SRC TR 87-201

A Method of Fault Diagnhosis:
Presentation of a Deep-Knowledge
System

by

D.T. Chung and M. Modarres

A METHOD OF FAULT DIAGNOSIS: PRESENTATION
OF A DEEP-KNOWLEDGE SYSTEM

D. T. Chung
M. Modarres

Department of Chemical and Nuclear Engineering
University of Maryland
College Park, Maryland 20742

A METHOD OF FAULT DIAGNOSIS: PRESENTATION
OF A DEEP-KNOWLEDGE SYSTEM

1.INTRODUCTION

The purpose of a fault diagnostic expert system in a
process control environment is to aid process operators in
detecting and resolving plant failures. Two general approaches
have been applied to the development of expert systems; model-

based (deep knowledge) and model-free (shallow knowledge).

A survey of shallow knowledge fault detection expert systems
has been discussed by Pau [1], and Waterman [2]. Shallow
knowledge expert systems use (if-then) type rules as the primary
mean of knowledge representation. These rules are formulated
based on a large collection of empirical observations or compiled
knowledge. Typically, the development steps for a rule-based
system can be generalized as: data abstraction, heuristic mapping
onto a hierarchy of preenumerated solutions, and refinement

within this hierarchy [3].

Performance of these rule-based diagnostic expert systems
can become very effective provided that all failure modes have
been compiled, and the failures can be sufficiently characterized

from measurements and /or observations. In cases where the

failure modes are not well known, these systems are inadequate,

and deep knowledge systems are more appropriate.

When confronted with an unfamiliar problem an expert can
resort to "first principles”. Through in-depth understanding of
the problem, an expert can resolve problems that have not been
well documented by prior observations [41}. For example, when
detecting faults in a process control domain, an expert can
diagnose the failure through his fundamental understanding of the
principles behind the operations of the plant. 1In electronics,
an expert can isolate the fault by tracing through the functional
structure of an electronic circuit [5,6]. The knowledge used by
the expert in these situations are referred to as "deep
knowledge”". There are several diagnostic expert systems using

deep knowledge. A number of these systems are presented in the

literature [7-11].

In process control, there is a large spectrum of conditions
that can lead to failure. Many of these failures are
unanticipated and have very low probability of occurrance. As a
result, they are not thoroughly characterized and cannot be
represented through rule-based shallow knowledge. However, these
failure conditions can be diagnosed by using fundamental

understanding of the principles behind the operation of the

plant.

The purpose of this paper is to present an expert system
shell (GOTRES) that utilizes a deep knowledge model which is
based on specific plant goals. In this method, the principles of
process operations and control are organized in a hierarchial
tree structure. This method of modelling knowledge is known as

Goal Tree-Success Tree (GTST) [12].

1. The GTST Method

In the GOTRES expert system program, diagnostic procedure
is performed using functional relationship represented by a goal
tree. The top goal on the tree expresses the system objective.
An example of a system objective is: "Prevent Failure of Pump”.
Goal tree is a hierarchical structure that breaks the objective
down to finer goals [13]. Goals in a goal tree are related to
its higher level and lower level goals by "WHY" and "HOW"
relationships respectively. Specifically, a goal is linked to
its parent goal by the relationship "WHY"; while, it is linked to

its subgoal by the relationship "HOW".

For a goal to be successful, all of its subgoals must be
successful. Each subgoal can, in turn be decomposed to its
descendant subgoals. When proceeding down a goal tree, one

ultimately reaches goals that no longer can be subdivided

reasonably without referencing hardware or plant conditions. At

this point, pertinent hardware or conditions that satisfy the

lowest level goal are specified.

The top goal of a goal tree is successful when all of its
supporting hardware and conditions are successful. When there is
a failed hardware or upset condition in a system, the pertinent
goals that are being supported by the failed hardware will also
be lost (not achieved), this in turn will lead to the loss of
higher level goals. The initiating failure will, therefore,
ascend the goal tree to the top most level goal. Conversely,
when tracing a failed goal down a goal tree, one ultimately
reaches the lowest level hardware or condition whose failure has

caused the loss of the top goal.

2. Knowledge Representation in GOTRES

The goal tree and the criteria for testing success of a
goal are stored in a data base known as frame representation
[13,14]. In this representation each goal in a goal tree is
represented by a frame. Each frame, in turn, is represented by
an embedded list that contain all attributes associated with a
goal. For example, Figure 1 shows such attributes as Goal-Name,
Goal-Parent, Subgoal, Success—-Requirement, and Heuristic Rules

that justify achievement of the goal.

The GOTRES program is an expert system shell. It is
capable of inquiring information from the user. It does so by
setting up this data into a frame-based representation, and store
the information in a LISP file. The goal tree itself does not
appear as a tree structure in the knowledge base. Rather, the
relational attributes, "parent" and "subgoal" values represent
the tree structure and logic. For instance, the top goal in a
goal tree can be identified by its parent goal (which is
"NIL"),and its immediate subgoals (second level goals). While,
the second level goals will have the top goal as their "parent"

value.

3. Problem Solving

The GOTRES diagnoses process is performed using the frame
representations of the GTST, and system observations. The frame
representation encompasses all the attributes of the goals,
including the relational knowledge that is specified in the GTST
model. The system observations are instrument readings and
whatever observable variables that are used when evaluating the
success—-requirement of goals (such as system behavior and plant
conditions). Starting from a top level lost goal, the GOTRES
diagnostic process tests and finds path(s) of failed goals, and

follows the path(s) down to the initiating cause of failure. When

a goal is successful (achieved), then all of its children
subgoals and supporting hardware are considered successful. When
a goal is not successful (failed), then there is at least one
failed goal on each level of its subgoals, including the
supporting hardware and conditions level. In checking goals on
any level of the tree, the first encountered failed goal is
traced downward. The downward tracing would only check the
failed goal’s lower level goals (ie., its immediate subgoals).
The process continues down the goal tree to reach the actual
failed system hardware or upset condition. This process of
tracing only failed goals permits GOTRES to quickly reach the

cause of a failure.

After completing a given trace through the tree and
finding failed hardware or upset conditions, GOTRES further
checks the GTST knowledge base for other possible lost goals.
This upward process is referred to as "up-checking", and proceeds
upward from the site of a diagnosed failure in the lowest level
to higher levels of the tree. The function of up-checking is to
check goals that have been previously skipped. These are goals
on the same level as the previously encountered failed goals that
had been skipped because of locating a failed goal. In the up-
checking procedure, GOTRES first checks the remaining goals on
the same branch and level as the lowest level failed goal. If

there are no other failed goals, the up-checking proceeds one

level higher in the tree. There, GOTRES <checks the goals on
the same branch and level as the second to the last failed goal.
GOTRES program keeps track of all goals that have been checked
and their respective results. If the up-checking process reveals
a new failed goal, GOTRES will again trace downward to find the
initiating cause of the failure (that is failed hardware or
conditions). When the cause of failure is found, GOTRES will
resume up-checking again. The process of tracing down the tree
and up-checking insures that all causes of failure will be
detected. This diagnostic process is completed only-when the up
checking reaches the top level goal. A schematic of this
process is provided in Figure 2. Section 4 explains, in more
detail, how this problem solving method is programmed and

implemented in GOTRES.

The selection of this diagnostic process as opposed to
using other search processes such as breadth first search will
depend on the shape of the GTST structure. GOTRES approach is
ideal for performing diagnostics in GTSTs that are broad (see
Fig. 3a). It is recognized, however, that the GOTRES approach
will not be the most efficient for other possible structures.

For a GTST having more goal levels than breadth at any cross
section of the tree (see Fig. 3b), breadth-first or other
methodsof search could be faster. For large trees, a portion of -

which is narrow and deep (see Fig. 3c), a combination of breadth

and depth search could provide a quicker inspection.

4. Programming Structure

GOTRES is written in LISP. The LISP programming language is
selected because of its special features; namely, its support of:
list structure, procedure concepts, recursion, and logic
primitives {16]. The diagnostic process in GOTRES expert program
is written as procedures. A pop-up menu is provided in GOTRES,
which provides the ability to perform diagnosis or enter new
knowledge. The diagnostics process is initiated when the
procedure name "Perform-Diagnostics" is returned by the user.

This procedure in the LISP program is defined as follows:

(DEFUN Perform-Diagnostics

(SEND *TERMINALIO* :CLEARSCREEN)

(EXAM))

The first step in this procedure clears away the pop-up menu.

Next, it calls up the "EXAM". Neither of these procedures here

takes any argument.

The "EXAM" procedure is the executive procedure in GOTRES.

In the flow structure of the GOTRES program, "EXAM" serves as

the staring procedure (see Fig. 4). The defined operation of
this procedure includes initiating the global lists used in
GOTRES to empty lists, and calls on the procedure "CHECK".

The procedure is defined as follows:

(DEFUN EXAM

(PROGN (SETF *FAILWARE* NIL)
(SETF *FAIL-GOALS* NIL)
(SETF *SUCCESS-GOALS* NIL)
(SETF *FAIL-RULES* NIL)

(CHECK GOAL1l)))

Global lists are those that can be accessed from any procedure in
the entire program. Four global lists are defined in GOTRES they
are:

FAIL-GOALS

SUCCESS—-GOALS

FAIL-RULES

FAILWARE

These lists are used to store diagnostic information. During the
diagnostic process, GOTRES checks goals and records the results

by "APPEND"ing the names of each checked goal into the

perspective lists. Likewise, rules that have failed and items

that have initiated the lowest failed goals, are registered into

their lists. Through these lists, the diagnostic process can
recognize goals that have been checked; and the user can receive
advice on what has failed and what rules were used in reaching a

conclusion.

"CHECK" (see Fig. 5) is the only procedure called by
"EXAM" . "CHECK" calls on several procedures to examine whether
a goal is successful. These procedures use the success
requirements in a goal’s frame. The requirements can be either
instrument readings required to be in certain ranges or questions
made based on success requirement for a goal that can be answered

by the users.

The procedure "TEST" performs the required instrument
reading tests by comparing the current values against ranges of
value that indicate goal success (see Fig. 6). If the results
indicate that a goal is successful then the goal name is added
into the *SUCCESS-GOALS* list; and "CHECK" is called on to check
the other goals on the same level of the goal tree branch. If
the goal is not successful then it is added to the *FAIL-GOALS*
list; and a procedure, "CHECK-END", is called to perform depth
search. The depth search terminates at the lowest level in the
goal tree where the items that have initiated that failure path

are identified.

10

"CHECK-END" is used to determine if the lowest level
subgoal has been reached (see Fig. 7). One indication of a
lowest level goal is the subgoal value in a goal’s frame. The
lowest level goal will have a subgoal value of "NIL". If the
examining process has not reached the lowest level, then the
subgoals of the failed goal are extracted from the goal’s frame,
and "CHECK" is called to examine them. "CHECK-END" finds whether
the lowest level has been reached. If it has, in which case, it

adds the failed item to the *FAILWARE* list, and calls on "UP~-

CHECK".

As the name implies, "UP-CHECK" carries the checking
process upward through the goal tree (see Fig. 8). It checks the
remaining goals that are on the same level and in the same branch
as the previously known failed goal. To do this, it uses the
procedure "CHECK". This begins at the lowest level using the
last failed goal as its starting point. The procedure "ON-SAME-
LEVEL" is used to collect a list of the goals on the same level.

Then the procedure "EVALUATE" inspect each element of the list

(see Fig. 9).

"EVALUATE"” inspects goals that have not been examine by the
"CHECK" procedure. Unchecked goals are not members of either

FATIL-GOALS or *SUCCESS-GOALS* lists. 1If a goal is not

successful, "CHECK" will again trace down the goal tree and find

11

the initiating failed item. Then, "CHECK-END" will again call
"UP-CHECK", which will take the most current failed goal as the

new starting point for further search.

Each time "CHECK" is called, it will check the goals that
have not been tested. 1If there is a failed goal, it will trace
the failed goals down the goal tree to the lowest level.

Whenever "CHECK-END" finds that the lowest level failed goal has
been reached, it will remember the initiating items (hardware,
conditions, etc.) that caused the failure and calls "UP-CHECK".
"UP-CHECK" will check the remaining goals. If there are no other
failed goal on that branch level, the procedure will go up to the
next higher level of the goal tree. Finally, the diagnosis for

failure is completed when "UP-CHECK" reaches the top goal.

12

REFERENCES

[1] L. F. Pau, "Survey of Expert Systems for Fault Detection,
Test Generation and Maintenance", Expert Systems, Vol.1l, April
1986. ppl00-111.

[2] D. A. Waterman, A Guide to Expert Systems, (Addison-
Wesley),1986

[3] J. S. Kowalik, Knowledge Based Problem Solving, (Prentice-
Hall), 1986.

[4] B. Chandrasekaran, S. Mittal, "Deep Versus Compiled Knowledge
Approaches to Diagnostic Problem Solving", Proceeding of AAAI-
82,1982, pp.349-354.

[5] R. Davis, H. Shrobe, W. Hamscher, K. Wieckert, M. Shirley, S.
Polit, "Diagnosis Based On Description of Structure And
Function", Proceeding of AAAI-82, 1982, pp.137-142.

[6] W. Hamscher, "Using Structural and Functional Information In
Diagnostic Design", Proceeding AAAI-83, 1983, pp.152-156.

[7] R. Milne, "Fault Diagnosis Through Responsibility", Proc. 9th
IJCAI, 1985, pp.423-425

(8] T. J. Laffey, W. A. Perkin, T. A. Nguyen, "Reasoning About
Fault Diagnosis with LES", IEEE Expert, Vol.1l, Spring 1986. pp.13-
20.

(9] R. Davis, "Reasoning From First Principles In Electronic
Trouble shooting”, Int. J. Man-Machine Studies, 1983,

Vol.19,pp.402-423,

[10] M. R. Genesereth, "Diagnosis Using Hierarchical Design
Methods", Proc. AAAI-82, August 1982, pp.278-283.

(11} M. A. Kramer, B. L. Palowitch Jr., "Expert System and
Knowledge Based Approaches To Process Malfunction Diagnosis™,
AICHE National Meeting, Chicago, Nov. 1985,

[12} T. Cadman, M. Modarres, "A Method of Alarm System Analysis
In Process Plants With The Aid of An Expert Computer System”,
presented for publication to Computer & Chemical Engineering
Journal, Sept. 1985.

13

{13] R. N. Hunt, M. Modarres, M. Roush, "Application of Goal
Trees to Evaluation of The Impact of Information Upon Plant
Availability", Proc. ANS/ENS Topic Meeting on Probabilistic
Safety Methods and Applications, San Francisco, Ca, Feb. 1985,

[14] P.H. Winston, Artificial Intelligence (Addison-
Wesley),Reading, Massachusetts, 1983.

{15] P. H. Winston and B. K. Horn; LISP (Second Edition) Addison-
Wesley, Reading, Massachusetts, 1984.

[16] Chadwick, Michael and Hannah, John; Expert Systems For
Microcomputers, Sigma Press, 1987.p42

14

(GOAL-1

(GOAL-PATH-NAME (VALUE 1))

(GOAL-NAME (VALUE "Failure of Pumping System Prevented"))
(GOAL-PARENT (VALUE NIL))
(SUB-GOAL (VALUE GOAL-2 GOAL-3 GOAL-4 GOAL-5))
(SUCCESS-REQ (VALUE))
(GOAL-HARDWARE (VALUE))
(RULES (rulel "If the system parameters are in limit,
then failure is prevented."”
"Are all other parameters (other thatn Q and H) in the limits?"
"Does prime mover power match water power in the vicinity of

BEP?")))

Figure 1.

Frame representation of the attributes of a goal using

embedded lists.

15

(1)

START
END
. -
F &
—— v S
F ’ S F
| I
b
< v l
— —_— —_—
- I S S S S S
2) (3)

1. The search process traces down a cause of failure.

2. The process up-checks and traces down a second cause of
failure.

3. The process returns to up-checking and terminates at the top
level goal.

Figure 2. The flow of the search process used in GOTRES.

16

Figure 3a. An example of a broad tree

17

Figure 3b. An example of a tree that has more levels than breadth.

18

deep portion

Figure 3c. An example of a generally broad tree which has a deep
portion.

19

EXAM

CHECK

goal success
TEST >EVALUATE
ON-SAME-LEVEL

goal
failed

goal success
CHECK-END > UP-CHECK

Figure 4. The control structure of GOTRES expert shell.

20

(DEFUN CHECK (GOAL)
{COND { (NULL GOAL) 'T)

((TEST GOAL) (EVALUATE (ON-SAME-LEVEL GOAL)))

((RULE-TEST GOAL) (EVALUATE (ON-SAME-LEVEL GOAL)))

((CHECK-END GOAL) 'NIL)

(('T (CHECK (EVAL (CAR (SUB-GOAL GOAL)))))))

;If there are no more goals, then T is returned.
;There are two level of evaluation for each goal.
;If a goal fails TEST, then it will be evaluated by RULE-TEST.
;If a goal is successful, then goals on the same level
;are evaluated.
;If a goal is not successful, then it’s subgoals are evaluated.

CHECK
GOAL
EVALUATE
ON-SAME-LEVEL
GOAL
CHECK-END
GOAL
CHECK
SUB-GOAL
Figure 5. Definition of the procedure "CHECK", and the flowchart

for "CHECK".

21

(DEFUN TEST (GOAL)
(SETF GOAL-INSTRUMENT-LIST (INSTRUMENT GOAL))
(COND ((NULL GOAL-INSTRUMENT-LIST) NIL)
((EVERY CHECK-INSTRUMENT GOAL-INSTRUMENT-LIST)
(REMEMBER-SUCCESS GOAL))

(T 'NIL)))
TEST
GOAL
T
REMEMBER
SUCCESS
CHECK
INSTRUMENT] NIL

(< INSTRUMENT-VALUE UPPERBOUND)
(> INSTRUMENT-VALUE LOWERBOUND)

NIL

Figure 6. Definition of the procedure "TEST" and its flowchart.

22

(DEFUN CHECK-END (GOAL)

(SETQ DEPENDENTWARE (HARDWARE GOAL))

(COND ((NULL DEPENDENTWARE) NIL)

((REMEMBER-FAIL-ITEM GOAL) (UP~CHECK GOAL))))
;If ther are no dependentware, then it is not the lowest level,.
;If it is the lowest level, then remember fail items and
; "UP-CHECK"

CHECK-END

DEPENDENTWARE NIL
REMEMBER-FAIL- >
ITEM UP-CHECK

Figure 7. Definition of the procedure "CHECK-END" and its
flowchart.

23

(DEFUN UP-CHECK (GOAL)
(COND ((CHECK-TOP GOAL) ’T)
((EVALUATE (ON-SAME-LEVEL GOAL))
(UP-CHECK (EVAL (CAR (PARENT GOAL)))))))

;1f the top goal has not been reach, them evaluate the goal
;that are on the same level as this goal. 1If they all test
;successfully, then check if their parent goal is the top goal.

UP-CHECK
GOAL

EVALUATE UP-CHECK

ON-SAME-LEVEL PARENT
GOAL
NIL
Figure 8. The definition of the procedure "UP-CHECK" and its

flowchart.

24

{DEFUN EVALUATE (GOAL-LST)
(COND ((NULL GOAL-LIST) rT)
((OR (MEMBER1 (CAR GOAL-LIST) *SUCCESS-GOALS*)
(MEMBER1 (CAR GOAL-LIST) *FAIL-GOALS))
(EVALUATE (CDR GOAL-LIST)))
("T (CHECK (EVAL (CAR GOAL~-LIST))))))
;if the goal list is exhausted without finding any failed goal,
;then true is returned.
;if the first atom of the list is a member of either success
;1list or failed list, then it has been
;checked. 1In which case, recursion is used to evaluate the
;remaining atoms of goal list.
;if an atom is not a member of either list, then it has not
;been checked. In which case,
;it is passed to the procedure "CHECK".

EVALUATE
ON-SAME-LEVEL
GOAL EVALUATE
GOALS

MEMBERI1
SUCCESS-GOALS
FAIL-GOALS

EVALUATE
CDR GOALS

CHECK
GOAL

Figure 9. Definition of the procedure "EVALUATE" and its
flowchart.

25

