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 Numerous studies have shown an association between increased levels of 

particulate matter (PM) and the exacerbation of lung diseases. The exact means by 

which PM produces these effects remain unclear. Generation of reactive oxygen 

species such as the hydroxyl radical (.OH), is one of the hypothesized mechanisms. 

However, the importance .OH of production by PM remains uncertain due to a lack of 

sensitive and selective methods for its determination. 

 In this work, a highly-sensitive fluorescence-based technique was employed to 

quantify the magnitude of .OH generated by a wide range of airborne particulate 

matter. The generated .OH was measured in the presence and absence of biological 

electron donor. Little or no production of .OH was observed in the absence of the 

added electron donor. For some but not all particles, .OH production was increased 



  

substantially when a biological electron donor was present. No detectable .OH was 

produced by kaolinite or silica. 

 The mechanism(s) of .OH generation by airborne particulate matter were 

investigated. The presence of dioxygen, hydrogen peroxide, superoxide and metal 

chelators significantly affected .OH production by the particles. The results indicate 

that metals and organic constituents are involved in .OH production by particles and 

occur through both homogeneous and heterogeneous reactions.  

 The effect of different airborne particles on .OH generation in the presence of 

two different cell lines, lung epithelial cells (BEAS-2b) and mouse epidermal cells 

(JB6) were investigated. In addition, two different toxicological methods were 

employed to investigate cell viability in the presence of different airborne particles. 

Based on our results, some .OH production was observed in the presence of these cell 

lines when exposed to diesel particulate matter and urban dust, but rates of cell death 

did not correlate with the .OH production rate. Further, silica particles, which 

exhibited no evidence of .OH production, produced the most rapid cell death.  

On the other hand, both cell death and hydroxyl radical formation were 

dramatically enhanced when an external biological reductant, NADPH, was added to 

a suspension of cells and urban dust. In this situation, the high flux of .OH is the 

likely factor causing cell death. 
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Chapter 1: Introduction 

1.1. Previous studies on particulate matter adverse 

health effects 

 
 Exposure to airborne particles presents a serious risk to human health with 

significant increases in both morbidity and mortality rates (Dockery et al. 1992). The 

current levels of airborne particulate matter increases mortality as a result of chronic 

bronchitis, pneumonia, asthma attacks, cardiovascular disease and lung cancer 

(Whittemore and Korn 1980; Schwartz et al. 1992; Dockery et al. 1993). In the past 

few decades, different studies have been conducted to understand the origin of 

adverse health effects of particulate matter (PM) from external factors such as 

smoking, exposure to asbestos, quartz particles, urban dust, coal dust, and diesel 

particles. Early studies focused on severe air pollution episodes such as that in the 

Meuse Valley, Belgium (Firket 1931) and the London fog incident (Logan 1953) 

dating back to the 1930’s. By 1970, a link between respiratory disease and air 

pollution particles was established and some efforts were applied to reduce the air 

pollution and improve the air quality. Despite the air quality improvements over the 

past few decades, associations between current ambient pollution levels and excess 

morbidity and mortality have been consistently detected.  

 Over the last decade, epidemiological and clinical studies have provided 

additional evidence for the potential negative effect of airborne particles on health 

(Brook et al. 2002; Samet et al. 1999). The current level of PM has been positively 
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associated with the exacerbation of asthma and an increase in airway inflammation, a 

decrease in pulmonary function and increase in chronic obstructive pulmonary 

disease (Dye et al., 1997; Sunyer et al. 2001). Several studies have also reported 

adverse cardiovascular outcomes in relation to long-term particulate matter exposure 

(Brook et al., 2004). Airborne particulate matter has been associated with the increase 

in cancer, especially lung cancer (Pope et al., 2002). These particles were also found 

to produce heritable genetic changes that can be passed to the next generation (Samet 

et al., 2004; Somers et al., 2004).  In addition, the rapid development of 

nanotechnology has provided considerable attention to research about the health 

impact of ultrafine particles (Maynard and Kuempel, 2005). In sum, numerous 

epidemiological studies have shown increased risk of respiratory and cardiovascular 

morbidity and mortality due to exposure to particles. 

 To develop methods that could be employed to mitigate the adverse health 

effects induced by particulate matter, it is important to understand the mechanisms 

that are involved in PM interactions with lung or other tissues. The mechanisms by 

which PM produce these detrimental health effects are under investigation but are still 

not fully defined. Because of the heterogenecity in PM composition, it is often 

difficult to identify a single causative mechanism.  
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1.2. How does PM lead to adverse health effects? 

 
 In this section, we briefly review the hypothetical mechanisms that explain 

adverse health effects caused by PM. Utell and Frampton (2000) provide a summary 

of possible pathways that may link PM exposure with adverse health effects (Scheme 

1-1). In this scheme, three different mechanisms were suggested: 

 

1) Particulate matter may stimulate airway sensory nerves, which causes 

cardiopulmonary dysfunction.  

2) Ultrafine particles may enter pulmonary capillary blood and be transported to 

other tissues such as liver, bone marrow and heart. Ultimately, adverse health 

effects develop because of the activation of the immune system. 

3)  Particulate matter causes epithelial cell injury through production of reactive 

oxygen species such as .OH by either the particles themselves or through 

inflammatory response which ultimately results in endothelial dysfunction, 

airway effects and leukocyte activation.   
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Scheme 1-1.  Mechanistic pathways of particulate matter adverse health effect (Utell 

& Frampton, 2000).   

 

   

Although different pathways for particulate-matter induced health effects have been 

suggested, past work suggests that production of reactive oxygen species (ROS) is 

one of the most important mechanisms in particulate-related adverse health effects.  

 Various studies have reported that ROS generated by PM provides pro-

inflammatory stimuli to lung epithelial cells and macrophages. These studies have 

shown that ROS or the particles themselves activates the immune system with 

cytokine and chemokine production (such as  Interleukin-6 (IL-6), Interleukin-8 (IL-
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8), tumor necrosis factor (TNF-α), macrophage inflammatory protein-2 (MIP-2)) 

which subsequently cause more inflammation, cell death or proliferation leading to 

adverse health effects ( Tao et al., 2003; Huang et al. 2003; MacNee and Donaldson, 

2003; Shukla et al., 2000; Mossman and Churg, 1998; Castranova, 2000; Tao and 

Kobzik, 2002; Utell and Frampton, 2000).  

 In general, cytokines and chemokines are small secreted proteins which 

regulate the immune response. Researchers have employed techniques to measure 

immune response of cells (through chemokine and cytokine production) as an 

evidence for presence of ROS. For example, Li et al. (2002) tested the sensitivity of a 

bronchial epithelial cell line (BEAS-2b) and macrophages to diesel exhaust particles 

(DEP) to determine whether there is a link between the level of ROS production and 

cellular response. They reported that in presence of 100 μg/mL of DEP, 

approximately 75% of the BEAS-2b cells were killed with a decline in GSH/GSSG 

ratio (ratio of reduced to oxidized disulphide-linked glutathione) and increase in IL-8 

level, which are a representative marker for oxidative stress. Veranth et al. 2004 also 

reported an increase in inflammatory cytokines (IL-6 and IL-8) and cell death when 

BEAS-2b cells were treated with soil dust.  

  ROS generated by particulate matter is also thought to activate several redox-

responsive signaling pathways (such as Nuclear Factor Kappa B (NF-κB), Mitogen-

Activated Protein Kinases (MAPKs) and Activator Protein 1 (AP-1)) that are 

involved in gene expression and play a role in pathological changes. For instance, it 

has been reported that transition metals (Jiménez et al. 2000), diesel particulate matter 

(Takizawa et al. 1999) and silica (Kang et al. 2000) activate NF-κB in cells and 
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macrophages. These studies concluded that generation of ROS is the major factor in 

the activation of NF-κB. 

  In other studies, radical scavengers and inhibitors were applied to further 

investigate the role of generated ROS in NF-κB activation.  For example, Shi et al. 

(1999) found that catalase and radical scavengers such as DMSO inhibited silica 

induced-NF-κB activation. On the other hand, other studies (Chen et al. 1995, 

Takizawa, et al. 2003) showed that antioxidant N-acetylcysteine (NAC) did not 

inhibit NF-κB activity generated by silica. Huang et al. (2002) reported that metal 

chelators such as deferoxamine (DFX), ethylenediaminetetraacetic acid (EDTA) or 

diethylenetriamine pentaacetic acid (DTPA) did not affect NF-κB activity generated 

by urban dust (SRM 1649), but Jiménez et al. 2000 provided evidence that DFX was 

an inhibitor for NF-κB activity. Clearly, these studies do not provide consistent 

results, linking PM-induced NF-κB activation with ROS generation. 

 It has also been reported that MAPKs and AP1 are activated by exposure to 

airborne particles such as asbestos and silica. For example, Ding et al. (1999) reported 

that freshly fractured silica activates MAPK, leading to increase in AP1 activity in 

mouse epidermal cells (JB6) and rat lung epithelial cells. Shukla et al. (2001) showed 

that α-quartz (silica) causes production of AP-1 and this production was inhibited 

with catalase (CAT) and hydroxyl radical scavengers such as diemethylthiourea 

(DMTU). They concluded that ROS generated by particles is the major factor to 

activate MAPKs and AP1 in these systems. 

 Although many studies have been performed to correlate increase in 

cytokines, chemokines and other redox representative signaling pathways to 
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generated ROS by airborne particulate matter, none of these studies have directly 

measured PM-induced ROS.  

 

1.3. How is ROS generated by particulate matter? 

 
 Free radicals can be defined as any species containing one or more unpaired 

electrons.  Particles consist of different components that may produce variety of free 

radicals through different reaction. Oxygen-centered radicals such as hydroxyl radical 

(.OH), superoxide anion (O2
.-) alkoxy radicals (.OR), peroxyl radicals (.OOR), as well 

as carbon-centered radicals such as alkyl radical (.R), α-keto radicals (.C(O)R) may be 

produced.  

 Hydroxyl radical is highly reactive oxygen-centered radical which reacts 

rapidly with all biomolecules. Reaction of .OH produces secondary radicals which are 

usually less reactive than .OH (Rxns 1-1 through 1-3).  
 
 

 .OH + biomolecules               H2O + carbon-centered radicals (.R, .C(O)R, …)    (1-1) 

    .R  + O2               .OOR                                                                                         (1-2) 

 . 2ROO.    decomposition       2RO. + O2                                                                                                            (1-3) 

 

 Superoxide, by comparison with .OH, is far less reactive with non-radical 

species in aqueous solution. The rapid disappearance of O2
.- in aqueous solution is 

due to the dismutation reaction. In this reaction, one O2
.- is oxidized to O2 and another 

is reduced to H2O2  (Rxn 1-4).  

 2O2
.- + 2H+                H2O2 + O2                                                                                                                  (1- 4) 
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 Peroxy and alkoxy radicals are good oxidizing agents although alkoxy radicals 

formed in biological systems often undergo rapid molecular rearrangement to other 

species. Carbon-centered radicals are important reactive intermediate formed in a 

certain reduction and oxidation of organic and biological materials. The preferred fate 

of many of these radicals, under aerobic conditions, is direct reaction with O2 (Rxn 1-

2, 1-3; Halliwell and Gutteridge, 1999).  

 Based on different studies, oxidative stress is a central hypothetical 

mechanism for adverse health effect of airborne particles. Oxidative stress is defined 

as a situation when the production of ROS or reactive nitrogen species (RNS) exceeds 

the antioxidant defenses of the cell, thus affecting cell function. Dellinger et al. 

(2001) suggested that oxidative stress caused by the production of ROS is a 

fundamental mechanism of particulate toxicity. ROS are a class of compounds which 

includes hydroxyl radical (.OH), superoxide anion (O2
.-), hydrogen peroxide (H2O2) 

and singlet oxygen (1O2). Hydroxyl radical is the most highly reactive ROS that can 

kill cells through reaction with biomolecules. Although hydroxyl radical can be 

generated by ionizing radiation (X-ray or γ-ray), it is thought to be formed in vitro 

and in vivo by Fenton reaction (1-7) and Haber-Wiess reaction (1-8), which is sum of 

reactions 1-5 through 1-7. 
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     Mn+1  +   H2O2                           Mn + O2 + 2H+                                    (1-5) 

     O2
.-  + Mn+1                            Mn + O2                                                 (1-6) 

     O2
.-  + Mn + 2H+                      Mn+1 + O2 + H2O2                             (1-7) 

                              Mn
  + H2O2                         Mn+1

 + 
.OH + OH-                                     (1-8) 

 

                              H2O2 + O2
.-     metal catalyst      O2 +  .OH + OH-                                                 (1-9) 

 

where Mn+ and Mn+1 represent reduced and oxidized metal species, respectively, In 

this reactions, transition metals such as iron (Fe+3), copper (Cu+2), cobalt (Co+2), 

nickel (Ni+2), titanium (Ti+3), vanadium (vanadyl) , as ions or chelates, are known or 

have been postulated to produce .OH (Halliwell and Gutteridge, 1999). Pure hydrogen 

peroxide has limited reactivity, but it is able to cross cell membranes. Superoxide 

crosses cell membranes very slowly due to its charge and is generally assumed poorly 

reactive, but is known to react specifically with certain enzymes (Halliwell and 

Gutteridge, 1999). 

 Dallinger et al. (2001) first proposed a hypothetical reaction scheme in which 

particle constituents form the highly reactive ROS, .OH (Scheme 1-2).  
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Scheme 1-2.  Redox cycle by airborne particles in the presence of biological 
reductant (Dellinger et al. 2001) 
              

This scheme indicates that two different pathways are involved in ROS formation, 

especially .OH. First, the organic component of particles is involved in redox cycling 

under aerobic condition. In this cycle, quinone derivatives are reduced by biological 

electron-transfer chains or reducing enzymes to form the hydroquinone (Lind et al. 

1982). Subsequent electron transfer to O2
.- and dioxygen generates H2O2 and O2

.- 

regenerating the quinone (Powis et al. 1981). Second, transition metals catalyze 

formation of .OH by participating in Fenton reaction. In this reaction, a reduced metal 

ion reacts with H2O2 to produce .OH and OH- (Powis et al. 1989). Both the first 

(organic constituents) and second (trace metal) pathways are enhanced in the 

presence of reducing agents or enzymes such as ascorbate, NADPH, NADH or other 

reductants. Chemical structures of NADH and NADPH are presented in Scheme 1-3. 
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Scheme 1-3. Chemical structure of  NADPH and NADP+ 



 

 12 
 

 Airborne particles contain a wide variety of inorganic compounds (eg., 

minerals, and transition metals) and organic compounds (eg., polycyclic aromatic 

hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and quinones). Table 1-1 

and Appendix B present the certified reports on particulate matter chemical 

compositions. The SRMs certificate of analysis (National Institute of Standard and 

Technology, 2006) shows that these particles contain various minerals and organic 

components such as metals, PAHs, PCBs, quinones and pesticides whose 

concentrations vary in range (see Appendix B). Although there are numbers of toxic 

and known chemical carcinogens among those reported chemicals, the specific 

compounds which cause cellular toxicity and adverse health effect have not been 

identified. On the other hand, some studies have shown that inhalation of high 

concentration of particles containing few toxic compounds (little or no quinones, 

PAHs, trace metals, …) also results in adverse health effects. The possible 

mechanism behind such effects may be due to the overloading of the lung with poorly 

soluble particles, thus resulting in chronic inflammation.  
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Table 1-1.  Particulate matter inorganic and organic constituents 
 

 
Particulate Matter               Inorganic Constituents               Organic Constituents   
 
 
 
  Urban Dust                Br, Cl, Fe, Pb, Mg, S, Zn, Sb, As,          Chlorinated Pesticides 
  SRM 1649a                Ba, Cd, Ce, Cs, Cr, Co, Cu, La, Mn        , PAHs 
                                      M Ni, Se, Ag, W, V, Sn 
                                           
 Urban Dust                  Cl, I, Fe, Pb, Mg, Al, S, Zn, Sb, As,       Not Reported             
  SRM 1648                   Ba, Cd, Ce, Cs, Cr, Co, Cu, La, Mn 
                                       Ni, Se, Ag, W, V, In, K, Na 
 
Coal Fly Ash                Al, Ca, Fe, K, Mg, Na, P, Si, S, Ti,          Not Reported             
  SRM 2689                  Ba, Mn, Sr, Zn, Se, Ni, Pb, Ce, Cr,  
                                       Be, As, Sb, Sc. 
 
Coal Fly Ash                C, S, Al, Ca, Fe, K, Mg, Na, Ti, As,        Not Reported 
(Bituminous)               Ba, Cd, Co, Cu, F, Pb, Mn, Ni, Rb, Se 
 SRM 1632b                 U, Zn, Sb, Br, Ce, Cs, Cl, La, Li, Mo, 
                                      Sc, Si, St, W. V 
 
Diesel Particulate                    Not Reported                              PAHs, Quinones 
         Matter 
     SRM 2975 
 
        Uncommon                      Si, Fe, Ca, Mg                            Not Reported 
Commercial Asbestos             
        SRM 1867a 
 
          Kaolinite                       Si, Fe, Ca, Mg                                    - 
 
           Aerosil                                     Si                                             - 
 
 
 
 

 In addition to the particle constituents, other key factors influencing the 

biological reactivity and toxicity of airborne particulate matter are its solubility, size, 

shape and surface area. A more complete discussion about these chemical and 
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physical properties that influence ROS production and toxicity of inhaled particles is 

provided, in the next sections.  

 

1.4. Factors influencing the ROS production and toxicity of 

particulate matter 

1.4.1. Solubility of particles 

 
 Airborne particles usually consist of both soluble and insoluble components. 

A large number of studies have been performed to examine whether the soluble or 

insoluble constituents play a greater role in generating ROS. The major portion of the 

soluble component appears to be mostly metal ions, which can participate in toxicity 

of particles (Knaapen et al. 2002). In addition, particles treated with metal chelators 

such as EDTA and DTPA mobilized metal ions that resulted the production of ROS 

and DNA strand breaks (Smith and Aust, 1997; Imrich et al. 2000). Adding 

deferoxamine (DFX), which strongly chelates Fe ions, inhibited the production of 

ROS and cellular damage (Molinelli et al. 2002, Knaapen et al. 2002). Brunner et al. 

(2006) investigated toxicity of different nanoparticle, such as silica, asbestos, iron 

oxide (Fe2O3), ceria (CeO2), zinc oxide (ZnO) and zirconia (ZrO). They reported that 

redox active and relatively soluble particles (such as Fe2O3 and asbestos) showed 

more cytotoxicity and caused less cell viability due to participating in Fenton like 

reactions.  Antonini et al. (2004) found that presence of specific water soluble metals 

in residual oil fly ash (ROFA) is associated with inflammation. For example, they 
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reported that water-soluble metals such as nickel and iron cause an increase in lactate 

dehydrogenase (LDH; indicating tissue damage). Adamson et al. (1999) also reported 

that the soluble fraction of particles alone exhibits pulmonary toxicity.  

 Antonini et al. (1999) reported that both soluble and insoluble fractions of 

particulate matter induced lung injuries as measured by bronchioalveolar lavage 

(BAL) fluid proteins and LDH activity. It was also shown that a combination of 

ultrafine carbon black and transition metals produces ROS and the production of ROS 

in the presence of two components is more than each individually (Wilson et al. 

2002).  

 Other studies have shown that some particles that are poorly soluble also 

cause oxidative stress, either directly from free radical production or indirectly by 

triggering the influx of immune cells into the lungs, leading to inflammation. 

 

1.4.2. Size of particles 

 

 Particle size has also been shown to influence both biological responses and 

cytotoxicity to cells and tissues (Osornio-Vargas et al. 2003). Smaller particles have 

more highly toxic effect, presumably due to their larger surface area. For instance, 

ultrafine particles composed of a low-toxicity material such as polystyrene showed 

proinflammatory activity (greater number of neutrophils in the lung and greater 

oxidant activity) due to their large surface area (Brown et al. 2001).  

 Another potential reason for the higher toxicity of smaller particles is their 

ability to enter lung cells. Oberdörster et al. 1992 have observed that smaller ultrafine 
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particles (~20 nm) can penetrate the alveolar epithelial lining and enter the lung 

tissues to a greater extent than the larger size particles (>200 nm). Li et al. (2003) 

reported that nanometer-sized particles may enter cells and localize in mitochondria, 

producing oxidative damage of the mitochondrial membrane. Furthermore, there is 

some evidence that nanometer particles can pass from lungs into bloodstream. In one 

study, translocation of particles from lung into the blood or other organs was traced 

by using labeled ultrafine carbon particles (13C) (Nemmer et al. 2002). There is a 

hypothesis that the interaction of particles with proteins influences the translocation 

of inhaled nanoparticles (Kreylinget al.2002). 

 Kleeman et al. (2000) showed that particles with a diameter of 0.1 μm or less 

mostly consist of organic and elemental carbon rather than sulfate, ammonium, 

nitrate, sodium and chloride and this could be an additional reason behind the toxicity 

of ultrafine particles. This conclusion is very consistent with the results obtained by 

Möller et al. (2002) who reported that ultrafine particles such as carbon black and 

diesel particulate matter (having more organic components) caused cytoskeletal 

dysfunction and decreased cell viability in primary alveolar macrophage cell line.  

 

1.4.3. Shape of particles 

 

 The shape of particles can be generally defined as isotropic (identical in all 

directions) or anisotropic (non-identical in all directions). Exposure to both isotropic 

and anisotropic particles has been associated with adverse health effects ( Maynard, 

and Kuempel, 2005). Other work has indicated that the morphology of nanoparticles 
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is also important. For example, specific attention has been paid to single walled 

carbon nanotubes (SWCNT) which caused inflammation in mice (Lam et al. 2004) 

and  mortality in rats due to airway blockage (Warheit et al. 2004).  Shvedova et al. 

(2003) also reported generation of oxidative stress, cellular toxicity and loss of cell 

viability in the presence of human cells and unpurified SWCNT (containing 30% iron 

by mass). A recent study of multi-walled carbon nanotube (MWCNT) showed that 

the particles can penetrate human epidermal cells and produce cytokines (Monteiro-

Riviere et al. 2005). 

 

1.4.4. Surface area of particles 

 

 The surface area of airborne particles has been long known to be an important 

factor influencing the toxicity of inhaled particles (Duffin et al. 2002; Brown et al. 

2001, Tran et al. 2000; Tran et al. 1999) . Particle surface area expresses the real dose 

of particles. Smaller particles can provide a larger reactive surface area and this will 

be more toxic.  

 

1.5. Evidence of .OH involvement in particle induced 

ROS and cell toxicity 

 

 Different studies have shown that airborne particles can cause cellular toxicity 

and the production of ROS. However, relatively few studies have quantified the 
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hydroxyl radical production by particles. One of the most widely used methods is spin 

trapping with electron spin resonance (ESR) detection which was employed by 

different groups to detect formation of hydroxyl radical by particles. Other methods 

employed measure the formation of 8-oxo-2´-deoxyguanosine (8-oxo-dG), aromatic 

hydroxylation and some other indirect methods. A summary of studies that have been 

performed to detect hydroxyl radical by airborne particles is provided below. 

 

1.5.1. Spin trapping with Electron Spin Resonance (ESR) 

 

 The most widely employed method for detecting the .OH produced by 

airborne particles is spin trapping with electron spin resonance detection (ESR; 

Briedé et al. 2005; Valavanidis et al. 2005, Baulig et al. 2004, Shi et al. 2003a, 

Kadiiska et al. 1997, Dalal et al. 1995, Dalal et al. 1990, Shi et al. 1988, Vallyathan et 

al. 1988).  
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Table 1-2. A selection of spin trapping molecules 

                  Name                            Abbreviation                       Structure                

5,5- Dimethylpyrroline-N-oxide           DMPO                  

N+

o-

H

 

a-Phenyl-tert-butylnitrone                     PBN                          

HC N+

O-

C(CH3)3

 

a-(4-Pyridyl 1-oxide)-N-tert-            4-POBN                         

N+

HC N+

O-

C(CH3)3

O-  
          butylnitrone 
 

 

In this technique, a transient radical reacts with the trap (such as DMPO, PBN and 4-

POBN; Table 1-2) to produce a radical that has a longer lifetime. This enhanced 

stability is due in part to electron delocalization between nitrogen and oxygen atoms. 

The most used spin trap for detecting oxygen-centered radical is 5, 5-dimethyl-1-

pyrroline-N-oxide (DMPO; Janzen et al. 1990). DMPO, a diamagnetic species, reacts 

with .OH to generate a paramagnetic product (DPMO-OH), which has a four line 
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(1:2:2:1) ESR signal (Figure 1-1). DMPO also reacts with O2
-. to form a product with 

different ESR spectra, but this product (DMPO-OOH) is unstable and can decompose 

to the DMPO-OH product, thus complicating the interpretations. However, the rate 

constants for these two reactions are very different (10 M-1 s-1 for O2
-., 3.4 x109 M-1 s-1 

.OH), therefore, .OH is trapped more efficiently than O2
-.. 

N+

o-

CH3

CH3

.OH +

N

o.

CH3

CH3H

HO

DMPO DMPO-OH  

 

Figure 1-1. The reaction of .OH with DMPO spin trap and the formation of  

DMPO-OH spin adduct. 

In both past and more recent studies, spin trapping employing DMPO with 

ESR detection was widely used to detect .OH generated by airborne particulate 

matter. Briedé et al. (2005) used DMPO to test the formation of .OH by particulate 

matter (PM10 and PM2.5) in the presence of either NADPH or ascorbate. They 

reported that DMPO-OH signal was enhanced in the presence of low concentrations 
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of biological reductant, but this signal did not increase at concentrations of reductant 

higher than 50 μM.  

Valavanidis et al. (2005) examined the possible mechanisms and parameters 

influencing the formation of ROS by diesel vehicle exhaust soot, gasoline vehicle 

exhaust soot and samples of fresh soot from wood combustion. They detected by ESR 

five different semi-quinones originating from 1,2-napthoquinone, 1,4-naphthoquinone 

and 1,4 benzoquinone in particulate matter extraced in aqueous phase (phosphate 

buffer pH=7.4).  They also detected DMPO-OOH and DMPO-OH and concluded that 

the detected quinones were in part responsible for generating ROS, especially .OH. 

Baulig et al. (2004) observed DMPO-OH adduct generation in a suspension of  

PM2.5 in the absence and presence of H2O2. Shi et al. (2003a) also used ESR to 

measure hydroxyl radical formation by different particulate matter (PM1, PM2.5, 

PM10) in the presence and absence of H2O2 and radical scavengers. Based on their 

results, higher concentration of H2O2 provided more hydroxyl radical generation 

whereas .OH scavengers (DMSO and ethanol) suppressed the .OH formation. From 

DPMO-OH detection with different metal-coated carbon black particles, they found 

that particles coated with Cu+2, Fe+2, V+2, V+5 generated more .OH than those coated 

with Fe+3, Ni+2, Zn+2.  

Kadiiska et al. (1997) tested the hypothesis that exposure to air pollution 

particles is associated with in vivo free radical production. In this work, ESR in 

conjunction with the spin trap α- ( 4– pyridyl– 1- oxide )– N– tert– butylnitrone  ( 4- 

POBN) was used to detect radicals. Incubation of rat lung with an oil fly ash (OFA) 

sample provided spectra consistent with a carbon-centered (phenyl or ethyl) radical 



 

 22 
 

adduct. They concluded that peroxy radicals were formed, through reaction of O2 with 

these carbon-centered radicals.  

Dalal et al. (1995) employed DMPO to determine hydroxyl radical formation 

from a mixture of coal dust and H2O2. They observed the characteristic 1:2:2:1 

hyperfine quartet of the DMPO–OH adduct consistent with .OH. Addition of metal 

chelators such as EDTA, diethylaminepentaacetic acid (DETAPAC) enhanced the 

ESR signal whereas CAT and DFX suppressed the ESR signal, suggesting the 

formation of .OH via the Fenton reaction. 

Using spin trapping, Dalal et al. (1990) detected .OH and provided evidence 

for role of Fenton reaction in hemolysis and lipid peroxidation by quartz particles. 

They reported a reduction in .OH signal in the presence of CAT, superoxide 

dismutase (SOD) and some metal ion chelators, consistent with the involvement of 

the Fenton reaction. On the other hand, they reported that addition of a metal 

reductant did not increase the signal, inconsistent with the Fenton reaction acting as 

the source of .OH.  

In contrast to the results of Dalal et al. (1990), Shi et al. (1988) and Vallyathan 

et al. (1988) employed spin trapping to determine .OH produced by quartz particles 

and found that the Fenton reaction was not responsible for .OH generation. Their 

studies did not show any decrease in .OH formation in the presence of DETAPAC, as 

a strong metal chelator. They reported that if the Fenton reaction occurred, there 

would have been a significant decrease in ESR signal in the presence of DETAPAC. 

 Although all of these studies have provided important information, the levels 

of .OH produced are always reported in arbitrary units and thus do not provide 
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quantitative estimate of .OH formation rate. Spin trapping with ESR detection also 

suffers from a number of additional limitations. 

 First, spin adducts participate in secondary reaction such as disproportionation 

(Willson 1971) and secondary radical or redox reactions of the nitroxide (Mehlhorn et 

al. 1984, Gascoyne et al. 1987, Swartz et al. 1986, 1987, 1990). Therefore, radical 

production rates can not be determined quantitatively due to spin adduct instability. 

 Second, the breakdown of an unstable spin-adduct (Finkelstein et al. 1979) or 

non-radical reaction of the parent spin trap (Rosen et al. 1984) can artificially produce 

spin adducts. For example, when DMPO reacts with superoxide, the superoxide spin 

adduct (DMPO-OOH) is decomposed into several products including the hydroxyl 

radical spin adduct (DMPO-OH; Finkelstein et al. 1982). Therefore, production of 

DMPO-OH can not be used as a proof of hydroxyl radical formation in biological 

systems, unless additional tests are performed.  

 Third, in some instances, the rate constant for spin trapping is low thus 

necessitating the use of high concentrations of spin traps to quantitatively trap the 

radical. These high concentrations of spin trap may alter reaction mechanisms and in 

cell studies produce toxicity.  

 Fourth, nitrones can participate in oxidation reactions with transition metals 

such as iron and copper. For example, DMPO can be oxidized to its hydroxamic acid 

in the presence of ferric chloride solution.   

 Fifth, mixture of spin adducts with similar structure can not be distinguished 

by ESR due to their very similar g-value and hyperfine splitting constants (Janzan 
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1984). Sixth, the ESR sensitivity is low (~μM) relative to other detection methods 

(see below). 

 

1.5.2. Formation of 8-oxo-dG 

 

 Karlsson et al. 2005, Shi et al. 2003b, Parahald et al. 2000, Ball et al. 2000, 

Ichinose et al. 1997 and Chao et al. 1996 tested for the formation of .OH by airborne 

particles through detection of 8- oxo- 2´- deoxyguanosine (8-oxo-dG) formation.  8-

oxo-dG is a marker of oxidative damage to DNA. It has been demonstrated that 

hydroxylation at the C-8 position of 2´- deoxyguanosine (dG) residues in DNA  by  

either .OH or a species with a similar reactivity results in the formation of 8-oxo-2´- 

deoxyguanosine (8-oxo-dG), which is mutagenic and it is used as a biomarker for 

oxidative stress. This compound can exist in either a enol ( I ) or keto ( II ) form; 

hence its designation is 8-oxo-dG or 8- hydroxyl- 2´- deoxyguanosine (8-OH-dG; 

Scheme 1-4). 
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Scheme 1-4. Enol ( I ) and keto ( II ) form of 8-oxo-2´-deoxyguanosine from 

deoxyguanosine. 

 

 Karlsson et al (2005) exposed the cultured human lung epithelial cells (A549) 

to subway particles, and subsequently analyzed for DNA damage using single cell gel 

electrophoresis (the comet assay) and the formation of 8-oxo-dG. Shi et al. (2003b) 

measured production of 8-oxo-dG when calf thymus DNA or human lung epithelial 

cells (A549) were exposed to either coarse or fine particulate matter. Based on their 

results, they concluded that coarse PM generates more ROS including .OH. Prahalad 

et al. (2001) determined formation of 8-oxo-dG in calf thymus DNA and human 

airway epithelial cells (BEAS-2b) in the presence of airborne particulate matter. They 

reported the amount of 8-oxo-dG/105 dG generated by oil fly ash (OFA) and residual 

oil fly ash (ROFA) when their concentration varied from 0.1 to 1 mg/mL (Figure 1-

2). 

 

 

 



 

 26 
 

 

 

Figure 1-2. Effect of OFA and ROFA concentration on the formation of 8-oxo-dG 

(Prahalad et al., 2001). 

 

Prahalad et al. (2001) also showed that addition of DFX, a metal ion chelator, 

resulted in significant inhibition of 8-oxo-dG production for some type of fly ashes 

like OFA and ROFA. Adding DMSO, as an .OH scavenger, also suppressed 8-oxo-

dG formation. Treating OFA and ROFA with CAT suppressed 8-oxo-dG formation 

significantly. On the other hand, addition of SOD slightly enhanced 8-oxo-dG 

formation in DNA. These results showed that 8-oxo-dG could be produced by ROS, 

possibly .OH, generated from particulate matter. In 2000, Prahalad et al showed the 

ability of OFA and coal fly ash (CFA) to hydroxylate the C-8 position of dG as a sign 

for presence of ROS. In addition, they examined the ability of different metal species 
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in 8-oxo-dG formation at the same concentrations of metals in airborne particles. The 

soluble and reduced metal ions V (IV) and Fe (II) enhanced 8-oxo-dG production 

relative to V (V) and Fe (III) ions. The involvement of transition metals in the 

generation of .OH as well as 8-oxo-dG was also confirmed by inhibition of 8-oxo-dG 

formation in the presence of metal ion chelators such as DFX, DTPA and ferrozine.  

Ichinose et al. (1997) determined 8-oxo-dG in lung DNA to clarify the 

involvement of oxygen radicals in lung carcinogenesis induced by diesel exhaust 

particles (DEP). They observed the increase in lung tumor and 8-oxo-dG while 

different concentrations of DEP were injected into mice trachea. Chao et al. (1996) 

also reported that treatment of human lung epithelial cells with crocidolite, a form of 

asbestos, resulted in an increased 8-oxo-dG level leading to tumor formation.  

Although the formation of guanine oxidized adduct (8-oxo-dG) was used as a 

marker for OH-induced DNA damage, it is not necessarily selective technique to 

detect the hydroxyl radical among all other reactive species. In addition, this method 

can be subject to artifacts, because guanine is susceptible to oxidation during sample 

preparation (Collins et al. 2004)   

 

1.5.3.  Aromatic hydroxylation 

 

 There is only one report in which a relatively specific technique, aromatic 

hydroxylation, was employed to quantify the formation of .OH by particles. In this 

technique, addition of .OH to benzoic acid ring gives rise to three mono-hydroxylated 

benzoic acid isomers (meta, para, ortho hydroxylated bezoic acid; Scheme 1-5).  In 
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this reaction, the initial step is fast addition of .OH to the aromatic ring to form an 

intermediate radical. The intermediate radical will be oxidized by an electron acceptor 

(oxygen) to produce the hydroxylated benzoic acid. The ratio of these three isomers is 

close to 1:1:1 for reaction with .OH. To analyze these products, each one of the 

hydroxylated product can be separated by HPLC and detected spectrophotometrically.  

 

 

OHO

+ .OH

OHH

.

COOH
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Scheme 1-5. The reactions of .OH addition to benzoic acid. 
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 Jung et al (2006) employed this technique to measure .OH formation by flame 

soot particles, carbon black and ambient fine particles in a surrogate lung fluid. They 

reported the integrated concentration of .OH generated by flame soot, carbon black 

and other particulate matter (PM2.5) in the presence of 1.0 mM of H2O2 are 0.91, 

0.096 and 21 nmol mg-1, respectively, over 2 hours reaction time. This method can be 

highly sensitive for measuring .OH, but there are several problems with employing 

this technique in biological systems. These include: (1) multiple products require 

separation (2) cellular toxicity at high levels of benzoic acid, that actually is required 

to scavenge .OH effectively (3) inhibition of some enzymes such as cyclooxygenase 

by benzoic acid (4) high affinity of iron ion for benzoic acid and perturbation in iron-

dependent hydroxyl radical production (5) incomplete scavenging of .OH due to 

limited solubility of benzoic acid. 

 

1.5.4 Other indirect .OH detection methods 

 

 Generation of DNA single strand breaks (DNASSBs) (Smith and Aust 1997, 

Pan et al. 2004), production of chemokines and cytokines such as IL-6, IL-8 and 

TNF-α (Carter et al. 1997, Frampton et al. 1999, Imrich et al. 2000) and activation of 

several redox-responsive signaling pathways such as NF-κB (Shukla et al. 2000) were 

employed as a markers of hydroxyl radical production by particulate matter in the cell 

systems. Cytokine production was also inhibited by inclusion of metal chelators such 

as DFX, catalase, and free radical scavengers such as (DMTU) or dimethyl sulfoxide 

(DMSO). However, determining DNASSBs, cytokine and chemokine production and 
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their inhibition in the presence of some reagents are not selective methods to detect 

and measure .OH formation directly. 

 

1.6. New Approach: detection of particle induced .OH using 

nitroxide scavenging 

 

 Over the past few years, the use of nitroxide with fluorescence detection 

(Scheme 1-5) , a sensitive and simple fluorescence detection method, has been 

developed by Blough and co-workers to determine hydroxyl radical (Li et al. 1997, 

1999 a&b, 2000, Petigara et al. 2002, Gan 2004, Mwebi 2005) and carbon centered 

radicals (Blough and Simpson 1988, Kieber and Blough 1990a & b, Kieber et al. 

1992, Johnson et al. 1996, Vaughan and Blough 1998) in both biological and 

environmental systems. 
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Scheme 1-6. .OH trapping method; (Kieber and Blough, 1990b; Li et al. 1997) 
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 In this work, dimethyl sulfoxide (DMSO) is to react with the hydroxyl radical 

generated by airborne particles to produce methyl radical (.CH3). The .CH3 is then 

trapped with 3-amino-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (3ap) to form CH3-3ap  

which is subsequently derivatized with fluorescamine to produce the CH3-3apf.  The 

resulting highly-fluorescent stable adduct (CH3-3apf or O-methylhydroxylamine) is 

separated by HPLC and determined fluorometrically (Scheme 1-5; Kieber and Blough 

1990a & b). To measure generation of .OH in the presence of cells, fluorescamine 

derivatized 3-amino-2,2,5,5-tetramethyl-1-pyrrolidinyloxyl (3apf) is used to react 

with .CH3 and produce CH3-3apf (Li et al.1999b). 

 Using DMSO to react with .OH and generate carbon centered radical has 

several advantages such as (1) high water solubility (2) low toxicity to cells and 

tissues (3) rapid reaction with hydroxyl radical to generate methyl radical (6.6 x 109 

M-1 s-1). 

 There are also some advantages for using 3ap, pyrrolidinyl nitroxide. For 

instance, 3ap reacts rapidly (7.8 x 108 M-1 s-1) with methyl radical and the rate of this 

reaction is an order of magnitude higher than those for spin trapping (Schmid and 

Ingold, 1978). Therefore, much lower concentration of nitroxides, which is normally 

used in vivo and vitro (Kocherginsky and Swartz 1995), can be employed for an 

equivalent trapping efficiency. Pyrrolidinyl nitroxides also show lower rates of 

bioreduction (Kocherginsky and Swartz 1995), reaction with superoxide (Krishna 

1992 and 1994), and reaction with metal ions (Mitchell et al. 1990).  

 In the following chapters, this method is used to measure the production of 

hydroxyl radical by wide range of airborne particles in the absence and presence of 



 

 33 
 

biological reductants, as well as in the presence of human lung epithelial (BEAS-2b) 

and mouse epidermal (JB6) cells.  

 In the second chapter, the results of an investigation of the mechanisms and 

magnitude of hydroxyl radical production by different airborne particulate matter in 

the absence and presence of biological electron doner such as NADPH are presented. 

Our results are largely consistent with the redox cycling mechanism proposed by 

Pryor and co-workers. Further investigation on both soluble and insoluble portion of 

airborne particles suggests that .OH is produced through both homogenous and 

heterogeneous reaction. 

 In the third chapter, results on the effect of particles on the viability of human 

lung epithelial (BEAS-2b) and mouse epidermal (JB6) cells are presented. In 

addition, the magnitude of hydroxyl radical production in the presence of different 

particles and BEAS-2b or JB6 cells and different particulate matter is presented. In 

addition, the correlation between the cell death and .OH production is discussed. 

 The results presented in the appendix provided preliminary information on the 

optical properties (absorption and fluorescence) of material extracted from diesel 

particulate matter in phosphate buffer at different pHs. 
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Chapter 2: Source Dependent Variation in 
Hydroxyl Radical Production by Airborne 
Particulate Matter 
 

 Abstract 

 

 Epidemiological studies suggest exposure to airborne particles is responsible 

for a wide range of adverse health effects, potentially arising from particle-induced 

oxidative stress. A highly-sensitive fluorescence method was employed to measure 

the production of hydroxyl radical by a broad range of particle types including urban 

dust, diesel particulate matter, coal fly ash, kaolinite and silica. Little or no 

production of .OH was observed in the absence of an added electron donor or H2O2. 

In the presence of a biological electron donor (NADPH, 3 mM), the rate of .OH 

production (ROH) for 3 mg/mL of these particles varied from 23 nM s-1 for diesel 

particulate matter (SRM 2975) to 0.20 nM s-1 for coal fly ash (SRM 2689).  No 

detectable .OH was produced by kaolinite or silica. Hydroxyl radical formation was 

eliminated under anaerobic conditions and in the presence of catalase, indicating that 

O2 and H2O2 are required for its generation. Partial inhibition of .OH formation by 

superoxide dismutase (SOD) was also observed in some cases, suggesting that 

superoxide (O2
.-) is also involved. The metal chelator, deferoxamine mesylate (DFX) 

in most cases suppressed .OH formation, but diethylenetriaminepentaacetic acid 

(DTPA) generally enhanced it, implicating metal ion reactions in .OH generation as 
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well. The dependence of ROH on NADPH concentration further implicates particle 

surface reactions in .OH formation. To our knowledge, these measurements provide 

the first quantitative estimate of ROH for a broad range of particle types.  

 

2.1. Introduction 

 
 Epidemiological studies indicate that airborne particulates increase the 

incidence of respiratory diseases such as pneumonia, emphysema, chronic bronchitis 

and asthma (Lebowitz 1996; Sunyer and Bassagana 2001; Schwartz 1994; Porteney 

and Mullahy 1990; Tseny et al. 1992). Further, both epidemiological and clinical 

studies have implicated airborne particulates in cardiovascular disease and stroke 

(Brook et al. 2004). Long-term exposure to particulate air pollution has also been 

associated with increased rates of lung cancer (Pope III et al. 2002) and production of 

heritable genetic changes (Somers et al. 2004). Over the past few decades, a broad 

spectrum of studies have been conducted to understand the origins of the adverse 

health effects of particulate matter from sources such as smoke, asbestos, quartz 

particles, coal dust and vehicular air pollution (Hwang et al. 1999; Hardy and Aust 

1995; Vallyathan et al. 1988; Dalal et al. 1995; Flicker and Green 2001, Karlsson et 

al. 2005). Although the precise biochemical mechanisms for particulate-induced 

health effects are poorly understood, it has been hypothesized that exposure to air 

pollutants gives rise to oxidative stress within lung cells (Kelly 2003) through 

production of reactive oxygen species (ROS), including the highly damaging 

hydroxyl radical, thus leading to pulmonary and cardiovascular injury (MacNee and 
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Donaldson 2003). ROS can be generated not only by particle-activated 

polymorphonuclear leukocytes, but also by the particles themselves and their 

constituents (Prahalad et al. 1999; Dellinger et al. 2001; Squadrito et al. 2001). 

Among the ROS, the hydroxyl radical is one of the strongest oxidants and has been 

implicated in the cellular damage. 

Most past efforts to detect the production of ROS, particularly .OH, by 

airborne particles have employed spin trapping with electron paramagnetic resonance 

(EPR) detection (Briedé et al. 2005; Valavanidis et al. 2005; Antonini et al. 2004; Shi 

et al. 2003a; Shi 2003b; Kumagai et al. 1997). However, this method is not 

particularly sensitive ( Pou et al. 1989; Li et al. 1997; Li et al. 1999a; Li et al. 1999b; 

Li et al. 2000; Kieber and Blough 1990b), is subject to artifacts (Pou et al. 1989; 

Finkeistein et al. 1979; Pou et al. 1994; Samuni et al. 1989; Janzan et al. 1990; Kieber 

and Blough 1990a&b), and generally can not be used to obtain quantitative estimates 

of radical generation due to numerous secondary reactions of the spin adducts (Li et 

al. 1990b; Kieber and Blough 1990b; Samuni et al. 1989; Janzan et al. 1990).  The 

formation of 8-hydroxy-2’-deoxyguanosine (8-OHdG) from deoxyguanosine (dG) 

has also been used as a sensitive indicator of ROS formation by particles in the 

presence of cells (Karlsson et al. 2005; Shi et al. 2003b; Prahalad et al. 2001). As with 

spin trapping, the approach is not necessarily selective for .OH and does not readily 

provide a quantitative estimate of the rate of radical generation (Collins et al. 2004; 

Prise et al. 1993).  

 Here, a highly sensitive, fluorescence-based approach (Blough and Simpson 

1988; Li et al. 1997; Li et al. 1999a; Kieber and Blough 1990a; Kieber and Blough 



 

 37 
 

1990b; Vaughan and Blough 1998; Thomas-Smith and Blough 2001; Li et al. 2000; 

Li et al. 1999b; Petigara et al. 2002) is employed to measure hydroxyl radical 

production by particulate matter, including diesel particles, urban dust and coal fly 

ash. In this technique, the hydroxyl radical reacts with added dimethylsulfoxide 

(DMSO) to form a methyl radical, which is then trapped with 3-amino-2,2,5,5-

tetramethyl-1-pyrrolidinyloxy (3ap) to produce a stable O-methyl-hydroxylamine 

adduct (Me-3ap). This adduct is then derivatized with fluorescamine (f) to form a 

highly fluorescent product (Me-3apf) which is separated by reversed phase high 

performance liquid chromatography (HPLC) and quantified fluorometrically (Scheme 

2-1; Kieber and Blough 1990b; Vaughan and Blough 1998; Thomas-Smith and 

Blough 2001; Petigara et al. 2002). This technique was employed to investigate the 

mechanism(s) and magnitude of hydroxyl radical production from a broad spectrum 

of airborne particles in the absence and presence of a biological electron donor 

(NADPH).  

 

 

 

 

 

 

 

 

 



 

 38 
 

 

 

 

  (2-1) 

 

N

O.

NH2

.CH3 + N

O

NH2

CH3

kN= 7.8x108 M-1s-1

                          3ap                                                                CH3-3ap                  (2-2) 

 

N

O

NH2

CH3

+
O

O
O N

OH

COOH

O

NOH3C

O

 (2-3) 

CH3-3ap                Fluorescamine (f)                                          CH3-3apf 

 

 

Scheme 2-1. .OH trapping method; (Kieber and Blough, 1990b; Li et al. 1997) 
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2.2. Experimental section 
 

2.2.1. Materials 
 

 The reduced form of β-nicotinamide adenine dinucleotide phosphate 

(NADPH), fluorescamine, catalase (CAT), superoxide dismutase (SOD) and 

deferoxamine mesylate (DFX) were purchased from Sigma. Dimethyl sulfoxide 

(DMSO) (99.9%), sodium hydroxide (99.998%), sodium hydrogen phosphate 

(99.999%), sodium dihydrogen phosohate (99.995%), sodium chloride (99.999%), 

hydrochloric acid (99.999%), boric acid, ethanol 200 proof (HPLC grade) and 

acetonitrile were obtained from Aldrich. 3-Amino-2,2,5,5-tetramethyl-1-

pyrrolidinyloxy (3ap) was purchased from Acros. Diethylenetriamine pentaacetic acid 

(DTPA) was obtained from Fluka. Hydrogen peroxide was purchased from Fisher. 

Acetic acid and methanol (HPLC grade) were purchased from J.T.Baker. Ultra High 

Pure (UHP) grade nitrogen was obtained from Airgas Inc. All chemicals were used as 

received. A Millipore MilliQ system provided water for all experiments. Standard 

phosphate buffers used in all experiments were either 100 (pH 7.5) or 5 mM sodium 

phosphate (pH 4.8, 6.0, 6.8, 7.5, 7.9, 8.5). 
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2.2.2. Particle sources 

 

Standard reference materials (SRM) 1649, 1648, 1632b, 2689 and 2975 were 

obtained from National Institute of Standard and Technology, Gaithersberg, MD. 

Other airborne particles, Fly Ash (I), Fly Ash (II) and Fly Ash (III) were obtained 

from different power plants in US. The Clay standard kaolinite (KGa-1b) and silica 

(Aerosil) were received from the Clay Mineral Society and the Degussa Corporation, 

respectively. All airborne particulate matter was used without pretreatment. More 

detailed information about particle type, sizeand source is available in Table 2-1. 
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Table 2-1. Source and Description of Particles 

 
        Particle Type        Particle Size                Particle Source 

 
 

   SRM 1649               Urban Dust         <125 μm       Washington DC area over one year 
period (1975-1976) 

 
SRM 1648             Urban Dust            <125 μm        St. Louis, MO area over one    
                                                                                     year period. 
 
SRM 1632b        Bituminous Coal      <250 μm       Bailey Mine of the Consol  

Coal Company in southwestern  
Green county, PA. 
 

SRM 2689         Coal  Fly Ash           <145 μm      Georgia Coal-fired Power Co. Plant 
Bowen Stilesboro, GA. Coal 
Mine: Western Kentucky coal 
mine. 

 
SRM 2975         Diesel Particulate     <110 μm       M.E. Wright of the Donaldson 

Matter                                  Company, Inc., Minneapolis, MN. 
 
Fly Ash (I)             Conventional                  -                  a Power Plant in USA 
                            Pulverized Coal(I) 
 
Fly Ash (II)            Conventional                  -                  a Power Plant in USA 
                            Pulverized Coal(II) 
 
Fly Ash (III)         Conventional                    -                  a Power Plant in USA 
                            Pulverized Coal(III) 
 
Aerosil                amorphous, fumed,            -                  Degussa Corporation, NJ. 
                          crystalline free Silicon 
                                    Dioxide 
 
KGa-1b           well-crystallized kaolinite      -                 Washington county, GA. 
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2.2.3. Apparatus 

 
 The high-performance liquid chromatography system (HPLC) consisted of an 

Eldex Model B-100-S single piston pump (Eldex Scientific CA) followed by 0-5000 

psi pressure gauge, a Valco Model C10W injection valve (Valco Inc., Texas), and a 

RCM 8 X 10 cm Waters radial compression module containing a 5 X 100 mm Nova -

PAK C18 4-μm reversed phased column (Waters, Massachusetts). 0.5-μm filters 

(Upchurch) were placed after the pump and before the column. A 50 μL loop was 

used in all measurements. A Dionex UV/Vis detector set to 390 nm (maximum 

absorption of Me-3apf) and a L-7480 Hitachi fluorescence detector set to 390 nm 

(excitation) and 490 nm (emission maximum of Me-3apf) were employed for the 

detection system. Elab software was used for acquisition and analysis (OMS Tech). 

Chromatographic separations were done isocratically with 35% sodium acetate buffer 

(50 mM, pH 4.0)/ 65% methanol (v/v) as mobile phase with flow rate 1 ml/min. 

 All absorption spectra were measured with a Hewlet-Packard 8452A diode 

array or a Shimadzu 2401 UV-PC spectrophotometers. A Mettler AT261 Delta Range 

electronic balance was used for all mass measurements. An ORION model 720A pH 

meter was used to measure the pH of all solutions.  
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2.2.4. Determination of hydroxyl radical generated by airborne 

particles 

 
Appropriate weights of airborne particles were first suspended in 5 or 100 mM 

phosphate buffer (pH 7.5). DMSO (5% v/v) and 3ap (1500 μM) were then added to 

the suspension, which was subsequently vortexed for 60 seconds. These solutions 

were incubated at room temperature in the dark under aerated conditions for an 

appropriate reaction time. In some experiments, other reagents such NADPH, SOD, 

CAT, H2O2, DFX or DTPA were added immediately prior to DMSO and 3ap addition 

and the vortex mixing. The concentrations of these reagents are provided in the figure 

captions. Following incubation, a sufficient amount of borate buffer (200 mM) was 

added to adjust the pH to 8. Fluorescamine (2.5 mM) was then added to the reaction 

mixture to derivatize the adduct (Kieber and Blough 1990b; Vaughan and Blough 

1998; Thomas-Smith and Blough 2001; Petigara et al. 2002). The final suspension 

was centrifuged for 4 minutes at 14000 rpm (5415c Eppendorf centrifuge), and the 

supernatant then injected (50 μL) onto Nova-PAK C18  reversed phased column and 

separated isocratically at room temperature using a flow rate of 1 ml/min (Kieber and 

Blough 1990; Li et al. 2000, Li et al. 1999b). The mobile phase composition was 35% 

sodium acetate buffer (50 mM, pH 4.0)/ 65% methanol (v/v). Following the 

separation, Me-3apf was quantified fluorometrically as described previously (Fig. 2-

1, 2-2; Blough and Simpson 1988; Kieber and Blough 1990a). 

For anaerobic samples, reagent solutions were deoxygenated by bubbling with 

ultra-high purity N2 (Airgas Inc.) for 15 minutes prior to addition to anaerobic 

suspensions of particles deoxygenated in the same fashion. 
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Figure 2-1. Chromatogram illustrating formation of Me-3apf (after 60 min) in 

solutions containing 3 mg/ml SRM 2975, 1500 µM 3ap, 5% DMSO and 3 

mM NADPH in 100 mM phosphate buffer, pH=7.5 (standard reaction 

mixture), following derivatization with 2.5 mM fluorescamine in 200 mM 

borate buffer. Chromatograms obtained in the absence of particles, NADPH, 

3ap or DMSO are also provided. 

 

SRM 2975 



 

 45 
 

 

 

Time (min)

0 2 4 6 8 10 12 14

Fl
uo

re
sc

en
ce

 In
te

ns
ity

Standard Reaction Mixture
- Particles
- NADPH
- 3ap
- DMSO

 

Figure 2-2. Chromatogram illustrating formation of Me-3apf (after 60min) in 

solutions containing 3 mg/mL SRM 1649, and other experimental conditions 

were identical to figure 2-1. 

 

 

 

 

SRM 1649 
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2.2.5. Hydroxyl radical detection and quantification 

2.2.5.1. Preparation and purification of Me-3apf standard for HPLC 

calibration 

 

Me-3apf standard was prepared by Fenton reaction as previously described (Li 

et al. 1997), with the exception that 3ap was used as the reactant to form Me-3ap, 

which was subsequently derivatized with fluorescamine to form the Me-3apf. First, 3 

mM of 3ap, 5% DMSO and 3 mM H2O2 were mixed in 100 mM phosphate buffer at 

pH 7.5 in a container with a Teflon seal. The mixture was purged with N2 for 5 

minutes before 3 mM N2 purged Fe(II)-EDTA was added via a gas-tight syringe. The 

reaction was initiated by immediate addition of Fe(II)-EDTA and allowed to proceed 

anaerobically in dark for at least 30 minutes. An aliquot of the product was then 

drawn and its pH rose to 8.0 by addition of 200 mM botare buffer.  The product was 

then derivatized with 12 mM fluorescamine solution and the reaction was allowed to 

proceed in dark for 5 minutes. The pH was then adjusted to 4 by acetic acid and the 

derivatized sample was extracted (solid-phase) using Water C18 Sep-Pak. The C18 

Sep-Pak was first rinsed with MilliQ water and methanol before loading with the 

reaction product. The reaction product was concentrated as a yellow band which was 

eluted with a small volume of methanol and reduced by flushing with dry nitrogen.  

The product, Me-3apf, was separated and collected directly from the HPLC 

(mobile phase: 65% methanol and 35% acetate buffer, pH=4.0) and then extracted in 

2 ml of chloroform. After evaporation of the chloroform, the bright yellow adduct 

was stored in dark at -20C. For HPLC calibration, the concentration of Me-3apf 
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standard was determined spectrophotometrically (ε386 = 5225 M-1 cm-1; Li et al. 1997) 

and calibration standard curve obtained from it by serial dilution. These were run on 

the HPLC and detected fluorometrically. The fluorescence response increased linearly 

with concentration over the range 5-14070 nM, and they were used to report the 

concentration of Me-3apf. 

 

2.2.5.2. DMSO and 3ap dependence 

 

 To establish the conditions for determining hydroxyl radical quantitatively, 

the dependence of Me-3apf formation rate on the concentration of DMSO was first 

examined. The dependence of Me-3apf formation rate on DMSO concentration is 

shown in Figure 2-3 (Li et al. 1997; Li et al. 1999a; Vaughan and Blough 1998; Li et 

al. 1999b). The formation rate of Me-3apf was found to be independent of DMSO at 

concentrations ≥ 50 mM  in the presence of 3 mg/mL SRM 1649, 3 mM NADPH and 

1500 µM 3ap in 100 mM phosphate buffer. However, to ensure quantitative 

determination of .OH in the presence of the particles, DMSO concentration was set to 

705 mM (5% DMSO by volume). 
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Figure 2-3. Dependence of the rate of Me-3apf formation on DMSO concentration in 

a suspension containing 3 mg/ml SRM 1649, 3 mM NADPH and 1500 µM 3ap in 

100 mM phosphate buffer (pH=7.5). Inset is the linearized form of the data. Error 

bars represent one standard deviation from the mean value (n=3). 
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The dependence of the formation rate of Me-3apf on the concentration of 3ap 

was then determined. Since dioxygen competes with 3ap for methyl radical, it is 

necessary to test the dependence of Me-3apf formation on 3ap concentration to define 

the condition that provides quantitative measurement of methyl radical. 

 

.CH3

+ O2

+ 3ap

kO

kN

.CH3O2

CH3 - 3ap (2-5)

(2-4)
kf

 
 

 
If DMSO concentration is sufficient, the initial rate of product Me-3apf formation at 

steady state is given by the expression  

 

R =(
d[Me-3apf]

dt
) =

kf kN [3ap]

kO [O2] + kN [3ap]
=

kf [3ap]
kf S + [3ap]

(2-6)
 

 

where kf  is the .OH formation rate and S = (kO [O2])/( kf kN). kf  and kf S were 

obtained from a nonlinear least-square fit to hyperbolic curve (Figure 2-4). Assuming 

an [O2] =250 µM , kf and kf S from Figure 2-4 can be substituted into above equation 

to calculate kO/kN, which are the rate constant for the reaction of the methyl radical 

with O2 and 3ap, respectively. This value, 3.6 ± 0.4, is in a reasonable agreement with 

the result reported previously (Li et al. 1997; Vaughan and Blough 1998; Li et al. 

1999b). Since this experiment indicates that O2 is the only major competitor for 

methyl radical, a rearranged form of eq 2-6, eq 2-7 can be used to calculate kf under 

conditions in which methyl radical and 3ap do not react quantitatively.  
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kf = R ( 1+
kO[O2]

kN[3ap]
) = R ( 1 +

[3ap]
kfS ) (2-7)

 

In this study, based on the dependence of Me-3apf yield on 3ap concentration, Me-

3apf concentration in aerated samples was converted to integrated .OH formation 

through multiplication by a factor of 1.6 ± 0.07 obtained at [3ap]=1500 μM and 

[O2]=250 μM (Li et al. 1999b; Li et al. 1997;  Vaughan and Blough 1998), the 

concentration employed in all subsequent analyses. 
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Figure 2-4. Dependence of Me-3apf formation rate on 3ap concentration under 

aerobic condition in a solution containing 3 mg/ml SRM 1649, 3 mM NADPH. and 

5% DMSO in  100 mM phosphate buffer (pH=7.5). Error bars represent one standard 

deviation from the mean value (n=3). 
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2.2.5.3. Competitive study of methanol and DMSO 

 

To test further that .OH was the species being detected; we examined the 

competition between DMSO and ethanol. In this test, ethanol was added to a reaction 

mixture containing a constant DMSO concentration. Reaction of ethanol with .OH 

forms radical intermediates other than methyl radical, thus produc a decrease in the 

formation of Me-3apf due to the competitive reaction between ethanol and DMSO. 

 

Carbon Centered + 3ap
Radicals

other productskEtOH

+ DMSO .CH3 + 3ap CH3-3ap
kDMSO

kOH .OH

+ EtOH (2-8)

(2-9)

 

 

Under these conditions, the formation rate of Me-3apf is expected to decrease with 

increasing ethanol concentration according to the following equation, 

 

R =
kDMSO [DMSO]0 R0

kDMSO [DMSO]0 + kEtOH[EtOH]
=

R0C1

C1 + [EtOH]
(2-10)

 

 

where R0 is the formation rate of Me-3apf in the absence of ethanol at a constant 

DMSO concentration, [DMSO]0, and R is the formation rate at ethanol concentration, 

[EtOH]. C1 = kDMSO [DMSO]0 / kEtOH was derived from a nonlinear least-square fit to 

+-
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the data (Figure 2-5), with the rate constant ratio kEtOH/kDMSO = 0.30 ± 0.05 obtained 

at constant DMSO concentration of 0.5 M. This ratio agrees well with rate constant 

ratio, kEtOH/kDMSO = 0.29, calculated from the rate constants for the reaction of .OH 

with ethanol ( 1.9 × 109 M-1 s-1 ) and DMSO ( 6.6 × 109 M-1 s-1 ) obtained from the 

literature (Buxton et al. 1988). 
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Figure 2-5. Effect of ethanol on the rate of Me-3apf formation rate in the presence of  

constant DMSO concentration (500 mM). Other solution conditions were 3 mg/ml 

SRM 1649, 3 mM NADPH and 1500 µM 3ap in 100 mM phosphate buffer (pH=7.5). 
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2.2.5.4. Time course for integrated .OH formation by different airborne 

particles 

 

 In the presence of NADPH, integrated .OH formation increased linearly with 

time versus time for all tested particles except SRM 1632b (Figure 2-6). Rates of .OH 

formation (ROH) were obtained from the slope of plots of integrated .OH formation 

versus time over the first 60 minutes (minimally 3 time points). In the case of 

SRM1632b, the formation rate was calculated over the first 20 minutes ( having linear 

response). 
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Figure 2-6. Effect of different airborne particles SRM 2975(▲); SRM 1649 (●); 

SRM1648 (○); SRM 1632b (▼); SRM 2689 (▽); Fly Ash I (■); Fly Ash II (□); Fly 

Ash III (♦); Aerosil (◊); KGa-1b (∆) on hydroxyl radical formation as a function of 

time. The reaction mixture contains 3 mg/mL airborne particle, 3 mM NADPH, 5% 

DMSO and 1500 µM 3ap in 100 mM phosphate buffer (pH=7.5) under aerobic 

condition. Error bars represent one standard deviation from the mean value (n=3). 
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2.2.5.5. Precision, accuracy and detection limit (D.L.) 

 
 The precision of the method was determined from the reproducibility of 

multiple HPLC injections (≥ 3) for a given experimental condition over multiple 

days. The maximum %RSD was 8.8 %, which includes the reproducibility of the 

measurements from day to day. Error bars reported in the figures represent ± one 

standard deviation. 

 The accuracy of the method depends on the molar extinction coefficient of 

CH3-3apf because the peak area of chromatograms was converted to concentration of 

CH3-3apf obtained by using UV-Vis method as explained in section 2.2.5.1. For this 

purpose, a calibration curve (peak area from injecting to HPLC versus concentration 

of CH3-3apf) was provided to find a factor to calculate concentration of CH3-3apf, but 

the accuracy of this factor is completely related to reported extinction coefficient for 

CH3-3apf (Li et al 1997). Moreover, the accuracy of the method mainly depends on 

the accuracy of  a coefficient which was used to convert Me-3apf concentration in 

aerated samples to integrated .OH formation through multiplication by a factor of 1.6 

± 0.07 obtained at [3ap]=1500 μM and [O2]=250 μM.   

 Defining the detection limit as twice the standard deviation of the blank (1500 

μM 3ap, 705 mM DMSO; n ≥ 8), values of 5.7 and 11 nM were estimated for Me-

3apf (50 μL injection volume) for samples containing no and 3 mM NADPH, 

respectively. These values are similar in magnitude to the detection limits previously 

reported for this method when applied to other systems (Kieber and Blough 1990; 

Vaughan and Blough 1998; Thomas-Smith and Blough 2001; Li et al. 1997).  
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2.3. Results 

2.3.1. .OH formation in particle suspensions in the absence 

and presence of biological reductant 

 

No signal was observed in the absence of either 3ap or DMSO (Figure 2-7). In 

the presence of these compounds, only very low levels of .OH formation were 

detected for SRM 1649 and SRM 2975 over the first 50 minutes and none thereafter. 

Other particles, such as the coal fly ashes, kaolinite (KGa-1b) and silica (Aerosil), 

showed little or no production of .OH.  Formation of .OH was eliminated under 

anaerobic conditions, but was substantially enhanced in the presence of H2O2 under 

both aerobic and anaerobic conditions for SRM 1649 and 2975 (Figure 2-7). 

Although formation of .OH from SRM 2975 increased linearly with time in the 

presence of H2O2, .OH formation from SRM 1649 did not significantly increase 

beyond ~50 minutes. In the case of SRM 2975, the high, linear production suggests 

that .OH is being generated catalytically in the presence of H2O2.  

Addition of the biological reductant, NADPH, greatly enhanced the 

production of .OH for both SRM 1649 and 2975, producing a linear increase in .OH 

over time (Figure 2-8). As in the absence of NADPH, this production was eliminated 

under anaerobic conditions, but was further increased in the presence of H2O2 under 

either aerobic or anaerobic conditions.  For SRM 2975, the decline in .OH formation 

beyond 50 minutes under anaerobic conditions may be due to a limiting concentration 

of H2O2 at this high level of .OH formation. Addition of NADPH also enhanced 
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production of .OH by SRM 1648 and 1632b, but had little effect on SRM 2689 and 

Fly Ash (I) and (III), and no effect on Fly ash (II), silica or kaolinite. 

Rates of .OH production by airborne particles are also reported in Table 2-2. 

In the presence of gluthatione as compared with NADPH, ROH is 2 to 4 fold higher 

for all particles except SRM 2975. ROH is about 38-fold lower when SRM 2975 is 

reacted with gluthatione instead of NADPH. 

 

 

 



 

 58 
 

Time (min)

0 50 100 150 200

In
te

gr
at

ed
 . O

H
 F

or
m

at
io

n 
( μ

M
)

0

2

4

6

SRM 2975 (aerobic condition)
+ 300 μM H2O2

+ Anaerobic 
+ Anaerobic + 300 μM H2O2
- 3ap
- DMSO

0

1

2

3

4

5

SRM 1649 (aerobic condition)
+ 300 μM H2O2
+ Anaerobic 
+ Anaerobic + 300 μM H2O2
- 3ap
- DMSO

A

B

 

 
Figure 2-7. Time course for formation of hydroxyl radical by SRM 1649 (A) and 

SRM 2975 (B) under aerobic (●), and anaerobic (▼) conditions, and with addition of 

300 μM H2O2 under aerobic (○), and anaerobic (▽) conditions. Particles (3 mg/mL) 

were suspended in 100 mM phosphate buffer, pH 7.5 in the presence of 1500 μM 3ap 

and 5% DMSO. Controls include the absence of 3ap (■), and DMSO (□) under 

aerobic conditions. 
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Figure 2-8. Time course for formation of hydroxyl radical by SRM 1649 (A) and 

SRM 2975 (B) in the presence of 3 mM NADPH under aerobic (●), and anaerobic 

(▼) conditions, and with addition of 300 μM H2O2 under aerobic (○), and anaerobic 

(▽) conditions. Other conditions are provided in Fig. 2-7. Controls include the 

absence of 3ap (■), and DMSO (□) under aerobic conditions. 
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Table 2-2.  Effect of reductant (NADPH and glutathione) on ROH. In these 
experiments, 3 mg/mL of particles was suspended in 100 mM phosphate buffer, pH 
7.5, in the presence of 1500 μM 3ap and 5% DMSO. 
 

                                             ROH (nM s-1) 

  Particles Type                   NADPH (0.3 mM)                          Glutathione (0.3 mM)      

     SRM 2975                                   6.04                                                0.16 

     SRM 1649                                   0.13                                                0.55 

     SRM 1632b                                 0.24                                                0.58 

     SRM 2689                                   0.00                                                0.16 

      KGa-1b                                      0.00                                                0.00 

      Aerosil                                       0.00                                                0.00 

 
.     
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2.3.2. Dependence of hydroxyl radical formation on type of 

particle, pH, ionic strength and buffer content 

 

 SRM 2975, diesel particulate matter, exhibited by far the highest rate of .OH 

production (ROH) in the presence of NADPH, exceeding the next highest value (SRM 

1632b) by over one order of magnitude (Figures. 2-9, 2-11). Values of ROH decreased 

in the order, SRM 2975 >>SRM 1632b>SRM 1649>SRM 1648>SRM 2689. ROH for 

Fly Ash (I) and (III) were near the detection limit, whereas those for Fly Ash (II), 

kaolinite and silica were indistinguishable from zero (Figure 2-9, inset).  

Except for SRM 2975, ROH was linearly related to particle concentration at 

constant [NADPH] (Figures. 2-9, 2-10). A 20-fold decrease in phosphate 

concentration decreased ROH only modestly by factors of 2-3 (Table 2-3). Similarly, 

substantial changes in ionic strength had little effect on ROH. The effect of pH on ROH 

was much more variable with particle type, with ROH increasing by 1.3-fold (SRM 

2975) to greater than 13-fold (SRM 2689) with a decrease of pH from 8.5 to 4.8 

(Table 2-3). The mobilization of metal content can be one of the reasons for 

increasing ROH at lower pH.  
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Figure 2-9. Dependence of ROH on particle concentration for SRM 2975 (▲); SRM 

1649 (●); SRM1648 (○); SRM 1632b (▼); SRM 2689 (▽); Fly Ash I (■); Fly Ash II 

(□); Fly Ash III (♦); Aerosil (◊); KGa-1b (∆). Other solution conditions are as in Fig. 

2-7 (aerobic condition). Error bars represent one standard deviation from the mean 

value (n=3). 
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Figure 2-10.  Dependence of ROH on NADPH concentration for SRM 1649 (A) and 

SRM 2975 (B) at 1.5 mg/mL (■), 3 mg/mL (○) and 6 mg/mL (●) particle 

concentration. Other solution conditions are as in Fig. 2-7 (aerobic condition). Error 

bars represent one standard deviation from the mean value (n=3). 
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Table 2-3. Dependence of ROH phosphate concentration, pH and ionic strength. 

    100 mM phosphate buffer, 7.50                        1.6                24                      0.22 

 

   5 mM phosphate buffer, 7.50                            0.63               8.7                   0.084 

 

    0.9% NaCl & 5 mM phosphate buffer, 7.50    0.69               8.7                     0.12 

 

   0.9% NaCl, 7.50                                                0.69               7.5                   0.039 

 

   5 mM phosphate buffer, 4.84                            1.9                  11                     0.24 

 

   5 mM phosphate buffer, 6.00                            1.6                 9.6                     0.21 

 

   5 mM phosphate buffer, 6.79                            1.4                 8.7                     0.15 

 

   5 mM phosphate buffer, 7.95                            0.60               8.7                   0.072 

 

   5 mM phosphate buffer, 8.45                           0.29                8.7                   0.018 

 
 
 
 
 
 

 
                 rate of  .OH formation (nM s-1) 
 

 
       Buffered Solution, pH                        SRM 1649        SRM 2975            SRM 2685 
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2.3.3. Dependence of hydroxyl radical formation rate on 

NADPH 

  

 ROH did not increase linearly with NADPH concentration, but instead 

exhibited evidence of saturation at high [NADPH] for both SRM 1649 and SRM 

2975 (Figure 2-10), suggesting the involvement of surface-catalyzed reactions in the 

production of .OH.  The dependence of ROH on [NADPH] could be fit to the form, 

 

ROH  =
Rmax [NADPH]

β + [NADPH]                               (2-11) 

 

where Rmax represents the maximal rate of .OH generation at saturating [NADPH] and 

β represents the [NADPH] at which ROH = ½ Rmax. For both SRM 1649 and 2975, the 

values of β were independent of particle concentration. At 1.5 mg/ml, SRM 2975 

exhibited much higher values of Rmax (106 nM s-1) and β (23 mM) than did SRM 

1649 (Rmax = 0.95 nM s-1; β = 1.8 mM). 
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2.3.4. The origin of hydroxyl radical 

 

 These results suggest that .OH can be generated catalytically by certain 

particles in the presence of O2 and/or H2O2 and a significant pool of electron donors. 

A reasonable series of reactions for this process is provided below (Dellinger et al. 

2001), 

 

 

Reductant + O2     particles         Oxidized reductant  + O2
.- or H2O2     (2-12) 

 

2O2
.-  +  2H+                H2O2 + O2                                                                               (2-13) 

 

Mn+ + H2O2                 Mn+1 + .OH + OH-                                        (2-14) 

 

Mn+1  +  Reductant                 Mn+  +  Oxidized reductant               (2-15) 

 

O2
.-  +  Mn+1                          Mn  + O2                                                      (2-16) 

 

 

Scheme 2-2. Possible oxidation/ reduction reactions for particle constituents. 

 

 

where “Reductant” is either NADPH or organic (and possibly inorganic) constituents 

of the particles, and Mn+ and Mn+1 represent reduced and oxidized metal species, 

respectively, provided by the particles. 
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Consistent with this set of reactions, the .OH formation was eliminated in all 

cases upon addition of catalase (1800 units/mL) to remove H2O2 (Figure 2-11, Rxn. 2-

14). Further, the rate of .OH formation (ROH) was approximately halved by the 

addition of SOD (3000 units/mL) to SRM 1649, 1648, 1632b, 2689, but was not 

affected by SOD addition to SRM 2975, consistent with the involvement of Rxn. 2-16 

in most cases (Figure 2-11). Figure 2-12 shows the time course of integrated .OH 

formation by SRM 1649 and 2975 in the presence of CAT and SOD.  

  That trace metals are involved in the production of .OH (Rxns. 2-14, 2-15) 

was supported by the suppression of ROH in the presence of DFX. This suppression 

was observed for all particles except SRM 1649 (Figure 2-11). Interestingly, addition 

of DTPA generally enhanced ROH. Table 2-4 shows the stability constant at 

physiological pH for the complex of DFX and DTPA with biologically active metals 

(Dawson et al. 1986; Kiss et al. 1998, Anderegg et al. 2005). The origin of the 

contrasting behavior of these two metal chelators is discussed in section 2.4. 

 

Table 2-4. Stability constants for metal complexes at physiological pH. 

 

                                                                     Log stability constant 

 
Name of chelator       Mg+2    Ca+2    Mn+2    Fe+2    Co+2    Ni+2    Cu+2    Zn+2     Fe+3 
 
 

Diethylene-                5.2        6.6      11.5     11.9    15.2    16.1     17.4    14.5     23.7  
Triaminopenta-                                                                                                               
acetic acid (DTPA) 
 
Deferoxmine        23.9      22.4      -        25.9   21.3    19.7     24.0      20.4    41.4 
DFX                                                                                                                          
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Figure 2-11. Production rate of .OH (ROH) for airborne particles and with addition of 

CAT (1800 U/mL), SOD (3000 U/mL), DTPA (600 μM) and DFX (600 μM). Other 

solution conditions (reaction mixture) are as in Fig. 2-7 (aerobic condition). 
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Figure 2-12.  Time course for formation of hydroxyl radical by SRM 1649 (A) and 

SRM 2975 (B) (●), with addition of 3000 U/mL SOD (■), and with addition of 1800 

U/mL CAT (♦). Other solution conditions are as in Fig. 2-7 (aerobic condition). Error 

bars represent one standard deviation from the mean value (n=3). 
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 Because the data in Figure 2-10 imply that sorption and reaction of NADPH 

on particle surfaces may in part be required for .OH production, we tested whether the 

particles or the soluble components of the particles were primarily responsible for 

.OH production. SRM 1649 and SRM 2975 were first incubated for one hour in the 

100 mM phosphate, pH=7.5 buffer; the particles were then separated from their 

soluble constituents by centrifugation at 14000 rpm for 4 min., with the supernatant 

then drawn off and passed through a 0.2 μm filter. Following resuspension of the 

particles in the original buffer, ROH was measured for the resuspended particles, the 

supernatant and the original suspension. At 3 mM NADPH, approximately equal 

values of ROH were obtained for the supernatant and resuspended particles of SRM 

1649, whereas for SRM 2975 the suspended particles dominated ROH, with much less 

.OH production observed in the supernatant (Figures 2-13, 2-14, 2-15, 2-16). 24 hours 

or even longer incubation in 100 mM phosphate buffer did not change ROH for 

supernatant or resuspended particles (SRM 1649 or SRM 2975), but some 

degradation in .OH generation was observed as time passed ( Figures 2-14, 2-15, 2-

16). Interestingly, addition of DTPA during the incubation period enhanced ROH in 

both the supernatent and resuspended fractions. Longer incubation times (up to two 

days) provided similar results (Figures 2-14, 2-15), suggesting that the 

solubilization/activation of particle components by DTPA occurs rapidly. 

 At higher [NADPH], ROH for the resuspended particles again showed evidence 

of saturation, consistent with a surface reaction of NADPH, while in contrast, ROH for 

the supernatants increased linearly with [NADPH] (Figure 2-13), as one would expect 

for a homogenous solution reaction. Addition of DTPA increased the β value of the 
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original suspension while enhancing ROH in the supernatant (Figure 2-13c), 

suggesting partial suppression of surface interactions, but overall activation of both 

particle and supernatant phases. These results indicate that both homogeneous and 

heterogeneous reactions can contribute to the overall formation of .OH in these 

suspensions.  

 

 

 

 

Figure 2-13. Dependence of ROH on NADPH concentration for the supernatant (○), 

the resuspended particles (▼) and the original suspension (●) of SRM 1649 (A), SRM 

2975 (B) and SRM 1649 with 600 μM DTPA (C), following an hour incubation in 

pH=7.5, 100 mM phosphate buffer. Other solution conditions are as in Fig. 2-7 

(aerobic condition). Error bars represent one standard deviation from the mean value 

(n=3).  
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Figure 2-13 
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Figure 2-14. ROH for the supernatant, the resuspended particles and original 

suspension of (A) SRM 1649 and (B) SRM 2975 following incubation for 1 

hour in 100 mM phosphate buffer or 600 μM DTPA in 100 mM phosphate 

buffer. ROH was determined in the presence of 3 mM NADPH, 5% DMSO, 

1500 µM 3ap and 3 mg/ml SRM 1649 or SRM 2975 under aerobic condition. 
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Figure 2-15. ROH for the supernatant, the resuspended particles and original 

suspension of (A) SRM 1649 and (B) SRM 2975 following incubation for 24 

hours in 100 mM phosphate buffer or 600 μM DTPA in 100 mM phosphate 

buffer. ROH was determined in the presence of 3 mM NADPH, 5% DMSO, 

1500 µM 3ap and 3 mg/ml SRM 1649 or SRM 2975 under aerobic condition. 
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Figure 2-16. ROH for the supernatant (□) and the resuspended particles (■) of 

(A) SRM 1649 and (B) SRM 2975 following incubation over days in 100 mM 

phosphate buffer. ROH was determined in the presence of 3 mM NADPH, 5% 

DMSO, 1500 µM 3ap and 3 mg/ml SRM 1649 or SRM 2975 under aerobic 

condition. 
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2.4. Discussion 

 

 These results can be largely understood within the mechanism of redox 

cycling originally proposed by Dellinger et al. (2001) and Squadrito et al.(2001) and 

supported by later work (Valavanidis et al. 2005; Valavanidis et al. 2006) (outlined in 

reactions 2-12 to 2-16).  This mechanism, which is based on quinone redox cycling, is 

also thought to operate in some biological systems, and in fact, is analogous to that 

proposed for one mode of action of the quinone anti-cancer compounds such as 

diaziquone (eg. Li et al. 2000; Li et al. 1999, 12; Gutierrez 2000). In this mechanism, 

certain quinones and metal ions (principally Fe but other redox-active metals as well) 

act as catalysts to support the oxidation of organic compounds by O2 (Rxn 2-12), and 

in this process, produce .OH (Rxn. 2-14). Thus, it is not surprising that insignificant 

amounts of .OH are produced by the pure mineral phases such as silica (aerosil) or 

kaolinite, because these particles either do not contain a catalyst (redox-active metal 

ion or quinone) or a pool of reduced organic (or inorganic) compounds that can serve 

as electron donors to O2 or H2O2. Addition of an electron donor (NADPH) to the 

silica and kaolinite did not increase ROH in the presence of either air or H2O2, also 

suggesting that these particles cannot catalyze the O2- or H2O2-dependent oxidation 

of NADPH.  The fly ashes exhibited similar behavior to these mineral phases, 

implying that they as well do not contain catalysts that can support the oxidation of 

NADPH by O2. 
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 The very low ROH observed for the other particles in the presence of air but 

absence of NADPH could be attributed to several factors: 1) a limited pool of electron 

donors available from the particles; 2) limited production of H2O2; 3) O2 acting as a 

“sluggish” electron acceptor. For SRM 2975, the substantial increase in ROH in the 

presence of H2O2, either in the presence or absence of O2, suggests that electron 

donors are not limiting, but instead that H2O2 acts as a more direct and perhaps a 

more facile electron acceptor for .OH production (Figure 2-7A). In contrast, although 

SRM 1649 does show some increase in .OH production in the presence of H2O2, this 

increase does not extend beyond ~ 50 min. (Figure 2-7B), suggesting a limiting pool 

of electron donors.  

 The contrasting effects of DFX and DTPA imply that metal ions play two 

distinct roles in .OH production. DFX is a strong and selective chelator of iron, and 

would be expected to suppress .OH formation through inhibition of the Fenton 

reaction (Rxn. 2-14) as is observed (Figure 2-11). In contrast, DTPA is capable of 

strongly chelating a broad spectrum of metal cations including iron. Although 

elevation of ROH in the presence of DTPA might be attributed to enhanced metal 

mobilization (Smith and Aust 1997) and the ability of reduced metal-DTPA 

complexes to remain active as Fenton reagents (Welch et al. 2002; Miller et al. 1990), 

this explanation appears inconsistent with recent work that examined a well-defined 

redox-cycling system containing NADPH, diaziquone and iron (Li et al. 2000), in 

which DTPA significantly suppressed .OH production. An intriguing, alternative 

possibility is that DTPA enhances ROH by chelating divalent metal cations that would 

normally stabilize o-semiquinone radicals via complexation (Felix and Sealy 1981).  
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These stabilized o-semiquinones would be expected to undergo less facile reaction 

with O2 and O2
.-, thereby slowing the catalytic production of O2

.- and H2O2. If so, then 

the presence of redox-inactive metal cations such as Mg2+, Ca2+, Cd2+ and Zn2+ could 

also substantially influence .OH production rates in these particles. This would also 

suggest a key role for o-semiquinones in the redox cycling, consistent with the 

original proposal of Pryor and co-workers (Dellinger et al. 2001; Squadrito et al. 

2001), as well as more recent EPR results (Valavanidis et al. 2005; Valavanidis et al. 

2006). 

 In the presence of NADPH, the very high values of ROH observed for diesel 

particulate matter and the lesser, but still high values observed for urban dust provide 

further support for the role of quinone redox cycling. Cho et al. 2004 reported 

recently that diesel particulate matter contained high levels of four quinones, while 

urban dust (SRM 1649) contained much smaller but significant levels of these same 

quinones, mirroring the trend in ROH. 

 To our knowledge, these measurements have provided the first quantitative 

estimates of .OH formation for a wide range of airborne particulate matter. The 

method employed is relatively fast and highly-sensitive and should be widely 

applicable to the measurement of .OH formation in many of particle types, including 

nanoparticles. Rapid screening by fluorescence based approaches (Blough and 

Simpson 1988; Li et al. 1999a) may further prove possible. 
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Chapter 3: Impact of Airborne Particulate Matter 
on Cellular Toxicity 
 

Abstract 

 

Suspensions of human airway epithelial cells (BEAS-2b) and mouse 

epidermal cells (JB6) were employed to examine the effects of different airborne 

particles on cell survival and hydroxyl radical (.OH) generation. The production of 

.OH in these cell systems was examined by a sensitive method which employed a 

fluorescamine-derivatized nitroxide probe. The airborne particles that were examined 

included urban dust (SRM 1649), diesel particulate matter (SRM 2975), coal fly ash 

(SRM 2689), Kaolinite (KGa-1b) and Aerosil (pure silica).  

Although some .OH production was observed in the presence of these cell 

lines when exposed to diesel particulate matter and urban dust, rates of cell death did 

not correlate with the .OH production rate. Further, silica particles, which exhibited 

no evidence of .OH production, produced the most rapid cell death. These results 

suggest that the .OH production is not the primary factor controlling cell death 

following short term exposure to these particles.  

On the other hand, both cell death and hydroxyl radical formation were 

dramatically enhanced when an external biological reductant, NADPH, was added to 

a suspension of cells and urban dust. In this situation, the high flux of .OH is the 

likely factor causing cell death. 
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3.1. Introduction 

 

 Lung epithelial cells are exposed to a variety of stresses such as bacteria, 

viruses, inorganic particles (asbestos, silica), air pollution toxins ( NO2, N2O3, O3) 

and airborne particulate matter. It has been reported (Andersson et al. 1990; 

Andersson et al. 1997; Pope III et al. 2002; Brook et al. 2004; Somers et al. 2004) that 

airborne particulate matter contributes to several lung diseases, including pulmonary 

fibrosis, acute respiratory diseases and lung cancer. A variety of studies have been 

conducted to understand the mechanisms by which particulate matter (PM) interacts 

with lung tissue (MacNee and Donaldson 2003; Agopyan et al. 2003; Dellinger et al. 

2001). However, the heterogeneity in PM composition makes it difficult to identify a 

single mechanism to explain the toxicity of airborne particulate matter. Production of 

reactive oxygen species (ROS) by airborne particles has been suggested to be one of 

the possible mechanisms causing the adverse health effects (Brown et al. 1996; 

Heunks et al. 2000; Li et al. 2002; Tao et al. 2003).   

 Most past efforts to detect ROS generated by airborne particles, particularly 

the hydroxyl radical (.OH), have employed spin trapping with electron spin resonance 

detection (ESR; Briedé et al. 2005; Schins et al. 2002; Kadiiska et al. 1997; Ding et 

al. 2001; Shi et al. 2003a) and only few of these studies have examined the generation 

of .OH in cell systems. However, spin trapping with ESR detection can not provide 

quantitative estimates of the rate of .OH production (Kieber and Blough 1990b; Pou 

et al. 1994; Finkeistein et al. 1980). In addition to spin trapping and ESR detection, 

formation of 8-hydroxy-2’ deoxyguanosine (8-oxo-dG) or DNA strand breakage have 



 

 81 
 

been employed as markers for OH production (Li et al. 2003; Prahalad et al. 2001; 

Karlsson et al. 2005, Aljandali et al. 2001). These two methods can not be readily 

employed to measure .OH production. Guanine is oxidized during the sample 

preparation while DNA strand breaks require repeated attack of .OH in the same 

location (Xu et al. 1999; Shi et al. 2003b). 

  Only a few studies have examined the toxicity of airborne particulate matter 

on cells and its possible relationship with hydroxyl radical production (Hiura et al. 

1999; Li et al. 2002; Hirano et al. 2003, Upadhyay et al. 2003). Existing studies have 

usually employed non-specific techniques such as a decline in GSH/GSSG ratio, 

increase in IL-8 or a decrease in cell death in the presence of radical scavengers to 

determine ROS production.  

 Here, we examine the effects of several types of airborne particles on the 

survival of human airway epithelial cells (BEAS-2b) or mouse epidermal cells, as 

well as its relationship to .OH generation. A highly sensitive technique was employed 

to quantify .OH produced by several airborne particles in the presence of two cell 

lines. In this technique, .OH reacts with DMSO to produce a methyl radical. The 

methyl radical is then trapped with a fluorescamine-derivatized nitroxide, 3apf, to 

produce the stable O-methyl-hydroxylamine product (Scheme 3-1). The product is 

separated by reversed phase liquid chromatography and detected fluorometrically 

(Kieber and Blough, 1990b; Johnson et al. 1996; Vaughan and Blough, 1998; Li et al. 

1999a; Li et al. 1999b; Li et al. 2000). In this work, effect of airborne particles on the 

death of BEAS-2b and JB6 cell was first examined. Our results suggest that the .OH 
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production is not the primary factor controlling cell death in the presence of these 

particles. 
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 Scheme 3-1. .OH trapping method; (Li et al. 1997; Li et al. 1999b) 
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3.2. Experimental section 

3.2.1. Materials 

 

 The reduced form of β-nicotinamide adenine dinucleotide phosphate 

(NADPH), fluorescamine, catalase (CAT) and superoxide dismutase (SOD) were 

purchased from Sigma. Dimethyl sulfoxide (DMSO) (99.9%), potassium dihydrogen 

phosphate (99.99%), sodium chloride (99.999%), hydrochloric acid (99.999%), boric 

acid, and acetonitrile were purchased from Aldrich. 3-Amino-2,2,5,5-tetramethyl-1-

pyrrolidinyloxy (3ap) and 3-carbamoxyl peroxide (3cp) was purchased from Acros. 

Hydrogen peroxide was purchased from Fisher. Acetic acid and methanol (HPLC 

grade) were purchased from J.T.Baker. AZQ was provided by Drug Synthesis & 

Chemistry Branch, Developmental Theraputics Program, Division of Cancer 

Treatment and Diagnosis, National Cancer Institute, Bethesda, MD. Ultra High Pure 

(UHP) grade nitrogen was obtained from Airgas. Keratinocyte basal medium (KBM) 

and additives insulin, gentamicin sulfate and amphotericin (GA), bovine pituitary 

extract (BPE), epidermal growth factor (rhEGF) and hydrocortisone were purchased 

from Clonetics. Cell culture medium [ Earl’s modified essential medium (EMEM)], 

L-glutamine, fetal calf serum (FCS), penicillin/streptomycin and trypsin-EDTA were 

purchased from Gibco. All chemicals were used as received. A Millipore Milli-Q 

system provided water for all experiments. 

 Phosphate-buffered saline (PBS) was prepared by dissolving 6.7 mM 

KH2PO4 and 0.9% (w/w) NaCl in Milli-Q water, the pH of the buffer solution was 
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adjusted to 7.4 using concentrated sodium hydroxide solution. The buffer was then 

autoclaved and stored at 4°C. 

 

3.2.2. Particle source 

 

Standard reference materials urban dust (SRM 1649), diesel particulate matter 

(SRM 2975), coal fly ash (SRM 2689) were obtained from National Institute of 

Standard and Technology, Gaithersberg, MD. The Clay standard kaolinite (KGa-1b) 

and Aerosil were received from the Clay Mineral Society and the Degussa 

Corporation, respectively. All airborne particulate matter was used without 

pretreatment. 

 

3.2.3. Apparatus 

 
 The UV-Vis spectrophotometers, balance, pH meter and HPLC employed in 

these experiments are described in chapter 2. Chromatographic conditions were 

identical to those used in chapter 2 (section 2.2.3). A Bruker/IBM ER 200D-SRC 

ESR spectrometer was employed in all ESR measurements. Samples were drawn into 

50 μL capillary tubes which then sealed at the top and bottom, and placed within 

standard 3 mm i.d. quartz ESR tubes. Standard instrument settings were as follows: 

frequency 9.90 GHz; microwave power 10 mW; modulation amplitude, 0.952 G; 

sweep width, 80 G; time constant, 40.96 ms; and scan time, 30 s. 
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 To obtain spin concentration of 3apf, 3-carbamoyl-proxyl (3cp) was used to 

provide a calibration curve.  A 10 mM 3cp stock solution was prepared in water with 

exact concentration of 3cp stock which was measured by UV-Vis absorption (the 

extinction coefficient of 3cp at ε326=2850 M-1 cm-1; Gan 2004). After a serial dilution 

of 3cp solution, their ESR peak area obtained by double integration. Based on this 

calibration curve, spin concentration of 3apf was then obtained.  

 

3.2.4. Cell culture 

3.2.4.1. Preparation of culture medium for lung epithelial cells (BEAS-2b) 

 

 Human epithelial lung cells (BEAS-2b) were received from Dr. Peter L. 

Gutierrez and were grown in continuous culture in keratinocyte basal medium (KBM) 

supplemented with insulin, gentamicin sulfate, amphotericin, bovine pituitary extract, 

epidermal growth factor and hydrocortisone. The complete media was called 

keratinocyte growth medium (KGM). Cell viability was determined by trypan blue 

exclusion, whereas cell numbers were determined with a hemacytometer. 

 

3.2.4.2. Preparation of culture medium for mouse epidermal cells (JB6) 

 

 Mouse epidermal cells (JB6) were also received from Dr. Peter L. Gutierrez 

and were grown in continuous culture in Earl’s modified essential medium (EMEM) 

supplemented with 10% fetal calf serum, 2 mM L-Glutamine, 50 U/ml penicillin and 

50 μg/ml streptomycin.  
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3.2.4.3. Maintenance of cell culture for BEAS-2b cells 

 
 Cells were incubated in T-75 flasks at 37ºC in a humidified atmosphere of 5% 

CO2 in air, and examined every 2-3 days to determine whether they needed 

subpassage or media change. 

 Cell cultures at 80-100% confluent density were harvested by first aspirating 

off the media and washing the cells with 10 mL of PBS. The aspirated growth media 

(old media) was kept for the next step. 4-5 mL trypsin EDTA solution was then added 

to the flask, which was incubated at 37ºC for 5 minutes. When approximately 80-90% 

of the cells were detached (which can be facilitated by “tapping” the flask), 8-10 mL 

old media was added to the flask to neutralize the proteolytic activity of the trypsin 

solution., and then the nonadherent cells transferred to the sterile tube. The cells was 

centrifuged at 1200 rpm for 10 minutes. The supernatant was aspirated off and 10 mL 

KGM was added to the tube. Known amounts of the suspended cells were transferred 

to new T-75 flasks, and total volume was brought up to 12-14 mL with fresh media 

(KGM). The newly transferred cells were then incubated at 37ºC and the media was 

changed every 3 days. 

 

3.2.4.4. Maintenance of cell culture for JB6 cells 

 
 Cells were incubated in T-75 flasks at 37ºC in a humidified atmosphere of 5% 

CO2 in air, and examined every 2-3 days to determine whether they needed 

subpassage or media change. 
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 Cell cultures at 80-100% confluent density were harvested by first aspirating 

off the media and washing the cells with 10 mL of PBS. 2 mL trypsin EDTA solution 

was then added to the flask, which was incubated at room temperature for 4 minutes. 

When approximately 80-90% of the cells were detached (which can be facilitated by 

“tapping” the flask), 4 mL of growth medium was added to the flask to neutralize the 

proteolytic activity of the trypsin solution. A known quantity of the suspended cells 

were transferred to new T-75 flasks, and total volume was brought up to 10 mL with 

fresh medium (EMEM). The newly transferred cells were then incubated at 37ºC, 

with the media changed every 3 days. 

 

3.2.4.5. Preparation and counting cell suspension 

 

 A hemocytometer was used to count the viable cells in suspension after being 

mixed with trypan blue solution. A serial dilution of the cell suspension was made in 

either growth media or PBS. The hemocytometer consisted of several 1 mm squares 

divided into smaller squares. One of the 1 mm squares represented a volume of 0.1 

cm3 (or 1 x 10-4 mL). Using the 20X objective, the number of cells was counted in a 

1mm square area. If more than a single 1-mm square area was counted, the results 

were averaged to calculate the concentration of cells. The average number of cells (n) 

present in 0.1 mm3 (or 1 x 10-4 mL) area gave a concentration of n x 10-4 cells/mL. 

Since the cell suspension was diluted 1:1 with the trypan blue solution, then the 

number of cells in the original cell suspension was calculated by 2n x 10-4 cells/mL. 
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3.2.4.6. Dye exclusion test for the viability of cells 

 
 The dye exclusion test was used to determine the number of viable cells 

present in a cell suspension. It is based on the principle that live cells possess intact 

cell membranes that exclude certain dyes, such as trypan blue, whereas dead cells do 

not. In this test, a cell suspension was simply mixed with equal volume of trypan blue 

solution (10-50 μL), with a low magnification microscope (20X) then used to visually 

determine whether cells take up or exclude dye. Viable cells will have a clear 

cytoplasm whereas nonviable cells will have a blue cytoplasm. The percentage of 

viable cells was calculated as follows:  

  

 
Viable cells (%) =

total number of viable cells per mL of aliquot

total number of cells per mL of aliquot
X 100

 
 

 

3.2.4.7. Preparation of the BEAS-2b and JB6 cells for experiments 

 
 Either BEAS-2b or JB6 cells (~80-90% confluent density) were harvested by 

aspirating off the growth medium and washing the cells with 10 mL of 37ºC PBS. 

BEAS-2b was incubated at 37ºC with 4-5 mL trypsin-EDTA solution for 5 minutes 

and 2 mL trypsin solution was added to JB6 cells, followed by incubation at room 

temperature for 5 minutes. After cells was detached from the flask surface, 8-10 mL 

of used growth medium (medium aspirated off the cell culture flasks containing cells; 

KGM) to the BEAS-2b suspension and growth medium (EMEM) to the JB6 
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suspension. The cells were then centrifuged for 10 minutes at (1200 rpm for BEAS-

2b and ~1200 rpm for JB6, using table ICE clinical centrifuge), the supernatant 

decanted and the pellet resuspended in 10 mL PBS. The cells were washed with PBS, 

and then suspended in an appropriate volume of PBS for the experiments. 

 

3.2.5. Toxicological studies 

 

 In this study, we used two different methods to determine the toxicity of 

airborne particulate matter on lung epithelial cells (BEAS-2b) and mouse epidermal 

cells (JB6). In the following sections, these two methods are described. 

 

3.2.5.1. Toxicological method I 

 
 In the first method, equal concentration of BEAS-2b cells, attached to T25 

flasks, was exposed to different concentration of particles (Urban Dust, Diesel 

Particulate Matter and Aerosil) in PBS for 2 hours while they were incubating at 

37ºC. After the incubation time, the particles were drawn out and the cells were 

washed with PBS. The cells were then fed with keratinocyte media for 12 days. After 

12 days, the viable cells were counted with trypan blue exclusion. The percentage of 

viable cells was calculated based on the control which was incubated with PBS for 2 

hours before addition of keratinocyte media for 12 days. The precision of the method 

was determined from the reproducibility of three measurements of viable cells for a 
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given experimental condition. The maximum %RSD was 52 %. Error bars reported in 

the figures represent ± one standard deviation. 

 

3.2.5.2. Toxicological method II 

 
 To investigate further the toxicity of airborne particles, additional experiments 

were performed in PBS or suspension of particles in PBS, using not only BEAS-2b 

cells, but the mouse epidermal cell line JB6. In this experiment, either 0.1 or 1 

mg/mL Urban Dust (SRM 1649, UD), Diesel Particulate Matter (SRM 2975, DPM), 

Coal Fly Ash (SRM 2689, CFA),  Kaolinite (KGa-1b) or Aerosil (AS) was added to 

suspension of 2 x 106 cells/mL in PBS. Cell viability was assessed every 30 minutes 

by the trypan blue exclusion method over a course of 3.5 hours. The percentage of 

viable cells in PBS was employed as the control for this experiment. The precision of 

the method was determined from the reproducibility of three measurements of viable 

cells for a given experimental condition in the same day as well as for the 

experimental condition over multiple days. The maximum %RSD was 15 %,. Error 

bars reported in the figures represent ± one standard deviation. 

 

3.2.6. Synthesis of 3apf 

 

 3apf was synthesized by a one-step reaction of 3ap with fluorescamine in 

acetonitrile (rxn. 3.3). 
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123.9 mg of fluorescamine was dissolved in 3 mL of dry ACN. 70 mg 3ap was 

dissolved in 3 mL of dry acetonitrile and then added dropwise with stirring to the 

solution of fluorescamine (after adding each 4-5 droplet of 3ap aliquot, the 

fluorescamine solution was vortexed for 1 minute.). After adding all 3ap to 

fluorescamine solution, the total volume of solution was reduced to 0.5 mL by 

flushing with dry nitrogen. The final solution was stored at -20 ºC for 48 hours, till 

the bright yellow precipitate of 3apf was produced. The supernatant was decanted, 

and the precipitate was rinsed three times with total of 9 mL of ethyl ether and then 

dried with nitrogen. The yellow product was stored in the dark at -20 ºC. Analysis by 

HPLC (mobile phase containing 55% acetate buffer pH = 4.0, and 45% methanol) 

showed approximately 97% purity for 3apf. ESR spectra showed an intense three-line 

spectrum with AN= 16.0 G, and a 3apf spin concentration was measured by 

comparing to 3cp standard calibration curve (described in section 3.2.3). 
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3.2.7. Kinetics of the probe bioreduction 

 
 Different concentrations of BEAS-2b (0.99-33 x 106 cells/mL) were 

suspended in PBS containing 500 μM 3apf and 50 mM DMSO (0.35%) and incubated 

at 37 ºC. Aliquots of the samples were drawn into 50 μL capillaries after appropriate 

incubation periods, and placed within standard 3 mm i.d. quartz ESR tubes. 

Incubation times were measured from the addition of 3apf to the start of ESR data 

collection. An average of 16 ESR spectra scans requiring 8 min was recorded on a 

Bruker/IBM 200D-SRC ESR spectrometer for each of these aliquots. Standard 

instrument settings were as follows: frequency 9.90 GHz; microwave power 10 mW; 

modulation amplitude, 0.952 G; sweep width, 80 G; time constant, 40.96 ms; and 

scan time, 30 s. As shown in Figure 3-1, the bioreduction of 3apf is negligible for 2.0 

x 106 cells/mL of BEAS-2b.  Based on bioreduction of 3apf by JB6, reported 

previously (Li et al. 1999b), 2.0 x 106 cells/mL is an appropriate concentration to be 

used in these experiments. 
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Figure 3-1. Kinetics of the bioreduction of 3apf by BEAS-2b cells (0.99 - 33 x 106 

cells/mL). Cells were suspended in PBS containing 500 μM 3apf and 0.05 M DMSO. 

Time courses for reduction. C(t)/C0 represents the fraction of the original ESR signal 

amplitude remaining at time t.  

 

3.2.8. Hydroxyl radical determination 

 
 500 μM 3apf and 0.05 M DMSO were added to the cell suspensions (2 x 106 

cells/mL) in PBS. The reaction was initiated by adding a suspension of particles in 

PBS to a final volume of 1 mL. The mixture was incubated at 37ºC in a humidified 

atmosphere of 5% CO2. Reactions were terminated by centrifuging the cell and 

particle suspension for 4 min at 3000 rpm (model 5415c Ependorf centrifuge). The 
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supernatant was analyzed by HPLC. Incubation times were measured from the 

addition of particles until the injection of supernatant onto the HPLC system. 

Viability of cells was tested by trypan blue exclusion after each injection. 

 

3.2.9. Hydroxyl radical detection and quantification 

 
 The method for detection and quantification of .OH in biological systems was 

previously described in our laboratory (Li et al. 1999a; Li et al. 1997).  A detailed 

description of technique for the preparation of Me-3apf standard was explained in 

chapter 2. This method was employed to determine quantitatively the formation of 

hydroxyl radical.  

  The conditions for detecting and quantifying .OH with 3apf in the presence of 

JB6 cells were previously determined (Li et al. 1999b), but it was necessary to 

establish whether these conditions were compatible with BEAS-2b cells. Therefore, 

we focused on experiments that examined the dependence of Me-3apf yield on 

DMSO and 3apf concentration (see section 3.3.4). 
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3.2.10. Precision, accuracy and detection limit (D.L.) 

  

 The precision of the first and second toxicological tests was determined from 

the reproducibility of multiple viable cell counting (≥ 3) for a given experimental 

condition. The maximum %RSD was 52 % and 15 % for first and second tests, 

respectively, which includes the reproducibility of the measurements. Error bars 

reported in the figures represent ± one standard deviation. 

 The precision of the method for measuring .OH produced by airborne particles 

in the presence of cells was determined from the reproducibility of multiple HPLC 

injections (≥ 3) for a given experimental condition over multiple days. The maximum 

%RSD was 5 %, which includes the reproducibility of the measurements from day to 

day. Error bars reported in the figures represent ± one standard deviation.  

 The accuracy of the method to measuring .OH depends on accuracy of the 

molar extinction coefficient for CH3-3apf because the peak area of chromatograms 

was converted to concentration of CH3-3apf obtained by UV-Vis method as explained 

in sections 2.2.5.1 and 2.2.5.5. Moreover, the accuracy of the method mainly depends 

on the accuracy of  a coefficient which was used to convert Me-3apf concentration in 

aerated samples to integrated .OH formation through multiplication by a factor of 3.2 

± 0.2 and 2.9 ± 0.36 obtained at [3apf]=500 μM and [O2]=250 μM in the presence of 

BEAS-2b and JB6 cells, respectively.   

 In these experiments, using 0.05 M DMSO is another important factor which 

has a large effect on accuracy. Figure 3-5 showed that .OH production at high 

concentration of DMSO is approximately 52% higher than .OH production at 0.05 M 
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DMSO. A factor was used to adjust .OH production in the presence of 0.05 M DMSO 

to.OH production at high enough concentration of DMSO, which provided a 

saturation level. The accuracy of method depends on the accuracy of the factor. 

 Defining the detection limit as twice the standard deviation of the blank (500 

μM 3ap, 0.05 M DMSO, 2 x 106 cells/mL; n ≥ 8), values of 9 and 8 nM were 

estimated for CH3-3apf (50 μL injection volume) for samples containing BEAS-2b 

and JB6 cells, respectively. These values are similar in magnitude to the detection 

limits previously reported for this method when applied to other systems (Li et al. 

1997; Li et al. 1999b).  

 

3.3. Results 

3.3.1. Toxicity of diesel particulate matter, urban dust and 

Aerosil 

 
 The toxicity of particles to lung epithelial cells was investigated first by 

exposing BEAS-2b cells to a suspension of particles in PBS for 2 hours and 

subsequently growing the cells in the culture media (for method I). Figures 3-2 A-C 

show the viability of BEAS-2b cells following exposure to DPM, UD and Aerosil, 

respectively. Viability of BEAS-2b cells decreased from 80% to 20% when the 

concentration of DPM increased from 0.015 to 1.0 mg. UD enhanced cell growth up 

to 0.07 mg/mL, but decreases in cell viability were observed from 0.1 mg/mL through 

0.7 mg/mL, with no viable cells detected at 1 mg/mL. In the presence of Aerosil, 
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there was a similar decrease to DPM between 0.015 and 0.1 mg/mL and substantial 

reductions were observed at concentrations higher than 0.1 mg/mL. This resulted in 

very low cell viability at 0.4 mg/mL to total cell death at 1 mg/mL. The rate of cell 

death was much faster in the presence of Aerosil than two other tested particles.  

 

 

 

 

 

Figure 3-2. Graphs A, B and C illustrating BEAS-2b cells growth treated with 

different concentration of SRM 2975 (DPM), SRM 1649 (UD) and Aerosil for 2 

hours, respectively. Error bars represent one standard deviation from the mean value 

(n=3). 
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 A second test (method II) was performed to investigate further the toxicity of 

airborne particles, using not only BEAS-2b cells, but the mouse epidermal cell line 

JB6. In this test, 2 x 106 cells/mL of BEAS-2b or JB6 were suspended in PBS alone, 

or in 1 mg/mL or 0.1 mg/mL of the three airborne particles used above (DPM, UD, 

Aerosil), as well as CFA and  Kaolinite. Cell viability was assessed every 30 minutes 

by the trypan blue exclusion method over the course of 3.5 hours (Figure 3-3, 3-4).  

 In the course of 3.5 hours, viability of BEAS-2b cells decreased to 42% when 

the cells were kept in PBS. 5% BEAS-2b cells were viable in the presence of 1 

mg/mL Aerosil while viability of the cells exposed to 1 mg/mL DPM decreased to 

30%. The cell viability was also decreased to 30% and 56% when they were 

incubated with 1 mg/mL of CFA and Kaolinite, respectively. In contrast 100% of 

BEAS-2b was viable after 3.5 hours incubation with 1 mg/mL UD (Figure 3-3-A). 

Figure 3-3-B clearly shows that UD kept BEAS-2b viable during the course of 3.5 

hours while Aerosil was the most toxic particle and dramatically killed the cells. 

Chang et al. 2007 also reported that cell membrane is damaged at high dosages of 

silica. The rest of the particles did not show an obvious toxicity to the cells comparing 

to PBS.  

  Viability of JB6 was also tested with exposing to 1 mg/mL of each particles, 

as well as PBS. After a course of 3.5 hours, 100% of JB6 cells were viable, while cell 

viability was decreased to 30%, 43%, 55% and 56% when the cells were incubated 

with 1 mg/mL of DPM, Aerosil, CFA and Kaolinite, respectively. On the other hand, 

100% of the cells were viable when they were exposed to 1 mg/mL UD (Figure 3-3-

C). Figure 3-3-D shows that UD kept JB6 viable during the course of 3.5 hours while 
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DPM was the most toxic particle and killed the cells faster than the other particles. 

Viability of JB6 cells showed same decreasing pattern when the cells were incubated 

with 1 mg/mL of CFA, Kaolinite and Aerosil. 

 We also examined the viability of both BEAS-2b and JB6 cells in the 

presence of 0.1 mg/mL of the each suspended particles mentioned above. Either PBS 

or 0.1 mg/mL suspension of the particles in PBS caused approximately 30-50% cell 

death for BEAS-2b cells over the course of 3.5 hours (Figure 3-4-A) and they did not 

cause any toxicity to the cells (Figure 3-4-B). Neither PBS nor 0.1 mg/mL suspension 

of the particles in PBS caused cell death for JB6 cells (Figure 3-4-C & D).  

 There are some differences between the observed toxicity for the first (Figure 

3-2) and second (Figure 3-3, 3-4) toxicological experiments because it is more 

possible to generate toxic species (such as .OH) in the presence of culture medium. In 

the case of DPM, viability of cells was decreased linearly in both first and second 

experiment, but the cell death was faster in the first experiment which is consistent 

with increase in hydroxyl radical production and cell toxicity in the presence of 

media. In the case of Aerosil, viability of BEAS-2b cells was decreased rapidly when 

the cells kept in PBS or medium. 

 In general, these toxicology experiments showed that BEAS-2b cells are very 

sensitive to their environment. They were killed with a relatively high rate at 1 

mg/mL of diesel particulate matter, coal fly ash, kaolinite and Aerosil. In contrast, 

JB6 cells showed less sensitivity to the toxic environment.  
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Figure 3-3. Time course for viability of BEAS-2b and JB6 cells in PBS (●); in PBS  

and suspension of 1 mg/mL Aerosil (○); KGa-1b (▼); SRM 2689 (CFA) (▽); SRM 

2975 (DPM) (■); SRM 1649 (UD) (□). Error bars represent one standard deviation 

from the mean value (n=3). The lower graphs represent time course for percentage of 

viable cells in each particle suspension to viable cells in PBS. 
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Figure 3-4. Time course for viability of BEAS-2b and JB6 cells in PBS (●); in PBS 

and suspension of 0.1 mg/mL Aerosil (○); KGa-1b (▼); SRM 2689 (CFA) (▽); SRM 

2975 (DPM) (■); SRM 1649 (UD) (□). Error bars represent one standard deviation 

from the mean value (n=3). The lower graphs represent time course for percentage of 

viable cells in each particle suspension to viable cells in PBS. 
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3.3.2. Effect of DMSO concentration on cell viability 

 
 Since DMSO is required to react with .OH in the reaction mixture, it was 

necessary to find the exact concentration of DMSO under which cells would remain 

viable. To establish this condition, BEAS-2b cells (2x106 cells/mL) were suspended 

in different concentrations of DMSO in PBS (Table 3-1). The percentage of viable 

cells in the presence of 0.05 M DMSO was same as PBS, but this percentage rapidly 

decreased at higher concentration of DMSO.  

 Based on these results and DMSO dependence (see section 3.3.4), 0.05 M 

DMSO and 500 μM 3apf were selected as the optimum condition to maintain cell 

viability in the nitroxide studies. 

 

Table 3-1. Viability of BEAS-2b cells in the presence of different concentration of 
DMSO. Error bars represent one standard deviation from the mean value (n=3). 

 
 
     Concentration of DMSO                       Time (min)                Viable Cell                               
  
                             

                           PBS                                       120                          64.5% ± 1.4 

          PBS, 0.025 M DMSO                             120                        63.2% ± 3.4 

          PBS, 0.036 M DMSO                             120                       64.4% ± 4.5 

          PBS, 0.05 M DMSO                               120                       60.2% ± 2.9 

          PBS, 0.1 M DMSO                                 120                       45.3% ± 4.8 

          PBS, 0.7 M DMSO                                 120                       11.3% ± 6.0 
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3.3.3. Results of bioreduction of 3apf 

 
 There is ample evidence that cells and tissues can reduce most types of 

nitroxides to their corresponding hydroxylamines. The rate of bioreduction varies 

with the structure of the nitroxide, cell permeability, and type and physiological state 

of the cells. In our studies, a nitroxide (3apf) was the molecular probe used to analyze 

the production of .OH. Thus, it was necessary to examine the kinetics of probe 

bioreduction for establishing the appropriate conditions for .OH measurements 

quantitatively. Swartz and co-workers (Kocherginsky and Swartz, 1995) reported that 

pyrrolidinyl nitroxides have higher resistance to bioreduction than piperidinyl 

nitroxides because the six member ring nitroxides, (piperidines), can undergo 

conformational changes that make the reaction sites more approachable for reduction. 

As examined previously by Li et al. (Li et al. 1999b), bioreduction of 3apf, a 

pyrrolidinyl nitroxide, in the presence of mouse epidermal cells (JB6) had a first-

order decay kinetics at higher cell densities, and exhibited very slow reduction at cell 

densities between 2 - 4.5 x 106 cells/mL. To work with lung epithelial cells (BEAS-

2b), we examined the bioreduction of 3apf to find the best cell density to measure 

.OH quantitatively. The nitroxide 3apf, showed a faster bioreduction with BEAS-2b 

comparing to JB6 cells. The appropriate cell density used in these experiments was 

2.0 x 106 cells/mL, in which only ~10% of 3apf was lost over the course of 3.5 hours 

(Figure 3-1). 
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3.3.4. Dependence of Me-3apf and .OH production on DMSO 

and 3apf concentration 

 
 To establish the condition for determining hydroxyl radical quantitatively, the 

dependence of formation rate of Me-3apf on the concentration of DMSO and 3apf 

was first examined. Hydroxyl radical competitively reacts with DMSO and other 

solution constituents (Si; Rxns. 3-4 and 3-5). Methyl radical, also, will react with 

oxygen in competition with its reaction with 3apf (Rxns. 3-6 and 3-7). 

 

                        F            .OH + Si       ki                             Products                                 (3-4) 

              .OH + DMSO    kDMS O      .CH3 + CH3SO2H                             (3-5) 

              .CH3 +  O2        kO       .CH3O2                                                 (3-6) 

                  .CH3 + 3apf       kN        CH3 -3apf                                            (3-7) 

  

At steady-state condition, equation (3-8) shows the initial rate of CH3-3apf formation: 

 

   

R =
d[CH3-3apf]

dt
=

F . kN [3apf] kDM SO [DMSO]

( KO[O2] + kN[3apf]) (Σ ki[Si] + kDMSO[DMSO])
i

(3-8)

          

 

To determine the concentration of DMSO needed for quantitative analysis of 

hydroxyl radical, the concentration of 3apf and O2 were held constant and the 

dependence of rate of CH3-3apf on DMSO concentration (R) was obtained (Figure 3-
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5). Under these conditions, equation (3-8) can be considered as a hyperbolic 

dependence R on [DMSO] (equation 3-9),  

 

R =
kDM SO [DMSO] . C . F
Σ ki[Si] + kDM SO[DMSO]
i

(3-9)

 

 

where C = [kN[3apf]/( kN[3apf] + kO[O2])] is a constant (Vaughan and Blough, 1998; 

Li et al. 2000; Li et al. 1997; Li et al. 1999a Li et al. 1999b). This equation predicts a 

hyperbolic dependence of R on [DMSO]. It means that at sufficiently high [DMSO] 

such that kDMSO [DMSO] » Σ ki [Si], the formation rate of Me-3apf was independent of 

[DMSO], and quantitative reaction will be achieved. 

  Figures 3-5-A and 3-5-B show the formation rate of Me-3apf versus DMSO 

concentrations. In the presence of JB6, the difference between CH3-3apf formation 

rate at 50 mM DMSO and its saturation rate was 53.2%. For BEAS-2b cells, this 

difference was 52.5%. Here, we used a correction factor to report exact .OH 

concentration in a condition which is independent of DMSO concentration.  
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Figure 3-5. Dependence of the product formation rate on DMSO concentration in the 

reaction mixture containing 1 mg/ml SRM 1649 (UD) and 500 μM 3apf in the 

presence of 2x106 cells/mL BEAS-2b (A) and JB6 (B) reacting over two hours. Inset 

is the linearized form of the data. Error bars represent one standard deviation from the 

mean value (n=3).  
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The dependence of the formation rate of Me-3apf on the concentration of 3apf 

was then determined to define the condition that are appropriate for quantifying the 

formation of methyl radical and consequently hydroxyl radical. Since dioxygen 

competes with 3apf for methyl radical, it is necessary to define the condition that 

provides quantitative measurement of methyl radical. 

.CH3

+ O2

+ 3apf

kO

kN

.CH3O2

CH3 - 3apf

(3-10)

(3-11)

kf

 
 
 
If DMSO concentration is sufficient, the initial rate of product Me-3apf formation at 

steady state is given by the expression  

 

R =(
d[CH3-3apf]

dt
) =

kfkN[3apf ]

kO[O2] + kN[3apf]
=

kf[3apf ]

kfS + [3apf]
(3-12)

 

 

where kf  is the .OH formation rate and S = (kO [O2])/( kf kN). kf  and kf S were 

obtained from a nonlinear least-square fit to hyperbolic curve (Figure 3-6). Assuming 

an [O2] =250 µM ,  kf and kf S from Figure 3-6 can be substituted into above equation 

to calculate kO/kN, which are the rate constant for the reaction of the methyl radical 

with O2 and 3ap, respectively. This value, 4.4 ± 0.4, 3.8 ± 0.5, 3.6 ± 0.4 obtained  

from BEAS-2b, JB6 cells suspensions and absence of the cells respectively, is in a 

reasonable agreement with the result reported previously (Li et al. 1999b; Kumagai et 

al. 1997). Since this experiment indicates that O2 is the only major competitor for 



 

 109 
 

methyl radical, a rearranged form of eq. 3-12, eq. 3-13 should be used to calculate kf  

under  conditions in which methyl radical and 3apf don’t react quantitatively.  

 

kf = R ( 1+
kO[O2]

kN[3apf ]
) = R ( 1 +

[3apf]
(3-13)kfS )

 

 

In both cases of BEAS-2b and JB6 cells, 500 μM 3apf was used. kf  is defined as  kf  = 

(3.2 ± ( 0.20))R and  kf  = (2.9 ± ( 0.36))R, respectively. Based on these results, Me-

3apf concentration in aerated samples was converted to integrated .OH formation 

through multiplication by a factor of 3.2 ± 0.20 and 2.9 ± 0.36 for 500 μM 3apf 

(Vaughan and Blough, 1998; Li et al. 2000; Li et al. 1997; Li et al. 1999a Li et al. 

1999b) in the presence of BEAS-2b and JB6 cells, respectively. This concentration 

was employed in all subsequent analyses.  
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Figure 3-6. Dependence of Me-3apf formation on the concentration of 3apf in the 

standard reaction mixture containing 1 mg/ml SRM 1649 (UD), 0.05 M DMSO 500 

μM 3apf and 2x106 cells/mL of BEAS-2b (A) and JB6 (B) reacting over two hours. 

Error bars represent one standard deviation from the mean value (n=3).  
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3.3.5. Determination of hydroxyl radical production 

 
 As determined from the formation of Me-3apf (see Scheme 3-1), hydroxyl 

radical production was not detected in the suspension of either BEAS-2b or JB6 cells 

over the course of 3.5 hours when the airborne particles were not present.  However, 

addition of 1 mg/mL UD to either BEAS-2b or JB6 cells suspension produced a 

measurable level of .OH (Table 3-2; Figure 3-7). The .OH generation was increased 

linearly over the course of 3.5 hours in which 100% of these cell lines were viable. 

The rate of .OH production for JB6 was approximately two times higher than that of 

BEAS-2b cells. On the other hand, UD produced only very low level of .OH in the 

absence of these cell lines over the first 90 min and almost none thereafter (Figure 3-

7). These results suggest that .OH is generated by urban dust in the presence of cells.  
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Table 3-2.  Rates♣ of .OH formation by different particles in the presence of 
BEAS-2b and JB6 cells. 

 
 
                                                                         Rate of .OH formation (nM s-1) x103 
 

      Particles Type &              Particles**           BEAS-2b                        JB6 
Concentration (mg/mL)       (No Cells)        (2X106 Cells/mL)       (2X106 Cells/mL) 

   
  Diesel Particulate Matter               0*                    6.8 ± 0.4                    8.5 ± 0.2                                      
            (SRM 2975) , 0.1 
        
  Diesel Particulate Matter               0*                   10.6± 0.2                   16.0 ± 0.4                                      
            (SRM 2975) , 1.0 
       
Urban Dust (SRM 1649), 0.5        6.5 ± 3.0            9.7 ± 0.4                   21.2 ± 0.6 
 
Urban Dust (SRM 1649), 1.0       15.4 ± 2.1          19.4 ± 0.6                  40.7 ± 0.4 
       
Urban Dust (SRM 1649), 2.0       29.1 ± 0.6          31.7 ± 1.7                 72.8 ± 0.4 
      
Coal Fly Ash (SRM 2689), 0.1        0*                            0*                           0*      
 
Coal Fly Ash (SRM 2689), 1.0        0*                            0*                           0* 
                                           
     Kaolinite (KGa-1b), 0.1              0*                            0*                           0* 
                    
     Kaolinite (KGa-1b), 1.0              0*                            0*                           0* 
 
      Silica( Aerosil), 0.1                    0*                            0*                           0* 
                    
      Silica( Aerosil), 1.0                    0*                            0*                           0* 
   
   
 

*  is ≤ 3 x 10-3 nM s-1 which is equal or below detection limit. 
 
** The rates were obtained prior to 90 minutes. .OH formation was leveled off 
after 90 minutes.  

 
♣ Rates of .OH formation were obtained from the slope of plots of integrated .OH 
formation versus time over the first 90 minutes (minimally 3 time points) 
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Figure 3-7. Time course for formation .OH in suspension BEAS-2b (A) or JB6 (B) 

cells treated with 1 mg/mL SRM 1649 (UD); in reaction mixture. The reaction 

mixture contained 0.05 M DMSO, 500 μM 3apf, particles and 2 x 106 BEAS-2b or 

JB6 cells/mL in 6.7 mM phosphate buffer pH 7.4. (▲) represents blank including 1 

mg/mL UD.Blank included just cells barely stand at detection limit (~9 nM). Error 

bars represent one standard deviation from the mean value (n=3). 
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 At 1 mg/mL UD, .OH production rates increased linearly with increase in cell 

density for both BEAS-2b and JB6 cells (Figure 3-8). The .OH formation also was 

linear with different concentrations of Urban Dust when 2.0 x 106 cells/mL of both 

cell lines were present (Figure 3-9). The formation rates in the presence of 0.5, 1 and 

2 mg/mL UD in the presence of either BEAS-2b or JB6 cells were reported in Table 

3-2. Some hydroxyl radical production was observed in the presence of UD and 

BEAS-2b or JB6 cells over the course of 5.5 hours, but no cell death was observed 

during this period because short time exposure to urban dust stabilizes the cells. 

Figure 3-10 shows that cell death is independent of .OH formation rate over short 

time exposure. 
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Figure 3-8. Dependence of .OH formation rates on cell density. The reaction 

mixture contained BEAS-2b or JB6 cells suspended in PBS, 1 mg/ml SRM 

1649 (UD), 500 μM 3apf and 0.05 M DMSO. 
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Figure 3-9. Time course for formation OH in suspension BEAS-2b (A) or JB6 (B) 

cells treated with 0.5, 1, 2 mg/ml SRM 1649 (UD); in reaction mixture. The reaction 

mixture contained 0.05 M DMSO, 500 μM 3apf, particles and 2x106 BEAS-2b or JB6 

cells/ml in 6.7 mM phosphate buffer pH 7.4. Error bars represent one standard 

deviation from the mean value (n=3). 
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Figure 3-10. Dependence of cell viability on .OH formation rate generated 

with urban dust at different concentrations. 

 

 

 Exposing to either JB6 or BEAS-2b cells, 0.1 mg/mL DPM increased .OH 

formation linearly over the course of 3.5 hours. In this condition, the .OH production 

rate in the presence of BEAS-2b and JB6 was 6.8 ± 0.4, 8.5 ± 0.2, respectively, 

whereas, in the absence of cell lines .OH production was not observed (Table 3-2; 

Figure 3-10). The production of .OH did not increase linearly with increase in DPM 

concentration (Table 3-2) because 1 mg/mL of this particle cause 70% cell death for 

both BEAS-2b and JB6 over the course of 3.5 hours.  
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Figure 3-11. Time course for formation OH in suspension of BEAS-2b (A) or JB6 

(B) cells treated with 0.1 mg/mL SRM 2975 (DPM); in reaction mixture. Reaction 

mixture contained 0.05 M DMSO, 500 μM 3apf, particles and 2x106 BEAS-2b or JB6 

cells/mL in 6.7 mM phosphate buffer pH 7.4. Blanks included just cells or particles 

barely stand at detection limit (~9 nM). Error bars represent one standard deviation 

from the mean value (n=3). 
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 In the presence of 0.1 or 1 mg/mL of CFA, Kaolinite and Aerosil, little or no 

.OH, was produced by the BEAS-2b or JB6 cells (Table 3-2). Although Aerosil did 

not produce any .OH, it was the most toxic particles and killed BEAS-2b cells very 

quickly (Figure 3-3, 3-4). 

 Our studies show that Aerosil, kaolinite and Coal Fly Ash did not generate 

.OH. Some studies have shown that inhalation of these particles results in adverse 

health effect. The possible mechanism behind such effects can be explained by 

overloading the lung with poorly soluble particles, which results in less alveolar 

clearance and more chronic inflammation. 

 

3.3.5. Cell Viability and .OH production in the presence of 

external biological reductant 

 
 Adding 1 mM of the biological reductant, NADPH, after 90 minutes exposure 

of 2 x 106 cells/mL BEAS-2b and JB6 to 1 mg/mL urban dust, dramatically enhanced 

production of .OH (Figure 3-11). In the presence of 1 mM NADPH, the rate of .OH 

production for BEAS-2b cells was 78 ± 1.2 and  for JB6 cells was 95 ± 0.8. This high 

flux of hydroxyl radical production correlated with an increase of cell death (Figure 

3-12-A, B). Furthermore, adding 0.1 M DMSO, as a radical scavenger, protected the 

cells from death (Figure 3-12-A, B). Therefore, in the presence of an added reductant, 

the particles can produce .OH at a sufficient rate to kill the cells. 
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Figure 3-12. Time course for .OH formation in a cell suspension BEAS-2b 

(A) or JB6 (B) containing 1 mg/mL SRM 1649 (UD) in the absence and 

presence of 1 mM NADPH in reaction mixture. Reaction mixture contained 

0.05 M DMSO, 500 μM 3apf, particles and 2x106 cells/mL BEAS-2b or JB6 

cells/mL in 6.7 mM phosphate buffer pH 7.4. Error bars represent one 

standard deviation from the mean value (n=3). 
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Figure 3-13. Time course for viability of BEAS-2b (A) or JB6 (B) cells in PBS and 

1 mg/mL SRM 1649 (UD) (●); PBS, 1 mg/mL SRM 1649 (UD) and 1 mM NADPH 

(○); added 0.1 mM DMSO (▼); PBS and 1 mM NADPH (▽); PBS (■).Error bars 

represent one standard deviation from the mean value (n=3). (at 100% viable cells, 

symbols ●, ▼ and  ■ are overlapped.)  
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3.4. Discussion 

 
 According to the results obtained by method I and II (toxicological 

experiments), urban dust did not cause cell death for BEAS-2b and JB6 cells while 

.OH was generating at a very slow rate. In method I, BEAS-2b was proliferated when 

the concentration of urban dust increased from 0.015 to 0.07 mg/mL. At higher 

concentration of urban dust (more than 0.07 mg/mL), the viability of BEAS-2b cells 

decreased. The possible explanation for this proliferation effect is presence of 

substance that supports growth or low level of H2O2 (Doroshow 2006).  

 In method II, both BEAS-2b and JB6 cells were 100% viable over the course 

of 3.5 hours when the cells were exposed to 1 mg/mL of UD. On the other hand, in 

method I, most of the BEAS-2b cells were killed by exposing to 1 mg/mL UD. Here, 

there is a difference in the rate of cell death between two toxicological experiments. 

The cell death is faster when the cells were kept in media for long term (method I) 

comparing to PBS for short term (method II) because higher .OH can possibly be 

produced. Adding external biological reductant also accelerated .OH generation and 

cell death, thus showing that high rates of .OH generation, when present, can cause 

cell death. 

 The toxicological experiments also showed that DPM was very toxic to these 

cells. However, little or no .OH was detected in the presence of cells exposed to high 

concentration of DPM was detected, but using low concentration of DPM produced a 

little .OH generation. On the other hand, Kaolinite and Coal Fly Ash, which contained 

very low concentration of organic compounds or transition metals, produced little or 

no .OH generation in the presence of cells.  
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 A number of studies have investigated the relationship of pulmonary silica 

burden and silicosis (Mossman et al. 1998). Some the studies claimed that .OH is the 

cause of tissue damage associated with silicosis (Vallyathyan et al. 1988; Dalal et al. 

1990; Ding et al. 2001). These studies have shown that only freshly fractured silica 

induce .OH generation as well as AP-1 and NF-κB activation (Shukla et al. 2001; 

Kang et al. 2000). They reported that mechanical crushing of crystalline silica 

produce a significant concentration of silica-based radicals which react with a variety 

of chemical species in the atmosphere including trace amounts of water vapor to 

generate .OH.  In these studies, generation of .OH was determined with spin trapping 

and ESR detection. There are some shortcomings in that work. First, using ESR 

detection has numerous limitations and is not quantitative for .OH measurement (see 

section 1.5.1). Second, proposed mechanism for generating .OH by silica particle is 

not clear because it was assumed that freshly fractured silica provides silicon based 

radicals upon cleavage of silicon crystals and the silicon radicals then react with 

water to produce .OH. They also reported that no .OH was produced in the presence 

of aged silica (Vallyathyan et al. 1988; Dalal et al. 1990; Ding et al. 2001). 

 Our results show that Aerosil (pure silica) extensively caused cell death but 

.OH was not detected in this system. Therefore, the results indicate that .OH is not 

responsible for toxicity of silica and other possible mechanisms may be involved.  

 In conclusion, our results suggest that .OH production is not a primary factor 

producing cell death in the presence of these particles, because production rates of 

.OH is not great enough to compete with other lethal mechanism (Figure 3-12). This 

conclusion is supported by dramatic cell death in the presence of much higher 
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production of .OH. For example, 100% of cells were viable when they were exposed 

to urban dust whereas cell death significantly increased when NADPH was externally 

added to the system. The .OH formation rate for the suspension of cells and urban 

dust was 78 - 95 nM s-1 when NADPH was present while it was 6.8 - 9.2 nM s-1 in the 

absence of added NADPH. Furthermore, adding DMSO, as a radical scavenger, to 

this system protected the cells from death.  These results indicate that larger .OH 

production rates are necessary to cause rapid cell death. Therefore, a very low 

concentration of .OH produced by these particles does not cause lethality and cell 

death.  
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Chapter 4: Conclusion and Future Work 

4.1. Conclusion 

 
 The objective of this work was to determine generated .OH by particulate 

matter (PM) with a sensitive method which was previously developed by Blough and 

co-workers (Blough and Simpson 1988; Li et al. 1997; Li et al. 1999a; Kieber and 

Blough 1990a; Kieber and Blough 1990b; Vaughan and Blough 1998; Thomas-Smith 

and Blough 2001; Li et al. 1999b; Petigara et al. 2002). In this work, the research was 

conducted to (i) determine of .OH produced by different PMs in the absence and 

presence of biological reductants (ii) investigate the mechanism(s) for hydroxyl 

radical generation by PMs (iii) examine on the effects of PM on viability of human 

lung epithelial cells (BEAS-2b) and mouse epidermal cells (JB6) and the correlation 

to production of hydroxyl radical in these systems. 

 In this research, a highly sensitive fluorescence-based method was employed 

to measure hydroxyl radical production by particulate matter. Some other studies 

have been done to detect .OH generated by PM (Jung et al. 2006; Briedé et al. 2005; 

Valavanidis et al. 2005; Antonini et al. 2004; Karlsson et al. 2005; Shi et al. 2003b; 

Prahalad et al. 2001), but this technique is the first quantitative technique to measure 

.OH and it is a highly sensitive and rapid method for potentially screening hydroxyl 

radical formation rate (ROH) produced by different particles. The rate of .OH 

production for 3 mg/mL of these particles varied from 23 nM s-1  for diesel particulate 

matter (SRM 2975) to 0.20 nM s-1 for coal fly ash (SRM 2689) in the presence of 

biological reductant, NADPH.  Diesel particulate matter produced the highest rate of 
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.OH formation in the presence of NADPH, and no production of .OH was observed 

for pure silica particles and very little for kaolinite while Vallyathan et al. (1988) 

reported generation of .OH by pure silica. 

 This technique was also employed to investigate on mechanism(s) of hydroxyl 

radical production from a broad spectrum of airborne particles in the absence and 

presence of a biological electron donor (NADPH). Our results are consistent with the 

redox cycling scheme (1-2) proposed by Pryor and his co-workers. Based on the 

results, the presence of oxygen and hydrogen peroxide are necessary factors to 

produce .OH because elimination of oxygen or hydrogen peroxide suppressed the .OH 

generation. The presence of metal ions is also another important factor in production 

of .OH by particulate matter since the OH generation was suppressed in the presence 

of a strong metal chelator, deferoxmine. Partial inhibition of .OH production by 

superoxide dismutase indicates that superoxide is involving in the .OH production 

process.  

 Other studies on soluble and insoluble portions of airborne particles showed 

that both portions are responsible for .OH production. In the case of diesel particulate 

matter, .OH production was dominated by insoluble portion, but both soluble and 

insoluble portion of urban dust had an equal value for .OH generation. Therefore, 

both homogenous and heterogeneous reactions are responsible for .OH production by 

airborne particles.  Furthermore, our results support the evidence of surface-catalyzed 

reaction for .OH production by airborne particles with observing a saturation effect at 

higher concentration of NADPH. 
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 Human airway epithelial cells (BEAS-2b) and mouse epidermal cells (JB6) 

were used to examine the effects of airborne particles on cell survival and its 

relationship to .OH generation. The highly sensitive technique was employed to 

quantify .OH produced by these particles in the presence of BEAS-2b or JB6 cells. 

Based on these studies, cell death does not correlate with .OH production for BEAS-

2b and JB6 cells exposed to airborne particles.  

For example:  

1) Aerosil produced a high rate of cell death, but .OH was not detected in this 

system. 2) Although there was some production of .OH by urban dust, BEAS-2b 

and JB6 cells were viable and proliferated.  

 On the other hand, addition of NADPH to suspension of BEAS-2b and JB6 

cells containing urban dust substantially increased .OH production and cell death. 

These results show that viability of the cells was decreased dramatically in the 

presence of high concentration of .OH.  

 In conclusion, our studies suggest that .OH production is not the primary 

factor producing cell death during the short term exposure to these particles.  
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4.2. Future work 

 This research can be continued by using different types of airborne particulate 

matter, cell lines and techniques to find correlation of particulate matter with health 

effects.  

 

4.2.1. Seasonal and regional studies on .OH production by PM 

 
 Epidemiological studies have shown an association between adverse health 

effects and mortality with PMs collected from different sources within different 

timescales. Although there are a few reports on determining .OH generated by 

particles obtained from different sources, they did not employ a sensitive and 

quantitative technique to measure .OH (Baulig et al. 2004). However, our technique 

can be used to determine .OH generated by various samples collected in different 

locations and times. In addition, the discussion can be continued by comparing the 

distribution of induced health effects by different PMs, which produce various 

amount of .OH.  

 

4.2.2. Screening .OH production by PMs in the presence of 

other reductants 

 

 In our studies, a linear production of .OH was observed only in the presence of 

biological reductants such as NADPH. It is important to investigate on .OH 

production in the presence of other reductants. Humic-like substances and sulfite 
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which are present in airborne particles are believed to reduce quinone moieties and 

metal ions, respectively. Therefore, it is valuable to study on these compounds to 

understand the mechanism of .OH production by different PMs. 

 

4.2.3. Determining .OH produced by PM in the presence of 

macrophage or other cell lines 

 

 Our results suggest that different cell lines behaved differently when they 

were exposed to PM. Therefore, further research is needed to determine generated 

.OH by different airborne particles in the presence of different cell lines, such as 

primary lung epithelial cells and macrophage. The correlation between cell death, 

production of hydroxyl radical and increase in cytokines and chemokines for different 

cell lines also need to be investigated.  

 

4.2.4. Physiochemical analysis for diesel particles 

 

 In this area of research, some studies have been done to characterize the 

chemical composition of diesel particulate matter by doing fluorescence or UV-

Visible analysis.  This work can be continued by analyzing the physical properties 

(particle size) as well as chemical composition (organic and inorganic) of different 

diesel particles. Morphological characterization can be performed to measure 

particles size. To determine chemical components, the soluble portion of diesel 

particles will be extracted and analyzed by various identification, separation and 
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quantification techniques and instruments. The analysis varies from determining 

diesel particles’ metal contents to their organic components. Therefore, the 

correlation between .OH production by diesel particles and particles’ chemical 

compositions can help to elucidate the mechanism inducing adverse health effects. 

 

4.2.5. Protein analysis for the cell lines exposed to PM 

  

 The current research shows that exposing BEAS-2b or JB6 cells to urban dust 

causes a proliferation effect. It is valuable to do further research to determine the 

proteins that are elevated or reduced while the BEAS-2b or JB6 are exposed to urban 

dust particles. The possible proteins are protein kinase C (PKC) which causes 

proliferation and high cell density. To obtain this purpose, the protein analysis will be 

done by using 2-D gel electrophoresis and mass spectrometry. The protein analysis 

will help to understand the mechanisms by which particles induced health effects. 
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Appendix A: Preliminary work on SRM 2975 

analysis 

 

 Diesel particulate matter, SRM 2975, was extracted in solution containing 5 

mM phosphate buffer and 0.9% NaCl at pH=7.5 (PBS) within 24 hours. pH of 

extracted solution was then adjusted from acidic to basic. Figure A-1 to A-7 show 

UV-Visible and excitation-emission fluorescence spectrums for extracted diesel 

particulate matter at different pHs. 

  To characterize the extracted diesel particulate matter in PBS, the aqueous 

solution was extracted in chloroform (CHCl3), after adjusting pH in both 2.7 and 12. 

Figures A-8 and A-9 show UV-Vis spectrums for both aqueous and organic phase 

before and after the extraction. Based on the results, the best extraction in chloroform 

was obtained with a solution at acidic pH. The extraction was also repeated by using 

5 mM phosphate buffer at pH=7.5, 100 mM phosphate buffer at pH=7.5 and water 

(Figure A-10 to A-12) in which pH was then adjusted to 2.8 prior to extraction in 

chloroform. In sum, the best condition to extract diesel particulate matter in aqueous 

solution is a buffer with higher ionic strength. Providing acidic pH for aqueous 

extracted solution prior to extraction in chloroform is also necessary.  
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Figure A-1. UV-Visible spectrum of extracted diesel particulate matter in 5 mM 

phosphate buffer and 0.9% NaCl at pH 7.5 for 24 hours and then adjusting the pH to 

1.94, 3.99, 7.50 and 10.12. 
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Figure A-2. 3-D fluorescence spectrum of extracted diesel particulate matter in 5 mM 

phosphate buffer and 0.9% NaCl at pH 7.5 for 24 hours. After the extraction the pH 

was adjusted to 2. Excitation is from 270 to 490 and emission is from 280 to 610. The 

vertical scale is emission intensity; units are arbitrary.  Lines parallel to the emission 

axis correspond to single emission scans at different excitation wavelengths. 
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Figure A-3. Same spectrum as in previous figure, viewed in contour. 
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Figure A-4. 3-D fluorescence spectrum of extracted diesel particulate matter in 5 mM 

phosphate buffer and 0.9% NaCl at pH 7.5 for 24 hours. After the extraction pH was 

adjusted to 4. Excitation is from 270 to 490 and emission is from 280 to 610. The 

vertical scale is emission intensity; units are arbitrary.  Lines parallel to the emission 

axis correspond to single emission scans at different excitation wavelengths. 
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Figure A-5. Same spectrum as in previous figure, viewed in contour. 
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Figure A-6. 3-D fluorescence spectrum of extracted diesel particulate matter in 5 mM 

phosphate buffer and 0.9% NaCl at pH 7.5 for 24 hours. After the extraction pH was 

adjusted to 10. Excitation is from 270 to 490 and emission is from 280 to 610. The 

vertical scale is emission intensity; units are arbitrary.  Lines parallel to the emission 

axis correspond to single emission scans at different excitation wavelengths. 
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Figure A-7. Same spectrum as in previous figure, viewed in contour. 
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Figure A-8.  (A) UV-Visible spectrum of extracted diesel particulate matter in 5 mM 
phosphate buffer and 0.9% NaCl at pH 7.5 for 24 hours (         ); UV-Visible spectrum 
after the extraction and adjusting to pH=12.3 (       )  and UV-Visible spectrum for 
aqueous phase after extraction in chloroform(       ). (B) The UV-Visible spectrum for 
the chloroform phase after the extraction (        ). 
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Figure A-9.  (A) UV-Visible spectrum of extracted diesel particulate matter in 5 mM 
phosphate buffer and 0.9% NaCl at pH 7.5 for 24 hours (         ); UV-Visible spectrum 
after the extraction and adjusting to pH=2.8 (       )  and UV-Visible spectrum for 
aqueous phase after extraction in chloroform(        ). (B) The UV-Visible spectrum for 
the chloroform phase after the extraction (        ). 
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Figure A-10.  (A) UV-Visible spectrum of extracted diesel particulate matter in 100 
mM phosphate buffer at pH 7.5 for 24 hours (         ); UV-Visible spectrum after the 
extraction and adjusting to pH=2.8 (       )  and UV-Visible spectrum for aqueous 
phase after extraction in chloroform(        ). (B) The UV-Visible spectrum for the 
chloroform phase after the extraction (        ). 
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Figure A-11.  (A) UV-Visible spectrum of extracted diesel particulate matter in 5 
mM phosphate buffer for 24 hours (         ); UV-Visible spectrum after the extraction 
and adjusting to pH=2.8 (        ) and UV-Visible spectrum for aqueous phase after 
extraction in chloroform (        ). (B) The UV-Visible spectrum for the chloroform 
phase after the extraction (        ). 
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Figure A-12.  (A) UV-Visible spectrum of extracted diesel particulate matter in water 
for 24 hours (        ); UV-Visible spectrum after the extraction and adjusting to 
pH=2.8 (       ) and UV-Visible spectrum for aqueous phase after extraction in 
chloroform (        ). (B) The UV-Visible spectrum for the chloroform phase after the 
extraction (        ). 
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Appendix B: Particles properties 

 In this section, available information for Standard Reference Material (SRM) 

1649, 1648, 2975, 1632b and 2689 such as particles size, chemical (inorganic and 

organic) constituents and toxicity are reported.  

 

B.1. Standard Reference Material 1649 (urban dust) 

B.1.1. Sample collection and preparation 

 
 According to NIST report, SRM 1649 was prepared from atmospheric 

particles collected in the Washington DC area in 1976-1977. This particulate matter 

was collected over a period of one year from urban area in a special baghouse and the 

particles were removed from the baghouse filter bags by specially designed vacuum 

cleaner and combined in a single lot. This lot was passed through a 125 μm sieve and 

then thoroughly mixed and bottled. 

 

B.1.2. Particle size 

 

Here is the particle-size charactersics for SRM 1649 (NIST report, 2006). 
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Table B.1. Values for particle-size characteristics for SRM 1649 

 
 

                  Particle Measurement                                             Value 
 

 
Mean diameter (volume distribution, MV, μm)                    34.6 ± 0.4 
Mean diameter (area distribution, μm)                                  12.9 ± 0.3 
Mean diameter (number distribution, μm)                            1.50 ± 0.09 
Surface Area (m2/cm3)                                                          0.47 ± 0.01 

 

B.1.3. Chemical constituents 

Available information for chemical constituents of SRM 1649 is reported. 

B.1.3.1. Organic constituents 

 

 Tables B-2, B-3, B-4, B-5, B-6 report the concentration of poly cyclic 

aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorinated 

pesticides in existing SRM 1649 (NIST 2006, Cho et al. 2004, Crimmins and Baker 

2006, Karthikeyan et al. 2006, Poster et al. 1999, Bergvall and Westerholm 2006). 
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Table B-2. PAHs and nitro-PAHs and their concentrations in SRM 1649 

 

                            PAHs                                         Mass Fractions (in μg/kg) 
 

 
Phenanthrene                                              4.14 ± 0.37 
Anthracene                                                 0.432 ± 0.082 
Fluoranthene                                              6.45 ± 0.18 
Pyrene                                                        5.29 ± 0.25 
Benzoanthracene                                        2.208 ± 0.073 
Chrysene                                                    3.049 ± 0.069 
Triphenylene                                              1.357 ± 0.054 
Benzofluoranthene                                     6.45 ± 0.64 
Benzopyrene                                              3.09 ± 0.19 
Perylene                                                     0.646 ± 0.075 
Anthanthrene                                             0.450 ± 0.067 
Benzoperylene                                           4.01 ± 0.91 
Dibenzoanthracene                                    0.31 ± 0.034 
Pentaphene                                                 0.151 ± 0.035 
Benzochrysene                                           0.315 ± 0.013 
Picene                                                         0.426 ± 0.022 
Fluorene                                                     230 ± 50 
Dibenzothiophene                                      180 ± 10 
1-Methylphenanthrene                               370 ± 40 
2-Methylphenanthrene                               730 ± 120 
3-Methylphenanthrene                               500 ± 50 
Benzophenanthrene                                    460 ± 30 
Indenofluoranthene                                    230 ± 10 
Benzochrysene                                           80 ± 4 
Dibenzopyrene                                           630 ± 80 
Dibenzofluoranthene                                  800 ± 100 

1-nitronaphthlene                                         8.4 
2-nitronaphthlene                                         12 
2-nitrobiphenyl                                             2.5 
3-nitrobiphenyl                                             4.7 
2-nitrofluorene                                              2.6 
9-nitroanthracene                                          70 
9-nitrophenanthrene                                      14 
2-nitrofluoranthene                                       190 
1-nitropyrene                                                 40 
2-nitropyrene                                                 7.0 
7-nitroanthracene                                           15 
6-nitrochysene                                               2.5 
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Table B-3. PCBs and their concentrations in SRM 1649 

 

Organic constituents                          Mass Fractions (in mg/kg) 
 

 
2,4’-Dichlorobiphenyl                                         12.28 ± 0.29 
2,2’,5-Trichlorobiphenyl                                     20.44 ± 0.84 
2,4,4’-Trichlorobiphenyl                                     18.5 ± 1.2 
2,2’,5-Trichlorobiphenyl                                     17.3 ± 1.4 
2,2’, 3, 5’-Tetrachlorobiphenyl                           15.4 ± 1.6 
2,2’, 4, 5’-Tetrachlorobiphenyl                           12.2 ± 1.5 
2,2’,5 , 5’-Tetrachlorobiphenyl                           24.65 ± 0.97 
2,3’, 4, 4’-Tetrachlorobiphenyl                           65 ± 12 
2,2’, 4,4’,5-Pentachlorobiphenyl                         9.58 ± 0.69 
2,2’, 3,5’,6-Pentachlorobiphenyl                         51.6 ± 4.2 
2,2’, 4, 5,5’-Pentachlorobiphenyl                        52.9± 1.0 
2,3,3’, 4,4’-Pentachlorobiphenyl                         8.63 ± 0.80 
2,3,3’, 4’,6-Pentachlorobiphenyl                         26.6 ± 1.6 
2,2’, 3,4,5’-Pentachlorobiphenyl                         10.65 ± 0.62 
2,3’, 4,4’,5-Pentachlorobiphenyl                         25.7 ± 1.5 
2,2’, 3, 3’,4,4’-Hexachlorobiphenyl                    6.35 ± 0.69 
2,2’, 3, 4,4’,5’-Hexachlorobiphenyl                    69.7 ± 7.5 
2,2’, 3, 4,4’,5’,6-Hexachlorobiphenyl                 75.7 ± 1.3 
2,2’, 3, 5,5’,6-Hexachlorobiphenyl                      34.3 ± 3.9 
2,2’,4,4’,5,5’-Hexachlorobiphenyl                       82.5 ± 8.0 
2,3, 3’,4,4’,5-Hexachlorobiphenyl                       16.25 ± 0.77 
2,2’,3, 3’,4,4’,5-Heptachlorobiphenyl                  30.8 ± 2.2 
2,2’,3, 3’,4,4’,5-Heptachlorobiphenyl                  78.7 ± 8.2 
2,2’,3,4,4’,5’,6-Heptachlorobiphenyl                   20.34 ± 0.95 
2,2’,3,4’,5,5’,6-Heptachlorobiphenyl                   40.1 ± 2.5 
2,2’,3, 3’,4,4’,5,5’-Octachlorobiphenyl                28.9 ± 3.6 
2,2’,3, 3’,4,4’,5,6-Octachlorobiphenyl                 9.63 ± 0.37 
2,2’,3, 3’,4,4’,5,5’,6-Nonachlorobiphenyl           20.6 ± 4.6 
Decachlorobiphenyl                                             8.04 ± 0.77 
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Table B-4. Dibenzo-p-dioxins & Dibenzofurans & their concentrations in SRM 1649 

 

Dibenzo-p-dioxin & Dibenzofuran                       Mass Fractions (in μg/kg) 
 

 
2,3,7,8-Tetrachlorodibenzo-p-dioxin                                   0.011 ± 0.004 
1,2,3,7,8-Pentachlorodibenzo-p-dioxin                                0.091 ± 0.012 
1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin                             0.26 ± 0.02 
1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin                             0.68 ± 0.05 
1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin                             0.64 ± 0.11 
1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin                         18.8 ± 1.5 
Octachlorodibenzo-p-dioxin                                                 201 ± 20 
 
2,3,7,8-Tetrachlorodibenzofuran                                          0.068 ± 0.15 
1,2,3,7,8-Pentachlorodibenzofuran                                       0.090 ± 0.010 
2,3,4,7,8-Pentachlorodibenzofuran                                       0.28 ± 0.03 
1,2,3,4,7,8-Hexachlorodibenzofuran                                     0.87 ± 0.26 
1,2,3,6,7,8-Hexachlorodibenzofuran                                     0.43 ± 0.06 
2,3,4,6,7,8-Hexachlorodibenzofuran                                     0.69 ± 0.03 
1,2,3,7,8,9-Hexachlorodibenzofuran                                     0.066 ± 0.029 
1,2,3,4,6,7,8-Heptachlorodibenzofuran                                 3.8 ± 0.2 
1,2,3,4,7,8,9- Heptachlorodibenzofuran                                0.46 ± 0.07 
Octachlorodibenzofuran                                                        6.8 ± 0.8                                                    
 
Total Tetrachlorodibenzo-p-dioxins                                      0.16 ± 0.08  
Total Pentachlorodibenzo-p-dioxins                                     0.88 ± 0.16 
Total Hexachlorodibenzo-p-dioxins                                      6.0 ± 0.5 
Total Heptachlorodibenzo-p-dioxins                                     36.4 ± 3.4 
  
Total-Tetrachlorodibenzofurans                                            0.52 ± 0.13 
Total-Pentachlorodibenzofurans                                            1.6 ± 0.2 
Total-Hexachlorodibenzofurans                                             5.0 ± 0.6 
Total-Heptachlorodibenzofurans                                            9.8 ± 0.8 

 
Total Dibenzo-p-dioxins                                                         244 ± 22 
Total dibenzofurans                                                                23.9 ± 1.9 
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Table B-5. Cholorinated Pestisides and their concentrations in SRM 1649 

 

 Cholorinated Pestisides                      Mass Fractions (in μg/kg) 
 

 
Hexachlorobenzene                                                           16.3 ± 1.8 
trans-Chlordane (γ-Chlordane)                                         40.3 ± 2.8 
cis-Chlordane (α-Chlordane)                                             34.88 ± 0.42 
trans-Nonachlor                                                                 27.6 ± 1.6 
2,4’-DDE                                                                            5.79 ± 0.85 
4,4’-DDE                                                                            40.4 ± 1.7 
4,4’-DDD                                                                            34.01 ± 0.48 
4,4’-DDT                                                                            212 ± 15 
 
 

Table B-6. Quinones & their concentrations in SRM 1649 

 

                       Quinones                                       Mass Fractions (in ng/kg) 
 

 
1,2-Naphthoquinone                                          0.19 ± 0.03 
1,4-Naphthoquinone                                          0.24 ± 0.05 
9,10-Phenanthraquinone                                    1.18 ± 0.13 
9,10-Anthraquinone                                           2.03 ± 0.19 

 

B.1.3.2. Inorganic constituents 

 
 The majority of the inorganic constituents and their concentration in SRM 

1649 are reported in Table B.7 (NIST report, 2006).  

 
Table B-7. Concentration of inorganic constituents in SRM 1649 

 

Inorganic constituents                          Mass Fractions (in mg/kg) 
 

 
Antimony                                                      29.9 ± 0.7 
Arsenic                                                         67 ± 2 
Barium                                                         569 ± 21 
Cadmium                                                     26.5 ± 1.0 
Cerium                                                         52 ± 4 
Cesium                                                         2.84 ± 0.07 
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Chromium                                                    211 ± 6 
Cobalt                                                          16.4 ± 0.4 
Copper                                                         223 ± 7 
Europium                                                     0.87 ± 0.07 
Hafnium                                                       4.4 ± 0.1 
Lanthanum                                                   33 ± 3 
Manganese                                                   237 ± 8 
Molybdenum                                               13.5 ± 0.9 
Nickel                                                          166 ± 7 
Rubidium                                                     48 ± 3 
Samarium                                                    4.7 ± 0.4 
Scandium                                                     8.7 ± 0.2 
Selenium                                                      25.6 ± 0.7 
Silver                                                           3.5 ± 0.2 
Thorium                                                       6.6 ± 0.2 
Tin                                                               56 ± 13 
Tungsten                                                      3.8 ± 0.3 
Uranium                                                      2.65 ± 0.08 
Vanadium                                                    345 ± 13 
 

 

Inorganic constituents                                Mass Fractions (in %) 
 

 
Bromine                                                          0.119 ± 0.001 
Chlorine                                                             0.28 ± 0.01 
Iron                                                                    2.98 ± 0.07 
Lead                                                                   1.24 ± 0.04 
Magnesium                                                        0.92 ± 0.03 
Sulfur                                                                 3.27 ± 0.09 

 Zinc                                                                 0.168 ± 0.004 
 

B.1.4.Toxicity of SRM 1649 

 
 According to NIST report (2006), Durant et al. 1998, Gundel et al. 1993, 

Heimlg et al. 2004, chemicals associated with SRM 1649 are mutagenic  The reported 

mutagenic activity is 100-200 rev/mg. On the other hand, Karlsson et al. 2004 

reported that the mutagenic activity is initiated by DNA oxidation. They measured 8-

oxo-dG when the DNA was oxidized with SRM 1649. 
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B.2. Standard Reference Material 1648 

B.2.1. Sample collection and preparation 

 

 According to NIST report (2006), SRM 1648 was prepared from urban 

particulate matter collected in the St. Louis, MO in a baghouse specially designed for 

this purpose. The particles were collected over a period of 12 months. The material 

was removed from the filter bags and combined in a single lot, passed through a fine 

mesh sieve to remove extraneous materials and blended in a v-blender. The particles 

then packed into numbered bottles. 

 B.2.2. Chemical constituents 

Available information for chemical constituents of SRM 1648 is reported. 

 

 B.2.2.1. Inorganic constituents 

 
 The majority of the inorganic constituents and their concentration in SRM 

1648 are reported in Table B-8 (NIST report, 2006).  
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Table B-8. Concentration of inorganic constituents in SRM 1648 

 

Inorganic constituents                          Mass Fractions (in mg/kg) 
 

 
Antimony                                                     45 
Arsenic                                                         115 ± 10 
Barium                                                         773 
Bromine                                                       500 
Cadmium                                                     75 ± 7 
Cerium                                                         55 
Cesium                                                         3 
Chromium                                                    403 ± 12 
Cobalt                                                           18 
Copper                                                          609 ± 27 
Europium                                                      0.8 
Hafnium                                                       4.4  
Indium                                                          1.0 
Iodine                                                            20 
Lanthanum                                                   42 
Manganese                                                   786 ± 17 
Nickel                                                           82 ± 3 
Rubidium                                                     52 
Samarium                                                     4.4 ± 0.4 
Selenium                                                      27 ± 1 
Silver                                                            6 
Thorium                                                       7.4 
Tungsten                                                      4.8 
Uranium                                                      5.1 ± 0.1 
Vanadium                                                    127 ± 7 
 

 

Inorganic constituents                                Mass Fractions (in %) 
 

 
Aluminum                                                     3.42 ± 0.11 
Chlorine                                                        0.45 
Iron                                                                3.91 ± 0.10 
Potassium                                                      1.05 ± 0.01 
Lead                                                               0.655 ± 0.008 
Magnesium                                                    0.8 
Sulfur                                                             5.0 
Sodium                                                           0.425 ± 0.002 
Titanium                                                         0.40 
Zinc                                                                0.168 ± 0.004 
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B.2.3. Toxicity of SRM 1648 

 Schneider et al. (2005) reported that SRM 1648 causes oxidative stress upon 

uptake by alveolar macrophage. Huang et al. (2004) reported that SRM 1648 cause 

inflammation and necrosis for human alveolar macrophage. They measured cytokine 

release to discuss about its toxicity. 

  

B.3. Standard Reference Material 2975 

 B.3.1. Sample collection and preparation 

 
 According to NIST report (2006), SRM 2975 was prepared from diesel 

particulate matter, which was obtained from M.E. Wright of the Donaldson 

Company, INC. Minneapolis, MN. This particle was collected from a filtering system 

designed specifically for diesel-powdered forklifts. The material was homogenized in 

a V-blender for one hour and stored in polyethylene bags. 

B.3.2. Particle size 

 Here are the particle-size characteristics for SRM 2975 (NIST report, 2006). 
 
  

 
Table B-9.Values for particle-size characteristics for SRM 2975 

 
 

                  Particle Measurement                                             Value 
 

 
Mean diameter (volume distribution, MV, μm)                    31.9 ± 0.6 
Mean diameter (area distribution, μm)                                  11.2 ± 0.1 
Mean diameter (number distribution, μm)                            1.62 ± 0.01 
Surface Area (m2/cm3)                                                          0.538 ± 0.006 
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B.3.3. Chemical constituents 

Available information for chemical constituents of SRM 2975 is reported. 

 B.3.3.1. Organic constituents 

 
 Table B-10 represents the concentration of poly cyclic aromatic hydrocarbons 

(PAHs) existing in SRM 2975 (NIST report, 2006; Bergvall and Westerholm 2006). 

 

Table B-10. PAHs and their concentrations in SRM 2975 

 

                            PAHs                                         Mass Fractions (in mg/kg) 
 

 
Phenanthrene                                              17.0 ± 2.8 
Anthracene                                                 0.038 ± 0.008 
Fluoranthene                                              26.6 ± 5.1 
Pyrene                                                        0.90 ± 0.24 
Benzoanthracene                                       0.317 ± 0.066 
Chrysene                                                    4.56 ± 0.16 
Triphenylene                                              5.22 ± 0.20 
Benzofluoranthene                                     0.82 ± 0.11 
Benzopyrene                                              1.11 ± 0.10 
Perylene                                                     0.054 ± 0.009 
Benzoperylene                                           0.498 ± 0.044 
Dibenzoanthracene                                    0.37 ± 0.07 
Pentaphene                                                 0.038 ± 0.007 
Benzochrysene                                           0.08 ± 0.03 
Picene                                                         1.0 ± 0.2 
1-Methylphenanthrene                               0.89 ± 0.11 
2-Methylphenanthrene                               2.0 ± 0.2 
3-Methylphenanthrene                               1.0 ± 0.2 
Benzophenanthrene                                    1.0 ± 0.4 
Indenofluoranthene                                    1.1 ± 0.2 
Benzochrysene                                           0.08 ± 0.03 
4-and 9-Methylphenanthrene                     0.44 ± 0.09 
1,2-Dimethylphenanthrene                        0.05 ± 0.02 
1,6-, 1,7-, 2,5-, and 2,9-Dimethyl 
phenanthrene                                             0.57 ± 0.08 
1,8- Dimethylphenanthrene                       0.06 ± 0.02 
2,6- Dimethylphenanthrene                       0.25 ± 0.05 
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2,7- Dimethylphenanthrene                       0.23 ± 0.05 
3,6- Dimethylphenanthrene                       0.18 ± 0.02 
Benzofluoranthene                                    10.2 ± 0.5 
8-Methylfluoranthene                                0.68 ± 0.004 
2-Methylpyre                                             0.040 ± 0.008 
4-Methylpyrene                                         0.022 ± 0.005 
Coronene                                                   1.1 ± 0.2 
1-Nitropyrene                                            36 

 

B.3.4. Toxicity of SRM 2975 

 Arey (2004) reported that SRM 2975 showed mutagenic activity and lung 

injury on aspiration. Singh et al. (2004) reported that IL-6, IL-5 and TNF-α levels was 

increased when the macrophages were exposed to SRM 2975, but these cytokines 

levels are lower than cytokines increase levels for other diesel particles.  

 

B.4. Standard Reference Material 2689 

B.4.1. Sample collection and preparation 

 
 According to NIST report (2006), SRM 2689 was obtained from three 

different coal-fired power plants and is product of western Kentucky. The SRM 2986 

was size classified using a Vortex C-13 air classifier and particles greater than 145 

μm was removed for grinding. The coarse material consisted mostly of quartz and 

partially burned fragments. Once ground This material was blended back into the rest 

of the fly ash, the whole lot of  material was homogenized in a ribbon blender, and 

sealed in glass vials and packaged  The packaging was performed under controlled 

temperature and humidity. 
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B.4.2. Chemical Constituents   

Available information for chemical constituents of SRM 2689 is reported. 

B.4.2.1. Inorganic constituents 

 
  The majority of the inorganic constituents and their concentration in SRM 

2689 are reported in Table B-11 (NIST report, 2006). 

 
 

Table B-11. Concentration of inorganic constituents in SRM 2689 

 

Inorganic constituents                          Mass Fractions (in mg/kg) 
 

 
Antimony                                                     9 
Arsenic                                                         200 
Barium                                                          800 
Beryllium                                                     21 
Cadmium                                                      3 
Cesium                                                         11 
Chromium                                                    170 
Cobalt                                                           48 
Europium                                                      3 
Hafnium                                                        7  
Lead                                                              52 
Manganese                                                    300 
Nickel                                                           122 
Mercury                                                        <0.003 
Scandium                                                      32 
Selenium                                                       7 
Strontium                                                      700 
Thorium                                                        25 
Zinc                                                              240 
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Inorganic constituents                                Mass Fractions (in %) 
 

 
Aluminum                                                     12.94 ± 0.21 
Calcium                                                         2.18 ± 0.06 
Iron (Total)                                                    9.32 ± 0.06 
Potassium                                                      2.20 ± 0.03 
Magnesium                                                    0.61 ± 0.05 
Sodium                                                           0.25 ± 0.03 
Phosphorous                                                   0.10 ± 0.01 
Silicon                                                            24.06 ± 0.08 
Titanium                                                         0.75 ± 0.01 

 
 
 

B.5. Standard Reference Material 1632b 

B.5.1. Sample collection and preparation 

 According to NIST report (2006), the coal for SRM 1632b was obtained from 

the Humphrey No. 7 mine and coal preparation plant of the Consolidated Coal 

Company, Christopher Coal Company Division, Osage, WV. The coal was obtained 

from an underground mine from the Pittsburg seam. The coal for SRM 1632b was 

almost oven dried prior to processing. The coal was passed from 60 mesh sieve prior 

to blending. The coal then blended in a stainless steel cone blender. After blending, 

the coal was packaged in polyethylene-lined aluminum cans. Homogeneity testing 

was performed on both the bulk and bottled samples using X-ray fluorescence 

spectroscopy. 

 

B.5.2. Chemical constituents 

Available information for chemical constituents of SRM 1632b is reported. 
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B.5.2.1. Inorganic constituent 

 
  The majority of the inorganic constituents and their concentration in SRM 

1632b are reported in Table B-12 (NIST report, 2006). 

 

Table B-12. Concentration of inorganic constituents in SRM 1632b 

 

Inorganic constituents                          Mass Fractions (in mg/kg) 
 

 
Antimony                                                     0.24 
Arsenic                                                         3.72 ± 0.09 
Barium                                                          67.5 ± 2.1 
Bromine                                                        17 
Cadmium                                                      0.0573 ± 0.0027 
Cerium                                                          9 
Cesium                                                         0.44 
Chlorine                                                       1260 
Chromium                                                    11 
Cobalt                                                           2.29 ± 0.17 
Copper                                                          6.28 ± 0.30 
Europium                                                      0.17 
Florine                                                          41.7 ± 3.2 
Hafnium                                                        0.43  
Lanthanum                                                    5.1 
Lead                                                               3.67 ± 0.26 
Lithium                                                          10 
Manganese                                                     12.4 ± 1.0 
Mercury                                                         0.07 
Molybdenum                                                 0.9 
Nickel                                                            6.10 ± 0.27 
Rubidium                                                       5.05 ± 0.11 
Samarium                                                       0.87 
Scandium                                                      1.9 
Selenium                                                       1.29 ± 0.11 
Silicon                                                           14000 
Strontium                                                      102 
Thorium                                                        1.342 ± 0.036 
Tungstan                                                       0.48 
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Uranium                                                        0.436 ± 0.012 
Vanadium                                                      14 
Zinc                                                                11.89 ± 0.78 
 

 

Inorganic constituents                                Mass Fractions (in %) 
 

 
Aluminum                                                     0.855 ± 0.019 
Calcium                                                         0.204 ± 0.006 
Carbon (Total)                                               76.86 ± 0.26 
Hydrogen                                                       4.94 ± 0.13 
Iron                                                                0.759 ± 0.045 
Magnesium                                                    0.0383 ± 0.0008 
Nitogen                                                          1.56 ± 0.07 
Potassium                                                      0.0748 ± 0.0028 
Sodium                                                           0.0515 ± 0.0011 
Sulfur                                                             1.89 ± 0.06 
Titanium                                                         0.0454 ± 0.001 
 

 

B.6. KGa-1b (kaolinite) 

 

B.6.1. Particle source 

 
 The Clay Mineral Society standard was received from Professor Helz. This 

clay was originally purchased from the University of Missouri-Columbia Source Clay 

Repository. KGa-1b. The particle is a well-crystallized kaolinite from Washington 

County, Georgia (Vorlicek and Helz, 2002). 
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B.6.2. Chemical constituents 

 KGa-1b (Al2Si2O5[OH]4) has some trace amount of TiO2 (1.64% w/w), Fe2O3 

(0.21% w/w), quartz, micas, alkali, and alkaline earth oxides. KGa-1b has a 

Brunauer-Emmett-Teller (BET) surface area of 12.5 m2/g (Vorlicek and Helz, 2002). 

 

B.7. Aerosil 

B.7.1. Particle source and constituent 

 Aerosil is an amorphous, fumed, crystalline free silicon dioxide which was 

received from Professor Helz. This material was originally purchased from Degussa 

Corporation, NJ. 
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