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Nitrogen removal in agricultural treatment wetlands is determined by the health of 

macrophytes. Nitrogen is removed by microbes dependant on an oxic-anoxic boundary 

layer created by oxygen flow through macrophyte culms and by nitrogen sequestration in 

plant biomass.  Phytotoxic ammonia concentrations can limit plant growth. 

Orthophosphate fertilization to balance the nitrogen to phosphorus tissue ratio may 

increase biomass.  One test of this hypothesis investigated Juncus effusus and Typha 

latifolia ammonia phytotoxicity: ammonia concentrations above 150 mgL-1 suppress 

Typha growth and above 300 mgL-1 do not affect Juncus growth.  The second experiment 

altered mesocosm N:P ratios.  Some alleviation of ammonia toxicity was shown; highest 

biomass production at toxic levels occurred at a 15:1experimental N:P ratio.  The two 

species used N and P differently: the average N:P ratio was 12:1 in Juncus and 9.1:1 in 

Typha.  More effective waste removal may be based upon more precise control of N:P 

ratios. 

 



 

EFFECTS OF TYPICAL CONCENTRATIONS OF 
NITROGEN AND PHOSPHORUS 

IN AGRICULTURAL TREATMENT WETLANDS 
ON POLYCULTURES OF TYPHA LATIFOLIA L. AND JUNCUS EFFUSUS L. 

AND A TEST OF THE N:P RATIO AS A PREDICTIVE TOOL. 
 

 
 

by 
 
 

Timothy W. Culbertson 
 
 
 

 
Thesis Submitted to the Faculty of the Graduate School of the 
University of Maryland at College Park in partial fulfillment 

of the requirements for the degree of 
Master of Science  

2005 
 
 
 
 
 
 
 
 

Advisory Committee: 
 
Professor Andrew H. Baldwin, Chair 
Professor Patrick Kangas 
Professor Joseph Sullivan 

 



ACKNOWLEDGEMENTS 
 
 

This thesis was made possible in part due to the continued help and contributions 

from many people in the University of Maryland Community.  I wish to thank Dr. 

Andrew H. Baldwin for serving as my mentor, advisor, and committee chair.  His support 

and guidance were wonderful, without which this thesis would not have been completed.  

I would also like to thank Drs. Patrick C. Kangas and Joseph H. Sullivan for serving on 

my committee and providing valuable criticism of this work.  Several students from Dr. 

Baldwin’s laboratory provided assistance in the greenhouse and otherwise, and for their 

aid I would like to thank Talia Chalew, Mike Egnotovich, Rachael Herbert, Kelly Neff, 

Jessica Peterson, Mary Pittek, Krissy Rusello, and Rebecca Stack.  I also wish to thank 

the staff of the UMCP greenhouses for their help in providing bench space and technical 

assistance. 

Additionally, I am deeply grateful to my immediate family for their support in this 

endeavor, and in particular Katherine R.M. Mackey without whose constant assistance 

this work would have been impossible. 

 ii



TABLE OF CONTENTS 
 

 
List of Tables………………………………………………………………………. iv 
 
List of Figures……………………………………………………………………… vi 
 
Chapter I:  Introduction and Background……………………………………… 1 
 Research Experiments……………………………………………………… 14 
 
Chapter II: Effect of Ammonia on Biomass In Mesocosms 

of Typha latifolia and Juncus Effusus……………………………… 17 
 Objective…………………………………………………………………… 17 
 Methods……………………………………………………………………. 17 
  Preparation of Mesocosms…………………………………………. 17 
  Treatment Solution, Plant Growth, and Statistical Analysis………. 21 
 Results and Discussion…………………………………………………….. 24 
 Conclusions………………………………………………………………... 51  
 
Chapter III: The Vegetation N:P Ratio in Mesocosms Subjected to 
  High Ammonia Concentrations……………………………………. 53 
 Objective…………………………………………………………………… 53 
 Methods……………………………………………………………………. 53 
  Preparation of Mesocosms…………………………………………. 53 
  Treatment Solution, Plant Growth, and Statistical Analysis………. 54 
 Results and Discussion…………………………………………………….. 59 
  Mesocosm Biomass Production……………………………………. 59 
  Mesocosm Root-to-Shoot Ratios…………………………………... 77 
  Mesocosm Tissue Nitrogen Concentration………………………… 80 
  Mesocosm Tissue Mass Nitrogen………………………………….. 95 

Mesocosm Tissue Phosphorus Concentration……………………... 112 
The N:P Ratio as a Predictive Tool……………………………….... 123 

 Conclusions………………………………………………………………… 132 
 
Chapter IV:  Synthesis…………………………………………………………… 134 
 
Appendix I: SAS Code for Chapter II Statistical Analyses……………………... 141 
 
Appendix II: SAS Code for Chapter III Statistical Analyses…………………….. 160 
 
References………………………………………………………………………….. 193 

 iii



LIST OF TABLES 
 
 
2.1. Summary of nutrient additions to prepare treatment solutions in 6 L  

increments in 2002………………………………………............................. 20 
 

2.2. Tests of fixed effects on total, above-ground, and below-ground biomass  
of mesocosms of Typha latifolia and Juncus effusus in 2002……………… 25 
 

2.3.  Tests of fixed effects on total, above-ground, and below-ground biomass  
of Typha latifolia in 2002………………………………………………….. 29 
 

2.4.  Tests of fixed effects on total, above-ground, and below-ground biomass  
of Juncus effusus in 2002…………………………………………………... 34 

 
2.5. Summary of statistical analyses of differences in biomass production  

between Typha latifolia and Juncus effusus over an ammonia gradient  
for 2002.……………………………………………………………………. 39 

 
2.6. Test of fixed effects on the root-to-shoot ratio in mesocosms and in  

Typha latifolia and Juncus effusus in 2002………………………………… 44 
 
3.1  Summary of nutrient additions to prepare treatment solutions in 6 L  

increments in 2003…………………………………………………….…… 55 
 
3.2  Tests of fixed effects on total, above-ground, and below-ground biomass  

of mesocosms of Typha latifolia and Juncus effusus in 2003……………… 60 
 
3.3  Tests of fixed effects on total, above-ground, and below-ground biomass  

of mesocosms of Typha latifolia in 2003…………………………………... 66 
 
3.4  Tests of fixed effects on total, above-ground, and below-ground biomass  

of mesocosms of Juncus effusus in 2003…………………………………... 72 
 

3.5  Test of fixed effects on the root-to-shoot ratio in mesocosms and in  
Typha latifolia and Juncus effusus in 2003……………………………..….. 78 
 

3.6  Tests of fixed effects on total, above-ground, and below-ground tissue  
nitrogen concentration of mesocosms of Juncus effusus and  
Typha latifolia in 2003……………………………………………………... 83 

 
3.7  Tests of fixed effects on total, above-ground, and below-ground tissue  

nitrogen concentration of Typha latifolia in 2003…………………………. 90 
 
3.8  Tests of fixed effects on total, above-ground, and below-ground tissue  

nitrogen concentration of Juncus effusus in 2003………………………….. 94 

 iv



3.9  Tests of fixed effects on total, above-ground, and below-ground tissue  
total mass nitrogen in mesocosms of Typha latifolia and  
Juncus effusus in 2003…………………………………………………….. 99 

 
3.10  Tests of fixed effects on total, above-ground, and below-ground tissue  

total mass nitrogen in Typha latifolia in 2003……………………………... 106 
 
3.11  Tests of fixed effects on total, above-ground, and below-ground tissue  

total mass nitrogen in Juncus effusus in 2003…………………………….... 110 
 
3.12  Tests of fixed effects on total, above-ground, and below-ground tissue  

phosphorus concentration of mesocosms of Typha latifolia and  
Juncus effusus in 2003……………………………………………………... 115 

 
3.13  Tests of fixed effects on total, above-ground, and below-ground tissue  

phosphorus concentration of Typha latifolia in 2003……………………… 118 
 
3.14  Tests of fixed effects on total, above-ground, and below-ground tissue  

phosphorus concentration of Juncus effusus in 2003………………………. 121 
 

 
 
 

 
 

 

 v



LIST OF FIGURES 
 

 
1.1. Conceptual framework of experiments summarizing direct and indirect  

effects of ammonia addition to ATWs……………………………………... 5 
 

2.1. Aspects pertaining to greenhouse treatment design………………………... 19 
 
2.2.  Interstitial water conductivities (µS) for each mesocosm at sampling  

dates in 2002 at experimental ammonia concentrations…………………… 22 
 

2.3. Total mesocosm biomass along a gradient of ammonia concentration  
treatments in 2002………………………………………….......................... 26 
 

2.4. Total above-ground mesocosm biomass along a gradient of ammonia 
concentration treatments in 2002…………………………………………... 27 

 
2.5. Total below-ground mesocosm biomass along a gradient of ammonia 

concentration treatments in 2002…………………………………………... 28 
 
2.6. Total Typha latifolia biomass along a gradient of ammonia  

concentration treatments in 2002…………………………………………... 30 
 

2.7. Above-ground Typha latifolia biomass along a gradient of ammonia  
concentration treatments in 2002…………………………………………... 32 
 

2.8. Below-ground Typha latifolia biomass along a gradient of ammonia  
concentration treatments in 2002…………………………………………... 33 
 

2.9. Total Juncus effusus biomass along a gradient of ammonia  
concentration treatments in 2002…………………………………………... 35 
 

2.10. Above-ground Juncus effusus biomass along a gradient of ammonia  
concentration treatments in 2002…………………………………………... 36 
 

2.11.  Below-ground Juncus effusus biomass along a gradient of ammonia 
concentration treatments in 2002…………………………………………... 37 

 
2.12. Total species biomass along a gradient of ammonia concentration  

treatments in 2002………………………………………………………….. 40 
 

2.13. Above-ground species biomass along a gradient of ammonia  
concentration treatments in 2002…………………………………………... 41 
 

2.14. Below-ground species biomass along a gradient of ammonia  
concentration treatments in 2002…………………………………………... 42 

 vi



2.15. Root-to-shoot ratios for mesocosms along a gradient of ammonia  
concentration treatments in 2002…………………………………………... 45 
 

2.16. Root-to-shoot ratio for Typha latifolia along a gradient of ammonia  
concentration treatments in 2002…………………………………………... 47 
 

2.17. Root-to-shoot ratio for Juncus effusus along a gradient of ammonia  
concentration treatments in 2002…………………………………………... 48 
 

2.18. Species root-to-shoot ratios along a gradient of ammonia concentration  
treatments in 2002………………………………………………………….. 49 
 

3.1  Interstitial water conductivities (µS) for each mesocosm at sampling  
dates in 2003……………………………………………………………….. 57 
 

3.2. Total mesocosm biomass production along a gradient of ammonia  
concentration treatments and at three N:P ratios in 2003………………….. 61 
 

3.3. Total above-ground mesocosm biomass production along a gradient  
of ammonia concentration treatments and at three N:P ratios in 2003…….. 63 
 

3.4. Total below-ground mesocosm biomass production along a gradient  
of ammonia concentration treatments and at three N:P ratios in 2003…….. 64 
 

3.5. Total Typha latifolia biomass production along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003………………….. 67 

 
3.6 Above-ground Typha latifolia biomass production along a gradient of  

ammonia concentration treatments and at three N:P ratios in 2003……….. 69 
 

3.7 Below-ground Typha latifolia biomass production along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003……….. 70 
 

3.8. Total Juncus effusus biomass production along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003………………….. 73 

 
3.9. Above-ground Juncus effusus biomass production along a gradient of  

ammonia concentration treatments and at three N:P ratios in 2003……….. 75 
 

3.10. Below-ground Juncus effusus biomass production along a gradient of  
ammonia concentration treatments and at three N:P ratios in 2003……….. 76 
 

3.11. Root-to-shoot ratios for mesocosms along a gradient of ammonia  
concentration treatments and at three N:P ratios in 2003………………….. 79 
 

 vii



3.12 Root-to-shoot ratios for Typha latifolia along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003………………….. 81 

 
3.13. Root-to-shoot ratios for Juncus effusus along a gradient of ammonia  

concentration treatments and at three N:P ratios in 2003………………….. 82 
 

3.14. Total mesocosm tissue nitrogen concentration along a gradient of  
ammonia concentration treatments and at three N:P ratios in 2003……….. 84 
 

3.15. Total above-ground mesocosm tissue nitrogen concentration along  
a gradient of ammonia concentration treatments and at three N:P ratios  
in 2003……………………………………………………………………... 86 
 

3.16. Total below-ground mesocosm tissue nitrogen concentration along  
a gradient of ammonia concentration treatments and at three N:P ratios  
in 2003……………………………………………………………………... 88 
 

3.17. Total Typha latifolia tissue nitrogen concentration along a gradient  
of ammonia concentration treatments and at three N:P ratios in 2003……. 91 
 

3.18. Above-ground Typha latifolia tissue nitrogen concentration along  
a gradient of ammonia concentration treatments and at three N:P ratios  
in 2003……………………………………………………………………... 92 
 

3.19. Below-ground Typha latifolia tissue nitrogen concentration along  
a gradient of ammonia concentration treatments and at three N:P ratios  
in 2003……………………………………………………………………... 93 
 

3.20. Total Juncus effusus tissue nitrogen concentration along a gradient  
of ammonia concentration treatments and at three N:P ratios in 2003…….. 96 
 

3.21. Above-ground Juncus effusus tissue nitrogen concentration along  
a gradient of ammonia concentration treatments and at three N:P ratios  
in 2003……………………………………………………………………... 97 
 

3.22.  Below-ground Juncus effusus tissue nitrogen concentration along  
a gradient of ammonia concentration treatments and at three N:P ratios  
in 2003……………………………………………………………………... 98 
 

3.23. Total mesocosm tissue mass nitrogen along a gradient of ammonia  
concentration treatments and at three N:P ratios in 2003………………….. 100 
 

3.24. Total above-ground mesocosm tissue mass nitrogen along a gradient  
of ammonia concentration treatments and at three N:P ratios in 2003…….. 102 
 
 

 viii



3.25. Total below-ground mesocosm tissue mass nitrogen along a gradient  
of ammonia concentration treatments and at three N:P ratios in 2003…….. 104 
 

3.26. Total Typha latifolia tissue mass nitrogen along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003………………….. 107 

 
3.27. Above-ground Typha latifolia tissue mass nitrogen along a gradient  

of ammonia concentration treatments and at three N:P ratios in 2003…….. 108 
 

3.28. Below-ground Typha latifolia tissue mass nitrogen along a gradient  
of ammonia concentration treatments and at three N:P ratios in 2003…….. 109 
 

3.29. Total Juncus effusus tissue mass nitrogen along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003………………….. 111 

 
3.30. Above-ground Juncus effusus tissue mass nitrogen along a gradient  

of ammonia concentration treatments and at three N:P ratios in 2003…….. 113 
 

3.31. Below-ground Juncus effusus tissue mass nitrogen along a gradient 
of ammonia concentration treatments and at three N:P ratios in 2003…….. 114 
 

3.32. Total mesocosm tissue phosphorus concentration along a gradient  
of ammonia concentration treatments and at three N:P ratios in 2003…….. 116 
 

3.33. Total Typha latifolia tissue phosphorus concentration along a gradient  
of ammonia concentration treatments and at three N:P ratios in 2003…….. 120 
 

3.34. Total Juncus effusus tissue phosphorus concentration along a gradient  
of ammonia concentration treatments and at three N:P ratios in 2003…….. 122 
 

3.35. The vegetation N:P ratio of total Juncus effusus tissue and total  
Typha latifolia tissue presented as tissue nitrogen versus tissue  
phosphorus at all experimental N:P ratios and all ammonia concentration 
treatments in 2003………………………………………………………….. 124 
 

3.36. The vegetation N:P ratio of each experimental N:P ratio presented  
as tissue nitrogen versus tissue phosphorus at all ammonia concentration 
treatments and for  mesocosms of Juncus effusus and Typha latifolia  
in 2003........................................................................................................... 125 
 

3.37. The vegetation N:P ratio of each experimental N:P ratio presented  
as tissue nitrogen versus tissue phosphorus at all ammonia concentration 
treatments and for Typha latifolia in 2003…………………………………. 126 
 
 
 

 ix



3.38. The vegetation N:P ratio of each experimental N:P ratio presented  
as tissue nitrogen versus tissue phosphorus at all ammonia concentration 
treatments and for  Juncus effusus in 2003………………………………… 127

 x



CHAPTER ONE: 
INTRODUCTION AND BACKGROUND 

 

Of paramount concern in agricultural areas, in particular those in close proximity 

to natural watersheds of ecological and economic importance, is the control of 

anthropogenically derived nitrogenous wastes entering those watersheds (Bobbink et al.. 

1998, Aerts and Bobbink 1999).  In addition to nitrogenous compounds, wastewater 

produced by dairy farms, feedlots, and hog farms also tends to have high carbon content, 

high total suspended solids, and often high phosphorus content as well (Cronk 1996); the 

sum effect of addition of excess amounts of these nutrients to natural waters may 

contribute to eutrophication (Cronk 1996, Knight et al. 2000).  Concentrations of 100-

300 mgL-1 of ammonia and 75-200 mgL-1 of total phosphorus are fairly common for 

agricultural wastewater.  Hammer (1992) reports concentrations of up to 500 mgL-1 in 

raw livestock wastewater. 

Production of wastewater in agricultural systems typically stems from cleaning 

practices (Tanner et al. 1995a), which flush excretions, mud, feed, waste milk, and 

detergents from barn or dairy parlor floors with high-pressure hoses (Cronk 1996, Tanner 

et al. 1995a).  Flush water volumes tend to be quite high: Soil Conservation Service 

estimates suggest a total of 100 gallons per cow per day (SCS 1991), and independent 

researchers suggest almost an order of magnitude higher (Surrency 1993).  Raw flush 

water is normally treated, though not always, prior to addition to natural waters, but tends 

to retain some portion of its high nutrient load (Clarke 1999, Cronk 1996). 

In such typically nitrogen-limited natural systems, additions of high nitrogen 

compounds such as ammonium (NH3) and nitrate (NO3
-) tend to alter species 
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composition and biomass production (Shaver and Chapin 1995, Lammerts et al. 1999, 

Van Duren and Pegtel 2000, Camacho et al. 2003).  Biomass production in natural 

systems tends to be enhanced by the addition of a limiting nutrient; the addition of non-

limiting nutrients tends to have little or no effect on biomass production (Vitousek and 

Howarth 1991, Verhoeven et al. 1996, Gusewell et al. 2003). Species composition is 

affected by the addition of limiting or non-limiting nutrients, due to differential species 

responses to different nutrients (Dijk and Olff 1994, Mamolos et al. 1995, Shaver and 

Chapin 1995, Lammerts et al. 1999).  Species responsiveness to nutrient availability 

differs, then, dependant on relative nutrient requirements and on their ability to take up 

and use the available nutrients (Kielland 1994, Perez-Corona et al. 1996, Ryser et al. 

1997, Aerts and Chapin 2000). In watersheds, the most responsive species tend to be 

algae and phytoplankton (e.g. Rhee 1978, Downing and MacCauley 1992); responses are 

most frequently seen to increases in available nitrogen rather than increases in available 

carbon (Camacho et al. 2003) or in available phosphorus (Jansson et al. 2001).  

Fertilization increases are characterized by rapid biomass production of one or few 

species, in response to increases in previously limiting nutrients (Grime 1979, Camacho 

et al. 2003).  This rapid biomass production is associated with decreases in species 

richness (Bedford et al. 1999, Kent et al. 2000, Green and Galatowitsch 2003, see 

Mittelbach et al. 2001 for an excellent synopsis), and increases in the presence of 

invasive species (Green and Galatowitsch 2002), which may end in decrease in economic 

and ecological function in the watershed or other system (Engelhardt et al. 2001, Ostertag 

and Verville 2002).  
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Methodologies to remove the nitrogen component of agricultural system wastes 

were historically limited to the creation or restoration of riparian buffer strips of 

naturalized vegetation (e.g. Brix 1989, Vought et al. 1993, Konya et al. 1995, Tanner et 

al. 1995a, Craft 1999).  Stemming from the theories that such strips remove contaminants 

by translocating chemicals into the biomass and providing suitable habitat for microbial 

colonization (and subsequent redoxic removal mechanisms), the use of  engineered 

wetlands as dedicated waste water purifiers has been investigated and implemented in a 

range of conditions and at a range of sites (e.g. Hammer 1992, Cronk 1996, Karpiscak et 

al., 1999, Knight et al. 2000).   

Current estimates indicate that 65% to 85% of nitrogenous contaminants are 

removed by vegetation and bacteria as water moves through an agricultural treatment 

wetland (ATW) (Cronk 1996, Knight et al. 2000).  Of nitrogenous compounds (which 

can include organic forms such as urea, amino acids, amines, and nucleic bases, and 

inorganic forms such as ammonia, nitrite, nitrate, and nitrogen gases), ammonia is the 

most problematic to remove, and percentage removal rates are often significantly lower 

than the removal rates of other compounds, nitrogenous and otherwise (i.e. Mitsch and 

Gosselink 1993, Hammer and Knight 1994, Cronk 1996, Humenik et al. 1999, Clarke 

1999, Knight et al. 2000, Clarke and Baldwin 2002).  Ammonia, nitrite, and nitrate are 

recognized pollutants of natural waters, with toxicity limits of ammonia placed as low as 

0.2 mgL-1 (Kadlec and Knight 1996).  Maximum removal efficiency of ammonia tends to 

be less than 90%, with some estimates as low as 48% (Knight et al. 2000).  On the other 

hand, under conditions of maximum efficiency, up to 97% of biological oxygen demand 

(a surrogate measure for total carbon) can be removed, as can 99% of total nitrogen, and 
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93% of total phosphorus (Cronk 1996, Clarke 1999, Schaafsma et al. 2000,Knight et al. 

2000, DeRico 2000, Clarke and Baldwin 2002).  As previously explained, poor removal 

of ammonia or other nitrogenous compounds from wastewater can lead to eutrophication 

in nitrogen-limited natural systems; nitrogen removal becomes, therefore, an important 

goal of ATWs (Cronk 1996, Clarke 1999, Knight et al. 2000).  Of the portion removed 

from the wastewater, approximately 40% of this nitrogen is translocated into plant 

biomass and used for the production of proteins, nucleic bases, protonated hydrocarbons, 

etc (Reddy et al. 1989).  The remaining 60% is removed through the redoxic nitrification-

denitrification pathway (Howes et al.. 1981, Gumbricht 1993, Bachand and Horne 

2000a), although percentage values as to the treatment effects of plants on nitrogenous 

wastes range from 90% (Rogers et al. 1991) to just 5% (Hammer 1992).  In any event, 

the importance of the nitrogen-coupled bacterial reaction is not to be overlooked; through 

this pathway, ammonium (NH4
+) is oxidized to nitrate, which is then reduced to nitrogen 

gas (N2 or N2O), which leaves solution.  Figure 1.1 illustrates these direct effects as well 

as associated indirect effects.   

Clearly, then, this pathway requires an oxygen gradient; translocation in plants of 

oxygen from atmosphere to rhizosphere through aerenchymous tissues helps to provide 

an anoxic-oxygenated interface over which this reaction may occur (Brix 1989, Brix et 

al. 1992, Bendix et al. 1994, Tornbjerg et al. 1994, Brix et al. 1996, Brix and Sorrell 

1996, Brix 1997, Jespersen et al. 1998, Smith et al. 2000).  Tanner and Kadlec (2003) 

consider rhizosphere oxygenation to be the rate-limiting step in nitrogen removal in 

treatment wetlands.  Greater plant biomass results in greater oxygen flow into the 

rhizosphere, thus increasing the degree of development of this boundary layer.  This gas  
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Figure 1.1.  Conceptual framework of experiments summarizing direct and 
indirect effects of ammonia addition to ATWs.  Signs associated with effects indicate 
feedback within the system.  Question marks may indicate where further research could 
add to the precision with which ATWs are modelled.  
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flow rate differs based on plant species, but in each case increases as biomass increases 

(Brix 1989, Brix et al. 1996, Romero et al. 1999).  Thus, biomass may be seen as a rough 

surrogate for degree of development of oxygenation in the root zone, the resolution of 

which depends upon the gas flux constant of the species used.  Root zone oxygenation is 

likewise proportional to degree of nitrification given that the bacteria necessary for such 

are in abundance in an oxygenated system.  Decreases in biomass in treatment wetlands 

are therefore problematic in terms of nitrogen removal on two levels: (1) lower biomass 

production equates to lower translocation rate of nitrogen into plant tissue; (2) lower 

biomass equates to lower oxygen flow into the rhizosphere, lower degree of development 

of the redoxic boundary, and lower rate of nitrification.  Additionally, (3) lower biomass 

equates to less surface area in the water column itself upon which nitrifying bacteria may 

be supported (a potentially overlooked but experimentally valid assumption; see 

Bastviken et al. 2003) (Figure 1.1). 

Difficulties arise in designing ATWs for effective removal of nitrogenous wastes 

due to a lack of standardization in flow hydrology and chemical load into the system 

(Hammer and Knight 1994).  The reactions which remove nitrogen tend to have a low 

rate of reaction; slower flows will allow greater amounts of denitrification.  In the case of 

some treatment wetlands, wastes are pretreated to varying degrees by screening, settling 

basins, oxygenation, etc.; these measures tend to emphasize physical removal of solids 

more so than redoxic or translocational removal of chemical constituents (Gale et al. 

1993, Hammer and Knight 1994, Knight et al. 2000).  Wetlands receiving well-treated 

waste water tend to have a higher potential for removal of biochemicals due primarily to 

lower concentrations of those chemicals in the influent waste water.  Conversely, 
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wetlands receiving untreated or poorly treated wastewater tend to have lower potential for 

biochemical removal due to high concentrations of those chemicals in the influent water 

(Hammer and Knight 1994, Knight et al. 2000, Knight 2003), despite potentially higher 

total mass removal by the wetland.   

High concentrations of waste water contaminants are problematic due to 

phytotoxic effects.  Ammonium (NH4
+) in untreated agricultural waste is known to be 

phytotoxic, although different species exhibit toxic effects at different concentrations of 

NH4
+, though few tested concentrations approached observed ATW ammonia 

concentrations (Walker and Evans 1978, van der Eerden 1982, Wang 1990, Surrency 

1993, Dijk and Eck 1995, Magalhaes et al. 1995, Tanner et al. 1995b, Clarke 1999, 

Clarke and Baldwin 2002).  Surrency (1993) reports Typha latifolia L. growth was 

suppressed by ammonia concentrations between 160 and 170 mgL-1.  Hill et al. (1997) 

found that the growth of five wetland species, including both Typha latifolia L. and 

Juncus roemerianus L., was not affected by field ammonia concentrations of up to 82.4 

mgL-1.  Humenik et al. (1999) found Juncus effusus tolerant of ammonia concentrations 

up to 350 mgL-1 over a two year period.  Clarke (1999, Clarke and Baldwin 2002) 

reported growth inhibition of five species, including Typha latifolia and Juncus effusus, at 

NH4
+ concentrations in excess of 200 mgL-1, and discussed build-up of ammonia and 

time-dependant toxicity levels under continuous-loading treatment conditions.  

The exact mechanisms behind ammonium toxicity are not known; hypothetical 

links exists between NH4
+ toxicity and alterations in differential ion selective uptake 

(such are the cases for other cation toxicities, such as Ca+2, Mg+3, Li+, etc.(Hageman 

1984, Britto and Kronzucker 2002).  Ammonium ion toxicity may be mediated by 
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incorporation of low concentrations of selectively transported cations such as potassium, 

Rb+, or Cs+, but not by Ca+2 (Cao et al. 1993), but deficiencies in tissue K+ at high 

ammonium levels have been reported as a potential cause for low growth rates and poor 

biomass production (Abbes et al. 1995).  Ammonia fertilization may also cause soil 

acidification due in increased H+ ion concentration from uptake of ammonia; acidification 

further complicates uptake mechanisms and may result in biomass decline due to inability 

to take up other nutrients (Hageman 1984, Dijk and Eck 1995).  Toxicity appears to 

function in some species at the enzyme or mRNA levels rather than by reducing pH or 

cation uptake.  In mustard (Sinapsis alba L.), interference with the transformation of fats 

to carbohydrates via reduction of RuBPCase, NAD-GDP and NADP-GDP enzymes was 

found to be the cause of decreased biomass production; pH changes and osmotic effects 

were found to not interfere with biomass production (Mehrer and Mohr 1989). Ammonia 

toxicity has been implicated in reduced hormonally-mediated transporter functions (Glass 

et al. 2002), and auxin-deficient mutants in Arabidopsis display some resistance to 

ammonia toxicity (Cao et al. 1993).  Developments in the field of plant microbiology and 

discovery of the genetic mechanisms controlling ammonia uptake and its relation to the 

uptake of other cations or maintenance of cellular pH or cation equilibrium, while outside 

the scope of this paper, may further elucidate toxic properties of excessive amounts of 

ammonia (Kronzucker et al. 2001, Glass et al. 2002).  In any event, high ammonium 

levels are one of the factors responsible for decreases in plant biomass in ATWs 

(Surrency 1993, Hill et al. 1997, Clarke 1999), and macrophyte biomass in ATWs is 

essential to system health and proper functioning (Kadlec and Knight 1996, Brix 1997, 

Hunter et al. 2000, Clarke and Baldwin 2002).   
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On the other hand, a moderate concentration of ammonia, where “moderate” is 

again defined by the selected plant species, is likewise necessary for optimal system 

health and functioning.  Due to adaptations to flooded soil and the reduced condition 

found therein (Mitsch and Gosselink 1993), most wetland plants preferentially uptake 

nitrogen in the ammoniacal form (Hammer and Knight 1994).  Plant growth in natural 

wetland systems is often limited by a lack of abundance of reduced nitrogen in the 

system; ammonia concentrations below 2 mgL-1 are typical for a number of types of 

natural wetland (Shaver and Chapin 1995, Kadlec and Knight 1996, Lammerts et al. 

1999, Van Duren and Pegtel 2000), with variations in NH4
+ concentration inversely 

proportional to standing biomass. 

Phosphate concentrations (PO4
-3) in ATWs are not as high as NH4

+ levels; toxicity 

of phosphates has not been ascertained (Kadlec and Knight 1996), and researchers have 

failed to find significant growth inhibition at high phosphate levels (Romero et al 1999).  

The mechanism by which phosphate uptake occurs is a series of proton pumps in the root 

epidermis with high H2PO4
- affinity, indicating the necessity of available H+ ions to 

oxidize PO4
-3 (Smith 2002, Smith et al. 2003).  Generally, phosphates tend not to be as 

mobile in the environment as nitrogenous compounds; in the presence of cations they 

tend to form precipitates, in the presence of clays they tend to adsorb (Mitsch and 

Gosselink 1993).  Having been removed from solution, these anions are not prone to 

removal by flow-through, and can accumulate at the redoxic boundary, maintaining 

availability for plants equipped with ATPase-linked membrane proteins with sufficient 

affinity for phosphates (Smith 2002). 
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The use of nitrogen to phosphorus ratios in plant tissues for predicting fertilization 

effects is controversial.  Koerselman and Meuleman (1996) reviewed 40 field fertilization 

experiments in wetlands and concluded that biomass production of the vegetation 

community is typically limited by nitrogen if the aboveground N:P ratio is low (<14) and 

by phosphorus if the N:P ratio is high (>16).  This result did not coincide well with the 

by-weight N:P ratio of 7.2:1 proposed by Redfield (1958), nearly 40 years earlier 

(although Redfield’s prediction was based upon N:P ratios found in marine 

phytoplankton). They also hypothesized that individual plant population response to 

fertilization could be predicted using the same ratios due to the fact that over half of the 

sites included in the review were dominated by a single species making up 80% or more 

of the aboveground biomass for the site.   

Tilman (1982, 1985, 1987, 1997, et al. 1999), modeling nutrient limitations in wet 

meadow and prairie communities, described competition effects in response to 

fertilization in the “resource ratio model.”  This model predicts that if two nutrients (for 

example N and P) are limiting, fertilization with one nutrient will cause the other to 

become relatively scarcer, and will create differential selection or competitive pressure 

for those species that are strong competitors for the scarce nutrient.  Fertilization with the 

opposite nutrient will create the opposite effect, and will select for a different group of 

species.  Furthermore, the model predicts the competitive ability of plant species for 

certain resources based on the tissue concentration of a nutrient: strong competitors will 

have a low concentration, weak competitors a high concentration.  Thus, if N and P are 

limiting, the tissue N:P ratio should indicate which species will be promoted by N 

enrichment (a high N:P ratio) or by P enrichment (a low N:P ratio).  Likewise the 
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addition or subtraction of a necessary limiting factor can enhance or diminish the 

presence of a certain species (Tilman et al. 1999).  These results were corroborated by 

several authors (Mamolos et al. 1995, Mamolos and Veresoglou 2000).   

Other authors have investigated whether N:P ratios suggest nutrient limitation 

patterns at all, although in studies of shorter duration.  Wassen et al. (1995), Pegtel et al. 

(1996), and Gusewell et al. (2003) found that N:P ratios could indicate accumulation of 

the non-limiting nutrient rather than paucity of the limiting one.  McJannet et al. (1995) 

found different N:P ratios in 41 species of wetland plants grown under the same nutrient 

concentrations.  Lechowicz and Shaver (1982) suggested different N:P ratios reflected 

differences in growth habit.  Gusewell et al. (2003) indicated biomass N:P ratios in plant 

communities are not the result of species-specific or growth habit-specific uptake rates 

but the result of differences in the relative availability of N and P.  A number of authors 

(Braakhekke and Hooftman 1999, Roem and Berendse 2000, Gusewell et al.  2002) 

found that N and P ratios tended to differ more within species between sites or treatments 

than within species within a given site or treatment, and that variations in N:P ratios 

within species tended to correlate well with variations in N:P ratios between sites.   

Ammonium toxicity tends to differ between species (see above; see Tanner et al 

1995 for an excellent synopsis).  Provided that N and P usage is not significantly different 

between species as suggested above, use of species specially selected for ammonium 

concentration tolerance may be beneficial to increasing treatment efficiency.  However, 

since different species exhibit different gas flux constants, highest treatment efficiency 

may be achieved through a mix of species with graded ammonia tolerances and additive 

culm oxygen transmittal.  It has been suggested that highest biomass production and 
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stability of ecosystem processes occur in wetlands with a high degree of species richness 

(Tilman 1996, Engelhardt et al. 2001).  Mixtures of species, then, may yield elevated 

treatment efficiency over monocultures due to a suite of morphologies and resource 

acquisition mechanisms more able to fully capture available light and nutrients.  At the 

same time, increases in fertilization tend to favor the competitor with the best acquisition 

mechanisms for that nutrient (Tilman et al. 1999), but at toxic or semi-toxic nutrient 

concentrations, inhibitory effects may prove significant (Goldberg and Barton 1992, 

Mittelbach et al. 2001). 

Taken together, the above suggest the possibility that N:P ratios can be used to 

predict biomass production, although the mechanisms by which this may be done are 

complex and often related to the species used, the community observed, or the time scale 

over which the experiment is run.  In all, it appears that plant tissue concentrations may 

closely reflect concentrations of N and P in the surrounding environment; changes in N 

and P concentrations by fertilization may be reflected proportionally in the biomass, 

regardless of species-specific uptake mechanisms, or time duration.  The predictive 

power of the N:P ratio has not been applied to agricultural wastewater treatment 

wetlands; the power and resolution of the tool may change when applied to systems of 

artificially elevated N and P levels.  ATWs represent a unique case of circumstances for 

the application of a concept prior to this point used to determine end effects, given that 

treatment wetlands or other means by which to reduce nitrogenous output to the natural 

environment do not always function as planned with respect to nitrogen removal.  

Alterations in the environmental N:P ratio based on attempts to correct the vegetation 

N:P ratio may serve to increase treatment efficiency by removing nutrient limitations and 
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allowing higher biomass production and higher tissue nutrient concentrations  (Powell 

1974, Rubio et al. 1997, Tu and Ma 2003, Vojtiskova et al. 2004).  Environmental N:P 

ratios in ATWs indicate P-limitation (Clarke 1999, DeRico 2000).  Likewise, lack of 

treatment efficiency, in terms of use by plants or bacteria, in removing nitrogen when 

compared to phosphorus would seem to indicate an overabundance of nitrogen (Cronk 

1996, Knight et al. 2002, Tanner and Kadlec 2003).  Leibig’s Law of the Minimum states 

that biomass production may increase upon the removal of a limiting resource; in this 

case the limiting resource may be phosphorus.  By increasing the available P, N usage in 

plant tissue may increase as well; increased use, in addition to conversion to N2 or N2O 

gas along the anoxic boundary, may result in lower cation concentration in solution, 

which may potentially alleviate ammonium toxicity issues.  Additionally, use of a species 

assemblage over a gradient of specific ammonium toxicities and oxygen flux constants 

may result in more efficient use of nitrogen, likewise lowering the solution cation 

concentration and potentially alleviating ammonium toxicity. 

In this thesis, I hypothesized that by altering N:P ratios in ATWs to better reflect 

naturally occurring N:P ratios, the phytotoxic level of  NH4
+ can be increased to exclude 

ammonium concentrations in high nitrogen ATWs.  The following objectives were 

addressed in two experiments:  

(1) Are environmental N:P ratios reflected in plant biomass under high  

concentrations of  NH4
+  and PO4

-3?  

(2) Is high productivity maintained in high [NH4
+] given appropriate [PO4

-3]?  

(3) How do responses of species grown in mixtures change over a gradient of  

ammonia and phosphate concentrations? 
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RESEARCH EXPERIMENTS 

Planting guidelines for agricultural treatment wetlands available from the USDA 

(SCS 1991) advocate the use of polycultures as opposed to monocultures.  Species were 

selected from these guidelines and based on the work of Clarke (1999 and Clarke and 

Baldwin 2002), Humenik et al. (1999), Hill et al. (1997), Surrency (1993),  in nitrogen 

tolerances of wetland species.  Typha latifolia L. and Juncus effusus L. (hereafter Typha 

and Juncus) were selected based on nitrogen tolerances; both species have high 

tolerances for NH3 when grown in monoculture (Surrency 1993, Humenik et al. 1999, 

Clarke and Baldwin 2002).  Typha is typically considered an excellent competitor, and 

monotypic stands are often associated with nutrient-rich conditions (Grace and Wetzel 

1981, Tilman 1987, Surrency 1993, Clarke 1999, Svengsouk and Mitsch 2000).  Juncus 

is not considered as vigorous a competitor, and ranked lower than Typha in competitive 

performance when measured against a common phytometer (Keddy et al. 2000).  

However, both species are clonal graminoids, and as such both should respond in similar 

fashion to additions of N and P in that additional culm growth should be the result of 

removal of P-limitation (Tilman 1982, DiTommaso and Aarssen 1989, Aerts et al. 1990, 

DeKroon and Bobbink 1997, Aerts et al. 1999).   

Mesocosms were constructed at the greenhouses of University of Maryland 

(College Park, Maryland, USA) in May 2002.  These greenhouses controlled 

precipitation inputs into the mesocosms, allowing for permanent and maintainable 

concentrations of solutes.  Typha and Juncus were purchased from Environmental 

Concern, Inc. (St. Michaels, Maryland, USA) in quart pots.  Two plants of each species 

were planted in sterile soil-less media (Metromix; Scotts, Marysville, Ohio, USA) into 6L 
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pots.  These pots were then placed in 10L pots lined with 4 mil polypropylene and filled 

with 6L of water, creating a pot-within-pot design.  Nitrogen and phosphorus fertilizers 

were added as reagent-grade NH4Cl and Na3(PO4)2.   

In two experiments, mesocosms arranged in this manner were subjected to two 

experiments to determine the effects of nitrogen and phosphorus concentrations typical in 

ATWs on biomass, species dominance, and the N:P ratio. The first experiment, in 2002, 

explored the effects of  NH4
+ alone of the two species planted in polyculture.  Five 

ammonia levels were selected using observed ammonia tolerances from Clarke (1999) 

and Humenik et al. (1999) for monoculture ammonia-N tolerances for the two species: 0, 

75, 150, 225, and 300 mgL-1.  Fertilizer solution was replaced weekly and monitored to 

assure appropriate treatment concentrations, and above- and below-ground biomass was 

harvested at the end of eleven weeks.  Ammonia effects on total biomass, above- and 

below-ground biomass, and stress tolerance were evaluated using analysis of variance 

(ANOVA) tools in SAS packages (SAS Institute, Cary, North Carolina, USA). 

The second experiment, in 2003, explored the effects of NH4
+ and PO4

-3 on 

polycultures of Juncus and Typha.  Four ammonia levels were selected from the previous 

year’s data: 75, 150, 225, and 300 mgL-1, and phosphate was added such that solution 

N:P ratios of 5:1, 15:1, and 25:1 resulted.  Fertilizer solutions were replaced weekly and 

monitored to assure appropriate treatment concentrations, and above- and below-ground 

biomass was harvested at the end of ten weeks.  Effects of varying N:P ratios and 

ammonia on total biomass, above- and below-ground biomass, and stress tolerance were 

evaluated using analysis of variance (ANOVA) tools in SAS packages (SAS Institute, 

Cary, North Carolina, USA). 
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In attempting to answer the objectives listed above, the following assessments 

were made after biomass harvesting during the two experiments described above.  To test 

whether tissue N:P ratios reflect environmental N:P ratios under high [NH3] (objective 1), 

total tissue nitrogen and phosphorus concentrations for all tissues at each treatment, and 

the mean tissue nitrogen and phosphorus concentrations of Juncus and Typha were 

compared to the environmental N:P ratio as determined by solute addition.  Comparisons 

were made using blocked ANOVA and data was adjusted for normality and homogeneity 

of variance.  To test whether high productivity is maintained in phytotoxic [NH3] given 

phosphate additions (objective 2), mean biomass of Typha and Juncus was compared 

between N treatment levels at equal N:P ratios with data adjusted as required to assure 

normality and homogeneity of residuals.  Phytotoxic concentrations were assumed given 

the work of previous researchers (Clarke 1999, Humenik et al. 1999).  Comparisons 

between N:P ratios within N treatments were also made for mean total, above-ground, 

and below-ground biomass for Juncus and Typha.  To test differences in phytotoxicity in 

poly- and mono-culture (objective 3), mean total biomass for Juncus and Typha planted 

in polyculture (2002 data) was compared within species between treatments using 

blocked ANOVA with data adjusted as necessary.   
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CHAPTER TWO: 

EFFECT OF AMMONIA ON BIOMASS IN MESOCOSMS  

OF TYPHA LATIFOLIA AND JUNCUS EFFUSUS

 

OBJECTIVE 

The objective of this study was to investigate differences in productivity 

responses of mesocosms of mixtures of Juncus effusus L. and Typha latifolia L. to 

ammonia under controlled conditions.  This was accomplished in a one greenhouse 

experiment, during which plants were exposed to levels of 0, 75, 150, 225, and 300 mg 

NH4
+ L-1 over an 11 week period.  In order to supply micronutrients without 

compromising experimental control, plants were cultured in sterilized soil-less media 

(Metromix, Scotts, Marysville, Ohio, USA), and treatments were applied by batch-

loading with appropriate concentrations (Wang 1991).  Typha latifolia (hereafter Typha) 

and Juncus effusus (hereafter Juncus) were selected for this study based on the work of 

Clarke (1999), Clarke and Baldwin (2002), Humenik et al. (1999), and Surrency (1993), 

which indicated high ammonia-N tolerances for these species.  Using Juncus and Typha 

allowed us to investigate changes in the proportion of biomass allocated to each species 

over the given range of treatments, as well as to investigate changes in the mesocosm 

biomass on the whole. 

METHODS 

Preparation of Mesocosms 

Plant material was purchased from Environmental Concern, Inc. (St. Michaels, 

Maryland) in May of 2002 as 125 quart pots of each species, grown from seed under 
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greenhouse conditions.  Plants were transported from St. Michaels to the Harrison 

Laboratory Greenhouses at the University of Maryland, College Park (UMCP) in a 

covered vehicle, where they were immediately transplanted with their original soil and 

accompanying microorganisms into 50 mesocosms of approximately 6 L in volume and 

watered thoroughly to prevent potential transplant shock.  Each “mesocosm” was planted 

with two quart pots of each species, in a design minimizing North-South and East-West 

effects (Figure 2.1).  Following 2 weeks of acclimatization to UMCP conditions, water, 

temperature, and transplant, the 6 L pots were then placed within 10 L pots lined with 4 

mil. polypropylene and filled with 6 L of greenhouse tap water, creating a pot-within-pot 

design (Figure 2.1.) such that the water flooded each mesocosm (experimental unit) to the 

soil surface.  These mesocosms were randomly placed in five columns of 10 rows, with 

columns aligned North-South (labeled A through E) and rows aligned East-West (labeled 

1 through 10).  Treatments of ammonia concentrations were assigned such that each 

treatment occurred once in each row and twice in each column, a block design to account 

for potential effects of shading due to rapid and dense growth of either species (Figure 

2.1.).  Treatments were applied such that ammonia concentrations of 0, 75, 150, 225, and 

300 mgL-1 of NH4
+ were established (Table 2.1.). 

Ammonia treatments for the 2002 study were prepared using reagent-grade 

ammonium chloride (Fisher Scientific, Fair Lawn, New Jersey, USA) and greenhouse tap 

water.  Tap water was used due to the large volumes of water changes necessary as a 

batch-loaded system.  Batch loading was chosen over continuous flow based on Wang 

(1991) and Clarke and Baldwin (2002).  Treatment solutions were prepared by the 

addition of appropriate mass of NH4Cl-N and greenhouse tap water to 6 L, and were  
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Table 2.1.  Summary of nutrient additions to prepare treatment solutions in 6 L 
increments in 2002, and the associated total mass of ammonium chloride and nitrogen for 
each treatment. 

 
 

[Ammonia] Treatment  NH4Cl (g) N (g) 
0 0 0

75 1.41 0.37
150 2.83 0.74
225 4.24 1.11
300 5.65 1.48
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replaced once per week.  Solution replacements consisted of draining previously existing 

solution and replenishment with freshly mixed solution of appropriate concentration. 

 

Treatment Solution, Plant Growth, and Statistical Analyses 

 Interstitial water was sampled weekly in each experimental unit during solution 

replacement to insure appropriate ammonium concentration.  Due to the number and 

frequency of measurements and the corresponding frequency of recalibration necessary 

for such, it was deemed impractical to attempt the use of [NH3] electronic meters.  The 

Orion Ammonia Electrode (Model 95-12) warrants a suggested recalibration after each 

measurement, requires five to ten minutes per measurement, and suggests measurements 

not be taken in situ (Thermo Corp., Waltham, Massachusetts, USA).  Conductivity 

meters are robust against need for recalibration, and serve as a useful surrogate for 

measurements of cation concentration.  As ammonium was the only cation added to 

solution, changes in conductivities were affected primarily by this cation (Clarke 1999).  

Weekly variations in the initial greenhouse tap water cation-derived conductivity were 

noted.  Conductivities were expected to deviate from desired treatment levels due to 

evapotranspiration, uptake, nitrification, volatilization, and accumulation on cation-

exchange sites in the soil solution.  Conductivities for each treatment level in 2002 

clearly increased with increasing ammonium concentration, may be found in Figure 2.2; 

overall greenhouse tap water conductivity averaged 0.7±0.3 microsiemens. 

Average above-and below-ground biomass of each species was determined for 

non-experimental plants prior to application of treatments.  In 2002, mean above- and  
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Figure 2.2.  Interstitial water conductivities (µS) for each mesocosm at sampling dates in 
2002 at experimental ammonia concentrations. 
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below-ground biomass per Typha plant (n=25) were 3.2 ±0.3g and 5.3± 0.2g, respectively 

(reported as mean ± SE). Mean above- and below-ground biomass per Juncus plant  

 (n=25) were 4.3±0.9g and 6.4±0.2g, respectively.  Mesocosms were destructively 

harvested in mid-September after eleven weeks of treatment application.  Above-ground 

material for each species was removed to soil surface; below-ground material was 

retrieved by removing the root ball from each mesocosm, removing particles of the 

planting medium, and carefully separating Juncus and Typha roots, which were clearly 

discernible based on size and color.  Thus, each mesocosm (experimental unit) was 

separated into four distinct sampling units.  Biomass was dried at 27 degrees Centigrade 

and weighed until stabilization of mass (approximately three days for above-ground and 

five days for below-ground samples). 

Analyses of variance (ANOVAs) were conducted for above- and below-ground 

biomass and total biomass for each mesocosm and within and between each species.  

ANOVAs were conducted using SAS Version 8.2 (SAS Institute, Cary, North Carolina, 

USA).  In each case, biomass was the dependant variable; effects of species, column 

placement (blocking effect), and effects of ammonia treatments were assessed as 

independent variables. Blocking effect interactions were not analyzed due to significance 

of first-order blocking effects; significance of first order terms tends to reduce resolution 

of second order terms.  Analyses of variance were likewise conducted for root-to-shoot 

ratios for Typha and Juncus, both between the species, and within the species at each 

ammonia concentration. Normality and homogeneity of variances were examined in each 

case, and log transformations of dependant data were made when necessary.  Significant 

differences were determined at α=0.05. 
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Because experiment-wise error rates would be elevated by using paired t-test to 

investigate treatment means and mean root-to-shoot ratios, pair-wise comparisons using 

ANOVA were selected to allow for a more robust analysis of the interactive effects of the 

independent variables.  Additionally, multiple sampling units were assigned  to each 

experimental unit, and ANOVA minimizes the effect of any potential oversampling 

complications. 

 

RESULTS AND DISCUSSION 

 Ammonia concentration significantly affected total, above- and below-ground 

biomass for each mesocosm at the 5% level in 2002 (Table 2.2).  In the case of total 

biomass for each mesocosm, a definite fertilization effect occurred between the 0 mgL-1 

and the 75 mgL-1 ammonia treatments.  The average mesocosm biomass for these 

treatments was 229.4±25.8 g and 508.2±30.1 g, respectively.  A statistically apparent 

toxicity effect occurred in the 225 mgL-1 and the 300mgL-1 ammonia treatment levels 

(Figure 2.3).  Toxicity effects may be seen as an overall decrease in the amount of 

biomass found at these higher treatment levels.  This overall trend may be found in 

mesocosm above-ground biomass (Figure 2.4), although statistically significant toxicity 

effect  begins at the 225 mgL-1 treatment level.  This trend may be found as well in 

mesocosm below-ground biomass (Figure 2.5). 

Ammonia concentration likewise significantly affected total, above- and below-

ground biomass production of Typha at the 5% level in all years (Table 2.3).  Total Typha 

biomass exhibited a statistically evident fertilization trend in the 75 mgL-1 and 150 mgL-1 

ammonia treatments (Figure 2.6).  Mean biomass production at these levels was  
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Table 2.2. Tests of fixed effects on total, above-ground, and below-ground biomass of 
mesocosms of Typha latifolia and Juncus effusus in 2002. Please refer to appendix I for 
SAS code. 
 

Measured Biomass Effect d.f. F Value P Level 
Total Mesocosm [Ammonia] 4 16.2 p<0.0001
Total Mesocosm Species 1 98.9 p<0.0001
Total Mesocosm [Ammonia] x Species 4 6.9 p=0.0002
Total Mesocosm Column 4 5.1 p=0.0023
Above-ground Mesocosm [Ammonia] 4 23.2 p<0.0001
Above-ground Mesocosm Species 1 145.7 p<0.0001
Above-ground Mesocosm [Ammonia] x Species 4 7.59 p<0.0001
Above-ground Mesocosm Column 4 2.1 p=0.0775
Below-ground Mesocosm [Ammonia] 4 5.4 p=0.0006
Below-ground Mesocosm Species 1 5.5 p=0.0001
Below-ground Mesocosm [Ammonia] x Species 4 16.3 p=0.0066
Below-ground Mesocosm Column 4 3.82 p=0.0005
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Figure 2.3.  Total mesocosm biomass along a gradient of ammonia concentration 
treatments in 2002.  Error bars indicate means ± S.E.  Means with different letters 
indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 

 26



0

100

200

300

400

500

600

0 75 150 225 300

Ammonia Concentration (mgL-1)

A
bo

ve
-g

ro
un

d 
M

es
oc

os
m

 B
io

m
as

s (
g)

a

b
b b

c

 
 
 
Figure 2.4.  Total above-ground mesocosm biomass along a gradient of ammonia 
concentration treatments in 2002.  Error bars indicate means ± S.E.  Means with different 
letters indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code).
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Figure 2.5.  Total below-ground mesocosm biomass along a gradient of ammonia 
concentration treatments in 2002.  Error bars indicate means ± S.E.  Means with different 
letters indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 
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Table 2.3.  Tests of fixed effects on total, above-ground, and below-ground biomass of 
Typha latifolia in 2002.  Please refer to appendix I for SAS code. 
 
 

Measured Biomass Effect d.f. F Value P Level 
Total Typha latifolia [Ammonia] 4 19.2 p<0.0001
Total Typha latifolia Column 4 2.2 p=0.0859
Above-ground Typha latifolia [Ammonia] 4 14.8 p<0.0001
Above-ground Typha latifolia Column 4 2.3 p=0.0726
Below-ground Typha latifolia [Ammonia] 4 10.71 p<0.0001
Below-ground Typha latifolia Column 4 1.8 p=0.1420
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Figure 2.6.  Total Typha latifolia biomass along a gradient of ammonia concentration 
treatments in 2002.  Error bars indicate means ± S.E.  Means with different letters 
indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 
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172.2±33.9 g and 222.9±13.3 g respectively, which is elevated from the average 

80.9±13.7 g at 0 mgL-1 and the toxicity effect displayed at 300mgL-1 ammonia, with an  

average of 48.6±10.7 g.  Fertilization effects at between 75 mgL-1 and 150 mgL-1 may be 

seen in above-ground biomass production (Figure 2.7) and below-ground biomass 

production (Figure 2.8) in Typha as well.  The observable trend in total Typha biomass 

production is similar to the effect produced in overall mesocosm biomass.  

Juncus effusus total biomass production and above-ground biomass production 

were significantly affected by ammonia treatment at the 5% level (Table 2.4).  

Fertilization of Juncus occurred at the 75 mgL-1 ammonia treatment, where an average of 

336.1±33.8 g of dry tissue was produced over the course of the experiment; at 0 mgL-1 

ammonia, insufficient nitrogen was available, demonstrated by significant chlorosis at 

this treatment level, and by the low average biomass of 148.6±14.5 g.  Above 75 mgL-1, 

biomass production was reduced potentially due to ammonia toxicity (Figure 2.9), 

although differences between biomass production between 75 mgL-1 and 225 mgL-1 and 

300 mgL-1 ammonia are not statistically significant; this indicates that, over an ammonia 

gradient of 150-300 mgL-1, differential effects on growth are non-significant.  The trend 

in above-ground biomass production is similar, with an observable biomass peak existing 

at the 75 mgL-1 treatment level (Figure 2.10).  However, below-ground biomass 

production in Juncus was apparently not affected by ammonia concentration (Figure 

2.11).  This statistically non-significant effect could demonstrate a potential immunity to 

ammonia toxicity in the roots of Juncus effusus.  Juncus root tissue tends to be denser 

than Typha root tissue, which could allow it to be more tolerant of variable ammonia 

concentrations.  The large ammonia molecule may have difficulty diffusing through this  
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Figure 2.7.  Above-ground Typha latifolia biomass along a gradient of ammonia 
concentration treatments in 2002.  Error bars indicate means ± S.E.  Means with different 
letters indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 
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Figure 2.8.  Below-ground Typha latifolia biomass along a gradient of ammonia 
concentration treatments in 2002.  .  Error bars indicate means ± S.E.  Means with 
different letters indicate significant differences at the 5% level.  Due to normality of data 
and homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 
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Table 2.4. Tests of fixed effects on total, above-ground, and below-ground biomass of 
Juncus effusus in 2002.  Please refer to appendix I for SAS code.   
 
 

Measured Biomass Effect d.f. F Value P Level 
Total Juncus effusus [Ammonia] 4 10.08 p<0.0001
Total Juncus effusus Column 4 4.16 p=0.0146
Above-ground Juncus effusus [Ammonia] 4 14.6 p<0.0001
Above-ground Juncus effusus Column 4 0.8 p=0.5651
Below-ground Juncus effusus [Ammonia] 4 0.93 p=0.4578
Below-ground Juncus effusus Column 4 6.5 p=0.0004
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Figure 2.9.  Total Juncus effusus biomass along a gradient of ammonia concentration 
treatments in 2002.  Error bars indicate means ± S.E.  Means with different letters 
indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 

 35



0

50

100

150

200

250

300

350

400

0 75 150 225 300

Ammonia Concentration (mgL-1)

A
bo

ve
-g

ro
un

d 
Ju

nc
us

 B
io

m
as

s (
g)

a

b

bc

c
c

 
 
 
Figure 2.10.  Above-ground Juncus effusus biomass along a gradient of ammonia 
concentration treatments in 2002.  Error bars indicate means ± S.E.  Means with different 
letters indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 
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Figure 2.11.  Below-ground Juncus effusus biomass along a gradient of ammonia 
concentration treatments in 2002.  Error bars indicate means ± S.E.  Means with different 
letters indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 
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dense root tissue.  Also of note is a consistently higher observable overall biomass 

production and especially overall below-ground biomass, when compared to Typha over  

all treatment conditions.  These results indicate that Juncus is relatively robust under high 

ammonia concentrations, and optimal growth is maintained even at high ammonia 

concentrations, eclipsing previous growth inhibitory effects noted at 110 mgL-1 (Clarke 

1999, Clarke and Baldwin 2002), and agreeing with Humenik et al. (1999) .  

 Between species total biomass differed significantly at all ammonia 

concentrations except in the below-ground biomass at low concentrations of ammonia 

(Table 2.5).  Figure 2.12 illustrates significant differences between species within 

treatments for total biomass.  Typha latifolia exhibited impaired growth at higher 

treatment levels, to a low of 48.6±10.5 g at 300 mgL-1, with a peak of 222.8±14.3 g at 

150 mgL-1. At this peak alone is there no statistically significant difference between 

Typha biomass and Juncus biomass.  Juncus exhibits peak growth at 75 mgL-1, and 

diminishes somewhat at higher concentrations.  Compared with Typha, Juncus appears to 

have higher ammonia tolerance.  Figure 2.13 illustrates significant differences in Juncus 

and Typha in above-ground biomass, with a peak of Typha production at 150mgL-1, and 

minimums at 0 and 300 mgL-1, and a peak of Juncus production at 75 mgL-1, but without 

excessive decline thereafter.  Below-ground biomass for the species follows the same 

general observable trend, with significant differences occurring in the 225 mgL-1 to 300 

mgL-1 ammonia concentration levels (Figure 2.14).  

Negative response of biomass production to ammonia levels of 300 mgL-1 was 

statistically evident for all measured biomass, with decreasing biomass trends of varying 

statistical magnitude for all ammonia concentrations above 75 mgL-1.  These trends, with  
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Table 2.5.  Summary of statistical analyses of differences in biomass production between 
Typha latifolia and Juncus effusus over an ammonia gradient for 2002.  At each ammonia 
treatment, the results of pairwise comparisons of treatment means of Juncus  and Typha 
are presented.  Please refer to Table 2.2 for analysis of the effect of species on biomass 
production on the whole.  Please refer to appendix I for SAS code. 
 

Measured Biomass [Ammonia] Treatment d.f. T Value P Level 
Total Mesocosm 0 185 2.2 p=0.0307
Total Mesocosm 75 185 5.7 p<0.0001
Total Mesocosm 150 185 1.1 p=0.2575
Total Mesocosm 225 185 5.3 p<0.0001
Total Mesocosm 300 185 7.7 p<0.0001
Above-ground Mesocosm 0 86 2.9 p=0.0053
Above-ground Mesocosm 75 86 8.2 p<0.0001
Above-ground Mesocosm 150 86 2.5 p=0.0141
Above-ground Mesocosm 225 86 5.8 p<0.0001
Above-ground Mesocosm 300 86 8.0 p<0.0001
Below-ground Mesocosm 0 86 1.0 p=0.3401
Below-ground Mesocosm 75 86 1.1 p=0.2763
Below-ground Mesocosm 150 86 0.5 p=0.6107
Below-ground Mesocosm 225 86 3.0 p=0.0036
Below-ground Mesocosm 300 86 4.5 p<0.0001
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Figure 2.12.  Total species biomass along a gradient of ammonia concentration treatments 
in 2002.  Error bars indicate means ± S.E.  Paired means with an asterisk indicate 
significant differences at the 5% level.  Due to normality of data and homogeneity of 
residuals from the ANOVA, transformation was not necessary (see appendix I for SAS 
code). 
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Figure 2.13.  Above-ground species biomass along a gradient of ammonia concentration 
treatments in 2002.  Error bars indicate means ± S.E.  Paired means with an asterisk 
indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 
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Figure 2.14.  Below-ground species biomass along a gradient of ammonia concentration 
treatments in 2002.  Error bars indicate means ± S.E.  Paired means with an asterisk 
indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 
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some fertilization effect occurring at moderate ammonia-N levels followed by toxic 

response at higher levels, are in agreement with studies investigating responses of species  

to varying ammonia levels with similar species (Surrency 1997, Hill et al. 1997, 

Humenik et al. 1999, Clarke and Baldwin 2002).  Overall, Typha appears to grow 

optimally in the range of 75-100 mgL-1, which corresponds well with the work of 

previous researchers (Hill et al. 1997, Clarke and Baldwin 2002).  Other authors have 

noted stresses for Typha at levels approaching 170 mgL-1 (Surrency 1993), or a 

fertilization effect up to 83 mgL-1 (Hill et al. 1997) and 100 mgL-1 (Clarke and Baldwin 

2002).  Authors have noted tolerances of up to 110 mgL-1 for Juncus (Clarke 1999), but 

others note inhibition at relatively low ammonia levels (20.8 mgL-1; Hill et al. 1997).  

The tolerance of Juncus tissue, especially of below-ground tissue, may confirm that 

Juncus is a “stress tolerator” moreso than Typha, and could therefore be considered 

dominant under toxic regimes (Emery et al. 2001). 

Analysis of the root-to-shoot (R:S) ratio is important in considering the role of 

cytokinins in plant growth.  Cytokinin depletion in the rhizosphere corresponds to 

decreased cytokinin transport to the leaves; low leaf cytokinin levels inhibit cell division 

(Walch-Liu et al. 2000, Taiz and Zeiger 2002).  The role of increased levels of ammonia 

in decreasing shoot growth may be due to disruption of cytokinin transport and cytokinin 

synthesis in root apical meristem (Taiz and Zeiger 2002, Vojtiskova et al. 2004); this 

results in a reduction of cell division and of leaf elongation (Walch-Liu et al. 2000).  

Root-to-shoot ratio was significantly affected by ammonia, species, and the ammonia by 

species interaction (Table 2.6).  Overall decreases in R:S ratio in the mesocosm are 

evident in Figure 2.15, but may be found between the 0 mgL-1 and the 75 mgL-1 ammonia  
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Table 2.6.  Test of fixed effects on the root-to-shoot ratio in mesocosms and in Typha 
latifolia and Juncus effusus in 2002.  Please refer to appendix I for SAS code. 
 

Measured Root-to-Shoot Ratio Effect d.f. F Value P Level 
Total Mesocosm [Ammonia] 4 11.3 p<0.0001
Total Mesocosm Species 1 17.8 p<0.0001
Total Mesocosm [Ammonia] x Species 4 5.3 p=0.0008
Total Mesocosm Column 4 1.8 p=0.1268
Total Typha latifolia [Ammonia] 4 8.7 p<0.0001
Total Typha latifolia Column 4 2.1 p=0.0978
Total Juncus effusus [Ammonia] 4 12.1 p<0.0001
Total Juncus effusus Column 4 3.1 p=0.0271

 

 44



0.0

1.0

2.0

3.0

4.0

5.0

0 75 150 225 300

Ammonia Concentration (mgL-1)

M
es

oc
os

m
 R

oo
t-t

o-
Sh

oo
t R

at
io

 (R
g/

Sg
)

a

b b
b b

 
Figure 2.15.  Root-to-shoot ratios for mesocosms along a gradient of ammonia 
concentration treatments in 2002.  Error bars indicate means ± S.E.  Means with different 
letters indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 
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treatments, where overall biomass fertilization effect is occurring.  Both species show the 

same general effect, with differences in the R:S ratio evident only in the 0 mgL-1 

treatment (Figure 2.18).  This demonstrates similarity in the effects of ammonium 

toxicity on the two species.  Decreases in the R:S ratio in Juncus and in Typha 

individually are statistically evident as well (Table 2.6, Figures 2.16 and 2.17), and 

indicate suppression of root formation, increased shoot production, or a combination of 

the two.  Since Juncus below-ground biomass is not significantly affected by ammonia 

concentration, increased shoot production must have occurred to generate this statistically 

significant decrease in R:S ratio. Variation in the R:S ratio is due primarily to ammonia 

treatment and the species considered, but may also be due to the interaction of the terms, 

indicating some level of interaction between the species.  Increases in ammonia 

concentration and subsequent reduction of the R:S ratio corresponds well with similar 

responses in other species (Walch-Liu et al. 2000, Vojtiskova et al. 2004), although 

direct measurement of R:S ratio inhibition by ammonia has not been noted in Juncus and 

Typha prior to this study. 

The significance of the blocking effect in this analysis was a demonstration of the 

effects of North-South positioning in the greenhouse (the reader is directed to Tables 2.2 

through 2.6 for those instances where the blocking effect is statistically significant).  

Some variation in biomass production was caused as a result of the orientation of the 

mesocosms along the axis of the greenhouse, and it was therefore advisable to utilize this 

fixed effect in experimental design.  It is of interest to note that the column effect, that is, 

the effect of the rising and setting of the sun on providing enough light for the plants, is 

more evident in Juncus, and especially in below-ground Juncus biomass, where it  
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Figure 2.16.  Root-to-shoot ratio for Typha latifolia along a gradient of ammonia 
concentration treatments in 2002.  Error bars indicate means ± S.E.  Means with different 
letters indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 
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Figure 2.17.  Root-to-shoot ratio for Juncus effusus along a gradient of ammonia 
concentration treatments in 2002.  Error bars indicate means ± S.E.  Means with different 
letters indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 
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Figure 2.18.  Species root-to-shoot ratios along a gradient of ammonia concentration 
treatments in 2002.  Error bars indicate means ± S.E.  Paired means with an asterisk 
indicate significant differences at the 5% level.  Due to normality of data and 
homogeneity of residuals from the ANOVA, transformation was not necessary (see 
appendix I for SAS code). 
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accounted for more variation than did the ammonia treatment itself (Table 2.4).  Juncus is 

a plant of shorter stature, and was shaded by the taller Typha to produce this effect. 

The effects of Juncus and Typha upon biomass production or either species are 

important to note as a result of this study.  Although Tilman (1982) found Typha to be a 

better competitor under N-fertilization regimes, intrageneric competition along a 

phytotoxic nutrient gradient is a little known trend.   The interactive effects of toxicity 

and competition are poorly documented.  Most work to date has focused on field-scale 

studies along much lower nutrient gradients for fertilization effects typical of natural 

ecosystems (e.g. Tilman 1982, Tilman et al. 1999, Wilson and Tilman 1995, Mamolos 

and Veresoglou 2000).  In this study, Juncus produced more  total biomass than Typha 

for all ammonia concentrations in 2002 (Figure 2.12)  In no case did Juncus produce 

significantly less biomass than Typha in any biomass measurement and at any ammonia 

treatment, despite similar initial biomass at the inception of this study.   

The ability of Juncus to tolerate stress better than Typha may occur as a result of 

plant morphology in a confined system.  Pot size could lead to an inability to establish 

new culms, and although other studies have indicated that Typha can establish quickly in 

confined situations (Clarke 1999, Svensouk and Mitch 2000), none of these were 

conducted in a 10 L pot size.  Typha latifolia tends to occur in relatively deep water 

conditions (Grace and Wetzel 1981); the presence of high amounts of aerenchymous 

tissue in the stems and the presence of numerous fine root hairs are likely to facilitate 

high rates of gas exchange through anoxic sediments (Brix et al. 1992).  Additionally, the 

presence of a large rhizome in Typha indicates a high storage capacity for nutrients.  

Juncus, on the other hand, has aerenchymous tissue with significantly smaller gas 
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volume, and also fewer root hairs; it is typically found in clumps in oxygen-poor but not 

necessarily anoxic sediments.  Juncus has a significantly smaller base culm, certainly 

without the starchy tuber of Typha latifolia, and therefore uses nutrients as they become 

available in lieu of storing them.  Typha stores nutrients; this capacity may allow it to 

outcompete other species in times of nutrient stress, but will also force accumulation of 

excess nutrients in times of overabundance of nutrients.  In this study, rhizomes of Typha 

in high ammonia concentrations tended to be smaller than those of lower concentrations, 

where they existed at all.  Often, stunted, smaller rhizomes were found in higher nutrient 

situations, exhibiting much necrotic tissue and decay.  This finding appears to be unique 

in the literature; for the most part, managers have focused on eliminating Typha in order 

to increase diversity in treatment systems (Kadlec and Knight 1996, Mitsch and 

Gosselink 2000) or developing planting schemes to enhance the competitive abilities of 

other species (Svengsouk and Mitsch 2000).  Extremely elevated ammonia 

concentrations here helped to limit the dominance of Typha. 

 

CONCLUSIONS 

Above-ground, below-ground, and total biomass for the mesocosms were 

significantly affected by ammonia concentrations at the 5% level.  Biomass 

measurements were maximized in the 75 to 150 mgL-1 ammonia concentration levels, 

and declined for higher concentrations of ammonia.  Above-, below-, and total biomass 

of Typha latifolia were significantly affected by ammonia concentrations over a one-year 

period.  Above-ground and total biomass of Juncus effusus were affected by ammonia 

concentrations at the as well, although in many cases Juncus grew at productive levels 
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even at higher ammonia concentrations.  Decreases in cytokinin production due to 

elevated ammonia levels may have limited cell division, leaf elongation, and overall 

biomass production in these species are trends shown by a decrease in the root-to-shoot 

ratio.  Evident trends in biomass production demonstrate a high stress tolerance ability of 

Juncus effusus in high ammonia concentrations typical of constructed wetlands for 

wastewater treatment; the species demonstrated significantly higher ammonia tolerance 

than previously reported.  Juncus has often been overlooked by managers hoping to 

create a diverse wetland community (Kadlec and Knight 1996, Mitsch and Gosselink 

2000); its performance here may call for a re-evaluation of its competitive dynamic.   

Observation of the effects of additional limiting or phytotoxic nutrient 

concentrations may further elaborate competitive performance differences between these 

two species and others, as differences in tissue ratios often indicate differences in uptake 

mechanisms and potential effects of limitation.   

Potential increased genetic knowledge of enzyme control of ammonia toxicity in, 

for example, Arabidopsis, may lead to better control of toxic effects (Kronzucker et al. 

2001, Glass et al. 2002), but application to wetland species known to have specific 

enzyme adaptations to anoxia and its affect on cation uptake pathways (Mitsch and 

Gosselink 1993) may not occur for some time.  Until the problem of ammonia toxicity 

can be better understood, pre-treatment of wastes prior to introduction into ATWs 

probably remains the best policy in maximizing biomass production and subsequent 

nitrogen removal. 
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 CHAPTER THREE: 

THE VEGETATION N:P RATIO IN MESOCOSMS  

SUBJECTED TO HIGH AMMONIA CONCENTRATIONS 

 

OBJECTIVE 

 The objective of this study was to investigate the role of the vegetation N:P ratio 

in illustrating relationships in Juncus effusus L. and Typha latifolia L. to mixtures of 

ammonia and phosphorus under controlled conditions.  The specific relationships of 

interest were the overall biomass production by each species, the effect of the N:P ratio 

on the nitrogen uptake of each species, and the effect of the experimental N:P ratio on 

actual vegetation N:P ratio.  These objectives were accomplished in a one-year 

greenhouse study during which plants were exposed to levels of 75, 150, 225 and 300 

mgL-1 of ammonia amended with  phosphate-P concentrations at N:P ratios of 5:1, 15:1 

and 25:1 over a ten week period.  Plants were cultured as in Chapter Two.  Using Juncus 

and Typha following the rationale explained above allowed investigation of changes in 

N:P ratios, such that the N:P ratio may be used to determine species fitness over a range 

of treatment levels.  Growth in these species was tested for limitation by N, P or co-

limitation, and the utility of indications of growth limitation by the N:P ratio was 

examined. 

METHODS 

Preparation of Mesocosms 

 Plant material was purchased, transported, and prepared as described in Chapter 

Two in May of 2003.  After an initial acclimation period, each planted mesocosm was 
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placed in a lined 10 L pot (Figure 2.1).  These mesocosms (experimental units) were 

placed in four columns aligned North-South (labeled A through D), and nine rows 

aligned East-West (labeled 1 through 9).  Treatments of ammonia concentrations were 

applied such that each column received a single ammonia concentration for ease of 

treatment application (the same concentrations as used in the 2002 experiment, except the 

0 mgL-1 treatment, Figure 2.1).  Treatments of phosphorus were applied such that, in each 

row, each N:P concentration was applied three times (Figure 2.1).  For this experimental 

design, each N:P ratio occurred in each ammonia concentration treatment three times.  

Nitrogen to phosphorus ratios were chosen based on Koerselman and Meuleman (1996) 

with categories of N-limited, co-limited, and P-limited at ratios of 5:1, 15:1 and 25:1, 

respectively.  The ammonia concentration of 0 mgL-1 was removed as appropriate N:P 

ratios to a 0 mgL-1  ammonia treatment do not exist.  Mass values of total nitrogen, 

ammonia chloride, sodium phosphate, total phosphate, and total phosphorus, and 

accompanying N:P ratios are found in Table 3.1.   

 Ammonia treatments were prepared using the 2002 protocol. Treatments of N:P 

ratio were prepared by adding appropriate amounts of reagent grade Na3(PO4)2 (Fisher 

Scientific, Fair Lawn, New Jersey, USA) to ammonia treatments and greenhouse tap 

water to 6 L (see Table 3.1).  Solutions were replaced once weekly following the above 

protocol for 2002 with the addition of the N:P ratio treatment described above. 

 

Treatment Solution, Vegetation N:P Ratio, and Statistical Analyses 

Interstitial water sampling was carried out using the methodology described above 

for experiments occurring in 2002.  As in 2002, conductivities clearly increased with  
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Table 3.1.  Summary of nutrient additions to prepare treatment solutions in 6 L 
increments in 2003, and the associated total mass of ammonium chloride, nitrogen, 
phosphate, and total phosphorus, and accompanying N:P ratios for each treatment. 
 
 

[Ammonia] 
Treatment 

 NH4Cl (g) N 
(g) 

N:P Ratio 
Treatment

P (g) 
Required

NaH2PO4 
(g) 

[Phosphorus] 

75 1.41 0.37 5 0.07 0.29 12.34
75 1.41 0.37 15 0.02 0.10 4.11
75 1.41 0.37 25 0.01 0.06 2.47

150 2.83 0.74 5 0.15 0.57 24.67
150 2.83 0.74 15 0.05 0.19 8.22
150 2.83 0.74 25 0.03 0.11 4.93
225 4.24 1.11 5 0.22 0.86 37.01
225 4.24 1.11 15 0.07 0.29 12.34
225 4.24 1.11 25 0.04 0.17 7.40
300 5.65 1.48 5 0.30 1.15 49.35
300 5.65 1.48 15 0.10 0.38 16.45
300 5.65 1.48 25 0.06 0.23 9.87
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increasing ammonium addition (Figure 3.1A); additions of phosphorus did not 

significantly affect conductivity; slopes of the lines for conductivity of the three N:P ratio 

treatments are not significantly different (Figure 3.1B). 

Hydrogen ion concentration (pH) was measured twice monthly in the 2003 

experiment to ensure that the addition of a weak diprotic acid (Na3(PO4)2) did not result 

in significant pH differences between treatments; phosphate concentration was measured 

twice monthly to identify and correct any deviations from the proposed ratios that may 

have occurred due to evaporation of solvent, adsorption of phosphate ions, or other forms 

of accumulation using the appropriate colorimetry protocol (Spectrophotometer Model 

DR/2500, Hach Co., Loveland, Colorado, USA). 

Average above- and below-ground biomass of each species was determined for 

non-experimental plants prior to application of treatments.  In 2003, mean above- and 

below-ground biomass per Typha plant (n=28) were 2.3± 0.4g and 3.3± 0.3g, respectively 

(reported as mean ± SE). Mean above- and below-ground biomass per Juncus plant 

(n=28) were 3.9±0.2g and 6.4±0.6g, respectively.  Mesocosms were destructively 

harvested in mid-September after ten weeks of treatment application.  Above-ground 

material for each species was removed to soil surface; below-ground material was 

retrieved by removing the root ball from each mesocosm, removing particles of planting 

medium, and carefully separating Juncus and Typha  roots, which were clearly 

discernible based on size and color.  Thus, each mesocosm was separated into four 

distinct sampling units.  Biomass was dried at 80 degrees Centigrade and weighed until 

stabilization of mass (approximately 3 days for above-ground and five days for below-

ground samples). 
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Figure 3.1.  Interstitial water conductivities (µS) for each mesocosm at sampling dates in 
2003: (A.) indicates conductivities based on experimental ammonia concentrations; (B.) 
indicates conductivities based on experimental N:P ratios. 
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Tissue nitrogen and phosphorus concentrations for each species were measured by 

dry matter combustion and color spectroscopy.  Tissue samples from above- and below-

ground biomass of each species were removed from the biomass following measurement 

for the above studies.  For nitrogen and phosphorus analysis, 0.05 grams were removed 

from the initial 5 g samples following grinding for homogenization.  The use of only 0.05 

grams in lieu of the typical 0.1 grams was necessary due to problems with samples 

sticking in the tube prior to the spectroscopy runs.  Samples were purged of atmospheric 

gases entering during sample loading, combusted in series at 950 and 850 degrees 

Centigrade, and measured following written protocols for LECO TruSpec CN Elemental 

Determiner (LECO Inc., St. Joseph, Missouri, USA).  For phosphorus samples CT 

Kjeldahl Digestion Mixture was used following like protocols. 

 Analyses of variance (ANOVA) were conducted for several effects using SAS 

Version 8.2 (SAS Institute, Cary, North Carolina, USA).  Above- and below-ground  

biomass ANOVAs were conducted using biomass as the dependant variable, and as 

independent variables, effects of experimental N:P ratio treatment, ammonia 

concentration treatment, species, and the interactions of N:P ratio treatment, ammonia 

treatment, and species were tested.  Tissue nitrogen concentration ANOVAs were 

conducted using above- and below-ground tissue nitrogen concentration as the dependant 

variable, and as independent variables, effects of experimental N:P ratio treatment, 

ammonia concentration treatment, species, and the interactions of N:P ratio treatment, 

ammonia treatment, and species were tested.  Interaction terms are of importance due to 

the fact that a significant N:P ratio by ammonia interaction could potentially infer that 

biomass production is maintained at high ammonia concentrations given phosphorus 
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fertilization.  Total tissue mass nitrogen ANOVAs were conducted using above- and 

below-ground tissue total mass nitrogen as the dependant variable, and as independent 

variables, effects of experimental N:P ratio treatment, ammonia concentration treatment, 

species, and the interactions of N:P ratio treatment, ammonia treatment, and species were 

tested.  Tissue phosphorus concentration ANOVAs were conducted using above- and 

below-ground tissue phosphorus concentration as the dependant variable, and as 

independent variables, effects of experimental N:P ratio treatment, ammonia 

concentration treatment, species, and the interactions of N:P ratio treatment, ammonia 

treatment, and species were tested.  Interaction terms were tested in these cases as well to 

test if phosphorus additions at different ammonia concentrations significantly affected 

uptake or total mass of nitrogen and uptake of phosphorus.  In each ANOVA, normality 

and homogeneity of residuals were examined for each variable, and data were log-

transformed when necessary.   Significant differences were determined at α=0.05. 

 

RESULTS AND DISCUSSION 

Mesocosm Biomass Production 

Total biomass was significantly affected by ammonia concentration treatment and 

species tested (Table 3.2).  Total mesocosm biomass declined from an average of 

373.0±14.0 g at the 75 mgL-1 ammonia treatment level to an average of 277.5±12.4 g at 

the 300 mgL-1 ammonia treatment (Figure 3.2).  This concurs with the 2002 results, in 

which biomass declined from the 75 mgL-1 ammonia treatment level to the 300 mgL-1 

treatment level.  Juncus again exhibited significantly higher overall average biomass than 

Typha, with an average of 223.5±14.0 g for Juncus versus 83.1±11.1 g for Typha.   
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Table 3.2. Tests of fixed effects on total, above-ground, and below-ground biomass of 
mesocosms of Typha latifolia and Juncus effusus in 2003.  Please refer to appendix II for 
SAS code. 
 
 

Measured Biomass Effect d.f. F Value P Level 
Total Mesocosm Species 1 3.96 0.0538
Total Mesocosm [Ammonia] 3 7.58 0.0004
Total Mesocosm Species x  [Ammonia] 3 0.69 0.5622
Total Mesocosm N:P Ratio 2 0.57 0.5691
Total Mesocosm N:P Ratio x Species 2 0.25 0.7824
Total Mesocosm N:P Ratio x [Ammonia] 6 0.42 0.8608
Total Mesocosm Species x N:P Ratio x [Ammonia] 6 1.1 0.3807
Above-ground Mesocosm Species 1 6.22 0.0171
Above-ground Mesocosm [Ammonia] 3 11.22 <0.0001
Above-ground Mesocosm Species x  [Ammonia] 3 0.74 0.5328
Above-ground Mesocosm N:P Ratio 2 0.16 0.8557
Above-ground Mesocosm N:P Ratio x Species 2 1.07 0.3527
Above-ground Mesocosm N:P Ratio x [Ammonia] 6 0.5 0.8033
Above-ground Mesocosm Species x N:P Ratio x [Ammonia] 6 1.14 0.3564
Below-ground Mesocosm Species 1 6.84 0.0128
Below-ground Mesocosm [Ammonia] 3 8.53 0.0002
Below-ground Mesocosm Species x  [Ammonia] 3 0.42 0.7364
Below-ground Mesocosm N:P Ratio 2 0.32 0.7268
Below-ground Mesocosm N:P Ratio x Species 2 0.85 0.4351
Below-ground Mesocosm N:P Ratio x [Ammonia] 6 0.41 0.8683
Below-ground Mesocosm Species x N:P Ratio x [Ammonia] 6 0.66 0.6815

 

 60



0.0

100.0

200.0

300.0

400.0

0 75 150 225 300

Ammonia Concentration (mgL-1)

To
ta

l M
es

oc
os

m
 B

io
m

as
s (

g)

N:P ratio=5:1 N:P ratio=15:1 N:P ratio=25:1  
 
 
Figure 3.2.  Total mesocosm biomass production along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003.  Standard errors are not 
presented due to graphic difficulty in their interpretation.  Due to normality of data and 
homogeneity of residuals from the ANOVA, log transformation was not necessary (see 
appendix II for SAS code). 
 

 61



Observable, although not statistically significant differences between the species at each 

ammonia concentration level corresponds well to the 2002 data (Table 2.5). 

 Total above-ground mesocosm biomass was significantly affected by species and 

ammonia concentration treatment level (Table 3.2).  A similar trend as for overall 

mesocosm biomass is evident, with steadily declining biomass production for higher 

levels of ammonia concentration (Figure 3.3); likewise overall Juncus above-ground 

biomass, 161.7±11.0 g, is significantly higher than for Typha above-ground biomass, 

53.7±7.2 g.  Of interest, however, is the slight increase in biomass production between 

the 75 mg/L-1 ammonia concentration and the 150 mg/L-1 ammonia concentration 

treatments for the 15:1 N:P ratio.  It appears that at co-limited N:P levels, biomass 

production has a peak at higher nitrogen concentrations, although the peak production 

itself is not statistically different than the biomass production for other N:P ratios. 

 Total below-ground biomass was significantly affected by ammonia concentration 

treatment and species tested (Table 3.2).  Like above-ground biomass, a similar trend to 

that of total mesocosm biomass is evident, with toxicity effects at ammonia 

concentrations of above 75 mgL-1 treatment levels.  Juncus effusus  biomass production 

was 60.3±4.9 g, while Typha biomass was just 29.4±4.7 g.  At all levels of ammonia 

treatment, Juncus produced significantly more biomass.  Production levels of below-

ground biomass were observably (but not statistically) greater at N:P levels of 15:1 for 

ammonia treatment concentrations of 225 mgL-1 and 300 mgL-1 (Figure 3.4). 

 Of particular interest in this study is the effect of additions of phosphorus in 

varying ratios to ammonia-N in alleviating potentially toxic ammonia concentrations.  

Although in overall mesocosm biomass analysis, N:P ratio treatments are not a  
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Figure 3.3.  Total above-ground mesocosm biomass production along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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Figure 3.4.  Total below-ground mesocosm biomass production along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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significant source of variation, some interesting trends are evident.  Trends in N:P ratios 

within ammonia treatments indicate highest biomass production at levels other than 15:1 

at lower treatments, and highest biomass production at levels of 15:1 at higher, toxic 

treatments.  Although variability induced by N:P ratio is not statistically significant, the 

indication of higher biomass production when nutrients are co-limited is in agreement 

with other authors (Tilman 1982, Mamolos et al. 1995), although it has never been tested 

in phyto-inhibitory ammonia concentration levels.  This unclear result may be elucidated 

by further testing; the initial indication that N:P ratio may be involved with reduction of 

ammonia toxicity is encouraging, although acceptance of non-significant data is 

problematic. 

 Total Typha latifolia biomass production was significantly affected by ammonia 

concentration treatment alone (Table 3.3).  Differences in biomass between ammonia 

treatments is likewise consistent with previous findings, and illustrate a clear toxic effect 

of ammonia concentrations higher than 75 mgL-1 (Figure 3.5); although 150 mgL-1 

ammonia demonstrated a fertilization effect in the 2002 data.  It is possible that year-to-

year differences in such variables as temperature or photon flux density could affect 

nitrogen utilization in Typha.  The N:P ratio of 5:1 produced observably higher biomass 

than the 15:1 or 25:1 N:P ratio, with an overall average of 96.2±11.4 g versus 76.2±14.1 

g and 77.0±7.9 g, respectively.  This may indicate that at N limitation, higher biomass is 

produced at all ammonia treatment levels, on average.  Observably, the N:P ratio of 15:1 

appears have less negative slope than the other lines at higher levels of ammonia.  This 

could indicate that at even higher levels of ammonia, an N:P level of 15:1 may result in 

lower toxicity and more biomass production (Figure 3.5).  Coupled with the statistical  

 65



Table 3.3. Tests of fixed effects on total, above-ground, and below-ground biomass of 
mesocosms of Typha latifolia in 2003.  Please refer to appendix II for SAS code. 

 
 

Measured Biomass Effect d.f. F Value P Level 
Total Typha latifolia [Ammonia] 3 3.24 0.0452
Total Typha latifolia N:P Ratio 2 0.11 0.8961
Total Typha latifolia N:P Ratio x [Ammonia] 6 0.71 0.6430
Above-ground Typha latifolia [Ammonia] 3 5.4 0.0074
Above-ground Typha latifolia N:P Ratio 2 0.34 0.7191
Above-ground Typha latifolia N:P Ratio x [Ammonia] 6 0.75 0.6190
Below-ground Typha latifolia [Ammonia] 3 3.47 0.0378
Below-ground Typha latifolia N:P Ratio 2 0.28 0.7604
Below-ground Typha latifolia N:P Ratio x [Ammonia] 6 0.46 0.8263
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Figure 3.5.  Total Typha latifolia biomass production along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003.  Standard errors are not 
presented due to graphic difficulty in their interpretation.  Due to normality of data and 
homogeneity of residuals from the ANOVA, log transformation was not necessary (see 
appendix II for SAS code). 
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non-significance of differences in biomass production at N:P ratios of 15:1 and 25:1, this 

finding may indicate that at N:P levels of 15:1, there is less effect of ammonia toxicity. 

 Above-ground Typha biomass production is significantly affected by ammonia 

concentration treatment (Table 3.3).  Difference in biomass production between ammonia 

treatments is consistent with the overall effect in Typha in 2003 and 2002 and with the 

above-ground effect in 2002 as well, although the 2002 data indicate toxic effects begin 

at more than 150 mgL-1, while the 2003 data indicate toxicity at a lower ammonia 

concentration (Figure 3.6).  The N:P ratio of 5:1 produced observably higher above-

ground biomass, similar to the total Typha biomass results as well.  The slope of the line 

of the 15:1 N:P ratio appears to be less negative at higher ammonia concentrations, 

although the interactive effect of N:P and ammonia concentration is not significant.   

 Below-ground Typha biomass is significantly affected by ammonia treatment 

alone (Table 3.3), with the overall trend in biomass production observably similar to the 

total and above-ground Typha biomass curves (Figure 3.7).  Highest production occurs at 

the 75 mgL-1 ammonia concentration, with toxic effects apparent thereafter.  Although 

the N:P ratio is not significant in determining biomass production in Typha, the 

observable trend of the 15:1 ratio having the lowest negative slope is again potentially 

meaningful, especially at higher ammonia concentrations. 

 Findings for Typha biomass production concur with the results of other 

researchers, who indicate a fertilization effect up to around 75 mgL-1 ammonia 

concentration (Hill et al. 1997).  The effects of the N:P ratio in Typha are not particularly 

statistically apparent; higher biomass production occurs overall at an N:P ratio of 5:1, but 

the interactive effects of ammonia and the N:P ratio are unclear.  The observable trend in  
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Figure 3.6.  Above-ground Typha latifolia biomass production along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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Figure 3.7.  Below-ground Typha latifolia biomass production along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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the effect of the N:P ratio is similar to that of the entire mesocosm, with higher biomass 

production at co-limited N:P ratios at high ammonia concentrations (Tilman 1982, 

Mamolos et al. 1995).  Again, the lack of statistical significance of the N:P ratio is 

problematic in making determinations such as these. 

 Total Juncus effusus biomass was significantly affected by ammonia 

concentration treatments (Table 3.4).  Differences in biomass based on ammonia 

treatments are likewise consistent with results from other portions of this study, and 

illustrate toxicity in Juncus at approximately the 150 mgL-1 ammonia concentration.  The 

peak biomass production of 238.2±8.9 g occurs at 150 mgL-1 ammonia treatment level, 

and is followed by a decline to a low of 193.5±9.9 g at 300 mgL-1 ammonia (Figure 3.8).  

Similar to the 2002 data, little statistically significant differences exist at higher ammonia 

treatment levels.  The N:P ratio of 25:1 produced 230.3±10.0 g biomass, which is higher 

(although not statistically) than that produced by the 15:1 N:P ratio treatment level, 

228.4±19.0 g, and significantly higher than that produced at an N:P ratio of 5:1, 

207.3±9.9 g.  Observably, the N:P ratio of 15:1 appears once again to have the least 

negative slope of the three, which could potentially indicate that at higher levels of 

ammonia, a co-limited N:P ratio would produce higher biomass, which is consistent with 

findings from Typha and for the mesocosms on the whole.   

 Above-ground Juncus biomass production is significantly affected by ammonia 

concentration treatment alone, although N:P ratio treatment almost produces an 

observable effect as well (Table 3.4).  Differences in biomass production across ammonia 

concentrations is consistent with the overall effect in Juncus in 2002 and 2003, although 

peak biomass production in 2002 occurs at the 75 mgL-1 ammonia concentration and  
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Table 3.4. Tests of fixed effects on total, above-ground, and below-ground biomass of 
mesocosms of Juncus effusus  in 2003.  Please refer to appendix II for SAS code. 

 
 

Measured Biomass Effect d.f. F Value P Level
Total Juncus effusus [Ammonia] 3 9.46 0.0005
Total Juncus effusus N:P Ratio 2 2.03 0.1595
Total Juncus effusus N:P Ratio x [Ammonia] 6 1.11 0.3949
Above-ground Juncus effusus [Ammonia] 3 9.46 0.0005
Above-ground Juncus effusus N:P Ratio 2 2.03 0.1595
Above-ground Juncus effusus N:P Ratio x [Ammonia] 6 1.11 0.3949
Below-ground Juncus effusus [Ammonia] 3 10.35 0.0003
Below-ground Juncus effusus N:P Ratio 2 2.44 0.1143
Below-ground Juncus effusus N:P Ratio x [Ammonia] 6 1.01 0.4483
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Figure 3.8.  Total Juncus effusus biomass production along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003.  Standard errors are not 
presented due to graphic difficulty in their interpretation.  Due to normality of data and 
homogeneity of residuals from the ANOVA, log transformation was not necessary (see 
appendix II for SAS code). 
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occurs in 2003 at the 150 mgL-1 ammonia concentration (Figure 3.9).  Although the N:P 

ratio is not a statistically significant effect in determining biomass production, there is an 

observable trend of higher biomass production at a level of 15:1 as predicted by Tilman 

(1982), Mamolos et al. (1995) and by the observable trends in this study. 

 Below-ground Juncus biomass production is significantly affected by the 

ammonia treatment alone (Table 3.4).  The highest production occurs at the 75 mgL-1 

ammonia concentration, with lowest production at 300 mgL-1 although observable toxic 

effects do not seem overly evident (Figure 3.10).  An observable trend of high biomass 

production along the 15:1 N:P ratio may be found in Figure 3.10, although N:P ratio is 

not a statistically significant source of variation. 

 Findings for Juncus biomass production do concur with the results of Clarke 

(1999), but yield overall higher tolerances for ammonia than some (Hill et al. 1997); 

results from the 2003 study corroborate well with the 2002 study in indicating relatively 

high ammonia tolerance in Juncus.  Overall, Juncus again produced more biomass than 

Typha at all ammonia treatment concentrations, and appeared to be less affected by 

increased ammonia concentrations, based on observable patterns in the slopes of the lines 

in Figures 3.8 to 3.10.  The trend in the effect of the N:P ratio is much more difficult to 

observe in Juncus, but appears to agree with that of the entire mesocosm and with that of 

Typha biomass production, with more biomass produced at high ammonia concentrations 

if the experimental N:P ratio is co-limited.   

If the application of phosphorus in varying N:P ratios could alleviate potentially 

toxic ammonia concentrations,  interactions between the N:P ratio treatments and the 

ammonia concentration treatments should be statistically significant sources of variation.   
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Figure 3.9.  Above-ground Juncus effusus biomass production along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 

 75



0.0

50.0

100.0

150.0

200.0

250.0

300.0

0 75 150 225 300

Ammonia Concentration (mgL-1)

B
el

ow
-g

ro
un

d 
Ju

nc
us

 B
io

m
as

s (
g)

N:P ratio=5:1 N:P ratio=15:1 N:P ratio=25:1  
 
 
Figure 3.10.  Below-ground Juncus effusus biomass production along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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This is not the case, but some interesting trends are evident that could be further 

investigated.  It appears that for Juncus, as well as for Typha, that under low ammonia 

concentrations, best growth is achieved when the N:P ratio treatment is 5:1 or 25:1.  

Under high ammonia concentrations, best growth is achieved when N and P are co-

limiting.  A potential competitive effect could account for this trend in biomass 

production; Tilman et al. (1999) found in field plot studies (using significantly lower 

concentrations of nutrients than used in this study) that the competitor with the best 

mechanism for acquiring a limiting nutrient will be favored in the absence of that 

nutrient.  It is possible (although Tilman 1982 states otherwise, again in field plot studies) 

that Typha is a more efficient competitor for both N and P at lower nutrient 

concentrations, and is therefore inhibited in growth when N and P are co-limited.  On the 

other hand, Juncus produces biomass relatively well at high ammonia concentrations 

regardless of P fertilization, which may indicate that Juncus is the better competitor for 

phosphorus in P-limiting situations. 

 

Mesocosm Root-to-Shoot Ratios 

Mesocosm root-to-shoot ratios were significantly affected by ammonia 

concentration treatment, N:P ratio treatment, species tested, and the interaction of species 

and ammonia concentration treatment (Table 3.5).  Decreases were evident in the R:S 

ratio in the mesocosm from 0.53±0.1 at the 75 mgL-1 ammonia treatment to 0.4±0.0 at the 

300 mgL-1 ammonia treatment; R:S ratio was maximized at 0.4±0.0 at the N:P ratio 

treatment of 15:1 (Figure 3.11).  Typha exhibited a higher mean R:S ratio at 0.5±0.1 than 

Juncus, at 0.4±0.0.  Decreases following the same trend as for the mesocosm are evident  
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Table 3.5. Test of fixed effects on the root-to-shoot ratio in mesocosms and in Typha 
latifolia and Juncus effusus in 2003.  Please refer to appendix II for SAS code. 
 
 

Measured Root-to-Shoot Ratio Effect d.f. F Value P Level
Total Mesocosm Species 1 26.31 <0.0001
Total Mesocosm [Ammonia] 3 13.1 <0.0001
Total Mesocosm Species x  [Ammonia] 3 7.16 0.0005
Total Mesocosm N:P Ratio 2 5.62 0.0064
Total Mesocosm N:P Ratio x Species 2 0.95 0.3946
Total Mesocosm N:P Ratio x [Ammonia] 6 0.9 0.5030
Total Mesocosm Species x N:P Ratio x [Ammonia] 6 1.82 0.1157
Total Typha latifolia [Ammonia] 3 10.07 0.0002
Total Typha latifolia N:P Ratio 2 2.26 0.1258
Total Typha latifolia N:P Ratio x [Ammonia] 6 1.13 0.3749
Total Juncus effusus [Ammonia] 3 10.5 0.0001
Total Juncus effusus N:P Ratio 2 9.91 0.0007
Total Juncus effusus N:P Ratio x [Ammonia] 6 2.83 0.0314
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Figure 3.11.  Root-to-shoot ratios for mesocosms along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003.  Standard errors are not 
presented due to graphic difficulty in their interpretation.  Due to normality of data and 
homogeneity of residuals from the ANOVA, log transformation was not necessary (see 
appendix II for SAS code). 
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for Typha (Figure 3.12) and Juncus (Figure 3.13), although N:P ratio is not significant in 

determining the R:S ratio in Typha (Table 3.5).  These data concur with the 2002 data and 

indicate suppression of root formation, increased shoot production, or a combination of 

the two with increasing ammonia concentration.  The fact that the interaction term of 

species and ammonia concentration is present indicates differences in the level of stress 

tolerance between the species.  Overall decreases in R:S ratio with increasing ammonia 

concentration concur with similar responses in other species (Walch-Liu et al. 2000, 

Vojtiskova et al. 2004).  It is not to be expected that biomass allocations to roots and 

shoots will be the same, based on a number of factors which include fertilization 

(Vojtiskova et al. 2004, Tilman 1997).  The fact that the 15:1 N:P ratio alleviated some of 

the reduction in cell division and leaf elongation typical of phytotoxic concentrations of 

ammonia is consistent with the observable trend in increased overall biomass production 

at the 15:1 N:P level in mesocosms, Typha, and Juncus. 

 

Mesocosm Tissue Nitrogen Concentration 

 Total mesocosm nitrogen tissue concentration was significantly affected by 

species tested, ammonia concentration, N:P ratio treatment, and the interaction of species 

and ammonia concentration.  (Table 3.6).  Total tissue nitrogen concentration increased 

from an average of 19.3±2.1 mg g-1 at the 75 mgL-1 ammonia treatment level to an 

average of 26.7±0.5 mg g-1 at the 300 mgL-1 ammonia treatment level (Figure 3.14).  This 

trend is to be expected and has been referred to as “luxury consumption”; as the available 

nitrogen increases, nitrogen concentration in the biomass should increase as well (Tripler 

et al. 2002).  This finding is one of the main reasons why plants are used in treatment  
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Figure 3.12. Root-to-shoot ratios for Typha latifolia along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003.  Standard errors are not 
presented due to graphic difficulty in their interpretation.  Due to normality of data and 
homogeneity of residuals from the ANOVA, log transformation was not necessary (see 
appendix II for SAS code). 
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Figure 3.13. Root-to-shoot ratios for Juncus effusus along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003.  Standard errors are not 
presented due to graphic difficulty in their interpretation.  Due to normality of data and 
homogeneity of residuals from the ANOVA, log transformation was not necessary (see 
appendix II for SAS code). 
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Table 3.6. Tests of fixed effects on total, above-ground, and below-ground tissue nitrogen 
concentration of mesocosms of Juncus effusus and Typha latifolia in 2003.  Please refer 
to appendix II for SAS code. 
 
 

Measured Biomass Effect d.f. F Value P Level
Total Mesocosm Species 1 7.9 0.0078
Total Mesocosm [Ammonia] 3 10.32 <0.0001
Total Mesocosm Species x  [Ammonia] 3 3.69 0.02
Total Mesocosm N:P Ratio 2 11.37 0.0001
Total Mesocosm N:P Ratio x Species 2 1.89 0.1644
Total Mesocosm N:P Ratio x [Ammonia] 6 1.39 0.2426
Total Mesocosm Species x N:P Ratio x [Ammonia] 6 0.71 0.6426
Above-ground Mesocosm Species 1 10.42 0.0026
Above-ground Mesocosm [Ammonia] 3 12.7 <0.0001
Above-ground Mesocosm Species x  [Ammonia] 3 4.79 0.0063
Above-ground Mesocosm N:P Ratio 2 12.94 <0.0001
Above-ground Mesocosm N:P Ratio x Species 2 2.09 0.1374
Above-ground Mesocosm N:P Ratio x [Ammonia] 6 1.51 0.2
Above-ground Mesocosm Species x N:P Ratio x [Ammonia] 6 0.6 0.7309
Below-ground Mesocosm Species 1 16.42 0.0003
Below-ground Mesocosm [Ammonia] 3 17.2 <0.0001
Below-ground Mesocosm Species x  [Ammonia] 3 7.38 0.0005
Below-ground Mesocosm N:P Ratio 2 15.35 <0.0001
Below-ground Mesocosm N:P Ratio x Species 2 2.71 0.0794
Below-ground Mesocosm N:P Ratio x [Ammonia] 6 1.99 0.0916
Below-ground Mesocosm Species x N:P Ratio x [Ammonia] 6 0.53 0.7811
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Figure 3.14.  Total mesocosm tissue nitrogen concentration along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003.  Standard errors are not 
presented due to graphic difficulty in their interpretation.  Due to normality of data and 
homogeneity of residuals from the ANOVA, log transformation was not necessary (see 
appendix II for SAS code). 
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wetlands: their ability to remove designated elements from wastewater (e.g. Kadlec and 

Knight 1996).  Typha averaged significantly higher tissue nitrogen content, 24.3±3.6 mg 

g-1, than Juncus, which averaged 21.7±1.2 mg g-1 tissue nitrogen.  Average tissue 

nitrogen content was highest at the 5:1 N:P ratio.  The significant interactive effect of 

species and ammonia treatment reflects significant differences between tissue nitrogen 

concentrations in each species across ammonia concentrations.  From this study, the hope 

was that a significant N:P ratio effect would develop; this would imply that as N:P ratios 

changed, more or less nitrogen could be sequestered in plant tissues.  The line following 

the 15:1 N:P ratio in Figure 3.14 shows a trend towards less tissue nitrogen at low 

ammonia concentrations.  This could be due to an inability of the mesocosms to uptake 

nitrogen, even under “ideal” N:P ratios, at low ammonia concentrations.  Other authors 

(de Groot et al. 2003) found nitrogen uptake to be limited by phosphorus availability; at 

high N:P ratios where phosphorus is the limiting factor, N uptake was inhibited.   

 Total above-ground mesocosm tissue nitrogen concentration was significantly 

affected by the N:P ratio treatment, species, and ammonia concentration treatment level 

(Table 3.6).  A similar trend as for overall mesocosm tissue nitrogen concentration is 

evident, with increasing tissue nitrogen with increasing ammonia treatment concentration 

(Figure 3.15); likewise, average Typha above-ground tissue nitrogen concentration, 

24.5±2.9 mg g-1, is higher than that for Juncus, 21.7±1.2 mg g-1.  Again the 5:1 N:P ratio 

results in highest tissue nitrogen concentration.  The line representing the 15:1 N:P ratio 

demonstrates the same interesting trend as that for overall tissue nitrogen, an apparent 

inability of the plant tissues to sequester nitrogen at low ammonia concentrations.  In fact, 

at this 15:1 N:P ratio, a significantly lower nitrogen tissue concentration occurs over the  
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Figure 3.15.  Total above-ground mesocosm tissue nitrogen concentration along a 
gradient of ammonia concentration treatments and at three N:P ratios in 2003.  Standard 
errors are not presented due to graphic difficulty in their interpretation.  Due to normality 
of data and homogeneity of residuals from the ANOVA, log transformation was not 
necessary (see appendix II for SAS code). 
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entire ammonia treatment regime,.  At co-limited N:P levels, less tissue nitrogen uptake 

occurs. 

 Total below-ground tissue nitrogen concentration was significantly affected by 

N:P ratio treatment, species, and ammonia concentration treatment as well (Table 3.6).  

Like above-ground tissue nitrogen, a similar trend to that of overall mesocosm tissue 

nitrogen concentration is evident, with greater tissue nitrogen concentrations at higher 

ammonia concentrations and at the 5:1 N:P ratio (Figure 3.16), and a greater 

concentration of tissue nitrogen found in Typha.  Of interest to note is the fact that 

average Juncus tissue nitrogen concentration is exactly the same in above- and below- 

ground tissues, 21.7±1.2 mg g-1.  This indicates that the plant sequesters nitrogen equally 

in above- and below-ground tissues, which may have implications as to how nitrogen is 

used in plant tissues and as to how ammonia toxicity occurs in wetland plants.   

 If the N:P ratio treatment was a useful means of alleviating ammonia toxicity, N:P 

ratio treatments should significantly affect the nitrogen stored and used in plant tissue.  

For ammonia toxicity to decrease, some of the nitrogen must be used by the biomass.  In 

this experiment, N:P ratio did significantly affect tissue nitrogen concentration, with the 

N:P ratio of 5:1 producing significantly higher tissue N concentration.  In fact, at the N:P 

ratio which is co-limited, 15:1, the highest stored tissue nitrogen was expected.  At a co-

limited N:P ratio, both nutrients should be used more quickly for the production of 

biomass (Tilman 1982), and, while the observable trend in biomass production did show 

this to an extent, the amount of nitrogen stored in the tissue is the lowest of all three N:P 

ratio treatments.  At sub-optimal N:P ratios, plant tissues should not be able to use 

nutrients at an optimal rate.  Perhaps the difference in this case is between “use” of  
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Figure 3.16.  Total below-ground mesocosm tissue nitrogen concentration along a 
gradient of ammonia concentration treatments and at three N:P ratios in 2003.  Standard 
errors are not presented due to graphic difficulty in their interpretation.  Due to normality 
of data and homogeneity of residuals from the ANOVA, log transformation was not 
necessary (see appendix II for SAS code). 
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nutrients and “storage” of nutrients, which should be further explored.  Aerts et al.(2001) 

indicate that N and P tissue concentration in Sphagnum is not controlled by the addition 

of nutrients to the site, although at significantly lower fertilization rates than in this study.   

 Total Typha latifolia tissue nitrogen concentration was significantly affected by 

ammonia concentration treatment and N:P ratio treatment (Table 3.7).  Tissue nitrogen 

increased from an average of 19.3±3.6 mg g-1 at the 75 mgL-1  ammonia concentration 

treatment to 29.5±3.7 at the 225 mgL-1  ammonia concentration treatment, and then 

declined to the 300 mgL-1  ammonia concentration treatment (Figure 3.17).  Tissue 

nitrogen was highest at the 15:1 N:P ratio.  The fact that peak tissue nitrogen 

concentration appears at the 225 mgL-1  ammonia treatment could indicate the toxic 

effects of ammonia could potentially limit the overall uptake.   Although 15:1 N:P ratio 

treatments were significant in determining high tissue nitrogen concentrations, this 

treatment again performed poorly at high ammonia concentrations.  At the high 

phosphorus N:P ratio, the slope of the line indicates that tissue nitrogen concentration 

may continue to increase at even higher ammonia concentrations.  The behavior of the 

above-ground Typha tissue nitrogen concentration (Figure 3.18) and below-ground tissue 

nitrogen concentration (Figure 3.19) demonstrate a similar trend; for each case, ammonia 

concentration and the N:P ratio account for differences in tissue nitrogen concentration.  

The overall N:P ratio trend is similar in each case as well, with the line representing the 

N:P ratio of 15:1 demonstrating a peak at 225 mgL-1 ammonia, and the 5:1 N:P ratio line 

increasing at 300 mgL-1 ammonia.   

Total Juncus effusus tissue nitrogen concentration is affected by ammonia 

concentration treatment and the N:P ratio treatment (Table 3.8).  Mean tissue nitrogen  
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Table 3.7. Tests of fixed effects on total, above-ground, and below-ground tissue nitrogen 
concentration of Typha latifolia in 2003.  Please refer to appendix II for SAS code. 
 
 

Measured Biomass Effect d.f. F Value P Level
Total Typha latifolia [Ammonia] 3 7.74 0.0014
Total Typha latifolia N:P Ratio 2 6.56 0.0068
Total Typha latifolia N:P Ratio x [Ammonia] 6 0.86 0.5438
Above-ground Typha latifolia [Ammonia] 3 9.92 0.0004
Above-ground Typha latifolia N:P Ratio 2 7.59 0.0038
Above-ground Typha latifolia N:P Ratio x [Ammonia] 6 0.84 0.5572
Below-ground Typha latifolia [Ammonia] 3 13.52 <0.0001
Below-ground Typha latifolia N:P Ratio 2 9.27 0.0017
Below-ground Typha latifolia N:P Ratio x [Ammonia] 6 1.01 0.4517
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Figure 3.17.  Total Typha latifolia tissue nitrogen concentration along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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Figure 3.18.  Above-ground Typha latifolia tissue nitrogen concentration along a gradient 
of ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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Figure 3.19.  Below-ground Typha latifolia tissue nitrogen concentration along a gradient 
of ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 

 93



Table 3.8. Tests of fixed effects on total, above-ground, and below-ground tissue nitrogen 
concentration of Juncus effusus in 2003.  Please refer to appendix II for SAS code. 
 
 

Measured Biomass Effect d.f. F Value P Level
Total Juncus effusus [Ammonia] 3 3.03 0.0549
Total Juncus effusus N:P Ratio 2 7.11 0.0049
Total Juncus effusus N:P Ratio x [Ammonia] 6 2.17 0.0922
Above-ground Juncus effusus [Ammonia] 3 3.03 0.0549
Above-ground Juncus effusus N:P Ratio 2 7.11 0.0049
Above-ground Juncus effusus N:P Ratio x [Ammonia] 6 2.17 0.0922
Below-ground Juncus effusus [Ammonia] 3 3.03 0.0549
Below-ground Juncus effusus N:P Ratio 2 7.11 0.0049
Below-ground Juncus effusus N:P Ratio x [Ammonia] 6 2.17 0.0922
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concentration increases from 17.5±1.0 mg g-1 at 75 mgL-1 ammonia to 24.5±0.6 mg g-1 at 

the 300 mgL-1 ammonia treatment.  Mean tissue nitrogen concentration likewise increases 

from 20.2±1.7 mg g-1 at an N:P ratio of 15:1 to about 22 mg g-1 at N:P ratios of 5:1 and 

25:1.  Figure 3.20 demonstrates that, especially under low ammonia concentrations, 

tissue nitrogen is minimized by the 15:1 N:P ratio treatment.  At N-limited and at P-

limited N:P ratios, more nitrogen is stored in tissues in Juncus, especially in the lower 

ammonia concentrations, although this effect is significantly smaller than in Typha.  In 

the related Juncus roemerianus, Brewer (2003) noted tissue nitrogen conservation and 

little increase in N uptake with fertilization.  Emery  et al. (2001) noted Juncus effusus to 

be a “stress tolerator” and could therefore potentially be dominant under unfavorable 

situations such as ammonia toxicity; they note that “stress tolerators” are not typically 

considered dominant in the presence of nutrients.  This trend towards more consistent 

storage is not similar to the trend in Typha, where at higher ammonia concentrations, the 

N-limited and P-limited N:P ratios tend to cause less nitrogen storage in tissues.  Curves 

are similar in above-ground Juncus tissue nitrogen concentration (Figure 3.21) and in 

below-ground nitrogen tissue concentration (Figure 3.22). 

 

Mesocosm Total Tissue Mass Nitrogen 

Total mesocosm tissue nitrogen uptake is affected by ammonia concentration, 

species, the N:P ratio treatment, and the interaction between species and ammonia 

concentration (Table 3.9).  Total tissue nitrogen decreased with increasing ammonia 

concentration, from an average of 7301.2±834.3 mg at the 150 mgL-1 ammonia treatment 

level to 5981.1±854.3 mg at the 300 mgL-1 treatment ( Figure 3.23).  This indicates that  
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Figure 3.20.  Total Juncus effusus tissue nitrogen concentration along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 

 96



0.0

10.0

20.0

30.0

40.0

50.0

0 75 150 225 300

Ammonia Concentration (mgL-1)

A
bo

ve
-g

ro
un

d 
Ju

nc
us

 T
is

su
e 

N
itr

og
en

 (m
g 

g-1
)

N:P ratio=5:1 N:P ratio=15:1 N:P ratio=25:1  
 
 
Figure 3.21.  Above-ground Juncus effusus tissue nitrogen concentration along a gradient 
of ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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Figure 3.22.  Below-ground Juncus effusus tissue nitrogen concentration along a gradient 
of ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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Table 3.9. Tests of fixed effects on total, above-ground, and below-ground tissue total 
mass nitrogen in mesocosms of Typha latifolia and Juncus effusus  in 2003.  Please refer 
to appendix II for SAS code. 
 
 

Measured Biomass Effect d.f. F Value P Level
Total Mesocosm Species 1 10.09 0.003
Total Mesocosm [Ammonia] 3 9.73 <0.0001
Total Mesocosm Species x  [Ammonia] 3 2.77 0.0548
Total Mesocosm N:P Ratio 2 5.68 0.0069
Total Mesocosm N:P Ratio x Species 2 1.3 0.2848
Total Mesocosm N:P Ratio x [Ammonia] 6 1.17 0.3406
Total Mesocosm Species x N:P Ratio x [Ammonia] 6 0.62 0.7147
Above-ground Mesocosm Species 1 13.03 0.0009
Above-ground Mesocosm [Ammonia] 3 12.62 <0.0001
Above-ground Mesocosm Species x  [Ammonia] 3 3.86 0.0167
Above-ground Mesocosm N:P Ratio 2 6.4 0.004
Above-ground Mesocosm N:P Ratio x Species 2 1.59 0.2179
Above-ground Mesocosm N:P Ratio x [Ammonia] 6 1.31 0.2744
Above-ground Mesocosm Species x N:P Ratio x [Ammonia] 6 0.61 0.721
Below-ground Mesocosm Species 1 15.76 0.0003
Below-ground Mesocosm [Ammonia] 3 12.33 <0.0001
Below-ground Mesocosm Species x  [Ammonia] 3 3.85 0.0171
Below-ground Mesocosm N:P Ratio 2 6.45 0.004
Below-ground Mesocosm N:P Ratio x Species 2 1.95 0.1561
Below-ground Mesocosm N:P Ratio x [Ammonia] 6 1.43 0.23
Below-ground Mesocosm Species x N:P Ratio x [Ammonia] 6 0.42 0.863
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Figure 3.23.  Total mesocosm tissue mass nitrogen along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003.  Standard errors are not 
presented due to graphic difficulty in their interpretation.  Due to normality of data and 
homogeneity of residuals from the ANOVA, log transformation was not necessary (see 
appendix II for SAS code). 
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total nitrogen uptake may be based primarily on total biomass rather than on tissue 

nitrogen concentration.  Although more nitrogen is taken up at high ammonia treatment 

levels, more total nitrogen is removed from wastewater at peak biomass production.  

Total N uptake is greatest at the 5:1 N:P ratio treatment; this finding is similar to tissue N 

concentration results (Figures 3.23 and 3.14, respectively).  Since Juncus produced more 

biomass than Typha at all treatment levels, it sequestered significantly higher mass of N 

in the tissue than Typha, although Typha has higher tissue N concentrations.  Although 

this may seem to indicate that Typha and Juncus therefore operate in the same manner in 

terms of overall N removal, since Juncus produces more biomass and is more tolerant of 

high ammonia concentrations, it is able to remove more N from wastewater. 

 Total above-ground mesocosm tissue mass nitrogen was significantly affected by 

the same effects as total mesocosm tissue mass nitrogen, and in much the same way; 

ammonia concentration, species, the N:P ratio treatment, and the interaction between 

species and ammonia concentration affect total above-ground mesocosm tissue mass 

nitrogen (Table 3.9).  Total above-ground tissue mass nitrogen decreased with increasing 

ammonia concentration, due in part to the fact that less biomass was produced at high 

ammonia concentrations, and despite higher tissue nitrogen concentrations at high 

ammonia concentrations (Figure 3.24).  Juncus had higher above-ground tissue mass 

nitrogen at all treatment levels, and averaged 3526.4±409.6 mg over all treatments.  

Typha averaged 1242.3±286.7 mg over all treatments.  Highest N uptake occurs at the 5:1 

N:P ratio treatment; this is similar to overall mesocosm tissue N and to tissue N 

concentration results.  This may indicate a result of a low N:P ratio, and demonstrates  
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Figure 3.24.  Total above-ground mesocosm tissue mass nitrogen along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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that when less N is available, plant tissues sequester more overall N and sequester N in 

higher concentrations. 

 Total below-ground tissue mass nitrogen was significantly affected by N:P ratio 

treatment, species, and ammonia concentration treatment and by the interaction of species 

and ammonia concentration as well (Table 3.9).  Like above-ground tissue mass nitrogen, 

a similar trend to overall mesocosm mass nitrogen is evident, with greater mass nitrogen 

at lower ammonia concentrations and at the 5:1 N:P ratio (Figure 3.25), and a greater 

mass of N found in Juncus.  Again, this trend indicates a clear relationship between total 

biomass production and total N uptake; since Juncus produced more biomass, total N in 

Juncus tissue is higher than that of Typha, despite a higher N concentration in Typha. 

 If the amending the N:P ratio could improve ATW functioning, N:P ratio 

treatments should significantly affect the total mass N stored in plant tissues.  In this 

experiment, the N:P ratio of 5:1 produced significantly higher N mass uptake in plant 

tissues, as well as producing higher overall tissue N concentration.  At a co-limited N:P 

ratio, nutrients should be used for biomass production, and therefore should be evident in 

high tissue mass N (Tilman 1982).  In fact, at the lower, N-limited N:P ratio (5:1), higher 

N mass uptake and higher N concentration occurred.  If the 5:1 N:P ratio had likewise 

produced overall higher biomass, then a precedent could be set for managers to improve 

ATW function by setting an N:P ratio of 5:1.  Despite the 5:1 N:P ratio not statistically 

influencing biomass, the fact that over-fertilization with phosphorus may serve to remove 

additional nitrogen from wastewater may be a practical means by which to control 

ammonia concentration in ATW effluent. 
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Figure 3.25.  Total below-ground mesocosm tissue mass nitrogen along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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 Total Typha latifolia tissue mass nitrogen was significantly affected by ammonia 

concentration treatment alone (Table 3.10).  Tissue mass N decreased with from an 

average of 2731.0±796.3 mg at the 75 mgL-1  ammonia concentration treatment to 

787.5±89.3 mg at the 300 mgL-1  ammonia concentration treatment (Figure 3.26).  This 

concurs well with the tissue N concentration results, and indicates N uptake problems at 

the higher ammonia concentrations, as well as suppressed biomass production at those 

levels.  Although the N:P ratio treatment was not significant in determining Typha tissue 

N mass, the 5:1 N:P ratio produces observably higher N mass uptake, which is a similar 

overall trend to total mesocosm N uptake, and may as well indicate the management 

implications of this study.  The behavior of above-ground Typha tissue mass N (Figure 

3.27), and below-ground tissue mass N (Figure 3.28) demonstrates similar trends.  In fact, 

the 5:1 N:P ratio produces statistically significant high N mass for these measurements 

(Table 3.10).  Again, the decrease in biomass at high ammonia treatments appears to 

affect total N uptake in Typha above- and below-ground tissues; this corresponds well 

with total mesocosm effects. 

 Total Juncus effusus tissue mass nitrogen is affected by ammonia concentration 

treatment, the N:P ratio treatment, and their interaction (Table 3.11).  Mean tissue mass N 

increases from 4068.9±588.2 mg at the 75 mgL-1  ammonia concentration to 

5222.41±318.1 mg at the 225 mgL-1  ammonia concentration, then drops to 4798±333.8 

mg at the 300 mgL-1  ammonia concentration.  Highest tissue mass N is produced by the 

25:1 N:P ratio treatment.  Figure 3.29 illustrates the interactive effects of ammonia 

concentration and N:P ratio treatment in affecting tissue N mass, and shows the higher 

ammonia treatments have relatively similar overall N mass uptake.  This corresponds  
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Table 3.10. Tests of fixed effects on total, above-ground, and below-ground tissue total 
mass nitrogen in Typha latifolia in 2003.  Please refer to appendix II for SAS code. 
  
 

Measured Biomass Effect d.f. F Value P Level
Total Typha latifolia [Ammonia] 3 6.03 0.0046
Total Typha latifolia N:P Ratio 2 3.19 0.0637
Total Typha latifolia N:P Ratio x [Ammonia] 6 0.85 0.5493
Above-ground Typha latifolia [Ammonia] 3 8.11 0.0011
Above-ground Typha latifolia N:P Ratio 2 3.71 0.0435
Above-ground Typha latifolia N:P Ratio x [Ammonia] 6 0.94 0.4915
Below-ground Typha latifolia [Ammonia] 3 7.42 0.0019
Below-ground Typha latifolia N:P Ratio 2 3.75 0.0437
Below-ground Typha latifolia N:P Ratio x [Ammonia] 6 0.82 0.5655
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Figure 3.26.  Total Typha latifolia tissue mass nitrogen along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003.  Standard errors are not 
presented due to graphic difficulty in their interpretation.  Due to normality of data and 
homogeneity of residuals from the ANOVA, log transformation was not necessary (see 
appendix II for SAS code). 
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Figure 3.27.  Above-ground Typha latifolia tissue mass nitrogen along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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Figure 3.28.  Below-ground Typha latifolia tissue mass nitrogen along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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Table 3.11. Tests of fixed effects on total, above-ground, and below-ground tissue total 
mass nitrogen in Juncus effusus in 2003.  Please refer to appendix II for SAS code. 
 
 

Measured Biomass Effect d.f. F Value P Level
Total Juncus effusus [Ammonia] 3 14.14 <0.0001
Total Juncus effusus N:P Ratio 2 10.71 0.0008
Total Juncus effusus N:P Ratio x [Ammonia] 6 2.83 0.0386
Above-ground Juncus effusus [Ammonia] 3 12.31 0.0001
Above-ground Juncus effusus N:P Ratio 2 8.98 0.0018
Above-ground Juncus effusus N:P Ratio x [Ammonia] 6 2.27 0.0806
Below-ground Juncus effusus [Ammonia] 3 16 <0.0001
Below-ground Juncus effusus N:P Ratio 2 12.56 0.0003
Below-ground Juncus effusus N:P Ratio x [Ammonia] 6 3.47 0.0173
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Figure 3.29.  Total Juncus effusus tissue mass nitrogen along a gradient of ammonia 
concentration treatments and at three N:P ratios in 2003.  Standard errors are not 
presented due to graphic difficulty in their interpretation.  Due to normality of data and 
homogeneity of residuals from the ANOVA, log transformation was not necessary (see 
appendix II for SAS code). 
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well with overall biomass production results for Juncus, with little toxicity effect at 

higher ammonia concentrations.  Of interest to note is that the P-limited 25:1 N:P ratio 

produced higher tissue N mass than co-limited or N-limited ratios, as in the case of 

overall mesocosm and Typha tissue mass N.  This may indicate interactions with Typha 

growth at 5:1 and 15:1 N:P levels, and may also indicate the “stress tolerator” syndrome 

described above (Emery et al. 2001).  Curves are similar for above-ground Juncus tissue 

mass N (Figure 3.30) and below-ground tissue mass N (Figure 3.31), although in below-

ground tissue mass N, there is a less evident effect.  This corresponds well with lower 

biomass and N concentration effects for Juncus previously noted. 

 

Mesocosm Tissue Phosphorus Concentration   

Total mesocosm tissue phosphorus concentration is affected by ammonia 

concentration, species, and the interactions between N:P ratio treatment and species and 

action between ammonia and species (Table 3.12).  Since phosphorus administered by the 

N:P ratio is the only phosphorus available to the plant (other than phosphorus present in 

the tap water, which should be consistent between mesocosms), the non-significance of 

the N:P ratio is unclear and may represent additional phosphorus sources such as the 

greenhouse tap water or the medium in which the plants were grown.  Mean tissue 

phosphorus concentration in Juncus is 2.1±0.2 mg g-1, while that of Typha is 2.7±0.5 mg 

g-1, indicating that, like nitrogen, Typha typically sequesters more P in tissues.  It is the 

significance of the ammonia concentration which is of particular interest here; tissue 

phosphorus concentrations increase from a low of 1.6±0.1 mg g-1 at the 75 mgL-1 

ammonia treatment to 3.1±0.4 mg g-1 at the 300 mgL-1 ammonia treatment (Figure 3.32).   
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Figure 3.30.  Above-ground Juncus effusus tissue mass nitrogen along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 

 113



 

0

1000

2000

3000

4000

0 75 150 225 300

Ammonia Concentration (mgL-1)

B
el

ow
-g

ro
un

d 
Ju

nc
us

 T
is

su
e 

N
itr

og
en

 (g
)

N:P ratio=5:1 N:P ratio=15:1 N:P ratio=25:1  
 
 
Figure 3.31.  Below-ground Juncus effusus tissue mass nitrogen along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Standard errors are 
not presented due to graphic difficulty in their interpretation.  Due to normality of data 
and homogeneity of residuals from the ANOVA, log transformation was not necessary 
(see appendix II for SAS code). 
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Table 3.12. Tests of fixed effects on total, above-ground, and below-ground tissue 
phosphorus concentration of mesocosms of Typha latifolia and Juncus effusus  in 2003.  
Please refer to appendix II for SAS code. 
  
 

Measured Biomass Effect d.f. F Value P Level
Total Mesocosm Species 1 503.07 <0.0001
Total Mesocosm [Ammonia] 3 26.7 <0.0001
Total Mesocosm Species x  [Ammonia] 3 6.06 0.0014
Total Mesocosm N:P Ratio 2 0.03 0.9671
Total Mesocosm N:P Ratio x Species 2 5.02 0.0104
Total Mesocosm N:P Ratio x [Ammonia] 6 0.4 0.8769
Total Mesocosm Species x N:P Ratio x [Ammonia] 6 0.78 0.5876
Above-ground Mesocosm Species 1 539.76 <0.0001
Above-ground Mesocosm [Ammonia] 3 18.14 <0.0001
Above-ground Mesocosm Species x  [Ammonia] 3 3.51 0.0222
Above-ground Mesocosm N:P Ratio 2 0.07 0.9302
Above-ground Mesocosm N:P Ratio x Species 2 3.51 0.0378
Above-ground Mesocosm N:P Ratio x [Ammonia] 6 0.27 0.9486
Above-ground Mesocosm Species x N:P Ratio x [Ammonia] 6 0.55 0.7703
Below-ground Mesocosm Species 1 151.6 <0.0001
Below-ground Mesocosm [Ammonia] 3 31.37 <0.0001
Below-ground Mesocosm Species x  [Ammonia] 3 10.15 <0.0001
Below-ground Mesocosm N:P Ratio 2 0.57 0.5708
Below-ground Mesocosm N:P Ratio x Species 2 4.27 0.0197
Below-ground Mesocosm N:P Ratio x [Ammonia] 6 0.64 0.6983
Below-ground Mesocosm Species x N:P Ratio x [Ammonia] 6 0.83 0.5559
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Figure 3.32.  Total mesocosm tissue phosphorus concentration along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Above- and below-
ground total phosphorus concentrations are not shown.  Standard errors are not presented 
due to graphic difficulty in their interpretation.  Due to normality of data and 
homogeneity of residuals from the ANOVA, log transformation was not necessary (see 
appendix II for SAS code). 
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This indicates a link between the ammonia concentration treatment applied and the 

ability of the biomass to absorb phosphorus.  Other researchers have found using non-

wetland species (Allium sp.) that at high ammonia concentrations, P uptake is inhibited, 

and have cited this as a potential cause of low biomass production (Abbes at al. 1995).  

The findings here suggest otherwise: since tissue nitrogen levels are so high, the amount 

of phosphorus needed by those tissues to supply a “normal” ratio is elevated as well.  

This finding shows some level of control by the plants over the tissue level N:P ratio.  

The P-enriched 5:1 N:P level treatment experiences an observable decline in total P 

absorption in the highest ammonia treatment level, indicating that some blockage in P 

assimilation occurs at toxic ammonia levels.  Ammonia toxicity tends to decrease 

membrane transport efficiencies as well as decrease the functioning of enzymes or of 

mRNA related to nutrient uptake and storage; the blockage in P uptake may be due to this 

effect.  Phosphorus deficiencies have been noted at phytotoxic nutrient concentrations by 

Abbes et al. (1995).  Finding and using mutants which overexpress genes encoding high-

affinity phosphate receptors may be one means by which this deficiency may be 

overcome, although for the time being mutant strains overexpressing phosphate 

transporters have been reported in Arabidopsis alone (Smith 2002).  Figures for above- 

and below-ground mesocosm phosphorus tissue concentration are not shown, but show 

the same overall trends as for total mesocosm phosphorus tissue concentration (Table 

3.12). 

 Total Typha tissue phosphorus concentration is affected by ammonia treatment 

alone (Table 3.13).  Mean tissue phosphorus concentrations increased from a low of 1.6 

±0.3 mg g-1 at the 75 mgL-1 ammonia treatment to 3.5±0.8 mg g-1 at the 300 mgL-1  
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Table 3.13. Tests of fixed effects on total, above-ground, and below-ground tissue 
phosphorus concentration of Typha latifolia in 2003.  Please refer to appendix II for SAS 
code. 
 
 

Measured Biomass Effect d.f. F Value P Level
Total Typha latifolia [Ammonia] 3 33.94 <0.0001
Total Typha latifolia N:P Ratio 2 2.75 0.0838
Total Typha latifolia N:P Ratio x [Ammonia] 6 1.15 0.3636
Above-ground Typha latifolia [Ammonia] 3 24.72 <0.0001
Above-ground Typha latifolia N:P Ratio 2 3.8 0.0367
Above-ground Typha latifolia N:P Ratio x [Ammonia] 6 1.02 0.4374
Below-ground Typha latifolia [Ammonia] 3 37.51 <0.0001
Below-ground Typha latifolia N:P Ratio 2 0.89 0.4219
Below-ground Typha latifolia N:P Ratio x [Ammonia] 6 1 0.4492
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ammonia treatment (Figure 3.33), and observably increased from a low of 2.0±0.3 mg g-1 

at 25:1 N:P ratio treatment to 3.6±0.7 mg g-1 at the 5:1 N:P ratio treatment.  The overall 

trend in Typha tissue phosphorus concentration is similar to that of mesocosm tissue 

phosphorus, with the greatest slope evident in the 25:1 N:P ratio treatment.  This 

corresponds to the P-limited N:P ratio treatment, and implies that plants will continue to 

accumulate phosphorus if P-limited even under toxic ammonia concentrations.  Again, 

figures for above- and below-ground Typha phosphorus tissue concentration are not 

shown and trends correcpond to total Typha phosphorus tissue concentration (Table 

3.13).  It is of interest to note that the N:P ratio affects above-ground phosphorus 

concentration and that the below-ground tissue phosphorus concentration is significantly 

affected by ammonia alone. 

 Total Juncus effusus tissue phosphorus concentration is significantly affected by 

ammonia treatment alone (Table 3.14).  Mean tissue phosphorus concentrations increased 

obsrvably from a low of 1.8±0.3 mg g-1 at 25:1 N:P ratio treatment to 2.5±0.1 mg g-1 at 

the 5:1 N:P ratio treatment (Figure 3.34).  The overall trend in Juncus tissue phosphorus 

is similar to that of the mesocosms on the whole, with the 25:1 N:P ratio exhibiting the 

greatest slope, and the 5:1 N:P ratio declining significantly between the 225 mgL-1 and 

the 300 mgL-1 ammonia treatments.  Figures for Juncus above- and below-ground tissue 

phosphorus concentrations are not shown, but correspond well to overall Juncus tissue 

phosphorus concentrations (Table 3.14).  Of interest to note is the significant effect of the 

N:P ratio in determining phosphorus concentration in below-ground biomass, an opposite 

trend to that of Typha. 

 119



0

1

2

3

4

5

0 75 150 225 300

Ammonia Concentration (mgL-1)

To
ta

l T
yp

ha
 T

is
su

e 
Ph

os
ph

or
us

 (m
g 

g-1
)

N:P ratio=5:1 N:P ratio=15:1 N:P ratio=25:1  
 
 
Figure 3.33.  Total Typha latifolia tissue phosphorus concentration along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Above- and below-
ground total phosphorus concentrations are not shown.  Standard errors are not presented 
due to graphic difficulty in their interpretation.  Due to normality of data and 
homogeneity of residuals from the ANOVA, log transformation was not necessary (see 
appendix II for SAS code). 
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Table 3.14. Tests of fixed effects on total, above-ground, and below-ground tissue 
phosphorus concentration of Juncus effusus in 2003.  Please refer to appendix II for SAS 
code. 
 
 

Measured Biomass Effect d.f. F Value P Level
Total Juncus effusus [Ammonia] 3 4.49 0.0123
Total Juncus effusus N:P Ratio 2 2.38 0.1144
Total Juncus effusus N:P Ratio x [Ammonia] 6 0.21 0.9703
Above-ground Juncus effusus [Ammonia] 3 5.1 0.0072
Above-ground Juncus effusus N:P Ratio 2 0.96 0.3961
Above-ground Juncus effusus N:P Ratio x [Ammonia] 6 0.16 0.9858
Below-ground Juncus effusus [Ammonia] 3 5.2 0.0066
Below-ground Juncus effusus N:P Ratio 2 3.83 0.0359
Below-ground Juncus effusus N:P Ratio x [Ammonia] 6 0.49 0.8127
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Figure 3.34.  Total Juncus effusus tissue phosphorus concentration along a gradient of 
ammonia concentration treatments and at three N:P ratios in 2003.  Above- and below-
ground total phosphorus concentrations.  Standard errors are not presented due to graphic 
difficulty in their interpretation.  Due to normality of data and homogeneity of residuals 
from the ANOVA, log transformation was not necessary (see appendix II for SAS code). 
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The N:P Ratio as a Predictive Tool 

These analyses allow for interpretation of the vegetation N:P ratio in Typha and 

Juncus. Figure 3.35 illustrates the differences between mean vegetation N:P ratios in 

Typha and Juncus and allows comparison of each to the tissue N:P ratios predicted by 

Redfield (1958) and Koerselman and Meuleman (1996); the tissue N:P levels of both 

species tissues falls within the predicted N:P ratio for all values except very high levels of 

nitrogen.  At high levels of nitrogen, Juncus has lower N:P ratios, and Typha has higher 

N:P ratios.  Due to the capacity of the vegetation to uptake nutrients preferentially, the 

N:P ratio generally stays between the co-limited ratio of Koerselman and Meuleman 

(14:1; 1996) and the co-limited ratio of Redfield (7.2:1, 1958).  Of interest is that, if one 

were to predict nutrient limitation by the Korselman and Meuleman ratio, biomass would 

be slightly N-limited, whereas the Redfield ratio would predict slight P limitation.  Since 

the plants themselves show affinities for different nutrients at different concentrations, 

the total N:P ratio of the biomass should fall within these ratios if in fact the biomass was 

co-limited by N and P.  Koerselman and Meuleman (1996) demonstrate that vegetation 

N:P ratios of <14:1 show N limitation and >16:1 show P limitation in wetland plants.  

Redfield (1958) suggests a vegetation N:P ratio of 7.2:1 by weight.  Despite 

administering experimental N:P ratios of 5:1 and 25:1, Figure 3.36 clearly shows that 

measured vegetation N:P ratios did not reach such levels.  In the case of the high nitrogen 

5:1 N:P ratio treatment, the vegetation N:P ratio does appear to approach the actual 

treatment ratio.  Only in high nitrogen Typha tissue were measured N:P ratios less than 

the Redfield ratio, and in very low nitrogen  were measured vegetation N:P ratios more 

than the Koerselman-Meuleman co-limited ratio (Figure 3.37).  The response of Typha to  
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Figure 3.35.  The vegetation N:P ratio of total Juncus effusus tissue and total Typha 
latifolia tissue presented as tissue nitrogen versus tissue phosphorus at all experimental 
N:P ratios and all ammonia concentration treatments in 2003.  N:P ratios of 7.2:1 
(Redfield 1958) and 14:1 (Koerselmen and Meuleman 1996) are provided for comparison 
and to show possible limitations.  Standard errors are not presented due to graphic 
difficulty in their interpretation.  Due to normality of data and homogeneity of residuals 
from the ANOVA, log transformation was not necessary (see appendix II for SAS code). 
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Figure 3.36.  The vegetation N:P ratio of each experimental N:P ratio presented as tissue 
nitrogen versus tissue phosphorus at all ammonia concentration treatments and for  
mesocosms of Juncus effusus and Typha latifolia in 2003.  N:P ratios of 7.2:1 (Redfield 
1958) and 14:1 (Koerselmen and Meuleman 1996) are provided for comparison and to 
show possible limitations.  Standard errors are not presented due to graphic difficulty in 
their interpretation.  Due to normality of data and homogeneity of residuals from the 
ANOVA, log transformation was not necessary (see appendix II for SAS code). 
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Figure 3.37.  The vegetation N:P ratio of each experimental N:P ratio presented as tissue 
nitrogen versus tissue phosphorus at all ammonia concentration treatments and for Typha 
latifolia in 2003.  N:P ratios of 7.2:1 (Redfield 1958) and 14:1 (Koerselmen and 
Meuleman 1996) are provided for comparison and to show possible limitations.  Standard 
errors are not presented due to graphic difficulty in their interpretation.  Due to normality 
of data and homogeneity of residuals from the ANOVA, log transformation was not 
necessary (see appendix II for SAS code). 
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Figure 3.38.  The vegetation N:P ratio of each experimental N:P ratio presented as tissue 
nitrogen versus tissue phosphorus at all ammonia concentration treatments and for Juncus 
effusus in 2003.  N:P ratios of 7.2:1 (Redfield 1958) and 14:1 (Koerselmen and 
Meuleman 1996) are provided for comparison and to show possible limitations.  Standard 
errors are not presented due to graphic difficulty in their interpretation.  Due to normality 
of data and homogeneity of residuals from the ANOVA, log transformation was not 
necessary (see appendix 2 for SAS code). 
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elevated ammonia concentrations even in high phosphorus concentrations is to uptake 

more phosphorus than necessary.  An N:P ratio of less than 5:1 with high tissue nitrogen 

may be an artifact of phytotoxicity in Typha and requires further study.  In Juncus, 

vegetation N:P ratios never fell outside predicted ratios (Figure 3.38), although 

extrapolation of the lines for each N:P treatment could potentially reach such levels.  In 

age-symmetric and age-asymmetric mixtures of Typha and Schenoplectus 

tabernaemontanai (K.C. Gmel) Palla in treatment wetlands, Svengsouk and Mitsch 

(2000) found N:P ratios likewise typically bounded by ratios of 7.2:1 and 14:1.  When 

nitrogen and phosphorus were added in experimental concentrations of 3:1, only 

Schenoplectus tissue exhibited an N:P ratio of less than 7.2:1.  Here, mesocosm N:P 

ratios tend to fall within the bounds of “normal” (taken here to mean lower nitrogen 

levels) natural system ratios, perhaps due to the fact that adjustments to such low ratios 

were not made.  This finding is unsupported by other authors (Koerselman and 

Meuleman 1996, Gusewell et al. 2003): the tissue N:P ratio is more indicative of the 

nutrient requirements of the species than of relative availability rates of these nutrients 

(Tilman 1997).   

The effects of nutrient supply rates on long-term community composition and 

biomass production may differ from the findings reported here for short-term fertilization 

(Tilman 1982, Chapin et al. 1997).  Long-term changes in community composition may 

be based on changes in levels of competition following removal of nutrient deficiencies, 

as predicted by Tilman (1982). This is especially evident considering the extremely high 

nutrient concentrations used in this experiment.  Most experiments regarding short- and 

long-term nutrient fertilization studies have been field-based in locations of oligotrophic 

 128



growth (see Koerselman and Meuleman 1996 for a synopsis of fertilization experiments 

with acceptable treatment design).  Systems such as dune slacks, bogs, fens, and 

northern-latitude freshwater wetlands tend to have higher species diversity, lower nutrient 

availability, and subsequent lower production when compared to natural systems such as 

tidal marshes or artificial systems such as treatment wetlands.   McJannet et al. (1995) 

indicate that no differences exist N:P ratios in plant of  “fertile” and “infertile” 

ecosystems, “fertility” was defined by a nitrogen soil concentrations in excess of 10 ppm, 

which is significantly lower than concentrations addressed in this study.  Although many 

researchers have investigated the effects of nutrient additions, few report actual nutrient 

concentrations achieved (which is often due to fertilization with slow-release type 

fertilizers; McJannet et al. 1995, Gusewell et al. 2003) and few have observed the effects 

of nutrient additions along gradients (but see Clarke and Balwin 2002, Romero et al. 

1999) as applied to the N:P ratio.  Measurement of the N:P ratios in plant communities in 

ATWs instead of in artificially manipulated greenhouse experiments may provide 

increased interpretation of the role of the N:P ratio in determining biomass composition 

at high nitrogen concentrations. 

Tissue N:P ratios for each species were compared with those suggested by 

Koerselman and Meuleman (1996) and Redfield (1958) (Figures 3.35, 3.37, 3.38).  The 

effect of species on determining tissue N and P concentrations, and thus the vegetation 

N:P ratio, is significant.  This contradicts the work of some researchers.  In field 

experiments, N:P ratios tend to differ more within species (given different sites or 

different nutrient concentrations) than between species at a given site (Koerselman and 

Meuleman 1996, Gusewell et al. 2002), or between growth forms rather than between 
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species (Aerts et al. 1999).  On the other hand, in a study of 41 wetland species, 

McJannet et al. (1995) found significant differences in N:P ratios between species (n=5 

samples of each species).  Evidently, additional work is necessary to characterize the N:P 

ratio between species.   

 A major component of the N:P tool is its potential for characterizing competitive 

relationships between species.  The “resource ratio model” (Tilman 1982, 1985, 1997) 

predicts that the concentration of a nutrient in plant biomass might indicate the ability of 

the species to compete for this nutrient.  Thus, in elevated N conditions, the resource ratio 

model predicts that species with the higher N:P ratio will exhibit a competitive advantage 

because strong competitors have low concentrations of a limiting nutrient (Tilman 1982).  

The measured average N:P ratio of Juncus was 12.0:1; the measured average N:P of 

Typha was 9.1:1.  As treatment N levels increased, Juncus sequestered less N in the 

biomass (Figure 3.20) than Typha (Figure 3.17), and slightly less P (Figure 3.34) than 

Typha (Figure 3.33).  Thus, despite increases in ammonia concentration, the N:P ratio in 

Juncus remained at a level more suitable for growth as evidenced in Figure 3.32.   

If N and P biomass sequestering differs between species, as shown here, a real 

potential for more precise ATW planting schemes should be investigated.  Especially in 

regards to the fact that high levels of ammonia tend to be limiting to plant biomass in 

these systems due to phytotoxic effect, those species which tend to accumulate lower 

amounts of N in tissue may play an important role in designing ATWs to handle high N-

loading rates.  Gusewell et al. (2003) state that species with higher N:P ratios would 

respond in the long term to additions of nitrogen, while species with lower N:P ratios 

would respond to additions of phosphorus, and that these predictions are based on the 
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work of Tilman’s (1982) resource ratio model.  In point of fact, it appears that in 

extremely high ammonia, P-limited systems, species exhibiting a higher N:P ratio 

(Juncus) would have higher biomass than species exhibiting a low N:P ratio.  Perhaps 

since N levels are so high in ATWs, those species which are able to exclude toxic 

ammonia-N from their tissues have a competitive advantage through stress tolerance.   

Additionally, tissue N concentrations must be compared with total N removed by 

each treatment condition.  Of interest is that, despite higher N loading in the 300 mgL-1 

treatment, less total N was removed due to lower biomass (Figure 3.23).  By finding the 

optimal N level or by amending the N:P level, managers could achieve removal of the 

highest amount of N over time.  Planting to achieve such function would require schemes 

that focus on stress tolerators such as Juncus in high ammonia concentrations or highly 

competitive species such as Typha under more ideal ammonia concentrations.  The 15:1 

N:P level accumulated the least total tissue nitrogen in the experiment; this finding is 

surprising considering this ratio is “optimal” and “co-limiting” based on the work of 

other researchers (Korselman and Meuleman 1996).  Total tissue N over the course of the 

experiment was highest in the 5:1 level, where, due to an overabundance of P, 

macrophytes should not have been able to utilize interstitial nitrogen; the fact that high 

tissue N resulted under these conditions needs additional study. 

 

CONCLUSIONS 

 Utility of the N:P ratio as a predictive tool in high-ammonia ATWs may be 

recommended under the conditions predicted by the model of Koerselman and Meuleman 

(1996).  Optimal predictive power is achieved by use of a larger system, here the 
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mesocosm, in situ the ATW itself; differences in the N:P ratios based on the species 

themselves can likewise be recommended based on the data presented, with trends in the 

data possibly indicating differences in N and P usage in Juncus and in Typha.   

The fact that differences in N and P uptake are based on species is not in 

agreement with other authors, and represents an important distinction in creating ATWs.  

Koerselman and Meuleman (1996) found significant differences in the N:P ratio alone, 

not in the respective differences in the masses of N and P in the biomass tissue.  

McJannet et al. (1995) likewise found statistically significant differences in N:P ratio 

alone, as opposed to differences in the masses of N and P within 41 wetland species.  

Other authors only supply information regarding the results of tests on the N:P ratio 

(versus the Redfield ratio or t-tests between species or sites) without providing 

information regarding the individual terms of N uptake and P uptake sequestered in the 

biomass (Gusewell et al. 2003, Romero et al. 2003, Svengsouk and Mitsch 2000, Tilman 

1996).  This is primarily due to a lack of gradient-based, controlled bench-scale analyses 

on the subject.  The aforementioned authors used primarily large-scale in situ testing 

strategies on actual functioning ATWs.  While large scale applications of the N:P ratio 

test may prove worthwhile in the long run in determining means to effect higher 

denitrification rates in ATWs, issues with species specific N and P loading rates should 

be addressed prior to planting treatment wetlands in experiments such as this.  

Certainly, these systems differ from natural systems with lower amounts of 

nitrogen, and the results of fertilizing them with levels on orders of magnitude higher 

than natural systems will elicit changes in vegetation dynamics atypical of most field 

studies.  At the same time, however, vegetation uptake of N and P must occur in both 
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types of systems for growth of plant material to occur.  Differences in the way ammonia-

N forces physiologic change in these species should be further addressed, and may 

provide additional insight as to how the N:P ratio may be used to as a management tool in 

ATWs to improve treatment efficiency.  
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CHAPTER FOUR 

SYNTHESIS 

 

 High ammonia concentrations are one of a number of potential limits to 

vegetation colonization of ATWs.  Additional limits include substrate stability, 

herbivory, water depth, and the potential effects of other phytotoxic compounds such as 

sulfates, nitrates, or soluble metals such as iron, copper, or aluminum (Surrency 1993, 

Cronk 1996, Clarke 1999).  However, the exceptionally high levels of nitrogen, 

especially those found in ammonia form, have been cited or inferred frequently as the 

most limiting phytotoxic element in ATWs (Wang 1991, Surrency 1993, Hammer and 

Knight 1994, Dijk and Eck 1995, Cronk 1996, Kadlec and Knight 1996, Verhoeven et al. 

1996, Hill et al. 1997, Bobbink et al. 1998, Humenik et al. 1999, Aerts and Bobbink 

1999, Clarke 1999, Clarke and Baldwin 2002).  Graded tests of ammonia toxicity have 

dominated the literature on this subject.  It is important to note, however, that nitrogen 

plays an important role as a plant nutrient as well, and therefore the fate of ammonia in 

ATWs may be of multiple paths (Mitsch and Gosselink 2003): it may be transformed to 

nitrates, nitrogen gases or bacterial biomass, it may be transformed to plant biomass, or it 

may exit the system as ammonia.  Experimental ratios of the percentage ammonia 

removed by the former processes are about 60% removal by bacterial action, and about 

40% removal by plant uptake (Howes et al. 1981, Gumbricht 1993, Bachand and Horne 

2000b). 

 Therefore, while it is important to achieve optimal spatial distribution of redoxic 

conditions for removal of nitrogen via the nitrification-denitrification pathway (and plant 
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biomass plays important roles in providing oxygen to the root zone and in providing a 

substrate upon which the reaction may occur), it is likewise important to maintain optimal 

growth of macrophytes in constructed wetlands.  In natural systems, plant growth tends to 

be limited by nitrogen, phosphorus, and to a lesser extent, potassium (Mitsch and 

Gosselink 1993, Taiz and Zeiger 2002).  Nitrogen is rarely limiting in ATWs, and 

ammonia concentrations ranging to 500 mgL-1 have been reported (Hammer 1992).  

Potassium is likewise seldom limiting due to its prevalence in mineral soils.  To increase 

biomass production, then, it would seem ideal to increase phosphorus concentrations to 

approach ideal co-limited natural ratios, such as those proposed by Redfield (1958) or 

Koerselman and Meuleman (1996).  This formed the basis of the exploration conducted 

in this thesis. 

 Although, in this study, differences in biomass production along an ammonia 

gradient with N:P ratio manipulation failed to produce reliably significant results, certain 

conclusions regarding the effects of high ammonia treatments and the N:P ratio on 

biomass may be made from the studies conducted.  In the initial study, where no 

modification of the N:P ratio was conducted, convex curves indicating the response of 

both mesocosms and individual species to increasing ammonia concentrations indicates 

that ammonia has a fertilization effect at low to moderate concentrations, and an 

inhibitory effect at high concentrations (Figures 2.3, 2.6, and 2.9).  The maximum of total 

biomass production for a mesocosm of Juncus and Typha planted together occurred at 

between 75 mgL-1 and 150 mgL-1, with the patterns of treatment effect of above- and 

below-ground biomass being similar.   Additions of phosphate to create co-limited 

systems did not result in a statistically significant change in biomass production due to 
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the low sample size of N:P ratio treatments within ammonia treatments (n=3), but served 

to illustrate a pattern of highest production at phytotoxic nitrogen concentrations at an 

N:P level of 15:1 (Figures 3.2, 3.5 and 3.8).  By planting these species in mesocosms, a 

better idea of field-level ATW functioning was achieved by noting effects of the system 

as a whole; an ammonia regime of less than 150 mgL-1 is suggested due to impaired 

system functioning above that level. 

 When applied to mesocosms of Typha and Juncus planted together, ammonia 

concentrations forced a shift in biomass towards dominance by Juncus at all treatment 

concentrations.  This indication seems novel; dry-matter production by Typha tends to be 

significantly higher than other species.  In fact, in most cases, Typha tends to be assumed 

as a highly competitive species (Grace and Wetzel 1981, Tilman 1987, Svengsouk and 

Mitsch 2000).  Despite the warnings of ATW planting literature not to plant 

monocultures of cattails (SCS 1991, Kadlec and Knight 1996), here Typha was seriously 

out-produced by Juncus at all treatment concentrations.  The fact that Juncus was less 

inhibited at higher concentrations is in accordance with other researchers (Hill et al. 

1997, Clarke 1999, Emery et al. 2001., Clarke and Baldwin 2002); the interactive effects 

of phytotoxic gradients of ammonia and N:P ratios on species planted in polyculture have 

yet to be tested in great detail.  Work on polycultures in treatment wetlands has focused 

on the effects of additions of single levels of N, P and co-limiting N and P, or on the 

effects of asymmetric-density plantings  on the dominance of Typha (Svengsouk and 

Mitsch 2000).  These findings may serve as a bench-level test of the trade-off between 

competitive performance and stress tolerance noted elsewhere (Grace 1981, Clarke 1999, 

Emery et al. 2001, Clarke and Baldwin 2002); in cases where stress tolerance is essential 
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in supporting biomass production, species which are highly competitive will perform 

poorly.  With regard to management issues, planting Juncus in ATWs known to have 

high nitrogen loading may be preferable for sustained biomass production. 

 Statistically significant results for biomass production or tissue nitrogen 

concentration were shown only in a few instances by altering the N:P ratio for either 

species.  There is some indication based on the pattern of biomass production that Juncus 

and Typha will both produce more biomass when N:P ratios are adjusted to co-limitation, 

especially under higher ammonia treatments (Figure 3.2).  However, there is also 

evidence that tissue nitrogen concentrations will decline if a 15:1 N:P ratio is used 

(Figure 3.14). 

 The fact that non-significant results were shown for alterations in the N:P ratio in 

these species is of special import due to the significance effect of species on both N 

uptake and P uptake.  Juncus stores less nitrogen in the tissue, and therefore has a higher 

N:P ratio at 12.0 than Typha at 9.1.  This is evident in the morphology of the two species 

as well; with a large rootstock, Typha stores nutrients in the tissue for times of resource 

shortage, whereas Juncus does not.  Although other authors have noted that differences in 

tissue N:P ratios do not indicate dominance, these studies have tended to occur in low-

nutrient environments.  In ATWs that are dominated by high nitrogen concentrations, 

those species which can sequester less N in the tissue may tolerate concentrations which 

other species which cannot.  The management implication in ATWs receiving high N 

inputs may be to plant species without large rootstocks (such as Juncus, with its smaller 

corm), thereby minimizing storage and accumulation of phytotoxic levels of tissue 

nitrogen. 
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 Typically, N:P ratios tend to differ between species, whereas N uptake and P 

uptake are dependant on differences in major phenotypic groups or ecological boundaries 

(McJannet et al. 1995, Gusewell et al. 2003).  In this study, N:P ratios did differ based on 

species.  Nitrogen and phosphorus uptake was dependant on species as well, despite the 

ecological and phenotypic type similarity of the species used.  Both species occur in 

shallow water as emergent wetland clonal graminoids.  In systems of high stress, perhaps 

it is the ability to exclude a phytotoxic chemical than to uptake a limiting one that 

sustains growth.  It would be of interest to test the N:P ratios and N and P uptake 

parameters of field-scale ATWs to determine whether this trend is consistent.  

 The N:P ratio has been used in the past to predict nutrient limitations as according 

to Koerselman and Meuleman (1996); N:P ratios over 16:1 indicate P limitation, and 

under 14:1 indicate N limitation.  In this case, most N:P ratios fell under 14:1, indicating 

N limitation.  The implications of this are twofold.  Because N:P ratios were below 14:1 

for most treatments, even in experimental abundance of N (at N:P ratios of 25:1), a 

problem with nitrogen uptake is to blame.  This physiologic response indicates an 

impairment of the mechanism for nitrogen uptake at phytotoxic N concentrations.  The 

down-regulation of ammonia-N uptake in this case is significant in that this is the first 

occasion in which it is noted; there is an upper limit to the amount of nitrogen able to be 

fixed in the biomass regardless of availability of other co-limiting nutrients.  Secondly, 

fertilization effects of phosphorus do not alleviate phytotoxic N regimes, because of 

limitations in the amount of nitrogen that can be moved through plant biomass.  This 

infers that the phytotoxicity of ammonia-N to plants is due to absolute concentrations and 

is not able to be manipulated by experimental methods, such as by increasing the 
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availability of phosphorus.  Implications of these findings are such that managers should 

limit the concentration of ammonia-N in the system at all times, and that potential 

phytotoxic effects are independent of concentrations of co-limiting nutrients. 

 The utility of the N:P ratio in determining nutrient limitations in ATWs is 

therefore suspect due to high nitrogen concentrations endemic to such systems.  

Koerselman and Meuleman (1996) and Gusewell et al. (2003) indicate potential 

limitations to the use of the N:P ratio in determining nutrient availability in systems due 

to differences in within-species N:P ratios.  Tables 3.6 and 3.12 show this species effect 

on tissue nitrogen concentration and tissue phosphorus concentration, respectively.  

Measured tissue nitrogen and tissue phosphorus concentrations corresponded primarily 

with ammonia concentration and species, and to a lesser extent the experimental N:P 

ratios.  Individual species N uptake and P uptake differ significantly, as do differences in 

the overall N:P ratio between species.  This implies that in field-scale research, biomass 

from a particular ATW may not be pooled to determine environmental limitations.  In 

management implications, however, the absolute concentration of N probably affects 

biomass to a greater degree than nutrient limitations. 

Tests of the ecological and environmental aspects of agricultural treatment wetlands are a 

new trend in biological research.  While appropriate engineering of the structural and 

fluid properties of ATWs is of great importance, a major “black box” in ATW design is 

the impact of plants to the system.  The effects of plants towards increasing nitrification 

rates (and subsequently denitrification rates due to coupled reactions) by increasing 

substrate oxidation are well known, but management decisions necessary to maintain and 

increase biomass production in species found in ATWs must be based on research as to 
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the limiting conditions imposed by chemical parameters of ATWs.  The adverse effects 

of high ammonia levels are but a single example of the difficulties imposed by extremely 

eutrophic settings; eutrophication on a fertilization level in natural systems tends to 

inhibit processes seen as environmentally valuable.  Field scale experimentation with the 

elevated ammonia concentrations typical of ATWs should be the next step in 

understanding the effects of high levels of nutrients on the biomass and functioning of 

wetland macrophytes.   
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APPENDIX I 

SAS CODE FOR CHAPTER II STATISTICAL ANALYSES 

quit; 
options ls=80 ps=50 center nodate pageno=1; 
title1 2002 data; 
data total; 
input column$ row$ ammonia$ species$ type$ biomass; 
datalines; 
A 1 300 TY a 24.2 
A 1 300 TY b 1.2 
A 1 300 TY tot 25.4 
A 1 300 JU a 157.4 
A 1 300 JU b 193.6 
A 1 300 JU tot 351 
A 1 300 tot tot 376.4 
A 1 300 tot b 194.8 
A 1 300 tot a 181.6 
A 2 150 TY a 96 
A 2 150 TY b 90 
A 2 150 TY tot 186 
A 2 150 JU a 154.2 
A 2 150 JU b 92.3 
A 2 150 JU tot 246.5 
A 2 150 tot tot 432.5 
A 2 150 tot b 182.3 
A 2 150 tot a 250.2 
A 3 225 TY a 105 
A 3 225 TY b 68.6 
A 3 225 TY tot 173.6 
A 3 225 JU a 137.3 
A 3 225 JU b 86.8 
A 3 225 JU tot 224.1 
A 3 225 tot tot 397.7 
A 3 225 tot b 155.4 
A 3 225 tot a 242.3 
A 4 0 TY a 8.3 
A 4 0 TY b 33.5 
A 4 0 TY tot 41.8 
A 4 0 JU a 78.5 
A 4 0 JU b 85.6 
A 4 0 JU tot 164.1 
A 4 0 tot tot 205.9 
A 4 0 tot b 119.1 
A 4 0 tot a 86.8 
A 5 75 TY a 131.2 
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A 5 75 TY b 156.9 
A 5 75 TY tot 288.1 
A 5 75 JU a 201 
A 5 75 JU b 120.7 
A 5 75 JU tot 321.7 
A 5 75 tot tot 609.8 
A 5 75 tot b 277.6 
A 5 75 tot a 332.2 
A 6 225 TY a 132.6 
A 6 225 TY b 96.6 
A 6 225 TY tot 229.2 
A 6 225 JU a 185.2 
A 6 225 JU b 228.3 
A 6 225 JU tot 413.5 
A 6 225 tot tot 642.7 
A 6 225 tot b 324.9 
A 6 225 tot a 317.8 
A 7 75 TY a 85.2 
A 7 75 TY b 85.9 
A 7 75 TY tot 171.1 
A 7 75 JU a 312.8 
A 7 75 JU b 199.9 
A 7 75 JU tot 512.7 
A 7 75 tot tot 683.8 
A 7 75 tot b 285.8 
A 7 75 tot a 398 
A 8 300 TY a 40.4 
A 8 300 TY b 9.4 
A 8 300 TY tot 49.8 
A 8 300 JU a 208.1 
A 8 300 JU b 143.1 
A 8 300 JU tot 351.2 
A 8 300 tot tot 401 
A 8 300 tot b 152.5 
A 8 300 tot a 248.5 
A 9 0 TY a 52.2 
A 9 0 TY b 88 
A 9 0 TY tot 140.2 
A 9 0 JU a 156 
A 9 0 JU b 139.3 
A 9 0 JU tot 295.3 
A 9 0 tot tot 435.5 
A 9 0 tot b 227.3 
A 9 0 tot a 208.2 
A 10 150 TY a 149.4 
A 10 150 TY b 152.8 
A 10 150 TY tot 302.2 
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A 10 150 JU a 214.3 
A 10 150 JU b 248.6 
A 10 150 JU tot 462.9 
A 10 150 tot tot 765.1 
A 10 150 tot b 401.4 
A 10 150 tot a 363.7 
B 1 150 TY a 152.8 
B 1 150 TY b 78.7 
B 1 150 TY tot 231.5 
B 1 150 JU a 126.4 
B 1 150 JU b 79.9 
B 1 150 JU tot 206.3 
B 1 150 tot tot 437.8 
B 1 150 tot b 158.6 
B 1 150 tot a 279.2 
B 2 75 TY a 65.1 
B 2 75 TY b 118.8 
B 2 75 TY tot 183.9 
B 2 75 JU a 212.5 
B 2 75 JU b 133.8 
B 2 75 JU tot 346.3 
B 2 75 tot tot 530.2 
B 2 75 tot b 252.6 
B 2 75 tot a 277.6 
B 3 0 TY a 16.4 
B 3 0 TY b 73.3 
B 3 0 TY tot 89.7 
B 3 0 JU a 79.9 
B 3 0 JU b 80.5 
B 3 0 JU tot 160.4 
B 3 0 tot tot 250.1 
B 3 0 tot b 153.8 
B 3 0 tot a 96.3 
B 4 300 TY a 75.5 
B 4 300 TY b 34.7 
B 4 300 TY tot 110.2 
B 4 300 JU a 113 
B 4 300 JU b 62.5 
B 4 300 JU tot 175.5 
B 4 300 tot tot 285.7 
B 4 300 tot b 97.2 
B 4 300 tot a 188.5 
B 5 225 TY a 91.9 
B 5 225 TY b 32.7 
B 5 225 TY tot 124.6 
B 5 225 JU a 179.2 
B 5 225 JU b 73.7 
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B 5 225 JU tot 252.9 
B 5 225 tot tot 377.5 
B 5 225 tot b 106.4 
B 5 225 tot a 271.1 
B 6 300 TY a 34.8 
B 6 300 TY b 16.9 
B 6 300 TY tot 51.7 
B 6 300 JU a 232.1 
B 6 300 JU b 92.2 
B 6 300 JU tot 324.3 
B 6 300 tot tot 376 
B 6 300 tot b 109.1 
B 6 300 tot a 266.9 
B 7 0 TY a 9.7 
B 7 0 TY b 73.5 
B 7 0 TY tot 83.2 
B 7 0 JU a 65.2 
B 7 0 JU b 91.5 
B 7 0 JU tot 156.7 
B 7 0 tot tot 239.9 
B 7 0 tot b 165 
B 7 0 tot a 74.9 
B 8 150 TY a 148 
B 8 150 TY b 126.3 
B 8 150 TY tot 274.3 
B 8 150 JU a 197.1 
B 8 150 JU b 107.3 
B 8 150 JU tot 304.4 
B 8 150 tot tot 578.7 
B 8 150 tot b 233.6 
B 8 150 tot a 345.1 
B 9 75 TY a 43.3 
B 9 75 TY b 76.8 
B 9 75 TY tot 120.1 
B 9 75 JU a 237.6 
B 9 75 JU b 131.7 
B 9 75 JU tot 369.3 
B 9 75 tot tot 489.4 
B 9 75 tot b 208.5 
B 9 75 tot a 280.9 
B 10 225 TY a 136.7 
B 10 225 TY b 55 
B 10 225 TY tot 191.7 
B 10 225 JU a 148.4 
B 10 225 JU b 90.2 
B 10 225 JU tot 238.6 
B 10 225 tot tot 430.3 
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B 10 225 tot b 145.2 
B 10 225 tot a 285.1 
C 1 75 TY a 138.1 
C 1 75 TY b 164.5 
C 1 75 TY tot 302.6 
C 1 75 JU a 122.6 
C 1 75 JU b 46.9 
C 1 75 JU tot 169.5 
C 1 75 tot tot 472.1 
C 1 75 tot b 211.4 
C 1 75 tot a 260.7 
C 2 300 TY a 16.8 
C 2 300 TY b 9.8 
C 2 300 TY tot 26.6 
C 2 300 JU a 178.2 
C 2 300 JU b 66.4 
C 2 300 JU tot 244.6 
C 2 300 tot tot 271.2 
C 2 300 tot b 76.2 
C 2 300 tot a 195 
C 3 150 TY a 101.4 
C 3 150 TY b 106.1 
C 3 150 TY tot 207.5 
C 3 150 JU a 185.2 
C 3 150 JU b 62 
C 3 150 JU tot 247.2 
C 3 150 tot tot 454.7 
C 3 150 tot b 168.1 
C 3 150 tot a 286.6 
C 4 225 TY a 107.7 
C 4 225 TY b 41 
C 4 225 TY tot 148.7 
C 4 225 JU a 182.1 
C 4 225 JU b 65.6 
C 4 225 JU tot 247.7 
C 4 225 tot tot 396.4 
C 4 225 tot b 106.6 
C 4 225 tot a 289.8 
C 5 0 TY a 4.1 
C 5 0 TY b 21.5 
C 5 0 TY tot 25.6 
C 5 0 JU a 75.5 
C 5 0 JU b 70 
C 5 0 JU tot 145.5 
C 5 0 tot tot 171.1 
C 5 0 tot b 91.5 
C 5 0 tot a 79.6 
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C 6 75 TY a 81.6 
C 6 75 TY b 89.2 
C 6 75 TY tot 170.8 
C 6 75 JU a 259 
C 6 75 JU b 123.8 
C 6 75 JU tot 382.8 
C 6 75 tot tot 553.6 
C 6 75 tot b 213 
C 6 75 tot a 340.6 
C 7 150 TY a 98.1 
C 7 150 TY b 61 
C 7 150 TY tot 159.1 
C 7 150 JU a 215.9 
C 7 150 JU b 102.4 
C 7 150 JU tot 318.3 
C 7 150 tot tot 477.4 
C 7 150 tot b 163.4 
C 7 150 tot a 314 
C 8 225 TY a 80.4 
C 8 225 TY b 53.8 
C 8 225 TY tot 134.2 
C 8 225 JU a 190 
C 8 225 JU b 81.2 
C 8 225 JU tot 271.2 
C 8 225 tot tot 405.4 
C 8 225 tot b 135 
C 8 225 tot a 270.4 
C 9 300 TY a 25.8 
C 9 300 TY b 69.3 
C 9 300 TY tot 95.1 
C 9 300 JU a 166.7 
C 9 300 JU b 6.9 
C 9 300 JU tot 173.6 
C 9 300 tot tot 268.7 
C 9 300 tot b 76.2 
C 9 300 tot a 192.5 
C 10 0 TY a 29 
C 10 0 TY b 94.7 
C 10 0 TY tot 123.7 
C 10 0 JU a 62.7 
C 10 0 JU b 75.4 
C 10 0 JU tot 138.1 
C 10 0 tot tot 261.8 
C 10 0 tot b 170.1 
C 10 0 tot a 91.7 
D 1 225 TY a 41.8 
D 1 225 TY b 9.3 
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D 1 225 TY tot 51.1 
D 1 225 JU a 159.9 
D 1 225 JU b 55.4 
D 1 225 JU tot 215.3 
D 1 225 tot tot 266.4 
D 1 225 tot b 64.7 
D 1 225 tot a 201.7 
D 2 0 TY a 21.1 
D 2 0 TY b 21.7 
D 2 0 TY tot 42.8 
D 2 0 JU a 63.9 
D 2 0 JU b 74.8 
D 2 0 JU tot 138.7 
D 2 0 tot tot 181.5 
D 2 0 tot b 96.5 
D 2 0 tot a 85 
D 3 75 TY a 52.5 
D 3 75 TY b 59.5 
D 3 75 TY tot 112 
D 3 75 JU a 224.5 
D 3 75 JU b 64.4 
D 3 75 JU tot 288.9 
D 3 75 tot tot 400.9 
D 3 75 tot b 123.9 
D 3 75 tot a 277 
D 4 150 TY a 106 
D 4 150 TY b 91.7 
D 4 150 TY tot 197.7 
D 4 150 JU a 137.4 
D 4 150 JU b 95.9 
D 4 150 JU tot 233.3 
D 4 150 tot tot 431 
D 4 150 tot b 187.6 
D 4 150 tot a 243.4 
D 5 300 TY a 6.6 
D 5 300 TY b 1.2 
D 5 300 TY tot 7.8 
D 5 300 JU a 201.2 
D 5 300 JU b 82.7 
D 5 300 JU tot 283.9 
D 5 300 tot tot 291.7 
D 5 300 tot b 83.9 
D 5 300 tot a 207.8 
D 6 150 TY a 113 
D 6 150 TY b 112.5 
D 6 150 TY tot 225.5 
D 6 150 JU a 120.9 
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D 6 150 JU b 100.3 
D 6 150 JU tot 221.2 
D 6 150 tot tot 446.7 
D 6 150 tot b 212.8 
D 6 150 tot a 233.9 
D 7 300 TY a 16.9 
D 7 300 TY b 5.2 
D 7 300 TY tot 22.1 
D 7 300 JU a 185.9 
D 7 300 JU b 83.7 
D 7 300 JU tot 269.6 
D 7 300 tot tot 291.7 
D 7 300 tot b 88.9 
D 7 300 tot a 202.8 
D 8 0 TY a 32.3 
D 8 0 TY b 34.7 
D 8 0 TY tot 67 
D 8 0 JU a 30.1 
D 8 0 JU b 41.7 
D 8 0 JU tot 71.8 
D 8 0 tot tot 138.8 
D 8 0 tot b 76.4 
D 8 0 tot a 62.4 
D 9 225 TY a 76.7 
D 9 225 TY b 49.1 
D 9 225 TY tot 125.8 
D 9 225 JU a 189.2 
D 9 225 JU b 65.3 
D 9 225 JU tot 254.5 
D 9 225 tot tot 380.3 
D 9 225 tot b 114.4 
D 9 225 tot a 265.9 
D 10 75 TY a 6.8 
D 10 75 TY b 5.3 
D 10 75 TY tot 12.1 
D 10 75 JU a 296.8 
D 10 75 JU b 197.9 
D 10 75 JU tot 494.7 
D 10 75 tot tot 506.8 
D 10 75 tot b 203.2 
D 10 75 tot a 303.6 
E 1 0 TY a 10 
E 1 0 TY b 38.9 
E 1 0 TY tot 48.9 
E 1 0 JU a 63.4 
E 1 0 JU b 83.3 
E 1 0 JU tot 146.7 
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E 1 0 tot tot 195.6 
E 1 0 tot b 122.2 
E 1 0 tot a 73.4 
E 2 225 TY a 0.3 
E 2 225 TY b 2.6 
E 2 225 TY tot 2.9 
E 2 225 JU a 224.1 
E 2 225 JU b 95.2 
E 2 225 JU tot 319.3 
E 2 225 tot tot 322.2 
E 2 225 tot b 97.8 
E 2 225 tot a 224.4 
E 3 300 TY a 40.5 
E 3 300 TY b 28.9 
E 3 300 TY tot 69.4 
E 3 300 JU a 172.1 
E 3 300 JU b 131.4 
E 3 300 JU tot 303.5 
E 3 300 tot tot 372.9 
E 3 300 tot b 160.3 
E 3 300 tot a 212.6 
E 4 75 TY a 21.9 
E 4 75 TY b 15.8 
E 4 75 TY tot 37.7 
E 4 75 JU a 274 
E 4 75 JU b 41.5 
E 4 75 JU tot 315.5 
E 4 75 tot tot 353.2 
E 4 75 tot b 57.3 
E 4 75 tot a 295.9 
E 5 150 TY a 125.4 
E 5 150 TY b 136.7 
E 5 150 TY tot 262.1 
E 5 150 JU a 104.7 
E 5 150 JU b 39.7 
E 5 150 JU tot 144.4 
E 5 150 tot tot 406.5 
E 5 150 tot b 176.4 
E 5 150 tot a 230.1 
E 6 0 TY a 18.8 
E 6 0 TY b 126.9 
E 6 0 TY tot 145.7 
E 6 0 JU a 32.2 
E 6 0 JU b 36.2 
E 6 0 JU tot 68.4 
E 6 0 tot tot 214.1 
E 6 0 tot b 163.1 
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E 6 0 tot a 51 
E 7 225 TY a 35.4 
E 7 225 TY b 18.1 
E 7 225 TY tot 53.5 
E 7 225 JU a 240.1 
E 7 225 JU b 120.3 
E 7 225 JU tot 360.4 
E 7 225 tot tot 413.9 
E 7 225 tot b 138.4 
E 7 225 tot a 275.5 
E 8 75 TY a 161.8 
E 8 75 TY b 161.4 
E 8 75 TY tot 323.2 
E 8 75 JU a 89.8 
E 8 75 JU b 69.5 
E 8 75 JU tot 159.3 
E 8 75 tot tot 482.5 
E 8 75 tot b 230.9 
E 8 75 tot a 251.6 
E 9 150 TY a 70.5 
E 9 150 TY b 111.9 
E 9 150 TY tot 182.4 
E 9 150 JU a 147.2 
E 9 150 JU b 47.9 
E 9 150 JU tot 195.1 
E 9 150 tot tot 377.5 
E 9 150 tot b 159.8 
E 9 150 tot a 217.7 
E 10 300 TY a 24.6 
E 10 300 TY b 3.3 
E 10 300 TY tot 27.9 
E 10 300 JU a 101.8 
E 10 300 JU b 123.1 
E 10 300 JU tot 224.9 
E 10 300 tot tot 252.8 
E 10 300 tot b 126.4 
E 10 300 tot a 126.4 
run; 
title2 biomass ANOVAs in 2002; 
title3 total biomass for both species in 2002 ANOVA; 
data total_biomass; 
set total; 
if species="tot" then delete; 
if type="a" then delete; 
if type="b" then delete; 
run; 
proc mixed data=total_biomass; 
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class ammonia column species; 
model biomass=ammonia|species column/ddfm=kr outp=resids; 
*lsmeans ammonia|species / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_biomass normal plot; 
var biomass; 
run; 
  *test shows a Shapiro-Wilk's Test (as S-W test 
from now on) 
  of 0.97, indicating normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
***********************************************************
******************************; 
title3 aboveground biomass for both species in 2002 ANOVA; 
data total_above; 
set total; 
if species="tot" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=total_above; 
class ammonia column species; 
model biomass=ammonia|species column/ddfm=kr outp=resids; 
*lsmeans ammonia|species / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_above normal plot; 
var biomass; 
run; 
  *test shows a S-W test of 0.96, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
***********************************************************
******************************; 
title3 belowground biomass for both species in 2002 ANOVA; 
data total_below; 
set total; 
if species="tot" then delete; 
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if type="tot" then delete; 
if type="a" then delete; 
run; 
proc mixed data=total_below; 
class ammonia column species; 
model biomass=ammonia|species column/ddfm=kr outp=resids; 
lsmeans ammonia|species / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_below normal plot; 
var biomass; 
run; 
  *test shows a S-W test of 0.96, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
***********************************************************
******************************; 
title3 total biomass for TYPHA in 2002 ANOVA; 
data typha_total; 
set total; 
if species="tot" then delete; 
if species="JU" then delete; 
if type="b" then delete; 
if type="a" then delete; 
run; 
proc mixed data=typha_total; 
class ammonia column; 
model biomass=ammonia column/ddfm=kr outp=resids; 
*lsmeans ammonia / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_total normal plot; 
var biomass; 
run; 
  *test shows a S-W test of 0.94, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
***********************************************************
******************************; 
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title3 aboveground biomass for TYPHA in 2002 ANOVA; 
data typha_above; 
set total; 
if species="tot" then delete; 
if species="JU" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=typha_above; 
class ammonia column; 
model biomass=ammonia column/ddfm=kr outp=resids; 
*lsmeans ammonia / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_above normal plot; 
var biomass; 
run; 
  *test shows a S-W test of 0.92, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
***********************************************************
******************************; 
title3 belowground biomass for TYPHA in 2002 ANOVA; 
data typha_below; 
set total; 
if species="tot" then delete; 
if species="JU" then delete; 
if type="tot" then delete; 
if type="a" then delete; 
run; 
proc mixed data=typha_below; 
class ammonia column; 
model biomass=ammonia column/ddfm=kr outp=resids; 
*lsmeans ammonia / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_below normal plot; 
var biomass; 
run; 
  *test shows a S-W test of 0.94, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
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quit; 
  *shows decent and acceptable homogeneity of 
resids; 
***********************************************************
******************************; 
title3 total biomass for JUNCUS in 2002 ANOVA; 
data juncus_total; 
set total; 
if species="tot" then delete; 
if species="TY" then delete; 
if type="b" then delete; 
if type="a" then delete; 
run;proc mixed data=juncus_total; 
class ammonia column; 
model biomass=ammonia column/ddfm=kr outp=resids; 
*lsmeans ammonia / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_total normal plot; 
var biomass; 
run; 
  *test shows a S-W test of 0.97, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
***********************************************************
******************************; 
title3 aboveground biomass for JUNCUS in 2002 ANOVA; 
data juncus_above; 
set total; 
if species="tot" then delete; 
if species="TY" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=juncus_above; 
class ammonia column; 
model biomass=ammonia column/ddfm=kr outp=resids; 
*lsmeans ammonia / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_above normal plot; 
var biomass; 
run; 
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  *test shows a S-W test of 0.98, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
***********************************************************
******************************; 
title3 belowground biomass for JUNCUS in 2002 ANOVA; 
data juncus_below; 
set total; 
if species="tot" then delete; 
if species="TY" then delete; 
if type="tot" then delete; 
if type="a" then delete; 
run;proc mixed data=juncus_below; 
class ammonia column; 
model biomass=ammonia column/ddfm=kr outp=resids; 
*lsmeans ammonia / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_below normal plot; 
var biomass; 
run; 
  *test shows a S-W test of 0.96, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
 
 
***********************************************************
********************** 
Here ends the biomass ANOVA 
series............................................... 
***********************************************************
*********************; 
 
 
title2 root-to-shoot ratio ANOVAs in 2002; 
data rs_ratio; 
input column$ row$ ammonia$ species$ r_s; 
log_r_s=log(r_s); 
datalines; 
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A 4 0 t 4.036144578 
A 9 0 t 1.685823755 
B 3 0 t 4.469512195 
B 7 0 t 7.577319588 
C 5 0 t 5.243902439 
C 10 0 t 3.265517241 
D 2 0 t 1.028436019 
D 8 0 t 1.074303406 
E 1 0 t 3.89 
E 6 0 t 6.75 
A 5 75 t 1.195884146 
A 7 75 t 1.008215962 
B 2 75 t 1.824884793 
B 9 75 t 1.773672055 
C 1 75 t 1.191165822 
C 6 75 t 1.093137255 
D 3 75 t 1.133333333 
D 10 75 t 0.779411765 
E 4 75 t 0.721461187 
E 8 75 t 0.997527812 
A 2 150 t 0.9375 
A 10 150 t 1.022757697 
B 1 150 t 0.515052356 
B 8 150 t 0.853378378 
C 3 150 t 1.046351085 
C 7 150 t 0.621814475 
D 4 150 t 0.86509434 
D 6 150 t 0.995575221 
E 5 150 t 1.090111643 
E 9 150 t 1.587234043 
A 3 225 t 0.653333333 
A 6 225 t 0.728506787 
B 5 225 t 0.355821545 
B 10 225 t 0.402340892 
C 4 225 t 0.380687094 
C 8 225 t 0.669154229 
D 1 225 t 0.222488038 
D 9 225 t 0.640156454 
E 2 225 t 7.789095267 
E 7 225 t 0.511299435 
A 1 300 t 0.049586777 
A 8 300 t 0.232673267 
B 4 300 t 0.459602649 
B 6 300 t 0.485632184 
C 2 300 t 0.583333333 
C 9 300 t 2.686046512 
D 5 300 t 0.181818182 
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D 7 300 t 0.307692308 
E 3 300 t 0.713580247 
E 10 300 t 0.134146341 
A 4 0 j 1.09044586 
A 9 0 j 0.892948718 
B 3 0 j 1.007509387 
B 7 0 j 1.403374233 
C 5 0 j 0.927152318 
C 10 0 j 1.202551834 
D 2 0 j 1.17057903 
D 8 0 j 1.38538206 
E 1 0 j 1.313880126 
E 6 0 j 1.124223602 
A 5 75 j 0.600497512 
A 7 75 j 0.639066496 
B 2 75 j 0.629647059 
B 9 75 j 0.554292929 
C 1 75 j 0.382544861 
C 6 75 j 0.477992278 
D 3 75 j 0.286859688 
D 10 75 j 0.666778976 
E 4 75 j 0.151459854 
E 8 75 j 0.773942094 
A 2 150 j 0.598573281 
A 10 150 j 1.160055996 
B 1 150 j 0.632120253 
B 8 150 j 0.544393709 
C 3 150 j 0.334773218 
C 7 150 j 0.474293654 
D 4 150 j 0.697962154 
D 6 150 j 0.829611249 
E 5 150 j 0.379178606 
E 9 150 j 0.325407609 
A 3 225 j 0.63219228 
A 6 225 j 1.232721382 
B 5 225 j 0.411272321 
B 10 225 j 0.607816712 
C 4 225 j 0.360241625 
C 8 225 j 0.427368421 
D 1 225 j 0.346466542 
D 9 225 j 0.345137421 
E 2 225 j 0.424810353 
E 7 225 j 0.501041233 
A 1 300 j 1.229987294 
A 8 300 j 0.687650168 
B 4 300 j 0.553097345 
B 6 300 j 0.397242568 
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C 2 300 j 0.372615039 
C 9 300 j 0.041391722 
D 5 300 j 0.411033797 
D 7 300 j 0.450242066 
E 3 300 j 0.763509587 
E 10 300 j 1.209233792 
run; 
title3 root-to-shoot ratios for mesocosms in 2002 ANOVA; 
proc mixed data=rs_ratio; 
class ammonia column species; 
model log_r_s=ammonia|species column / ddfm=kr outp=resids; 
*lsmeans ammonia|species / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=rs_ratio normal plot; 
where species='t'; 
var log_r_s; 
run; 
  *test shows a S-W test of 0.97, indicating 
acceptable normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogenity of resids 
after log-transform; 
***********************************************************
******************************; 
title3 root-to-shoot ratios for TYPHA in 2002 ANOVA; 
proc mixed data=rs_ratio; 
where species='t'; 
class ammonia column; 
model log_r_s=ammonia column/ ddfm=kr outp=resids; 
*lsmeans ammonia / pdiff adjust=tukey; 
run;  
title4 checks for normality; 
proc univariate data=rs_ratio normal plot; 
where species='t'; 
var log_r_s; 
run; 
  *test shows a S-W test of 0.97, indicating 
acceptable normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
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***********************************************************
******************************; 
title3 root-to-shoot ratio for JUNCUS in 2002 ANOVA; 
proc mixed data=rs_ratio; 
where species='j'; 
class ammonia column; 
model r_s=ammonia column/ ddfm=kr outp=resids; 
*lsmeans ammonia / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=rs_ratio normal plot; 
where species='j'; 
var r_s; 
run; 
  *test shows a S-W test of 0.93, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
quit;  
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APPENDIX II 

SAS CODE FOR 2003 EXPERIMENT  

quit; 
options ls=80 ps=50 center nodate pageno=1; 
title1 2003 data; 
data total; 
input column$ row$ ammonia$ n_p$ species$ type$ biomass 
n_conc p_conc; 
log_biomass=log(biomass); 
log_log_biomass=log(log_biomass); 
log_n_conc=log(n_conc); 
log_p_conc=log(p_conc); 
n_mass=n_conc*biomass; 
Datalines; 
A 1 300 5 ju a 24.962 1.8905865 130.4 
A 1 300 5 ju b 26.082 1.8905865 48.8 
A 1 300 5 ju tot 25.522 1.8905865 179.2 
A 1 300 5 tot a 25.4485 2.9186226 160.7 
A 1 300 5 tot b 26.165 2.9186226 59.5 
A 1 300 5 tot tot 25.80675 2.9186226 220.2 
A 1 300 5 ty a 25.935 3.946658 30.3 
A 1 300 5 ty b 26.248 3.946658 10.7 
A 1 300 5 ty tot 26.0915 3.946658 41 
A 2 300 15 ju a 26.307 2.0807142 150.8 
A 2 300 15 ju b 26.387 2.0807142 49.4 
A 2 300 15 ju tot 26.347 2.0807142 200.2 
A 2 300 15 tot a 28.3145 3.2900522 167.9 
A 2 300 15 tot b 27.8415 3.2900522 55.2 
A 2 300 15 tot tot 28.078 3.2900522 223.1 
A 2 300 15 ty a 30.322 4.4993902 17.1 
A 2 300 15 ty b 29.296 4.4993905 5.8 
A 2 300 15 ty tot 29.809 4.4993905 22.9 
A 3 300 25 ju a 24.308 1.6025775 162.7 
A 3 300 25 ju b 24.786 1.6025475 60.3 
A 3 300 25 ju tot 24.547 1.6027475 223 
A 3 300 25 tot a 26.2175 2.4452625 176.2 
A 3 300 25 tot b 26.156 2.4224525 66 
A 3 300 25 tot tot 26.18675 2.4222625 242.2 
A 3 300 25 ty a 28.127 3.23305 13.5 
A 3 300 25 ty b 27.526 3.423305 5.7 
A 3 300 25 ty tot 27.8265 3.2423305 19.2 
A 4 300 5 ju a 24.748 1.9672195 154.5 
A 4 300 5 ju b 24.82 1.9672195 41.9 
A 4 300 5 ju tot 24.784 1.9672195 196.4 
A 4 300 5 tot a 24.523 2.6243495 195.2 
A 4 300 5 tot b 24.3965 2.6243495 57.6 
A 4 300 5 tot tot 24.45975 2.6243495 252.8 
A 4 300 5 ty a 24.298 3.2814795 40.7 
A 4 300 5 ty b 23.973 3.2814795 15.7 
A 4 300 5 ty tot 24.1355 3.2814795 56.4 
A 5 300 15 ju a 24.256 1.9063435 147.3 
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A 5 300 15 ju b 25.073 1.9063435 65.3 
A 5 300 15 ju tot 24.6645 1.9063435 212.6 
A 5 300 15 tot a . . 168.4 
A 5 300 15 tot b . . 86 
A 5 300 15 tot tot . . 254.4 
A 5 300 15 ty a . . 21.1 
A 5 300 15 ty b . . 20.7 
A 5 300 15 ty tot . . 41.8 
A 6 300 25 ju a 22.976 3.0310325 140.8 
A 6 300 25 ju b 24.111 3.0310825 58.7 
A 6 300 25 ju tot 23.5435 3.0313825 199.5 
A 6 300 25 tot a 25.302 3.1684375 157.5 
A 6 300 25 tot b 26.969 3.1364375 65 
A 6 300 25 tot tot 26.1355 3.1684375 222.5 
A 6 300 25 ty a 27.628 3.2423305 16.7 
A 6 300 25 ty b 29.827 3.2423305 6.3 
A 6 300 25 ty tot 28.7275 3.2423305 23 
A 7 300 5 ju a 25.741 2.5417935 111.7 
A 7 300 5 ju b 24.698 2.5417935 44.3 
A 7 300 5 ju tot 25.2195 2.5417935 156 
A 7 300 5 tot a 27.7335 4.3266215 133.3 
A 7 300 5 tot b 27.247 4.3266215 46.2 
A 7 300 5 tot tot 27.49025 4.3266375 179.5 
A 7 300 5 ty a 29.726 6.111449 21.6 
A 7 300 5 ty b 29.796 6.1114495 1.9 
A 7 300 5 ty tot 29.761 6.1114425 23.5 
A 8 300 15 ju a 22.977 3.2256225 128.2 
A 8 300 15 ju b 21.442 3.2256722 53.4 
A 8 300 15 ju tot 22.2095 3.2256725 181.6 
A 8 300 15 tot a 24.748 2.556412 160.9 
A 8 300 15 tot b . . 70 
A 8 300 15 tot tot . . 230.9 
A 8 300 15 ty a 26.519 1.8871575 32.7 
A 8 300 15 ty b . . 16.6 
A 8 300 15 ty tot 13.2595 0.9435587 49.3 
A 9 300 25 ju a . . 135.5 
A 9 300 25 ju b . . 57.7 
A 9 300 25 ju tot . . 193.2 
A 9 300 25 tot a . . 158.8 
A 9 300 25 tot b . . 62.7 
A 9 300 25 tot tot . . 221.5 
A 9 300 25 ty a 27.583 3.0560635 23.3 
A 9 300 25 ty b 25.947 3.0560637 5 
A 9 300 25 ty tot 26.765 3.0560637 28.3 
B 1 225 5 ju a 24.034 3.4510027 176 
B 1 225 5 ju b 25.457 3.4510027 49.2 
B 1 225 5 ju tot 24.7455 3.4510027 225.2 
B 1 225 5 tot a 27.3305 3.6756203 207.1 
B 1 225 5 tot b 27.6575 3.6756203 60.1 
B 1 225 5 tot tot 27.494 3.6756203 267.2 
B 1 225 5 ty a 30.627 3.900238 31.1 
B 1 225 5 ty b 29.858 3.900238 10.9 
B 1 225 5 ty tot 30.2425 3.900238 42 
B 2 225 15 ju a 25.206 1.912815 173.1 
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B 2 225 15 ju b 24.367 1.9128145 56.9 
B 2 225 15 ju tot 24.7865 1.9128145 230 
B 2 225 15 tot a 25.2395 2.489521 221 
B 2 225 15 tot b 24.687 2.489521 76.5 
B 2 225 15 tot tot 24.96325 2.489521 297.5 
B 2 225 15 ty a 25.273 3.0662225 47.9 
B 2 225 15 ty b 25.007 3.0662225 19.6 
B 2 225 15 ty tot 25.14 3.0662725 67.5 
B 3 225 25 ju a 23.732 1.485091 147.2 
B 3 225 25 ju b 23.294 1.485091 40.6 
B 3 225 25 ju tot 23.513 1.485091 187.8 
B 3 225 25 tot a 25.5495 1.413439 210.5 
B 3 225 25 tot b 26.0535 1.413439 56.6 
B 3 225 25 tot tot 25.8015 1.413439 267.1 
B 3 225 25 ty a 27.367 1.341787 63.3 
B 3 225 25 ty b 28.813 1.341787 16 
B 3 225 25 ty tot 28.09 1.341787 79.3 
B 4 225 5 ju a 22.277 3.066412 148.2 
B 4 225 5 ju b 23.907 3.066241 54.2 
B 4 225 5 ju tot 23.092 3.066241 202.4 
B 4 225 5 tot a 23.569 3.902149 204.4 
B 4 225 5 tot b 24.4045 3.902149 69.9 
B 4 225 5 tot tot 23.98675 3.902149 274.3 
B 4 225 5 ty a 24.861 4.738056 56.2 
B 4 225 5 ty b 24.902 4.7380565 15.7 
B 4 225 5 ty tot 24.8815 4.7380565 71.9 
B 5 225 15 ju a 23.643 2.2152815 154.5 
B 5 225 15 ju b 23.84 2.2152815 68.5 
B 5 225 15 ju tot 23.7415 2.2152815 223 
B 5 225 15 tot a . . 199.3 
B 5 225 15 tot b . . 90 
B 5 225 15 tot tot . . 289.3 
B 5 225 15 ty a . . 44.8 
B 5 225 15 ty b . . 21.5 
B 5 225 15 ty tot . . 66.3 
B 6 225 25 ju a 21.292 1.940391 171.7 
B 6 225 25 ju b 20.466 1.9403915 61.9 
B 6 225 25 ju tot 20.879 1.9403915 233.6 
B 6 225 25 tot a 21.9785 1.8030022 204.6 
B 6 225 25 tot b 20.9655 1.8030021 77.4 
B 6 225 25 tot tot 21.472 1.8030021 282 
B 6 225 25 ty a 22.665 1.665613 32.9 
B 6 225 25 ty b 21.465 1.665613 15.5 
B 6 225 25 ty tot 22.065 1.665613 48.4 
B 7 225 5 ju a . . 150.3 
B 7 225 5 ju b . . 58.4 
B 7 225 5 ju tot . . 208.7 
B 7 225 5 tot a . . 204.5 
B 7 225 5 tot b . . 79.6 
B 7 225 5 tot tot . . 284.1 
B 7 225 5 ty a 39.805 6.0588082 54.2 
B 7 225 5 ty b 43.098 6.0588082 21.2 
B 7 225 5 ty tot 41.4515 6.0588082 75.4 
B 8 225 15 ju a . . 165.2 
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B 8 225 15 ju b . . 79.6 
B 8 225 15 ju tot . . 244.8 
B 8 225 15 tot a . . 209 
B 8 225 15 tot b . . 94.4 
B 8 225 15 tot tot . . 303.4 
B 8 225 15 ty a 34.325 4.6163167 43.8 
B 8 225 15 ty b 36.341 4.6163167 14.8 
B 8 225 15 ty tot 35.333 4.6163167 58.6 
B 9 225 25 ju a 24.55 1.7548872 154.5 
B 9 225 25 ju b 24.146 1.7548872 85.6 
B 9 225 25 ju tot 24.348 1.7548872 240.1 
B 9 225 25 tot a 25.8425 2.4533627 174.8 
B 9 225 25 tot b 26.9565 2.4533627 96.3 
B 9 225 25 tot tot 26.3995 2.4533627 271.1 
B 9 225 25 ty a 27.135 3.1518382 20.3 
B 9 225 25 ty b 29.767 3.1518382 10.7 
B 9 225 25 ty tot 28.451 3.1518382 31 
C 1 150 5 ju a 19.791 2.6988897 181.3 
C 1 150 5 ju b 20.576 2.6988897 48.8 
C 1 150 5 ju tot 20.1835 2.6988897 230.1 
C 1 150 5 tot a 23.106 3.1970976 267.4 
C 1 150 5 tot b 26.5915 3.1970976 81.5 
C 1 150 5 tot tot 24.84875 3.1970976 348.9 
C 1 150 5 ty a 26.421 3.6953055 86.1 
C 1 150 5 ty b 32.607 3.6953055 32.7 
C 1 150 5 ty tot 29.514 3.6953055 118.8 
C 2 150 15 ju a 10.747 2.127868 177.9 
C 2 150 15 ju b 11.452 2.1278682 48.1 
C 2 150 15 ju tot 11.0995 2.1278682 226 
C 2 150 15 tot a 16.731 2.0677111 251 
C 2 150 15 tot b 16.553 2.0677111 84.7 
C 2 150 15 tot tot 16.642 2.0677111 335.7 
C 2 150 15 ty a 22.715 2.007554 73.1 
C 2 150 15 ty b 21.654 2.007554 36.6 
C 2 150 15 ty tot 22.1845 2.007554 109.7 
C 3 150 25 ju a 27.115 1.568104 190.1 
C 3 150 25 ju b 27.065 1.5681042 53.8 
C 3 150 25 ju tot 27.09 1.5681042 243.9 
C 3 150 25 tot a 24.027 1.5448716 261 
C 3 150 25 tot b 24.5085 1.5448716 85.7 
C 3 150 25 tot tot 24.26775 1.5448716 346.7 
C 3 150 25 ty a 20.939 1.521639 70.9 
C 3 150 25 ty b 21.952 1.521639 31.9 
C 3 150 25 ty tot 21.4455 1.521639 102.8 
C 4 150 5 ju a 22.208 2.303088 154.5 
C 4 150 5 ju b 23.251 2.3030887 58.4 
C 4 150 5 ju tot 22.7295 2.3030887 212.9 
C 4 150 5 tot a . . 232.7 
C 4 150 5 tot b . . 113.2 
C 4 150 5 tot tot . . 345.9 
C 4 150 5 ty a . . 78.2 
C 4 150 5 ty b . . 54.8 
C 4 150 5 ty tot . . 133 
C 5 150 15 ju a . . 172.2 
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C 5 150 15 ju b . . 49.0 
C 5 150 15 ju tot . . 221.2 
C 5 150 15 tot a . . 216.4 
C 5 150 15 tot b . . 72.9 
C 5 150 15 tot tot . . 289.3 
C 5 150 15 ty a 35.744 2.1147337 44.2 
C 5 150 15 ty b 39.911 2.1147337 23.9 
C 5 150 15 ty tot 37.8275 2.1147337 68.1 
C 6 150 25 ju a 21.557 1.8419985 188.7 
C 6 150 25 ju b 21.346 1.8419985 60.3 
C 6 150 25 ju tot 21.4515 1.8419985 249 
C 6 150 25 tot a . . 253.9 
C 6 150 25 tot b . . 103 
C 6 150 25 tot tot . . 356.9 
C 6 150 25 ty a . . 65.2 
C 6 150 25 ty b . . 42.7 
C 6 150 25 ty tot . . 107.9 
C 7 150 5 ju a 23.714 2.372604 193.2 
C 7 150 5 ju b 23.485 2.3726042 51.2 
C 7 150 5 ju tot 23.5995 2.3726045 244.4 
C 7 150 5 tot a 20.354 2.1007837 245.4 
C 7 150 5 tot b 20.3445 2.1007843 74.8 
C 7 150 5 tot tot 20.34925 2.1007843 320.2 
C 7 150 5 ty a 16.994 1.8289645 52.2 
C 7 150 5 ty b 17.204 1.8289645 23.6 
C 7 150 5 ty tot 17.099 1.8289645 75.8 
C 8 150 15 ju a 23.191 1.842798 213.9 
C 8 150 15 ju b 22.878 1.842798 57.5 
C 8 150 15 ju tot 23.0345 1.842798 271.4 
C 8 150 15 tot a 21.0545 1.9610547 277.5 
C 8 150 15 tot b 22.226 1.9610543 90.3 
C 8 150 15 tot tot 21.64025 1.9610543 367.8 
C 8 150 15 ty a 18.918 2.0793107 63.6 
C 8 150 15 ty b 21.574 2.0793107 32.8 
C 8 150 15 ty tot 20.246 2.0793107 96.4 
C 9 150 25 ju a 22.862 1.4387587 178.7 
C 9 150 25 ju b 22.737 1.4387587 66.3 
C 9 150 25 ju tot 22.7995 1.4387587 245 
C 9 150 25 tot a 19.5745 1.2497783 235 
C 9 150 25 tot b 20.487 1.2497783 97.6 
C 9 150 25 tot tot 20.03075 1.2497783 332.6 
C 9 150 25 ty a 16.287 1.060798 56.3 
C 9 150 25 ty b 18.237 1.060798 31.3 
C 9 150 25 ty tot 17.262 1.060798 87.6 
D 1 75 5 ju a 19.251 2.0141755 143.8 
D 1 75 5 ju b 19.787 2.0141755 44.7 
D 1 75 5 ju tot 19.519 2.0141755 188.5 
D 1 75 5 tot a 21.474 1.8410576 262.1 
D 1 75 5 tot b 21.797 1.8410576 115.4 
D 1 75 5 tot tot 21.6355 1.8410576 377.5 
D 1 75 5 ty a 23.697 1.6679397 118.3 
D 1 75 5 ty b 23.807 1.6679397 70.7 
D 1 75 5 ty tot 23.752 1.6679397 189 
D 2 75 15 ju a 15.123 1.9987757 174.7 
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D 2 75 15 ju b 14.433 1.9987757 67.1 
D 2 75 15 ju tot 14.778 1.9987757 241.8 
D 2 75 15 tot a 18.519 1.8620626 258.4 
D 2 75 15 tot b 18.669 1.8620626 130.1 
D 2 75 15 tot tot 18.594 1.8620626 388.5 
D 2 75 15 ty a 21.915 1.7253495 83.7 
D 2 75 15 ty b 22.905 1.7253495 63 
D 2 75 15 ty tot 22.41 1.7253495 146.7 
D 3 75 25 ju a 19.931 1.3594965 199.7 
D 3 75 25 ju b 19.613 1.3594965 75.6 
D 3 75 25 ju tot 19.772 1.3594965 275.3 
D 3 75 25 tot a 20.26 1.5885226 273.2 
D 3 75 25 tot b 19.581 1.5885226 128.8 
D 3 75 25 tot tot 19.9205 1.5885226 402 
D 3 75 25 ty a 20.589 1.817548 73.5 
D 3 75 25 ty b 19.549 1.817548 53.2 
D 3 75 25 ty tot 20.069 1.817548 126.7 
D 4 75 5 ju a . . 141.2 
D 4 75 5 ju b . . 73.2 
D 4 75 5 ju tot . . 214.4 
D 4 75 5 tot a . . 235.3 
D 4 75 5 tot b . . 144.3 
D 4 75 5 tot tot . . 379.6 
D 4 75 5 ty a 12.451 2.508661 94.1 
D 4 75 5 ty b 12.896 2.508661 71.1 
D 4 75 5 ty tot 12.6735 2.508661 165.2 
D 5 75 15 ju a 15.769 2.0187715 100.4 
D 5 75 15 ju b 15.376 2.0187715 66.4 
D 5 75 15 ju tot 15.5725 2.0187715 166.8 
D 5 75 15 tot a 14.22 1.6215755 181.5 
D 5 75 15 tot b 14.123 1.6215755 128.2 
D 5 75 15 tot tot 14.1715 1.6215755 309.7 
D 5 75 15 ty a 12.671 1.2243795 81.1 
D 5 75 15 ty b 12.87 1.2243795 61.8 
D 5 75 15 ty tot 12.7705 1.2243795 142.9 
D 6 75 25 ju a 12.864 1.8440585 159.1 
D 6 75 25 ju b 11.986 1.8440585 75.4 
D 6 75 25 ju tot 12.425 1.8440585 234.5 
D 6 75 25 tot a 14.8415 1.4130683 236 
D 6 75 25 tot b 13.914 1.4130683 118.6 
D 6 75 25 tot tot 14.37775 1.4130683 354.6 
D 6 75 25 ty a 16.819 0.9820785 76.9 
D 6 75 25 ty b 15.842 0.9820785 43.2 
D 6 75 25 ty tot 16.3305 0.9820785 120.1 
D 7 75 5 ju a 20.45 2.0483652 163.6 
D 7 75 5 ju b 19.042 2.0483652 65.8 
D 7 75 5 ju tot 19.746 2.0483652 229.4 
D 7 75 5 tot a . . 262 
D 7 75 5 tot b . . 129.5 
D 7 75 5 tot tot . . 391.5 
D 7 75 5 ty a . . 98.4 
D 7 75 5 ty b . . 63.7 
D 7 75 5 ty tot . . 162.1 
D 8 75 15 ju a 15.147 1.4438872 221.6 
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D 8 75 15 ju b 14.856 1.4438872 99.4 
D 8 75 15 ju tot 15.0015 1.4438872 321 
D 8 75 15 tot a 17.13 1.2500068 246.8 
D 8 75 15 tot b 16.1915 1.2500068 118.8 
D 8 75 15 tot tot 16.66075 1.2500068 365.6 
D 8 75 15 ty a 19.113 1.0561265 25.2 
D 8 75 15 ty b 17.527 1.0561265 19.4 
D 8 75 15 ty tot 18.32 1.0561265 44.6 
D 9 75 25 ju a 21.08 1.316284 164.4 
D 9 75 25 ju b 20.452 1.3162847 74.6 
D 9 75 25 ju tot 20.766 1.3162847 239 
D 9 75 25 tot a 24.529 1.2143286 244.3 
D 9 75 25 tot b 24.844 1.2143286 144 
D 9 75 25 tot tot 24.6865 1.2143286 388.3 
D 9 75 25 ty a 27.978 1.1123725 79.9 
D 9 75 25 ty b 29.236 1.1123725 69.4 
D 9 75 25 ty tot 28.607 1.1123725 149.3 
 
run; 
title2 biomass ANOVAs in 2003; 
title3 total biomass for both species in 2003 ANOVA; 
data total_biomass; 
set total; 
if species="tot" then delete; 
if type="a" then delete; 
if type="b" then delete; 
run; 
proc mixed data=total_biomass; 
class ammonia n_p species; 
model biomass=species|ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans species|ammonia|n_p / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_biomass normal plot; 
var biomass; 
run; 
  *test shows a Shapiro-Wilk's Test (as S-W test 
from now on) 
   of 0.97, indicating normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 aboveground biomass for both species in 2003 ANOVA; 
data total_above; 
set total; 
if species="tot" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=total_above; 
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class ammonia n_p species; 
model biomass=species|ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_above normal plot; 
var biomass; 
run; 
  *test shows a S-W test of 0.97, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 belowground biomass for both species in 2003 ANOVA; 
data total_below; 
set total; 
if species="tot" then delete; 
if type="a" then delete; 
if type="tot" then delete; 
run; 
proc mixed data=total_below; 
class ammonia n_p species; 
model biomass=species|ammonia|n_p /ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_below normal plot; 
var biomass; 
run; 
  *test shows a S-W test of 0.96, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 total biomass for TYPHA in 2003 ANOVA; 
data typha_total; 
set total; 
if species="tot" then delete; 
if species="ju" then delete; 
if type="a" then delete; 
if type="b" then delete; 
run; 
proc mixed data=typha_total; 
class ammonia n_p; 
model biomass=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
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run; 
title4 checks for normality; 
proc univariate data=typha_total normal plot; 
var biomass; 
run; 
  *test shows a S-W test of 0.97, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent homogeneity of resids; 
************************************************************
*****************************; 
title3 aboveground biomass for TYPHA in 2003 ANOVA; 
data typha_above; 
set total; 
if species="tot" then delete; 
if species="ju" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=typha_above; 
class ammonia n_p; 
model biomass=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_above normal plot; 
var biomass; 
run; 
  *test shows a S-W test of 0.98, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 belowground biomass for TYPHA in 2003 ANOVA; 
data typha_below; 
set total; 
if species="tot" then delete; 
if species="ju" then delete; 
if type="a" then delete; 
if type="tot" then delete; 
run; 
proc mixed data=typha_below; 
class ammonia n_p; 
model biomass=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_below normal plot; 
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var biomass; 
run; 
  *test shows a S-W test of 0.97, indicating decent 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 total biomass for JUNCUS in 2003 ANOVA; 
data juncus_total; 
set total; 
if species="tot" then delete; 
if species="ty" then delete; 
if type="a" then delete; 
if type="b" then delete; 
run; 
proc mixed data=juncus_total; 
class ammonia n_p; 
model biomass=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_total normal plot; 
var biomass; 
run; 
  *test shows a S-W test of 0.87, indicating 
normality, supported graphically; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 aboveground biomass for JUNCUS in 2003 ANOVA; 
data juncus_above; 
set total; 
if species="tot" then delete; 
if species="ty" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=juncus_above; 
class ammonia n_p; 
model biomass=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_above normal plot; 
var biomass; 
run; 
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  *test shows a S-W test of 0.88, indicating 
normality, supported graphically; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 belowground biomass for JUNCUS in 2003 ANOVA; 
data juncus_below; 
set total; 
if species="tot" then delete; 
if species="ty" then delete; 
if type="a" then delete; 
if type="tot" then delete; 
run; 
proc mixed data=juncus_below; 
class ammonia n_p; 
model biomass=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_below normal plot; 
var biomass; 
run; 
  *test shows a S-W test of 0.88, indicating 
normality, supported graphically; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
 
 
************************************************************
**************************** 
Here ends the biomass ANOVA 
series...................................................... 
************************************************************
***************************; 
 
 
title2 Tissue Nitrogen Concentration ANOVAs in 2003; 
title3 total n_conc for both species in 2003 ANOVA; 
data total_n_conc; 
set total; 
if species="tot" then delete; 
if type="a" then delete; 
if type="b" then delete; 
run; 
proc mixed data=total_n_conc; 
class ammonia n_p species; 
model n_conc=species|ammonia|n_p/ddfm=kr outp=resids; 
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*lsmeans species|ammonia|n_p / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_n_conc normal plot; 
var n_conc; 
run; 
  *test shows a Shapiro-Wilk's Test (as S-W test 
from now on) 
   of 0.88, indicating normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 aboveground n_conc for both species in 2003 ANOVA; 
data total_above; 
set total; 
if species="tot" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=total_above; 
class ammonia n_p species; 
model n_conc=species|ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_above normal plot; 
var n_conc; 
run; 
  *test shows a S-W test of 0.86, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 belowground n_conc for both species in 2003 ANOVA; 
data total_below; 
set total; 
if species="tot" then delete; 
if type="a" then delete; 
if type="tot" then delete; 
run; 
proc mixed data=total_below; 
class ammonia n_p species; 
model n_conc=species|ammonia|n_p /ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
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proc univariate data=total_below normal plot; 
var n_conc; 
run; 
  *test shows a S-W test of 0.86, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 total n_conc for TYPHA in 2003 ANOVA; 
data typha_total; 
set total; 
if species="tot" then delete; 
if species="ju" then delete; 
if type="a" then delete; 
if type="b" then delete; 
run; 
proc mixed data=typha_total; 
class ammonia n_p; 
model n_conc=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_total normal plot; 
var n_conc; 
run; 
  *test shows a S-W test of 0.91, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent homogeneity of resids; 
************************************************************
*****************************; 
title3 aboveground n_conc for TYPHA in 2003 ANOVA; 
data typha_above; 
set total; 
if species="tot" then delete; 
if species="ju" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=typha_above; 
class ammonia n_p; 
model n_conc=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_above normal plot; 
var n_conc; 
run; 
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  *test shows a S-W test of 0.91, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 belowground n_conc for TYPHA in 2003 ANOVA; 
data typha_below; 
set total; 
if species="tot" then delete; 
if species="ju" then delete; 
if type="a" then delete; 
if type="tot" then delete; 
run; 
proc mixed data=typha_below; 
class ammonia n_p; 
model n_conc=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_below normal plot; 
var n_conc; 
run; 
  *test shows a S-W test of 0.88, indicating decent 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 total n_conc for JUNCUS in 2003 ANOVA; 
data juncus_total; 
set total; 
if species="tot" then delete; 
if species="ty" then delete; 
if type="a" then delete; 
if type="b" then delete; 
run; 
proc mixed data=juncus_total; 
class ammonia n_p; 
model n_conc=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_total normal plot; 
var n_conc; 
run; 
  *test shows a S-W test of 0.91, indicating 
normality; 
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proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 aboveground n_conc for JUNCUS in 2003 ANOVA; 
data juncus_above; 
set total; 
if species="tot" then delete; 
if species="ty" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=juncus_above; 
class ammonia n_p; 
model n_conc=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_above normal plot; 
var n_conc; 
run; 
  *test shows a S-W test of 0.91, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 belowground n_conc for JUNCUS in 2003 ANOVA; 
data juncus_below; 
set total; 
if species="tot" then delete; 
if species="ty" then delete; 
if type="a" then delete; 
if type="tot" then delete; 
run; 
proc mixed data=juncus_below; 
class ammonia n_p; 
model n_conc=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_below normal plot; 
var n_conc; 
run; 
  *test shows a S-W test of 0.91, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
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quit; 
  *shows decent and acceptable homogeneity of 
resids; 
 
************************************************************
**************************** 
Here ends the tissue nitrogen concentration ANOVA 
series................................ 
************************************************************
***************************; 
 
title2 Tissue Mass Nitrogen ANOVAs in 2003; 
title3 total n_mass for both species in 2003 ANOVA; 
data total_n_mass; 
set total; 
if species="tot" then delete; 
if type="a" then delete; 
if type="b" then delete; 
run; 
proc mixed data=total_n_mass; 
class ammonia n_p species; 
model n_mass=species|ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans species|ammonia|n_p / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_n_mass normal plot; 
var n_mass; 
run; 
  *test shows a Shapiro-Wilk's Test (as S-W test 
from now on) 
   of 0.78, indicating normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 aboveground n_mass for both species in 2003 ANOVA; 
data total_above; 
set total; 
if species="tot" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=total_above; 
class ammonia n_p species; 
model n_mass=species|ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_above normal plot; 
var n_mass; 
run; 
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  *test shows a S-W test of 0.78, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 belowground n_mass for both species in 2003 ANOVA; 
data total_below; 
set total; 
if species="tot" then delete; 
if type="a" then delete; 
if type="tot" then delete; 
run; 
proc mixed data=total_below; 
class ammonia n_p species; 
model n_mass=species|ammonia|n_p /ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_below normal plot; 
var n_mass; 
run; 
  *test shows a S-W test of 0.78, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 total n_mass for TYPHA in 2003 ANOVA; 
data typha_total; 
set total; 
if species="tot" then delete; 
if species="ju" then delete; 
if type="a" then delete; 
if type="b" then delete; 
run; 
proc mixed data=typha_total; 
class ammonia n_p; 
model n_mass=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_total normal plot; 
var n_mass; 
run; 
  *test shows a S-W test of 0.86, indicating 
normality; 
proc plot data=resids vpercent=50; 
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plot resid*pred / vref=0; 
quit; 
  *shows decent homogeneity of resids; 
************************************************************
*****************************; 
title3 aboveground n_mass for TYPHA in 2003 ANOVA; 
data typha_above; 
set total; 
if species="tot" then delete; 
if species="ju" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=typha_above; 
class ammonia n_p; 
model n_mass=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_above normal plot; 
var n_mass; 
run; 
  *test shows a S-W test of 0.86, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 belowground n_mass for TYPHA in 2003 ANOVA; 
data typha_below; 
set total; 
if species="tot" then delete; 
if species="ju" then delete; 
if type="a" then delete; 
if type="tot" then delete; 
run; 
proc mixed data=typha_below; 
class ammonia n_p; 
model n_mass=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_below normal plot; 
var n_mass; 
run; 
  *test shows a S-W test of 0.86, indicating decent 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
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  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 total n_mass for JUNCUS in 2003 ANOVA; 
data juncus_total; 
set total; 
if species="tot" then delete; 
if species="ty" then delete; 
if type="a" then delete; 
if type="b" then delete; 
run; 
proc mixed data=juncus_total; 
class ammonia n_p; 
model n_mass=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_total normal plot; 
var n_mass; 
run; 
  *test shows a S-W test of 0.95, indicating 
normality, supported graphically; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 aboveground n_mass for JUNCUS in 2003 ANOVA; 
data juncus_above; 
set total; 
if species="tot" then delete; 
if species="ty" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=juncus_above; 
class ammonia n_p; 
model n_mass=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_above normal plot; 
var n_mass; 
run; 
  *test shows a S-W test of 0.96, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
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************************************************************
*****************************; 
title3 belowground n_mass for JUNCUS in 2003 ANOVA; 
data juncus_below; 
set total; 
if species="tot" then delete; 
if species="ty" then delete; 
if type="a" then delete; 
if type="tot" then delete; 
run; 
proc mixed data=juncus_below; 
class ammonia n_p; 
model n_mass=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_below normal plot; 
var n_mass; 
run; 
  *test shows a S-W test of 0.95, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
 
************************************************************
*************************** 
Here ends tissue mass nitrogen ANOVA 
series................................. 
************************************************************
**************************; 
 
title2 Tissue Phosphorus Concentration ANOVAs in 2003; 
title3 total p_conc for both species in 2003 ANOVA; 
data total_p_conc; 
set total; 
if species="tot" then delete; 
if type="a" then delete; 
if type="b" then delete; 
run; 
proc mixed data=total_p_conc; 
class ammonia n_p species; 
model p_conc=species|ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans species|ammonia|n_p / pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_p_conc normal plot; 
var p_conc; 
run; 
  *test shows a Shapiro-Wilk's Test (as S-W test 
from now on) 
   of 0.93, indicating normality; 
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proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 aboveground p_conc for both species in 2003 ANOVA; 
data total_above; 
set total; 
if species="tot" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=total_above; 
class ammonia n_p species; 
model p_conc=species|ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_above normal plot; 
var p_conc; 
run; 
  *test shows a S-W test of 0.93, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 belowground p_conc for both species in 2003 ANOVA; 
data total_below; 
set total; 
if species="tot" then delete; 
if type="a" then delete; 
if type="tot" then delete; 
run; 
proc mixed data=total_below; 
class ammonia n_p species; 
model p_conc=species|ammonia|n_p /ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=total_below normal plot; 
var p_conc; 
run; 
  *test shows a S-W test of 0.96, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
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  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 total p_conc for TYPHA in 2003 ANOVA; 
data typha_total; 
set total; 
if species="tot" then delete; 
if species="ju" then delete; 
if type="a" then delete; 
if type="b" then delete; 
run; 
proc mixed data=typha_total; 
class ammonia n_p; 
model p_conc=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_total normal plot; 
var p_conc; 
run; 
  *test shows a S-W test of 0.94, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent homogeneity of resids; 
************************************************************
*****************************; 
title3 aboveground p_conc for TYPHA in 2003 ANOVA; 
data typha_above; 
set total; 
if species="tot" then delete; 
if species="ju" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=typha_above; 
class ammonia n_p; 
model p_conc=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_above normal plot; 
var p_conc; 
run; 
  *test shows a S-W test of 0.96, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
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************************************************************
*****************************; 
title3 belowground p_conc for TYPHA in 2003 ANOVA; 
data typha_below; 
set total; 
if species="tot" then delete; 
if species="ju" then delete; 
if type="a" then delete; 
if type="tot" then delete; 
run; 
proc mixed data=typha_below; 
class ammonia n_p; 
model p_conc=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=typha_below normal plot; 
var p_conc; 
run; 
  *test shows a S-W test of 0.89, indicating decent 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 total p_conc for JUNCUS in 2003 ANOVA; 
data juncus_total; 
set total; 
if species="tot" then delete; 
if species="ty" then delete; 
if type="a" then delete; 
if type="b" then delete; 
run; 
proc mixed data=juncus_total; 
class ammonia n_p; 
model p_conc=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_total normal plot; 
var p_conc; 
run; 
  *test shows a S-W test of 0.96, indicating 
normality, supported graphically; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
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title3 aboveground p_conc for JUNCUS in 2003 ANOVA; 
data juncus_above; 
set total; 
if species="tot" then delete; 
if species="ty" then delete; 
if type="tot" then delete; 
if type="b" then delete; 
run; 
proc mixed data=juncus_above; 
class ammonia n_p; 
model p_conc=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_above normal plot; 
var p_conc; 
run; 
  *test shows a S-W test of 0.99, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 belowground p_conc for JUNCUS in 2003 ANOVA; 
data juncus_below; 
set total; 
if species="tot" then delete; 
if species="ty" then delete; 
if type="a" then delete; 
if type="tot" then delete; 
run; 
proc mixed data=juncus_below; 
class ammonia n_p; 
model p_conc=ammonia|n_p/ddfm=kr outp=resids; 
*lsmeans ammonia n_p*ammonia/ pdiff adjust=tukey; 
run; 
title4 checks for normality; 
proc univariate data=juncus_below normal plot; 
var p_conc; 
run; 
  *test shows a S-W test of 0.95, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
 
************************************************************
*************************** 
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Here ends tissue phosphorus concentration ANOVA 
series................................. 
************************************************************
**************************; 
 
title2 root-to-shoot ratio ANOVAs in 2003; 
data r_sratio; 
input column$ row$ ammonia$ n_p$ species$ r_s; 
log_r_s=log(r_s); 
datalines; 
d 1 75 5 j 0.310848401 
d 2 75 15 j 0.518413598 
d 3 75 25 j 0.402200489 
d 4 75 5 j 0.384087006 
d 5 75 15 j 0.661354582 
d 6 75 25 j 0.448555957 
d 7 75 5 j 0.378567852 
d 8 75 15 j 0.473915776 
d 9 75 25 j 0.45377129 
c 1 150 5 j 0.269167126 
c 2 150 15 j 0.377993528 
c 3 150 25 j 0.265010352 
c 4 150 5 j 0.270376616 
c 5 150 15 j 0.284552846 
c 6 150 25 j 0.268817204 
c 7 150 5 j 0.283008943 
c 8 150 15 j 0.319554849 
c 9 150 25 j 0.371012871 
b 1 225 5 j 0.279545455 
b 2 225 15 j 0.365721997 
b 3 225 25 j 0.388556221 
b 4 225 5 j 0.328711727 
b 5 225 15 j 0.443365696 
b 6 225 25 j 0.481840194 
b 7 225 5 j 0.275815217 
b 8 225 15 j 0.360512522 
b 9 225 25 j 0.554045307 
a 1 300 5 j 0.374233129 
a 2 300 15 j 0.271197411 
a 3 300 25 j 0.39659803 
a 4 300 5 j 0.327586207 
a 5 300 15 j 0.443312967 
a 6 300 25 j 0.416536661 
a 7 300 5 j 0.370620774 
a 8 300 15 j 0.416903409 
a 9 300 25 j 0.425830258 
d 1 75 5 t 0.597633136 
d 2 75 15 t 0.755579171 
d 3 75 25 t 0.647357724 
d 4 75 5 t 0.752688172 
d 5 75 15 t 0.762022195 
d 6 75 25 t 0.76984127 
d 7 75 5 t 0.723809524 
d 8 75 15 t 0.561768531 
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d 9 75 25 t 0.868585732 
c 1 150 5 t 0.379790941 
c 2 150 15 t 0.700767263 
c 3 150 25 t 0.45210728 
c 4 150 5 t 0.500683995 
c 5 150 15 t 0.540723982 
c 6 150 25 t 0.51572327 
c 7 150 5 t 0.449929478 
c 8 150 15 t 0.654907975 
c 9 150 25 t 0.555950266 
b 1 225 5 t 0.350482315 
b 2 225 15 t 0.279359431 
b 3 225 25 t 0.391143911 
b 4 225 5 t 0.409185804 
b 5 225 15 t 0.479910714 
b 6 225 25 t 0.337899543 
b 7 225 5 t 0.252764613 
b 8 225 15 t 0.47112462 
b 9 225 25 t 0.527093596 
a 1 300 5 t 0.353135314 
a 2 300 15 t 0.385749386 
a 3 300 25 t 0.087962963 
a 4 300 5 t 0.339181287 
a 5 300 15 t 0.981042654 
a 6 300 25 t 0.50764526 
a 7 300 5 t 0.422222222 
a 8 300 15 t 0.377245509 
a 9 300 25 t 0.214592275 
run; 
title3 root-to-shoot ratios for mesocosms in 2003 ANOVA; 
proc mixed data=r_sratio; 
class ammonia n_p species; 
model r_s=species|ammonia|n_p/ ddfm=kr outp=resids; 
*lsmeans ammonia / pdiff; 
run; 
title4 checks for normality; 
proc univariate data=r_sratio normal plot; 
var r_s; 
run; 
  *test shows a S-W test of 0.93, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 root-to-shoot ratios for TYPHA in 2003 ANOVA; 
proc mixed data=r_sratio; 
where species='t'; 
class ammonia n_p; 
model r_s=ammonia|n_p/ ddfm=kr outp=resids; 
run; 
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title4 checks for normality; 
proc univariate data=r_sratio normal plot; 
where species='t'; 
var r_s; 
run; 
  *test shows a S-W test of 0.98, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
************************************************************
*****************************; 
title3 root-to-shoot ratio for JUNCUS in 2003 ANOVA; 
proc mixed data=r_sratio; 
where species='j'; 
class ammonia n_p; 
model r_s=ammonia|n_p/ ddfm=kr outp=resids; 
run; 
title4 checks for normality; 
proc univariate data=r_sratio normal plot; 
where species='j'; 
var r_s; 
run; 
  *test shows a S-W test of 0.93, indicating 
normality; 
proc plot data=resids vpercent=50; 
plot resid*pred / vref=0; 
quit; 
  *shows decent and acceptable homogeneity of 
resids; 
quit;  
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