
The Viewserver Hierarchy for Inter-Domain Routing:Protocols and Evaluation�Cengiz Alaettino�gluy A. Udaya ShankarInformation Sciences Institute Institute for Advanced Computer StudiesUniversity of Southern California and Department of Computer ScienceMarina del Rey, CA 90292 University of Marylandcengiz@isi.edu College Park, MD 20742shankar@cs.umd.eduCS-TR-3151.1 UMIACS-TR-93-98.1March 3, 1995AbstractWe present an inter-domain routing protocol based on a new hierarchy, referred to as theviewserver hierarchy. The protocol satis�es policy and ToS constraints, adapts to dynamictopology changes including failures that partition domains, and scales well to large number ofdomains without losing detail (unlike the usual scaling technique of aggregating domains intosuperdomains). Domain-level views are maintained by special nodes called viewservers. Eachviewserver maintains a view of a surrounding precinct. Viewservers are organized hierarchically.To obtain domain-level source routes, the views of one or more viewservers are merged (upto amaximum of twice the levels in the hierarchy).We also present a model for evaluating inter-domain routing protocols, and apply this modelto compare our viewserver hierarchy against the simple approach where each node maintains adomain-level view of the entire internetwork. Our results indicate that the viewserver hierarchy�nds many short valid paths and reduces the amount of memory requirement by two orders ofmagnitude.*To appear in IEEE JSAC Special Issue on Global Internet� This work is supported in part by ARPA and Philips Labs under contract DASG60-92-0055 to Department ofComputer Science, University of Maryland, and by National Science Foundation Grant No. NCR 89-04590. Theviews, opinions, and/or �ndings contained in this report are those of the author(s) and should not be interpreted asrepresenting the o�cial policies, either expressed or implied, of the Advanced Research Projects Agency, PL, or theU.S. Government.yThis research was performed while the author was with the Computer Science Department, University of Mary-land, College Park, MD 20742.

1 IntroductionA computer internetwork, such as the Internet, is an interconnection of backbone networks, re-gional networks, metropolitan area networks, and stub networks (campus networks, o�ce networksand other small networks)1. Stub networks are the producers and consumers of the internetworktra�c, whereas backbones, regionals, and MANs are transit networks. Most of the networks in aninternetwork are stub networks. Each network consists of nodes (hosts and routers) and links. Twonetworks are neighbors when there is one or more links between nodes in the two networks (seeFigure 1).
M

man G

regional D

backbone A

backbone B
backbone C

man F

man K

L

N
O

P
Q R

man H

regional EFigure 1: A portion of an internetwork.An internetwork is organized into domains2. A domain is a set of networks (possibly consisting ofonly one network) administered by the same agency. Within each domain, an intra-domain routingprotocol is executed that provides routes between source and destination nodes in the domain.Across all domains, an inter-domain routing protocol is executed that provides routes be-tween source and destination nodes in di�erent domains. This protocol must satisfy various con-straints:(1) It must satisfy policy constraints, which are administrative restrictions on the inter-domaintra�c [9, 13, 10, 5]. Policy constraints are of two types: transit policies and source policies.The transit policies of a domain A specify how other domains can use the resources of A(e.g. $0.01 per packet, no tra�c from domain B). The source policies of a domain A specifyconstraints on tra�c originating from A (e.g. domains to avoid/prefer, acceptable connection1 For example, NSFNET, MILNET are backbones and Suranet, CerfNet are regionals.2 also referred to as routing domains 1

cost). Transit policies of a domain are public (i.e. available to other domains), whereas sourcepolicies are usually private (e.g. it may not be desirable to announce how much a domain iswilling to pay for a particular service).(2) An inter-domain routing protocol must also satisfy type-of-service (ToS) constraints of ap-plications (e.g. low delay, high throughput, high reliability, minimum monetary cost). To dothis, it must keep track of the types of services o�ered by each domain [5].(3) Inter-domain routing protocols must scale up to very large internetworks, i.e. with a very largenumber of domains. Practically this means that processing, memory and communicationrequirements should be much less than linear in the number of domains. It must also handlenon-hierarchical domain interconnections at any level [10] (e.g. we do not want to hand-con�gure special routes as \back-doors").(4) Inter-domain routing protocols must automatically adapt to link cost changes, node/linkfailures and repairs including failures that partition domains [15].A simple straightforward approach to inter-domain routing is domain-level source routing withlink-state approach [9, 5]. In this approach, each router3 maintains a domain-level view of theinternetwork, i.e., a graph with a vertex for every domain and an edge between every two neighbordomains. Policy and ToS information is attached to the vertices and the edges of the view.When a source node needs to reach a destination node, it (or a router4 in the source's domain)�rst examines this view and determines a domain-level source route satisfying ToS and policyconstraints, i.e., a sequence of domain ids starting from the source's domain and ending with thedestination's domain. Then the packets are routed to the destination using this domain-level sourceroute and the intra-domain routing protocols of the domains crossed.The disadvantage of this simple scheme is that it does not scale up for large internetworks. Thestorage at each router is proportional to ND � ED, where ND is the number of domains and EDis the average number of neighbor domains to a domain. The communication cost is proportionalto NR � ER, where NR is the number of routers in the internetwork and ER is the average routerneighbors of a router (topology changes are ooded to all routers in the internetwork).To achieve scaling, several approaches based on aggregating domains into superdomains have3 Not all nodes maintain routing tables. A router is a node that maintains a routing table.4 referred to as the policy server in [9] 2

been proposed [19, 16, 7, 6]. These approaches have drawbacks because the aggregation results inloss of detail (discussed in Section 2).Our protocolIn this paper, we present an inter-domain routing protocol that we proposed recently[2, 3]. Itcombines domain-level views with a novel hierarchical scheme. It scales well to large internetworks,and does not su�er from the problems of superdomains.In our scheme, domain-level views are not maintained by every router but by special nodescalled viewservers. For each viewserver, there is a subset of domains around it, referred to as theviewserver's precinct. The viewserver maintains the domain-level view of its precinct. This solvesthe scaling problem for storage requirement.A viewserver can provide domain-level source routes between source and destination nodes inits precinct. Obtaining a domain-level source route between a source and a destination that arenot in any single view, involves accumulating the views of a sequence of viewservers. To make thisprocess e�cient, viewservers are organized hierarchically in levels, and an associated addressingstructure is used. Each node has a set of addresses. Each address is a sequence of viewserver ids ofdecreasing levels, starting at the top level and going towards the node. The idea is that when theviews of the viewservers in an address are merged, the merged view contains domain-level routesto the node from the top level viewservers.We handle dynamic topology changes such as node/link failures and repairs, link cost changes,and domain partitions. Gateways5 detect domain-level topology changes a�ecting its domain andneighbor domains. For each domain, there is a reporting gateway that communicates these changesby ooding to the viewservers in a speci�ed subset of domains; this subset is referred to as its oodarea. Hence, the number of packets used during ooding is proportional to the size of the oodarea. This solves the scaling problem for the communication requirement.Thus our inter-domain routing protocol consists of two subprotocols: a view-query proto-col between routers and viewservers for obtaining merged views; and a view-update protocolbetween gateways and viewservers for updating domain-level views.5 A node is called a gateway if it has a link to another domain.3

EvaluationMany inter-domain routing protocols have been proposed, based on various kinds of hierarchies.How do these protocols compare against each other and against the simple approach? To answer thisquestion, we need a model in which we can de�ne internetwork topologies, policy/ToS constraints,inter-domain routing hierarchies, and evaluation measures (e.g. memory and time requirements).None of these protocols have been evaluated in a way that they can be compared against each otheror the simple approach.In this paper, we present such a model, and use it to compare our viewserver hierarchy to thesimple approach. Our evaluation measures are the amount of memory required at the source andat the routers, the amount of time needed to obtain the information to construct a path, and thenumber of valid paths found (and their lengths) in comparison to the number of available validpaths (and their lengths) in the internetwork. We use three internetwork topologies each of size11,110 domains (roughly the current size of the Internet). Our results indicate that the viewserverhierarchy �nds many short valid paths and reduces the amount of memory requirement by twoorders of magnitude.Organization of the paperIn Section 2, we survey recent approaches to inter-domain routing. In Section 3, we present the view-query protocol for static network conditions, that is, assuming all links and nodes of the networkremain operational. In Section 4, we present the view-update protocol to handle topology changes.In Section 5, we present our evaluation model and results from its application to the viewserverhierarchy. In Section 6, we conclude and describe how to add fault-tolerance and cacheing schemesto improve performance.This paper di�ers from [3] in that in the latter, the view-update protocol and the evaluationmodel are not present, the view-query protocol is only informally described, and the evaluationresults are summarized for only one internetwork topology.4

2 Related WorkIn this section, we survey recently proposed inter-domain routing protocols that support ToS andpolicy constraints for large internetworks [17, 16, 19, 11, 7, 6, 22, 1, 21, 20, 8].Several inter-domain routing protocols (e.g. BGP [17], IDRP [16], NR [11]) are based on path-vector approach [18]. Here, for each destination domain a router maintains a set of paths, onethrough each of its neighbor routers. ToS and policy information is attached to these paths. Thesepaths are also used to avoid routing loops. Each router requires O(ND � ND � ER) space (oneentry for each of ND domains through each of ER neighbors; each entry contains a path whoselength is bounded by ND). For each destination, a router exchanges its best valid path6 with itsneighbor routers. However, a path-vector algorithm may not �nd a valid path from a source tothe destination even if such a route exists [19]. By exchanging k paths to each destination, theprobability of detecting a valid path for each source can be increased.The most common approach to solve the scaling problem is to use superdomains (e.g. IDPR [19],IDRP [16], Nimrod [7, 6]). Superdomains extend the idea of area hierarchy [12]. Here, domains aregrouped hierarchically into superdomains: \close" domains are grouped into level 1 superdomains,\close" level 1 superdomains are grouped into level 2 superdomains, and so on. A router maintainsa view that contains the domains in the same level 1 superdomain, the level 1 superdomains in thesame level 2 superdomain, and so on. Thus a router maintains a smaller view than it would in theabsence of hierarchy. Each superdomain has its own ToS and policy constraints derived from thatof the subdomains.There are several major problems with using superdomains. One problem is that if there aredomains with di�erent (possibly contradictory) constraints in a superdomain, then there is no goodway of deriving the ToS and policy constraints of the superdomain. The usual techniques are to takeeither the union or the intersection of the constraints of the subdomains [19]7. Both techniqueshave problems. For example, if the union is taken, then a subdomain A can be forced to obeyconstraints of other subdomains; this may eliminate a path through A which is otherwise valid. Ifthe intersection is taken, then a subdomain A can be forced to accept tra�c it would otherwise notaccept. Other problems are described in [7, 6, 1]. Some of the problems can be relaxed by having6 A valid path is a path that satis�es the ToS and policy constraints of the domains in the path.7 If the union (intersection) of the constraints are taken for policies, the superdomain enforces a policy constraintif that policy constraint is enforced by some (all) of its subdomains.5

overlapping superdomains, but this increases the storage requirements drastically.Nimrod [7, 6] and IDPR [19] use the link-state approach, domain-level source routing, andsuperdomains (non-overlapping superdomains for Nimrod). IDRP [16] uses path-vector approachand a variation of superdomains (which are referred to as routing domain confederations).Reference [11] combines the bene�ts of path-vector approach and link-state approach by havingtwo modes: An NR mode, which is an extension of IDRP and is used for the most common ToSand policy constraints; and a SDR mode, which is like IDPR and is used for less frequent ToS andpolicy requests. This study does not address the scalability of the SDR mode.In [1], we proposed a superdomain-based protocol which always �nds a valid path if one ex-ists and never admits an invalid path. It does this by maintaining both union and intersectionconstraints and using a view-query protocol. If the union constraints of superdomains on a pathare satis�ed, then the path is valid. If the intersection constraints of a superdomain are satis�edbut the union constraints are not, then there may be a valid path through this superdomain. Thesource queries to obtain a more detailed \internal" view of such superdomains, and searches againfor a valid path. Even though this protocol scales well for realistic internetwork topologies (e.g.where each superdomain is connected to at most logND external domains), its worst-case storagerequirement can be linear in ND.The landmark hierarchy [21, 20] is another approach for solving the scaling problem. Here, eachrouter is a landmark with a radius, and routers which are within a radius away from the landmarkmaintain a route to it. Landmarks are organized hierarchically, such that the radius of a landmarkincreases with its level, and the radii of top level landmarks include all routers. A thorough studyof enforcing ToS and policy constraints with this hierarchy has not been done.The landmark hierarchy may look similar to our viewserver hierarchy, but in fact it is quite theopposite. In the landmark hierarchy, nodes within the radius of a landmark maintain a route tothe landmark, but the landmark may not have a route to these nodes. In the viewserver hierarchy,a viewserver maintains routes to the nodes in its precinct.Route fragments [8] is a mechanism to glue together precomputed partial source routes to obtaina route from a source node to a destination node. A destination route fragment, called a routesu�x, is a sequence of domain ids from a backbone to the destination domain. A source routefragment, called a route pre�x, is the reverse of a route su�x of the source domain. There are also6

route middles, which extend from transit domains to transit domains. A source queries a nameserver and obtains destination route su�xes. It then chooses an appropriate route su�x for thedestination and concatenates it with its own route pre�x, and uses route middles if the route su�xand route pre�x do not intersect. This scheme does not handle topology changes and does notaddress policy and ToS constraints.3 Viewserver Hierarchy Query ProtocolIn this section, we present our scheme for static network conditions, that is, all links and nodesremain operational. The dynamic case is presented in Section 4.Conventions: Each domain has a unique id. DomainIds denotes the set of domain-ids. Eachnode has a unique id. NodeIds denotes the set of node-ids. For a node u, we use domainid(u) todenote the domain-id of u's domain. We use nodeid(u) to denote the node-id of u. For a domain A,we use domainid(A) to denote the domain-id of A. NodeNeighbors(u) denotes the set of node-idsof the neighbors of u. DomainNeighbors(A) denotes the set of domain-ids of the domain neighborsof A.In our protocol, a node u uses two kinds of sends. The �rst kind has the form \Send(m) to v",where m is the message being sent and v is the destination-id. Here, nodes u and v are neighbors,and the message is sent over the physical link (u; v). If the link is down, we assume that the packetis dropped.The second kind of send has the form \Send(m) to v using dlsr", where m and v are as aboveand dlsr is a domain-level source route between u and v. Here, the message is sent using the intra-domain routing protocols of the domains in dlsr to reach v. We assume that as long as there is asequence of up links connecting the domains in dlsr, the message is delivered to v. If u and v arein the same domain, dlsr equals the empty sequence hi.Views and ViewserversDomain-level views are maintained by special nodes called viewservers. Each viewserver has aprecinct, which is a set of domains around the viewserver, and a static view, which is a domain-level7

view of the precinct and outgoing edges8. The static view includes the ToS and policy constraintsof domains in the precinct and of domain-level edges. To handle topology changes, a viewserveralso maintains a dynamic view which is described in Section 4. Formally, a viewserver x maintainsthe following:Precinctx � DomainIds. Domain-ids whose view is maintained.SV iewx: Static view of x.= fhA; policy&tos(A); fhB; edge policy&tos(A;B)i : B 2 subset of DomainNeighbors(A)gi :A 2 PrecinctxgThe intention of SV iewx is to obtain domain-level source routes between nodes in Precinctx.Hence, the choice of domains to include in Precinctx and the choice of domain-level edges to includein SV iewx is not arbitrary. Precinctx and SV iewx must be connected; that is, between any twodomains in Precinctx, there should be a path in SV iewx. Note that SV iewx can contain edges todomains outside Precinctx. We say that a domain A is in the view of a viewserver x, if either A isin the precinct of x, or SV iewx has an edge from a domain in the precinct of x to A. Note thatthe precincts and views of di�erent viewservers can be overlapping, identical or disjoint.Viewserver HierarchyFor scaling reasons, we cannot have one large view. Thus, obtaining a domain-level source routebetween a source and a destination which are far away, involves accumulating views of a sequence ofviewservers. To keep this process e�cient, we organize viewservers hierarchically. More precisely,each viewserver is assigned a hierarchy level from 0; 1; : : :, with 0 being the top level in the hierarchy.A parent/child relationship between viewservers is de�ned as follows:1. Every level i viewserver, i > 0, has a parent viewserver whose level is less than i.2. If viewserver x is a parent of viewserver y then x's view contains y's domain and y's viewcontains x's domain.3. The view of a top level viewserver contains the domains of all other top level viewservers(typically, top level viewservers are placed in backbones).8 Not all the domain-level edges need to be included. 8

Note that the third constraint does not mean that all top level viewservers have the same view. Inthe hierarchy, a parent can have many children and a child can have many parents. We extend therange of the parent-child relationship to ordinary nodes; that is, if Precinctx contains the domainof node u, we say that u is a child of x, and x is a parent of u. We assume that there is at leastone parent viewserver for each node.For a node u, an address is de�ned to be a sequence hx0; x1; : : : ; xti such that xi for i < t isa viewserver-id, x0 is a top level viewserver-id, xt is the id of u, and xi is a parent of xi+1. Anode may have many addresses since the parent-child relationship is many-to-many. If a sourcewants a domain-level source route to a destination, it �rst queries the name servers [14] to obtaina set of addresses for the destination9. Then, it queries viewservers to obtain an accumulated viewcontaining both its domain and the destination's domain. Nodes can reach the viewservers in theirdomains using the intra-domain routing protocol of the domain. Otherwise, we assume that nodesmaintain a set of �xed domain-level source routes to viewservers.View-Query Protocol: Obtaining Domain-Level Source RoutesWe now describe how a domain-level source route is obtained.We want a sequence of viewservers whose merged views contains both the source and thedestination domains. Addresses provide a way to obtain such a sequence, by �rst going up inthe viewserver hierarchy starting from the source node and then going down in the viewserverhierarchy towards the destination node. More precisely, let hs0; : : : ; sti be an address of the source,and hd0; : : : ; dli be an address of the destination. Then, the sequence hst�1; : : : ; s0; d0; : : : ; dl�1imeets our requirements10. In fact, going up all the way in the hierarchy to top level viewserversmay not be necessary. We can stop going up at a viewserver si if there is a viewserver dj ; j < l,such that the domain of dj is in the view of si (one special case is where si = dj).The view-query protocol uses two message types:� (RequestView; s address; d address)where s address and d address are the addresses for the source and the destination respec-tively. A RequestView message is sent by a source to obtain an accumulated view containing9 Querying the name servers can be done the same way it is done currently in the Internet.10 This is similiar to matching route fragments[8]. However, in our case the sequence is computed in a distributedfashion (this is needed to handle topology changes). 9

both the source and the destination domains. When a viewserver receives a RequestViewmessage, it either sends back its view or forwards this request to another viewserver.� (ReplyView; s address; d address; accumview)where s address and d address are as above and accumview is the accumulated view. AReplyView message is sent by a viewserver to the source or to another viewserver closer tothe source. The accumview �eld in a ReplyView message equals the union of the views ofthe viewservers the message has visited.We now describe the view-query protocol in more detail (please refer to Figure 2 and 3). Toobtain a domain-level source route to a destination node, the source node sends a RequestViewpacket containing the source and the destination addresses to its parent in the source address.ConstantsFixedRoutesu(x); for every viewserver-id x such that x is a parent of u,= � fhig if domainid(u) = domainid(x)fhd1; : : : ; dni : di 2 DomainIdsg. Set of domain-level routes to x otherwiseEventsRequestV iewu(s address; d address) fExecuted when u wants a valid domain-level source routegLet s address be hs0; : : : ; st�1; sti; and dlsr 2 FixedRoutesu(st�1);Send(RequestView; s address; d address) to st�1 using dlsrReceiveu(ReplyView; s address; d address; accumview)Choose a valid domain-level source route using accumview;If a valid route is not foundExecute RequestV iewu again with another source address and/or destination addressFigure 2: View-query protocol: Events and state of a source u.Upon receiving a RequestView packet, a viewserver x checks if the destination domain is inits precinct11. If it is, x sends back its view in a ReplyView packet. If it is not, x forwards therequest packet to another viewserver as follows (details in Figure 3): x checks whether the domainof any viewserver in the destination address is in its view. If there is such a domain, x sends theRequestView packet to the last such one in the destination address. Otherwise x is a viewserverin the source address, and it sends the packet to its parent in the source address.When a viewserver x receives a ReplyView packet, it merges its view to the accumulated viewin the packet. Then it sends the ReplyView packet towards the source node in the same way it11 Even though the destination can be in the view of x, its policies and ToS's are not in the view if it is not in theprecinct of x. 10

ConstantsPrecinctx: Precinct of x.SV iewx: Static view of x.EventsReceivex(RequestView; s address; d address)Let d address be hd0; : : : ; dti;if domainid(dt) 62 Precinctx thenforwardx(RequestView; s address; d address; fg);else forwardx(ReplyView; d address; s address; SV iewx); faddresses are switchedgendifReceivex(ReplyView; s address; d address; view)forwardx(ReplyView; s address; d address; view [SV iewx)where procedure forwardx(type; s address; d address; view)Let s address be hs0; : : : ; sti; d address be hd0; : : : ; dli;if 9i : domainid(di) in SV iewx thenLet i = maxfj : domainid(dj) in SV iewxg;target := di;else target := si such that si+1 = nodeid(x);endif;dlsr := choose a route to domainid(target) from domainid(x) using SV iewx;if type = RequestView thenSend(RequestView; s address; d address) to target using dlsr;else Send(ReplyView; s address; d address; view) to target using dlsr;endif Figure 3: View-query protocol: Events and state of a viewserver x.would send a RequestView packet towards the destination node (i.e. the roles of the source addressand the destination address are interchanged).When the source receives a ReplyView packet, it chooses a valid path using the accumview in thepacket. If it does not �nd a valid path, it can try again using a di�erent source and/or destinationaddress. Note that the source does not have to throw away the previous accumulated views; it canmerge them all into a richer accumulated view. In fact, it is easy to change the protocol so that thesource can also obtain views of individual viewservers to make the accumulated view even richer.Above we have described one possible way of obtaining the accumulated views. There arevarious other possibilities, for example: (1) restricting the ReplyView packet to take the reverseof the path that the RequestView packet took; (2) having ReplyView packets go all the wayup in the viewserver-hierarchy for a richer accumulated view; (3) having the source poll theviewservers directly instead of the viewservers forwarding request/reply messages to each other;11

(4) not including non-transit stub domains other than the source and the destination domainsin the accumview; (5) including some source policy constraints and ToS requirements in theRequestView packet, and having the viewservers �lter out some domains.4 Update Protocol for Dynamic Network ConditionsIn this section, we �rst examine how topology changes such as link/node failures, repairs and costchanges, map into domain-level topology changes. Second, we describe how domain-level topologychanges are detected and communicated to viewservers, i.e. the view-update protocol. Third, wemodify the view-query protocol appropriately.Mapping Topology Changes to Domain-Level Topology ChangesCosts are associated with domain-level edges. The cost of the domain-level edge (A;B) equals avector of values if the link is up; each cost value indicates how expensive it is to cross domain Ato reach domain B according to some criteria such as delay, throughput, reliability, etc. The costequals 1 if all links from A to B are down. Each cost value of a domain-level edge (A;B) can bederived from the cost values of the intra-domain routes in A and links from A to B [4].Link cost changes and link/node failures and repairs correspond to cost changes, failures andrepairs of domain-level edges. Link/node failures can also partition a domain into cells[15]. A cell isa maximal subset of nodes of a domain that can reach each other without leaving the domain. In thesame way, link/node repairs may merge cells into bigger cells. We identify a cell with the minimumnode-id of the gateways in the cell12. In this paper, for uniformity we treat an unpartitioned domainas a domain with one cell.If a domain gets partitioned, its vertex in the domain-level views is split into as many pieces asthere are cells. And when the cells merge, the corresponding vertices are merged.Since a domain can be partitioned into many cells, domain-level source routes now include cell-ids as well. To reach the next domain cell in a domain-level source route, the intra-domain routingprotocol of a domain should keep track of the domain cells reachable through each of its gateways.12 Our cells are like the domain components of IDPR[19].12

View-Update Protocol: Updating Domain-Level ViewsViewservers do not communicate with each other to maintain their views. Gateways detect andcommunicate domain-level topology changes to viewservers. Each gateway periodically (and op-tionally after a change in the intra-domain routing table) inspects its intra-domain routing tableand determines the cell to which it belongs. For each cell, only the gateway whose node-id is thecell-id (i.e. the gateway with the minimum node-id) is responsible for communicating domain-leveltopology changes. We refer to this gateway as the reporting gateway. Reporting gateways are alsoresponsible for informing the viewservers of the creation and deletion of cells.The communication between a reporting gateway and viewservers is done by ooding over aset of domains. This set is referred to as the ood area13. The topology of a ood area must be aconnected graph.Due to the nature of ooding, a viewserver can receive information out of order for a domaincell. In order to avoid old information replacing new information, each reporting gateway includessuccessively increasing time stamps in the messages it sends.Due to node and link failures, communication between a reporting gateway and a viewservercan fail, resulting in the viewserver having out-of-date information. To eliminate such information,a viewserver deletes any information about a domain cell if it is older than a time-to-die period. Weassume that gateways send messages more often than the time-to-die value (to avoid false removal).When a viewserver learns of a new domain cell, it adds it to its view. To avoid adding a domaincell which was just deleted14, when a viewserver receives a delete domain cell request, it only marksthe domain cell as deleted and removes the entry after the time-to-die period.The view-update protocol uses two types of messages as follows:� (UpdateCell; domainid; cellid; timestamp; floodarea; ncostset)is sent by the reporting gateway to inform the viewservers about current domain-level edgecosts of its cell. Here, domainid, cellid, and timestamp indicate the domain, the cell and thetime stamp of the reporting gateway, ncostset contains a cost for each domain level edge ofthe domain, and floodarea is the set of domains that this message is to be sent over.13 For e�ciency, the ood area can be implemented by a hop-count and some forwarding limits (e.g. do not oodbeyond backbones).14 If the domain cell was removed, the timestamp for that domain cell is also lost.13

� (DeleteCell; domainid; cellid; timestamp; floodarea)where the parameters are as in the UpdateCell message. It is sent by a reporting gatewaywhen it becomes non-reporting (because its cell expanded to include a gateway with lower id).Constants:LocalV iewserversg : (� NodeIds). Set of viewservers in g's domain.LocalGatewaysg : (� NodeIds). Set of gateways in g's domain excluding g.AdjForeignGatewaysg : (� NodeIds). Set of adjacent gateways in other domains.F loodAreag: (� DomainIds). The ood area of the domain (includes domain of g).Variables:IntraDomainRTg : Intra-domain routing table of g. Initially contains no entries.CellIdg : NodeIds. The id of g's cell. Initially =1Clockg : Integer. Clock of g. Figure 4: State of a gateway g.The state maintained by a gateway g is listed in Figure 4. Note that LocalV iewserversg andLocalGatewaysg can be empty. IntraDomainRTg contains a route (next-hop or source) for everyreachable node of the domain and for every reachable neighbor domain cell. We assume thatconsecutive reads of Clockg return increasing values.Constants:Precinctx: Precinct of x.SV iewx: Static view of x.T imeToDiex : Integer. Time-to-die value.Variables:DV iewx: Dynamic view of x.= fhA:g; timestamp; expirytime; deleted;fhB:h; costi : B 2 DomainNeighbors(A) ^ h 2 NodeIds[f�g gi :A 2 Precinctx ^ g 2 NodeIdsgClockx : Integer. Clock of x. Figure 5: State of a viewserver x.The state maintained by a viewserver x is listed in Figure 5. DV iewx is the dynamic partof x's view. We use A:g to denote the cell g of domain A. For each domain cell known to x,DV iewx stores a timestamp �eld which equals the largest timestamp received for this domain cell,14

an expirytime �eld which equals the end of the time-to-die period for this domain cell, a deleted�eld which marks whether or not the domain cell is deleted, and a cost set which indicates a costfor every domain level edge of the domain in SV iewx. The cell-id of a neighbor domain equals � ifno cell of the neighbor domain is reachable.The events of gateway g and a viewserver x are speci�ed in Appendix A.Changes to View-Query ProtocolWe now enumerate the changes needed to adapt the view-query protocol to the dynamic case (theformal speci�cation is omitted for space reasons).Due to link and node failures, RequestView and ReplyView packets can get lost. Hence, thesource may never receive a ReplyView packet after it initiates a request. Thus, the source shouldtry again after a time-out period.When a viewserver sends a message to a node whose domain is partitioned, it should send acopy of the message to each cell of the domain. This is because a viewserver does not know whichcell contains the node.When a viewserver receives a RequestView message, it should reply with its views only if thedestination domain is in its precinct and its dynamic view contains a path to the destination.Similarly during forwarding of RequestView and ReplyView packets, a viewserver, when checkingwhether a domain is in its view, should also check if its dynamic view contains a path to it.Note that the internetwork may partition in a way that a cell may not be in the view of anyviewserver, though it is reachable by other cells. In this case, the view-query protocol will fail todiscover a route to the nodes in that cell. One way to solve this problem is to dynamically changethe viewserver precincts and the ood areas of domains. This is outside the scope of this paper.5 EvaluationMany inter-domain routing protocols have been proposed, based on various kinds of hierarchies.How do these protocols compare against each other and against the simple approach? To answer thisquestion, we need a model in which we can de�ne internetwork topologies, policy/ToS constraints,inter-domain routing hierarchies, and evaluation measures (e.g. memory and time requirements)15

for inter-domain routing protocols.In this section, we �rst present such a model, and then use the model to evaluate our viewserverhierarchy and compare it to the simple approach. Our evaluation measures are the amount ofmemory required at the source and at the routers, the amount of time needed to obtain theinformation to construct a path, and the number of paths found out of the total number of validpaths.Even though the model described here can be applied to other inter-domain routing protocols,we have not done so, and hence have not compared them against our viewserver hierarchy. Thisis because of lack of time, and because precise de�nitions of the hierarchies in these protocols isnot available. For example, to do a fair evaluation of IDPR[19], we need precise guidelines forhow to group domains into super-domains, and how to choose between the union and intersectionmethods when de�ning policy/ToS constraints of super-domains. In fact, these protocols have notbeen evaluated in a way that we can compare them to the viewserver hierarchy. To the best of ourknowledge, this paper is the �rst to evaluate a hierarchical inter-domain routing protocol againstexplicitly stated policy constraints.5.1 Evaluation ModelWe �rst describe our method of generating topologies and policy/ToS constraints. We then describethe evaluation measures.Generating Internetwork TopologiesFor our purposes, an internetwork topology is a directed graph where the nodes correspond todomains and the edges correspond to domain-level connections. However, an arbitrary graph willnot do. The topology should have the characteristics of a real internetwork, like the Internet. Thatis, it should have backbones, regionals, MANS, LANS, etc.; these should be connected hierarchically(e.g. regionals to backbones), but \non-hierarchical" connections should also be present.For brevity, we refer to backbones as class 0 domains, regionals as class 1 domains, metropolitan-area domains and providers as class 2 domains, and campus and local-area domains as class 3domains. A (strictly) hierarchical interconnection of domains means that class 0 domains areconnected to each other, and for i > 0, class i domains are connected to class i � 1 domains.16

As mentioned above, we also want some \non-hierarchical" connections, i.e., domain-level edgesbetween domains irrespective of their classes (e.g. from a campus domain to another campusdomain or to a backbone domain).In reality, domains span geographical regions and domain-level edges are often between do-mains that are geographically close (e.g. University of Maryland campus domain is connected toSURANET regional domain which is in the east coast). A class i domain usually spans a largergeographical region than a class i + 1 domain. To generate such interconnections, we associate a\region" attribute to each domain. The intention is that two domains with the same region aregeographically close.The region of a class i domain has the form r0:r1: � � � :ri, where the rj 's are integers. Forexample, the region of a class 3 domain can be 1.2.3.4. For brevity, we refer to the region of aclass i domain as a class i region.Note that regions have their own hierarchy. Class 0 regions are the top level regions. We saythat a class i region r0:r1: � � � :ri�1:ri is contained in the class i� 1 region r0:r1: � � � :ri�1 (wherei > 0). Containment is transitive. Thus region 1.2.3.4 is contained in regions 1.2.3, 1.2 and 1.Given any pair of domains, we classify them as local, remote or far, based on their regions.Let X be a class i domain and Y a class j domain, and without loss of generality let i � j. Xand Y are local if they are in the same class i region. For example in Figure 6, A is local toB;C; J;K;M;N;O; P , and Q. X and Y are remote if they are not in the same class i region butthey are in the same class i� 1 region, or if i = 0. For example in Figure 6, some of the domainsA is remote to are D;E; F , and L. X and Y are far if they are not local or remote. For examplein Figure 6, A is far to I .We refer to a domain-level edge as local (remote, or far) if the two domains it connects are local(remote, or far).We use the following procedure to generate internetwork topologies:� We �rst specify the number of domain classes, and the number of domains in each class.� We next specify the regions. Note that the number of region classes equals the number ofdomain classes. We specify the number of class 0 regions. For each class i > 0, we specify abranching factor, which creates that many class i regions in each class i� 1 region. (That is,if there are two class 0 regions and the class 1 branching factor equals three, then there are17

A B C D E F G H I

J K
L

M
N

O

P

Q

1

1.1

1.2

1.2.1
1.2.2

1.2.1.1 1.2.1.2 1.2.1.3
1.2.2.1

2

Figure 6: Regionssix class 1 regions.)� For each class i, we randomly map the class i domains into the class i regions. Note thatseveral domains can be mapped to the same region, and some regions may have no domainmapped into them.� For every class i and every class j, j � i, we specify the number of local, remote and faredges to be introduced between class i domains and class j domains. The end points of theedges are chosen randomly (within the speci�ed constraints).We ensure that the internetwork topology is connected by ensuring that the subgraph of class0 domains is connected, and each class i domain, for i > 0, is connected to a local class i� 1domain. 18

Choosing Policy/ToS ConstraintsWe chose a simple scheme to model Policy/ToS constraints. Each domain is assigned a color: greenor red. For each domain class, we specify the percentage of green domains in that class, and thenrandomly choose a color for each domain in that class.A valid route from a source to a destination is one that does not visit any red intermediatedomains; the source and destination are allowed to be red.Computing Evaluation MeasuresThe evaluation measures of most interest for an inter-domain routing protocol are its memory andtime requirements, and the number of valid paths it �nds (and their lengths) in comparison tothe number of available valid paths (and their lengths) in the internetwork (e.g. could it �nd theshortest valid path in the internetwork).The only analysis method we have at present is to numerically compute the evaluation measuresfor a variety of source-destination pairs. Because we use internetwork topologies of large sizes, it isnot feasible to compute for all possible source-destination pairs. We randomly choose a set of source-destination pairs that satisfy the following conditions: (1) the source and destination domains aredi�erent, and (2) there exists a valid path from the source domain to the destination domain inthe internetwork topology. (Note that the simple scheme would always �nd such a path.)For a source-destination pair, we refer to the length of the shortest valid path in the internetworktopology as the shortest-path length. Since the number of paths between a source-destination pairis potentially very large (factorial in the number of domains), and we are not interested in thepaths that are too long, we only count the number of paths whose lengths are not more than theshortest-path-length plus 2.The evaluation measures described above are protocol independent. However, there are alsoimportant evaluation measures that are protocol dependent (e.g. number of levels traversed insome particular hierarchy). Because of this we postpone the precise de�nitions of the evaluationmeasures to the next subsection (their de�nition is dependent of viewserver hierarchy).19

5.2 Application to Viewserver ProtocolWe have used the above model to evaluate our viewserver protocol for several di�erent viewserverhierarchies and query methods. We �rst describe the di�erent viewserver schemes evaluated. Pleaserefer to Figure 6 in the following discussion.The �rst viewserver scheme is referred to as base. It has exactly one viewserver in each domain.Each viewserver is identi�ed by its domain-id. The domains in a viewserver's precinct consist ofits domain and the neighboring domains. The edges in the viewserver's view consist of the edgesbetween the domains in the precinct, and edges outgoing from domains in the precinct to domainsnot in the precinct. For example, the precinct of viewserver A (i.e. the viewserver in domain A)consists of domains A;B; J ; the edges in the view of viewserver A consists of domain-level edges(A;B); (A; J); (B; J); (J;M); (J;K); (J; F); (J;D), and (J; C).As for the viewserver hierarchy, a viewserver's level is de�ned to be the class of its domain. Thatis, a viewserver in a class i domain is a level i viewserver. For each level i viewserver, i > 0, itsparent viewserver is chosen randomly from the level i�1 viewservers in the parent region such thatthere is a domain-level edge between the viewserver's domain and the parent viewserver's domain.For example, for viewserver C, we can pick viewserver J or K; suppose we pick J . For viewserverJ , we have no choice but to pick M (N and O are not connected to J). For M , we pick P (out ofP and Q).We use only one address for each domain. The viewserver-address of a stub domain is con-catenation of four viewserver (i.e. domain) ids. Thus, the address of A is P:M:J:A. Similarly, theaddress of H is P:M:K:H . To obtain a route between A and H , it su�ces to obtain views ofviewservers A; J;K;H .The second viewserver scheme is referred to as base-QT (where the QT stands for \query uptotop"). It is identical to base except that during the query protocol all the viewservers in the sourceand the destination addresses are queried. That is, to obtain a route between A and H , the viewsof A; J;M; P;K;H are obtained.The third viewserver scheme is referred to as locals. It is identical to base except that now aviewserver's precinct also contains domains that have the same region as the viewserver's domain.That is, the precinct of viewserver A has the domains A;B; J; C. Note that in this scheme aviewserver's view is not necessarily connected. For example, if the edge (C; J) is removed, the view20

of viewserver A is no longer connected. (In Section 3, we said that the view of a viewserver shouldbe connected. Here we have relaxed this condition to simplify testing.)The fourth viewserver scheme is referred to as locals-QT. It is identical to locals except thatduring the query protocol all the viewservers in the source and the destination addresses are queried.The �fth viewserver scheme is referred to as vertex-extension. It is identical to base exceptthat viewserver precincts are extended as follows: Let P denote the precinct of a viewserver in thebase scheme. For each domain X in P, if there is an edge from domain X to domain Y and Yis not in P, domain Y is added to the precinct; among Y 's edges, only the ones to domains in Pare added to the view. In the example, domains M;K; F;D are added to the precinct of A, butoutgoing edges of these domains to other domains are not included (e.g. (F;G) is not included).The advantage of this scheme is that even though it increases the precinct size by a factor of ED(where ED is the average number of neighbor domains to a domain), it increases the number ofedges stored in the view by a factor less than 2. (In fact, if the same edge cost and edge policiesare used for both directions of domain-level edges, then the only other information that needs tobe stored by the viewservers is the policy constraints of the newly added domains.)The sixth viewserver scheme is referred to as full-QT. It is constructed in the same way asvertex-extension except that the locals scheme is used instead of base scheme to de�ne the P inthe construction. In full-QT, during the query protocol all the viewservers in the source and thedestination addresses are queried.We also looked at two other schemes, vertex-extension-QT and full, for which the resultswere very close to the vertex-extension and the full-QT schemes respectively. Hence, we do notpresent any results for these two schemes.In all the above viewserver schemes, we have used the same hierarchy for both domain classesand viewservers. In practice, not all domains need to have a viewserver, and a viewserver hierarchydi�erent from the domain class hierarchy can be deployed. However, there is an advantage ofhaving a viewserver in each domain; that is, source nodes do not require �xed domain-level sourceroutes to their parent viewservers (in the view-query protocol). This reduces the amount of handcon�guration required. In fact, the base scheme does not require any hand con�guration, viewserverscan decide their precincts from the intra-domain routing tables, and nodes can use intra-domainroutes to reach parent viewservers. 21

Results for Internetwork 1The parameters of the �rst internetwork topology, referred to as Internetwork 1, are shown inTable 1.Class i No. of Domains No. of Regions15 % of Green Domains Edges between Classes i and jClass j Local Remote Far0 10 4 0.80 0 8 6 01 100 16 0.75 0 190 20 01 26 5 02 1000 64 0.70 0 100 0 01 1060 40 02 200 40 03 10000 256 0.20 0 100 0 01 100 0 02 10100 50 03 50 50 50Table 1: Parameters of Internetwork 1.Our evaluation measures were computed for a (randomly chosen but �xed) set of 1000 source-destination pairs. For brevity, we use spl to refer to the shortest-path length (i.e. the length ofthe shortest valid path in the internetwork topology). The minimum spl of these pairs was 2, themaximum spl was 13, and the average spl was 6.8. Table 2 lists for each viewserver scheme (1) theminimum, average and maximum precinct sizes, (2) the minimum, average and maximum mergedview sizes, and (3) the minimum, average and maximum number of viewservers queried.The precinct size indicates the memory requirement at a viewserver. More precisely, the memoryrequirement at a viewserver is O(precinct size � ED), except for the vertex-extension and full-QTschemes. In these schemes, the memory requirement is increased by a factor less than two. Hencethe vertex-extension scheme has the same order of viewserver memory requirement as the basescheme and the full-QT scheme has the same order of viewserver memory requirement as the locals15Branching factor is 4 for all region classes. 22

Scheme Precinct Size Merged View Size No. of Viewservers Queriedbase 2 / 3.2 / 68 7 / 71.03 / 101 3 / 7.51 / 8base-QT 2 / 3.2 / 68 30 / 76.01 / 101 8 / 8.00 / 8locals 2 / 52.0 / 103 3 / 95.40 / 143 2 / 7.42 / 8locals-QT 2 / 52.0 / 103 43 / 101.86 / 143 8 / 8.00 / 8vertex-extension 3 / 19.2 / 796 23 / 362.15 / 486 3 / 7.51 / 8full-QT 11 / 102.9 / 796 228 / 396.80 / 519 8 / 8.00 / 8Table 2: Precinct sizes, merged view sizes, and number of viewservers queried for Internetwork 1.scheme.The merged view size indicates the memory requirement at a source; i.e. the memory require-ment at a source is O(merged view size�ED) except for the vertex-extension and full-QT schemes.Note that the source does not need to store information about red and non-transit domains. Thenumbers in Table 2 take advantage of this.The number of viewservers queried indicates the communication time required to obtain themerged view at the source. Because the average spl is 6.8, the \real-time" communication timerequired to obtain the merged view at a source is slightly more than one round-trip time betweenthe source and the destination.As is apparent from Table 2, using a QT scheme increases the merged view size and the numberof viewservers queried only by about 5%. Using a locals scheme increases the merged view size byabout 30%. Using the vertex-extension scheme increases the merged view size by 5 times (note thatthe amount of actual memory needed increases only by a factor less than 2).The number of viewservers queried in the locals scheme is less than the number of viewserversqueried in the base scheme. This is because the viewservers in the locals scheme have biggerprecincts, and a path from the source to the destination can be found using fewer views.Table 3 shows the average number of spl, spl + 1, spl + 2 length paths found for a source-destination pair by the simple approach and by the viewserver schemes. All the viewserver schemesare very close to the simple approach. The vertex-extension and full-QT schemes are especially close(they found 98% of all paths). Table 3 also shows the number of pairs for which the viewserverschemes did not �nd a path (ranging from 1.4% to 5.9% of the source-destination pairs), and23

the number of pairs for which the viewserver schemes found longer paths. For these pairs, moreviewserver addresses need to be tried. Note that the locals and vertex-extension schemes decrease thenumber of these pairs substantially (adding QT yields further improvement). Our policy constraintsare source and destination domain independent. Hence, even a class 2 domain, if it is red, can notcarry tra�c to a class 3 domain to which it is connected. We believe that these �gures wouldimprove with policies that are dependent on source and destination domains.We examined the shortest valid paths between the source-destination pairs for which theviewserver schemes failed to �nd paths. We found out that all these paths were very long (11domain hops or more for full-QT) and very non-hierarchical (i.e. contained many links betweenclass 3 domains). Number of paths found No. of pairs No. of pairsScheme spl spl + 1 spl + 2 with no path with longer pathssimple 2.51 18.48 131.01 N/A N/Abase 2.41 15.84 99.42 59 3 by 1.33 hopsbase-QT 2.41 15.86 100.16 54 3 by 1.33 hopslocals 2.41 16.17 103.54 29 3 by 1 hoplocals-QT 2.41 16.29 105.02 20 3 by 1 hopvertex-extension 2.51 18.38 128.19 22 0 by 0 hopsfull-QT 2.50 18.40 128.90 14 0 by 0 hopsTable 3: Number of paths found for Internetwork 1.As is apparent from Table 3 and Table 2, the locals scheme does not �nd many more extrapaths than the base scheme even though it has larger precinct and merged view sizes. Hence it isnot recommended. The vertex-extension scheme is the best, but even base is adequate since it �ndsmany paths.We have repeated the above evaluations for two other internetworks and obtained similar con-clusions. The results are in Appendix B. 24

6 Concluding RemarksWe presented a hierarchical inter-domain routing protocol that satis�es policy and ToS constraints,adapts to dynamic topology changes including failures that partition domains, and scales well tolarge number of domains.Our protocol uses partial domain-level views to achieve scaling in space requirement. It oodsdomain-level topological changes over limited ood areas to achieve scaling in communication re-quirement.It does not abstract domains into superdomains; hence it does not lose any domain-level detailin ToS and policy information. It merges a sequence of partial views to obtain domain-level sourceroutes between nodes which are far away. The number of views that need to be merged is boundedby twice the number of levels in the hierarchy.Another advantage of our protocol is that it does not tightly bind addresses of nodes to theirlocations in the internetwork. Rather, addresses are bound to indirect providers of informationneeded for route computation.To evaluate and compare inter-domain routing protocols against each other and against thesimple approach, we presented a model in which one can de�ne internetwork topologies, policy/ToSconstraints, inter-domain routing hierarchies, and evaluation measures. We applied this model toevaluate our viewserver hierarchy and compared it to the simple approach. Our results indicatethat the viewserver hierarchy �nds many short valid paths and reduces the amount of memoryrequirement by two orders of magnitude.Our protocol recovers from fail-stop failures of viewservers and gateways. When a viewserverfails, an address which includes the viewserver's id becomes useless. This de�ciency can be overcomeby replicating each viewserver at di�erent nodes of the domain; in this case a viewserver fails onlyif all nodes implementing it fail.One drawback of our protocol is that to obtain a domain-level source route, views are mergedat or prior to the connection setup, thereby increasing the setup time. This drawback is not uniqueto our scheme [9, 19, 7, 6, 11]. There are several ways to reduce this setup overhead. First, domain-level source routes to frequently used destinations can be cached. Second, views of frequentlyqueried viewservers can be replicated at \mirror" viewservers close to the source domain. Third,connection setup also involves traversing the name server hierarchy (to obtain destination addresses25

from names). By integrating the name server hierarchy with the viewserver hierarchy, we may beable to do both operations simultaneously.The viewserver hierarchy takes advantage of the structure found in realistic internetwork topolo-gies. It would be interesting to investigate applications of the viewserver hierarchy to arbitrary in-ternetworks where the interconnection of networks may not be as hierarchical, but rather is morelike a mesh. We are also studying techniques to apply when a valid path cannot be found using onepair of addresses. In particular, we are investigating the use of multiple addresses and heuristics toquery viewservers that are not on any address but whose views may help �nd valid paths.There were several drawbacks of our evaluation. We only considered simple binary policy/ToSconstraints as opposed to more general policy/ToS constraints such as delay. We only evaluatedthe viewserver schemes using the hierarchical internetwork topologies that mimicked the Internetas opposed to more general topologies that included more mesh-like interconnections. We did notevaluate the communication capacity requirements of our protocols. We believe the communicationcapacity requirements of our protocols will be much less than the simple approach where thetopology changes are ooded to all the routers in the internetwork.References[1] C. Alaettino�glu and A. U. Shankar. Hierarchical inter-domain routing protocol with on-demand ToSand policy resolution. In IEEE International Conference on Networking Protocols '93, San Fransisco,California, October 1993.[2] C. Alaettino�glu and A. U. Shankar. Viewserver hierarchy: A new inter-domain routing protocol andits evaluation. Technical Report UMIACS-TR-93-98, CS-TR-3151, Department of Computer Science,University of Maryland, College Park, October 1993. Earlier version CS-TR-3033, February 1993.[3] C. Alaettino�glu and A. U. Shankar. Viewserver hierarchy: A new inter-domain routing protocol. InIEEE INFOCOM '94, Toronto, Canada, June 1994.[4] A. Bar-Noy and M. Gopal. Topology distribution cost vs. e�cient routing in large networks. In ACMSIGCOMM '90, pages 242{252, Philadelphia, Pennsylvania, September 1990.[5] L. Breslau and D. Estrin. Design of inter{administrative domain routing protocols. In ACM SIGCOMM'90, pages 231{241, Philadelphia, Pennsylvania, September 1990.[6] I. Castineyra, J. N. Chiappa, C. Lynn, R. Ramanathan, andM. Steenstrup. The nimrod routing architec-ture. Internet Draft., March 1994. Available by anonymous ftp from research.ftp.com:pub/nimrod.[7] J. N. Chiappa. A new ip routing and addressing architecture. Internet Draft., 1992. Available byanonymous ftp from research.ftp.com:pub/nimrod.[8] D. Clark. Route fragments, a routing proposal. Big-Internet mailing list., July 1992. Available byanonymous ftp from munnari.oz.au:big-internet/list-archive.[9] D.D. Clark. Policy routing in internet protocols. Request for Comment RFC-1102, Network InformationCenter, May 1989. 26

[10] D. Estrin. Policy requirements for inter administrative domain routing. Request for Comment RFC-1125, Network Information Center, November 1989.[11] D. Estrin, Y. Rekhter, and S. Hotz. Scalable inter-domain routing architecture. In ACM SIGCOMM'92, pages 40{52, Baltimore, Maryland, August 1992.[12] F. Kamoun and L. Kleinrock. Stochastic performance evaluation of hierarchical routing for large net-works. Computer Networks and ISDN Systems, 1979.[13] B.M. Leiner. Policy issues in interconnecting networks. Request for Comment RFC-1124, NetworkInformation Center, September 1989.[14] P. V. Mockapetris. Domain names - concepts and facilities. Request for Comment RFC-1034, NetworkInformation Center, November 1987.[15] R. Perlman. Hierarchical networks and subnetwork partition problem. Computer Networks and ISDNSystems, 9:297{303, 1985.[16] Y. Rekhter. Inter-domain routing protocol (idrp). Journal of Internetworking Research and Experience,4:61{80, 1993.[17] Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4). Request for Comment RFC-1654, NetworkInformation Center, July 1994.[18] K. G. Shin and M. Chen. Performance analysis of distributed routing strategies free of ping-pong-typelooping. IEEE Transactions on Computers, 1987.[19] M. Steenstrup. An architecture for inter-domain policy routing. Request for Comment RFC-1478,Network Information Center, July 1993.[20] P. F. Tsuchiya. The landmark hierarchy: Description and analysis, the landmark routing: Architecturealgorithms and issues. Technical Report MTR-87W00152, MTR-87W00174, The MITRE Corporation,McLean, Virginia, 1987.[21] P. F. Tsuchiya. The landmark hierarchy:a new hierarchy for routing in very large networks. In ACMSIGCOMM '88, August 1988.[22] P. F. Tsuchiya. E�cient and robust policy routing using multiple hierarchical addresses. In ACMSIGCOMM '91, pages 53{65, Zurich, Switzerland, September 1991.A View-Update Protocol Event Speci�cationsThe events of gateway g are speci�ed in Figure 7. When a gateway g recovers, CellIdg is set tonodeid(g). Thus, when g next executes Updateg, it sends either an UpdateCell or a DeleteCellmessage to viewservers, depending on whether it is no longer the minimum id gateway in its cell.Sending a DeleteCell message is essential. Because prior to the failure, g may have been thesmallest id gateway in its cell. Hence, some viewserver's may still contain an entry for its olddomain cell.The events of a viewserver x are speci�ed in Figure 5. When a viewserver x recovers, DV iewxis set to fg. Its view becomes up-to-date as it receives new information from reporting gateways(and remove false information with the time-to-die period).27

Updateg fExecuted periodically and also optionally upon a change in IntraDomainRTggfDetermines the id of g's cell and initiates UpdateCell and DeleteCell messages if needed.gOldCellId = CellIdg ;CellIdg := compute cell id using LocalGatewaysg and IntraDomainRTg ;if nodeid(g) = CellIdg thenncostset := compute costs for each neighbor domain cell using IntraDomainRTg ;floodg((UpdateCell; domainid(g); CellIdg ; Clockg; F loodAreag; ncostset));endifif nodeid(g) = OldCellId 6= CellIdg thenfloodg((DeleteCell; domainid(g); nodeid(g); Clockg; F loodAreag));endifReceiveg (packet) feither an UpdateCell or a DeleteCell packetgfloodg(packet)where procedure floodg (packet)if domainid(g) 2 packet:floodarea thenfremove domain of g from the ood area to avoid in�nite exchange of the same message.gpacket:floodarea := packet:floodarea | fdomainid(g)g;for all h 2 LocalGatewaysg [LocalV iewserversg doSend(packet) to h using hi;endiffor all h 2 AdjForeignGatewaysg ^ domainid(h) 2 packet:floodarea doSend(packet) to h;Gateway Failure Model: A gateway can undergo failures and recoveries at anytime. We assume failuresare fail-stop (i.e. a failed gateway does not send erroneous messages). When a gateway g recovers, CellIdgis set to nodeid(g). Figure 7: View-update protocol: Events of a gateway g.B Results for Other InternetworksResults for Internetwork 2The parameters of the second internetwork topology, referred to as Internetwork 2, are the sameas the parameters of Internetwork 1 (a di�erent seed is used for the random number generation).Our evaluation measures were computed for a set of 1000 source-destination pairs. The mini-mum spl of these pairs was 2, the maximum spl was 13, and the average spl was 7.2.Table 4 and Table 5 shows the results. Similar conclusions to Internetwork 1 hold for Internet-work 2. In Table 5, the reason that local and QT schemes have more pairs with longer paths thanthe base scheme is that these schemes found some paths (which are not shortest) for some pairs forwhich the base scheme did not �nd any path. 28

Receivex(UpdateCell; did; cid; ts; F loodArea; ncset)if did 2 Precinctx thenif 9hdid:cid; timestamp; expirytime; deleted; ncostseti 2 DV iewx ^ts > timestamp then freceived is more recent; delete the old onegdelete hdid:cid; timestamp; expirytime; deleted; ncostseti from DV iewx;endifif :9hdid:cid; timestamp; expirytime; deleted; ncostseti 2 DV iewx thenChoose ncostset from ncset using SV iewx;insert hdid:cid; ts; Clockx + T imeToDiex ; false; ncostseti to DV iewx;endifendifReceivex(DeleteCell; did; cid; ts; floodarea)if did 2 Precinctx thenif 9hdid:cid; timestamp; expirytime; deleted; ncostseti 2 DV iewx ^ts > timestamp then freceived is more recent; delete the old onegdelete hdid:cid; timestamp; expirytime; deleted; ncostseti from DV iewx;endifif :9hdid:cid; timestamp; expirytime; deleted; ncostseti 2 DV iewx theninsert hdid:cid; ts; Clockx + T imeToDiex ; true; fgi to DV iewx;endifendifDeletex fExecuted periodically to delete entries older than the time-to-die periodgfor all hA:g; tstamp; expirytime; deleted; ncseti 2 DV iewx ^ expirytime < Clockx dodelete hA:g; tstamp; expirytime; deleted; ncseti from DV iewx;Viewserver Failure Model: A viewserver can undergo failures and recoveries at anytime. We assumefailures are fail-stop. When a viewserver x recovers, DV iewx is set to fg.Figure 8: View update events of a viewserver x.Scheme Precinct Size Merged View Size No. of Viewservers Queriedbase 2 / 3.2 / 76 4 / 66.62 / 96 3 / 7.55 / 8base-QT 2 / 3.2 / 76 29 / 72.76 / 96 8 / 8.00 / 8locals 3 / 69.8 / 149 4 / 101.32 / 148 2 / 7.36 / 8locals-QT 3 / 69.8 / 149 35 / 110.32 / 152 8 / 8.00 / 8vertex-extension 3 / 19.47 / 817 15 / 339.60 / 469 3 / 7.55 / 8full-QT 11 / 135.2 / 817 186 / 402.51 / 503 8 / 8.00 / 8Table 4: Precinct sizes, merged view sizes, and no of viewservers queried for Internetwork 2.Results for Internetwork 3The parameters of the third internetwork topology, referred to as Internetwork 3, are shown inTable 6. Internetwork 3 is more connected, more class 0, 1 and 2 domains are green, and more29

Number of paths found No. of pairs No. of pairsScheme spl spl + 1 spl + 2 with no path with longer pathssimple 2.21 13.22 74.30 N/A N/Abase 1.98 8.20 34.40 123 13 by 1.08 hopsbase-QT 1.98 8.36 35.62 110 15 by 1.13 hopslocals 2.08 9.18 40.50 97 23 by 1.39 hopslocals-QT 2.08 9.38 42.08 67 23 by 1.30 hopsvertex-extension 2.18 12.57 64.98 19 6 by 1 hopfull-QT 2.19 12.85 67.37 4 4 by 1 hopTable 5: Number of paths found for Internetwork 2.class 3 domains are red. Hence, we expect more valid paths between source and destination pairs.Our evaluation measures were computed for a set of 1000 source-destination pairs. The mini-mum spl of these pairs was 2, the maximum spl was 10, and the average spl was 5.93.Class i No. of Domains No. of Regions16 % of Green Domains Edges between Classes i and jClass j Local Remote Far0 10 4 0.85 0 8 7 01 100 16 0.80 0 190 20 01 50 20 02 1000 64 0.75 0 500 50 01 1200 100 02 200 40 03 10000 256 0.10 0 300 50 01 250 100 02 10250 150 503 200 150 100Table 6: Parameters of Internetwork 3.16Branching factor is 4 for all domain classes. 30

Table 7 and Table 8 shows the results. Similar conclusions to Internetwork 1 and 2 hold forInternetwork 3.Scheme Precinct Size Merged View Size No. of Viewservers Queriedbase 2 / 3.5 / 171 5 / 134.41 / 206 3 / 7.26 / 8base-QT 2 / 3.5 / 171 55 / 154.51 / 206 8 / 8.00 / 8locals 3 / 70.17 / 171 4 / 164.16 / 257 2 / 7.09 / 8locals-QT 3 / 70.17 / 171 57 / 191.06 / 258 8 / 8.00 / 8vertex-extension 5 / 34.17 / 1986 18 / 601.56 / 695 3 / 7.26 / 8full-QT 14 / 155.5 / 1986 503 / 655.79 / 743 8 / 8.00 / 8Table 7: Precinct sizes, merged view sizes, and no of viewservers queried for Internetwork 3.Number of paths found No. of pairs No. of pairsScheme spl spl + 1 spl + 2 with no path with longer pathssimple 3.34 37.55 368.97 N/A N/Abase 2.83 24.25 178.08 17 11 by 1.09 hopsbase-QT 2.87 25.53 193.41 12 8 by 1.12 hopslocals 2.87 25.62 196.33 21 8 by 1 hoplocals-QT 2.97 27.59 219.63 2 6 by 1 hopvertex-extension 3.32 35.73 332.54 5 1 by 1 hopfull-QT 3.33 36.47 346.44 0 0 by 0 hopsTable 8: Number of paths found for Internetwork 3.Figure 9 through Figure 11 show the number of spl, spl+ 1 and spl+ 2 length paths found bythe schemes as a function of spl (we only show results for spl values for which more than 10 pairsexist). We do not include base-QT, locals and locals-QT schemes since they are very close to basescheme. As expected, as spl increases, the number of paths for a source-destination pair increases,and the gap between the simple scheme and the viewserver schemes increases.31

1
2
3
4
5
6
7
8
9

10

3 4 5 6 7 8 9

sp
l l

en
gt

h
pa

th
s

fo
un

d

spl length

flat
base

vertex-extension
full-QTFigure 9: Number of spl length paths found for Internetwork 3.

0

20

40

60

80

100

120

3 4 5 6 7 8 9

sp
l+

1
le

ng
th

 p
at

hs
 fo

un
d

spl length

flat
base

vertex-extension
full-QTFigure 10: Number of spl + 1 length paths found for Internetwork 3.

0

200

400

600

800

1000

1200

3 4 5 6 7 8 9

sp
l+

2
le

ng
th

 p
at

hs
 fo

un
d

spl length

flat
base

vertex-extension
full-QTFigure 11: Number of spl + 2 length paths found for Internetwork 3.32

