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A	
  key	
  aspect	
  of	
  human	
  auditory	
  cognition	
  is	
  establishing	
  efficient	
  and	
  reliable	
  

representations	
  about	
  the	
  acoustic	
  environment,	
  especially	
  at	
  the	
  level	
  of	
  auditory	
  

cortex.	
  Since	
  the	
  inception	
  of	
  encoding	
  models	
  that	
  relate	
  sound	
  to	
  neural	
  response,	
  

three	
  longstanding	
  questions	
  remain	
  open.	
  First,	
  on	
  the	
  apparently	
  insurmountable	
  

problem	
  of	
  fundamental	
  changes	
  to	
  cortical	
  responses	
  depending	
  on	
  certain	
  

categories	
  of	
  sound	
  (e.g.	
  simple	
  tones	
  versus	
  environmental	
  sound).	
  Second,	
  on	
  how	
  

to	
  integrate	
  inner	
  or	
  subjective	
  perceptual	
  experiences	
  into	
  sound	
  encoding	
  models,	
  

given	
  that	
  they	
  presuppose	
  existing,	
  direct	
  physical	
  stimulation	
  which	
  is	
  sometimes	
  

missed.	
  And	
  third,	
  on	
  how	
  does	
  context	
  and	
  learning	
  fine-­‐tune	
  these	
  encoding	
  rules,	
  

as	
  adaptive	
  changes	
  to	
  improve	
  impoverished	
  conditions	
  particularly	
  important	
  for	
  

communication	
  sounds. 

 

In	
  this	
  series,	
  each	
  question	
  is	
  addressed	
  by	
  analysis	
  of	
  mappings	
  from	
  sound	
  

stimuli	
  delivered-­‐to	
  and/or	
  perceived-­‐by	
  a	
  listener,	
  to	
  large-­‐scale	
  cortically-­‐sourced	
  

response	
  time	
  series	
  from	
  magnetoencephalography.	
  It	
  is	
  first	
  shown	
  that	
  the	
  

divergent,	
  categorical	
  modes	
  of	
  sensory	
  coding	
  may	
  unify	
  by	
  exploring	
  alternative	
  



	
  

acoustic	
  representations	
  other	
  than	
  the	
  traditional	
  spectrogram,	
  such	
  as	
  temporal	
  

transient	
  maps.	
  Encoding	
  models	
  of	
  either	
  of	
  artificial	
  random	
  tones,	
  music,	
  or	
  

speech	
  stimulus	
  classes,	
  were	
  substantially	
  matched	
  in	
  their	
  structure	
  when	
  

represented	
  from	
  acoustic	
  energy	
  increases	
  –consistent	
  with	
  the	
  existence	
  of	
  a	
  

domain-­‐general	
  common	
  baseline	
  processing	
  stage.	
  

 

Separately,	
  the	
  matter	
  of	
  the	
  perceptual	
  experience	
  of	
  sound	
  via	
  cortical	
  responses	
  

is	
  addressed	
  via	
  stereotyped	
  rhythmic	
  patterns	
  normally	
  entraining	
  cortical	
  

responses	
  with	
  equal	
  periodicity.	
  Here,	
  it	
  is	
  shown	
  that	
  under	
  conditions	
  of	
  

perceptual	
  restoration,	
  namely	
  cases	
  where	
  a	
  listener	
  reports	
  hearing	
  a	
  specific	
  

sound	
  pattern	
  in	
  the	
  midst	
  of	
  noise	
  nonetheless,	
  one	
  may	
  access	
  such	
  endogenous	
  

representations	
  in	
  the	
  form	
  of	
  evoked	
  cortical	
  oscillations	
  at	
  the	
  same	
  rhythmic	
  rate.  

 

Finally,	
  with	
  regards	
  to	
  natural	
  speech,	
  it	
  is	
  shown	
  that	
  extensive	
  prior	
  experience	
  

over	
  repeated	
  listening	
  of	
  the	
  same	
  sentence	
  materials	
  may	
  facilitate	
  the	
  ability	
  to	
  

reconstruct	
  the	
  original	
  stimulus	
  even	
  where	
  noise	
  replaces	
  it,	
  and	
  to	
  also	
  expedite	
  

normal	
  cortical	
  processing	
  times	
  in	
  listeners.	
  Overall,	
  the	
  findings	
  demonstrate	
  

cases	
  by	
  which	
  sensory	
  and	
  perceptual	
  coding	
  approaches	
  jointly	
  continue	
  to	
  

expand	
  the	
  enquiry	
  about	
  listeners’	
  personal	
  experience	
  of	
  the	
  communication-­‐rich	
  

soundscape. 
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Introduction 

Physiological origins of MEG signals  

 

Information processing in the nervous system relies on the ability for neuron cell 

membranes to transfer electric charge in organized manner. Each transfer can be modeled 

as a point ionic current event, and in turn this generates a magnetic field in its near 

vicinity. Current transfer constrained by a neural wire-like segment (a ‘process’) implies 

an effective displacement along the course of its main axis (Fig. 1). By Maxwell 

equations, a new magnetic field distribution is there created, with a geometry that can be 

represented as a series of concentric magnetic field contours whose strength decreases 

with distance. If all transfer locations and directions were distributed randomly, the 

resulting local then add and cancel each other at chance, superposing to a resulting global 

picture of near-zero field at any given time, following a “closed field” (Fig. 1). It follows 

that for a MEG signal to be measurable, some degree of underlying coherent anatomical 

organization is necessary so that constructive superposition is favored (e.g. an open field 

configuration) as an effective magnetic source of greater strength than any of its 

constituents. Fortunately, in many locations the brain has a sufficient degree of 

organization for net fields from different locations to add constructively, and thus amplify 

into a neuromagnetic signal. 
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Figure 1. Magnetic field group generators. A single cell generator (left) with a mostly 

linear architecture may be active and its charge transfer effectively transfer along its axis. 

This is the source for a magnetic field distribution, and its strength can be depicted as 

contour lines that decrease with distance from the source direction (thick arrow); its own 

direction (contour arrows) depends additionally on the source orientation. Given these 

constraints, the spatial organization (directions and orientations) of multiple current 

generators (right) may determine how each contribution adds up externally, either adding 

up as an open field, cancelling out as a closed field, or likely keeping an intermediate 

form as a mixed field. Activity changes may happen from one another, and an aim of the 

MEG technique is to measure this global image, in particular when do over time. Still, 

even if a neuromagnetic signal is measurable it does not mean that it is directly 

interpretable. Fig. 1 illustrates the point that anatomical descriptions of the underlying 

generators are necessary for an unambiguous interpretations.   

 

At the individual level neurons have a striking variety of shapes and sizes, something that 

may translate into different current transfer properties. Multipolar neurons with long axon 

processes and many dendrites are frequently found in the mammalian central nervous 

system, featuring among them the pyramidal cell (Fig. 2) with a chief excitatory function 

in layered structures such as cerebral cortex and hippocampus. For our purposes, its main 

morphological characteristic is its single, long thick apical dendrite that dictates a 

principal axis of information transfer from dendrites to axon, and of (bidirectional) 

current flow along its axis. Configurationally, these units are locally arranged in parallel 

to each other, and normal to the tissue surface layer. Globally, such histological pattern is 
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maintained along the folded surface of cortex or hippocampus. When jointly active, 

events at individual units may be amplified generating magnetic fields of sufficient 

strength to be measurable with current detector systems[1].  

 

 

 

Figure 2. Biophysical structures facilitating neuromagnetic signals. Information 

transfer in a pyramidal excitatory cell from the hippocampus (left) flows upwards from 

dendrites to soma to axon. Most dendritic branches appear to end at the main apical 

dendrite leading to a principal axis of current flow. These cell types have an inverted 

pyramid-like soma of about 20 µm average size and, histologically, often arrange 

bidimensionally in parallel as shown by a silver stain of cerebral cortex (middle). Thus if 

simultaneously active, a magnetic field contour surrounding their surface domain may 

superpose additively. This normal-oriented-to-surface configuration is a major building 

block of cortical layered structure as is visible at the millimetre scale in a sample motor 

cortex section (right). Images modified from: NeuroLex.org, Stritch School of Medicine 

(Lumen), and [2]. 

 

The anatomical basis for neuromagnetic signals arising from these biophysical arrays  

was directly addressed in an in vitro study by Wu & Okada [3], where a slice of parallel 

pyramidal-cell tissue that would in principle facilitate an open field distribution was used 

(Fig. 3). Neuromagnetic signals were successfully measured from a these samples, with 
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consistent directionality according to the physiological current flow patterns predicted by 

stimulation at either extreme of the pyramidal cell set (soma or far dendrites). Depending 

on stimulation distance from the soma (near or far), evoked signals featured bi- or tri-

phasic behavior respectively, where the first phase is explainable by intracellular current 

flow (from stimulation origin to opposite axial end), but the last phase flows in both cases 

from apex to base, also in consistency with simultaneous electrophysiology data. The 

difference between first and last phases was then interpreted in terms of cells that have 

been directly stimulated (~30%) initially, versus late neuromagnetic signals originating 

from recurrent excitatory connections within the slice [4].  

 

Figure 3. Direct evidence of open field magnetic signals from layer-organized 

pyramidal cells. (A) In the Wu & Okada experiment [3], a slice of hippocampus (CA3) 

tissue, where pyramidal cells are closely packed in parallel and fixed with equal 

orientations, is placed in the centre of four detector coil array (SQUIDs) screening 
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magnetic fields traversing each coil’s circular area. Cell soma and a few cell’s dendritic 

processes are represented. The slice was then stimulated along either the apical dendrite 

or the basal dendrite (soma) regions, defining either of two opposite current flow 

directions. Modified from [4]. (B) The right hand rule for the magnetic field caused by a 

current wire predicts its direction as it curls around the wire’s axis, which are opposite 

depending on current flow as determined by stimulation location (bold). (C) In the coil 

array, a neuromagnetic signal consistent with the expected open field distribution will be 

recorded at coil detectors 2 and 4, but not at detectors 1 and 3, as the latter two lie along 

the current flow axis and no field traverses their circular area. Depending on the current 

flow direction, any magnetic field reaching coils 2 and 4 may be entering from below 

(negative) or above (positive) the coils (equivalently, exiting from above or below them). 

(D) Resulting neuromagnetic signals observed only at coils 2 and 4 are near-mirror 

images of each other, with sign dependent on stimulation site. Inhibitory responses are 

blocked in this preparation. 

 

While hippocampus and cerebral cortex both have an anatomical organization that favors 

representations of neural activity as equivalent dipoles, it is not the case that in general all 

neural activity spanning their entire surfaces are be accessible to noninvasive MEG 

recording. The Wu & Okada study demonstrates an example of location-dependent signal 

measurement: virtually zero magnetic fields can be recorded along the current axis, as 

cytoarchitecture only builds up an open field elsewhere. An implication for human 

studies is that the convoluted cortical surface may constrain which regions are more or 

less to MEG sensors (Fig. 4A). As a rule of thumb, areas lying within sulci will be 

oriented parallel to the scalp surface and thus visible, while those domains located on gyri 

will be oriented normal to the scalp (but Heschl gyrus a notable exception), thus are 

magnetically inaccessible to sensors directly above. This problem is diminished by the 

presence of multiple sensors over the head array, some of which may be further away 
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from the generator, but in adequate relative orientation so as to measure a signal from the 

radial source in question. This issue of visibility can be modeled by the “forward 

problem”: that is, to map activity from a hypothesized anatomical source, such as the 

superior temporal lobe, to a field distribution recorded over the sensor array. This 

minimally requires projecting the field predicted by the laws of electromagnetism upon 

the spatial distribution of sensors to generate an image of the resulting magnetic field 

distributions. In real scenarios, it is the latter which is first available to the experimenter 

(Fig. 4B), for the “inverse problem” of estimating the likely current distribution 

anatomical source given the magnetic field distribution, has to be addressed. 

 

 

Figure 4. MEG sensitivity and resulting field distributions: forward and inverse 

approaches. (A) A cortical domain organization and location relative to a detector coil 
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dictates whether neuromagnetic signals may be retrieved from that domain. When apical 

dendrites across the superior temporal gyrus are active, a collective open magnetic field 

distribution is generated but little of it will reach outside of the scalp thus rendered 

invisible to a magnetic field detector at that location. Such neurons are radially 

organized, unlike tangential units from domain A, whose open field distribution exits and 

enters again the scalp, thus able to reach and cross through one detector coil from the 

MEG sensor set. (B) A bi-hemispheric magnetic field distribution, the first activity source 

map available to the experimenter, arises during auditory stimulation. Red isocontour 

lines approximate regions of equal magnetic field that cross from scalp into the MEG 

helmet surface, curling through exterior space and crossing back into the helmet surface 

(with opposite sign), then back into the scalp. The diagram overlay suggests its origin at 

the superior aspect of the temporal lobe. 

 

 

Aside from spatial coherence requirements, open fields also gain strength when generator 

units are active with temporal coherence. Estimates for the minimum amount of 

excitatory pyramidal units that need to be simultaneously active so as to generate a 

readable MEG signal, are of the order of between 104 to 105, resulting from current flow 

measurement resolution limits of 10 nA·m [5]; the minimum number of units may relate, 

based on anatomical estimates, to columnar patch ensembles of about 0.6 mm2 [6] 

although column densities may vary across different functional cortical areas. Coherence 

may of course vary over time, and MEG excellent temporal resolution is be used to probe 

the course of distributed, highly synchronized activation patterns throughout cortical 

domains. Altogether, the physiological basis of neuromagnetic signals make them 

amenable for questions of how and when do cortical domains covary with experimental 

timeseries variables. 
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Neural representations in the auditory system 

 

Finding straightforward encoding relationships or neural representations of sensory 

information has been often done from single unit activity. Information about sensory 

stimuli may also be encoded in other domains spanning measurement scales other than 

the single unit, for example both sub-scale membrane fluctuations, and supra-scale 

aggregate fields such as in in multi-unit ensembles and the M/EEG signal. One 

consequence of interpreting sensory events within these neural fluctuations is that it 

extends neural coding strategies from spiking activity to smooth, continuous timeseries.  

 

 

Encoding and representations: the receptive field 

 

How does the human cortex represent sound? When responses from auditory areas are 

found to covary with a sound stimulus statistic, the feature in question is said to be 

represented in the neural response. If a set of represented features are found in a way that 

predicts both behavioral and physiological outcomes – for instance, an encoding predictor 

arising in both animal models and supporting human psychophysics data (cf. [7]), then it 

qualifies as one of several possible solutions to the encoding problem. The encoding 

question summarizes as “how does a neural domain represent a physical variable x?”. Part 

of this question is answered by the extensive tonotopic organization of the auditory 

system, showing clustering of neighbor neurons by common response selectivity to 

neighboring spectral tuning regions. Refining the encoding question applied to the 
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auditory system then to “when does a neural domain represent x?”, the task is then to 

consider spectral features that dynamically evolve over time. Given a neural domain 

response, what estimate represents neural selectivity in terms of both spectral tuning and 

temporal properties such as latency, or periodicity, at the same time?. This description is 

embodied in the spectro-temporal receptive field (STRF), originally obtained by 

manipulating neuron spike datasets in a procedure known as reverse correlation or 

triggered correlation [8], [9]. This original method represented single unit selectivity: if 

each spiking time-series of neural output is reversed in time, then individual spikes 

conceivably denote time flags or triggers for particular features in the (time-reversed) 

neural input or stimulus, since it marks the occurrence of a neural event. The collection of 

such spike-triggered features (equal in number to the amount of spikes in the set) is then 

the ensemble of stimuli that precedes a neural event, and the ensemble is then 

summarized by averaging and ordering by frequency, thus representing the correlogram 

of that neuron’s STRF (Fig. 5)[10]. In practice this procedure can be reformulated as a 

“black-box” operator mapping from sound input to a neural output such as spike activity 

data, or as later extended, continuous field activity [11], [12]. This latter option allowed 

examination of implications for neural processing stemming from auditory neural 

assemblies in the aggregate, such as in MEG.  
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Figure 5. The spike-triggered average method. In this example, a neuron’s receptive 

field is described along two unspecified dimensions X and Y, which parameterize the 

addresses where both “positive” and “negative” stimuli (black/white) are delivered over 

the entire experimental session. The positive or negative stimulus delivery at specific 

addresses in turn associates with generation of one or more spike events. In the image, 

surface maps of all key addresses are summarized according to the stimulus sign; the 

spike triggered average is then the difference between maps. Modified from [13]. 

 

This systems theory characterization has important limitations, namely that output should 

not depend on future states, nor or on all past states of the system; that neural domains 

display nonlinearities as a consequence of simultaneous dependence on several 

parameters (and/or on several terms of the same parameter); and that responses may 

depend on high-order factors about the input – arbitrary stimulus categories is a common 

classic example [14]. A fruitful approach has been is to approximate the system by its 
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linear representation, with the possibility to add nonlinear terms of increasing order [11] 

when necessary. When the actual order is unknown (where “order” refers to the structure 

of present and past dependencies in the system), then the generalized receptive field may 

require describing an arbitrary number of expansion kernels. In contrast, if prior 

knowledge of the actual or approximate order has been established, the second-order 

kernel among the generalized receptive field expansion directly relates to the STRF as a 

spectro-temporal response function; both second-order kernel and STRF are identical if 

the system itself is of order two [11], [12], speaking to the severe theoretical restrictions 

upon of the linear STRF model to capture every aspect of the system behavior. Within 

limited predictive space however, the potential return of interpretational power may be 

high given its domain overlapping with a fundamental organization principle of the 

auditory system 

 

Testing linear models of auditory coding 

Only in the unlikely case where the system’s response is a mere proportionality 

relationship between input and output, it can be said to be linear1, and the actual receptive 

field is entirely captured by the system’s response function. More typically, unknown 

higher-order nonlinearities in the system will not be captured by the STRF, contributing 

to a decrease in the predictive power of the model. Therefore, estimation of linear STRF 

models enable assessment of the extent to which neural output is directly proportional to 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1This	
  is	
  different	
  from	
  the	
  system’s	
  order.	
  In	
  this	
  special	
  case	
  all	
  aspects	
  of	
  a	
  second-­‐
order	
  nonlinearity	
  in	
  the	
  system	
  are	
  completely	
  explained	
  by	
  the	
  second-­‐order	
  
kernel.	
  In	
  other	
  words,	
  analysis	
  of	
  the	
  system	
  at	
  the	
  second	
  expansion	
  term	
  does	
  not	
  
preclude	
  the	
  fact	
  that	
  the	
  system	
  may	
  involve	
  a	
  linear	
  transformation	
  from	
  input	
  to	
  
output.	
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spectral change in the input over time (for this and other interpretations see [15]); if this 

extent is considerable, then the spectrogram is said to be linearly encoded by the neural 

domain in question [16]. Among critical issues related to testing STRF model validity is 

the choice of an adequate stimulus ensemble. For mathematical reasons, random noise 

stimuli such as Gaussian white noise (GWN) had been instrumental in algorithmic 

implementations of the original system kernel expansion described above. Failures in 

generalizing these estimates’ predictive ability, namely to implement the model estimate 

on novel stimuli other than what was used in the original estimation ensemble itself, arise 

especially beyond peripheral stages [17]. For example, the spike triggered average 

method is inappropriate for STRF estimation from stimuli beyond white noise, such as 

natural speech [18] (Fig. 6); rationales behind similar pitfalls are reviewed in [17]. This 

problem points to the key issue of identifying sound stimulation patterns that may be 

adequate for the auditory stage in question, as the ascending auditory system shows 

tuning to increasing levels of spectrotemporal complexity [16]–[18].  
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Figure 6. Stimulus ensemble qualitatively affects STRF estimate at higher-order 

auditory areas. For auditory neurons tuned to complex stimuli, the reverse correlation 

method yields spurious results under spike triggered averaging, since responses are not 

driven by uncorrelated stimuli (left column). Strategies accounting for statistical 

differences between stimulus classes may result in extraction of aspects relevant to the 

general stimulus-response relationship, which may appear as consistently interpretable 

STRFs across different stimulus classes (right column) even if from complex-tuned 

auditory areas, such as illustrated here. Image from [18]. 

 

Overall, these observations lead to suggest that the validity of a linear model based on a 

STRF may be affected not only on the intrinsic nonlinear nature of the system, but also 

by selection criteria laid by the experimenter, namely the specific neural domain probed 
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and the stimulus ensemble/class under consideration. In turn, this means that STRF 

estimates relaying  poor predictive power do not necessarily invalidate the encoding 

relationship between the stimulus class used and the neural site probed; it only suggests 

that (i) given the encoding model parameters, a linear transform is unlikely to represent 

deterministically the input-output relationship; (ii) the estimation technique poorly 

approximates the linear aspect of the system, or (iii) a combination of both. 

 

Estimating linear models of auditory coding 

Robust estimation techniques attempt to eliminate the risk of falling under case (ii) 

above. Among these are estimation optimization models that seek reduction of error 

between a neural response and the response prediction by the STRF. In one of such 

approaches, error minimization occurs recursively, via step-wise modifications to the 

STRF. Boosting, an optimization approach in this spirit, belongs to a family of gradient 

descent techniques applied to auditory data [19]; its name denotes the strategy to run an 

arbitrary, weak estimation algorithm first, to produce an estimate that will only be 

required to perform slightly better than chance or than guessing. The same algorithm is 

then run several times on different instances of the dataset (for example, re-weighted 

versions of data). Initial low accuracy rates are improved (‘boosted’) once a single, more 

accurate estimate is built from the initial poor training outputs in the algorithm by 

incorporating them into a jointly fitted additive expansion [20]–[22]. Incorporation 

criteria and the choice of training subsets may vary; the method denoted here as boosting 

corresponds to a forward stage-wise (but not joint) fitting that follows a greedy heuristic, 

adding the contribution leading to the largest available mean-squared-error reduction at 
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each given step [19], [23]; indeed such reduction is desirable because it amounts in turn 

to maximizing the predictive power of the model [24].  

 

Operationally, STRF estimates by boosting are initialized as a null matrix of dimensions 

TxF, where T equals the number of experimental time bins and F is the total of frequency 

bins; optimization follows by exploring fixed increments and decrements per single 

spectrotemporal bin separately. The exploration yields a total of 2xFxT possible 

candidates, among which the best mean-squared-error reduction is selected and 

accumulated upon to the running STRF in gradient descent (Fig. 7). The procedure is 

iterated until more modifications introduce undesirable behavior, such as a sustained 

increase in mean-squared error [19], since the method is not guaranteed to find a global 

optimum. The final STRF estimate consists then of the history of locally optimal choices 

added recursively. Formulations of the procedure implementation, along with a 

description of preventive measures with regards to overfitting (e.g. cross-validation), are 

available in [19], [25]. 
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Figure 7. Iterative STRF estimation method via boosting. At each step, only one 

address in the spectro-temporal map reduces most error between response and prediction, 

and such bin is kept as a seed for the next iteration. As repetitions eventually lead to 

noisier estimates, stopping at an intermediate step (circled) prevents further reduction in 

error due exclusively to statistical properties of the stimulus-response ensemble used for 

training estimation. Overfitting prevention is done by optimizing with respect to 

reductions in generalization error involving novel stimulus-response ensembles not used 

in training. Image from [19]. 
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Chapter II 

Functional significance of spectrotemporal response functions obtained using 

magnetoencephalography  

	
  

Summary 

 

The	
  spectrotemporal	
  response	
  function	
  (STRF)	
  model	
  of	
  neural	
  encoding	
  

quantitatively	
  associates	
  dynamic	
  auditory	
  neural	
  (output)	
  responses	
  to	
  a	
  

spectrogram-­‐like	
  representation	
  of	
  a	
  dynamic	
  (input)	
  stimulus.	
  STRFs	
  were	
  

experimentally	
  obtained	
  via	
  whole-­‐head	
  human	
  cortical	
  responses	
  to	
  dynamic	
  

auditory	
  stimuli	
  using	
  magnetoencephalography	
  (MEG).	
  The	
  stimuli	
  employed	
  

consisted	
  of	
  unpredictable	
  pure	
  tones	
  presented	
  at	
  a	
  range	
  of	
  rates.	
  The	
  predictive	
  

power	
  of	
  the	
  estimated	
  STRFs	
  was	
  found	
  to	
  be	
  comparable	
  to	
  those	
  obtained	
  from	
  

the	
  cortical	
  single	
  and	
  multiunit	
  activity	
  literature.	
  The	
  STRFs	
  were	
  also	
  

qualitatively	
  consistent	
  with	
  those	
  obtained	
  from	
  electrophysiological	
  studies	
  in	
  

animal	
  models;	
  in	
  particular	
  their	
  local-­‐field-­‐potential-­‐generated	
  spectral	
  

distributions	
  and	
  multiunit-­‐activity-­‐generated	
  temporal	
  distributions.	
  Comparison	
  

of	
  these	
  MEG	
  STRFs	
  with	
  others	
  obtained	
  using	
  natural	
  speech	
  and	
  music	
  stimuli	
  

reveal	
  a	
  general	
  structure	
  consistent	
  with	
  common	
  baseline	
  auditory	
  processing,	
  

including	
  evidence	
  for	
  a	
  transition	
  in	
  low-­‐level	
  neural	
  representations	
  of	
  natural	
  

speech	
  by	
  100	
  ms,	
  when	
  an	
  appropriately	
  chosen	
  stimulus	
  representation	
  was	
  used.	
  

It	
  is	
  also	
  demonstrated	
  that	
  MEG-­‐based	
  STRFs	
  contain	
  information	
  similar	
  to	
  that	
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obtained	
  using	
  classic	
  auditory	
  evoked	
  potential	
  based	
  approaches,	
  but	
  with	
  

extended	
  applications	
  to	
  long-­‐duration,	
  non-­‐repeated	
  stimuli.	
  

 

 

Introduction ��� 

Empirically measured sensory receptive fields and response functions offer analytical 

characterizations of computations attainable by the auditory system[26]–[28]. Applied 

linear systems methods such as the spectrotemporal response function (STRF)[11], [14], 

[29] have similarly led to informative computational characterizations of central auditory 

neural function with respect to sound encoding and perception[30]. The STRF can be 

viewed as a representation of the approximate neural response to changing auditory input 

in time or frequency; any particular functional description will vary according to the 

location and role of the neurons. Different stimulus classes (e.g. artificially generated 

sounds vs. natural sounds) may produce related, but dissimilar STRFs from the same 

neural unit, speaking to fundamental processing differences (and similarities) of auditory 

encoding[18], [31], [32]. An emerging view in electrophysiology is that the STRF may 

represent a snapshot of the entire network converging onto that neuron (or group of 

neurons)[32], incorporating this population’s activity in its neural representation of the 

spectrotemporal features of the stimulus[30]. As seen here, STRFs also have a role in 

investigations of ensemble auditory coding, using neural recordings obtained from 

magnetoencephalography (MEG) or electroencephalography (EEG).  

STRFs directly characterize the relationship between a sound stimulus and the 
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accompanying neural response. For neural ensembles, rather than individual neurons, 

many individual linear components may be jointly pooled, perhaps even superadditively 

(depending on the underlying neuroanatomy and neurophysiology of the signal source). 

Also, as in the case of a single-neuron-based STRF, it may be methodologically simpler 

to use controlled stimuli rather than natural sounds[24], [33], [34]. It remains to be 

determined how the spectrotemporal features of ensemble-based STRFs correspond to 

the time-varying evoked-related-potential responses (and other standard MEG/EEG 

measures) as a function of frequency, and also to what extent the STRF encoding model 

can provide analogous additional information besides predictive power. Furthermore, the 

STRF estimate of a stimulus-response relationship may depend on the particular 

representation chosen for that stimulus; in particular, it remains unknown which specific 

stimulus representations are optimal for the purpose of matching STRF features to neural 

function[35], and whether any such choices can address the key question of how to 

generalize across stimulus classes, from artificial to natural stimuli. Finally, it is 

important to discuss overlap between these non-invasively obtained STRFs and those 

available from local field potential (LFP) data or from other invasive recordings. 

In order to address these questions, evoked cortical activity recordings from healthy 

listeners were obtained with MEG during active listening of pseudo-random multi-tone 

patterns[33], [36] presented at a variety of rates. STRFs were obtained per subject and 

condition, in order to assess the extent to which the MEG responses were linearly 

explainable by a sparse representation of the stimulus sound pattern, and whether rate-

related changes are consistent with those found using invasive electrophysiological 

techniques. Peak components in STRFs and temporal response functions (TRFs) were 
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identified and their latencies compared to those obtained with standard tone-based 

averaging. Alternative representations of the stimulus, including the auditory 

spectrogram, were used for reverse correlation in order to constrain the space of stimulus 

representations given the properties of the MEG cortical signal. Finally, these 

functionally informative STRFs were compared to those from datasets from studies 

using natural speech[37] and music processing[38]. This allowed an investigation of 

ensemble-dependent issues arising from STRF comparisons when using artificial vs. 

natural stimuli[31].  

MEG-based STRFs are shown to functionally explain considerable amounts of response 

variability while revealing a parsimonious mapping of response features seen in classic 

averaging methods to those obtained from dynamic stimuli timeseries. Quantitatively, 

the MEG-based STRFs account for similar levels of predictive power to single and 

multiunit responses in auditory cortex[24]. Qualitatively, the mappings show reasonable 

correspondence with those from local field potential activity in animal models[39], [40] 

and manifest similar stimulus dependencies (e.g., density[33]). We find that similar 

STRF structure is seen across responses to stimuli as diverse as natural speech and 

music, demonstrating convergence across stimulus classes. This last result, however, 

depends on the use of a specific (sparse) representation of acoustic stimuli, the nature of 

which provides additional knowledge regarding the role of spectrotemporal modulations 

on predictive frameworks of auditory cortical representations over a wide range of 

dynamic sound classes.  
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Results ��� 

MEG cortical responses predictable from the STRF linear model.	
  Potential successes of 

the STRF as a linear model to predict MEG responses from acoustic stimuli are evaluated 

by comparing the actual vs. predicted responses which, unlike spike-generated STRFs, 

are continuous waveforms (Fig 1A). Model predictions are obtained by linearly 

convolving the corresponding STRF with the stimulus representation, using cross-

validation (arbitrary separation of training data from testing data) to prevent overfitting, 

which makes this a conservative estimate due to noise present in the testing data[24], 

[34]. If instead only the training data is used, i.e., fitting to the same data as is tested, 

STRF estimates provide a stringent upper limit as to how good any linear prediction can 

be. STRFs estimated using cross-validation predict the large negative deflections (Fig 1a, 

red) that follow tone onsets (~100 ms post impulse) well, but unlike those from training 

(Fig 1a, blue), are less accurate for positive excursions (both data sets summarized in Fig 

1b). The ability of the STRF model to predict the encoding relationship between sound 

patterns and cortical responses can be measured as the fraction of response variability 

explainable by the linear model, estimated on an individual condition and subject basis, 

once intrinsic response variability (unrelated to the stimulus) has been removed[24], [34]. 

MEG STRF predictions were found to range as high as 34% of variance explained across 

participants and rates, using cross-validated data. When the fraction of variance 

explainable by the model was compared with normalized noise power (or inverse SNR), 

the explainable fraction in the theoretical noiseless limit was estimated to be 23.0 ± 2.0% 

(mean ±	
 st. dev.; CI: 19.0–26.9%) as part of a significant linear regression relationship 

(F=45.9; p=2.7x10-9; R2=0.386), with an upper limit of 71% as provided by training-data 



	
   22 

only results (Fig 1c). 

 

Figure 1. Spectrotemporal encoding models of MEG signals from human auditory 
cortex. a) A 7 s sample recording of an MEG response to a sparse multitone pattern (2 

tones/s), with STRF-based predictions. b) STRFs were optimized by iteratively 

minimizing prediction error on the entire dataset, referred to as training (blue, r=0.74), or 

alternatively on their ability to generalize (cross-validate) over testing datasets (red, 

r=0.62). c) The predictive power of the STRF models is shown by linear regression of 

individual STRFs across participants and conditions on their corrected normalized noise 

power (i.e., inverse signal-to-noise ratio, an indicator of trial by trial reliability, see 
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Methods). Extrapolation of performance to zero noise power gives a noise-corrected 

expected performance for both the conservative cross-validation-based estimates and the 

fundamental-upper-limit training estimates. 

	
  

Fraction of response explained by STRF features consistent with standard evoked 

potentials.	
  STRFs based on MEG responses display consistent spectrotemporal structure 

in the form of positive-negative-positive complex deflections (Fig 2a) coinciding with 

typical auditory cortical latencies (e.g. those of the P1-N1-P2 complex in averaged EEG 

responses to isolated tones). In particular, the multitone STRFs demonstrate strong 

negative responses at ~100 ms post impulse onset (STRF100). The specific STRF100 

latency depends on stimulus frequency, varying ~20 ms over the frequency range 180-

700 Hz; at higher frequencies the latency is approximately constant (STRF100 latencies for 

2 tones/s shown in Fig 2b, black). STRF100 latencies were found to follow standard tone-

evoked M100 latencies[41]–[46] obtained under various conditions (Fig 2b; also Table 

1). The correspondence suggests a quantitative link between the STRF100 and M100, and 

therefore between STRF-based techniques and ordinary auditory evoked cortical 

potentials. Analyzing the same experimental data using standard evoked response 

analysis instead (epoching and averaging over responses to all tones in the sparsest 

multitone pattern) demonstrates strong temporal correspondence at the group level 

(Appendix A Supplementary Fig 1).  
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Figure 2. Consistency between response function model predictive model features 
and evoked potentials. a) Grand average spectrotemporal response functions based on 

multitone stimuli demonstrate a positive-negative-positive structured sequence between 

50 and 200 ms following tone onset; tone cloud density introduces qualitative changes in 

relative amplitude and delays: at increased rates an early positive component (50-100 ms; 

STRF50) emerges, while the medium latency negative component (100-150 ms; STRF100) 

attenuates, and a late positive component (150-200 ms) present only in the sparsest 

conditions disappears. b) STRF100 components are delayed by over 20 ms as tone carrier 

frequency decreases from 2 to 0.2 KHz, in a manner consistent with those of evoked 

potentials in single tone presentations[41], [42], [44]–[46] (Table 1), indicating a 

correspondence between impulse response functions obtained through reverse correlation 

and averaged evoked potentials. A common latency decrease across studies and 

conditions is observed for carrier frequencies in the 180-700 Hz range. c) Temporal 

response functions, obtained by reverse correlation with the stimulus envelope collapsed 

across frequencies, show features similar to the P1-N1-P2 complex commonly found in 

EEG evoked potentials[47].  Higher tone presentation rates result in the emergence of the 

TRF50 and in decreased amplitude and increased latency of the TRF100 (inset), as well as 

the attenuation of a later-latency positive deflection. Error bars are 1 standard error of the 

mean. 
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 # of subjects 

[mean age] 

Sound delivery 

[Sensor location] 

Tone duration 

(ms) 

Presentation 

rate [tones/s] 

Peak finding 

method 

Roberts & Poeppel, 

1996[41]; Greenberg 

et al., 1997[42] 

5 

[24-33 y] 

Monaural 

[Contralateral, 

Left] 

400 0.7 - 1.3 Equivalent 

dipole, Maximum 

RMS 

Lütkenhöner & 

Steinsträter, 1998[43] 

1  

[28 y] 

Monaural 

[Contralateral, 

Left] 

520 ~0.4 Maximum RMS 

Roberts et al., 

2000[44] 

8 [-] -  

[Both 

hemispheres] 

- - - 

Mäkelä	
  et	
  al.,	
  

2002[45]	
  

11 

[32 y] 

Binaural 

[Both 

hemispheres] 

200 1 Optimal sensor 

pair 

Salajegheh et al., 

2004[46] 

11 

[45.8 y] 

Binaural 

[Both 

hemispheres] 

400 0.8 - 1.3 Maximum RMS 

from optimal 12 

sensors  

 

Table 1. Comparison of studies reporting M100 absolute latency values in response to 

pure tones, with participants, recording mode, stimulus details, and M100 peak 

determination method where available. 

 

To further investigate the correspondence between STRFs and evoked potentials 

(specifically the effects of tone density), reverse correlation was performed with respect 

to frequency-collapsed representations of the stimulus, generating the frequency-

independent Temporal Response Function (TRF, Fig 2c). The ~100 ms latency negative 

peak (TRF100) amplitude decreased with increasing tone-density by ~60% across 

modulation rate range studied, while latency increased 20% (see inset). In contrast, the 



	
   26 

~50 ms latency positive deflections (TRF50) had the smallest amplitude for the sparsest 

multitone condition. Thus sources with ~50 ms latency generate a strong increase in 

cortical activity with a transition from scattered to continuous pure tones, while sources 

with ~100 ms latency decrease in strength as they are delayed. Cortical activity in sources 

with 150 ms latency may also be active, provided the inter-tone interval is long.  

 

STRF most informative for onset-based representations of multitone stimulus.	
  

Methodologically, the acoustic representation of the stimulus used to generate the STRF 

may employ any number of available time-frequency representations of the sound, 

including the widely-used spectrogram[19], [24], [48], [49]. One reason to consider 

alternatives to the spectrogram is to compare STRF features with evoked response 

features, since an evoked response to tones is calculated not with respect to the 

spectrotemporal duration of the tones but only to their onsets.  Thus analyses also 

included binary and sparse representations of the stimulus: single tones were modeled as 

trigger-like impulses timed with tone onset and organized by frequency. Indeed, stimulus 

features that are known to be encoded by auditory cortex include onsets, offsets, and 

stimulus duration (in the form of sustained responses)[50]–[53]. Since the MEG signal is 

aggregated across synchronized individual neurons[6], evidence for those same 

encodings requires investigation. Reverse correlation techniques are well suited for this 

larger-scale analysis because it explores the outcome of alternative stimulus 

representations that emphasize such features. The stimulus representations tested here (cf. 

Fig 3 insets) were (i) the ideal trigger representation, (ii) the ideal edge representation 

(both onset and offset triggers), (iii) the ideal stimulus first-order derivative (onset and 
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negatively-signed-offset triggers), which can itself be used to generate the trigger 

representation if followed by half-wave rectification, (iv) the ideal stimulus pulse 

envelope, which has constant value from onset to offset (and which can itself be used to 

generate the previous representation if followed by differentiation),  (v) the actual 

acoustic stimulus passed through a filterbank with identical center frequencies as the 

tone, whose envelope is then extracted (see Methods), and (vi) a generalized envelope 

onset representation obtained via half-wave rectification of the previously defined 

filterbank envelope output. Only the last two can be applied to natural (non-discrete) 

stimuli, and so are especially important in later sections.  
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Figure 3. STRFs generated using different stimulus representations achieve 

different levels of functionality. STRFs generated from multitone patterns are 

functionally informative (e.g., comparable to evoked potential analysis) when each 

individual tone is discretely represented by its onset (top left) but not when represented 

instead by the timing of its temporal edges (middle left), sign (bottom left), or a discrete 

representation of the entire pulse duration (top right). Related to the spectrogram, the 

representation based on passing the acoustic signal through a series of filterbanks, then 

extracting envelopes per band (middle right) yields only barely discernible results. 

Extracting onset timing information from the filterbank, in contrast, was quite 

functionally informative (half-wave rectification of the first derivative of the filterbank 

output; bottom left). Critically, filterbank-based methods do not require a priori 

definitions of temporal edges and can be used for arbitrary stimuli. Color scales as in 

bottom right inset, except for Derivative STRF. 

	
  

Grand average STRFs in Fig 3 demonstrate that among such representations, only those 

expressing tone onset events explicitly yield components comparable to those of evoked 

potential analysis (first and last STRFs of Fig 3); STRFs from the alternatives introduced 

ringing and/or pre-causal artifacts. As with the original onset-based trigger 

representation, reverse correlation with both temporal edges predicted activity from the 

first edge in accordance with the latency by frequency dependence, but also produced a 

pre-causal mirror component, in advance of the original and at the tone duration distance. 

This pattern suggests that tone offset was not explicitly encoded here. This interpretation 

is supported by analysis of STRFs generated by the derivative representation, which 

correspondingly flips the sign of the same pre-causal mirror component, but is 

additionally contaminated via constructive interference by a series of artefactual ringing 

cycles. The pulse representation, which can be viewed as an idealized envelope, produces 
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STRFs that are essentially featureless (or at best, whose features are barely discernible 

above the noise floor). This result is unexpected since typical auditory reverse correlation 

studies use a duration-based stimulus envelope representation[25], [54] and the temporal 

envelope is often hypothesized to be the response-driving feature. Similarly, the acoustic 

envelope representation (using a filterbank model; see Methods) also produced 

featureless STRFs. An attempt to re-create the onset representation (i.e. half-wave 

rectification of the acoustic envelope representation derivative), did however generate 

STRFs with features comparable to evoked potential analysis, and enabls the extraction 

of onset-like information in general from diverse complex natural stimuli. Because of the 

remarkable agreement between the idealized and the acoustic onset models, 

interpretations based on evoked potentials may extend to reverse correlation analysis 

applied to other stimulus classes where definitions of onsets would be a priori unknown 

or not controlled for, such as natural sounds. 

Convergent STRF models across artificial and natural stimuli.	
  Because of its potential to 

reveal hierarchical processing mechanisms, a major goal in auditory reverse correlation 

has been to examine the encoding relationship for critical natural stimuli including speech 

and other communication sounds. To this end, datasets from two previously unpublished 

studies on speech and music processing were submitted to the same analysis methods as 

the multitone pattern (Fig 4a), with stimuli represented by their envelope onsets. As with 

the onset-based representation of the multitone patterns, STRFs for speech and music 

exhibited qualitatively similar structures, with distinctive biphasic components near 50 

and 100 ms post rising transient impulses (onsets) along the same investigated spectral 

region. Inspection	
  of	
  the	
  stimuli	
  under	
  either	
  envelope	
  or	
  envelope	
  onset	
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representations	
  suggests	
  that	
  the	
  latter	
  procedure	
  effectively	
  increases	
  similarity	
  in	
  

the	
  underlying	
  distribution	
  across	
  stimulus	
  classes	
  (Appendix A Supplementary Fig 

2a).	
  The frequency dependence of relative peak delays was also maintained for these 

stimulus classes (Appendix A Supplementary Fig 2b) but with class-dependent timing 

differences, suggesting a common fundamental mode of spectrotemporal cortical 

processing up to ~200 ms and after which notable processing differences appear 

according to the stimulus class. While neural data from all studies were obtained from 

different subject groups, one subject did participate in those two studies and in a modified 

pilot version of this experiment (2.4 tones per second presentation rate); these data are 

presented in Fig 4b, again showing strong qualitative similarity both to group data and 

class-dependent timing differences. This subject’s topographic magnetic field maps 

associated with the neuromagnetic signals derived in each of the three studies are 

displayed in Fig 4c; mapping each STRF to overlapping spatial distributions is consistent 

with source activity at the superior aspect of the temporal lobes. 

 

To better illustrate class-dependent temporal differences across the studies, TRFs were 

obtained by collapsing STRFs across spectral bins, as shown in Fig 4d. These plots 

emphasize spectrally consistent changes in temporal processing due to stimulus class, 

along with relative amplitude differences. As before, early activity appeared least 

prominent for the spectrotemporally sparsest stimuli; in the case of the single participant 

tested across all three stimulus classes, a high-temporal resolution analysis of the 

multitone TRF100 shows its dynamics are very close to those of the speech envelope 
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counterpart (Appendix A Supplementary Fig 3a), with characteristic time constants of ~3 

ms (Appendix A Supplementary Fig 3b). The response dynamics for music, however, do 

not follow similarly, which suggests that features other than overall acoustic onsets may 

contribute to synchronized auditory responses in these cortical populations. 

 

Figure 4. Interpretational power from stimulus representations across STRFs from 

different stimulus classes. a) Group normalized STRFs from the multitone pattern 

experiment (N=15), and from studies on natural speech (N=12) and on music (N=15), 

reveal considerable structural similarity when stimulus onset is extracted as a driving 

feature of the neuromagnetic response. b) Neuromagnetic STRFs from the same 

participant across the tones, speech, and music studies, which show substantial 

consistencies across stimuli when represented by their temporal envelope onsets per 

frequency band. c) The topographic distribution from same subject as in (b) revealed 

strong bilateral consistency across classes but with increased left hemisphere-bias during 

speech processing. d) Top: Timing of major neuromagnetic activity peaks, as shown by 

TRFs derived from spectral integration of the STRFs in (a), results vary depending on 

stimulus class and/or context: earliest positive and negative deflections change with 

increasing acoustic density but also with additional spectrotemporal complexity as found 
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in natural speech and music.  Bottom: Group TRFs comparing both speech envelope and 

envelope onset related activity. Timing differences are explainable by differential 

acoustic representation in early (< 0.1 s) but not late activity peaks, suggesting the 

formation of higher order neural representation of elements in speech acoustics by ~100 

ms. Only the first deflection timing difference is explained by slope-to-maximum time 

differences between stimulus representations (inset, same color coding). Curves 

smoothed by a 5 ms moving average. 

 

Cortical transformation of natural speech envelope representation.	
  In reverse correlation 

analyses, exploration of alternative representations of the stimulus may provide 

complementary insight into the functional operations by the auditory system. Fig 4a and 

Fig 4b show that for natural speech, STRFs based on the acoustic envelope (row 5) led to 

functionally informative STRFs, consistent with prior approaches[25], [55]. STRFs based 

on the envelope onset representation (row 3) are similar, which is expected since the 

envelope onset is correlated with the original envelope. In terms of timing, the 

corresponding group TRFs (Fig 4d) show a difference of 43 ms between TRF50 peak 

components. This was found to be the same as the characteristic delay between their 

underlying representations, obtained by cross-correlation of the stimulus representations. 

Such a close correspondence is evidence that at the level of the neural source of the 

TRF50, an increasing acoustic envelope operates as a fundamental auditory feature of the 

stimulus. In contrast, the corresponding comparison of STRF100 peaks across the two 

representations (envelope and envelope onset) gives a much reduced difference of 20 ms 

(Fig 4d, S5 Fig), not consistent with the acoustic differences between the corresponding 

representation peaks. Compression in components’ relative delays were observed across 
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spectral bins (Appendix A Supplementary Fig 2b), as well as in individual temporal 

response functions (Appendix A Supplementary Figs 3a, 4).  

 

Discussion  

The present investigation describes STRFs as a series of response function mappings 

from artificial and natural sounds to auditory neural responses. It has been demonstrated 

that these STRFs possess similar predictive power as their single-unit cortical 

counterparts, and, importantly, show strong similarities across stimulus classes when an 

acoustic envelope onset representation is chosen. Specific choices of spectrotemporal 

stimulus representations[35] result in STRF models that are not only predictive but whose 

temporal structure is highly consistent with that from standard evoked potential 

components. 

Comparison to spike-based spectro-temporal receptive fields. The spectrotemporal 

receptive field can be considered a spike-triggered averaged spectrogram, from auditory 

periphery[8], [14] or central nervous system recordings[27], [56]–[58]. Since reverse 

correlation is a more general principle than spike-triggered averaging[9] it has been used 

here to characterize and predict the neural responses of auditory systems where both 

input and output are continuous time-series[12] via the underlying response function of 

the system. Whether measured by spikes or continuous neural responses, neural systems 

are non-linear, so predictive linear models of central neural coding are necessarily 

incomplete descriptions of the underlying coding relationship and are bounded by the 

predictive power and interpretability they maintain within the limits of the linear 
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regime[24].  

The multitone stimulus employed here is comparable to a dynamic random chord 

stimulus[24], [59], [60] though it has more temporal degrees of freedom, allowing cross-

frequency overlap in a continuing pattern that prevents constant tone presentation rates. 

It is more similar to dynamic random chords than other artificial stimuli used to estimate 

STRFs, such as ripple noise and moving ripples[17], [61], which focus on stimulus 

modulations instead. The predictable fraction of variance in the evoked MEG source 

timeseries was found to be 19–27%, in close correspondence with 18%[24] and 31%[62] 

predictive power from primary auditory cortex (A1) single/multiunit responses. 

Comparisons regarding predictive power (and other STRF properties) should also take 

into account fundamental differences in the underlying signal (spiking versus dendritic-

origin activity) and its scale (neuron or highly local population versus meso-scale 

cortical patches[6], [63]), the animal model, and state (e.g., performing a task vs. resting 

vs. anesthetized)[30]. 	
  

Qualitatively,	
  the	
  STRFs	
  presented	
  here	
  exhibit	
  a	
  general	
  broadband	
  structure	
  with	
  

frequency-­‐dependent	
  latencies	
  and	
  amplitude	
  changes	
  depending	
  on	
  stimulus	
  

density.	
  Remarkably,	
  similar	
  properties	
  appear	
  in	
  STRFs	
  obtained	
  from	
  LFP	
  in	
  

mammalian	
  A1[39],	
  [40],	
  [64],	
  featuring	
  broadband	
  inhibitory-­‐excitatory	
  

component	
  sequences	
  and,	
  often,	
  frequency-­‐dependent	
  latencies.	
  Component	
  

latencies	
  in	
  mammalian	
  A1	
  are	
  ~50%	
  shorter	
  than	
  here,	
  which	
  may	
  be	
  explained	
  by	
  

reduced	
  equivalent	
  cortico-­‐cortical	
  transmission	
  length	
  delays[65]	
  for	
  the	
  species	
  

involved	
  in	
  those	
  studies. With	
  respect	
  to	
  human	
  studies,	
  the	
  component	
  latencies	
  

reported	
  here	
  are	
  consistent	
  with	
  multiunit	
  activity[66]	
  and	
  high-­‐gamma	
  activity	
  in	
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electrocorticography	
  (ECoG)[60]	
  in	
  the	
  functional	
  equivalent	
  of	
  A1,	
  Heschl’s	
  gyrus.	
  

The	
  STRFs	
  obtained	
  in	
  such	
  datasets	
  principally	
  reflect	
  neural	
  spiking,	
  resulting	
  in	
  

mappings	
  with	
  narrow-­‐band	
  features,	
  consistent	
  with	
  their	
  interpretation	
  as	
  units	
  

locally	
  sampled	
  along	
  the	
  tonotopic	
  gradient	
  of	
  A1.	
  Indeed,	
  frequency	
  selectivity	
  

becomes	
  reduced	
  for	
  local	
  field	
  potential	
  recordings[39],	
  [64]	
  (i.e.	
  ECoG	
  frequencies	
  

below	
  high-­‐gamma)	
  as	
  they	
  sample	
  redundant	
  activity	
  across	
  distant	
  recording	
  sites	
  

with	
  intra-­‐cortical	
  interactions[67]	
  –	
  which	
  may	
  effectively	
  smooth	
  the	
  spectral	
  

selectivity	
  distribution[39].	
  Unlike	
  local	
  recordings,	
  which	
  due	
  to	
  high-­‐frequency	
  

selectivity	
  can	
  require	
  that	
  receptive	
  fields	
  be	
  realigned	
  by	
  best	
  frequency[49]	
  to	
  

extract	
  statistical	
  features,	
  MEG	
  STRFs	
  offer	
  distributed	
  access	
  to	
  more	
  global	
  

cortical	
  network	
  domains. Plausibly, analog results may be expected from future human	
  

auditory	
  LFP	
  STRF	
  studies	
  from	
  invasive	
  procedures, given that these	
  have	
  typically	
  

focused	
  on	
  multiunit	
  and	
  high-­‐gamma	
  activity[60].	
  	
  

In addition, these MEG-based tone-generated STRFs show stimulus-dependent 

differences as seen elsewhere in the receptive field literature (see review by 

Eggermont[30]), namely, amplitude decreases with density. This is consistent with 

awake primate results, where three-fold increases in tone presentation rate (9.7 to 31 

tones/s) may be accompanied by a magnitude decrease of about a third in the STRF 

maxima[33]; here, a similar multiplicative change in tone density (2 to 6 tones/s) 

produced a peak decrease of about half. Suppression of excitatory contributions[36], or 

emergent inhibitory activity throughout A1 single units[33] have been proposed as 

mechanisms for response field modulations observable from LFP recordings[64]. In 

cortical neurons, increased firing rates may accentuate depression rate imbalances 
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between excitatory synapses and those with increasingly inhibitory activity[33], [40], 

[49], which is a known factor involved in receptive field modulations in 

somatosensory[68] and visual areas[69]. For auditory recordings, more inhibition may 

effectively increment responses’ spectral specificity or bandwidth at higher tone 

densities[33], [64] – the analog of which was not observed in the MEG STRFs (see	
  

Westö & May[70] for a cautionary note on interpreting inhibitory contributions to 

STRFs following dense stimuli). Among factors reducing STRF predictive power is the 

increase of inhibitory fields in estimates from single unit recordings[33]; in MEG this 

effect appeared to be mirrored by response function components of opposite sign to the 

STRF100. Further research is thus necessary concerning the coarse-grained level of 

analysis that is accessible via MEG/EEG respectively, in comparison to that afforded by 

single/multiunit signals. 

 

Association with auditory evoked potentials. Unlike traditional averaging methods, 

reverse correlation involves continuous delivery of a dynamic stimulus in order to 

generate a predictive model (of novel instances of the same sound class). It has been 

shown here that STRFs and TRFs can be directly compared to standard auditory evoked 

responses, namely the magnetic M50, M100, late auditory evoked responses, and the P1-

N1-P2 complex in EEG[47]: 

(i) The earliest positive-polarity component, the STRF50, seen at higher multitone 

densities, is a temporal analog to the M50 response originating from Heschl’s gyrus 

(including core/primary areas)[71], [72]; its amplitude may also be modulated by inter-
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stimulus intervals[72] at low presentation rates (<2 tones/s). Known modulators of M50 

amplitudes include harmonic versus noise-like bursts[73], [74], prepulse inhibition[75], 

and automatic processing of redundant information as a form of sensory gating in paired-

click stimulus designs[76], [77]. In terms of predictive power, this component did not 

generalize well over novel instances of the multitone random pattern; this is consistent 

with an adaptive role contributing to considerable changes in the response profile 

dependent on the local context on the order of a few seconds or less. 

(ii) The subsequent major component, the negative-polarity STRF100, exhibited 

magnitude decrease and delay increase with density, with a sharp transition after the 

sparsest density level. Suppression of the M100 response from supratemporal cortex has 

been observed in the transition from low to higher tone presentation rates[72] 

highlighting the interpretation of increased inhibitory effects that include generalized 

refractoriness among neurons at denser conditions[78]. This component is also subject to 

attentional modulation[79]–[81] which may reflect that individual tones in a densely 

populated scene fail to capture attention individually. Because of this component’s 

involvement in tracking perceptual objects of an auditory scene[55], and of the increasing 

quality of flow and continuity in these artificial stimuli, sharp transitions in this 

component may suggest indices of ‘crowding’ relevant to the figure-ground separation 

problem[82], [83]. Accounts of spectrally-dependent latency in the evoked M100 

components[41]–[46] were consistent at this stage and fall within the sensitivity domain 

for human voice pitch production and discrimination[45]. These latencies are also 

consistent with those of pitch-specific onset responses, whether elicited by complex tones 

or by centrally-generated Huggins pitch percepts[84], [85]. 
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(iii) The second major positive-polarity peak appears only in response to the sparsest 

stimulus. Auditory event-related potentials at ~200 ms latency have been described in 

EEG as expectancy indices, exhibiting greater amplitudes for tones whose presentation 

in time is uncertain[86]. At denser conditions, shorter inter-stimulus-intervals may 

reduce the tone-evoked analogous EEG P2 component, regardless of presentation within 

a repetition sequence or as an oddball, suggesting involvement of modulation 

mechanisms other than habituation[78].   

 On alternative representations of stimulus state. In addition to their predictive power, 

STRF profiles are functionally informative in a way similar to trial-averaged evoked 

responses to isolated stimuli[15], [18], [35]; this was the case for STRFs compared across 

stimulus classes when the stimulus representations were filterbank-derived onsets. Other 

abstract representations of this stimulus pattern, including both temporal edges, their 

directionality, the duration of sustained acoustic energy, or, related to the latter, the 

spectrogram, did not appear to be similarly functionally informative – even though they 

contained and extended information from onset representation. Nevertheless, predictive 

power was similar across representations, suggesting that this metric alone is insufficient 

to expose which aspects of the stimulus map to the system’s response. More complex 

tone patterns might allow predictive power to become more informative regarding the 

statistical characterization of a stimulus (c.f.[87]). The lack of evidence for explicit neural 

encoding of offsets is in accord with neurophysiological evidence suggesting offset-

encoding cells to be outnumbered by onset cells, and/or to have minor neural response 

profiles relative to onset encoders[50], [51], which in the aggregate would result in 

differential contributions to the neuromagnetic response. 
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On extension to natural stimuli. Processing of environmental sounds, including 

conspecific calls, is a critical auditory task. Encoding models incorporating natural 

sounds with complex spectrotemporal structure provide powerful computational insights 

into the auditory system that may be inaccessible with synthetic stimuli only[18], [30], 

[31]. STRFs derived from invasive recordings from A1 perform similarly in terms of 

predictive power, using random tone chord stimuli, animal	
  calls,	
  environmental	
  sounds,	
  

sound	
  effects,	
  and	
  music[24],	
  [48], at the population level. For some subset of these 

neurons, successful linear encoding of the spectrogram may also occur in the same unit 

for both artificial and natural vocalization encodings[32],	
  [49].	
  The	
  search	
  for	
  

predictive	
  models	
  that	
  generalize	
  over	
  novel	
  stimuli	
  not	
  in	
  the	
  training	
  set	
  has	
  

proven	
  difficult	
  however[32], [59].	
  The	
  temporal	
  statistics	
  intrinsic	
  to	
  natural	
  

sounds	
  may	
  be	
  critical[32],	
  and	
  some	
  evidence	
  from	
  A1	
  STRFs	
  demonstrates	
  higher	
  

predictive	
  power	
  using	
  conspecific	
  vocalizations	
  that	
  are	
  not	
  dilated	
  or	
  

compressed[88];	
  similarly,	
  comparisons	
  are	
  also	
  favorable	
  for	
  artificial	
  and	
  

communication	
  sounds	
  controlled	
  for	
  the	
  span	
  of	
  their	
  temporal	
  and	
  spectral	
  

modulations	
  jointly,	
  but	
  allowing	
  differences	
  in	
  their	
  amplitude	
  fluctuations	
  over	
  

time[32].	
  Observed	
  stimulus-­‐class	
  dependencies	
  in	
  STRF	
  spectrotemporal	
  

properties	
  appear	
  as	
  small	
  time-­‐shifts	
  of	
  STRF	
  features,	
  plus	
  the	
  emergence	
  of	
  

additional	
  late	
  activity	
  for	
  speech	
  and	
  music.	
  Analysis	
  of	
  such	
  differences	
  suffer	
  from	
  

confounds	
  arising	
  from	
  statistical	
  non-­‐uniformities	
  among	
  the	
  sampled	
  classes[18],	
  

[19],	
  [31],	
  [32]	
  and	
  fully	
  addressing	
  this	
  issue	
  is	
  beyond	
  the	
  scope	
  of	
  this	
  

investigation.	
  The	
  question	
  of	
  whether	
  detailed	
  class-­‐dependent	
  temporal	
  coding	
  

frameworks	
  may	
  be	
  achieved	
  by	
  means	
  of	
  linear	
  methods	
  remains	
  open.	
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On	
  speech-­‐derived	
  STRFs.	
   Advances	
   in	
  understanding	
   cognitive	
  processes	
   relevant	
  

to	
  speech	
  processing	
  have	
  followed	
  from	
  reverse	
  correlation	
  studies	
  that	
  used	
  the	
  

speech	
  acoustic	
  envelope	
  (as	
  represented	
  by	
  low-­‐frequency,	
  1-­‐15	
  Hz	
  fluctuations	
  in	
  

ECoG[89],	
   [90]	
   and	
   MEG/EEG[25],	
   [55],	
   [91],	
   [92]	
   recordings).	
   We	
   find	
   that	
   the	
  

speech	
  envelope	
  STRF100	
  component	
  exhibits	
  similar	
  spectral-­‐dependent	
  latency	
  as	
  

the	
   M100	
   evoked	
   response,	
   thus	
   suggesting	
   a	
   level	
   of	
   speech	
   analysis	
   that	
   still	
  

contains	
   independent	
   spectral	
   information.	
   Although	
   in	
   contrast	
  with	
   findings	
   of	
  

near-­‐constant	
   M100	
   latencies	
   for	
   certain	
   synthetic	
   vowels	
   presented	
   in	
  

isolation[45],	
  reverse	
  correlation	
  methods	
  over	
   long	
  natural	
  speech	
  presentations	
  

are	
  better	
  suited	
  to	
  probe	
  domain-­‐general	
  processing	
  in	
  realistic	
  conditions	
  due	
  to	
  

their	
  extended	
  sampling,.	
  	
  

Additionally, the methods may constrain the time course of the change in neural 

representations of human speech from spectrogram to higher level. The	
  low-­‐frequency	
  

speech	
  envelope	
  and	
  its	
  onsets	
  are	
  both	
  operationally	
  related	
  to	
  functionally	
  

informative	
  STRFs.	
  The	
  systematic	
  delay	
  between	
  timeseries	
  (peaks	
  in	
  the	
  latter	
  

systematically	
  precede	
  those	
  in	
  the	
  former)	
  directly	
  accounted	
  for	
  the	
  relative	
  

difference	
  between	
  the	
  resulting	
  pair	
  of	
  STRF50	
  components	
  after	
  each	
  

representation.	
  The	
  acoustic	
  mismatch	
  could	
  not	
  explain,	
  however,	
  the	
  reduced	
  

relative	
  difference	
  between	
  subsequent	
  STRF100	
  pairs.	
  The	
  interpretation	
  of	
  a	
  

compression	
  is	
  consistent	
  with	
  current	
  models	
  of	
  step-­‐wise	
  speech	
  processing,	
  

where	
  the	
  formation	
  of	
  speech	
  analysis	
  units	
  or	
  objects	
  is	
  preceded	
  by	
  an	
  earlier	
  

spectrogram-­‐like	
  representation	
  of	
  acoustics	
  completed	
  by	
  ~80	
  ms	
  post	
  speech	
  

impulse	
  onset.	
  After	
  this	
  time,	
  response	
  functions	
  did	
  not	
  account	
  for	
  the	
  expected	
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mismatch,	
  suggesting	
  a	
  neurally-­‐based	
  progression	
  into	
  a	
  modified	
  stage	
  of	
  the	
  

neural	
  representation	
  of	
  speech	
  and	
  adding	
  to	
  a	
  body	
  of	
  MEG	
  evidence	
  for	
  a	
  cortical	
  

hierarchy	
  of	
  speech	
  object	
  representations	
  (see	
  review	
  by	
  Zhang	
  and	
  colleagues	
  

[93]).	
  

Overall, these results demonstrate an important advantage of STRFs over standard 

epoch-averaging methods commonly when used in MEG applications, e.g., 

characterizing the phenomenology of disorders in clinical populations[94]: their ability 

to generalize to critical sounds beyond pure tones, most importantly natural speech. By 

providing both neural predictions and functional information, it allows noninvasive 

approaches to understanding developmental[95], learning and associative effects induced 

by tasks[96]–[98], or behavioral contexts[99], [100] – thus potentially furthering insight 

into the role of dynamical representations of sound in auditory cognition. 

 

General methods 

Participants. 15 subjects (6 women, 23.2 ± 2.9 years of age [mean ± SD]), 1 left-

handed[101], participated in the multitone study. 12 subjects (6 women, 24.1 ± 3.0 years 

of age), all right-handed native English speakers, participated in the speech study. 15 

subjects (5 women, 21.0 ± 1.7 years of age), all right-handed, participated in the music 

study. Each subject received monetary compensation proportional to the study duration 

(approximately 1.5 hours). Subjects had no history of neurological disorder or metal 

implants. The experimental protocol was approved by the UMCP Institutional Review 

Board and before each study session, informed written consent was obtained from the 
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participant.   

Stimuli.	
  Multitone study. Sound stimuli were constructed with the MATLAB® software 

package (MathWorks, Natick, United States) at a sampling rate of 44.1 KHz, and 

consisted of 50 s auditory scenes composed of pseudo-randomly presented 180 ms tones, 

each with frequency fi taken from a pool of 10 fixed values (range: 180-2144 Hz) in 2 

equivalent rectangular bandwidth (ERB) steps[102] specified by 𝑓! = 𝑓!!! + 24.7 1+

4.37𝑓!!!/1000 . For each frequency, tone onset times were uniformly distributed with a 

minimum inter-tone gap of 40 ms. Five tone presentation rates (2, 4, 6, 8, or 10 per 

second over all channels) were used separately. Tone onset times 𝛵! were independent 

across frequency bands and selected in 20 ms bins. Individual tones were modulated with 

10 ms raised cosine on- and off-ramps. Tone level was calibrated according to frequency 

based on the 60-phon normal equal-loudness-level contour (ISO 226:2003) in order to 

adjust for perceived relative loudness differences; relative gains to a 1 KHz reference 

were determined in 2 dB SPL steps. Speech and music studies. For the speech study, a 60 

s female voice audiobook excerpt [103] narrated from The Light Princess (Macdonald, 

1864) was used as part of a related study on reverberant speech processing [37]. For the 

music study, 55 s samples across 6 different instrumental musical styles reflecting a 

variety of genres and traditions, were presented: orchestra, Symphony in F Major, No. 32, 

Movement I (Sammartini, c. 1740); swing, Cascades (Combelle, c. 1940); blues, Blues 

for B&W (Rogers & Hilden, 2003); sarangi, Raga Mishra Bhairavi: Alap (Narayan, 

2002); pipa, Dance of the Yi People (Huiran, c. 1960); and a euphonium transcription of 

Dancing Night Wind (Benning, 1997). 

In all studies, audio signals were normalized and presented through the Presentation® 
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software package (NeuroBehavioral Systems, Berkeley, United States), using audio 

equipment equalized to a transfer function approximately flat from 40 to 3000 Hz. Sound 

stimuli were transmitted to subjects via ear insertion tubes E-A-RTONE® 3A of 50 Ω 

impedance and E-A-RLINK® disposable foam intra-auricular ends (Etymotic Research, 

Elk Grove Village, United States) that were inserted in the ear canals. 

Experimental design. For the multitone study, trials consisted of a main tone cloud 

pattern scene presented in series with per block, generated anew per each subject. This 

resulted in trials that contained between 0 and 3 multitone density transitions within the 

trial, and ranged from 70 to 120 s duration. Each of the five main scenes were repeated 4 

times, and only these data epochs were analyzed. After a brief training session, subjects 

were instructed to attend to the ongoing stimulus with their eyes closed and to report rate 

transitions via a button press. Optional rests were available every 5 trials, totaling 1.5 

hours recording time. Subjects received feedback on the correct number of transitions at 

the end of each trial. For the speech study, trials consisted of various story passages 

presented in random order at different reverberant noise levels. At the end of a trial, 

subjects were asked comprehensive questions about the passage, and rated its 

intelligibility. For the present study purposes, analysis was based exclusively on 

reverberation-free, no-noise (‘clean’) trials, repeated 3 times across the experiment. For 

the music study, trials consisted of each of the 6 samples presented individually in 

random order. At the end of each trial, a 5 s clip taken from the same or a different piece 

was presented and subjects identified if it was an excerpt of the preceding trial. Each 

sample repeated 3 times across the experiment. 

Neural data recording.	
  Magnetoencephalography (MEG) data were collected with a 160-
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channel system (Kanazawa Technology Institute, Kanazawa, Japan)[104] inside a 

magnetically-shielded room (Yokogawa Electric Corporation, Musashino, Japan) at a 

sampling rate of 1 KHz. Superconducting quantum interference device (SQUID) sensors 

(15.5 mm diameter each) were uniformly distributed (~25 mm) inside a Dewar vase 

containing liquid-He refrigerant, with a concave outer surface fit to the average human 

head. Sensors are first-order axial gradiometers with 50 mm separation and sensitivity 

greater than 5 fT·Hz-1/2 in the white noise spectral region (> 1 KHz), except for three 

additional reference magnetometers separated from the neural sensors and arranged 

orthogonally to each other. A 1 Hz high-pass analog filter, a 200 Hz low-pass analog 

filter, and a 60 Hz analog notch filter were applied online respectively. Sensor channels 

with saturating or zero responses over more than 12.5 s recording time were excluded 

from analysis. Participants laid supine inside the magnetically shielded room and were 

asked to minimize body movement, particularly from the head. 

Neural data processing.	
  Environmental noise. To eliminate environmental magnetic 

noise contributions, time-shifted principal component analysis[105] (TS-PCA) was 

applied, a process that discards optimally-filtered environmental signals recorded on the 

reference sensors. Reference sensors were 3 physical magnetometers (see Neural Data 

Recording) plus 2 virtual channels obtained by independent component analysis[106] of 

the remaining data sensors and selecting the two components with the most unstructured 

broadband (0-500 Hz) power. Sensor-specific noise. Electronic sensor noise was removed 

via sensor noise suppression (SNS)[107] by substituting each channel signal with its 

projection onto the orthogonal basis space generated by all other sensors in the system. 

This method exploits redundant activity across elements of the dense array (where the 
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number of channels exceeds the number of brain sources of interest) by attenuating 

components specific to any single channel. Spatial filtering. Data-driven spatial filters 

were derived per participant using responses evoked by repeated trials in each of the 

respective studies. Response epochs of 45-55 s duration were extracted, band-pass 

filtered (1-15) Hz with a 2nd order Butterworth filter, and delay corrected (~13 ms). A 

linear transformation based on this manipulation was obtained per participant[108] to 

generate spatial filters that correspond to magnetic fields generated by the left and right 

auditory cortex (Appendix A Supplementary Fig 3). This spatial filter was applied to the 

raw data and the resulting neural signal, representing the most reproducible component of 

the evoked data, was selected as a single virtual sensor in analyses henceforth. 

Neural data analysis. Spectrotemporal response function of stimulus representation. For 

multitone patterns, pure onset representations only carry information at a time beginning 

with the onset of a tone. We formulate this representation as  

 𝑂 𝑓, 𝑡 = 𝛿!!!!"𝛿!!!! (1) 

where every onset has equal weight independent of its tone’s frequency band 𝑓! (𝑖 = 

1,…,10), with onset timesΤ!" Tij of the j-th tone with frequency 𝑓!; 𝛿! is the discrete unit 

impulse centered at sample n. The input-output relation between this representation of 

auditory input and the evoked cortical response 𝑟 𝑡  is then modeled by a 

spectrotemporal response function (STRF). For discrete data this linear model is 

formulated as: 

 𝑟!"#$∗ 𝑡 = 𝑆𝑇𝑅𝐹 𝑓, 𝑡 𝑂 𝑓, 𝑡 − 𝜏 + 𝜀(𝑡)!!  (2) 

where ε(t) is the residual contribution to the evoked response not explained by the linear 

system. Summing only over the frequency term allows evaluating the temporal profile of 
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the response function model (TRF). Exploration of alternative stimulus representations  

requires substitution of the O(f,t) term in (2) by the analogous time-frequency 

representation of the stimulus (e.g. by a spectrogram S(f,t)). 

For all stimuli, stimulus envelope filterbank representations were obtained by passing the 

original waveform through a filterbank of ten order 1000 FIR filters with passbands at 

mid-values between 𝑓! neighbors (see Stimuli, above) starting at 143 Hz. Filter delays 

were compensated and the envelope in each band was extracted as above. Sampling rates 

were reduced to 1 KHz and signals smoothed by a delay-corrected 4th order binomial 

FIR filter. Half-wave rectification (i.e. setting negative values to zero) of the derivative of 

the stimulus envelope filterbank output gave envelope onset representations of the 

stimulus signal based on the filterbank. Prior to reverse correlation, both envelope and 

envelope onset representations were transformed to dB-scale.  

Linear STRF model estimation. STRF estimation was performed via boosting, a 

technique where the error estimate ε(t) (in Eq. 2) is minimized iteratively via sequential 

modifications to the STRF[19]. The name originates from the ability to improve (‘boost’) 

an estimate learning algorithm by establishing aggregate decision rules from across a 

sequence of many estimation steps, each needing only slightly-better-than-chance 

accuracy[20]–[22]. This technique can then be implemented as a forward stage-wise 

fitting that follows a greedy heuristic, by adding the contribution with the largest 

available mean-squared-error reduction at each given step[19], [23] and in turn 

maximizing the predictive power of the model[24]. Operationally, STRF estimates by 

boosting were initialized as a null matrix of dimensions TxF, where T equals the number 

of experimental time bins and F is the total of frequency bins (=10; for TRF estimates, 
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F=1); optimization followed through exploring fixed increments and decrements per 

spectrotemporal bin individually. Among the resulting 2xFxT possible choices, the 

outcome with minimum mean-squared-error was selected as the next step in the running 

STRF estimate. The procedure was iterated, accumulating optimizations, until 

modifications instead produced a sustained increase in mean-squared error[23], since the 

method is not guaranteed to find a global optimum. This termination method effectively 

imposes a sparse structure on the STRF, which allows for extraction of high-temporal 

resolution features in the STRF even if only low-frequency content was present in the 

input waveforms (other	
  STRF	
  estimation	
  methods	
  such	
  as	
  normalized	
  reverse	
  

correlation[18]	
  and	
  generalized	
  linear	
  models	
  could	
  also	
  used	
  [19],	
  [109],	
  [110]).	
  

Other	
  detailed	
  descriptions of the boosting algorithm implementation for timeseries 

data, including MEG/EEG are available[19],	
  [25]. 

STRF predictive power bounds. The measured evoked cortical response r*(t) may include 

stimulus-independent noise, the presence of which is a consequence of the finite dataset 

size and leads to STRF model parameters that overfit to the training data. Performance 

measures that account for stimulus-independent noise are necessarily overestimates and 

therefore can be considered to act as empirical upper bounds of model performance[24]. 

In contrast, the risk of overfitting can be minimized using cross-validation, where a 

fraction of the r*(t) timeseries r t  (e.g. 90%) is reserved for model training, and testing 

is done on the remaining fraction incorporating only the model’s ability to generalize 

over novel stimulus instances. This would be expected to underperform with respect to an 

optimal model for the dataset in question and so indicates a lower bound for its 
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performance [24]. In practice, it is this conservative, cross-validated lower-bound that is 

used for STRF estimates.   

Nonlinear extension. Linear	
  encoding	
  models	
  may	
  fail	
  to	
  characterize	
  firing	
  rate	
  

predictions	
  based	
  on	
  effects	
  such	
  as	
  threshold	
  activity,	
  past-­‐history	
  dependencies,	
  

dynamic	
  range	
  compression,	
  synaptic	
  transfer,	
  and	
  the	
  non-­‐negative	
  distribution	
  of	
  

the	
  neuron	
  response	
  for	
  example.	
  At	
  the	
  single	
  neuron	
  level,	
  predictions	
  can	
  be	
  

improved	
  via	
  introduction	
  of	
  static	
  nonlinearities	
  derived	
  by	
  empirical	
  fit[9],	
  or	
  via	
  

intermediate	
  nonlinearities	
  in	
  more	
  complex	
  model	
  hierarchies[110].	
  For	
  coarse-­‐

grained	
  continuous	
  neural	
  responses	
  such	
  as	
  local	
  field	
  potentials	
  and	
  the	
  MEG	
  

signal	
  here,	
  it	
  appears	
  that	
  such	
  model	
  hierarchies	
  may	
  no	
  longer	
  apply	
  well.	
  When a 

static nonlinearity was incorporated using a linear-nonlinear (LN) model[111], [112], 

only a 2% improvement to predictive power resulted (quadratic fit, R2=0.972, S5 Fig) and 

so was not pursued.  

Estimation of STRF predictive power and noise limit extrapolation. To assess STRF 

model validity, predictive power was estimated as the fraction of a response signal 

variance that is stimulus-explained, and corrected for the reduction of noise-related 

variance achieved by averaging[24].  Namely, for MEG response timeseries r1(t), … 

,rN(t)r! t ,… , r! t  where N is the number of repetition trials, total variance is expressed 

as the average of each trial’s individual variance 

   Var 𝑟 = !
!
(Var(𝑟! 𝑡 )+⋯+ Var(𝑟! t )) (3) 

while evoked variance can be expressed as that of the average response Var 𝑟 . When N 

is large, the extent to which total variance is larger than evoked variance indexes 
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reliability for the response source. Contributions to total variance Var 𝑟  are then 

partitioned into those stemming from the evoked signal, and the remainder is treated as 

noise: 

 Var signal = !
!!!

𝑁 ∙ Var 𝑟 − Var 𝑟  (4) 

 Var noise = !
!!!

Var 𝑟 − Var 𝑟  (5) 

such that estimates are corrected for cases where N is small. Often, STRF model 

estimates are optimized to produce accurate predictions of the evoked response only; in 

such cases, use of single-trial variance provides an additional statistic regarding the 

event-related contribution to available recordings. Once a STRF model has been obtained 

for a particular condition and subject, its ability to predict the evoked response is assessed 

as the extent of evoked response variance that is not residual error, that is Var 𝑟 −

Var 𝑟 − 𝑟!"#$ . This expression is the model’s predictive power, which after division by 

the estimated signal power (eq. 4)Var signal , represents the fraction of stimulus-evoked 

variance described by the linear STRF model contingent on a given experimental 

condition and subject. Analogously, noise power in the same response may be normalized 

by the estimated signal power, providing the inverse proportion to which the procedure of 

averaging reduces response variability. When N is very large, a normalized noise power 

of e.g. 10 indicates that averaging reduces variance in the evoked signal to almost a tenth 

of the original total variance. In the hypothetical case where the procedure of averaging 

yields no reduction in variability (such as with identical trial response instances), the 

absence of variability reduction implies an absolute zero noise level. Empirically, each 

dataset’s (condition and subject) predictive power can be indexed by the intrinsic noise 

power (e.g. Fig 1C). Assuming the responses have been measured from a similar 
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population, regression analysis may produce an estimate of the STRF model class 

predictive power, via its extrapolation to the theoretical noise-free limit[24]. 
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Chapter III 

Dynamic cortical representation of perceptual filling-in for missing acoustic rhythm  

Summary 

In the phenomenon of perceptual filling-in, missing sensory information can be 

reconstructed via interpolation from adjacent contextual cues by what is necessarily an 

endogenous, not yet well understood, neural process. In this investigation, sound stimuli 

were chosen to allow observation of fixed cortical oscillations driven by contextual (but 

missing) sensory input, thus entirely reflecting endogenous neural activity. The stimulus 

employed was a 5 Hz frequency-modulated tone, with brief masker probes (noise bursts) 

occasionally added. For half the probes, the rhythmic frequency modulation was 

moreover removed. Listeners reported whether the tone masked by each probe was 

perceived as being rhythmic or not. Time-frequency analysis of neural responses obtained 

by magnetoencephalography (MEG) shows that for maskers without the underlying 

acoustic rhythm, trials where rhythm was nonetheless perceived show higher evoked 

sustained rhythmic power than trials for which no rhythm was reported. The results 

support a model in which perceptual filling-in is aided by differential co-modulations of 

cortical activity at rates directly relevant to human speech communication. We propose 

that the presence of rhythmically-modulated neural dynamics predicts the subjective 

experience of a rhythmically modulated sound in real time, even when the perceptual 

experience is not supported by corresponding sensory data. 
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Introduction 

The ability to overcome the problem of missing but important sensory information, such 

as a conversation obscured by heavy background noise, is ethologically valuable. Even 

when physical information may be lost entirely, restorative phenomena such as the 

auditory continuity illusion, phonemic restoration, and other forms of perceptual filling-

in[113]–[115], allow for the percept of stable hearing in natural environments. These 

effects have long been hypothesized to rely on the brain’s ability to conjecture a 

reasonable guess as to the nature of the missing fragments[113], [116]. Furthermore, as 

has been extensively argued, predictive coding is a task well suited for cerebral 

cortex[117]–[119] but systematic accounts of endogenous cortical mechanisms 

responsible for these percepts remain unspecified. 

Rhythmically-modulated sounds generate steady predictable events for which disruptions 

and resumptions may indicate the grouping strength of dynamic perceptual streams[120], 

[121]. If replacement of these sounds by noise may, under some circumstances, preserve 

the perceived rhythm in apparent continuity, how are such streams instantiated at the 

neural level? Rhythmic sounds drive auditory steady-state responses (aSSR) in auditory 

cortex and can be recorded non-invasively via magnetoencephalography (MEG)[122]–

[124], with responses to rhythmic rates <10 Hz being especially prominent[125]–[128]. 

To the extent to which the neural responses track the stimulus rhythm, they can be 

considered sparse neural representations of the modulation rate. This experimental 

framework was employed to investigate the cortical effects of briefly masking and 

removing an ongoing low-frequency rhythmic pattern. We hypothesize that for cases 

where perceptual restoration of the removed rhythm occurs, the neural signature of the 
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removal is attenuated—akin to stabilization of a cortical representation, in line with 

perceptual grouping under dynamic continuity. This predicts that during perceptual 

filling-in, the dynamical evolution of a listener’s cortical response retains oscillation in 

synchrony with the expected but acoustically missing rhythm. 

Listeners’ perception of a continuous 5 Hz rhythmic pattern during masking was probed 

in a two-alternative forced choice task, where the acoustic pattern may or may not have 

been removed with equal probability. Simultaneously obtained MEG responses were 

then partitioned according to both physical and perceptual conditions, using wavelet 

analysis to localize oscillatory responses in time and frequency. The finding of rhythmic 

aSSR-like responses in cases where perceptual filling-in occurs is consistent with 

underlying mechanisms requiring a sustained neural representation of the restored 

feature[114]. Importantly, it demonstrates dynamical restoration processes occurring at 

scales commensurate with informal speech articulation rates[129], as well as within 

MEG frequency bands that reflect cortical phase-locking to the slow temporal envelope 

of natural stimuli[25], [127]. 

 

 

Results ��� 

Sustained neural rhythm follows acoustic rhythm in noise.	
  Subjects listened to four 

blocks (~14 min each) of a 5 Hz frequency modulated (FM) rhythmic stimulus, 

repeatedly masked by noise probes at pseudo-random times (see Methods). Half of the 

probes replaced the underlying rhythmic FM tone with a constant frequency tone, and 

half instead simply masked the underlying rhythmic stimulus, here called non-rhythmic 
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and rhythmic probes, respectively (Fig. 1A insets). Between noise masker segments, 

MEG responses to steady rhythmic intervals show strong aSSR, even on a per-trial basis. 

Noise masker segments generate strong transient onset-like responses, after which any 

residual phase-locked response may disappear, on average, for rhythm-absent probes but 

not rhythmically-driven probes (Fig. 1A).  To determine whether across subjects this 

change results from a decrease in aSSR power, or increased temporal jitter that would 

reduce averaged aSSR, inter-trial phase coherence (ITPC) and power analyses were 

performed on single-trial and evoked data respectively (e.g. Fig. 1B). Results of inter-trial 

phase coherence (ITPC) analysis reveal that, within the 0.55 – 1.22 s post probe onset 

interval, the ITPC difference is significant across (N = 35) listeners (p < 0.001; non-

parametric permutation test). Testing for evoked rhythmic power for across listeners 

similarly reveals a significant difference ( p< 0.001) within the 0.56 – 1.23 s post probe 

onset interval. Thus the dual phase and power analyses show that both decreased aSSR 

power and increased intertrial jitter contribute to the decrease of the neural 5 Hz 

component in rhythmically absent versus driven probes. 
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Figure 1. Neural representations of (un)modulated masked sound from a 
representative subject. (a) MEG responses before, during, and after a noise probe are 

shown (single MEG component obtained via spatial filtering; see Methods and Appendix 

B Supplementary Fig 1). The basic stimulus consists of a 5 Hz pulsatile (short duty-
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cycle) FM tone, centered at f0 = 1024 Hz, to which 1.24 s noise probes were applied. 

Insets: illustration of a non-rhythmic probe where pulses are replaced by the constant 

tone (top); and a rhythmic probe, where the FM continues under the noise (bottom). 

Before and after the probes, phase locking to the main rhythmic stimulus is apparent even 

on a per-trial basis. Overlaid on each response raster, evoked activity (averaged 

separately for each probe type) reveals a measurable aSSR during rhythmically-driven 

probes (top) but not during rhythm-absent probes (bottom). (b) Top: Phase analysis at 5 

Hz shows estimated phase-locking over time as measured by ITPC.  During masking 

ITPC values drop to near floor in rhythm absent probes (orange) but only to half of 

baseline levels in rhythm-driven probes (blue). Bottom: Analysis of spectral power (also 

at the 5 Hz rhythm rate) also shows considerable difference between probe types for this 

subject.   

 

Sustained neural rhythm follows listeners’ perceived rhythm in noise. In order to 

determine how neural representations of rhythm co-varied with perception, after each 

trial the probe was classified by the subject as perceived as rhythmic or as non-rhythmic. 

This resulted in a 2-by-2 partition of analyzed trials: (1) non-rhythmic probes perceived 

rhythmic (‘filling-in’); (2) non-rhythmic probes perceived non-rhythmic (rhythm 

‘absent’); (3) rhythmic probes perceived rhythmic (rhythm ‘present’); and (4) rhythmic 

probes perceived non-rhythmic (rhythm ‘missed’). Fig. 2 shows the grand average 

evoked 5 Hz response power before, during, and after noise probes, for each combined 

condition of stimulus and percept. Transient (and broadband) masker-onset responses 

were evident during the initial 0.3 s post masker onset (cf. Appendix B Supplementary 

Fig 2) (brief pre-causal dips accompanying these transients are due to convolution 

residuals from the continuous wavelet transform). 

For non-rhythmic probes (Fig. 2A), phase coherence dropped to almost 0% for 
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both perceptual conditions (filling-in and absent, right panel). Rhythmic spectral power 

also dropped from the initial baseline for both perceptual states, but the decrease was on 

average 7.9 dB worse when subjects reported the rhythm absent than present (filling-in). 

Decreases were restored to baseline values by 0.8 to 1.2 s post probe offset (equivalent to 

between 4 and 6 rhythmic pulse cycles. Thus, within non-rhythmic probes, a sustained 

and significant percept-specific difference was observed in rhythmic evoked power (0.56 

to 1.19 s, p < 0.001), but this was not the case for phase locking (p> 0.18). 

 

	
  

	
  

Figure 2. Percept-specific endogenous representations of patterned sound. Grand 

averages (N = 35) of rhythmic evoked power and intertrial phase coherence partitioned 
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by probe type and reported percept. Noise probe starts at the first vertical line at t = 0 s 

and continues until the next vertical line at t = 1.24 s. (a) Non-rhythmic probes: (Left) 

After an initial transient, rhythmic evoked power was reduced regardless of percept, but 

differentially by 7.9 dB depending on percept as present (magenta), or absent (orange). 

(Right) No significant difference was observed for ITPC, where there was a reduction to 

near floor during the probe. (b) Rhythmic probes: (Left) During masking, rhythmic 

evoked power drops by 9.5 dB in average, holding relatively steady for the duration of 

the probe. (Right) Similarly, inter-trial phase coherence drops by about 81% for the 

duration of the probe. For probes in which the rhythm was missed (brown), however, 

both evoked power and ITPC showed an additional reduction (only near the end of the 

probe) compared to rhythmically-driven probes (blue). Solid lines: mean across subjects 

and trials; Color bands: bootstrap 95% confidence of the mean over subjects; Grey bands: 

time intervals with no significant difference by percept. 

 

 

For rhythmic probes (Fig. 2B), the masker was associated with an average relative 

decrease of 9.5 dB evoked power regardless of perceptual condition (driven and missed), 

and with a relative decrease of ~75% in trial-to-trial phase locking.  When subjects 

missed the rhythm, evoked power and inter-trial phase coherence both further decreased, 

with percept-specific decreases sustained over a longer period for ITPC (0.84 – 1.25 s, p 

< 0.001; right panel) than evoked power (1.04 – 1.15 s, p = 0.008; left panel). 

 

Rhythmic neural power as discrimination statistic in a rhythm detection task. With the 

observation that differential neural processing of masked rhythm depends on listeners’ 

percept, it was next investigated whether the observed divergence might have properties 

of an internal variable underlying discrimination. Based on the previous result, we 

hypothesized that the 5 Hz target neural processing power in the final ~600 ms of the 
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probe interval might act as such variable. For each subject, a metric was created from the 

rhythmic evoked power differences contrast, integrated over the 0.56 – 1.24 s interval of 

interest post probe onset. To illustrate the use of this latent variable as a discrimination 

statistic, a bootstrap resampling of trials (with replacement) was used to produce 

distributions of evoked power sustained over the critical window (two representative 

subjects shown in Fig. 3A). A neural discriminability metric was then computed from 

their relative separation (see Methods). To assess the potential of this sustained evoked 

power to operate as a variable relevant to perceptual discrimination, the neural metric was 

compared with psychometric d’ scores that index behavioral sensitivity of listeners to the 

detection task[130] (Fig. 3B, blue), with the result that the two are significantly correlated 

(ρ = 0.728, p = 1.04x10-6). 

	
  

 

Figure 3. Rhythmic target power acts as a discriminant neural statistic for perceived 
rhythm. (a) Top: In two representative subjects, behavior covaries with empirically-

derived neural discriminability distributions. Probability distributions of a given level of 

sustained (time-integrated) evoked power depend on the acoustic presence (blue) or 

absence (red) of stimulus rhythmic FM; a neural discriminability score (proportional to 
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horizontal black bar length) can be obtained from them. In the first subject (left panel), 

the small overlap between the distributions gives high neural discriminability; for the 

second subject (right panel), both distributions overlap substantially, giving poor 

discriminability. Bottom: Next, empirically-derived neural distributions were obtained 

only from non-rhythmic probes (i.e., the red curves in the top panels), now conditioned 

instead by percept. A similar pattern in the distributions is observed. Distributions 

obtained via bootstrap. (b) Over subjects, the psychometric d’ sensitivity index (abscissa) 

correlates with the neurometric discriminability index based on acoustic contrast 

(rhythmic versus non-rhythmic probe, blue; ρ = 0.73, p = 1.0x10-6). Critically, behavioral 

sensitivity to ‘filling-in’ also correlates with rhythmic evoked power differences despite 

the absence of stimulus rhythm via the related neurometric discriminability index based 

on perceptual contrast (filling-in versus reported absent, magenta; ρ = 0.69, p = 6.1x10-6).  

 

A related latent discrimination statistic, directly relevant to the phenomenon of filling-in, 

is computed with contributions only from endogenous (non-sensory) factors, by 

analyzing the responses to non-rhythmic probes exclusively (Fig. 3A, bottom). In these 

purely percept-specific (constant acoustics) distributions, neural power discriminability 

was defined analogously as the difference in rhythmic evoked power between filling-in 

and rhythm-absent trials, integrated over the time at which significant differences were 

observed at the group level in the previous section (0.56 to 1.19 s post probe onset, as in 

Fig. 2B). Just as for the acoustic contrasts, this discriminability index also correlates 

strongly with the psychometric sensitivity indices across listeners (Fig. 3B, magenta) 

(ρ=0.745, p=4.23x10-7). Thus, consistent with the properties of a latent discrimination 

statistic, sustained evoked power may account for both stimulus- and percept-specific 

differential processing, where the latter reflects only endogenous neural processes.  
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Spectrum of power increase in target-related neural rhythm dynamics with filling-in. 

Given the possibility that increased power at the 5 Hz rhythmic frequency would be 

accompanied by increased spectral power at other frequencies, it is important to consider 

whether change arises as a power gain specific to the target frequency or as a modulatory 

effect over a larger spectral region that includes the target frequency band. By extending 

the wavelet analysis over a broader frequency range (1-25 Hz), the spectral extent of 

restoration was probed to address whether changes are target-specific, or instead 

accompanied by other activity that may be behaviorally relevant. 

Evoked power analyses across probe conditions and subjects reveal that the evoked 

response contains two frequency ranges, one centered on the target 5 Hz, and the other 

centered on the 10 Hz first harmonic (Fig. 4A). To analyze time-frequency power 

contrast between conditions, corresponding spectrograms (baseline corrected per 

frequency band) were subtracted. In particular, the ‘driven’ minus ‘absent’ map results in 

a contrast whose differences arise from synchronization to physical differences in the 

sound, while ‘filling-in’ minus ‘absent’ maps differences due entirely to endogenous 

activity (Fig. 4B, left panels). For the first case, the defined ‘synchronized’ contrast (Fig. 

4B, top left) group average data shows a spectrotemporal region, ~600 ms post probe 

offset until the end of the probe, of significant differential neural processing (p = 3.3x10-

4), rooted in physical stimuli differences. The region is limited to the spectral 

neighborhood of the target (half maximum 4.1-6.7 Hz; maximum 3.8-7.5 Hz), which may 

be expected as smearing from Fourier/Heisenberg uncertainty. For the ‘endogenous’ 

contrast (Fig. 4B, bottom left), a similar profile was found (half maximum 4.1-6.6 Hz; 

maximum 3.8-6.8 Hz; p = 6.7x10-4), with additional enhancement around the target first 
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harmonic (0.4 to 1.1 s post probe onset; half maximum 9.7-11 Hz; maximum 8.9 to 11.9 

Hz; p = 0.01). In a related analysis of a third partition contrast, ‘rhythm-driven’ minus 

‘missed’, no spectrotemporal cluster of significance was found (p=0.29). 

 

Figure 4. Stimulus- and percept-specific spectrotemporal modulations of cortical 
activity during restored rhythm. (a) Wavelet power correlograms, in a 1-25 Hz 

frequency range, reveal qualitative differences in steady neural responses post probe 

onset, across participants (N =	
 32). Color arrows indicate spectrogram pairs submitted to 

difference contrasts as follows. (b) Differences between spectrograms reveal differential 

processing under alternative percepts, whether based on different physical sounds (top 

left), or on endogenous restorative processes (bottom left), in both cases specific to the 

target 5 Hz frequency band. The latter case of filling-in generates enhanced sustained 

power in the first harmonic band (~10 Hz) as well. Synchronization maps are shown 

masked by regions of group-level significance, as determined by permutations within 

contrast pairs, performed independently across subjects (‘driven’, p = 3.3x10-4; ‘filling-

in’-near 5 Hz p = 6.7x10-4, filling-in’near10 Hz p = 0.01). The lower-rate rhythmic 

enhancements (~5 Hz) coincide spectrotemporally even though the sensory bases for 

each are different (right). White vertical lines indicate noise probe temporal edges. 

 

 

Upon examination of whether the additional spectral information conveyed by these 
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maps improved neural predictions regarding listeners’ behavior, we found that neural 

discriminability indices based upon the ‘synchronized’ region in this section showed no 

improvement over the target frequency specific index obtained previously for 5 Hz only 

measures (ρ = 0.53; p = 0.001). The ‘endogenous’ regions, jointly, showed no 

improvement in predictive power of listener’s performance (ρ = 0.72; p = 1.4x10-6) over 

that of the target-based index alone. Separating these regions into 5 Hz and 10 Hz 

domains revealed that the lower (target rhythm) region was more predictive (5 Hz only: 

ρ = 0.73, p = 8.2x10-7; 10 Hz only: ρ = 0.44, p = 0.01). These results suggest that 

differential narrowband 5 Hz power is most critical to explain listeners’ detection 

performance shown previously, and that for filling-in trials, some improvement also 

arises from integrating over the broadened filter to include neighbor target frequencies 

present in the average timeseries of endogenous neural activity. 

 

 

Discussion  

The subjective experience of attending effectively to complex sound scenes in noisy 

environments can be substantially assisted by perceptual restoration. This effect is 

investigated using MEG to record the neural dynamics of a steady temporal pattern while 

repaired perceptually. Measures of differential cortical processing contributed to the 

identification of a discrimination statistic predicting a subject’s behavioral performance 

sensitivity. The data are consistent with the view that perceptual restoration is attributable 

to endogenous neural processes, emerging from learnable temporal patterns present in the 

tracked auditory object, at modulation rates that dominate natural communication speech 
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sounds. 

Perceptual restoration, the effect of hearing the continuation of a sound regardless 

of an interrupting masker, includes descriptions of “auditory induction”, “temporal 

induction”, “perceptual synthesis”, or “contextual catenation” of dynamic sounds in 

classic studies[131], [132]. It implies an ability to discount disruptive but extraneous 

interruptions to relevant acoustic signals, so much so that even noise-filled gaps are more 

likely to be discounted as such[132]. Where multiple interpretations of a relevant acoustic 

signal are possible (e.g. phonemes), perceptual restoration has been probed in 

identification tasks; for more constrained decision spaces, it may be probed based on 

sound delivery quality assessments, such as gap localization of the excised token signal 

(e.g. Warren’s paradigm[132]), and by discrimination of noise-added vs. noise-replaced 

token gap alternatives (e.g. Samuel’s paradigm[133]). Our method subscribes to the latter 

approach, also referred to as ‘filling-in’, which emphasizes the signal detection strategy 

followed in cases where a listener classification is inconsistent with the token absence in 

a gap[115], [134]–[140]. As has been noted[141], from the listener’s utilitarian 

perspective, this effect of induction in a challenging environment is not aimed at the 

production of decision errors (or illusions) but to assist against masking. Restoration 

refers to the perception of a token projected by a context (such as a speaker’s intention), 

with apparent intactness[141]. Critical to this is a strong masker, along with contextual 

evidence favoring a specific acoustic token with high probability. This combination 

allows inference that the lack of auditory evidence of the token could be ascribed to 

energetic masking[113], [116], [142]. 
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A simple and compelling example of perceptual restoration is that of a pure tone 

followed by a brief noise-filled gap where the tone has been excised: this leads to a strong 

illusory percept of continuity of the tone[143]. The percept appears to rely on two related 

effects, the more obvious being conveying the original signal as uninterrupted, but also, 

critically, accompanied by an attenuation of discontinuity boundaries[144]. Neural 

correlates of both effects have been observed in single units in macaque primary auditory 

cortex (A1), where up to 35% of sampled single units respond to a gap with noise as 

though the tone were continuously present[145], [146]. In some cases there is also failure 

of a transient response at the end of the gap[145]. For human listeners, there is evidence 

that such compensatory principles may extend to disruptions to dynamically modulated 

sound, including amplitude-modulated (AM) sound, single vowels, and consonants 

within words[120], [121], [135], [139], [147], [148], the latter of which fall under the 

concept of phonemic restoration[113], [115], [133]. Depending on stimulus, neural 

correlates have been localized to different areas, including Heschl’s gyrus for missing 

AM noise[147], the posterior aspect of superior temporal gyrus for disrupted 

vowels[139], and wider brain networks including the superior temporal lobe in the case 

of missed phonemes[135], [148]. In addition, mixed evidence points to a basis for 

restoration in terms of endogenous modulations to boundary encoding: on the one hand, 

the search for differential onset responses to noise when under restoration, indexing 

alternative encoding, has yielded negative results so far[138], [139]; on the other, induced 

narrow-band (3-4 Hz) desynchronizations that are restoration-specific, and occur after 

gap onset, have been suggested by results from EEG[139], [149].  
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In this study the differential temporal boundary encoding under restoration was 

not specifically addressed[149], but instead the emphasis was on the neural representation 

of the missing rhythm itself, via measures of evoked rhythmic MEG responses. While 

restoration of continuous tones has been observed for segments as long as 1.4 s[150] 

behaviorally, to our knowledge this is the first investigation where cortical aSSRs are 

directly implicated in perceptual restoration, sustained in real time representing a 

temporal code. That neural phase information was not reliable, despite an apparent 

continuity of the rhythm, is consistent with behavioral analyses suggesting that listeners 

may not track phase information under illusory FM continuity[120], [121]. An cortical 

EEG study by Vinnik and colleagues[138] showed no change to neural spectral power 

sustained along noise gaps embedded in a 40 Hz AM context stimulus during restoration; 

on the other hand, it has been shown that changes to neural spectral power in brainstem 

responses may occur during restored pitch of a missing 800 Hz carrier tone[140]. It is 

possible that while gamma-rate acoustic modulations can be represented cortically with a 

temporal code[125], [151], they are also at rates that involve pitch quality – a 

representation of which implies substantially distinct cortical coding modes[152] 

assisting restoration. 

In other sensory modalities, some restorative phenomena may fall in the category 

of perceptual experience that does not represent the absence of a physical stimulus, but 

rather, an alternative interpretation based on additional contextual information, e.g., the 

case of illusory induction of perceived kinesthetic trajectories[153], [154], and of spatial 

contours in certain visual displays[155]–[157]. Context-sensitivity in general is 

considered a requisite for cortical predictive coding[158], which in the case of hearing 
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may depend on known priors regarding the sound temporal dynamics. A compelling 

example arises from missing, but highly expected, click-like sounds that generate 

auditory onset-like responses locked to the nominal time of delivery of the missed 

sound[159]. Additionally, long duration, rhythmic metric structures may produce 

endogenous neural locking to a subharmonic frequency of the actual acoustic beat when 

it has the potential to be perceived as the underlying rhythm, whether listeners are 

instructed to do so[160], or passively listen in the absence of instruction[161]. 

Correspondingly, the data here show that with perceptual restoration of masked rhythm, 

endogenous representational differences may emerge as early as 0.6 s post masking, at 

the target rhythm. There is also activity at the first harmonic, 10 Hz, but there one cannot 

entirely rule out yet alternative explanations involving enhanced alpha activity[138], 

since with increased alertness at some trials over others, a systematic differential in 

spontaneous alpha activity might be responsible[162]. For filling-in and rhythm-missed 

trials related to inattention, reduced vigilance might be expected to effectively increase 

alpha activity. We did not, however find this; instead, filling-in trials displayed a narrow-

band 10 Hz power increase strongly concurrent with the target duration, therefore 

consistent with being a harmonic of the endogenous 5 Hz rhythm. Alpha-band related 

effects due to non-uniform attentional states should be investigated in future studies using 

rhythms whose first harmonics are not in the alpha band. Our data does not reject the 

possibility of spontaneous and temporally patterned cortical activity profiles influencing 

sensory processing, as in ongoing slow-wave activity that may interact with evoked 

signals as a temporally coordinated modulation of excitability across distributed cortical 

fields[163], [164] .  
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Focus on analysis of endogenous activity may address circumstances under which the 

brain repairs certain temporal features of highly stereotyped sound. This is part of the 

general problem of determining what relationship does a neurally-instantiated 

representation of a missed pattern has with a template representation mapping to actual 

acoustic experience. Solutions may offer key insight into biologically-inspired 

applications dealing with incomplete information. In particular, the modulation studied 

here corresponds to the temporal scale of syllabic production in human speech[165] and 

the slow temporal envelope of natural stimuli[166], thus raising the question of whether 

similar restorative phenomena exist during sequences of inner or imagined speech, as 

well as during auditory hallucinations. 

 

General methods 

Participants.	
  35 subjects (12 women, 25.7 ± 4.4 years of age) with no history of 

neurological disorder or metal implants participated in the study, and received monetary 

compensation proportional to the study duration (~ 2 hours). The experimental protocol 

was approved by the UMCP Institutional Review Board, and all experiments were 

performed in accordance with its relevant guidelines and regulations. Informed written 

consent was obtained from all participants before study sessions. 

Stimuli. Four	
  template	
  sound stimuli were constructed with MATLAB® (MathWorks, 

Natick, United States), each consisting of ~15 minutes of a 1024 Hz tone frequency-

modulated (FM) at 5 Hz with modulation range (log-sinusoidal) 512–2048 Hz and a 20% 

duty cycle[128]. 420 rhythmic probes were created by adding 1.24 s of noise to the basic 
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stimulus, at pseudo-random times. Noise was generated de novo per probe, and spectrally 

matched to the FM but with random phase. A fixed signal-to-noise ratio value was 

chosen from the -4 to 4 dB range, per participant. 420 non-rhythmic type trials were 

additionally created in the same manner, except that the underlying FM was replaced 

with constant carrier frequency. Inter-probe time intervals were 1.6 s plus a discrete 

Poisson-distributed random delay (λ = 1.2 s); the exact onset time was rounded to a 

multiple of the stimulus period (0.2 s), so that all probe onset times kept constant phase 

with the main rhythm. Sound stimuli were delivered through Presentation® 

(NeuroBehavioral Systems, Berkeley, United States), equalized to be approximately flat 

from 40–3000 Hz, at a sound pressure level ~ 70 dB. Sounds were transmitted via E-A-

RTONE® 3A tubes ( impedance 50 Ω) and E-A-RLINK® disposable foam intra-

auricular ends (Etymotic Research, Elk Grove Village, United States) inserted in the ear 

canals. 

	
  

Experimental design.	
  After a brief practice session, subjects were instructed to push one 

of a pair of buttons based on whether they detected a 5 Hz rhythm. In order of 

importance, participants were instructed to: (i) wait until probe ended before pressing the 

button, weighting accuracy over reaction time; (ii) respond only to the probe immediately 

presented; (iii) modify their choice by pressing the other button only if certain and still 

before the next trial. Trials that did not meet the requirements, and corrected trials, were 

excluded (median 6.8% and 1.3% of trials respectively). To avoid transient cortical 

dynamics associated with motor response execution[167], trials beginning less than 250 

ms from the previous response were also excluded (median 6.3% of trials). To more 
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evenly distribute the proportion of correct answers across participants, the masker signal-

to-noise ratio (SNR) was fixed in advance, from on of 0, ±1, ±2 or ±4 dB. Silent films 

were presented concurrently, which subjects were instructed to watch. 

	
  

Data recording.	
  MEG data were collected with a 160-channel system (Kanazawa 

Technology Institute, Kanazawa, Japan) inside a magnetically-shielded room (Yokogawa 

Electric Corporation, Musashino, Japan). Sensors (15.5 mm diameter) were uniformly 

distributed inside a liquid-He Dewar, spaced ~25 mm apart. Sensors were configured as 

first-order axial gradiometers with 50 mm separation and sensitivity > 5 fT·Hz-1/2 in the 

white noise region (> 1 KHz). Three of the 160 sensors were magnetometers employed as 

environment reference channels. A 1 Hz high-pass filter, 200 Hz low-pass filter, and 60 

Hz notch filter were applied before sampling at 1 KHz. Participants lay supine inside the 

magnetically shielded room under soft lighting, and were asked to minimize movement, 

particularly of the head. Every session had four experimental blocks. In the case of seven 

participants, the experiment had to be suspended early due to time constraints (mean 89% 

completion in these participants, minimum 75%); for one participant only 2 blocks out of 

4 were recorded due to transfer failure. Two participants requested pauses during a block, 

which was terminated and later repeated in whole. 

 

Data processing.	
  A 1-30 Hz band-pass third order elliptic filter with at most 1 dB ripple 

and 20 dB stopband attenuation was applied and noise sources were removed as follows. 

Environment noise. Time-shifted principal component analysis[105] (TS-PCA) was 

applied to remove environmental noise, using the three reference magnetometers (Nlags = 
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43). Sensor-specific noise. Sensor-generated sources unrelated to brain activity were 

subtracted using sensor noise suppression (SNS)[107]. Spatial filtering. A per-participant 

data-driven model was used to synthesize spatial filters from the responses to the 

unmasked rhythmic sound stimulus via denoising spatial separation (DSS)[108]. The 

responses were structured as a matrix of dimensions T x N x K; where T is the number of 

samples (=1400), N is the number of usable recording segments (average=514.3), and K 

the number of active sensors (average=156.8). This spatial filter selects for the most 

reproducible aSSR component over trials, generating a single virtual sensor used in the 

remaining analysis. 

Data analysis. Trials were classified a posteriori, according to subjects’ reports, into one 

of four groups: rhythmic-trial perceived such (‘driven’) or as not as non-rhythmic 

(‘missed’); non-rhythmic trial perceived as such (‘absent’), or as rhythmic (‘filling-in’). 

Time-frequency analysis used a Morlet wavelet transform with 0.2 s scale, permitting 

estimation of spectral evoked power at the bandwidth of experimental interest (5 Hz). For 

evoked power and ITPC contrasts, statistical clusters were found during which there were 

significant differences across experiment conditions according to non-parametric 

permutation tests[168]. A measure of ‘neural discriminability’ 

 ∆𝑃!
!,! ≡ 𝑃!! − 𝑃!! 𝑑𝑡!!

!!
 (1) 

is defined as the area between two evoked power curves P obtained each at conditions A 

and B for the i-th subject, and computed over a fixed time interval (T0 = 0.58 s and T1 

=1.2 s post noise onset on average), as defined by statistical clusters of significance found 

at the group level for the given contrast AB. Measures for shifts in ITPC were computed 

in similar way. Perceptual sensitivity of a subject in detection is given by d-prime 
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analysis[130], where for each subject i, Hi the fraction of rhythmic 

probes labeled rhythmic, and Fi the fraction of non-rhythmic probes labeled rhythmic, 

undergo a z-transformation.[169] 

To investigate whether the observed pattern of percept-specific differences was 

due to unintended acoustical or statistical properties in the stimulus constructs, stimulus 

probes were analyzed a posteriori. No significant differences were found in stimulus 

temporal modulations when partitioned by percept, within rhythmic (p=0.85) nor non-

rhythmic (p=0.84) probes (paired-sample t-tests, Appendix B Supplementary Fig 3). 

Subjects’ reported percepts corresponded to the physical acoustics (presence or 

absence of rhythm) approximately 5 times as often as not, resulting in data pools with 

differing signal-to-noise ratio improvement from averaging. Therefore inter-trial phase 

coherence measures included bias correction[170] as small sample sizes are especially 

prone to bias. The unbiased estimator is based on the squared ITPC (also defined as 

squared ‘modified resultant length’[170]), which may be negative after estimated bias 

subtraction. To investigate the possibility of related biases in the rhythmic evoked power 

measures, post hoc two-sided non-parametric permutation tests were performed by 

collecting, for each subject, all trials from the two conditions to be compared, and 

instantiating resampled of partitions of fixed size (original sample sizes per subject); the 

group-level test statistic obtained in the actual partition was then contrasted against those 

obtained at group level across the distribution of resampled instances. Using the 5 Hz 

evoked power difference between conditions in the same intervals of significance, it was 

found that responses to non-rhythmic probes show significantly greater power when 

reported perceived as rhythmic versus non-rhythmic (0.56 to 1.19 s ; p=0.007); a similar 

d 'i = z(Hi )− z(Fi )
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result held for responses to rhythmic probes, which also show significantly greater power 

when reported perceived as rhythmic versus non-rhythmic (1.04 to 1.15 s ; p=0.034). 

Potential systematic differences resulting from the per-subject signal-to-noise (SNR) ratio 

were also investigated, but no evidence was found of differences, neurally (ρ=0.10, 

p=0.57) or behaviorally (ρ=0.33, p=0.054). One participant was excluded from the 

analysis due to zero reported perceptual differences from the acoustics. 

 

Data availability. Relevant data are available in a public repository accessible at 

http://hdl.handle.net/1903/19593. 
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Chapter VI 

Prior knowledge influences cortical latency and fidelity of the neural representation of 

missing speech  

 

Summary 

 

In naturally noisy listening conditions, for example at a cocktail party, noise disruptions 

may completely mask significant parts of a sentence, and yet listeners may still perceive 

the missing speech as being present. Here we demonstrate that speech-related dynamic 

auditory cortical activity, as measured by magnetoencephalography (MEG), which can 

ordinarily be used to directly reconstruct to the physical speech stimulus, can also be used 

to “reconstruct” acoustically missing speech. The extent to which this occurs depends on 

the extent that listeners are familiar with the missing speech, which is consistent with this 

neural activity being a dynamic representation of perceived speech even if acoustically 

absence. Our findings are two-fold: first, we find that when the speech is entirely 

acoustically absent, the acoustically absent speech can still be reconstructed with 

performance up to 25% of that of acoustically present speech without noise; and second, 

that this same expertise facilitates faster processing of natural speech by approximately 5 

ms. Both effects disappear when listeners have no or very little prior experience with a 

given sentence. Our results suggest adaptive mechanisms of consolidation of detailed 

representations about speech, and the enabling of strong expectations this entails, as 

identifiable factors assisting automatic speech restoration over ecologically relevant 

timescales. 
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Introduction 

 

The ability to interpret speech elements across interruptions masking a conversation is a 

hallmark of human communication [171]. In many cases, possessing contextual 

knowledge poses clear informational advantages for a listener, so as to successfully 

disengage the masker and restore the intended template signal [135], [139], [172], [148]. 

Information can typically be obtained from multimodal sources and/or low-level auditory 

and higher-order linguistic analyses, although it remains unclear how and which factors 

are most effective in assisting speech restoration under natural conditions. For instance, 

it is possible to identify cortical network activity profiles consistent with phonemic 

restoration, the effect where missing phonemes in a signal may be heard [115], [133], in 

binary semantic decision tasks [148]; still, the description of factors that bias into either 

of two alternatives in the direction of perception remains unclear. To this end, there is 

evidence that restorative processes may be influenced by contributions from audiovisual 

integration cues [173], lexical priming [174], and within the auditory domain, predictive 

template matching [159] or even intentional expectations about temporal patterns in 

sound [160], [161].  

It is clear that in order to lead to informational gain, potential contributors must be 

readily accessible before and during missing auditory input. Presumably, the mechanism 

would involve (i) generation of a provisional template about forthcoming speech, (ii) 

that the template is stored in a compatible format with the internal representation of 

ongoing sound, and (iii) that they are later subject to point-wise matching – in what has 
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been termed the zip metaphor [175]–[177]. In some cases, the informational value added 

by such putative mechanism in ameliorating the neural representation of speech may 

also involve speeding up cortical processing during integration [178].  

Here we test how natural speech tokens spanning over several words may be represented 

cortically in the midst of masking noise, under varying levels of informational gain 

added by prior knowledge about the missed element. The low-frequency envelope of 

speech indexes slow acoustic energy changes over time and is known to entrain and 

phase-lock neural activity at the auditory cortex, as measured by 

magnetoencephalography (MEG) and electroencephalography (EEG) [25], [91], [179], 

[180]. Due to its characteristic timescale, the envelope is also related to prosodic 

attributes such as syllabic lengths and loudness, which themselves may include 

intonation, rhythm and stress cues. We hypothesize that by presenting the same verse 

units several times, it is possible to manipulate listeners’ ability to develop detailed 

predictions about forthcoming elements in long speech sentences, plausibly forming a 

template about them, that may serve for a form of point-wise matching at a later time 

when spontaneous maskers disrupt the same parts of the narrated story. This implies the 

possibilities that (a) the template about the envelope may be decoded from cortical 

signals in response to noise, and (b) because the template must be have been present in 

advance, that the mechanism could be facilitated at subsequent times by speeding up 

processing of the incumbent envelope token, at least indirectly. We apply neural coding 

methods to neural responses in order to reconstruct the original verse template envelope 

[181], an approach that has been successfully applied in auditory electrophysiology [16], 

[18], EEG/MEG [25], [55], [91] , electrocorticography [90], [148], [180], and fMRI 
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[182]; and also to provide estimates of the forward stimulus-response mapping [25], [91] 

under normal speech conditions. From such decoding performance we assess the extent 

to which prior knowledge about speech may enhance endogenous representations that 

assist restoration of intended speech signals. In the case of forward models, we address 

the cortical latencies involved in natural speech encoding under the same conditions. The 

latter is a relevant question at least because (i) reduced processing times have been 

observed in visual contexts that facilitate integration of detailed predictions with auditory 

representations of incoming speech [172], [178]; and (ii) within timescales of the order of 

seconds or minutes, task-related adaptive changes can occur to the shape of stimulus-

response mappings, which would in turn suggest mediation by cortical plasticity [98], 

[183] as a biophysical basis for restorative mechanisms given the present task demands. 

We provide evidence that the speech temporal envelope may be better reconstructed if 

listeners have obtained sufficient knowledge about a particular speech sequence, and this 

effect extends to cases in which they are presented with noise instead. The data also show 

that cortical latencies in natural clean speech processing can be reduced by the order of 

milliseconds under similar conditions. Overall, the results suggest that formation of 

online templates about low-level features of frequently experienced speech may facilitate 

more efficient neural representations, by means of faster encoding and improved access 

to endogenous modulations time-locked to expected but missing speech, thus assisting its 

restoration.  
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Results ��� 

Reconstruction of missing speech timeseries from noise with context. Fixed-duration 

spectrally-matched static noise bursts were used to mask word sets within a narrated 

story. Each noise probe was designed to have the same spectral composition over time as 

the replaced speech segment (Fig. 1A) but without any supporting temporal modulations 

in the low-frequency (2-8 Hz) envelope (Ding and Simon, 2012a; Giraud et al., 2000). 

For natural speech without masking, these low-frequency fluctuations entrain auditory 

cortical activity as recorded by MEG and, given a suitable decoding model, can be used 

to reconstruct the envelope of the original speech signal. Such linear decoders were 

created using unmasked speech and reverse correlation to establish an optimal mapping 

from cortical activity to the original speech envelope. To test whether the acoustic 

presence of a target is a strictly necessary condition for such reconstruction, the listeners 

were exposed to extensive repetitions of some of the speech, and less extensive 

repetitions (or none at all) to the rest. Sentences that were maximally repeated over the 

hour-long session (Fig. 1B, left) resulted in greatest relative performance in 

reconstruction of the envelope of the missing speech: approximately 25% of the 

performance for the actual speech presented free of masking. Lesser amounts of 

repetition resulted in further reductions to relative performance down to baseline floor 

level for masked speech with which the listener had little or no prior experience. Because 

relative performance measures include data entries from clean speech reconstruction as 

references, it is important to verify whether reconstructions from noise alone 

independently reveal similar effects. Absolute effect sizes of repetition in reconstruction 

of the missing speech envelope were thus confirmed to display a similar pattern as with 
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relative performance (Fig. 1B, right). To determine whether decoding success of the 

linear model of the envelope did significantly change across conditions, the Mauchly test 

of sphericity was run to evaluate whether corrections would be necessary for a posterior 

repeated measures model. Results for independent reconstructions using exclusively 

noise-derived independent scores showed that this condition was not violated in the 

absolute effect of envelope reconstruction in noise epochs (χ2(5)=5.409;  p=0.368). The 

subsequent four-level repeated measures ANOVA with subject and verse as predictors 

resulted in a significant main effect of repetition (F=3.332; p=0.023), with no interaction 

from subject (F=0.411; p=0.726), no interaction from verse (F=0.622; p=0.603), and no 

three-way interaction between repetition, verse and subject (F=1.229; p=0.304). Post hoc 

comparisons using the t-test with Bonferroni correction indicated that the average effect 

size at High repetition rates was significantly different than that at the Control condition 

(t(34)=4.319;p<1.3x10-4), and Low repetition rates (t(34)=3.918;p<4.1x10-4). 
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Figure 1. Cortical reconstruction of acoustically missing word-level speech envelope 
from noise by repeated replays of narrated story. (A) A set of speech materials from a 

poem were repeatedly presented to 35 listeners, but every 4-5 s the signal was replaced 

with spectrally-matched noise (three instances shown in spectrogram, bottom). This 

manipulation leads to loss of critical temporal modulation related to the missed words, as 

shown by the slow envelope (top). (B) For repeatedly presented identical material, over 

30, 15, 7.5 minutes or less out of an hour-long MEG recording session (left), the missing 

dynamic speech envelope was reconstructed from responses to static the noise maskers, 

with performance up to 25% of that obtained under clean conditions (insets, right).  This 

effect on relative performance was not due to the fractional contribution from clean 

speech reconstructions, as analog results were reproducing by using the absolute 

reconstruction effects only (right), by assessment of independent performance by noise-

trained decoders only, suggesting influence of prior experience in low-level sensory 

encoding of the temporal envelope over connected words. Error bars indicate confidence 

intervals for the means (Bonferroni-corrected α-level). 
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Expedited auditory cortical processing of frequent natural speech replays. temporal 

response function (TRF) is a functionally informative statistic which can be used to 

predict the neural response to a given stimulus. When applied to natural sound 

conditions, it reveals information similar to that of evoked responses to pure tones 

(identifiable peaks with different polarities at specific latencies, corresponding to distinct 

neural sources and processing stages) but directly derived from the neural processing of 

the speech [25], [55]. We examined the effect of extensive prior experience on the TRF 

temporal structure in general, and a specific peak, the TRF100, occurring 100-150 ms post 

envelope change in particular(Fig. 2A). A significant latency shift of 5.3 ± 2.2 ms was 

observed for TRF100-High versus TRF100-Control peaks (t(33)=2.387; p=0.023) indicating that 

occurrence of this processing cortical may become expedited for listeners, compared on a 

within-subject basis (Fig. 2B). Across participants, the differences between repeated 

(High, Medium and Low) and baseline (Control) levels, in terms of maxima in their 

cross-correlation functions, were shown to arise from significantly different distributions 

(D=0.294; p=0.043), suggesting that prior experience by repeated presentations 

effectively speeds up cortical processing even as early as 100 ms latency. 
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Figure 2. Frequent repetitions of natural speech speed-up their cortical processing. 

(A) Temporal response functions across participants reveal a common cortical processing 

step about 100-150 ms after unitary variations in the speech envelope, referred to as 

TRF100. (B) Depending on context, the same processing component step may occur at 

different times at the millisecond stage in high-resolution recordings, with processing of 

frequently-repeated speech occurring about 5 ms earlier than with novel or sparsely 

presented sentences, within subjects. (C) Across subjects, the distribution of relative 

delays is consistently biased towards positive (earlier) values for the most extreme 

repetition conditions.  (D) These shifts are obtained by cross-correlating TRF100 signals 

obtained per condition in each subject. 
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possesses critical envelope information to reconstruct missing fragments of speech 

replaced by noise, but only when previously and repeatedly exposed to the missing 

speech. Results suggest that access and maintenance of a detailed representation of the 

stimulus, under a template format compatible with the acoustic envelope, is enabled by 

prior experience, which may also additionally speed up cortical processing time, and 

together, point to the generation of a time-locked neural activity pattern consistent with 

the expected but absent sensory input. These findings complement those from designs 

based on perceptual reports at the phonemic level (e.g. <200 ms), suggesting that acoustic 

delivery is not a necessary condition for spectrogram reconstructability when 

interpretation of a phoneme is actively ongoing through a noise [148], as long as the 

immediate acoustic context is present. These results imply that neural activity matching 

processes must rely on endogenous activity, possibly as top-down restorative 

modulations of auditory cortex populations [144], [145]. Our data is consistent with the 

notion that this activity can be influenced by prior learning and storage of speech 

information, at the level of its explicit temporal structure. Under this interpretation, 

enhanced listeners’ expectations about forthcoming speech tokens may predispose them 

to restorative encoding, but when contextual information is poor or insufficient, neural 

dynamics default to failure in predicting of the missing stimulus. Spontaneous neural 

background activity known to influence perceptual processing in general, includes the 

ability to entrain to a complex, natural signals such as speech [184], to optimize 

behavioral performance of detection tasks [185], or even robustness of an illusory 

experience [149].  

 



	
   84 

On the plausibility of auditory memory involvement 

Besides neural coding, adaptive capabilities of auditory cortical areas include analysis 

and storage of sound features relevance [186]. This process requires that memory traces 

be hold, in a format that is considered to develop from a low-level sensory code, held in 

register by up to 15 s, to categorical terms that are more efficient for storage over the long 

term [187]. While in sensory format, storage has been argued to assist in the ability to 

restore missing fragments of a sound source, e.g. as a internal replay of the fragment 

[188]; also, other potential perceptual effects of memory-based reactivations over 

auditory object representations, including attention, are an area of current research [189]–

[191].  

The auditory effect studied here can be considered to belong to the multimodal class of 

attractive temporal context effects [192], a group of facilitatory mechanisms including 

perceptual hysteresis [193], [194] and perceptual stabilization [195] effects in the vision 

literature. These are considered critical for improving invariance in the face of external 

demands imposed by discontinuously fluctuating, broadly cluttered environments. 

Conceptually, this group stands opposite to that of contrastive temporal context effects, 

which are mainly suppressive, habituation or fatigue-based biases that discount neural 

activity after repetitions, and effectively favor alternative perceptual manifolds for which 

neural activity has not yet been adapted [192], [194]. These may include semantic 

satiation effects, namely the subjective experience of increasingly meaningless words 

after fast and prolonged repeats [196], [197]. 

On access and format of stored auditory representations 
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Over repeated sound stimuli, attractive contextual effects may rely on forms of implicit 

auditory memory as they are considered to intervene regularly in sensory and perceptual 

encoding [198]. A clear example is the improved detection after sequential presentations 

of arbitrary noise structures, and its time-locked sensory potential covariates [199], [200]. 

Foreknowledge of acoustic features may adapt listeners to a likely communication 

source, as demonstrated by perceptual facilitation when advance notice about the identity 

of a forthcoming instrument play is given [201], and by preferential activation in auditory 

association areas specific to speaker familiarity [202]. The notion that higher expectations 

of a dynamic sound pattern influence the level of detail accessible in sensory 

representations, is supported by findings of differential activation in implicit memory 

tasks, with varying rates of sensory update: initially, short storage intervals may be 

associated with activation of posterior superior temporal lobe areas, and over time 

activity can be mediated by structures in inferior frontal cortex instead [203]. Evidence 

from these studies is consistent with the hypothesis of variable memory trace formats, 

where high temporal resolutions may be available for readout at sensory buffers, and 

coarser elsewhere at stores encoding for categorical higher-order input features(cf. [204], 

[205]). 

On the subjective conditions of listening in noise 

With regards to the cognitive state of listeners during masking, it is relevant to address 

whether the findings are consistent with conditions that normally lead to auditory 

imagery processes, which are (distinctly) analog to perceptual restoration phenomena. In 

masked circumstances, sensory imagery is postulated to involve ‘schemata’ or prior 

abstractions actively formed with perceptual input, better resolved with increased 



	
   86 

familiarity and which remain online while an expected stimulus fails to be presented 

[206]. For these purposes, auditory imagery is defined as the persistence of an auditory 

experience without prompting by direct sensory input [207]; the methodological 

implication is its existence is judged either directly by subjective reports, or indirectly by 

tasks and measures hypothesized to involve imagery with reasonable probability [206]. 

This latter approach comprises the study of conditions or stimuli that may automatically 

evoke auditory imagery, including substantial prior experience.  

Our findings suggest that among these indirect measures it is plausible to include 

perceptual coding principles of the missing envelope of natural. Behaviorally, it is 

consistent with findings that the prevalence of auditory imagery episodes depends on the 

level of familiarity with original sound pieces [208], in natural sound classes (e.g. speech 

versus music) [209]. Neurally, the planum temporale is a major computational hub for 

which activation levels may correlate with self-reported levels of engagement with 

imagery, or with perceived vividness by listeners [210]. While there is some agreement 

that imagery and rehearsal, a related process, of natural complex sounds may be 

subserved by auditory association cortex areas (see reviewed in [206]), evidence on 

similar activation at primary areas is mixed (cf. [211]). There is dual evidence on the 

format of representations sustained during active rehearsing, under both auditory-specific 

(sometimes termed ‘echoic memory’) and modality-general codes; these two types have 

been shown to occur each over distinct locations on superior temporal cortical areas, over 

distinct timescales as transient (<5 s) versus sustained phases respectively [209], [212]. 

Therefore, our data are consistent with a common theme in auditory retrieval processes 

for which task-relevant stimuli and/or features may rely on maintenance of (re)activated 
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domains within the sensory representational space [213]. This is also supported by 

findings of retrieval processes in vision and hearing that involve reactivation of sensory 

regions active during perception [214], something in addition found with auditory verbal 

imagery [215], [216] thus pointing to the notion that both involve overlapping processes 

[206]. 

On the low-level envelope representation during masking 

Our suggestion that a key structural property of natural sound encoding lies with the 

acoustic envelope representation, is compatible with preservation of a temporal coding 

scheme in auditory imagery based on prior experience as a necessary context. However, 

while formation of auditory ‘images’ may entail activity consistent with that elicited by 

original sound input [217], preservation of properties such as temporal acuity of original 

stimuli may be deteriorated under imagery depending on factors such as context and 

experience [218]. This finding was consistent with our relative effect sizes in the ability 

to reconstruct of missing speech, which disappeared for relatively novel stimuli. In this 

sense, frequent “refreshing” echoes the auditory memory reactivation hypothesis which 

states that storage of individual sound features occurs embedded in the context of 

neighboring patterns and sequences that can be representable by the auditory system as 

regularities. Reactivation is then the automatic process whereby variable sound input is 

matched to constancies extracted previously, and proximity between prior ‘rule’ and 

current ‘update’ tokens increases memory likelihood [205]. This description, originated 

from oddball sequence studies, has direct analogy in the present design because across 

verses, the ability to form regularities differs by uneven repetition rates, and therefore 

verse sequences may differentially reinstate prior constancies attained throughout the 
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session. In this interpretation, envelope features over speech preceding a masker serve as 

referents enabling translation of verse regularities, to be learned and represented over the 

course of the experiment, into specific values under the same feature format [205], as is 

the acoustic envelope. This does not preclude that additional stimulus features may likely 

be extracted and synthesized along the timing information represented in the envelope 

[219], including higher-order linguistic elements. The idea suggests that restorative 

processes may be inclusive of learning or storage strategies of linguistically-informative 

template in formats alternative formats to the envelope (e.g. [172]). Although outside the 

scope of this study, it is likely that mechanistic accounts of the restoration effect may 

invoke multiple levels of language analysis. The envelope correlates chiefly indicates 

timing of specifics phonemic utterances in natural speech [91], [220], with evidence for 

restoration pointing to adaptive use of their temporal cues in assisting real-time, natural 

listening conditions. 

On adaptive changes to envelope encoding 

The accompanying effect that cortical processing timelines were changed under the same 

circumstances that promoted restoration suggests that active, task-related endogenous 

changes may be present in order to optimize low-level envelope processing with relevant 

experience. Plausibly, ‘speeding up’ is related to increased excitability among 

populations normally active at the later stages of the immediately preceding processing 

step (presumably as shown by the TRF50 component). This may have a modulatory effect 

on the early low-level analysis stages (or be a consequence of facilitation already 

occurring there) – something that could help improve prediction over representational 

formats held by auditory areas. Determining conditions under which the acoustic 
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temporal envelope is relevant to initiating this endogenous process, may in the future 

result in the technical ability to provide real-time noninvasive indices of the subjective 

states by which a person maintains in register a template auditory pattern. Overall, the 

results manifest the brain’s ability to form a model of a speech scene, independently of 

feed-forward, bottom-up sensory information, but driven by expectations and learned 

experience in general [221]. It will be interesting to address whether this may assist in 

strategies for potential stimulation principles when seek to circumvent some derived 

auditory peripheral damage, as in prosthetic devices.  

  

 

 General methods 

Participants. 35 experimental subjects (19 women, 21.3 ± 2.9 years of age [mean ± SD]), 

with no history of neurological disorder or metal implants, participated in the study. Due 

to excessive artifact caused by misfit within the MEG helmet, data from an additional 

subject was not included. Each subject received monetary compensation proportional to 

the study duration (approximately 1.5 hours). Conduction of the experiment protocol was 

approved by the UMCP Institutional Review Board, and all experiments were performed 

in accordance with its relevant guidelines and regulations. Before each study session, 

informed written consent was obtained from participants. 

Stimuli and experimental design.	
  Sound stimuli were prepared with the MATLAB® 

software package (MathWorks, Natick, United States) at a sampling rate of 22.05 KHz, 

and consisted of a recorded poem (“A Visit from St. Nicholas”, Moore or Livingston, 

1823) from an online database (http://archive.org/details/AVisitFromSt.Nicholas-ByClementClarkeMoore-
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NarratedByGrantRaymond. All fourteen stanza (from now on, stimuli) in the poem were separated 

(see Appendix for materials) and silence gaps within each were reduced so as to be 

matched in duration (range: 13.1 – 13.6 s), and then presented into 4 blocks. For the first 

block, 64 stimuli were used by repeating several times those in the poem’s first half.  A 

‘High’ frequency stimulus was chosen by selected a stanza and repeating it for half of 

cases (32/64), and this was similarly done for another ‘Medium’ and ‘Low’ frequency 

stimuli, in a quarter and eighth of cases, respectively.  The remainder of the block was 

filled with ‘Control’ stimuli, namely the four remaining stanza presented either 1, 2 or 4 

times within the block. Stimuli were randomized in order and concatenated in time. For 

the second block the same procedure was followed using material from the second half of 

the poem. Blocks 3 and 4 consisted in the same stimuli used as in 1 and 2 respectively, 

but with randomized order again. The procedure was recreated de novo for each subject 

resulting in a total of 35 different stimulus sets of about 1 hour each in total duration. 

Importantly, the choice of stimuli at a given repetition level was titrated across 

participants, resulting in 7 groups of 5 listeners each that underwent the same ‘High’, 

‘Medium’, ‘Low’, and ‘Control’ stimuli selection.  

For each stimuli, 2–4 spectrally-matched (SM) noise probes of 800 ms duration each 

were applied at pseudo-random times with a minimum 2.5 s between probe onsets. Noise 

onset times were selected from a pool of values indicating syllable onsets times, as per 

the envelope rising slope maxima. An expected 768 noise probe samples were presented 

per experiment, and each was individually constructed by randomization of phase values 

across the specific frequency-domain phase information contained in the underlying 

speech stimulus occurring at the same time as the masker noise, yielding a noise with 
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equal spectral amplitude characteristics[222]. The original speech content occurring 

during the same time was removed and substituted by the respective SM noise, at a power 

signal level matching that in the clean original. Subjects listened to the speech sounds 

while watching a silent film to keep the participant engaged. To maintain their attention 

upon the auditory stimulus, after each probe, they were report via a button press whether 

they understood what the speaker meant to during noise. 

Data recording. We record responses to selected speech sequences by using MEG, a non-

invasive neuroimaging technique optimally retrieving neural activity from human cortex 

regions such as the auditory cortex on the temporal lobes. Such recordings may reflect 

direct entrainment to speech low frequency modulations, namely its acoustic energy 

envelope, with remarkable temporal resolution [25].  

 

Data processing.	
  Pre-­‐processing	
  and	
  sensor	
  rejection.	
  The	
  time	
  series	
  of	
  K	
  raw	
  

recordings	
   	
  from	
  the	
  MEG	
  sensor	
  array	
  (sampling	
  frequency	
  1	
  KHz)	
  will	
  be	
  

submitted	
  to	
  a	
  fast	
  implementation	
  of	
  independent	
  component	
  analysis	
  [223],	
  from	
  

which	
  two	
  independent	
  components	
  will	
  be	
  used	
  as	
  surrogate	
  reference	
  channels	
  

for	
  environment	
  noise	
  reduction	
  purposes.	
  Independent	
  components	
  will	
  be	
  

selected	
  if	
  they	
  contain	
  the	
  largest	
  proportion	
  of	
  broadband	
  (0-­‐500	
  Hz)	
  power;	
  this	
  

selection	
  will	
  be	
  done	
  by	
  finding	
  the	
  independent	
  component	
  yielding	
  the	
  most	
  

power	
  at	
  each	
  spectral	
  bin	
  (of	
  fixed	
  linear	
  size,	
  determined	
  by	
  dataset),	
  and	
  then	
  

computing	
  the	
  histogram	
  of	
  independent	
  components	
  that	
  most	
  frequently	
  

outnumbered	
  all	
  others	
  in	
  power	
  across	
  the	
  spectrum.	
  Because	
  spectral	
  bins	
  are	
  

linearly	
  spaced,	
  and	
  given	
  the	
  1/f	
  power	
  spectrum	
  of	
  typical	
  MEG	
  fluctuations,	
  this	
  

€ 

sk (t)



	
   92 

approach	
  weighs	
  favorably	
  unusual	
  components	
  that	
  consistently	
  show	
  extreme	
  

power	
  at	
  higher	
  frequencies.	
  

Environmental	
  noise	
  sources	
  arising	
  from	
  unwanted	
  electrical	
  signals	
  not	
  related	
  to	
  

brain	
  activity	
  of	
  interest	
  will	
  be	
  reduced	
  by	
  time-­‐shifted	
  principal	
  component	
  

analysis	
  (TS-­‐PCA).	
  This	
  technique	
  discards	
  environmental	
  sources	
  that	
  have	
  

dissimilar	
  convolutive	
  properties	
  when	
  they	
  mix	
  at	
  reference	
  sensors	
  in	
  the	
  EEG	
  

system,	
  in	
  contrast	
  with	
  the	
  convolutive	
  properties	
  of	
  sources	
  that	
  mix	
  at	
  the	
  data	
  

sensors	
  in	
  the	
  array[105].	
  Provided	
  that	
  reference	
  sensors	
  record	
  noise	
  and	
  no	
  

primary	
  sources	
  of	
  interest,	
  such	
  mismatch	
  is	
  exploited	
  as	
  a	
  basis	
  for	
  rejection:	
  

projections	
  of	
  recordings	
  from	
  the	
  brain	
  sensor	
  array	
  which	
  do	
  match	
  in	
  their	
  

convolutive	
  properties	
  with	
  those	
  from	
  reference	
  sensors	
  recordings	
  are	
  removed	
  

via	
  PCA.	
  We	
  set	
  TS-­‐PCA	
  parameters	
  to	
  N=200	
  taps	
  (equivalent	
  to	
  the	
  range	
  ±100	
  ms	
  

at	
  the	
  original	
  sampling	
  frequency),	
  and	
  regressor	
  principal	
  components	
  whose	
  

variance	
  amount	
  to	
  less	
  than	
  10-­‐6	
  times	
  that	
  of	
  the	
  first	
  component	
  will	
  discarded	
  as	
  

negligible	
  for	
  numerical	
  purposes.	
  This	
  combination	
  of	
  parameters	
  is	
  commensurate	
  

with	
  a	
  reduction	
  to	
  less	
  than	
  3%	
  of	
  residual	
  noise	
  for	
  a	
  simulation	
  with	
  three	
  

reference	
  sensors	
  in	
  a	
  MEG	
  system	
  [105].	
  Signal	
  delays	
  introduced	
  by	
  the	
  TS-­‐PCA	
  

procedure	
  will	
  be	
  corrected.	
  	
  

Sensor	
  noise.	
  Sensor-­‐specific	
  sources	
  of	
  unwanted	
  electrical	
  signals	
  unrelated	
  to	
  

brain	
  activity	
  of	
  interest	
  are	
  reduced	
  by	
  sensor	
  noise	
  suppression	
  (SNS).	
  We	
  

substitute	
  each	
  channel	
  recording	
  by	
  its	
  projection	
  formed	
  by	
  the	
  orthogonal	
  basis	
  

span	
  of	
  all	
  other	
  channels[107].	
  This	
  method	
  exploits	
  redundancy	
  from	
  a	
  dense	
  

array	
  -­‐where	
  the	
  number	
  of	
  sensors	
  exceeds	
  the	
  number	
  of	
  brain	
  sources-­‐	
  by	
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rejection	
  of	
  sensor-­‐specific	
  components	
  whose	
  presence	
  cannot	
  be	
  explained	
  by	
  the	
  

redundancy	
  manifold	
  laid	
  by	
  data	
  from	
  in	
  other	
  channels	
  –	
  potentially	
  including	
  

sensor-­‐specific	
  noise	
  from	
  those	
  channels	
  themselves.	
  Collectively,	
  this	
  separation	
  

does	
  not	
  necessarily	
  eliminate	
  all	
  sensor-­‐specific	
  noise,	
  since	
  at	
  each	
  substitution	
  it	
  

can	
  be	
  imported	
  from	
  other	
  sensors,	
  yet	
  this	
  may	
  promote	
  instances	
  where	
  such	
  

redistribution	
  will	
  add	
  these	
  components	
  in	
  incoherent	
  manner	
  and	
  thus	
  become	
  

attenuated	
  [108]	
  

Data analysis.	
  To	
  assess	
  low-­‐frequency	
  cortical	
  entrainment,	
  recordings	
  will	
  be	
  

band-­‐pass	
  filtered	
  between	
  1	
  and	
  8	
  Hz	
  with	
  an	
  order-­‐2	
  Butterworth	
  design,	
  

correcting	
  for	
  the	
  group	
  delay	
  created	
  by	
  the	
  filtering	
  procedure.	
  A	
  data-­‐driven	
  

spatial	
  filter	
  will	
  be	
  derived,	
  following	
  trial-­‐by-­‐trial	
  repeatability	
  as	
  the	
  basis	
  for	
  a	
  

source-­‐separation	
  model[108].	
  Spatial	
  filter	
  coefficients	
  from	
  the	
  most	
  reproducible	
  

signal	
  component	
  (i.e.	
  having	
  greatest	
  evoked-­‐to-­‐total	
  power	
  ratio)	
  in	
  individual	
  

subject	
  data,	
  as	
  obtained	
  by	
  denoising	
  source	
  separation,	
  will	
  be	
  applied	
  to	
  sensor	
  

data	
  as	
  a	
  weighted	
  sum	
  forming	
  the	
  resulting	
  virtual	
  MEG	
  output	
  channel.	
  	
  

𝑠!!"" = 𝑎!,!𝑠!(𝑡)
!

!!!

 

	
  

This approach effectively improves signal quality, and the data-driven virtual sensor 

distributions will be estimated based on recordings to clean speech epochs only. This will 

ensure that neural activity recorded during noise probes has been projected to the span 

determined by the neuromagnetic source that represents the most reproducible processing 

modes of the original speech template stimulus. 
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Stimulus reconstruction. The ability to reconstruct speech from MEG epochs will be 

assessed. Aside from the component described in equation M.1, sources from the next 

three top reproducible components will be obtained and submitted to a trained linear 

decoder estimation procedure (Figure 4), mapping from these sources back to original 

template stimulus. These components are considered reproducible signals in contrast with 

the bottom rank bottom components, which may serve as a reference devoid of stimulus-

related activity. In either case reconstruction produces a timeseries whose similarity with 

the original envelope was assessed via Pearson’s r correlation coefficient. These scores 

were contrasted, after reproducible (re) and, separately, reference (rf) response signals, for 

(1) reconstructions of clean speech from neural activity following clean speech; (2) 

reconstructions of clean speech from neural activity following noise. The referencing 

procedure was introduced to obtain a necessary baseline in decoding performance given 

that timeseries’ lengths varied across conditions as a result of the different repetition rates 

and verses involved, something that we observed may produce positive biases in r for 

shorter sequences, irrespectively of underlying relationship to the stimulus to be decoded. 

To compute absolute reconstruction effect sizes, each of the Pearson’s r pairs 

(reproducible versus reference activity) were transformed to Cohen’s q[224] indices by 

the transform  𝑞 = !
!
ln !!!!

!!!!
− ln !!!!

!!!!
.  Relative effect sizes were computed by the 

fraction q2/q1 of absolute effect sizes given the stimulus presentation conditions above.  

Temporal response function of stimulus representation. The input-output relation 

between a representation S(t) of auditory input and the evoked cortical response r t  is 

modeled by a temporal response function (TRF). This linear model is formulated as: 
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r!"#$ t = 𝑇𝑅𝐹 τ   𝑆(t− τ)
!

+ 𝜖 t  

where ε t  is the residual waveform, which is the contribution to the evoked response not 

explained by the linear system. As stimulus representation, the envelope was extracted by 

extraction of the instantaneous amplitude of each channel’s analytic representation via 

the Hilbert transform[225], their sampling rates were reduced to 1 KHz and transformed 

to dB-scale.  

Statistical analyses. For reconstructions, repeated measures ANOVA were run across all 

four levels: ‘Control’, and ‘Low’, ‘Medium’, and ‘High’ repetitions, in order to detect 

any differences between their related means overall. For temporal response functions, in 

each participant, activity related to the TRF100 component was obtained from the 100-

200 ms window and cross-correlations were performed on ‘Control’ versus all other 

repetition conditions. The resulting peak delays were submitted to a non-parametric one-

tailed two-sample Kolmogorov-Smirnov test for differences in the underlying delay 

populations. 
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Chapter V: Conclusions 

 

 

A cornerstone of human auditory cognition is the dynamic interplay between the sensory 

and perceptual bases of sound encoding, as performed by the auditory cortex – a key 

structure dedicated to analysis and inferences related to hearing. 

 

The study of each basis presents advantages and challenges. With regards to sensory 

encoding, access to a wealth of physiological characterizations about the stimulus-to-

response mapping will continue to provide invaluable means to establishing a biological 

basis for computation. However these means almost always involve non-human animal 

models, implying a relatively limited range of cognitive tasks available, especially those 

related to speech.  

 

On the perceptual side, incentives exist in attaining a comprehensive understanding of 

subjective states and of processes relating a human listener more efficiently to her 

environment. This because it is crucial information for pressing mental health issues and 

communication disorders. Yet, assessments of “inner experience” can be problematic, as 

it involves activity difficult to tag in time and can be prone to intractable amounts of 

variability between subjects. 

 

This series of projects addressed these issues in part. First, the studies present a 

framework where analysis and representation of basic versus complex sound encoding 

models are, at the cortical level, substantially closer than previously assumed. Findings of 

regions where models overlap suggest a means to extract sensory, domain-general 

processing stages. Such models may also mirror the structure of encoding models derived 

across animal models in the electrophysiology literature. Therefore, an avenue for further 

biologically-informed hypotheses to enter neuroimaging research lies ahead in exploiting 

their joint accessibility to models of spectrotemporal coding. 
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Second, access to subjective information can be addressed by approaching perceptual 

coding models, which posit more several alternatives in representing the same stimulus. 

Across this manifold, the search for a neural representation closest to the receiver’s 

experience can be reduced for instance by setting up a sensory context that suggests what 

to expect and when. This tactic is compatible with the study of perceptual restoration 

phenomena, a set of strategies to fill-in missed information. In these conditions, 

temporally-patterned rhythmic sounds were found to be represented by auditory cortex 

also in to cases when they are only perceived to be so but indeed physically absent. This 

implies a means of access to endogenous, dynamic perceptual representations following 

the subjective experience of sound.  

 

Last, in realistic conditions natural speech sounds are sometimes clear and predictable, 

and by times ambiguous or uncertain. Dual sensory and perceptual coding mechanisms 

may aid to sustain stable hearing in the face of disruptions unrelated to our acoustic 

interactions; one such way is to speed up auditory cortical processing when conditions 

allow to infer from prior knowledge what occurs next, and to possibly invest that gain at 

later instances where uncertainty demands further explorations through the tree of 

perceptual possibilities. There is now evidence that adaptive modifications to the sensory 

coding model, in the form of cortical processing time facilitation, may stem from 

comprehensive knowledge about the speech sequence being listened to. The finding is 

accompanied, from a perceptual coding perspective, by the increased likelihood for 

restoration of prolonged missed speech sounds encoded in cortical activity. Overall, the 

results demonstrate how sensory and/or perceptual coding approaches may further 

expand enquiry windows about a listener’s personal experience of the communication-

rich soundscape. 
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Appendix A 

Supplemental information for “Functional significance of spectro-temporal 

response functions obtained using magnetoencephalography” 

Relevant data are available in a public repository accessible at 

http://hdl.handle.net/1903/19601	
  

 

 

Supplementary Fig 1. Example of equivalence between standard evoked potentials 

and temporal response function components.  (A) Complete MEG sensor dataset from 

a representative subject (R1946) following tone delivery shows a typical ‘butterfly plot’ 

waveform pattern, when the data are processed as standard evoked potential (bandpass 

filter 1-15 Hz, averaging, and baseline correction, top). The standardized root mean 

square (RMS) of the sensor array reveals close similarity to the absolute value of the 

sparser temporal response function obtained for this subject via reverse correlation. (B) 

Representa)ve+MEG+waveform,+all+channels+

Representa)ve+MEG+waveform+RMS+versus+absolute+TRF+

Group+MEG+waveform+RMS+versus+absolute+TRF+

A"

B"
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Consistency of the TRF with the classic RMS is also apparent at the group level (N=15), 

albeit at improved contrast by means of both spatial filtering and cross-validated 

predictive model techniques across participants. 

 

 

Supplementary Fig 2. Stimulus	
  	
  and	
  transfer	
  functions	
  differences	
  across	
  

stimulus	
  classes.	
  (A)	
  Differences	
  in	
  distributions	
  of	
  envelope	
  and	
  envelope	
  onset	
  

representations.  When represented by their envelope, stimuli have distributions	
  that	
  

show	
  variable	
  spread	
  over	
  different	
  classes,	
  as	
  a	
  consequence	
  of	
  their	
  different	
  

statistical	
  structure. The	
  envelope-­‐onset	
  procedure	
  reduces	
  its	
  extent	
  by	
  

referencing	
  rises	
  in	
  acoustic	
  energy	
  to	
  its	
  immediate	
  preceding	
  context,	
  increasing	
  

the	
  similarity	
  among	
  stimuli	
  classes. (B) Differences in transfer function delay 

distributions. Average group latencies of the STRF50 and STRF100 components across the 

random multitone pattern (N=15), speech (N=12), and music processing (N=15) datasets 

shown. Across the three studies, lower frequencies entail longer delays. Dense multitone 

A"

B"



	
   100 

patterns entail longer delays (sparse: 2 tones per second, dense: 10 tones per second). For 

speech, envelope (thick red) and envelope onset (thin red) representations exhibit a 

relative delay that is greatest at the early STRF50 but reduces for STRF100. Error bars 

indicate the standard error of the mean. Music shows the longest delays, although a 

subject group confound cannot be ruled out therefore absolute value comparisons across 

studies are for reference only. 

 

Supplementary Fig 3. Models of subject temporal response function principal peaks. 

(A) TRFs from the same subject display the timing of principal activity related to 

different stimulus features and classes, some of which are consistent with exponential 

growth/decay models. Processing timescales differ according to both stimulus feature and 

class being modeled. (B) Within the first 200 ms following both tone and speech stimulus 

onsets, early and late peak deflections of the neuromagnetic signal may be described as 

transient exponential decay/growth curves (cf. Fig 3C) for the one subject in which both 

stimuli were tested. Top: Following tone onsets, both deflections were fit by exponential 

models, achieving time constant estimates at high goodness of fit values (TRF50: τ=3.1 

A"

B"

C"

Representa)ve+temporal+response+func)ons+

Mul)tone+peaks+from+representa)ve+

Speech+peaks+from+representa)ve+

TRF50+

TRF100+

TRF50+

TRF50+

TRF100+

TRF100+
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ms with 2.8-3.4 ms CI-95%; R2=0.989; TRF100: τ=3.5 ms with 3.2-3.8 ms CI-95%; 

R2=0.988). Bottom: Analog cortical activity described by the TRF and signal envelope 

from natural speech reveals expanded and similar temporal processing windows at early 

and late latencies respectively (TRF50: τ=6.2 ms; 5.0-8.2 ms CI-95%; R2=0.892; TRF100: 

τ=2.6 ms; 2.3-3.1 ms CI-95%; R2=0.967). 

 

 

Supplementary Fig 4. Representation format transformed from early to mid latency 

speech processing at individual level. In single subjects, TRF components were timed 

differently for the speech envelope and envelope onset representations, as indicated by 

grey lines. The difference between early stage components (left) was about 43 ms, which 

aligns with the average delay (black) between maxima in the representations. Individual 

response functions showed a considerably reduced delay at mid latency stage (after 100 

ms, right), thus suggesting a transformation to the acoustic envelope-based representation 

by this time.  
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Supplementary Fig 5. Addition of static nonlinearity to multitone response 

properties.  As intrinsic nonlinear response features may be potentially precluded by 

linear analysis, a static nonlinearity was estimated given the MEG response and response 

prediction by the linear STRF model approximation (data as in Fig 1B). The STRF 

prediction timeseries was binned according to its magnitude range (values normalized), 

and an average computed across all values in the MEG response timeseries that map to 

each bin. Although the graphical procedure produces an accelerating function of the 

linear contribution of improved goodness of fit over the linear prediction (R2=0.972 

quadratic; R2=0.940 linear), cascading the linear prediction with this function marginally 

improves power explained by a <1.5% margin, suggesting that the linear portion accounts 

sufficiently for the original model’s predictive power. 
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Appendix B 

Supplemental information for “Dynamic cortical representation of perceptual 

filling-in of missing acoustic rhythm” 

	
  
Supplementary Fig 1. Spatial filters associated with auditory steady-state responses. 

Spatial filters were obtained from participant datasets using responses from the unmasked 
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acoustic pulse train only; the magnetic field distribution corresponding to that filter is 

displayed for each subject (N=35). The procedure constructs a fixed virtual MEG sensor 

on the basis of the most reproducible component of each participant’s aSSR; neural 

dynamics during noise probes are investigated using this virtual sensor. The large 

majority of the field distributions are consistent with MEG evoked potentials originating 

from bilateral auditory cortex. The distribution from the representative subject in Fig. 1 is 

highlighted. Units are in z-scores.	
  

	
  
	
  
	
  

	
   	
  
Supplementary Fig 2. Neural representations of a rhythmic pattern embedded in 

noise. (a) Representative stimulus-locked neural activity as measured by virtual MEG 

sensor. After a transient noise-onset response, the acoustic presence of a rhythmic pattern 

(top) may elicit an auditory steady-state response (aSSR) weaker in magnitude relative to 

baseline levels; (bottom) the acoustic absence of the target rhythmic pattern entails a 

similar noise-specific onset response, but an apparent lack of the aSSR depending on 

perception. (b) Median data across subjects with color convention as in as in (A); grey 

indicates individual subjects. 
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Supplementary Fig 3. No systematic acoustic influence of ambiguous perception of 

stimuli. (a) Spectral analysis of all rhythmic [respectively, non-rhythmic] noise probes in 

the experiment, shows that as per stimuli design, spectral content in probes appears 

virtually identical regardless of a listener’s posterior report on their rhythmic [non-

rhythmic] content. Spectra predominantly feature the 1024 Hz tone carrier, and FM 

interactions where expected (color code in (B)). (b) To assess for unforeseen random 

temporal modulations appearing systematically in the probe distributions, each probe trial 

was cross-correlated with a stimulus segment consisting of the basic pulse train without 

noise. 5 Hz modulations in the cross-correlation envelope are observed only when the 

pulse train was present were expected (i.e. rhythmic probes), because signal similarity 

peaks at periodic lags. Between identical-acoustics probe partitions, tests for pairwise 

differences with mean different than zero were rejected (paired-sample t-tests; rhythmic 

versus missed, p=0.85; filling-in versus absent, p=0.84). 
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Appendix C 

Supplemental information for “Prior knowledge influences cortical latency and 

fidelity of the neural representation of missing speech” 

	
  
	
  
’Twas the night before Christmas, when all through the 
house 
not a creature was stirring, not even a mouse. 
The stockings were hung by the chimney with care, 
in hopes that St. Nicholas soon would be there.  
 
 
The children were nestled all snug in their beds, 
while visions of sugar plums danced in their heads. 
And Mama in her 'kerchief, and I in my cap, 
had just settled our brains for a long winter's nap.  
 
 
When out on the lawn there arose such a clatter, 
I sprang from my bed to see what was the matter. 
Away to the window I flew like a flash, 
tore open the shutter, and threw up the sash.  
 
 
The moon on the breast of the new-fallen snow 
gave the lustre of midday to objects below, 
when, what to my wondering eyes should appear, 
but a miniature sleigh and eight tiny reindeer.  
 
 
With a little old driver, so lively and quick, 
I knew in a moment it must be St. Nick. 
More rapid than eagles, his coursers they came, 
and he whistled and shouted and called them by name.  
 
 
“Now Dasher! Now Dancer! Now, Prancer and Vixen! 
On, Comet! On, Cupid! On, Donner and Blitzen! 
To the top of the porch! To the top of the wall! 
Now dash away! Dash away! Dash away all!"  
 
 
As dry leaves that before the wild hurricane fly, 
when they meet with an obstacle, mount to the sky 
so up to the house-top the coursers they flew, 
with the sleigh full of toys, and St. Nicholas too.  

 
And then, in a twinkling, I heard on the roof 
the prancing and pawing of each little hoof. 
As I drew in my head and was turning around, 
down the chimney St. Nicholas came with a bound.  
 
He was dressed all in fur, from his head to his foot, 
and his clothes were all tarnished with ashes and soot. 
A bundle of toys he had flung on his back, 
and he looked like a peddler just opening his pack.  
 
 
His eyes--how they twinkled! His dimples, how merry! 
His cheeks were like roses, his nose like a cherry! 
His droll little mouth was drawn up like a bow, 
and the beard on his chin was as white as the snow. 
 
 
The stump of a pipe he held tight in his teeth, 
and the smoke it encircled his head like a wreath. 
He had a broad face and a little round belly, 
that shook when he laughed, like a bowl full of jelly.  
 
 
He was chubby and plump, a right jolly old elf, 
and I laughed when I saw him, in spite of myself. 
A wink of his eye and a twist of his head 
soon gave me to know I had nothing to dread.  
 
 
He spoke not a word, but went straight to his work, 
and filled all the stockings, then turned with a jerk. 
And laying his finger aside of his nose, 
and giving a nod, up the chimney he rose.  
 
 
He sprang to his sleigh, to his team gave a whistle, 
And away they all flew like the down of a thistle.  
But I heard him exclaim, 'ere he drove out of sight, 
"Happy Christmas to all, and to all a good night!" 
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