
ABSTRACT

Title of dissertation: A LATENT VARIABLE MODELING
FRAMEWORK FOR ANALYZING
NEURAL POPULATION ACTIVITY

Matthew R. Whiteway
Doctor of Philosophy, 2018

Dissertation directed by: Professor Daniel A. Butts
Department of Biology

Neuroscience is entering the age of big data, due to technological advances in

electrical and optical recording techniques. Where historically neuroscientists have

only been able to record activity from single neurons at a time, recent advances

allow the measurement of activity from multiple neurons simultaneously. In fact, this

advancement follows a Moore’s Law-style trend, where the number of simultaneously

recorded neurons more than doubles every seven years, and it is now common to see

simultaneous recordings from hundreds and even thousands of neurons.

The consequences of this data revolution for our understanding of brain struc-

ture and function cannot be understated. Not only is there opportunity to address

old questions in new ways, but more importantly these experimental techniques will

allow neuroscientists to address new questions entirely. However, addressing these

questions successfully requires the development of a wide range of new data anal-

ysis tools. Many of these tools will draw on recent advances in machine learning

and statistics, and in particular there has been a push to develop methods that can

accurately model the statistical structure of high-dimensional neural activity.

In this dissertation I develop a latent variable modeling framework for analyz-

ing such high-dimensional neural data. First, I demonstrate how this framework can

be used in an unsupervised fashion as an exploratory tool for large datasets. Next, I

extend this framework to incorporate nonlinearities in two distinct ways, and show

that the resulting models far outperform standard linear models at capturing the

structure of neural activity. Finally, I use this framework to develop a new algorithm

for decoding neural activity, and use this as a tool to address questions about how

information is represented in populations of neurons.

A LATENT VARIABLE MODELING FRAMEWORK FOR
ANALYZING NEURAL POPULATION ACTIVITY

by

Matthew R. Whiteway

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Professor Daniel Butts, Chair
Professor Wojciech Czaja
Professor Radu Balan
Professor Behtash Babadi
Professor James Reggia

c© Copyright by
Matthew R. Whiteway

2018

Acknowledgments

This dissertation represents a collaborative effort between myself and many

others, most notably my advisor Daniel Butts (DAB). I wrote the introduction and

conclusion chapters, and the three main chapters (chapters 2-4) are adapted from

published work or work that is in preparation for publication.

Chapter 2 presents a mathematical framework developed by myself and DAB.

I thank the Svoboda Lab for making their data publicly available, the Collaborative

Research in Computational Neuroscience (CRCNS) program for hosting the data,

and the University of Maryland’s Center for Comparative and Evolutionary Biology

of Hearing training grant DC-00046 for funding support.

Chapter 3 resulted from a collaboration with Karolina Socha (KS) and Vin-

cent Bonin (VB) of Neuro-Electronics Research Flanders in Belgium. KS and VB

designed and conducted the experiments; myself and DAB developed the model. I

also thank the Kohn Lab for making their data publicly available, and again thank

CRCNS for hosting the data. This work was supported by the National Science

Foundation (NSF) grant IIS-1350990.

Chapter 4 resulted from a collaboration with Ramon Bartolo (RB) and Bruno

Averbeck (BA) of the National Institute of Mental Health. RB and BA designed

and conducted the experiments; myself and DAB developed the model. Again, I

thank the Kohn Lab and CRCNS for their efforts in supporting open-source data,

and I acknowledge the University of Maryland supercomputing resources (http://

hpcc.umd.edu) made available for conducting the research reported in this chapter.

This work was supported by the NSF grant IIS-1350990.

ii

http://hpcc.umd.edu
http://hpcc.umd.edu

Table of Contents

Acknowledgements ii

List of Tables vi

List of Figures vii

List of Abbreviations ix

1 Introduction 1
1.1 Overview . 1
1.2 The biological neuron: basic anatomy and physiology 5
1.3 Data acquisition methods . 6

1.3.1 Extracellular recordings . 7
1.3.2 Two-photon imaging . 8

1.4 Statistical models of single neurons 10
1.4.1 Linear models . 12
1.4.2 Generalized linear models . 16
1.4.3 Hierarchical models . 18
1.4.4 Regularization . 22
1.4.5 Evaluating model performance 24

1.5 Variability in single neuron responses 25
1.5.1 Noise correlations . 27
1.5.2 Global fluctuations . 29

1.6 Latent variable models of neural populations 30
1.6.1 Linear factor model framework 33
1.6.2 Factor Analysis . 36
1.6.3 Principal Component Analysis 37
1.6.4 Independent Component Analysis 39
1.6.5 Autoencoders . 41

iii

2 The Rectified Latent Variable Model (RLVM) 45
2.1 Introduction . 45
2.2 Results . 48

2.2.1 Model formulation . 48
2.2.2 Validation of the RLVM using simulated data 52
2.2.3 Application of the RLVM to two-photon experiments 61

2.3 Discussion . 71
2.3.1 Relationships to other latent variable models 74
2.3.2 Model extensions . 77

2.4 Methods . 80
2.4.1 Fitting the RLVM . 80
2.4.2 Model fitting details . 89
2.4.3 Evaluating model performance 90
2.4.4 Simulated data generation . 93
2.4.5 Experimental data . 94

3 The Generalized Affine Model (GAM) 99
3.1 Introduction . 99
3.2 Results . 102

3.2.1 The unconstrained affine model outperforms constrained version102
3.2.2 Affine model recapitulates results of previous models 105
3.2.3 LGN activity in awake mice is additive and multiplicative . . 110
3.2.4 Is the affine model a good description of early visual responses?112

3.3 Discussion . 116
3.4 Methods . 119

3.4.1 Experimental data . 119
3.4.2 The Generalized Affine Model 120
3.4.3 The Stacked Rectified Latent Variable Model (SRLVM) 124
3.4.4 Evaluating model performance 126

4 The Latent Variable (LV) Decoder 127
4.1 Introduction . 127
4.2 Results . 129

4.2.1 Describing noise correlations with latent variables 129
4.2.2 Decoding in the presence of latent variables 132
4.2.3 Validating the LV decoder with simulated data 134
4.2.4 Decoding PFC activity during decision-making 138
4.2.5 Decoding V1 activity during passive viewing 142

4.3 Discussion . 145
4.3.1 Information-limiting noise correlations 146
4.3.2 Non-information-limiting noise correlations 147
4.3.3 Limitations of the study . 149

4.4 Methods . 150
4.4.1 The LV decoder . 150
4.4.2 Training and evaluating decoders 154

iv

4.4.3 Simulated data generation . 160
4.4.4 Experimental data . 161

4.5 Appendix: Single latent variable example 164

5 Conclusions 170
5.1 Latent variable models for neuroscience 170
5.2 The role of feedback in perception . 172
5.3 Understanding the brain . 176

Bibliography 179

v

List of Tables

2.1 Experimental selection . 96

3.1 Correlation between affine model coupling weights and tuning properties107

4.1 Information saturation estimates are affected by estimators and data
limitations . 140

4.2 Simulated data details . 161

vi

List of Figures

1.1 The spatiotemporal scales of data acquisition in neuroscience 2
1.2 Exponential growth in number of simultaneously recorded neurons . . 4
1.3 Diagram of a neuron . 5
1.4 Models of early visual processing . 19
1.5 Signal and noise correlations . 28
1.6 The linear factor model . 33
1.7 The autoencoder neural network . 42

2.1 RLVM structure . 49
2.2 Comparisons between latent variable methods applied to simulated

data . 57
2.3 Performance of latent variable methods across a range of simulations 60
2.4 Latent variable methods applied to a two-photon imaging data set

recorded in mouse barrel cortex . 63
2.5 Relationship of latent variables inferred by the RLVM to experimen-

tally observed trial variables . 65
2.6 Latent variables inferred by PCA and a linear RLVM show a weaker

relationship to individual trial variables 68
2.7 Consistent classifications of latent variables detected across experiments 70
2.8 Sensitivity analysis of the autoencoder using simulated data 72
2.9 Linear scaling properties of the autoencoder 73
2.10 Using the RLVM for spiking data . 79
2.11 Effect of weight-tying using simulated data 89

3.1 The unconstrained affine model . 102
3.2 Unconstrained affine model performance on V1 data 106
3.3 Coupling to latent variables is uncorrelated with tuning properties . . 108
3.4 Effects of additive and multiplicative latent variables are negatively

correlated . 109
3.5 Unconstrained affine model performance on LGN data 111
3.6 Latent variables predict LGN responses better than experimental ob-

servables . 113

vii

3.7 Generalized affine model performance on V1 and LGN data 115
3.8 Structure of the Generalized Affine Model 121
3.9 Comparison of SRLVM initializers . 125

4.1 Using latent variables to decode stimulus identity from neural popu-
lation activity . 130

4.2 Linear and Nonlinear LV decoder performance on simulated data . . 136
4.3 Linear LV decoder extracts more information than standard linear

decoders . 139
4.4 Nonlinear LV decoder extracts more information than linear decoders

with sufficient data . 142
4.5 LV decoder performance on V1 dataset 144
4.6 Outline of LV decoding algorithm . 152
4.7 Comparison of estimators for the single latent variable model 167
4.8 Comparison of decoders on simulated data 168

5.1 Necker Cube illusion . 173

viii

List of Abbreviations

CNN Convolutional Neural Network

dPCA Demixed Prinicipal Component Analysis

EM Expectation Maximization

FA Factor Analysis

GAM Generalized Affine Model
GLM Generalized Linear Model
GPFA Gaussian Process Factor Analysis

ICA Independent Component Analysis
i.i.d. independent and identically distributed

L-BFGS Limited-Memory Broyden-Fletcher-Goldfarb-Shanno
LFP Local Field Potential
LGN Lateral Geniculate Nucleus
LN Linear-Nonlinear
LS Least Squares
LV Latent Variable

MAP Maximum A Posteriori
MLE Maximum Likelihood Estimate
MML Maximum Marginal Likelihood

PCA Principal Component Analysis
PFC Prefrontal Cortex
PPCA Probabilistic Principal Component Analysis
PSTH Peri-Stimulus Time Histogram

RLVM Rectified Latent Variable Model
ROI Region Of Interest

S1 Primary Somatosensory Cortex
SRLVM Stacked Rectified Latent Variable Model
STA Spike-Triggered Average

V1 Primary Visual Cortex

ix

Chapter 1: Introduction

1.1 Overview

Progress in our understanding of brain function has historically been limited

by the difficulty of measuring the chemical and electrical processes that support neu-

ral activity. Over the previous few decades, remarkable technological progress has

provided researchers with new tools for probing this activity across a wide range of

spatial and temporal scales (figure 1.1). Data collected from these different modal-

ities are beginning to offer insights into the complex computations that underlie

neural functions as diverse as sensory processing, memory formation and retrieval,

decision-making and motor control.

In this dissertation I analyze such data to address questions about how sen-

sory processing is affected by internally-generated signals that are not under direct

experimental control. The ability to address these questions relies on the aforemen-

tioned advances in data acquistion, as well as a broader paradigm shift in the design

and execution of neurophysiology experiments.

In classic neurophysiology experiments in sensory systems (e.g. [2]), experi-

menters record activity from single neurons, in anesthetized animals, in response to

simple stimuli (such as oriented bars and gratings in the visual domain). This exper-

1

Figure 1.1: The spatiotemporal scales of data acquisition in neuroscience.
A variety of recording modalities exist to probe neural function at a range of scales,
many of which have only recently been developed. Figure from [1].

imental paradigm has persisted for many decades, and continues to enjoy widespread

use. Remarkably, most of our understanding of sensory system function is derived

from this highly simplified setting. However, this paradigm is ultimately limited

in its ability to reveal the true underpinnings of neural function for multiple rea-

sons. First, single neurons do not act independently (see section 1.5), and thus can

only give limited insight into how populations of neurons perform relevant computa-

tions [3]. Second, anesthesia both artificially alters neural activity [4] and precludes

any behavioral component to the experiment. Thus, the anesthetized preparation

does not allow experimenters to make inferences about the relationship between sen-

sory stimuli and behavior, which remains one of the fundamental open questions for

systems neuroscience. Finally, artificial stimuli do not contain the complex statis-

2

tics of the natural stimuli that sensory systems evolved to process, which limits the

scope of the conclusions drawn from these experiments (though see [5, 6]).

Modern neurophysiology experiments seek to replace one or more of these pil-

lars of the classical paradigm to enable our understanding of neural function in more

ethologically-relevant settings. Experimenters can now record neural activity from

awake and behaving animals in response to natural (or at least more statistically

complex) stimuli. Of particular importance to the work in this dissertation is the

recently-developed ability to record activity from multiple neurons simultaneously,

an ability that is growing at an exponential pace [7] (figure 1.2). Indeed, even the

rate of this exponential growth is an underestimate; in chapter 4, I analyze high-

quality electrophysiological data from 715 simultaneously recorded neurons, which

figure 1.2 would predict possible in the year 2030.

As the field of neuroscience continues to enjoy these experimental advances,

the computational tools available to analyze the resulting data remain underdevel-

oped. This creates an exciting opportunity for the development of new data analysis

tools to uncover relevant structure in neural activity. In this dissertation I present a

statistical framework for analzying such data, which finds a small number of dimen-

sions, or latent variables, that compactly describe the high-dimensional population

activity. In chapter 2, I develop the Rectified Latent Variable Model (RLVM) as a

dimensionality reduction tool, and demonstrate how a linear version of this model is

superior to related methods like Principal Component Analysis and Factor Analysis

for understanding which aspects of the task affect neural population activity. In

chapter 3, I extend the RLVM framework to develop two nonlinear latent variable

3

Figure 1.2: Exponential growth in number of simultaneously recorded
neurons. A: The number of neurons that can be simultaneously recorded at the
resolution of individual neurons (unlike the aggregate activity recorded by technol-
ogy such as functional MRI) has been exponentially increasing over the span of
several decades, doubling approximately every 7 years. B: A timeline of the record-
ing technologies that have enabled this increase, which are discussed in section 1.3.
Figure from [7].

models, the Generalized Affine Model (GAM) and Stacked RLVM (SRLVM), which

are able to capture the structure of neural activity with far fewer latent variables

than their linear counterparts. Finally, in chapter 4, I use this framework to de-

velop a new decoding algorithm, and use it to address open questions about how

information is represented in populations of neurons. The remainder of this intro-

ductory chapter reviews the statistical modeling work that has been developed over

the previous decades to analyze both single neurons and populations of neurons,

as well as the relevant concepts from neuroscience. This review will point out the

limitations of these models when used to analyze neural data, in order to motivate

the modeling framework developed in this dissertation.

4

Figure 1.3: Diagram of a neuron. Electrical activity is generated in re-
sponse to a neuron’s inputs that arrive in the dendrites, and these signals are
combined in the cell body (soma) and propagated down the axon to the axon
terminals. This signal is then transmitted to the dendrites of other neurons
through chemical or electrical connections (synapses). This image is licensed un-
der the Creative Commons Attribution-Share Alike 3.0 Unported license, https:
//commons.wikimedia.org/wiki/File:Neuron.svg

1.2 The biological neuron: basic anatomy and physiology

A neuron is a specialized cell that is capable of rapidly transmitting informa-

tion over long distances through electrical signals [8]. Though many morphological

variations exist, all neurons share three main anatomical features: dendrites, the

cell body (soma), and the axon (figure 1.3). Furthermore, most neurons process in-

put signals in approximately the same manner. Biochemical mechanisms maintain

a negative electrical potential across the cell membrane relative to the extracellular

environment. Dendrites receive time-varying input from other neurons or through

external signals from the environment, and these inputs act to either decrease (hy-

perpolarize) the membrane potential or increase (depolarize) the membrane poten-

tial. The soma then integrates the currents across all dendrites. If the resulting

5

https://commons.wikimedia.org/wiki/File:Neuron.svg
https://commons.wikimedia.org/wiki/File:Neuron.svg

membrane potential in the soma is sufficiently depolarized to a threshold value, the

neuron generates a pulse of electrical activity called an action potential or spike.

This action potential, which has an average duration of approximately 0.1 millisec-

onds, is propagated down the axon to the axon terminals, where it is transmitted

to downstream neurons through electrical or chemical means at connections with

other dendrites called synapses. Although action potential characteristics like wave-

form, amplitude and duration can vary among neurons, for any given neuron action

potentials are highly stereotyped events [8], which is critical for the tractability of

many models of neural activity.

1.3 Data acquisition methods

Though various technologies exist for recording neural activity, here I briefly

introduce the two methods used to collect the data analyzed in this dissertation:

extracellular recordings (chapters 3 and 4) and two-photon imaging (chapters 2 and

3). Both of these methods capture the activity of individual neurons. However, they

are also invasive techniques, and have rarely been used in humans. These methods

are complemented by noninvasive methods like functional magnetic resonance imag-

ing (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG),

which capture signals produced by the aggregate activity of large groups (∼1000s)

of neurons (figure 1.1). fMRI, EEG and MEG can thus be used to record neural

activity from human subjects, but at the expense of individual-neuron resolution.

6

1.3.1 Extracellular recordings

Extracellular recording is a popular data acquisition method that has been

available for many decades (see figure 1.2B). An electrode is inserted into neural

tissue (either in vitro or in vivo) near a neuron, but does not penetrate the cell

membrane. Action potentials generate local changes in the electrical potential of the

extracellular medium (relative to a reference electrode), which are recorded by the

inserted electrode at a high sampling rate, often 10-30 samples per millisecond [9].

Intracellular recording, in which the electrode does penetrate the cell membrane, is

also a useful experimental technique, but one that does not scale easily to recording

from multiple neurons (and also requires a different type of electrode).

Typical extracellular recordings may pick up signals from multiple nearby neu-

rons. In this case the resulting signals must be spike sorted, where spikes are assigned

to individual neurons based on differing characteristics of the waveform shape, which

are due to the differing orientations and distances between the recorded neurons and

the electrode. Spike sorting maybe be performed in real time during the experiment

or more accurately afterwards, and a host of open source and proprietary software

exists for this preprocessing step.

In recent years, experimentalists have been able to steadily increase the number

of neurons that can be simultaneously recorded by placing multiple electrodes on a

single shank (multi-electrodes; polytrodes) or by placing multiple, single-electrode

shanks on a single device (Utah array; Neuropixels [10]) (figure 1.2). This ability is

crucial for understanding how the complex interactions between many neurons give

7

rise to neural function. In particular, the work in this disseratation relies on these

large population recordings to study the role of variability in neural information

processing, which is not possible with recordings from only one or a few neurons

(section 1.5).

1.3.2 Two-photon imaging

Two-photon imaging is a recently developed data acquisition method that can

simultaneously record the activity of thousands of individually-resolved neurons (see

chapter 2).

A calcium indicator (such as GCaMP6s) is expressed by targeted neuron types

in the model animal (most often mouse) using viral transduction or genetic tools.

These calcium indicators are fluorescent proteins with a highly tuned absorption

spectrum. This absorption spectrum changes upon binding with calcium (Ca2+)

ions, which enter the cell as part of the action potential generation process.

Photons from a laser can then elicit a fluorescence signal from the sample,

which is typically a plane of neural tissue up to a millimeter beneath the surface

of the brain (see figure 2.4 for a representative imaging plane). Importantly, the

wavelength of the laser is tuned so that the energy of a single photon is half the en-

ergy required to evoke fluorescence; the calcium indicator must absorb two photons

in order to emit a fluorescence photon. The probability of the calcium indicator

simultaneously absorbing two photons is extremely small outside of the laser’s focal

point, resulting in very high spatial precision (on the order of microns). The fluo-

8

rescence signal is then captured by a detector, and constitutes a single pixel in the

resulting image. The laser can be repeatedly scanned across the sample to produce

7-30 images per second.

Because the calcium indicators are designed to only fluoresce in the presence

of Ca2+ ions, neurons will usually fluoresce when they generate an action potential.

The duration of an action potential is on the order of 0.1 millisecond; however,

the resulting fluorescence signal has a slow decay constant on the order of hun-

dreds of milliseconds. This characteristic of two-photon imaging leads to relatively

poor temporal resolution, and inferring spiking activity from these time series, a

process called spike inference, has been the focus of much effort [11–15]. Typical

post-processing of two-photon imaging experiments thus involves the extraction of

fluorescence time series of individual neurons from stacks of two-dimensional images,

followed by an optional spike inference step.

Despite its poor temporal resolution, two-photon imaging has become a pop-

ular tool for recording the activity of large populations of neurons. It is able to

scale much better than electrophysiology, with a recent experiment imaging ∼10000

neurons simultaneously [13]. It is also becoming increasingly easy to integrate two-

photon imaging with optogenetic stimulation, so that neurons can be directly stim-

ulated based on their previous activity [16]. This ability to perform closed-loop

experiments in vivo will open the door to many new experimental paradigms in

neuroscience, as well as new analysis challenges.

9

1.4 Statistical models of single neurons

Mathematical descriptions of the neural activity recorded using electrophysi-

ology or optophysiology typically take one of two forms, depending on the compu-

tational question of interest. The neural encoding problem is concerned with how

to predict patterns of neural activity that arise through experimental manipulation

of an external stimulus (a regression problem), which is addressed with the mod-

els developed in chapters 2 and 3. The neural decoding problem is concerned with

the opposite question - how to predict a discrete external stimulus using patterns

of neural activity (a classification problem), which is addressed with the decoding

algorithm developed in chapter 4.

Both the neural encoding and decoding problems are typically approached us-

ing statistical models of neural activity, which attempt to discover at an abstract

level how neurons represent information (often called the “neural code”). Statistical

models of neural activity have recently been of great interest to the neuroscience

community. Because researchers can tightly control stimulus presentation during

experiments, it is possible to build complex statistical models that probe the func-

tional relationship between sensory input and neural responses (in either direction).

This section introduces the mathematical formalism of the statistical modeling

framework by considering the neural encoding problem for a single neuron. This

framework will then be extended to the statistical modeling of populations of neurons

in section 1.6. The framework remains essentially unchanged when considering the

neural decoding problem, which is explicitly addressed in chapter 4.

10

To make the description of the statistical modeling framework concrete, con-

sider the activity of a single neuron in visual cortex (model output) in response to

a visual stimulus (model input). The neural activity at a particular time point t,

denoted yt, could be the number of spikes in a time window centered on t when

modeling spiking data, or it could be the extracted fluorescence value from the im-

age recorded at time t when modeling two-photon data. For an experiment with T

time steps, the total activity of the neuron can be collected into the vector y ∈ RT .

The stimulus st ∈ RP at time t is defined as the luminance values for each pixel in

the current stimulus, and may also include luminance values from the L previous

time lags to capture the spatiotemporal patterns that drive the neural response (so

that st ∈ RLP)1.

The following sections introduce various statistical models of the stimulus-

response relationship between st and yt, starting with simple linear models (section

1.4.1) and moving to increasingly complex, nonlinear models (sections 1.4.2-1.4.3).

These sections also introduce the maximum-likelihood framework for learning the

model parameters from data. Section 1.4.4 discusses regularization of model param-

eters, a crucial component of the statistical modeling framework, and then section

1.4.5 discusses approaches for evaluating the trained models.

1It is also possible to transform the representation of the stimulus before using it as input to

the model, for example by taking the Fourier transform; see section 1.4.2 for more details.

11

1.4.1 Linear models

The simplest stimulus-response relationship to model is a linear one. In this

case, for a single time point t the model is defined as

yt = sᵀtk + et (1.1)

where k is the vector of parameters that maps st onto yt and et is a noise term

that is often assumed to be independent and identically distributed (i.i.d.) as a

zero-mean Gaussian with variance σ2
e (denoted by N (0, σ2

e)). k is often referred

to as the neuron’s receptive field, and captures features of the stimulus that drive

the activity of the neuron. By collecting the stimulus vectors into a matrix S =

[s1, s2, . . . , sT]ᵀ ∈ RT×N , the model can be rewritten as

y = Sk + e (1.2)

where e ∈ RT is the vector of i.i.d. noise terms. Equation 1.2 is a standard linear

regression problem, and the least squares (LS) solution is given by [17]

k̂LS = (SᵀS)−1STy (1.3)

To understand the intuition behind this equation, imagine that the stimulus is a

single grayscale pixel whose values are uncorrelated in time. In this case, the (SᵀS)−1

term, which captures the correlations in the stimulus, becomes a scaled version of the

identity matrix cI. Furthermore, if y is a binary vector of spike counts, k̂LS = cSᵀy

is effectively taking the average over all stimuli that caused the neuron to spike. This

model is known as the spike-triggered average (STA), and is a commonly used model

12

of neural activity across all sensory modalities because of its simple implementation

and interpretation [8].

The linear model in equation 1.2 has several drawbacks when modeling spiking

data. First, it allows for the possibility of negative predicted responses, but the

observed spike counts in y are non-negative; second, the model explicitly assumes

a Gaussian noise distribution, which does not match the discrete distribution of

the spike counts. A more statistically principled approach to modeling this data

is to choose an appropriate noise distribution and then use maximum likelihood

estimation to fit model parameters [18]. [The STA can, in fact, be cast in the

maximum likelihood framework, but with a noise model that is not well-matched to

the data. Because of this, and because of the simple interpretation of the STA, it is

never introduced in the maximum likelihood framework in the literature, and I do

not do so here.]

In the maximum likelihood framework, the noise probability distribution p(yt|rt)

of the observed neural activity yt is first defined, given a rate parameter rt. For spik-

ing data, p(yt|rt) is often chosen to be the Poisson distribution [18–20], though other

distributions such as Bernoulli [21], negative binomial [22] and generalized count dis-

tributions [23] have also been explored. This choice of noise distribution models the

neural activity y as an inhomogeneous Poisson process with rate parameter vector

r ∈ RT . Describing the model for the neural response can then be interpreted as

describing a model for the rate parameter (or equivalently, a model for the mean

13

response of the Poisson distribution). The linear model then becomes

rt = F (sᵀtk) (1.4)

where F (·) is a function such as F (x) = exp(x) to convert sᵀtk into a non-negative

value for the rate. Due to this nonlinearity, this model is referred to as the Linear-

Nonlinear (LN) model [18] (and is also the definition of a generalized linear model

(GLM), which are discussed in the following section).

For two-photon data, p(yt|rt) is often chosen to be a Gaussian distribution

due to empirical observations [12, 24]. Unlike the Poisson distribution, which is

described by a single rate parameter, the Gaussian distribution is described by both

its mean and variance. The rate rt then models the mean of this Gaussian, and the

variance is ignored (or implicitly taken into account with regularization parameters,

e.g. section 2.4.1). In this case, the nonlinearity F (·) in equation 1.4 is unnecessary,

as the mean of the Gaussian is not constrained to be non-negative, and the linear

model rt = sᵀtk is sufficient.

Once the model for rt has been described, the parameters k are fit using

maximum likelihood estimation. The probability of the observed responses under

the model (the likelihood) is given by

p(y|r) =
T∏

t=1

p(yt|rt) (1.5)

where the probability of the response, conditioned on the rate, is assumed to be inde-

pendent across time bins. This assumption is crucial to maintaining the tractability

of fitting model parameters. The likelihood is considered to be a function of the

14

model parameters k, and maximizing the likelihood with respect to the model pa-

rameters defines the maximum likelihood estimate k̂MLE:

k̂MLE = argmax
k

p(y|r) (1.6)

An equivalent formulation is to minimize the negative log-likelihood, due to the

concavity of the logarithm function. One advantage of this formulation is that the

product in equation 1.5 becomes a sum, which is less likely to result in numerical

underflow. Furthermore, many of the common distributions used in the maximum

likelihood framework come from the exponential family, so taking the logarithm is

a natural and analytically simplifying choice. As a concrete example, the maximum

likelihood estimate of the parameters in equation 1.4, assuming a Poisson noise

distribution, is given by

k̂MLE = argmin
k
− log p(y|r) (1.7)

= argmin
k
− log

T∏

t=1

p(yt|rt) (1.8)

= argmin
k
−

T∑

t=1

log p(yt|rt) (1.9)

= argmin
k
−

T∑

t=1

[yt log rt − rt − yt!] (1.10)

= argmin
k
−

T∑

t=1

[yt logF (sᵀtk)− F (sᵀtk)] (1.11)

where moving from the third to the fourth line uses the definition of the Poisson

distribution p(y|r) = ry

y!
exp(−r), and the yt! terms are dropped because they do not

depend on the parameters k.

The power of the maximum likelihood framework is that parameter estima-

15

tion is framed as an explicit optimization problem, which can be solved by standard

gradient descent methods regardless of the chosen noise distribution. Another ad-

vantage is that this framework allows for arbitrarily complex models for rt (see

section 1.4.3), though there is no guarantee that local minima of the optimization

problem will be equivalent to the global minimum (the two are equivalent for the LN

model as long as F (·) is jointly convex in s and k, and logF (·) is jointly concave in

s and k, which is satisfied by both F (x) = exp(x) and F (x) = log(1 + exp(x)) [18]).

1.4.2 Generalized linear models

In the statistics literature, the generalized linear model (GLM) is a generaliza-

tion of ordinary least squares that allows for non-Gaussian noise distributions [25].

The mathematical formalism for defining these models and fitting their parameters

is exactly as described in the previous section. In the neuroscience literature, how-

ever, there is a historical distinction drawn between the LN model - which is, in fact,

a GLM - and GLMs. LN models are usually defined as a linear transformation of the

stimulus, which is then passed through the nonlinearity F (·) (equation 1.4). The

GLMs of neuroscience use the same framework to incorporate additional predictors

such as spike history terms [20], the activity from other neurons [19], local field

potentials [26], and kinematic information of limb movements [27]. Furthermore,

regularization is more commonly used in GLMs, not just in frequency but also in

variety (section 1.4.4).

GLMs have become extremely popular tools in neuroscience due to their ease

16

of implementation and interpretability. Many standard statistical software packages

include functions for building and fitting GLMs, lowering the barrier to their use

for many experimentalists. Interpretation of the resulting model parameters is also

straightforward - each parameter, after passing through the function F (·), denotes

how much the predicted output will change given a unit increase in the predictor of

interest (e.g. a single pixel of a visual stimulus).

However, most neurons are highly nonlinear, especially as they become further

removed from the sensory periphery [28], and GLMs will fail to capture nonlinear

features of the neural response. Therefore, understanding the complex nonlinear

processing that underlies most brain function requires nonlinear modeling methods.

The first efforts in this direction applied nonlinear transforms to the input

data to obtain a more linear relationship with the neural response, and linear mod-

els like GLMs could then be used. This process is called “linearizing” the encoding

model [29]; examples in vision include applying the Fourier transform [30] or a

wavelet transform [31] to the images and using the resulting coefficients as predic-

tors rather than the raw pixel values; examples in audition include computing the

spectrogram [32] or extracting a speech envelope [33] of the audio signal. Though

linear models can recover nonlinear relationships through this approach, it also

introduces the new challenge of choosing an appropriate nonlinear feature space.

Though experimentalists may have some intuition about relevant nonlinear feature

spaces in early stages of sensory processing, the complex features that are neces-

sary for higher-level sensory processing are at present much more difficult to define.

Increases in computational power and advances in statistical modeling techniques

17

now make it possible to learn the nonlinear feature space directly from the data, an

approach that is discussed in the next section.

1.4.3 Hierarchical models

Nonlinear models of neural activity have a long history in neuroscience. In-

deed, the need to incorporate nonlinearities was recognized by Hubel and Wiesel

with their discovery of “complex cells” in the cat primary visual cortex (V1) in

the early 1960s [34]. “Simple cells”, which they had discovered several years previ-

ously in the same brain region [2], respond to Gabor-like stimuli with a particular

orientation, spatial frequency and phase (figure 1.4B). Complex cells, on the other

hand, respond to Gabor-like stimuli of a given orientation and spatial frequency, but

are phase-invariant. This phase invariance was formally captured by the “energy

model” of Adelson and Bergen in the 1980s [35], which described complex cell ac-

tivity using two linear filters k1 and k2 with a 90 degree phase offset (a quadrature

pair), and passing the resulting filtered stimulus through quadratic nonlinearities

before adding the results to arrive at the estimate of the neural activity (figure 1.4):

yt = (sᵀtk1)2 + (sᵀtk2)2 (1.12)

It is important to point out that the energy model, in its original form, was a con-

ceptual model of V1 complex cell function, and not a statistical model. However,

the energy model can now be easily fit to data using the maximum likelihood frame-

work [20]. The ability to fit the energy model to data illustrates that nonlinearities

can be introduced into the model structure, while still maintaining tractable pa-

18

Figure 1.4: Models of early visual processing. Responses of visual neurons are
modeled as the inner product of an arbitrary stimulus with the neuron’s receptive
field (gray squares), and the result is then passed through a nonlinearity to arrive
at the neuron’s estimated firing rate. A: Model of a retinal ganglion cell or LGN
cell with a center-surround receptive field structure. B: Model of a V1 simple cell.
C: Model of a V1 complex cell, which requires summing the result of two filter +
nonlinearity operations to arrive at the final firing rate. Figure from [36].

rameter estimation through numerical optimization methods. As stated previously,

the introduction of these nonlinearities often results in a nonconvex optimization

problem with many local minima, but nevertheless these models have still found

wide use in neuroscience.

Many statistical models of neural function now incorporate a single nonlinear

layer of processing into the GLM, which is known as the Nonlinear Input Model

in the neuroscience literature [20, 37], and also known as the Generalized Additive

19

Model in the statistics literature [38]:

rt = F

[
I∑

i=1

wifi(s
ᵀ
tki)

]
(1.13)

The functions fi(·) can be any static nonlinearity, and a wide range have been

explored in the neuroscience literature, including quadratic [39, 40], rectified linear

[20], hyperbolic tangent [41,42], and nonparametric [20,37,43] functions. For each of

the I terms in the sum, the value of the inner product between the stimulus and the

linear receptive field ki is passed through the function fi(·), just as the LN model

of equation 1.4. The outputs of these LN models are then linearly combined and

passed through the function F (·) as the estimate of neural activity. This two-step

procedure is a hierarchical process in which linear stimulus features are extracted

at the first stage, and then nonlinearly combined to produce the output. From the

machine learning perspective, this model is exactly equivalent to a neural network

with a single hidden layer.

The recent success of deep learning in a variety of fields has motivated compu-

tational neuroscientists to explore the potential of neural networks with more than

a single hidden layer, particularly convolutional neural networks (CNNs) in the vi-

sual domain [28, 44, 45]. CNNs, despite their increased complexity and parameter

count, can still be fit using the maximum likelihood framework, and in the past

several years have achieved state of the art performance in modeling visual neurons

in retina [46, 47], V1 [48–51] and V4 [52] (though research in this direction has a

long history [53]).

The success of CNNs in modeling sensory neurons is perhaps unsurprising,

20

given that their architecture was originally inspired by Hubel and Wiesel’s ideas

about hierarchical computations in visual cortex [54]. These ideas about hierar-

chical computation have not only been discussed, but embraced within the sensory

neuroscience community for some time [55]. However, the ability to fit these mod-

els is relatively new, and is due to a confluence of several factors: new techniques

in machine learning for efficient parameter estimation (which still falls within the

maximum likelihood framework, e.g. the use of stochastic gradient descent, non-

saturating nonlinearities, etc.), increased computing power, and the aforementioned

advances in experimental neuroscience that allow for the collection of the large

amounts of data that are needed to fit these models.

Hierarchial models of neural responses can contain millions of parameters,

which must be estimated from data. When fitting models in such high dimensional

spaces, care must be taken to avoid overfitting the limited training data. Overfitting

refers to the situation when a model fits noise in the data, rather than meaningful

signal [17]. The problem of overfitting is relevant for simpler models as well - even

a simple LN model can contain thousands of parameters, which will be prone to

overfitting when using the amount of data that is recorded in a typical neuroscience

experiment. To partially address this concern, regularization is a technique for

biasing model parameters in order to decrease the regions of parameter space that

contain potential solutions, which is the topic of the next section.

21

1.4.4 Regularization

One of the most popular general-use regularization techniques is L2 regulariza-

tion, known as “ridge regression” in the linear regression setting and “weight decay”

in the neural networks literature. L2 regularization adds a term to the model’s cost

function that penalizes the squared magnitude of the parameters:

k̂ = argmin
k
− log p(y|r) + λ‖k‖2

2 (1.14)

where ‖k‖2
2 =

∑P
p=1 k

2
p is the L2 norm of the vector k. λ is a hyperparameter that

controls the contribution of the regularization term to the overall cost function. Ap-

propriate selection of hyperparameters is an important issue that will be addressed

in section 1.4.5.

In the machine learning literature, regularization terms are typically motivated

by heuristic considerations. However, the statistical modeling framework naturally

incorporates these regularization terms using maximum a posteriori (MAP) esti-

mates rather than maximum likelihood estimates. In this framework, prior knowl-

edge about the distributions of the parameters p(k) is introduced using Bayes Rule.

Under this rule the posterior distribution of the parameters given the data is defined

as

p(k|y) =
p(y|k)p(k)

p(y)
(1.15)

Again taking the negative logarithm for numerical convenience, and ignoring the

term in the denominator (which does not depend on model parameters), the MAP

22

estimate is given by:

k̂MAP = argmin
k
− log p(k|y) (1.16)

= argmin
k
− log [p(y|k)p(k)] (1.17)

= argmin
k
− log p(y|k)− log p(k) (1.18)

Within this framework, L2 regularization is equivalent to the statistical as-

sumption that the individual parameters in the vector k are i.i.d. N (0, σ2
k), which

can be written as

p(k) =
P∏

p=1

1√
2πσ2

k

exp

(
− k2

p

2σ2
k

)
(1.19)

and taking the negative logarithm of this term results in

− log p(k) =
1

2σ2
k

P∑

p=1

k2
p + const (1.20)

which is the same as the L2 penalty term in equation 1.14 with λ = 1/(2σ2
k), and

therefore the regularization hyperparameter λ is related to the variance of the prior

distribution on k.

Another popular type of regularization term is L1 regularization, which ap-

proximately enforces sparseness in the parameters [56]; this type of regularization is

equivalent to a Laplace prior distribution in the MAP framework. A wide array of

regularization terms have been explored in the neural modeling literature, including

sparseness (L1) [20, 57, 58], smoothness [20, 59, 60], and locality [61, 62] of receptive

field structures.

23

1.4.5 Evaluating model performance

Once a model has been selected and its parameters fit, it must be evaluated to

determine how well it captures the relationship between the input and output data

(e.g. stimulus and neural response for neural encoding models). Several evaluation

measures are commonly used, including the negative log-likelihood and the coeffi-

cient of determination (R2) for neural encoding models, or the fraction of correctly

classified stimuli for neural decoding models. This evaluation should be performed

on data that was not used to train the model, in order to test how well the model

generalizes to new data.

A standard way to validate model performance is by using k-fold cross vali-

dation [29]. In this procedure, the data is split into k equally-sized pieces, or folds.

The model parameters are fit using k − 1 of the folds (the training data), then

evaluated on the data in the remaining fold (the validation data). The model fit-

ting and evaluation process is repeated k times, with each fold being used once for

validation. The result is k values of the evaluation measure, which can provide an

average performance measure with empirical error bars.

The k-fold cross validation process is also a convenient way (albeit a compu-

tationally intensive one) to perform model selection (e.g. choosing hyperparameter

values), and is called “nested k-fold cross validation” [29]. To do this, for each train-

ing data set of k−1 folds (one iteration of the “outer loop”), another round of cross

valiation is performed (the “inner loop”). The training data is divided into a per-

haps different number of m folds. Full m-fold cross validation is performed using the

24

training data across a range of hyperparameter values, and the hyperparameter that

results in the best model (according to the appropriate evaluation measure) is then

chosen for final evaluation on the validation data set. In this way, hyperparameters

can be chosen using the data, but without artificially inflating performance mea-

sures by choosing the value using the validation data. Variations on this procedure

are used throughout this dissertation, and the evaluation measures and validation

process for individual models are discussed in the Methods section of each chapter.

1.5 Variability in single neuron responses

The hierarchical models discussed in section 1.4.3 are now the most sophis-

ticated statistical models of visual and auditory processing, and ongoing work will

make them invaluable tools for studying the complex nonlinear computations that

underlie sensory processing. However, as currently implemented, these hierarchical

models (also referred to as feed–forward models) implement deterministic mappings

from stimulus to response, and therefore fail to capture one of the most important

and ubiquitous phenomena in neuroscience: neural variability.

Neural variability is defined as the variability in neural responses across re-

peated presentations of the same stimulus. This variability is typically smaller in

early sensory areas, and has allowed for highly successful modeling efforts in areas

like retina [19, 63, 64] and LGN [65, 66]. However, this variability tends to increase

along the sensory processing hierarchy [67–69], which presents yet another limit-

ing factor in the ability to accurately model higher-order sensory neurons (beyond

25

their complex, hierarchical processing). Understanding this variability in neural

responses is an important goal for systems neuroscience, because response variabil-

ity limits the information that a neural population can contain about an external

stimulus [70], which further limits the precision of the downstream processing that

ultimately leads to behavior.

To properly approach the topic of neural variability, it is important to consider

what variability means in this context. For many years this variability was consid-

ered to be “noise”: an unfortunate byproduct of imprecise biological processes such

as synaptic transmission failures [71]. In contrast, it has also been observed that cor-

tical neuron responses are extremely precise in vitro [72]. Is it possible to reconcile

these disparate observations? In the words of Pierre-Simon Laplace, randomness is

only a measure of our “ignorance of the different causes involved in the production

of events” [73]. In other words, perhaps this “noise” is actually just unexplained

(though potentially explainable) variability that has functional significance to the

neural computations. Barlow recognized this possibility as far back as 1972, writ-

ing that “the apparently erratic behavior [of neural responses] was caused by our

ignorance, not the neuron’s incompetence” [74].

Attempts to understand variability in neural responses have been greatly aided

by the experimental technologies discussed in section 1.3: when measuring single-

neuron activity, it is impossible to separate noise from activity that is not locked

to the stimulus or other experimentally controlled factors. Simultaneous recordings

from multiple neurons unlock the potential to disentangle structured variability

from true noise, and address questions about the functional role of this structured

26

variability in neural computations. An early and still incredibly influential approach

to understanding neural variability is through studying the correlated responses of

pairs of neurons (section 1.5.1), which has received significant attention from both

experimental [75] and theoretical [70] neuroscience. Recent large-scale recordings

have also revealed that variability is shared among not just pairs of neurons, but

larger groups as well (section 1.5.2). The following sections briefly review some new

insights that are emerging about the structure of neural variability, and its possible

functional relevance.

1.5.1 Noise correlations

Measuring correlations between the activity of pairs of neurons provides one of

the simplest ways to describe structure in neural population activity. Two notions of

correlation are often used in the neuroscience literature, and are typically measured

by repeatedly presenting a range of stimuli while recording activity from two or more

neurons (e.g. presenting oriented gratings while recording from V1; figure 1.5A).

Signal correlations refer to the similarity in stimulus tuning of two neurons, and is

calculated by averaging responses across identical trials for each neuron, and then

calculating the correlation of these mean responses between the pair (figure 1.5C).

Noise correlations refer to the correlations between neurons across repeats of a single

stimulus (figure 1.2B). Because signal correlations average over repeats of identical

trials, they can be studied with sequential recordings of single neurons rather than

simultaneous recordings, and have thus been well-studied in the literature [76].

27

Figure 1.5: Signal and noise correlations. A: Tuning curves for two hypo-
thetical direction-selective neurons. Open circles show mean responses to different
directions of motion and small points show responses to individual presentations
of a stimulus at a particular direction. B: Spike count or “noise” correlation (rSC)
measures the correlation between fluctuations in responses to the same stimulus.
Here, each point represents the response of the two neurons on one presentation
of an individual stimulus. C: Signal correlation (rsignal) measures the correlation
between the two cells’ mean responses to different stimuli. Each point represents
the mean response to a given direction of motion. Because the responses of cell
2 increase to a range of motion directions in which the responses of cell 1 decline,
signal correlation is negative. Figure and caption from [75].

Much recent experimental work has focused on noise correlations [75] because,

unlike signal correlations, they are dependent on a wide range of ethologically rel-

evant factors, including stimulus identity [77, 78], behavioral context [79, 80], brain

state [81, 82], learning [83–86], attention [86–88] and adaptation [89]. Several stud-

ies have demonstrated that attention and learning can lead to increased behavioral

performance through the reduction of noise correlations [86–88], demonstrating that

there is indeed a relationship between the structure of neural variability and behav-

28

ior, though the nature of this relationship is still poorly understood.

Additionally, advances in both theoretical [90–95] and experimental [89,96–98]

work have demonstrated that noise correlations can affect how much information

neural activity contains about an external stimulus. Thus noise correlations, while

being conceptually simple and experimentally easy to measure, have the potential

to dramatically affect how well populations of neurons can extract that information

to perform useful computations.

1.5.2 Global fluctuations

The majority of the literature concerning noise correlations analyzes small pop-

ulations (1s to 10s) of neurons [75]. Experimental access to larger populations (100s

to 1000s) of simultaneously recorded neurons presents new opportunities for empir-

ically probing how neural variability is manifested beyond pairs of neurons. Indeed,

data from a wide variety of recording modalities increasingly reveal the presence of

variability that is shared not just among pairs of neurons, but among much larger

groups of neurons as well (and hence termed global fluctuations). This shared vari-

ability has been measured at the individual-neuron resolution using multi-electrode

arrays [81] and two-photon imaging [99], and also at a lower spatial resolution across

larger brain regions using local field potentials [26], voltage-sensitive dyes [100], and

wide-field imaging [85].

Many studies now suggest that this shared variability has a relatively simple,

low-dimensional structure [67, 81, 82, 96, 97, 101, 102], which has important implica-

29

tions for both modeling variability and understanding its role in sensory process-

ing [103–105]. This observed low-dimensional structure has motivated the use of

dimensionality reduction techniques (also called latent variable models) for analyz-

ing large populations of neurons. These techniques extract a small number of factors

(latent variables) that describe the high-dimensional neural activity, and can also

parsimoniously explain the observed pairwise correlations [80, 93, 96, 102]. These

factors are easier to interpret and analyze than the full set of pairwise correlations,

and have led to both theoretical and experimental work exploring their effect on

sensory processing [94–96,98].

The efficacy of these latent variable models in describing the structure of high-

dimensional neural activity has made them important tools for both theorists and

experimentalists, and has spurred their continued development for neuroscientific

applictations. The following section introduces a range of latent variable models, and

describes their strengths and weaknesses with respect to their use in neuroscience,

which motivates the development of the models introduced in this dissertation.

1.6 Latent variable models of neural populations

Latent variable models are statistical models that aim to describe the com-

plex statistical relationships in high-dimensional data with a much smaller number

of factors, or latent variables zt. The encoding models of section 1.4 modeled the

probability distribution p(yt|st), where st was a known and experimentally controlled

quantity. Latent variable models, on the other hand, attempt to model the prob-

30

ability distribution p(yt|zt), where zt is unknown (and thus must be inferred from

the data) and yt represents the activity of many neurons, rather than just one.

The computational neuroscience community has long embraced the Bayesian

approach to latent variable modeling, wherein a probabilistic model defines the

transformation from latent variables to neural activity, and the posterior distribution

of the latent variables given the observed neural activity p(z|y) is inferred (some-

times approximately). This approach typically incorporates temporal structure in

the evolution of the latent variables (called a dynamical prior), which has been

modeled using linear dynamical systems [106–110], Gaussian processes [81,111,112],

switching dynamical systems [113,114] and recurrent neural networks [115].

An alternative to the Bayesian approach uses direct optimization of a cost

function, which is designed to preserve features of interest in the data in order

to learn a mapping from low-dimensional factors to high-dimensional neural activ-

ity [116]. In this approach, models are typically constrained by enforcing a static

statistical structure on the distribution of the latent variables, for example defining

them to be uncorrelated (PCA, tensor factorizations) [117–120], independent and

Gaussian (FA) [121–123], or independent and non-Gaussian (ICA) [124].

The methods developed in this dissertation follow the direct optimization ap-

proach (though the initial formulation of the RLVM in chapter 2 is Bayesian in spirit;

see section 2.4.1). This choice is due to several factors, including the difficulty of

defining and fitting appropriate generative models in the Bayesian framework and

the greater flexibility enjoyed by the direct optimization approaches. The dynamical

priors of most Bayesian models reflect their development for the analysis of motor

31

cortical activity and brain-machine interfaces [23, 109, 111, 115]. Much of the data

analyzed in this dissertation comes from primary sensory areas, where the use of

dynamical priors is not well motivated, and it is also currently unclear what would

constitute a more appropriate class of priors. Furthermore, the Bayesian framework

is typically constrained by the tractability of the inference problem. Nevertheless,

recent advances in variational inference adopt ideas from deep learning to make in-

ference more tractable [125–128], and the combination of the two approaches will

be a fruitful direction for future research.

The following section presents a basic generative model that provides a unified

mathematical formalism for a large class of linear latent variable models, including

PCA (section 1.6.3), FA (section 1.6.2) and ICA (section 1.6.4). This presentation

combines elements of [129], [130] and [116]; model fitting is presented using the

Expectation Maximization (EM) algorithm [131] to facilitate the unified formalism,

but note that each of these algorithms has a direct optimization implementation as

well [116]. This framework is useful for understanding the similarities and differences

between these ubiquitous models, and also highlights the mathematical assumptions

they rely on. Section 1.6.5 then introduces the autoencoder neural network, which

retains many of the features of these models while replacing some of those assump-

tions with ones that offer greater flexibility in model design and optimization.

32

zt
(1)

zt
(2)

zt
(3)

zt
(M)

yt
(1)

yt
(2)

yt
(3)

yt
(4)

yt
(N)

zt yt

w31
w32
w33

w3M

Figure 1.6: The linear factor model. An illustration of the linear factor model, in
which the observed activity yt is a linear combination of latent variables zt, corrupted
by noise (not shown). Different linear factor models like PCA, FA and ICA make
different assumptions about the form of the noise and the prior distribution over
the latent variables.

1.6.1 Linear factor model framework

Relating latent variables to neural responses. The basic generative

model defines a linear transformation from unobserved latent variables zt ∈ RM

to observed neural responses yt ∈ RN , and both signals are corrupted by additive

Gaussian noise (figure 1.6):

zt = dt dt ∼ N (0, Q) (1.21)

yt = Wzt + et et ∼ N (0, R) (1.22)

where W ∈ RN×M is the observation matrix, dt and et are noise terms in the latent

space and neural space respectively, and zt are the latent variables2. For simplicity

of exposition, the mean of the observed data yt is assumed to be zero. The noise

2A more general expression for the latent variables that defines a linear dynamical system would

be zt = Azt−1 +dt, where A is a state transition matrix. This term is omitted from equation 1.21

because none of the models considered here include A.

33

terms dt and et are independent of each other, and each is independent in time.

Without loss of generality, the covariance matrix Q can be redefined as the identity

I3.

Under this model, yt is a sum of two Gaussians, and so its marginal distribution

is given by

yt ∼ N (0,WW ᵀ +R) (1.23)

In order for this model to capture interesting structure in the data, constraints must

be imposed on the noise covariance matrix R; without any constraints, a learning

algorithm could set W = 0 and R to be the sample covariance of the data. The

resulting model would thus place all structure in the noise term. Different constraints

on R correspond to different models, as discussed in the following sections.

Fitting the model. One approach to fitting the model parameters θ =

{W,R} and inferring the latent variables Z = {zt}Tt=1 is the EM algorithm. This

procedure starts with a random initialization for θ and uses this to infer the latent

variables Z (E-step); then, given Z, θ is updated (M-step). The EM algorithm alter-

nates between these two steps until a predefined convergence criterion is met. Note

that the EM algorithm is guaranteed to increase the likelihood on each iteration,

but is not guaranteed to find the global optimum of the likelihood function [131].

E-step. Given R(k) and W (k), the parameter estimates from iteration k, the

latent variables on iteration k + 1 can be inferred by using Bayes Rule to calculate

3Since Q is a covariance matrix, it is postive definite and can be diagonalized as Q = V DV ᵀ.

Then, an equivalent model can be defined as yt = WVD1/2z′t+et, where z′t = d′t and d′t ∼ N (0, I).

34

the posterior distribution:

p(zt|yt) =
p(yt|zt)p(zt)

p(yt)
(1.24)

=
N (W (k)zt, R

(k))N (0, I)

N (0,W (k)(W (k))ᵀ +R(k))
(1.25)

= N (β(k)yt, V
(k)) (1.26)

where β(k) = (W (k))ᵀ[W (k)(W (k))ᵀ +R(k)]−1, V (k) = I − β(k)W (k), and the substitu-

tions from the first to the second line follow from the model definition (equations

1.21, 1.22 and 1.23). The estimate of the latent variables on iteration k + 1 is then

given by their expected value, ẑ
(k+1)
t = β(k)yt. Note that because of the lack of

temporal dependence between the zt, this can be performed for each time point

independently.

M-step. Estimation of W can be performed using maximum likelihood esti-

mation given the full set of inferred latent variables Ẑ(k+1) ∈ RT×M , their estimated

covariance V (k), and the data Y ∈ RT×N :

W (k+1) = Y
[
Ẑ(k+1)

]ᵀ (
Ẑ(k+1)

[
Ẑ(k+1)

]ᵀ
+ TV (k)

)−1

(1.27)

The estimation of R depends on the specific model, but for completeness the un-

constrained maximum likelihood estimate is

R̂(k+1) = Ŝ − W (k+1)Ẑ(k+1)Yᵀ

T
(1.28)

where Ŝ is defined to be the sample covariance matrix of the data Y. The following

sections will define how this estimate is modified, depending on the model.

35

1.6.2 Factor Analysis

The model defined in equations 1.21 and 1.22 becomes maximum likelihood

Factor Analysis (FA) when R is constrained to be diagonal. This constraint can

be easily implemented by calculating the full, unconstrained maximum likelihood

estimate R̂ (equation 1.28) and then setting the off-diagonal elements to zero [129].

With this choice of constraint, the observation matrix W (known as the factor

loading matrix in FA terminology) captures the correlational structure among the

dimensions of yt, while the diagonal of R captures the variance that is unique to

each dimension. For this reason FA has been popular in the neuroscience literature,

because the variance of each neuron is in general different and depends on its firing

rate.

The low-dimensional manifold extracted by FA can be used to discover struc-

ture in the high-dimensional data that is difficult to understand at the level of in-

dividual neurons. For example, in [121], FA was used to compare the differences in

neural variability between spontaneous activity and stimulus-evoked activity. Single-

neuron analyses demonstrated that variability decreased with stimulus onset. FA

was able to further decompose this variability into a shared variability term (cap-

tured by the WW ᵀ term in equation 1.23) and a private variability term (captured

by the diagonal R term in equation 1.23), and the authors were able to conclude

that stimulus onset caused a much larger decrease in the shared variability term.

FA has also been used to investigate constraints on learning through its use

with brain-machine interfaces (BMI). In [123], monkeys learned to control a com-

36

puter cursor that read neural activity patterns from their primary motor cortex.

FA was used to find a low-dimensional manifold that contained most of the neu-

ral variability (the Intrinsic Manifold, or IM, defined by W in equation 1.23). The

mapping from neural activity to cursor movement was then altered by requiring new

patterns of activity that fell within the IM or outside of it. Monkeys were able to

learn new within-IM mappings quickly, but struggled to learn out-of-IM mappings.

This study suggests that the IM is constrained by the structure of the network in

which these neurons are embedded, and activity patterns that fall outside of the IM

are much more difficult to learn.

One drawback to the use of FA in neuroscience is that it assumes a Gaussian

distribution on the noise, whereas the Poisson distribution is often used to describe

the discrete nature of spiking activity. A heuristic fix that is often used is to take the

square root of the spike counts, which stabilizes the variance and provides a better

match between data and model [111], though a Poisson FA has been developed as

well [132].

1.6.3 Principal Component Analysis

The model defined in equations 1.21 and 1.22 becomes probabilistic Principal

Component Analysis (PPCA) [133] (and the independently defined Sensible Princi-

pal Component Analysis [134]) when R is constrained to be a scalar multiple of the

identity matrix, R = σ2I. Similar to FA, this constraint can be easily implemented

by calculating the full, unconstrained maximum likelihood estimate R̂ (equation

37

1.28) and then setting σ2 = trace(R̂)/N [134]. This choice of constraint does not

allow each neuron to have an independent variance, and FA has been shown to

significantly outperform PPCA when fitting neural data [111].

The ubiquitous PCA model, though not a proper probability model, can be

recovered from the PPCA model by taking R = limσ2→0 σ
2I. The posterior distri-

bution of the latent states collapses to a single point, and the model fitting problem,

though still solvable by the EM algorithm, is often performed by diagonalizing the

sample covariance matrix Ŝ = V DV ᵀ and defining the columns of W to be the

leading M eigenvectors:

Ŵ = VM (1.29)

ẑt = Ŵ ᵀyt (1.30)

where VM denotes the first M columns of the matrix V .

PCA has enjoyed wide use in the neuroscience literature due to its computa-

tional simplicity and ease of interpretation. Perhaps its most common use (as in

other fields) is as an exploratory data analysis tool, whereby neural activity can be

projected into the first two or three PCA dimensions for visualization. For example,

in [117], neural activity was recorded throughout larval zebrafish brains during a

motor adaptation task. This activity was projected into the first three principal

components, and four distinct phases of activity were discovered. These phases

were then linked to distinct neural structures whose involvement in the task were

previously unknown, and prompted additional experimental work to elucidate the

role of these structures in motor learning.

38

PCA has also been used to study the effect of variability on behavior. In [135],

PCA was used to define an “attention” axis in neural activity space by considering

average responses across a range of attention conditions in a change-detection task.

The location of single-trial activity along this dimension was predictive of the an-

imal’s performance in the task, establishing a link between neural variability and

behavior. This study was an important first step in understanding the functional

role of neural variability, and has spawned numerous studies that continue to utilize

similar dimensionality reduction methods [86,101].

PCA is typically applied to neural activity that has first been averaged over

many identical trials and then subsequently smoothed, which destroys the discrete

nature of the spike counts. Various extensions to PCA have been developed in

the neuroscience literature to address this limitation and others, for instance to

more accurately model discrete spike counts (Poisson PCA; [136]), to emphasize the

structure associated with particular types of experimental trials (dPCA; [137]), and

to emphasize dimensions relevant to dynamical structure (jPCA; [122]).

1.6.4 Independent Component Analysis

ICA, first proposed in the 1980s, was originally formulated to solve the blind

source separation problem in the signal processing community [138], and as such

much of its terminology and motivation differ substantially from the models already

discussed. However, ICA can be interpreted in the above framework and used as a

dimensionality reduction tool to supplement PCA and FA [129].

39

ICA differs from PCA and FA by searching for latent variables that are both

non-Gaussian and independent. Such a solution is attractive in many settings where

the Gaussian assumption of FA (and somewhat implicitly PCA) is not appropriate.

ICA is a particularly popular preprocessing tool for EEG [139] and fMRI [140],

though its use in the analysis of electrophysiology and optophysiology data is not as

widespread [124]. I include ICA here because it is a natural model to compare with

PCA and FA, which I do in chapter 2 when validating my latent variable framework

based on the autoencoder.

A particular version of ICA can be formulated by redefining the linear Gaussian

generative model in equations 1.21 and 1.22 to be

zt = g(dt) dt ∼ N (0, Q) (1.31)

yt = Wzt + et et ∼ N (0, R) (1.32)

where g(·) is defined pointwise as

g(x) = ln
(

tan
(π

4

(
1 + erf

(
x/
√

2
))))

(1.33)

This choice for g(·) transforms the normally distributed zmt to a random variable

with the distribution p(x) = 1/(π cosh(x)); other choices for g(·) correspond to

different prior distributions of z [129]4. Under this formulation, ICA can be consid-

ered either a linear model with a non-Gaussian prior over the latent variables, or

a nonlinear model with a Gaussian prior over the latent variables. Because of this

4This technique of transforming latent variables from an easily-sampled distribution to a much

more complicated one has recently been explored with great success using variational autoencoders

[125] and generative adversarial networks [141], where the form of g(·) is learned from the data.

40

interpretation, a modified EM algorithm can still infer latent variables and estimate

model parameters, but the details are beyond the scope of this section; for more

information see [129].

1.6.5 Autoencoders

The mathematical assumption common to the models that fall within the pre-

sented framework is that the latent variables are constrained to be independent

of one another. This assumption is typically made to increase the tractability of

parameter estimation, though has the potential to obscure the true factors under-

lying neural activity if they are not in fact independent. A related model that does

not impose particular distributional assumptions on the latent variables is the au-

toencoder neural network, which is the basis for all of the models presented in this

dissertation.

The autoencoder is an unsupervised neural network that takes input data yt

and tries to copy it to the output ŷt (figure 1.7). In the simplest setting, this model

is defined as

zt = W1yt + b1 (1.34)

ŷt = W2zt + b2 (1.35)

The autoencoder latent variables are a deterministic function of the input data yt

rather than random variables, and thus this model does not fit perfectly into the

generative framework of equations 1.21 and 1.22 (though note that variational au-

toencoders [125] explicitly define a generative model). However, one interpretation

41

ŷtyt

Figure 1.7: The autoencoder neural network. An illustration of the au-
toencoder, in which the observed activity yt is mapped to the latent varibles zt
(represented by the colored nodes), which are then used to construct an estimate
ŷt of the original input activity yt. When the mapping from zt to ŷt is an affine
transformation and there are no additional nonlinearities applied to the output, the
autoencoder is a linear factor model (note the similarity in structure to figure 1.6).

is that the autoencoder estimates the mean of the posterior distribution of the latent

variables, rather than the full distribution [142].

The autoencoder framework is more general than the model presented in equa-

tions 1.34 and 1.35: instead of defining the latent variables zt to be an affine trans-

formation of the data yt, and the prediction ŷt to be an affine transformation of the

latent variables zt, more general nonlinear functions (called encoding and decoding

functions, respectively) can be used to define a nonlinear latent variable model:

zt = fenc(yt) (1.36)

ŷt = fdec(zt) (1.37)

where fenc and fdec can be any sort of nonlinear function with learnable parameters

(i.e. differentiable with respect to those parameters), for example a multi-layer

neural network.

Regardless of the functions used for fenc and fdec, model parameters are learned

42

by minimizing an appropriately-defined reconstruction error L(yt, ŷt) between the

true and predicted activity, such as the mean square error (see section 2.4.1 for a

thorough description of the model fitting process). If the autoencoder is not regu-

larized, it is possible to simply learn the identity transformation without capturing

interesting features of the data. One approach to preventing this degenerate solution

emphasizes learning an overcomplete representation of the input data by allowing

more latent variables than input features, and imposing sparsity constraints on the

latent variable activations [143]. Another way to prevent the autoencoder from

learning the identity transformation is to force an undercomplete representation by

only allowing a small number of latent variables, so that the autoencoder becomes

a dimensionality reduction technique like PCA, which is the approach used in this

dissertation.

The autoencoder is of practical interest to the research presented in this dis-

sertation for several reasons, all of which stem from the use of unconstrained, direct

optimization techniques to simultaneously infer latent variables and estimate model

parameters. The ability to use a black box numerical optimizer permits a wide range

of extensions that do not require reformulating the model fitting procedure, includ-

ing non-negative latent variables (chapter 2), a cost function that is appropriate for

Poisson-distributed data (chapter 2), inclusion of multiple layers to implement non-

linear latent variable models (chapters 3 and 4), and additional inputs to condition

on stimulus identity (chapters 3 and 4).

Another nice feature of the autoencoder that is derived from the direct opti-

mization approach is the straightforward evaluation of model performance on cross-

43

validation data: the deterministic mapping from data to latent variables means that

once model parameters (network weights and biases) are fit using the training data,

cross-validation data can be fed into the model to obtain predicted values. Using the

EM approach requires fitting model parameters using the training data as well, but

latent variables must be inferred separately using the E-step for the cross-validation

data. This additional step tailors the model’s predictions to the cross-validation

data used, and therefore these models are typically more difficult to objectively

evaluate (though see [111] for an interesting solution to this problem).

In addition to these practical considerations, the autoencoder has long been

of theoretical interest because it is related to many other popular models in the

statistics and machine learning literature. For example, the autoencoder structure

in equations 1.34 and 1.35 with M latent variables, trained using mean square error

for L(yt, ŷt), recovers the same low-dimensional subspace as the first M principal

components from PCA [144]. Appropriately-defined nonlinearities and additions to

the cost function also allow autoencoders to implement FA and mixture of Gaussian

models [129]. These relationships have spawned interesting extensions of autoen-

coders that are not possible with the more rigidly defined models of equations 1.21

and 1.22, including denoising autoencoders [145], contractive autoencoders [146] and

variational autoencoders [125], among others. The following chapters continue in

this tradition by introducing new extensions to the autoencoder in order to make it

an appropriate tool for studying high-dimensional neural data.

44

Chapter 2: The Rectified Latent Variable Model (RLVM)

2.1 Introduction

The sensory cortex not only represents information from the sensory periphery,

but also incorporates input from other sources throughout the brain. In fact, a large

fraction of neural activity in the awake sensory cortex cannot be explained by the

presented stimulus, and has been related to a diversity of other factors such as

stimulation of other sensory modalities [147, 148], location within the environment

[149], and numerous aspects associated with “cortical state” [97,150,151] including

attention [101,150], reward [152] and state of arousal [153,154]. Activity in sensory

cortex linked to such non-sensory inputs can result in variability in the responses of

neurons to identical stimulus presentations, which has been a subject of much recent

study [26, 67, 101, 155]. This suggests that a full understanding of sensory cortical

function will require the ability to characterize non-sensory inputs to sensory cortex

and how they modulate cortical processing.

However, such non-sensory inputs are typically not under direct experimental

control nor directly observed, in which case their effects can only be inferred through

their impact on observed neural activity. For example, shared but unobserved inputs

can lead to noise correlations observable in simultaneously recorded neurons [75,

45

156], which can serve as a means to predict one neuron’s activity from that of

other neurons [19, 157, 158]. Noise correlations thus demonstrate one approach to

understanding neural variability, and other recent extensions of this idea have used

the summed activity of simultaneously recorded neurons [82, 102] and local field

potentials [26, 159] to capture the effects of non-sensory inputs. Notably, these

approaches all focus on the effects of shared variability on single neuron activity,

and thus do not fully leverage the simultaneous recordings from multiple neurons to

infer shared sources of input.

An alternative is to jointly characterize the effects of unobserved, non-sensory

inputs on a population of simultaneously recorded neurons. This approach is em-

bodied in a class of methods known as latent variable models [160], which aim to

explain neural activity over the population of observed neurons using a small number

of factors, or “latent variables”. Latent variable models evolved from classic dimen-

sionality reduction techniques like Principal Component Analysis (PCA) [117,161],

and encompass a wide range of methods such as Factor Analysis (FA) [121], Indepen-

dent Component Analysis (ICA) [124], Poisson Principal Component Analysis [136],

demixed Principal Component Analysis [137], Locally Linear Embedding [162], Re-

stricted Boltzmann Machines [163], state space models [106,107,164], and Gaussian

Process Factor Analysis [111,165,166].

Here, we propose a new latent variable approach called the Rectified Latent

Variable Model (RLVM). This approach leverages two innovations over previous

methods. First, it constrains the latent variables to be non-negative (rectified),

which is hypothesized to be a fundamental nonlinear property of neural activity [20]

46

that can lead to important differences in the resulting descriptions of population

activity [167]. Indeed, using simulations, we show that rectification is necessary

for the RLVM to recover the true activity of non-negative latent variables under-

lying population activity. The second innovation is that the RLVM avoids several

statistical constraints on the latent variables that are necessary in other methods;

for example, it does not require them to be uncorrelated (like PCA), independent

(like ICA) or follow Gaussian distributions (like FA). To enable such unconstrained

estimation of model parameters, we base solutions of the RLVM on an autoen-

coder [168], which allows the RLVM to efficiently scale up to large datasets from

both electrophysiological and optical recordings.

We first describe the RLVM and demonstrate its application it to a synthetic

dataset generated to resemble typical large-scale recordings produced by two-photon

experiments. This synthetic dataset gives us ground truth with which to compare

RLVM performance with a range of other latent variable approaches. We demon-

strate that the RLVM outperforms these alternatives across a range of conditions

due to the innovations described above. We then apply the RLVM to a large two-

photon dataset recorded in mouse barrel cortex during a decision-making task [43].

The relationship between the latent variables inferred by the RLVM and the be-

havioral observations related to the task revealed that a large proportion of cortical

activity is related to non-vibrissal aspects of the behavioral task. Furthermore,

consistent with the results on the synthetic dataset, the RLVM had the ability to

match or outperform the other tested latent variable approaches, and also identified

latent variables most correlated with individual observed aspects of the experiment.

47

These results were consistent across many neural populations and animals sampled

from this dataset, and thus identify consistent types of latent variables governing

the diverse set of neurons recorded over many experiments. In total, this demon-

strates that the RLVM is a useful tool for inferring latent variables in population

recordings, and how it might be used in order to gain significant insights into how

and why sensory cortex integrates sensory processing with non-sensory variables.

2.2 Results

2.2.1 Model formulation

The goal of latent variable modeling is to describe the activity of many si-

multaneously recorded neurons with a small number of latent variables. Consider

a population of N neurons, with the ensemble of observed activity at time t rep-

resented by a vector yt; this observed activity could, for example, be spike counts

from multi-electrode recordings or fluorescence values from two-photon microscopy.

The M latent variables will also have a vector of activity zt at each time point,

where M is a free parameter of the model (figure 2.1). The RLVM then attempts

to predict the population activity yt as a function f(·) of a linear combination of

the latent variables zt

ŷt = f(Wzt + b) (2.1)

where W is a matrix of weights that describes how each neuron is coupled to each

latent variable and b is a vector of bias terms that account for baseline activity. For

two-photon data, it is appropriate to use a linear function for f(·), while for spiking

48

zt
(1)

zt
(2)

zt
(3)

zt
(M)

yt
(1)

yt
(2)

yt
(3)

yt
(4)

yt
(N)

f(.)

B C

Latent variable #
1 2 3 4 5

1

2

3

4

5
-1

0

1
Latent variable correlations

La
te

nt
 v

ar
ia

bl
e

#

N
eu

ro
n

#

Latent variable couplings

1 2 3 4 5
-1

0

1

Latent variable #

20

40

60

80

100
20 40 60 80 100

-1

0

1

N
eu

ro
n

#

Neuron #

Neuron correlations
D

A zt yt

w31

w32

w33

w3M

20

40

60

80

100

Figure 2.1: RLVM structure. A: the RLVM predicts the observed population
response yt = [y

(1)
t y

(2)
t . . . y

(N)
t]ᵀ at a given time point t (dashed line, right) using

a smaller number of non-negative latent variables zt = [z
(1)
t z

(2)
t . . . z

(M)
t]ᵀ (dashed

line, left). The latent variables are weighted by a matrix W such that wij is the
weight between neuron i and latent variable j, and the resulting weighted inputs are
summed and passed through a nonlinearity f(·). There are additional offset terms
for each neuron, not pictured here. B–D: the hypothesized structure of the cortical
network motivating the RLVM formulation is used to generate synthetic data, using
5 latent variables. B: factors underlying cortical activity will often be correlated with
each other, and our simulation of cortical activity used the correlation matrix shown
between latent variables in generating simulated activity. C: the weight matrix
between latent variables and each neuron, generated to approximate the coupling
matrices found with experimental data (compare to figure 2.4B). D: the measured
pairwise correlation matrix between neurons, computed from simulated data. The
correlations predicted by the RLVM arise solely from shared latent variable input
and their correlations with each other, rather than pairwise coupling.

data one can use a function that results in non-negative predicted values to match

the non-negative spike count values [18].

The vector of latent variables zt will in principle represent all factors that

drive neural activity, including both stimulus-locked and non-stimulus-locked sig-

49

nals. These factors may or may not be related to observable quantities in the

experiment. For example, they could be related to “external” observables like mo-

tor output [122] and pupil dilation [169] or “internal” observables like the local field

potential [26], population rate [82], or amount of dopamine release [170]. However,

while latent variables might be related to experimental observables, here we make

no assumptions on such relationships in determining them.

The non-negative assumption on these latent variables is a key distinction

between the RLVM and other latent variable models. This assumption is motivated

by the non-negativity of neuronal firing rates and spike counts, which presumably

underlie the sources of input being represented by the latent variables. This is

not to imply that neural activity cannot represent negative variables; for example,

neurons that have high spontaneous firing rates can represent negative quantities as

a decrease below that baseline rate. The RLVM does in fact allow for this situation

when a latent variable has a nonzero baseline value, because it can have positive

and negative deviations from that baseline. Furthermore, the extent to which a

latent variable takes advantage of the rectification is learned by the model and does

not need to be specified a priori. Thus, by explicitly incorporating rectification, the

RLVM finds solutions that are not easily generated by other approaches.

Indeed, rectified latent variables will often be zero, and thus also generate

sparse responses, which serves as a second motivation for the nonnegativity of the

latent variables. Sparse processes could, for example, represent episodic inputs into

cortex from the environment or from other cortical areas. Many models of neural

activity cannot in principle find sparse latent variables: for example, they will rarely

50

explain large amounts of variance (PCA) and will never have a Gaussian distribution

(FA). One of the advantages of the RLVM is that even though it does not require

distributional assumptions, it is in fact able to capture sparse latent variables (see,

for example, figure 2.5A, latent variable 3), since rectification can force many values

to be zero.

The nonnegative assumption also addresses the “rotational degeneracy” char-

acteristic of any model that contains a matrix-vector multiplication, as in equation

2.1. In such cases, there is no unique solution because, for any orthogonal matrix

U , the two solutions Wzt and (WUᵀ)(Uzt) are equivalent since UᵀU = I (the iden-

tity matrix). To address this issue, different latent variable models considered in

this report impose different constraints. For example, PCA assumes that the latent

variables are uncorrelated and explain the greatest amount of variance, FA assumes

that the latent variables are independent and normally distributed, and ICA as-

sumes that the latent variables are as independent as possible. The RLVM employs

a different constraint - nonnegativity of the latent variables - that we expect to be

more faithful to the true constraints of neural processing, as described above.

A second key innovation of the RLVM is how it is fit to datasets. We initially

used the MML algorithm, which is similar to the EM algorithm for fitting latent

variable models [107]. However, inferring the time course of latent variables is chal-

lenging because of their high dimensionality, as they have a different value for each

time point in the experiment. Fitting the model using random initializations for

both the latent variables zt and model parameters {W,b} is unlikely to find the

best solutions given such a high-dimensional space. As a result, we used an autoen-

51

coder framework [168] to fit all model components simultaneously. The autoencoder

optimizes both zt and {W,b} by minimizing the mean square error (or any appro-

priate cost function) between the true activity and the activity predicted by 2.15.

The resulting autoencoder parameters provide both a reasonable initialization for

the MML algorithm as well as a good solution to the RLVM without further fitting

(detailed below).

2.2.2 Validation of the RLVM using simulated data

To understand the solutions found by the RLVM relative to other latent vari-

able models, we generated simulated data with five latent variables that provided

input to 100 neurons (figure 2.1A). These data were generated under the assump-

tion that the input to each neuron is a weighted combination of a small number

of correlated, nonnegative latent variables. The latent variable activity was filtered

by each neurons coupling and passed through a spiking nonlinearity to produce its

firing rate, which was then used to randomly generate spike counts with a Poisson

process. Because in this study we are considering application to two-photon imaging

data, we then further processed each neurons activity by convolving the generated

spike trains with a kernel to simulate calcium dynamics and finally adding Gaussian

noise. It should be noted that while this method of generating neural population

activity reflects the mathematical form of the RLVM, both this simulation and the

form of the RLVM are designed to describe the types of latent variables driving real

neural data (as motivated above).

52

Evaluation of RLVM fitting methods. We first consider the RLVM ap-

plied to these simulated data. The RLVM is fit in two stages. In the first stage,

an autoencoder is fit to the data and efficiently converges to solutions for the la-

tent variables and parameters. In the second stage, the MML algorithm is initialized

with the autoencoder solutions and can then explore solutions to the latent variables

that can have more general forms because of the less restrictive constraints. Here we

compare the quality of the model fits resulting from this two-stage procedure (au-

toencoder initialization) to those resulting from a random initialization of the MML

algorithm. To quantify the goodness of fit for each model type (random initialization

versus autoencoder initialization) we calculated the Pearson correlation coefficients

(r) between the true and inferred latent variables. Using random initializations led

to poor solutions for the latent variables (r = 0.781 ± 0.020; mean r±SE over 20

initializations), whereas the two-stage procedure led to far more accurate solutions

(r = 0.971 ± 0.001). The superior results achieved by initializing with the autoen-

coder solution (itself initialized randomly) are due to the high dimensionality of the

problem - in the MML algorithm employed here there are relatively few constraints

imposed on the latent variables (nonnegativity and some degree of smoothness),

which results in many local minima. In contrast, the latent variables of the autoen-

coder are constrained to be a linear combination of the recorded population activity,

and this constraint results in a much smaller space of model solutions.

In fact, we found that the latent variables resulting from the two-stage pro-

cedure were extremely similar to the initial values found by the autoencoder itself

(r = 0.994± 0.000). The main difference between these solutions is that the MML

53

optimization, which starts from the autoencoder solutions, smooths the time course

of the latent variables, whereas the autoencoder latent variables are not generally

smooth. As a result, except where otherwise stated, we use the autoencoder so-

lution - forgoing the MML step of the algorithm - as a proxy for the full RLVM

performance. Because the latent variables from the autoencoder do not have to be

separately inferred for cross-validation data, this choice also provides a more direct

comparison of the RLVM with the other latent variable models considered below.

We also tested how the performance of the RLVM depends on parameters

governing both the simulated data generation and the fitting procedure to better

understand the autoencoders sensitivity to these variables. We found that the au-

toencoder can accurately recover the latent variables and coupling matrix even with

small amounts of data (figure 2.8A) and low SNR (figure 2.8B). We explored the

sensitivity of the autoencoder to different values of the regularization parameter

on the encoding and decoding weights (λ1 and λ2, respectively, in equation 2.18),

and found that the results obtained by the autoencoder are constant across several

orders of magnitude (figure 2.8C). In practice, we also found that the autoencoder

solutions were robust given random initializations of the autoencoder parameters,

suggesting that the model was not prone to local minima. These experiments sug-

gest that the autoencoder is a robust fitting method for the RLVM that does not

need large amounts of data or precise tuning of optimization parameters to produce

accurate results.

We also tested whether the RLVMs nonnegativity constraint is essential for

recovering the correct latent variables from the simulated data. Again using r as

54

a goodness-of-fit measure for the inferred latent variables, we fit the RLVM to the

simulated data (using the autoencoder) with different functions for g(·) in equation

2.14. We found that using the rectified nonlinearity (ReLU function) led to much

more accurate solutions (r = 0.963±0.002; mean r±SE over 20 initializations) than

using a non-rectified (linear) version of the RLVM (r = 0.573 ± 0021). The linear

version places no constraints on either the latent variables or the coupling matrix

and thus cannot resolve the rotational degeneracy described above, which results in

infinitely many ways for this linear model to reconstruct the observed activity [i.e.,

the two solutions Wzt and (WUᵀ)(Uzt) are equivalent for any orthogonal matrix

U]. Although this implies that the linear version could in principle find the correct

non-negative latent variables, the lack of constraints makes it unlikely that the

linear version will identify the true latent variables. This illustrates the importance

of using the nonlinearity to enforce the nonnegativity of latent variables, in order

for the RLVM to recover the latent variables generated with such a nonnegative

constraint.

Comparison to other latent variable models. To understand how the

RLVM compares with other latent variable methods, we also fit PCA, FA, and ICA

models to the simulated data (figure 2.2). We first compared the latent variables

inferred by the different models (figure 2.2A), using a measure, maxcorr, that iden-

tifies the maximum correlation between each predicted latent variable and the true

latent variables (see 2.4.3). The RLVM and FA outperform PCA and especially ICA

and are able to largely predict the true latent variable activity once the number of

inferred latent variables matches the true number of latent variables. An important

55

feature of the RLVM and FA fits is that these two methods still infer meaningful

latent variables even when the number of inferred latent variables is incorrectly spec-

ified: when the number of inferred latent variables is larger than the true number,

both methods infer one latent variable that is highly correlated with each of the

true latent variables and the remaining inferred latent variables just capture noise

in the data.

Because of this behavior, the performance of the RLVM and FA with respect

to the maxcorr measure does not decline. The good performance of the RLVM

was expected, given that the data were generated according to the assumptions of

that model. The good performance of FA in reproducing the latent variables was

somewhat surprising, given that it assumes that the latent variables are indepen-

dent Gaussian variables. However, this assumption only applies in determining the

initial coupling matrix, and the FA performance results from how the final coupling

matrix is determined through varimax rotation (MATLAB default). The varimax

rotation criterion maximizes the variance of the squared entries in each column of

the coupling matrix, summed across all columns [171]. This has the effect of chang-

ing the weights in each column so that only a few weights are of large magnitude,

while the rest are close to zero. Because the true coupling matrix mostly has this

structure, FA is able to accurately capture that structure by varimax rotation. Once

this final coupling matrix has been found, the resulting latent variables are then de-

termined by linear regression (MATLAB default), which makes no assump- tions

about their distribution. PCA and ICA do not infer the correct latent variables be-

cause they make assumptions about the latent variables being uncorrelated (PCA)

56

B

A

La
te

nt
 v

ar
ia

bl
e

m
ax

co
rr

0.0

0.5

1.0

True

1 2 3 4 5

N
eu

ro
n

nu
m

be
r

20

40

60

80

100

RLVM

1 2 3 4 5

PCA

Latent variable #
1 2 3 4 5

FA

1 2 3 4 5

ICA

1 2 3 4 5
-1

0

1

0 10 20 30
Time (s)

Example model-predicted latent variables

M
ag

ni
tu

de
 (

a.
u.

)

0

C

D

Po
pu

la
tio

n
A

ct
iv

ity

R2

-0.4

0.0

0.4

0.8

0 10 20 30
Time (s)

Example model-predicted fluorescence traces

Number of
latent variables

N
or

m
al

iz
ed

 In
ne

r P
ro

du
ct

0.4

0.6

0.8

1.0

-10 0 10
0.0

0.5

1.0

-10 0 10

Time lag (s) Time lag (s)

C
ro

ss
 c

or
re

la
tio

n

2 4 6 8

Example model-predicted cross-correlograms

∆
F/

F
 (a

.u
.)

0

ICA
FA
PCA
RLVM

Data

Number of
latent variables

2 4 6 8
Number of

latent variables

2 4 6 8

Figure 2.2: Comparisons between latent variable methods applied to sim-
ulated data. Four different latent variable methods were fit to data that were sim-
ulated with 5 latent variables (figure 2.1, BD) and evaluated with cross-validated
model performance measures. All error bars represent the SE over cross-validation
folds. A, C, and D, left, demonstrate results from models with the correct number
of latent variables, but performance measures (right) explore different numbers of
latent variables. A, left : time course of a representative latent variable compared
with the equivalent inferred latent variable from each method. Note that the FA
and RLVM methods are both highly overlapping with the true latent variable. a.u.,
Arbitrary units. Right : latent variable maxcorr, which measures the correlation
between the true and inferred latent variables, plotted against the number of la-
tent variables specified during the fitting procedure. Model performance in each
case plateaus for the true number of latent variables, indicating that even when
overspecifying the number of latent variables the RLVM and FA still infer latent
variables that match the true ones. B: matrices of coupling weights between neu-
rons and latent variables, inferred by each method. For comparison, the coupling
matrix used to generate the simulation is shown on left (reproducing figure 2.1C).
C, left : representative simulated fluorescence trace of one neuron compared with
the corresponding trace predicted by each method. Despite their performance in
predicting the latent variables (A), here FA does poorly and PCA does well, as does
the RLVM. Right : R2 values (median across neurons) between true and predicted
fluorescence traces. D, left : cross-correlograms between two example pairs of simu-
lated neurons compared with the corresponding cross-correlograms based on traces
predicted by each method. Right : ability of each method to reproduce the pairwise
cross-correlations between neurons at zero time lag, measured as the normalized in-
ner product between the true correlation matrix and those calculated from predicted
traces for each method.

57

or independent (ICA), neither of which is true of the simulated data.

A second aspect of the performance of the different latent variable models was

based on how well each method captured the coupling weights between these la-

tent variables and each neuron. In this regard, the RLVM and FA performed much

better than PCA or ICA (figure 2.2B). Because the RLVM simultaneously infers

the latent variables and estimates the coupling matrix, the accurate inference of

the latent variables (figure 2.2A) necessarily implies an accurate estimation of the

coupling matrix (assuming the overall population activity is well predicted; see next

paragraph). PCA and ICA also estimate both model components simultaneously,

but again the strong assumptions these methods place on the latent variables pro-

hibit their accurate estimation of the coupling matrices. For FA the initial coupling

matrix resembled that of PCA, but the final coupling matrix resulting from varimax

rotation bears a much closer resemblance to the true coupling matrix. However, the

varimax rotation was not able to accurately capture gradients in the magnitude of

the weights (figure 2.2B; compare the red diagonal blocks in the FA coupling matrix

with the true coupling matrix).

For all four models considered here, the predicted activity of an individual

neuron is given by a weighted sum of the latent variables (figure 2.2A), with weights

given by the proper row of the coupling matrix (figure 2.2B). To quantify the ac-

curacies of the resulting model predictions, we used the coefficient of determination

(R2; see section 2.4.3) between the true and predicted activity (figure 2.2C). In-

terestingly, even though the RLVM and FA produced similar latent variables and

coupling matrices, FA did not predict the population activity as well as the RLVM.

58

This was mostly due to many large weights in the FA coupling matrix, which re-

sult from the varimax rotation step. Because the final latent variables from the

FA algorithm are determined with linear regression by using the varimax-rotated

coupling matrix as a predictor for the population activity, the population activity

predictions are constrained by an improperly scaled coupling matrix, and the result

is that neurons with estimated coupling weights that are too large in magnitude are

not well predicted.

Perhaps surprisingly, PCA performed just as well as the RLVM in predicting

the observed activity, even though PCA did not infer the correct latent variables

or estimate the correct coupling weights. The reason for this is that the RLVM

and PCA both minimize the reconstruction error in their cost function (explicitly

and implicitly, respectively); however, because PCA does not constrain the latent

variables to be positive, it reconstructs the population activity using both positive

and negative values. This leads to differences in the latent variables (figure 2.2A,

left) and coupling matrices (figure 2.2B) but can result in an equivalent prediction

of activity (figure 2.2C, left). This difference between the RLVM and PCA in their

descriptions of the population activity is a crucial point that we return to when

evaluating the PCA solutions on real data.

Finally, we evaluated each method on its ability to account for observed cor-

relations between neurons. Many previous approaches have focused on explaining

pairwise correlations directly [19, 157, 172], which requires parameters for each pair

of neurons. However, as demonstrated by our example simulation, even just five

latent variables can produce a complex pattern of pairwise interactions (figure 2.2D,

59

A

Number of
latent variables

5 10 15 20

0.0

1.0

Coupling matrix density
0.0 0.5 1.0

SNR
100

La
te

nt
 v

ar
ia

bl
e

m
ax

co
rr

Po

pu
la

tio
n

A
ct

iv
ity

R2

0.5

-0.4

0.8

0.0

0.4

0.0

1.0

0.5

-0.4

0.8

0.0

0.4

10-1 101

B C

0.0

1.0

0.5

-0.4

0.8

0.0

0.4

ICA
FA
PCA
RLVM

Figure 2.3: Performance of latent variable methods across a range of
simulations. Simulated data sets are generated as described in figure 2.2, using a
range of the number of true latent variables (A), the coupling matrix density (B), and
the signal-to-noise ratio (SNR; C). When generating coupling matrices with different
numbers of latent variables (A), each method was fit using the true number of latent
variables. For the coupling matrices with different densities (B), each neuron had
a nonzero weight to at least one latent variable and the coupling matrix density is
defined as the proportion of nonzero weights beyond this one-per-neuron baseline.
The performance of each method was characterized by the latent variable maxcorr
measure (see section 2.4.3) (top) and the population activity R2 (bottom). Error
bars represent SE over 20 randomly generated data sets. The parameter values used
for the simulated data in Fig. 2 are indicated on each plot (dashed black lines).

left). Thus latent variable methods offer the ability to explain such correlations us-

ing many fewer parameters [158]. To quantify each models ability to capture these

correlations, we compare the cross-correlogram at the zero-time-lag point between

data and prediction from each neuron pair (which forms the correlation matrix).

This agreement was measured using the overlap between the true correlation matrix

and the predicted correlation matrix (figure 2.2D, right). The results mirror the

ability of each method to predict the population activity (figure 2.2C), with the

RLVM and PCA capturing more of the correlation structure than FA and ICA.

To demonstrate how the above results generalize to different datasets, we per-

60

formed a range of simulations while varying the number of latent variables (figure

2.3A), the number of nonzero elements in the coupling matrices (figure 2.3B), and

SNR (figure 2.3C). We characterize the performance of each method by its ability

to recover the true latent variables (figure 2.3, top) and by its ability to recon-

struct the population activity (figure 2.3, bottom). For all data set variations, the

comparison between the RLVM and FA is similar to that seen in figure 2.2: they

perform roughly equivalently in their ability to recover the true latent variables, but

FA is not able to reconstruct the population activity as well as the RLVM (for the

same reasons discussed above). Comparison between the RLVM and PCA reveals

the opposite trend: the two perform equivalently in their ability to reconstruct the

population activity, but PCA is not able to recover the true latent variables as well

as the RLVM (also mirroring the conclusions drawn from figure 2.2).

2.2.3 Application of the RLVM to two-photon experiments

We next applied the RLVM to the experimental data set from Peron et al.

(2015) [43]. We selected this data set because it involves a complex task with several

“observables” related to behavior and task context, many of which are outside of

direct experimental control but potentially related to cortical activity. Additionally,

these data included a large number of neurons recorded over long periods of time,

which is useful for the performance of any latent variable model. In this experiment,

mice performed a pole localization task, in which a pole was lowered at a distal or

proximal location next to the animals snout. All but one whisker was trimmed

61

on that side of the snout, with the single remaining whisker corresponding to the

imaged barrel in primary somatosensory cortex (S1). The animal had to signal the

location of the pole after a delay period by licking one of two lick ports after the

onset of a brief auditory cue. For the analyses in this work, we used a particular

subset of available data sets corresponding to different imaged populations of S1

neurons (see table 2.1), selected on the basis of the size of the neural population

imaged, the length of time imaged, and its SNR (see section 2.4.5).

For a given imaged population of neurons, we first determined how well the

different latent variable methods predicted the observed population activity using

different numbers of latent variables (figure 2.4A). The relative performance of the

methods was similar to their performance on the simulated data (figure 2.2C, right).

For the RLVM, PCA, and FA, there was at first a rapid increase in prediction perfor-

mance as the number of latent variables increased, with the performance beginning

to plateau between 5 and 10 latent variables. Because each additional latent variable

adds performance, there is no clear number of “true” latent variables that generated

the data. However, it is important to note that relatively few are needed before the

performance plateaus. Because there is no explicit point where this occurs, we se-

lected a point where there was only a marginal increase in performance (6 latent

variables) for all subsequent analyses.

Once the latent variables are determined, the coupling matrix of the RLVM

demonstrates how each neuron combines these variables to produce its predicted

activity (figure 2.4B). One of the advantages of using two-photon data is that it

provides the spatial locations of the neurons, and we can use that information to

62

Latent variable #
1 2 3 4 5 6

N
eu

ro
n

#

200

400

600
-1.0

0.0

1.0

Number of latent variables
0 5 10 15

Po
pu

la
tio

n
A

ct
iv

ity
 R

2
0.00

0.05

0.10

ICA
FA
PCA
RLVM

1 2

3 4

5 6

A

B

C

-1.0

0.0

1.0

100 μm

Figure 2.4: Latent variable methods applied to a two-photon imaging
data set recorded in mouse barrel cortex. A: the performance of each model
in reproducing the observed data depends on the number of latent variables used,
measured by R2 between the measured and predicted activity. The relative per-
formance of the different methods is ordered the same as their applications to the
simulated data (figure 2.2, right). Because there was no clear saturation point of
the R2 values, models with 6 latent variables (dashed black line) were used for sub-
sequent analyses. B: the coupling weights of the RLVM between each neuron and
each latent variable, with neuron number assigned to aid the visualization of neu-
ron clusters associated with each latent variable (see section 2.4.5). C: the spatial
positions of neurons coupled to each latent variable. Here neurons whose coupling
strength is > 15% of the maximum coupling strength for the latent variable are
shown and color-coded to show the magnitude of their coupling. The imaged neu-
rons were within a single barrel (of mouse primary somatosensory cortex), and the
coupling to latent variables exhibited no clear spatial pattern.

determine whether there is any spatial structure in the coupling weights to the la-

tent variables. To look for spatial structure of the neurons coupled to each latent

variable, we plotted the spatial locations of the neurons with an absolute magnitude

of coupling weight to a given latent variable > 15% of the maximum absolute mag-

nitude for each (figure 2.4C). The positive and negative weights are intermingled

in these plots, and no discernible spatial structure exists. This is expected in part

63

because these neurons were imaged within a single barrel, and thus all belong to

a single cortical column. Nevertheless, this illustrates how latent variables can in

principle provide a new way to investigate the functional organization of cortex.

While with simulated data we were able to directly compare the latent variables

inferred by each method with the ground truth, the experimental data provide no

direct way to validate the latent variables that each method detected. Instead, we

hypothesized that latent variables will be related to factors that might be directly

observed in the experiment. In this case, there were four “trial variables” measured

in this data set: the timing of whisker touches against the pole, the onset of the

auditory cue that signals the animal to make its choice, the onset of reward delivery

when the animal makes the correct choice, and the timing of licks. We compared the

time course of latent variables discovered by the RLVM to these different elements

of the experiment, demonstrating clear relationships (figure 2.5A). For example, the

activity of latent variable 3 is only active in the same periods where there were

whisker touches. In the meantime, both latent variables 1 and 2 and 4 appear to be

correlated with the choice cue and/or following reward - note that the animal had

high performance, so was rewarded on all trials in this case.

To quantify these relationships, we used linear regression to predict the ac-

tivity of each latent variable with the four observed trial variables, using R2 as a

goodness-of-fit measure. Linear regression was used in place of a simpler correlation

measure because the coefficients for linear regression can include lagged time points,

which allowed the regression model to capture the extended temporal response of

fluorescence transients (figure 2.5B). A separate linear regression was performed for

64

Time (s)
140 160 180 200

La
te

nt
 v

ar
ia

bl
e

#

1

2

3

4

5

6

Whisker
touches

Licks

2

6

2

6

2

6

2

6

-0.5

0.0

0.5

2

6

2

6

W
hi

sk
er

 t
ou

ch
es

C
ho

ic
e

cu
e

R
ew

ar
d

de
liv

er
y

Li
ck

s

Tim
e lags (s)

Proportion of
 predicted activity

0.0

0.2

0.4

Pr
op

or
tio

n
of

 n
eu

ro
ns

 d
riv

en
 b

y
va

ria
bl

e

0.0

0.2

0.4

Whisker touches

Licks

Choice cue
Reward delivery

Latent variable #
1 2 3 4 5 6

Choice cue
Reward deliveryA B C

R2 = 0.03

R2 = 0.09

R2 = 0.14

R2 = 0.16

R2 = 0.46

R2 = 0.36

⁕

⁕

⁕

⁕

⁕

⁕

N
eu

ro
n

200

400

600

Proportion of variance
driven by variable

0.0

0.4

0.8

Figure 2.5: Relationship of latent variables inferred by the RLVM to ex-
perimentally observed trial variables. A: an 80-second sample of the predicted
activity of 6 latent variables (extending over 8 task repetitions), demonstrating the
relationship between the latent variables and the following “trial variables” observed
during the experiment: the auditory cue that signals the animal to make its choice
(blue vertical lines), the onset of reward delivery when the animal makes the correct
choice (red vertical lines), the timing of whisker touches against the pole (bottom,
green), and the timing of licks (bottom, purple). Latent variables are ordered (bot-
tom to top) based on the magnitude of their variance. B: the trial variables at
different time lags were used to predict the activity of each latent variable by lin-
ear regression, with the relative weights color-coded. The trial variable with the
strongest relationship (measured by R2) is marked with an asterisk, and the corre-
sponding R2 value is displayed. C, top: shaded boxes indicate which trial variables
are capable of predicting each latent variable. Middle: fraction of measured activ-
ity of each neuron accounted for by each latent variable. The resulting matrix is
related to a weighted version of the coupling matrix (figure 2.4B) and demonstrates
the relative contribution of each latent variable to the observed population activ-
ity. Bottom: fraction of observed neurons driven by each latent variable (red) and
relative fraction of predicted neural activity explained by each latent variable (blue).

65

each trial variable, which did not take into account the correlations that exist among

the trial variables. This approach is useful for determining how well latent variables

are able to represent single trial variables, as opposed to mixing the influences from

multiple trial variables (see below).

The resulting quantitative measures (figure 2.5B) were consistent with the

example traces shown: latent variables 1, 2, and 4 are well predicted by the reward

portion of the trial, latent variable 3 is well predicted by whisker touches, and latent

variables 5 and 6, which do not have any discernible trial-locked patterns, are not

well predicted by any of these four trial variables. With these quantitative measures,

we can label each latent variable with the set of trial variables that best predict it.

To do so, we required that 1) the R2 value using that trial variable was ¿0.10 and 2)

the R2 value was greater than one-half the largest R2 value among all trial variables.

If both these conditions were met, we considered the latent variable to be “driven”

(although perhaps not exclusively) by that trial variable (figure 2.5C, top).

Another important question to address was how strongly each latent variable

influenced the population response. First, we looked at how strongly a latent vari-

able influenced the population by measuring the proportion of neurons driven by

that latent variable. For each neuron we calculated the fraction of the neurons ac-

tivity explained by each latent variable (figure 2.5C, middle; see section 2.4.5) and

considered a neuron to be driven by that latent variable if the fraction exceeded

0.10 (figure 2.5C, bottom, red bars). We also looked at how each latent variable

contributes to the overall proportion of predicted activity, to see if there were any

differences between how the latent variables influenced measured versus predicted

66

responses. We computed a measure similar to that described above but calculated

the fraction of the neurons predicted (rather than measured) activity explained by

each latent variable (figure 2.5C, bottom, blue bars; see 2.4.5). Both measures per-

formed similarly and show that latent variable 1, which was identified with the

reward portion of the trial (see above), affected the largest proportion of neurons;

latent variable 3, which is the only latent variable identified with the stimulus, af-

fected the third largest proportion; and latent variables 5 and 6, which are not

identified with any trial variables, affected the smallest proportions of neurons.

A fundamental feature of the RLVM is its ability to identify “sparsely active”

variables, which is enabled by the rectification imposed on latent variable activity.

For example, a source of neural activity that is episodically active (such as whisker

touches in this case) should mostly have a small magnitude (and explain little vari-

ance) except during these events (e.g., latent variable 3 in figure 2.5A). Without

rectification, such solutions are challenging for latent variable methods to identify.

To demonstrate this, we performed the same analyses as in figure 2.5 using PCA

(figure 2.6, A and B). The latent variables inferred by PCA (figure 2.6A) do in fact

contain features that are correlated with the trial variables, but these features were

more mixed than in the RLVM latent variables. Indeed, latent variable 3 in PCA

over the same period does respond to whisker touches but also has activity timed

to the choice cue.

A similar observation holds for RLVM latent variables 1 and 2, which are asso-

ciated with suppressive and excitatory activity during the reward phase, respectively

(figure 2.5A). While the RLVM cleanly separates these two subpopulations, they are

67

Choice cue
Reward delivery

A B C DChoice cue
Reward delivery

Time (s)
140 160 180 200

La
te

nt
 v

ar
ia

bl
e

#

1

2

3

4

5

6

Whisker
touches

Licks

Latent variable #
1 2 3 4 5 6

Whisker touches

Licks

Choice cue
Reward delivery

Proportion of
 predicted
activity

0.0

0.4

Pr
op

or
tio

n
of

 n
eu

ro
ns

 d
riv

en
by

 v
ar

ia
bl

e

0.0

0.4

N
eu

ro
n

200

400

600

C
oupling w

eights-1

1

0

Time (s)
140 160 180 200

Whisker
touches

Licks

Whisker touches

Licks

Choice cue
Reward delivery

Latent variable #
1 2 3 4 5 6

Proportion of
 predicted
activity

0.0

0.4
Pr

op
or

tio
n

of
 n

eu
ro

ns
 d

riv
en

by
 v

ar
ia

bl
e

0.0

0.4

N
eu

ro
n

200

400

600

C
oupling w

eights-1

1

0

La
te

nt
 v

ar
ia

bl
e

#

1

2

3

4

5

6

Figure 2.6: Latent variables inferred by PCA and a linear RLVM show
a weaker relationship to individual trial variables. PCA (A and B) and a
linear RLVM (where latent variables were not constrained to be nonnegative) (C
and D) were fit to the same experimental data as in figure 2.5. A: latent variable
time courses inferred by PCA over the same interval as in figure 2.5A, ordered
from bottom to top by variance explained. There is a clear mixing of information
relative to the RLVM latent variable time courses (figure 2.5A). Latent variable 3,
for example, has positive deflections aligned with whisker touches (similar to RLVM
latent variable 3) combined with negative deflections aligned with the onset of the
reward period (opposite sign relative to RLVM latent variable 4). B, top: shaded
boxes indicate which trial variables are related to the latent variables. Middle:
coupling matrix between latent variables and each neuron (neurons are ordered the
same as those in figure 2.5C). This illustrates how the first few principal components
mix inputs from several sources, likely because PCA is based on explaining the
greatest fraction of variance with each principal component rather than separating
the underlying causes. Bottom: summed influence of each latent variable on the
population activity (matching measures in figure 2.5C, bottom). C: latent variables
inferred by a linear RLVM. D: same measures as those calculated in B. Both PCA
and the linear RLVM latent variables mix features from the RLVM latent variables,
which is apparent in their coupling matrices (B and D, middle).

mixed together in the first principal component of PCA (figure 2.6B, middle; neu-

rons ∼1-100 and ∼250-300, respectively). PCA mixes these two subpopulations

because such a combination into a single principal component explains the greatest

amount of variance in the data, and this combination is possible because PCA is not

restricted to using nonnegative latent variables. These apparent mixtures of latent

68

variables are also reflected in the coupling matrix between latent variable and neural

activity (compare figure 2.6B, middle, to figure 2.4B).

To determine whether the nonnegativity constraint on the RLVM is responsible

for the differences between the PCA and RLVM solutions, we fit the RLVM on the

same data without constraining the latent variables to be nonnegative. The latent

variables inferred by this nonrectified version of the RLVM were qualitatively sim-

ilar to PCAs latent variables (figure 2.6C), and indeed this models latent variables

exhibit the same type of mixing as the PCA latent variables. This demonstrates

that the RLVMs ability to separate these subpopulations of neurons is mainly due

to the rectified nonlinearity and is not just an artifact of PCAs constraint that the

latent variables must be uncorrelated.

This example also illustrates that - although the RLVM and PCA are able to

explain the same amount of population activity (figure 2.4A) - the underlying latent

variables can differ dramatically due to rectification (similar results were seen with

FA; data not shown). This same result was seen in the simulated data, with both

the comparison between the RLVM and PCA (figure 2.2A, left) and the comparison

between the RLVM and nonrectified version of the RLVM. This suggests that - if

population activity is indeed composed of nonnegative latent variables - the structure

of the RLVM makes it a more appropriate method for studying neural population

activity.

To demonstrate that the above results from the RLVM (figure 2.4 and figure

2.5) are consistent across different populations of neurons and different animals,

we repeated these analyses using nine different populations of neurons from the S1

69

0.00

0.04

0.08

831 cells
0.00

0.06

0.12

406 cells
0.00

0.05

0.10

685 cells

Animal
229716

0.00

0.04

0.08

466 cells

0.00

0.04

0.08

760 cells

Animal
229717

0.00

0.06

0.12

805 cells

0.00

0.06

0.12

466 cells

Animal
229719

0.00

0.05

0.10

517 cells

0.00

0.05

0.10

356 cells

Po
pu

la
tio

n
A

ct
iv

ity
 R

2

0 10

Proportion of
predicted activity

0.0

0.1

0.2

Pr
op

or
tio

n
of

ne

ur
on

s d
riv

en

by
 v

ar
ia

bl
e

0.0

0.1

0.2

N
um

ber of
populations

0

20

N
um

be
r o

f
la

te
nt

 v
ar

ia
bl

es

0

4

9

Whisker touches

Licks

Choice cue
Reward delivery

1 2 3 4 5 6 7 8 9

A B

Number of latent variables Latent variable type
5 15 0 105 15 0 105 15

Figure 2.7: Consistent classifications of latent variables detected across
experiments. A: R2 between the measured activity and the activity predicted by
the RLVM for different imaged populations of neurons. Highlighted plot corresponds
to the population of neurons analyzed in figures 2.4-2.6 and reproduces the RLVM
values in figure 2.4A. Across experiments there is a similar dependence of R2 on the
number of latent variables, although the overall magnitude of R2 values depends on
the number of neurons and the noise level of each experiment. B, top: amount of
variability accounted for by each “type” of latent variable across all nine populations,
using six latent variables per population (same measures as calculated in figure 2.5C,
averaged across the number of latent variables of each type). Even though all imaged
populations were located in primary somatosensory cortex, across experiments most
of the neural activity was related to nontactile sources. Middle: latent variables are
classified by the combination of trial variables each is related to (same criteria as
used in figure 2.5C). Bottom: red bars indicate the total number of latent variables in
each class (out of 54 total latent variables), and blue bars indicate the total number
of populations that contain at least one example of the latent variable class (out of
nine total populations). Latent variable types identified with whisker touches (1, 5,
and 8) comprise a smaller proportion of the latent variables than types identified
with the reward portion of the trial (2 4, 6, and 7). Latent variables that were not
identified with any trial variables (9) were present in every population and had an
influence on the population activity comparable to the other latent variables.

data set (see table 2.1 for more detailed information). The nine populations contain

anywhere from 356 to 831 neurons, and the prediction performance of the RLVM for

each population is plotted in figure 2.7A. It is interesting to note that all of these

curves mostly plateau before reaching 10 latent variables, despite the wide range

70

in the number of neurons in these populations, a result that may be related to the

complexity of the behavioral task [173].

To repeat the analyses in figure 2.5, we used six latent variables for each pop-

ulation (figure 2.7B). Values were calculated as before (figure 2.5C) and averaged

over latent variables from all nine populations. This meta-analysis shows that the

results from figure 2.4 and 2.5 broadly hold across different populations in different

animals: the latent variables associated with the reward portion of the trial are

found in all but one population and account for the largest proportion of the pre-

dicted activity in the populations; latent variables associated with the stimulus are

found in the majority of populations; and variables that are not identified with any

trial variables are found in all populations. Together, these results (figures 2.4-2.7)

demonstrate the usefulness of the RLVM as a tool for studying population responses

in cortical areas and suggest that latent variable models will be crucial to arriving

at a deeper understanding of cortical function.

2.3 Discussion

Recordings of the activity from large numbers of cortical neurons provide op-

portunities to gain insight into the underlying factors driving cortical activity. Given

that there are fewer variables underlying the activity than the number of neurons

being recorded, latent variable approaches provide a way to infer the time course of

these underlying factors and their relationship to neural activity. Here we presented

the RLVM, which is unique in that it places a constraint on the latent variables

71

Po
pu

la
tio

n
A

ct
iv

ity
 R

2

2
4
6
8
10
12
14
16
18
20

 Number of
latent variables

SNR
10-1 100 101

0.4

0.6

0.8

Experiment length (min)
10 20 30 40 50

0.6

0.7

0.8

L2 parameter
10-2 100 102 104 106

0.2

0.4

0.6

0.8

A B C

Po
pu

la
tio

n
A

ct
iv

ity
 R

2

Po
pu

la
tio

n
A

ct
iv

ity
 R

2

Figure 2.8: Sensitivity analysis of the autoencoder using simulated data.
Data sets are generated as in figure 2.2 using varying numbers of latent variables.
AC: an autoencoder is fit to each data set using the correct number of latent vari-
ables. Plotted points represent the mean R2 value between the true and predicted
population activity averaged over 20 such data sets; error bars are omitted for ease
of interpretation. Plots show the result of varying the amount of data used for
fitting (using 10 Hz sampling rate) (A); the signal-to-noise ratio of the data used
for fitting (using 30 minutes of simulated data) (B); or the regularization parameter
on the encoding and decoding weight matrices, which were constrained to be equal
through weight-tying (again using 30 minutes of simulated data) (C).

that is appropriate for neural activity, namely, that underlying factors are nonneg-

ative (rectified). The RLVM can be fit without relying on a number of statistical

assumptions characteristic of past latent variable models, such as the specification

of particular distributions for the latent variables. Fitting the RLVM is robust to

many aspects of data acquisition and model fitting (figure 2.8) and scales well with

increasing numbers of neurons and recording length (figure 2.9).

The results from the simulated data experiments demonstrate that the RLVM

is able to recover the true latent variables (figure 2.2A) as well as each neurons

coupling weights to those latent variables (figure 2.2B). This guarantees that the

method is able to predict single neuron activity well (figure 2.2C) and thus implies

that the method is able to accurately capture the structure of the pairwise correla-

tion matrix (figure 2.2D). Importantly, results from the simulated data (figure 2.2

72

A

B

C

D

 F
itt

in
g

tim
e

(m
in

)
of

 w
ei

gh
t-t

ie
d

m
od

el
s

5

10

15

20

10

20

30

40
Number of

latent variables

5
10
15
20

Experiment length (min)
30 60 90 120

0

5

10

15

20

Number of neurons
200 400 600 800

0

10

20

30

40

1000

 F
itt

in
g

tim
e

(m
in

)
of

 n
on

-w
ei

gh
t-t

ie
d

m
od

el
s

100 neurons 30 min experiment length

Figure 2.9: Linear scaling properties of the autoencoder. A and B: data are
generated as in figure 2.2 with 100 neurons and varying recording lengths (with a
10 Hz sampling rate). Autoencoders are fit with and without weight-tying (A and
B, respectively). The fitting time scales roughly linearly with the experiment time.
C and D: data are generated as in figure 2.2 with a 30 minute experiment time and
varying the number of neurons. Autoencoders are fit with and without weight-tying
(C and D, respectively). The fitting time scales roughly linearly with the number
of neurons. Comparison of A and C (weight-tying) with B and D (no weight-tying)
shows that while weight-tying approximately halves the number of estimated pa-
rameters, it leads to > 2-fold speedup in fitting time with a small number of latent
variables. As the number of latent variables increases this speedup advantage from
weight-tying is lost. Plotted values are mean fitting times ± SE over 20 data sets.
These results were obtained on a desktop machine running Ubuntu 14.04 LTS with
16 Intel Xeon E5-2670 processors and 126 GB of RAM; the MATLAB implementa-
tion of the autoencoder has not been optimized for this particular architecture.

and figure 2.3) also show how the standard variants of PCA, FA, and ICA can re-

cover erroneous model parameters when fitting nonnegative activity generated from

nonnegative latent variables. The manner in which these methods fail is important

to consider when using them to analyze and interpret nonnegative data such as

two-photon fluorescence traces.

Our results on experimental data demonstrate the utility of the RLVM as a tool

73

for addressing questions about the structure of joint responses in large neural popu-

lations. Some of the latent variables inferred by the RLVM have clear relationships

with measured trial variables, suggesting potentially meaningful interpretations of

these variables. We also demonstrated that the rectification in the RLVM leads to

important distinctions in the description of the population activity compared with a

method like PCA, which has consequences for further understanding the role these

latent variables play in cortical function.

2.3.1 Relationships to other latent variable models

Latent variable models can be classified into two broad categories: static mod-

els, which do not take temporal dynamics of the latent variables into account, and

dynamic models, which do. The RLVM has elements of both, although it is more

directly comparable to static models like PCA, FA, and ICA. These models are also

known as linear factor models, so termed because there is a linear transformation

from latent variables to predicted activity. While this need not be the case in the

general RLVM framework, the formulation of the RLVM for two-photon data uses

this assumption as well [since f(·) in equation 2.2 is linear]. One advantage of the

RLVM over these other linear factor models is that the RLVM does not specify any

statistical constraints on the latent variables, which allows it to accurately capture

correlated latent variables. Furthermore, because of the nonnegativity constraint

on the latent variables, the RLVM is able to identify latent variables that more

closely resemble the form of expected inputs into the cortex and does not have mul-

74

tiple equivalent solutions that arise from orthogonal transformations like some linear

factor models.

There is a close relationship between the RLVM and PCA. If the nonlinearities

f(·) and g(·) in equation 2.13 of the RLVM are linear, and the mean square error

cost function is used, then the autoencoder solution of the RLVM lies in the same

subspace as the PCA solution [144]. The only difference is that the components

of the RLVM can be correlated, whereas PCA requires them to be uncorrelated.

However, using nonlinear functions for the activity of the neurons f(·) and/or un-

derlying latent variables g(·) allows the RLVM to capture more complex structure

in the data than a linear model like PCA [174].

The RLVM structure also contains elements of dynamic latent variable models,

because of its ability to impose constraints on the time course of latent variables

via the log-prior term log p(Z) in 2.3. We used a general smoothing prior when

using the full MML algorithm (the results of which are shown in figure 2.5A), which

allows latent variable values at time points t − 1 and t + 1 to influence the value

at time t. This is similar to the smoothing prior of GPFA [111], which allows a

latent variable value at time point t to have a more complex dependence on past

and future time points. However, as the name implies, GPFA is based on FA and

imposes similar statistical constraints on the latent variables that we avoided with

the RLVM for reasons mentioned above. Another class of dynamic latent variable

models are the state-space models [107], which constrain each latent variable at time

t to be a linear combination of all latent variables at time t− 1. Such models allow

the dynamics to be fit to the data directly, whereas the RLVM specifies a fixed

75

relationship between the time points in the dynamics model. State-space models

allow one to model the causal relationship between latent variables but come at the

expense of making a strong assumption about the form of that relationship (namely,

that latent variables are only determined by their values at the previous time step).

Which type of model is most appropriate might then depend on whether dynamics

are generated by the latent variables (and/or observed neurons) or by processes

extrinsic to the system, such as with the trial variables we considered here. For the

applications to the two-photon data set in S1, we found that the solutions for the

static and dynamic versions of the RLVM were similar, in part because of the simple

dynamics model we imposed. However, the nature of two-photon data does not lend

itself to more restrictive dynamics models (like the state-space models) because of

the slow timescales. The investigation of more complex dynamics models in the

RLVM is a direction for future work.

The analysis performed with the data set from Peron et al. (2015) [43] demon-

strates the ability of the RLVM to find latent variables that are correlated with

individual task parameters. This “demixing” of task parameters is not an explicit

goal of the method but rather results from the rectification of the latent variables

(figure 2.5 and 2.6). dPCA [137] is a dimensionality reduction technique that is

explicitly formulated to find dimensions that capture variance related to individual

task parameters and as such is a mix between supervised and unsupervised dimen-

sionality reduction. The RLVM, in contrast, is a fully unsupervised method, as task

parameter information is not used for model fitting. An important restriction of the

dPCA method is that it requires neural activity that has been averaged over trial

76

conditions of the same type, which prevents it from being used to address variability

at the level of single trials. Another consequence is that dPCA cannot be used with

continuous trial variables (because it requires averaging over similar trial types),

and hence we were not able to compare the RLVM to dPCA on the somatosensory

data set because of the uncontrolled nature of the stimulus presentation.

The RLVM is thus an unsupervised dimensionality reduction technique and

has several advantages as a general method for interpreting population recordings

relative to other latent variable approaches, as described throughout this article.

However, there are particular situations in which other approaches may yield im-

portant insights over the RLVM. If one only wants to estimate the dimensionality

of the data or visualize it in two or three dimensions, PCA may be a more ap-

propriate choice. As described in the above paragraph, if one wants to visualize

low-dimensional representations of activity that correspond to specific, discrete trial

conditions, a targeted dimensionality reduction technique such as dPCA is most ap-

propriate. Such a supervised approach is in contrast to the unsupervised approach

we demonstrate here with the S1 data sets, although it is possible to incorporate

such conditional dependencies into the RLVM framework, as discussed below.

2.3.2 Model extensions

The RLVM is a flexible model framework because there are many possible

extensions that can be incorporated, depending on the desired application area. For

example, the RLVM can be fit to spiking data by using a negative log-likelihood

77

cost function that assumes Poisson noise and specifying f(·) in equation 2.13 (the

output nonlinearity) to be a rectifying function (see figure 2.10). This version of the

RLVM then becomes comparable against a different set of dimensionality reduction

approaches specific to spiking data such as Poisson PCA [136], Poisson FA [175],

and Poisson linear dynamical system [108], which also use a rectifying nonlinearity

on the model output. However, like the other methods considered in this article,

these methods do not place a rectifying nonlinearity on the latent variables, which

would still be a defining feature of the RLVM.

One limitation of the RLVM is that it is only able to model additive interac-

tions between the latent variables. Although there is evidence to support the exis-

tence of additive interactions in cortex [100], and although they are commonly used

for modeling [64, 82, 102], there has been recent interest in modeling multiplicative

interactions [67, 96, 101]. It is possible to extend the RLVM to model non-additive

interactions by adding more hidden layers to the model. This approach effectively

allows a neural network to transform the latent variables into the observed data in

a nonlinear manner and is the basis of “stacked” autoencoders [168], which we leave

as a direction for future work.

For some analyses, it may not be desirable to have the effects of the stimulus

represented in the activity of the latent variables. In this case it is possible to

incorporate a stimulus model into the RLVM, such that the activity of each neuron

is driven by the weighted sum of the latent variables plus terms that capture the

stimulus response. This model formulation would then allow for the investigation

of the relationship between stimulus processing and ongoing cortical activity. In a

78

True

1 2 3 4 5

N
eu

ro
n

#

20

40

60

80

100

2-photon

Latent variable #
1 2 3 4 5

Spikes

1 2 3 4 5

-0.6

0

0.6

Figure 2.10: Using the RLVM for spiking data. Left : coupling matrix used
to generate synthetic data, as described in section 2.4.4 (reproducing figure 2.1C).
Center : the estimated coupling matrix when the autoencoder variant of the RLVM
is fit to the simulated two-photon data with a Gaussian noise loss function (mean
square error). Right : estimated coupling matrix when the autoencoder variant of
the RLVM is fit to the simulated spiking data using a Poisson noise loss function
(negative log-likelihood). The simulated data contained spikes binned at 100-ms
resolution. The good agreement of both estimated coupling matrices with the true
coupling matrix demonstrates that the RLVM can recover the same model parame-
ters when fit using two different types of data. This result suggests that the RLVM
will perform similarly on multi-electrode data, without the need for data smoothing
or averaging across trials (which are common preprocessing steps used with spiking
data when attempting to use latent variable models not suited for discrete count
data, such as PCA [160]).

similar manner, the RLVM can also incorporate additional trial information, so that

the inferred latent variables only capture variation in the population response that

is independent of this information. Such a model is then more closely related to the

dPCA approach discussed above.

The recent development of new recording technologies like high-density multi-

electrode arrays and two-photon microscopy is leading to increasingly large and rich

neural data sets. We have shown here that the RLVM can be used effectively to

79

analyze two-photon data sets and that it is also possible to apply this model to

spiking data (figure 2.10). The RLVM is thus a simple and extendable model that

can be used to analyze both types of large population recordings, and in doing so

can help uncover neural mechanisms that may not be obvious when studying the

responses of single neurons.

2.4 Methods

2.4.1 Fitting the RLVM

The goal of the RLVM is to accurately predict observed neural activity yt ∈ RN

using a smaller set of latent variables zt ∈ RM
≥0. Here yt and zt are vectors describing

the activity at each time point t, and the matrices Y = {yt}Tt=1 and Z = {zt}Tt=1

are all the observed data and latent variables, respectively, across time. The RLVM

then tries to predict the observed activity yt with the zt as follows:

ŷt = f(Wzt + b) (2.2)

where f(·) is a parametric nonlinearity and the model parameters are the coupling

matrix W ∈ RN×M and the bias vector b ∈ RM , collectively referred to as θ =

{W,b}.

Estimation of model components. We estimate the model parameters θ

and infer the latent variables Z using the maximum marginal likelihood (MML)

algorithm, following [107] and [158]. The MML algorithm is closely related to the

expectation-maximization (EM) algorithm, as both maximize an approximation to

80

the true log-likelihood function. The MML algorithm first infers the latent variables

Z, using initial model parameters θ̂(0), and then updates the model parameters,

using the newly inferred latent variables. Each of these steps corresponds to a

maximum a posteriori (MAP) estimate of the latent variables and model parameters,

respectively, in which we maximize the sum of the data log-likelihood and a log-prior

distribution [158]:

Ẑ(k+1) = argmax
Z≥0

log p
(
Y|Z, θ̂(k)

)
+ log p (Z) (2.3)

θ̂(k+1) = argmax
θ

log p
(
Y|Ẑ(k+1), θ

)
+ log p (θ) (2.4)

The algorithm continues to alternate between these two steps until a conver-

gence criterion is met. Although equation 2.3 is a constrained optimization prob-

lem, it can be transformed into an unconstrained optimization problem as described

below, and thus we solve both equations 2.3 and 2.4 with an unconstrained limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method. Like the EM algo-

rithm, the MML algorithm is only guaranteed to find a local, rather than global,

optimum. Thus proper initialization (described below) can in principle be impor-

tant.

The MML algorithm presented in equations 2.3 and 2.4 is a general procedure

that can be specifically implemented for different types of data by defining the prob-

ability distribution in the data log-likelihood term log p(Y|Z, θ), which describes the

probability of the observations given the current estimates of the latent variables

and the model parameters. This term refers to the form of the expected noise dis-

tribution when considering what the model predicts versus what is observed. For

81

example, in what follows we use a Gaussian distribution for two-photon data but

could instead use a Poisson distribution for spiking data. The forms of the log-prior

terms log p(Z) and log p(θ) are in general independent of the form of the data log-

likelihood term. Because this work is focused on the analysis of two-photon data

we discuss the implementation of the MML algorithm that is specific to modeling

two-photon data, including a discussion of our treatment of the log-prior terms.

We first address the data log-likelihood terms in the form log p(Y|Z, θ). For

two-photon data, we model the observed fluorescence traces as a linear combination

of the latent variables plus a bias term, ŷt = Wzt+b [equation 2.2, with linear f(·)].

Furthermore, we assume a Gaussian noise model so that p(yt|zt,W,b) ∈ N (ŷt,Σ)

and

log p(yt|zt,W,b) = −N
2

log2π − 1

2
log det(Σ)

− (yt − (Wzt + b))ᵀ Σ−1 (yt − (Wzt + b))

2

(2.5)

for a given time point t. The Gaussian noise model captures the measurement

noise that corrupts the true fluorescence signal and is commonly used in models

of two-photon data [12]. We validated this choice by measuring the distribution

of residuals from the RLVM model fits to the experimental data used in figures

2.4-2.6, which are well described by a Gaussian distribution (data not shown). For

computational convenience we do not try to fit the noise covariance matrix Σ but

rather model it as a constant times the identity matrix. This constant can be

incorporated into the log-prior terms and hence does not explicitly show up in

the final MML equations (equations 2.10 and 2.11 below). By modeling the noise

covariance matrix as a multiple of the identity matrix we are making the assumption

82

that the Gaussian noise has the same variance for each neuron (isotropic noise).

Although not true in general, the advantage of this simplification is that we do

not need to estimate the variance parameter, and equations 2.3 and 2.4 become

penalized least squares problems when using L2 regularization, which can be solved

analytically. Constraining the noise covariance matrix to be diagonal (anisotropic

noise) leads to solving a penalized weighted least squares problem, which must be

solved iteratively.

We also make the assumption that data at different time points are condition-

ally independent, so that the full log-likelihood term can be written as

log p (Y|Z, θ) = log (Πtp (yt|zt,W,b))

=
∑

t

log p (yt|zt,W,b)

= −1

2

∑

t

‖yt − (Wzt + b) ‖2
2 + const

(2.6)

where ‖x‖2
2 =

∑
x2
i is the squared L2 norm of a vector x. The assumption of

conditional independence is common practice when dealing with data log-likelihood

terms [17] and allows us to factorize the full conditional distribution log p(Y|Z, θ);

without this assumption the resulting log-likelihood term would be intractable.

To further constrain the types of solutions found by the model, we choose a

particular form of the log-prior term log p(Z) (equation 2.3). Many different priors

are used for Z in the neuroscience literature on latent variable models, including

latent dynamical systems priors [107] and Gaussian process priors [101, 111]. Here

we use a simple smoothing prior that penalizes the second derivative of the time

course of each latent variable zi (where zi represents the entire time course of latent

83

variable i), which can be written as

log p(zi) ∝ ‖Dzi‖2
2 (2.7)

where D is the discrete Laplace operator,

D =




−2 1 0

1 −2 1

1 −2
. . .

. 1

0 1 −2




(2.8)

The matrix-vector multiplication Dzi computes a discrete version of the second

derivative of latent variable i, such that ‖Dzi‖2
2 will be large when zi is highly

varying (i.e. noisy) and small when zi is smooth. The full log-prior term log p(Z) is

the sum of these terms for each individual latent variable.

The log-prior term log p(θ) in equation 2.4 likewise allows for the incorpora-

tion of additional constraints on model parameters. We use a standard zero-mean

Gaussian prior on both the coupling matrix W and the biases b, so that

log p(θ) ∝ α‖W‖2
F + β‖b‖2

2 (2.9)

where ‖W‖2
F =

∑
i,j w

2
i,j is the Frobenius norm of a matrix W and α and β are

constants that scale the relative weight of each term. This prior has the effect of

preventing the model parameters from growing too large, which can hurt model

performance (see figure 2.3C).

Using the expressions in equations 2.6, 2.7 and 2.9, the two-photon implemen-

84

tation of the general MML algorithm in equations 2.3 and 2.4 becomes

Ẑ(k+1) = argmin
Z≥0

1

2

∑

t

∥∥yt −
(
W (k)zt + b(k)

)∥∥2

2
+
λz
2

∑

i

∥∥Dzi
∥∥2

2
(2.10)

θ̂(k+1) = argmin
θ

1

2

∑

t

∥∥∥yt −
(
W ẑ

(k+1)
t + b

)∥∥∥
2

2
+
λW
2
‖W‖2

F +
λb
2
‖b‖2

2(2.11)

The λ values in front of the log-prior terms are hyperparameters that are chose by

hand (see section 2.4.2).

The non-negativity constraint on the latent variables Z is the defining fea-

ture of the RLVM. Although it is possible to use explicitly constrained optimization

techniques, we take a different approach that is more in line with the autoencoder

optimization we use to obtain initial values for the MML algorithm (see below).

Instead of optimizing non-negative latent variables zi, we substitute them with un-

constrained latent variables xi that are passed through a rectified linear (ReLU)

function g(·):

zit = g(xit) = max(0, xit) (2.12)

The model of neural activity (equation 2.2) then becomes

ŷt = f [Wg (xt) + b] (2.13)

where g(·) is applied element-wise to the vector xt, and unconstrained optimization

techniques can be used in equations 2.3 and 2.10 to solve for X instead of Z. Al-

though the ReLU function is not differentiable at zero, we use the sub-differential

approach common in the neural networks literature and define the derivative to be

zero at zero [176].

Initialization of model components using autoencoders. In the infer-

85

ence of Z (equations 2.3 and 2.10), there are T ×M parameters to estimate (where

T is the number of time steps in the experiment and M is the number of inferred

latent variables), which is a very high-dimensional space to search for an experiment

of reasonable length. The prior distribution we place on the latent variables is not

a strong one, and as a result this optimization step tends to get stuck in poor local

minima. To avoid poor local minima, we initialize the MML optimization algorithm

using initial estimates of both the model parameters and the latent variables from

the solution of an autoencoder [144, 168, 174]. An autoencoder is a neural network

model that attempts to reconstruct its input using a smaller number of dimensions,

and its mathematical formulation is similar to the RLVM - so similar, in fact, that

the model parameters in the RLVM have direct analogs in the autoencoder, as

shown below. Furthermore, the optimization routine for the autoencoder is faster

and better behaved than the MML algorithm, which makes it an attractive model

for finding initial RLVM values.

The autoencoder takes the vector of neural activities yt ∈ RN and projects it

down onto a lower-dimensional space RM with an encoding matrix W1 ∈ RM×N . A

bias term b1 ∈ RM is added to this projected vector, so that the resulting vector

xt ∈ RM is given by xt = W1yt+b1. W1 is said to encode the original vector yt in the

lower-dimensional space with the vector xt, which is analogous to the unconstrained

latent variables xt in the RLVM (equation 2.13). Following the RLVM, we enforce

the non-negativity constraint on xt by applying the ReLU function:

zt = g(xt) = g(W1yt + b1) (2.14)

86

As with the unconstrained latent variables xt, there is a direct correspondence

between the autoencoder’s rectified latent variables zt in equation 2.14 and the

RLVM’s rectified latent variables zt in equation 2.2. The autoencoder (again like

the RLVM) then reconstructs the original activity yt by applying a decoding matrix

W2 ∈ RN×M to zt and adding a bias term b2 ∈ RN . The result is passed through a

parametric nonlinearity f(·) so that the reconstructed activity ŷt ∈ RN is given by

ŷt = f (W2zt + b2) (2.15)

which matches the RLVM model structure in equation 2.2. The weight matrices and

bias terms, grouped as Θ = {W1,W2,b1,b2}, are simultaneously fit by minimizing

the reconstruction error L(Y, Ŷ) between the observed activity Y and the predicted

activity Ŷ:

Θ̂ = argmin
Θ

L
(
Y, Ŷ

)
(2.16)

Once this optimization problem has been solved with standard gradient descent

methods, we initialize the RLVM model parameters in equation 2.3 with θ̂(0) =

{W2,b2}. A notable advantage of the autoencoder is that there is no need to

alternate between inferring latent variables and estimating model parameters, as in

equations 2.3 and 2.4: once the model parameters have been estiamted with equation

2.16, the latent variables can be explicitly calculated with 2.14.

For modeling two-photon data (as above), the noise distribution is Gaussian

and the nonlinearity f(·) in equation 2.15 is assumed to be linear. The reconstruc-

tion error L(Y, Ŷ) for Gaussian noise is the mean square error (again assuming

equal noise variances across neurons), so in this special case of equation 2.16 the

87

autoencoder estimates for the weights and biases are given by

Θ̂ = argmin
Θ

1

2

∑

t

‖yt − ŷt‖2
2

= argmin
Θ

1

2

∑

t

‖yt − (W2zt + b2)‖2
2

= argmin
Θ

1

2

∑

t

‖yt − (W2g (W1yt + b1) + b2)‖2
2

(2.17)

and we perform this optimization using an L-BFGS routine to obtain the weights

and biases.

We also include regularization terms for the model parameters, which prevent

overfitting to the training data and can improve the model’s ability to generalize

to new data [17]. As we saw previously, these regularization terms can also be

interpreted as log-prior distributions on the model parameters in the probabilistic

setting. A more general optimization problem for the autoencoder that includes

both the reconstruction error and these regularization terms is

Θ̂ = argmin
Θ

L(Y, Ŷ) +
λ1

2
‖W1‖2

F +
λ2

2
‖W2‖2

F +
λ3

2
‖b1‖2

2 +
λ4

2
‖b2‖2

2 (2.18)

Large values of λi will encourage small values in the corresponding set of parameters.

Furthermore, the use of regularization on the weight matrices helps to break a

degeneracy in the autoencoder: because the reconstructed activity ŷt involves the

product between the weights W2 and the latent variables zt (equation 2.15), an

equivalent solution is given by the product of c×W2 and (1/c)× zt for any positive

constant c. Applying a regularization penalty to the weights W2 limits the range of

values W2 can take and thus helps to set a scale for both the weights and the latent

variables.

88

Weight-tie
model

Non-weight-tie modelA B

1 2 3 4 5

N
eu

ro
n

#

20

40

60

80

100

Latent variable #
1 2 3 4 5 1 2 3 4 5

-0.6

0

0.6

Figure 2.11: Effect of weight-tying using simulated data. We compared
the effects of weight-tying the autoencoder on the resulting weight matrix by fitting
models with and without weight-tying to the simulated data 2.2. A: weights learned
by the autoencoder when encoding and decoding matrices are constrained to be the
same. B: encoding (left) and decoding (right) weights learned by the autoencoder
without the weight-tying constraint, demonstrating a pattern very similar to the
weight-tied solution in A.

We also use “weight-tying” [168] (figure 2.11), where the encoding and decod-

ing weight matrices are constrained to be transposes of each other, i.e. W2 = W ᵀ
1 .

This has the effect of nearly halving the number of model parameters that need to be

estimated, which speeds up the model fitting procedure (figure 2.9), and as a result

all models in this chapter initialized with the autoencoder employ weight-tying.

2.4.2 Model fitting details

Fitting the model parameters and latent variable time courses with the MML

algorithm requires alternating between inferring latent variables and estimating

model parameters. We monitored the log-likelihood values throughout this proce-

89

dure and ensured that the algorithm stopped only after additional iterations brought

no further improvement. We compared the fitting behavior of the MML using ran-

dom initializations versus autoencoder intializations (section 2.2). For these tests,

we used the same regularization values for the latent variables (λz = 1) and for the

model parameters (see below) to facilitate model comparisons.

The latent variable models we used to analyze the simulated and experimental

data were the RLVM (regularization parameters set as λ1 = λ2 = 1000/M, λ3 =

λ4 = 100, lambdas numbered as in equation 2.18; code available for download at

www.neurotheory.umd.edu/code), PCA (using MATLAB’s built-in function pca),

FA (using MATLAB’s built-in function factoran; default settings), and ICA (using

FastICA, available for download at http://research.ics.aalto.fi/ica/fastica/;

default settings). Autoencoder fitting was performed with a MATLAB implementa-

tion of the L-BFGS routine by Mark Schmidt [177], available for download at www.

cs.ubc.ca/\simschmidtm/Software/minFunc.html. The FA results reported

with the dataset from Peron et al. 2015 [43] used a PCA-based algorithm (available

for download at www.mathworks.com/matlabcentral/fileexchange/14115-fa) rather

than the maximum likelihood-based algorithm factoran, which proved prohibitively

inefficient on such a large dataset.

2.4.3 Evaluating model performance

Unless otherwise noted, model fitting was performed with 5-fold cross-validation

(data are divided into 5 equally-size blocks, with 4 used for training and 1 for cross-

90

www.neurotheory.umd.edu/code
http://research.ics.aalto.fi/ica/fastica/
www.cs.ubc.ca/$\sim $schmidtm/Software/minFunc.html
www.cs.ubc.ca/$\sim $schmidtm/Software/minFunc.html
www.mathworks.com/matlabcentral/fileexchange/14115-fa

validation, with 5 non-overlapping cross-validation blocks). Because of the different

natures of the simulated and experimental data, we use different measures to assess

the quality of model fits on these different types of data sets.

To assess the quality of model fits on the simulated data we employed two

different measures, one to evaluate the quality of the latent variables produced by

the model and another to evaluate how well neural activity could be predicted.

First, we measured the ability of each model to infer the true latent variables. For

all models (RLVM, PCA, FA, ICA), model parameters were fit with the training

data. Then, to calculate the latent variables on the cross-validation data, we used

the activity of the neurons and the encoding matrices of each model (e.g., equation

2.14 for the RLVM) that were learned from the training data. Given that {zi}Mi=1

are the M true latent variables and {ẑj}Pj=1 are the P latent variables inferred by a

given model, the latent variable “maxcorr” measure is defined to be

maxcorr =
1

M

M∑

i=1

max
j∈{1,...,P}

|corr
(
zi, ẑj

)
| (2.19)

where corr is the Pearson correlation coefficient. The maxcorr simply measures the

correlation between the inferred latent variable that best matches each true latent

variable, averaged over the true latent variables. There is no restriction on the

relationship between M and P ; for example, if M < P , then the maxcorr measure

will be close to one if each true latent variable is captured by at least one inferred

latent variable.

The second measure of model performance for simulated data assessed how

well the models could predict the overall population activity. For all models, model

91

parameters were fit with the training data for all neurons. Then, the activity pre-

dicted by the models on the cross-validation data was calculated using the encoding

and decoding matrices of each model. The R2 values reported are those obtained

by comparing the true activity yit of neuron i at time t with the activity predicted

by the various methods ŷit and averaging over all N neurons

R2 =
1

N

N∑

i=1

[
1−

∑
t(y

i
t − ŷit)2

∑
t(y

i
t − ȳi)2

]
(2.20)

where ȳi is the average activity of neuron i.

For experimental data we do not have access to the “true” underlying latent

variables, and thus cannot calculate a measure similar to the maxcorr measure pre-

sented above. We can, however, assess how well the models predict the overall

population activity as in equation 2.20, with one caveat. It is possible with exper-

imental data that a latent variable will capture the activity of a single neuron and

thus inflate the resulting R2 as calculated above. To address this issue, we employed

a procedure similar to the leave-one-out prediction error introduced in [111]. For all

models, model parameters were fit with the training data for all neurons. Then, to

determine how well each model was able to capture the activity of a single neuron

with the cross-validation data, we used the activit of all other neurons to calculate

the activity of the latent variables (by setting the encoding weights of the left-out

neuron to zero). We then performed a simple linear regression using the activity

of the latent variables to predict the activity of the left-out neuron and used this

prediction in the calculation of the R2 measure in equation 2.20. Note that for this

leave-one-out procedure if just a single neuron is contributing to the activity of a

92

latent variable, this procedure will result in a small R2 value for that neuron during

cross-validation.

2.4.4 Simulated data generation

We evaluated the performance of the RLVM using simulated data sets, which

were generated with five non-negative latent variables that gave rise to the observed

activity of 100 neurons. Note that these choices reflect our core hypotheses of

the properties of latent variables in the cortex, and also match the assumptions

underlying the RLVM model structure. Latent variables were generated by creating

vectors of random Gaussian noise at 100-ms time resolution and then smoothing

these signals with a Gaussian kernel. To enforce the non-negativity constraint on the

latent variables, a positive threshold value was subtracted from each latent variable,

and all resulting negative values were set to zero. Correlations between different

latent variables were established by multiplying the original random vectors (before

smoothing) by a mixing matrix that defined the correlation structure. Although

smoothing and thresholding the correlated latent variables changed the correlation

structure originally induced by the mixing matrix, the new correlation structures

obtained by this procedure were qualitatively similar to those seen in experimental

data.

The latent variables thus obtained acted as inputs to a population of neurons

(figure 2.1). To calculate the coupling weights between the latent variables and the

neurons in the population, a coupling matrix was created to qualitatively match the

93

coupling matrices found in experimental data (compare figures 2.1C and 2.4B). Since

the experimental data used below in this article come from a two-photon imaging

experiment, we chose to simulate data resembling two-photon fluorescence traces.

To compute simulated fluorescence traces for each neuron, first the firing rate of the

neuron was computed as the weighted sum of the latent variables, with the weights

defined in the coupling matrix. The resulting firing rate was used to produce a

spike train with a Poisson spike generator. The spike train was then convolved

with a kernel to create the calcium signal, and finally Gaussian random noise was

added to generate a simulated fluorescence signal. To ensure that our results were

not dependent on a particular set of parameters used to generate the data, we also

simulated data while varying the number of latent variables, the number of nonzero

weights in the coupling matrix, and the signal-to-noise ratio (see figure 2.3).

2.4.5 Experimental data

Experimental protocol and data preprocessing. We evaluated the RLVM

on data from the Svoboda lab [43], which have been made publicly available at

http://dx.doi.org/10.6080/K0TB14TN. In this experiment mice performed a tac-

tile discrimination task with a single whisker. During a given trial, the activity

from neurons in layers 2/3 of barrel cortex expressing the GCaMP6s calcium indi-

cator was recorded with two-photon imaging with three imaging planes set 15 µm

apart. These imaging planes constituted a subvolume, and eight subvolumes were

imaged during a given session. Furthermore, those same subvolumes were imaged

94

http://dx.doi.org/10.6080/K0TB14TN

across multiple experimental sessions, and the resulting images were later registered

so that activity of individual regions of interest (ROIs) could be tracked across the

multiple sessions. Raw fluorescence traces were extracted from each ROI and neu-

ropil corrected. For each ROI a baseline fluorescence F0 was determined with a

3-minute sliding window and used to compute ∆F/F = (F − F0)/F0.

Data selection. The publicly available data set contains the ∆F/F fluores-

cence traces of tens of thousands of neurons imaged over multiple sessions for eight

different mice. To select subsets of this data for analysis with the latent variable

models, we restricted our search to volume imaging experiments in which somatic

activity was imaged in trained mice. We then looked for subsets of simultaneously

imaged neurons that maximized the number of neurons times the number of tri-

als imaged, selecting nine different sets of imaged neurons, three sets from each of

three different mice. Within each set, neurons were removed from this selection if

they met one or both of the following criteria: 1) > 50% of the fluorescence values

were missing (indicated by NaNs); 2) the fluorescence trace had a signal-to-noise

ratio (SNR) < 0.1. To estimate the SNR, a smoothed version of the fluorescence

trace was estimated with a Savitzky-Golay filter (using MATLABs built-in func-

tion sgolayfilt). The noise was estimated using the residual between the original

trace and the smoothed trace. The SNR was then calculated as the variance of the

smoothed trace divided by the variance of the noise. After removal of individual

neurons according to the above procedure, we then removed individual trials from

the remaining data selection if NaN values existed in the whisker measurements or

in one or more of the fluorescence traces. See table 2.1 for more information about

95

Original Data Analyzed Data

Animal ID Cell ID Range ROI count Trial count ROI Count Trial Count

an229716 21000-23464 1395 157 831 124

33000-35351 1051 163 466 142

18000-20377 1099 155 760 108

an229717 45000-47679 1695 173 406 146

09000-11474 1364 156 805 106

39000-41437 1313 136 466 089

an229719 09000-11423 1358 162 685 098

15000-17478 1332 158 517 113

18000-20489 1250 162 356 126

Table 2.1: Experimental selection. All experimental data used in figures 2.4-2.7
are from [43] and are publicly available at http://dx.doi.org/10.6080/K0TB14TN.
Data analysis was performed on subsets of the data that contained a large number of
neurons simultaneously imaged over many trials (see section 2.4.5). The Analyzed
Data column shows the amount of data retained from the Original Data column
after removal of neurons that had > 50% missing values in their fluorescence traces
or had an estimated SNR < 0.1, as well as removal of trials that had missing values
for any of the remaining fluorescence traces. The row in boldface corresponds to the
data used for the analyses show in figures 2.4-2.6.

the specific subpopulations of neurons analyzed.

Alignment of fluorescence traces across sessions. As described above,

the data from each experiment we used consisted of imaging the population activity

over several recording sessions. Although fluorescence traces for each neuron were

corrected for different baseline fluorescence levels in the online data set, we found

it necessary to recalculate session-specific baseline fluorescence levels in order to

concatenate traces across different sessions. [Unlike the analyses in the original work

(Peron et al. 2015) [43], the models considered here were particularly sensitive to this

baseline level because all fluorescence traces were analyzed jointly.] In the original

96

http://dx.doi.org/10.6080/K0TB14TN

work, baseline fluorescence level was calculated using the skew of the distribution of

raw fluorescence values, under the assumption that more active neurons will have

more highly skewed distributions. However, this monotonic relationship breaks down

for very active neurons, whose distributions are not as skewed since there are very

few values near the baseline level. Because we found many neurons in the data

set that fell into this last category, we recalculated baseline fluorescence levels on a

session-by-session basis.

Using basic simulations of how the distribution of fluorescence values of a

Poisson neuron depends upon its mean firing rate and SNR, we could match this

with the data from each neuron to unambiguously infer its baseline fluorescence

level. Specifically, for each neuron and each session, we measured the SNR of its

fluorescence (described above) and also measured the skewness of its distribution

of fluorescence (using MATLABs built-in function skewness). We simulated neural

activity with the same SNR while varying the mean firing rate until the resulting

distribution of values matched the measured skewness. Once the optimal mean firing

rate was determined, we could then use the simulation to determine the best estimate

of the baseline fluorescence level on a session-by-session basis. This procedure led

to improved model estimation for all latent variable methods.

Sorting of coupling matrices. The ordering of simultaneously recorded

neurons is arbitrary, so we chose the ordering for the display of the coupling ma-

trices W to highlight groups of neurons that share similar coupling patterns. We

first sorted the rows, using the coupling weights to the first latent variable (first

column) for all neurons with a weight higher than a predefined threshold value.

97

We then sorted all remaining neurons with coupling weights to the second latent

variable (second column) above the same threshold. This procedure is repeated for

each column of W and produces a block diagonal structure (e.g. figure 2.4B). The

last column is sorted without using the threshold so that it contains all remaining

neurons.

Quantifying influence of individual latent variables on population

activity. To determine the proportion of population activity driven by each latent

variable in the experimental data sets, for each neuron we calculated the variance of

the latent variable weighted by the neurons coupling strength to that latent variable,

divided by the variance of the neurons measured activity, which was smoothed with

a Savitzky-Golay filter to remove noise variance (implemented with the MATLAB

function sgolayfilt). We considered a neuron to be driven by that latent variable

if the proportion of total measured activity exceeded 0.10. To determine the pro-

portion of predicted population activity, we performed a procedure similar to that

above but divided by the variance of the predicted activity rather than the smoothed

measured activity. [Note that, because latent variables can be correlated, these pro-

portions will not add to 1 since we ignored cross-covariances.] These values were

then averaged over all neurons to obtain a measure of the proportion of predicted

activity driven by the given latent variable.

98

Chapter 3: The Generalized Affine Model (GAM)

3.1 Introduction

The activity of sensory neurons is highly variable in response to repeated pre-

sentations of the same stimulus [178,179]. This response variability can potentially

limit the amount of information contained in neural activity, since multiple stimuli

could in principle elicit the same number of spikes [70]. Pooling the activity of mul-

tiple neurons can reduce the adverse effects of variability, but theoretical work has

demonstrated that the efficacy of this strategy depends on how variability in neural

responses is structured across the population [90,92–95,180–182]. These results have

raised interest in uncoverng the structure of variability in experimentally-measured

populations of neurons.

Much of the recent experimental work on understanding the structure of shared

neural variability has focused on V1, where neural responses to simple stimuli are

relatively well understood. Shared variability in V1 neural responses has been ac-

counted for using a single additive factor, or latent variable, that modulates neural

activity across the entire population [81, 82, 102]. Shared variability has also been

modeled using a multiplicative latent variable that acts as a gain on the stimulus-

driven response [67]. A more recent model, the “affine” model of Lin et al. [96]

99

(and the related multi-gain model of Arandia-Romero et al. [98]), combines both

additive and multiplicative latent variables to account for neural variability, which

describe more of the population response variability than either latent variable alone.

Furthermore, Lin et al. demonstrated that the affine model was able to replicate

essential features of the noise correlation structure in the population, including the

dependence on stimulus tuning and stimulus orientation (a similar finding was re-

ported in [102] using the average population activity as a single additive latent

variable). In addition to these successes, the affine model is also appealing due to

its analytical tractability. Both Lin et al. and Arandia-Romero et al. used their

respective models to analytically explore the effect of the two latent variables on

population coding.

Despite the affine model’s ability to reconstruct essential features of the popu-

lation response, and aid in the theoretical development of neural information coding,

the model as implemented in these studies has some potential shortcomings. In Lin

et al., the population coupling to the multiplicative latent variable is uniform across

the population. In the multi-gain model of Arandia-Romero et al., population cou-

pling to both latent variables is allowed to vary among the neurons, but the additive

and multiplicative latent variables are constrained to be equal. It is currently un-

clear what effect these constraints have on the conclusions drawn by these studies.

Furthermore, although both studies show that the affine model outperforms models

with only an additive or multiplicative latent variable, it is not clear if a better

model of response variability exists.

To test whether or not the affine model is a “good” model of V1 response

100

variability, we introduce a new modeling framework, the Generalized Affine Model

(GAM), which allows each neuron to have a different coupling to distinct additive

and multiplicative latent variables. We fit this model to simultaneously recorded

neurons in anesthetized monkey V1 (the same data analyzed in Arandia-Romero et

al.), as well as simultaneously recorded neurons in the LGN of awake and freely run-

ning mice, and find that this unconstrained affine model outperforms the constrained

affine model of Lin et al. Using the V1 data, we show that this improved model is

able to recapitulate findings made with the previous models, including the lack of

correlation between stimulus tuning preferences and latent variable coupling [102],

and a negative correlation in the modulatory effects of additive and multiplicative

latent variables [98].

The GAM framework also allows us to simultaneously fit an arbitrary number

of additive and multiplicative latent variables, which enables us to explore more

complicated models of response variability. We find that by allowing several latent

variables of each type, the GAM is able to outperform the unconstrained affine model

(which has a single latent variable of each type). While this increase in performance

is modest for the anesthetized V1 data, it is quite large for the awake LGN data.

These findings suggest that the affine model is a good model of response variability

in anesthetized V1, but must be extended in order to capture higher-dimensional

variability outside of this context.

101

wg

wa

Stim
Model

F[]
Neuron N

wg

wa

Stim
Model

F[]
Neuron 2

Stimulus

F[]
Neuron 1

r1t

r2t

rNt

Predicted
firing rates

w1

v1

gi

hi

f1(θ)

Multiplicative
gain

Additive
offset

θ

i

i

i R 2
ind

0.0 0.5 1.0

R
2 af

fin
e -

R
2 in

d

0.0

0.2

0.4

0.6

A B
Monkey 1
Monkey 2
Monkey 3

Figure 3.1: The unconstrained affine model. A: The response fn(θ) of indi-
vidual neurons to a drifting grating at angle θ is modulated by two latent variables
on each trial i that are shared across the population: a multiplicative gain signal gi
and an additive offset hi. F [·] is an optional spiking nonlinearity that can be applied
to the output. B: The R2 improvement of the affine model over the independent
model, plotted as a function of the independent model R2. The independent model
only accounts for the effect of the stimulus on neural responses, and does not cap-
ture shared variability. Some neurons with poor stimulus models are well described
by the affine model, indicating the large role that shared variability plays in driving
V1 population responses.

3.2 Results

3.2.1 The unconstrained affine model outperforms constrained ver-

sion

Trial-to-trial variability is a ubiquitous feature of neural responses, and a por-

tion of this variability is shared across the population. We model this variability

using both an additive latent variable hi and a multiplicative latent variable gi that

are shared across the population and vary as a function of the trial i (figure 3.1A).

102

This model describes the firing rate rni of neuron n on trial i as

rni = (1 + wngi)fn(θ) + vnhi (3.1)

where fn(θ) is the stimulus response of neuron n to a drifting grating in the direction

of θ. This model generalizes several other models of V1 response variability. Goris

et al. 2014 introduced a model that we will refer to as the “constrained multiplica-

tive” model, where a single multiplicative latent variable uniformly modulates the

stimulus response of the population:

Constrained Multiplicative : rni = (1 + gi)fn(θ) (3.2)

We will also define the “multiplicative” model to be an extension of this, where each

neuron has its own weight to the latent variable:

Multiplicative : rni = (1 + wngi)fn(θ) (3.3)

and the analogous “additive” model:

Additive : rni = fn(θ) + vnhi (3.4)

Lin et al. 2015 introduced a model that we will refer to as the “constrained affine”

model, which contains both an additive and multiplicative latent variable. Each

neuron has its own weight to the additive latent variable, but all neurons are con-

strained to be uniformly modulated by the multiplicative latent variable:

Constrained Affine : rni = gifn(θ) + vnhi (3.5)

A variant of this model, the “multi-gain” model, was introduced in Arandia-Romero

et al. 2016, which allows each neuron to have its own weights to each latent variable,

103

but constrains the additive and multiplicative latent variables to be equal:

Multi-gain : rni = (1 + wngi)fn(θ) + vngi (3.6)

We refer to our formulation in equation 3.1 as the “affine” model, which does not

constrain either weights or latent variables to be equal. Following Lin et al. 2015,

we define the “independent” model to be:

Independent : rni = fn(θ) (3.7)

which does not model shared variability, and serves as a baseline model to gauge

the impact of shared variability on population responses.

We first demonstrate that the affine model is able to capture a significant

fraction of the trial-to-trial variability in the activity of V1 neurons in anesthetized

macaques in response to drifting gratings (figure 3.1B; see section 3.4.1 for exper-

imental details). The improvement in model R2 between the affine model and the

independent model can be quite large across all three monkeys, and even neurons

with poor stimulus models can be well described by the affine model. This suggests

that these neurons are not in fact as noisy as their stimulus models would indicate;

rather, they are predominantly driven by inputs that are not locked to the stimulus,

and demonstrate that activity in primary visual cortex does not simply encode the

external stimulus. For the remainder of this chapter we use the Quality Index of

Lin et al. to quantify model performance, which is defined as

QImodel =
R2

model −R2
ind

1−R2
ind

(3.8)

a rescaled version of the R2 measure such that QI = 0 for a model with predictions

104

that are equivalent to the independent model, and QI = 1 for perfect prediction.

We next asked how the different constraints of previous models affect model

performance. In particular, we were interested if allowing each neuron to have

their own coupling to the multiplicative latent variable improved the performance

of the models. We found this to be true when comparing the multiplicative and

constrained multiplicative models (figure 3.2A; p<5e-5 for each of the three monkeys,

two-sided sign test) as well as when comparing the affine and constrained affine

models (figure 3.2B; p<5e-5 for each of the three monkeys). Furthermore, the affine

model outperformed both the additive (figure 3.2C; p<5e-10 for each of the three

monkeys) and multiplicative models (figure 3.2D, p<5e-10 for each of the three

monkeys).

The unconstrained affine model is indeed a better model of V1 response vari-

ability than previous models, due to a more general model structure. Because

interpretation of model parameters in general depends on model structure, we next

asked whether or not the affine model could reproduce some of the previous results

obtained with constrained models.

3.2.2 Affine model recapitulates results of previous models

We first looked to verify a result from Okun et al. 2015 [102], which showed

that variability in the responses of V1 neurons could be described by their cou-

pling to the average population activity, and that the degree of population coupling

was independent of tuning properties. This intriguing finding suggests that neural

105

QI (Constrained Mult)

0.0 0.2 0.4 0.6

Q
I (

M
ul

tip
lic

at
iv

e)

0.0

0.2

0.4

0.6
p = 3.7e-15
N = 106

QI (Constrained Affine)

0.0 0.2 0.4 0.6

Q
I (

A
ff

in
e)

0.0

0.2

0.4

0.6
p = 3.1e-09
N = 106

QI (Additive)

0.0 0.2 0.4 0.6

Q
I (

A
ff

in
e)

0.0

0.2

0.4

0.6
p = 0
N = 106

QI (Multiplicative)

0.0 0.2 0.4 0.6

Q
I (

A
ff

in
e)

0.0

0.2

0.4

0.6
p = 1e-08
N = 106

QI (Constrained Mult)

0.0 0.2 0.4 0.6

Q
I (

M
ul

tip
lic

at
iv

e)

0.0

0.2

0.4

0.6
p = 8.5e-06
N = 88

QI (Constrained Affine)

0.0 0.2 0.4 0.6

Q
I (

A
ff

in
e)

0.0

0.2

0.4

0.6
p = 3.8e-18
N = 88

QI (Additive)

0.0 0.2 0.4 0.6

Q
I (

A
ff

in
e)

0.0

0.2

0.4

0.6
p = 3.3e-14
N = 88

QI (Multiplicative)

0.0 0.2 0.4 0.6

Q
I (

A
ff

in
e)

0.0

0.2

0.4

0.6
p = 5.2e-09
N = 88

QI (Constrained Mult)

0.0 0.2 0.4 0.6

Q
I (

M
ul

tip
lic

at
iv

e)

0.0

0.2

0.4

0.6
p = 8.2e-10
N = 112

QI (Constrained Affine)

0.0 0.2 0.4 0.6

Q
I (

A
ff

in
e)

0.0

0.2

0.4

0.6
p = 4.8e-05
N = 112

QI (Additive)

0.0 0.2 0.4 0.6

Q
I (

A
ff

in
e)

0.0

0.2

0.4

0.6
p = 3.4e-13
N = 112

QI (Multiplicative)

0.0 0.2 0.4 0.6

Q
I (

A
ff

in
e)

0.0

0.2

0.4

0.6
p = 8.3e-14
N = 112

A B C D
* * * *

*

* * * *

* * *

∆QI = 0.05 ∆QI = 0.01 ∆QI = 0.04 ∆QI = 0.01

∆QI = 0.01 ∆QI = 0.02 ∆QI = 0.03 ∆QI = 0.02

∆QI = 0.04 ∆QI = 0.01 ∆QI = 0.01 ∆QI = 0.03

Figure 3.2: Unconstrained affine model performance on V1 data. A com-
parison of the cross-validated performance of the models on V1 data across three
anesthetized monkeys (top, middle and bottom for each panel). Performance is mea-
sured by the Quality Index, which is 0 if the model is equivalent to the independent
model, and 1 for perfect prediction. Each point is the mean Quality Index over
10 cross-validation folds. A: The multiplicative model outperforms the constrained
multiplicative model, which requires all neurons to have the same weight to the mul-
tiplicative latent variable. B: The affine model outperforms the constrained affine
model, which also requires all neurons to have the same weight to the multiplicative
latent variable, but allows different weights to the additive latent variable. C: The
affine model outperforms the unconstrained additive model. D: The affine model
outperforms the unconstrained multiplicative model. p-values are calculated using
the two-sided sign test, and the asterisk location relative to the diagonal indicates
the model with the significantly higher median value.

106

Ori Pref/Mult Ori Pref/Add Dir Pref/Mult Dir Pref/Mult

Nori ρ p-value ρ p-value Ndir ρ p-value ρ p-value

Monkey 1 100 0.17 0.10 -0.02 0.88 81 -0.09 0.40 -0.03 0.77

Monkey 2 85 -0.08 0.46 -0.18 0.11 71 0.04 0.77 0.01 0.90

Monkey 3 109 0.14 0.14 -0.13 0.16 88 0.05 0.67 0.34 1.1e-3

Combined 294 0.02 0.71 -0.11 0.05 240 0.11 0.08 0.13 0.04

Table 3.1: Correlation between affine model coupling weights and tuning
properties. Correlation coefficients and p-values for individual datasets; the com-
bined datasets are shown in figure 3.3. Only neurons with orientation and direction
selectivty indices >0.05 are used in this analysis.

activity, even in early visual areas, can be modulated in a stimulus-independent

manner by fluctuations in cortical network activity. However, our affine model far

outperforms a similar additive model (figure 3.2C) due to the different form of the

additive latent variable (a weighted average of the population activity rather than

the average; see section 3.4.2) and the incorporation a multiplicative latent variable.

We were interested if this result still holds given a more accurate model of the

response variability. We found that there was a wide range of coupling weights to

both the multiplicative and additive latent variables, and that these weights are in

fact largely uncorrelated with either orientation preference or direction preference

(combined results in figure 3.3; individual results in table 3.1).

We next investigated two results from Arandia-Romera et al. concerning the

differential effects of the additive and multiplicative latent variables on response

variability. They found, using a model-free analysis, that the additive and multi-

plicative factors modulating neural responses were negatively correlated. We find a

similar effect using the unconstrained affine model, where the two sets of coupling

107

0 50 100 150

M
ul

tip
lic

at
iv

e
co

up
lin

g

-0.5

0.0

0.5 r = 0.02
p = 0.71

A

Orientation pref
0 50 100 150

A
dd

iti
ve

co
up

lin
g

-0.2

0.0

0.2

0.4 r = -0.11
p = 0.052

B

0 100 200 300
-0.4

0.0

0.4 r = 0.11
p = 0.081

C

Direction pref
0 100 200 300

-0.2

0.0

0.2

0.4 r = 0.13
p = 0.043

D

Figure 3.3: Coupling to latent variables is uncorrelated with tuning prop-
erties. The orientation preference of individual neurons is not significantly corre-
lated with either the coupling weights to the multiplicative latent variable (A) or
the additive latent variable (C). Only neurons with an orientation selectivity index
>0.05 are used in this analysis. The direction preference of individual neurons is not
significantly correlated with the multiplicative coupling weights (B), and just barely
significantly correlated with the additive coupling weights (D). Only neurons with a
direction selectivity index >0.05 are used in this analysis. Colors indicate different
datasets, and table 3.1 displays correlation coefficients and p-values for individual
datasets.

weights are negatively correlated (figure 3.4A), which is signficant in two of the three

monkeys (p<5e-7).

The multi-gain model of Arandia-Romero et al. constrains the additive and

multiplicative latent variables to be equal (equation 3.6). Our unconstrained affine

model does not impose this constraint, and we were interested in whether or not

this feature of the multi-gain model is replicated in our model fits. We found that

there is in general a strong correlation between the additive and multiplicative latent

variables, but still a large amount of difference between the two (figure 3.4B). It is

108

-0.2 0.0 0.2 0.4
M

ul
tip

lic
at

iv
e

w
ei

gh
t

-0.2

0.0

0.2

r = -0.60
p = 1.2e-11

-5 0 5

0

4

8

M
ul

tip
lic

at
iv

e
LV

r = 0.50

-0.4 -0.2 0.0 0.2

M
ul

tip
lic

at
iv

e
w

ei
gh

t

-0.6

-0.4

-0.2

0.0

r = -0.52
p = 2.2e-07

-5 0 5
-4

0

4

8

M
ul

tip
lic

at
iv

e
LV

r = 0.29

Additive weight
-0.1 0.0 0.1 0.2 0.3

M
ul

tip
lic

at
iv

e
w

ei
gh

t

-0.1

0.0

0.1

0.2

0.3

r = -0.18
p = 0.053

Additive LV
-5 0 5

-10

0

10

20
M

ul
tip

lic
at

iv
e

LV

r = 0.64

A B

Figure 3.4: Effects of additive and multiplicative latent variables are neg-
atively correlated. A: Neuron coupling weights in the affine model are negatively
correlated, which recapitulates a result from the model-free analysis of Arandia-
Romero et al.; points represent average weight over 10 cross-validation folds. B:
Values of the inferred latent variables are positively correlated. Values are calcu-
lated using the cross-validation data.

not clear whether constraining these latent variables to be the same would increase

model performance (in which case the differences in values are due to overfitting)

or decrease it (in which case these latent variables represent two distinct, albeit

correlated signals), which is a direction for future work.

109

3.2.3 LGN activity in awake mice is additive and multiplicative

To further test if the affine model is appropriate for describing response vari-

ability in the early stages visual processing, we used two-photon imaging to record

activity from LGN boutons in primary visual cortex of awake and freely running

mice in response to drifting gratings (see section 3.4.1 for experimental details).

Like the anesthetized macaque V1 data, we found that allowing each neuron

to have its own coupling to the multiplicative latent variable significantly improved

model fits in both the multiplicative models (figure 3.5A; p<5e-4 for three of the

four mice; p>0.05 for the remaining; two-sided sign test) and the affine models

(figure 3.5B; p<5e-3 for each of the four mice). Also as before, the affine model

outperformed both the additive (figure 3.5C; p<5e-2 for each of the four mice) and

multiplicative models (figure 3.5D, p<5e-5 for each of the four mice).

Previous work has demonstrated that a large portion of variability in anes-

thetized macaque V1 is driven by low-frequency fluctuations induced by the anes-

thesia [81]. In our experiment, mice were awake and freely running, which allowed

us to investigate additional drivers of variability. For example, locomotion can mod-

ulate responses in rodent primary visual cortex [154, 183, 184] and LGN [185, 186].

Pupil size, which can serve as a proxy for arousal state [187], is also correlated with

variability in primary visual cortex of awake mice [188]. Similarly, we have previ-

ously reported a strong correlation between population activity and pupil size in

this data from LGN [189].

To understand whether or not these factors can describe a similar amount of

110

QI (Constrained Mult)
0.0 0.5 1.0

Q
I (

M
ul

tip
lic

at
iv

e)

0.0

0.5

1.0 p = 2.2e-16
N = 182

QI (Constrained Affine)
0.0 0.5 1.0

Q
I (

A
ff

in
e)

0.0

0.5

1.0 p = 1.9e-12
N = 182

QI (Additive)
0.0 0.5 1.0

Q
I (

A
ff

in
e)

0.0

0.5

1.0 p = 0
N = 182

QI (Multiplicative)
0.0 0.5 1.0

Q
I (

A
ff

in
e)

0.0

0.5

1.0 p = 0
N = 182

QI (Constrained Mult)
0.0 0.5 1.0

Q
I (

M
ul

tip
lic

at
iv

e)

0.0

0.5

1.0 p = 2.6e-07
N = 377

QI (Constrained Affine)
0.0 0.5 1.0

Q
I (

A
ff

in
e)

0.0

0.5

1.0 p = 2.5e-14
N = 377

QI (Additive)
0.0 0.5 1.0

Q
I (

A
ff

in
e)

0.0

0.5

1.0 p = 1.1e-14
N = 377

QI (Multiplicative)
0.0 0.5 1.0

Q
I (

A
ff

in
e)

0.0

0.5

1.0 p = 2.2e-15
N = 377

QI (Constrained Mult)
0.0 0.5 1.0

Q
I (

M
ul

tip
lic

at
iv

e)

0.0

0.5

1.0 p = 1.3e-04
N = 81

QI (Constrained Affine)
0.0 0.5 1.0

Q
I (

A
ff

in
e)

0.0

0.5

1.0 p = 3.6e-03
N = 81

QI (Additive)
0.0 0.5 1.0

Q
I (

A
ff

in
e)

0.0

0.5

1.0 p = 4.5e-02
N = 81

QI (Constrained Mult)
0.0 0.5 1.0

Q
I (

M
ul

tip
lic

at
iv

e)

0.0

0.5

1.0 p = 0.9
N = 231

QI (Constrained Affine)
0.0 0.5 1.0

Q
I (

A
ff

in
e)

0.0

0.5

1.0 p = 0
N = 231

QI (Additive)
0.0 0.5 1.0

Q
I (

A
ff

in
e)

0.0

0.5

1.0 p = 7.8e-12
N = 231

QI (Multiplicative)
0.0 0.5 1.0

Q
I (

A
ff

in
e)

0.0

0.5

1.0 p = 2.9e-15
N = 231

A B C D
* * * *

* * *

* * * *

* * *

∆QI = 0.12

QI (Multiplicative)
0.0 0.5 1.0

Q
I (

A
ff

in
e)

0.0

0.5

1.0 p = 3.2e-04
N = 81

*

∆QI = 0.06

∆QI = 0.05

∆QI = 0.05

∆QI = 0.00

∆QI = 0.04

∆QI = 0.04

∆QI = 0.04

∆QI = 0.04

∆QI = 0.04

∆QI = 0.11

∆QI = 0.05

∆QI = 0.03

∆QI = 0.05

∆QI = 0.09∆QI = 0.08

Figure 3.5: Unconstrained affine model performance on LGN data. Com-
parison of the cross-validated performance of the models on LGN data across four
awake and freely running mice, which demonstrate the significant performance in-
creases that come from allowing each neuron to have its own coupling to the mul-
tiplicative latent variable in both the multiplicative (A) and affine (B) models.
Additionally, the affine model performs signficantly better than using either addi-
tive (C) or multiplicative (D) latent variables alone. Same conventions as figure
3.2.

111

variability as the latent variables that we infer with our model, we fit the uncon-

strained additive, multiplicative and affine models using four sets of predictors: 1)

the latent variable inferred from the high-dimensional population activity (which is

a weighted average of the population activity, and the predictor used in the models

in figure 3.5); 2) the average population activity; 3) the pupil diameter of the animal;

and 4) the running speed of the animal. We found that the inferred latent variable

performed significantly better than the other three predictors in almost every com-

parison (additive: p<0.05 in 11/12 models; multiplicative: p<0.05 in 11/12 models;

affine: p<0.005 in 12/12 models; two-sided sign test). These results demonstrate

that although population activity in LGN is correlated with these factors, they are

not as predictive of the trial-to-trial variability in our framework. This reflects the

fact that an arousal signal, for example, might modulate both pupil diameter and

LGN activity (hence leading to their correlation), but their resulting relationship

does not necessarily need to be linear.

3.2.4 Is the affine model a good description of early visual responses?

We have demonstrated that the unconstrained affine model captures more

response variability than related models in both anesthetized monkey V1 (figure 3.2)

and awake mouse LGN (figure 3.5). However, this does not preclude the possibility

that there are better models of the neural population response that can capture

more of the variability. To address this question we introduce two new classes of

models and compare their performance to the unconstrained affine model on both

112

1 2 3 4 1 2 3 4 1 2 3 4

Q
ua

lit
y

In
de

x

0.0

0.2

0.4

0.6

1 2 3 4 1 2 3 4 1 2 3 4

Q
ua

lit
y

In
de

x

0.0

0.2

0.4

0.6

1 2 3 4 1 2 3 4 1 2 3 4

0.0

0.2

0.4

1 2 3 4 1 2 3 4 1 2 3 4

0.0

0.2

0.4

0.6

Predictor type Predictor type

Additive models Multiplicative models Affine models

Additive models Multiplicative models Affine models

Additive models Multiplicative models Affine models

Additive models Multiplicative models Affine models

** ** ** ** ** * ** ** ** * ** ** * ** ** **

** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **

LV

Pop
 av

g

Pup
il d

iam

Run
 sp

eed *
**

p<0.05

p<0.005

**

Figure 3.6: Latent variables predict LGN responses better than experi-
mental observables. Comparison of the cross-validated performance of the models
on LGN data when using different predictors for the multiplicative gain and/or addi-
tive offset in the additive model (red boxplots), multiplicative model (blue boxplots),
and affine model (green boxplots) for four mice. The predictors are the 1) latent
variable inferred from the high-dimensional population activity; 2) average popula-
tion activity; 3) pupil diameter; and 4) running speed. Asterisks indicate if model
performance is significantly less than that using the latent variable predictor, within
a particular model class (e.g. additive). Comparisons between additive and mul-
tiplicative models, for example, are omitted. *p<0.05, **p<0.005, two-sided sign
test.

datasets.

The first model extends the unconstrained affine model by allowing an ar-

bitrary number of additive and multiplicative latent variables, which we call the

generalized affine model (GAM):

rni =

(
1 +

K∑

k=1

wkng
k
i

)
fn(θ) +

M∑

m=1

vmn h
m
i (3.9)

Each neuron is allowed to have its own coupling to each of the M additive latent vari-

ables, and a different coupling to each of the K multiplicative latent variables (see

section 3.4.2 for model fitting details); the unconstrained affine model is recovered

113

from this model when M = K = 1.

In the V1 dataset we found that the best cross-validated model included multi-

ple additive and multiplicative latent variables for each of the three monkeys (figure

3.7A). However, the number of additional latent variables in the optimal models was

small (1-3 for both types), and the Quality Index, while significantly greater than

that of the affine model for two of the three monkeys, was not large in magnitude.

This result indicates that the affine model, with a single additive and multiplicative

latent variable, is indeed a good description of the population response in anes-

thetized V1.

To further test the affine model, we compared it to a general nonlinear latent

variable model that is agnostic to the stimulus identity on a given trial. We used an

autoencoder neural network (see section 3.4.3), which models the neural responses

as

rni = f auto
n (zi) (3.10)

where f auto
n is a single- or multi-layer neural network (RLVM and SRLVM, respec-

tively) and zi ∈ RK is a vector of Q latent variables. Unlike the previous models,

where latent variables interacted with the stimulus response in a specific way, this

model does not explicitly model the stimulus response and makes no assumptions

on what the zi represent or how they are combined (and as such, they will represent

elements of both the stimulus response and the trial-to-trial variability).

We found that the SRLVM performed as well as or worse than the uncon-

strained affine model and the optimal GAMs for each monkey, across a range of

114

0 1 2 3 4 5

A
dd

iti
ve

 L
V

s

0

1

2

3

4

5

0.18

0.20

0.22

0.24

0.26

0 1 2 3 4 5

A
dd

iti
ve

 L
V

s

0

1

2

3

4

5

0.04

0.08

0.12

0.16

Multiplicative LVs
0 1 2 3 4 5

A
dd

iti
ve

 L
V

s

0

1

2

3

4

5

0.25

0.26

0.27

0.28

0.29

2 4 6 8
Q

ua
lit

y
In

de
x

0.0

0.1

0.2

0.3

2 4 6 8

Q
ua

lit
y

In
de

x

-0.3

-0.2

-0.1

0.0

0.1

0.2

Number of LVs
2 4 6 8

Q
ua

lit
y

In
de

x

-0.1

0.0

0.1

0.2

0.3

QI

QI

QI

A B

Optimal (1-add 2-mult)
Affine (1-add 1-mult)
SRLVM
RLVM

Optimal (1-add 2-mult)
Affine (1-add 1-mult)
SRLVM
RLVM

Optimal (3-add 1-mult)
Affine (1-add 1-mult)
SRLVM
RLVM

**

**

1 3 5 7

A
dd

iti
ve

 L
V

s

1

3

5

7

0.3

0.4

0.5

0.6

0.7

1 3 5 7

A
dd

iti
ve

 L
V

s

1

3

5

7

0.2

0.3

0.4

1 3 5 7

A
dd

iti
ve

 L
V

s

1

3

5

7

0.1

0.2

0.3

0.4

2 4 6 8

Q
ua

lit
y

In
de

x

0.0

0.2

0.4

0.6

2 4 6 8

Q
ua

lit
y

In
de

x

-0.5

0.0

0.5

2 4 6 8

Q
ua

lit
y

In
de

x

-0.4

-0.2

0.0

0.2

0.4

QI

QI

QI

C D

Optimal (7-add 7-mult)
Affine (1-add 1-mult)
SRLVM
RLVM

Optimal (7-add 6-mult)
Affine (1-add 1-mult)
SRLVM
RLVM

Optimal (7-add 7-mult)
Affine (1-add 1-mult)
SRLVM
RLVM

Multiplicative LVs
1 3 5 7

A
dd

iti
ve

 L
V

s

1

3

5

7

0.3

0.4

0.5

0.6

Number of LVs
2 4 6 8

Q
ua

lit
y

In
de

x
-0.2

0.0

0.4

0.6

0.8QI

Optimal (7-add 7-mult)
Affine (1-add 1-mult)
SRLVM
RLVM

0.8

-0.2

0.6

0.2

10

10

10

10

**

**

**

**

Figure 3.7: Generalized affine model performance on V1 and LGN data.
Model performance using V1 data from anesthetized monkey (panels A, B) and
LGN data from awake mouse (panels C, D). A, C: Mean QI over neurons and cross-
validation folds for the generalized affine model, which allows an arbitrary number
of additive and multiplicative latent variables. The standard affine model is outlined
(dashed black line) as well as the generalized affine model with the highest QI (solid
black line; **p<0.005, •p>0.05, two-sided sign test on the mean compared to the
affine model). Even with seven additive and seven multiplicative latent variables,
the performance of the generalized affine model for the LGN data continued to
increase (C). B, D: Performance of the affine model and optimal generalized affine
model, plotted against the RLVM and SRLVM, which describe the data using a
linear (RLVM) or arbitrary nonlinear (SRLVM) combination of latent variables,
and do not include a stimulus model.

115

latent variables (figure 3.7B). Though we did not perform an exhaustive search over

the hyperparameters governing the autoencoder neural networks, this result further

supports our earlier claim that the affine model is indeed a good description of

shared variability in this V1 data.

We next analyzed the LGN data in the same manner, and found strikingly

different results. The GAM far outperformed the standard affine model in all four

mice (figure 3.7C). Furthermore, the optimal GAM utilized six or seven of each latent

variable type, the maximum number that we tested. Consistent with this result, the

RLVM and SRLVMs also outperformed the affine model, and only started to saturate

in performance with around ten latent variables (figure 3.7D). The relatively large

number of latent variables needed to describe this variability indicates that the

standard affine model is not a good description of variability in this LGN data.

3.3 Discussion

We extended the affine models of neural population response variability de-

veloped in Lin et al. 2015 and Arandia-Romero et al. 2016 to allow each neuron

to have its own coupling to separate additive and multiplicative latent variables.

We showed that this unconstrained affine model is better at capturing variability

than previous models in anesthetized macaque V1 (figure 3.2) and awake and freely

running mouse LGN (figure 3.5). We were also able to replicate several previous

findings using this improved model, demonstrating that coupling to additive and

multiplicative terms was uncorrelated with tuning preferences (figure 3.3) and that

116

the effects of additive and multiplicative latent variables were negatively correlated

(figure 3.4).

We also introduced two new models of population activity in order to better

gauge the performance of the unconstrained affine model. The first model, the gen-

eralized affine model, allows for an arbitrary number of additive and multiplicative

latent variables, and our model fitting framework allows us to fit all parameters

and infer all latent variables simultaneously. The second model, the Stacked Recti-

fied Latent Variable Model (SRLVM), is a standard multi-layer autoencoder neural

network that we used as a general nonlinear latent variable model. We found that

these models were only slightly better at explaining response variability than the

affine model in anesthetized macaque V1 (figure 3.7), but far outperformed the affine

model in awake mouse LGN.

Anesthesia likely plays an important role in the discrepancy between our re-

sults in V1 and LGN. Neural activity under anesthesia can be quite different than

in the awake and behaving state. [81] found a single additive latent variable could

explain a large portion of the noise correlations induced by anesthesia in monkey

V1, which is supported by our analysis (figure 3.7B). The awake and behaving state

appears to contain a richer variety of population response patterns, which requires

more latent variables to accurately describe. However, these datasets also differed

in visual area, species, and recording modality. Uncovering the role of anesthesia in

these results will require analyzing data from awake monkey V1.

Lin et al. applied their affine model to activity from the primary visual cortex

of quietly awake mice, and found that it was able to explain more response variability

117

than both the additive and multiplicative models. This finding is consistent with our

results in figure 3.5. Additionally, we showed that the latent variables inferred by

the affine model were able to explain significantly more variability than experimental

observables like pupil diameter and running speed (figure 3.6).

However, by introducing a more complicated model structure, we were able

to demonstrate that a large portion of the affine model’s residual variability is in

fact explainable as well. Determining how this higher-dimensional variability in-

fluences sensory processing will be more difficult than analyzing a single additive

or multiplicative latent variable. Moreover, the experiments analyzed here do not

involve a behavioral component (besides locomotion in the LGN data), which lim-

its the extent to which we can address the functional role of these various latent

variables [190].

Using these models of population response variability in settings with behav-

ioral components will shed light on how these different forms of shared variability

might influence behavior. For example, [135] were able to derive a latent variable

that was predictive of animal performance on a trial-to-trial basis during an atten-

tion task, establishing an important link between neural variability and behavior.

To analyze that same data, Rabinowitz et al. 2015 [101] developed a model that

contains three different classes of multiplicative gain terms, similar to equation 3.9,

and found that a small number of gain terms could describe the response variability

of the full population. Additionally, they were able to show that these gain terms

were predictive of behavioral performance, and dependent on the reward outcome

of the previous trial. By reducing high-dimensional population activity to a small

118

number of latent variables, the models introduced here (as well as those this work

builds upon) will become increasingly useful for understanding how the activity

from large groups of neurons contextually process external stimuli in behaviorally

relevant settings.

3.4 Methods

3.4.1 Experimental data

V1 dataset. We analyzed electrophysiology data from the Kohn lab, which

has been made publicly available at http://dx.doi.org/10.6080/K0NC5Z4X. Spik-

ing activity was recorded with a Utah array in primary visual cortex from three

anesthetized macaques, in response to full-contrast drifting gratings with 12 equally-

spaced orientations, presented for 1280 ms (200 repeats). Full details can be found

in [191]. Spike counts were analyzed using a single 500 ms time bin per trial (500

ms to 1000 ms after stimulus onset). Spike counts were square-rooted before fitting

the models to stabilize variance and reduce the influence of neurons with high firing

rates [111].

LGN dataset. We analyzed two-photon imaging data from simultaneously

recorded presynaptic, putative thalamic (LGN) boutons in mouse primary visual

cortex. The mice were awake and head-fixed, and allowed to freely run on a tread-

mill as full-field drifting gratings of 12 different directions and orientations were

displayed for five seconds, interspersed with five seconds of a blank gray screen (10

repeats). Animal velocity and pupil diameter were also recorded throughout the

119

http://dx.doi.org/10.6080/K0NC5Z4X

session, and resampled at the frame rate of the two-photon microscope for further

analysis. Full details can be found in [189]. The data were analyzed at the resolu-

tion of whole trials, so that fluorescence values were separately averaged over each

stimulus presentation period and each blank period.

Calculating tuning properties. The preference of each unit to the direction

of the drifting gratings was quantified by first calculating the average response ȳθ to

grating direction θ (in radians), and the direction preference (DP) is then defined

as

DP = Arg

(∑
θ ȳθ exp(iθ)∑

θ ȳθ

)
(3.11)

The direction selectivity index (DSI) quantifies the strength of this preference as

DSI = Abs

(∑
θ ȳθ exp(iθ)∑

θ ȳθ

)
(3.12)

The preference of each unit to the orientation of the drifting gratings was also

quantified. The orientation of the grating will be the same for two gratings drifting

in opposite directions, and so the measure is defined similarly:

OP =
1

2
Arg

(∑
θ ȳθ exp(i2θ)∑

θ ȳθ

)
(3.13)

as well as the orientation selectivity index:

OSI = Abs

(∑
θ ȳθ exp(i2θ)∑

θ ȳθ

)
(3.14)

3.4.2 The Generalized Affine Model

The GAM models neural responses as the result of a gain term that is shared

across the population which multiplicatively modulates stimulus processing, along

120

wg

wa

Stim
Model

F[]
Neuron N

wg

wa

Stim
Model

F[]
Neuron 2

Stimulus f1(st)

F[]
Neuron 1

r1t

r2t

rNt

Predictors

st

Predicted
firing rates

w1

v1

fmult

fadd

gt

ht
xadd

xmult

Figure 3.8: Structure of the Generalized Affine Model. A structured, nonlin-
ear latent variable model that uses a neural network to transform a set of predictors
(such as population activity) into a multiplicative gain signal (green network). This
signal is shared across the entire population and modulates the output of a stimulus
model (red box) for each individual neuron. A separate neural network transforms
its input into an additive signal (purple network) that is also shared across the
population.

with an additive term that is likewise shared across the population (figure 3.8). We

define the full model for the predicted firing rate of each neuron n at time t, rnt , in

several steps.

We first define a stimulus model fn(st) for each neuron n such that fn(·) maps

st, the vector of stimulus values at time t (and perhaps previous time lags), to

a rate at each time t. fn could be as simple as a one-dimensional tuning curve

or a peri-stimulus time histogram (PSTH), or a much more complicated stimulus

processing model like the hierarchical models described in section 1.4.3. We denote

the parameters of the stimulus models {fn}Nn=1 as θstim. For this basic stimulus

121

model, the GAM estimates the firing rate rnt as

rnt = F [cn + fn(st)] (3.15)

where cn is an overall offset term and F [·] is a pointwise spiking nonlinearity.

Next we define latent variables gt ∈ RK that have an explicitly multiplicative

effect on the stimulus processing (figure 3.8 only illustrates a single multiplicative

latent variable, but in principle more than one can be fit using this framework).

These latent variables are shared across the entire population, though each neuron

has its own weight wkn to each of the K latent variables gkt :

rnt = F

[
cn + u

(
K∑

k=1

wkng
k
t + bn

)
fn(st)

]
(3.16)

where bn is a bias term and u(·) is a static nonlinearity. We use u(x) = 1 + x to

fit the models in this chapter, though other functions like u(x) = exp(x) are also

suitable.

Inference of the latent variables is performed by using a neural network fmult

to nonlinearly map a set of predictors xmult
t into the latent variables:

gt = fmult(x
mult
t) (3.17)

We denote the parameters for the multiplicative latent variables (wkn, bn, and the

weights and biases of fmult) as θmult.

Finally, we allow the GAM to have additive latent variables ht ∈ RM as well,

in order to capture activity that cannot be accounted for by the modulated stimulus

model of equation 3.17. Like the multiplicative latent variables, these additive latent

variables are shared across the population, but each neuron has its own weight vmn

122

to each of the M latent variables hmt

rnt = F

[
cn + u

(
K∑

k=1

wkng
k
t + bn

)
fn(st) +

M∑

m=1

vmn h
m
t

]
(3.18)

Inference of the additive latent variables likewise uses a neural network,

ht = fadd(xadd
t) (3.19)

and we denote the parameters for the additive latent variables (vmn and the weights

and biases of fadd) as θadd.

To fit the parameters {θstim, θmult, θadd} of the GAM we define the loss func-

tion to be the penalized negative log-likelihood LGAM under the chosen observation

model (Gaussian or Poisson). In the models fit in this chapter we use the Gaussian

observation model (with identity covariance), so that the cost function becomes

LGAM =
1

2T

T∑

t=1

∥∥yt − rt
∥∥2

2
+ λstimq(θstim) + λaddq(θadd) + λmultq(θmult) (3.20)

where the q(·) are regularization terms that we take to be the L2 norm on the

weights, governed by the hyperparameter λ.

The parameters θmult and θadd are initialized using the varimax-rotated princi-

pal components (see section 3.4.3); θstim is initialized by fitting the desired stimulus

processing model fn (equation 3.15) to each neuron individually and using the re-

sulting parameters. To train the full model we hold θstim fixed and simultaneously

optimize θmult and θadd using the L-BFGS optimization routine [177]. Models were

fit to training data using a range of λ values (we constrained λadd = λmult), and

the value that resulted in the smallest cost on the held-out cross-validation fold was

chosen.

123

For the V1 data, we modeled the stimulus response of each neuron using a

tuning curve, for a total of 12 parameters. fmult had no hidden layers, and the

output unit implemented h(x) = 1+x (no bias was fit). fadd likewise had no hidden

layers, and used a linear unit for the output.

For the LGN data, we modeled the stimulus response of each neuron as a

tuning curve, with one learnable parameter for each stimulus identity and another

learnable parameter for each associated blank period, for a total of (12 stimuli + 1

blank control) × 2 (stimulus/blank periods) = 26 parameters. We fit models using

a range of predictors for xmult
t and xmult

t , including the average population response,

pupil diameter, running speed, and the full-dimensional population response (figure

3.6). For all predictors, fmult and fadd were the same as those described for the V1

data.

3.4.3 The Stacked Rectified Latent Variable Model (SRLVM)

The Stacked Rectified Latent Variable Model (SRLVM) extends the RLVM

introduced in chapter 2 to multiple hidden layers. The SRLVM constrains the la-

tent variables zt to be some encoding function fenc of the population activity yt; the

population activity can then be coupled to the latent variables with a (in general

different) decoding function fdec [142, 168]. We consider the cases where both fenc

and fdec are implemented with a single affine transformation (RLVM), and where

both fenc and fdec are implemented with feedforward neural networks (SRLVM). Un-

der the autoencoder model the inferred latent variables zt and predicted population

124

tr-gauss gauss orth pca pca-var layer

0.24

0.26

0.28

tr-gauss gauss orth pca pca-var layer

2800

3200

3600

4000

 M
od

el
 fi

t t
im

e
(s

ec
)

C
os

t

A B

Figure 3.9: Comparison of SRLVM initializers. We compare different ini-
tialization schemes for a single dataset and model architecture: mouse LGN data,
377 boutons (KS093 run03), three hidden layers of 30-9-30 ReLU units. This is
one of the largest models we fit, and these results generalize to other architectures
and datasets (data not shown). Initializers: tr-gauss is a truncated Gaussian; gauss
∼ N (0, 0.1); orth uses Gram-Schmidt to orthogonalize the columns of gauss [192];
pca calculates the first M principal components of the layer’s input; pca-var then
rotates these using the varimax rotation [171]; and layer uses the autoencoder to
initialize each layer one at a time (similar to the use of Restricted Boltzmann Ma-
chines in [193]). A: Cost function value; boxplots are values over ten cross-validation
folds. B: Time in seconds to fit the model.

activity rt at time t are then given by

zt = fenc(yt) (3.21)

rt = fdec(zt) (3.22)

In our models we used ReLU activation functions as the pointwise nonlinearities in

all hidden layers.

We performed layer-wise initialization of the weights in the encoding network

by using the varimax-rotated principal components, and initialized weights in the

decoding network as transposes of those in the encoding network, which we found

to consistently produce models with better cross-validation performance than other

intialization schemes (figure 3.9). All SRLVMs fit in this chapter were symmetric in

the encoding/decoding network architectures. The negative log-likelihood was used

125

as the cost function, and training was performed using L-BFGS. Regularization

hyperparameters were chosen through cross-validation as described in section 3.4.2.

3.4.4 Evaluating model performance

To quantify the goodness-of-fit of the different models (GAM and SRLVM) we

calculated the coefficient of determination, defined as

R2 =
1

N

∑

n

[
1−

∑
t(y

n
t − rnt)2

∑
t(y

n
t − ȳn)2

]
(3.23)

where ȳn is the average value for neuron n across all trials.

To evaluate model performance of the SRLVM we performed a version of the

leave-one-out method introduced in [111]: first the full model is fit to all of the

training data, and then for testing the predicted activity rnt at time t for neuron n

is calculated as

rnt = [fdec(fenc(y
−n
t))]n (3.24)

where y−nt is the population activity at time t with the value for neuron n set to

zero. The prediction rnt is calculated in this way for each value of t and for each

neuron n, and all such values are then combined for the final prediction {rt}Tt=1. This

procedure results in low cross-validation performance if any single neuron dominates

the activity of a latent variable. The same procedure is used for GAMs that use

population activity to infer latent variables (i.e. xmult
t = yt or xadd

t = yt).

126

Chapter 4: The Latent Variable (LV) Decoder

4.1 Introduction

An understanding of how neural activity underlies brain function requires an

understanding of how individual neurons act as a population to represent informa-

tion about the external world. Recent advances in recording technology now provide

increasingly large numbers of simultaneously recorded neurons, and this ability is

growing at an exponential pace [7]. Such observed population activity can greatly

inform theories about how the brain represents information, because the manner in

which neural activity is coordinated across space and time can affect how informa-

tion is represented and made available to the rest of the brain [70].

Empirical evidence suggests that the structure of this coordinated neural ac-

tivity is low-dimensional (section 1.5), which has implications for how information

is represented in neural populations during single experimental trials. One way

to access the information contained in single-trial neural responses is to decode

the identity of an external stimulus using those responses [70]. Here we exploit

the observed low-dimensional structure of neural activity to develop a new decod-

ing framework that efficiently extracts information from neural populations. This

framework allows us to infer and remove correlated variability that is detrimental

127

to decoding.

We demonstrate the use of this novel decoding framework with large popula-

tions of simultaneously recorded neurons in prefrontal cortex (PFC) and primary

visual cortex (V1) of macaque monkeys. This framework leads to two advances:

first, we show that a linear version of our algorithm provides an estimator for the

decoded stimulus that is more efficient than other commonly-used linear estimators,

using both simulated and experimental data; second, we show that this framework

admits a simple extension to effective nonlinear decoding. Our nonlinear decoder ex-

tracts more information from population responses than other linear and nonlinear

decoders, though the increase in complexity requires more data for fitting.

Additionally, this work contributes a conceptual advance regarding the role

and consequences of correlations in neural activity. Our results demonstrate much

of the noise correlations might not actually influence the representation of infor-

mation, if the underlying structure of the noise is known or can be inferred by

the relevant brain regions. Because a nontrivial amount of “noise” in neural ac-

tivity is actually the result of non-random processes internal to the brain [105],

understanding how these signals affect the representation of information could yield

fundamental insights into the role of top-down control of sensory processing.

128

4.2 Results

4.2.1 Describing noise correlations with latent variables

We begin by describing a simple example that elucidates the relationship be-

tween signal correlations, noise correlations and latent variables which will motivate

the development of our latent variable decoding framework in the following section.

Consider a task in which the subject sees one of two possible stimuli on each trial

and must perform a saccade to the presented stimulus, while we record the simul-

taneous activity of many neurons in a task-relevant brain region. To visualize how

the neural dynamics unfold in time, we perform dimensionality reduction on the

trial-averaged responses using principal component analysis (PCA), and project the

high-dimensional activity into the first three principal components (figure 4.1A, bold

lines). This type of dimensionality reduction is useful beyond just visualization, as

many recent studies have found that a small number of appropriately chosen di-

mensions can explain a large fraction of the high-dimensional, trial-averaged neural

activity [160, 194]. One implication of these findings is that correlations between

the tuning functions of pairs of neurons, termed signal correlations, have a low-

dimensional structure, a result that has been replicated across various species, brain

regions, and tasks.

A full understanding of how dynamics underlie important neural computations,

however, requires understanding single-trial activity. For example, trial-averaged

trajectories reveal nothing about the differences between correct and error trials. A

129

A

Stimulus Coding
Dimension

Time after stim onset

In
fo

rm
at

io
n

Stimulus
Onset

Time
µ1

µ1

1. Rotate data by
 inverse covariance
 matrix

1. Project data
 along direction
 between means

Optimal Linear
Decoding

Latent
Variable
Decoding

Standard
approach 2. Project data

 onto this new
 direction

2. Estimate and
 subtract off
 latent variable
 activity

Proposed
approach

3. Decode

decision boundaryβ

α

Class -1 Class 1

B

µ−1
α = µ1 − µ−1

µ−1

Figure 4.1: Using latent variables to decode stimulus identity from neural
population activity. A: Illustration of the dynamics of high dimensional neural
activity during a visually-guided saccade task, visualized using a latent variable
model fit to trial-averaged activity. The trial-averaged activity at stimulus onset
is marked by black dots, and evolves over time according to the saccade direction
(leftward saccade, bold blue line; rightward saccade, bold red line). Activity from
individual trials can also be projected into this space for visualization (thin lines).
At a given point in time (gray plane), the saccade direction can be decoded from
the neural activity by considering the position of the activity along the stimulus
coding direction (straight black arrow). The more accurately the direction can be
decoded from neural activity, the more information the population contains about
the stimulus. B: Instead of using latent variables to visualize dynamics, the latent
variable decoder exploits the covariance structure of the neural activity to remove
variability that is shared among many neurons to improve decoding (bottom). This
approach offers an alternative to optimal linear decoding (top), which accounts for
the covariance structure by rotating the decoding direction by the inverse covariance
matrix.

straightforward way to visualize single-trial activity is to project it into the space

defined by the trial-averaged data (figure 4.1A, thin lines), though note that this

space might not capture a large portion of the single-trial variability.

To help make the connection between noise correlations and latent variables,

we consider neural activity at a single time point t during the experiment, and

simplify the picture by only visualizing the neural activity in the two-dimensional

130

plane that passes through the mean trajectories at time t (figure 4.1A, gray plane;

figure 4.1B, left). Furthermore, we assume at time t the activity of neuron n on

trial i is the sum of three terms (and drop the dependence on t): 1) the response to

stimulus si, with coupling strength αn; 2) the response to a latent variable zi, which

is independent of the stimulus, with coupling strength βn; and 3) a noise term εni ,

which is independent of both the stimulus and the latent variable:

rni = αnsi + βnzi + εni (4.1)

The latent variable zi introduces trial-to-trial variability that is shared across the

population, and could represent an internal signal such as attention or arousal [105].

The noise term εni , on the other hand, represents trial-to-trial variability that is

private to each neuron, and could be due to mechanisms such as stochastic vesicle

release [71]. If we define the variance of zi as σ2
z and the variance of εni as σ2

ε , then

the covariance matrix of the full population activity ri = [r1
i . . . r

N
i]ᵀ, conditioned

on the stimulus (an unscaled version of the noise correlation matrix), is given by

Cov(ri|si) = Σ = σ2
zββ

ᵀ + σ2
ε I (4.2)

where β is the vector of all βn’s. The component due to the private noise term εni is

a scaled version of the identity matrix, and thus produces variability that is isotropic

in space (figure 4.1B, left, dashed circles). The component due to the latent variable

is a rank-1 matrix given by the outer product ββᵀ, which highlights how the latent

variable induces a low-dimensional structure on the noise covariance matrix. This

latent variable component produces variability that is oriented along the direction

β (figure 4.1, left, solid ellipses). This example generalizes to K latent variables,

131

which would produce a rank-K component in the noise covariance matrix (and point

along K different dimensions in the neural response space).

4.2.2 Decoding in the presence of latent variables

We now want to understand how the presence of the latent variable affects

the amount of information the neural responses contain about the identity of the

stimulus on trial i. A straightforward approach for measuring linear information is

to train a linear decoder to predict the stimulus using the neural activity (though see

[195] for a direct estimation approach). Using the decoding approach, the optimal

linear estimate of the stimulus si is defined as

ŝi = so +
f
′ᵀΣ−1

f ′ᵀΣ−1f ′
(ri − r̄) (4.3)

where so is the average stimulus, f ′ is the vector of tuning curve derivatives with

respect to si, and r̄ is the average population activity vector [70]. Linear Fisher

information quantifies the accuracy of this estimate, and is defined as the inverse of

the variance of ŝi [70].

Because the noise covariance matrix Σ plays a central role in the optimal

linear decoder’s estimate of the stimulus, theoretical work has often addressed how

decoding is affected by structure in this matrix that can arise in the neuroscience-

related setting. These considerations include the impact of noise correlations that

are related to the signal correlations [90], the relationship between diagonal and

off-diagonal elements [92], and a noise component that points along the direction of

individual neurons’ tuning curves [93]. However, no one has yet explicitly considered

132

the consequences of a low-dimensional component arising from latent variables on

decoding.

The optimal linear decoder takes the structure of Σ into account by left-

multiplying α by Σ−1 to construct a decision boundary (figure 4.1, top). Our latent

variable decoding framework proposes an alternative approach to the optimal linear

decoder by making the assumption that the noise covariance matrix contains low-

dimensional structure. We outline the approach here, and more details can be found

in section 4.4.1. We first project the full, high-dimensional neural activity onto the

direction of α (figure 4.1B, Latent Variable Decoding step 1), which in general is

not the optimal decoding direction. Next, we form a trial-by-trial estimate of the

variability in the direction of α. It is possible to form this estimate because of the

latent variable’s shared effect on the activity of the whole population; it would be

impossible to form from the activity of any individual neuron, since its impact on

neural activity is indistinguishable from the noise term εni without the single-trial

statistical power gained from simultaneously recorded neurons. Next we take our

estimate of this variability and subtract it from the projected population activity to

reduce variability in the activity along this direction (figure 4.1B, Latent Variable

Decoding step 2), then finally decode the adjusted neural activity by comparing to

a threshold value (figure 4.1B, Latent Variable Decoding step 3).

Though this linear latent variable decoder cannot, by definition, outperform

the optimal linear decoder in the limit of an infinite number of trials, we show in

the following sections that this decoder uses data more efficiently than other linear

decoders, requiring fewer trials to extract the same amount of information. An

133

additional feature of this framework is that it is not restricted to a linear method;

indeed, using any nonlinear regression technique such as a neural network to estimate

variability in the direction of α will result in a nonlinear latent variable decoding

algorithm, which we also explore in the following sections.

4.2.3 Validating the LV decoder with simulated data

We first tested the latent variable (LV) decoders (linear and nonlinear; see

section 4.4.1 for details) on simulated data, where it was possible to compare their

performance to ground truth. Responses from 200 neurons were generated in a

manner similar to equation 4.1, so that the same low-dimensional covariance matrix

describes the variability around each of two mean responses (figure 4.2A, inset ; see

section 4.4.3 for simulation details). This data allowed us to analytically calculate

the linear Fisher information, and served as a useful test case for our method.

To evaluate the performance of the LV decoders on this data we estimated

Fisher information by calculating d′2 in the learned decoding direction (equation

4.12), and compared this to the true linear Fisher information (equation 4.15).

d′2 is a quantity that must be estimated from data, and even the optimal linear

estimator cannot extract the full linear Fisher information from limited data. As

the number of neurons that can be simultaneously recorded increases exponentially,

the limiting factor for accurately measuring information in population activity will

be the number of experimental trials.

We tested the LV decoders across a range of trial-to-neuron ratios (figure 4.2).

134

Both the Linear and Nonlinear LV decoders extracted a large fraction of the true

linear information using relatively few trials (figure 4.2A). Because this data does

not contain nonlinear information, the Nonlinear LV decoder cannot perform better

than the Linear LV decoder. We also show the performance of the “Difference of

means” decoder (4.2A, purple dashed line), which uses the same decoding direction

as the LV decoders, but does not estimate and subtract off variance. The gap in

performance between the Difference of means and LV decoders demonstrates the

extent to which the LV decoders are able to account for shared variability that is

detrimental to decoding (4.2B). [See figure 4.8 for a comparison between the Linear

LV decoder and other standard linear decoders on this simulated data.]

To gain some intuition about how the neural networks might learn to predict

the variability that is due to the latent variables, we analytically work out a simple

example in section 4.5. This example suggests that the Linear LV decoder should

project the high-dimensional neural activity onto a direction orthogonal to the stim-

ulus coding dimension α to produce an estimate of the variability. To test this, we

projected the α direction out of the data and retrained the Linear LV decoder, and

found that its performance did not change (figure 4.2C).

The amount of information that a linear decoder can extract from data is

bounded above by the linear Fisher information. However, real data may contain

nonlinear Fisher information that requires nonlinear decoding techniques to extract.

In some cases, this nonlinear component of the full Fisher information can be sub-

stantially larger than the linear component [91]. To date, however, there are very

few examples of the successful application of nonlinear decoders to neural data,

135

In
fo

rm
at

io
n

Simulation 1

Number of trials
102 103 104 105

101

102

Analytic
Linear LV
Nonlinear LV
Diff of means

A B

Projection along
decoding direction

Linear LV

Nonlinear LV

C
ou

nt
C

ou
nt

D

Simulation 2

Number of trials

In
fo

rm
at

io
n

102 103 104 105

E

G

Simulation 3

Number of trials

In
fo

rm
at

io
n

102 103 104 105

101

102

100

H

Projection along
decoding direction

Linear LV

Nonlinear LV

C
ou

nt
C

ou
nt

Linear LV (proj out stim)

C

In
fo

rm
at

io
n

102

Number of trials
102 103 104 105

F

In
fo

rm
at

io
n

Number of trials
102 103 104 105

I
In

fo
rm

at
io

n

Number of trials
102 103 104 105

+ rectification
+ Poisson
 spiking

Linear LV (proj out stim)
Nonlinear LV (proj out stim)

102

101

100

10-2

Projection along
decoding direction

Linear LV

Nonlinear LV
C

ou
nt

C
ou

nt10-1

102

101

100

10-2

10-1

101

102

100

Linear LV (proj out stim)
Nonlinear LV (proj out stim)

Figure 4.2: Linear and Nonlinear LV decoding performance on simulated
data. A: Gaussian data is generated using the same covariance matrix for each
class (inset), which only contains linear Fisher information (black line). Informa-
tion measure is the d′2 discriminability index described in section 4.4.2, and error
bars represent SEM over five cross-validation folds for each of 25 simulated datasets.
B: Histograms of the data projected onto the decoding direction for one dataset,
colored by class, both before (solid lines) and after (dashed lines) subtracting off the
predicted variability using the Linear LV (top) or Nonlinear LV (bottom) decoders.
C: Decoder performance when projecting the stimulus dimension α out of the pop-
ulation activity before using it to infer variability. D–F: Same as A-C, but data is
generated using a different covariance matrix for each class (see inset in D). G–I:
Same as D-F, but the resulting values are rectified and passed through a Poisson
spike generator to simulate spike count data.

136

largely because these methods require much more data than their linear counter-

parts (see [196] for the application of nonlinear decoders to neural data in a different

setting).

To demonstrate the performance of our Nonlinear LV decoder, we introduce

a new simulation wherein the noise covariance matrices are different for each mean

response (4.2D, inset). This simulation explicitly models stimulus-dependent noise

correlations, which have been observed in neural data [77, 78]. Data generated in

this way contains nonlinear information [92], unlike the previous simulation, and

thus serves as a natural extension for testing nonlinear decoders.

Figure 4.2D-F (analogous to 4.2A-C) demonstrates that the Nonlinear LV

decoder can extract nonlinear Fisher information that is orders of magnitude larger

than the linear Fisher information, and can do so with even a small number of

trials. It is interesting to note that the Nonlinear LV decoder takes a different

strategy for inferring the variability; when we projected α out of the data before

fitting the Nonlinear LV decoder its performance decreased substantially, becoming

equivalent to that of the Linear LV decoder (4.2F). This points to the ability of the

Nonlinear LV decoder to extract nonlinear information by explicitly using activity

in the direction of α.

The simulated data analyzed above still lacks several important statistical

features of neural data. To ensure that the Linear and Nonlinear LV decoders still

perform well in a more realistic setting, we simulated data that contained stimulus-

dependent noise correlations, then rectified the responses and fed them into a Poisson

spike generator to mimic the discrete nature of spiking data (4.2G-I). Both LV

137

decoders perform similarly to the simulation in figure 4.2D-F, demonstrating the

ability of these techniques to generalize well to non-Gaussian data.

4.2.4 Decoding PFC activity during decision-making

We now turn to the analysis of experimentally-measured neural activity to test

the performance of our LV decoding framework on real data. We first analyzed data

recorded during a visually-guided saccade task that resembles the structure of the

simulated data (see section 4.4.4). Briefly, two macaque monkeys were trained to

fixate on a central point, after which a saccade target appeared either to the left or

right of the central point. The subject then had to saccade to the target and hold

fixation for 500 ms before receiving a stochastic reward on correct trials. During

the task, neural activity was recorded from eight bilaterally-implanted Utah arrays

in the prefrontal cortex (four per hemisphere), resulting in ∼600 simultaneously

recorded single- and multi-units from each subject over ∼2000 trials. We analyzed

spike counts in the 500 ms fixation period following the saccade.

This dataset provides a unique opportunity to study the performance of de-

coders in many different regimes due to the large number of neurons and trials. We

first looked at how linear decoder performance scaled with the population size, to

sample a range of trial-to-neuron ratios (figure 4.3). The Linear LV decoder was

able to extract more information than the other methods across all population sizes

in both monkeys. The information extracted by all linear decoders begins to satu-

rate with increasing population size, though the asymptotic value depends on the

138

Ensemble size

In
fo

rm
at

io
n

A B

0 200 400 600
0

50

100

150

0 200 400 600

Ensemble size

Diagonal LDA (shuffled)
Linear LV
LDA
LogisticES
Diff of means

Monkey V Monkey V
3:1 trial:neuron ratio

0 100 200 300 400
0

40

80

0 100 300 400
0

40

80

Monkey W Monkey W
3:1 trial:neuron ratio

In
fo

rm
at

io
n

200

0

50

100

150

Figure 4.3: Linear LV decoder extracts more information than standard
linear decoders. A: The estimated information extracted by various decoders
as a function of ensemble size for two monkeys (top and bottom). In both mon-
keys, the Linear LV decoder outperforms the other tested methods. The solid black
line indicates the information extracted by the optimal linear decoder on a shuf-
fled version of each dataset (Diagonal LDA), which illustrates the extent to which
correlations negatively impact information coding. The saturating behavior of all
linear decoders (on unshuffled data) suggests the presence of information-limiting
noise correlations in the data. Error bars represent SEM over ten cross-validation
folds and 100 independently sampled ensembles from the data (see section 4.4.4).
B: Fixing the number of trials used to train the decoders to be three times the
ensemble size changes the scaling behavior, demonstrating that the saturation of
curves in A is due in large part to data limitations (see table 4.1). The Linear LV
decoder performs well even in the low-trial, high-neuron regime common to many
modern electrophysiology experiments.

decoding algorithm (table 4.1). This saturation could be due to either the presence

of information-limiting noise correlations [93], or suboptimal decoders [195], or both.

To understand the extent to which noise correlations (information-limiting

139

Linear LV LogisticES LDA Diff of means

Monkey V All data 202 103 112 77

3:1 ratio 283 110 240 78

Monkey W All data 129 103 74 91

3:1 ratio 160 117 128 93

Table 4.1: Information saturation estimates are affected by estimators and
data limitations. The value at which information saturates for infinite population
size is estimated for the curves in figure 4.3 (see section 4.4.2). This saturation value
is highly dependent on the type of decoder used, as well as the amount of data used
for training the decoder.

and otherwise) affect the amount of information encoded by the population, for

each neuron we shuffled the trials within each stimulus condition to remove noise

correlations [92]. We then used a factorized decoder (Diagonal LDA; see section

4.4.2) that explicitly ignores correlations to extract information from the resulting

shuffled population responses, which does not saturate in this regime (figure 4.3A,

black line). Because information in the shuffled data was larger, the structure of the

noise correlations in the original data could be detrimental to information encoding

in this population, a point we return to in the discussion.

We also assessed how the saturation values of the curves in figure 4.3A are

affected by lack of training data (i.e. suboptimal decoding) by looking at their

performance while holding the trial:neuron ratio fixed (figure 4.3B). This allowed

for a fairer comparison of the information measure across ensemble sizes. We fit a

saturating function to these curves to estimate their asymptotic values (see section

4.4.2). Indeed, the saturation value of these lines increased due to a decrease in

140

performance for smaller ensemble sizes, which previously had access to a larger

amount of data than the larger ensemble sizes (table 4.1). This result demonstrates

the need to interpret these plots carefully - though saturation behavior still exists

for the linear decoders, the true saturation point is highly dependent on both the

estimator and the amount of training data.

We next considered the performance of Nonlinear LV decoder on this experi-

mental data while constraining the trial:neuron ratio to be 10:1 (figure 4.4A; note

that this constrains the maximum ensemble size to be∼200 neurons). The Nonlinear

LV decoder extracted significantly more information from the population responses

than even the factorized decoder on shuffled data. As an additional control, we also

compared to the direct estimator of linear Fisher information developed in [195] (fig-

ure 4.4A, dashed black line). The superior performance of the Nonlinear LV decoder

only emerges for relatively large (>100) ensemble sizes, before which it is mostly

equivalent to the linear estimators.

The superior performance of the Nonlinear LV decoder depends not just on

ensemble size, but also the amount of data available to train the decoder. If the

trial:neuron ratio is reduced to 3:1, its performance drops considerably, revealing

the large data requirements of this decoder (figure 4.4B; note the change in x- and

y-axis bounds). To demonstrate the power of the Nonlinear LV decoder in a non-

data-limited regime, we fixed the ensemble size to be 25 and trained the Nonlinear

LV decoder using a range of trial numbers (figure 4.4C). Its performance steadily

increases with the amount of training data and far outperforms the linear estimators

(note that the direct estimator tends to have a positive bias in the limited data

141

Ensemble size

In
fo

rm
at

io
n

A B

Number of trials

Monkey V
10:1 trial:neuron ratio

Monkey W
10:1 trial:neuron ratio

C

0 50 100 150 200
0

50

100

Diagonal LDA (shuffled)
Linear LV
Nonlinear LV

0 200 400 600
0

80

160

0 500 1000 1500 2000

5

6

7

0 100 200 300 400

50

100

0 50 100 150
0

40

80

0 500 1000 1500

4

5

6

0

Ensemble size

Monkey V
3:1 trial:neuron ratio

Monkey W
3:1 trial:neuron ratio

Monkey W
25 neuron ensembles

In
fo

rm
at

io
n

Direct Monkey V
25 neuron ensembles

Figure 4.4: Nonlinear LV decoder extracts more information than all
linear decoders with sufficient data. A: Information versus ensemble size using
a 10:1 trial:neuron ratio. The Nonlinear LV decoder extracts more information than
both the optimal linear decoder on shuffled data and the direct estimate of linear
Fisher information (dashed black line; [195]) for both monkeys. B: The Nonlinear
LV decoder performance decreases relative to the shuffled data when training the
decoders using a 3:1 trial:neuron ratio. C: Fitting the Nonlinear LV decoder to
ensembles of 25 neurons across a range of trials demonstrates that large trial:neuron
ratios are needed before performance plateaus. The direct method overestimates
linear Fisher information for small trial:neuron ratios, and as such is omitted from
B. Error bars for all plots are the same as in figure 4.3.

regime, and thus we omit this curve from figure 4.4B).

4.2.5 Decoding V1 activity during passive viewing

To test if the results from the previous section generalize to other brain regions,

we analyzed activity from primary visual cortex (V1) of anesthetized macaques in

response to repeated presentations of 12 equally-spaced drifting gratings [191]. We

decoded drift direction for each pair of gratings separated by 30◦ using spike counts

142

in a 500 ms bin during the middle of the trial (see section 4.4.4).

The Nonlinear LV decoder was again able to extract more information than

the linear estimators across all three monkeys using a 10:1 trial:neuron ratio (fig-

ure 4.5A). As in the PFC dataset, this performance decreases considerably when

limiting the trial:neuron ratio to 3:1 (figure 4.5B), though in all three monkeys the

performance remains much better than that of the Linear LV decoder.

We also asked how well the LV decoders compared to other standard decoders

on this V1 dataset, both linear and nonlinear. The Linear LV decoder extracted

significantly more information than LDA and LogisticES, and the Nonlinear LV

decoder extracted significantly more information than all linear estimators (exclud-

ing shuffled) for all monkeys (figure 4.5C, top panel for each monkey; paired t-test;

p<1e-5 for all comparisons).

Our measure of information (section 4.4.2) is not applicable to most nonlinear

decoders because they do not project the data onto a discriminant line. To com-

pare the Nonlinear LV decoder to other nonlinear decoders [Quadratic Discriminant

Analysis (QDA) and Kernel SVM using radial basis functions; see section 4.4.2 for

fitting details], we used the fraction of correctly classified stimuli as a measure of

performance (figure 4.5C, bottom panel for each monkey) [Note that in the PFC

data fraction correct was at or close to one for all methods, rendering this perfor-

mance measure meaningless for their comparison.] Across all three monkeys QDA

and Kernel SVM actually performed worse than even the linear methods. The poor

performance of QDA and Kernel SVM could be due to several factors, including: 1)

the number of trials is not sufficient to expose the full power of the decoder (i.e. it is

143

A B C
N

or
m

al
iz

ed
 In

fo
rm

at
io

n

0 10 20 30
0.0

0.5

1.0
Diagonal LDA (shuffled)
Linear LV
Nonlinear LV

Direct

40 40 60 100
0.0

0.5

1.0

80

0.5

1.0

N
or

m
al

iz
ed

In
fo

rm
at

io
n

0.75

1.00

Fr
ac

tio
n

C
or

re
ct

Monkey 1
10:1 trail:neuron ratio

Monkey 1
3:1 trail:neuron ratio

N
or

m
al

iz
ed

 In
fo

rm
at

io
n

0 10 20 30
0.0

1.0

2.0

40 40 60
0.0

0.5

1.0

80

1.0

2.0

N
or

m
al

iz
ed

In
fo

rm
at

io
n

1.00

0.90Fr
ac

tio
n

C
or

re
ct

Monkey 2
10:1 trail:neuron ratio

Monkey 2
3:1 trail:neuron ratio

N
or

m
al

iz
ed

 In
fo

rm
at

io
n

0 10 20 30
0.0

0.5

1.0

40 40 60 100
0.0

0.5

1.0

80

0.5

1.0

1.5

N
or

m
al

iz
ed

In
fo

rm
at

io
n

0.75

1.00

0.50

Fr
ac

tio
n

C
or

re
ct

Monkey 3
10:1 trail:neuron ratio

Monkey 3
3:1 trail:neuron ratio

Ensemble size Ensemble size

1.5

LDA
LogisticES

QDA
Kernel SVM

Diagonal LDA
(shuffled)

Linear LV
Nonlinear LV

Monkey 1

Monkey 2

*

*

*

*

*

*

Monkey 3

Figure 4.5: LV decoder performance on V1 dataset. The LV decoder per-
forms well on data from a different brain region during a different experiment. The
information measure is averaged over multiple pairwise discriminations of drifting
gratings (0◦ vs 30◦, 30◦ vs 60◦, etc.) for each monkey by normalizing by the mean
value of Diagonal LDA on shuffled data for the largest ensemble size. Error bars
represent SEM over one cross-validation fold, 50 independently sampled ensembles
and 12 pairwise discriminations. A: The Nonlinear LV decoder outperforms the
Linear LV decoder using a 10:1 trial:neuron ratio. B: The Nonlinear LV decoder
performance decreases as the trial:neuron ratio decreases to 3:1, as in the PFC data
(figure 4.4). C: Comparison of linear and nonlinear decoder performance using the
full dataset (∼4:1 trial:neuron ratio). Normalized information (top) is calculated as
in A and B, and cannot be calculated for Quadratic Discriminant Analysis (QDA)
or Kernel SVM. To directly compare these methods, Fraction Correct (bottom) is
plotted for all decoders. The asterisk (top) indicates p<1e-5 (paired t-test); only
comparisons with the LV decoders are shown, and comparisons to Diagonal LDA
are omitted.

144

an inefficient estimator); and 2) the nonlinear decision boundaries that the decoder

is capable of learning are not well-matched to those found in the data (which is

more likely with QDA, which can only learn quadratic decision boundaries). We

leave this as an open question for future work.

4.3 Discussion

We presented a novel framework for decoding neural activity that is motivated

by the observation that noise correlations in large populations of neurons can of-

ten be explained by a small number of latent variables (figure 4.1). We infer the

variability due to these latent variables along a chosen decoding direction through

their influence on the population activity, and remove this variability to reduce its

detrimental effect on decoding. We showed that a linear version of this latent vari-

able decoder is more efficient in its use of data than other common linear decoders,

using simulated data (figure 4.8) and experimental data from PFC (figure 4.3) and

V1 (figure 4.5). We also used this framework to develop a nonlinear latent variable

decoder, and showed that it can extract nonlinear information in simulated (figure

4.2) and experimental data (figures 4.4 and 4.5).

Decoding neural activity is a conceptually straightforward way to estimate

the amount of information a neural population contains about an external stimulus.

However, the performance of decoders can be greatly limited by low trial:neuron ra-

tios (figures 4.4 and 4.5), which may affect the conclusions that can be drawn from

these types of analyses, and highlights the need to develop more efficient decoding

145

techniques such as the Linear LV decoder. This problem will continue to grow as

recording technologies allow experimenters to simultaneously record from increas-

ingly large populations of neurons, without a concomitant increase in the number

of trials (though see [197]).

4.3.1 Information-limiting noise correlations

Theoretical work has uncovered the particular structure of noise correlations

that limit the information represented by populations of neurons, termed information-

limiting or differential noise correlations [93]. These correlations point directly along

the stimulus coding direction α (or along the derivative of the tuning curve for

continuous-valued stimuli), so that the noise is indistinguishable from a change in

the signal.

The presence of these information-limiting noise correlations is difficult to

measure directly from experimental data, because they can be extremely small and

masked by other patterns of correlations [93, 94, 195]. Nevertheless, their existence

in neural activity is certain (at least with respect to sensory information) due to

the data processing inequality, which states that no transformations can increase

the amount of information available at the sensory receptors [94, 198]. Because

sensory receptors are themselves noisy [71], information about the sensory periphery

contained in neural activity must therefore be limited.

That fact that sensory information is limited does not, however, obviate the

need for complex, nonlinear transformations of representations in neural systems.

146

Indeed, all the information needed to correctly discriminate images of cats and

dogs is available in the activity of retinal neurons, but a series of nonlinear trans-

formations is needed to make that information linearly accessible [199]. Nonlinear

transformations can also, for example, lead to sparse representations that are robust

to noise [76] and energetically efficient [31].

Our decoding framework, though designed to reduce variability in the coding

direction, does not remove information-limiting correlations (and indeed cannot,

by definition). It is important to note that information-limiting correlations must

be exactly aligned with the coding direction (α in figure 4.1B). Instead, our de-

coder removes variability that points in other directions of neural activity space

(non-information-limiting noise correlations), but has a non-zero projection into

the coding direction (the projection of β onto α in figure 4.1B).

4.3.2 Non-information-limiting noise correlations

If information-limiting noise correlations are an inevitable byproduct of the

data processing inequality, then how do the non-information-limiting correlations

arise? The sensitivity of noise correlations to behavioral context [79, 80], attention

[86–88] and perceptual learning [84, 86] suggest that they are at least partially the

product of top-down, feedback processes in sensory cortex. However, these types of

correlations can reduce the amount of information available in a neural population of

finite size [92] (though not limit the information as the population becomes infinitely

large [93]).

147

What then is the functional role of these correlations? Theoretical work has

shown how inducing particular patterns of noise correlations improves information

transmission between different brain regions [181]. Another line of theoretical in-

quiry implicates correlated variability in the representation of prior information in

a Bayesian framework of sensory integration [105,200]. Here we show that the goals

of robust information propagation or perceptual inference (where noise correlations

can help) and accurate decoding (where noise correlations can hurt) are not neces-

sarily at odds with one another. We hypothesize that if activity in a brain region

is corrupted by latent-variable-induced noise correlations, a downstream decoder of

that activity need not be negatively impacted if it has access to the top-down signal

inducing the correlations (a possibility also addressed by [105] and [80]). Decision-

making areas could then conceivably integrate sensory information with these top-

down signals, an idea that has recently been explored in modeling work [200, 201],

and was shown to explain a variety of empirically-observed phenomena related to

noise correlations.

Our results are also consistent with a recent study demonstrating that the

inclusion of activity from untuned neurons can increase the performance of decoders

[182]. In our framework, these neurons might not be tuned to the particular task,

but they can still carry information about the signals that give rise to correlated

variability. Including these neurons in a decoder can then lead to more accurate

estimation of the trial-to-trial variability, which in turn will improve the performance

of the decoder.

148

4.3.3 Limitations of the study

We demonstrated that our latent variable decoding framework extracts more

information from neural responses than other standard decoders, both linear and

nonlinear. However, this comparison was based on an approximation of linear Fisher

information because all decoders tested could achieve perfect performance on the

fraction of correctly classified trials using the full population (and indeed, much

smaller ensembles as well). If the animal is able to perform the correct behavior

100% of the time, is an increase in information with larger population sizes even

meaningful? Is the saturation of information with increasing population size a rele-

vant problem for neural information processing?

These concerns also bring into question the usefulness of our nonlinear decoder.

Again, is it meaningful to extract more information from neural responses when

the linear decoders already correctly predict the stimulus on all held-out trials?

Furthermore, just because nonlinear information is present in a given brain region

does not mean that the brain is able to use it (and this nonlinear information must

saturate as well due to the data processing inequality). Returning to our cat and

dog example in the retina, all of the information about object identity is present

at that first stage of visual processing, but is presumably not utilized until much

further along the visual processing hierarchy. Despite these concerns, our Nonlinear

LV decoder is relatively general, with an intuitive explanation for the computation

it performs, and thus could conceivably be implemented in a single stage of neural

processing.

149

We must also consider the fact that we are using an extremely simple binary

choice task that employs an extremely simple cue, so that the decision-making task

is one-dimensional. Of course, ethologically-relevant situations will typically con-

tain much higher-dimensional stimuli (with many information-limiting directions)

and higher-dimensional decision spaces. However, as we show here, accurate esti-

mates of information require large numbers of trials, even with our efficient decoding

framework. Future work will have to focus on richer experimental paradigms in order

to understand the extent to which the animal actually makes use of the information

we are now able to extract [202].

4.4 Methods

4.4.1 The LV decoder

Training the decoder. For a population of N neurons recorded during T

trials, we define R = [r1 . . . rT]ᵀ ∈ RT×N to be the matrix of spike counts and

y = [y1 . . . yT]ᵀ ∈ {±1}T to be a binary vector that indicates the stimulus identity

s ∈ {±1} on each trial i ∈ {1, . . . , T}. The following steps are illustrated in figure

4.6.

Step 1 : We first estimate the mean stimulus responses µ̂s as

µ̂s =
1

Ns

∑

{i|yi=s}

ri (4.4)

where Ns is the number of stimuli from class s. We then estimate the stimulus

coding direction α̂ ∈ RN that points between the two mean stimulus responses as

150

α̂ = µ̂1 − µ̂−1.

Step 2 : Next, we project R onto α̂ to reduce the high-dimensional neural

activity into a single dimension,

rα = Rα̂ (4.5)

which is now scalar value for each trial i. Directly decoding rα results in the differ-

ence of means decoder used throughout the text. This decoder generally performs

much worse than the latent variable decoder, even though both use the same decod-

ing direction, and demonstrates the extent to which variability in the direction of

rα is both 1) detrimental to decoding, and 2) shared across multiple neurons, and

hence inferrable from the data. Note that in this context the locally optimal decod-

ing direction is defined as ropt = Σ̂−1α̂, where Σ̂ = 1
2
(Σ̂−1 + Σ̂1) is the average of

the noise covariance matrices estimated separately for each stimulus condition [70].

Step 3 : Variability in the vector rα is due to both the stimulus response and

to “noise”, though we only want to estimate the noise component. To do so, for

each trial i we subtract the appropriate mean stimulus response from the projection

along α̂ and denote this new quantity rz:

(rz)i = (rα)i − α̂ᵀµ̂yi (4.6)

where (x)i denotes the ith component of a vector x. The extent to which rz contains

variability that is shared across many neurons (due to latent variables) determines

the efficacy of the latent variable decoder.

Step 4 : We estimate this shared component of variability with the full popu-

lation response R by learning a mapping fθ : RN → R parametrized by θ using a

151

Calculate as the
difference in mean
response to each
stimulus type

1. Project full population
activity R onto (call
this rα - note this is a
scalar for each trial i)

2. Subtract average
stimulus response
from rα for each trial i
to get rz (the ‘noise’
term)

3. Predict rz from R using
a neural network
across a range of L2
regularization values
(call this estimate rz)

4.

Choose the network
with the regularization
value that minimizes
the cost function

5.

rz

6.

Training

Cross-validation

rzR

Project Rxv onto ,
calculated in (1),
call this rxv

7. Run Rxv through the
neural network from
(5) to get rxv

Subtract rxv from rxv8. Calculate d’2 of the
resulting 1-d distributions

9.

Steps performed using
 80% training data
 10% testing data
 10% cross-validation data

Neural network details:
 regularize L2 norm of
 weights
 minimize MSE between rz

 and rz

Testing

α̂
µ̂1µ̂−1

µ̂−1 µ̂1

α̂
α̂

α̂

α z

z α

rzR
Linear LV Decoder

Nonlinear LV Decoder

Figure 4.6: Outline of LV decoding algorithm.

neural network (see Neural network details below), so that

(r̂z)i = fθ(ri) (4.7)

Evaluating the decoder. Once fθ has been learned, we can evaluate the

performance of the latent variable decoder. The following steps can be performed

on any subset of the data since no parameters are being learned. As an example,

we will use Rxv to represent the cross-validation data. Rxv is first projected onto

α̂ (learned from the training data) to get rαxv (step 6). The activity rxv from each

trial is then run through the function fθ to produce one component of the vector

r̂zxv (step 7). Finally, the variance-reduced activity is given by (step 8)

r̃xv = rαxv − r̂zxv (4.8)

To calculate the classification of each trial i, the corresponding value from r̃xv is

152

compared with µ̄ = 1
2
(µ1 + µ−1); values larger than this quantity are classified as

stimulus 1, and all others are classified as stimulus -1 (step 8).

Neural network details. Any technique that can learn a mapping from RN

to R is suitable in principle, and we use a standard neural network to do so. The

neural network takes R as input and produces an estimate r̂z of rz. Parameters of

the network θ are learned by minimizing the mean square error (MSE) between r̂z

and rz. L2 regularization is included to prevent overfitting to the training data [17],

so that the penalized cost function C is defined as:

C(θ) = ‖rz − r̂z‖2
2 + λ‖θ‖2

2 (4.9)

where ‖x‖2 =
∑

k x
2
k is the L2 norm of a vector x and λ is a hyperparameter

that controls the magnitude of the regularization term. In practice, we fit the

latent variable decoders using 10 different values of λ logarithmically spaced between

1e− 4 and 1e1, and choose the value that results in the smallest cost function when

evaluated on the testing data (step 5). The cost function is optimized using an

L-BFGS routine [177].

The linear latent variable decoder requires a linear mapping from RN to R, and

therefore uses a neural network with just an input layer and an output layer. With

the L2 regularization, this network is equivalent to regularized linear regression, or

“ridge regression” [17]. The nonlinear latent variable decoders use a neural network

with a single hidden layer composed of rectified linear units (ReLUs), which we found

to work well for both simulated and experimental data. However, many details of

the network can be changed, including different numbers and types of hidden units,

153

more hidden layers, etc.

Projecting out the stimulus coding dimension. To test the extent to

which the latent variable decoders require information contained in the stimulus

coding direction α (figure 4.2C, F, I), we projected this dimension out of the popu-

lation activity R before using it to predict variability in the same dimension α, and

we denote the resulting activity by R̃. The stimulus coding dimension was calculated

after subsampling trials and neurons, and was only calculated using training data.

Training the decoder then amounted to replacing R in equation 4.5 with R̃. To

evaluate the decoder, the same α was projected out of the testing/cross-validation

data, and all other steps in the Evaluating the decoder section remain the same.

4.4.2 Training and evaluating decoders

All decoders were fit using 5-fold (simulated data) or 10-fold (experimental

data) nested cross-validation, where one fold was used for cross-validation, one fold

was used for testing, and the remaining folds were used for training. Each fold was

used once for cross-validation. For each nested cross-validation (i.e. for a given

number of neurons and trials), folds were created once by randomly sampling the

available trials, and the same folds were used with each decoder. Unless otherwise

noted below, all quantities were calculated using training data. Some decoders

(DoM, LDA, QDA) do not have hyperparameters, and thus did not use the testing

data at all.

Difference of means (DoM). The mean response to each stimulus was

154

calculated; the difference in mean responses α defined the discriminant line for the

DoM decoder, and the mean of the mean responses defined the threshold. For each

trial, neural activity was projected onto the discriminant line and compared to the

threshold value to determine its classification.

Linear discriminant analysis (LDA). LDA was performed using the fitcdiscr

function in MATLAB, with the ‘DiscrimType’ option set to ‘linear’ so that a single

pooled covariance matrix was estimated from the data. The ‘Gamma’ option was set

to 0, so that the estimated covariance matrix was not regularized with an additional

diagonal matrix. This choice limited the use of LDA to settings where the number

of trials was larger than the number of neurons. Diagonal LDA was performed on

trial-shuffled data using the same function, with the ‘DiscrimType’ option set to

‘diaglinear’ so that a single pooled, diagonal covariance matrix was estimated from

the data.

Quadratic discriminant analysis (QDA). QDA was performed using the

fitcdiscr function in MATLAB, with the ‘DiscrimType’ option set to ‘pseudoquadratic’

so that a covariance matrix was estimated for each stimulus type. The covariance

matrices were inverted using the pseudoinverse, and QDA was therefore not limited

by the number of trials.

Kernel support vector machine (Kernel SVM). Kernel SVMs were fit

using the fitcsvm function in MATLAB with the ‘KernelFunction’ option set to

‘rbf’ to use radial basis function kernels. Radial basis functions are unnormalized

Gaussians, and the scale of these functions relative to the data is important for kernel

SVM performance. MATLAB provides another option ‘KernelScale’ that scales the

155

data (rather than the kernel); to fit this hyperparameter, we fit kernel SVMs using

10 different values of the scale parameter logarithmically spaced between 1e−3 and

1e3, and chose the scale that resulted in the largest number of correctly classified

trials when evaluated on the testing data (see Evaluating decoders below).

Logistic regression with early stopping (LogisticES). Logistic regression

models were fit by minimizing the mean square error between class labels y ∈ {0, 1}

and predicted class labels given by

ŷ =
1

1 + exp(−Rb + c)
(4.10)

where R is the matrix of neural responses, b is the vector of learned decoder weights

and c is a learned bias term. The negative log-likelihood of the testing data was

evaluated on each iteration, and model fitting terminated once the negative log-

likelihood began to increase or the algorithm reached 1000 iterations [203].

Evaluating decoders. The simplest measure for evaluating decoder perfor-

mance is the fraction of correctly classified trials. For LDA, QDA and kernel SVM,

the predicted classification for each trial was obtained using the predict function

in MATLAB. The DoM and latent variable decoders explicitly define a threshold,

and a trial is classified based on comparing the projection of the data along the

learned discriminant line to the threshold. For LogisticES, the predicted class label

ŷ (equation 4.10), a continuous quantity between 0 and 1, was turned into a binary

classification by using 0.5 as a threshold.

The fraction of correctly classified trials, or accuracy A, can be directly con-

verted to the d′ measure using the inverse of the complimentary error function

156

H [92]:

d′FC = 2H−1(1− A) (4.11)

where ‘FC’ denotes ‘fraction correct’.

Whenever classes are fully separated, however, d′FC is not an adequate measure

of information. Linear Fisher information measures the inverse of the variance of a

decoder’s prediction of the stimulus, and therefore decoders with smaller variance in

their predictions should contain more information. However, if two decoders are able

to correctly classify all trials, then d′FC is unable to distinguish between a decoder

with high variance and one with low variance (as long as A = 1). Therefore, to study

information in population activity in this regime (e.g. figure 4.3), d′ is calculated

by estimating the number of correctly classified trials in the limit of infinite data,

and denoted d′MLE.

To calculate the d′MLE measure, the full-dimensional population activity is first

projected onto the discriminant line (which precludes the use of this measure with

QDA or kernel SVM, which do not estimate discriminant lines). The resulting one-

dimensional projection for each class is well-described by a Gaussian distribution

(data not shown). The mean and variance of this distribution is fit for each class

using the maximum likelihood estimates. Then, the fraction of correctly classified

trials for each class, in the limit of infinite data, is estimated by using the error

function. For example, if the mean of class 0 is located to the left of the threshold,

the number of correctly classified trials is given by the area under the curve between

the threshold and negative infinity, and is denoted by A0 (A1 is defined analogously

157

for the other class). The fraction of correctly classified trials is then estimated as

Â = 1
2
(A0 + A1), and

d′MLE = 2H−1(1− Â) (4.12)

Equivalence of linear Fisher information and d′2. Throughout this chap-

ter, we refer to (d′MLE)2 as ‘Information’. To justify this equivalence, we show here

that yet another definition of d′ is equivalent to linear Fisher information when

calculated along the optimal coding direction and squared. Though these three

values of d′ differ in their computation, under the assumption of Gaussianity they

become equivalent in the limit of infinite data. We now consider the classic defini-

tion of d′ [204], which was originally introduced in the signal detection literature as

a measure of the signal-to-noise ratio (SNR):

d′SNR =
µ1 − µ0

σ
(4.13)

where µi is the mean of the ith one-dimensional response distribution and σ is

the standard deviation, which we take to be the same for both distributions. d′

decreases as the distance between the distribution decreases, and also decreases

when the distance is fixed but the standard deviation increases. If we now consider

the response r of a population of neurons, with a stimulus-conditioned covariance

matrix given by Cov(r|s) = Σ, the definition of linear Fisher information in this

context becomes

I = f ′ᵀΣ−1f ′ (4.14)

= (µ1 − µ0)ᵀΣ−1(µ1 − µ0) (4.15)

158

We now calculate d′2SNR of the response distributions after they have been projected

along the optimal decoding direction wᵀ = (µ1−µ0)ᵀΣ−1

(µ1−µ0)ᵀΣ−1(µ1−µ0)
[70], and show that

this is equivalent to the expression for linear Fisher information in equation 4.15.

The means of the response distributions along this dimension, denoted by µ̂i, are

µ̂i = wᵀµi and the variance along this dimension (which we again assume is the

same for both response distributions), denoted by σ̂2
i , is

σ̂2
i = Var(wᵀr|s) (4.16)

= wᵀVar(r|s)w (4.17)

= wᵀΣw (4.18)

=
(µ1 − µ0)ᵀΣ−1ΣΣ−1(µ1 − µ0)

[(µ1 − µ0)ᵀΣ−1(µ1 − µ0)]2
(4.19)

=
1

(µ1 − µ0)ᵀΣ−1(µ1 − µ0)
(4.20)

and thus

d′2SNR =
(µ̂1 − µ̂0)2

σ̂2
(4.21)

= [wᵀ(µ1 − µ0)]2
[
(µ1 − µ0)ᵀΣ−1(µ1 − µ0)

]
(4.22)

= (µ1 − µ0)ᵀΣ−1(µ1 − µ0) (4.23)

= I (4.24)

Estimating information saturation. The maximum amount of informa-

tion contained in an infinitely large neural population was estimated by fitting the

following saturating function to the information scaling curves in figure 4.3:

d′2 =
bS

a+ S
(4.25)

159

where S is the ensemble size, a is the saturation rate and b is the asymptotic in-

formation value (table 4.1). The parameters a and b were fit using the fminsearch

function in MATLAB.

4.4.3 Simulated data generation

We first evaluated decoding algorithm performance by simulating the responses

of N neurons over T trials, where the population response ri on trial i was generated

as a sum of five terms: 1) a bias; 2) the stimulus si ∈ {±1}, coupled to the population

via α; 3) a collection ofK latent variables zki ∼ N (0, 1) coupled to the population via

β; 4) a (K+1)st latent variable z
(K+1)
i ∼ N (0, 1) that points in the coding direction

α with strength d, to explicitly introduce information-limiting noise correlations [93];

and 5) and a noise term εi:

ri = c1N + siα +
K∑

k=1

zki βk + dz
(K+1)
i α + εi (4.26)

where 1N is a vector of N 1s. We assume that all statistical quantities in equation

4.26 are independent of each other. Data generated in this way results in a single

noise covariance matrix that is independent of the stimulus identity:

Cov(ri|si) =
K∑

k=1

βkβ
ᵀ
k + d2ααᵀ + σ2

ε I (4.27)

In this setting, linear discriminant analysis is equivalent to the optimal decoder,

and the population response only contains linear information [92]. We introduced

nonlinear information into the population via stimulus-dependent noise covariance

matrices, which requires a separate, independent set of latent variable coupling

160

Figure c α βk d εi Stim-dep Rect/Poiss

4.2A-C
4.8A 0 N (0, 0.25) N (0, 0.5) 0.07 N (0, 1) No No

4.2D-F
4.8B 0 N (0, 0.25) N (0, 0.5) 0.07 N (0, 1) Yes No

4.2G-I
4.8C 1 N (0, 0.0056) N (0, 0.5) 0.07 N (0, 0.01) Yes Yes

Table 4.2: Simulated data details. The performance of various decoders evalu-
ated on these simulated datasets is shown in figures 4.2 and 4.8. All datasets were
generated using N = 200 neurons, K = 10 latent variables and T = 100000 trials.

vectors {βjk} for each stimulus value j, so that

Cov(ri|si = j) =
K∑

k=1

(βjk)(β
j
k)

ᵀ + d2ααᵀ + σ2
ε I (4.28)

To generate data more closely resembling neural activity, for some analyses we

rectified the values of ri, and the resulting non-negative values were used as rate

parameters for independent Poisson processes to produce spiking activity. Details

of each simulation are shown in table 4.2.

4.4.4 Experimental data

PFC dataset. Two macaque monkeys were trained to fixate on a central dot

for 400-800 ms, after which a saccade target appeared either to the right or left of

the fixation point. The monkey then had to saccade to the target and hold fixation

for 500 ms before receiving a stochastic reward on correct trials. Recordings were

performed with eight bilaterally implanted Utah arrays (four per hemisphere) in the

prefrontal cortex (area 46). For more information see [205]. Unless otherwise noted,

analysis was performed on spike counts in the 500 ms window following fixation on

161

the saccade target. Spike counts were z-scored in 200-trial blocks to correct for any

long-term drift in firing rates. Units that had zero spikes during any 200-trial block

were excluded from further analysis.

V1 dataset. The latent variable decoder was also evaluated on data from

the Kohn lab, which have been made publicly available at http://dx.doi.org/10.

6080/K0NC5Z4X. Spiking activity was recorded with a Utah array in primary visual

cortex from three anesthetized macaques in response to full-contrast drifting gratings

with 12 equally-spaced orientations (200 repeats). Each grating was presented for

1280 ms, and analysis was performed on spike counts between 500 ms and 1000

ms after stimulus onset to avoid transient dynamics in pairwise correlations [191].

Decoding analyses were performed on adjacent pairs of grating orientations (e.g. 0◦

versus 30◦) for a total of 12 pairs per monkey. Spike counts were z-scored across

each pair of grating orientations before decoding.

Subsampling trials and neurons. A main goal of this study was to under-

stand how the performance of different decoders scaled with the number of neurons

and the number of trials. When subsampling neurons, a random subset was chosen

without replacement. When subsampling trials, a random subset was chosen with-

out replacement to match the proportion of left vs right trials in the full dataset

(a 50/50 split for both PFC and V1 datasets). For experimental data, the number

of times these subsampling procedures were independently repeated is noted in the

figure legends. For simulated data, subsampling was performed once for each of

25 different datasets. Training, testing and cross-validation indices were randomly

assigned for each subsampling of neurons and trials.

162

http://dx.doi.org/10.6080/K0NC5Z4X
http://dx.doi.org/10.6080/K0NC5Z4X

Shuffling responses across trials. To understand the effects of noise corre-

lations on information encoding, trials were shuffled to destroy the noise correlation

structure. For each unit, spike counts were randomly permuted within each stimu-

lus condition, and permutations were independent across units and conditions. This

left each unit’s first-order statistics constant, but removed any second-order statis-

tics between pairs of units. This trial shuffling procedure was performed after each

subsampling of trials. Though first shuffling the data across all possible trials would

more completely remove noise correlations, shuffling the data after subsampling the

trials better reflects decoding results that could be expected if only the subsampled

trials were actually recorded.

163

4.5 Appendix: Single latent variable example

This section provides a deeper analysis of the single latent variable example

introduced in sections 4.2.1 and 4.2.2. To restate the problem formulation, the

population firing rate vector ri ∈ RN on trial i is the sum of three terms: 1)

the stimulus si ∈ {±1}, coupled to the population via α; 2) a latent variable

zi ∼ N (0, σ2
z) coupled to the population via β; 3) and a noise term εi ∼ N (0, σ2

ε I):

ri = siα + ziβ + εi (4.29)

We assume that zi and εi are independent, so that Cov(zi, εi) = 0. To facilitate the

derivations below, we make the further assumptions that α and β are unit vectors

(more generally, the magnitude of each vector can be absorbed into the scalars si

and zi), and that α and β are known. The covariance matrix of population activity,

conditioned on si, is given by

Cov(ri|si) = Σ = σ2
zββ

ᵀ + σ2
ε I (4.30)

In the remainder of this section we derive an analytic “latent variable” estimator for

si under these specific assumptions and examine its statistical properties in relation

to the optimal linear estimator.

A latent variable estimator for si. The optimal linear estimator for si,

denoted by ŝOLE
i , is

ŝOLE
i = so +

αΣ−1

αᵀΣ−1α
(ri − r̄) (4.31)

where so is the average stimulus value (0 in this case) and r̄ = 1
T

∑T
i=1 ri [70]. We

propose to exploit our knowledge of the structure of Σ in equation 4.30 to derive

164

a different estimator for si. We will first infer the activity of the latent variable zi

in the direction of α, then remove this component from ri before decoding in the

direction of α.

We can infer the latent variable zi by projecting the response vector onto α⊥,

the component of β that is orthogonal to α:

α⊥ ≡ β − (αᵀβ)α ≡ β − γα (4.32)

so that γ corresponds to the cosine of the angle between α and β. Then the

projection of the response vector along α⊥ becomes

αᵀ
⊥ri = siα

ᵀ
⊥α + ziα

ᵀ
⊥β + αᵀ

⊥εi (4.33)

= ziα
ᵀ
⊥β + αᵀ

⊥εi (4.34)

= zi[β − γα]ᵀβ + αᵀ
⊥εi (4.35)

= zi
[
1− γ2

]
+ αᵀ

⊥εi (4.36)

Rearranging,

zi =
αᵀ
⊥ri

1− γ2
− αᵀ

⊥εi
1− γ2

(4.37)

so that

ẑi =
αᵀ
⊥ri

1− γ2
(4.38)

is an unbiased estimator for zi, and γẑi is an unbiased estimator for the projection

of the latent variable term ziβ along the α direction.

To arrive at the latent-variable-adjusted estimate of the stimulus, ŝLVE, we

simply project the population activity along the direction of α and subtract the

165

estimate of the latent variable term in that direction:

ŝLVE
i = αᵀri − γẑi (4.39)

= αᵀri − γ
αᵀ
⊥ri

1− γ2
(4.40)

=
[α− γβ]ᵀ ri

1− γ2
(4.41)

This estimate of the stimulus depends on the angle between α and β through γ,

and it is instructive to note the two extreme cases. First, when α and β are

parallel, γ = 1 and there is no solution, because zi cannot be disambiguated from

the stimulus. Second, when α and β are orthogonal, γ = 0 and the latent variable

is not detrimental to decoding along α, so that the estimate of the stimulus reduces

to ŝi = αᵀri.

Linear Fisher information for ŝLVE
i . Given the estimate ŝLVE

i in equation

4.41, we can calculate its linear Fisher information as the inverse of the variance of

ŝLVE
i , which is given by

ILV E =
1− γ2

σ2
ε

(4.42)

How does this compare to the linear Fisher information of the optimal linear esti-

mator ŝOLE
i ? By substituting equation 4.30 into the standard result that IOLE =

αᵀΣ−1α,

IOLE =
1− γ2

1+σ2
e/σ

2
z

σ2
e

(4.43)

Again, we note the two extreme cases. When γ = 1, ILVE = 0 because the latent

variable is pointing in the direction of the stimulus, but IOLE is greater than zero.

This illustrates an important case in which ŝLVE
i is far from optimal. When γ = 0,

166

0 0.2 0.4 0.6 0.8

1e-2

1e-1

1e0

1e1

1e2

-3

-2

-1

0

1

2

3

σ2
ε

σ2
z

γ

log

(
FILV E

FIOLE

)

Figure 4.7: Comparison of estimators for the single latent variable model.
Color indicates the logarithm of the ratio of the linear Fisher information for the
latent variable estimator (ILVE, equation 4.42) and the optimal linear estimator
(IOLE, equation 4.43). This value is plotted as a function of the ratio of the variances
of the noise (σε) and the latent variable (σz), and γ, the cosine of the angle between
α and β.

however, ILVE and IOLE are equivalent. Results from intermediate values of γ are

shown in figure 4.7.

Why does ILVE → 0 as γ → 1? This behavior is easier to understand by

considering the variance of the estimate ẑi, which is given by

Var(ẑi) = σ2
z +

σ2
ε

1− γ2
(4.44)

The variance of ẑi is equal to the variance of z plus a term that depends on γ. When

α and β are orthogonal (γ = 0), this second term becomes equal to σ2
ε , the variance

of the noise. As α and β become more aligned (γ → 1), the variance of ẑi blows up

and drives ILVE to zero.

The latent variable decoder cannot, by definition, extract more information

from population responses than the optimal linear decoder. However, this single

167

In
fo

rm
at

io
n

A B C

0

50

100

0

1

2

0

2

6

Number of trials
102 103 104 105 102 103 104 105 102 103 104 105

4

Analytic
Linear LV
LogisticES
LDA
Diff of means

Simulation 1 Simulation 2 Simulation 3

Number of trials
102 103 104 105

Number of trials

Simulation 2

102 103 104 105

Simulation 3
10-1

100

102

101

10-1

100

102

101

In
fo

rm
at

io
n

Nonlinear LV
Kernel SVM (RBF)

Figure 4.8: Comparison of decoders on simulated data. Details of the simula-
tions are presented in section 4.4.3. A: Gaussian data with a single noise covariance
matrix for both classes. B: Gaussian data with a different noise covariance matrix
for each class; top: comparison of linear decoders; bottom: comparison of nonlin-
ear decoders. C: Same as B, except resulting values are rectified and then passed
through a Poisson spike generator to simulate spike count data.

latent variable example demonstrates that there are a wide range of parameter

settings for which the latent variable decoder performs close to optimal. Importantly,

this analysis only considers the behavior of these estimators in the limit of infinite

data, and does not consider how efficiently these estimators use finite amounts of

data. In practice (i.e. with a limited number of trials), the latent variable decoder

is able to more efficiently extract information than a range of other decoders (see

section 4.4.2) using both simulated (figure 4.8) and experimental data (figures 4.3

and 4.5).

Extension to multiple latent variables. In practice, we must estimate not

168

only ẑi, but the quantities α and β as well. Section 4.4.1 explicitly describes the

steps for training the decoder, but here we give a more intuitive picture of how the

decoder weights might be learned.

Equation 4.39 shows that once we project the response vector ri down onto the

stimulus coding direction α - which can be estimated from the mean responses to

the different stimuli - we then subtract off an estimate of the latent variable activity

in that direction. In this simple example that estimate is just a linear projection of

ri:

γẑi =
γαᵀ
⊥

1− γ2
ri (4.45)

and the decoder weights γαᵀ
⊥/(1−γ2) can be learned by regressing ri on the stimulus-

subtracted residual activity si−αᵀri, where si is the presented stimulus rather than

the estimate.

The single latent variable example is now easy to extend to K latent variables,

denoted by {zki }Kk=1. Following the same logic as above, in which we subtract out

the contribution of each latent variable,

ŝLVE
i = αᵀri −

K∑

k=1

γkz
k
i (4.46)

= αᵀri −
[

K∑

k=1

γk(αk)
ᵀ
⊥

1− γ2
k

]
ri (4.47)

which is again a linear projection of ri that can be learned using linear regression.

Note that we never explicitly estimate any of the γk’s or (αk)⊥’s, but instead esti-

mate their combined effect in the direction of α, represented by the sum in equation

4.47. It is this property of the estimator ŝLVE
i that allows us to learn the proper

projection without first specifying the number of latent variables K in the algorithm.

169

Chapter 5: Conclusions

5.1 Latent variable models for neuroscience

The increasing popularity of statistical models in neuroscience is driven by

experimental advances that can now provide datasets of unprecedencted size and

complexity. Unlike more theoretically mature fields of study such as physics, there

are no solid conceptual frameworks in which to understand these data. Data anal-

ysis tools have become increasingly necessary to explore these datasets in search of

meaningful structure that can guide our understanding of the principles that under-

lie brain structure and function, and suggest additional experimental investigations.

Latent variable models in particular have proven to be particularly effective

at discovering a parsimonious description of these data across a range of species,

brain regions and experimental paradigms, in both structural [206] and functional

[160] data. These low-dimensional descriptions are useful for understanding the

data, but also hint at the possibility that low-dimensional activity is a hallmark of

neural systems in particular regimes. Indeed, the brain has evolved to process large

amounts of incoming sensory information, and the intuitive idea that the brain’s

solutions involve some form of dimensionality reduction is attractive, though still

far from understood.

170

The power of latent variable models (including those developed in this disserta-

tion) are ultimately constrained by the richness of the data they attempt to explain.

In this sense, despite the impressive experimental advances of the last decade, there

are still a wealth of experimental limitations that remain to be overcome. Most

experiments still employ extremely simple stimuli and behavioral paradigms (if any

at all), which are chosen to isolate a particular mechanism or computation. This

eases the resulting analysis and interpretation, but also imposes artificial constraints

on a system that evolved to perform much more difficult tasks. In the future, it will

be critical to ensure that stimuli and behavioral tasks are complicated enough to

engage the relevant neural computations [173,194]. Another experimental limitation

is the size of the neural populations being recorded. Though this number is increas-

ing exponentially, experimentalists still only typically record from an infinitesimally

small fraction of the available neurons in a single brain region (though see [117]).

One question that is not well understood for most model systems is the relevant

population size required to perform a given computation, and how that population

is distributed throughout different parts of the brain.

As experimentalists overcome these challenges, the extreme flexibility of la-

tent variable models will allow them to adapt to changing analysis demands. One

interesting direction for future model development is incorporating data obtained

across multiple spatial and temporal scales, such as simultaneous wide-field imaging

of large brain regions and more focal electrophysiology recordings, to understand the

flow of information through neural circuits. Of course, this also raises the question

of how to determine the coarsest level of spatial and temporal resolution needed to

171

gain fundamental insights into a particular computation. Another interesting direc-

tion is incorporating connectomics data that describes the structural connections

between different neurons or brain regions. This data will allow for the combina-

tion of latent variable models with information about the strucutre of the circuit to

further constrain the space in which we seek solutions, to arrive at a more holistic

understanding of how structure gives rise to function.

5.2 The role of feedback in perception

The latent variable models developed in this dissertation explicitly seek to

explain trial-to-trial variability in sensory neural responses. This approach is in

contrast to classical models of sensory processing, which are feed-forward in nature

and thus (by definition) learn a deterministic mapping from stimulus to response.

Models that are able to capture trial-to-trial variability will be important tools

for understanding the mechanisms that give rise to perception, one of the most

important functions of any nervous system.

Sensation refers to the process of gathering information about the external

environment through a variety of sensors. Rods and cones respond to patterns of

light falling on the retina, and give rise to visual sensation. Other receptors collect

signals from different sensory domains, including sound, touch, taste, and smell.

Perception is the interpretation of these signals by the brain, and allows sensory

signals to be processed in a context-dependent manner.

One particularly striking example of the distinction between sensation and

172

Figure 5.1: Necker cube illusion. The Necker Cube (A) is a bistable percept
that appears as either (B) or (C) at any given point in time without a change in
the visual input. Image from https://grey.colorado.edu/CompCogNeuro/index.

php/CCNBook/Sims/Networks/Necker_Cube.

perception is given by the Necker Cube illusion (figure 5.1); this illusion is known as

a bistable percept, in which one of two possible percepts is experienced at any given

time, but the two can never be fused into a single stable percept. Regardless of

which percept is experienced at any given time, the sensory information is exactly

identical.

If the sensory information is identical but the perception of the cube is con-

stantly changing, what drives the differing interpretations? One well-supported

hypothesis is that perception is driven by internally-generated feedback signals from

different brain regions. Anatomical studies have shown there is an immense amount

of lateral and feedback projections within the visual system [207], which provide

the anatomical substrate by which feedback signals can be introduced into sensory

cortex. Additional studies have revealed the presence of functional connectivity

between non-sensory areas like prefrontal cortex and the earliest stages of cortical

visual processing [208, 209], though it is still unclear if this functional connectivity

is supported by direct structural connectivity. This feedback activity, both direct

and indirect, results in variability in sensory neural responses, and may give rise to

173

https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Sims/Networks/Necker_Cube
https://grey.colorado.edu/CompCogNeuro/index.php/CCNBook/Sims/Networks/Necker_Cube

the transformation from sensation to perception.

In addition to the anatomical evidence, several other lines of research impli-

cate feedback activity in perception by studying scenarios where mental imagery

is generated without external stimulation (i.e. perception without sensation). For

example, a recent study on mental imagery demonstrated high similarity of neural

representations in higher-level visual areas between imagined and stimulus-driven

percepts [210]. Another recent study demonstrated increased feedback activity from

fronto-parietal to visual areas during both perception and mental imagery, and this

feedback activity was both stronger during mental imagery and increased in early

visual areas with an increase in self-reported vividness of the imagery [209], ex-

posing a possible top-down mechanism that differentiates perception and mental

imagery. A study similar to [210] has shown a similarity of neural representations

between dreaming and perception [211], and other studies have sought to under-

stand whether dreaming is closer to perception or mental imagery [212]. Additonal

work on the mechanisms that underlie visual hallucinations also strongly implicate

feedback projections in this perceptual phenomenon [213,214].

The previous paragraphs illustrate several situations in which feedback is im-

plicated in perception, but what role does feedback actually play? One theoretical

framework that has received significant attention over the previous few decades

assumes the brain constructs a generative model of the environment (an internal

model) and uses this model to infer the underlying causes of the incoming sensory

signals, which can then be used to inform decision-making processes and behavior.

The theory of predictive coding [215] is one such instantiation of this frame-

174

work, and uses feedback to represent a prediction about the state of the external

environment, generated through the internal model. This prediction is then com-

pared to the incoming sensory information, and the mismatch between the two,

called the prediction error, is used to update the internal model. In this framework,

then, feed-forward activity represents the prediction error rather than the stimulus

itself. A model of predictive coding in the visual system led to the development

of ubiquitous receptive field structures, and could also explain several empirical

observations of receptive fields such as end-stopping [216].

Bayesian inference is another instantiation of this framework that is related to

predictive coding [217, 218]. In this case feedback (the prior) still represents a pre-

diction about the external world, but this prediction is combined with the observa-

tions (the likelihood) to update the internal model (posterior) through approximate

Bayesian inference.

In a sense Bayesian inference and predictive coding are complimentary ideas

about how internal models of the environment can be combined with sensory infor-

mation; predictive coding posits that feed-forward neural activity should represent

prediction errors rather than the the prediction itself, and does not address how

that prediction is made or how prediction errors are utilized. Bayesian inference,

on the other hand, specifies how predictions should be computed and updated with

incoming sensory information (Bayes rule) without specifying how these compu-

tations are performed in neural populations (though evidence from multi-sensory

integration [219] and sensorimotor learning [220] point to this capacity). However,

recent work has sought to bring these two ideas together into a “Bayesian predictive

175

coding” framework [221].

Understanding the role of feedback in perception will require the continued

development of these theoretical models, guided by the analysis of experimental

data. These analyses, in turn, will require sophisticated models of sensory neurons

that are capable of capturing the variability that ostensibly underlies perception.

5.3 Understanding the brain

As the previous sections have argued, latent variable models that are able to

describe variability in neural responses will be crucial for understanding perception,

as well as various other neural processes. Here, I want to take a step back and

consider what it means to “understand” a system. One perspective was suggested

by the influential neuroscientist David Marr, who proposed that the brain (and the

visual system in particular) should be studied in the context of the problems it needs

to solve. For this reason he viewed the brain abstractly as an information processing

system, which could be understood at three complementary levels of analysis [55]:

• computational: at this level, the questions of interest are what is the problem

that needs to be solved and why does it need to be solved?

• algorithmic: what are the representations of the input and output informa-

tion used to solve the problem, and how are those representations manipulated

by the system?

• implementation: what is the physical substrate that supports those repre-

sentations?

176

Marr’s main intuition was that, although “algorithms and mechanisms are em-

pirically more accessible,...the level of computational theory...is critically important

from an information-processing point of view...[because]...the nature of the compu-

tations that underlie perception depends more upon the computational problems

that have to be solved than upon the particular hardware in which their solutions

are implemented” [55]. Despite more than three decades of research since Marr’s

statement, progress in computational theories of brain function continue to lag far

behind experimental capabilities, which typically constitute understanding at the

implementation level. This is true even of a highly-studied system like vision; Bruno

Olshausen, in a review entitled “20 years of learning about vision” states “the prob-

lem is not just that we lack the proper data, but that we do not even have the right

conceptual framework for thinking about what is happening” [222].

In this dissertation I have argued for the usefulness of statistical models in

exploring neural data, with the ultimate goal of discovering fundamental principles

of information processing. However, a more modest and realistic goal is closer to

“suggesting” fundamental principles rather than “discovering”, which will require

data analysis, theory, and experiment working in concert to inform each other.

Indeed, even sophisticated data-driven approaches cannot always be successful in

suggesting useful research directions. In a controversial study entitled “Could a

neuroscientist understand a microprocessor?”, Jonas and Kording [223] utilized a

relatively simple microprocessor as a model organism to test an array of analysis

tools currently used in neuroscience. Though they were able to discover “interesting”

structure in the data, their analyses ultimately failed to uncover the information

177

processing strategies used by the microprocessor. This study cautions that even if

we have infinite amounts of data from all relevant components of a relatively simple

model organism, if our analyses are not well constrained by computational theories

of information processing, we will be swimming in information without a means to

extract the relevant knowledge.

Despite this cautionary tale and others [224], the field of neuroscience is aware

of these shortcomings and taking steps to fix them [225, 226]. Significant progress

in our understanding of brain structure and function will require interdisciplinary

collaborations and interdisciplinary training for young neuroscientists. A holistic

approach to studying the brain should integrate perspectives and tools from fields

that traditionally study the brain, such as systems neuroscience, cognitive neuro-

science, psychology and the philosophy of mind, as well as more quantitative fields

such as electrical engineering, statistics, machine learning, and artificial intelligence.

Only with these combined perspectives, across each of Marr’s levels of analysis, will

we begin to unlock the mysteries of the mind.

178

Bibliography

[1] Terrence J Sejnowski, Patricia S Churchland, and J Anthony Movshon.
Putting big data to good use in neuroscience. Nature neuroscience,
17(11):1440–1441, 2014.

[2] David H Hubel and Torsten N Wiesel. Receptive fields of single neurones in
the cat’s striate cortex. The Journal of physiology, 148(3):574–591, 1959.

[3] Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome.
Context-dependent computation by recurrent dynamics in prefrontal cortex.
nature, 503(7474):78, 2013.

[4] Emery N Brown, Patrick L Purdon, and Christa J Van Dort. General anes-
thesia and altered states of arousal: a systems neuroscience analysis. Annual
review of neuroscience, 34:601–628, 2011.

[5] Nicole C Rust and J Anthony Movshon. In praise of artifice. Nature neuro-
science, 8(12):1647, 2005.

[6] Niru Maheswaranathan, Lane McIntosh, David Kastner, Luke Brezovec, Aran
Nayebi, Surya Ganguli, and Stephen Baccus. Deep models of retinal responses
to natural scenes generalize to diverse structured stimuli. In Computational
and Systems Neuroscience, 2018.

[7] Ian H Stevenson and Konrad P Kording. How advances in neural recording
affect data analysis. Nature neuroscience, 14(2):139, 2011.

[8] Peter Dayan and Laurence F Abbott. Theoretical neuroscience, volume 806.
Cambridge, MA: MIT Press, 2001.

[9] Mary M Heinricher. Principles of extracellular single-unit recording.

[10] James J Jun, Nicholas A Steinmetz, Joshua H Siegle, Daniel J Denman, Mar-
ius Bauza, Brian Barbarits, Albert K Lee, Costas A Anastassiou, Alexandru
Andrei, Çağatay Aydın, et al. Fully integrated silicon probes for high-density
recording of neural activity. Nature, 551(7679):232, 2017.

179

[11] Joshua T Vogelstein, Brendon O Watson, Adam M Packer, Rafael Yuste,
Bruno Jedynak, and Liam Paninski. Spike inference from calcium imaging
using sequential monte carlo methods. Biophysical journal, 97(2):636–655,
2009.

[12] Joshua T Vogelstein, Adam M Packer, Timothy A Machado, Tanya Sippy,
Baktash Babadi, Rafael Yuste, and Liam Paninski. Fast nonnegative decon-
volution for spike train inference from population calcium imaging. Journal
of neurophysiology, 104(6):3691–3704, 2010.

[13] Marius Pachitariu, Carsen Stringer, Sylvia Schröder, Mario Dipoppa, L Fed-
erico Rossi, Matteo Carandini, and Kenneth D Harris. Suite2p: beyond 10,000
neurons with standard two-photon microscopy. Biorxiv, page 061507, 2016.

[14] Andrea Giovannucci, Johannes Friedrich, Matt Kaufman, Anne Churchland,
Dmitri Chklovskii, Liam Paninski, and Eftychios A Pnevmatikakis. Onacid:
Online analysis of calcium imaging data in real time. In Advances in Neural
Information Processing Systems, pages 2378–2388, 2017.

[15] Lucas Theis, Philipp Berens, Emmanouil Froudarakis, Jacob Reimer,
Miroslav Román Rosón, Tom Baden, Thomas Euler, Andreas S Tolias, and
Matthias Bethge. Benchmarking spike rate inference in population calcium
imaging. Neuron, 90(3):471–482, 2016.

[16] Valentina Emiliani, Adam E Cohen, Karl Deisseroth, and Michael Häusser.
All-optical interrogation of neural circuits. Journal of Neuroscience,
35(41):13917–13926, 2015.

[17] CM Bishop. Pattern recognition and machine learning: springer new york.
2006.

[18] Liam Paninski. Maximum likelihood estimation of cascade point-process neu-
ral encoding models. Network: Computation in Neural Systems, 15(4):243–
262, 2004.

[19] Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M
Litke, EJ Chichilnisky, and Eero P Simoncelli. Spatio-temporal correla-
tions and visual signalling in a complete neuronal population. Nature,
454(7207):995, 2008.

[20] James M McFarland, Yuwei Cui, and Daniel A Butts. Inferring nonlinear
neuronal computation based on physiologically plausible inputs. PLoS Comput
Biol, 9(7):e1003143, 2013.

[21] Ross S Williamson, Maneesh Sahani, and Jonathan W Pillow. The equivalence
of information-theoretic and likelihood-based methods for neural dimension-
ality reduction. PLoS computational biology, 11(4):e1004141, 2015.

180

[22] James Scott and Jonathan W Pillow. Fully bayesian inference for neural
models with negative-binomial spiking. In Advances in neural information
processing systems, pages 1898–1906, 2012.

[23] Yuanjun Gao, Evan W Archer, Liam Paninski, and John P Cunningham.
Linear dynamical neural population models through nonlinear embeddings.
In Advances in Neural Information Processing Systems, pages 163–171, 2016.

[24] Matthew R Whiteway and Daniel A Butts. Revealing unobserved factors un-
derlying cortical activity with a rectified latent variable model applied to neu-
ral population recordings. Journal of neurophysiology, 117(3):919–936, 2017.

[25] Peter McCullagh and John A Nelder. Generalized linear models. Springer,
1989.

[26] Yuwei Cui, Liu D Liu, James M McFarland, Christopher C Pack, and Daniel A
Butts. Inferring cortical variability from local field potentials. Journal of
Neuroscience, 36(14):4121–4135, 2016.

[27] Leigh R Hochberg, Daniel Bacher, Beata Jarosiewicz, Nicolas Y Masse, John D
Simeral, Joern Vogel, Sami Haddadin, Jie Liu, Sydney S Cash, Patrick van der
Smagt, et al. Reach and grasp by people with tetraplegia using a neurally
controlled robotic arm. Nature, 485(7398):372, 2012.

[28] Daniel L. K. Yamins and James J. DiCarlo. Using goal-driven deep learning
models to understand sensory cortex. Nature Neuroscience, 19:356–365, 2016.

[29] Christopher R Holdgraf, Jochem W Rieger, Cristiano Micheli, Stephanie Mar-
tin, Robert T Knight, and Frederic E Theunissen. Encoding and decod-
ing models in cognitive electrophysiology. Frontiers in systems neuroscience,
11:61, 2017.

[30] Stephen V David, William E Vinje, and Jack L Gallant. Natural stimulus
statistics alter the receptive field structure of v1 neurons. Journal of Neuro-
science, 24(31):6991–7006, 2004.

[31] Bruno A Olshausen and David J Field. Sparse coding of sensory inputs.
Current opinion in neurobiology, 14(4):481–487, 2004.

[32] Jean Pierre Richard, Hans-Joachim Leppelsack, and Martine Hausberger. A
rapid correlation method for the analysis of spectro-temporal receptive fields
of auditory neurons. Journal of neuroscience methods, 61(1-2):99–103, 1995.

[33] Jan Kubanek, Peter Brunner, Aysegul Gunduz, David Poeppel, and Gerwin
Schalk. The tracking of speech envelope in the human cortex. PloS one,
8(1):e53398, 2013.

181

[34] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interac-
tion and functional architecture in the cat’s visual cortex. The Journal of
physiology, 160(1):106–154, 1962.

[35] Edward H Adelson and James R Bergen. Spatiotemporal energy models for
the perception of motion. Josa a, 2(2):284–299, 1985.

[36] Matteo Carandini, Jonathan B Demb, Valerio Mante, David J Tolhurst, Yang
Dan, Bruno A Olshausen, Jack L Gallant, and Nicole C Rust. Do we know
what the early visual system does? Journal of Neuroscience, 25(46):10577–
10597, 2005.

[37] Misha B Ahrens, Liam Paninski, and Maneesh Sahani. Inferring input nonlin-
earities in neural encoding models. Network: Computation in Neural Systems,
19(1):35–67, 2008.

[38] Trevor Hastie and Robert Tibshirani. Generalized additive models. Wiley
Online Library, 1990.

[39] Il Memming Park, Evan W Archer, Nicholas Priebe, and Jonathan W Pillow.
Spectral methods for neural characterization using generalized quadratic mod-
els. In Advances in neural information processing systems, pages 2454–2462,
2013.

[40] Kanaka Rajan, Olivier Marre, and Gašper Tkačik. Learning quadratic re-
ceptive fields from neural responses to natural stimuli. Neural computation,
25(7):1661–1692, 2013.

[41] Brian Lau, Garrett B Stanley, and Yang Dan. Computational subunits of
visual cortical neurons revealed by artificial neural networks. Proceedings of
the National Academy of Sciences, 99(13):8974–8979, 2002.

[42] Ryan Prenger, Michael C-K Wu, Stephen V David, and Jack L Gallant. Non-
linear v1 responses to natural scenes revealed by neural network analysis.
Neural Networks, 17(5-6):663–679, 2004.

[43] Simon P Peron, Jeremy Freeman, Vijay Iyer, Caiying Guo, and Karel Svoboda.
A cellular resolution map of barrel cortex activity during tactile behavior.
Neuron, 86(3):783–799, 2015.

[44] Adam H Marblestone, Greg Wayne, and Konrad P Kording. Toward an inte-
gration of deep learning and neuroscience. Frontiers in Computational Neu-
roscience, 10:94, 2016.

[45] Tim Christian Kietzmann, Patrick McClure, and Nikolaus Kriegeskorte. Deep
neural networks in computational neuroscience. bioRxiv, page 133504, 2017.

182

[46] Lane McIntosh, Niru Maheswaranathan, Aran Nayebi, Surya Ganguli, and
Stephen Baccus. Deep learning models of the retinal response to natural
scenes. In Advances in neural information processing systems, pages 1369–
1377, 2016.

[47] Eleanor Batty, Josh Merel, Nora Brackbill, Alexander Heitman, Alexander
Sher, Alan Litke, EJ Chichilnisky, and Liam Paninski. Multilayer recurrent
network models of primate retinal ganglion cell responses. 2016.

[48] Ján Antoĺık, Sonja B Hofer, James A Bednar, and Thomas D Mrsic-Flogel.
Model constrained by visual hierarchy improves prediction of neural responses
to natural scenes. PLoS computational biology, 12(6):e1004927, 2016.

[49] David Klindt, Alexander S Ecker, Thomas Euler, and Matthias Bethge. Neural
system identification for large populations separating what and where. In
Advances in Neural Information Processing Systems, pages 3509–3519, 2017.

[50] Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys,
Andreas S Tolias, Matthias Bethge, and Alexander S Ecker. Deep convolu-
tional models improve predictions of macaque v1 responses to natural images.
bioRxiv, page 201764, 2017.

[51] William F Kindel, Elijah D Christensen, and Joel Zylberberg. Using deep
learning to reveal the neural code for images in primary visual cortex. arXiv
preprint arXiv:1706.06208, 2017.

[52] Michael Oliver and Jack Gallant. A deep convolutional energy model of v4
responses to natural movies. Journal of Vision, 16(12):876–876, 2016.

[53] Maximilian Riesenhuber and Tomaso Poggio. Hierarchical models of object
recognition in cortex. Nature neuroscience, 2(11):1019, 1999.

[54] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition. In Competition
and cooperation in neural nets, pages 267–285. Springer, 1982.

[55] David Marr. Vision: A computational approach, 1982.

[56] Surya Ganguli and Haim Sompolinsky. Compressed sensing, sparsity, and
dimensionality in neuronal information processing and data analysis. Annual
review of neuroscience, 35:485–508, 2012.

[57] Sebastian Gerwinn, Jakob H Macke, and Matthias Bethge. Bayesian inference
for generalized linear models for spiking neurons. Frontiers in computational
neuroscience, 4:12, 2010.

[58] Ana Calabrese, Joseph W Schumacher, David M Schneider, Liam Paninski,
and Sarah MN Woolley. A generalized linear model for estimating spectrotem-
poral receptive fields from responses to natural sounds. PloS one, 6(1):e16104,
2011.

183

[59] Frédéric E Theunissen, Stephen V David, Nandini C Singh, Anne Hsu,
William E Vinje, and Jack L Gallant. Estimating spatio-temporal receptive
fields of auditory and visual neurons from their responses to natural stimuli.
Network: Computation in Neural Systems, 12(3):289–316, 2001.

[60] Maneesh Sahani and Jennifer F Linden. Evidence optimization techniques
for estimating stimulus-response functions. In Advances in neural information
processing systems, pages 317–324, 2003.

[61] Timm Lochmann, Timothy J Blanche, and Daniel A Butts. Construction
of direction selectivity through local energy computations in primary visual
cortex. PloS one, 8(3):e58666, 2013.

[62] Mijung Park and Jonathan W Pillow. Receptive field inference with localized
priors. PLoS computational biology, 7(10):e1002219, 2011.

[63] Jonathan W Pillow, Liam Paninski, Valerie J Uzzell, Eero P Simoncelli, and
EJ Chichilnisky. Prediction and decoding of retinal ganglion cell responses
with a probabilistic spiking model. Journal of Neuroscience, 25(47):11003–
11013, 2005.

[64] Yuwei Cui, Yanbin V Wang, Silvia JH Park, Jonathan B Demb, and Daniel A
Butts. Divisive suppression explains high-precision firing and contrast adap-
tation in retinal ganglion cells. eLife, 5:e19460, 2016.

[65] Daniel A Butts, Chong Weng, Jianzhong Jin, Jose-Manuel Alonso, and
Liam Paninski. Temporal precision in the visual pathway through the inter-
play of excitation and stimulus-driven suppression. Journal of Neuroscience,
31(31):11313–11327, 2011.

[66] Valerio Mante, Vincent Bonin, and Matteo Carandini. Functional mechanisms
shaping lateral geniculate responses to artificial and natural stimuli. Neuron,
58(4):625–638, 2008.

[67] Robbe LT Goris, J Anthony Movshon, and Eero P Simoncelli. Partitioning
neuronal variability. Nature neuroscience, 17(6):858, 2014.

[68] Paul Tiesinga, Jean-Marc Fellous, and Terrence J Sejnowski. Regulation of
spike timing in visual cortical circuits. Nature reviews neuroscience, 9(2):97,
2008.

[69] Roger Herikstad, Jonathan Baker, Jean-Philippe Lachaux, Charles M Gray,
and Shih-Cheng Yen. Natural movies evoke spike trains with low spike
time variability in cat primary visual cortex. Journal of Neuroscience,
31(44):15844–15860, 2011.

[70] Adam Kohn, Ruben Coen-Cagli, Ingmar Kanitscheider, and Alexandre
Pouget. Correlations and neuronal population information. Annual review
of neuroscience, 39:237–256, 2016.

184

[71] A Aldo Faisal, Luc PJ Selen, and Daniel M Wolpert. Noise in the nervous
system. Nature reviews neuroscience, 9(4):292, 2008.

[72] Zachary F Mainen and Terrence J Sejnowski. Reliability of spike timing in
neocortical neurons. Science, 268(5216):1503–1506, 1995.

[73] Pierre-Simon Laplace. Essai philosophique sur les probabilités. H. Remy, 1829.

[74] Horace B Barlow. Single units and sensation: a neuron doctrine for perceptual
psychology? Perception, 1(4):371–394, 1972.

[75] Marlene R Cohen and Adam Kohn. Measuring and interpreting neuronal
correlations. Nature neuroscience, 14(7):811–819, 2011.

[76] Horace Barlow. Redundancy reduction revisited. Network: computation in
neural systems, 12(3):241–253, 2001.

[77] Adam Kohn and Matthew A Smith. Stimulus dependence of neuronal cor-
relation in primary visual cortex of the macaque. Journal of Neuroscience,
25(14):3661–3673, 2005.

[78] Adrián Ponce-Alvarez, Alexander Thiele, Thomas D Albright, Gene R Stoner,
and Gustavo Deco. Stimulus-dependent variability and noise correlations
in cortical mt neurons. Proceedings of the National Academy of Sciences,
110(32):13162–13167, 2013.

[79] Marlene R Cohen and William T Newsome. Context-dependent changes in
functional circuitry in visual area mt. Neuron, 60(1):162–173, 2008.

[80] Adrian G Bondy, Ralf M Haefner, and Bruce G Cumming. Feedback deter-
mines the structure of correlated variability in primary visual cortex. Nature
neuroscience, page 1, 2018.

[81] Alexander S Ecker, Philipp Berens, R James Cotton, Manivannan Sub-
ramaniyan, George H Denfield, Cathryn R Cadwell, Stelios M Smirnakis,
Matthias Bethge, and Andreas S Tolias. State dependence of noise corre-
lations in macaque primary visual cortex. Neuron, 82(1):235–248, 2014.

[82] Marieke L Schölvinck, Aman B Saleem, Andrea Benucci, Kenneth D Har-
ris, and Matteo Carandini. Cortical state determines global variability and
correlations in visual cortex. Journal of Neuroscience, 35(1):170–178, 2015.

[83] Takaki Komiyama, Takashi R Sato, Daniel H OConnor, Ying-Xin Zhang,
Daniel Huber, Bryan M Hooks, Mariano Gabitto, and Karel Svoboda.
Learning-related fine-scale specificity imaged in motor cortex circuits of be-
having mice. Nature, 464(7292):1182, 2012.

185

[84] Yong Gu, Sheng Liu, Christopher R Fetsch, Yun Yang, Sam Fok, Adhira
Sunkara, Gregory C DeAngelis, and Dora E Angelaki. Perceptual learning re-
duces interneuronal correlations in macaque visual cortex. Neuron, 71(4):750–
761, 2011.

[85] Hiroshi Makino, Chi Ren, Haixin Liu, An Na Kim, Neehar Kondapaneni, Xin
Liu, Duygu Kuzum, and Takaki Komiyama. Transformation of cortex-wide
emergent properties during motor learning. Neuron, 94(4):880–890, 2017.

[86] AM Ni, DA Ruff, JJ Alberts, J Symmonds, and MR Cohen. Learning and at-
tention reveal a general relationship between population activity and behavior.
Science, 359(6374):463–465, 2018.

[87] Marlene R Cohen and John HR Maunsell. Attention improves perfor-
mance primarily by reducing interneuronal correlations. Nature neuroscience,
12(12):1594, 2009.

[88] Jude F Mitchell, Kristy A Sundberg, and John H Reynolds. Spatial atten-
tion decorrelates intrinsic activity fluctuations in macaque area v4. Neuron,
63(6):879–888, 2009.

[89] Mehdi Adibi, James S McDonald, Colin WG Clifford, and Ehsan Arabzadeh.
Adaptation improves neural coding efficiency despite increasing correlations
in variability. Journal of Neuroscience, 33(5):2108–2120, 2013.

[90] Larry F Abbott and Peter Dayan. The effect of correlated variability on the
accuracy of a population code. Neural computation, 11(1):91–101, 1999.

[91] Maoz Shamir and Haim Sompolinsky. Nonlinear population codes. Neural
computation, 16(6):1105–1136, 2004.

[92] Bruno B Averbeck and Daeyeol Lee. Effects of noise correlations on infor-
mation encoding and decoding. Journal of neurophysiology, 95(6):3633–3644,
2006.

[93] Rubén Moreno-Bote, Jeffrey Beck, Ingmar Kanitscheider, Xaq Pitkow, Peter
Latham, and Alexandre Pouget. Information-limiting correlations. Nature
neuroscience, 17(10):1410, 2014.

[94] Ingmar Kanitscheider, Ruben Coen-Cagli, and Alexandre Pouget. Origin of
information-limiting noise correlations. Proceedings of the National Academy
of Sciences, 112(50):E6973–E6982, 2015.

[95] Alexander S Ecker, George H Denfield, Matthias Bethge, and Andreas S To-
lias. On the structure of neuronal population activity under fluctuations in
attentional state. Journal of Neuroscience, 36(5):1775–1789, 2016.

[96] I-Chun Lin, Michael Okun, Matteo Carandini, and Kenneth D Harris. The
nature of shared cortical variability. Neuron, 87(3):644–656, 2015.

186

[97] Marius Pachitariu, Dmitry R Lyamzin, Maneesh Sahani, and Nicholas A
Lesica. State-dependent population coding in primary auditory cortex. Jour-
nal of Neuroscience, 35(5):2058–2073, 2015.

[98] Iñigo Arandia-Romero, Seiji Tanabe, Jan Drugowitsch, Adam Kohn, and
Rubén Moreno-Bote. Multiplicative and additive modulation of neuronal tun-
ing with population activity affects encoded information. Neuron, 89(6):1305–
1316, 2016.

[99] Charles G Frye and Jason N MacLean. Spontaneous activations follow a com-
mon developmental course across primary sensory areas in mouse neocortex.
Journal of neurophysiology, 116(2):431–437, 2016.

[100] Amos Arieli, Alexander Sterkin, Amiram Grinvald, and AD Aertsen. Dynam-
ics of ongoing activity: explanation of the large variability in evoked cortical
responses. Science, 273(5283):1868–1871, 1996.

[101] Neil C Rabinowitz, Robbe L Goris, Marlene Cohen, and Eero P Simoncelli.
Attention stabilizes the shared gain of v4 populations. Elife, 4:e08998, 2015.

[102] Michael Okun, Nicholas A Steinmetz, Lee Cossell, M Florencia Iacaruso,
Ho Ko, Péter Barthó, Tirin Moore, Sonja B Hofer, Thomas D Mrsic-Flogel,
Matteo Carandini, et al. Diverse coupling of neurons to populations in sensory
cortex. Nature, 521(7553):511, 2015.

[103] Timothée Masquelier. Neural variability, or lack thereof. Frontiers in compu-
tational neuroscience, 7:7, 2013.

[104] Emili Balaguer-Ballester. Cortical variability and challenges for modeling ap-
proaches. Frontiers in systems neuroscience, 11:15, 2017.

[105] Richard D Lange and Ralf M Haefner. Characterizing and interpreting the
influence of internal variables on sensory activity. Current opinion in neuro-
biology, 46:84–89, 2017.

[106] Anne C Smith and Emery N Brown. Estimating a state-space model from
point process observations. Neural Computation, 15(5):965–991, 2003.

[107] Liam Paninski, Yashar Ahmadian, Daniel Gil Ferreira, Shinsuke Koyama,
Kamiar Rahnama Rad, Michael Vidne, Joshua Vogelstein, and Wei Wu. A
new look at state-space models for neural data. Journal of computational
neuroscience, 29(1-2):107–126, 2010.

[108] Jakob H Macke, Lars Buesing, John P Cunningham, M Yu Byron, Krishna V
Shenoy, and Maneesh Sahani. Empirical models of spiking in neural popula-
tions. In Advances in neural information processing systems, pages 1350–1358,
2011.

187

[109] Marius Pachitariu, Biljana Petreska, and Maneesh Sahani. Recurrent linear
models of simultaneously-recorded neural populations. In Advances in Neural
Information Processing Systems, pages 3138–3146, 2013.

[110] Evan W Archer, Urs Koster, Jonathan W Pillow, and Jakob H Macke. Low-
dimensional models of neural population activity in sensory cortical circuits.
In Advances in Neural Information Processing Systems, pages 343–351, 2014.

[111] M Yu Byron, John P Cunningham, Gopal Santhanam, Stephen I Ryu, Kr-
ishna V Shenoy, and Maneesh Sahani. Gaussian-process factor analysis for
low-dimensional single-trial analysis of neural population activity. In Advances
in neural information processing systems, pages 1881–1888, 2009.

[112] Yuan Zhao and Il Memming Park. Variational latent gaussian process for
recovering single-trial dynamics from population spike trains. Neural Compu-
tation, 2017.

[113] Biljana Petreska, M Yu Byron, John P Cunningham, Gopal Santhanam,
Stephen I Ryu, Krishna V Shenoy, and Maneesh Sahani. Dynamical seg-
mentation of single trials from population neural data. In Advances in neural
information processing systems, pages 756–764, 2011.

[114] Scott Linderman, Matthew Johnson, Andrew Miller, Ryan Adams, David Blei,
and Liam Paninski. Bayesian learning and inference in recurrent switching
linear dynamical systems. In Artificial Intelligence and Statistics, pages 914–
922, 2017.

[115] David Sussillo, Rafal Jozefowicz, LF Abbott, and Chethan Pandari-
nath. Lfads-latent factor analysis via dynamical systems. arXiv preprint
arXiv:1608.06315, 2016.

[116] John P Cunningham and Zoubin Ghahramani. Linear dimensionality reduc-
tion: survey, insights, and generalizations. Journal of Machine Learning Re-
search, 16(1):2859–2900, 2015.

[117] Misha B Ahrens, Jennifer M Li, Michael B Orger, Drew N Robson, Alexan-
der F Schier, Florian Engert, and Ruben Portugues. Brain-wide neuronal
dynamics during motor adaptation in zebrafish. Nature, 485(7399):471, 2012.

[118] Benjamin R Cowley, Matthew A Smith, Adam Kohn, and M Yu Byron.
Stimulus-driven population activity patterns in macaque primary visual cor-
tex. PLOS Computational Biology, 12(12):e1005185, 2016.

[119] Jeffrey S Seely, Matthew T Kaufman, Stephen I Ryu, Krishna V Shenoy,
John P Cunningham, and Mark M Churchland. Tensor analysis reveals dis-
tinct population structure that parallels the different computational roles of
areas m1 and v1. PLoS Comput Biol, 12(11):e1005164, 2016.

188

[120] Arno Onken, Jian K Liu, PP Chamanthi R Karunasekara, Ioannis Delis, Tim
Gollisch, and Stefano Panzeri. Using matrix and tensor factorizations for the
single-trial analysis of population spike trains. PLoS computational biology,
12(11):e1005189, 2016.

[121] Mark M Churchland, M Yu Byron, John P Cunningham, Leo P Sugrue, Mar-
lene R Cohen, Greg S Corrado, William T Newsome, Andrew M Clark, Pay-
mon Hosseini, Benjamin B Scott, et al. Stimulus onset quenches neural vari-
ability: a widespread cortical phenomenon. Nature neuroscience, 13(3):369,
2010.

[122] Mark M Churchland, John P Cunningham, Matthew T Kaufman, Justin D
Foster, Paul Nuyujukian, Stephen I Ryu, and Krishna V Shenoy. Neural
population dynamics during reaching. Nature, 487(7405):51–56, 2012.

[123] Patrick T Sadtler, Kristin M Quick, Matthew D Golub, Steven M Chase,
Stephen I Ryu, Elizabeth C Tyler-Kabara, M Yu Byron, and Aaron P Batista.
Neural constraints on learning. Nature, 512(7515):423, 2014.

[124] Jeremy Freeman, Nikita Vladimirov, Takashi Kawashima, Yu Mu, Nicholas J
Sofroniew, Davis V Bennett, Joshua Rosen, Chao-Tsung Yang, Loren L
Looger, and Misha B Ahrens. Mapping brain activity at scale with cluster
computing. Nature methods, 11(9):941, 2014.

[125] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[126] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic
backpropagation and approximate inference in deep generative models. arXiv
preprint arXiv:1401.4082, 2014.

[127] Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters. arXiv
preprint arXiv:1511.05121, 2015.

[128] Matthew Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and
Sandeep R Datta. Composing graphical models with neural networks for struc-
tured representations and fast inference. In Advances in neural information
processing systems, pages 2946–2954, 2016.

[129] Sam Roweis and Zoubin Ghahramani. A unifying review of linear gaussian
models. Neural computation, 11(2):305–345, 1999.

[130] Jason Fitzgerald Smith, Kewei Chen, Ajay S Pillai, and Barry Horwitz. Identi-
fying effective connectivity parameters in simulated fmri: a direct comparison
of switching linear dynamic system, stochastic dynamic causal, and multivari-
ate autoregressive models. Frontiers in neuroscience, 7:70, 2013.

189

[131] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the royal statistical
society. Series B (methodological), pages 1–38, 1977.

[132] Gopal Santhanam, Stephen I Ryu, M Yu Byron, Afsheen Afshar, and Kr-
ishna V Shenoy. A high-performance brain–computer interface. nature,
442(7099):195, 2006.

[133] Michael E Tipping and Christopher M Bishop. Probabilistic principal com-
ponent analysis. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 61(3):611–622, 1999.

[134] Sam T Roweis. Em algorithms for pca and spca. In Advances in neural
information processing systems, pages 626–632, 1998.

[135] Marlene R Cohen and John HR Maunsell. A neuronal population measure
of attention predicts behavioral performance on individual trials. Journal of
Neuroscience, 30(45):15241–15253, 2010.

[136] David Pfau, Eftychios A Pnevmatikakis, and Liam Paninski. Robust learning
of low-dimensional dynamics from large neural ensembles. In Advances in
neural information processing systems, pages 2391–2399, 2013.

[137] Dmitry Kobak, Wieland Brendel, Christos Constantinidis, Claudia E Feier-
stein, Adam Kepecs, Zachary F Mainen, Xue-Lian Qi, Ranulfo Romo,
Naoshige Uchida, and Christian K Machens. Demixed principal component
analysis of neural population data. Elife, 5, 2016.

[138] Jeanny Hérault and Bernard Ans. Réseau de neurones à synapses modifiables:
Décodage de messages sensoriels composites par apprentissage non supervisé
et permanent. Comptes rendus des séances de l’Académie des sciences. Série
3, Sciences de la vie, 299(13):525–528, 1984.

[139] Matthias Klemm, Jens Haueisen, and Galina Ivanova. Independent component
analysis: comparison of algorithms for the investigation of surface electrical
brain activity. Medical & biological engineering & computing, 47(4):413–423,
2009.

[140] Simon Daniel Robinson and Veronika Schöpf. Ica of fmri studies: new ap-
proaches and cutting edge applications. Frontiers in human neuroscience,
7:724, 2013.

[141] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[142] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning, volume 1. MIT press Cambridge, 2016.

190

[143] Christopher Poultney, Sumit Chopra, Yann L Cun, et al. Efficient learning
of sparse representations with an energy-based model. In Advances in neural
information processing systems, pages 1137–1144, 2007.

[144] H Boulard and Y Kamp. Autoassociative memory by multilayer perceptron
and singular values decomposition. Biol Cybern, 59:291–294, 1989.

[145] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Extracting and composing robust features with denoising autoencoders.
In Proceedings of the 25th international conference on Machine learning, pages
1096–1103. ACM, 2008.

[146] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.
Contractive auto-encoders: Explicit invariance during feature extraction. In
Proceedings of the 28th International Conference on International Conference
on Machine Learning, pages 833–840. Omnipress, 2011.

[147] Asif A Ghazanfar and Charles E Schroeder. Is neocortex essentially multisen-
sory? Trends in cognitive sciences, 10(6):278–285, 2006.

[148] Rosanna De Meo, Micah M Murray, Stephanie Clarke, and Pawel J Matusz.
Top-down control and early multisensory processes: chicken vs. egg. Frontiers
in integrative neuroscience, 9:17, 2015.

[149] Daniel Christopher Haggerty and Daoyun Ji. Activities of visual cortical and
hippocampal neurons co-fluctuate in freely moving rats during spatial behav-
ior. Elife, 4, 2015.

[150] Kenneth D Harris and Alexander Thiele. Cortical state and attention. Nature
reviews neuroscience, 12(9):509, 2011.

[151] Stephan L Marguet and Kenneth D Harris. State-dependent representation of
amplitude-modulated noise stimuli in rat auditory cortex. Journal of Neuro-
science, 31(17):6414–6420, 2011.

[152] Marshall G Shuler and Mark F Bear. Reward timing in the primary visual
cortex. Science, 311(5767):1606–1609, 2006.

[153] Gonzalo H Otazu, Lung-Hao Tai, Yang Yang, and Anthony M Zador. En-
gaging in an auditory task suppresses responses in auditory cortex. Nature
neuroscience, 12(5):646, 2009.

[154] Cristopher M Niell and Michael P Stryker. Modulation of visual responses by
behavioral state in mouse visual cortex. Neuron, 65(4):472–479, 2010.

[155] Asohan Amarasingham, Stuart Geman, and Matthew T Harrison. Ambiguity
and nonidentifiability in the statistical analysis of neural codes. Proceedings
of the National Academy of Sciences, 112(20):6455–6460, 2015.

191

[156] Brent Doiron, Ashok Litwin-Kumar, Robert Rosenbaum, Gabriel K Ocker,
and Krešimir Josić. The mechanics of state-dependent neural correlations.
Nature neuroscience, 19(3):383, 2016.

[157] Elad Schneidman, Michael J Berry II, Ronen Segev, and William Bialek. Weak
pairwise correlations imply strongly correlated network states in a neural pop-
ulation. Nature, 440(7087):1007, 2006.

[158] Michael Vidne, Yashar Ahmadian, Jonathon Shlens, Jonathan W Pillow,
Jayant Kulkarni, Alan M Litke, EJ Chichilnisky, Eero Simoncelli, and Liam
Paninski. Modeling the impact of common noise inputs on the network activity
of retinal ganglion cells. Journal of computational neuroscience, 33(1):97–121,
2012.

[159] Malte J Rasch, Arthur Gretton, Yusuke Murayama, Wolfgang Maass, and
Nikos K Logothetis. Inferring spike trains from local field potentials. Journal
of neurophysiology, 99(3):1461–1476, 2008.

[160] John P Cunningham and M Yu Byron. Dimensionality reduction for large-
scale neural recordings. Nature neuroscience, 17(11):1500, 2014.

[161] Saul Kato, Harris S Kaplan, Tina Schrödel, Susanne Skora, Theodore H Lind-
say, Eviatar Yemini, Shawn Lockery, and Manuel Zimmer. Global brain dy-
namics embed the motor command sequence of caenorhabditis elegans. Cell,
163(3):656–669, 2015.

[162] Mark Stopfer, Vivek Jayaraman, and Gilles Laurent. Intensity versus identity
coding in an olfactory system. Neuron, 39(6):991–1004, 2003.

[163] Urs Köster, Jascha Sohl-Dickstein, Charles M Gray, and Bruno A Olshausen.
Modeling higher-order correlations within cortical microcolumns. PLoS Com-
put Biol, 10(7):e1003684, 2014.

[164] Jayant E Kulkarni and Liam Paninski. Common-input models for multiple
neural spike-train data. Network: Computation in Neural Systems, 18(4):375–
407, 2007.

[165] Joao Semedo, Amin Zandvakili, Adam Kohn, Christian K Machens, and M Yu
Byron. Extracting latent structure from multiple interacting neural popula-
tions. In Advances in neural information processing systems, pages 2942–2950,
2014.

[166] Karthik C Lakshmanan, Patrick T Sadtler, Elizabeth C Tyler-Kabara,
Aaron P Batista, and M Yu Byron. Extracting low-dimensional latent struc-
ture from time series in the presence of delays. Neural computation, 2015.

[167] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788, 1999.

192

[168] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning:
A review and new perspectives. IEEE transactions on pattern analysis and
machine intelligence, 35(8):1798–1828, 2013.

[169] Martin Vinck, Renata Batista-Brito, Ulf Knoblich, and Jessica A Cardin.
Arousal and locomotion make distinct contributions to cortical activity pat-
terns and visual encoding. Neuron, 86(3):740–754, 2015.

[170] Wolfram Schultz, Regina M Carelli, and R Mark Wightman. Phasic dopamine
signals: from subjective reward value to formal economic utility. Current
opinion in behavioral sciences, 5:147–154, 2015.

[171] Inge Koch. Analysis of multivariate and high-dimensional data, volume 32.
Cambridge University Press, 2013.

[172] Ifije E Ohiorhenuan, Ferenc Mechler, Keith P Purpura, Anita M Schmid, Qin
Hu, and Jonathan D Victor. Sparse coding and high-order correlations in
fine-scale cortical networks. Nature, 466(7306):617, 2010.

[173] Peiran Gao and Surya Ganguli. On simplicity and complexity in the brave new
world of large-scale neuroscience. Current opinion in neurobiology, 32:148–155,
2015.

[174] Nathalie Japkowicz, Stephen Jose Hanson, and Mark A Gluck. Nonlinear
autoassociation is not equivalent to pca. Neural computation, 12(3):531–545,
2000.

[175] Gopal Santhanam, M Yu Byron, Vikash Gilja, Stephen I Ryu, Afsheen Afshar,
Maneesh Sahani, and Krishna V Shenoy. Factor-analysis methods for higher-
performance neural prostheses. Journal of neurophysiology, 102(2):1315–1330,
2009.

[176] Kazuyuki Hara, Daisuke Saito, and Hayaru Shouno. Analysis of function of
rectified linear unit used in deep learning. In Neural Networks (IJCNN), 2015
International Joint Conference on, pages 1–8. IEEE, 2015.

[177] Mark Schmidt. minfunc: unconstrained differen-
tiable multivariate optimization in matlab. URL
https://www.cs.ubc.ca/ schmidtm/Software/minFunc.html, 2012.

[178] David J Tolhurst, J Anthony Movshon, and Andrew F Dean. The statistical
reliability of signals in single neurons in cat and monkey visual cortex. Vision
research, 23(8):775–785, 1983.

[179] Rufin Vogels, Werner Spileers, and Guy A Orban. The response variability of
striate cortical neurons in the behaving monkey. Experimental brain research,
77(2):432–436, 1989.

193

[180] Maoz Shamir and Haim Sompolinsky. Implications of neuronal diversity on
population coding. Neural computation, 18(8):1951–1986, 2006.

[181] Joel Zylberberg, Alexandre Pouget, Peter E Latham, and Eric Shea-Brown.
Robust information propagation through noisy neural circuits. PLoS compu-
tational biology, 13(4):e1005497, 2017.

[182] Joel Zylberberg. Untuned but not irrelevant: A role for untuned neurons in
sensory information coding. bioRxiv, page 134379, 2017.

[183] Corbett Bennett, Sergio Arroyo, and Shaul Hestrin. Subthreshold mecha-
nisms underlying state-dependent modulation of visual responses. Neuron,
80(2):350–357, 2013.

[184] Pierre-Olivier Polack, Jonathan Friedman, and Peyman Golshani. Cellular
mechanisms of brain state–dependent gain modulation in visual cortex. Nature
neuroscience, 16(9):1331, 2013.

[185] Sinem Erisken, Agne Vaiceliunaite, Ovidiu Jurjut, Matilde Fiorini, Steffen
Katzner, and Laura Busse. Effects of locomotion extend throughout the mouse
early visual system. Current Biology, 24(24):2899–2907, 2014.

[186] Morgane M Roth, Johannes C Dahmen, Dylan R Muir, Fabia Imhof, Fran-
cisco J Martini, and Sonja B Hofer. Thalamic nuclei convey diverse contextual
information to layer 1 of visual cortex. Nature neuroscience, 19(2):299, 2016.

[187] Michel Pierre Janisse. Pupillometry: The psychology of the pupillary response.
Halsted Press, 1977.

[188] Jacob Reimer, Emmanouil Froudarakis, Cathryn R Cadwell, Dimitri Yat-
senko, George H Denfield, and Andreas S Tolias. Pupil fluctuations track fast
switching of cortical states during quiet wakefulness. Neuron, 84(2):355–362,
2014.

[189] Karolina Socha, Matthew R Whiteway, Daniel A Butts, and Vincent Bonin.
Forward visual motion increases arousal and biases tuning measurements in
mouse visual cortex. Current biology, 2018.

[190] John W Krakauer, Asif A Ghazanfar, Alex Gomez-Marin, Malcolm A MacIver,
and David Poeppel. Neuroscience needs behavior: correcting a reductionist
bias. Neuron, 93(3):480–490, 2017.

[191] Matthew A Smith and Adam Kohn. Spatial and temporal scales of neuronal
correlation in primary visual cortex. Journal of Neuroscience, 28(48):12591–
12603, 2008.

[192] Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions
to the nonlinear dynamics of learning in deep linear neural networks. arXiv
preprint arXiv:1312.6120, 2013.

194

[193] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality
of data with neural networks. science, 313(5786):504–507, 2006.

[194] Peiran Gao, Eric Trautmann, M Yu Byron, Gopal Santhanam, Stephen Ryu,
Krishna Shenoy, and Surya Ganguli. A theory of multineuronal dimensionality,
dynamics and measurement. bioRxiv, page 214262, 2017.

[195] Ingmar Kanitscheider, Ruben Coen-Cagli, Adam Kohn, and Alexandre
Pouget. Measuring fisher information accurately in correlated neural pop-
ulations. PLoS computational biology, 11(6):e1004218, 2015.

[196] Joshua I Glaser, Raeed H Chowdhury, Matthew G Perich, Lee E Miller, and
Konrad P Kording. Machine learning for neural decoding. arXiv preprint
arXiv:1708.00909, 2017.

[197] David BT McMahon, Igor V Bondar, Olusoji AT Afuwape, David C Ide, and
David A Leopold. One month in the life of a neuron: longitudinal single-unit
electrophysiology in the monkey visual system. Journal of Neurophysiology,
112(7):1748–1762, 2014.

[198] Bruno B Averbeck, Peter E Latham, and Alexandre Pouget. Neural corre-
lations, population coding and computation. Nature reviews neuroscience,
7(5):358, 2006.

[199] Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren
Seibert, and James J DiCarlo. Performance-optimized hierarchical models
predict neural responses in higher visual cortex. Proceedings of the National
Academy of Sciences, 111(23):8619–8624, 2014.

[200] Ralf M Haefner, Pietro Berkes, and József Fiser. The implications of percep-
tion as probabilistic inference for correlated neural variability during behavior.
arXiv preprint arXiv:1409.0257, 2014.

[201] Klaus Wimmer, Albert Compte, Alex Roxin, Diogo Peixoto, Alfonso Renart,
and Jaime De La Rocha. Sensory integration dynamics in a hierarchical net-
work explains choice probabilities in cortical area mt. Nature communications,
6:6177, 2015.

[202] Stefano Panzeri, Christopher D Harvey, Eugenio Piasini, Peter E Latham, and
Tommaso Fellin. Cracking the neural code for sensory perception by combining
statistics, intervention, and behavior. Neuron, 93(3):491–507, 2017.

[203] Makoto Fukushima, Richard C Saunders, David A Leopold, Mortimer
Mishkin, and Bruno B Averbeck. Differential coding of conspecific vocal-
izations in the ventral auditory cortical stream. Journal of Neuroscience,
34(13):4665–4676, 2014.

[204] Richard O Duda, Peter E Hart, David G Stork, et al. Pattern classification,
volume 2. Wiley New York, 1973.

195

[205] Andrew R Mitz, Ramon Bartolo, Richard C Saunders, Philip G Browning,
Thomas Talbot, and Bruno B Averbeck. High channel count single-unit
recordings from nonhuman primate frontal cortex. Journal of neuroscience
methods, 289:39–47, 2017.

[206] Avanti Athreya, Donniell E Fishkind, Keith Levin, Vince Lyzinski, Youngser
Park, Yichen Qin, Daniel L Sussman, Minh Tang, Joshua T Vogelstein, and
Carey E Priebe. Statistical inference on random dot product graphs: a survey.
arXiv preprint arXiv:1709.05454, 2017.

[207] Daniel J Felleman and DC Essen Van. Distributed hierarchical processing in
the primate cerebral cortex. Cerebral cortex (New York, NY: 1991), 1(1):1–47,
1991.

[208] Bo-Cheng Kuo, Mark G Stokes, Alexandra M Murray, and Anna Christina
Nobre. Attention biases visual activity in visual short-term memory. Journal
of cognitive neuroscience, 26(7):1377–1389, 2014.

[209] N Dijkstra, P Zeidman, S Ondobaka, MAJ Gerven, and K Friston. Distinct
top-down and bottom-up brain connectivity during visual perception and im-
agery. Scientific reports, 7(1):5677, 2017.

[210] Mark Stokes, Russell Thompson, Rhodri Cusack, and John Duncan. Top-down
activation of shape-specific population codes in visual cortex during mental
imagery. Journal of Neuroscience, 29(5):1565–1572, 2009.

[211] Tomoyasu Horikawa, Masako Tamaki, Yoichi Miyawaki, and Yukiyasu Kami-
tani. Neural decoding of visual imagery during sleep. Science, 340(6132):639–
642, 2013.

[212] Yuval Nir and Giulio Tononi. Dreaming and the brain: from phenomenology
to neurophysiology. Trends in cognitive sciences, 14(2):88–100, 2010.

[213] Paul C Bressloff, Jack D Cowan, Martin Golubitsky, Peter J Thomas, and
Matthew C Wiener. What geometric visual hallucinations tell us about the
visual cortex. Neural computation, 14(3):473–491, 2002.

[214] Renaud Jardri, Kenneth Hugdahl, Matthew Hughes, Jérôme Brunelin, Flavie
Waters, Ben Alderson-Day, Dave Smailes, Philipp Sterzer, Philip R Corlett,
Pantelis Leptourgos, et al. Are hallucinations due to an imbalance between
excitatory and inhibitory influences on the brain? Schizophrenia bulletin,
42(5):1124–1134, 2016.

[215] Yanping Huang and Rajesh PN Rao. Predictive coding. Wiley Interdisci-
plinary Reviews: Cognitive Science, 2(5):580–593, 2011.

[216] Rajesh PN Rao and Dana H Ballard. Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects. Nature
neuroscience, 2(1):79, 1999.

196

[217] Wei Ji Ma, Jeffrey M Beck, Peter E Latham, and Alexandre Pouget.
Bayesian inference with probabilistic population codes. Nature neuroscience,
9(11):1432, 2006.

[218] Gergő Orbán, Pietro Berkes, József Fiser, and Máté Lengyel. Neural variability
and sampling-based probabilistic representations in the visual cortex. Neuron,
92(2):530–543, 2016.

[219] Marc O Ernst and Martin S Banks. Humans integrate visual and haptic
information in a statistically optimal fashion. Nature, 415(6870):429, 2002.

[220] Konrad P Kording and Daniel M Wolpert. Bayesian integration in sensorimo-
tor learning. Nature, 427(6971):244, 2004.

[221] Laurence Aitchison and Máté Lengyel. With or without you: predictive coding
and bayesian inference in the brain. Current opinion in neurobiology, 46:219–
227, 2017.

[222] Bruno A Olshausen. 20 years of learning about vision: Questions answered,
questions unanswered, and questions not yet asked. In 20 Years of Computa-
tional Neuroscience, pages 243–270. Springer, 2013.

[223] Eric Jonas and Konrad Paul Kording. Could a neuroscientist understand a
microprocessor? PLoS computational biology, 13(1):e1005268, 2017.

[224] Yuri Lazebnik. Can a biologist fix a radio?or, what i learned while studying
apoptosis. Cancer cell, 2(3):179–182, 2002.

[225] Joshua T Vogelstein, Katrin Amunts, Andreas Andreou, Dora Angelaki, Gior-
gio Ascoli, Cori Bargmann, Randal Burns, Corrado Cali, Frances Chance, Miy-
oung Chun, et al. Grand challenges for global brain sciences. arXiv preprint
arXiv:1608.06548, 2016.

[226] Larry F Abbott, Dora E Angelaki, Matteo Carandini, Anne K Churchland,
Yang Dan, Peter Dayan, Sophie Deneve, Ila Fiete, Surya Ganguli, Kenneth D
Harris, et al. An international laboratory for systems and computational
neuroscience. Neuron, 96(6):1213–1218, 2017.

197

	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Overview
	The biological neuron: basic anatomy and physiology
	Data acquisition methods
	Extracellular recordings
	Two-photon imaging

	Statistical models of single neurons
	Linear models
	Generalized linear models
	Hierarchical models
	Regularization
	Evaluating model performance

	Variability in single neuron responses
	Noise correlations
	Global fluctuations

	Latent variable models of neural populations
	Linear factor model framework
	Factor Analysis
	Principal Component Analysis
	Independent Component Analysis
	Autoencoders

	The Rectified Latent Variable Model (RLVM)
	Introduction
	Results
	Model formulation
	Validation of the RLVM using simulated data
	Application of the RLVM to two-photon experiments

	Discussion
	Relationships to other latent variable models
	Model extensions

	Methods
	Fitting the RLVM
	Model fitting details
	Evaluating model performance
	Simulated data generation
	Experimental data

	The Generalized Affine Model (GAM)
	Introduction
	Results
	The unconstrained affine model outperforms constrained version
	Affine model recapitulates results of previous models
	LGN activity in awake mice is additive and multiplicative
	Is the affine model a good description of early visual responses?

	Discussion
	Methods
	Experimental data
	The Generalized Affine Model
	The Stacked Rectified Latent Variable Model (SRLVM)
	Evaluating model performance

	The Latent Variable (LV) Decoder
	Introduction
	Results
	Describing noise correlations with latent variables
	Decoding in the presence of latent variables
	Validating the LV decoder with simulated data
	Decoding PFC activity during decision-making
	Decoding V1 activity during passive viewing

	Discussion
	Information-limiting noise correlations
	Non-information-limiting noise correlations
	Limitations of the study

	Methods
	The LV decoder
	Training and evaluating decoders
	Simulated data generation
	Experimental data

	Appendix: Single latent variable example

	Conclusions
	Latent variable models for neuroscience
	The role of feedback in perception
	Understanding the brain

	Bibliography

