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Mechanistic performance prediction of asphalt concrete pavements has been a 

goal for the pavement industry for some time.  A comprehensive material model is 

essential for such predictions. This dissertation illustrates the development, calibration 

and validation of a comprehensive constitutive material model for asphalt concrete in 

unconfined and confined compression.   

A continuum damage-based viscoelastic model is extended with viscoplasticity.  

Thermodynamic principles, an elastic-viscoelastic correspondence principle and internal 

state variables quantify degradation by accounting for linear viscoelasticity and any non-

linear viscoelasticity with cumulative damage. Viscoplastic effects are addressed 

separately. Two distinctly different strain-hardening viscoplastic models were 

investigated. A more capable multiaxial model with primary-secondary hardening 

improved upon the original uniaxial.  These characteristics enable the whole model to 

decompose total strain into individual response components of viscoelasticity, 

viscoplasticity and damage.  



 

 Separate laboratory tests were required to measure and calibrate the individual 

response components. The calibration tests include small-strain dynamic modulus tests 

for undamaged viscoelastic properties, cyclic creep and recovery tests for viscoplastic 

properties, and constant rate of strain tests for damage properties. All tests were 

performed at appropriate temperatures and loading rates.   

An extensive set of validation tests was used to confirm each model, which were 

very different from the calibration conditions to evaluate the models’ capabilities. The 

predictions at these different conditions indicate that the comprehensive model can 

realistically simulate a wide range of asphalt concrete behavior. Recommendations are 

given based on lessons learned in the laboratory experiments and analyses of the data 

generated. 
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1. Introduction 

 

1.1 Background 

There are many existing methods that can be used to design and manage 

pavements. Trade industries, State Departments of Transportation and other 

governmental organizations offer various methods such as the American Concrete 

Pavement Association (ACPA) StreetPave, the Asphalt Institute SW-1 Asphalt Thickness 

Design, Washington DOT and Minnesota DOT pavement design manuals, the American 

Association of State Highway Transportation Officials (AASHTO) empirical 1993 Guide 

and the Federal Aviation Administration’s LEDFAA methodology.  

The universal objective when designing new pavements or managing existing 

infrastructure is to determine the likely performance or deterioration in the future and 

either change the design before being built or allocate the appropriate maintenance and 

rehabilitation funds.  Naturally, the quality of any performance prediction will impact 

heavily on the quality of the corresponding life cycle analyses that consider optimal 

timing of pavement maintenance and rehabilitation activities. This is a critical concern 
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for transportation agencies and industries. Additional and recent needs include pavement 

warranties and or rational pay factor schemes for quality acceptance. This is a 

challenging task because it requires accurate distress models that are widely accepted in 

the state-of-the-practice and because pavements deteriorate in many different ways: 

• Distributed cracking from fatigue (traffic related),  

• Reflection of pre-existing cracks into newer layers (traffic and environment 

related),  

• Localized cracking from thermal expansion and contraction (environment 

related),  

• Permanent ruts in the wheel-path (traffic related),  

• Distributed freeze/thaw deterioration (environment related),  

• Hydraulic erosion of the unbound sub-layers (traffic and environment related),  

• Stripping of the bituminous coating from the aggregate particles (environment 

related).  

More complications arise because some of the above distresses can interact with 

one another and accelerate overall pavement deterioration. For example, surface cracks 

enable water to enter the pavement, causing stripping of the asphalt and softening and 

erosion of unbound and foundation materials, eventually producing a pothole. 

Additionally, variations of these major distresses are presented at different locations in 

the pavement structure and under different temperature regimes. For example, rutting 

primarily occurs during warmer seasons while fatigue cracks develop under moderate 

temperatures. Fatigue cracks may grow from the top to the bottom or from the bottom up 

depending on pavement temperature and stress conditions. 
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The state-of-the-practice for design and performance prediction of pavements in 

most of the United States is based on empirical methods developed from the results of 

large-scale tests of new highway pavements conducted in the late 1950’s and early 

1960’s (National Research Council, 1962). Such empirical principles are becoming less 

and less appropriate as: 

• The focus of pavement design and analysis shifts from new construction to 

maintenance and rehabilitation of distressed highways, 

• Truck axle loads and configurations become heavier and traffic volumes increase, 

• New materials such as geosynthetics and polymer modifications are incorporated 

in the pavement structure, 

• Warranty and performance-based construction specifications become more and 

more attractive than method, end result and even performance-related 

specifications. 

The net effect of such limitations in empirical design and performance prediction 

is less than optimal design, management and preservation of the country’s highway 

infrastructure.  

In response, the NCHRP 1-37A Guide for the Design of New and Rehabilitated 

Pavement Structures, intended to replace the 1993 AASHTO design method, has taken 

some steps to improve the state-of-the-practice by using a combined mechanistic-

empirical analysis approach. The Guide emphasizes more realistic inputs for traffic, 

material properties and environmental characteristics that are more amenable to the 

mechanistic analysis of pavement response (e.g. stresses and strains) while the empirical 

techniques bridge the gap between pavement response and pavement distress (e.g. rutting 
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and fatigue cracking). National implementation and a thorough review are needed to 

ascertain the true benefits of the mechanistic-empirical approach, but it is clear that 

mechanistic-empirical engineering principles are not powerful enough to address the 

most complex of pavement distresses and configurations. The ultimate solution is to 

move away from empirical and mechanistic-empirical techniques and use fully 

mechanistic principles to understand pavements based on inherent material behavior. At 

present, practical fully mechanistic performance prediction is beyond the state-of-the-art, 

but recent advances in analysis tools and material characterization have moved this closer 

to realization. 

 

1.2 Problem Statement 

Mechanistic approaches for pavement design and performance prediction employ 

theories of mechanics to relate pavement structural behavior and performance to traffic 

loading and environmental influences. The mechanistic approach for flexible pavements 

has its roots in Burmister’s development during the 1940’s of multilayer elastic theory to 

compute stresses, strains, and deflections in pavement structures.  

A key element of the mechanistic design approach is the accurate prediction of 

the response of the pavement materials—and thus of the pavement itself. The elasticity-

based solutions by Burmister were an important first step toward a theoretical description 

of the response of flexible pavements under load. However, the linearly elastic material 

behavior assumption underlying these solutions is unable to simulate the nonlinear and 

inelastic cracking, permanent deformation, and other distresses of interest in pavement 

systems. This requires far more sophisticated material models and analytical tools. Much 



 5

progress has been made in recent years on isolated pieces of the mechanistic performance 

prediction problem. The Strategic Highway Research Program during the early 1990’s 

made an ambitious but ultimately unsuccessful attempt at a fully mechanistic 

performance system for flexible pavements (Witczak, Von Quintus, and Schwartz, 1997).  

Several years later, the National Cooperative Highway Research Program 

(NCHRP) Project 9-19 was charged with applying advanced material characterization 

techniques to develop the foundation for future mechanistic modeling of asphalt concrete 

mixtures in the Superpave mix design system. The ultimate goal for Superpave is 

accurate performance models that may have the ability to support performance based mix 

designs and specifications.  

Pavement performance models in their most simple interpretation can be viewed 

as “black boxes” that relate a series of inputs such as geometry, environment, and traffic 

loads to a set of outputs such as cracking, and rutting as in Figure 1. Material properties 

such as the strengths and stiffness of the various layers of the pavement system are 

clearly one of the major inputs in these models. Consequently, adequate and accurate 

characterization of material behavior is vital if pavement performance is to be predicted 

with realism.  
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Figure 1. Conceptual view of pavement performance models. 
 

One reason that material characterization is so important to pavement performance 

prediction is that it affects nearly all components of the system. As shown in Figure 2, 

major interactions between model components include: 

• Environmental Effects Model: Material properties are required to predict 

pavement temperature and moisture distributions over depth and time as a 

consequence of environmental history. These temperature and moisture 

distributions in turn alter the material properties as used in other model 

components (e.g., decreasing AC stiffness with increasing temperature, 

decreasing subgrade strength with increasing moisture). 

• Primary Response Model: Material properties are a major input into tools such as 

the finite element models used to compute the stresses and strains induced in the 

various layers by environmental and traffic loadings. These computed stresses and 

strains in turn alter the material properties (e.g., stress dependent stiffness, 

damage/failure of the materials). 
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• Distress Models: Material properties such as those for fatigue and fracture 

resistance and permanent deformation response are often major inputs into the 

models for predicting individual pavement distresses. These models are ultimately 

dependent on material properties beyond the familiar modulus and strength 

parameters.  

Input Data

Environmental
Effects Model

Primary
Response

Model

Distress
Models

Material Characterization Models

Performance
Predictions

 

Figure 2. Components of a pavement performance prediction system. 

  
 

The demands on material characterization models for pavement systems are severe. Not 

only does a pavement system contain many diverse materials (e.g., bound vs. unbound), 

but also the behavior of each of the materials is different and often quite complex. All of 

the pavement layer materials will generally exhibit some type of stress-strain nonlinearity 

as well as accumulated damage and/or permanent deformation under cyclic loading. In 

addition, temperature and loading rate effects will have an important effect on the 

behavior of the asphalt concrete layer. Furthermore, the behavior of the various layer 

materials will also be influenced by secondary phenomena such as aging and moisture 

effects. The extensive tests required to determine the material parameters will in general 
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include multiaxial stress-strain loading under controlled stress levels, loading rates, and 

temperatures.  

 

1.3 Objectives 

The research described in this dissertation focuses on material modeling for 

asphalt concrete that is based on solid mechanics but independent of specific mixture 

properties. An ideal model should be capable of predicting the stress and deformation 

response of asphalt concrete over the full range of temperatures, strain rates, and stress 

states of interest in flexible pavement systems. Heretofore, the model explicitly offers 

secondary asphalt distress prediction such as rutting and the onset of cracking 

This dissertation describes the development, calibration, and validation of a 

comprehensive, fundamental material model for asphalt concrete. The model, which is 

based on an extended form of the Schapery continuum damage formulation (Ha and 

Schapery, 1998; Schapery, 1999) considers the viscoelastic, viscoplastic, and damage 

components of asphalt concrete behavior over the full range of temperatures, loading 

rates, and stress levels of interest in pavement engineering.  

The work described in this focuses on asphalt concrete behavior in unconfined 

and confined compression. Although only one specific dense graded asphalt mixture was 

employed in this study, it is believed that the mechanistic nature of the model makes it 

applicable to other asphalt concrete materials as well. Secondary phenomena such as 

aging and moisture effects are outside the scope of this research. 
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1.4 Organization 

This dissertation has directly contributed to the collective research performed by 

the NCHRP Project 9-19 Superpave Models Team. The Team consisted of the Arizona 

State University for test specimen production and the source of independent validation 

test results, Advanced Asphalt Technologies that documented specific Superpave mix 

design and binder characterization and the North Carolina State University that offered 

equivalent tensile characterization of the same mixture. The dissertation is organized as 

follows. The basic formulation of the material models is described in Chapter 2, and the 

details of the basic experimental protocols and equipment required to calibrate these 

models are provided in Chapter 3. Chapter 4 summarizes the conventional 

characterization of the small-strain linear viscoelastic response in terms of the complex 

modulus and time-temperature superposition concepts; Chapter 5 describes how the time-

temperature superposition concept can also be extended into the large strain domain, a 

necessary step for this research. Characterization of a very useful initial viscoplastic 

model is given in Chapter 6. The damage components of the model are described in 

Chapters 7. Validation of the models is provided in Chapter 8. Chapter 9 describes efforts 

to adjust and then ultimately to re-formulate the viscoplastic model component to address 

some of the deficiencies of the initial viscoplastic approach. The overall summary, 

conclusions and recommendations from the work are found in Chapters 10 and 11. 
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2. Model Formulation  

 

2.1  Introduction 

The theoretical context for this modeling is the Schapery continuum damage 

model (Park and Schapery, 1997; Ha and Schapery, 1998) with extensions to 

viscoplasticity (Schapery, 1999). Key conceptual components of this model include the 

use of viscoelastic correspondence principles, microstructural damage functions based on 

a thermodynamics formulation and expressed in terms of rate-dependent internal state 

variables, and a strain hardening viscoplasticity relation. Note that a simplified form of 

the basic Schapery continuum damage model has been applied in the past to asphalt 

concrete under moderate temperature tension loading by Park et al. (1996) and Lee and 

Kim (1998a, 1998b); this earlier work neglected any viscoplastic response components. 

The Schapery model explicitly separates the total strain εt into viscoelastic εve and 

viscoplastic εvp components: 

VPVEt εεε +=  Equation 1 

in which both εVE and εVP can include contributions from microstructural damage. For the 

present discussion it is helpful to separate the strain components even further: 
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VPDLVEt εεεε ++=  Equation 2 

in which εlve is the linear viscoelastic strain, εd is the strain due to microstructural 

damage, and εvp is the viscoplastic strain. Note that the damage strain εd is actually 

included as a part of the viscoelastic strain εve (and potentially as part of the nonlinear 

viscoplastic strain εvp) in the formal Schapery model, but this can be separated out 

conceptually (and mathematically, given some simplifying assumptions) for the present 

discussion. 

There are four major factors assumed to influence the strain components for a 

given loading: loading rate, temperature, stress state (confining and/or shear stress), and 

material damage. The assumptions regarding the impact of these factors on each of the 

strain components in the model are as follows: 

• Linear viscoelastic strain εlve : The viscoelastic strain is assumed to be linear and 

thus independent of stress state and damage. The viscoelastic strain is dependent 

upon rate of loading and temperature, but these may be interchanged using 

conventional time-temperature superposition: 

( , ) ( )lve lve lve Rf t T f t′ε = =  Equation 3 

in which t is time, T is temperature (isothermal conditions), and tR is the reduced time 

given by: 

( )R
T lve

tt
a T

=  Equation 4 

in which aTlve(T) is the temperature shift for linear viscoelasticity. Materials for which 

Equation 4 is valid are termed thermorheologically simple materials. Asphalt concrete 
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is commonly assumed to be thermorheologically simple under small strain (<~100με) 

linear viscoelastic conditions. 

• Damage strain εd : The underlying damage functions for the material are assumed 

to be independent of loading rate, temperature, and stress state. However, loading 

rate, temperature, and stress state are expected to have a definite and direct effect 

on the magnitudes of the time-dependent computed internal state variables and 

thus on the magnitudes of εd computed from the underlying damage functions. It 

is provisionally assumed, however, that the effects of loading rate and 

temperature on damage strains can be interchanged using conventional time-

temperature superposition: 

( , ) ( )d d d Rf t T f t′ε = =  Equation 5 

  in which the reduced time tR in this case is given by: 

  
( )R

T d

tt
a T

=  Equation 6 

  where aTd(T) is the temperature shift for damage. Establishing the validity of this 

provisional assumption was one of the objectives of this study; this is described in 

more detail in Chapter 5. 

• Viscoplastic strain εvp: It is provisionally assumed that the effects of loading time 

and temperature on viscoplastic strains can be interchanged using a generalized 

time-temperature superposition: 

  ( , , ) ( ) ( )vp vp vp R vpf t T f t g′ε = σ = σ  Equation 7 
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  in which gvp(σ) captures any influence of stress state1 and the reduced time tR in 

this case is given by: 

  
( )R

T vp

tt
a T

=  Equation 8 

  where aTvp(T) is the temperature shift for viscoplasticity effects. Establishing the 

validity of this provisional assumption is one of the objectives of this study. 

A key question for the Schapery model when applied to asphalt concrete is whether the 

same time-temperature superposition relationship exists for all of the strain components, 

i.e., whether 

  ( ) ( ) ( ) VPTDTLVET TaTaTa −−− ==  Equation 9 

Physically, Equation 9 implies that the same underlying rate process is governing the 

linear viscoelastic, damage, and viscoplastic responses of the material. If this can be 

demonstrated to be true, it enables great economies in the laboratory testing program 

needed to characterize the material parameters in the model. If the relationship in 

Equation 9  is not true, then a full factorial material characterization testing program may 

be required to span the full range of loading rates, temperatures, and stress levels of 

interest—a formidable task. Fortunately, the substudy described in Chapter 5 established 

that Equation 9 is sufficiently valid for practical engineering purposes. 

 

                                                 

1 This could alternatively be formulated in terms of strain level and a corresponding function hvp(ε) for 

capturing the strain level influence. 



 14

2.2 Viscoelasticity 

Linear viscoelastic materials have the properties of both linear elastic and viscous 

materials. When loaded, an elastic material deforms immediately and then continues to 

deform under constant load. As for linear elastic materials, viscoelastic displacement or 

strain is proportional to the load or stress at a given time. The definition of linearity also 

implies that stress and strain responses can be superimposed; responses from complex 

loading histories can be determined by superimposing the responses from multiple 

simplified loading histories. One of the simplest viscoelastic material models is the 

Maxwell model element consisting of spring and a dashpot as shown in Figure 3. The 

spring and dashpot give the element elastic and viscous properties respectively.  A single 

Maxwell element rarely fits observed behavior of real viscoelastic materials, including 

asphalt concrete.  A more useful formulation is a generalized Maxwell model consisting 

of n Maxwell elements placed in parallel as in Figure 4. The material constants Ei and μi 

correspond respectively to the stiffness of each Maxwell spring and the viscosity of each 

dashpot. The generalized Maxwell model provides an excellent fit to the observed 

behavior of a wide range of viscoelastic materials. 

 

Figure 3 Simple Maxwell model. 
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Figure 4. Generalized Maxwell model. 
 

 

2.2.1 Dynamic Modulus 

The behavior of viscoelastic materials can be characterized in terms of a 

relaxation modulus, creep compliance, or complex modulus. Because of laboratory 

testing convenience, complex modulus is commonly used to characterize the viscoelastic 

response of asphalt concrete. As shown in Figure 5, the complex modulus test consists of 

an applied sinusoidal axial stress that induces a sinusoidal axial strain response (Findley, 

Lai, and Onaran, 1989): 

  ( ) ( ) tiett ωσωσσ 00 cos ==  Equation 10 

  ( ) ( ) )(
00 cos φωεφωεε −=−= tiett  Equation 11 

In Equation 10 and Equation 11, σo is the dynamic stress amplitude, εo is the dynamic 

strain amplitude, ω is the loading frequency, and the phase angle φ is the frequency-
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dependent measure of the strain lag.  For relevant conditions, the strain response will 

always lag behind the stress in time for a viscous material in this stress-controlled test.  

 

Figure 5. Schematic of complex modulus response. 
 

 

The complex modulus, E*, is defined as the ratio of the dynamic stress to dynamic strain:   

  "']sin[cos* iEEieE
o

oi

o

o +=+== φφ
ε
σ

ε
σ φ  Equation 12 

in which the storage modulus, E', and loss modulus, E'', represent the real and imaginary 

components of complex modulus (Findley, Lai, and Onaran, 1989). The dynamic 

modulus, |E*|, is defined as the ratio of the dynamic stress amplitude to the dynamic 

strain amplitude: 

  22

0

0 )"()'(* EEE +==
ε
σ  Equation 13 

Dynamic modulus can be related to the storage and loss moduli: 

  )(cos|)(*|)(' ωφωω EE =  Equation 14 

  )(sin|)(*|)(" ωφωω EE =  Equation 15 
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Dynamic modulus is a function of loading frequency. As shown in Figure 6, the dynamic 

modulus for asphalt concrete is stiffer at higher frequencies and softer at slower 

frequencies because of the viscoelastic nature of the material. 

 

Figure 6. Dynamic modulus as a function of loading frequency. 
 

The generalized Maxwell model can be fit to the storage and loss moduli in the frequency 

domain using a Prony series (Park and Schapery, 1999): 
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Equation 17 

in which Ei are the elastic spring stiffnesses and ρi are the relaxation times for the 

elements in the generalized Maxwell model.  The relationship between relaxation time, 

viscosity, and stiffness is: 

  
i

i
i E

η
ρ =  Equation 18 
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For practical purposes, a set of arbitrary ρi values spanning the relevant time range are 

selected and a corresponding set of Eo and Ei values are determined that minimizes the 

differences between the computed and measured E′(ω) and/or E″(ω) values. 

 

2.2.2 Time-Temperature Superposition Principle 

The viscoelastic behavior of asphalt concrete depends strongly on temperature as 

well as rate of loading. Consequently, complex modulus is most correctly expressed as 

E*(ω, T), indicating dependence on temperature as well as frequency.   

The effects of temperature and loading rate on the viscoelastic properties of 

certain materials can be unified using the time-temperature superposition principle.  This 

principle allows for a master stiffness curve to be developed from test data at different 

loading rates and temperatures by ‘shifting’ the data along the loading time or frequency 

axis as a function of temperature. Figure 7 illustrates an example of this for dynamic 

modulus, |E*|.  Arrows show the direction and amount that the modulus data at each 

temperature is shifted horizontally to the single underlying master curve. 
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Figure 7. Time-temperature superposition schematic. 
 

Using the principle of time temperature superposition, the material property is no longer 

dependent upon both absolute frequency and temperature but instead is a function only of 

reduced frequency defined as:  

  )(TaR ×= ωω  Equation 19 

or 

  ( )TaR logloglog += ωω  Equation 20 

in which ω is the actual loading frequency, ( )Ta  is temperature shift factor, T is 

temperature, and ωR is reduced frequency. When loading time is used in the context of a 

time-domain viscoelastic material property (e.g. creep compliance), a reduced time 

instead of reduced frequency can be defined as: 

  
)(Ta

ttR =  Equation 21 

or       
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  ( )TattR logloglog −=  Equation 22 

in which t is the actual loading time, tR is reduced time, and the other terms are as defined 

previously. 

Temperature shifting requires the selection of an arbitrary reference temperature 

toward which the data from other temperatures is ‘shifted’. Each temperature has an 

associated shift factor ( )Ta  as illustrated in Figure 8.  The temperature shift factors are 

used to shift the data in Figure 7, where data at temperatures above the reference 

temperature are horizontally shifted in one direction (i.e., a(T) < 1) and data below the 

reference temperature are horizontally shifted in the other direction (i.e., a(T) > 1).  

 

 

Figure 8. Temperature shift factors a(T) for time-temperature superposition. 
 

Time-temperature superposition allows viscoelastic properties to be predicted at 

loading times or frequencies well outside the capable range of testing equipment.  For 

example, dynamic modulus at a cold temperature and very slow loading rate is the same 
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as the dynamic modulus at some warmer temperature and faster loading rate.  Time-

temperature superposition can be advantageous because the very cold and slow test 

conditions (i.e.-corresponding to a truck stopped at an intersection) may be difficult or 

impractical to test in the laboratory; instead, this behavior can be captured at an 

equivalent warmer temperature and higher frequency that is easier to achieve in the 

laboratory. 

Materials that follow time-temperature superposition are termed 

“thermorheologically simple,” meaning that temperature and loading rate effects can be 

interchanged solely via the temperature shift factor.  It is well established that asphalt 

concrete is a thermorheologically simple material under linear viscoelastic conditions at 

“small” strain levels.  The linear viscoelastic limit is typically assumed to be on the order 

of 100 με (e.g., Monismith et al., 1966; Mehta and Christensen, 2000). A primary 

objective of the research described in this dissertation was to determine if asphalt 

concrete remains thermorheologically simple for strains exceeding the linear viscoelastic 

limit (i.e., at strains greater than 100 με); this is described in more detail in Chapter 5. 
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2.2.3 Relaxation Modulus and Creep Compliance 

As described previously, the behavior of viscoelastic materials can alternatively 

be characterized in terms of its relaxation modulus or creep compliance. The relaxation 

modulus is commonly measured in a uniaxial relaxation test in which a fixed axial strain 

εo is applied instantaneously and the induced stress σ(t) attenuates with time t. The 

relaxation modulus E(t) is then defined as: 

  ( )( )
o

tE t σ
ε

=  Equation 23 

Conversely, the creep compliance is commonly measured in a uniaxial creep test in 

which a constant stress σo is applied instantaneously and the induced strain ε(t) increases 

with time. The creep compliance D(t) is then defined as: 

  ( )( )
o

tD t ε
σ

=  Equation 24 

The relaxation modulus E(t) and the small-strain temperature shift function a(T) are the 

principal linear viscoelastic properties needed in the Schapery continuum damage model. 

To determine the relaxation modulus, the linear viscoelastic strain response determined 

more conveniently from small strain complex modulus tests is used to develop a master 

curve for the storage modulus E'. As described previously by Equation 16, the variation 

of storage modulus E' with frequency ω can be approximated as a Prony series, 

corresponding to a generalized viscoelastic Maxwell model (Figure 4). A Prony series 

can then also be used to represent the relaxation modulus and creep compliance for the 

generalized Maxwell model (Park and Schapery, 1999):  

  ( )
1

i

tm

o i
i

E t E E e ρ
−

=

= + ∑  Equation 25 
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)1( τ  Equation 26 

in which Eo is the long-term equilibrium modulus and the Ei and ρi terms are the same as 

for the storage modulus E′ as given by Equation 16. The Prony series can be fit to 

complex modulus laboratory test data by means of a collocation method (Schapery, 1961) 

or other numerical technique.  

The Prony series representation of creep compliance can be predicted from the 

Prony representation of relaxation modulus by using a technique developed by Park and 

Schapery (1999).  The unknown compliance constants {Do, τj, Dj (j=1,2...n)} can be 

solved in terms of the known relaxation constants {Eo, ρi, Ei (i=1,2...m)} by means of the 

relationship: 

  [ ]{ } { }BDA =  Equation 27 

or AkjDj = Bk (summed on j; j = 1,2,...n; k = 1,2,...p) where: 
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The relaxation modulus and creep compliance are useful for computing stresses and 

strains from given strain and stress histories respectively using the following standard 

convolution integrals: 

  τ
τ
ετσ dtEt

t

∫ ∂
∂

−=
0

)()(  Equation 31 
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2.3 Continuum Damage 

The continuum damage model described herein consists of constitutive equations 

and damage evolution equations for three-dimensional mechanical behavior of asphalt 

concrete and other particulate composites having low-modulus, time-dependent matrices. 

The damage and filler particles are assumed sufficiently well distributed that a composite 

material element can be viewed as a homogeneous continuum. This characterization for 

the local material behavior can be implemented in a finite element analysis to predict 

pavement stress, deformation, damage states, damage localization (including post-peak 

behavior), and growth of macro cracks. Analysis of crack propagation requires additional 

experimental information on fracture properties as determined from macro crack growth 

measurements in laboratory specimens; this is beyond the scope of the present research.  

The theoretical context for the work described herein is the Schapery continuum 

damage model (Park and Schapery, 1997; Ha and Schapery, 1998). Key conceptual 
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components of this model include the use of elastic-viscoelastic correspondence 

principles, reduced time, microstructural damage functions based on a thermodynamics-

based formulation and expressed in terms of rate-dependent internal state variables. A 

simplified form of the basic Schapery continuum damage model has been applied in the 

past to asphalt concrete under cyclic and monotonic tension at moderate temperatures by 

Park et al. (1996) and Lee and Kim (1998a, 1998b). 

  

2.3.1 Uniaxial Formulation 

The Schapery-based damage model is a nonlinear viscoelastic formulation with 

fully recoverable strains. Viscoelastic effects are treated using elastic-viscoelastic 

correspondence principles that transform the viscoelastic problem into a mathematically 

equivalent elastic case. Schapery (1984) proposed an extended elastic-viscoelastic 

correspondence principle applicable to linear and non-linear viscoelastic media.   This 

correspondence principle states that the constitutive equations for viscoelastic material 

are the same as for an elastic material, but with actual stresses and strains replaced by 

pseudo stresses and pseudo strains determined using the following convolution integrals: 
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in which veεσ ,  = physical stress and viscoelastic strain component (which  

       includes the elastic strain) 

  RR εσ ,  = pseudo stress and pseudo strain 

  ER = arbitrary reference modulus that is constant 
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  E(t) = relaxation modulus 

  D(t)   = creep compliance 

  tR = reduced time—see Equation 21 

This formulation is advantageous as compared to other methods that use Laplace or 

Fourier transforms, which can be difficult to evaluate analytically.  

It is important to mention that Equation 33 is for applications in which the 

damage is constant or growing, as has been assumed in the present research. When the 

damage decreases (i.e. heals) then Equation 34 should be used instead. Although healing 

is an important concern for asphalt concrete, particularly for fatigue cracking, it is not 

considered in the present version of the model. 

For the case of no damage, the axial pseudo strain is related to the uniaxial stress 

via the standard linear elasticity relation: 

  R
REσ ε=  Equation 35 

Damage is incorporated by replacing the reference modulus with a damage function  

)(SC  that is dependent upon an internal state variable S: 

  ( ) RC Sσ ε=  Equation 36 

The C(S) function represents the degree of damage in the material. When the 

reference modulus is taken as unity for simplicity the damage function ranges between 1 

for intact material to 0 for a completely damaged material. A strain energy density WR in 

terms of pseudo strains (i.e., pseudo strain energy density) is defined as: 

  ( ) 2)(
2
1 RR SCW ε=  Equation 37 

The nonlinear stress-strain relation in Equation 36 can then alternatively be generated 

from the strain energy density using the standard relation: 
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  R
R

R

SCW ε
ε
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∂
∂

≡  Equation 38 

A damage evolution law governs development of the damage internal state variable S: 
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&  Equation 39 

in which 
( )R
dtdt

a T
= , a(T) is the temperature shift, and α is a material property. 

 

2.3.2 Multiaxial Formulation 

2.3.2.1 Undamaged Material 

  For a transversely isotropic material without damage, the strain energy density  

function can be written in terms of pseudo strains as follows (after Schapery, 1985): 
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Equation 40 
   

in which x3 is the axis of material symmetry and the pseudo strain terms are defined as: 
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and the Aij terms are the five elastic coefficients for a transversely isotropic material. For 

asphalt concrete test specimens, the x3 axis is the axial direction (usually assumed to 

correspond to the vertical direction in the pavement) and a principal direction. For these 
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conditions, 
22 2 33 313 23 12 11 10, , , R R R R R R R R Rγ γ γ ε ε ε ε ε ε= = = = = =  where 1

Rε , 2
Rε , and 3

Rε  are 

principal strains, and Equation 41 can be simplified as: 

  ( ) ( ) ( )( )3

2 2 2

11 22 3 12 66 2
1 2
2 V

R R R R R R
VW A e A e A e e A e′ = + + +  Equation 42 

The stress- pseudo strain relations are derived from the simplified pseudo strain energy 

density Equation 42 in terms of principal stresses as: 
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2.1.1.1 Damage 

  The inclusion of rate dependent irreversible damage in the model is based on Park 

and Schapery (1997) and (Ha and Schapery, 1998). For confined uniaxial monotonic 

loading of a time-dependent material with damage, the dual energy density function in 

terms of pseudo strains is given as: 
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in which p is the confining pressure (compression positive—i.e., p= −σ3 for conventional 

triaxial test conditions), 1
Rε  is the axial pseudo strain (tension positive), and C11, C12, and 

C22 are material damage functions defined in terms of internal state variable S, as will be 

described in more detail below.2 Distributed damage due to this type of loading produces 

transverse isotropy (in an initially isotropic material) with the isotropy axis x3 in the 

specimen's axial direction. 

  The stress-pseudo strain relations are expressed as: 
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in which Δσ is the deviator stress (tension positive) and R
Ve  is the volumetric pseudo 

strains (expansion positive). Comparing Equation 46 and Equation 44, the instantaneous 

elastic material constants Aij can be expressed in terms of the damage functions Cij as: 

  

                                                 

2 Ha and Schapery’s (1998) original formulation was for solid rocket propellant problems in which the 

material can be subjected to confining pressures having magnitudes approaching the elastic modulus. For 

these conditions, they included an additional damage function and a second internal state variable to 

capture damage effects under intense volumetric loading. These additional terms are not needed for asphalt 

concrete in pavement problems. 
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Note that the material constant A66 cannot be determined from Equation 47. Schapery 

(1991) used micromechanical model arguments to show that A66 should be relatively 

insensitive to microstructural damage, and therefore A66 can be taken as the initial shear 

modulus Ginit, of the undamaged material: 

  
( )66 2 1

init
init

init

EA G
ν

= =
+

 Equation 48 

  The internal state variable S in the Cij damage functions accounts for changes in 

the internal structure of the material such as caused by micro cracking. The internal state 

variable is again defined via an evolution law: 

  D
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in which 
( )R
dtdt

a T
= , a(T) is the temperature shift, and α is a material property. Park et 

al. (1996) describe the characterization process for determining the material damage 

functions Cij. 
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2.4 Uniaxial Viscoplasticity 

           The axial viscoplastic strain rate for uniaxial constant-stress loading is assumed to 

follow a strain-hardening model of the form: 

  ( )
vp p

vp

g
A

σ
ε =

ε
&  Equation 50 

in which vpε&  is the viscoplastic strain rate, εvp is the total viscoplastic strain, g(σ) is the 

uniaxial stress loading function, and A and p are material constants. Equation 50 can be 

rearranged and integrated: 
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For constant stress creep conditions, g(σ) is independent of time and Equation 51 

becomes: 
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Assuming a power law of the form ( ) qg Bσ σ=  in which B and q are material properties, 

Equation 53 reduces to: 
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or more simply: 
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in which Y=A/B. For conditions where stress is not constant over time, the viscoplastic 

model is expressed in a more general form as: 
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The total or physical strain is the sum of the viscoelastic (adjusted for damage) and 

viscoplastic strains: 

  vevptotal εεε +=  Equation 57 

Extensions to more general stress states may be accomplished as described by Schapery 

(1999). 
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3. Test Specimen Preparation 

 

3.1 Test Material 

The material used in the experimental program is a dense graded unmodified 

asphalt concrete mixture meeting Superpave requirements that is used by the Maryland 

State Highway Administration (MDSHA) as a surface course mixture.  The mixture is a 

12.5 millimeter nominal maximum aggregate size based on MDSHA specifications for 3-

10 million 80 kN equivalent single axle loads (ESALs).  The mixture properties were 

altered slightly from the MDSHA standard design for this study.  New optimum gyration 

levels, asphalt contents, and mineral filler contents were determined in a separate study 

by the Superpave Models Team (1999a).  The mixture was not short-term oven aged in 

order to save time. Short-term oven aging was not necessary since the material was being 

used only for experimental research.   

Different aggregate stockpiles from Redland Genstar’s Frederick, Maryland 

quarry were blended by the percentages shown in Table 1.  The aggregate is a hard, 
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durable crushed limestone with low Los Angeles abrasion and meets Superpave gradation 

requirements as shown in Figure 9. 

 

Table 1. Aggregate stockpile blend percentages. 

Aggregate 
Stockpile 

Blend Percentage 
by Weight 

#7 28 % 
#8 15 % 
#10 17 % 

Washed #10 40 % 
 

 

Figure 9. 12.5 mm aggregate gradation used in asphalt mixture for model calibration. 
 

The unmodified asphalt binder used in the mixture is rated as a performance grade PG 

64-22.  Extensive tests were performed by others on the asphalt binder to characterize it 

over a wide range of temperatures and rates.  Superpave and conventional binder tests 

were performed for tank, rolling thin film oven (RTFO) aged, pressure aging vessel 
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(PAV) aged, and recovered conditions.  Detailed results from the individual aggregate, 

binder, and mixture material tests can be found in a report prepared by the Superpave 

Models Team (1999a).  The final properties of the mixture are shown in Table 2. 

 

Table 2. 12.5 mm asphalt concrete mixture design. 

Property Design Superpave 
Criteria 

Gradation                                 
19.0 mm 

(% Passing)   
100  100 

12.5 mm 97 100 – 90 
9.5 mm 87  
4.75 mm 58  
2.36 mm 35 58 – 28 
1.18 mm 21  
0.600 mm 13  
0.300 mm 9  
0.150 mm 8  
0.075 mm 6.1 10 – 2 
Asphalt Content, % 5.2  
Gmm 2.492  
Gsb 2.674  
Air Voids, % 4.0 >= 4.0 
VMA, % 15.5 >14.0 
VFA, % 74 65-75 
Filler/Effective Asphalt Ratio 1.26 0.6-1.2 
% Gmm at Ninitial 84.8 >89.0 
%Gmm at Nmaximum 97.6 <98 
Coarse Aggregate Angularity 100/100 95/90 
Fine Aggregate Angularity 46 >45 
Flat and Elongated 8.3 <10 
Sand Equivalent 91 >45 
Binder Mixing Temperature, oC 153-159  
Compaction Temperature, oC  142-147  
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3.2 Test Specimens 

All test specimens were fabricated at Arizona State University and shipped to the 

other laboratories (NCSU and UMD) participating in this joint study to eliminate lab-to-

lab variability in specimen manufacture.  The geometry and instrumentation of the test 

specimens followed recommendations from the Superpave Models Team (1999b).  The 

study recommends height to diameter ratios for different types of loading and boundary 

conditions. For unconfined uniaxial compression of 12.5 mm mixtures, the recommended 

test geometry is a cylindrical specimen 150 mm tall and 100 mm in diameter (height to 

diameter ratio of 1.5).  For unconfined uniaxial tension or tension/compression tests, the 

recommended test geometry is a cylindrical specimen 150 mm tall and 75 mm in 

diameter (height to diameter ratio of 2.0).  The larger aspect ratio is required for the 

tension specimens to minimize end effects at the bonded interfaces between the test 

specimen and the top and bottom loading platens.   

Gyratory plugs 170 mm tall and 150 mm in diameter were compacted at Arizona 

State University using an IPC Servopac Superpave gyratory compactor.  The test 

specimens were then cored from the gyratory plugs and the ends cut smooth and parallel. 

The target air void content for the cored and trimmed test specimens was 4.0% with a 

tolerance of ±0.5% to minimize air void content effects.  To reduce the effects of aging, 

all specimens were placed in plastic bags and stored at temperatures between 5oC and 

25oC before testing. 

Linear variable differential transformers (LVDTs) were used for axial strain 

measurements.  The axial LVDTs had spring-loaded gage heads and had a physical range 

of ±5.0 mm,  although they were calibrated and used only over a reduced range of ±2.5 
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mm. The axial gage length for the LVDTs was 100 mm over the center of the specimen. 

All strain measurements reported are the average of four axial LVDTs located at 90 

degree intervals around the specimen circumference.  Averaging the four axial LVDTs 

removes specimen bending effects and reduces the overall variability of strain 

measurements on the specimen. 

The axial LVDTs were attached to the specimen by means of glued studs to which 

brackets are affixed to hold the LVDTs in place.  A gluing jig facilitates the process of 

attaching the studs.  A cradle large enough for three to four specimens was constructed to 

hold the specimens horizontally.  This cradle was used in conjunction with small Lexan© 

strips having holes drilled at the predetermined gage lengths.  The studs were attached to 

the Lexan© strips to ensure the studs were aligned and glued at the correct gage length.  

Schematics of the LVDT brackets are shown in Figure 10.  A photo of an instrumented 

compression specimen is provided in Figure 10.  This axial LVDT setup allows for 

unhindered radial dilation of the specimen. Latex membranes may be used with this setup 

for triaxial confined testing. The membranes are placed over of the specimen and the 

glued brass studs. At each brass stud, the membrane is punctured by the screw and then 

sealed with a washer and liberal amounts of vacuum grease. The ends of the membrane 

are sealed on the top and bottom platen edges with O-rings and vacuum grease. 
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Figure 10 On-specimen LVDT instumentation. 
 

 

Figure 11. Photo of instrumented specimen. 
 

The ends of the test specimens for compression testing are lubricated to allow for uniform 

dilation and minimum end effects.  Lubrication was achieved through greased rubber 

membrane sandwiches placed between the specimen ends and the top and bottom loading 

platens.  The sandwich consists of two 100-mm diameter disks made from scrap latex 
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membranes with a thin layer of silicone grease in between.  Trial and error was required 

to find the correct amount of grease. The specimens will shift between the loading platens 

if there is too much grease because it is very difficult to obtain perfectly parallel ends.  

Too little grease will create larger end effects by preventing free dilation of the specimen.   

The top loading platen is lightweight aluminum to reduce the effect of its own 

weight on the material under soft conditions at high temperatures.  The bottom is 

hardened steel for durability.  

 

3.3 UTM-100 Testing System 

IPC Global of Victoria, Australia manufactured the UTM-100 testing machine 

used for this study3.  The machine is a servohydraulic feedback controlled testing 

machine capable of performing load and displacement controlled tests.  A photo of the 

UTM-100 system is provided in Figure 12.  The axial load capacity of the machine is 100 

kN.  Gain switches can be used to reduce the load range to 50 kN, 20 kN, or 10 kN for 

more sensitive tests.  The machine is outfitted with an environmental temperature cabinet 

and confining pressure cell for confined tests.  Control and data acquisition is achieved 

through a Control and Data Acquisition System (CDAS) unit interfaced with a PC via 

two serial cables.  Two forms of test control software available from the manufacturer 

were used in this study. The first software package (UTM 3) utilized pre-programmed 

test templates for dynamic modulus, uniaxial strain rate, and other standard tests.  More 

sophisticated tests were performed with the second user-defined program (UTM 100), 

                                                 

3 More details about IPC products can be found at www.ipcglobal.com.au. 
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which gives the operator much greater flexibility in specifying loading and data 

acquisition settings. 

 

 

Figure 12. UTM-100 testing system. 
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4. Linear Viscoelasticity Characterization 

 

4.1 Introduction 

Small-strain frequency sweep tests were used to determine the linear viscoelastic 

complex modulus and the temperature shift factors of the material for small-strain 

response. Conventional dynamic modulus tests were performed in unconfined 

compression at four temperatures and five frequencies at each temperature. Dynamic 

modulus and phase angle data are then converted to relaxation modulus for use in the 

Schapery continuum damage model formulation. 

 

4.2 Testing Details 

Draft test protocols developed as part of NCHRP Projects 1-37A and 9-19 formed 

the basis for the dynamic modulus testing in compression for this project.  These data are 

obtained from uniaxial compression frequency sweep tests performed just prior to the 
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constant strain rate tests used to evaluate time-temperature superposition at large strains 

(Chapter 5) and to calibrate the uniaxial damage model (Chapter 7). A summary of the 

test conditions is found in Table 3. Testing was performed at 5, 25, 40, and 60oC. These 

temperatures, which deviate somewhat from the NCHRP 1-37A and 9-19 dynamic 

modulus test protocols, were selected based on the target temperatures for the constant 

strain rate tests performed immediately after the frequency sweep. The test temperatures 

approximate the range of temperatures a pavement would experience, except for perhaps 

the coldest temperatures. 

The frequencies used in this research also deviated a bit from NCHRP 1-37A and 

9-19 complex modulus protocols. At each temperature the material was loaded 

sinusoidally at frequencies of 20 Hz, 10 Hz, 3 Hz, 1 Hz, 0.3 Hz, and 0.1 Hz. These 

frequencies approximate the full range of loading rates pavements experience from 

highway speeds down to very slow traffic. As will be described later, multiple 

frequencies ensure complete development of a complex modulus master curve for the 

material. An overlap between dynamic modulus isothermal curves is desirable (although 

not essential) when creating master curves.  In other words, the modulus at the highest 

frequency at a given temperature should be similar to the modulus at the neighboring 

lowest frequency at a colder temperature.  

Preconditioning was performed at 10 Hz using one half the stress level applied in 

the normal 10 Hz loading.  Preconditioning is intended to seat any loose aggregates in the 

specimen and remove any other anomalous strain measurements before the formal 

frequency testing.  The duration of loading for each compressive frequency sweep is 

summarized in Table 4 and varied between 25 to 100 seconds depending on what was 
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feasible and what the pre-programmed IPC software would allow.  The specimen was 

allowed to recover under a very small contact stress for five minutes between each 

frequency. The data acquisition software acquired the last six cycles of data for analysis 

purposes.  The last six cycles are used to determine the linear viscoelastic properties of 

the material on the assumption that the dynamic strain response has reached steady state 

at this point.  

It was assumed that limiting the dynamic strains to less than 100με ensured linear 

viscoelastic behavior and negligible microstructural damage of the material. This 

required the applied stress to vary with frequency at each temperature, with higher 

stresses being applied at the higher frequencies.  Typical compressive stresses applied in 

the dynamic modulus tests are shown in Table 5. 

 

Table 3. Summary of small strain dynamic modulus test conditions. 

Test Temperatures 5, 25, 40, 60 oC 
(41, 77, 100, 140 oF) 

Frequencies in Frequency Sweep 0.1, 0.3, 1,  3, 10, 20 Hz 

Cycles per Frequency 10, 15, 40, 100, 250, 600 cycles 
respective to the above frequencies 

Dynamic Strain Limit 
Stress levels controlled such that dynamic strains 

were no greater than 100 με  
(but large enough to analyze) 

Preconditioning 200 cycles at 10 Hz Using ½ the Stress Applied 
in the Regular 10Hz Sweep 

 

Table 4.  Details of loading for small-strain dynamic modulus tests. 

Loading Cycle 10Hz 
Preconditioning 20Hz 10Hz 3Hz 1Hz 0.3Hz 0.1Hz 

Number of Cycles 100 600 250 100 40 15 10 
Total Time, sec 10 30 25 33.3 40 50 100 
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Table 5.  Typical stresses applied in small-strain dynamic modulus tests. 

Typical Stresses Applied (kPa) Temperature  
(oC) 20 Hz 10 Hz 3 Hz 1 Hz 0.3 Hz 0.1 Hz 

5 1192 1041 895 756 609 501 
25 601 525 374 274 211 169 
40 259 213 149 113 94 83 
60 65 58 43 35 32 29 

 

Note that in a conventional dynamic modulus test, frequency sweeps would be 

performed at all test temperatures on a single test specimen. Testing usually begins with 

the coldest temperature, with frequency varied from the highest to lowest values under 

constant temperature conditions. The temperature in the environmental chamber is then 

increased, the specimen is allowed to reach thermal equilibrium, and the frequency sweep 

is repeated at this new temperature. This process is repeated for all temperatures in the 

test protocol. The modified protocol used in the present study is slightly different in that 

it tests a different specimen at each test temperature; this is necessary because the 

subsequent constant strain rate test is run to failure. 

As indicated in Table 3, the stress was varied so that the magnitudes of the 

dynamic strains were limited to a maximum of 100με at all frequencies in order to 

minimize specimen damage and ensure linear behavior. This goal was achieved with an 

average strain of about 60με. Sacrificial specimens were required to determine the 

appropriate stress settings for the formal production tests. It is useful to note the current 

specifications for the Simple Performance Tester from NCHRP Project 9-29 have 

removed this iterative trial and error (Bonaquist et al., 2002). The control software for the 

Simple Performance Tester is required to automatically adjust the target stresses in the 
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stress-control test such that the measured dynamic strains are always within a user 

defined tolerance, typically 75με to 125με.  

A typical trace of dynamic strain vs. time from the frequency sweep tests is 

shown in Figure 13. Histograms summarizing the distribution of dynamic strain 

magnitudes at each test temperature are provided in Figure 14. There was considerable 

amount of signal noise in the strain measurements. Possible causes include the large 

capacity of the load cell and the large amount of inherent noise in the LVDT signals.  The 

magnitude of the noise can be seen in Figure 13. The noise amplitude in the LVDTs was 

on the order of 24με, as compared to dynamic strain amplitudes on the order of 60 to 

70με.  Although much effort was put into troubleshooting the noise, the source was not 

isolated nor its magnitude reduced during this study.  A faulty electronic signal 

conditioner was eventually detected and repaired at a later date.  

For various reasons, about eight specimens (five more than the required three) 

were typically tested at each temperature in this study. The added benefit from these 

additional samples is increased confidence in the mean |E*| values.  
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Figure 13 Typical trace of dynamic strains from pre-programmed IPC |E*| software. 
 

 

Figure 14 Dynamic strain magnitudes from dynamic modulus frequency sweeps. 
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4.3 Dynamic Modulus Test Results 

The magnitude of the dynamic modulus, |E*|, and the time lag or phase angle, φ, 

between the stress and strain at each temperature and frequency were the primary 

objectives for the data analysis.  For the compression tests, determination of |E*| and 

phase angle was performed using the built-in algorithms in the pre-programmed IPC 

software controlling the test and data acquisition.  For a given cycle of stress and strain 

data, the algorithm fits a second order polynomial over 25% of the period on either side 

of the peak or valley to determine the peak-to-peak dynamic strain, peak-to-peak 

dynamic stress, and lag time between the stress and strain peaks.  Typical results from 

this pre-programmed software are shown in Figure 13. 

 

4.3.1 Isothermal Dynamic Modulus and Phase Angle 

Dynamic modulus and phase angle values versus loading frequency for each 

replicate at each temperature are shown in Figure 15 through Figure 22.  These data were 

collected and analyzed using the methods described earlier in the testing details 

subsection.  

Dynamic modulus and phase angle values generally followed expected trends. 

Phase angle increases with loading frequency at the warmer temperatures and decreases 

with frequency at the colder temperatures.  The only unusual results were for the phase 

angle the two warmest temperatures, in that the phase angle at 40oC was unexpectedly 
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very similar to the phase angle at 60oC.  Dynamic modulus increases with increasing 

loading frequency and increases as temperature decreases in all cases.  

Coefficients of variation were computed to assess the variability of the measured 

values.  Coefficient of variation CV is defined as: 

%100×=
x
sCV  Equation 58 

in which s is standard deviation and x is the mean value.  Coefficients of variation for 

measured dynamic modulus at each temperature and frequency are summarized in Table 

6.  Coefficients of variation for measure phase angle at each temperature and frequency 

are listed in Table 7. 

The coefficients of variation for both phase angle and dynamic modulus increase 

with increasing temperature, in large part because the material properties are more 

difficult to measure as the asphalt binder becomes softer.  Pellinen (2001) reported 

dynamic modulus coefficients of variation of 12.8%, 14.2%, 14.5%, and 28.1% and 

phase angle coefficients of variation of 10.2%, 5.0 %, 4.6%, and 9.5% at temperatures of 

4.4, 21.1, 37.8, and 54.4oC, respectively.  The values for the present study listed in Table 

6 and Table 7 are a bit higher than Pellinen’s.  It is believed that the reasons for the larger 

variations in the present study are the higher capacity of the UMD testing machine and 

the larger than desirable noise in the strain measurement signals.  The tests were 

particularly difficult to control at 60oC; this is reflected in the large coefficients of 

variation for both dynamic modulus and phase angle at 60oC.  The gain setting on the 100 

kN load cell was set to the 10 kN range for the 60oC tests in an effort to improve the data 

quality.  However, this only slightly improved the signal to noise ratio, and the very small 
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loads (average load of 0.75 kN) applied to the specimens at 60oC were still only about 

7.5% of the 10kN load cell range. 
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Figure 15. Dynamic modulus in compression at 5oC. 
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Figure 16. Dynamic modulus in compression at 25oC. 
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Figure 17. Dynamic modulus in compression at 40oC. 
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Figure 18. Dynamic modulus in compression at 60oC. 
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Figure 19. Phase angle in compression at 5oC. 
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Figure 20. Phase angle in compression at 25oC. 
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Figure 21. Phase angle in compression at 40oC. 
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Figure 22. Phase angle in compression at 60oC. 
 

Table 6.  Coefficients of variation for compressive dynamic modulus. 

Dynamic Modulus Coefficients of Variation (%) 
Temperature, oC Avg. of 

All Freq. 20 Hz 10 Hz 3 Hz 1 Hz 0.3 Hz 0.1 Hz 

5 9.7 7.0 8.4 8.8 10.5 11.6 12.1 
25 19.6 15.3 17.5 19.0 18.3 22.3 25.4 
40 21.6 21.6 22.3 22.1 21.3 20.3 22.4 
60 27.5 29.4 32.1 26.2 25.5 27.0 24.8 

 

Table 7.  Coefficicents of variation for compressive phase angle. 

Phase Angle Coefficients of Variation (%) 
Temperature, oC Avg. of 

All Freq. 20 Hz 10 Hz 3 Hz 1 Hz 0.3 Hz 0.1 Hz 

5 7.5 13.3 7.8 4.2 3.1 11.4 5.3 
25 9.2 6.3 4.4 13.6 14.9 6.6 9.5 
40 7.9 4.3 6.8 5.1 8.5 10.4 12.2 
60 24.0 19.6 23.4 20.2 21.5 27.1 32.1 
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4.3.2 Dynamic Modulus and Phase Angle Master Curves 

Following work by Pellinen (2001), the underlying shape for the dynamic 

modulus master curve was assumed to be a sigmoidal function in the following form: 

( )43 log*
2

1 1
|*|log cc Re

ccE −−+
+= ω  Equation 59 

The sigmoidal function in log-log space is an appropriate shape for the dynamic modulus 

master curve of asphalt concrete; it can be applied equally well to characterize the storage 

modulus master curve. The sigmoidal function is characterized by high and low 

temperature shelves where the dynamic modulus becomes relatively insensitive to further 

change in temperature. The high and low temperature shelves are typically approached at 

temperatures of about 60oC and -10oC, respectively.  Temperatures colder than 5oC were 

not considered here because it was determined in advance that the capacity of testing 

machine was insufficient to fail the specimens in the constant strain rate portion of the 

tests immediately following the frequency sweeps. 

The method for calibrating the master curve proposed by Pellinen (2001) uses the 

nonlinear optimization tool Solver in Microsoft Excel to determine the best-fit master 

curve.  The four coefficients for the sigmoidal function are optimized in Solver 

simultaneously with the individual ( )Ta  shift factors for each temperature. The results 

from this optimization are shown in Figure 23 and Figure 24, which summarize the 

individual temperature-shifted dynamic modulus data, the underlying fitted master curve, 

and the ( )Ta  temperature shift factor relationship. Each data point in the dynamic 

modulus master curve is the average of at least eight replicates. The measured dynamic 

modulus values begin to approach their respective shelves at the high and low 

temperature extremes.   
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The average phase angle was shifted at each temperature using the same ( )Ta  

temperature shift factors developed for the dynamic modulus; the shifted phase angles are 

shown in Figure 25.  It is more reasonable to use the temperature shift factors from 

dynamic modulus to shift phase angle than to optimize a phase angle master curve 

separately because of the larger variability in the phase angle data.  

The key results from the dynamic modulus master curve development are the 

individual temperature shift factors and the coefficients that characterize the underlying 

sigmoidal master curve.  These are summarized in Table 8 and Table 9, respectively. 
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Figure 23. Small-strain dynamic modulus master curve. Average of replicates at each temperature 
shown. 
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Small-Strain Dynamic Modulus Temperture Shift Factors a(T) 
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Figure 24. Small-strain dynamic modulus temperature shift factors. 
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Figure 25. Temperature shifted phase angle. 
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Table 8. Small-strain dynamic modulus a(T) shift factors. 

Temperature, oC 5 25 40 60 
a(T) 101.9670 0 10-1.5587 10-4.2267 

 

Table 9. Coefficients for dynamic modulus master curve Equation 58 in units of MPa with frequency 
units of radians per second. 

c1 c2 c3 c4 
2.4479 2.2510 0.4369 -0.0706 

 
 

 

4.3.3 Effect of Accumulated Strain on Dynamic Modulus 

Significant amounts of accumulated strain ranging up to 0.45% were observed 

during some of the warmer compressive dynamic modulus frequency sweeps. This 

accumulated strain is caused by the non-zero mean stress from the compressive haversine 

loading over all of the frequencies.  It was of interest to determine if this accumulated 

strain had any effect on the measured dynamic modulus as a consequence of induced 

damage or viscoplasticity.   

To address this concern, an exploratory test was conducted at about 40oC with a 

modified frequency sweep applying the standard suite of frequencies from 

preconditioning through 0.1 Hz followed by this same frequency sweep in reverse order. 

The dynamic modulus and phase angle at each frequency were examined to determine if 

there were any significant differences between the forward and reverse frequency sweeps.   

The measured strain versus time throughout this exploratory test is shown in 

Figure 26.  Strain clearly increases due to the mean compressive stress during loading at 

each frequency; only a portion of this strain is recovered during the rest periods.  The 

majority of the accumulated strain develops during the 10 Hz preconditioning and the 20 
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Hz initial loading phase. Dynamic modulus and phase angle values measured at each 

frequency during the forward and reverse passes are plotted in Figure 27 and Figure 28. 

The dynamic modulus measured at 20 Hz in the forward pass was identical to the 

value measured in the reverse pass after about 0.3% strain had accumulated (recall that 

the small strain limit is conventionally assumed to by 100με or 0.01%).  The phase angle 

values varied slightly more between the two passes, but this is likely due at least in part to 

the larger inherent variability of the phase angle measurements. The dynamic modulus 

did not appear to be affected by the accumulated strain.  

 

Figure 26. Back-to-back compressive frequency sweep with accumulated strain. 
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Figure 27. Compressive dynamic modulus with different amounts of accumulated strain. 
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Figure 28. Compressive phase angle with different amounts of accumulated strain. 
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4.4 Relaxation Modulus and Creep Compliance  

As described earlier in Chapter 2, the complex modulus can be alternatively 

modeled using a generalized Maxwell viscoelastic model. In this case, the storage E′(ω) 

and loss modulus E″(ω) components of E* can be expressed mathematically in terms of 

the following Prony series: 

( ) ∑
= +

+=
m

i i

ii
o

E
EE

1
22

22

1
'

ρω
ρω

ω  Equation 60 

( ) ∑
= +

=
m

i i

ii EE
1

221
''

ρω
ωρ

ω  Equation 61 

in which Ei are the elastic spring stiffness and ρi are the relaxation times for the elements 

in the generalized Maxwell model. The relaxation modulus E(t) and creep compliance 

D(t) can then be evaluated as: 
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E t E E e ρ
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= + ∑  Equation 62 

( ) ∑
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n

j

t

jo
jeDDtD

1
)1( τ  Equation 63 

in which the Ei and ρi terms in Equation 62 are the same as in Equation 60 or Equation 61 

and the Dj and τj terms in Equation 63 are derived from the Ei and ρi terms using the 

techniques previously described in Chapter 2. 

The expression for storage modulus in Equation 60 was used to determine the 

Prony series terms. However, a problem was discovered during analysis of the 5oC 

constant strain rate test data. The constant strain rate tests, which immediately followed 

the frequency sweep tests, are described more fully in Chapters 5. The initial assumption 
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for these tests was that the damage strains were very small at the very beginning of the 

test and that the viscoplastic strains were negligible throughout. Consequently, the initial 

portion of the test response should be almost entirely viscoelastic. However, when the 

linearly viscoelastic stresses were computed from the measured strains via the relaxation 

convolution integral (see Chapter 2), the computed stresses were higher (from 0 to 70%) 

than the measured stresses. A worst-case example of this is shown in Figure 29. 

The hypothesized cause of this problem was that the relaxation modulus as 

derived from the storage modulus was too large at very early times. Very early relaxation 

times correspond to the upper shelf of the complex modulus master curve and in 

hindsight the frequency sweep tests performed in this study had insufficient low 

temperature data to define the magnitude of the upper shelf of the storage modulus with 

adequate precision. The following scheme was therefore developed to correct this 

problem: 

1. The very early portions of the 5oC constant strain rate tests were assumed to have 

negligible damage and viscoplastic strains. (This is not quite correct, as will be 

discussed later, but is sufficiently accurate for the present purposes.) 

2. The very early portions of the 5oC constant strain rate tests are dominated by the 

early-time relaxation modulus, which is in turn related to the upper shelf of the 

storage modulus master curve. 

3. Through a process of trial and error, a correction factor was determined by which 

the early-time relaxation modulus must be reduced so that the predicted response 

for the very early portions of the 5oC constant strain rate tests approximately 
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matched the measured values. This correction factor in was in general different 

for each replicate, so an average correction factor was determined. 

4. The "corrected" relaxation modulus was extrapolated to time=0; this value 

corresponds to the constrained upper shelf of the storage modulus curve. For the 

data measured in this study, this upper shelf value was determined as 30.8 GPa. 

5. The storage modulus master curve was re-fit using the procedures described but 

with the additional constraint that the upper shelf not exceed the value from step 

4. Figure 30 summarizes the storage modulus master curves both with and 

without the upper shelf constraint. Both curves fit the measured data with 

approximately equal fidelity and differ only in their extrapolations of the data. 

The effect of the upper shelf constraint on the master curve temperature shift 

factors was negligible, as shown in the inset of Figure 30. Figure 31 highlights the 

upper and lower shelves of the storage modulus in relation to the measured data 

by plotting in log-log space. 

One additional correction was implemented in the comparisons of predicted versus 

measured early period response for the 5oC constant strain rate tests. Although the 

viscoplastic strains were assumed to be negligibly small, estimates using the calibrated 

viscoplasticity model (see Chapter 6) suggested these strains even at 5oC were still on the 

order of 10% of the total strain near the peak stress; typical results are shown in Figure 

32. The viscoplastic strains during the very early portion of the controlled strain rate 

response are still negligible. Nevertheless, faithful computations of the hardened 

viscoplastic strains that occurred during the preceding |E*| tests were calculated because 

they influenced the subsequent monotonic tests. These computed viscoplastic strains 



 63

were therefore subtracted from the measured total strains before making the comparisons 

with the computed LVE strains. Typical results are shown in Figure 33 and at an 

expanded scale in Figure 34. The results in Figure 34 clearly show that the computed 

LVE stress versus strain response is nearly identical to the net measured (total strain less 

viscoplastic component) response for the first several hundred microstrains. This in 

addition to the back-to-back frequency sweeps suggests that little damage is developing 

during this early portion of the response.  

After incorporating all of these corrections the final, best estimate terms for a 12-

term Prony series for the relaxation modulus and creep compliance and the corresponding 

temperature shift functions at a reference temperature of 25oC are summarized in  

Table 10, Table 11, and Figure 35.  

 

Figure 29. Worst-case discrepancy between measured and LVE computed stress versus strain 
response for 5oC constant strain rate test (specimen 5STOA12). 
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Figure 30. Storage modulus master curve with constrained upper shelf. 
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Figure 31. Storage modulus in log-log space to illustrate the upper and lower shelves. 
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Figure 32. Typical computed viscoplastic strain for 5oC constant strain rate test. 

 

Figure 33. Comparison of stress versus strain response: computed LVE versus net measured (total 
less viscoplastic). 
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5oC Constant Strain Rate Test

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001

Strain

St
re

ss
 (k

Pa
)

Measured Computed

 

Figure 34. Comparison of stress versus strain response: computed LVE versus net measured (total 
less viscoplastic)—expanded scale. 
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Figure 35. Creep compliance and relaxation modulus functions found from dynamic modulus tests. 
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Table 10. Prony series terms for relaxation modulus and creep compliance. 

i Ei (MPa) ρi (sec) Di (MPa-1) τi (sec) 
0 412.8 -- 3.459E-05 -- 
1 1.430E+01 1.500E+07 9.042E-05 1.125E+07 
2 3.210E+01 8.005E+05 1.885E-04 6.004E+05 
3 7.420E+01 4.272E+04 3.525E-04 3.204E+04 
4 1.796E+02 2.280E+03 5.769E-04 1.710E+03 
5 4.588E+02 1.217E+02 5.955E-04 9.125E+01 
6 1.232E+03 6.493E+00 3.396E-04 4.870E+00 
7 2.956E+03 3.465E-01 1.405E-04 2.599E-01 
8 5.286E+03 1.849E-02 5.670E-05 1.387E-02 
9 6.531E+03 9.869E-04 2.367E-05 7.402E-04 
10 5.727E+03 5.267E-05 1.172E-05 3.950E-05 
11 3.848E+03 2.811E-06 4.222E-06 2.108E-06 
12 2.160E+03 1.500E-07 -6.095E-08 1.125E-07 

 

Table 11. Time-temperature superposition shift functions. 

Temperature 5oC 25oC 40oC 60oC 
Log a(T)  1.9595 0 -1.5669 -4.1774 

 

 

4.5 Comparison of Compression-Only and Tension/Compression Linear 

Viscoelastic Properties 

As part of the collaborative research for this project, investigators at North 

Carolina State University (NCSU) performed small-strain reversed tension and 

compression dynamic modulus tests to find the corresponding linear viscoelastic master 

curves of the same mixture the University of Maryland (UMD) tested in direct 

compression. It is of interest to make direct comparisons of this and the other linear 

viscoelastic properties from these tests. It is well known asphalt concrete behaves 

differently in tension vs. compression in the large strain nonlinear region; however, these 
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differences may be absent and/or insignificant in the small-strain region assumed to be 

linear and undamaged. Similar small-strain properties in tension and compression would 

enable more economical material characterization in the laboratory. 

Storage modulus 'E  master curve data points, relaxation modulus )( RtE  Prony 

series terms ( iE  and iρ ), temperature shift functions )(Ta , and phase angle φ  data were 

exchanged between the two laboratories. The tension-compression data from NCSU was 

interpreted at a 10oC reference temperature while the compression-only data from UMD 

was characterized at a 25oC reference temperature. To be compatible with the 

tension/compression data, the compression-only temperature shift function was adjusted 

to reflect a common reference temperature of 10oC, as shown in Figure 36. Another 

minor discrepancy was that reduced frequency for the tension/compression linear 

viscoelastic analysis was quantified in terms of Hz rather than in radians per second as 

for the compression-only test data. This was easily corrected by multiplying Hz by π2 to 

convert to radians per second. 

The two sets of storage moduli data were plotted on the same graph with the same 

x-axis units. As shown in Figure 37, there is very good agreement in the overlapping 

range where both sets of data were collected.  The compression-only fitted curve is inside 

the tension/compression error bars representing one standard deviation; conversely, the 

tension/compression curve is inside the compression-only one standard deviation error 

bars. There are different levels of variability in the NCSU and UMD data at different 

temperatures and frequencies, which is to be expected given that the data were measured 

using different machines with different specimen geometries, transducers, load capacity, 

loading fixtures, and environmental chambers. There is a marked difference in measured 
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response at extreme low reduced frequencies (Figure 37 inset), which corresponds to very 

warm temperatures in the context of time-temperature superposition. The compression-

only tests give a higher modulus than the reversed tension and compression, suggesting 

that loading mode is important under these conditions. This is reasonable considering that 

the influences from the aggregate skeleton become more pronounced and the influence 

from the bituminous binder is reduced at warm temperatures and/or long loading times. 

Regarding the )(Ta  temperature shift functions, the compression-only function 

was determined using a unified procedure that fit a single curve to all the storage 

modulus data simultaneously whereas the approach employed in the tension/compression 

analysis was to fit individual shift functions to each replicate and then average. The 

means and differences between the temperature shift functions from the two laboratories 

are very small, as shown in Figure 38. Although the NCSU and UMD tests were 

performed for slightly different temperatures ranges, there are very small differences in 

the overlapping temperature range and both sets of data combine to form a relatively 

smooth relationship (although the compression-only values probably do not all lie within 

one standard deviation of the tension/compression points). 

There are significant differences between tension/compression and compression-

only mean values and variability of the phase angle as shown in Figure 39 for individual 

temperature and frequency conditions. The differences are particularly large for the 40oC 

compression-only data. It should be remembered, however, that phase angle is most 

always more variable than dynamic or storage modulus. In addition, NCSU corrected the 

measured phase angle for any phase lag that may occur within the loading train (actuator, 
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load cell and shafts) and UMD did not. This may cause a systematic difference between 

the two labs. 

The compression-only relaxation modulus was compared to the 

tension/compression relaxation modulus in two ways. The first was a direct comparison 

of the two Prony series solutions. A slight additional correction was required to shift the 

NCSU tension/compression data from a 5oC to a 10oC reference temperature. The second 

approach was a recalibration of the Prony series fit that started with the 

tension/compression storage modulus master curve data points that were then fit with a 

new Prony series using a different total number of terms and iρ  constants. Figure 40 

shows the overall the agreement of the UMD compression-only and the NCSU 

tension/compression relaxation modulus from both the direct and recalibration 

comparisons is excellent over the intermediate portion of the relaxation modulus master 

curve.  There is a noticeable difference in the upper shelves (Figure 40 inset) at very 

small values of reduced time. Then at about tR
 = 0.005 seconds the relaxation moduli 

converge and remain in agreement before diverging at about tR
 = 100 seconds and settling 

into two different lower shelf stiffness – about 0 kPa for the NCSU tension-compression 

and about 520 kPa for the UMD compression only data. This is a direct a reflection of the 

corresponding storage modulus behavior.  

For demonstrational purposes, the UMD compression-only data were re-fit with 

another Prony series, but this time without a constraint on the upper shelf (see discussion 

in preceding subsection). It can be seen in Figure 40 that the upper shelf for this re-

analysis was larger than both tension/compression and the constrained compression-only 
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cases, reinforcing the need for the data at cooler temperatures or a constrained analysis 

for the UMD compression-only data. 
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Figure 36. Compressive storage modulus temperature shift function at 25oC reference temperature 
adjusted for comparison to NCSU reversed tension and compression at 10oC reference temperature. 
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Figure 37. Storage modulus measured at UMD (compression) and NCSU (tension and compression) 
at 10oC reference temperature. 
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Figure 38. Shift factors determined in master curve development at UMD and NCSU at 10oC 
reference temperature. 
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Figure 39. Temperature shifted phase angle from UMD and NCSU with one standard deviation error 
bar at 10oC reference temperature. 
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Figure 40. Various NCSU and UMD relaxation modulus master curves from different analyses at 
10oC reference temperature. 

 

 

4.6 Comments on Confining Pressure Effects on Linear Viscoelastic 

Properties 

In the light of the comments made on loading mode effects, some comments are 

offered on the effect of confining pressure on the linear viscoelastic properties of asphalt 

concrete. No confined frequency sweep tests were performed at UMD and only confined 

tension/compression tests were performed at NCSU. The confining stress levels in the 

NCSU tests were 250 and 500 kPa. Some additional confined test data were exchanged 

for the loading mode comparisons.  First, one must understand confined tension or 

reversed tension/compression tests are very difficult to perform and is challenging even 

for the most seasoned researcher because the specimen is connected to the loading shaft. 

This complicates controlling the test machine about the actual zero-force condition. 
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The relaxation modulus upper shelf is ultimately determined by upper shelf of the 

storage modulus, as shown in Figure 41 under various levels of confinement. One might 

expect higher confining pressure to increase the stiffness and raise the upper shelf as with 

frictional materials. However, this was not clearly observed here. The upper shelf storage 

modulus for the highest confining stress case (500 kPa) is about the same as for 

unconfined conditions at the highest reduced frequencies. The intermediate 250 kPa case 

has an upper shelf below both the 500 kPa confined and unconfined cases, but it is 

hypothesized that this is simply an artifact attributable to measurement variability 

inherent at each condition. It is most likely that all three confining pressures have the 

same upper shelf and thus that confining stress has no effect on the upper shelf; binder 

rather than aggregate stiffness controls at these low temperatures/short loading times, and 

binder stiffness is not sensitive to confining pressure.  

Another unexpected effect was seen on the lower shelf at warmer temperatures 

where it is more likely that asphalt concrete will behave like a frictional soil and exhibit 

increasing stiffness with increasing confining stress. Under warm temperatures and/or 

slow loading rates, the material’s stiffness is largely governed by the aggregate structure 

and not by the binder. The 0 and 500 kPa confinement cases plotted in Figure 41 follow 

this reasoning, but the 250 kPa case diverges and has a higher lower shelf than the other 

two cases. This is more apparent when plotting in log-log scale, as shown in the inset in 

Figure 41. However, this may be an artifact of extrapolating the fitted master curves 

outside the measured range of reduced frequencies.  As a practical matter, the modulus on 

the lower shelf is orders of magnitude smaller than the upper shelf and intermediate 



 75

values, and therefore small differences in these very small moduli may not have much 

physical significance. 

The phase angle data in Figure 42 still exhibit quite a bit of variability, but this is 

expected for this property. There is fairly good agreement between all three confining 

stresses; the 0 and 500 kPa confinement cases are almost identical while the 250 kPa case 

shows a slightly but consistently smaller phase angle. As was the case for the UMD 

compression-only data, the phase angle-reduced frequency behavior for the confined 

tension/compression condition shows a peak at about 1x10-3 reduced Hz. 

Finally, the temperature shift functions shown in Figure 43 appear to be the most 

insensitive to confining pressure. This is sensible physically; the temperature shift 

functions should be most strongly related to the binder behavior, and this behavior is 

relatively insensitive to confining pressure. 
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Figure 41. Tension/compression storage modulus master curves measured at NCSU under different 
levels of confinement. 
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Phase Angle with Storage Modulus Shifting

0

10

20

30

40

50

60

1E-05 1E-04 1E-03 1E-02 1E-01 1E+00 1E+01 1E+02 1E+03 1E+04 1E+05

Reduced Frequency (Hz)

Ph
as

e 
A

ng
le

 (D
eg

re
es

)

E' Average 500 Kpa

E' Average 250 Kpa

E' Average 0 Kpa

 
Figure 42. Tension/compression phase angle measured at NCSU under different levels of 

confinement. 
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Figure 43. Tension/compression temperature shift functions for storage modulus measured at NCSU 
under different levels of confinement. 
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4.7 Conclusions 

This linear viscoelastic characterization in this chapter, while not groundbreaking, 

is thorough and illustrates in detail the steps that can be taken to derive an inherent 

viscoelastic material property for asphalt concrete from convenient testing conditions. 

The linear viscoelastic relaxation modulus of asphalt concrete is relatively easy to 

calibrate using simple small-strain dynamic modulus tests and mathematical principles. 

The compression-only tests at UMD were not cold enough to determine accurately the 

upper shelf of the storage and relaxation modulus master curves. Temperatures no 

warmer than 60oC are required, but data at temperatures cooler than 5oC such as -10oC 

are needed to obtain a more accurate characterization of the complete master curve. Thus, 

the upper shelf was found by imposing artificial limits and checking the agreement 

between the predicted versus measured response. The upper shelf determined by that 

constraint was about 30 GPa. The unconstrained compression only upper shelf was about 

39 GPa reinforcing the need for test data in the very cold temperature range. The 

accumulated strain during the frequency sweeps was found to have little impact on 

measured dynamic modulus values, but it is recommended this behavior be at least 

checked for any other mixture being studied in the future, i.e. an SMA. 

Comparisons of the compression-only (UMD) and tension/compression (NCSU) 

test data show little difference in the storage modulus values within the overlapping 

temperature range; the storage modulus master curves are generally within one standard 

deviation of each another. The lower shelf for the tension-compression relaxation 

modulus was smaller than the compression only case, suggesting mode of loading 

appears to have an effect on stiffness at very long loading times and/or high temperatures. 
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Physical reasoning would suggest that the compression-only tests should be stiffer under 

these conditions because asphalt concrete is a geo-material that tends to have lower 

stiffness in tension than compression. However, for locations other than the lower shelf, 

all of the viscoelastic properties—storage modulus, relaxation modulus, creep 

compliance, phase angle, and temperature shift—are essentially insensitive to the mode 

of loading. 

Confinement stress effects were examined using some exchanged confined 

tension/compression data from NCSU. The phase angle measured at three different 

confining stresses (0, 250 and 500 kPa) appears to be only very slightly changed by the 

confining stress. There is a practically no effect of confining stress on the storage 

modulus stress in the measured range, although some influence may exist in the 

extrapolated lower shelf region. The practical conclusion drawn from the data in this 

study is that the linear viscoelastic properties of asphalt concrete may be assumed largely 

insensitive to confining stress based on measurements at up to 500 kPa of confinement. 

The comparison of confined and unconfined dynamic modulus and phase angle 

demonstrated linear viscoelastic material properties for asphalt concrete were essentially 

similar between 0 and 500 kPa of confinement. Importantly, this means that a linear 

viscoelastic constitutive relation measured in uniaxial tests can be applied to multiaxial 

stress conditions, for example as required for damage model calibration as described later 

in Chapter 7. 
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5. Validation of Time-Temperature Superposition at Large Strains 

 

5.1 Theoretical Justification 

Strategic planning in the early stages of the project identified the time-

temperature superposition principle as potential means to reduce the set of calibration 

tests required. Time-temperature superposition removes temperature as an explicit 

variable. However, in order to reduce the set of tests required for calibrating the 

viscoplastic and continuum damage components of the model, the validity of time-

temperature superposition under large strain conditions had to be established. This was 

the objective of the work described in this chapter. 

Temperature shifted dynamic modulus of asphalt concrete demonstrates 

conventional time-temperature superposition when the dynamic strain is kept at or below 

100με. The behavior of asphalt concrete at these magnitudes is primarily linear 

viscoelastic. Nonlinear response components such as plasticity, viscoplasticity, structural 
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adjustments/physical damage, and others come into play at higher strains for asphalt 

concrete. These other nonlinear responses can be expected to be dependent upon 

temperature and loading rate as well. It is not hard to imagine the very large laboratory 

testing factorial that would be required to individually characterize each of these 

nonlinear responses at multiple loading rates and temperatures. The laboratory effort 

required to characterize nonlinear responses can be significantly reduced if time-

temperature superposition can be shown to be applicable at large strain levels. Laboratory 

tests could be economized through the use of the temperature shift relationship to predict 

other nonlinear responses at different temperatures and/or loading rates. There is some 

rationale that time-temperature superposition can be extended to the large strain region 

because all rate and temperature dependent processes should be intrinsically related to the 

viscous properties of the bituminous binder. 

Appendix B of Chehab et al. (2002) gives detailed justification of the underlying 

theory for determining the thermorheologic simplicity of materials.  Key details are 

summarized here.  Strain and stress tensors ε and σ are related via the Gibbs free energy 

as: 

G∂
= −

∂
ε

σ
 Equation 64 

where G = G(σ, S, T) is the Gibbs free energy dependent upon stress, temperature, and a 

set of thermodynamic internal state variables, S.  The internal state variables address, on 

all scales, the molecular motions, micro-deformations, micro-cracking, and macro-

cracking (if any).  The evolution law that defines how S evolves is stated as: 

( , , )d T
dt

=
S f σ S  Equation 65 
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The fundamental viscous behavior of asphalt is expressed by f(σ,S,T).  

For thermorheologically simple materials, time t and temperature T can be 

combined into an equivalent reduced time, ξ by: 

0

t

T

dt
a

ξ = ∫  Equation 66 

S can then be expressed in terms of stress and reduced time histories, reducing Equation 

65 to: 

( , )d
dξ

=
S F σ S  Equation 67 

Since temperature effects in Equation 64 can be assumed to induce thermal expansion 

strains εT only, the strain due to stress εσ can be written as: 

Gσ∂
= − = −

∂σ Tε ε ε
σ

 Equation 68 

in which Gσ = Gσ(σ,S). 

For uniaxial conditions, a power law in time can describe the strain due to stress 

as: 

nk tσε ′=  Equation 69 

in which n is a material constant and k' is a variable related to the imposed strain rates.  

Rewriting Equation 69 in terms of reduced time yields: 

nkσε ξ=  Equation 70 

where n
Takk '=  is the “reduced strain rate” when 1=n .  Note that when 1≠n , k is not 

precisely equal to the reduced strain rate, but it will be treated as such for the ease of 

discussion here.   
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Under uniaxial stress-strain conditions, Equation 68 can be inverted giving 

conceptually: 

( ),g σσ ε= S  Equation 71 

and using Equation 71 in Equation 67 gives: 

( ),h σε
ξ

∂
=

∂
S S  Equation 72 

Taking Equation 70 and solving Equation 72 in concept for S, stress is obtained from 

Equation 71 in the form:  

( ), ,g k nσ ξ= )  Equation 73 

where ξ and k are “reduced” variables. The parameter k can be eliminated and replaced 

by εσ: 

( ), ,f nσσ ε ξ=
)

 Equation 74 

Equation 74 provides the theoretical basis for analyzing stress-strain data for 

thermorheologically simple behavior for strain history data in the form of Equation 69. 

Plots of stress σ versus log t at any given constant strain level εσ for a given temperature 

may be shifted by corresponding temperature dependent shift factors ( )Ta to give a single 

curve of stress vs. log ξ (Equation 74).  This is the same as stating that at a given strain 

level εσ, the material’s dependence on time and temperature is the same as for a linear 

viscoelastic material.  

The relationship in Equation 74 allows for a cross-plotting procedure to be 

developed to analyze constant rate of strain [i.e. n = 1 in Equation 69] to failure tests for 

asphalt concrete using time-temperature superposition.  The cross-plotting procedure is 

illustrated schematically in Figure 44 and can be described as follows: First, a given 
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magnitude of axial strain is selected (ε1 in Figure 44a). For this strain magnitude at a 

given temperature, the corresponding axial stresses and response times are determined for 

each of the strain rates tested (points A,B,C in Figure 44a for T=T1, e.g.). These values 

are used to construct a stress versus log-time plot for the given strain magnitude and 

temperature (points A, B, C in Figure 44b for T=T1, e.g.). Note that since strain 

magnitude is fixed, this plot is similar in concept to a modulus versus log frequency curve 

for linear viscoelastic dynamic modulus. This procedure is repeated for each test 

temperature. The final set of stress versus log time curves (one for each temperature at a 

given strain magnitude) are then temperature shifted (Figure 44b) to produce a master 

curve and temperature shift function (Figure 44c) using the same procedures as for the 

dynamic modulus master curve analysis in the frequency sweep tests. This entire process 

is then repeated for other fixed strain levels. Master curves of stress at multiple discrete 

strain levels are produced instead of the one single master curve for the case of dynamic 

modulus. 
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Figure 44. Schematic Illustration of the Cross-Plotting Procedure. 
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5.2 Uniaxial Constant Rate of Strain to Failure Tests 

5.2.1 Test Procedure 

These tests were carried out on the dynamic modulus specimens immediately 

after the frequency sweep tests (described previously in Chapter 4).  The LVDT 

instrumentation and specimen geometry were therefore the same as for the dynamic 

modulus test and the temperatures were fixed at the compression-only dynamic modulus 

temperatures: 5, 25, 40, and 60oC.  For some of the warmer tests at 40 and 60oC, the axial 

LVDTs needed to be readjusted to the beginning of their range to maximize data 

collection due to some residual permanent deformation from the dynamic modulus 

frequency sweeps.  The specimens were allowed to rest for 30 minutes immediately after 

the dynamic modulus frequency sweeps before being loaded to failure at a constant strain 

rate in strain (displacement) control.  During this time only partial recovery was 

observed, indicating that some permanent strains were induced, the effects of these 

permanent strains on the analysis procedure are discussed below. 

The strain rate control was limited to the actuator LVDT instead of the on-

specimen LVDTs.  A method to control the strain rate by the average of the four on-

specimen LVDTs was investigated, but the equipment upgrade costs were deemed not 

worth the benefit.  Furthermore, controlling strain with the LVDTs mounted on the 

specimen can be very dangerous.  The feedback control loop using the on-specimen 

LVDT signal can become extremely unstable if one or more on-sample LVDTs fail (e.g., 

due to debonding of one of the attachment mounts). 

One test parameter that needed to be addressed was the magnitude of the fastest 

strain rate to be applied.  This strain rate needed to be similar to observed rates in real 
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pavements.  A literature search was performed to determine the fastest nominal strain 

rates measured or estimated for real pavements.  Data from the Danish Road Testing 

Machine (Krarup, 1994) of a wide base tire traveling about 12 mi/hr (20km/hr) indicated 

a strain rate of 0.0125 ε/sec measured at the bottom of the AC layer in the longitudinal 

direction of travel.  Data from a falling weight deflectometer at the same location induced 

a strain rate of about 0.00686 ε/sec.  Strain rates on this order of magnitude were 

supported by results from simulated pavement strain response studies using numerical 

analysis programs VESYS (Gillespie et al., 1993) and DYNAPAVE (Zafir et al. 1994).  

Nominal strain rates from these studies were estimated as 0.0165, 0.0066, and 0.0115 

ε/sec at the bottom of the AC layer in the longitudinal direction of travel for pavements 

having an AC layer thickness on the order of 150mm to 200mm. The strain path for all 

reported strain measurements was typically from compression to tension to compression 

as the truck tire passed.  Based on these data from the literature, the strain rate targets for 

the constant strain rate tests were set at 0.0005, 0.0015, 0.0045 and 0.0135 ε/sec.  At least 

two replicates were tested at each strain rate.  Table 12summarizes the original testing 

factorial. Additional replicates were added at some temperatures and strain rates when 

deemed necessary. 

 

Table 12.  Original constant rate of strain test factorial. 

Target Strain Rates (ε/s) 
Test 

Temperatures 
(oC) 

Test 
Replicates 

Total 
Tests 

     0.0005 ε/s, 0.0015 ε/s 
     0.0045 ε/s, 0.0135 ε/s 
                (4) 

5oC, 25oC, 
40oC, 60oC 

(4) 
(2) (32) 
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5.2.2 Test Results 

The results for the entire set of uniaxial strain to failure tests can be seen in Figure 

45 to Figure 52.  Measured stress versus strain and strain versus time is shown for each 

temperature and target strain rate. The stress-strain curves for each strain rate are clearly 

distinct from one another for all but the highest temperature of 60oC, with the fastest rate 

on the top (highest stresses) and the slowest rate on the bottom (lowest stresses) – see 

Figure 48, e.g. the initial portions of the stress-strain curves are fairly linear, then the 

curves become nonlinear, reach peak strength, and descend into the post peak region.  

The stress-strain agreement between replicates is excellent.  As would be intuitively 

expected, the peak strengths increase as the strain rate increases. Remarkably, the strain 

at the peak stress is consistently about 1% strain for all rates and temperatures.  The tests 

end at about 4% strain where the axial LVDTs reach the end of their range.    

Overall, the targeted strain rates were nominally achieved.  For every temperature 

and strain rate there is a small nonlinear start-up response evident in the strain-time 

curves at the beginning of loading.  The strain rate eventually becomes fairly linear and 

reaches the nominal target strain rate.  The nonlinear start-up response is due primarily to 

a combination of actuator acceleration limits and small amounts of compliance in the 

machine and loading shaft.  The strain rate input from the actuator LVDT (the control 

signal) is always linear, but as stress increases the loading shaft and testing machine 

deform and flex.  The result is a nonlinear strain rate measured from the on-specimen 

LVDTs. The amount of nonlinearity was sufficiently negligible in most cases that the 

input strain rate from the actuator did not need to be corrected to achieve the target on-

specimen strain rate.  In many tests there is also some nonlinearity at the very end of the 
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strain-time record.  This occurs when one or more of the averaged axial LVDTs reaches 

the end of its linear calibrated range. 

Few testing problems were experienced at intermediate temperatures, but there 

were some difficulties at the extreme high and low temperatures.  At 60oC the nominal 

target rates were easily achieved (Figure 47), but the measured stress was quite variable 

(Figure 46).  For individual replicates at 60oC, it was difficult to distinguish which stress-

strain curve corresponds to its unique strain rate. This is in contrast to the other 

temperatures where the stress-strain curves clearly correlated with strain rate, the 

replicates agreed well with each other, and the stress-strain curves became stiffer as strain 

rate increased.  It is believed that the variability at 60oC is due to the extreme softening of 

the asphalt binder at this high temperature, and thus the underlying stiffness of the 

aggregate is controlling the stress-strain response.   

A completely different problem was encountered at 5oC.  The 100-kN testing 

machine had insufficient load capacity to fail the specimen at the 0.0015 ε/sec strain rate 

or faster.  The testing machine was able to fail the specimen at the slowest strain rate 

(0.0005 ε/sec), but the nonlinear start-up effects were much larger because of the 

increased straining of the loading shaft and testing machine at the larger loads at this 

temperature.  In fact, the initial trial tests at 5oC induced measured on-specimen strain 

rates that were orders of magnitude smaller than the input actuator strain rate.  Additional 

trial tests used larger actuator input strain rates to correct for compliance with some 

success, but the nonlinear start-up response was no longer negligible.  The final solution 

to this problem was to use two input strain rates.  The initial rate was much faster than the 

target to account for the nonlinear start-up response.   This rate was followed by a slightly 
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slower input from the actuator as the response approached a steady rate.  The result gave 

on-specimen strain rates comparable to those achieved at the other temperatures.  

Unfortunately the measured stress was not smooth at the point where the input strain rate 

changed (Figure 52 at 004.0≅ε ).  

A second problem was also encountered at 5oC. Although the 100-kN testing 

machine had insufficient load capacity to fail the specimens at the 0.0015 ε/s strain rate, 

tests were attempted at this rate to capture the response prior to peak. Testing was 

discontinued at this strain rate, however, after a catastrophic failure occurred while 

attempting to get satisfactory results. A localized failure at the bottom end of one 

specimen quickly caused the specimen to bend and abruptly fail on one side. As a result, 

a section of the loading shaft was bent and an axial LVDT was destroyed. Fortunately, 

enough data were still collected for the time-temperature superposition analysis. 

As mentioned earlier, irrecoverable strains were observed after a 30 minute 

recovery period from the |E*| tests. The LVDTs were essentially re-zeroed after exiting 

the control software for the |E*| tests and before entering the control software for the 

uniaxial constant strain rate tests. Table 13 highlights the results of the uniaxial constant 

strain rate tests showing the individual replicate target strain rates, peak stress, peak 

strain, measured linear strain rate approximation, and a statistical measure of the linear 

strain rate approximation.  A straight line is fit through the most linear portion of the 

strain-time curve to estimate the measured strain rate.  About 10-15% of the initial 

nonlinear strain-time record was excluded when estimating the measured linear strain 

rate.  The nonlinear portion at the end where LVDTs reach the end of their range was also 

excluded.  An example of this is shown in Figure 53. 
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Strain vs. Time
60 oC, Unconfined Constant Rate of Strain Tests
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Figure 45. Axial strain-time for 60oC strain rate tests.  Two replicates at 0.0005ε/sec and three 

replicates each at 0.0015, 0.0045, and 0.0135ε/sec. 
 

Stress vs. Axial Strain
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Figure 46. Stress-axial strain for 60oC strain rate tests.  Results plotted are the averages of two 

replicates at 0.0005ε/sec and three replicates at 0.0015, 0.0045, and 0.0135ε/sec strain rates. 
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Strain vs. Time
40 oC, Unconfined Constant Rate of Strain Tests
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Figure 47. Axial strain-time for 40oC strain rate tests.  Two replicates each at 0.0005, 0.0015, 0.0045, 

and 0.0135ε/sec. 
 

Stress vs. Axial Strain
40 oC, Unconfined Constant Rate of Strain Tests
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Figure 48. Stress-axial strain for 40oC strain rate tests.  Two replicates each at 0.0005, 0.0015, 0.0045, 

and 0.0135 ε/sec. 
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Axial Strain vs. Time
25 oC, Unconfined Constant Rate of Strain Tests
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Figure 49. Axial strain-time for 25oC strain rate tests.  Two replicates each at 0.0005, 0.0015, 

0.0045ε/sec and three replicates at 0.0135ε/sec. 
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Figure 50. Stress-axial strain for 25oC strain rate tests.  Two replicates each at 0.0005, 0.0015, 

0.0045ε/sec and three replicates at 0.0135ε/sec. 



 93

Axial Strain vs. Time
5 oC, Unconfined Constant Rate of Strain Tests
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Figure 51. Axial strain-time for 5oC strain rate tests. Three replicates at 0.0005ε/sec and two 

replicates each at 0.0015ε/sec. 
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Figure 52. Stress-axial strain for 5oC strain rate tests.  Three replicates at 0.0015 ε/s and two 

replicates at 0.0005ε/sec. 
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Table 13. Result Summary for Uniaxial Constant Strain Rate Tests.  

Temp (oC) 
Target 
Rate 
(ε/s) 

Replicate

Linear 
Fitted 
Rate 
(ε/s) 

R2 of 
Linear 

Fit 

Peak 
Stress 
(kPa) 

Peak 
Strain 

(%) 

5 0.00050 1 0.00057 0.99754 10999.9 0.90% 
5 0.00050 2 0.00053 0.99920 10163.7 0.66% 
5 0.00050 3 0.00057 0.99943 9969.1 0.77% 
5 0.00150 1 0.00285 0.98471 n/a n/a 
5 0.00150 2 0.00081 0.98542 n/a n/a 
25 0.00050 1 0.00050 0.99959 2552.2 1.12% 
25 0.00050 2 0.00052 0.99934 2563.8 1.14% 
25 0.00150 1 0.00131 0.99962 3401.5 1.01% 
25 0.00150 2 0.00151 0.99941 3558.1 1.06% 
25 0.00450 1 0.00448 0.99942 4709.1 0.95% 
25 0.00450 2 0.00453 0.99938 4702.8 0.89% 
25 0.01350 1 0.01334 0.99823 7333.1 0.91% 
25 0.01350 2 0.01339 0.99824 6636.6 0.99% 
25 0.01350 3 0.01256 0.99888 7142.2 1.13% 
40 0.00050 1 0.00047 0.99994 1137.8 1.03% 
40 0.00050 2 0.00045 0.99981 1120.4 1.07% 
40 0.00150 1 0.00135 0.99987 1468.3 0.98% 
40 0.00150 2 0.00140 0.99997 1458.9 1.02% 
40 0.00450 1 0.00388 0.99869 1928.1 0.94% 
40 0.00450 2 0.00429 0.99869 2014.6 1.12% 
40 0.01350 1 0.01257 0.99964 2554.4 1.12% 
40 0.01350 2 0.01260 0.99989 2551.3 1.00% 
60 0.00050 1 0.00046 0.99859 751.6 1.49% 
60 0.00050 2 0.00051 0.99918 484.8 1.22% 
60 0.00150 1 0.00109 0.99780 630.5 1.05% 
60 0.00150 2 0.00126 0.99739 649.1 0.98% 
60 0.00150 3 0.00148 0.99646 637.5 1.24% 
60 0.00450 1 0.00397 0.99926 1085.3 1.88% 
60 0.00450 2 0.00413 0.99940 1003.3 1.73% 
60 0.00450 3 0.00435 0.99768 802.6 1.20% 
60 0.01350 1 0.01309 0.99902 980.4 1.20% 
60 0.01350 2 0.01110 0.99911 980.3 1.21% 
60 0.01350 3 0.01231 0.99962 971.5 1.32% 

 



 95

Example of Strain Rate Fitting Method

y = 0.01334x - 0.00583
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Figure 53. Example of strain rate estimation procedure. 

 

 

5.3 Time-Temperature Superposition Analysis  

The stress versus strain data from the previous section were cross-plotted to 

produce stress versus reduced time master curves at strain magnitudes ranging from 

0.0025 to 0.0250 in 0.0025 intervals.  Corresponding temperature shift functions at 

various strain levels were also produced from this cross plotting procedure to determine 

how far into the response the material remains thermorheologically simple—i.e., a 

material for which time-temperature superposition is valid. The results from this analysis 

procedure are presented in Figure 54 through Figure 63 Note that this range begins at 

about one-quarter of the way to the peak and ends well within the post-peak region.  A 

sigmoidal function was assumed for the basic shape of the master curves, and the 
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isothermal curves were then shifted using the same Solver techniques (Pellinen, 2001) as 

for the small-strain dynamic modulus master curve analysis procedure.  As is clearly 

evident in Figure 54 through Figure 63, the stress versus log reduced time points for all 

three temperatures form smooth and continuous master curves for all of the strain 

magnitudes considered. While there is only slight overlap among the data from the 

different temperatures, it is nevertheless very clear that these data all follow the same 

trend line. The best-fit sigmoidal master curves are summarized in Figure 64 for the 

strain magnitudes considered in this analysis. The master curves in Figure 64 are roughly 

parallel for all strain magnitudes; the curves shift upward and to the right at increasing 

strain magnitudes up to the peak condition.  The master curves are all essentially the 

same from the peak strain magnitude and beyond.  

The corresponding temperature shift factors from the time-temperature 

superposition analysis at various strain levels are summarized in Figure 65.  Also 

included in Figure 65 is the temperature shift factors from the small-strain dynamic 

modulus master curve presented previously in Chapter 4. The temperature shift factors in 

Figure 65 are similar across all strain magnitudes at low to moderate temperatures, but 

there are some deviations with strain level at the highest temperature. 

The implications of Figure 64 and Figure 65 are extremely important. These 

results indicate that asphalt concrete in compression is a thermorheologically simple 

material – i.e., time temperature superposition is valid – well into the post peak region.  

The master curves have a similar shape but a vertical offset as a function of strain level.  

The temperature shift function, however, is only slightly sensitive to strain level. 
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Given that significant cracking is observed post-test in the specimens, this further 

implies that time-temperature shifting is also valid for the fracture processes in the 

severely damaged material. Although fracture in the compression tests reported here is 

either vertical or shear cracking, Chehab et al. (2002) found similar results for uniaxial 

tension tests to failure. 

The results in Figure 65 further suggest that although asphalt concrete remains 

thermorheologically simple throughout its full response range, the temperature shift 

function ( )Ta  may be a weak function of strain level.  The temperature shift curves are a 

bit steeper for small strain conditions where linear viscoelastic strains are dominant and 

less steep where nonlinear strains (nonlinear viscoplastic and damage strains) are 

dominant. Put another way, the temperature shift curves tend to diverge slightly at higher 

temperatures where viscoplasticity and damage become more important relative to 

viscoelasticity.  

For practical engineering purposes, however, the differences between the small 

strain and large strain temperature shift relations may be of negligible importance for 

many phenomena. With regard to overall stiffness, for example, the differences between 

small- and large-strain a(T) values at the highest temperatures occur in the region in 

which the material is already very soft and thus relatively insensitive to the differences in 

the temperature shift factors.  Figure 66 compares the a(T) temperature shift factors 

developed out of the small strain dynamic modulus tests and the large-strain uniaxial 

constant rate of strain tests for a strain value of 0.0100. Figure 67 compares complex 

modulus master curves shifted using both the small strain and large strain a(T) relations. 

As is clearly evident in the figure, the largest discrepancies occur in the high temperature 
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region where the differences between the master curves using the two a(T)  relations is on 

the same order as the variability in the underlying complex modulus test data.  

A limited investigation into this discrepancy was completed towards the end of 

the project. It was suspected the confining cell induced a significant temperature gradient 

that could be remedied by disassembling the cell to expose the specimen to the ambient 

conditions in the temperature cabinet. Small-strain |E*| tests were performed on two 

specimens. The same specimen was tested at all temperatures and frequencies   

Temperature was verified at the center of the specimen as previously done. The a(T) shift 

functions for 5o, 25o and 40o were essentially unaltered, but the small-strain a(T) shift 

function at 60oC was much more similar to that determined in the large strain TTS 

analysis above. The conclusion reached from this small investigation was that vertical 

temperature gradient in the original |E*| tests was most likely equally uniform in the 5o, 

25o and 40o test, but not in the 60oC tests.  Essentially, removing the confining cell 

produced an equally acceptable temperature gradient at 60oC. The results from this 

second set of |E*| tests do suggest that the large strain temperature shift function for 

temperatures between 40o and 60oC is perhaps closer to reality, and as a consequence the 

large strain temperature shift function was used for all model calibrations and prediction 

for the project. The differences between the small or large strain functions at cooler 

ranges of temperatures are negligible for all practical purposes.  

Other research into extended time temperature superposition supports this study’s 

findings. Zhao and Kim (2003) revisited compressive large strain testing and cross 

plotting with fresh specimens, but analyzed the data with a different approach. The small 

strain |E*| shift function was applied in a forward manner instead of back calculating the 
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a(T).  The findings reinforced the conclusions that small strain TTS shift factors can be 

used to accurately shift the large strain response of asphalt concrete.   Pellinen and Zhao 

(2005) give an independent validation of the extended time temperature superposition 

principle to large strains and failure. Mohr-Coulomb failure envelopes were compared. 

The envelopes were found equivalent between indirect tension (IDT) tests at a relatively 

cool temperature and confined triaxial tests at a relatively warm temperature. The loading 

rates in addition to the temperature were also different, but made thermorheologically 

equivalent with time temperature superposition. This was not done for test 

economization, but for convenience because IDT specimen preparation and testing is 

more attractive than triaxial tests. However, IDT cannot be used for high temperature 

rutting characterization because the geometry lends itself to very weak and unstable 

specimens. This validation is important for two reasons. The first is this study is an 

independent confirmation of the time temperature superposition principle with many 

mixtures. The second is that the phenomenon was shown valid in the IDT testing mode 

that induces complex stress states. 
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Figure 54. Stress vs. reduced time master curve for 0.0025ε from strain rate tests. 
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Figure 55. Stress vs. reduced time master curve for 0.0050ε from strain rate tests. 
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Stress Master Curve for 0.0075 Strain Level
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Figure 56. Stress vs. reduced time master curve for 0.0075ε from strain rate tests. 
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Figure 57. Stress vs. reduced time master curve for 0.0100ε from strain rate tests. 
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Stress Master Curve for 0.0125 Strain Level
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Figure 58. Stress vs. reduced time master curve for 0.0125ε from strain rate tests. 
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Figure 59. Stress vs. reduced time master curve for 0.0150ε from strain rate tests. 
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Stress Master Curve for 0.0175 Strain Level
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Figure 60. Stress vs. reduced time master curve for 0.0175ε from strain rate tests. 
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Figure 61. Stress vs. reduced time master curve for 0.0200ε from strain rate tests. 
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Stress Master Curve for 0.0225 Strain Level
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Figure 62. Stress vs. reduced time master curve for 0.0225ε from strain rate tests. 
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Figure 63. Stress vs. reduced time master curve for 0.0250ε from strain rate tests. 
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Master Curves at Individual Strain Levels Developed From 
Cross-Plotting Uniaxial Tests
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Figure 64. Master curve summary for strain rate tests. 
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Figure 65. a(T) temperature shift factors for strain rate tests. 
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Large-Strain Temperture Shift Factor a(T) for Unconfined Compression
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Figure 66. Small and large strain temperature shift factors with second order polynomial fit. 
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Figure 67. Master curve developed with large strain a(T) temperature shift factors. 
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5.4 Validation Tests for Extended Time Temperature Superposition  

5.4.1 Rationale 

The constant rate of strain to failure tests demonstrated the validity of large-strain 

time-temperature superposition and showed the a(T) temperature shift factors from the 

large strain analysis were similar to the small-strain a(T) temperature shift factors. Two 

series of creep and recovery tests were performed to verify these findings. These creep 

and recovery tests were performed at different temperatures but were designed such that 

the loadings were equivalent in reduced time. Theoretically, the response should also be 

equivalent if time-temperature superposition is valid. 

 

It must also be noted these tests served dual purposes, as did the small-strain dynamic 

modulus tests. These tests and another type of cyclic creep and recovery tests were used 

to calibrate the viscoplastic model discussed in more detail later in Chapter 6 of this 

dissertation. 

 

5.4.2 Validation Testing Details 

Cyclic creep and recovery tests were performed in compression on previously 

unloaded specimens. Small-strain dynamic modulus frequency sweeps and 

preconditioning methods were omitted in these tests to avoid any undesirable initial 

permanent strain in the specimens. Instead, the general test procedure started with the 

application of a very small contact stress.  The contact stress keeps the actuator from 
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drifting away from the specimen during zero stress control and then impacting the 

specimen once loading begins.  The contact stress was not a function of the load in the 

tests but was simply the smallest load the testing machine could apply.  This was about 

0.05 kN, inducing a stress of about 7 kPa on the specimens.   

Following the application of the contact stress the specimens were cyclically 

loaded with creep stress pulses that produced larger and larger total strains including 

larger and larger unrecoverable strains with each cycle. The specimens were allowed to 

recover over time (under the contact stress) after the end of each creep stress pulse.  

Three replicates were tested for each test condition. 

These validation tests applied multiple cycles of near-square stress pulses that 

varied in duration but had a constant stress magnitude. For analysis purposes, it is 

desirable for the stress pulses to be as square as possible. Unfortunately, all servo-

hydraulic testing machines are limited in the speed at which stress can be applied. It was 

accepted that the some cycles (not all) would have significant ramp-up and ramp-down 

times when compared to the time that the stress was constant.     

Two sets of creep and recovery tests were carried out.  The first set of tests was 

performed at intermediate and warm temperatures of 25oC and 35oC respectively.  The 

second set of tests was performed at warm and high temperatures of 35oC and 45oC 

respectively.  The loading duration for each subsequent cycle increased exponentially.  

This produced larger and larger strains due to increased duration of loading even though 

stress did not change.  Complete viscoelastic recovery at the end of the rest periods was 

desired to enable direct measurement of permanent viscoplastic strains. The ratio of rest 
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time to loading time was 10:1 in order to maximize strain recovery.  A schematic of the 

test procedure is shown in Figure 68. 

 
Figure 68. Schematic of cyclic creep and recovery tests. 

 

The loading histories for each paired set of validation tests were designed to be 

equivalent in reduced time using time-temperature superposition. The loading histories 

for the 35oC tests were temperature shifted back to a 25oC reference temperature in order 

for the loading histories for the 25oC tests to match those for the 35oC tests in reduced 

time.  A similar shifting was done for the 35/45oC validation tests where the 45oC tests 

were shifted back to a 35oC reference temperature. In other words, the tests at the higher 

temperature for each pair had shorter load cycle durations than the tests at the lower 

temperature in real time but identical load cycle durations in reduced time. 

The initial cycles of the creep and recovery tests had trapezoidal stress waveforms 

because the ramp up and down times were significant when compared to the time the 

stress was held constant. However, as long as the stress waveform at the complimentary 

temperature has the same trapezoidal loading in reduced time, the time-temperature 

superposition validation objectives of the tests could still be achieved.  
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The speed with which the UTM-100 hydraulic testing machine could reach the 

target stress defined the loading history for the 35oC tests in the 25/35oC tests. The slower 

loading at 25oC made the tests easier to control. This strategy was used again for the 

35/45oC validation tests.  Tests were carried out at the warmer temperatures first to obtain 

the resulting load history in absolute time. Then the absolute time load history for the 

cooler temperatures was computed from the warmer temperature load history and an 

assumed temperature shift factor. The temperature shift factor used to develop the 

matched loading sequence in reduced time for the 25oC creep and recovery tests was 

interpolated from the small-strain temperature shift factor relationship (Figure 66), 

although the differences between the small and large-strain shift factors are negligible at 

this temperature. 

Due to the loading limitations in the testing machine, the 35oC results from the 

25/35oC test set could not be used in conjunction with the new 45oC tests.  This was 

because the loading rate required to have the tests at 45oC match the tests at 35oC in 

reduced time would be much faster than the machine could apply.  Therefore, a 

completely new set of creep and recovery tests at 35oC was conducted. 

The original testing plan called for the use of the small-strain temperature shift 

factors for all temperature shifting.  As will be detailed in this section, this was changed 

after poor agreement was observed in some trial tests in the 35/45oC set.  Instead, the 

large-strain temperature shift factor was used to make the 45oC and 35oC tests equivalent 

in reduced time at the 35oC reference temperature. 
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The final loading histories in absolute time for the validation tests are in Table 14 

to Table 17.  Stress magnitudes for the two test conditions were selected to give large 

strains and eventually failure in the eighth or ninth cycle. 

 

Table 14. Target loading for 35oC creep and recovery tests in the 25/35oC set. 

Cycle Ramp-Up 
Time, sec 

Constant Loading 
Time, sec 

Ramp-Down 
Time, sec 

Loading 
Stress, kPa 

1 0.040 0.040 0.040 1525 
2 0.040 0.060 0.040 1525 
3 0.040 0.125 0.040 1525 
4 0.040 0.250 0.040 1525 
5 0.040 0.500 0.040 1525 
6 0.040 1 0.040 1525 
7 0.040 2 0.040 1525 
8 0.040 4 0.040 1525 
9 0.040 8 0.040 1525 
Table 15. Target loading for 25oC creep and recovery tests in the 25/35oC set. 

Cycle Ramp-Up 
Time, sec 

Constant Loading 
Time, sec 

Ramp Down 
Time, sec 

Loading 
Stress, kPa 

1 0.570 0.570 0.570 1525 
2 0.570 0.855 0.570 1525 
3 0.570 1.780 0.570 1525 
4 0.570 3.561 0.570 1525 
5 0.570 7.121 0.570 1525 
6 0.570 14.243 0.570 1525 
7 0.570 28.486 0.570 1525 
8 0.570 56.972 0.570 1525 
9 0.570 113.944 0.570 1525 
Table 16. Target loading for 45oC creep and recovery tests in the 35/45oC set. 

Cycle Ramp-Up 
Time, sec 

Constant Loading 
Time, sec 

Ramp Down 
Time, sec 

Loading 
Stress, kPa 

1 0.032 0.032 0.032 936 
2 0.032 0.064 0.032 936 
3 0.032 0.128 0.032 936 
4 0.032 0.256 0.032 936 
5 0.032 0.512 0.032 936 
6 0.032 1.009 0.032 936 
7 0.032 2.018 0.032 936 
8 0.032 4.041 0.032 936 
9 0.032 8.072 0.032 936 
10 0.032 16.119 0.032 936 
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Table 17. Target loading for 35oC creep and recovery tests in the 35/45oC set. 

Cycle Ramp-Up 
Time, sec 

Constant Loading 
Time, sec 

Ramp Down 
Time, sec 

Loading 
Stress, kPa 

1 0.232 0.232 0.232 936 
2 0.232 0.464 0.232 936 
3 0.232 0.928 0.232 936 
4 0.232 1.856 0.232 936 
5 0.232 3.713 0.232 936 
6 0.232 7.317 0.232 936 
7 0.232 14.634 0.232 936 
8 0.232 29.304 0.232 936 
9 0.232 58.536 0.232 936 
10 0.232 116.890 0.232 936 

 

 

5.4.3 Validation Tests Results and Analysis 

The strain vs. time responses measured for the 25/35oC set of cyclic creep and 

recovery tests are shown in Figure 69 to Figure 70.  At both of these temperatures, two of 

the replicates gave nearly identical response while the third gave somewhat different 

strains. Figure 71 shows the average response of the three replicates at each temperature 

in terms of reduced time.  The agreement in the tests between the total strain including 

recoverable, irrecoverable, and damage responses over the full range of reduced time 

confirms that time-temperature superposition is valid in the large-strain region.  Failure is 

reached in the ninth cycle for both temperatures. 

Trial validation tests for the 35/45oC set using the small-strain temperature shift 

yielded results that did not temperature-shift together.  The cooler 35oC tests gave 

consistently larger strain values at all reduced times than did the warmer 45oC tests in 

reduced time as seen in Figure 72.  This implies that the load duration in the reduced time 
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loading history at 45oC was perhaps too short or the loading history at 35oC was perhaps 

too long.   

After reviewing the results of the preliminary tests it was decided that the large-

strain temperature shift factors from the uniaxial strain rate tests might be more 

appropriate than the small-strain temperature shift factors from the dynamic modulus 

tests for developing the matched loading in reduced time. This concurs with the previous 

discussed findings of temperature shift functions with and without the confining cell 

assembled. The difference between these shift factors is shown in Figure 73. The 45oC 

test results were kept and the 35oC tests were repeated with the new loading sequence 

(Table 17).  The axial strain results for the higher temperature tests using the large-strain 

temperature shift factors can be seen in Figure 74 to Figure 76. Three replicates were 

tested at each temperature. As in the first series of tests, two of the replicates were in very 

close agreement, and a third replicate differed by a small to moderate amount. Failure 

was reached in the ninth cycle. 

The results from these validation tests are alternately shown in Figure 77 and 

Figure 78 in a format more similar to un-shifted and shifted dynamic modulus data. In 

these plots only the un-recovered strain (of interest in the viscoplastic model calibration 

in Chapter 6) is shown at the end of each cycle. This strain is plotted against the absolute 

(unshifted) and reduced (shifted) cumulative loading time that ignore the recovery times 

in a log-log space.  Again these plots show time-temperature superposition is valid 

because the responses are equivalent in reduced time and form smooth overlapping 

curves. One may notice the data points from the two temperatures in a set do not lie at the 

same reduced time position.  



 114

In summary, very good overall agreement of total, unrecovered, and recovered 

strain vs. reduced time was observed between both pairs of tests performed at two 

different temperature combinations.  These test results confirm the validity of time-

temperature superposition at large strain magnitudes having large degrees of 

viscoplasticity and other nonlinear components. 

 

 

Figure 69. 35oC axial strain of three replicates for 25/35oC creep and recovery tests.  Straight lines 
represent a data acquisition faliure over an entire loading cycle. 



 115

 

Figure 70.  25oC axial strain of three replicates for 25/35oC creep and recovery tests. 

 

Figure 71. Shifted average of axial strain for 3 replicates for 25/35oC creep and recovery tests. 
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Figure 72. Preliminary results for 35/45oC creep and recovery tests series using the small-strain 
temperature shift factors. Straight lines represent a data acquisition failure over an entire cycle. 
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Figure 73. Large and small strain temperature shift factors used in cyclic creep and recovery tests. 
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Figure 74. 35oC axial strain of three replicates for 35/45oC creep and recovery tests. 

 

Figure 75. 45oC axial strain of three replicates for 35/45oC creep and recovery tests. 
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Figure 76. Shifted average of axial strain for 3 replicates for 35/45oC creep and recovery tests using 
large-strain temperature shift factors. 
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Figure 77. Alternate representation of un-shifted un-recovered strains from cyclic creep and 
recovery tests. 
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Figure 78. Alternate representation of shifted un-recovered strains from cyclic creep and recovery 
tests. 

 

5.4.4 Limited Validation Under Triaxial Confinement 

Confined triaxial testing was performed at a later date while studying the confined 

damage and viscoplastic responses of the material (Chapters 6 and 7). Since time-

temperature superposition was shown to be valid at large strains under uniaxial 

conditions there was confidence that it would be valid for large strains under confined 

triaxial conditions because confinement would decrease the overall strain magnitude and 

suppresses a significant portion of material nonlinearity due to viscoplasticity and 

microstructural damage. 

Nevertheless, time-temperature superposition under triaxial compression was 

checked by again designing equivalent loading schemes in reduced time at two different 

temperatures, but this time under confinement. To save time and effort, the confined 35oC 
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fixed stress replicates performed to directly compare confined versus unconfined 

viscoplastic responses (described in Chapter 6) were recycled and only one new test was 

performed at a different temperature but with the same loading history in reduced time. 

The objective was to quickly check for any unexpected gross difference in confined 

responses at the two different temperatures. A fixed stress cyclic creep and recovery 

profile with constant deviatoric stress cycles of 1500 kPa was tested under 500 kPa of 

confinement, the highest level of confinement used in the confined viscoplastic study. 

The target temperature was 25oC, but the specimens were tested at the 28oC room 

temperature in the interest of time.  

The results are shown in Figure 79. The 28oC curve is one replicate and the 35oC 

curve has two replicates. These tests compare the strain that is accumulated after the 

strains due to a hydrostatic stress portion of the tests have reached an acceptable steady 

state. Agreement between the two responses in reduced time is very close. This further 

verifies large-strain time-temperature superposition. 
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Confined Viscoplastic Response at Two Temperatures with 
Equivalent Load Profiles in Reduced Time
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Figure 79. Confined triaxial cyclic creep and recovery. 
 

 

5.5 Summary and Conclusions 

Time-temperature superposition can be used for thermorheologically simple 

materials to interchange temperature and loading rate effects by means of simple 

temperature shift factors.  Time-temperature superposition is reliable and widely used to 

interpret the results of small strain (< 100 με) asphalt concrete dynamic modulus tests. As 

described in Chapter 4, small-strain dynamic modulus tests were performed to obtain a 

master stiffness curve and temperature shift factors for a typical dense-graded asphalt 

concrete mixture using the time-temperature superposition principle. 

These small-strain temperature shift factors were directly compared to shift 

factors determined from constant rate of strain tests at various large strain levels and at 
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multiple temperatures and loading rates.  The shift factors determined at large strains 

were similar to the small strain results at low and intermediate temperatures and deviated 

slightly at the highest temperature.  

Two sets of cyclic creep and recovery tests were performed at different 

temperatures to validate the results from the constant rate of strain tests.  Using time-

temperature superposition the tests were designed to have equivalent loading histories in 

reduced time although different loading histories in physical time (because of the 

different test temperatures).  The agreement of the measured large strains at different 

temperatures supports the conclusion that time-temperature superposition is valid for 

asphalt concrete well beyond the conventionally accepted 100 με limit. 

These findings and those from other researchers provide evidence that asphalt 

concrete is a thermorheologically simple material at small and large strains up to and 

including the immediate post peak region.  The temperature shift factors derived from 

constant rate of strain tests appear to be weakly dependent upon strain level.  However, 

for practical engineering purposes the difference among the temperature shift factors may 

be negligible. Reasonable explanations for the high temperature discrepancy were 

presented and support the findings from other research that there is perhaps less strain 

dependence and indeed a closer agreement between the compressive small- and large-

strain temperature shift functions.  The validation creep and recovery tests explored the 

use of small-strain and large-strain temperature shift factors to create equivalent loadings 

in reduced time.  Again, time-temperature superposition was observed to be valid for 

large strains provided an appropriate temperature shift factor relationship is used. 
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One other important conclusion can be drawn from this study. The total response 

of asphalt concrete consists of multiple response components such as linear and nonlinear 

viscoelasticity, viscoplasticity, micro-structural damage, etc. These components are all 

present in some form in the large-strain constant rate of strain to failure and cyclic creep 

and recovery tests.  The validity of the time-temperature superposition in these large-

strain tests suggests that all of these response components follow the same or very similar 

temperature shift factors as for small-strain linear viscoelasticity.  Therefore, the 

processes that govern these component responses for asphalt concrete must all derive 

from the same rate processes in the viscous asphalt binder. 

Of considerable practical importance is the impact that time-temperature 

superposition can bring to material characterization programs.  The results obtained in 

this study suggest that a single set of temperatures shift factors derived from small-strain 

dynamic modulus tests can be used to simplify material characterization testing for the 

other responses of asphalt concrete by eliminating the need for a full experimental 

factorial across multiple temperatures and loading rates. 
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6. Viscoplasticity Characterization 

 

6.1 Introduction 

The modeling formulation adopted for this research decomposes total strain as 

DamageicViscoplasticViscoelastLinearTotal εεεε ++= .  Viscoplasticity is logically treated before 

damage because viscoplastic strains must be removed from any test data that will be used 

to calibrate the damage model, expressed conceptually as 

)( icViscoelastLinearicViscoplastTotalDamage εεεε +−= . The large strain time-temperature 

superposition study (Chapter 5) found that the effects of loading time and temperature on 

viscoplastic strains can be interchanged using a generalized time-temperature 

superposition )(Ta
ttR =  where the temperature shift function )(Ta  found from small-

strain linear viscoelastic dynamic modulus tests is sufficient for practical engineering 

purposes. This permits considerable economies in the laboratory testing program needed 

to characterize the material parameters in the model. 
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6.2 Uniaxial Conditions 

6.2.1 Model Form 

Key aspects of the viscoplasticity model form given in Chapter 2 are repeated 

here for convenience. The theoretical background for the viscoplastic extension of the 

Schapery model starts with the assumption that the rate of change of viscoplastic strain 

for uniaxial constant stress loading follows a strain-hardening model of the form: 

( )vp
vp p

vp

d g
dt A
ε σ

ε = =
ε

&  Equation 75 

in which vpε&  is the rate of change of viscoplastic strain in reduced time, vpε  is the total 

viscoplastic strain level, ( )σg  is  the uniaxial stress loading function and A and p are  

material constants. Equation 75 can be rearranged and integrated as: 

1

0

1 ( )
tp

vp
p g dt

A
ε σ+ +

= ∫  Equation 76 
 

or 

( )
1 1

1 1

0

1 ( )
p t p

vp
p g dt

A
ε σ

+ ++⎛ ⎞= ⎜ ⎟
⎝ ⎠ ∫  

Equation 77 
 

For creep loading conditions where the stress is constant, ( )σg  is independent of time 

and Equation 77 becomes: 

1 1 1
1 1 11 ( )

p p p
vp

p g t
A

ε σ
+ + ++⎛ ⎞= ⎜ ⎟

⎝ ⎠
 Equation 78 

Assuming a power law of the form ( ) qBg σσ =  in which B  and q  are material 

constants: 
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( )
1 111 111 p q pp

vp
p B t

A
ε σ

+ +++⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Equation 79 

or more simply: 

( )
1 111 111 p q pp

vp
p t
Y

ε σ
+ ++

+⎛ ⎞= ⎜ ⎟
⎝ ⎠

 Equation 80 

in which 
B
AY =  is a material constant.  

For cases in which stress is not constant with respect to time, the uniaxial stress 

loading function is a more generalized ( ) q
RtBg )]([σσ =  and Equation 77 becomes: 

( )[ ]
1

1

0

1
1

1 ++

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

= ∫
pt

qp

vp dtt
Y

p σε  Equation 81 

in which p , q  and 
B
AY =  again are material constants. 

 

 

6.2.2 Uniaxial Viscoplastic Tests and Calibration 

Various approaches may be used to calibrate a viscoplastic model. One involves 

simultaneous calibrating viscoplasticity and damage responses together using appropriate 

assumptions on each model formulation. The second, followed in this research, relies 

only on directly observed unrecovered strains from cyclic creep and recovery data. Two 

series of creep and recovery tests were conducted in uniaxial compression to evaluate the 

viscoplastic material behavior: constant stress creep and recovery tests at fixed stress 

level but varying time of loading denoted here as Fixed Stress tests (Figure 80a) and 

constant stress creep and recovery at varying stress levels denoted here as Fixed Time 
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tests (Figure 80b). The length or stress level of each cycle increased exponentially in 

subsequent pulses to ensure the model would be calibrated over a wide range of stress 

and load times. The creep aspect of the tests was selected for convenience because stress 

is constant over time. The cyclic aspect of the tests was not selected for convenience but 

as a necessity: a rest time is needed after the constant stress impulse to allow the other 

strain components to recover, leaving only the permanent viscoplastic strain as shown 

schematically in Figure 81.  To ensure accurate measurement of the un-recovered 

viscoplastic strains the rest times were at least 10 times the length of the constant creep 

load pulse.  

Results from both series of tests are used to determine the material parameters p, 

q, and Y for the viscoplastic model component given in Equation 81. As described 

previously in Chapter 5, the results from the Fixed Stress tests were also used to provide 

confirmation of the validity of time-temperature superposition into the large strain regime 

and therefore two sets these tests were performed at two different temperatures within 

each set and where the stress histories within each set were designed to be equivalent in 

reduced time – 35oC complemented at 25oC and 45oC complemented at 35oC. The 

increased number of tests has the added benefit of making the calibration of the 

viscoplasticity model component more robust. The Fixed Time tests were only carried 

out at one temperature, 35oC, because validation of time temperature superposition was 

not one of the goals for this test series. Details of the stress histories for each test are 

summarized in Table 18. A small contact stress was also applied to maintain contact 

between the actuator and the specimen under nominal zero-stress conditions during the 

rest periods.  Three replicates were tested for each condition. 
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The calibration procedure started with the total strain histories from each test 

shown in Figure 82 to Figure 84. The unrecovered strains are of principal interest for 

calibrating the viscoplastic model. These strains were obtained from the cumulative 

viscoplastic strain measured at the end of each cycle’s recovery. 

The most direct method for calibrating the viscoplastic model would be to use the 

Fixed Stress test data and Equation 80 for the cumulative viscoplastic strain versus 

cumulative load time plotted as a linear relation in log-log space. However, this ignores 

the Fixed Time tests. In addition, the Fixed Stress tests did not apply the constant stress 

instantaneously. A controlled stress ramp-up and ramp-down was used at the beginning 

and end of each cycle, with the length of each ramp fixed to the length for the first cycle. 

The ramp-up and ramp-down times for the 10-second Fixed Time cycles was 0.10 

seconds. To include this ramp-up/ramp-down effect for the Fixed Stress tests and the 

results from the Fixed Time tests, all stress histories were simulated numerically using 

Equation 81 and trial values of the p, q, and Y model constants. Using nonlinear 

optimization techniques (Solver in MS Excel), optimal values of the p, q, and Y model 

constants were determined to minimize the least-squares difference between the 

logarithmic values of the measured and predicted viscoplastic strains. Graphical 

summaries of the calibration can be found in Figure 85 to Figure 89. The best fit 

constants are listed in Table 19. The values for the p and q exponents suggest that the 

viscoplastic strain rate is approximately proportional to stress and approximately 

inversely proportional to the square of the strain. 
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Figure 80. Schematic of creep and recovery viscoplastic calibration tests. 
 

 

 

 

Figure 81. Rest times allow direct determination of un-recovered viscoplastic strain. 
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Table 18. Programmed stress history targets for viscoplastic cyclic creep and recovery tests. 

Fixed Stress Load Times (seconds) 
Times are un-reduced 

Cycle 
25oC @ 

1500 kPa 
35oC @ 

1500 kPa 
35oC @  
963 kPa 

45oC @  
963 kPa 

35oC  
Fixed Time  
Stress Level  

@ 10 seconds 
each (kPa) 

1 0.57 0.04 0.232 0.032 20 
2 0.855 0.06 0.464 0.064 35 
3 1.78 0.125 0.928 0.128 62 
4 3.561 0.25 1.856 0.256 106 
5 7.121 0.5 3.713 0.512 179 
6 14.243 1 7.317 1.009 303 
7 28.486 2 14.634 2.018 495 
8 56.972 4 29.304 4.041 818 
9 113.944 8 58.536 8.072 1354 

 

 

Figure 82. Measured total strain history from 25oC/35oC Fixed Stress tests. 
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Figure 83. Measured total strain history from 35oC/45oC Fixed Stress tests. 
 

 

Figure 84. Measured total strain history from 35oC Fixed Time tests. 
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25C Results for 25C/35C Fixed Stress Tests
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Figure 85. Viscoplastic model calibration with 25oC data from 25oC/35oC Fixed Stress test data. 

35C Results for 25C/35C Fixed Stress Tests
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Figure 86. Viscoplastic model calibration with 35oC data from 25oC/35oC Fixed Stress test data. 
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35C Results for 35C/45C Fixed Stress Tests
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Figure 87. Viscoplastic model calibration with 35oC data from 35oC/45oC Fixed Stress test data. 

45C Results for 35C/45C Fixed Stress Tests
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Figure 88. Viscoplastic model calibration with 45oC data from 35oC/45oC Fixed Stress test data. 
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35C Results for Fixed Time Tests
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Figure 89. Viscoplastic model calibration with 35oC data from Fixed Time test data. 
 

 

Table 19. Calibrated uniaxial viscoplastic model constants (stress in kPa, strain in mm/mm). 

p
vp

q

R

VP

Ydt
d

ε
σε 1

=  

p  2.074 
q   1.122 

log Y  12.982 
 

 

6.3 Viscoplasticity under Confined Conditions  

A universal viscoplastic model must have the ability to predict strain induced by 

multidimensional stress states. Deviatoric and hydrostatic triaxial compression 

viscoplastic tests were performed to quantify the effect of confining stress on the 

viscoplastic response of asphalt concrete. 
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6.3.1 General triaxial compression Tests 

Cyclic triaxial compression tests at confining pressures of 250 and 500 kPa were 

performed to evaluate the effects of confinement on viscoplastic behavior. Only one 

temperature, 35oC, was investigated; uniaxial tests had already shown that viscoplasticity 

is significant at this temperature.  

Confining pressure was applied using air as the confining fluid. The maximum 

pressure for the UMD testing system is limited by the ‘house’ air supply of about 700 kPa 

(100 psi). The dynamic response of the pneumatic confinement system is relatively slow 

and requires a controlled ramp-up and ramp-down during pressurization and 

depressurization. Use of an incompressible fluid to apply confinement would enable 

faster loading and unloading rates, but this was beyond the capabilities of the UMD 

testing equipment. Exploratory tests determined that the quickest controllable 

pressurization time was about two minutes.  

Before any deviatoric loads were applied, the hydrostatic stress was maintained to 

consolidate the material to a practical equilibrium. This was found to take about 30 

minutes at 35oC. After this point, the deviatoric stresses were applied. The deviatoric 

stress histories in the confined tests were identical to those in the unconfined cyclic creep 

and recovery tests. This permits direct comparison the induced strain response between 

unconfined and confined conditions. Figure 90 summarizes these concepts. After several 

confined tests were completed, it was observed that the variability between replicates was 

significantly decreased by the confining stress. Consequently, the third replicate was 

omitted for the later tests in the series.  
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Figure 91 shows typical results from one of the two confined Fixed Stress test 

replicates at the intermediate 250 kPa level of confinement.  The axial and radial strain 

rates decrease during the consolidation period, eventually reaching a satisfactory steady 

state. The radial strains are slightly larger than the axial strains. The volumetric strains 

are computed from the measured strains as: 

2Vol Axial Radialε ε ε= +  Equation 82 

in which negative axial and radial strains correspond to a decrease in axial height and 

decrease in specimen diameter with corresponding effects on volumetric strain. Once the 

deviatoric loads begin the axial strain always decreases and the radial strain always 

increases as expected. The volumetric viscoplastic behavior was not isochoric (i.e., 

constant volume). The volumetric strain decreases (i.e., compression) during the early 

part of the deviatoric loading regime followed by increases (i.e., dilation) as loading 

proceeds further. Figure 92 shows similar results from the confined Fixed Stress test at 

500 kPa of confinement. The total radial strains under hydrostatic stresses at this level of 

confinement are about twice as large as the axial strains, suggesting some initial 

anisotropy in this specimen. The volumetric strain from the consolidation period is about 

twice as large as in the 250 kPa case, suggesting some degree of linearity in the total 

strain consolidation response under hydrostatic stress. The volumetric strain during the 

deviatoric loading regime always decreases. No dilation was observed at the 500 kPa 

confining pressure, either because the deviatoric stresses were too small and or they were 

not applied long enough.  

Typical results from a Fixed Time test at 250 and 500 kPa of confinement are 

shown in Figure 93 and Figure 94, respectively. The behavior in the Fixed Time tests was 
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similar to that observed under the Fixed Stress loading. The volumetric strain decreases 

(compression) and then increases (dilation) at 250 kPa, but at 500 kPa it barely goes into 

dilation because the stress history was not long or large enough. Again, there is some 

evidence of potential anisotropy, particularly for the 500 kPa specimen. 

The volumetric strain responses from the unconfined Fixed Stress and Fixed Time 

tests are shown for comparison in Figure 95 and Figure 96, respectively. The data suggest 

that dilation occurs sooner at lower levels of confining stress. The unconfined Fixed Time 

tests (Figure 96) did not show any of the volumetric compression observed in the 

unconfined Fixed Stress tests and all of the confined tests. This was consistent for the 

other two replicates as well.  

The unconfined and confined ‘post-consolidation’ axial viscoplastic strains were 

compared to investigate the relative effects of confinement on viscoplasticity. These 

viscoplastic strains were determined from the nonrecoverable strains at the end of the rest 

period before the start of the next load cycle. The results from the Fixed Stress tests are 

plotted against the cumulative amount of deviatoric load time in Figure 97. The 

magnitudes of the deviatoric stresses are slightly different between the unconfined and 

confined conditions because of testing difficulties. Nevertheless, it is clear from the 

figure that the effect of confinement is to significantly suppress the viscoplastic strain 

magnitude. In the early response at very short reduced times the suppression effect is less, 

but the divergence between the unconfined and confined results grows as the load 

duration increases, suggesting that confinement increases the strain hardening behavior. 

This is also shown in the more concave downward response curve for the confined test 

results. A hint of a slight bilinear or curvilinear response is seen as well. These results 
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suggest that the primary hardening region under confinement occurs over a larger range 

of time and strain than under the unconfined conditions.  A single high confinement 

Fixed Stress replicate at a very large fixed stress from a preliminary shakedown test is 

included as well to demonstrate that confinement will not arrest tertiary flow at high 

deviatoric stress levels.  

A similar comparison plot for the Fixed Time tests is given in Figure 98. It is less 

informative to plot viscoplastic strain vs. cumulative deviatoric load time as done for the 

Fixed Stress tests because of the different deviatoric stress magnitudes applied during the 

Fixed Time loading history. Instead, the confined and unconfined test results may be 

plotted as a function of the deviatoric stress level since the duration of each load cycle is 

the same. At small deviatoric stress levels, the viscoplasticity is suppressed by up to an 

order of magnitude. The divergence between the confined and unconfined cases then 

decreases at higher deviatoric stress levels, which is physically plausible. 

To get a numerical insight as to how confining pressure affects the viscoplastic 

strain rate in terms of the stress and strain power law functions, the unconfined 

viscoplasticity model was fit to the confined creep and recovery test results to see which 

model parameters changed significantly and by how much. The model parameters as 

calibrated against the unconfined and confined test results are compared in Table 20. It is 

clear from these results that confinement affects all three model parameters, but the effect 

is most pronounced on the scaling constant term logY and the stress exponent q. The 

increase in logY is intuitively expected, since this corresponds to a reduction in 

viscoplastic strain rate as confining stress increases. The increase in q and the decrease in 

p corresponds to a counterintuitive increase in viscoplastic strain rate with increasing 
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confinement; however, this may be an artifact of a ‘linear’ power law formulation of the  

nonlinear hardening response. This issue is revisited in Chapter 8 in the context of model 

validation. 

  

 

Figure 90. Schematic of confined viscoplastic test approach. 
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Figure 91. Axial, radial & volumetric response under confined Fixed Stress tests at 250 kPa. 

 

Figure 92. Axial, radial & volumetric response under confined Fixed Stress tests at 500 kPa. 
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Figure 93. Axial, radial & volumetric response under confined Fixed Time tests at 250 kPa. 

 

Figure 94. Axial, radial & volumetric response under confined Fixed Time tests at 500 kPa. 
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Figure 95. Axial, radial & volumetric response under uniaxial Fixed Stress tests. 

 

Figure 96. Axial, radial & volumetric response under uniaxial Fixed Time tests. 
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Figure 97. Comparison of unconfined and confined Fixed Stress test results. 
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Figure 98. Comparison of unconfined and confined Fixed Time test results. 
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Table 20. Comparison of conventional uniaxial model parameters at different levels of confinement 
Model 

Parameter Unconfined 250 kPa Confined 500 kPa Confined 
p  2.074 1.23 1.58 
q  1.122 3.15 3.82 

Ylog  12.982 17.40 20.70 
 

 

6.3.2 Hydrostatic Creep and Recovery Tests 

Hydrostatic creep and recovery tests were performed to assess viscoplastic strain 

induced from pure volumetric stresses. These tests will also give critical information 

regarding necessary capabilities of multiaxial models. The previous tests could not be 

used to assess this response because a volumetric depressurization is required in order to 

measure directly any viscoplastic volumetric strains. Two replicates at 35oC and 250kPa 

were tested with a controlled ramp-up to a sustained hydrostatic creep cycle lasting 30 

minutes followed by a ramp-down and a 45 minute recovery. This cycle was repeated for 

a second time and ended for a total creep time of about one hour. This length of time is 

approximates the duration of the longest confined viscoplastic test enabling a more 

complete picture of the total viscoplastic response. 

The temperature of the cell air was monitored during filling and emptying of the 

confining cell to assess if significant temperature changes were occurring that might 

affect the response. The temperature at the center of the specimen was not observed, but 

shakedown tests indicate that there is a significant lag and difference in magnitude 

between changes in the peak cell air and center of specimen temperatures. Based on the 
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measurements illustrated in Figure 99, it was concluded that effect of any fluctuations in 

cell air temperature should be negligible because the air temperature change was 

relatively quick and only fluctuated about +/-2oC about the mean temperature. The air 

temperature approaches equilibrium quickly once the air pressure reaches static 

pressurized or depressurized conditions. 

Close attention was also paid to the individual LVDT readings during each test. 

Figure 100 and Figure 101 show the typical measured axial and radial deformations 

respectively, with positive deformations corresponding to tensile strains. With the 

exception of the top axial displacement signal in the beginning, the response is 

appropriate. The top LVDT signal shows axial extension during application of the 

hydrostatic pressure while the other three axial LVDTs behave as expected. The 

individual radial strain signals also exhibit erratic behavior, with one showing radial 

expansion and the other three showing varying degrees of radial compression under the 

hydrostatic loading. These variations in individual LVDT readings could be justified 

under deviatoric loading as the consequence of rigid body motion and/or specimen 

bending, but this argument is more difficult to make for hydrostatic loading. One possible 

explanation for this measured behavior is local variations in stiffness causing local 

variations in strain on the specimen.  

Despite the erratic behavior of the individual LVDT signals, the averaged signal 

does behave ideally and smoothly, as shown in Figure 102 and Figure 103 for both 

replicates. Axial strains appear to be fully recoverable while radial strains show larger 

unrecoverable deformations that take place primarily under the very early initial loading. 
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The permanent volumetric strain is attributable to this radial deformation behavior with 

negligible contributions from the axial behavior. 

The total volumetric strains measured in the 250 kPa confined Fixed Time and Fixed 

Stress tests replicates at the end of the 30-minute consolidation were 0.0035, 0.0041, 

0.0029, 0.0029 with a mean of 0.00335 and standard deviation of 0.00057. The total 

volumetric strains, 0.0036 and 0.0038, measured in the hydrostatic tests at end of the first 

of two 30-minute consolidation periods are reasonable and within the mean plus one 

standard deviation from the Fixed Time and Fixed Stress tests. Thus, the viscoplastic 

component of the volumetric, axial and radial strain in the hydrostatic tests can be used to 

estimate the unrecovered quantities in the Fixed Time and Fixed Stress counterparts 

conducted at the same confinement and temperature where the confining stress was not 

removed before applying the deviatoric load. The axial consolidation strains in the 

confined Fixed Time and Fixed Stress tests should be fully recoverable because the axial 

strains in the hydrostatic tests were found to be fully recoverable. This in turn means that 

the unconfined axial viscoplastic strains and post-consolidation axial viscoplastic strains 

in Figure 97 and Figure 98 are directly comparable. However, anisotropy of the material 

as expressed in the unrecoverable radial strains—and thus the unrecoverable volumetric 

strains—should not be overlooked. The volumetric viscoplastic stain at the end of 30 

minute 250 kPa hydrostatic stress is about 0.00165 or 80% of that at the end of the 

second 30 minute (total 60 minute) load cycle. This means during the deviatoric loading 

portion of the confined Fixed Time and Fixed Stress tests that the radial viscoplastic 

strains have not fully arrested, but are very close, specifically for this temperature and 

confining stress magnitude. The continued consolidation in the axial and radial directions 
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was extrapolated and removed so as not to influence the unrecovered strains caused by 

the deviator stress and not the hydrostatic stress.  

 

 

Figure 99. Variation in temperature during pressurization and depressurization. 
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Figure 100. Typical individual axial LVDT response under consolidation. 
 

 

Figure 101. Typical individual radial LVDT response under consolidation. 
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Figure 102. Replicate-1 average axial, radial and volumetric response under consolidation. 
 

 

Figure 103. Replicate-2 average axial, radial and volumetric response under consolidation. 
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6.4 Summary and Conclusions 

The experiments, analyses and model calibration in this portion of the study 

evaluated a variety of the compressive aspects of viscoplasticity in asphalt concrete. The 

time-temperature superposition principle was shown to be valid for large strains 

including the viscoplastic response (Chapter 5). This principle was used to calibrate the 

uniaxial strain hardening viscoplastic strain rate model. The behavior under Fixed Stress 

and Fixed Time cyclic creep loadings–two very different types of stress histories–were fit 

well by the calibrated model.  

Viscoplasticity, like elasticity or any other material property, is truly a function of 

the three dimensional general state of stress and more than just uniaxial conditions.  The 

effect of lateral confinement on measured viscoplastic response was quantified in a 

systematic manner with the same deviator stresses under different confining stresses. 

Confined viscoplastic tests were carried out to determine changes in behavior caused by 

confining stress. Confinement was found to significantly suppress viscoplastic strains, 

increase the hardening response, and extend the primary hardening region over a larger 

range of strains. Some viscoplastic anisotropy was evident under pure hydrostatic 

loading, with complete recovery of axial strains and unrecoverable radial viscoplastic 

strains. 

These are all very important topics because the response can be complex due the 

aggregate movement and internal friction that develops. A data set is offered which is 

sufficiently comprehensive to calibrate a model more advanced and capable than the 
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uniaxial model. This calibration and validation is ultimately found in Chapter 9 motivated 

by some poor validation findings in Chapter 8 justified the extra efforts.   
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7. Damage Characterization 

 

7.1 Introduction 

The theoretical context for the damage model in this research is the Schapery 

continuum damage model (Park and Schapery, 1997; Ha and Schapery, 1998). Key 

conceptual components of this model include the use of elastic-viscoelastic 

correspondence principles, reduced time, and microstructural damage functions based on 

a thermodynamics formulation and expressed in terms of rate-dependent internal state 

variables. A simplified form of the basic Schapery continuum damage model has been 

applied in the past to asphalt concrete under cyclic and monotonic tension at moderate 

temperatures by Park et al. (1996) and Lee and Kim (1998a, 1998b). Damage behavior 

under compression is the focus of the present work.  

Strain decomposition allows damage to be isolated conceptually as 

icViscoplastTotalicViscoelastLinearDamage εεεε −=+ . Calibration of the linear viscoelastic relaxation 
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modulus and temperature shift factors have already been described in Chapter 4, and 

calibration of the viscoplasticity model component has been described in Chapter 6. The 

findings from the large strain time-temperature superposition study (Chapter 5) validate 

the use of reduced time computed using temperature shift function to evaluate damage 

strains at varying temperatures.  

 

7.2 Uniaxial Formulation 

Key aspects of the viscoplasticity model form given in Chapter 2 are repeated 

here for convenience. The Schapery-based damage model is in actuality a nonlinear 

viscoelastic formulation with fully recoverable strains computed according to linear 

viscoelastic principles. Viscoelastic effects are taken into account in the damage model 

via the elastic-viscoelastic correspondence principle to remove time as an explicit 

variable. Pseudo strain εR is computed from the viscoelastic response via a convolution 

integral: 

∫ ∂
∂

−=
Rt

R
R

RR
R

R dt
t

ttE
E 0

'
'

)'(1 εε  Equation 83 

in which E(tR) is the relaxation modulus master curve, ER is an arbitrary reference 

modulus, and tR is reduced time.  Stress is then related to pseudo-strain via familiar stress 

strain expressions. For the simplest case of uniaxial loading: 

R
RE εσ =  Equation 84 

in which σ is the uniaxial stress. Damage is incorporated by replacing the reference 

modulus ER with a damage function C(S) that is dependent upon an internal state variable 

S: 
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RSC εσ )(=  Equation 85 

The damage function C(S) represents the degree of damage in the material. When the 

reference modulus is taken as unity for simplicity, C(S) ranges between 1 for intact 

material to 0 for a completely damaged material.  

A damage evolution law governs development of the damage internal state 

variable S : 

α

⎟⎟
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⎛
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W
t
SS
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&  Equation 86 

in which WR is the strain energy density based on the pseudo strain (i.e., the pseudo strain 

energy density): 

( ) 2)(
2
1 RR SCW ε=

 
Equation 87 

The stress-strain relationship in Equation 85 can also be described in terms of the pseudo 

strain energy density using the standard definition: 

R
R

R

SCW ε
ε

σ )(=
∂
∂

≡  Equation 88 

 

7.3 Uniaxial Calibration 

The damage function C(S) has been successfully found in the past using data from 

constant strain rate tests to failure (Lee and Kim, 1998a; 1998b). Cyclic tests can also be 

employed to determine C(S). The constant strain rate testing approach4 was used in the 

                                                 

4 “Constant strain rate” is perhaps a misnomer. “Constant displacement rate” is perhaps more correct, as the 

actuator displacement rate was the controlled loading parameter in these tests. Because of start-up inertia 
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present study, using the 5oC tests from the large-strain time-temperature superposition 

validation study described in Chapter 5.  

The low temperature of 5oC was selected to minimize viscoplasticity influences. 

The testing machine only had sufficient strength to fail the specimens at the slowest 

target nominal strain rate of 0.0005 ε/second. The machine load capacity was reached 

before failure at the next fastest target strain rate of 0.0015 ε/second. Faster rates were 

attempted until a catastrophic failure of one of the specimens damaged some of the 

equipment and instrumentation. Strain versus time and stress versus strain plots from the 

successful tests are shown in Figure 104 and Figure 105. 

To ensure accurate calibration of the damage model, viscoplastic strains were 

removed using the calibrated viscoplasticity model (Chapter 6). The viscoplastic strain 

model was first applied to the prediction of the viscoplastic responses induced during the 

frequency sweep testing that took place before the monotonic loading to failure. The 

mean measured viscoplastic strain after the dynamic modulus tests was about 308με as 

determined from the average of four LVDT readings 30 minutes after the frequency 

sweep test ended but before the start of the constant strain rate loading. The predicted 

strain from the viscoplasticity model was 573με. It may be hypothesized that the 

predicted viscoplastic strains are larger than the measured values because the 30 minute 

rest time after the frequency sweep was insufficient to achieve full recovery of the 

viscoelastic strain. However, both the measured and predicted viscoplastic strains are 

very small in absolute terms at the 5oC damage model calibration temperature (which is 
                                                                                                                                                 

and compliance in the loading system, constant actuator displacement rate does not translate to truly 

constant strain rate in the specimen, as described previously in Chapter 5. 
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to be expected, given the small stress and strain loading in the frequency sweep test) and 

substantially smaller than the strain magnitudes achieved in the constant strain rate to 

failure loading that followed. The model was then applied to the prediction of the 

viscoplastic strains induced during the constant strain rate tests. An example of the 

predicted viscoplastic strains for a constant strain rate test at 5oC is shown in Figure 106. 

The elastic viscoelastic correspondence principle in Equation 83 was used to 

compute the pseudo strains from the measured physical strain vs. time history. The ratio 

between the pseudo strain and the measured stress yields the damage function values 

C(S) at distinct points j in time (for a reference modulus ER=1):  

( ) j
Rj
j

C S
σ
ε

=  Equation 89 

Although C(S) can be directly determined from the test measurements using this method, 

the values of the damage internal state variable S cannot. However, values of S can be 

computed numerically at each time point j using the following discrete version of damage 

evolution law from Equation 86: 
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The approach employed here was to assume a functional form for C(S), an initial estimate 

for α, and an arbitrarily small value of δS in order to evaluate Equation 90. An alternate 

method that does not require an assumed functional form for C(S) is described by Park et 

al. (1996). The functional form for C(S) assumed in the present study is an exponential 

series: 
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Values for S are then computed using the following finite difference relationships: 
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in which δS is a small perturbation of S (different from ΔS) and: 
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jjj SSS Δ+=+1  Equation 95 

The measured C versus reduced time (Equation 89) can then be fit to the predicted C 

versus reduced time by optimizing the series solution for C(S) at an assumed α value. 

This process is then repeated for different values of the α exponent. The optimum α is 

the one for which the C(S) curves computed at the different strain rates collapse to a 

common C(S) relationship. After this optimum value for α is found, the computed C(S) 

relationship is then recalibrated to the average of the computed C(S) from the replicates. 

Typical results of measured and computed C versus reduced time from a replicate 

that was loaded to failure are shown in Figure 107. This type of analysis was repeated for 

all replicates at all strain rates for values of α ranging between 1.25 and 2.25 in 

increments of 0.25. Results for α=2.00 and α=1.75 showed very similar collapses of the 

individual replicate results onto a common curve, as shown in Figure 108 and Figure 109 

respectively. However, all replicates exhibited an abrupt drop in the very early part of the 

curves, as shown in the figure insets. Ideally, C(S) decreases from an initial value of 1 

(corresponding to a completely undamaged material) as damage begins to accumulate 
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during loading. In the limit, the measured C vs. reduced time curves appear to approach 

an intercept value less than 1 (between 0.7 and 0.9) as S 0 from the right. The fit C(S) 

curves begin at 1.0 (0.9956 actually) but immediately jump down to some lower value 

before continuing to decrease gradually.  

The abrupt drop-off of C(S) at the beginning of the response in combination with 

the inherent variability in the replicate responses made it very difficult to determine an 

optimal value for α. It was hypothesized that some of these problems might be due to the 

effects of prior damage from the preceding frequency sweep loading—i.e., C was already 

less than 1 at the start of the constant strain rate loading.  Damage from the preceding 

frequency sweep is a possibility. This hypothesis contradicts the conclusions during the 

back-to-back frequency sweep analyses (Figure 26 to Figure 28) and the adjustments to 

the upper shelf of the relaxation modulus in Chapter 4 (Linear Viscoelasticity 

Characterization).  

It was hoped the variability in the )(SC curves could be reduced if this effect was 

eliminated. The following iterative sequence was therefore employed: 

1. Starting with the unadjusted fit [initialC(0) = 1] C(S) curve, predict the S and 

corresponding C representing any mathematically predicted damage from the 

dynamic modulus frequency sweep stress history. 

2. Substitute this “initial” S from the frequency sweeps into the beginning of each 

computation for each replicate and then determine an updated average C(S) curve. 

This is intended to eliminate much of the abrupt drop in the initial portion of the 

C(S) curve. 

3. Repeat Steps 1 and 2 using the updated C(S) curve computed in Step 2. 
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4. After each replicate is adjusted for the new estimate of the initial S value; a third 

and final average C(S) is determined. The end results of this are shown in Figure 

110. 

As shown in Figure 111 for α =2.00, this process did produce the desired effects 

of increasing the smoothness of the very early response as evident in the fitted curves 

with and without the initial offset. Also, comparing this figure with Figure 108 shows that 

the variability among the curves is somewhat reduced. The optimal value of the α 

exponent remains about 1.75 to 2.00. 

At this point it is still unclear as to which exponent is optimal and validation with 

both parameter sets shall determine final selection. As will be shown in Chapter 8 where 

both the viscoplastic and damage models are validated through a series of uniaxial tests, 

α = 1.75 was ultimately determined as the optimal value. The discussion of the multiaxial 

damage calibration in the remainder of this chapter is based on this result, i.e., α = 1.75. 

The calibrated coefficients for )(SC for both damage evolution law exponents are 

summarized in Table 21. 
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Figure 104. Strain versus time of the uniaxial 5oC damage calibration tests. 
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Figure 105. Stress versus strain of the uniaxial 5oC damage calibration tests. 
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Typical Strain Components for Damage Analysis
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Figure 106. Computed viscoplastic strains for constant strain rate test at 5oC. 
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Figure 107. Typical computed and measured damage function C in reduced time, not the damage 
function C(S). 
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5oC CSR Uniaxial Damage Analysis
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Figure 108. C(S) damage functions from 6 replicates for α=2.00. 
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Figure 109. C(S) damage functions from 6 replicates for α=1.75. 
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Tracking of the Damage from Dynamic Modulus Frequency Sweeps to 
the Controlled Strain Rate Tests
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Figure 110. Adjustments of the initial portion of the replicate C(S) damage functions. 

 

Figure 111. Adjusted and optimized C(S) damage function. 
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Table 21. Calibrated uniaxial damage function and coefficients. 

∑
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Calibrated Coefficients ia  
i  Damage Exponent 

α  = 2.00 
Damage Exponent 

α  = 1.75 
1 2.7630E-06 5.5574E-06 
2 1.3759E-05 1.9607E-05 
3 1.3758E-05 4.6669E-05 
4 4.2359E-04 8.6808E-03 
5 5.8286E-04 3.1604E-04 
6 1.3748E-05 1.9608E-05 

 

 

7.4 Three Dimensional Damage Formulation and Calibration 

7.4.1 Model Form 

The general form for the damage model under confined triaxial conditions can be 

stated as follows (Ha and Schapery, 1998). Starting from a dual pseudo strain energy 

density formulation in terms of the axial pseudo-strain R
1ε  and confining pressure p : 

2
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D ++= εε  Equation 96 

the constitutive relations for a damaged linear viscoelastic material can then be expressed 

as: 
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in which  R
DW  = dual energy density 

σΔ  = deviator stress (tension positive) 
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  p  = confining pressure (compression positive; 3p σ= −  for triaxial 

   loading conditions) 

  1
Rε  = axial pseudo strain (tension positive) 

  R
vε  = volumetric pseudo strain (expansion positive) 

  )(SCij  = damage functions 

  S  = damage internal state variable 

The pseudo strain quantities are calculated using the correspondence principle via the 

hereditary convolution integrals: 

1
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∂∫  Equation 100 

in which )( RtE  is the relaxation modulus and Rt  is reduced time; the reference 

modulus RE  is taken as unity and omitted from the equations. The limiting case for 

Equation 97 and Equation 98 at 0S →  corresponds to an undamaged linearly 

viscoelastic state. For isotropic conditions:  

• 11( ) RC S E→  as 0S → , where RE  is the reference modulus in the stress versus 

pseudo strain relation (taken as unity in the present work) 

• 12 0( ) (1 2 )C S ν→ −  as 0S → , where 0ν is the initial Poisson’s ratio 

• ( )22 0 0
2( ) 1 2 (1 )

R

C S
E

ν ν→ − − +  as 0S →  

The most direct way to determine the )(12 SC  relation is to apply Equation 98 to the 

unconfined constant rate compression tests for which p =0, yielding: 
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12
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( )
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RC S ε

ε
=  Equation 101 

Once both )(11 SC  and )(12 SC  are known, the remaining )(22 SC  damage function can be 

determined using the confined constant strain rate compression tests and Equation 98. 

 

7.4.2 Viscoplastic Lateral Expansion 

Unconfined constant rate tests at 5oC were used previously to determine )(11 SC , 

and these same tests are used now to determine )(12 SC  from Equation 99, Equation 100 

and Equation 101. The volumetric strain vε  in Equation 100 for the axisymmetric 

conditions in the test is simply 1 32vε ε ε= + . Recall that the measured axial strain 1ε  at 

5oC was corrected for viscoplasticity effects by removing the viscoplastic strain predicted 

by the viscoplasticity model, leaving only damaged linear viscoelastic strain component. 

A similar correction is required for the radial strain 3ε . 

The approach adopted here is to estimate the radial viscoplastic strain based on 

the axial viscoplastic strain and a viscoplastic lateral expansion property like a Poisson’s 

ratio, vpν , because viscoplasticity was found to be compressive and dilative. The 

unconfined Fixed Time (denoted S5 in figure legends) and Fixed Stress (denoted S4 in 

figure legends) viscoplastic test data (averaged across all replicates) were used to 

estimate vpν . The variation of the measured vpν  versus axial viscoplastic strain for 

various temperatures is summarized in Figure 112. For the Fixed Stress tests, the 

variation of vpν  with 1vpε  follows a power law that shifts vertically with temperature, 

giving an initial nonzero 0vpν  that is a function of temperature. The Fixed Time data 
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showed some deviations from this pattern, but principally only for the early low stress 

load cycles where significant viscoplastic strains have not yet accumulated. The initial 

0vpν is assumed to vary between 0.5 (incompressible) at high temperatures and 0.2 at cold 

temperatures and to follow a sigmoidal relationship at intermediate temperatures, as 

shown in Figure 113. Thus, the following equations are used to estimate the radial 

viscoplastic strain that is subtracted from the measured total radial strain to yield the 

damaged linear viscoelastic strain: 

)()(),( 0111
2 TkT VP
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VPVPVP νεεν +=  Equation 102 

431
)5.02.0(5.0)(0 cTcVP e

T ++
−

+=ν  Equation 103 

( ) ( )
3 3 3

3 3

ve vp

ve vp vp

ε ε ε

ε ε ε ν

= −

= −
 Equation 104 

Equation 102 and Equation 104is used to compute the volumetric damaged viscoelastic 

strain, which in turn is used to determine the volumetric damaged viscoelastic pseudo 

strain in Equation 100.  
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Figure 112. Viscoplastic Poisson's ratio versus axial viscoplastic strain. S4 denotes Fixed Stress and 
S5 denotes Fixed Time. 
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Figure 113. Assumed initial unloaded viscoplastic lateral expansion versus temperature. 
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7.4.3 Unconfined C12 Analysis  

The typical response from the unconfined constant strain rate tests was increasing 

compressive axial strain and increasing tensile radial strain such that the resulting 

computed volumetric strain is initially compressive but then expansive, indicating 

dilation as seen in Figure 114 (note that a compression positive sign convention has been 

adopted for this figure). 

The ( )12C S  relationship as computed using Equation 101 and the data from the 

unconfined constant rate tests at 5oC is shown in Figure 115. Two nominal strain rates 

were tested with three replicates per rate. The tests at the faster rates ended prematurely 

because the stress reached the load capacity of the testing machine, as can be seen in the 

figure. Three observations can be made regarding the behavior of the 12C  relationship.  

1. The curve fluctuates erratically at the very beginning of the test because of the 

small initial values for the strains. Similar behavior was observed in during the 

11C  analysis. This noise in the early response has been removed for the sake of 

clarity.  

2. The initial ( )12 0C  is positive because the axial pseudo strain and volumetric 

pseudo strain are both compressive as 0S → . Considering the variability of the 

replicates and the noise in the data as 0S → , it is difficult to determine directly 

the value for 12 (0)C .  The approach adopted here was to take the smoothed 

measured viscoelastic Poisson’s ratios for Rt  > 0 and extrapolate back to an initial 

undamaged value at Rt = 0 (see Figure 116). The estimates of the initial 
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undamaged viscoelastic Poisson’s ratio 0veν  ranged between 0.1 and 0.35 with an 

average value of 0.22, which is a reasonable number for asphalt concrete at 5oC. 

This initial Poisson’s ratio is described in the relation determined in the limiting 

case discussions above, such that 56.0)21()0( 012 =−= νC  using 22.00 ≈ν . This 

intercept was constrained to this value in the curve fitting procedure. 

3. The 12C  curves in Figure 115 all tend to decrease with increasing damage, as 

expected.  A decreasing 12C  curve reflects an increase in the Poisson’s ratio due 

to growing damage.  There are only slight differences between the different 

loading rates, suggesting that the estimates of the radial viscoplastic strain values 

are reasonable. 

The functional form and coefficients for the )(12 SC  damage function are summarized in 

Table 22. 
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Figure 114. Typical unconfined strain and pseudo strain behavior. 
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Figure 115. C12(S) computed from unconfined constant strain rate replicates. 
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Figure 116. Typical damage plus viscoelastic Poisson's ratio. 
 

Table 22. Calibrated C12(S) damage function and constants, α=1.75. 

543 )(log
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ccSC +++
+=  

1c  -0.262 

2c  162.634 

3c  1.304 

4c  753.676  

5c  1.530 
 

 

7.4.4 Confined C22 Analysis 

The remaining damage function )(22 SC  required testing under confining pressure 

p  in order to utilize Equation 100. Two series of confined triaxial compression tests 

were conducted at 250 and 500 kPa at a cool temperature of 10oC. At each confining 
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stress there were two replicates and two strain rates. A temperature of 10oC was chosen 

for several reasons. The first was to avoid reaching the testing machine capacity before 

failure. Recall this happened during the unconfined 5oC compression test; confining 

stress increases the stiffness and chances of running out of load capacity prematurely. 

Time-temperature superposition was employed because the unconfined damage functions 

were calibrated at 5oC.   

Most importantly, viscoplasticity was assumed to be reduced to a negligible level 

by the combination of a cool temperature and confining stress, at least in the axial 

direction. The confined viscoplastic tests showed that viscoplasticity was reduced by up 

to one-half to a full order of magnitude at 35oC. These strains would be expected to be 

reduced even further at the significantly colder temperature of 10oC. 

The tests followed a loading sequence similar to that in the confined 

viscoplasticity tests (Chapter 6), with a hydrostatic pressure applied via a controlled two-

minute ramp-up to the confining stress with measured volumetric strains. The duration of 

the hydrostatic creep loading was extended from 30 minutes to one hour even though the 

creep does not need to come to equilibrium or near-equilibrium since the constitutive 

equations are applicable under dynamic conditions.  Typical results from these tests are 

shown in Figure 117 and Figure 118; note that the constant strain rate to failure portion of 

the loading is very short compared to the hydrostatic creep. The LVDTs did go out of 

range at times, which manifests as abrupt changes in the strain response. The radial 

LVDTs tend to go out of range before the axial as a consequence of the inevitable small 

rigid body motions permitted by the lubricated ends of the cylindrical specimen. During 

the hydrostatic creep portion of the loading, the magnitude of the radial strain is much 
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larger than the axial strain, which may be indicating anisotropy or possibly some 

viscoplasticity in the radial direction. The latter would be consistent with the observations 

from the viscoplasticity tests at warmer temperatures (Chapter 6) where the axial strains 

were found to be fully recoverable but the radial strains were not. 

The two types of pseudo strains R
1ε  and R

Vε  were computed based on the 

measured strains with Equation 99 and Equation 100 and the assumption of negligible 

viscoplasticity influences. The unknown )(22 SC damage function was then 

backcalculated. Some iteration is required because this function is a component of the 

pseudo strain energy density R
DW  in Equation 96, which is in turn is used in the damage 

evolution law: 

α

⎟⎟
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⎞
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⎛
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∂
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SS

R
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R

&  Equation 105 

that determines the internal state variable S  based on the loading history. However, 

because )(11 SC  and )(12 SC  are known from the previous calibrations, preliminary 

estimates of the pseudo strain energy density R
DW  and thus the internal state variable S  

can be calculated.  The initial backcalculated )(22 SC  damage functions from each 

replicate are shown in Figure 119 and are computed using the following relation: 

p
SCSC

RR
v 112

22
)()( εε −

=  Equation 106 

The curves from the replicates in the figure do not collapse as nicely as desired, but it is 

encouraging that one pair each of fast and slow replicates are in agreement. The curves 

also appear to have an intercept that is less than zero, which agrees with the theory 

because the limiting case discussion above states that as 0S → , 
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( )22 0 0
2( ) 1 2 (1 )

R

C S
E

ν ν→ − − +  meaning 37.1)0(22 −=C  using 22.00 ≈ν  and 1=RE  

from the unconfined tests. A second order polynomial was fit to each initial 

backcalculated )(22 SC  replicate curve while forcing an intercept of 37.1− .  

In the second iteration, the estimated functional form for )(22 SC  enables 

inclusion of its contributions to the pseudo strain energy density and damage evolution 

law. The backcalculated results from the second iteration are shown in Figure 120 based 

on polynomial fits to the initially backcalculated replicate responses. The later portions of 

the curve are virtually unaltered by the iteration, but the initial behavior of the 

backcalculated )(22 SC  curves are changed dramatically with the appearance of an 

unreasonable near-horizontal extension of the intercept indicating a calculated rapid 

growth of damage, i.e. large SΔ . This behavior is physically implausible, as damage 

functions should be naturally smooth. The portion of the test history responsible for the 

horizontal offset is the hydrostatic creep, which in the first iteration did not contribute to 

any significant damage growth since )(22 SC  was ignored. Mathematically, the source for 

this behavior must be the actual damage variable S  in the )(12 SC  term in Equation 106 

because it is the only term that can vary. The )(12 SC  function is fixed and the two pseudo 

strain and confining pressure are predetermined and fixed as well. This is obviously 

incorrect and the actual behavior of )(22 SC  must lie between the initial and second back 

calculated responses. Thus, the final form of the )(22 SC  damage function was found by 

fitting a simple polynomial through the second iteration results while holding the 

intercept value fixed at 37.1− . The calibrated parameters for this function are found in 

Table 23 below. 



 176

-100

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500 4000

Time (seconds)

St
re

ss
 (k

Pa
)

Confining Stress
Deviatoric Stress

-2000

0

2000

4000

6000

8000

10000

3600 3650 3700 3750 3800

 

Figure 117. Typical stress history from 500 kPa confined constant strain rate tests at 10oC. 

 

Figure 118. Typical strain history from 500 kPa confined constant strain rate tests at 10oC. 



 177

Preliminary Backcalculated C22(S) from Confined Controlled Strain 
Tests at 500kPa and 10oC.
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Figure 119. Initial backcalculation of damage function C22(S). 
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Figure 120 Overall C22(S) behavior 
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Table 23. Calibrated C22(S) damage function and constants, α=1.75. 
2

22 )( cSbSaSC ++=  

a -1.3700E+00 
b -3.3085E-04 
c 4.6979E-10 

 

 

7.5 Three Dimensional Damage Validation 

Validation at 10oC and 250 kPa of confinement is presented here and not in 

Chapter 8 in part because this is a validation only of the damage model component and 

not a comprehensive validation of all model components including viscoplasticity. Recall 

that 500 kPa confining pressure and 10oC test temperature values were used for 

calibration of the multiaxial damage model. Both calibration and validation at 10oC are 

more susceptible to viscoplastic effects because they are warmer than the 5oC uniaxial 

calibration tests which had viscoplasticity removed with the calibrated uniaxial model. 

However, confinement still justifies neglecting viscoplastic effects based on the 

suppression of viscoplasticity observed in the confined vs. unconfined comparisons of 

viscoplasticity in Chapter 6.  

This validation offers the opportunity to evaluate the performance of the 

calibrated damage functions C12 and C22, which were fit to very unwieldy and unsmooth 

backcalculated initial responses during calibration. The intent here is to ensure that radial 

strain predictions using those smooth-fit functions yield reasonable predictions. 

Furthermore, this exercise also validates the use of the linear viscoelastic relaxation 

modulus determined from unconfined tests in the context of confined conditions. Recall 
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that the comparisons of confined and unconfined tension and compression dynamic 

modulus in Chapter 4 showed no meaningful effect of confinement on the linear 

viscoelastic relaxation modulus.  

Once the )(SCij  damage functions were calibrated, physical strains that are a 

combination of damage and linear viscoelasticity in the axial and radial directions may be 

predicted from any general deviatoric and volumetric stress history using the three 

dimensional constitutive equations. The corresponding axial and volumetric strains from 

two replicates at two controlled rates were predicted and compared to the measured 

counterparts to judge the performance of the model. 

The first task in the validation was to predict the damage internal state variable S  

and all corresponding )(SCij  damage functions based solely on the measured stresses. To 

do so, the first constitutive Equation 97 was solved for axial pseudo strain R
1ε  to yield: 
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σε  Equation 107 

Equation 107 is substituted into the pseudo strain energy Equation 96 to yield: 
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Then the same incremental formulation in Equation 92 to Equation 95 may be used to 

compute S  and )(SCij throughout the tests, allowing the pseudo strains to be computed 

using the two constitutive relations:  
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11
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1 C

pCR −Δ
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σε  Equation 109 

pCC RR
V 22112 += εε  Equation 110 

Now the computation of the physical axial and volumetric strains follows the reverse of 

the hereditary integrals used in the forward calculation procedure: 
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The verification results for the axial and radial directions are shown in Figure 121. The 

predicted deviatoric stress versus axial and radial strain shows remarkably well behaved 

behavior and excellent agreement with the measured response. Similar to the unconfined 

validation tests, there is very reasonable agreement in the pre-peak and peak stresses and 

divergence in the post-peak region. The inset shows strains beginning at the point after 

the hydrostatic stress sequence at the start of application of the deviatoric stresses for the 

constant strain rate portion of the loading. The isotropic nature of the model and the 

anisotropic nature of the material are reflected by the measured radial strains being larger 

than the axial strains at the end of the hydrostatic loading. However, the predicted axial 

and radial strains at this point are equal because the calibration procedure averages the 

anisotropic response into a representative isotropic response. Nonetheless, the isotropic 

model does very well in predicting the overall response, especially under stress 

conditions where the deviatoric stress is much larger then the confining stress. 

The volumetric strains are compared to the measured strains in Figure 122 

through Figure 125 for each of the four replicates. In each figure, the volume change 
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during the hydrostatic portion is shown in the main plot while the inset magnifies the 

controlled-strain-rate-to-failure portion. The magnitudes of the predicted volumetric 

strains during the consolidation are about one half of the measured values. The calculated 

amount of damage ( SΔ ) during this part of the tests was very, very small. Therefore, the 

discrepancies in the predicted consolidation behavior are most probably due to aggregate 

skeleton anisotropy and perhaps very small amounts of viscoplasticity, especially in the 

radial response early in the loading. No attempt was made to correct for potential 

viscoplastic strains in the measured response.  

Although the magnitudes of the predicted consolidation strains appear to be 

predicted not so well, the shape of the consolidation and, most importantly, the predicted 

compression followed by dilation under the deviatoric loads is realistically captured by 

the model. A peak occurs in the measured volumetric compression as the material 

becomes very damaged under the deviatoric stresses and then subsequently dilates. The 

predicted magnitude of the incremental amounts of compression and expansion relative 

to the beginning of the deviatoric loads reasonably agree with the measured response, 

especially when noise in the LVDT signals is considered. Capturing these qualitative 

characteristics responses is paramount in validating the realism of the modeling 

formulation. Improvements in the magnitudes of the predicted strains may be improved 

by considering anisotropy and viscoplasticity.  
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Figure 121. Measured and predicted axial and radial strain versus deviatoric stress from 250 kPa 
confined constant strain rate tests at 10oC. 
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Figure 122. Measured and predicted volumetric strain versus reduced time from 250 kPa confined 
constant strain rate tests at 10oC; Slower rate Replicate A. Main plot – hydrostatic creep; Inset – 

deviatoric constant strain rate to failure. 
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10oC 250 kPa Confined Controlled Strain Test - 1b
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Figure 123. Measured and predicted volumetric strain versus reduced time from 250 kPa confined 
constant strain rate tests at 10oC; Slower rate Replicate B. Main plot – hydrostatic creep; Inset – 

deviatoric constant strain rate to failure. 
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Figure 124. Measured and predicted volumetric strain versus reduced time from 250 kPa confined 
constant strain tests at 10oC; Faster rate Replicate A. Main plot – hydrostatic creep; Inset – 

deviatoric constant strain rate to failure. 
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10oC 250 kPa Confined Contrlled Strain Tests - 2b
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Figure 125. Measured and predicted volumetric strain versus reduced time from 250 kPa confined 
constant strain rate tests at 10oC; Faster rate Replicate B. Main plot – hydrostatic creep; Inset – 

deviatoric constant strain rate to failure. 
 

 

7.6 Summary and Conclusions 

The Schapery viscoelastic continuum damage model originally investigated by 

Park et al. (1996) and Lee and Kim (1998a, 1998b) in tension was calibrated in this study 

for compressive conditions and validated under uniaxial and confined stresses. This type 

of calibration faithfully removed any viscoplastic effects predicated by the model.  

The required laboratory tests are fairly simple monotonic to failure protocols for 

both the uniaxial and confined multiaxial constitutive equations. The most 

computationally demanding calculation is the evaluation of the hereditary convolution 

integrals.  
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There was some difficulty in the calibration due to a suboptimal number of strain 

rates, the limited excursion into the post-peak region at the fastest achievable rate, 

assumptions on multiaxial viscoplasticity and being forced to consider initial damage for 

numerical reasons. Determining the optimum value for the α exponent in the damage 

evolution law was problematic because only two strain rates were available; four or more 

strain rates over a wide range would have enabled better estimation of this model 

parameter. In the future, fresh undisturbed specimens should be used in constant strain 

rate tests because calibrating )(11 SC  damage function was found to be very sensitive to 

the initial condition of the backcalculated responses.  

A simplified estimate of the unconfined radial strains was used to calibrate 

)(12 SC  and )(22 SC . As a practical matter, reduction of potential viscoplasticity by testing 

at colder temperatures is preferred to post-test analytical corrections, assuming a testing 

machine of sufficient capacity is available. The 100 kN capacity testing machine with 

100 mm diameter specimens at the University of Maryland could not fail the specimens 

at medium to high strain rates at 5oC, which is not a particularly cold temperature.   

Despite these hurdles, the uniaxial monotonic calibration results provide evidence 

that the multiaxial damage functions for asphalt concrete are unique, inherent material 

properties independent of temperature and loading rates through the use of reduced time. 

In other words, the C11(S) and C12(S) functions were fit at 5oC uniaxial conditions and the 

and C22(S) function was fit at 10oC triaxial conditions; a remarkable use of reduced time. 

The calibrated damage evolution law and single internal state variable S  were shown to 

satisfactorily account for the growth of damage.  The multiaxial validation test that 

exercised all )(SCij  damage functions showed agreement comparable to the unconfined 
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model for both the axial and radial strains for cases where the deviatoric stresses are large 

in relation to the confining stress. The model is less accurate under pure hydrostatic 

loading conditions, perhaps because the material anisotropy is more pronounced.  



 187

 

 

 

 

 

8. Model Validation 

 

 Some validation of individual model components has already been presented in 

earlier chapters. Specifically, Chapter 5 in general and Section 5.4 in particular 

summarize validation testing for the extension of time-temperature superposition 

concepts to large strains, while Chapter 7 and Section 7.5 in particular describe some 

limited validation of the multidimensional damage model component. The present 

chapter describes testing and results used to validate all components of the model 

simultaneously. Although each of the validation test series described in this section 

exercised the entire model, some were designed to emphasize individual components 

more than others—e.g., damage vs. viscoplasticity. 

 

8.1 Uniaxial Monotonic Tests to Failure 

Both the uniaxial damage and viscoplastic model were validated by predicting the 

25oC and 40oC constant strain rate tests at nominal strain rates of 0.0005, 0.0015, 0.0045, 

and 0.0135 ε/s. Although these tests were used in the large-strain time-temperature 

superposition study described previously in Chapter 5, they were not used to calibrate any 
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of the material properties for the linear viscoelastic (Chapter 4), viscoplastic (Chapter 6), 

or damage (Chapter 7) model components. In other words, the validation tests described 

here are different from the calibration tests used to determine the model parameters. 

The stress versus strain predictions are shown in Figure 126 and Figure 127 for 

two temperatures and two values of α  (the exponent in the damage evolution law). 

Figure 126 (a) and (b) shows the predictions for 25oC and α =1.75 and 2.00 respectively 

while Figure 127 (a) and (b) shows similar results at 40oC. Consistent with the calibration 

procedures, the validation predictions included any damage and viscoplasticity 

accumulated during the prior dynamic modulus frequency sweep loadings, although all 

strain components are re-zeroed at the start of the constant strain rate responses plotted in 

the figures. Predictions using both values of α show generally good agreement with the 

overall measured response, with a slight overprediction of total strains prior to the peak 

response. However, the predictions using α=1.75 are closer in the pre-peak range and 

better behaved after the peak response than the predictions using α=2.00, which tend to 

be slightly high over the entire measured range. This suggests that the optimal value for 

the uniaxial damage model is α=1.75 (see also Chapter 7). Continuum damage theories 

are no longer applicable once macro cracks develop in the post-peak region. Some macro 

cracking of the specimens was observed, but it typically occurred well into the post peak 

region. The fixed gage length LVDT instrumentation used in all University of Maryland 

(UMD) tests cannot determine the precise point at which macro cracking occurs. Direct 

tension tests at the North Carolina State University (Chehab et al., 2003) using LVDTs 

with varying gage lengths in combination with Digital Image Correlation (Chehab et al., 
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2003 and Seo et al., 2002) were able to pinpoint localization of damage and formation of 

macro cracks occurring after the peak stress. 

The predictions of the individual strain components versus time are shown in 

more detail in Figure 128 to Figure 131 for the case α=1.75.  It is evident from these 

plots that the viscoplastic component is the most likely cause of the overprediction of 

total strain, since at 40oC the viscoplastic strain is at times larger than the total measured 

strain. Nonetheless, the overall conclusion to be drawn from these validation results is 

that the Schapery-based strain decomposition approach and calibrated viscoelastic-

viscoplastic damage model predicts well the material response at temperatures and strain 

rates that are different from the calibration conditions. 
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(b) 
Figure 126. Measured stress versus predicted and measured total strain at 25oC for different damage 

evolution law exponents, (a) α=1.75 and (b) α=2.00. 
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α=1.75 and 40oC
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α=2.00 and 40oC
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(b) 

Figure 127. Measured stress versus predicted and measured total strain at 40oC for different damage 
evolution law exponents, (a) α=1.75 and (b) α=2.00. 
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(b) 
Figure 128. Individual predicted strain components from uniaxial constant strain rate tests at 25oC – 

two slowest strain rates. 
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(b) 
Figure 129. Individual predicted strain components from uniaxial constant strain rate tests at 25oC – 

two fastest strain rates. 
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(b) 
Figure 130. Individual predicted strain components from uniaxial constant strain rate tests at 40oC – 

two slowest strain rates. 
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 (b) 

Figure 131. Individual predicted strain components from uniaxial constant strain rate tests at 40oC – 
two slowest strain rates. 
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8.2 Uniaxial Sensitivity 

An abbreviated sensitivity analysis was completed to complement the model 

calibration and validation. Key model parameters considered included the viscoelastic 

creep compliance D(tR) and temperature shift factor a(T), the viscoplasticity parameters 

p, q, and Y, and the α exponent for the damage model. The point of comparison was 

taken as the strain predicted at 75% of the peak measured stress for a monotonic constant 

strain rate test at the intermediate strain rate 0.0045ε/s and the two constant strain rate 

verification temperatures of 25 and 40oC.  The average strain change AvgεΔ  due to +20% 

perturbations of each model parameter is expressed in terms of a normalized sensitivity 

index ..IS  (see Figure 132 for notation): 

2
21 εε

ε
Δ+Δ

=Δ Avg  Equation 113 

Calibrated

AvgIS
ε

εΔ
=..  Equation 114 

These values are ranked by order of importance in Table 24. The predicted strains are 

clearly most sensitive to the viscoplastic model parameters, and of these, logY has the 

greatest effect on the predictions. The sensitivity of predictions to the other model 

parameters is dependent on the temperature and thus should also be dependent on strain 

rate via time-temperature superposition considerations. 
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Table 24. Sensitivity ranking of the individual model parameters. 
 Sensitivity Index ..IS  Parameter 

Adjusted 25oC        
0.0045ε /s 

40oC 
0.0045ε /s 

Ylog  2.700 4.01 
q  1.014 1.275 
p  0.178 0.233 

α exponent 0.160 0.070 
)( RtD  0.135 0.110 
)(log Ta * 0.045 0.176 

* )(log Ta  could not be adjusted at 25oC because it was the reference 

temperature so the actual Rt  itself was adjusted 

 

 

Figure 132. Schematic of total strain sensitivity to model parameter changes.  
 

 

8.3 Independent Validation Tests 

Four sets of independent validation tests were performed at the Arizona State 

University (ASU) asphalt material laboratories (Witczak and Sullivan, 2001; 2002). All 

of these tests used the same asphalt mixture that was used for the development and 
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calibration of the material model in the present study. Two of these tests, a standard 

repeated load permanent deformation and a random repeated load permanent 

deformation, strongly exercise the viscoplastic model under compressive loading. The 

specimen geometry and instrumentation employed in these independent validation tests 

were similar to those used at the University of Maryland in the calibration testing. 

 

8.3.1 Repeated Load Permanent Deformation Tests 

The repeated load permanent deformation test is a standard test performed on 

asphalt concrete mixtures to gauge resistance to rutting. The tests performed at ASU 

applied a 0.1 sec haversine load pulse followed by a 0.9 sec rest period at two cyclic 

stress and temperature combinations: 69 kPa at 37.8oC (100oF) and 30 kPa at 54.4oC 

(130oF). Recall the stresses are much higher in the calibration tests for the uniaxial 

viscoplastic model, which applied 1500 kPa at 25oC and 35oC and 936 kPa at 35oC and 

45oC in the Fixed Stress tests and between 20 kPa and 1354 kPa at 35oC in the Fixed 

Time tests.  

The haversine load pulse induces a recoverable viscoelastic and a nonrecoverable 

viscoplastic deformation. The long rest period allows for recovery of the viscoelastic 

strain; any remaining strain at the end of the rest period is assumed to represent the 

nonrecoverable or permanent viscoplastic component. The comparisons of the predicted 

viscoplastic strains from the model against the permanent strains measured during the 

tests are the focus of the validation. A Matlab algorithm was used to calculate the 

predicted strain response over a measured stress history of 12,000 load cycles. The actual 

reported contact and pulsed stresses in the database for the independent tests were used in 



 199

the predictions. The measured stress histories at each temperature were converted from 

absolute to reduced time using the corresponding temperature shift factor from the large 

strain a(T) relation. 

Comparisons of predicted vs. measured permanent strain for the repeated load 

permanent deformation tests are shown in Figure 133 and Figure 134 for 100oF and 

130oF respectively. The model tends to under predict permanent strains slightly at 100oF 

and over predict slightly at 130oF. The 100oF model predictions generally follow the 

measured response and lie within the minimum and maximum bounds. However, the 

measured response clearly shows an increase in strain hardening (flattening of the slope) 

with increasing load cycles while the model predicts a pure power law rate of strain 

hardening, linear log-log. The 130oF model predictions again generally follow the 

measured response but are just inside the maximum bound for the measured data. The 

measured data also suggest a primary-secondary-tertiary permanent strain transition with 

increasing (flatter slope) and then decreasing (steeper slope) strain hardening; this 

behavior is not captured by the model. However, the overall trends between the model 

predictions and the measured test data are similar over the range of comparison. 

Closer examination of the evaluation test data revealed some questions regarding 

the quality of the 130oF test data, particularly at the higher N values. Figure 135 

compares the measured εp versus N response in arithmetic space for each replicate at both 

100 and 130oF. The results at 100oF are reasonable, albeit with a considerable amount of 

scatter among the replicates. Many of the individual replicate results at 130oF show 

anomalous behavior, however. Considering each replicate in turn: 
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• Specimen 506: There is a sharp discontinuity in slope at about 4000 cycles, 

followed by an essentially linear increase in εp with N. 

• Specimen 510B: Similar to A, but with the sharp discontinuity in slope occurring 

at about 2000 cycles. (Note: This specimen is not included in Figure 134.) 

• Specimen 516: No evident anomalies in the data, but the curve falls along the 

average of the 100oF tests. This suggests that the test may have been incorrectly 

labeled in the database and that it was performed at 100oF instead of 130oF. 

• Specimen 512: Expected behavior. No evidence of tertiary failure. 

• Specimen 510: Expected behavior. There is a moderately large change in slope at 

about 9000 cycles, but this may correspond to the onset of tertiary failure. 

• Specimen 511: Expected behavior. Tertiary failure begins at around 9000 to 

10000 cycles. 

Based on these evaluations of the individual replicate data, Figure 136 compares the 

model predictions with measurements from the good test specimens only. Note that the 

spread between the minimum and maximum measured permanent strains is remarkably 

small after removing the poor quality data. The model predictions now closely match the 

primary stage of the response but still do not capture the increasing strain hardening 

(flatter slope) in the secondary stage or the decreasing strain hardening (steeper slope) in 

the tertiary stage. 

Finally, Figure 137 compares the average measured response from the 100 and 

130oF repeated load permanent deformation tests. These tests were performed at different 

target deviatoric stresses as well as different temperatures, so the magnitudes of the 

permanent strains measured in each set of tests will be different. However, Figure 137 



 201

clearly shows that the initial strain hardening (slope of logεp versus logN) is similar at 

both 100oF and 130oF. Both sets of data show a transition to increased strain hardening in 

the secondary stage. The 130oF data appear to have a slightly higher slope in the 

secondary stage, but the significance of this is difficult to evaluate because the 130oF data 

almost immediately transition to the tertiary stage. The conclusions drawn from these 

examinations are as follows: 

1. The model provides predictions that are well within the ballpark of the measured 

response at both test temperatures. 

2. The test data at both temperatures clearly indicate a transition from primary to 

secondary permanent deformation stages, with a subsequent (nearly immediate) 

transition to tertiary stage failure for the 130oF data. The model predictions do not 

mirror this behavior, nor can they given the current formulation of the model. 

3. Strain hardening does not appear to be a function of temperature during the primary 

permanent deformation stage. This is consistent with the assumption of time-

temperature superposition validity in the viscoplasticity formulation. 

It is unclear whether strain hardening is a significant function of temperature during the 

secondary and tertiary permanent deformation stages. The secondary stage is very short 

in the 130oF tests, while the 100oF tests never reach the tertiary stage. 
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Figure 133. Comparisons between model predictions and measured response for repeated load 

permanent deformation tests at 100oF. 

 

Figure 134. Comparisons between model predictions and measured response for repeated load 
permanent deformation tests at 130oF. 
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Figure 135. Individual replicate results for 100oF and 130oF repeated load permanent deformation 
tests (arithmetic strain axis) 

 

Figure 136. Measured and predicted permanent strains for 130oF repeated load permanent 
deformation tests (Specimens E/510, F/511, D/512 only). 
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Figure 137. Comparison of average measured response from the 100oF and 130oF repeated load 
permanent deformation tests. 

 

 

 

8.3.2 Random Repeated Load Permanent Deformation Tests 

This series of uniaxial tests was performed at ASU at temperatures of 54.4oC 

(130oF) and 37.8oC (100oF). Loading consisted of three separate haversine stress histories 

followed by a recovery period. Table 25 summarizes the different load frequencies, stress 

levels and rest periods. 

A typical measured total strain vs. time history for the three load cycles and rest 

periods from one of these tests is shown in Figure 138. A small viscoelastic recovery can 

be seen at the beginning of each rest period. Predicted strains were computed with the 
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same Matlab algorithm and material model calibration as for the conventional repeated 

load permanent deformation tests, but as evident in Figure 139 and Figure 140 the 

agreement between the predicted and measured values was much worse. The model 

consistently over predicted the viscoplastic strain except in the first load group at 37.8oC. 

These results clearly suggest that hardening in the model is insufficient under these 

conditions. 

Table 25. Random Repeated Load Test Loading Cycles. 

Axial Stress (kPa) Load Group Duration Rate 54.4oC 37.8oC 
1 630 cycles 10 Hz 34.5 69.0 
2 5 min Rest 0 0 
3 500 cycles 0.1 Hz 86.2 172.4 
4 10 min Rest 0 0 
5 2500 cycles 1.0 Hz 51.7 103.4 
6 15 min Rest 0 0 

 

 

Figure 138. Typical measured tests result in random repeated load permanent deformation tests, 
54.4oC. 
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Figure 139. Viscoplastic prediction of 37.8oC random repeated load permanent deformation tests 
with measured results. 

 

Figure 140. Viscoplastic prediction of 54.4oC random repeated load permanent deformation tests 
with measured results. 
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8.4 Summary and Conclusions 

Two distinct types of comprehensive validation tests were performed to evaluate 

the ability of the model to predict asphalt concrete response over a wide range of loading 

characteristics. The first type, monotonic uniaxial controlled strain rate tests to failure, 

exercised all model components in the pre-peak, peak, and post-peak failure regions.  The 

controlled strain rate tests at 25oC emphasized the continuum damage component of the 

model. This component will be largely responsible for predicting cracking distresses, 

specifically fatigue. It is designed to capture the distributed microstructural damage that 

occurs before the initiation of macro cracking. Accurate prediction of the significant 

viscoplasticity that is also present in these tests was also required for a complete 

validation. 

The 45oC controlled strain rate tests push the viscoelastic continuum damage 

model to its limits. This temperature is probably the warmest of any relevance for 

cracking; at higher temperatures, the damage response becomes secondary to 

viscoplasticity. The power law based strain hardening and stress dependent 

viscoplasticity model provided realistic predictions of the material response in these high 

temperature tests.  

The second type of validation tests focused on the abilities of the model to predict 

response under cyclic loading conditions more similar to field rutting. Two variations of 

these cyclic loading tests were performed: conventional repeated load permanent 

deformation tests, and random repeated load tests.  Both types were conducted at 
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generally warmer temperature and lower stress conditions than used in the calibration 

tests.  

The model predictions for the conventional repeated load permanent deformation 

tests were well within a very reasonable ballpark of the measured response and lie inside 

the measured variability at 100oF and just at the upper boundary of the 130oF variability. 

The model predictions from this stress history follow a power law and are thus linear in 

log-log space whereas the actual measured response from the validation tests showed a 

bilinear primary-secondary hardening. The model predictions essentially matched the 

measured slope in the primary hardening region; which was independent of temperature 

consistent with time-temperature superposition, but could not reproduce the secondary 

hardening. 

Unfortunately, the model consistently and significantly overpredicted the 

measured strain response in the random repeated load tests. The poor validation results 

for the random repeated load test and need for more flexible primary-secondary 

hardening behavior in the conventional repeated load permanent deformation tests 

identifies areas where the model—specifically the viscoplastic model component—

lacked the ability to simulate asphalt concrete realistically. The next chapter describes 

changes to the model in order to improve the viscoplastic strain prediction. 
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9. Continued Development of the Viscoplastic Model 

The validation tests in Chapter 8 demonstrated the ability of the viscoelastic 

continuum damage model to predict asphalt concrete response under low and moderate 

temperatures under both uniaxial and multiaxial conditions. Unfortunately, the 

viscoplastic model exhibited flaws under some situations, most notably in the high 

temperature low stress repeated load permanent deformation tests. This chapter describes 

modifications to the existing uniaxial model that were made in an attempt to remedy 

these problems. In the end, the original, uniaxial model was judged to be inadequate, and 

a new alternative model based on Perzyna viscoplasticity theory was adopted. The 

formulation, calibration, and validation of this new viscoplastic model component is 

documented in this chapter. 

 

9.1 Bilinear Enhancement of Viscoplastic Hardening Law 

Based on the analyses of the independent validation tests, attempts were made to 

modify the viscoplasticity hardening law to better capture the transition from primary to 

secondary (and ideally tertiary) permanent deformation behavior. Additional potential 

changes to allow the strain hardening rate (i.e., slope of the logεp vs. logN curve) to vary 
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with temperature were disregarded, in part because of the inconclusive experimental 

evidence (Figure 137) and in part because of the other results in the overall study that 

indicated the validity of time-temperature superposition for the viscoplastic response 

(Chapter 5).  

The simplest hardening model enhancement that incorporates a transition from 

primary to secondary behavior is a bilinear form (in logεp vs. logN space): 

vptvpp
vp

q

vp Y
εε

ε
σε ≤=

1
1

&  Equation 115 

vptvpp
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σε >=

2
2

&  Equation 116 

in which εvpt is the accumulated plastic strain at the transition from primary to secondary 

permanent deformation response. Note that Equation 115 and Equation 116 can be easily 

generalized to include the transition from secondary to tertiary response. Equation 115 

and Equation 116 also assume that the stress exponent q is the same for the primary and 

secondary stage response. This too can be easily generalized, and it might be one way to 

incorporate an increase in the logεp vs. logN secondary stage slope with temperature 

should additional test data prove this to be a desirable additional enhancement. 

A simple relation was found to backcalculate strain-related hardening law 

parameters p1 and p2 in Equation 115 and Equation 116 from the estimated logεp vs. logN 

slopes in the repeated load permanent deformation tests:  

11
−=

i
i slope

p  Equation 117 

This is shown schematically in Figure 141, where the values prior to the transition and 

after were averaged to get an overall composite between the 100oF and 130oF tests. The 
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remaining model parameters to be found are the transition strain level εvpt, stress 

exponent q, and bilinear scaling constants Y1 and Y2. These model parameters were 

calibrated using the Fixed Stress cyclic creep and recovery tests. In reality, the transition 

strain level εvpt is not directly calibrated but is determined by q, Y1, and Y2. The 

backcalculated and calibrated values for all parameters are summarized in Table 26. As 

shown in Figure 142 and Figure 143, the quality of the calibrations was good for the 

25/35oC, σ  = 1525 kPa Fixed Stress test set and quite good for the 35/45oC, σ  = 936 

kPa test set. 

 

Table 26. Bilinear model parameters found from mixture between 100oF and 130oF repeated load 
permanent deformation tests and Fixed Stress tests. 

vptε  q  
1p  2p  1logY  2logY  

0.00764 1.88 0.734 2.38 11.32 15.10 
 

Recall that the corresponding values originally determined from the Fixed Stress and 

Fixed Time creep and recovery tests were p = 1.122, q = 2.074 and logY = 12.982.  The 

new stress exponent of 1.89 in the bilinear model is very close to the conventional linear 

exponent of 2.00 suggesting viscoplastic hardening in this approach is less sensitive to 

stress effects. 

Figure 144 shows the predictions of the repeated load permanent deformation test 

with the conventional (dashed line) and enhanced (solid line) bilinear viscoplastic 

models. The enhancement brings the model predictions only slightly closer to the actual 

behavior by reducing the under predictions early in the response. The backcalculated 

transition strain is only achieved in the 130oF predictions and not at 100oF. One practical 

complication in calibrating the bilinear viscoplastic hardening model is that the transition 
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between primary and secondary (and tertiary) permanent deformation response is not as 

well defined in the Fixed Stress and Fixed Time viscoplastic creep and recovery tests as it 

is in the repeated load permanent deformation tests. Consequently, repeated load 

permanent deformation tests may need to be added to the set of model characterization 

tests, either to supplement Fixed Stress and Fixed Time tests or perhaps as a partial 

replacement.   

A further analysis was done for two purposes. The first was to fully reverse the 

model calibration and obtain all bilinear model parameters from the repeated load 

permanent deformation tests (except q being fixed at 2.074) and then validate these 

parameter values using predictions of the Fixed Stress cyclic creep and recovery tests. 

The second purpose was to check the viscoplastic strain prediction algorithm using both 

the conventional and bilinear models. Only data from the 100oF repeated load permanent 

deformation tests were used. The calibration parameters determined from the repeated 

load permanent deformation tests are summarized in Table 27. Note that the transition 

strain from the reverse calibration procedure is about five times smaller then previous. 

The exact agreement between the bilinear predictions in Figure 145 from the two linear 

fits verifies the viscoplastic algorithm, however the poor predictions for the cooler Fixed 

Stress test results in Figure 146 exhibit magnified over prediction and then under 

prediction and demonstrate that the bilinear enhancement is still insufficient to accurately 

describe universal viscoplastic behavior. Therefore, a revised strain hardening 

formulation was investigated as an alternative to the power law based linear and bilinear 

laws. 
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Table 27.  Bilinear model parameters found from 100oF repeated load permanent deformation data 
only. 

vptε  q  
1p  2p  1logY  2logY  

0.00162 2.074 0.953 3.402 12.01 19.20 
 

 

Figure 141. Schematic of method for extracting p exponent values from slopes of repeated load 
permanent deformation tests. 
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Figure 142. Enhanced bilinear calibration with Fixed Stress creep and recovery tests at 25/35oC and 
1500 kPa. 
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Figure 143. Enhanced bilinear calibration with Fixed Stress creep and recovery tests at 35/45oC and 
936 kPa. 
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Figure 144. Repeated load permanent deformation predictions with enhanced bilinear hardening 
law. 
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Figure 145. Verification of viscoplastic model algorithm with all enhanced model constants 
determined with primary and secondary slope and intercept from repeated load permanent 

deformation tests. 
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Figure 146. Fixed Stress test prediction with bilinear model fully calibrated from 100oF repeated load 
permanent deformation test data. 

 

 

9.2 Cross Plotting to Derive Hardening Functions 

The original viscoplastic strain rate model has been shown to have difficulty 

capturing some of the behavior typically observed in repeated load permanent 

deformation tests. Kim and Chehab (2002) based on suggestions by Schapery outlined an 

approach for evaluating the viscoplastic response more generally in an effort to extract 

the correct functional form for the numerator and denominator of viscoplastic rate model. 

Recall that the original viscoplastic strain rate relation employed in this study is of the 

following form: 



 217

q

vp p
vp

B
A

σ
ε =

ε
&  Equation 118 

This relation can be expressed more generally as: 
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Equation 119 

in which )(σf captures the nonlinear stress dependence of the viscoplastic response and 

)( vpg ε  is the strain hardening relation. Note that Equation 119 makes no assumption 

regarding the functional form of the stress dependence and strain hardening other than 

that their effects are separable. Both )(σf  and )( vpg ε  can be inferred from constant 

strain rate monotonic tests as shown schematically starting in Figure 147, where each 

curve i  corresponds to a different rate.  

Assuming that the viscoelastic damage portion of the model has already been 

calibrated, the damaged viscoelastic strains veε  can be subtracted from the total strains 

measured in the constant rate tests to permit plotting of viscoplastic strain vpε versus 

reduced time ξ  (alternative symbol for Rt ) and stress σ  versus viscoplastic strain vpε  as 

shown in Figure 148. For each strain rate at a given viscoplastic strain level vpε , 

corresponding values of viscoplastic strain rate vpε&  and stress σ  can be determined. 

Equation 119 can be rearranged as follows: 

( ) ( )vp vpf gσ ε ε= &  Equation 120 

At any particular viscoplastic strain level vpε , )( vpg ε  is a constant and the pairs of 

corresponding vpε&  and σ  values (Figure 148) can be plotted as in Figure 149. Various 

)(σf  can be developed corresponding to different levels of vpε . These curves can all be 
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inverted and plotted in log-log space as shown in Figure 150. If the curves in Figure 150 

are geometrically similar and can be shifted horizontally, the resulting master curve is the 

inverse of )(log σf  and the shift factors are equal to )(log vpg ε  in Figure 151 at the 

various viscoplastic strain levels vpε . 

The analysis approach described above has been applied to the unconfined 

compression tests at 40oC and 25oC discussed in Chapter 5 for the time-temperature 

superposition study and in Chapter 8 as validations of the viscoplastic and damage 

models. As an example, the 40oC data are shown in Figure 152 after damage and 

viscoelasticity have been removed. Some liberties must taken with this approach in that 

the original viscoplastic model was used to calibrate the damaged viscoelastic response 

which is then used to separate damaged viscoelastic response from the total response at 

25oC and 40oC to yield viscoplastic data for the present analysis. However, 

viscoplasticity is much smaller at the low temperature used for calibrating the damage 

model, so there is some confidence in the accuracy of the remaining viscoplastic strains 

computed in this analysis.   

There is an initial viscoplastic strain of about 0.006 that was predicted with the 

original viscoplastic model as induced from the preceding dynamic modulus frequency 

sweeps.  The average measured permanent strain from the 40oC frequency sweeps was 

0.0048 and a standard deviation of 0.0015.  At 25oC there was an initial viscoplastic 

strain of 0.003 predicted by the original model.  The average measured permanent strain 

measured from the 25oC frequency sweeps was 0.0042 and a standard deviation of 

0.0006. 
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The 25oC and 40oC unshifted plots of σlog  versus vpε&log strain rate (Figure 150) 

at various viscoplastic strain levels from these tests are shown in Figure 153; Figure 154 

shows these plots after shifting with the shift factors (Figure 151) in the inset. Key 

observations from these figures include the following: 

• Smooth master curve and shift functions were developed, but unfortunately 

neither the stress nor strain function master curves at each temperature aligned 

well. 

• The linear trend (in log-log space) for the )(σf  relation in Figure 154 suggests 

that the power law form originally assumed for this term in Equation 118 is 

justified. 

• The nonlinear trend (in log-log space) for the )( vpg ε  relation in the inset of 

Figure 155 suggests that the power law form originally assumed for this term in 

Equation 118 is not justified. However, the concave downward relation suggests 

decreasing strain hardening with increasing viscoplastic strains, which is just the 

opposite of what is commonly observed in repeated load permanent deformation 

tests. 

It could be possible that the initial viscoplastic strain masks the expected concave 

upward stain function shift factor, causing both the shifted stress and strain functions to 

be non-colinear. The analysis was repeated with a different initial viscoplastic strain 

representing the average unrecovered strain measured from the frequency sweeps, 0.0048 

at 40oC and 0.0042 at 25oC. These results are shown in Figure 155 and Figure 156. 

Although this method did not align the stress master curves at the two temperatures, they 

are closer than the previous analysis. The strain function (shift factors) also improved. 
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These results suggest there is probably an initial strain at each temperature different from 

the predicted and averaged measured that will make the stress and strain function 

collapse. 

In light of the initial disturbances in the constant strain rate test data from the 

frequency sweeps and the apparent effect on the master curve analysis, a complementary 

calibration of the Fixed Stress and Fixed Time tests was performed based on the second 

and third observations above. The numerator term in the hardening law (Equation 119) 

was fixed as a power law with coefficients from the average of the slope and intercepts 

from the log-log linear fits in Figure 155. A different functional form for the denominator 

was implemented and then fit to the data assuming that perhaps the concave-up behavior 

did occur in Figure 156 before the subsequent concave down behavior. A sigmoid 

function having characteristics of concave up then concave down was used.  There was 

extreme difficulty in finding an acceptable fit to both measured Fixed Time and Fixed 

Stress data with this approach. When only one type of test data was included in the 

optimization and the fit was satisfactory, the resulting prediction of the other test type 

was very poor. The most these analyses can offer is that independent stress functions and 

strain functions cannot be used. In other words, stress and strain cannot be separated from 

one another in order to accurately model viscoplastic deformations in asphalt concrete at 

large and small stresses with the same pqY model. 

  In conclusion, the original pqY viscoplasticity model formulation was the 

“best” of the variations investigated in that it adequately captured the viscoplastic 

response in the cyclic creep and recovery and controlled strain rate to failure validation 

tests. Nevertheless, this “best” formulation was still unable to capture key aspects of the 
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repeated and random load permanent deformation validation tests, in particular the 

complex hardening observed in these high-cycle low-stress tests. None of the 

enhancements examined for the original pqY model were able to address this deficiency. 

Consequently, a completely different viscoplastic model formulation was explored. This 

is described in the next section. 

 

Figure 147. Schematic of stress versus viscoplastic strain results from constant rate tests. 
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Figure 148. Viscoplastic strain versus reduced time and stress. 
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Figure 149. Plot of f (σ) versus σ at given viscoplastic strain level (from data in Figure 148). 
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Figure 150. Inversion of f(σ) versus g(ε) relation (log-log space). 
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( )log vpg ε

 

Figure 151. Strain hardening function g(εvp) expressed as a shift factor. 
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Figure 152. Example of viscoplastic strain versus time and stress remaining after damage and 
viscoelasticity are removed from the total measured strain. 
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Figure 153. Unshifted data from unconfined compression fixed stress creep and recovery tests. 
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Figure 154. Shifted stress and strain functions from unconfined compression tests using stress-strain 
function master curve approach with predicted initial viscoplastic strain. 
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Figure 155. Shifted stress function from unconfined compression tests using stress-strain function 
master curve approach with measured initial viscoplastic strain. 
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Figure 156. Shifted strain function from unconfined compression tests using stress-strain function 
master curve approach with measured initial viscoplastic strain. 
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9.3 Re-development of the viscoplastic model 

9.3.1 Introduction 

The calibrated uniaxial pqY was unable to capture with realism the secondary 

hardening in the repeated and random load permanent deformation tests, and 

consequently the model tended to over predict permanent strains, as illustrated in Figure 

133 and Figure 136. Furthermore, could the uniaxial pqY model cannot be easily 

generalized to multidimensional loading conditions. A more robust model is clearly 

needed to describe the permanent deformation behavior. Key features required for this 

more robust model include the following:  

• Three-dimensional applicability 

• Asymptotic arrest of viscoplastic strain (rate) for a fixed stress state (i.e. creep) 

• Enhanced hardening sensitivity to stress magnitude and path  

• Suppression of viscoplasticity with confining stress 

• Calibration and validation with existing data and extended time-temperature 

superposition 

While tertiary softening and flow leading to failure is a real phenomenon in asphalt 

concrete, it is not included in the model. 
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9.3.2 Review of Existing Models and Theories 

Various approaches for modeling permanent deformations in asphalt concrete have 

been suggested in the literature over recent years.  Erkins (2002) developed a 

comprehensive model for asphalt concrete, ACRe, which incorporated a rate-dependent 

plasticity formulation. A conventional plasticity model was modified to have model 

parameters that are dependent on temperature and loading rate. The capped Hierarchical 

Single Surface, HiSS, developed by Desai (Desai and Zhang, 1987) for geomaterials is 

used to address compressive yielding. This model was calibrated using monotonic tests in 

tension and in compression at a variety of temperatures and loading rates.  Since the 

model is not a true viscoplasticity formulation, it is not capable of simulating constant 

stress viscoplastic creep, cyclic creep and recovery, or repeated load permanent 

deformation behavior. For example, for repeated load permanent deformation response 

the model fully deforms upon application of the first load cycle, and subsequent cycles do 

not produce any additional incremental permanent strains.  

Huang et al. (2002) present an elastic-viscoplastic model with temperature dependent 

material properties. Perzyna’s viscoplasticity theory (Perzyna 1966) is used. Compressive 

yielding is modeled using the HiSS surface similar to Erkens. Monotonic tests were 

employed for calibration. 

Work by Tashman et al. (2004a) and Park et al. (2004) shares some similarities with 

Huang’s model, except that compressive yielding is addressed with a simpler, uncapped 

Drucker-Prager surface. Temperature is also an explicit model variable. Continuum 

damage is incorporated via an effective stress that considers micro cracking; anisotropy 

and hardening due to the microstructural damage are also considered. 
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Levenberg and Uzan (2004) followed a different approach for a viscoplastic model by 

using the theories proposed by Chaboche (1997) instead of Perzyna. Yielding and 

hardening formulations are not used; instead, a phenomenological ‘back stress’ provides 

the underpinnings for the time-dependent nonlinear response. Interaction between tension 

and compression are implemented, but only for very small strains (i.e., a few hundreds of 

micro strains). 

 

9.3.3 The Perzyna Theory for Viscoplasticity 

Perzyna offered a seminal theory for viscoplasticity in the 1960’s (Perzyna 1966) 

that follows cues from rate-independent plasticity theory. The Perzyna theory for 

viscoplasticity is attractive for the model reformulation in the present study for the 

following reasons: 

• It is truly three-dimensional. 

• It predicts a viscoplastic strain rate that can be easily modified into a reduced 

viscoplastic strain rate like the pqY model using the extended time temperature 

superposition.  

• The theory is general enough to accommodate a wide variety of hardening 

functions.  

The Perzyna formulation predicts the rate of viscoplastic strain as follows: 

ij

vp
ij FGf

dt
d

σ
ε

∂
∂

Γ= )(  Equation 121 

In Equation 121, Γ is a fluidity parameter that is conceptually similar to a viscosity term. 

The function )(Gf  is an overstress function that governs the magnitude of viscoplastic 
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flow. The brackets  are used to denote the value is zero if 0)( ≤Gf  and equal to 

)(Gf  when 0)( >Gf . G can be represented as a surface ( ) 0=ijG σ  in multidimensional 

stress space. The term ( ) 0=ijF σ  is a potential function in multidimensional stress space; 

the 
ij

F
σ∂
∂  gradient term requires that the viscoplastic strain increments are normal to the 

potential function. Generalized viscoplasticity models make a distinction between the 

overstress function ( ) 0=ijG σ  and the potential function ( ) 0=ijF σ . For simplicity, the 

same function—usually termed the flow function or flow surface—is used for both G and 

F, resulting in what is known as associated flow viscoplasticity. 

Simply stated, Equation 121 specifies that viscoplastic strains develop only when 

the applied stress state lies outside the flow surface.  In contrast, plasticity theories do not 

allow the applied stress state to lie outside the yield surface. In viscoplasticity, however, 

the magnitude of the strain rate is proportional to how far the stress state is outside the 

flow surface. Materials such as metals may be realistically represented by flow surfaces 

that depend only on shear stresses, e.g. Von-Mises theory. Asphaltic materials usually 

take their cue from granular geo-materials, which gain strength from confining pressure 

and exhibit dilation. Realistic modeling of these behavior aspects requires flow surfaces 

that depend on both shear and confining stresses, e.g. Drucker-Prager or generalized 

Mohr-Coulomb theories. Erkins (2002) provides a more in-depth discussion of flow 

surfaces vs. observed behavior. Strain hardening (and softening) materials like asphalt 

concrete can be simulated with these theories by changing the size and shape of the flow 

surface as a function of internal state variables that track deformation history.  
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9.3.4 Adaptation to the Project Material and Data 

Employing the extended time-temperature superposition concepts described 

previously, the reduced viscoplastic strain rate is expressed as: 

ijR

vp
ij FGf

dt
d

σ
ε

∂
∂

Γ= )(  Equation 122 

where reduced time tR is given as: 

)(Ta
ttR =  Equation 123 

and where )(Ta  is the temperature shift function. Associated flow is assumed, thus F=G. 

Damage adjustments are not incorporated in the formulation to keep the model as 

simple as possible. Tashman et al. (2004b) have studied this topic using x-ray 

tomography in a 12.5mm dense graded mixture at 56oC under 0, 103, and 206 kPa of 

confinement. A slight decrease in bulk specimen voids was found at 1% axial strain. At 

2% axial strain, the bulk specimen voids were about 0.5% larger than initial conditions. A 

large increase in bulk specimen voids was observed at 4% and higher axial strains. For 

comparison, a 2.2% axial viscoplastic strain was the largest encountered in this study. 

This agrees with the volumetric strains measured for the mixture in this study, where the 

small induced volumetric viscoplastic strains were first compressive and later dilational 

but close to a zero volume change condition for all practical purposes until tertiary flow.  

The Perzyna theory using the HiSS flow surface (Desai and Zhang, 1987) was 

adopted. The HiSS flow surface can be expressed compactly in terms of stress invariants 

as: 

]))()(())(([0 1
2

12
n

D RIRIJF ξξαξγ +−+−==  Equation 124 

in which 
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• DJ 2  and 1I  are the usual shear and bulk stress invariants. 

• γ and n  are fixed parameters that govern the size and shape of the growing flow 

surface. 

• vpvpvp
321 εεεξ ++=  is the viscoplastic strain trajectory; which is a very simple 

quantification of deformation used as the hardening internal state variable. 

• )(ξR and )(ξα  are parameters that govern  the size and nature of the capped 

surface. They are adjusted as hardening accumulates, thereby reducing the 

potential for viscoplastic flow. These parameters are assumed to follow simple 

exponential relationships ( ) 2
0

k
ARRR ξξ +=  and ( ) 1

0
keξαξα = . A small, initial, 

undisturbed surface must be assumed as a starting point in this formulation.  

Representations of the HiSS surface can be found in Figure 157 and Figure 158. As can 

be seen from the surface, viscoplastic flow requires more shear stress ( DJ 2 direction) as 

confinement increases (I1 direction). The capped surface intersects the hydrostatic axis, 

allowing yielding under pure hydrostatic stress.  

Recall the flow rule, )(Gf , in Equation 121. Since associated flow has been 

assumed, )(Gf  is equivalent to ( )f F . Through trial and error the optimal functional 

form for ( )f F  was determined as: 

N

F
FAFf ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= 1

'
)(

0

 Equation 125 

in which F  is taken as the distance in principal stress space from the applied stress to the 

hydrostatic axis in the direction normal to the current flow surface, 0'F is taken as the 

portion of that distance from the hydrostatic axis to the current flow surface. Both are 



 232

determined at the beginning of the current time step. The terms A and N are material 

parameters. As can be seen from the schematic shown in Figure 159, the potential for 

viscoplastic flow diminishes asymptotically as the flow surface expands because of 

hardening. This is precisely what is observed in experiments such as constant creep 

loading. A Newton-Raphson technique is employed to search for the points Pi in 

principal stress space where the outward normal to the instantaneous flow surface points 

through the applied stress point. This is the point on the flow surface at which the 

gradient in Equation 122 is evaluated.  
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Figure 157. Representation of the HiSS surface in familiar two-dimension stress invariant space. 
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Figure 158. Three-dimensional representation of the HiSS surface in principal stress space 
 

 

Figure 159. Schematic of Flow Rule and Surface Hardening 
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9.3.5 Calibration 

The Fixed Time cyclic creep and recovery tests were again used for the model 

calibration because these enable a more direct determination of the unrecovered 

viscoplastic strain after the recovery period. Confinement stresses of 0, 250 and 500 kPa 

were applied. The post consolidation axial and radial strains determined with the methods 

described in Chapter 6, Figure 90. Test temperature was 35oC, which is sufficiently high 

to expect significant viscoplasticity. 

The applied triaxial stress vs. time histories from the tests were simulated in 

Excel. Using the nonlinear optimization and a set of initial estimates for the model 

parameters in Equation 124 and Equation 125, the model constants were iteratively 

adjusted until the summed squared errors between measured and predicted axial and 

radial strains were minimized.  

During calibration, it was determined that A in the flow rule (Equation 125) 

needed to be modified to increase the amount by which confinement suppresses 

viscoplasticity. The A parameter was therefore defined as the following function: 

3k

REF

A ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

θ
θ  Equation 126 

The θ angles can be interpreted as the inclination of the current stress vector in 

1I vs. DJ 2 space; the reference angle θREF corresponds to a uniaxial stress path angle and 

has a value of 0.528 radians.  Ideally, the flow rule and inherent geometry of the HiSS 

surface should account for confinement effects akin to a Mohr-Coulomb surface, and it 

did this satisfactorily for later times of the calibration tests. At very early times, however, 
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the original model predicted slightly greater deformations with confinement than without. 

The formulation in Equation 126 suppresses this physically unrealistic behavior.   

Figure 160 through Figure 162 show the graphical results of the calibrations. The 

goodness-of-fit statistics for the model vs. measured axial strains from the calibration 

tests were quite good, with R2 = 0.97, 0.93 and 0.96 for the 0, 250 and 500 kPa confined 

tests respectively. The corresponding goodness-of-fit values for radial strains were R2 = 

0.97, 0.98 and 0.82 for the 0, 250 and 500 kPa confined tests respectively. The calibrated 

model parameters are summarized below in Table 28. 

 

Table 28. Calibrated Model Parameters 
Parameter Γ γ N N α0 
Value 10^ -7.5190 0.039525 2.25982 2.5533 0.0055485 
Parameter k1 R0 RA k2 K3 
Value -38.5093 23.0031 3756.6 0.54361 4.7736 
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Figure 160. Unconfined Fixed Time Calibration Results 
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Figure 161. 250 kPa Confined Fixed Time Calibration Results 
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Figure 162. 500 kPa Confined Fixed Time Calibration Results 
 

 

9.3.6 Validation Results 

Three types of tests were used to validate the calibrated model; all have been 

described in preceding Chapters. The first type is the Fixed Stress cyclic creep at 0, 250 
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and 500 kPa of confinement at 25oC, 35oC and 45oC.  The second validation set was the 

regular and random repeated load permanent deformation tests. Even though these latter 

tests are all unconfined, they are important validation tests because they were 

independently performed at the Arizona State University and because the uniaxial pqY 

model had difficulties tracking the secondary hardening in the response at small stresses. 

Finally, the third type of validation test was the monotonic controlled strain to failure 

loading at 25oC and 40oC (Chapter 8). Although the original pqY model was able to 

predict the viscoplastic strains in these tests quite successfully, they were nevertheless 

revisited with the enhanced Perzyna-HiSS model reformulation. 

Graphical comparisons of the validation responses are summarized in Figure 163 

to Figure 175. Figure 163 shows excellent agreement between predicted and measured 

axial and radial viscoplastic strains from the cyclic creep tests at three different confining 

stress levels - unconfined, 250kPa, and 500kPa. Note that the confined results are 

included with the unconfined values in Figure 163 for comparison; the deviator stress 

levels in the confined tests matched those in the unconfined test, and the suppression of 

viscoplasticity due to confinement is clearly evident. The unconfined tests were 

conducted at 25oC while the confined tests were performed at 35oC; however the results 

are all plotted in terms of the unifying reduced time. Validation for the set of 35oC/45oC 

Fixed Stress cyclic creep and recovery tests are shown in Figure 166 and Figure 167; in 

addition to the warmer temperatures, these unconfined tests were conducted at smaller 

stress levels.  

The validation results for the conventional and random repeated load permanent 

deformation tests shown in Figure 168 to Figure 172 demonstrate the improved hardening 
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response from the Perzyna-HiSS formulation. The mean measured permanent strain and 

the +/- 1 standard deviation bounds for all of the replicates is shown for the conventional 

repeated load tests while all measured replicates are shown for the random tests to 

highlight the large variability in the measured data. The 37oC results plotted in log-log 

space in Figure 168 exhibit the characteristic ‘bend over’ hardening behavior (see Figure 

163) that the uniaxial pqY model was unable to replicate. The corresponding predictions 

for the individual replicates in the random loading permanent deformation tests are 

summarized in Figure 171 and Figure 172. While the agreement between predicted vs. 

measured strains is not as strong for these tests as compared to the cyclic creep tests, the 

major trends in the response are faithfully captured, most notably the complex, aggregate-

related, secondary hardening.  

Figure 173 plots the predicted axial strains against the radial strains for the triaxial 

creep and recovery tests along with a line which divides the responses into compressive 

(above line) and dilation (below line). This figure demonstrates the model’s ability to 

predict the complex three-dimensional volumetric strain growth as a function of the 

applied stress state. 

 Finally, Figure 174 and Figure 175 show the measured and predicted total strains 

for the controlled strain rate to failure tests as calculated using the previously calibrated 

viscoelastic continuum damage model component combined with both the uniaxial pqY 

and the revised Perzyna-HiSS viscoplasticity model formulations. The predicted response 

is similar for both the original and revised model. This is to be expected, since the 

comparisons are now based on total strains, the original uniaxial pqY model had already 

been shown to adequately predict these tests, and the tests were conducted at 
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temperatures and loading rates for which the viscoplastic strains will not necessarily be 

the dominant component of total strains. The agreement between predicted and measured 

strains is closest at the warmer temperatures and slower loading rates, with increased 

divergence observed in the post-peak portion of the response at cooler temperatures and 

faster rates. This in part is because the faster and cooler validation tests are subjected to 

stresses that are well outside range of stresses in the calibration tests. As a practical 

matter, the divergence of results in the post-peak region occurs at stress levels that will 

not be encountered in realistic pavement systems and within the regime in which 

coalescence of micro cracks will convert the material response into a macro crack 

fracture mechanics problem.  
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Figure 163. Measured and predicted viscoplastic strains for Fixed Stress cyclic creep with equivalent 
deviator-stress (1500 kPa) confined test predictions for comparison 
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Figure 164. Measured and predicted viscoplastic strains 250 kPa confined Fixed Stress (1500 kPa 
deviator) 
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Figure 165. Measured and predicted viscoplastic strains 250 kPa confined Fixed Stress (1500 kPa 
deviator) 
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Figure 166. Additional unconfined 35oC cyclic creep validation (936 kPa deviator) 
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Figure 167. Additional unconfined 45oC cyclic creep validation (936 kPa deviator) 
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Figure 168. Log-log space - 37oC Regular repeated load permanent deformation test validation 
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Figure 169 Arithmetic space - 37oC Regular repeated load permanent deformation test validation 
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Figure 170. Arithmetic space - 54oC Regular repeated load permanent deformation test validation 

 

Figure 171. Random repeated load permanent deformation validation at 37oC 
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Figure 172. Random repeated load permanent deformation validation at 54oC. 
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Figure 173. Compressive and dilative responses of Perzyna-HiSS Viscoplastic Model 
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Figure 174. 40oC monotonic test validation results 
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Figure 175. 25oC monotonic test validation results 
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9.4 Viscoplastic Model Revision Conclusion 

This chapter has documented three different approaches aimed at addressing the 

deficiencies of the original uniaxial viscoplasticity model, specifically the lack of realistic 

hardening and multidimensionality. Ultimately, a completely new model had to be 

formulated to address these issues. 

A bilinear hardening law was attempted by modifying the original uniaxial 

viscoplasticity model to transition from a higher-sloped primary to a lower-sloped 

secondary response at a prescribed strain level. The modification was calibrated using 

two methods. Composite model parameters first determined from the previous validation 

and calibration tests produced predictions that generally overestimated the measured 

strains before the transition strain had been reached. The transition strain between 

primary and secondary hardening is not a fixed value, but depends on the test conditions 

and is more apparent in small stress repeated load tests. The second method was a reverse 

calibration of the model using the repeated load validation tests, but this yielded very 

poor reverse predictions of the calibration tests. 

A novel method of cross plotting was attempted to separate the viscoplastic strain 

rate dependence into functions of stress and viscoplastic strain. Constant strain rate test 

data at 25oC and 40oC were used to separate the stress and strain functions. These results 

confirmed the validity of a power law dependence of viscoplastic strain on stress but 

identified the need a more complex strain function. Based on these observations it is 
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evident that viscoplasticity and hardening is highly complex and requires a very robust 

model formulation.  

Ultimately, a new enhanced viscoplastic model specifically designed for 

multidimensional, time-dependent irrecoverable deformations was formulated. This 

model is a significant improvement over the uniaxial pqY model. The enhanced model is 

based on Perzyna viscoplasticity theory incorporating Desai’s Hierarchal Single Surface 

(HiSS) with hardening as the flow rule. The calibration was completed using both the 

axial and radial strains from cyclic creep and recovery tests with and without 

confinement. To test the model’s capabilities it was validated against an independent set 

of cyclic creep tests, repeated load permanent deformation tests (two types), and 

monotonic constant strain rate to failure tests. The validation was quite successful; very 

good agreement was found between predicted and measured strains in all cases. While it 

is recognized that secondary aspects such as material anisotropy remain to be 

incorporated, the enhanced model provides reasonably robust and faithful predictions for 

asphalt concrete behavior within a familiar and relatively simple and easy to calibrate 

formulation. 

Viscoplasticity in asphalt concrete was found to be a very challenging 

phenomenon to model. The first uniaxial pqY viscoplastic model did support the 

successful development and calibration of the viscoelastic continuum damage model 

component using calibration tests that exhibited some small levels of viscoplasticity.  

Although the original pqY viscoplasticity model is quite simple and was able to 

successfully predict response under relatively large stresses and short duration monotonic 

tests, it failed to faithfully reproduce the response of the repeated and random load 
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permanent deformation tests.  These flaws were substantially remedied by the more 

sophisticated and general Perzyna-HiSS theory. 
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10. Summary and Conclusions 

 

Mechanistic approaches for pavement design and performance prediction employ 

theories of mechanics to relate pavement structural behavior and performance to traffic 

loading and environmental influences. A key element of this approach is the accurate 

prediction of the response of the pavement materials—and thus of the pavement itself. 

Consequently, adequate and accurate characterization of material behavior is vital if 

pavement performance is to be predicted with realism. 

This dissertation documents the development, calibration, and validation of a 

comprehensive, fundamental material model for asphalt concrete. The model, which is 

based on an extended form of the Schapery continuum damage formulation considers the 

viscoelastic, viscoplastic, and damage component behavior over the full range of 

temperatures, loading rates, and stress levels of interest in pavement engineering. Key 

conceptual components of this model include the use of viscoelastic correspondence 

principles, microstructural damage functions based on a thermodynamics-based 

formulation and expressed in terms of rate-dependent internal state variables, and a strain 
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hardening viscoplasticity relation. The model has been calibrated and validated for a 

typical dense graded Superpave mixture under a range of unconfined and confined 

compression loading conditions. Although only one specific dense graded asphalt 

mixture was employed in this study, the comprehensive mechanistic nature of the model 

makes it applicable to other asphalt concrete materials as well.  

The Schapery model explicitly separates the total strain εt into linear viscoelastic 

εlve, microstructural damage εd, and viscoplastic εvp components. Note that the damage 

strain εd is actually included as a part of the viscoelastic strain εve in the formal Schapery 

model. The following sections summarize key findings and conclusions for each of the 

model components and for the overall validity of the model when applied to a variety of 

laboratory test configurations. 

 

 

10.1 Linear Viscoelasticity 

Viscoelasticity is one of the most recognized properties of asphalt concrete. The 

linear viscoelastic relaxation modulus or creep compliance of asphalt concrete is 

relatively easy to calibrate using simple small-strain dynamic modulus tests and 

mathematical principles.  

A large set of small-strain dynamic modulus tests were performed under uniaxial 

compression loading conditions during the course of this study. The small strain loading 

conditions are intended to ensure that only the viscoelastic component of the model 

response is excited and that the viscoplastic and damage components remain negligible. 

These tests, which are assumed to cause no damage to the specimen, were typically 
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performed as the first step of a destructive test sequence—e.g., a small-strain frequency 

sweep at a given test temperature prior to a constant strain rate to failure loading at the 

same temperature. A storage modulus master curve was fit to the full set of measured 

dynamic modulus test data, and this storage modulus master curve was then transformed 

mathematically into Prony series approximations to the linear viscoelastic relaxation 

modulus and creep compliance relationships needed for the model formulation. 

It is important to note that the dynamic modulus tests performed here for 

advanced modeling purposes did not conform to the standard dynamic modulus testing 

protocol as developed for the Simple Performance Test portion (Task C) of the NCHRP 

9-19 project. In particular, the dynamic modulus tests performed here typically did not 

include very cold temperatures, since the subsequent testing steps (e.g., constant strain 

rate to failure, cyclic creep and recovery to failure) at coldest temperatures were either 

impossible to achieve or irrelevant to the model calibration. As a consequence, it was 

somewhat difficult to determine the cold temperature upper shelf of the dynamic modulus 

master curve. These difficulties reinforce the need for dynamic modulus test data in the 

very cold temperature glassy modulus range on the upper shelf, e.g. less than 0oC. The 

material behavior in this range is particularly important for accurate prediction of the 

instantaneous or short time response at the very start of test loading. 

Comparisons of the compression-only dynamic modulus data measured at the 

University of Maryland against the companion tension and tension/compression dynamic 

modulus data collected at the North Carolina State University show little difference in the 

storage modulus values in the overlapping measured temperature/frequency range; the 

storage modulus master curves are generally within one standard deviation. For locations 
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other than the lower shelf, all of the viscoelastic properties—storage modulus, relaxation 

modulus, creep compliance, phase angle, and temperature shift—are practically 

insensitive to the mode of loading. Confinement stress effects in the moderately high 

temperature region approaching the master curve lower shelf were examined using some 

exchanged confined tension/compression data from the North Carolina State University. 

The practical conclusion drawn from the data in this study is that linear viscoelastic 

properties of asphalt concrete may be assumed largely insensitive to confining stress up 

to 500 kPa of confinement. There is a virtually no effect of confining stress on the storage 

modulus in the measured range, although some influence may exist in the lower shelf at 

the highest temperature/slowest loading rate region.  

 

 

10.2 Extended Time-Temperature Superposition 

One of the most significant findings from this project was that conventional time-

temperature superposition principals for asphalt concrete remain valid at large strain 

conditions up to peak failure and beyond into the post peak region. Time-temperature 

superposition for asphalt concrete has traditionally been thought to apply only for very 

small strain—i.e., linear viscoelastic—conditions. The temperature shift factors 

determined at large strains at low and intermediate temperatures were nearly identical to 

those measured at small strains for the same conditions. Large strain temperature shift 

factors at the highest temperatures deviated only slightly from the small strain values. 

The discrepancies at the highest temperatures can be attributed to a variety of causes, 

many of them related to the difficulties of performing dynamic modulus tests at the 
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highest temperatures (e.g., load control at very small loads, signal noise, etc.). The 

extended validity of the time-temperature superposition at large strains suggests that all 

of these response components are governed by the same rate processes.  

The finding that time-temperature superposition applies to both small and large 

strain conditions with similar temperature shift relations is of considerable practical 

importance. For example, the single temperature shift relation can be conveniently 

measured using conventional small strain dynamic modulus testing and then applied to 

larger strain conditions. The material calibration testing program can also be greatly 

economized and simplified. For example, calibration testing can be performed at a single 

critical temperature and loading condition rather than at a factorial of temperatures and 

loading rates. 

 

10.3 Viscoplasticity 

The extended time-temperature superposition principle was employed to calibrate 

the uniaxial viscoplastic strain rate model. The model was calibrated using Fixed Stress 

and Fixed Time cyclic creep and recovery loadings at a single temperature. The test 

temperatures were high enough that viscoplasticity is expected to dominate the response; 

running the tests in a creep and recovery mode allows direct measurement of the 

nonrecoverable viscoplastic strain component (recall that the nonlinear damage strains in 

the Schapery model are assumed to be fully recoverable). The viscoplastic model 

component was then separately validated against Fixed Stress and Fixed Time cyclic 

creep tests performed at other temperatures. The Fixed Stress and Fixed Time tests also 
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provided additional confirmation of the validity of time-temperature superposition at 

large strain levels. 

The calibrated uniaxial viscoplastic model and the extended time-temperature 

superposition were also critical to the calibration of the damaged nonlinear viscoelastic 

model component. Calibration of the damage model component was based on uniaxial 

constant strain rate to failure tests performed at 5oC, a relative cool temperature but not 

cool enough to suppress all viscoplastic strain. Determination of the damage functions for 

the material therefore hinged upon accurate predictions of viscoplastic strains from the 

uniaxial viscoplastic model so that these strains could be subtracted from the damage 

calculations.  

Confinement of 250 kPa and 500 kPa was found to significantly suppress 

viscoplastic strains by up to an order of magnitude and to increase the nonlinearity of the 

hardening response over a larger range of strains. Some viscoplastic anisotropy was 

evident under pure hydrostatic loading, with complete recovery of axial strains and some 

nonrecoverable radial viscoplastic strains. 

Ultimately, a second viscoplasticity model needed to be developed in order to 

address deficiencies of the original model, specifically the poor validation results for the 

two types of repeated load permanent deformation tests and the difficulty in generalizing 

the original model to multidimensional stress conditions. The enhanced viscoplastic 

model is based on Perzyna viscoplastic flow theory combined with the Hierarchical 

Single Surface (HiSS) flow function from geomechanics. The improved multiaxial strain 

hardening inherent in this model addressed the key deficiencies of the original pqY 
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model and produced much better predictions of the problematic repeated and random 

load permanent deformation validation tests.  

 

10.4 Continuum Damage 

The Schapery theoretical model framework for viscoelastic material with damage 

was successfully calibrated with a sequential calibration approach that separated the 

viscoplastic strain from the total strain. In the absence of viscoplasticity, this study 

assumed the remaining response consists of linear viscoelasticity and nonlinear 

viscoelasticity due to very small-scale damage and cracking. This nonlinear 

viscoelasticity is still fully recoverable.  

Calibration of the damage relationships for the material requires laboratory tests 

at multiple controlled strain rates and cold temperatures. The purpose of the cold 

temperatures is to suppress the viscoplastic component of the response; the measured 

response therefore consists primarily of linear viscoelastic (which can be computed using 

the already-calibrated linear viscoelastic model component) and damage components. 

The most computationally demanding calculation is the evaluation of the hereditary 

convolution integrals for the viscoelastic response. Some difficulties were encountered 

during calibration due to a sub-optimal number of strain rates (due to testing equipment 

limitations), inability to completely suppress all viscoplastic response, unavoidable 

assumptions regarding multiaxial viscoplasticity, and the suggestion of initial damage 

that may have occurred during the prior frequency sweep loading. Future tests should use 

fresh undisturbed specimens in the constant strain rate tests (i.e., no prior frequency 

sweep) given the sensitivity of the damage function calibration to any initial damage. 



 256

Despite these hurdles, adjustments and steps were made to utilize the acquired data as 

best as possible and yielded a numerical model that predicts continuum damage strain in 

three dimensions. In the end, the physical damage and the laws and functions that predict 

that damage in asphalt concrete were effectively demonstrated to be unique, inherent 

material properties independent of temperature and loading rates through the use of 

reduced time. In other words, the uniaxial C11(S) and C12(S) functions were fit at 5oC 

uniaxial conditions and the C22(S) function was fit at 10oC triaxial conditions, a 

remarkable use of reduced time. The multiaxial validation test that exercised all damage 

functions showed agreement between predictions and measurements that was comparable 

to if not better than the corresponding comparisons for unconfined conditions. 

 

10.5 Validation 

As described in the preceding sections, the viscoelastic, viscoplastic, and damage 

components of the complete material model were each calibrated separately using tests 

optimized for each type of response. The complete material model was then validated 

using a series of uniaxial constant strain rate tests to failure at strain rates and 

temperatures that were substantially different than any employed in the calibration 

testing. The pre-peak, peak, and immediate post-peak responses were captured very well 

by the model for nearly all of the constant strain rate validation tests. The distant post-

peak response—i.e., after the stress has dropped by more than about 10% from the peak 

value—was less well predicted, but this was expected because this is the regime in which 

macro cracks begin to coalesce and the material transitions from a continuous to 



 257

discontinuous system. Fracture mechanics theories should be employed after damage has 

localized and macro cracks have begun to coalesce.  

Special attention was focused on validating the viscoplastic model component, as 

this was the new capability added to the Schapery model as part of this project. The 

viscoelasticity and damage components of the Schapery continuum damage model had 

received more attention in the past and had already been demonstrated as suitable for 

asphalt concrete at low to moderate temperatures. The uniaxial pqY viscoplastic model 

was validated against repeated load permanent deformation tests performed at conditions 

having generally warmer temperatures and lower stresses than employed in the 

calibration tests. The model predictions agreed well with measured strains in the initial 

hardening region but showed increasing discrepancies in the secondary hardening region 

at larger permanent strains. 

Several model enhancements were investigated to improve the predictions from 

the viscoplastic model component in the secondary hardening region. A bilinear 

hardening law was attempted, but this proved inadequate in capturing the change in 

hardening slopes between the initial and secondary hardening regions. A novel cross 

plotting method was attempted to separate the hardening strain rate dependence into 

functions of stress and viscoplastic strain. However, this too proved unsuccessful in 

improving the model predictions. 

Ultimately, a new formulation for the viscoplasticity model component had to be 

developed. This new formulation adapted the multidimensional Desai HISS model into a 

Perzyna-type viscoplasticity formulation. The model formulation was developed and 

calibrated using a subset of the cyclic creep and recovery tests then validated against the 
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same tests for which the initial pqY viscoplasticity model had performed poorly. The 

validation results for the new model formulation are extremely promising.  

The overall conclusion is that the material modeling and calibration approach 

developed in this project can very successfully capture the full range of relevant material 

response for asphalt concrete under compressive loading. It directly incorporates the 

inherent viscoelastic, viscoplastic, and microstructural damage components of asphalt 

concrete constitutive behavior. It thus provides an excellent foundation for subsequent 

advances in the fully mechanistic modeling of flexible pavement systems. 

Additional work is of course required before realistic mechanistic modeling of complete 

pavement systems becomes a reality. The work described in this report describes only an 

essential but very important first step. However, it very clearly illuminates the path for 

future advances. 
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11. Recommendations 

 

11.1 Calibration Tests 

Linear viscoelastic characterization tests should remain unchanged with multiple 

temperature and frequencies at very small dynamic strains. Enough data at the extreme 

temperatures and frequencies should be obtained for reliable very short and very long 

loading time accuracies in the resultant master creep compliance or relaxation modulus. 

The inter-conversion method outlined by Schapery to take data from the frequency 

domain to the time domain worked well as is evident from the validation. No 

temperatures warmer than 60oC are needed, but at least temperatures as cool as –10oC is 

required to define the master curve upper shelf. 

There is the potential for heavily polymer-modified binders to be non-

thermorheologically simple materials and violate time temperature superposition. 

Mixtures with these binders should be checked for time-temperature superposition in 

frequency sweeps and double-checked for extended time-temperature superposition at 

large total strains. The controlled multiple strain rate procedure outlined in this project 

seems sufficient, but fresh unloaded specimens should always be used. These will verify 
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if there are any difference between large and small strain temperature shift functions and 

guide researchers which to use and when.  

Cyclic creep and recovery tests are recommended for calibrating the viscoplastic 

model parameters. These tests enable direct measurement of the viscoplastic strains that 

are in the focus of the viscoplastic model. Ambitious researchers may want to supplement 

the controlled strain rate validation tests with two or three Fixed Stress cyclic creep and 

recovery tests. The results in the present study suggest that different recommended stress 

states and magnitudes for cyclic creep and recovery calibration tests may produce better 

results. Unconfined tests should be performed at a fairly low stress around 100 kPa, while 

the 250 kPa confined test should have deviator stresses somewhat larger than in the 

unconfined loading but smaller than in the 500 kPa confined tests, and so on. Reasonable 

estimates for the maximum deviator stress levels in the confined creep and recovery tests 

are 400 kPa and 1500 kPa for the 250 kPa and 500-kPa confinement conditions 

respectively. These are based on a simple analysis of 1I and DJ 2  stress invariant ranges 

induced in a multilayer elastic pavement model. The recommended temperature for 

viscoplastic calibration testing is 45oC.  

In addition, some smaller critical stress states can be used to augment the above 

test recommendation. About 30% of the initial load cycles should be performed at about 

25% of maximum deviatoric stress level. The remaining cycles can then be performed at 

the target stress levels. The objective should be to search for the point of viscoplastic 

saturation, which will require some sacrificial specimens. A schematic of this 

recommendation is shown in Figure 176. Recall that viscoplastic saturation occurs when 

the growing flow surface meets or envelops the applied state of stress. Viscoplastic 
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saturation was predicted by the model during the early portions of the confined Fixed 

Time calibration tests and was also measured and modeled in the later portions of the 

random repeated load permanent deformation validation tests. This revised testing 

procedure permits a more strategic approach toward calibrating the hardening of the HiSS 

flow surface. The points of viscoplastic saturation provide necessary constraints in the 

model parameter optimization routine.  

Confinement up to 500 kPa in this research indicated that axial viscoplastic strains 

are fully recoverable, but full recovery of the radial strains after hydrostatic equilibrium 

was not always observed. Hydrostatic preconditioning to full radial strain saturation, 

while requiring extra steps and time, should be used before both unconfined and confined 

tests such that the material starts from the same mechanistic state. Future research into 

possible initial anisotropy effects is needed. Another reason for hydrostatic 

preconditioning is that the constraints for the “nose” of the HiSS surface where it 

intersects the compressive hydrostatic stress axis could be directly determined. However, 

it is expected hydrostatic stresses greater than 800 kPa may be required to fully mobilize 

the material viscoplastically in all three dimensions. 

For validation, repeated load permanent deformation tests with haversine pulses 

and rests are ideal because they represent an important distress mode observed in asphalt 

pavements. Confined versions of these tests should also be included to make the 

validation more robust. 
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Figure 176. Schematic of viscoplastic saturation test modification 
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The original uniaxial pqY model proved adequate for removing any 

viscoplasticity from the low temperature controlled strain rate tests used for calibrating 

the viscoelastic continuum damage model component. It may be desirable to employ 

confined monotonic tests for this purpose because increasing confinement tends suppress 

viscoplastic effects more than does than decreasing temperature. Load system capacity 

may be the limiting factor, however. 

Another alternative is to conduct compression tests using 75mm diameter 

specimens (not violating representative volume requirements) rather than 100 mm 

diameter.  The smaller specimens allow higher stresses to be reached at a given load 

magnitude. The test can then be performed at cooler temperatures to further suppress 

viscoplasticity while still remaining within the load capacity of servo hydraulic testing 

machines commonly available at research institutions. At least four widely different rates 

should be used to ensure confidence in the damage evolution law exponent. The fastest in 

these experiments, 0.0135ε/s, is more than sufficient. It may also be beneficial to 

sacrifice two specimens at the slowest rate by halting loading at 33% and 67% of the 

peak stress and allowing the specimens to recover in order to confirm the low levels of 

viscoplasticity in these tests. 

 

11.2 Recommended Areas of Further Research 

Some specific additional recommendations for future research beyond those 

already mentioned in the preceding sections include the following: 

• Additional studies should be conducted to confirm the validity of time-temperature 

superposition into the large strain region for different asphalt mix types. Modified 
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binder mixtures, in particular, should be studied. The discrepancies/agreement 

between small vs. large strain temperature shift relations as determined from 

controlled strain rate tests vs. cyclic creep and recovery tests should also be 

investigated.  

• The effects of initial material anisotropy should be evaluated more thoroughly for all 

of the model components. 

• The desirability of hydrostatic preconditioning during the viscoplastic model 

calibrations to ensure the same initial mechanistic (strain) state for all conditions 

should be more thoroughly examined.  

• The discrepancies between observations of no damage in small-strain |E*| frequency 

sweeps vs. initial damage predicted from the fully calibrated viscoelastic continuum 

damage model need better resolution.  

• Future research should explore whether any viscoelastic continuum damage 

localization accompanies significant viscoplasticity.  

Finally, and most difficult, separately developed compressive and tensile damage 

and viscoplastic models need to be unified in order to be able to predict the true reversed 

tensile and compressive loading in real pavement systems. This will include unified 

damage evolution and strain hardening laws. 
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