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The main goal of my research is to improve the performance of the EnKF in 

assimilating real observations in order to accelerate the development of EnKF 

systems towards operational applications. A Local Ensemble Transform Kalman 

Filter (LETKF, Hunt et al. 2007) is used as an efficient representative of other EnKF 

systems. This dissertation has addressed several issues relating to the EnKF for 

assimilating real data. 

The first issue is model errors. We assimilated observations generated from the 

NCEP/NCAR reanalysis fields into the SPEEDY model. The performance of the 

LETKF without accounting for model errors is seriously degraded compared with that 

in the perfect model scenario. We then investigated several methods to handle model 

errors including model bias and system-noise. Our results suggest that the pure bias 

removal methods (DdSM and LDM) are not able to beat the multiplicative or additive 

inflation schemes that account for the effects of total model errors. By contrast, when 

the bias removal methods (DdSM+ and LDM+) are supplemented by additive noise 

for representing the system-noise, they outperform the inflation schemes. Of these 

  



augmented methods, the LDM+, where the constant bias, diurnal bias and state-

dependent errors are estimated from a large sample of 6-hour forecast errors, gives 

the best results.  

The other two issues addressed are the estimation of the inflation factor and of 

observation error variance. Without the accurate observation error statistics, a scheme 

for adaptively estimating inflation alone does not work, and vice versa. We propose 

to estimate simultaneously both the adaptive inflation and observation error variance. 

Our results for the Lorenz-96 model examples suggest that the simultaneous approach 

works perfectly in the perfect model scenario and in the presence of random model 

errors. For the case of systematic model bias, although it underestimates the 

observation error variance, our algorithm produces analyses that are comparable with 

the best tuned inflation value. SPEEDY model experiments indicate that our method 

is able to retrieve the true error variance for different types of instrument separately 

when applied to a more realistic high-dimension model.  

Our research in this dissertation suggests the need to develop a more advanced 

LETKF with both bias correction and adaptive estimation of inflation within the 

system. 
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Chapter 1  

Introduction 

Data assimilation algorithms seek to find the optimal combination of model 

forecast (“background”) and the available observations to generate improved initial 

conditions (“analysis”) for numerical weather predictions. Most assimilation schemes 

are based on the linear estimation theory in which the background and the 

observations are given a weight proportional to the inverse of their corresponding 

specified error covariances. As such, the accuracy of a data assimilation scheme relies 

highly on the knowledge of the error statistics of both the model background and the 

observations. The observation error covariance is usually assumed to be diagonal and 

time invariant. It is not a good approximation to assume the background error 

covariance is also stationary since it is actually flow-dependent. In practice, however, 

estimating the time-dependent background error covariance is difficult. In 3DVAR 

(e.g. Parrish and Derber, 1992), a data assimilation scheme used in many operational 

centers, the background error covariance is assumed to be isotropic and stationary. In 

the Kalman filter (KF, Kalman 1960), the background error covariance is propagated 

explicitly with a linear model. Ensemble-based Kalman filter (EnKF) techniques 

instead estimate the background error covariances from an ensemble of forecasts 

which allows them in theory to include information on the flow-dependent error of 

day (both temporally and spatially variant). For more background of the EnKF, the 

readers are recommended to refer, for example, Evensen (1994), Houtekamer and 
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Mitchell (1998), Anderson (2001), Whitaker and Hamill (2002), Tippett et al. (2003), 

Ott et al. (2004), Evensen (2003). 

Most studies to date have tested EnKF systems under perfect model 

assumptions and with simulated observations (their error statistics are perfectly 

known). Only within the last few years have EnKF methods been tested in 

assimilating real observations. In the real-world applications, several issues have to 

be dealt with, such as: 1) model errors, 2) inconvenience or infeasibility of manually 

tuning the inflation factor when it is regional and/or variable dependent, 3) 

erroneously specified observation error statistics, 4) imperfect forward observation 

operator, 5) non-Gaussianity of forecast and observation errors, etc. In this 

dissertation, we focus on the first three issues. Methods to deal with them are 

investigated and tested.        

1.1 EnKF in the presence of model errors 

EnKF methods have been shown to be more accurate than 3D-Var under the 

assumption of a perfect model (Miyoshi 2005, Liu et al 2006). However, in the real 

world, forecast errors derive not only from errors in the initial conditions but also 

from errors due to the model deficiencies.  The latter type of error is usually called 

model error. The sources of model error can be due to lack of resolution, approximate 

parameterizations of physical processes, numerical dispersion, etc.  For assimilation 

of real observations, the assumption of a perfect model must be dropped.  As a result, 

there is no guarantee that the EnKF will be still better than 3D-Var data assimilation 

systems when assimilating real observations. In fact, Miyoshi (2005) has shown that 

model error has a stronger negative influence on the performance of the EnKF than 
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on the 3D-Var. Accounting for model errors is important but is also the most difficult 

issue for EnKF systems.  

 Methods to deal with model errors were introduced decades ago in the 

engineering community. In the meteorological community, until recently, solving this 

problem has been receiving widespread attention. Dee and da Silva (1998, hereafter 

referred as DdS) proposed a method for the on-line estimation and correction of 

model bias where the prior estimate of the bias is updated by using the Kalman filter. 

This bias correction method (DdSM, hereafter) has been successfully tested, for 

example, by Dee and Todling (2000), Carton et al. (2000), Martin et al. (2002), 

Chepurin et al. (2005). Recently, Baek et al (2006) developed another bias correction 

method which is similar to the DdSM except for accounting for the cross-correlation 

of uncertainties in model state and bias that had been ignored in the DdSM. They 

successfully tested this approach with the Lorenz-96 model.  However, both of these 

two methods assume a steady forecast model for the bias. This results in being limited 

to estimate only the slowly varying component of forecast errors. In reality, model 

error may be time-variant. To correct the evolving model error, an empirical 

correction that depends on the instantaneous state of the model has been proposed to 

correct the ‘state-dependent error’ (Leith 1978; DelSole and Hou 1999). This method 

relies on the cross covariance between the model error and the model state. Direct 

computation of the bias correction term on each model grid point is in practice 

prohibitive for the operational forecast model. Building on works of Leith (1978), 

Danforth et al (2007) proposed an alternative approach based on SVD to estimate the 

state-dependent error with much lower computational cost. Danforth et al. also 
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corrected the state-independent model error by expanding model errors into a bias and 

low order EOFs that could correct other errors such as those associated with the 

diurnal cycle. They found this low-dimensional method (LDM, hereafter) to be very 

successful and efficient computationally. However, in their experiments there is no 

data assimilation involved, since the initial conditions are assumed to be perfect. It is 

worthwhile to investigate whether the application of the LDM can be expanded to 

more realistic situations where the forecast-analysis is cycled and, as a result, forecast 

error includes both model error and dynamical growing error due to the imperfect 

initial condition. 

All of the methods mentioned above are meant to estimate and remove model 

bias from the forecasts, which can be applied to any data assimilation system. For 

EnKF systems, enlarging background error variance is another way to handle model 

errors. Anderson and Anderson (1999) introduced the idea of multiplicative inflation. 

Corazza et al. (2002) added random perturbations to bred vectors and found it 

improved their ability to represent background errors. Corazza et al (2007) found the 

additive inflation worked much better than the multiplicative inflation in the LEKF 

(Ott et al. 2004) within a perfect model experiment. Although the multiplicative and 

additive inflation were initially introduced to ameliorate sampling errors due to small 

ensemble size in the perfect model scenario, they have been recently used to account 

for model errors in assimilating real observations. Whitaker et al. (2004) used 

multiplicative inflation and obtained a better reanalysis than the NCEP 3D-Var in the 

middle and low troposphere from real surface pressure observations. Houtekamer et 

al. (2005) parameterized model errors with ‘additive error’ by adding random noise to 
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each forecast ensemble member. The covariance of the random noise has the same 

structure and scaled-down amplitude as the 3D-Var background error covariance. The 

results showed that the quality of their ensemble Kalman filter was comparable to 

3D-Var using real observations. Hamill et al. (2005) compared different ways to 

parameterize additive error. Whitaker et al (2007) generated additive noise by 

randomly selecting samples from the 6-hour tendencies field of the NCEP/NCAR 

reanalysis (NNR, Kalnay et al. 1996) states and found it gave more accurate analysis 

than the multiplicative inflation when assimilating real observations using the NCEP 

GFS model. All of these methods are specific to EnKF systems. They enlarge the 

background ensemble spread without changing the ensemble mean. To our best 

knowledge, there have been no comparisons so far between these variance-enlarging 

methods and those estimating and removing model error from the ensemble mean 

(e.g. DdSM and LDM). 

         

1.2 Adaptive estimation of inflation factor 

Though multiplicative and additive inflation schemes are widely used in EnKF 

systems in both the perfect and imperfect model experiments, these adjunct 

algorithms require considerable tuning for good performance. Manually tuning the 

inflation parameter is common in the EnKF experiments but is expensive, since, on 

its own, the forecast-analysis cycle does require many ensemble members. Even 

worse, it becomes infeasible if the inflation factor is regional and/or variable 

dependent. Wang and Bishop (2003) adopt the maximum likelihood parameter 

estimation theory of Dee (1995) to estimate the inflation factor from the innovation 
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observation-minus-background statistics  in their 

ensemble forecast scheme. Miyoshi (2005) reported the use of a similar method to 

estimate the background error inflation factor within EnKF. Although the results were 

satisfactory it is obvious that this inflation estimation method relies on the assumption 

of a perfect knowledge of the observational error covariance

])1[( RHHPdd +∆+= TfT trace

R . This assumption is 

valid for the simulated observations but may not for real observations. When 

assimilating real data, we need a method to obtain the correct statistics of observation 

errors if we want to apply the scheme for on-line estimating inflation factor. 

1.3 Diagnosis of observation error statistics 

Besides the issue of the requirement of correct observation error statistics in the 

on-line estimation of the inflation factor discussed above, the observation error 

statistics themselves are very important to the data assimilation, since they directly 

determine the relative weight given to the observations. However, in the real world, 

this information is not perfectly known. Recent diagnostic work (Desroziers and 

Ivanov 2001, Talagrand 1999, Cardinali et al. 2004, Chapnik et al. 2006, and others) 

suggest that innovation and other statistics can be used to diagnose both observation 

and background errors. A formulation on the cost function of such diagnostics has 

been proposed and tested in a variational framework. Building on these works, 

Desroziers et al. (2005) (DEA05 hereafter) developed a set of diagnostics based on 

the combinations of observation-minus-analysis, observation-minus-background and 

background-minus-analysis to adaptively tune observation and background errors. 

Here we adapt one of these diagnostics for estimating observation error variance into 

the EnKF. For more details, the reader is referred to section 2.4.2 in Chapter 2. 
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1.4 Specific goals of this dissertation 

The main goal of this thesis is to improve the performance of the EnKF in 

assimilating real observations and, as a result, to accelerate the development of EnKF 

systems towards operational applications. To assimilate the real observations, model 

error is the most important and difficult issue to deal with. Methods have been 

proposed to either account for model error in the second moment of the ensemble by 

enlarging background error variance or to estimate and correct model bias for the 

ensemble mean. However, there is little research on comparing methods between 

these two approaches.  In addition, the imperfect knowledge of observation error 

statistics and the inconvenience of manually tuning inflation factor are the other two 

issues we want to address in this thesis. For these purposes, the present research aims 

to investigate the following questions: 

1. Are bias removal methods generally better than those only enlarging 

background error variance? What are the relative advantage and disadvantage 

between two major bias removal methods: DdSM and LDM? 

2. Does on-line inflation estimation work without the correct observation error 

information? If not, could we develop a way to simultaneously estimate both 

the inflation and observation errors?   

To achieve the goal, Local Ensemble Transform Kalman Filter (LETKF, Hunt 

et al. 2007), is chosen as a proxy of the EnKF in this study due to its efficiency and 

easy access for us, as it is developed at the University of Maryland.  LETKF is 

developed from Local Ensemble Kalman Filter (Ott et al 2004, Szunyogh et al. 2005) 

but is computationally much faster. It has been used to assimilate simulated 

 7 
 



 

observations in the NASA fvGCM model (Liu et al. 2006) and the results have shown 

it outperforms 3DVar everywhere. In simple model, it has been shown to perform 

similarly to 4D-Var (Kalnay et al. 2007). With real data, Szunyogh et al. (2007) 

reported that the LETKF is more accurate than the SSI (operational 3DVAR) in the 

SH extratropics, and comparable in NH extratropics and Tropics by simply using 

multiplicative inflation to account for model errors.  Here we investigate more 

sophisticated techniques for treating model errors and methods for on-line estimating 

inflation factor within the LETKF, and to develop a data assimilation system capable 

of assimilating real weather observations. Though we focus on the LETKF, the results 

are applicable to other EnKF systems. 

1.5 Outline of the thesis 

Chapter 2 describes the theory of all the methods used in this entire dissertation, 

including the LETKF (section 2.2), techniques for treating model errors (section 2.3), 

and methods for on-line estimating inflation and observation errors (section 2.4). In 

Chapter 3, the LETKF is implemented in an AGCM model, the SPEEDY model, 

under the perfect model assumption, and its performance is examined.  In Chapter 4, 

we drop the perfect model assumption by assimilating observations generated from 

the NCEP/NCAR reanalysis fields. The performance of the LETKF without 

accounting for model errors is examined and compared with that in the perfect model 

scenario. Two inflation schemes (multiplicative and additive inflation) and two bias 

correction methods (DdSM and LDM) are applied to account for and/or correct model 

errors. Their results are compared and discussed. Chapter 5 investigates the methods 

of adaptive estimation of the inflation factor with and without the accurate 
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observational error information. A new method of simultaneous estimation of both 

inflation and observation error is proposed and investigated in the cases of perfect and 

imperfect model.  At last, the conclusions of the entire dissertation are given in 

Chapter 6. Some future research directions are also discussed in this chapter. 
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Chapter 2  

Theoretical aspects  

2.1 Introduction 

Here we give a theoretical review of all the methods used in the rest of the 

dissertation. These are: (1) a data assimilation scheme, the local ensemble transform 

Kalman filter (LETKF) (Section 2.2); (2) methods to account for and correct model 

errors (Section 2.3); and (3) methods to on-line estimate the covariance inflation 

factor and observation error variance (Section 2.4).  

2.2 Theory of the Local Ensemble Transform Kalman Filter (LETKF)   

Here we give a review of the LETKF (Hunt 2004, Hunt et al. 2007), the only 

data assimilation method used in this research. As an introduction, the general 

concept of data assimilation and some related issues and terms are also briefly 

described. 

2.2.1 Introduction to data assimilation  

The notation in this study is based, wherever possible, on Ide et al. 1997.  Let 

be the unknown true atmospheric state at a certain analysis time i .  Two available 

sources of information used to estimate  are the background  , generally 

provided by a model forecast  with errors , and an observation vector 

with errors , where 

t
ix

t
ix b

ix

f
ix t

i
f
i

f
i xxε −=

o
iy )( t

i
o
i

o
i H xyε −= H is the non-linear observation operator, 

mapping the model variables to the observational space. The reason for us here to 
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utilize superscript  rather than widely used b to denote all background related 

variable is to reserve symbol b for the model bias (section 2.3).  Both and  are 

state vectors containing n elements, while  is a vector containing p observations at 

irregularly spaced points. The error covariance matrices for the forecast and the 

observations, and

f

f
ix t

ix

o
iy

fP R , are then defined in terms of the true state as 

>=<
Tfff εεP                                                  (2.1) 

>=<
TooεεR                                                   (2.2) 

where  denotes the statistical expected value. Though both and〈⋅〉 fP R are time-

dependent, for simplicity, in this dissertation we drop the subscript i  indexing time, 

when all the variables are valid at the same time, and include it whenever necessary.  

With the statistical estimates of andfP R , data assimilation process seeks the 

best combination of the model forecasts and the observations , to generate 

improved initial conditions (“analysis” ).  

fx oy

ax

ax ))(( fof H xyKx −+=                                          (2.3) 

where K is the weighting matrix. From linear estimation theory, the estimate is 

optimal (the analysis error is a minimum) when the weighting matrix is 

given by the Kalman gain:   

taa xxε −=

1)( −+= RHHPHPK TfTf                                         (2.4) 

where H  is the linear perturbation of the forward observational model H . The 

validity of the optimal K is dependent on the accuracy of the statistical estimates of 

the forecast and observation errors.  
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2.2.2 Forecast error covariance and the ensemble Kalman filter 

The observation and forecast error covariance are the two key components in 

the standard Kalman gain given by (2.4).  However, estimating these two covariances 

is a major challenge for data assimilation. In practice, the observation error 

covariance is assumed to be diagonal and stationary. In 3DVAR (e.g. Parrish and 

Derber 1992), a data assimilation scheme used in many operational centers, the 

forecast error covariance is assumed to be isotropic and stationary. This assumption is 

very crude since in reality the forecast error covariance depends on the current 

atmosphere state.  In the traditional Kalman filter, the forecast and analysis error 

covariance matrices are evolved with time by  

i
T

i
a
ii

f
i QMPMP += −1                                            (2.5) 

                                               (2.6) f
iii

a
i )PHKIP −= (

where  is the analysis error covariance at time step , defined as 

,  is the tangent linear model of the nonlinear 

dynamics,    is the linear perturbation of the forward observational model 

a
i 1−P 1−i

>−−=< Tt
i

a
i

t
i

a
i

a
i ))(( xxxxP iM

iH H , and 

 is the model error covariance matrix, given by iQ

)( 1
t
i

t
ii M −−= xxη                                                 (2.7) 

〉〈= T
iii ηηQ                                                     (2.8) 

where  denotes model errors, i.e. the forecast errors due to the model deficiencies 

rather than to the initial condition. (2.5) implies that the total forecast errors are the 

sum of the “internal error” (errors in the initial state and their dynamical growth 

during the forecast process) and the “external error” due to the model deficiencies. In 

iη
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the traditional Kalman filter, is assumed to be a noise process with zero mean. In 

reality model errors have significant biases which in principle should be removed 

from the forecasts before proceeding.  

iη

 Combining (2.3) (2.4) (2.5) and (2.6) we obtain the traditional Kalman filter 

which gives the best analysis in the case of unbiased forecasts and observations and a 

linear forecast model.  

⎪
⎪

⎩

⎪
⎪

⎨

⎧
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−+=

+=
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−−−

fa
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TfTf
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T
i

a
ii

f
i

)
H

PKHIP
xyKxx

RHHPHPK

QMPMP

(
))((
)( 1

111

                                                                                   (2.9) 

Here again, we have dropped the subscript i  when all the terms are at the same time 

step i . 

However, updating forecast-error covariance by (2.5) is unfeasible for real 

numerical models due to the huge dimensions of and . An alternative to the 

traditional Kalman filter is the ensemble Kalman filter (EnKF), originally proposed 

by Evensen (1994). In the EnKF, the error evolution of (2.5) is computed by using 

ensemble integration. We assume that K forecasts , k=1, 2,…, K have been 

created and therefore we define the ensemble covariance matrices around the 

ensemble mean, 

M aP

f
ke )(x

fx , 

Tf
e

f
e

Tf
e

f
ke

K

k

f
e

f
ke

f
e KK

XXxxxxP
1

1)()(
1

1
)(

1
)( −

=−−
−

= ∑
=

                 (2.10) 

where the  matrix is the ensemble perturbation matrix, whose k th column 

is

Kn× f
eX

f
e

f
kek

f
e xxX −= )()( , and n  is the dimension of model state. In principle, if the 
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ensemble covers all possible realizations of the actual atmospheric state, the ensemble 

error covariance  is a good approximation of the ‘true’ forecast error covariance. 

However, in practice, the ensemble members are usually generated by integrating the 

different initial model states forward in time using the same model. Therefore, the 

estimated from those ensemble members can only represent the first term on the 

right-hand side of (2.5) due to the internal error but does not allow for the inclusion of 

a model error covariance Q (If the forecasts are made with different model 

parameters or different models, will contain certain estimates of model error 

covariance). As a result, the forecast error covariance matrix should be given by 

f
eP

f
eP

f
eP

QPP += f
e

f                                                  (2.11) 

in EnKF and model error covariance matrix Q has to be specified. Since little is 

actually known about model error statistics in complex systems, a crude way to 

account for model error is to add additional noise with zero mean and a prescribed 

covariance Q  to each forecast ensemble member.  

k
f

ke
f
k qxx += )()(                                                (2.12) 

T
kk

K

kK
qqQ ∑

=−
=

11
1                                           (2.13) 

This will enlarge the dynamically evolved forecast perturbations without 

changing the ensemble mean. The final forecast error covariance matrix then is, 

Tf
ek

f
ke

K

k1 1
∑
=

f
ek

f
ke

f

K
)(*)(1

)()( xqxxqxP −+−+
−

=  

              Tff

K
XX

1
1
−

=                                                                      (2.14) 
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where is the modified ensemble perturbation matrix, whose k th column 

is

fX

f
ek

f
kek

f xqxX −+= )()(
 

The following equations constitute the Ensemble Kalman filter, 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−=

−+=
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−

=
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fa

fofa

TfTf

Tfff

)
H

K

PKHIP
xyKxx

RHHPHPK

XXP

(
))((
)(

1
1

1
                                                                                 (2.15) 

Although all EnKF systems share the same basic formulation, the 

implementations of (2.15) are not unique. Here we do not attempt to review all the 

ensemble data assimilation schemes but focus on the local ensemble transform 

Kalman filter (LETKF, Hunt et al. 2007).  

2.2.3 Local ensemble transform Kalman filter  

Several characteristics of the LETKF are: (1) the analysis is performed locally 

in model grid space and the analysis at the different grid points is obtained 

independently; (2) the forecast error uncertainty is estimated from the ensemble 

perturbations by using equation (2.14); (3) the analysis ensemble perturbations are 

obtained from the forecast ensemble perturbations through a transform matrix; (4) the 

matrix inverse is done in the ensemble space when compute the Kalman gain. 

Directly computing the Kalman gain  requires a 

matrix inverse in the observation space with a size of order 10

1)( −+= RHHPHPK TfTf

5-107. To implement it 

in an efficient way, LETKF re-writes the gain matrix K so that the matrix inverse can 

be done in ensemble space at every grid point. 
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where and fHXH =~ K  is the ensemble size. When H is non-linear, H can be 

defined as: 

~

)()(~ ff
kk HH xxH −=  

where represents the k th ensemble member and k )( fH x is the ensemble mean of 

the forecast ensemble in observation space. This substitution avoids the cost involved 

in finding the linearized observation operator required by . fHX

We claim that 

1111 ~])1(~~[])1(~~[~ −−−− −+=−+ RHIHRHRHHH TTTT KK  

This identity is easily verified by multiplying on the left by IHRH )1(~~ 1 −+− KT and 

on the right by RHH )1(~~ −+ KT . Thus we have  

111 ~])1(~~[ −−− −+= RHIHRHXK TTf K                             (2.16) 

The analysis error covariance in ensemble space is 

11 ])1(~~[~ −− −+= IHRHP KTa                                       (2.17) 

Thus 

1~~ −= RHPXK Taf                                               (2.18) 

(2.17) clearly shows that the matrix inverse is done within a K  by K  matrix where 

K   is the ensemble size, a number much smaller than the observation size. R is 

typically diagonal or block diagonal. 
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With the Kalman gain obtained from (2.18), the LETKF updates the analysis 

only for the ensemble mean by 

))(( fofa H xyKxx −+=                                        (2.19) 

In order to update the individual analysis ensemble member, the analysis 

ensemble perturbations are computed first then added to the analysis mean. Similar to 

the forecast ensemble perturbation matrix , the analysis ensemble perturbation 

matrix  is defined by 

fX

aX Taaa

K
XXP

1
1
−

= , and can be computed by  

where T is a  transform matrix we will now determine. 

TXX fa =

Kn×

Since  we have fa )PKHIP −= ( ,

     TffTafa

K
XXHRHPXIP

1
1)~~( 1

−
−= −  

 

Tfaf

Tfaf

TfTaaf

TfTaf

K
K

K
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XPX

XIPX

XHRHPPX

XHRHPIX
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1

1)1(~

1
1)~~~(~
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1)~~~(

11
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−
−=
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−

                                                          (2.20) 

On the other hand, Taaa

K
XXP

1
1
−

= ,   thus  

2/1]~)1[( afa K PXX −=                                         (2.21) 

The analysis ensemble perturbation matrix can be obtained by transforming the 

forecast ensemble perturbation through a transform matrix 

aX

fX 2/1]~)1[( aK PT −=  

In practice, the implementation of the LETKF algorithm requires the following 

steps: 
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                                                                               (2.22) 

 The algorithm (2.22) is applied to each local patch independently and the local 

analyses can be processed in parallel. 

2.3 Methods to deal with model errors in the EnKF  

In the previous section model errors are assumed to be Gaussian noise. 

However, in reality, they are usually biased. The overall model errors are the 

combination of model bias and random noise. In Chapter 1, we have introduced 

several methods for handling model errors. Here we focus on issues related to 

implementation of these methods.   

2.3.1 Multiplicative inflation  

Multiplicative inflation simply inflates the ensemble error covariance ,  by a 

factor 1+∆  to approximate the ‘true’ error covariance  

f
eP

fP

f
e

f PP )1( ∆+←                                              (2.23) 

where ∆ is a tunable parameter. (2.23) provides an increase in the ensemble 

covariance  to account for the model errors which are not included in the 

original . Implicitly this method assumes that model errors have the same error 

f
eP

f
eP
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structure as the internal errors so that their error covariance Q can be represented by 

dynamically evolved error covariance .   f
eP

2.3.2 Additive inflation 

Additive inflation parameterizes model errors by adding random perturbations 

with a certain covariance structure, to each ensemble forecast member after it has 

been propagated from the previous analysis ensemble using a dynamical model. In 

theory, additive inflation should attempt to select perturbations consistent in structure 

with the model errors. However little is known about the real model error covariance 

structure, the additional perturbations have been generated in several different ways. 

Houtekamer et al (2005) chose random perturbations consistent in structure with a 

3D-Var background-error covariance; Hamill et al (2005) parameterized additive 

error as the differences between two forecasts with different resolution; Whitaker et al 

(2007) generated additive noise by randomly selecting samples from the 6-h 

tendencies field of NCEP/NCAR reanalysis (NNR) states.  Those additive 

perturbations differ in the space structure and there is no conclusion so far on which 

of them is optimal. In this study, we chose the NNR 6-hour tendencies for the 

additive inflation scheme and tuned their amplitude. 

  

The multiplicative inflation and additive inflation are two simple methods for 

accounting for the effect of model errors on the forecast error statistics, but without 

correcting the model errors from the ensemble mean. With a biased forecast Dee and 

da Silva (1998) have shown the resulting analysis is also biased even if the forecast 

error statistics are perfectly specified.  In theory, if the systematic model errors can be 
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exactly estimated, directly removing them from the ensemble mean should result in a 

better analysis.  Several schemes have been introduced to estimate and correct model 

errors.  

2.3.3 Dee and da Silva bias estimation Method (DdSM) 

Let us define the ‘true’ bias as  

>−=< tft xxb                                                 (2.24) 

and use , to denote the ‘observed bias’ and ‘forecasted bias’, respectively,  

assuming we have a system to observe the bias and a model to forecast the bias.  

ob fb

Dee and da Silva (1998) developed a two-stage bias estimation algorithm, in 

which the estimation procedures for the bias and the state are carried out successively. 

At the first step of the analysis process, bias is estimated on every model grid point by 

assimilating the forecast-minus-observation residuals  which includes the 

model bias and errors due to imperfect initial conditions as well, as the observed bias 

using Kalman filter equation  

ofH yx −)(

ob

)]()([ fof
b

fa HH byxKbb −−+=  

)]([ ffo
b

f H bxyKb −−−=                                      (2.25) 

1−++= )( Tf
xx

Tf
bb

Tf
bbb RHHPHHPHPK                             (2.26) 

where the matrix  is the forecast error covariance for the state variables, defined 

as in (2.1) and  the forecast error covariance for bias, defined as: 

f
xxP

f
bbP

>−−=< Ttftff
bb ))(( bbbbP                                     (2.27) 
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In practice the bias forecast error covariance is unknown, so that following 

DdS we assume that 

f
bbP

f
xx

f
bb PP α=                                                    (2.28)                              

Substituting (2.28) into (2.26), we have 

1])1[( −++= RHHPHPK Tf
xx

Tf
xxb αα                             (2.29) 

The scalar α  is a tunable parameter which controls the adaptability of the 

estimated bias. If α is too small the estimated bias evolves slowly and may take too 

long to spin-up or may not capture the time-dependent variability of the true bias. 

Ifα  is too large then too much of the residuals at a particular analysis 

time will be attributed to the bias and not enough to the internal errors. 

ofH yx −)(

 At the second step, the analysis for the state variables is obtained using the 

standard analysis procedure with the unbiased forecast state   af bx −

)]([)( afo
x

afa H bxyKbxx −−−−=                              (2.30) 

1−+= )( Tf
xx

Tf
xxx RHHPHPK                                       (2.31) 

As for the bias forecast model, following Carton et al (2000) we will use a 

damped persistence, 

a
i

f
i 1−= bb µ                                                     (2.32) 

where µ <1 and we tune the scalar µ . (2.32) assumes there are no dynamics for the 

bias itself and that it is ‘forgotten’ with time.  

The cost of the DdSM is about twice that of no bias estimation, since the 

updated equations are solved twice, first for the bias estimation and then for the state 
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variables. However, this double cost problem can be avoided if α <<1 in which case 

(2.29) becomes 

1][( −+≈ RHHPHPK Tf
xx

Tf
xxb α                                 (2.33)     

                                                    xKα=                                                                                                         

Reversing the order of the bias estimation step and that of the state analysis step, 

we obtain a simplified version of Dee and da Silva scheme (Radakovich et al., 2001). 

)]([)( ffo
x

ffa H bxyKbxx −−+−=                              (2.34) 

)]([ ffo
x

fa H bxyKbb −−−= α                                  (2.35) 

In this approach the computational of (2.35) is almost cost free after the state 

analysis has been updated by (2.34), since  is simply the 

analysis increment for the state variables.   

ax )]([ ffo
x bH −− xyK

In the application of the DdSM to the LETKF, no additional ensemble members 

are required for the bias since the bias forecast error covariance is obtained 

directly from the state forecast error covariance .  For the second analysis step in 

which the state variables are updated, because the analysis equations (2.30)-(2.31) for 

the state variables are exactly the same as those in the traditional Kalman filter except 

that the original forecast has been replaced by the bias-corrected forecast, we can 

directly utilize the algorithm (2.22).  For the first step, in which the bias analysis is 

performed, the implementation is different. First we do not need calculate the analysis 

ensemble perturbations since there is no ensemble for the bias. Second, the formula of 

Kalman gain  for bias is slightly different from that for state variables. In order to 

f
bbP

f
xxP

bK
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implement DdSM in the LETKF, we have to re-write (2.31) following a derivation 

similar to that of (2.16), so that the Kalman gain for bias is written as 

111 ~])1(~~)1[( −−− −++= RHIHRHXK TTf
b Kαα                         (2.36) 

where the variables in the right-hand side are defined the same as before in section 

2.2.3. 

2.3.4 Baek et al (2006) bias estimation scheme 

Based on the state space augmentation method (e.g. Jazwinski 1970), Baek et 

al. (2006) propose a scheme for the EnKF to obtain the optimal estimates of the state 

and bias variables simultaneously.  In this method both the state and bias have 

ensemble members and for each member the state vector is augmented with the 

uncertain model bias vector. The analysis updates the augmented vector   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

b
x

z  

by assimilating observations of the state variables, where x is the model state and 

model bias. Unlike in DdSM, there is no assumed in this scheme. The bias is 

updated by state observations through the cross-correlation between the forecast state 

and bias, while this cross-correlation is assumed to be zero in DdSM. Therefore, the 

major difference between DdS and Baek et al. is that the former uses the bias error 

covariance which is assumed to be proportional to state error covariance, while 

the latter relies on the cross covariance between the bias and state variables. In 

addition, Baek et al. (2006) consider “correcting” the observation bias with respect to 

the model, rather than the model with respect to the observation in order to maintain 

the analysis within the model attraction. 

b ob

f
bbP
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This scheme is not tested in this study due to a parallel work by Baek who is 

implementing this scheme to the SPEEDY model.  

2.3.5 Low-Dimensional Method (LDM) 

Danforth et al (2007) separated the 6-hour forecast model errors into a constant 

forecast bias, the periodic (diurnal) component of the bias, and the state-dependent 

model errors.  If a reference state is available to approximate the atmospheric truth 

(in our case we use the NCEP/NCAR reanalysis), the 6-hour forecast error can be 

defined in terms of the reference state as 

rx

rfe xxx −=  

The low-dimensional scheme allows for three types of model errors,    

m

M

m
ml

L

l
l tt feb ∑∑

==

++
11

)()( γβ                                         (2.37) 

in which t  denotes the time step. The forecast bias b is obtained by averaging the 

errors over a certain time period  and the leading EOFs from the 

anomalous error field 

>=< exb le

><−= eee xxx ' which is not represented in the constant bias, 

are used to estimate diurnal or other periodic errors. The state-dependent systematic 

component is given by the leading Singular Vector Decomposition (SVD) modes 

(SVDs)  of the covariance of the coupled model state anomalies 

and corresponding error anomalies ' . L and M are the number of 

leading modes of EOFs and SVDs, respectively. The spatial fields b , and  are 

time-independent and pre-computed using the samples in the training period.  We call 

this approach low-dimensional because the shape of the model errors is pre-estimated 

mf

><−= fff xxx ' ex

le mf
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separately whereas only the amplitudes (Principal Components, PCs) )(tlβ  and 

)(tmγ  which have a much lower dimension (L and M) than the full model dimension, 

are estimated online.  

During the training period, the time-series of lβ  is calculated by projecting the 

EOFs onto . Since le 'ex lβ is dominated by bias in the diurnal cycle, the time-

dependent )(tlβ  can be estimated by averaging the lβ  over the diurnal cycle in the 

training period. For example, we can use the samples in the training period to 

calculate the average lβ  for 00z, 06z, 12z and 18z separately and apply them in the 

current time-step.  

Rather than calculating  Danforth et al. obtained the error 

anomalies  at the current time step t  based on the statistical correlation of the 

SVD mode m  and current state anomalies . Denote ,  and 

mm
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e tt fx )()('
1
γ∑
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=

)(' tex

)(' tfx )(nsm mg )(nmγ and 

as the PCs and SVD mode for the state anomalies  and the 6-hour error 

anomalies  at time step n in the training period, the PCs  and 

mf )(' nfx

)('ex n )(nsm )(nmγ  are 

obtained by projecting the coupled signals , onto the samples ,  as 

follows 

mg mf )(' nfx )(' nex

m
f

m nns gx ⋅= )(')(                                               (2.38)   

m
e

m nn fx ⋅= )(')(γ                                                (2.39) 

The correlation coefficient between the error anomalous field  and the 

th PC  is given by 
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where mλ is the m th singular values. Based on the linear-regression theory,  at 

the current time step t  can be computed by 

)(' te
mx

)(
)(

)('
)](),('[)('

2

2

ts
ns

n
nsnt m

m

e
m

m
ee

m ⋅
><

><
⋅=

x
xx ρ  

        m
f

m

e
m

m
e t

ns

n
nsn gx

x
x ⋅⋅

><

><
⋅= )('

)(

)('
)](),('[

2

2

ρ                  (2.41) 

where we have utilized the current state anomalies  and the correlation 

between the state anomalies and the error anomalies to obtain the state-dependent 

errors. By plugging (2.40) into (2.41), (2.41) can be simplified to 
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Now what remains to be determined is how to get the samples of 6-hour 

forecast error . In this study, following Danforth et al.(2007), in the training period 

we run the SPEEDY initialized with the NCEP/NCAR reanalysis (NNR) fields and 

take the differences between the SPEEDY 6-hour forecasts and NNR fields valid at 

the same time to obtain the samples of . 

ex

ex

2.4 Adaptive estimation of inflation factor and observation errors 

2.4.1 Adaptive estimation of inflation parameter 

 Denoting  as the innovations, i.e. the difference between the 

observations and their background counterparts . Thus  

)( bo
bo H xyd −=−

)( bH x
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Here  and are the observation and background error. 

Then the covariance of the innovation is 

)( too H xyε −= tbb xxε −=

TTbbTooT
bobo HεεHεεdd ><+>>=<< −− )(  

 where the observational errors   are assumed to be uncorrelated with the 

background errors . Using the definitions of background error covariance (2.1) and 

observation error covariance (2.2), we have  

oε

bε

RHHPdd +>=< −−
TfT

bobo )(                                       (2.43) 

This is a classical and widely-used relationship that provides a global check on the 

specification of the sum of background error and observation error covariances in 

observational space. If R is perfectly known, (2.43) can be used to diagnose the 

accuracy of the specified background error covariance. 

Another diagnostic on background errors can be obtained by the combination of 

innovation  and analysis-minus-background  (Desroziers et al. 2005). Since 

 can be written 

bo−d ba−d

ba−d

bo
baba

ba HH −− =−≈−= HKdxxHxxd )()()(  

Therefore we have 

><>=< −−−−
T

bobo
T

boba )()( ddHKdd  

Matrix HK is given by , thus  1)( −+ RHHPHHP TfTf

><+>=< −−
−

−−
T

bobo
TfTfT

boba )()()( 1 ddRHHPHHPdd  

Combining with (2.43), this whole expression simplifies to  
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boba HHPdd >=< −− )(                                          (2.44) 

if the matrices specified in  agree with the true 

covariances for background and observation error, 

1)( −+= RHHPHHPHK TfTf

(2.43) and (2.44) provide two consistency checks on background error 

covariance in observation space. In the ensemble filter, because of a variety of errors, 

the ensemble error covariance  estimated from the ensemble of forecast fields 

tends to underestimate the true background error covariance and multiplicative 

inflation is an attempt to rectify this, with     

f
eP

f
e

f PP )1( ∆+=                                               (2.45) 

Plugging (2.45) into (2.43) or (2.44) and considering only the diagonal term, we can 

estimate on-line the inflation factor ∆  by 
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where Tr denotes the trace of a matrix.  

We denote (2.46) and (2.47) as OMB2 method and AMB*OMB method, 

respectively. An accurate estimate of ∆  from these two methods requires a correct 

observation error covariance.  This is obvious for (2.46) but also implicitly true for 

(2.47) where itself is based on the use of (generally incorrect) specified 

observation error variances. 

ba−d
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2.4.2 Adaptive estimation of observation errors 

The observation-minus-analysis differences are given by ao−d

                                  )( ao
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Then the statistical expectation of the cross-product between  and is ao−d bo−d

><+>=< −−
−

−−
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boao )()()( 1 ddRHHPRdd                  (2.48) 

Plugging (2.43) into (2.48), we have   

Rdd >=< −−
T

boao )(                                           (2.49) 

if the matrices specified in  agree with the true 

covariances for background and observation error. This is the diagnostic providing a 

consistency check on observation error covariance. One application of this diagnostic 

is to diagnose observation error variance offline or on-line estimate it. For any subset 

of observations  with  observations, it is possible to compute the variance 

1)( −+= RHHPHHPHK TfTf
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where  is the value of observation o
jy j and ,  are their analysis and background 

counterparts.  

a
jy b

jy
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We denote (2.50) as OMA*OMB method. The accuracy of this method relies on 

 and  which depend themselves on the observation and background 

(therefore on inflation factor in EnKF) errors variances. 

ao−d bo−d

2.4.3 Simultaneous estimation of inflation and observation errors  

As discussed in the previous two sections, adaptive estimation of inflation 

requires the perfect observation error variance while an accurate estimate of 

relies on the optimal inflation factor. This becomes a nonlinear problem when 

neither the optimal inflation factor nor true  is known beforehand and both of 

them need to be estimated on-line. In this case, we propose to estimate the inflation 

and observation errors simultaneously within analysis cycle and allow the system 

itself to take some time to converge to the optimal value (range) for observation error 

variance (inflation factor).  

2)( oσ

2)( oσ

2)( oσ

2.4.4 Smoothing 

We estimate the observation error variances and inflation parameter adaptively 

at each analysis time step. However, the number of samples available at each step 

may not be enough to avoid large sampling error. To increase the sampling, we use 

adaptive regression based on a simple scalar KF approach usually used to post-

process model output (e.g. Kalnay 2003, Appendix C) to accumulate past information 

and make the observation error variance and inflation gradually converge to the 

optimal value while still allowing for time variations. This approach can be thought as 

a time smoother and has been used by Miyoshi 2005. We regard the estimation 

obtained directly from OMB2 or AMB*OMB or OMA*OMB as an observed estimate 
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oα  (either  or o∆~ 2)~( o
oσ  in this study) for the current time step. Instead of directly 

using it as the final estimation for that time step, we use simple scalar KF approach to 

best combine  and , the value derived by persistence from the previous time 

step, to get a new estimate denoted as the analysis : 

oα fα
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+
+

=
ααα                                             (2.51)                               

where ( ) denotes the forecast (observational) error variance for the adaptive 

regression. The relative ratio of /  determines the degree of smoothing. The 

bigger this ratio, the more  obtained from current step will be smoothed.  The error 

variance of   is given by 
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ν o ν f
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Assuming persistence as the forecast model for the estimated variable, and 

allowing for some error in the “persistence forecast” (Kalnay, 2003, Appendix C), we 

have: 

t
a

t
f αα =+1                                                  (2.53) 

t
a

t
f κvv =+1                                                (2.54) 

here κ  is a parameter which allows the slow increase of the forecast error. Although 

two additional control parameters: the observation error variance  and error growth 

parameter 

ν o

κ have been introduced here, Miyoshi 2005 has shown the final estimate is 

not sensitive to either of them. Following Miyoshi 2005, we use =1.0 and ν o κ =1.03 

in this study.  
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Chapter 3  

The LETKF performance in perfect model experiments   

3.1 Introduction 

In this Chapter, we implement the LETKF into an AGCM model, the SPEEDY 

model, under the assumption of a perfect model. Issues related to sampling errors are 

addressed.  The performance of the LETKF is examined by checking the 

characteristics of the analysis, background errors and their ensemble spread. Those 

characteristics will be served as a reference to the experiments in next chapter where 

model is no longer perfect.  

 

3.2 The SPEEDY model 

The SPEEDY (Simplified Parameterizations, primitivE-Equation DYnamics) 

model (Molteni 2003) is a recently developed atmospheric general circulation model 

(AGCM) with simplified physical parameterizations that are computationally 

efficient, but that maintain the basic characteristics of a state-of-the-art AGCM with 

complex physics.  

The SPEEDY model solves the primitive equation for prognostic variables of 

zonal wind ( ), meridional wind ( v ), temperature (T ), specific humidity ( ), and 

surface pressure ( ) at the truncation of wavenumber 30, corresponding to 96*48 

grid points and 7 sigma levels (0.950, 0.835, 0.685, 0.510, 0.340, 0.200, 0.080). The 

inputs are only taken in sigma levels, but the resulting forecasts are in both sigma 

levels and pressure levels (925, 850, 700, 500, 300, 200, 100 hPa). 

u q

sp
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3.3 Experimental setup  

We applied the LETKF to the SPEEDY model in the perfect model scenario 

where a true “nature run” is generated by integrating the SPEEDY model from 0000 

UTC 1 January, 1987, using the NCEP-NCAR Reanalysis (NNR) as the initial 

condition, until 1800 UTC 15 February, 1987. The observations are simulated by 

adding normally-distributed random noise to the nature run, and are available at each 

model grid points for  and every other model grid for , in both zonal and 

meridional directions, i.e. 25% of the number of model grid points. The amplitudes of 

the observation errors are 1 m/s for  wind, 1 K for T , 10

sp qTvu ,,,

vu, -4 kg/kg for  and 1hPa 

for . For each forecast-analysis cycle, the SPEEDY model is used to generate the 6-

hour forecast and the observations are assimilated by the LETKF.  

q

sp

We start the experiment by running 30 initial ensembles at 0000 UTC 1 

January, 1987. The 30 initial ensembles are created by adding the random noise to the 

“nature run” forecasts at 0600 UTC 1 January, 1987. In this way, the initial ensemble 

mean is 6 hours apart from the truth. Though the final results after the spin-up period 

are not sensitive to the initial ensembles, a good initial condition (not too far from the 

truth) helps to shorten the spin-up time. With our setting of the initial conditions, the 

spin-up time is about 15 days while it is more than one month in the experiments in 

Miyoshi 2005. The experiment runs for one and a half month till 1800 UTC 15 

February, 2007 and only the last month after the spin-up period is reported to verify 

the system. 
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3.4 Sampling errors 

In any ensemble data assimilation system, a limited K ensemble members are 

used to reproduce the N*N forecast error covariance matrix , where N is the 

number of degrees of freedom of the model. To avoid the filter divergence due to 

small samples, some additional processing of sample covariance is usually 

necessary. The two common methods are multiplicative inflation (Anderson and 

Anderson 1999) and localization (Hamill et al., 2001; Houtekamer and Mitchell, 

2001) techniques. Multiplicative inflation simply inflates the forecast error covariance 

 by a factor ∆ slightly larger than 1, which is equivalent to inflating the ensemble 

spread by a factor 

fP

fP

fP

11 −∆+=δ . 

Localization algorithms are meant to correct for errors in the sample covariance 

between observations and model state variables. In the LETKF, the analysis is 

performed in a local patch centered by a model grid point for which we try to find the 

optimal analysis. Only the observations within the local box are used to update the 

central point. This can be regarded as a cutoff-based localization algorithm. In our 

experiments, the local patch is simply a two-dimensional square box with length 

2 l +1 in both x and y model grid space. The physical shape of the local patch is not a 

square due to the convergence of the meridians in higher latitudes. The cutoff 

localization scheme forces the correlations between the analysis point and 

observations outside the local patch to be zero but without distinguishing the 

observations inside the local patch. This scheme may not be accurate enough since in 

our experiments we have only 30 ensemble members, so that the correlations inside 

the local patch could have sampling errors, especially for those observations that are 
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on the border of the local patch. In this study, besides the cut-off location, we apply 

the observation error covariance localization (Miyoshi 2005) to reduce or remove 

these spurious correlations. 

RR o1−← ρ                                                    (3.1) 

)
2

exp( 2

2

σ
ρ d−
=                                                  (3.2) 

where  denotes the distance from the analysis point and observation location and d

σ the localization scale. Therefore we have, 

11 )( −−+= RHHPHPK oρTfTf  

1)( −+≅ RHPHHP TfTf oo ρρ                               (3.3) 

Equation (3.3) indicates that the observation error covariance localization is an 

approximation of the localization of  (Houtekamer and Mitchell, 2001). Figure 3.1 

shows the localization factor

fP

ρ  as the function of the ratio d/σ , indicating the 

correlation is reduced to 60% of its original size for observation at the distance d=σ , 

while the observation effect is forced to be near zero at the distance larger than 3.5σ . 

Both the inflation factor and localization scale need to be tuned. To simplify the 

task of tuning we first fixed the inflation factor to be 0.04. Table 3.1 compares the 

analysis RMSE of 500hPa height using cut-off location and observation error 

covariance location with 30 ensemble members. With cut-off localization, the best 

result is obtained with the smallest local patch. The use of observation error 

localization allows the LETKF to use larger patches with more observations. 

Actually, when the localization scaleσ  is fixed, the results are not sensitive to the 

local patch size l . The smallest analysis error 2.33 in Table 3.1 is observed with a 
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local patch size l =3 and an observational error covariance localization scaleσ =1.5.  

Using this setting of localization scales, we then tuned the inflation factor and found 

that ∆ =0.05 is slightly better than ∆ =0.04.   

 

Table 3.1: Analysis RMSE of 500 hPa height field using LETKF with 30 ensemble 

members in the cases of applying cut-off localization or observation error covariance 

localization. The RMSE is temporally averaged for a month after the initial 15-days 

spin-up period and spatially averaged over the globe. A multiplicative inflation factor 

of =0.04 is applied. Two parameters, the local patch size ∆ l and the observational 

error covariance scaleσ , are tuned. 

The local patch size l  1   2  3 

500Z RMSE (m) (σ =∞) 2.34 2.66 3.19

500Z RMSE (m) (σ =2.0)   2.41

500Z RMSE (m) (σ =1.5)  2.35 2.33
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Figure 3.1: The localization factor )
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=  as the function of ration d/σ  

 

3.5 LETKF performance in a perfect model experiment 

Figure 3.2 summarizes the assimilation results with our final setting of the 

configurations ( l=3, σ =1.5, ∆ =0.05 and 30 ensemble members) for the LETKF 

under the perfect model assumption. Shown are time-series of root-mean-square 

(rms) analysis error (defined as analysis minus true state), averaged over the whole 

globe, for zonal wind ( u ), geopotential height (Z), temperature ( ) and specific 

humidity ( ).  By assimilating the observations every 6-hour, the analysis error 

reduces rapidly from a large initial value and approaches a stable level. It is clear that 

after the initial spin-up period, the analysis RMSE for all the variables are much 

smaller than the observational error standard deviations.  

T

q
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Figure 3.2: Analysis RMSE (solid curve) at 500 hPa for the period between 0000 

UTC 1 January 1987 and 1800 UTC 15 February 1987. The observational error 

standard deviations are shown as dash lines wherever applicable. The four panels 

from the top to the bottom correspond to zonal wind, geopotential height, temperature 

and specific humidity, respectively.    

 38 
 



 

To find why the LETKF performs well, we compare the ensemble spread with 

the ensemble mean error. Carrying out perfect model experiments, where we know 

the truth, allows us to calculate the ensemble mean error, which is the ensemble mean 

minus the truth. The ensemble spread is defined as the 6-hour forecast error deviation 

with respect to the ensemble mean. In the ensemble filter, the background error 

covariance is approximated using the sample covariance from an ensemble of model 

forecasts. To obtain a good performance, we require that the ensemble spread be 

representative of the true background error in both structure and magnitude. Figure 

3.3 shows the background error field (shaded) and the ensemble spread (contour) at 

an arbitrary time. In general these two fields agree with each other very well, 

indicating the ensemble spread has captured the forecast error structure.  

As for the amplitude, we compare the background RMSE and the spread 

averaged over the whole globe (Figure 3.4).  The value of spread is a little smaller in 

the lower level and higher in the upper levels in terms of the background RMSE.  But 

in general, they are close enough to each other at all levels. Therefore we can 

conclude that with our setting of configurations ( l=3, σ =1.5, =0.05 and 30 

ensemble members), the spread among 30 ensemble members has captured well both 

the true error structure and the true error magnitude.    

∆
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Figure 3.3: The background (6-hour forecast) error field (shaded) and the ensemble 

spread of 500 hPa height field (contour) at an arbitrary time. 
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Figure 3.4: Background RMSE at all pressure levels (solid line) and background 

ensemble spread (dashed line) of height field, temporally averaged for one-month 

after the spin-up period. 
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Chapter 4  

Accounting for and correcting model errors in the LETKF  

4.1 Introduction  

In Chapter 3, we have shown the LETKF works very well in the perfect model 

scenario. In reality, however, the numerical model is never perfect. In this chapter we 

drop the assumption of a perfect model by assimilating observations simulated from 

the NCEP/NCAR Reanalysis (NNR) as in Miyoshi (2005). Several methods to 

account for and/or correct model errors are tested.  

4.2 NCEP/NCAR reanalysis (NNR)   

4.2.1 NNR observations  
 

To assess the performance of the LETKF in the presence of model errors, we 

replace the ‘nature’ run in the perfect model experiments by the NNR fields. Since 

the NNR assimilated real observations, we assume the NNR fields are an approximate 

estimate of the unknown ‘true atmosphere’. A quantitative validation of this 

assumption is beyond the scope of this research. We add the random noise with the 

same standard deviation used in the perfect model experiments to simulate the NNR 

observations. The density of observations remains the same as that in Chapter 3. 

Since the NNR data are on pressure levels and we perform the LETKF in SPEEDY 

sigma coordinates, for simplicity, the NNR observations are converted to the 

SPEEDY sigma coordinates determined by the SPEEDY forecasted . Horizontal 

and vertical linear interpolations are required to obtain the interpolated observations 

sp
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in SPEEDY sigma coordinates.  is used to determine the weighting for the 

vertical interpolation.  

plog

4.2.2 Characteristics of model errors  

Since the observations are generated from the NNR while the SPEEDY has its 

own climatology, the model is no longer perfect. To investigate the SPEEDY model 

errors against the NNR field, the SPEEDY model is run every 6 hours using NNR as 

the initial conditions and the 6-hour forecast errors are calculated by the differences 

between the SPEEDY 6-hour forecasts and the NNR verified at the same time.  

Assuming the NNR is an estimation of the unknown ‘truth’, these 6-hour forecast 

errors are an approximation of the ‘true’ model errors.  

Figure 4.1 shows the SPEEDY 6-hour forecast errors against the NNR field of 

the three prognostic variables (zonal wind, temperature and specific humidity) and 

one diagnostic variable (geopotential height), temporally averaged over our 

experimental period between 0000 UTC 1 January, 1987 and 1800 UTC 15 February, 

1987 using 184 samples. The time-mean of forecast errors is regarded as the model 

bias. For zonal wind, the largest bias is found in the polar regions or associated with 

the position of the jet. For temperature, the bias is significant at lower or upper levels 

(mostly over land) but small at the 500 hPa level. The bias of specific humidity is 

large in the region where the value of the humidity itself is large, i.e., in the tropics 

and at low levels. As for the geopotential height, the largest bias can be seen over 

elevated surface terrain, which is due to the topographic differences in the SPEEDY 

mode and the NNR field.   
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Figure 4.1: Mean of 6-hour SPEEDY forecast errors initialized from the NNR fields 

(model bias), temporally averaged over the experimental period between 0000 UTC 1 

January, 1987 and 1800 UTC 15 February, 1987 using 184 samples. 
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Besides the time-averaged bias, we also investigate the time-varying component 

of model error to see if there is another significant signal which is not included in the  

 time-averaged bias (Danforth et al. 2007). To do so, we subtract the time-averaged 

bias from the time series of model errors, and compute the empirical orthogonal 

function (EOFs) for the model error anomalous fields. Figure 4.2 shows the first two 

EOF patterns and their corresponding time amplitudes, Principal Components (PCs) 

for temperature at the bottom level (925 hPa). It is clear that both of them correspond 

to a diurnal variation of SPEEDY model bias. Combining the EOFs and PCs, we 

found the SPEEDY model underestimates (overestimates) the near-surface local 

daytime (nighttime) temperatures. This is due to the lack of diurnal changes in solar 

forcing in the SPEEDY model. This detected temperature diurnal bias is mainly over 

land and largest near the surface (925 hPa) but also significant at 850 hPa. We did not 

observe a significant diurnal bias signal in other levels and other variables. 
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Figure 4.2: Top and middle panels: the first two leading EOF patterns of the 925 hPa 

temperature model error anomalous fields using samples in the experimental period 

between 0000 UTC 1 January, 1987 and 1800 UTC 15 February 1987. Their 

corresponding Principal Components (red line for PC1 and green line for PC2) are 

shown for an arbitrary period in January of 1987. The explained variances for these 

two EOF modes are 35.7% and 32.5% respectively. 
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4.3 Effects of model errors on the LETKF 

4.3.1 Experimental setup  

To assess the effect of model errors on the performance of the LETKF, we 

assimilate the NNR observations every 6-hour with the LETKF using the same 

configurations as those in the perfect model experiments (l=3, σ =1.5, =0.05 and 

30 ensemble members). Assimilations were performed for the period between 0000 

UTC 1 January 1987 and 1800 UTC 15 February, 1987. The initial ensembles at 0000 

UTC 1 January were generated by adding random noise to the NNR field at 0000 

UTC 2 January.  No extra method is applied to deal with model errors. This 

experiment is regarded as the ‘control run’ for the later experiments in section 4.4. 

After an initial spin-up period of half-month, the analyses and forecasts are verified 

against the NNR field which is assumed to be an estimation of the unknown truth. 

∆

4.3.2 ‘Control run’ results 

Figure 4.3 shows the analysis and background RMSE at all pressure levels of 

the geopotential height field. For comparison, the analysis RMSE of height in the 

case of perfect model is also shown. We can see the strong negative influence of the 

model errors on the performance of the LETKF. In the presence of models errors, the 

500 hPa height analysis RMSE has increased from 2.4 m to 50 m due to the model 

errors and their accumulated effects. With a more sophisticated and high-resolution 

numerical model, such as those currently used in operation, the negative influence 

should be much smaller but will still exist as long as the model is not perfect.   
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RMSE (perfect vs. imperfect model)

 
Figure 4.3: Analysis RMSE (solid curve) and background RMSE (dotted curve) at all 

pressure levels of height field when assimilating the ‘realistic’ observations from 

NNR, temporally averaged for a month after the initial spin-up period. For 

comparison, the analysis RMSE in the perfect model experiment where assimilating 

the ‘simulated’ observations from SPEEDY ‘nature run’ is also shown (dashed 

curve). (We note that in a more realistic model, with a larger inflation, the imperfect 

model analysis does not deteriorate as much as in this example, e.g., Figure 2 in 

Szunyogh et al. 2007)   
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To investigate why the LETKF performs poorly in the presence of large model 

errors without additional inflation, we plot the background ensemble spread of the 

height field (Figure 4.4). It is interesting to find that the spread is similar to that in the 

perfect model experiment, and much smaller than the actual forecast error shown by 

the dotted line in Figure 4.3, indicating that the forecast ensembles are ‘blind’ to 

model errors. This can be clearly explained by the schematic in Figure 4.5 where the 

difference between ensembles is small but the whole set of ensembles is far from the 

‘truth’. In this case, the ensemble spread underestimates the actual forecast error, 

leads to the wrong confidence to the forecasts and less weight to the observations and, 

as a result, to large analysis errors as in the ‘control run’ (Figure 4.3). 

4.4 Accounting for and correcting model errors  

4.4.1 Experimental design 

We have seen the bad performance of the LETKF in the presence of model 

errors without correcting or accounting for their effects. In this section we test several 

methods described in Chapter 2 to deal with model errors. As in the ‘control run’, we 

run the SPEEDY-LETKF for the period 0000 UTC 1 January, 1987 to 1800 UTC 15 

February, 1987 and the verification statistics are computed for analyses and forecasts 

against the NNR fields after the initial spin-up period of half-month.  

4.4.2 Multiplicative inflation 

Multiplicative inflation is a method to deal with model errors that is 

straightforward to implement since it has already been used in the perfect model 

experiments. Rather than being used to prevent the ensemble from collapsing due to  
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Figure 4.4: Background ensemble spread in height field at all pressure levels 

temporally averaged over a month after the initial spin-up period in the cases of 

perfect model assimilating observations generated from the SPEEDY ‘nature’ run 

(dashed curve) and imperfect model assimilating observations generated from the 

NNR field. 
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Figure 4.5: Schematic of background ensembles and the ‘truth’ in the presence of 

model errors. The solid curves represent the trajectories of two ensembles while the 

‘truth’ (dashed curve) has its own dynamics.  
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the limited ensemble members in the case of perfect model, here it is intended to 

enlarge the ensemble forecast error covariance to account for model errors. This 

method assumes that model error has the same error structure as the dynamically 

evolved error since the enlargement is done in the space spanned by the ensembles.  

We tune the inflation factor in terms of the analysis error. Table 4.1 provides the 

analysis RMSE of testing different inflation factors. Besides the 500 hPa height field 

which is often used as a proxy of the performance of a forecast or a data assimilation 

system, the RMSE are also shown for 200 hPa u , 850 hPa q  and 925 hPa T where 

large constant biases or large diurnal biases are found. By increasing the inflation to 

be 1.0 or larger, all the results are significantly better than the ‘control run’ where a 

very small inflation factor 05.0=∆ is used. It seems that for different fields, the 

optimal inflation is different. For the geopotential height field, a large inflation 

( ) is required, while a much smaller inflation (0.2=∆ 0.1=∆ ) is optimal for the 925 

hPa humidity field.  The RMSE for the 200 hPa u  field seems less sensitive to the 

value of the inflation. These results indicate that we may need different inflation 

factors for different fields. We see that the SPEEDY model biases are complicated, 

depending on variables, levels and regions. Ideally, the optimal inflation factor should 

be a function of variables, regions, and levels. However, in practice, tuning that kind 

of inflation is prohibitive. In this study we still consider the inflation factor as a single 

number and choose the value of 5.1=∆  as its optimal choice, although it is not 

optimal for all the fields. 
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Table 4.1: Analysis RMSE of 200 hPa u , 500hPa Z , 850 hPa  q  and 925 hPa 

T fields, temporally averaged for a month after the initial spin-up period by applying 

different amplitudes of multiplicative inflation. 

Fields 

(unit) 

200 hPa 

u  (m/s) 

500 hPa 

Z (m) 

850 hPa 

q (g/kg) 

925 hPa 

T ( K) 

=∆ 0.05 (‘control run’) 5.45 48.50 0.93 3.19 

=∆ 1.00 2.20 26.96 0.56 2.04 

=∆ 1.50 2.19 25.84 0.59 2.02 

=∆ 1.75 2.21 25.74 0.61 2.05 

=∆ 2.00 2.27 25.57 0.63 2.05 

=∆ 2.25 2.32 25.65 0.66 2.09 

 

4.4.3 Additive inflation 

To implement the additive inflation scheme, we randomly selected samples 

from a subset of NNR 6-hour tendency fields (Whitaker et al. 2007) in January and 

February for the years 1982-1986. Unlike random numbers, these randomly selected 

6-hour tendency fields are geostrophically balanced. In each analysis cycle, we 

randomly select 30 tendency fields, scale them, and add the differences between these 

scaled fields to each background ensemble member, i.e. 

kk
f
e

f
k rqxx += )(                                           (4.1) 

where we require that 

0=kq                                                   (4.2) 

and denote 
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Qqq =
T

kk                                                (4.3) 

here  is the index for each ensemble member, and so  denotes the  

ensemble forecast.  is the additive noise added to ensemble member k, and 

k )(k
f
ex kth

kq r is its 

amplitude. In this way, we increase the background ensemble spread without 

changing the ensemble mean. The modified forecast error covariance is actually given 

by 

                                         Tfffff ))(( xxxxP −−=                                                

      TTf
e

f
e

f
e

f
e r qqxxxx 2))(( +−−=  

                                                                                                              (4.4) QP 2rf
e +=

f
eP is the ensemble error covariance before adding the random noise. We tune the 

scale r  for the random samples and found r =1.5 is optimal for our application. This 

value is much larger than the optimal value 0.33 found by Whitaker et al. (2007) in 

their application. One reason is that they added the random tendency fields to analysis 

ensembles rather than background ensembles; another important reason is that their 

assimilation model (the lower resolution version of the operational NCEP global 

forecast system) is much more realistic than the SPEEDY model used here, so that 

the model errors involved are much smaller in their case. 

 
Figure 4.6 shows the analysis RMSE of 200 hPa u , 500 hPa Z , 850 hPa q  and 

925 hPa T fields, by applying the NNR 6-hour tendencies scaled by 1.5 as the 

additive noise. For comparison, the results from 5.1=∆ multiplicative inflation and 

the ‘control run’ are also shown.  Both inflation schemes result in much better   
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Figure 4.6: Time series of the global-averaged analysis RMSE in the cases of the 

‘control’ run (dashed curve), ∆ =1.5 multiplicative inflation (dotted curve) and r =1.5 

additive inflation (solid curve). The four panels from the top to the bottom correspond 

to 200 hPa u , 500 hPa Z , 850 hPa q  and 925 hPa T fields, respectively.    
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analyses than the ‘control run’ for all the fields. The time-mean of analysis error of 

500 hPa height has been reduced by about 50%. Additive inflation outperforms 

multiplicative inflation in all fields especially in the 850 hPa q  and 925 hPa T fields. 

The diurnal error signal is still clear in the 925 hPa T field with multiplicative 

inflation while it disappeared with additive inflation. 

4.4.4 Dee and da Silva method with inflation (DdSM+)  

The DdSM aims to estimate and correct model bias but does not deal with 

system-noise. In order to have a good performance of the LETKF, we use the additive 

inflation to account for system-noise. The additive noise is obtained in the same way 

as that in section 4.4.3. We call the DdSM augmented with additive noise DdSM+. 

Recall that in the pure DdSM (section 2.3.3), the forecast model for bias is 

given by  , and the bias forecast error covariance is assumed to be 

proportional to the state forecast error covariance, i.e., . Thus we have two 

variables (

a
i

f
i 1−= bb µ

f
xx

f
bb PP α=

µ andα ) to tune. If we use additive inflation to model the system-noise, 

the amplitude ( r ) of additive noise is another parameter to be tuned. 

To simplify the task of tuning the three parameters, first we fix α =0.5 

(following the recommendation of Dee and da Silva 1998) and µ =1.0 (assuming a 

persistence model for bias prediction) and then tune the amplitude ( r ) of the additive 

noises.  We start at 0000 UTC 1 January, 1987 by assuming zero bias and run the 

SPEEDY-LETKF system for one month and a half. We found that no matter how 

small r  is, the filter diverges, especially for temperature fields in the lower levels. 

The bigger r is, the faster the divergence. One possible reason is that there is a strong 
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diurnal signal in the low-level temperature bias field (Figure 4.2) while the 

persistence model (µ =1.0) forecasts the bias to be equal to that 6 hours before, which 

is incorrect for the current time step. Ideally we may need a better bias prediction to 

capture this bias in a synoptic timescale. Here, to simplify, we reduce µ to be less 

than 1 and find µ =0.9 is successful for a wide range of choice of r (Todling, 

personal communication). µ =0.9 can be regarded as a forgetting factor to reduce the 

impact of bias from the previous time step.  

Now we fix µ =0.9 and tune the pairs of (α , r ).  The results are summarized in 

Table 4.2. It is clear that accounting for random system-noise is essential in order to 

have a good performance of the LETKF. Without the additive noise, the pure DdSM 

( r =0) is not able to beat the pure additive inflation (α =0) with an optimal amplitude 

of r =1.5. By adding a small additive noise ( r =0.25), the DdSM+ outperforms the 

pure additive inflation scheme but the optimal choice of α  is large (α =0.75). When 

increasing r  to be 0.5, the value of the optimalα reduces to 0.5. These results can be 

better understood by the expression of P  wheref
xx

f
bb Pα= α is an explicit parameter 

and r is an implicit factor (since is affected by f
xxP r through equation 4.4) to 

determine the bias forecast error covariance . When f
bbP r is small, the system requires 

a big value of α  to obtain an optimal , while as f
bbP r increases, the optimal value of 

α decreases because the forecast error covariance for the state variables has 

already been increased. By increasing 

f
xxP

r from zero to 0.5, a big improvement is found. 

Beyond r =0.5, it seems that there is almost no room to improve.    
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Table 4.2: Analysis RMSE of 500 hPa height using the DdSM+ with different choices 

of ( α , r ). When r =0 ( i.e. pure DdSM), a small factor ( =0.05) of the 

multiplicative inflation is applied to prevent the filter divergence. For the other 

choices of 

∆

r , no multiplicative inflation is used. For comparison, the pure addition 

inflation application is also shown (α =0 and r =1.5). 

  α  0.0 0.25 0.50 0.75 1.00

r =0   37.1 35.0 33.9

r =0.25  22.5 22.0 18.9 19.2

r =0.5  19.8 17.6 20.4 20.1

r =0.6   17.3   

r =1.5 23.8     

 

To compare the performances of the DdSM+ and the additive inflation scheme 

for the other variables and at the other levels, the analysis RMSE of zonal wind and 

temperature at all vertical levels are shown in Figure 4.7. With bias correction, a 

small additive noise (r=0.25) can beat the result from the no bias correction run, 

whereas a large amount of additive noise (r=1.5) is required to account for both the 

bias and the system-noise. The optimal results with bias correction (r=0.6) are 

significantly better than the pure additive inflation application. These results suggest 

that removing the bias from the ensemble mean is more accurate than accounting for 

them in the second moment of the ensemble, on condition that the estimated biases 

are good enough to represent the true forecast biases. We note that the control 

analysis error cannot be plotted in Figure 4.7 because it is 2-3 times larger than the 

error obtained with all the approaches to deal with model errors.  
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Figure 4.7: Analysis RMSE at all pressure levels temporally averaged for one month 

after the initial half month spin-up period for zonal wind (left) and temperature (right) 

in the cases of additive noise with amplitude r=1.5 (solid line), the DdSM together 

with additive noise with amplitude r=0.25 (dashed line) and the DdSM together with 

additive noise with amplitude r=0.60 (dotted line). 

 
To assess the estimated bias fields from the DdSM+, we plot the time mean of 

the estimated bias field, time mean of the biased SPEEDY 6hr forecast, and of the 

debiased forecast (made by subtracting the estimated bias from the biased forecast) 

for 200 hPa zonal wind (Figure 4.8). Before the bias correction, the 6-hour SPEEDY 

forecast field is significantly biased. Large forecast biases can be found in polar 

regions or associated with the jet. It is remarkable that the estimated bias field 

captures the structure of the forecast bias well, though the amplitude is in general 

somewhat smaller.  The actual forecast biases should be expected to be larger than the 

estimated values since the scheme is not perfect. In addition, the DdSM is designed to 

capture the slowly varying component of forecast errors while the remaining 

components can be accumulated as the data assimilation system is cycled. After 
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subtracting the estimated bias from the original biased forecast, the debiased forecast 

exhibits significantly less bias. With the debiased forecasts, it is not surprising that we 

obtain a better analysis than with the pure additive inflation application and that the 

required additive noise is much smaller since most of the model bias has already been 

removed. We use the term ‘debiased’ forecast rather than ‘unbiased’ forecast because 

the biases are not completely removed. The remaining biases are mostly in the scales 

close to the model resolution, which suggests that the DdSM is less efficient when the 

biases are in the smallest scales. This is confirmed in Figure 4.9 showing the DdSM+ 

does not capture the bias well in 850 hPa zonal wind where we see the small-scale 

characteristic of the model bias (see Figure 4.1). In our experiments, we have 

observations at every other grid point therefore the DdSM+ relies on the surrounding 

observations to estimate bias at those un-observed model grids. If the biases are in the 

scales close to the model resolution (e.g., the opposite sign of bias between two 

adjacent points), the estimation for the un-observed grids can be ‘blind’ or at least 

underestimate the ‘true’ bias. As a result, the ‘debiased’ forecast at 850 hPa is still 

biased and worse than that at 200 hPa.  
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Figure 4.8: Top panel: Time-mean of SPEEDY 6-hour forecast (bias); Middle panel: 

Time-mean of the estimated bias field; Bottom panel: Time-mean of debiased 

forecast after subtracting the estimated bias from the SPEEDY forecast (bias of the 

debiased forecast) in the case of applying the DdSM+. The results are shown for 200 

hPa zonal wind and temporally averaged for a month after the initial spin-up period. 
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Figure 4.9: Same as Figure 4.8, except for 850 hPa  
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We have seen the large temperature diurnal biases near the surface over land 

(Figure 4.2), while the DdSM in its original design aims to correct the slowly varying 

bias. To see if it is able to handle the fast-varying bias, we plot the estimated bias of 

the 925 hPa temperature field at a specified location (120°E, 30°S) in Australia where 

a large diurnal bias is presented in Figure 4.2.  As seen in Figure 4.10, the estimated 

bias follows the forecast error but the amplitude is much smaller. This is because the 

analyzed biases have been contaminated by the biases at the previous time, which are 

different from the bias at the current time.  Nevertheless, the time series of estimated 

bias is in phase with that of the forecast error, so that at least the direction of bias 

correction is correct. With such small amplitude, the estimated bias is able to correct 

only a small portion of the diurnal bias (the debiased forecast exhibits a little smaller 

error than the biased forecast).   

The DdSM+ works generally well, and is better than the additive inflation 

method. However, this bias correction scheme is relatively expensive since it doubles 

the analysis time. To address this problem, we implement a simplified version of the 

DdSM (Radakovich et al. 2001). The simplified algorithm modified the Kalman gain 

for bias  , to be  1])1[( −++= RHHPHPK Tf
xx

Tf
xxb αα

xx
Tf

xx
Tf

xxb KRHHPHPK αα =+≈ −1][                        (4.5) 

 on condition that α is small enough. The expression of (4.5) implies that the analysis 

increment for the bias is proportional to the analysis increment for the state variable. 

Thus, the bias analysis process is computationally free if it is done after the state 

analysis has been updated (see section 2.3.3 in Chapter 2 for details).   
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Figure 4.10: Time series of the biased SPEEDY forecast error (red line), the 

estimated bias by the DdSM+ (black line), and the error of the debiased forecast by 

subtracting the bias from the biased SPEEDY forecast (green dotted line) of the 925 

hPa temperature field at (120°E, 30°S) where a large diurnal bias is presented.    

 

We take the same setting of the parameters as the optimal choice used in the 

DdSM+ ( 9.0=µ ,α =0.5, r =0.6) and run the SPEEDY-LETKF system with the 

simplified DdSM+. The resulting analysis is worse than that from the DdSM+ for all 

the variables but better than that from the pure additive inflation in the 500 hPa height 

field and comparable results are found in the other fields, except for specific humidity 

fields (Table 4.3).  

This result is not unexpected. First, in the simplified approach, we use α =0.5 

so that the assumption of a smallα  is not met. Second, the DdSM+ updates the bias 
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field first then uses the current ‘analysis’ bias to obtain the debiased forecast while 

with the simplified version we have to use the ‘forecast’ bias (usually taken from the 

previous time and, as a result, less accurate than the ‘analysis’ bias) since the bias 

analysis is done after the state variables have been updated. 

 
Table 4.3: Comparison of analysis RMSE between the applications of additive 

inflation, the DdSM+ and the simplified DdSM+.  Results are shown for 200 hPa 

zonal wind (u ), 500 hPa height ( Z ), 850 hPa specific humidity ( ) and 925 hPa 

temperature (

q

T ) fields, temporally averaged for a month after the initial spin-up 

period. 

 
Fields 

(unit) 

200 hPa 

u  (m/s) 

500 hPa 

   Z (m)   

850 hPa 

q (g/kg) 

925 hPa 

T (K) 

Additive inflation 1.88 23.82 0.48 1.43 

Simplified DdSM+     1.87     19.54     0.61 1.37 

DdSM+ 1.76 17.32 0.47 1.30 

 

4.4.5 Low-dimensional model error correction 

The low-dimensional method (LDM) attempts to correct three types of model 

errors: 1) Time-averaged bias correction; 2) Diurnal bias correction; and 3) State-

dependent error correction. Danforth et al. (2007) succeeded in correcting model 

errors during the forecast period while neglecting errors in the initial condition to be 

perfect. Here we test this method in a more realistic situation. The forecast-analysis is 

cycled so that we have both the errors in the initial conditions and the model errors. 
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We use the LETKF as the data assimilation scheme and focus on the impact of low-

dimensional error correction on the performance of the LETKF.   

 

A. Pure LDM 

First we test the pure LDM, i.e. we do not use any additional method (e.g. 

additive inflation) to account for system-noise. A small value ( =0.05) of 

multiplicative inflation is applied to prevent the ensemble spread from collapsing. 

∆

 

a. Time-averaged bias correction 

In this section we compare the impact of two different training periods to 

generate the time-averaged bias. Model errors are sampled by the difference between 

the NNR fields and the 6-hour SPEEDY forecasts started from the NNR field. To 

obtain a time-averaged bias, we need a subset of model error samples to do the 

average. The bias fields shown in Figure 4.1 are obtained by averaging the 184 

samples over our experimental period between 0000 UTC 1 January 1987 to 1800 

UTC 15 February 1987.  However these samples would not be available beforehand 

in a real case. Here we test two feasible training periods over which we average the 

model error samples. One is one month prior to the experiment, e.g., if the 

experimental time is in January 1987 we use December 1986 as the training period; 

the other is based on the 5-year climatology for the years 1982-1986, following 

Danforth et al. (2007). The time-averaged bias is separated for January and February. 

Figure 4.11 compares the analysis RMSE of 200 hPa zonal wind, 500 hPa 

temperature and 850 hPa specific humidity using time-averaged biases obtained from 
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two different training periods. It clearly shows that the climatological bias gives 

better results than the prior one-month bias estimate. The results for the other 

variables and at the other levels are similar. Thus, in the rest of our experiments for 

the low-dimensional bias correction, the samples of model error are from the 5-year 

climatological dataset.  

 

b. Diurnal bias correction 

We saw the strong signal of diurnal bias near the surface in temperature fields 

that is projected onto the first two leading EOFs (Figure 4.2). In order to correct these 

diurnal biases, we compute the first two leading EOFs of the error anomalous fields 

for temperature at the bottom two sigma levels ( σ =0.95 and σ =0.835) using 

samples from the 5-year climatological dataset. The Principal Components (PCs) of 

these two modes are estimated by projecting the leading eigenvectors onto the error 

anomalous fields. The diurnal magnitude of the two modes is estimated by averaging 

the time-series of the PCs over the daily cycle for the years 1982-1986. A diurnal bias 

correction is computed as a function of the time of day.  Figure 4.12 compares the 

temperature analysis RMSE at 925 hPa and 850 hPa with and without the diurnal bias 

correction. With only the time-averaged bias correction, the analysis RMSE is higher 

and a strong diurnal variability can be found. Correction including the diurnal bias 

reduces the global-averaged analysis RMSE by about 10% at 925 hPa and 5% at 850 

hPa and this improvement can be mostly attributed to the error reduction over land 

(Figure 4.13). 
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Figure 4.11: Comparison of analysis RMSE with time-averaged bias estimated from 

one-month prior samples (solid curve) and estimated from 5-year climatology (dotted 

curve). Time series are shown for 200 hPa zonal wind, 500 hPa temperature and 850 

hPa specific humidity.   
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Figure 4.12: Time series of global-averaged analysis RMSE corrected for the constant 

bias with (dotted line) and without (solid line) diurnal bias correction for temperature 

at 925 hPa (left) and 850 hPa (right). 

 
 

Figure 4.13: Analysis RMSE difference between the runs with and without diurnal 

bias correction, averaged for a month after the initial spin-up period, for temperature 

at 925 hPa (left) and 850 hPa (right). The green color indicates the RMSE reduction 

by including the diurnal bias correction. 
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c. State-dependent correction 
 

In addition to the time-averaged and diurnal bias, we also compute the leading 

mode of the Singular Value Decomposition (SVD) of the covariance matrices 

between the state anomalies and the model error anomalies to allow a residual 

correction of the state-dependent errors (see section 2.3.5 in Chapter 2 for details). 

The SVD modes are generated separately for different variables and levels using 

model error samples from the years 1982-1986. Ten SVD modes are used to calculate 

the state-dependent model error anomalies. To avoid spurious long-distance 

correlations, following Danforth et al. (2007), the correlations between two grid 

points that are more than 5 grid points away from each other are forced to be zero. 

The impact of the state-dependent error correction on the global averaged 

analysis RMSE is generally small but positive.  For some of the variables at certain 

levels (for example, 500hPa temperature field in Figure 4.14), the positive and 

negative impact is mixed with time while for the others we observed the consistent 

positive impact (for example, 925hPa meridional wind field) though the impact is 

relatively small. 

To better understand the results for the 925 hPa meridional wind field, we plot 

the three leading coupled SVD modes between the state anomalies and the model 

error anomalies using the climatological samples in January from the years 1982-86, 

and the time-averaged analysis RMSE reduction by including the state-dependent 

error correction (Figure 4.15). First we see the strongly coupled modes indicating a 

significant relationship between the model error anomalies and state anomalies. Then 

we find most of the analysis RMSE reduction actually occurs in the regions where the 
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coupled signal is the strongest. Since we assume a local structure in the covariance 

matrices, the positive impact is also restricted to some certain local regions. For those 

areas where there is no coupled signal, for example in the southern Hemisphere and 

tropics, the impact of the state-dependent error correction is negligible.  This explains 

why the improvement for the globally averaged analysis RMSE is small, though 

locally the improvement can be as large as 30%.   

 

 
 

Figure 4.14: Time series of globally averaged analysis RMSE corrected for the 

constant and diurnal bias with (dotted line) and without (solid line) the state-

dependent error correction for temperature at 500 hPa (left) and meridional wind at 

925 hPa (right). 
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Figure 4.15: The first three leading SVD structures between the model state 

anomalies (contours) and the model error anomalies (shades) in meridional wind at 

925 hPa in January for 1982-1986, and the analysis RMSE difference between the 

runs with and without the state-dependent error correction, averaged over the period 

from 11 January 1987 to 31 January 1987 (bottom right panel). The green color 

indicates the RMSE reduction by including the state-dependent error correction. Most 

of the reduction is found in the circled regions where the leading coupled signals are 

the strongest.    
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B. LDM with inflation (LDM+) 

So far we have not dealt with system-noise. As in the case of the DdSM method, 

without handling this random noise, the LDM is not able to beat additive inflation 

with an optimal amplitude r =1.5 (Figure 4.16).  To parameterize system-noise, we 

add randomly selected NNR 6-hour tendency field to each forecast ensemble member 

and tune their amplitude (additive inflation). The optimal value of r =0.4 in this case 

is much smaller than 1.5 which is optimal in the pure additive inflation application. 

The LDM, plus a small amount of additive noise (LDM+ hereafter), outperforms the 

pure additive inflation scheme everywhere. These results indicate that in the presence 

of complicated model errors we have to deal with both model bias and system-noise. 

For the biases, estimating and correcting them for the ensemble mean give better 

results than accounting for their effects in the second moment of the ensemble. 

We have shown that the DdSM+ is less accurate when the biases are small-scale 

(Figure 4.9). To see if the LDM+ is able to handle this problem, we plot the same 

figure as Figure 4.9, but using the LDM+ (Figure 4.17). The estimated bias field 

captures the structure of the forecast bias quite well even in small scales. The 

resulting ‘debiased’ forecast is much less biased compared to that from the DdSM+.  

Unlike the DdSM+ estimating bias in observation space, the bias estimation in the 

LDM+ is done in model space. As a result, the LDM+ is less affected by the 

observation density and can capture the bias structure well at all model grid points as 

long as the bias structure in the training period is similar to that in the experimental 

period. 
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Figure 4.16: Time series of the global-averaged analysis RMSE of the 500 hPa Z and 

925 hPa T fields, in the cases of the LDM alone (dashed curve), r =1.5 additive 

inflation (dotted curve) and the LDM together with additive inflation with an 

amplitude r =0.4 (solid curve).     
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Figure 4.17: Same as Figure 4.9, except in the case of applying the LDM+. 
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4.4.6 Overall comparison 

We have assessed the performance of each method separately. Finally we 

compare them with each other. As before, we verify the results against the NNR 

fields, and we choose optimal parameters for each method. For the LDM, the DdSM 

and its simplified version, we add additive noise and their optimal amplitude is 

chosen accordingly.  

 

a. Analysis verification 

 As seen in Figure 4.18, the LDM+ provides much better analyses than the other 

methods for all the variables and at all levels. The DdSM+ generally outperforms 

both inflation schemes. Its simplified version is worse than the original version but is 

comparable to the additive inflation (except for specific humidity) and better than the 

multiplicative inflation scheme that has the worst results in all five methods. 

However, it should be noted that all the methods have made a huge analysis 

improvements compared to the ‘control run’ (red line in Figure 4.19).  Thus, we can 

conclude that the LETKF would not work well without at least accounting for the 

effects of model errors, and that correcting model biases is, in general, better than 

only accounting for their effects in the second moment of the ensemble on the 

condition that we have a good method to estimate model biases. The estimated biases 

are not good enough for the simplified DdSM+ to outperform the additive inflation 

scheme for most of the variables. However, the DdSM+ generally beats the additive 

inflation. The performance of the LDM+ is remarkable. It outperforms the DdSM+ in 
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all the fields throughout all pressure levels especially at lower levels. For the zonal 

wind field, we have shown this is due to bias in the small scale, which the DdSM+ 

handles less efficiently. For temperature, the DdSM+ can only correct a small part of 

the diurnal bias. 

To further understand what causes the analysis RMSE difference between 

different methods, we examine the analysis bias for each method. Since bias is a 

three-dimensional field, in a spatial average, a large positive bias in one region could 

cancel out a large negative bias in another region. To avoid this problem, we take the 

absolute value of bias before the spatial average (Figure 4.20). As the DdSM+ is 

better than its simplified version and additive inflation is better than the multiplicative 

inflation, we concentrate on comparing only three schemes: the LDM+, the DdSM+ 

and additive inflation alone.  Figure 4.20 shows that the analysis bias of the DdSM+ 

is generally smaller than that of additive inflation, while the LDM+ analyses have 

much smaller bias than the other two methods. The bias difference between methods 

is nearly as large as the RMSE difference shown in Figure 4.18 (note that the plotting 

scales in Figure 4.18 and Figure 4.20 are the same). This indicates that the analysis 

RMSE difference between different methods is to a large extent attributable to their 

ability to handle model bias.  
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Figure 4.18: Analysis RMSE at all pressure levels in the cases of the LDM+ (black 

dotted line), the DdSM+ (black dashed line), additive inflation (black solid line), 

simplified DdSM+ (green line) and multiplicative inflation (blue line). The four 

panels correspond to u-wind field, temperature field, height field and specific 

humidity field, respectively. The averages are taken for a month after the initial half-

month spin-up period.    
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Figure 4.19: Same as the top-left panel in Figure 4.18, but also shows the result for 

the ‘control run’ (red line). We note again that in a more realistic operational model, 

the negative effect of model errors is not as large as in this ‘control run’ and a 

significant amount of inflation leads to better results even in the absence of bias 

correction (e.g., Szunyogh et al. 2007). 
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Figure 4.20: Global-averaged absolute value of the difference between analysis and 

the NNR ‘truth’ (analysis bias) at all pressure levels in the cases of the LDM+ (black 

dotted line), the DdSM+ (black dashed line) and additive inflation (black solid line). 

The four panels correspond to u-wind field, temperature field, height field and 

specific humidity field, respectively. The global-averaged absolute bias is calculated 

by averaging the difference between analysis and NNR over one month (bias) at each 

model grid point, then finding the absolute value for the bias fields, and finally taking 

a spatial average of these absolute values over the whole globe.    
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b. 48-hour forecast verification 

So far we have focused on the comparisons in terms of the analysis accuracy. 

However, the goal of developing more accurate analyses is to improve the short-term 

forecasts. Within an imperfect model, the short-term forecast errors come from both 

growing errors in the initial condition and model deficiencies. Without correcting the 

model errors during the forecast process, we would like to see if the advantage of one 

method can be retained over the forecast period. Otherwise, there would be no benefit 

in improving the initial analysis on the short-term forecasts. Figure 4.21 shows the 

global-averaged 48-hour forecast RMSE at all pressure levels. The advantage of 

DdSM+ over additive inflation becomes less obvious for most of fields, but remains 

significant for geopotential height fields at all levels. The big advantage of the LDM+ 

over the other two methods also decreases due to the contamination of the model 

errors.  However, it is still quite obvious and significant, except for the zonal wind 

above 200 hPa and the humidity above 700hPa.   

Here we focused on the impact of initial analysis on the short-term forecast and 

did not attempt to correct the model errors during the forecast process. In reality, the 

low-dimensional method can be used to estimate and correct the short-term model 

errors in the forecast phase, as Danforth et al. (2007) have done with the SPEEDY 

model. This correction, which is easy to implement, would lead to much better short-

term forecast. 
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Figure 4.21: 48-hour forecast RMSE at all pressure levels in the cases of the LDM+ 

(black dotted line), the DdSM+ (black dashed line), and additive inflation (black solid 

line). The four panels correspond to u-wind field, temperature field, height field and 

specific humidity field, respectively. The averages are taken over all forecasts stated 

between 0000 UTC 1 February 1987 and 1800 UTC 15 February 1987.    
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4.5 Summary and discussion  

In this chapter we dropped the assumption of a perfect model by assimilating 

observations simulated from NCEP/NCAR Reanalysis. Without correcting model 

errors or at least accounting for their effects, the performance of the LETKF on the 

SPEEDY model is poor. The ensemble spread is ‘blind’ to model errors as shown by 

the fact that we found ensemble spread of an imperfect model is similar in amplitude 

to that of a perfect model. As a result, in the presence of model errors, the background 

error estimated from the ensemble spread underestimates the actual forecast errors 

caused by both the dynamically evolved errors and the model deficiencies.  

Methods implemented in this chapter to handle model errors include both 

multiplicative inflation and additive inflation which account for model errors by 

enlarging the background error variance, and two bias correction methods (Dee and 

da Silva method and low-dimensional method) which estimate the model biases and 

remove them from the forecast prior to the analysis. The results are summarized as 

follows: 

i) Multiplicative inflation with a single inflation factor is worse than additive 

inflation. We may expect a better result for multiplicative inflation if 

applying different inflation factors for different variables and different areas.  

ii) Model errors include model biases and system-noise. Inflation methods 

account for the total model errors while bias correction methods only correct 

model biases. The pure bias correction schemes (LDM and DdSM) give 

worse results than the inflation schemes. 
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iii) After accounting for system-noise, the bias correction methods with 

inflation (LDM+ and DdSM+) are generally superior to any of the inflation 

methods. The analyses are more accurate and less biased. 

iv) The DdSM+ doubles the cost of the analysis, but its simplified version is 

almost cost free for updating the bias estimate. Although the results from the 

simplified version are worse than the original version, they are comparable 

to the additive inflation.    

v)  The DdSM+ relies on observations. As a result, it is less efficient for those 

unobserved points, especially when biases are very small-scale. The LDM+ 

uses NNR (or other reanalysis) and SPEEDY forecast, both in model space, 

to estimate model errors. Therefore, it is less affected by the observation 

density. 

vi)  In the absence of a good bias forecast model, the DdSM+ aims to correct 

the slowly varying bias. For the fast-varying bias (for example the diurnal 

bias in temperature fields at the lower levels), it is able to capture the time-

varying signal but the correction is too small. By computing the EOFs of the 

bias anomalies, the LDM+ is effective in removing the diurnal bias. 

vii) The LDM+ results in a dramatically better analysis than the DdSM+ 

especially at the lower levels. This may be explained by the reasons in v) 

and vi).  The advantage is still significant in the 48-hour forecast.  

 

The SPEEDY model has much larger errors than more advanced operational 

models. With operational GCMs, the analysis differences between different methods 
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would be much smaller.  Our results of low-dimensional errors estimation may be too 

optimistic, since in our applications we assume the NNR field is an approximation of 

the unknown truth and use it to generate the samples of model errors. In practice, the 

NNR field could be biased and generating good samples of model errors is a 

challenge to the LDM+. The method we have used, deriving the bias from 6-hour 

forecast errors initialized from a reanalysis, can be used, and a more advanced 

reanalysis (e.g., ERA-40 or JRA-25) should yield a better sample than the NNR. 

Another possible way is to use the analysis increments obtained from the forecast-

analysis cycles using the same model. In this case, iterations in the training period are 

required in order to obtain reasonable model error samples since the accuracy of the 

analysis and the goodness of model error samples are dependent on each other. We 

intend to investigate this idea and to see whether the final model error samples after 

convergence are good enough to represent the true model errors.       

As for the DdSM+ we have seen it strongly relies on the observations. In our 

experiments, observations are pretty dense, while in practice the bias correction is 

expected to be less efficient in the global analysis system if rawinsonde soundings 

only are used. One may argue that satellite observations can be used to avoid this 

problem since their density is very high.  However, satellite radiance observations 

themselves are subject to biases due to errors in the instrument calibration and in the 

observation operator (e.g. Harris and Kelly 2001). Correcting the satellite observation 

biases is another challenging area for data assimilation.     

In summary, the performance of the LETKF can be seriously degraded when 

using real observations but without accounting for model errors. However, there are 
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several methods that can be implemented to account for these model errors. Of all 

these methods, the low-dimensional method with inflation (LDM+) where the time-

averaged model bias, diurnal bias and state-dependent errors are estimated from a 

large number of 6-hour forecast errors, gives the best results. 
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Chapter 5  

Simultaneous estimation of inflation factor and observation 

errors within the LETKF 

5.1 Introduction 

In chapter 4, we have seen the important role of multiplicative or additive 

inflation in the LETKF, but also experienced the inconvenience of manually tuning 

these parameters. Here we test the methods to estimate on-line the inflation factor. 

However, the estimation of inflation relies on the information of observation errors 

which itself is a key component in the accuracy of the resulting analysis.  In this 

chapter we adaptively estimate observational errors (for each type of instrument) and 

the inflation factor for the background error simultaneously within the LETKF using 

the method we proposed in section 2.4, considering that these two estimates are 

dependent on each other. We first test our method in a low-order model then 

implement it into a more realistic model.   

5.2 Low-order model results 

5.2.1 The Lorenz-96 model  

The Lorenz-96 model (Lorenz 1996; Lorenz and Emanuel, 1998) is given by 

Fx)x(xx
dt
dx

iiii
i +−−= −+− 211                                   (5.1)                               

where,  and the boundary is cyclic. As in Lorenz (1996), we choose N=40 

and F=8.0 in which case this model behaves chaotically.  Equation (5.1) is solved 

,,1 Ni L=
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with a 4th-order Runge-Kutta scheme using a time step of 0.01 non-dimensional units 

for which the Lorenz system is computationally stable. Lorenz and Emanuel (1998) 

have shown that a time increment of 0.05 roughly corresponds to 6 hours of the real 

atmospheric evolution so that we chose as our analysis time step 05.0=∆t . 

5.2.2 Perfect model experiments  

First we test our method in the perfect model scenario in which the 

multiplicative inflation is used to prevent filter divergence due to small ensemble 

size. We generate the ‘true’ state by integrating the Lorenz-96 model for 2000 

analysis steps. Normally distributed random noise with standard deviation =1 is 

then added to the ‘truth’ to generate the observations. We assimilate these 

observations every analysis cycle using the LETKF with 10 ensemble members. 

Following the recommendation of Ott et al 2004, we use a cutoff based localization 

with a local patch l =6 which covers 13 model grids. 40 observations are assumed 

available and located at model grid points so that no interpolation is required. Since 

the normally distributed noise is uncorrelated and the error variance is 1, the true 

observation error matrix is diagonal, i.e. . 

2
oσ

IIR == )(
2

tot σ

The Lorenz-96 model and the LETKF are then used to assimilate for 2000 

analysis time steps, but results are only reported for the last 1000 steps.  

 

a. Correctly specified observation variance 

We first assume that the observation error variance is perfectly known, i.e., the 

specified value is = =1. In this case we do not estimate the observation )(
2

soσ )(
2

toσ
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errors, but attempt to estimate on-line the inflation parameter using this correctly 

specified observation error variance. We found that the “observed” inflation %∆o  

directly obtained from OMB2 or AMB*OMB (see section 2.4.1 for details) has large 

oscillations at each analysis time due to sampling of too few observations in this low-

order model. In order to avoid an unrealistically large sampling error that may occur 

and abruptly ruin the estimation, we impose reasonable upper and lower limits in the 

“observed” inflation  , e.g., %∆o 2.0~1.0 ≤∆≤− o  before applying the simple scalar KF 

smoothing procedure described in section 2.4.4.  The final estimate of ∆ after 

smoothing is then used to inflate the background ensemble spread. In a more realistic 

data assimilation system with a large number of available observations, Wang and 

Bishop (2003) have shown the “observed” inflation %∆o calculated directly from OMB2 

remained within a reasonable range. In that situation, there is no need to prescribe a 

range for  but smoothing of the estimates might still be desirable. %∆o

Table 5.1 shows that OMB2 and AMB*OMB methods produce similar results 

with estimated ∆  around 0.04 and an analysis error of about 0.20. These results are 

quite similar to the best tuned constant inflation obtained from many tuning trials. 

The experiments in Table 5.1 will serve as a benchmark for the latter experiments 

where  is not perfectly specified. 2
oσ
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Table 5.1: Time mean of adaptive inflation ∆  and the corresponding analysis error, 

averaged over the last 1000 steps of a 2000-step assimilation when the observational 

error variance (specified) is perfectly known. For comparison, the value of best tuned 

constant inflation and its resulting analysis error are also shown. 

∆  method 
)(

2
soσ ∆  RMSE

OMB2 1 0.044 0.202 

AMB*OMB 1 0.042 0.202 

(tuned) constant 1 0.046 0.201 

 

b. Incorrectly specified observation error variance 

In reality we do not exactly know the true value of the observation error 

variance, and the specified value used in the analysis is only an estimate. Our second 

experiment with the Lorenz-96 model is to use an erroneously specified  which 

is either one quarter or 4 times the size of the true , equivalent to one-half or 

twice the true observational error standard deviation. With large =4.0, even if 

estimated ∆ is similar to its optimal value the analysis RMS error is large (Table 5.2), 

because the LETKF gives much weight to the background and less weight to the 

observations, making the quality of the resulting analysis extremely degraded. 

)(
2

soσ

)(
2

toσ

)(
2

soσ

As for the case of =0.25  we have noticed the estimated  has bumped 

into the upper-limit 0.2 of the prescribed range, 

)(
2

soσ )(
2

toσ ∆

2.0~1.0 ≤∆≤− o . We checked in 

detail and found the “observed” inflation %∆o  at each single analysis time step is 

always larger than 0.2, but we forced it to be 0.2. Therefore  indeed did not %∆o
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represent the value estimated from equation OMB2 or AMB*OMB. Our experience 

indicates that 2.0~1.0 ≤∆≤− o  is a reasonable range of ∆  when is correctly 

specified. There is no reason to assume it will still be within this normal range in this 

abnormal experiment. Without this constraint, we obtain 

2
oσ

∆ to be 7.67 (6.83) with the 

estimation method OMB2 (AMB*OMB) and the resulting analysis rms error of 0.80 

(0.79) much large than the optimal value of 0.2. 

 

Table 5.2: Time mean of adaptive inflation parameter ∆ and the resulting analysis 

error, averaged over the last 1000 steps of a 2000 step assimilation in the case that the 

specified observation variance  is either 1/4 or 4 times the true  )(
2

soσ )(
2

toσ

∆ method )(
2

soσ ∆ RMSE

OMB2 0.2 0.264 

AMB*OMB 

 

0.25 0.2 0.263 

OMB2 0.040 1.790 

AMB*OMB 

 

 4.0 0.016 1.439 

 

c. Adaptive estimation of both the inflation and the observation error variance 

We have seen that neither OMB2 nor AMB*OMB work when estimating the 

inflation parameter if the specified observation error information is wrong. In the 

third experiment, we estimate the observation variance and inflation simultaneously 

by using OMA*OMB and OMB2 (or AMB*OMB) followed by the simple KF method. 
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We start our experiment with an initial miss-specification of the observation 

error variance. Table 5.3 shows that no matter how poorly the initial specified  

is (one-quarter or four times the true ), the OMA*OMB method has the ability to 

correct it. It is remarkable that the time mean of estimated  over the last 1000 

analysis step is essentially the same as the true . With the corrected R matrix, we 

obtain a reasonable adaptive inflation 

)(
2

inioσ

2
oσ

σ o
2

2
oσ

∆  which is about 0.04 for all the cases in Table 

5.3. The resulting analysis rms errors are also similar to that of the benchmark. The 

results are not sensitive to the initial incorrect value of , since  is gradually 

corrected and reaches its ‘true’ value after a transition period no matter what initial 

value is specified.  

)(
2

inioσ
2
oσ

We have shown that the estimation of the adaptive inflation alone does not work 

with incorrectly specified observation errors. By estimating the inflation and 

observation errors simultaneously, our method has the ability to retrieve both their 

‘true’ values. We now check whether OMA*OMB can retrieve a correct observation 

error variance if the inflation is wrongly specified. From the previous experiments we 

know the optimal inflation factor is about 0.04. If we fix it and under-specify it to be 

0.01, we get the estimated  =10.33, suggesting the estimations of inflation factor 

and observation errors depend on each other. Unless one of them is perfectly known 

or at least approximates the ‘truth’, we have to estimate both of them simultaneously. 

2
oσ
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Table 5.3: As in Table 5.2, but adaptively estimating both the inflation factor and 

observation error variance 

R method ∆  method 
)(

2
inioσ σ o

2  ∆  RMSE 

OMB2 0.999 0.044 0.204 

AMB*OMB

 

0.25 1.000 0.042 0.202 

OMB2 0.998 0.042 0.202 

 

 

OMA*OMB  

 AMB*OMB

 

4.0 0.999 0.043 0.203 

 

5.2.3 Imperfect model experiments  

We have tested our method in the LETKF with the simulated observations and 

shown its ability to retrieve the true observation error variance and the optimal 

inflation parameter in such an idealized system. In this section we focus on a more 

realistic situation by introducing model errors. Recall all criteria upon which our 

method is based on the assumption that matrix  is 

optimal, which is the case if and only if the specified matrix 

1)( −+= RHHPHHPHK TfTf

fP f and R  in our 

system agree with the true covariances for background and observation. In the perfect 

model scenario, the required inflation is a small number and the inflated forecast error 

covariance  with a reasonable number of ensemble members usually can 

approximate well the true background error covariance, but this is not the case for an 

imperfect model. Without an additional method for model error correction, 

f
e)P(1 ∆+
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covariance inflation has been used to provide an increase in the ensemble variance to 

account for the effect of model errors. In this case the forecast error 

covariance may not be good enough to represent the true background 

error covariance. Our goal here is to test whether our on-line estimation algorithm 

will still work well in a more realistic situation. 

f
e

f )P(1P ∆+=

a. Random model errors  

First, we investigate our scheme in the presence of random model errors in 

which the actual atmosphere is assumed to behave like a noisy version of the 

numerical forecast model. The evolution of the ‘true’ atmosphere is simulated by 

adding the zero-mean random noise to the Lorenz-96 model at each model time step: 

iiiii
i Fxxxx

dt
dx

εα ×++−−= −+− )( 211                            (5.2) 

where )1,0(~ Niε and α  is a constant factor. Our forecast model is the standard 

Lorenz-96 model shown in (5.1). In this way, we have introduced the random model 

errors.  

In the perfect model experiments we have seen our method is not sensitive to 

the initially specified observational error variance and the method to calculate the 

“observed” inflation parameter. For brevity, we only test our method with 

=0.25 and use OMB)(
2

inioσ 2 method to estimate the inflation parameter. Since more 

uncertainties are involved in the imperfect model experiments, we increase the 

ensemble size from 10 to 20. 
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Table 5.4 shows the estimated values of observation error, adaptive inflation 

and their resulting analysis errors by using OMA*OMB and OMB2 simultaneously 

(case C) in the situation of random model errors with different amplitudes. For 

comparison, we also estimate on-line the inflation using the ‘true’ observation error 

variance (case B) or manually tune the system to find the optimal time-constant 

inflation (case A). It is remarkable that all three cases give similar results. The bigger 

the model error, the bigger the analysis error and the required inflation are. When the 

observation error is perfectly known, adaptive inflation (case B) reaches an analysis 

error similar to that from constant inflation. Without the correct observation error 

information initially, we estimate it on-line together with the estimation of inflation, 

and the ‘true’  is also approximated (case C). The estimated is essentially the 

same as the ‘true’ value of 1.0 when the amplitude of the random errors is 

σ o
2 σ o

2

α =4 and 

α  =20, but still close enough to its ‘true’ value even with α =100. The resulting 

analyses are as good as those from the best tuned inflation. All of these indicate that 

the simultaneously adaptive algorithm is able to produce successful assimilations over 

a wide range of random model errors. Manually searching for the optimal time-

constant inflation factor (case A) requires a considerable number of iterations for each 

value of α . 

 

 

 

 95 
 



 

Table 5.4: Case A: the best tuned constant inflation and the resulting analysis RMSE; 

Case B: time mean of adaptive inflation (with perfect =1) and the resulting 

analysis RMSE; Case C: time mean of adaptive inflation and observation error, 

estimated simultaneously on-line, and the resulting analysis RMSE. Each case is 

tested for different

σ o
2

α , amplitude of random model errors. Results are averaged over 

the last 1000 analysis steps. 

 
 

Case 

A: fixed =1.0  σ o
2

  (tuned) constant ∆

 

B: fixed =1.0 σ o
2

    adaptive ∆  

  

    C:  adaptive   σ o
2

         adaptive  ∆

 

α     ∆  RMSE    ∆   RMSE σ o
2     ∆ RMSE

4 0.11   0.260 0.108 0.260 1.003 0.103 0.261 

20 0.20   0.348 0.205 0.350 0.998 0.204 0.350 

100 0.40   0.471 0.398 0.474 1.028 0.370 0.475 

 

b. Systematic model bias 

For our final experiment with the Lorenz-96 model, we introduce a systematic 

model bias. In the linear estimation theory, basis of most data assimilation schemes, 

both background and observation error vectors are assumed to be unbiased. Since this 

is not the case in reality, it would be ideal to estimate and subtract the bias before 

using the model forecast (Dee and da Silva 1998, Baek et al 2006, Danforth et al. 

2007). Here we violate the assumption that background is unbiased in order to check 

the behavior of our method in a more realistic situation with model bias. 
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We generate the model bias as in Baek et al (2006) by adding a constant sine 

function to the forcing term in the Lorenz-96 model. 

iiiii
i Fxxxx

dt
dx

βα ×++−−= −+− )( 211                              (5.3) 

where )12sin(6.1
N

i
i

−
= πβ  describes the spatial structure of the model bias and 

α determines its size. In Baek et al. (2006) α =1, corresponding to a ‘6-hour’ forecast 

bias of  )12sin(08.005.0)12sin(6.1)12sin(6.1
N

i
N

it
N

ibi
−

=×
−

=∆
−

= πππ . This bias 

is relatively small compared with the observation noise (1.0 in our experiments). Here 

we examine a wider range of model bias by applying different coefficientsα . As in 

experiments for random model errors we also test our method with 20 ensemble 

members and with =0.25 and use OMB)(
2

inioσ 2 to estimate the inflation parameter.  

Table 5.5 shows the analysis results obtained from the best tuned inflation (case 

A), adaptive inflation with the ‘true’ observation error variance (case B), adaptive 

inflation and adaptive observation error variance (case C), in the presence of model 

bias. It is clear that model bias has a more negative effect on the assimilation system 

than random model error (Table 5.4). When α =1, cases A, B and C give a similar 

analysis error. As α  increases, the best tuned inflation gets the best results. The mean 

values of adaptive inflation in case B are always smaller than the best tuned inflation, 

resulting in worse analysis than the constant inflation case.  As for case C, the mean 

of adaptive  is smaller than its true value. However it is interesting to see the σ o
2
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resulting analysis is actually slightly better than that from adaptive inflation with the 

true  in case B.   σ o
2

Table 5.5: As in Table 5.4, but in the presence of a constant model bias with different 

amplitudes (α ). 

 
 

Case 

A: fixed =1.0  σ o
2

  (tuned) constant ∆

 

B: fixed =1.0 σ o
2

    adaptive ∆  

  

    C:  adaptive   σ o
2

         adaptive  ∆

 

α     ∆  RMSE    ∆   RMSE σ o
2     ∆ RMSE

1 0.35   0.405 0.332 0.408 0.952 0.379 0.408 

3 0.80   0.554 0.658 0.570 0.948 0.718 0.564 

5 1.20   0.627 0.946 0.638 0.900 1.075 0.633 

 

To better understand the results of Table 5.5, we compare the forecast ensemble 

spread with the ‘true’ forecast mean error (ensemble mean minus the true state) 

averaged over all 40 variables for all three cases when model bias size α =3.  Table 

5.6 shows that the spatially averaged spread agrees well with the forecast error in case 

B but is larger than the forecast error in case A and case C. Recall that the inflation 

scheme inflates the ensemble covariance to approximate the ‘true’ forecast error 

covariance, i.e., . In the presence of model bias, this implicitly 

assumes that the structure of model bias is the same as the dynamical growing error 

and therefore can also be represented by the ensemble spread. If this assumption is 

incorrect, i.e., the inflated ensemble covariance is not good enough to capture the true 

f
e

f PP )1( ∆+=
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forecast error structure, these errors lead to suboptimal analysis. In our experiments, 

the model bias is a sine-function in space and constant with time. This special 

structure is hard to be represented by the ensemble covariance .  However the 

adaptive inflation estimation scheme OMB

f
eP

2 knows nothing about these spatial 

representativeness errors since it is only concerned with the trace of covariance. Thus 

1
)(

)(~ −
−

=∆ −−

HHP
Rdd

f
e
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T

bo

Tr
Tr

produces a single value of inflation which is optimal in the 

sense of spatial average but not for the individual observation. Thus, the spatially- 

averaged spread in Table 5.6 for case B is consistent with the forecast mean error but 

the resulting analysis is not optimal. The tuned inflation result is expected to be the 

best because the inflation factor is repeatedly tuned in terms of the resulting analysis 

error. The best tuned result overcomes the spatial representativeness errors by over-

inflating the ensemble covariance to give more weights to the observations. These 

results are consistent with Anderson 2007 where an adaptive inflation from a 

hierarchical Bayesian was compared with the best tuned time-constant inflation.  Our 

interest here is in case C where we simultaneously estimate both the inflation and the 

observational error variance.  This approach tends to overcome the spatial 

representativeness errors in the forecast error covariance by both under-estimating the 

observation error variance and over-inflating the ensemble covariance. Thus, the 

estimated observation error variance is not optimal but the analysis is improved 

compared with case B. In order to get the best estimation of both  and the inflation 

factor, an additional method is required to remove the model bias. The reader is 

referred to Chapter 4.   

σ o
2
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Table 5.6: Time mean of observation error variance ( ), adaptive inflation ( ), the 

ensemble forecast mean rms error and the ensemble forecast spread in the cases of A: 

best tuned constant inflation; B: adaptive inflation estimated with true observation 

error variance; C: simultaneous estimation of both   and 

σ o
2 ∆

σ o
2 ∆ . Results are reported as 

an average over the last 1000 steps of a 2000-step assimilation. 

 
 

Case 
A: fixed =1.0 σ o

2

  (tuned) constant ∆

 

B: fixed =1.0 σ o
2

    adaptive ∆  

  

 C:  adaptive   σ o
2

      adaptive  ∆

 

σ o
2  1.0 1.0 0.948 

∆  0.80 0.658 0.718 

Error 0.669 0.693 0.682 

Spread 0.813 0.727 0.744 

 
 

5.3 SPEEDY model results 

In the previous section we have tested our algorithm in a low-order model 

where we have only one set of observations with one ‘true’ observation error 

variance. In this section we apply our approach to a more realistic model, assimilating 

a number of sets of observations. The size and unit of different sets of observations 

can be different. The SPEEDY model, an atmospheric general circulation model 

(AGCM) with simplified physical parameterizations is used for this purpose. For the 

time being, we are concerned with a perfect model context. Model errors are 

discussed in Chapter 4. 
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The observations are obtained by adding zero mean normally distributed noise 

to the ‘true state’, the two-month integration of the SPEEDY model from Jan 1 to Feb 

28 in 1982. The observations are available on the model grid at every 4 grid points. 

The observed variables are zonal wind (u ), meridional wind ( ), temperature (T ), 

specific humidity ( ) and surface pressure ( ) with error standard deviations of 1 

m/s, 1 m/s, 1 K, 10

v

q sp

-4 kg/kg and 100 pa, respectively.  

We double the true observational errors to get our first guess of the 

observational errors. Within the LETKF, we estimate and correct these initially 

incorrect observation errors every analysis time step (6-hour). Since the value and 

unit for different observed variables are all different, we estimate the observational 

error variance for each observed variable separately. 

From the experiments of Lorenz-96 model, we have seen that as long as the 

observational error is recovered, we can get similar results whatever we use equation 

OMB2 or AMB*OMB to estimate the inflation parameter. Therefore here we will only 

test equation OMB2 which is more widely used. 

Figure 5.1 shows the on-line estimated observational errors for each observed 

variable. The experiment starts from incorrectly specified observational errors with 2 

m/s for u  and , 2K for T , 2*10v -4 kg/kg for q  and 200 Pa for . After 30 analysis 

steps, i.e. about one week, the estimated observational errors are already very close to 

their corresponding true values. Of all sets of observation errors, temperature error 

converges fastest (in about 2 days). Since the estimation of the inflation factor by 

OMB

sp

2 depends on the accuracy of the specified observation error covariance R , there 

is a delay in the time needed for the inflation factor to reach a stably optimal value 
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(solid curve in Figure 5.2) compared to the case in which R is specified correctly 

(dashed-dotted curve in Figure 5.2). This dashed-dotted curve can be considered as 

the optimal choice of the adaptive inflation at each time step, and after the spin-up 

period, the solid curve follows the dashed-dotted curve very well. This indicates that 

no matter how poorly the observation error statistics are known initially, as long as 

we estimate and correct this information we can obtain a quite good adaptive inflation 

factor and, as a result, good analyses as well. A comparison of the analysis errors 

from the experiment estimating R  with the one in which R  is perfectly known, 

shows that our approach for estimating R  works very well. Although the RMS errors 

are slightly larger than those from the perfect R  case, they are already quite good 

(Figure 5.3). 

 

Figure 5.1: Time series of on-line estimated observation errors of u , T , , and  

for the first 50 analysis time steps (corresponding to 00z Jan 1 through 06z Jan 13, 

1982) 

q sp
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Figure 5.2: Time series of estimated inflation factor, in the cases of using a perfectly 
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ed-dotted line) and using an initially 

ating it adaptively (solid line). 
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500 hPa Geopotential height 

Figure 5.3: Time series of global averaged analysis RMS error of 500 hPa 

temperature and geopotential height for January and February 1982 with the adaptive 

inflation, in the cases of using a perfectly specified observation error variance (red 

line) and using an initially wrong observation error variance but estimating it 

adaptively (green line). 
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5.4 Summary  

The accuracy of a data assimilation system depends on appropriate statistics for 

observation and background errors. For the ensemble based Kalman filter, tuning the 

inflation parameter is expensive. The on-line estimation method can objectively 

estimate the inflation parameter but requires the accurate information of observational 

errors. In this study, we estimate observational errors and the inflation coefficient 

simultaneously within the LETKF. The results are summarized as follows: 

i) The adaptive estimation of the inflation parameter with perfect observation 

error variance produces results that are as good as the best tuned inflation 

values. Two adaptive methods, OMB2 and AMB*OMB, give similar results. 

By contrast, tuning (i.e., searching for the best time-constant inflation) 

requires repeating many assimilations. 

ii) Adaptively estimating the inflation parameter alone does not work without 

estimating the observational errors if the specified observational error 

variance is not correct. 

iii) By estimating the inflation factor and observation error variance 

simultaneously, our method works perfectly in the cases of perfect model and 

random model errors. The estimated observation error variances are close 

enough to its true value, and the resulting analyses are as good as those from 

the best tuned inflation. 

iv) When the forecast model has systematic bias, the best tuned inflation gives the 

best analysis by over-inflating the ensemble covariance. Adaptive inflation 

with a perfect observation error variance reports a worse analysis result. If we 
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also estimate on-line the observation error variance, the estimated value 

under-estimates the true observation error variance but helps to improve the 

analysis, since in that case more weight goes to the observations, which acts to 

reduce the impact of systematic model bias. 

v) The SPEEDY model experiments show that the estimation of observation 

error variance is successful if applied to a more realistic high-dimension 

model to retrieve the true error variance for different types of instrument 

separately.   
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Chapter 6  

Conclusions and future directions 

This dissertation has addressed several issues relating to EnKF for assimilating 

real data, 1) model errors, 2) inconvenience or infeasibility of manually tuning the 

inflation factor when it is regional and/or variable dependent and 3) erroneously 

specified observation error statistics. Our results should help to accelerate the 

development of EnKF systems towards operational applications. 

First, we addressed the issue of the model errors. In Chapter 3, we performed 

data assimilation experiments with the LETKF, an efficient approach within the 

EnKF family, with the SPEEDY model under a perfect model scenario. Our results 

show that the background ensemble spread captures the true forecast error very well, 

both in the error structure and the error amplitude. We removed the perfect model 

assumption in Chapter 4 by assimilating observations generated from the 

NCEP/NCAR reanalysis fields. Without any additional effort to handle model errors, 

the performance of the LETKF is seriously degraded. The background ensemble 

spread in this case is still similar to that in the perfect model and therefore much 

smaller than the true forecast error that also includes the model errors.  The 

“blindness” of the LETKF to model error is due to the fact that each ensemble 

member is integrated with the same model. If more forecasts from different systems 

are available, a multisystem ensemble (Krishnamuti et al. 2000) where we have an 

ensemble from different models, may be expected to at least partially represent model 

errors.  
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In Chapter 4 we investigated two simple ways to represent the effect of model 

errors and two sophisticated methods to estimate and remove model bias. Our results 

suggest that multiplicative inflation with a single inflation factor is worse than 

additive inflation. The pure bias removal methods (DdSM and LDM) remove model 

bias, but cannot handle system noise; as a result, they are not able to beat inflation 

schemes that account for the total model errors. Supplemented by additive noise for 

representing the system noise, bias removal methods generally outperform the 

inflation schemes. Of all these methods, the low-dimensional method with additive 

inflation (LDM+) where the time-averaged model bias, diurnal bias and state-

dependent errors are estimated from a large number of 6-hour forecast errors, gives 

the most accurate analyses and 48-hour forecasts. Although the DdSM+ produces 

worse results than the LDM+, it is generally superior to both inflation schemes. The 

main disadvantage of this method is the doubled computational cost and its exclusive 

reliance on observations. When the observations are sparse, the impact of the bias 

correction in a global analysis system is limited. In the worst case, where the 

observations themselves are biased, it is not at all obvious that this algorithm can 

work correctly. 

Generating good samples of model errors is a challenge for implementing the 

LDM+. It is not clear in the real world whether the model error samples generated 

from the NNR fields are good enough to represent the true model errors. In practice, 

we could use a more advanced reanalysis, like ERA-40 or JRA-25. Another possible 

way is to use the analysis increments as model error samples. For the training of error 

samples, iterations are required since at first the analyses are also biased, so that the 
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analysis increments cannot sample model error well. We intend to explore this idea 

with the SPEEDY model to see whether the final model error samples after 

convergence are good enough to represent the true model errors.     

In Chapter 5 we addressed the issues of adaptive estimation of the inflation 

factor and observation errors. It was found that the estimation of inflation alone does 

not work without accurate observation error statistics, and vice versa. Therefore we 

proposed to simultaneously estimate both inflation and observation error variance on-

line.  Our method was then investigated with a low-order model, the Lorenz-96 

model. The results showed that our approach works impeccably in the cases of perfect 

model and random model errors. The estimated observation error variances are very 

close to their true value, and the resulting analyses are as good as those from the best 

tuned inflation value. When the forecast model has systematic bias, our algorithm 

tends to account partially for model bias by underestimating the observation error 

variance to give more weight to the observations. As a result, the estimated 

observation error variance is smaller than the true value, but the resulting analysis 

errors are comparable with the best tuned inflation value. Finally, we apply our 

approach to a more realistic high-dimension model, assimilating a number of sets of 

observations that have errors of different size and units. The SPEEDY model 

experiments show that the estimation of observation error variance is successful in 

retrieving the true error variance for different types of instruments separately. 

In this study we have addressed the issue of observation error variance but the 

observational error correlation is another big concern, especially for satellite 

retrievals. We may extend our approach to estimate off-diagonal terms in the 
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observation error covariance. Investigations are needed to see whether our approach 

will be able to estimate adaptively the observation error correlations as well. 

Based on our entire research in this dissertation, we suggest the development of 

a more advanced LETKF with both bias correction and adaptive estimation of 

inflation within the system. We have seen that the pure bias removal scheme does not 

work well. To account for system noise, we may still need multiplicative or additive 

inflation, for which manually tuning the amplitude is expensive. By applying our 

simultaneous on-line estimation method, we can estimate the regional and/or variable 

dependent inflation factors. In this case we could expect to obtain a good observation 

error statistics as well since the model bias has been removed. 

In my future job, I plan to implement the LETKF in the regional WRF model 

for forecasting in the southeast region of China. The lateral boundaries and the scales 

of weather phenomena are expected to bring more challenges and perhaps require 

further development of new techniques. 
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