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 The built environment negatively affects the water cycle, introducing chemicals 

and nutrients into the system, impacting the ability of plant, fi sh, and animal species 

to survive.  Stretching from New York to Virginia, the 64,000 square miles of the 

Chesapeake Bay watershed includes housing, commerce, and industry for 16.6 million 

people.  While architecture is typically designed to shed precipitation away from 

buildings, it is not typically designed for the on-site retention and management of that 

rain, snow, and sleet.  Exploring the possibilities of ecoregion-specifi c environments 

illustrates the best practices for rainwater harvesting and storm water management across 

the varied landscapes of the Chesapeake Bay watershed.  By using technologies such as 

cisterns, green roofs, and constructed wetlands, the built environment can be designed to 

decrease our need for expensive water purifying infrastructure and preserve the health of 

fragile estuary ecosystems such as the Chesapeake Bay.
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Chapter 1: Introduction

Sustainability and Green Architecture

 While sustainability as a cultural movement is a relatively new concept, the idea 

of building in tune with nature is not.  Before the domestication of electric power in 

18821 and the advent of air conditioning in the fi rst half of the twentieth century2, the 

only way to create a building that provided inhabitants with suffi cient access to light and 

air was to design a building that was in tune with natural cycles.  Modern technological 

systems that have granted architects the opportunity to control the indoor environment 

have provided more fl exible design alternatives, but they have also created pitfalls.  Our 

ability to control the environment has allowed us to fundamentally change the way we 

relate to the natural world, for example, our relationship to local temperature.

 Before air conditioning allowed architects to dictate the exact indoor temperature 

and humidity of a structure, buildings were constructed in forms and materials that 

specifi cally related to the regional climate characteristics of the place.  Compact 

structures with central hearths were typical of colder climates while expansive covered 

porches were standard practice in more temperate areas.  New technology has changed 

this sort of regional approach to design as “with our current technology the temperature 

of a place need not be associated with the form of the building or the materials used or 

the region where it is located. But how unsatisfying is this dissociation of warmth or 

coolness from all of our other senses!”3  We have created buildings that provide thermal 

1 Reyner Banham. The Architecture of the Well-Tempered Environment. (Chicago: 
University of Chicago Press, 1969), 25.
2 Ibid, 83.
3 Lisa Heschong. Thermal Delight in Architecture. (Cambridge, Massachusetts: The 
MIT Press, 1979), 25.
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comfort, but is the architectural experience as rich when there is no variety in the 

temperate experience and no relationship to place?

 Society champions the advances man has made in controlling the natural 

environment, but our words and actions do not always match.  In our fast-paced, 

mechanized world, “there is a good deal of irony in the fact that to stave off physical 

and mental deterioration the urban dweller periodically escapes his splendidly appointed 

lair to seek bliss in what he thinks are primitive surroundings: a cabin, a tent, or, 

if he is less hidebound, a fi shing village or hill town abroad. Despite his mania for 

mechanical comfort, his chances for fi nding relaxation hinge on its very absence.”4  

While we simultaneously demand the ability to control the climatic conditions of our 

built environment, we also seem to have an innate need to be a part of the natural world 

without technological innovations.

 Sustainability is at present a notoriously diffi cult term to defi ne and is often 

interchangeably used with ecological design, green design, and green architecture.  To 

differentiate these ideas in terms of the built environment, sustainability refers to creating 

structures that contribute to the overall economic, social, and environmental health of a 

society in a way that can be continued in perpetuity.  Ecological and green design as well 

as green architecture have a more focused defi nition and consider only the ability of the 

built environment to respond to natural surroundings in a way that is mutually benefi cial.  

Ecological and green design and green architecture do not intentionally respond to social 

or economic considerations, although as the costs of energy and infrastructure increase, 

4 Bernard Rudofsky. Architecture Without Architects: A Short Introduction to Non-
Pedigreed Architecture. (Garden City, New York: Doubleday & Company, Inc., 1964), no 
page number.
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designing ecologically can have signifi cant fi nancial benefi ts.  While sustainability is 

an idealized goal, the work proposed in this thesis deals with green architecture and 

ecological design far more so than it does true sustainability.

 Perhaps the fi rst move toward ecological design was related to air quality.  In the 

era before electric lighting when the gaslight was king and buildings were created as tight 

envelopes in order to minimize drafts, poor air quality in buildings was a natural result 

of burning gas in small, enclosed spaces without providing suffi cient access to fresh air.  

Doctors, more than architects, were the fi rst 

to notice the affects of indoor environmental 

problems as their patients would come in 

with ailments that could only be caused by 

poor access to fresh air.  Doctors thus became 

some of the fi rst ecological designers, 

creating houses that addressed issues of 

ventilation to solve human health problems.5

 Dr. John Hayward designed and 

constructed a particularly notable house in 

1867, the Octagon, which addressed issues of 

health and ventilation in the indoor environment in an integrated, holistic way.  Illustrated 

in fi gure 1, the basement level was used as a plenum in which fresh air was collected 

and warmed by passing it over hot water pipes.  A central corridor served as a vertical 

convection space in which hot air would rise and be distributed to the adjoining rooms 

5 Reyner Banham. The Architecture of the Well-Tempered Environment. (Chicago: 
University of Chicago Press, 1969), 29-44.

p g

Figure 1:  A section through Hayward’s Octagon 
House.  From The Architecture of the  Well-
Tempered Environment, 36.
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through vents at ceiling level.  While this provided a steady supply of fresh air to each 

room in the house, a fi replace in each room served to keep the air in each space warm.  A 

central vent above the gaslight allowed for warm exhaust air to be drawn up and out of 

the room and exhausted into a foul air fl ue in the attic.  The whole convection system was 

pressurized by the continuously burning kitchen fi re.6  Given this precedent, it is clear 

that issues of ventilation and air quality have been a signifi cant part of ecological design 

for over one hundred years.  Solving these design challenges has grown from Hayward’s 

common sense design to include advanced mechanical equipment, and responding to 

human needs for fresh air is a challenge in the built environment for which practitioners 

are well-equipped to design.

 The same mechanical equipment that allows us to have control over indoor 

environmental conditions also utilizes a signifi cant amount of energy.  “From the 

beginning of the twentieth century to the early 1970s, electric power use grew by 400 

times in the United States,”7 due mostly to greater quantities of electric lighting and the 

increasing use of mechanical equipment in ventilation.  This put increasing demands 

on fossil fuel resources and has led to increasing confl ict between the oil-rich and oil-

poor countries of the world, including the Arab Oil Embargo of 1973-1974.8  This event 

led to a signifi cant shift in American attitudes toward indoor environmental control and 

ventilation systems changed over from predominantly constant air volume (C.A.V.) 

systems to variable air volume (V.A.V.) systems which utilized less energy.9  Mechanical 

6 Ibid, 35-38.
7 D. Michelle Addington, “Good-bye, Willis Carrier.” In The Green Braid, ed. Kim 
Tanzer and Rafael Longoria, 160-172 (New York: Routledge, 2007). 
8 Ibid.
9 Ibid.
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systems have continuously been designed to meet higher energy effi ciency standards 

and have begun to utilize new forms of energy in the built environment.  The amount of 

energy required to operate buildings and the means used to supply this need are an on-

going conversation in ecological design circles.

 Providing for the construction and operation of buildings through traditional 

means, the burning of fossil fuels, uses a signifi cant amount of energy.  In 2004, the 

energy used in the operation of buildings totaled 39 quadrillion British Thermal Units 

(BTUs), which accounts for approximately 39% of the total amount of energy consumed 

in the United States during that year.  Industry and transportation together represent 

the other 61% of energy used in the United States.10  Data also illustrates that there is 

approximately a one-to-one correlation between the amount of energy used and the 

amount of carbon dioxide emissions produced by buildings.  Buildings thus accounted 

for 38% of the carbon emissions generated in the United States in 2004.11  These statistics 

make it clear that changes in the way we construct and maintain our built environment 

can have signifi cant impacts on the amount of energy used and the emissions produced.  

 The 39 quadrillion BTUs of energy used in buildings can be further subdivided 

into 18 quadrillion BTUs for commercial buildings and 21 quadrillion BTUs for 

residential buildings.12  While these fi gures are relatively similar, the fact that residential 

buildings tend to use more energy than commercial buildings means a greater impact can 

be made on reducing our energy use and carbon emissions by revisiting how we power 

our homes.    Statistics from the Buildings Energy Data Book indicate that renewable 

10 Pat Murphy, “The Energy Impact of Our Buildings,” New Solutions, Number 11, 
January 2007, 1.
11 Ibid.
12 Ibid.
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energy use in buildings in the last fi ve years has represented less than 1% of all energy 

used to operate our buildings.  Natural gas and electricity represent the lion’s share of 

energy use in buildings and all possible steps should be taken to increase our use of 

renewable energy sources while decreasing our dependence on fossil fuels.13

 While the conversation about energy effi ciency gets signifi cant media attention, 

and it is certainly important in creating green architecture, there are critical resources 

that are ignored in that conversation, specifi cally water.  Access to safe potable water 

is a basic necessity for life.  While one might be able to live without consuming the 

amounts of energy that many Americans take for granted, no one in any country on earth 

can survive without access to water.  More than two million people die worldwide of 

water-borne diseases each year with most being children below fi ve years of age.14  Water 

is contaminated by more than 116,000 man-made chemicals including the pesticides 

used to fertilize crops, the chemicals our societies have created as weapons, and the 

pharmaceutical drugs we prescribe to preserve health.  These chemicals all make their 

way into streams, waterways, and aquifers as runoff from the built environment or as 

human wastes fl ushed down toilets.  We have no idea what happens when these chemicals 

interact, and yet that is exactly what happens when these chemicals meet in our rivers and 

streams.  We take water from these same rivers and streams, put it into our water supply, 

and the process repeats.  The water we use today has a fundamentally different chemical 

composition than the water people used one hundred years ago and we do not have a 

clear understanding of the impact that is creating in plant, fi sh, and animal species around 

13 U.S. Department of Energy: 2008 Buildings Energy Data Book, (Washington, 
D.C.: GPO, March 2009), 1-4 through 1-5.
14 Flow: How Did a Handful of Corporations Steal Our Water?, DVD, directed by 
Irena Salina (New York: Oscilloscope Pictures, 2008). 
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the world.15  Beyond the impacts to other species, we also have no idea what the changing 

chemical composition of water is doing to our own species.

 If we are truly to develop green buildings, solving the issues of light and air and 

the energy crisis in the built environment will not be enough.  We must design buildings 

that are in tune with the water cycle that conserve water and fi lter out the contaminants 

modern processes add to the preciously fi nite amount of water available to us.  We 

must create a “blue architecture” of sorts that allows our built environment to become a 

steward of our water supply.  This thesis seeks to explore ecological design by fi nding 

answers to the issues of storm water management in the Chesapeake Bay watershed 

through architectural design.  The four design propositions that follow have allowed for 

exploration of the following research questions:

 How can the built environment be a better mediator of the water cycle?

 How do ecoregions affect the way buildings can best mediate the water cycle?

 What is the ideal relationship between the built environment and the water cycle?

Providing answers to these questions will start to fi ll in the gap of knowledge we have 

in green architecture regarding the way the built environment interacts with our water 

system.

 The Water Cycle and the Built Environment

 To design a better relationship between the water cycle and the built environment 

it is critical to understand what is broken in today’s water cycle.  Figure 2 illustrates the 

water cycle in ideal circumstances.  Water on the surface of rivers, lakes, streams, and 

oceans is heated by the sun and evaporates into the air as vapor.  In addition to this vapor, 

15 Ibid.
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Figure 2:  The water cycle. Diagram from Dunnett, Nigel and Andy Clayden.  Rain Gardens:  Managing 
water sustainably in the garden and designed landscape.  London:  Timber Press, 2007.

plants and landmasses transpire, which also puts water into the atmosphere.  All of this 

vapor condenses as it cools into clouds which are moved at the whimsy of the winds.  

Once the clouds become heavy and laden with water, precipitation brings this water 

back down to the earth as snow, rain, sleet, and hail.  This water feeds the plants which 

lets them grow, assists in the transit of nutrients in rivers and streams, and can percolate 

underground to recharge aquifers.16  As is true of most idealized cycles, however, this 

ideal relationship almost never occurs simply because of the built environment humans 

have introduced into the landscape.

 Figure 3 shows a graphic representation of the impacts of the built environment 

on the water cycle.  The furthest left image depicts the situation in which the idealized 

water cycle most nearly occurs.  In this situation, only 0 to 10% of the land area is 

16 Howard Perlman, “Summary of the Water Cycle,”  The Water Cycle,  http://
ga.water.usgs.gov/edu/watercyclesummary.html.
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covered by hardscape and 40% of water that falls on the site immediately evapotranspires 

back to the atmosphere.  Ten percent of precipitation in this situation runs along the 

surface, 25% feeds the plants, and an amazing 25% has the opportunity to reach deep 

infi ltration and recharge groundwater resources.  Moving further right, it is clear that 

increasing hardscape has a catastrophic impact on the relationships of the water cycle.  

When 75 to 100% of the land area is hardscape, common in our urban and even some 

suburban environments, almost no water is available for infi ltration of any kind and most 

water, 55%, becomes runoff.  Our built environment fundamentally changes the water 

cycle, a natural phenomenon that happens all over the globe. Because the water cycle is 

a global natural cycle, the issues that the built environment needs to solve with regards 

to water happen at every scale of design and development, from the global to the detail 

scale.  The research questions posed by this thesis are most interested in the regional, site, 

building, and details scales as they relate to the Chesapeake Bay watershed and as such 

this work has focused itself on the Bay and its watershed while largely ignoring water-

related issues that are simultaneously occurring at larger scales.
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Chapter 2:  Site

The Chesapeake Bay and its Watershed

 “Two hundred years from now, in 2177, someone like me, with every one of my 

apprehensions, will be lunching in Patamoke and weighing the future of the Chesapeake.  

We have to ensure that the bay still exists for him to worry about.”1

 The Chesapeake Bay as we know it today took shape approximately 3000 years 

ago following the last Ice Age when melting glaciers carved the streams and rivers that 

would  eventually become tributaries to the Chesapeake Bay and the Atlantic Ocean 

beyond.  While the Bay itself is part of the Atlantic Coastal Plain, it is notable that the 

chemical identity of water coming from each of the four ecoregions comprising the Bay 

watershed is different.2 The chemical makeup of water within the Chesapeake Bay varies 

depending on how much runoff from these different ecoregions is running into the Bay 

as well as how much salt water from the Atlantic Ocean is drawn into the Bay by tidal 

movements.  This unique environment where freshwater and saltwater mix is called 

an estuary.  Changes in the amount of water coming from each of the aforementioned 

sources affect the salinity, temperature, oxygen level, and sediment composition of the 

Bay.3  As the largest estuary in the United States, the Chesapeake Bay is home to more 

than 3600 plant, fi sh, and animal species and changes to the subtle nutrient balance in the 

1 James A. Michener.  Chesapeake:  A Novel.  (New York: Random House, 2003), 
850.
2 Chesapeake Bay Program, “Bay Geology,”  The Bay Watershed,
http://www.chesapeakebay.net/baygeology.aspx?menuitem=14604.
3 Susannah Lawrence. The Audubon Society Field Guide to the National Place of 
the Mid-Atlantic States, (New York: Pantheon, 1984), 180-184. 
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water content of the Bay affect their ability to adapt and survive.4

 Understanding the subtle ecological balance of the Bay can best be done by 

overlaying a three-dimensional grid over the area.  As illustrated in Figures 4-5, there 

are nine divisions of the Bay west-east, nine divisions north-south.  The farthest west 

in the Bay has the largest component of freshwater, while the farthest east has the 

greatest salinity.  The northern waters contains less salt than the southern waters.  These 

two gradients, when combined as in Figure 6, demonstrate the there is a gradient from 

northwest to southeast that transitions the Bay from freshwater to saltwater.  There is 

additionally a difference between the water on the top layer of the Bay and the bottom 

layer of the Bay because saltwater is denser than freshwater and therefore sinks to the 

bottom as illustrated in Figure 7.5

 Given these three coordinates, the west-east grid quadrant, the north-south grid 

quadrant, and whether the water is on the top or the bottom of the Bay, a scientist can 

accurately describe the plant, fi sh, and animal life capable of surviving in that area of the 

Bay because of that quadrant’s salt and nutrient content.  As an estuary, the Chesapeake 

Bay acts as a fi lter for contaminated water, but the 64,000 square miles of the Chesapeake 

Bay watershed fl ushes too many pollutants into the Bay for the nutrient and salinity 

balance of the Bay to be maintained with the degree of subtlety described above.

 The geologic processes that have produced such a dynamic yet fragile ecosystem 

have also “provided the raw materials for the farming, fi shing, and manufacturing 

4 Chesapeake Bay Program, “Facts & Figures,”  About the Bay, http://www.chesa-
peakebay.net/factsandfi gures.aspx?menuitem=14582.
5 Chesapeake Bay Program, “Physical Characteristics,”  About the Bay, http://www.
chesapeakebay.net/physicalcharacteristics.aspx?menuitem=14657.
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Figure 4:  West-East freshwater to saltwater 
gradient.  The Bay is mostly freshwater to the west, 
mostly saltwater to the east.

Figure 5:  North-South freshwater to saltwater 
gradient.  The Bay is mostly freshwater to the 
north, mostly saltwater to the south.

Figure 6:  Northwest-Southeast freshwater to saltwater gradient.  The Bay is mostly freshwater in the 
northwest, mostly saltwater in the southeast.

Figure 7:  Top to bottom freshwater to saltwater gradient.  The Bay is mostly freshwater on the top, mostly 
saltwater on the bottom.
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industries”6 that have shaped life in the Chesapeake Bay watershed.  The soil that 

composes the Chesapeake region is topped by a thick fertile layer which supports large-

scale farming interests and the rich estuary ecosystem of the Bay sponsors biodiversity 

which allows fi shing to be profi table.  Iron, copper, and chromium reserves in the region’s 

ground, when coupled with large deposits of coal, create a land primed for industrial 

development.7  These resources have been used since the population of the Chesapeake 

region and continue to “infl uence the economy and the region long after the initial 

exploitation of those resources has died out.”8 Because the initial use of these resources 

was largely unregulated and uncontrolled, the legacy left by agricultural, fi shing, and 

industrial interests is one that requires the present population of the watershed to reverse 

the ecological damage has been done in the past and which continues into contemporary 

water management practices.

 The Chesapeake region is expansive.  Covering 64,000 square miles, the 

Chesapeake Bay watershed covers parts of New York, Pennsylvania, Maryland, 

Delaware, West Virginia, Virginia, and the District of Columbia.9  It is also home to 

more than 16.6 million people.10  Figure 8 illustrates the geographic area that drains to 

the Chesapeake Bay in grey while also providing the adjacent states for context.  The 

Chesapeake Bay is the area in white formed by the shores of Maryland and Virginia.  

While the watershed does cross multiple state boundaries, it is notable that nearly the 

6 George W. Fisher and Jerry R. Schubel, “The Chesapeake Ecosystem: Its Geolog-
ic Heritage,” in Discovering the Chesapeake, eds. Philip D. Curtin, Grace S. Brush, and 
George W. Fisher, (Baltimore, MD: The Johns Hopkins University Press, 2001), 1-14.
7 Ibid.
8 Ibid.
9 Chesapeake Bay Program, “Facts & Figures,” Facts and History, http://www.
chesapeakebay.net/factsandfi gures.aspx?menuitem=14582.
10 Ibid.
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Figure 8:  Map identifying the area of the Chesapeake Bay watershed.

entire state of Maryland falls within the watershed while only small portions of New York 

and West Virginia are included.

 Unlike the other states that are part of the Chesapeake Bay watershed, Maryland 

is united by its interest in the Chesapeake Bay because almost all water used in Maryland 

eventually ends up in the Bay.  Along with Maryland’s proximity to the Bay itself, the 

idea that most water used in Maryland ends up in the Chesapeake Bay might suggest 

preservation of the Bay and its watershed are more actively felt in the state of Maryland 

than in other states where the Chesapeake Bay watershed is only part of the natural water 

drainage system of the state and the Bay itself is distant.  Even though the Bay may be 
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distant from some parts of its watershed, “everyone in the watershed lives just a few 

minutes from one of the more than 100,000 streams and rivers that drain into the Bay.  

Each of these tributaries can be considered a pipeline from communities to the Bay.”11 

Communicating the importance of water management and the impact people across the 

watershed are having on the health of the Chesapeake Bay to those who live distant from 

this natural resource is an important step in preserving the Bay’s health.

 The Chesapeake Bay watershed needs to be understood as a set of ecological 

relationships without consideration of the state boundaries crossed.  The diffi culty of 

studying a geological entity that crosses into multiple state jurisdictions and countless 

smaller municipalities is that no one entity is responsible for maintaining information 

on the watershed.  States and other political and institutional entities fund research and 

as a result data are easily found on smaller subsets within the watershed as well as areas 

larger than the watershed.  Finding Geographic Information System (GIS) data that limits 

itself to the extents of the Chesapeake Bay watershed require culling data from multiple 

sources including the U.S. Geological Survey, the National Atlas, and the Environmental 

Protection Agency.

 If we are truly to achieve buildings that work within their geological context, 

it is important that research be conducted on the scale of geological features and that 

the arbitrary political boundaries we have created to defi ne areas on the earth become 

less signifi cant.  If data on an ecologic basis are made more easily accessible, architects 

and others invested in the improvement of the relationship between the natural and the 

built environments would have a better opportunity to use geological data to inform 

11 Ibid.
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Figure 9:  Map identifying the major river watersheds that comprise the Chesapeake Bay watershed.

their design processes.  At a regional scale, stewards of the built environment need to 

encourage such work to be continued and made publicly available.

 It is more constructive to understand the Bay watershed as a number of smaller 

watersheds than to divide it by state lines.  Illustrated in Figure 9, eight major river 

watersheds comprise the larger region that drains to the Chesapeake Bay.  From north 

to south these watersheds are:  the Susquehanna watershed, the Potomac watershed, the 

Patuxent watershed, Maryland’s western shore, the eastern shore, the Rappahannock 

watershed, the York watershed, and the James watershed.  Of these watersheds, the 

Susquehanna, Potomac, and James watersheds cover the largest geographic areas.  The 
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Susquehanna, Potomac, and eastern shore watersheds are the only three within the 

larger whole to cross state lines.  Because the Patuxent and western shore watersheds 

fall exclusively in Maryland and the Rappahannock, York, and James watersheds fall 

exclusively in Virginia, it may be easier to manage the water runoff specifi cally in these 

watersheds because it requires less inter-state cooperation.  While highlighting the 

various watersheds comprising the Chesapeake Bay watershed identifi es smaller divisions 

within the larger whole, these areas are not readily different enough from one another to 

merit a reasonable way to test how storm water management design changes based on 

ecological factors.

 Another way to segment the area of the Chesapeake Bay watershed is to look 

at the major ecoregions comprising it.  Figure 10 illustrates the four ecoregions that are 

a part of the watershed.  From north to south these ecoregions are:  the Appalachian 

Plateau, the Appalachian Mountains, the Piedmont, and the Coastal Plain.  These 

geographic areas have fundamentally different geological conditions and are part of the 

water cycle at different points.  The Appalachian Plateau sits at the top of the watershed 

and has the springs which feed the headwaters of the Susquehanna River.  This ecoregion 

also features many small networked streams and riverbeds etched into fl at areas 

punctuated by deep gorges where major rivers have carved into the layered sedimentary 

rock.12  The Appalachian Mountains ecoregion includes a series of steeper folded rock 

features with strong ridge lines.  The Blue Ridge, on the southeast edge of this ecoregion, 

includes volcanic and granitic rocks as well as much of the coal that has powered industry 

in the Chesapeake region.13  Continuing south, the Piedmont can be characterized as 

12 Ibid.
13 Ibid.
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“a gently rolling upland”14 similar to the Appalachian Plateau, but with a different soil 

composition.  Where the Appalachian Plateau features layered sedimentary rock, the 

Piedmont consists of a mix between igneous, metamorphic, and sedimentary rocks.  The 

streams are similarly networked in this ecoregion and it is this land that provides the most 

prime real estate for agriculture in the watershed.15  The lowlands to the east that surround 

the Bay, the Coastal Plain, also have rich soils from the sediment deposits carried by the 

east-fl owing streams on their way to the Chesapeake Bay.

 Also notable in the ecoregion understanding of the Chesapeake Bay watershed 

14 Ibid.
15 Ibid.

Figure 10:  Map identifying the ecoregions of the Chesapeake Bay watershed.
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is the signifi cant fall line which roughly aligns with the seam between the Piedmont and 

Coastal Plain ecoregions.  This fall line separates navigable waters from inland areas with 

a series of waterfalls which initially served as power sources for the cities that sprang up 

along the fall line.  Richmond, Virginia; Washington, D.C.; and Baltimore, Maryland all 

lie along the fall line and were initially port locations where goods would be transferred 

from oceangoing vessels to land-based transportation systems and vice versa.16  Figure 

11 illustrates the cities of the Chesapeake Bay watershed, including the clearly visible 

northeast corridor stretching from New York City in the northeast, outside the area of 

the Chesapeake region, to Washington, D.C. in the heart of the watershed.  South of 

Washington, D.C., the city of Richmond is clearly visible and Norfolk slightly stands 

out on the eastern edge of Virginia. Developing along the fall line, urbanization of the 

watershed initially started out with a clear understanding of our relationship to water, 

but somewhere between the initial settlement of the watershed and today that logic of 

developing in tune with water’s natural cycles was lost.

Regional Planning

 Because ecological design is not just a building issue but also one of regional 

planning, it is important to select building sites that are sustainable at a regional scale.  

Analysis was undertaken to determine the major interstate highway and passenger 

rail infrastructure within the Chesapeake region to understand how these two regional 

transit systems relate to where development has happened and what connections may be 

underutilized or under provided for in terms of regional connectivity.  

 Figure 12 identifi es the major interstate highways marking the watershed as well 

16 Ibid.
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as their connections to cities outside the watershed.  West of the major metropolitan areas 

along the fall line, the interstate highway system is far less prevalent.  While many east-

west connections exist across the watershed, there are far fewer north-south access routes 

inland than there are along the coastline and it is much more diffi cult to identify dense 

areas of development inland within the watershed.

 Mapping the cities across the same area (Figure 11) illustrated a similar pattern 

of a defi ned northeast corridor along the coast with development petering out north and 

west through the watershed.  Where Pittsburgh in western Pennsylvania and its suburbs 

are clearly visible  in Figure 11, they are notably not as well defi ned by the interstate 
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Figure 11:  Map identifying the cities of the Chesapeake Bay watershed.
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highway system as, for example, Baltimore or Philadelphia are.  Buffalo, New York is 

also much more easily identifi able in Figure 12 than in Figure 11.  This suggests not all 

urban areas that are a part of the watershed and its context are equally well-connected.  

While the obviously important connections are within the northeast corridor, it is much 

more diffi cult to understand what the important connections are between the coastal 

cities and the inland development when looking at the interstate highways and the urban 

developments.  Also evident in comparing the placement of the cities with the placement 

of the interstates is that aside from the northeast corridor, there is no clear ecological 
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Figure 12:  Map identifying the interstate highways that cross the Chesapeake Bay watershed.
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Figure 13:  Map identifying the Amtrak rail lines and stations that cross the Chesapeake Bay watershed.

explanation for why the interstate highways crisscross the watershed where they do.  A 

set of highways do seem to run along the breaks between the Appalachian Plateau and 

Appalachian Mountains ecoregions and a second set between the Appalachian Mountains 

and Piedmont ecoregions, but there are numerous other interstates in the watershed that 

seemingly have no connection to the ecosystem of the Chesapeake Bay watershed.

 Looking at passenger rail connections across the Chesapeake Bay watershed 

and its context in Figure 13 illustrates an even clearer breakdown between regional 

development and the natural processes of the Chesapeake Bay watershed.   Passenger 
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rail connections are similar to the interstate highway system in the watershed in that they 

are dominated by east-west connections and only provide major north-south connections 

along the coastline. The connection between Washington, D.C. and Pittsburgh is much 

more clearly legible in terms of passenger rail than it is in terms of interstate highways, 

but this relationship seems arbitrary and has no clear relationship to the ecoregion 

breakdowns of the watershed.  The frequency of train stations along the line stretching 

southwest from Washington, D.C. through Virginia and across southern West Virginia 

suggests that this line is well-utilized; the stations would not be profi table unless there 

were passengers making using of the station stops.

 Ultimately, however, the takeaway from looking at such regionally signifi cant 

infrastructure is that these systems are created without a clear regard for the water cycle 

and other natural systems.  The initial urban development of the watershed follows the 

fall line and clearly can be traced to interests in water, but subsequent development has 

ignored natural water systems and placed regional transit infrastructure without a clear 

relationship to the water which is the region’s most precious asset.

 Four Cities:  Comparative Analysis of Cities in the Chesapeake Bay Watershed

 Four cities, one representing each ecoregion, were selected for further study to 

understand what issues are salient for storm water management design at a fi ner grain.  

These cities served as the test sites for understanding how storm water management 

systems vary across the Chesapeake Bay watershed.  The 240 boroughs, Census 

designated places, cities, towns, and villages identifi ed in Figure 11 were sorted to 

understand which locations fell into which ecoregion.  Cursory analysis culled this initial 

set to 56 cities by eliminating sites without a clear urban form as well as those locations 
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within the watershed that did not have a direct adjacency to a Chesapeake Bay tributary 

or the Bay itself.  These criteria were developed because clear urban areas with a direct 

relationship to one of the Chesapeake Bay’s tributaries or the Bay itself provide greater 

opportunities to illustrate the interaction between the built environment and the issues 

of storm water management than locations that do not provide these characteristics.  

Given the scope of this thesis, preference was also given to small towns instead of major 

metropolitan areas such as Washington, D.C. and Baltimore.  The four towns selected for 

further study were: Corning, New York representing the Appalachian Plateau ecoregion; 

Nanticoke, Pennsylvania illustrating the Appalachian Mountains ecoregion; Columbia, 

Pennsylvania to represent the Piedmont ecoregion; and Havre de Grace, Maryland to 

illustrate the Coastal Plain ecoregion.  Figure 14 illustrates these cities in the context of 

their ecoregion and their location in the watershed relative to one another.

History

 Corning, NY.  Before jumping into the comparative analysis of the selected cities, 

it is important to have some historical background on why these towns exist and what 

their relationship to water has been over time.  Corning, New York lies approximately 

200 miles northwest of New York City and is home to 11,000 people and one very 

important corporate giant: Corning, Inc.17  Before the glass company gave the town a 

reason for being, the Corning area was a rural outpost for shipping and agricultural trade.  

Vast lumber resources were taken to market by fl oating the sections down the Chemung 

River via a process called rafting.  The river also provided power for sawmills.18  When 

17 Edmonson, Brad, “Corning’s Choice,” Preservation 53, no. 4 (2001): 42.
18 Tom Dimitroff.  “Settlement.” History of Corning, NY,  http://www.corningny.
com/visitors_history.shtml.
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this resource had been mostly consumed and the lumber business moved north and west, 

canal fever heralded the next phase of the area’s development.  As the Erie Canal brought 

prosperity to cities along its length, towns across New York state demanded connection to 

the canal network to encourage industry.  Elmira, Corning’s neighbor on the river, gained 

a feeder canal to the Erie system and boat traffi c increased industrial developments 

throughout the area although passenger travel via water routes remained low.19

 Corning was created as a speculative development by investors from Albany 

who purchased land along the Chemung River to create a new village, believing that 

19 Tom Dimitroff.  “Canals.” History of Corning, NY,  http://www.corningny.com/
visitors_history.shtml.

Corning, NY

Nanticoke, PA

Columbia, PA

Havre de Grace, MD

Figure 14:  Map identifying the four cities selected as representative of their particular ecoregions.
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a town where the planned railroad and existing canal business met would make a 

good investment.  The development, named after one of its initial investors, quickly 

grew and surpassed its predecessors in the area in terms of population, businesses, 

and services.  Corning became a bustling trade hub transferring coal, lumber, tobacco, 

grain, and whisky between river and land travel and vice versa.  Although the canals 

were abandoned in 1878, the railroads continued to provide year-round service to area 

industries including railroad and rock drilling manufacturing and glass making.20

 As these businesses brought employees and commercial activity to the area 

Corning developed the “stability, maturity, and wealth of an urban center.”21 In 1866, 

Corning resident Elias B. Hungerford invented an indoor blind which he unsuccessfully 

tried to get several glass companies to manufacture.  As he learned more about the 

glass industry, he began to believe his hometown would be an ideal site for a glass-

manufacturing fi rm.  Amory Houghton Sr., owner of what was then known as the 

Brooklyn Flint Glass Works, was also interested in moving his sluggish family business 

out of New York City.  Successful negotiations between the Corning, New York and the 

Brooklyn Flint Glass Works brought the company to Corning in 1868 as the Corning Flint 

Glass Company.22   The one-hundred-fi fty-year history of Corning, Inc. in Corning, New 

York tells a beautiful tale of big business being a good corporate citizen to a small town 

along a river.

 Beyond the relationship between the city and Corning, Inc.,other notable historic 

events include the fl ood of the Chemung River in 1972.  Six to eight inches of rain fell 

20 Ibid.
21 Tom Dimitroff.  “Industry.” History of Corning, NY,  http://www.corningny.com/
visitors_history.shtml.
22 Edmonson, Brad, “Corning’s Choice,” Preservation 53, no. 4 (2001): 44.
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into the Chemung River basin when Hurricane Agnes combined with a low-pressure 

system from the Midwest.  The dikes that controlled the river broke in multiple locations 

and by approximately 9 am on  June 23, 1972, the river reached its highest point in 

Corning.23  Many became trapped in their attics and second fl oors as the fl ood waters 

rose, although surprisingly few died given how unprepared the city was.  The waters 

only stayed high for a few hours, but the work of cleaning up took signifi cant assistance 

from the National Guard, the Salvation Army, the Department of Housing and Urban 

Development, and the Small Business Administration.  In the immediate aftermath of the 

fl ood, fresh drinking water was trucked in from as far as New York City to provide for 

Corning’s residents.24

 Corning Glass Works, as the company was known at this time, also suffered 

from the fl ood.  The factory found itself under twenty-fi ve feet of water, and while 

measures were taken to clean up the mess, Corning Glass Works also stepped up and 

assigned many employees to community projects where their skills could be utilized 

while the factory was being cleaned up.25  The company also quelled fears that Corning, 

Inc. might abandon the area by announcing “interest-free loans for employees and 

retired employees”26 to help fund the clean up effort.  The clean up, since 1972, has 

had visionary leadership which has used the fl ood’s destruction as an impetus for urban 

renewal and restoration of the historic character of the town.27

23 Tom Dimitroff.  “The Flood.” History of Corning, NY,  http://www.corningny.com/
visitors_history.shtml.
24 Ibid.
25 Ibid.
26 Ibid.
27 Tom Dimitroff.  “Post Flood.” History of Corning, NY,  http://www.corningny.
com/visitors_history.shtml.
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 Changes in Corning, New York also refl ect changes in Corning, Inc.  Where the 

company used to be mostly manufacturing, Corning, Inc. has seen its business shift to 

more research and engineering work.  Corning engineers were part of the development 

of optical communications and the company now creates 40% of the world’s fi ber optic 

cable.28  This has brought in a workforce of a slightly different character for Corning and 

the city itself has responded, developing museums, commerce, and tourist attractions.  

Corning, Inc. recognizes they must invest in the town in order to attract and retain the 

most talented employees for their industry.  In 2000 alone the company donated $1.6 

million to the YMCA, $2.2 million to the city library, $5 million for sewer improvements, 

$12.5 million for a new bridge, and $14 million for a new hotel.  Corning, Inc. is also 

responsible for the $2.5 million dollar historic renovation of the city’s town hall which is 

now going to be used as a mixed-use project.  “Local pride and deep pockets have turned 

the city’s fi ve-block historic district into a small-town American dream,”29 according to 

one writer.

 Corning’s relationship to the Chemung River has allowed the city to fl ourish 

with industry and commerce.  Although the technology has changed and the city no 

longer features an industrially active waterfront, the city’s renewal owes itself to the 

1972 fl ood. The fate of Corning, New York is intimately tied to Corning, Inc., but the 

diversifi cation of the company’s business since the fl ood has allowed the city to grow and 

expand beyond its industrial reason for being.  Development since 1972 has seen Corning 

become a center for tourism with the continued support of Corning, Inc.

  

28 Edmonson, Brad, “Corning’s Choice,” Preservation 53, no. 4 (2001): 44.
29 Ibid.
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 Nanticoke, PA.  Although its origins were in small-scale manufacturing, 

Nanticoke, Pennsylvania is the quintessential Pennsylvania coal mining town.  The area 

bounded by the Susquehanna River on the north and the Blue Ridge Mountain foothills 

to the south was settled in the 18th century by people who saw the opportunity apparent 

in the Susquehanna Rapids.  They established a gristmill, iron forge, and sawmill all 

powered by the river.30 The same asset in the rapids that provided power, their turbulence, 

also made it diffi cult for Nanticoke to establish itself as a port along the Susquehanna.  

The rapids made navigation diffi cult and while skilled pilots could take boats up and 

down the river, transit along this stretch of the Susquehanna River never particularly 

caught on as a business.31  The city remained small and was incorporated as a village in 

1830.32 While the river was eventually used as part of an extensive canal system around 

this time, “the canal was hardly completed before its insuffi ciency for the age became 

apparent,”33 and railroads quickly took over transportation of goods and passengers in the 

area in 1861.34

 A group of landowners with coal deposits formed the Nanticoke Railway 

company and created a rail line along the route of their lands to transit the coal they 

mined from the earth.  Within the decade this line was purchased by the Lehigh & 

Susquehanna company and was subsequently connected to more far-reaching railroads 

throughout Pennsylvania.35  The fi rst anthracite coal mine in the area opened in 1825, and 

30 History of Nanticoke, http://www.nanticokecity.com/history.htm#HISTORY.
31 Henry C. Bradsby, ed., History of Luzerne County, Pennsylvania, (Chicago: S.B. 
Nelson & Co., Publishers, 1893), 259.
32 History of Nanticoke, http://www.nanticokecity.com/history.htm#HISTORY.
33 Henry C. Bradsby, ed., History of Luzerne County, Pennsylvania, (Chicago: S.B. 
Nelson & Co., Publishers, 1893), 259.
34 Ibid.
35 Ibid, 261.
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it took approximately fi fty years for coal to catch on with the public and for Nanticoke to 

become a major coal-mining center in the region.36  The city was formally chartered as a 

Borough by the state of Pennsylvania in 1874 and the combination of rich coal deposits 

and rail transit to move the product to market allowed Nanticoke to reach its heyday 

between 1917 and 1925.37

 As coal moved from local entrepreneurs to big business, the Delaware, 

Lackawanna, and Western Railroad Company (DL&W) became prominent in the area.  

DL&W transited anthracite on extensive rail networks and slowly began to acquire coal-

rich land.38  By the 1870s the company’s holdings included 25,000 acres of the richest, 

most accessible coal fi elds in the region.39 The business brought an infl ux in population 

and housing was in short supply. In 1911 DL&W constructed Concrete City, a worker 

housing complex made of poured concrete, on the outskirts of Nanticoke to house its 

mine workers.40  The concrete city, now derelict and in ruins, was a unique solution to the 

issue of worker housing at the time.  Contemporary developments were stick-built and of 

low quality.  Concrete City utilized the modern construction of the day and while it did 

not have a wide impact on other corporate housing developments, it did create a pocket of 

forward-thinking development in an isolated community.41 

 Because DL&W controlled both the means of production for anthracite and the 

ability to transit that good to market, it was eventually ruled a monopoly by federal law 

36 History of Nanticoke, http://www.nanticokecity.com/history.htm#HISTORY.
37 Luzerne County, “City of Nanticoke,” Luzerne County Living, http://www.luzer-
necounty.org/living/municipalities/city_of_nanticoke.
38 Robert A. Janosov, “Concrete City: Garden Village of the Anthracite Region,” 
Pennsylvania Heritage, Summer 1997, 34.
39 Ibid.
40 Ibid, 32.
41 Ibid, 35.
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and the company was forced to divest itself of its coal land in 1908.42 After a series of 

court rulings and changes in operation and ownership, the mines became the property of 

the Glen Alden Coal Company in 1921.43  The new mining company also took ownership 

of Concrete City who abandoned the development in 1924 when sewer repairs proved 

to be cost prohibitive.  The demand for coal slowly declined as fuel oil, natural gas, and 

electricity use increased and by 1973 all of the coal mines were closed.44

 Today Nanticoke is dominated by residential development with a small amount of 

light manufacturing and retail and Luzerne County Community College’s main campus.45  

Development has not moved toward the river, potentially because of extensive fl ooding 

in the fi rst half of the 19th century.  While Corning, New York’s access to the river 

proved to make transit and industry possible, the turbulent characteristics of water in the 

Appalachian ecoregion led Nanticoke to develop the other resources available to them in 

the watershed.

 Columbia, PA.  Columbia, Pennsylvania is advantageously located in the 

Piedmont ecoregion of the Chesapeake Bay watershed on a wide, calm area of the 

Susquehanna River halfway between the county seats of York and Lancaster counties.  

The area was fi rst settled by Europeans in 1726 when John Wright, his family, and a 

small group of other settlers established permanent homesteads.46  Wright started a ferry 

service for goods and people to cross the Susquehanna in 1730 and the business quickly 

42 Ibid, 34.
43 Ibid.
44 History of Nanticoke, http://www.nanticokecity.com/history.htm#HISTORY.
45 Luzerne County, “City of Nanticoke,” Luzerne County Living,  http://www.luzer-
necounty.org/living/municipalities/city_of_nanticoke.
46 Columbia Borough, “History,” Borough of Columbia, Pennsylvania, http://psab-
content.com/columbiapa/content/history.php.
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became profi table.  Columbia, then known as Wright’s Ferry, was connected by road to 

Lancaster to the east in 1734 and by the end of the decade thirty-four miles of public road 

were laid south and west of the city to connect Wright’s Ferry to Monocacy Road which 

led to the Potomac River in Maryland.47  The crossing at Wright’s Ferry thus became a 

critical travel link during colonial development and the frequency of the travelers inspired 

development.

 Wright’s Ferry was the best connected river crossing point in the area and it was 

not uncommon that travelers would have to wait multiple days to cross the Susquehanna 

River.48  Businesses such as taverns, inns, and various dry goods stores sprang up to 

accommodate travelers and business remained strong until the fi rst bridge across the 

Susquehanna was built in 1814.49  By this time John Wright’s grandson Samuel had 

already laid out 160 lots and named the development Columbia after Christopher 

Columbus.50

 The turn of the 19th century brought canal fever to Columbia.  Canals 

were completed north of the city, but the falls south of the city remained rough and 

unnavigable.51  Columbia thus became the southernmost point of the canal route and 

developed as a hub where goods from northern and central Pennsylvania were transited 

from water vessels to land travel.  The roads that had made the ferry crossing profi table 

made Columbia ideally suited as a gateway between river and land travel.  Rail lines 

47 The Gombach Group, “Columbia Borough,” Living Places, http://www.living-
places.com/PA/Lancaster_County/Columbia_Borough.html.
48 Ibid.
49 Ibid.
50 Columbia Borough, “History,” Borough of Columbia, Pennsylvania,  http://psab-
content.com/columbiapa/content/history.php.
51 The Gombach Group, “Columbia Borough,” Living Places, http://www.living-
places.com/PA/Lancaster_County/Columbia_Borough.html.
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opened in 1834 and Columbia maintained its status as a commercial center.52

 Columbia’s status as a gateway city became signifi cant during the Civil War when 

General Robert E. Lee ordered the Confederate troops to march on Lancaster.  While the 

Confederacy was still on the west side of the Susquehanna, the Union Army set fi re to the 

Columbia River Bridge to impede the Confederacy’s progress and to keep the war our of 

Lancaster county.  The Confederate soldiers were rerouted through Gettysburg, where the 

Union Army met them and fought one of the most important battles of the entire war.53  

As Gettysburg was one of the most signifi cant Union victories, the Civil War might have 

taken a very different course had the bridge at Columbia not been destroyed.  After the 

war, the bridge was rebuilt and Columbia continued to be a transit hub.

 Moving forward to the late 19th century, the discovery of iron ore led to new 

industry in Columbia.  At its height, the iron industry would reach thirteen blast furnaces 

within a three-mile radius of the town.54  Other industries, including silk and textile 

production, were also established in Columbia but would begin to slow down toward 

the turn of the 20th century.  Iron ore deposits were exhausted and the lumber industry 

decimated the woodlands, bringing economic decline to the once prosperous community.  

Railroad use continued to grow and Columbia’s initial reason for being, the ferry and the 

canal operations, were shut down entirely in 1901.55

 The community continued to struggle economically through the Great Depression 

but saw a short resurgence during the interwar period before declining again.  Strong 

52 Columbia Borough, “History,” Borough of Columbia, Pennsylvania,  http://psab-
content.com/columbiapa/content/history.php.
53 Ibid.
54 Ibid.
55 Ibid.
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public leadership is currently inspiring private investment in Columbia.  The area is 

undervalued relative to surrounding communities and the area is beginning to experience 

some economic renewal.56  The city’s rapid decline after so many years of wealth and 

prominence means that Columbia has retained many of its 18th to early 20th century 

buildings and historic preservation efforts in the community are strong.57

 Havre de Grace, MD.  Havre de Grace, Maryland, on the northwest edge of the 

Chesapeake Bay at the mouth of the Susquehanna River can trace its history back to its 

fi rst recorded exploration by John Smith, of Pocahontas fame, in 1608.58  The city’s initial 

settlement was mostly through family homesteading although business did fi nd a foothold 

in Havre de Grace when the city became established as a ferry point in the 1690s.59  The 

Lower Susquehanna Ferry to connect the western and eastern shores of Maryland quickly 

became a profi table way to transport goods and people.  Early industry in the area focused 

on the riches of the Bay with fi shing, farming, and hunting in addition to the processing 

and transiting of the resultant goods keeping Havre de Grace’s waterfront booming.60 

The Conowingo Dam, opened in 1927, markedly changed Havre de Grace’s relationship 

to the water and today the city is in transition from a bustling industrial harbor town to a 

more picturesque vacation and retirement community with a boardwalk promenade.61

56 Ibid.
57 The Gombach Group, “Columbia Historic District,” Living Places, http://www.
livingplaces.com/PA/Lancaster_County/Columbia_Borough/Columbia_Historic_District.
html.
58 Bill Bates.  Images of America: Havre de Grace.  (Chicago: Arcadia Publishing, 
2006), 7.
59 Virginia Colburn, Elizabeth H. Amoss, and Kathryn W. Mike. A Bicentennial 
Sketch. (Havre de Grace, MD:  Susquehanna Publishing Co., Inc., 1976), 6.
60 Bill Bates.  Images of America: Havre de Grace.  (Chicago: Arcadia Publishing, 
2006), 31.
61 Ibid, 7.
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 Havre de Grace’s unusual name came about as a result of the city’s prime location 

on the north-south transit route during the Revolutionary War.  As a result of its location 

and the ferry crossing across the Bay, the city became a frequent stop along the journey 

for important fi gures in the war effort, including General George Washington and the 

Marquis de Lafayette.62  During one of Lafayette’s 1782 visits, he noted similarities 

between the city he was in and Le Havre, France.  The citizens, impressed with his stature 

in the war effort, formally named the town Havre de Grace, French for Harbor of Grace, 

in 1785.63  Around this time, it was also put forth that Havre de Grace might be an ideal 

site for the new capital of the United States.  At one time the city was also considered 

as a possible location for the county seat of Harford County.  Either of these events 

would have signifi cantly changed the course of Havre de Grace’s history and would have 

impacted Havre de Grace’s most notable characteristic - “its success in staying much the 

same as the decades passed.”64

 This harbor town, which owed its initial success to river and bay transit switched 

to trains and trucks once tracks and roads were in place.  As part of Amtrak’s Northeast 

Railroad Corridor, Havre de Grace has always been located on the major north-south 

train route for the east coast.  Access to Route 40 in 1940 and Interstate 95 in 1963 also 

allowed Havre de Grace to remain connected to the growing vehicle transit network.65 

Thus while Havre de Grace maintains its quaintness, its easy access to the larger 

62 Virginia Colburn, Elizabeth H. Amoss, and Kathryn W. Mike. A Bicentennial 
Sketch. (Havre de Grace, MD:  Susquehanna Publishing Co., Inc., 1976), 7.
63 “City Profi le - History.” Havre de Grace: Unique on the Chesapeake.  http://www.
havredegracemd.com/city_profi le_history.php
64 Peter A. Jay, ed. Havre de Grace:  An Informal History. (Havre de Grace, MD: 
The Susquehanna Publishing Company, 1986), 165.
65 Bill Bates.  Images of America: Havre de Grace.  (Chicago: Arcadia Publishing, 
2006), 31.
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infrastructure of the region keeps it from becoming a forgotten heirloom city.

 The year 1912 is signifi cant in Havre de Grace’s history because the opening of 

a new hospital as well as a new racetrack breathed life into the city.  Harford Memorial 

Hospital has been continuously operated in Havre de Grace since 1912 and makes the 

city an important link in Harford County’s health care delivery system.66  The racetrack, 

created with stockholder money from Maryland, New York, and Pennsylvania, brought 

new faces to the town and introduced new economic activity.67  Off-track betting was 

illegal in New York, Pennsylvania, and Delaware, and as a result those hoping to strike it 

rich made their way to Havre de Grace to try their luck.68  Races ended and the 117-acre 

site was sold in 1951 to the National Guard but has since been resold to the City of Havre 

de Grace.69

 The changes in transit and the general diversifi cation of business in Havre de 

Grace proved to be exceptionally benefi cial as the relationship to the Susquehanna 

and the Bay have changed.  Managing water always affects those downstream, and the 

opening of the Conowingo Dam in 1927 signifi cantly impacted the future development 

and character of Havre de Grace.  Before the dam, “the Susquehanna cursed Havre de 

Grace with fi erce fl oods and ice gorges that covered much of the streets close to the 

water. At the same time, the river blessed the residents with spawning grounds for fi sh 

and nutrients for plants that attracted and sheltered waterfowl.”70 The duck decoys that 

66 Virginia Colburn, Elizabeth H. Amoss, and Kathryn W. Mike. A Bicentennial 
Sketch. (Havre de Grace, MD:  Susquehanna Publishing Co., Inc., 1976), 11.
67 Ibid, 19.
68 Bill Bates.  Images of America: Havre de Grace.  (Chicago: Arcadia Publishing, 
2006), 113.
69 Virginia Colburn, Elizabeth H. Amoss, and Kathryn W. Mike. A Bicentennial 
Sketch. (Havre de Grace, MD:  Susquehanna Publishing Co., Inc., 1976), 19.
70 Bill Bates.  Images of America: Havre de Grace.  (Chicago: Arcadia Publishing, 
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Havre de Grace had once produced to fulfi ll a functional need of the community became 

collector’s items and fi shing, farming, and hunting recoiled in the aftermath of the dam.

 The dam made it impossible for fi sh to travel between the Bay and their native 

spawning grounds north of the dam.  The Philadelphia Electric Company, which initially 

built and still operates the dam, has repeatedly turned down requests to build a fi sh 

ladder which would allow species to migrate and bypass the dam.71  Some relief from the 

dam’s impact came in 1971 when the Philadelphia Electric Company’s 50-year license 

to operate the dam came up for renewal. Summer droughts “raised water temperatures 

and depleted oxygen below the dam, and on many occasions produced huge fi sh kills.”72  

Events like this, which brought the impacts of the dam to the attention of the non-fi shing 

public, forced Philadelphia Electric to maintain a minimum fl ow through the dam in 

order to renew its contract.73  The minimum fl ow required is still far below what would 

naturally fl ow from the Susquehanna, but it does help to mitigate the dam’s impact.  

While commercial fi shing interests in the area have subsided in the area of the dam, sport 

fi shing remains popular as rockfi sh and other native species come to the waters just south 

of the dam to feed on  the broken fi sh that come through the turbines.74  Waterfowl are 

in turn attracted by the fi sh which allows the ecosystem to continue, but the commercial 

possibilities the joint between the Susquehanna River and the Chesapeake Bay once 

provided are no longer a reality.

 Where Corning, New York illustrates a good relationship between big business 

2006), 21.
71 Peter A. Jay, ed. Havre de Grace:  An Informal History. (Havre de Grace, MD: 
The Susquehanna Publishing Company, 1986), 58.
72 Ibid, 59.
73 Ibid.
74 Ibid.
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and its surrounding community, Havre de Grace illustrates a cautionary tale.  Philadelphia 

Electric has not been a good corporate citizen to Havre de Grace and it is only thanks 

to the fact that the city’s businesses had already begun to diversify before the dam was 

built that the city continues.  While the city has not developed in the same way that its 

neighbors Bel Air and Towson have, the city is capitalizing on its uniqueness of place to 

establish Havre de Grace as a tourist attraction and retirement community.

Ecological Comparisons

 With a historical understanding of the cities under analysis, comparisons were 

made across four ecological indicators to understand how site conditions quantitatively 

vary among the ecoregions using the representative cities.  Average precipitation was 

compared over the course of the year to understand how much water is incident on these 

sites.  This is signifi cant because it establishes how much water naturally arrives and 

must be managed on-site during storm events before it is released to the natural drainage 

system.  Comparing the temperature variable across the four cities helps illustrate how 

warm and cold the cities are relative to one another over the course of the year and 

helps describe whether precipitation comes to the cities in rain or snow.  It also helps to 

determine the length of the growing season.  Latitudes were also recorded at all sites to 

understand each city’s unique relationship to solar movements.  Designing for passive 

solar exposure as well as active systems such as solar thermal and photovoltaic systems 

will benefi t from this information. Topographic maps in each city were analyzed to 

understand how water might behave once it hits the earth; whether it will run quickly 

down the site because of steep slopes or whether it will roll more gently down fl at terrain.  

This information forms the foundation for an ecological understanding of the watershed 
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and how the four ecoregions relate to one another.

 Precipitation.  The amount of precipitation incident on the site helps determine 

what plant and animal species will be successful in an area and it helps to describe the 

breadth of the storm water management issue.  The more precipitation there is, the more 

measures must be taken to manage that storm water effectively.  Figure 16 is a chart 

comparing the average monthly rainfall in each of the four cities selected for further 

analysis and study.

 Corning, New York, the representative Appalachian Plateau site, consistently 

has the least amount of precipitation among the four sites, which is surprising given 

New York’s reputation for heavy winter snowfall.  Nanticoke, Pennsylvania and by 

extension the Appalachian Mountains ecoregion has the highest average precipitation of 

the watershed in the winter months, January and February.  Columbia, Pennsylvania has 

the highest average monthly precipitation for any single data point represented on the 

chart with more than 4.5 inches of precipitation in the month of July.  Havre de Grace, 

Maryland consistently has at least 2.5 inches of precipitation each month.

 All the data points represented in the chart illustrate that rainfall throughout the 

Chesapeake Bay watershed averages between 1.5 and 5 inches monthly, regardless of 

ecoregion.  While the difference between 1.5 and 5 inches is not insignifi cant, it is also 

not so drastically different as to require a completely different approach to storm water 

management throughout the watershed because of volume.  If the sites under comparison 

were more drastically different, for example comparing a desert to a rain forest, this 

precipitation data might suggest that more fundamentally different design approaches 

with regards to storm water management might be appropriate.  As it stands, variations in 
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precipitation volume are not signifi cant enough across the Chesapeake Bay watershed to 

appreciably differentiate design strategies for storm water management.

 Temperature.  Figure 17 represents a chart comparing the average monthly 

temperatures in the four cities under consideration to understand what fundamental 

differences exist between the ecoregions of the Chesapeake Bay watershed.  Corning, 

New York, the northernmost site, always has the lowest averages temperatures and 

Havre de Grace, Maryland, the southernmost site, always has the highest averages 

temperatures.  The two Pennsylvania sites fall in between with the northern Pennsylvania 

site, Nanticoke, being on average cooler than its neighbor Columbia to the south.  

Average winter temperatures in the watershed fall between 20F° and 40°F while summer 

temperatures reach between 60°F and 80°F.

 This data set also suggests that the growing season for all four ecoregions of 

the watershed is of similar length.  Havre de Grace, Maryland averages temperatures 

above 50°F between April and October, a seven-month growing season.  Columbia, 

Pennsylvania and Nanticoke, Pennsylvania are just breaking 50°F in April and in reality 

are more likely to have a growing season lasting approximately six months between 

May and October.  Corning, New York has the shortest growing season, breaking 50°F 

between May and September.

 The length of the growing season is signifi cant because it demonstrates thriving 

in the coastal areas of the watershed will be different than those that are most successful 

in the northernmost reaches of the watershed.  Because minimizing hardscape allows 

the water cycle to happen most ideally, landscape interventions can serve an important 

role in mediating between the built environment and the water cycle. It is important 



43

A
ve
ra
ge

Te
m
pe

ra
tu
re

8090

A
ve
ra
ge

Te
m
pe

ra
tu
re

5060708090

(in°F)

A
ve
ra
ge

Te
m
pe

ra
tu
re

30405060708090

Temperature(in°F)

A
ve
ra
ge

Te
m
pe

ra
tu
re

Co
rn
in
g,
N
Y

N
an
tic
ok
e,
PA

Co
lu
m
bi
a,
PA

H
d

G
M
D

102030405060708090

Temperature(in°F)

A
ve
ra
ge

Te
m
pe

ra
tu
re

Co
rn
in
g,
N
Y

N
an
tic
ok
e,
PA

Co
lu
m
bi
a,
PA

H
av
re

de
G
ra
ce
,M

D

0102030405060708090

Temperature(in°F)

M
on

th

A
ve
ra
ge

Te
m
pe

ra
tu
re

Co
rn
in
g,
N
Y

N
an
tic
ok
e,
PA

Co
lu
m
bi
a,
PA

H
av
re

de
G
ra
ce
,M

D

0102030405060708090

Temperature(in°F)

M
on

th

A
ve
ra
ge

Te
m
pe

ra
tu
re

Co
rn
in
g,
N
Y

N
an
tic
ok
e,
PA

Co
lu
m
bi
a,
PA

H
av
re

de
G
ra
ce
,M

D

0102030405060708090

Temperature(in°F)

M
on

th

A
ve
ra
ge

Te
m
pe

ra
tu
re

Co
rn
in
g,
N
Y

N
an
tic
ok
e,
PA

Co
lu
m
bi
a,
PA

H
av
re

de
G
ra
ce
,M

D

Fi
gu

re
 1

7:
  C

ha
rt 

co
m

pa
rin

g 
th

e 
av

er
ag

e 
te

m
pe

ra
tu

re
s o

f C
or

ni
ng

, N
Y;

 N
an

tic
ok

e,
 P

A
; C

ol
um

bi
a,

 P
A

; a
nd

 H
av

re
.d

e 
G

ra
ce

, M
D

.



44

to understand variations across the watershed that impact landscape because similar 

landscape design elements might be possible and appropriate tools for storm water 

management in different ecoregions but may require different plant species to effectively 

manage storm water on-site in different locations.

 Latitude. Figure 18 shows the watershed map in its context with the divisions 

of the ecoregions, the placement of the four cities under study, and the latitude of the 

earth. Latitude is an important consideration when designing for natural cycles because 

it describes the relationship between the site and the sun.  Knowing the relationship 

between the site and the sun, a designer can appropriately design for passive solar gain 

and active solar power generation. The watershed stretches from approximately the 37th 

parallel in the south to the 43rd parallel in the north.  Havre de Grace, Maryland and 

Corning, NY

Nanticoke, PA

Columbia, PA

Havre de Grace, MD

46°0'0"N

45°0'0"N

44°0'0"N

43°0'0"N

42°0'0"N

41°0'0"N

40°0'0"N

39°0'0"N

38°0'0"N

37°0'0"N

36°0'0"N

46°0'0"N

45°0'0"N

44°0'0"N

43°0'0"N

42°0'0"N

41°0'0"N

40°0'0"N

39°0'0"N

38°0'0"N

37°0'0"N
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Figure 18:  Graphic comparing the latitudes of Corning, NY; Nanticoke, PA; Columbia, PA; and Havre.de 
Grace, MD.  The selected cities fall between 39.0 ° N and 43.0 ° N latitude.
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Columbia, Pennsylvania are located between 39° and 40° north latitude.  Nanticoke, 

Pennsylvania is just south of 41° north latitude and Corning, New York is just north of 

42° north latitude.

 Similar to the data about precipitation, variations with regards to latitude and 

solar orientation exist across the watershed but are not signifi cantly different enough to 

require fundamentally different design strategies.  If the comparison were more than a 

few degrees difference between north and south and more like the difference between a 

tropical climate with a very low latitude and an arctic climate with a much higher latitude 

this data might become a signifi cant design driver, but as the data show, the variations in 

latitude across the Chesapeake Bay watershed are not a compelling inspiration for design 

variation in storm water management.

 Topography. Figures 19 - 22 compare the topographical change in each of the 

four cities under analysis.  Blue in these diagrams represents water.  The darker brown 

tones represent lower elevations relative to their most immediate body of water and light 

grey and white tones represent higher elevations relative to their most immediate bodies 

of water.  Topographical lines are drawn at every 20’ of change in elevation.

 Represented at the same scale, these images provide clear topographical 

similarities and differences between the selected cities and by extension the ecoregions 

of which they are a part.  Corning, New York is sited in the valley between a set of 

mountains.  The southern portion of the city begins to climb the foothills of these 

mountains, but in  general, the city is fl at and the majority of it falls within 40’ of the 

elevation of the Chemung River.  Nanticoke, Pennsylvania in the Appalachian Mountains, 

is hilly and has signifi cant changes in grade.  While the highest points in elevation happen 
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to the northwest of the city, the elevation changes through the city grid are signifi cant and 

it is clear this town is quite literally built onto the face of a signifi cant slope.  Columbia, 

Pennsylvania in the Piedmont is similarly in the foothills of a few small peaks.  North 

and southwest of the city there are small spikes in local elevation, but the city itself is a 

relatively even, rolling hillside.  Havre de Grace, Maryland adjacent to the Chesapeake 

Bay itself falls almost entirely within 40’ of the elevation of the Bay.

 In summary, of the four ecological points of comparison described above, two 

do not illustrate a signifi cant enough difference to promote design variations while 

two do.  Precipitation and latitude across the watershed vary, but not enough for it to 

fundamentally change design strategies across the watershed.  Temperature, and by 

extension length of the growing season, as well as variations in topography across the 

watershed differ enough amongst the ecoregions to inform differentiations in design 

strategies for storm water management across the watershed.

 Looking at these four sets of data in comparison with one another demonstrates 

the general trend that Corning, New York is generally coldest and reasonably fl at, 

while Nanticoke, Pennsylvania is generally cold but signifi cantly sloped.  Columbia, 

Pennsylvania is generally warm and on a slightly rolling hillside while Havre de Grace, 

Maryland is the warmest and has a generally fl at landscape.  These simplifi cations help 

to clarify the results of analyzing the ecological comparisons among the ecoregions and 

served to drive four unique design propositions for designing for water.

Urban Design Analysis

 While the ecological criteria are signifi cant in terms of comparing these four 

cities and their relationships to water, it is also important to have an understanding of 
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the underlying urban design principles at work in the cities.  A combination of these two 

branches of analysis will allow sites to be chosen for case study designs with regard for 

both the ecological implications as well as the urban design impacts.  Urban design issues  

that were documented and analyzed include: the overall urban parti and relationship to 

the water’s edge, the fi gure ground relationship, street hierarchy, and land use.

 Parti and Relationship to the Water’s Edge.  Comparing the parti diagram 

underlying each city as shown in Figure 23 demonstrates four different ways in which 

man builds cities relative to the water.  Corning, New York illustrates a city that bridges 

the water.  North of the Chemung River the city’s grid is oriented to the cardinal 

directions while south of the river the grid is turned perpendicular to the water.  Despite 

Figure 23:  Four diagrams illustrating ways to organize urban areas relative to water the in Chesapeake Bay 
watershed.  The top left diagram illustrates Corning, New York.  Moving counterclockwise, the bottom left 
image shows Nanticoke, Pennsylvania.  The top right image shows Columbia, Pennsylvania and the bottom 
right image illustrates Havre de Grace, Maryland.



52

this change in grid orientation, multiple crossings over a narrow portion of the Chemung 

River allow the city to be a single entity.  Nanticoke, Pennsylvania orients its grid without 

a clear relationship to the water, choosing instead to lay the grid 45° east of North.  The 

city developed signifi cantly farther away from the waterfront than any of the other cities 

studied because topography is the most drastic in Nanticoke and the grid instead aligns 

itself with the topographic lines.  Historically water has also had less of an impact on 

Nanticoke’s reason for being than in the other cities so access to the water was not as 

critical for Nanticoke’s success.  The urban parti of Nanticoke relies on a set of axes 

that cuts perpendicularly through the primary city square instead of a clear relationship 

to the water.  Columbia, Pennsylvania demonstrates some similarities to Corning, but 

in this instance the urban areas on either side of the Susquehanna are separate entities. 

The Susquehanna River is wide at this point  on its way to the Chesapeake Bay and the 

crossings are few.  As a result two distinct cities developed:  Columbia on the east side 

of the river and Wrightsville to the west.  Havre de Grace, Maryland shows that some 

cities are cradled  by the water’s edge.  The city is sited on a slight peninsula and as such 

the irregularly-shaped shoreline hugs the city grid with its streets oriented in the cardinal 

directions.

 This parti comparison illustrates three major considerations in designing urban 

areas relative to water.  The fi rst consideration is the breadth of the water.  If the river 

is narrow and easily bridged, it is possible to get a single city that spans the river as 

Corning does, but if the river is wide there are likely fewer links and twin cities develop 

on opposite sides of the river as in the Columbia example.  The second consideration is 

topography.  In Nanticoke, the issues of topography were far more important to urban 
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development than access to water and as a result the grid in Nanticoke aligns to the 

topography instead of the water. Nanticoke’s grid is separated from the water and other 

design principles such as axis and hierarchy are evident in the urban plan. Third, access 

to the water also has an impact on how the cities are platted.  The four cities studied 

demonstrate that grids have three orientations:  they run to the cardinal directions, they 

run perpendicular to the water, or they have no clear relationship to the water.  The 

design option chosen is linked to the history of the area and how the water has infl uenced 

economic development as well as the regularity of the shoreline.  Even though access to 

water has infl uenced the development of each of these cities, each illustrates a different 

parti and relationship to the water because of the varying values each city has placed on 

its local waterway.

 Figure Ground.  From the fi gure grounds under study in Figures 24 through 27, 

the clear takeaway is the object buildings and urban fi gures that dominate the graphics.  

Corning, New York, illustrated in Figure 24, has a clear residential fabric punctuated by 

a large factory building in the northwest of the city.  The Chemung River is also clearly 

visible in the center of the diagram as well as a set of developments perpendicular to the 

north side of the river and a downtown core parallel to the south shore of the river.

 In Nanticoke, Pennsylvania, illustrated in Figure 25, fi gural elements in the city 

include the community college campus isolated in the southeast corner as well as a set 

of industrial buildings in the northeast.  Also notable in Nanticoke’s fi gure ground is the 

clearly visible public square in the center of town.  This public space has the most defi ned 

edges on the north, east, and south faces while the west edge is less clearly articulated.

 Columbia, Pennsylvania’s fi gure ground in Figure 26 shows the clearest urban 
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environment.  Street edges are clearly defi ned by buildings in almost the entire downtown 

core and there are few fi gural elements in the city grid that disrupt the overall urban 

order.    Notable exceptions to that rule are the National Watch and Clock Museum along 

the north edge of the city and larger big box retail in the southeast.

 In Figure 27, Havre de Grace, Maryland’s fi gure ground illustrates a strong 

downtown core on the east edge of the city with several larger public and industrial 

buildings being sited inland along the western edge of the city.  These larger buildings 

include the buildings of the public school system as well as the Coca-Cola bottling plant.  

The far west edge of the city breaks the scale of the city and shows big box retail along 

Route 40.  The southwest of the city shows a degradation of the grid as the city has begun 

to develop large cul-de-sac residential neighborhoods that are at odds with Havre de 

Grace’s historical grid.

 Street Hierarchy.  Examining the street hierarchy diagrams in Figures 28 - 31 

illustrates three points of comparisons among the cities:  the alley systems, the way 

the highway comes into the city grids, and the comparative block dimensions.  First, 

all four cities notably include an alley system which makes it clear what the fronts and 

backs of the blocks are.  Although all the initial blocks may have included alleys, as the 

cities under consideration have developed parts of these alley systems have eroded to 

accommodate building types that did not fi t into the initial grid.  Notable examples of this 

include hospital blocks on the south side of the river in Corning, and in the heart of Havre 

de Grace, and public parks in Nanticoke and Corning.

 The interaction between the regional highways and the city grid offers an 

interesting comparison among the cities.  Corning, New York has the most dominating 
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highway interchange, west of the city and just southwest of the Dresser-Rand industrial 

facilities.  This interchange connects the Southern Tier Expressway with Route 15 

and bounds the entire northern edge of the city.  The highway connects to the city 

grid via a set of primary streets which do not clearly direct traffi c into the downtown 

core. Nanticoke, Pennsylvania has access to Route 29, and while the interchange is a 

dominating fi gure in the street hierarchy, it happens outside the city and as a result has 

little connection to the city grid.  Sans Souci Parkway, which runs east-west and connects 

Route 29 to Nanticoke is a relatively insignifi cant street in the city grid and largely 

serves as a bypass to the city and misses the downtown core.  Columbia, Pennsylvania 

is bounded on the north and east by Route 30 which becomes the Wright’s Ferry Bridge 

as it crosses the Susquehanna River.  A small interchange in the northeast corner of the 

city connects the urban grid to the interstate, but the intersection is unassuming and does 

not command much real estate.  The interchange connects to North 3rd Street, one of the 

primary retail streets in the city.  This connection between the interstate and the heart 

of downtown separates Columbia from the other three cities studied.  Havre de Grace, 

Maryland is connected to the highway system by Route 40 which bounds the city on the 

northwest edge.  The connection between the city grid and the interstate occurs along a 

spur which has fostered sprawling development that does not extend the grid of the city.  

As the interstate enters the grid it becomes Revolution Street which most notably includes 

the access to the Harford Memorial Hospital, one of the most signifi cant institutions in 

Havre de Grace.      

 Land Use.  Diagramming the land use in the cities under study showed the 

balance of residential, commercial and retail, institutional, and industrial development 



64

in the four cities under study.  The same scale and color scheme is used across all 

diagrams to allow for easy comparison.  Yellow represents residential buildings of any 

kind, although in almost every case the housing is either single family homes or duplex 

development.  Red represents commercial and retail development. Institutional buildings 

are represented in blue and industrial developments in purple.

 Looking at Corning, New York in Figure 32 shows a clear retail street south of 

and parallel to the Chemung River.  An institutional core of schools and museums is 

clearly identifi able north of the river.  Industrial facilities in the northwest also stand out 

in the city’s land use.  The vast majority of the rest of the city is residential development 

with schools, churches, and public facilities spread out amongst the neighborhoods.

 Figure 33 describes the land use of Nanticoke, Pennsylvania.  A large retail 

core exists in the northwest corner of the city, closest to the river and the highway 

development.  Retail and institutional uses continue around the public square at the heart 

of the city but then dissolve into mostly residential functions.  Scattered institutions 

throughout the rest of the city provide small scale amenities throughout the community.  

The community college stands out as a fi gural institution in the southeast of the city.  

A large public school complex on the east edge of the city stands outs out against the 

residential fabric of the community.

 Columbia, Pennsylvania’s land use, illustrated in Figure 34, shows a clear 

downtown main street with a large number of shops and institutions focused along one 

street running perpendicular to the Susquehanna River.  A large industrial facility east 

of the city’s urban core provides many jobs for the residents of the community.  The 

National Watch and Clock Museum along the northern edge of the community is the 
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only prominent institution in the community with the exception of the many churches 

that become part of the city’s urban fabric.  A few industrial buildings remain along the 

waterfront, but many of these have been or are in the process of being repurposed into 

commercial or retail facilities.

 Havre de Grace, Maryland illustrates the greatest number of clear land use 

districts in Figure 35.  A clear retail core exists along the water in the northeast while the 

public school institutions are all focused inland in a three-block radius of one another.  

The hospital complex stands out amongst its residential context in the heart of town with 

fl anking retail and commercial activity in support of the hospital’s mission.  The only 

notable industrial structure is the Coca-Cola bottling plant on the west edge of the urban 

grid.

 Creating the fi gure ground diagrams in conjunction with the street hierarchy and 

land use diagrams before visiting the sites allowed for effi cient and effective visits to the 

cities.  Armed with this knowledge of the fi gural areas of the city and the programmatic 

functions of particular neighborhoods and districts allowed for effective site selection 

to happen within the cities while on-site.  The section that follows includes photographs 

taken on-site as well as summary diagrams that collapse the information that is pulled 

apart into its component pieces in this section.

Site Observations

 Visits to the four analyzed cities occurred in January 2011.  The intention for 

these visits was fi rst to get an understanding of the genius loci of each of these places by 

spending some time exploring that which had only previously been research and drawn.  

Going into these visits, there was a signifi cant understanding of where the important 
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Figure 37:  Dresser-Rand factory buildings.  The factory facilities present a closed edge to the community.

places in the cities were, but not a clear understanding of what these places looked and 

felt like. The following images and diagrams show a graphic catalog describing what the 

character of these various places is as well as the parcel of land that was selected in each 

site to serve as the test location for a design intervention for water.

Corning, New York

 The northernmost cast study city for this thesis was visited just following a 

snowstorm that hit most of the east coast in January 2011.  The weather was overcast and 

snow covered the ground, but Corning’s unique character as a post-industrial city kept 

the visit inspired.  Figure 36 collapses the information identifi ed through pre-site visit 

analysis into one graphic as well as identifi es the site and highlights other major urban 

features that mark the city.  Beginning in the northwest corner of the city, the tour of 
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Corning, New York starts with the Dresser-Rand factory building because the site was 

previously home of the Corning, Inc. factories when the corporation was more of a heavy 

industry company.  Today the factory still presents itself as a fi gure in the community’s 

land use and fi gure ground diagrams, but has a much more contained presence in the 

urban experience of the city.  Figure 37 shows the public entrance to the Dresser-Rand 

factory which is both small and unassuming for so large a fi gure in the community.  The 

edges of the factory’s precinct are all fenced creating a clear delineation between the 

industrial landscape and the urban one.  The brown corrugated metal facade that faces the 

community is blank except for a few truck-size door openings which does not create a 

good pedestrian environment in this part of town.

 Most development north of the Chemung River in Corning is single-family 

residential housing punctuated by a smattering of churches and public school buildings.  

Figure 38, a pair of single family residential homes, are representative of the residential 

Figure 38:  Residences north of the Chemung River.  These houses are representative of the housing 
available in Corning, New York.
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character of the town.  The homes in Corning, New York are almost all two stories tall 

with gable roofs appropriate for dealing with Corning’s heavy winter snowfalls.   The two 

homes featured in this fi gure are also adjacent to the site selected to be the Corning, New 

York site representative of the Appalachian Plateau.

 Other notable features of Corning, New York include the historic downtown 

district on the south side of the Chemung River and illustrated in Figure 39.  With 

signifi cant fi nancial support from Corning, Inc., the town has been able to preserve a 

5-block historic district which features many boutique shops and a variety of restaurant 

options.  This hot spot for travelers and locals also features the modern headquarters of 

Corning, Inc., placing the corporate giant in a prominent location within the city fabric.

 Located between the historic district and the Chemung River, Corning Inc.’s 

corporate headquarters, photographed in Figure 40, is a series of modern glass pavilions 

that at once dominate the landscape and sit quietly within it.  From the south side, the 

Figure 39:  Downtown historic district.  This area, south of the Chemung River features many small 
boutiques and restaurant options.
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headquarters is screened from the rest of the city by the historic district, making its 

presence in the community almost invisible.  Looking to the headquarters from the 

riverside, however, the building dominates the landscape and its materials and massing 

make it stand out prominently from the surrounding context buildings.  This duality 

at once expresses the powerhouse that Corning, Inc. has been in the community while 

quietly accepting that the community as a whole is more important that the corporate 

entity.

 The linear park running along the north edge of the Chemung River is the only 

large scale public open space in the community.  In some locations along the waterfront 

the park has been developed with playground facilities and picnic grounds, but as 

evidenced by Figure 41, the park was originally developed as the right-of-way for the 

Figure 41:  Riverside park.  What has developed into a linear park initially began as the right-of-way 
cleared for electric power lines.
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power lines that frame the running trail on the ridge line.  This park is nonetheless 

signifi cant as it keeps development from encroaching on the river’s north edge.  This 

tendency to stay away from the river’s edge is perhaps a response to fl ooding in the 1970s 

although it is unclear if development prior to the fl ooding had been allowed immediately 

adjacent to the river.  This limited amount of public open space became a signifi cant 

design driver as a design strategy began to form around the Corning, New York site.

 Beyond the corporate offi ces of Corning, Inc., the most modern building in town 

is the Corning Museum of Glass which recounts the history of both the corporation as 

well as the glass industry.  This museum is a regional draw for people traveling through 

the Finger Lakes of New York state and draws signifi cant crowds during the summer 

months.  The campus of the museum features both indoor and outdoor exhibits and is 

integrated with additional offi ce buildings that are part of Corning’s corporate facilities.

 The site is identifi ed on Figure 36 as the yellow rectangle on the north side of the 

river.  The site is also represented photographically as a panorama in Figure 42.  This site 

is an existing empty plot of land north of part of Corning, Inc.’s corporate offi ces.  The 

site is bordered on the east by a parking garage for Corning, Inc.’s employees and to the 

west by an existing Pizza Hut.  The northern border of the site is created by residential 

development, including those homes featured in Figure 38.

 This site was selected because of its location near the existing Corning 

Museum of Glass, its prominence on the main east-west thoroughfare through town, 

and its vacancy.  The proximity to the existing Corning Museum of Glass made this 

site particularly attractive because the program for this thesis’s set of buildings was 

concurrently developing as a set of visitors’ centers for the Chesapeake Bay Foundation.  
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Knowing the program was going to be institutional in character drove to selection of 

sites that would build on existing cultural landscapes - places people were already 

coming to for education and enrichment opportunities.  Being prominently located on 

a busy street insures high visibility for the project and would increase visitor traffi c to 

the site. Selecting land with existing use that would require either adaptive reuse or 

demolition is beyond the scope of this thesis and preference in all case studies was given 

to underdeveloped parcels of land.

 From an ecological standpoint, the site has minimal topographic change although 

what change there is puts the high ground of the site on the north side and the low ground 

toward the south, closer to the river.  The site has relatively unimpeded solar access 

although some shadows are cast by the four-story parking garage to the east.  Shadows 

cast by the multi-story Corning, Inc. corporate offi ces to the south are minimal because 

the Corning, Inc. building is set back from the street.

Nanticoke, Pennsylvania

 Site information about Nanticoke, Pennsylvania is collapsed into a single 

graphic in Figure 43.  While the topography diagram created before visiting Nanticoke 

graphically represented a city built onto the face of a mountain, the experience of visiting 

such a place was far more powerful than the analysis suggested.  Driving in from the 

northeast corner of the city, the topography is almost unnoticeable because the east-west 

streets run on the topographic lines, but as soon as one turns north or south the change in 

grade is immediately apparent.  As illustrated in Figure 44, the streets that run north-south 

have frequent drop offs such as the one shown in the image where the street literally 

seems to drop off into nothingness.  This characteristic is perhaps the most memorable 
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element of Nanticoke and signifi cantly impacts both the way the city is experienced as 

well as how the urbanism takes shape on the landscape.

 Walking around the urban environment, one is constantly aware of their 

movement along topographic lines or perpendicular to them.  As design work in 

Nanticoke began, this became a design driver in terms of developing both the building 

Figure 44:  North-south streets exhibit grade change.  These signifi cant 
changes in grade are perhaps the most memorable part of a visit to 
Nanticoke, Pennsylvania.
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Figure 45:  Residences in Nanticoke.  These dwellings show that in adjacent lots as much as a story’s worth 
of grade change can exist, creaing unusual relationships between the buildings.

form as well as the circulation system.  The impact of this changing topography is 

generally speaking not acknowledged by individual buildings but is evident in the 

relationship between one building and the next.  Figure 45 shows two residences in 

Nanticoke on a north-south street.  Notable in this image is the way the fi rst fl oor of the 

house on the right aligns with the second fl oor of the house on the left.  Assuming the 

fi rst fl oor of most homes has the public spaces and the second has more private spaces, 

adjacencies such as the one illustrated create confl ict between buildings and their context.

 Major fi gures in Nanticoke’s urban landscape include the Luzerne County 

Community College which at present is a signifi cant portion of the town’s reason 

for being.  The college campus, illustrated in Figure 46, is largely divided from the 

community although there are several buildings leased by the college in the downtown 

area.  The community college is broken into a series of smaller buildings each with a 
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dedicated academic focus.  There is no real “campus” to speak of as the buildings are 

simply linked by paths with no formal open space and the surrounding landscape given 

over to vast seas of surface parking.

 One of the most prominent spaces in town is the central town square in Figure 

47 that serves as the design generator for the urban parti.  This square is at once both 

a market square and a residential square.  The north and east faces of the square are 

dominated by low-rise retail buildings notably including the town diner and butcher shop.  

The south edge of the square includes a multi-story public housing complex that seems 

both out of scale with the square as well as at odds with the design language of the other 

buildings on the square.  The side fl ank of a church faces the square on the west edge as 

well as a few small professional offi ces.  The square itself features a centralized memorial 

and a community bandstand.  The square is accessed mostly by personal vehicle as the 

square is ringed by parking but also by public transit as bus stops occur at each corner.  

The square has signifi cant open spaces but also features many mature trees that provide 

signifi cant shading in the summer months.

 The site selected to be representative of the Appalachian Mountains ecoregion is 

identifi ed in yellow on Figure 44.  This site is advantageous because of its location one 

block north of the public square, its signifi cant slope, and its currently vacancy.  The 

location near the town square is benefi cial because it places the proposed intervention 

in close proximity to the core of downtown development.  The signifi cant slope on the 

site creates interesting design opportunities that will allow the proposed intervention to 

clearly communicate the relationship of storm water to underground water resources.  

Pictured in Figure 48, the site is currently an empty lot with evidence of backfi ll from 
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other construction projects.  The site is bounded on the south side by a pair of townhouse 

buildings with central parking.  The north and west boundaries of the site are defi ned by 

the street edges and the east boundary is a single family residence and the street beyond.

 The site features several unique opportunities that might inspire design solutions.  

First, the change in grade provides a distinct change in vantage points from the top and 

the bottom of the site.  Figure 49 shows a view from the top of the site where visitors 

could quite literally look out over the city and see the mountains in the distance.  The 

unfortunate foreground building is a low-income housing structure that is out of scale 

with the rest of the town’s development, but the rest of the view is quite picturesque in all 

directions.  Figure 50 shows the view from the bottom of the site, specifi cally focused in 

on a small gap between buildings that provides a view corridor down to the town square.  

These changes in view may provide direction for how the building is massed and where 

circulation may want to direct visitors.

Columbia, PA

 While the drawings made of Columbia before visiting made it clear this was the 

most urban site under consideration, the town had a much more frozen-in-time genus 

loci than was expected.  The character of the town has a distinctly turn-of-the-century 

feel because of the relatively uniform design of buildings in the town.  There are some 

mid-nineteenth century buildings, but as evidenced in Figures 51 and 52, much of the 

town has a somewhat older neo-gothic and neo-classical attitude toward it.  Figure 51, 

looking down Locust Street, shows reasonable sidewalks and a comfortable pedestrian 

environment with street lamps but few street trees.  Parking on both sides of most 

streets serves as a buffer between the pedestrians and the driving lanes.  The buildings 
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Figure 49:  View from site’s high ground.

Figure 50:  View from site’s low ground.
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Figure 51:  A view down Locust Street in Columbia, PA.

Figure 52:  A view of attached residences in Columbia, PA.
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are mostly between one and three stories although the churches scattered through town 

show moments of hierarchy in the street elevations.  While Columbia does have a large 

selection of single family homes on small urban lots, many of the homes are three-story 

attached townhouses.  Many of them feature articulated bays which give the streets a 

certain rhythm as seen in Figure 52.  Some of these residences have been divided into 

several apartments within one unit.

 Figure 53 collapses the site analysis information in a single image.  Similar to the 

previously described towns, most of Columbia is residential development with a clear 

retail district downtown.  The town really does not have any public outdoor green space 

to speak of and the waterfront is largely dominated by the existing industrial train lines 

and aging industrial warehouses.  The lot sizes in Columbia are signifi cantly smaller than 

in the other sites under consideration which helps create the urban character of Columbia.

 Much of the waterfront is populated with warehouse buildings from a time when 

the waterfront was actively engaged in trade and industry.  Today many of the warehouse 

buildings are vacant, as shown in Figure 54, but some have been repurposed into retail 

and commercial spaces.  The local farmer’s market leases space in one of these buildings 

bringing local produce to the residents several days each week.  A crafts market has also 

turned one of these buildings into a permanent home.

 Beyond the churches in Columbia, the only really signifi cant institution is the 

National Watch and Clock Museum seen in Figure 55.  This museum is a regional draw, 

but sets itself apart from the urban context.  On the outskirts of the downtown grid, 

the National Watch and Clock Museum is a freestanding building that does not try to 

be a part of the urban character.  It has a surface parking lot which adds to the already 
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Figure 54:  Waterfront warehouses in Columbia, PA.

considerable amount of hardscape in town and while the architectural style aligns with 

that of the rest of town, it does not help to reinforce the urban design because it is a 

freestanding building.

 Figure 53 shows the site selected to be representative of Columbia, Pennsylvania 

and the Piedmont ecoregion in yellow.  This infi ll site, photographed in Figure 56, 

offers unique differences from the other sites under consideration and will serve as an 

interesting point of comparison because of its signifi cant differences from the other 

sites.  This site is a good choice because its size constraints will require a more compact 

solution for water management than any of the other sites selected.  The site is also 

currently underutilized as a parking lot and building on this lot will improve the street 

wall.  As part of the downtown core the site will be heavily traffi cked, drawing attention 

to the new institution proposed for the site.

 The site is bounded on the south side by Locust Street giving it signifi cant solar 

access as the closest building to the south is a two-story building across a four-lane street.  

The western boundary is formed by a party wall with the red brick building in Figure 56 

which is currently vacant.  The  eastern boundary is formed by a party wall with the grey 
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Figure 56:  Site selected for Columbia, PA design intervention.

brick building in Figure 56 which houses a bank.  The north edge of the site abuts an 

access alley which provides a service corridor for the buildings on Locust Street.  Given 

the urban character of much of the Piedmont ecoregion, selecting an infi ll site with the 

constraints typical of many sites in the Piedmont will allow the design work created 

in Columbia, Pennsylvania to have a greater resonance with developments occurring 

elsewhere in the Piedmont.

Havre de Grace, MD

 This city was visited on a clear, crisp winter day with the intention of walking 

the historical loop the town is trying to build on and encourage.  This walking loop is 

illustrated in Figure 57 which summarizes site analysis information on Havre de Grace, 

Maryland.  The blue loop is the historical walk and it was decided that a prominent site 

for the new institution would be somewhere along this route to encourage developments 
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already underway in the town.  The southeast corner of the city features a large city park 

which gives residents the opportunity to be in immediate contact with the Chesapeake 

Bay.  Institutional buildings such as the Duck Decoy Museum and the Maritime Museum 

are along this walk as well as a number of historic buildings.  The downtown retail core is 

north of this protected open space along the historic walk.

 The public open space preserved along the Chesapeake Bay can be seen in Figure 

58 which shows a family walking along the pathways even in the middle of winter.  This 

path is frequented by joggers as well and provides a great amenity to the residents of 

Havre de Grace.  The space is exceedingly pedestrian friendly as can be seen by the 

frequent street lamps, benches, and wide pathways.  It was assumed that somewhere 

along this walk there would be an access point to the small island south of the peninsula 

Havre de Grace sits on, but it turns out the island is divided from the town and there is no 

pedestrian, vehicular, or boat traffi c possible to the island which is ringed in protective 

fencing.  Many of Havre de Grace’s signifi cant institutions, among them a historic hotel 

(now offi ce space), the Decoy Museum and the Maritime Museum do happen along the 

boardwalk and tangential paths strike out from the main public way to provide access 

to these amenities.  These institutions can be seen in Figure 59 and while the buildings 

themselves are not architecturally spectacular, they do connect rather elegantly to one 

another and to the park at an urban scale.  Given this clear desire to create an institutional 

core of museums along the waterfront promenade, efforts were made to fi nd a site that 

would help build into the existing attitude toward waterfront development.

 Walking through Havre de Grace, it is also clear that there have been some recent 

pressures to develop which have pushed against the charming historical character of 
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the town.  Figure 60 illustrates this confl ict in which a modest home composed of an 

additive set of volumes is dwarfed by its newly constructed neighbor that is both oversize 

and massive without being properly scaled to the neighborhood of which it is a part.  

The same development pressures that have allowed this type of development have also 

allowed for privatization of much of the waterfront.  Private residences immediately 

adjacent to the waterfront have closed view corridors to the water in parts of town and 

architectural forms that do not match the character of the town.  New developments have 

Figure 58:  Boardwalk promenade in Havre de Grace, MD.

Figure 59:  Institutions along the Chesapeake Bay.  From left to right these institutions are:  the Maritime 
Museum, the Duck Decoy Museum, and a historic hotel.
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Figure 60:  Development pressures in Havre de Grace, MD.

been allowed to create garages on street frontages which ignore the alley system of the 

town and create for unattractive streetscapes and unpleasant pedestrian experiences.

 While some new developments have been unfortunate in Havre de Grace, others 

such as the revitalization of downtown have been resounding successes.  The heart of 

downtown as illustrated in Figure 61 is a beautiful assortment of boutique retail shops, 

family-run restaurants, and small dry goods and hardware stores all housed in well- 

maintained historic buildings.  The downtown core also features a bevy of antique shops, 

many of which feature collectible decoys similar to what historically was used to bait 

ducks, geese, and other waterfowl when the Chesapeake Bay in this area was widely 

hunted.

 The site selected to be representative of the Coastal Plain ecoregion in Havre de 

Grace, Maryland is photographed in Figure 62 and marked in yellow on Figure 57.  This 

site is adjacent to both the Duck Decoy Museum and the Maritime Museum as well as 

along the boardwalk promenade that features many of Havre de Grace’s most prominent 

sites.  This site has the potential to build into an existing institutional infrastructure that 
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the city is eager to improve on as they grow Havre de Grace’s reputation as a vacation 

destination and retirement community.  The site is bounded by residential streets on the 

north and west sides and the two museums on the east and south.  The site is reasonably 

fl at although the slight slope does roll down slightly southeast towards the Chesapeake 

Bay.

 The site visits taught unique characteristics of the towns that could not be 

understood from research in College Park.  All four towns have a somewhat quaint 

character that makes them all similar, but in all cases the topography and relationship to 

local waterways help to distinguish each site from one another.  The sites are of varying 

sizes with the Corning, New York site being the largest.  The Nanticoke, Pennsylvania 

and Havre de Grace, Maryland sites are comparable in size and the Columbia, 

Figure 61:  Havre de Grace, MD’s downtown retail core.
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Figure 62:  Selected site for Havre de Grace, MD design intervention.

Pennsylvania site is noticeably the smallest.  In all cases the sites chosen are in well-

traffi cked areas which will help provide visibility for the design interventions to be 

created.  The sites are also all currently empty, eliminating the need to consider what to 

do with existing structures.
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Chapter 3:  Program

 Preserving the health of the Chesapeake Bay and its watershed requires greater 

awareness of best water management practices across the region regardless of the 

program of the building being designed.  As such, the denotative program of the buildings 

designed by this thesis is potentially the least important element.  The principles and 

design elements being explored are in many regards independent of the program and as a 

result minimal time was spent developing the denotative program of the buildings under 

consideration.

 To give depth to the story about water, however, research was conducted about 

advocacy organizations in the watershed and what work is being done to spread the story 

about the interaction between the built environment and the water cycle.  The Chesapeake 

Bay Foundation, which actively engages in education and advocacy across the watershed 

without regard for state lines, currently utilizes the Philip Merrill Environmental Center 

in Annapolis, Maryland as their headquarters.  This places the organization amidst a 

human population in the watershed that is perhaps among the most informed about our 

relationship with the Bay and what our actions are doing to the health of the ecosystem.

 In order to illustrate how buildings can be better stewards of the water cycle and 

allow the Chesapeake Bay Foundation to improve its education and outreach mission, this 

thesis proposes that a visitors’ center be developed in each of the previously identifi ed 

cities and sites.  These visitors’ centers would serve as outreach posts for the Chesapeake 

Bay Foundation and serve as living laboratories where the public could learn what impact 

the built environment has on the Chesapeake Bay and what they might do to improve the 

relationship between the built environment and the Bay.  Each of these visitors’ centers 
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will uniquely relate to its ecoregion and site but also be intelligible as part of a set of 

buildings that are designed for water.

Design Principles

 The connotative program of the buildings, the didactic mission, and the principles 

behind this type of ecological design is perhaps more telling of the programmatic intent 

of this thesis.  These principles serve as guides to the design process and allowed for 

effi cient decision making through the design process.  When design options were at odds 

with the design principles, choices were eliminated in favor of alternatives that aligned 

more closely with the guiding principles listed.

 1. The visitors’ centers didactically illustrate the cyclical nature of the 

Chesapeake Bay watershed.  The primary message of the visitors’ centers is to teach 

the story of how water used throughout the watershed ends up in the Chesapeake Bay, 

how the built environment is a part of that cycle, and what people can do to be better 

stewards of the water cycle.  Through design, the proposed design interventions will 

highlight storm water’s path through the built interventions.  The propositions will also 

aim to be instructive in other ways, teaching generally about ecological technologies and 

green architecture.  The visitors’ centers will use the natural cycles of the watershed for 

inspiration.

 2. The visitors’ centers will blur the line between indoors and out.  The visitors’ 

centers will value the special relationship created between indoor and outdoor spaces 

and work to make this relationship as seamless and integral to the experience of the 

sites as possible. Strong connections between indoor and outdoor spaces increase 

users’ awareness of the landscape while using interior space and will help to illustrate 
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connections between the built and landscape environments.

 3. The visitors’ centers will illustrate the best of  water-related design while also 

responding to their immediate context.  A building is most sustainable when it is not torn 

down before its useful life is over.  The mission of water is critically important in these 

buildings, but the buildings must also show respect and deference for their immediate 

context and be good neighbors to the buildings and environment immediately around 

them. The community will not embrace this new institution into the community unless it 

integrates with the contextual landscape in some way and provides amenity.

Program Analysis

 The following table was established to quantify the basic program areas to be 

created in each visitors’ center as well as their approximate square footages.  Each 

building can be broadly understood as including four zones of space:  visitor spaces 

accessible to the public, controlled access spaces accessible to staff as well as select 

visitors such as donors or the press, circulation and mechanical spaces to support the 

mission of the building, and outdoor landscape areas which will become part of the public 

realm and serve to mediate between the building and the watershed.

 While this chart served as the initial understanding of how much space would be 

ideal in a visitors’ center, it should be noted that the actual makeup of each visitors’ center 

immediately began to vary because of site constraints and transforming design intentions 

on each site.  Each building contains a different permutation of these spaces with varying 

levels of importance.  Changes from these initial thoughts on the building program refl ect 

a changing understanding of the water cycle narrative being told through the buildings 

both independent of one another as well as when taken together as a collective set.
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VISITORS’ CENTER PROGRAM
VISITOR SPACES:
Lobby Including information desk 1000 square feet
Lecture hall/auditorium 100 seats 1200 square feet
Permanent exhibit space To have the same exhibit in 

all four visitor’s center
2500 square feet

Changing exhibit space To have site specifi c 
changing exhibits

2000 square feet

Bathrooms 2 @ 200 square feet 400 square feet
Gift shop 200 square feet

Subtotal: 7300 square feet

CONTROLLED ACCESS 
SPACES:
Administrative suite: Director’s offi ce 150 square feet

Open offi ce space 500 square feet
Conference room 400 square feet
Staff kitchen 200 square feet
2 staff ADA-accessible 
bathrooms @ 75 square 
feet each including shower 
facilities

150 square feet

Volunteer work room 200 square feet
Staff laundry 100 square feet
Copy room 100 square feet
Storage space 200 square feet
Subtotal: 2000 square feet

Classroom To be used for group 
tours, orientation, special 
programming

400 square feet

Classroom To be used for group 
tours, orientation, special 
programming

400 square feet

Subtotal: 800 square feet

Exhibit storage/preparation 1450 square feet

CIRCULATION/
MECHANICAL:

20% of building square 
footage

2310 square feet
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BUILDING TOTAL 
SQUARE FOOTAGE:

13860 square feet

LANDSCAPE/
OUTDOOR SPACES:
Wetlands and/or other 
remediating landscape

3000 square feet

Patio/hardscape 1000 square feet
SITE TOTAL SQUARE 
FOOTAGE:

4000 square feet

TOTAL PROJECT 
SQUARE FOOTAGE:

17860 square feet

An Agenda for Water

 Developing the program for this thesis also meant establishing what role the 

built environment plays in the water cycle in each ecoregion of the Chesapeake Bay 

watershed.  Through studies in section, a clear narrative emerged about what role the 

built environment needs to take in each ecoregion in order to benefi t the Bay.  In the 

Appalachian Plateau, the northernmost ecoregion of the watershed where the headwaters 

of the Susquehanna River are, the most important agenda for the built environment is to 

retain nutrients.  Once water leaves the Appalachian Plateau it begins to pick up nutrients 

and carry them downstream, but the only way for the Appalachian Plateau to maintain its 

biodiversity is to self-generate that new growth.  Rain and snowfall must be captured in 

order to retain the nutrients on the site.  These nutrients must be capitalized on in order to 

create biodiversity and thus sustain the ecosystem at the top of the watershed.

 Moving slightly further south into the Appalachian Mountains ecoregion, 

buildings must be created that foster recharging underground aquifers.  The water that 
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fl ows through the thirsty cities of the Piedmont is largely provided from underground 

aquifers below the Appalachian Mountain chain.  More often than not, this precious 

groundwater is pumped out faster than natural systems can replenish it because 

the amount of hardscape in the built environment (as seen in Figure 3) keeps most 

precipitation from reaching deep infi ltration.  In order to ensure this groundwater resource 

is not depleted, the built environment in the Appalachian Mountains ecoregion must be 

created in such a way as to give the greatest volume of water the opportunity to reach 

deep infi ltration, thereby recharging the aquifer.

 The Piedmont ecoregion features the greatest density of urban development 

and hardscape.  In these urban environments it is most critical to design solutions that 

minimize runoff.  Also shown in Figure 3, in urban environments where 75% to 100% of 

the land are covered by hardscape, 55% of the precipitation immediately becomes runoff.  

This runoff can create fl ash fl ooding and in areas with combined sewers can introduce an 

excess of harmful pollutants to waterways.  The cities of the Piedmont must fi nd a way to 

decrease their runoff on-site so it does not become an issue for those downstream.

 It is almost inevitable that precipitation incident on the Coastal Plain ecoregion 

will eventually become part of the Chesapeake Bay because of its geographic immediacy.  

Because of this fact, water in this ecoregion must be purifi ed so as to maintain the subtle 

ecological balance of the Bay as previously described in Figures 4 through 7.  Excess 

nutrients inhibit the ability of the plant, fi sh, and animal species of the Bay to survive 

and built interventions that allow for water to be purifi ed before being reintroduced in 

a controlled way to this ecosystem will improve the relationship between the built and 

natural environments.
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 While these program drivers are called out with one agenda for each ecoregion, 

it is important to understand all four of these agendas happen simultaneously in all 

ecoregions with varying levels of signifi cance.  It is important to purify water in the 

Appalachian Plateau as well as the Coastal Plain, but other factors prevail which make 

the mission of retaining nutrients more signifi cant in the Appalachian Plateau than in 

the Coastal Plain.  Similar relationships can be made with any of the processes and 

locations outlined previously.  The following chart summarizes the four cities chosen to 

represent the ecoregions and the agenda for water that was deemed most pertinent in the 

developing the built solution for that environment.

Site-Specifi c Design Theses
Case Study City Ecoregion Water Agenda

Corning, NY Appalachian Plateau Retain nutrients.
Nanticoke, PA Appalachian Mountains Recharge the aquifer.
Columbia, PA Piedmont Reduce runoff.
Havre de Grace, MD Coastal Plain Remove pollutants.
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Chapter 4:  Design Solutions

 The four design solutions created for this thesis were carried through concurrently 

with the intent to make comparisons between schemes.  As such, every effort was made 

to bring the level of design work up evenly on all schemes so ideas with a similar level of 

development could be discussed.  In some instances there is more clarity than in others as 

a result of the time constraints placed on this thesis.

Corning, NY

 The design solution most appropriate for Corning, New York and the agenda 

of retaining nutrients in the Appalachian Plateau was to create a park on the site that 

featured the built program in a series of pavilion structures spread throughout the 

landscape.  In an urban environment largely devoid of public open space, this natural 

oasis would become a fi gure in the community drawing those looking for recreation and 

information.  The site plan in Figure 63 illustrates the intention to create a forested buffer 

around the perimeter of the site with spaces carved out of the foliage for built form.  The 

center of the site was developed into a meadow landscape with a large water feature.  

The runoff from all the buildings would be directed to this feature and through retention 

would begin to inspire biodiversity by creating a landscape that could be self-sustaining.  

This site illustrates what building 10% of a site with hardscape looks like.  According to 

the data in Figure 3, the immediate site context could naturally fi lter the runoff displaced 

by the built forms proposed and as a result no technical innovations (such as green roofs 

or green walls) were necessary to mitigate the impact of the built environment on the 

water cycle.  Parking for the park was provided along the east edge of the site, outside 

the forested edge and immediately adjacent to the parking garage providing parking to 
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the Corning, Inc. offi ces across East Pulteney Street.  The site strategy itself helps to 

both create amenity in the town as well as fulfi ll the water agenda of retaining nutrients 

determined for the Appalachian Plateau.

 This idea of creating a forested edge is also evident in Figure 64 which shows a 

tree buffer along the left edge with small pockets created for the buildings.  The meadow, 

featuring shorter landscape elements, fi lls the center of the site.  This image also features 

a dock which would give visitors to the park the opportunity to closely come in contact 

with the natural environment around them.  The path encircling the meadow would in 

this design not be composed of permeable paving because of the climate of Corning.  

Permeable paving requires careful snow removal, and in a location such as Corning, 

New York (which experiences heavy snowfall) permeable paving would require intense 

Figure 64: Crossing through the forest edge.
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Figure 65:  Meandering through the meadow.

maintenance through cold, sometimes brutal winters.

 Figure 65 illustrates what the experience of walking through the meadow 

landscape would be like.  The building to the right of the image shows the hierarchal 

gallery pavilion building which would serve as the main display area for this outreach 

center of the Chesapeake Bay Foundation.  The building to the left in the image would 

house classroom spaces.  Because the landscape in this intervention is perhaps the most 

signifi cant part of the strategy to mitigate the relationship between the built and natural 

environments, the landscape takes the foreground and would be open to the public even 

when the institution itself was closed, allowing for constant educational opportunities.  

Notable too is that the clients and users of this space are not only people, but also the 

animals that would begin to use such a place for habitat.
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Nanticoke, PA

 The design intervention for Nanticoke, Pennsylvania had two major moves to 

achieve its goal of recharging the aquifer.  The building form is fi rstly terraced into the 

landscape slowing runoff from fl owing freely down the steeply slope site and secondly 

runoff from the site is directed to a dry well.  These two moves help to introduce 

precipitation incident on the site to soil below grade in such a way that the precipitation 

has an opportunity to reach deep infi ltration and actually recharge the aquifer.  

 The site plan illustrated in Figure 66 shows the building pushed towards the 

intersection giving the building prominence and helping to reinforce the urban grid.  An 

alley was reintroduced on the site’s block in order to provide a driveway access for the 

parking area on the high ground of the site.  This alley also builds on the existing alley 

structure of Nanticoke’s urban design.  The structure itself is divided into three sections.  

The enclosed space in Figure 66 shows the primary entry sequence through the lobby 

with an adjacent double-height space that highlights a visitor’s movement down into the 

earth.  Circulation in the building is always conscious of its relationship to changes in 

grade as  vertical movement always happens along the topographic lines while circulation 

in plan happens perpendicular to changes in elevation.

 Also visible in fi gure 66 is the siginifi cant landscape terrace that begins as a 

green roof on top of the building’s below grade level.  This terrace starts as a gathering 

space on the green roof and as visitors’ move east they transition to being on true terra 

fi rma, but the line where that change occurs is purposely blurred so as to create one 

continuous garden blurring the line between the green roof and the garden.  The garden 

features the dry well access prominently, celebrating the place where water re-enters the 
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green roof slows runoff , 
allowing soil to absorb rainfall

habitable green roof blurs line
between built and natural environments

site drainage directed toward dry well, 
introducing runoff  to deep infi ltration

Figure 68:  Recharging the aquifer.

ground to recharge the aquifer.  The lowest terrace level features a native species garden 

with specimen plantings to encourage visitors to plant local vegetation in their own 

landscapes.

 The below-grade fl oor plan shown in Figure 67 shows a signifi cant auditorium 

space.  This space was developed as part of the educational promenade because it gives 

visitors a clear path down into the earth and then a climb back out of it.  This crevasse 

stairwell is naturally lit from above, allowing visitors to understand their underground 

experience because of the position of the light source.  The secondary lobby on the south 

side of the building would provide entrance to pedestrians walking along the street.

 Figure 68 is a section perspective through the dry well in the landscape that 

helps to explain in part how the building and the landscape would work together in 
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0   1        2                   4

access cover

gravel
concrete

drain pipes

this intervention to recharge the aquifer.  The green roof atop the highest form would 

help to slow runoff, giving soil the opportunity to absorb the fi rst initial rainfall.  The 

habitable green roof on top of the middle level of the building would continue out into the 

landscape, eventually transitioning from green roof to landscape on grade which would 

then include the dry well feature.  The site would direct drainage to the dry well through a 

series of underground pipes.

 The dry well detail shown in Figure 69 is a more technical understanding of 

how storm water would actually be reintroduced into the aquifer.  An articulated access 

cover would be the visible mark of the dry well in the landscape and would essentially 

be a glorifi ed manhole cover created in such a way as to be a design object and not the 

utilitarian object most people take for granted.  The dry well itself is a concrete cylinder 

Figure 69:  Dry well detail.
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partially fi lled with large aggregate such as gravel.  The cylinder would be punctured in 

a variety of locations to allow drain pipes from various parts of the site to be introduced 

to the dry well.  Water would naturally percolate down the aggregate and be reintroduced 

to the soil some 10’ below the surface of the land.  Through this deeper introduction 

to the soil, the water would not have the opportunity to either evaporate or runoff but 

would instead be able to reach deep infi ltration and recharge groundwater resources.  

This would increase the health of the Bay by limiting the amount of nutrient-rich water 

that would make its way to the Chesapeake Bay and additionally sustain the relationship 

between groundwater resources beneath the Appalachian Mountains and the cities of the 

Piedmont.

Columbia, PA

 The case study designed in Columbia, Pennsylvania presents the only infi ll site 

under consideration.  This is relevant to Columbia’s context within the watershed as the 

Piedmont features the greatest amount of urban development making an infi ll site the 

most relevant design context in terms of choosing a case study that is representative of 

this ecoregion.  Because the site is the most densely built, featuring constructed form on 

75% to 100% of the site’s area, signifi cant technical innovations were incorporated into 

the building’s design.  Landscape still plays a major role in repairing the water cycle in 

the urban environment, but in order to also design a building with an urban instead of 

a more suburban character, technology must be employed effectively to manage storm 

water.  What separates this building as being particularly designed for water is that it 

celebrates those elements specifi cally and highlights the path of storm water instead of 

concealing that movement.
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 Figure 70 shows the plans of the building and landscape proposed for Columbia, 

Pennsylvania. The building is three stories tall in order to be appropriate for its context 

and fi t the program desired within the site’s footprint.  The general parti of the building 

creates a clear linear division between served and service spaces in the building.  Service 

functions are consolidated into a poche bar running along the east party wall of the 

building in order to clarify the relationship between served and service spaces and leave 

the greatest amount of uninterrupted fl oor space for exhibition areas.  Major program 

features include an entry Zen garden as well as a rooftop terrace on the third fl oor 

adjacent to the administrative offi ces.  The public areas of the building are located on the 

fi rst two fl oors of the building, giving privacy to the offi ce functions of the building.

 Technologies such as green roof, green wall, and permeable paving were used in 

Figure 71:  Wallking along Locust Street in Columbia, PA.
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order to achieve this site’s goal of reducing runoff.  Choices were also made that limited 

the building footprint, pulling it back from the street wall and creating a landscaped oasis 

in the middle of the city.  The Zen garden developed into a lush growing billboard to 

broadcast the building’s mission on the south elevation of the structure as seen in Figures 

71 and 72.  Because pulling the mass of the building off the street weakens the street 

wall, a planted wall was erected along the line of the street wall to create a translucent 

plane that would at once continue to the line of the street and allow sporadic views into 

the garden.

 Limiting the building footprint and creating the entry garden minimizes hardscape 

on the site and additionally requires visitors to experience nature on their promenade into 

the building.  If this landscape were on the back of the building the structure itself would 

Figure 72:  Entering through the garden in Columbia, PA.
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have been able to continue the street wall, but the garden would not be as prominent 

and could potentially be overlooked by visitors.  Placed as a focal point in the city, this 

institution can teach its methods of water management to populations that may never visit 

the building simply by boldly putting those efforts on display in the public realm.

 Entering the building would look as it does in Figure 72.  Visitors would walk 

on permeable paving as they pass manicured lines of gravel on the ground.  A specimen 

tree would appear uniquely beautiful separated from other landscaping and a birdbath 

would encourage birds to visit the space.  Crossing a bridge over a linear water feature 

would put people in close proximity to the building’s driving design feature while two 

lines of  planting at different heights would be nourished by storm water captured from 

the building.  The green wall, trellis systems, and planter box would continue the garden 

into the vertical plane, literally surrounding the visitor with vegetation, constructing an 

experience that quickly transitions visitors from the urban environment of the city to the 

natural missions the building and its program aim to teach.

 Figure 73 demonstrates how water would actually transition from the sky to 

the earth.  Water incident on the building would fi rst be slowed by the green roof.  As 

previously described, green roof slows precipitation down which helps to minimize 

fl ash fl ooding.  It also insulates the roof, minimizing the heat island effect, which is 

particularly important in cities where average temperatures are signifi cantly higher than 

less developed areas.  Water would then fl ow across the elevation in a celebrated box 

gutter.  Instead of minimizing this detail, it would be celebrated and the movement of 

water could be visually traced along the elevation.  Water then transitions to a channel 

cut in the fl oor of the roof terrace.  This water would cascade over a scupper adjacent 
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to the entrance making a celebrated moment out of water’s journey from the sky to the 

earth.  This water would be captured in a bird bath feature which would then overfl ow 

into the linear water feature of the Zen garden.  This feature would in turn overfl ow into 

a below-grade cistern where water could be stored indefi nitely until manually pumped 

out for irrigation of the landscape.  This narrative about water notably does not include 

rainwater’s introduction into the municipal drainage system because the building is 

designed to minimize this use of infrastructure.  Alleviating pressures on such systems 

through designing for water management would allow infrastructure to be less taxed, and 

if implemented widely, perhaps rendered obsolete.

 This work in the urban context particularly featured a number of specifi c systems 

for storm water management.  Detailed sections in fi gures 74 - 76 show the composite 

layers of green roof, green wall, and permeable paving systems to illustrate a higher level 

of understanding of these systems.  It should be noted that green roof can come in one of 

two forms:  an extensive system and an intensive system.  An extensive system refers to 

one of the popular tray systems that are commercially available and is installed entirely 

separate from the roofi ng system and can be retrofi tted onto existing buildings if the 

structural system will support it.  An intensive system, such as the one detailed in Figure 

Plants

Soil
Moisture Layer

Water Resevoir
Aeration Layer

Thermal Insulation
Root Barrier

Concrete Structure

0     3             6                             12

Figure 74:  Green roof detail.
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74, is built with the building and becomes part of the building’s permanent structure.  

Such a system is rarely if ever retrofi tted onto an existing building because of the weight 

associated with such a system and its relationship to other building elements.

 Running through the layers of an extensive green roof from top to bottom, the 

fi rst is obviously the plants themselves.  Plants may be of any variety although the larger 

the plants, the more soil depth is required.  The more soil that is a part of the system, 

the greater the weight, which then places additional stress on the structural system.  

Large scale green roof systems with large plants can be done, but additional design and 

maintenance considerations must be taken into account.  The plants can be rooted in 

either a natural or an engineered soil.  An engineered soil might incorporate materials 

that have better water retention which would allow plants to be more drought-resistant.  

Beneath the soil a moisture layer and water reservoir could additionally retain water in 

the roof sandwich to nourish the plants during drought and store water from larger storm 

events.  An aeration layer provides an air gap in the sandwich, giving condensation a 

drainage plane.  Insulation would be beneath this drainage plane and would provide 

additional thermal protection beyond that already provided by the soil.  A root barrier 

beneath the insulation would protect the structural elements from the potential growth of 

the plants.  The structure beneath supports the load of the green roof and helps to create 

architectural form in the interior space below.

 A green wall introduces vegetated elements into a vertical plane.  In the proposed 

building for Columbia, Pennsylvania, a green wall was created to face the service bar on 

the street elevation and is detailed in Figure 75.  Describing these elements from exterior 

to interior, the furthest outboard layer is again the plants themselves.  These plants are 
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plants

soil

irrigation line

metal structure
concrete

anchors

rooted into a vertical soil or engineered soil medium which is contained in a panelized 

tray system.  This makes the system decidedly different from a trellis system in which the 

plants are actually rooted in the ground and grow vertically up an armature.  In a green 

wall, the plants are truly rooted into the vertical plane.  This soil plane also contains drip 

irrigation lines which water the plants and need to be hooked into the building’s plumbing 

system.  The green wall is mounted in panels onto a metal structure that is tied back into 

the concrete structure of the building via a series of screw-in anchors.  Similar to the 

green roof, the green wall provides insulation to the wall which may be supplemented by 

additional insulation in the wall system.

 Permeable paving, detailed in Figure 76, creates walking surfaces that allow water 

to percolate down into the soil without displacing as much precipitation as a concrete 

sidewalk or asphalt path would.  Instead of layering a continuous surface over the earth, 

Figure 75:  Green wall detail.
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permeable paving uses a series of spaced pavers to create the walking surface.  The 

space in-between pavers is fi lled with a fi ne aggregate that keeps the pavers from shifting 

but allows water to percolate into the soil instead of running off into the surrounding 

landscape.  Beneath the fi ne aggregate that serves as the setting for the pavers, coarser 

aggregate creates a solid base for the pavers that will keep them from settling unevenly.  

This coarser aggregate allows water to move more freely to the soil below.  A geo-textile 

fabric can be introduced between the soil and the coarse aggregate to keep weeds from 

sprouting up through the soil and disturbing the paving materials.

Havre de Grace, MD

 The Coastal Plain intervention, represented in Havre de Grace, Maryland, is 

intended to remove pollutants from storm water.  This is most actively done through 

an extensive constructed wetland feature that is intended as an extension of an existing 

wetland feature along the waterfront.  Figure 77 describes how a wetland processes 

nutrients out of water and it is intended that the constructed wetland in Havre de Grace 

would function along these lines.  Water is introduced to this system either as grey water 

from bathroom sinks, washing machines, and showers or as rainfall.  The sun shining 

begins to break down nutrients and chemicals in this water through a process called 

Figure 76:  Permeable paving detail.



126

Sedim
entatio

n

Photo
degeneratio

n

M
ic

ro
bi

al
 

M
ed

ia
tio

n
R

tU
t

k

F

P N

Va
po

riz
at

io
n

N

P

F

Fi
gu

re
 7

7:
  W

et
la

nd
 fi 

ltr
at

io
n 

pr
oc

es
s d

ia
gr

am
.



127

photodegeneration.  This is the same process that deteriorates paintings and makes paper 

yellow in the sun, but in this case it is acting on organic material that wants to be broken 

down.  This water also infi ltrates into the soil where it is either taken up by plant roots 

and used to help the plants grow or the nutrients are processed by microbes living in 

and around the plant roots.  Part of the output of this process is more soil via a process 

called sedimentation.  The end result of all of the aforementioned processes is water that 

vaporizes back into the atmosphere cleaner than it was introduced to the wetland.

 In the Havre de Grace, Maryland design intervention, a constructed wetland that 

would embody all of these processes is the main landscape design intervention on the 

eastern half of the site.  This productive landscape needs to be understood by visitors in 

order to communicate the relationship between the built and natural environments in the 

Coastal Plain, but at the same time visitors should not actually be able to walk through 

this environment.  Havre de Grace has an existing waterfront boardwalk which connects 

the public parks as well as the primary institutions in the town.  The boardwalk running 

along the north edge of the site plan in Figure 78 extends from that existing boardwalk in 

such a way as to allow people to view the constructed wetland and create connection to 

the new institution of the Chesapeake Bay Foundation outreach center.

 The visitors’ center itself is trying to be a part of its residential context and as such 

takes the large plan of the building and breaks it down into a set of successively smaller 

volumes much the same way that vernacular housing in the area is created by additively 

joining a series of volumes to create form.  The overall displacement of form shown in 

Figure 79 draws inspiration from the telescope houses that were common on the eastern 

shore during its initial settlement.  On the eastern shore a homesteading family would 
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acquire a piece of land and build the fi rst initial house, the central portion in a design such 

as this one.  The family would grow, children would be born, spouses would be added to 

the family, and instead of building a whole new structure, a wing might be added to one 

or both sides of the initial dwelling.  In this visitors’ center these are the two wing spaces 

which include additional gallery space as well as administrative and service functions.  

The house might continue to grow in this telescoping way such that the building always 

looked fi nished and complete but could also always be added to over time along clearly 

defi ned design guidelines and principles.  The smallest additions to the building are the 

covered porches which give visitors to the center the opportunity to view nature from a 

sheltered place while still being a part of the great outdoors.  These porches also fi t into 

the larger character of Havre de Grace which, as a shore town, has a distinctive porch 

Figure 80:  Strolling along the boardwalk in Havre de Grace, MD.
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Figure 81:  Observing the wetland from the porch.

culture.  Most residences in Havre de Grace feature front and side porches which are 

frequently populated with people taking time to visit with one another and watch the 

people going by.

 Figure 80 illustrates the experience of walking along the boardwalk.  From 

this vantage point the building serves as a backdrop for the celebrated wetland which 

would fi lter pollutants from water and provide habitat for native species.  The opposite 

experience of the wetland feature would be that in Figure 81 which shows people 

enjoying the protection of the covered porch while being able to view both the wetland as 

well as the Chesapeake Bay in the distance.
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Comparative Sections

 In addition to the previously outlined design propositions, a set of sections was 

created to both describe the design solutions as well as to put them in conversation 

with one another, their relative groundwater resources, and the Chesapeake Bay.  These 

sections in Figures 82 through 85 are taken through the respective site as well as an 

extensive amount of context between the sites and their most immediate body of water.  

The sections are also taken from the sky down through sea level showing the relationship 

between the Bay and each site.  The elevation of the local body of water is also 

indicated on each drawing to show the relationship between each site’s most immediate 

Chesapeake Bay tributary and each site.  The cut through the ground is toned to represent 

the changing composition of the underground strata.

 There are a myriad of relationships told by this set of drawings that describes 

the way the ecoregions of the Bay relate to one another and to water.  The changing 

composition of the underground strata means that in each ecoregion of the Bay, water 

has a different path to take as it travels to recharge groundwater resources.  In some 

locations where the underground soil is particularly dense it might be very diffi cult for 

water to percolate through that compacted soil.  In other locations where the underground 

composition is coarser, water may be able to infi ltrate more effectively to the aquifer.  

The composition of the ground strata also speaks to the ease or potential diffi culties of 

creating suitable building foundations in these locations.

 The comparisons between where the local body of water lies and the elevation 

of the site show how likely a localized fl ood event might be.  In Corning, New York the 

city elevation is very close to the elevation of the Chemung River while in Nanticoke, 
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Figure 82:  Section through Corning, NY design proposition with underground context.

Figure 83:  Section through Nanticoke, PA design proposition with underground context.

Figure 85:  Section through Havre de Grace, MD design proposition with underground context.

Figure 84:  Section through Columbia, PA design proposition with underground context.
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(Nanticoke, PA)
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(Corning, NY)
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Coastal Plain
(Havre de Grace, MD)

Pennsylvania, the city sits far above the local water table.  What is interesting here though 

is that both of these sites are signifi cantly elevated from the level of the Chesapeake Bay.  

Even in a location where sea level rise would be reasonably unnoticed, changes in rising 

water might be felt because of changes in the immediate body of water.

 This section also helped to inspire the watershed transect diagram in Figure 86 

which shows a diagrammatic transect section through the watershed.  In this diagram the 

Appalachian Plateau is diagrammed as a fl at land at the top of the watershed.  Moving 

south, the Appalachian Mountains spike the elevation in the watershed and transition 

quickly to a much lower elevation in the Piedmont.  Along the Piedmont there is 

another small, localized rise which corresponds with the fall line which gave the cities 

of the Piedmont their initial reason for being.  The Coastal Plain, furthest south in the 

Figure 86:  Watershed transect diagram.
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watershed, is again a fl at plateau which lies most immediately adjacent to the Chesapeake 

Bay.

 The design solutions described above along with these comparative sections 

were designed to achieve four theses.  The Corning, New York intervention was to retain 

nutrients and promote biodiversity.  The Appalachian Mountains site in Nanticoke, 

Pennsylvania was to recharge the underground aquifer.  The urban site in Columbia, 

Pennsylvania was to illustrate ways our built environment can reduce runoff and in the 

Coastal Plain city of Havre de Grace, Maryland, the design intervention was to remove 

pollutants from the water.  These four schemes each independently function to achieve 

these goals but when taken together answer the larger questions this thesis posed about 

how the built environment can be a better mediator of the water cycle in order to improve 

the health of Chesapeake Bay and its watershed.
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Chapter 5:  A Design Language for Water

 Following the design work outlined above which was presented publicly on April 

25, 2011, it became clear that while there were seeds of great things to come in all of the 

design propositions presented that the thesis would benefi t from further development of 

a design language for water.  To achieve this language, six architectural elements were 

chosen and rules were developed about how these elements should be incorporated into 

design work to create buildings throughout the Chesapeake Bay watershed that speak to 

this interest in water-based design.

Green Roof

 Green roofs serve to reduce runoff, collect and store water, and create 

microclimate.  When specifi cally designed for storm water management green roofs 

should abide by three guiding design principles, two of which are illustrated in fi gures 

87 - 88.  First and foremost, green roofs must be placed on roofs with 4 - 6 hours of 

unobstructed daily solar access.  Even shade-loving plants require sunlight to grow, and 

without this solar requirement met, the plants of the green roof will have limited ability to 

successfully survive.  In addition to this solar requirement, green roofs that aim to retain 

as much water as possible should ideally be fl at as shown in fi gure 89.  The greater the 

slope on the roof the greater tendency precipitation has to fl ow down the slope causing 

erosion of the soil and limiting the ability of the plants to take up nutrients from the 

water and slow the rainfall down.  Green roofs at maximum can have a 10 degree slope 

as shown in fi gure 90.  Steeper slopes such as that illustrated in fi gure 91 should not 

be designed for green roofs.  Whenever possible, green roofs should be designed using 

native species.
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Figure 87:  Appropriate solar access for a green 
roof.

Figure 88:  Inappropriate solar access for a green 
roof.

Figure 91:  Inappropriate slope for a green roof.

Figure 89:  Appropriate slope for a green roof. Figure 90:  Maximum slope for a green roof.
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Rain Barrels

 Rain barrels are connected to the gutter system of a building and reduce runoff 

by collecting it and storing it in a sealed container.  In order to use this technology to 

its best advantage in a water-based design intervention, three rules should be followed.  

Rain barrels get a poor reputation as being unattractive.  To celebrate rain barrels in 

architecture, they should be created in hierarchal materials and forms with signifi cant 

placement on the building elevations.  Designed in this way, a rain barrel is elevated 

from its service function and is celebrated as a design object.  Rain barrels have obvious 

mechanical functions which can include unattractive connections, valves, and other 

maintenance ports.  All reasonable steps should be taken to conceal these mechanical 

functions in order to preserve a rain barrel as a design object.  The water stored in rain 

barrels will likely be used in irrigation.  To aid the end user of a building, rain barrels 

should be placed adjacent to the landscape areas that will utilize the collected rainfall as 

shown in fi gure 92 not at a great distance as illustrated in fi gure 93.

Figure 93:  Rain barrels placed distant from 
location for water usage.

Figure 92:  Rain barrels adjacent to location for 
water usage.
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Permeable Paving

 Permeable paving allows water to percolate into soil where it initially hits the 

earth instead of becoming runoff and being reintroduced to the ground in a distant 

location.  In order for permeable paving to be a successful part of a design intervention 

for water is important to take three issues into consideration.  If the site has signifi cant 

snowfall that requires the frequent use of mechanical equipment to remove snow, 

permeable paving is a poor design solution for creating walking surfaces.  Permeable 

paving is long-lasting, but it also can be broken and knocked apart by the force of 

heavy machinery.  Permeable paving is better suited to temperate climates with minimal 

snowfall where the snow can be removed manually with shovels.  Permeable paving is 

an appropriate design solution for creating pedestrian pathways as seen in fi gure 94 but is 

not recommended for parking areas in water-based designs.  Runoff from parking spaces 

Figure 94:  Permeable paving for pedestrian 
pathways.

Figure 95:  Landscape swales to mediate parking 
runoff.
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contains a greater concentration of pollutants than pedestrian walking surfaces and should 

be directed to appropriate landscape swales as shown in fi gure 95.  Finally, permeable 

paving is correctly installed when it is laid atop a well-compacted base that minimizes the 

opportunity for uneven settlement.

Constructed Wetlands

 Constructed wetlands are a landscape architecture element which utilize plants to 

fi lter pollutants naturally out of grey water and rainfall.  This landscape is a productive 

one in which the plants are working and as such should not be disturbed by foot traffi c.  

Architecture involving constructed wetlands should include circulation which allows 

signifi cant views of the wetland but should not include pedestrian paths through this 

landscape as shown in fi gures 96 and 97.  This sort of movement along the edge of 

the wetland minimizes human interaction with organic content in the water and keeps 

people from disturbing the plants which are actively working to eliminate pollutants.  

Constructed wetlands should also be designed in alternating areas of water movement and 

retention as shown in fi gure 98.  Stagnant water attracts undesirable bugs and as a result 

some amount of water movement is benefi cial, but the water must also be periodically 

retained in order to let the nutrients in the water be absorbed.  Alternating these two 

design types balances the competing needs of the constructed wetland.  As with any 

landscape, native plants should be used whenever possible in order to minimize irrigation 

needs and avoid invasive species.

Green Walls

 Green walls introduce landscape elements into the vertical plane and can both 

reduce runoff as well as create microclimate.  Green wall systems should always be 
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installed concurrently with a drip irrigation system run through the structure of the green 

wall.  Installing such a system minimized maintenance of the plants after installation and 

helps to preserve the health of the plants.  When such a system is fed by runoff from the 

roof, the green wall is eliminating runoff from traveling off site.  Similar to green roofs 

and illustrated in fi gures 99 and 110, a green wall should be installed on vertical surface 

Figure 97:  Circulation through the center of the 
constructed wetland is not advisable.

Figure 96:  Circulation along edges of 
constructed wetland is advisable.

Figure 98:  Constructed wetlands should be 
created to alternate areas of water movement and 
retention.
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with 4 - 6 hours of unobstructed daily solar access in order to promote plant growth.  

Green walls on north walls of buildings in the northern hemisphere are historically 

reasonably unsuccessful.  Ideally a green wall should face south in the northern 

hemisphere.  Similar to the other growing interventions described, native plants should be 

used whenever possible.

Scuppers

 Scuppers are an articulated moment in architecture where water’s path from the 

sky to the earth is highlighted.  In order to make the most of this expression, scuppers 

should be placed prominently along building or site circulation paths to insure that 

building users are aware of this movement.  Scuppers should also be created out of 

hierarchal materials in order to be highlighted against the building and landscape.  As 

shown in fi gures 101 and 102 rain chains are an appropriate solution if the drop from 

the scupper is a great distance if minimizing splashing is desirable.  Alternatively, this 

Figure 99:  Appropriate solar access for a green 
wall.

Figure 100:  Inappropriate solar access for a 
green wall.
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Figure 101:  Scuppers without rain chains create 
splashes.

Figure 102:  Scuppers with rain chains minimize 
splahes.

splashing could be celebrated to further communicate the nature of water’s movement 

through the built environment.

 While this design language is not a complete catalog of the elements available 

to designers interested in created buildings for storm water management, it does start to 

set the stage for how a language of this nature could continue to be developed.  Other 

elements that could be added to this catalog include:  rain chains, storm water planters, 

cisterns, landscape swales, Archimedes’ screw, ponds or pools, fi lter strips, aqueducts, 

gutters and downspouts, sand fi ltration, terracing, french drains, damming, and rain 

screens.  This thesis has also confi ned its interests to technologies utilized outside the 

building, but a catalog of other elements related to water in the built environment would 

include the opportunities of solar thermal systems, composting toilets, water fountains, 

washing machines, dishwashers, and a host of other equipment in buildings which utilizes 

water in order to function properly.
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Chapter 6:  Conclusions

 While most architectural theses at the University of Maryland School of 

Architecture, Planning, and Preservation seek to solve the challenges of a singular 

design problem defi ned with one site, one building, and one tectonic, the intention of this 

thesis was broader:  to defi ne articulately what differences exist across the landscape of 

the Chesapeake Bay watershed and how architecture must adapt to meet those varying 

conditions for the health of the watershed as a whole.  The point was to compare the 

designed environments created within the ecoregions and understand why what might 

be vernacular and appropriate for water in the Appalachian Plateau might be an entirely 

inappropriate design response for the Coastal Plain or any one of the other comparisons 

articulated in Chapter 4.  The maturity of the design development is not as deep as it 

could have been had one structure been studied singularly, but the richness of the story 

to be told about the architecture of the Chesapeake Bay watershed comes not from 

the development of one building, but rather the complex interrelated stories of a set of 

buildings that must respond uniquely to the changing conditions of the landscape.

 What came out of this thesis most fundamentally is a changed understanding of 

the water cycle and our relationship to it.  The idealized understanding of the water cycle 

articulated in Figure 2 changed profoundly as a result of this design work and Figures 

103 and 104 propose updated ways of looking at the water cycle.  Figure 103 shows 

an updated and yet still idealized look at the water cycle.  What had previously been 

understood and diagrammed as a single closed loop cycle is now understood to actually 

be a concurrent set of closed loop cycles happening at variety of scales.

 As became evident through this design research, water is a design issue at every 
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Figure 103:  Water cycle diagram.  Unlike the idealized water cycle diagram, this image shows a set of 
water cycles happening concurrently at a variety of scales.

scale precisely because the water cycle occurs at every scale.  The cycle of evaporation, 

condensation, and precipitation happens locally in every ecoregion of the Chesapeake 

Bay watershed, but also happens at the regional scale of the Chesapeake Bay.  The 

water cycle also happens at larger scales with bigger spheres of infl uence at national and 

international scales.  This understanding of the water cycle adds a level of complexity 



146

to the idealized diagram that more accurately describes the global, regional, and local 

system that is being designed for when an architect chooses to design for water.  This 

more complex understanding allows a designer to not only think more sustainably about 

designing, but also dictates that when thinking of water the best design solution must not 

only be right for the immediate site, but also be right for the larger regional site.  This is 

particularly critical in the Chesapeake Bay watershed because of the Bay’s subtle nutrient 

and salinity composition.

 Figure 104 illustrates another way knowledge has increased as a result of this 

thesis’s design work.  This diagram represents what tracing a drop of water through 

the Chesapeake Bay watershed might look like, which, surprisingly, starts to look 

quite similar to the design process spiral.  A drop of water which falls at the top of the 

underlying transect diagram, on the Appalachian Plateau, might be recycled indefi nitely 

at the top of the watershed.  A drop of water might forever be processed and reprocessed 

at the top of the watershed and never actually make it to the Bay, especially if measures 

are taken in designing the built environment of that ecoregion to try to retain water that is 

incident on the site.  Alternatively, a drop of water might progressively move through the 

ecoregions, periodically getting caught up in the mountain ridges of both the Appalachian 

Mountains ecoregion and the Piedmont, before fi nally reaching the Bay.

 The bottom line is that through careful design work, architects can create built 

environments specifi c to the ecoregions of the Chesapeake Bay that would allow a loop to 

happen repeatedly on the same site without losing the precipitation to those downstream.  

Obviously a certain amount of movement downstream is desirable - the Coastal Plain 

is in part as nutrient-rich as it is because water traveling down the waterways of the 
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watershed picks up nutrients in its path, but at present so much of the precipitation on the 

Chesapeake Bay watershed becomes runoff and reaches the Bay so laden with nutrients 

that the Bay can not fi lter them out and behave effectively as an ecosystem.  With proper 

design solutions in combination with the host of other efforts that are under way to help 

preserve the Bay’s health, the Chesapeake Bay might be able to refresh itself from the 

onslaught of chemicals and nutrients that have been fl ushed into this ecosystem.

 This work is signifi cant because it sets the framework for a new understanding 

of ecological design education.  Architecture students are always told not to draw a box 

around their site because it closes off the mind’s understanding of the greater context the 

work fi ts into.  The point of most educators is that to create a good building urbanistically, 

a student must think about the larger site context a structure is to fi t into.  This thesis 

proposes that even enlarging the student or architect’s view of the site to include the 

immediate context is not thinking big enough to achieve a truly green design.  Designing 

ecologically sustainable buildings requires holistic consideration of the natural systems 

and processes that work on the site.  When designing for water, this means thinking and 

designing on the scale of the watershed as well as on the scales of the building and the 

detail.

 Natural systems work on a multiplicity of scales for which designers must 

concurrently understand and design.  This work could be envisioned as the fi rst of a 

family of works that might also include analysis and design work considering the energy 

cycle and the carbon cycle.  Understanding the frame of reference relevant in designing 

for these natural cycles and processes might help to lead the way forward in green design 

in a way that is not style specifi c but instead has a fi rm foundation in principles that can 
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be applied in a variety of architectural styles.

 While this thesis marks a signifi cant achievement in a growing understanding 

of ecological design, it is a stepping stone to a life’s work.  Much of the work described 

here has opened up a myriad of alternative possibilities for both design and research work 

that could keep a team of architects busy creating for a lifetime.  It is hoped that in the 

future this work will be carried forward in built case studies beyond the University of 

Maryland’s 2011 entry into the Solar Decathlon and that, with time and practice this work 

will grow to include a host of built structures that embody the principles described here.



150

Appenedix A:  Water-Related Resources

 Through the course of this thesis a plethora of resources have been studied that 

have increased my understanding of the water cycle, architecture, and the relationship 

between the built and natural environments.  In trying to tell the clearest, most concise 

narrative of this thesis, a number of these resources were not included as part of the story 

and as a result are not included in the bibliography.  What I present below is a catalog of 

other information relevant to water and architecture with the hope that the next person 

who takes interest in building for the Chesapeake Bay watershed will have a good place 

to start telling their own story without having to start entirely from the beginning as I did.

Built Precedents for Water-Based Design

Phillip Merrill Environmental Center.  Annapolis, Maryland.  SmithGroup, Inc.

Gannett/USA Today Headquarters.  McLean, Virginia.  Kohn Pedersen Fox.

Adam Joseph Lewis Center.  Oberlin, Ohio.  William McDonough and Partners.

Sidwell Friends Middle School.  Washington, DC.  Kieran Timberlake.

Internet Resources on Water, the Chesapeake Bay, and Related Topics

Center for Watershed Protection:  http://www.cwp.org 

Chesapeake Bay Foundation:  http://www.cbf.org

Chesapeake:  Bay on the Brink:  http://chesapeake.news21.com/blog/

Chesapeake Bay Program:  http://www.chesapeakebay.net/

CHESTORY:  The Center for the Chesapeake Story:  http://www.chestory.org/

One Drop Foundation:  http://www.onedrop.org/en/drop-experience.aspx

Water.org:  http://www.water.org
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Print Resources on Water, the Chesapeake Bay and Related Topics

Barlow, Maude and Tony Clarke.  “Water Must Be Made a Public Resource” in Global 

Resources.  New York:  The Gale Group, 2008.

Benyus, Janine M.  Biomimicry:  Innovation Inspired by Nature.  New York:  Perennial, 

1997.

Biswas, Asit K.  “Water Scarcity is Not a Global Problem” in Global Resources.  New 

York:  The Gale Group.

Central City Concern.  Achieving Water Independence in Buildings:  Navigating the 

Challenges of Water Reuse in Oregon.  March 2009.

Cramer, Gary W.  “The Poetry of Stormwater.”  Landscape Architecture.  March 2006, 

pages 50-60.

Environmental Protection Agency.  Evaluation Report:  Saving the Chesapeake Bay 

Requires Better Coordination of Environmental and Agricultural Resources.  20 

November 2006.

Fothergill, Alastair.  The Blue Planet:  Seas of Life.  London:  British Broadcasting 

Corporation, 2007.

Hassett, Brooke, Margaret Palmer, Emily Bernhardt, Sean Smith, Jamie Carr, and David 

Hart.  “Restoring Watersheds Project by Project:  Trends in Chesapeake Bay 

Tributary Restoration.”  Frontiers in Ecology and the Environment.  Vol. 3, No. 5, 

pages 259-267.

Kibert, Charles J.  Sustainable Construction:  Green Building Design and Delivery.  

Hoboken, NJ:  John Wiley & Sons, Inc., 2005.

Lonergan, Steve.  “Water Scarcity is a Global Problem” in Global Resources.  New York:  
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The Gale Group, 2008.

McDonough, William and Michael Braungart.  Cradle to Cradle:  Rethinking the Way We 

Make Things.  New York:  North Point Press, 2002.

Roaf, Susan.  EcoHouse.  Boston, MA:  Architectural Press, 2001.

U.S. Fish & Wildlife Service.  Native Plants for Wildlife Habitat and Conservation 

Landscaping:  Chesapeake Bay Watershed.  2003.

Van der Ryn, Sim and Stuart Cowan.  Ecological Design.  Washington, DC:  Island Press, 

1996.

Zaretsky, Michael.  Precdents in Zero-Energy Design:  Architecture and Passive Design 

in the 2007 Solar Decathlon.  New York:  Routledge, 2010.
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