post-layout full network, a projected 8-terminal network layout

was developed. Arranged in the Mesh-of-Trees topology, the projected post-layout

network was evaluated for maximum throughput and average latency under varying

levels of input traffic.

To interface with systems in different timing domains, mixed-timing FIFOs

were implemented based on the designs in [12]. New protocol converters were im-

plemented to provide communication between transition-signaling routing and ar-

bitration primitives and the four-phase signaling mixed-timing FIFOs. The mixed-

timing FIFOs allow the asynchronous network to be embedded into the XMT par-

allel processor. Simulations are conducted to assess the performance of XMT with

synchronous and asynchronous networks for four benchmark applications.

The eXplicit Multi-Threading (XMT) architecture, through independence-of-

order semantics, operates with reduced synchronization between processors and

memory. Execution proceeds as data becomes available, without any synchroniza-
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tion between threads or tight scheduling for memory operations. This global asyn-

chrony exists at all levels of the architecture, which was designed to fit the PRAM

algorithms that it executes. The bridge from algorithms to hardware is taken one

step further with the implementation of the asynchronous interconnection network.

With the added benefits of lower power and area costs, the asynchronous Mesh-of-

Trees network is a perfect fit for XMT.
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