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Uncertainty is inevitable in engineering design optimization and can significantly 

degrade the performance of an optimized design solution and/or even change feasibility 

by making a feasible solution infeasible. The problem with uncertainty can be 

exacerbated in multi-disciplinary optimization whereby the models for several disciplines 

are coupled and the propagation of uncertainty has to be accounted for within and across 

disciplines. It is important to determine which ranges of parameter uncertainty are most 

important or how to best allocate investments to partially or fully reduce uncertainty 

under a limited budget. To address these issues, this dissertation concentrates on a new 

robust optimization approach and a new sensitivity analysis approach for multi-objective 

and multi-disciplinary design optimization problems that have parameters with interval 

uncertainty. 

The dissertation presents models and approaches under four research thrusts. In the 

first thrust, an approach is presented to obtain robustly optimal solutions which are as 

best as possible, in a multi-objective sense, and at the same time their sensitivity of 

objective and/or constraint functions is within an acceptable range. In the second thrust, 

the robust optimization approach in the first thrust is extended to design optimization 



 

problems which are decomposed into multiple subproblems, each with multiple 

objectives and constraints. In the third thrust, a new approach for multi-objective 

sensitivity analysis and uncertainty reduction is presented. And in the final research 

thrust, a metamodel embedded Multi-Objective Genetic Algorithm (MOGA) for solution 

of design optimization problems is presented.  

Numerous numerical and engineering examples are used to explore and demonstrate 

the applicability and performance of the robust optimization, sensitivity analysis and 

MOGA techniques developed in this dissertation. It is shown that the obtained robust 

optimal solutions for the test examples are conservative compared to their corresponding 

optimal solutions in the deterministic case. For the sensitivity analysis, it is demonstrated 

that the proposed method identifies parameters whose uncertainty reduction or 

elimination produces the largest payoffs for any given investment. Finally, it is shown 

that the new MOGA requires a significantly fewer number of simulation calls, when used 

to solve multi-objective design optimization problems, compared to previously developed 

MOGA methods while obtaining comparable solutions.     
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CHAPTER 1: INTRODUCTION 

This dissertation presents a new robust optimization method and a new sensitivity 

analysis method for single- and multi-disciplinary optimization with uncertainty. Robust 

optimization and sensitivity analysis is usually used when an optimization model has 

parameters with uncontrollable variations due to uncertainty or noise. In this dissertation 

uncertainty in design variables or parameters is represented by intervals; probability 

distributions are not required.   

This dissertation first presents a new robust optimization method for single-

disciplinary multi-objective optimization problems, based on a forward mapping from the 

parameter space to the objective and/or constraint space. A worst-case distance calculated 

based on this forward mapping is used as a metric for the robustness. After that, the 

single-disciplinary robust optimization method is extended to handle the uncertainty and 

its propagation in multi-objective Multi-disciplinary Design Optimization (MDO) 

problems. In addition, a novel global Sensitivity Analysis (SA) and uncertainty reduction 

method is developed based on this worst-case distance measure for uncertain parameters 

whose uncertainty is reducible. Finally, the distance measure of uncertainty is further 

used as a metric for error prediction in a metamodeling assisted Multi-Objective Genetic 

Algorithm (MOGA) to significantly reduce the number of simulation calls during the 

optimization. Numerous numerical and engineering examples are used to demonstrate the 

merits and applicability of the proposed approaches. 

1.1 MOTIVATION AND OBJECTIVE 

Many engineering design optimization problems have multiple nonlinear objectives 

and constraints, mixed continuous-discrete design variables, and more critically, 
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parameters with uncontrollable variations. These problems and corresponding solution 

methods form the research area called “robust optimization.” For optimization problems 

in this area, the objective functions of and/or the feasibility of an optimal design can be 

significantly degraded or changed due to uncertainty. There are essentially two different 

sources for uncertainty: 1) noisy input data (or noisy input factors), this includes noisy 

parameters in the problem, and 2) noisy control factors, these refer to design variables in 

the optimization problem whose optimizer-specified solution cannot be achieved exactly 

(or deterministically) in practice, e.g., geometrical dimensions cannot be made to their 

exact size due to manufacturing errors. The intent in robust multi-objective optimization 

is to obtain optimal design solutions which are as “best” as possible and at the same time 

variation in their objective and/or constraint functions due to noisy factors is still within 

an acceptable range. Many methods and approaches have been proposed in the literature 

to obtain robust design solutions. Depending upon whether the variations are considered 

in the objective or constraint functions, a robust optimization approach can be classified 

into two types [Parkinson et al., 1993]: “objective robustness” or “feasibility robustness”, 

respectively. For objective robustness, the goal is to seek a design solution whose value 

of the optimal objective functions remains relatively the same regardless of the 

variability. Similarly, for feasibility robustness, the goal is to obtain a design solution 

which is feasible regardless of the variability. Since feasibility of a solution is often 

referred to as reliability, feasibility robust optimization is also called reliability 

optimization.  

MDO is another important aspect of optimizing design of “complex” engineering 

systems [Sobieski-Sobieszczanksi, 1988], [Sobieszczanski-Sobieski and Balling, 1996], 
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[Sobieszczanski-Sobieski and Haftka, 1997]. By a complex system we mean a system 

design optimization problem that is decomposed into multiple interacting subsystems or 

disciplines. Examples of MDO problems are abundant and can be typically found in 

aircraft, spacecraft, automobiles, ships, and other engineering design applications. As a 

simple example, the bevel gear and the universal motor are two interconnected 

components of an angle grinder. They are considered as the two disciplines of the angle 

grinder (see Section 3.6.4 for the detail). However, even though there are many 

applications of MDO, the effective handling of uncertainties in MDO problems is still 

rare. The problem with handling variability is exacerbated in MDO whereby several 

disciplines and multi-objective optimization problems are coupled and as a result the 

complexity of design optimization problems increases. The situation becomes worse 

particularly because uncertainties may exist not only in each discipline but also in 

couplings across disciplines and hence methods for handling uncertainty within and 

across disciplines have become quite important [Du and Chen, 2000(a) and 2002], [Gu et 

al., 2000], [Gu and Renaud, 2002], [Gu et al., 2006]. Couplings in this dissertation refer 

to the variables (or outputs) generated by one discipline and used (as inputs) by other 

disciplines. For example, in the design of the angle grinder (see Section 3.6.4), the motor 

output such as power is used as an input by the bevel gear discipline. However, even 

though there are many reported applications for robust MDO approaches, those MDO 

methods are essentially for single-objective robust optimization problems that have 

continuous objective/constraint functions or when input probability distributions are 

known, which is not valid for complex system design during the conceptual design stage, 

due to inadequate information or insufficient samplings. The literature is still short in 
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handling uncertainty for fully coupled multiobjective decentralized MDO problems with 

interdisciplinary uncertainty propagation. 

Sensitivity Analysis (SA) is a natural next step of robust optimization and has been 

investigated since it has been gaining more and more interest, especially for the 

applications where it is critical to identify the (reducible) uncertain parameters whose 

reduction or elimination of their interval will produce the largest payoffs in the 

performance. For instance, after performing a robust optimization and obtaining a set of 

optimal and robust solutions, a deeper analysis of the effects of individual parameters 

should be investigated to determine if any opportunities exist for further reduction in 

uncertainty given a variety of possible investment levels.   

In the broadest sense there are two motivations for taking uncertainty into account in 

engineering design [Saltelli et al., 1999(a)]. Approaches whose goal is to find the range 

and frequency of possible model outcomes as a result of all model input uncertainty are 

broadly filed as Uncertainty Analysis. In contrast, those methods that seek to connect the 

uncertainty in model inputs to model outputs are classified as Sensitivity Analysis (SA) 

[Iman and Helton, 1988]. Sensitivity analysis can further be classified as either local or 

global in nature. Local sensitivity analysis methods examine the change in model outputs 

with respect to small variations in model inputs.  These methods have the obvious 

drawback of being valid only for small regions of uncertainty. Global Sensitivity 

Analysis (GSA) takes into account the entire range of model inputs to determine the 

affect on overall model uncertainty. In GSA, the affect of parameters on model 

uncertainty are generally compared to overall model uncertainty in order to quantify 

parameter importance or sensitivity. Moreover, it is more common in the literature to 
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convert the multi-objective problem to a single objective one and then perform sensitivity 

analysis for a single solution point or design [Saltelli et al., 1999(b)].  On the whole, the 

approaches to multi-objective optimization problems have focused on sensitivity for a 

single solution based on a weighted objective or have been local in nature. Therefore, 

there is impetus to extend GSA to multi-objective design problems with respect to 

multiple designs. 

To help solve the previously mentioned problems and obtain global optimal solutions, 

effective approaches to handle multi-objective optimization must also be addressed.  

Generally speaking, there are two classes of design optimization methods that can be 

used for engineering design optimization (see, e.g., [Papalambros and Wilde, 2000], 

[Arora, 2004], [Belegundu and Chandrupatla, 1999]). These two classes are gradient- and 

non-gradient-based methods. Gradient-based methods (see, e.g., [Bazaraa et al., 1993]) 

require derivative information for the optimization functions (i.e., objective and 

constraint functions) and usually have an implicit assumption that these functions are 

“smooth” and that design variables are continuous. In general, gradient-based methods 

can only guarantee obtaining a local optimal design solution unless the functions used in 

the problem have special properties such as convexity over convex feasible regions. 

Unfortunately, derivative information usually is not available because of uncertainty in 

engineering problems themselves during the conceptual design stage or due to the 

complexity of simulations used to evaluate designs. The smoothness assumption can be 

relaxed in non-gradient-based techniques. One popular and general class of non-gradient-

based techniques for design optimization is Genetic Algorithms (GAs) [Holland, 1975], 

[Goldberg, 1989]. GAs were developed by John Holland [Holland, 1975] and are based 
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on evolutionary concepts. These algorithms can handle non-smooth functions and mixed 

continuous-discrete design variables, a situation common in engineering design 

problems. Generally, GAs can obtain or converge to a global (or near to) optimal design 

solution. Moreover, they can be easily extended to handle multiple design objectives, i.e., 

Multi-Objective Genetic Algorithms or MOGAs [Deb, 2001], [Coello Coello et al., 2002], 

[Narayanan and Azarm, 1999], [Kurapati et al., 2002]. One important advantage of 

MOGAs is that Pareto optimal solutions can be obtained by a single run of the GA. The 

main shortcoming of MOGAs is that they require a large number of simulation calls. A 

simulation call here means that the performance (objectives and/or constraints) of a 

design is calculated by a simulation. (Here, a simulation model refers to a set of functions 

or a computer program.) Researchers have been quite active in developing models and 

methods that improve the efficiency of GAs and MOGAs in terms of the number of 

simulation calls. Therefore, it will be extremely useful to develop a MOGA approach 

with significantly less computational effort, in terms of simulation calls, compared to 

conventional MOGAs.  

The overall objective of this dissertation is to present a roust optimization and 

sensitivity analysis method for multi-objective and feasibility robust optimization to 

single- and multi-disciplinary design optimization problems. Also, an efficient metamodel 

assisted MOGA will be presented as part of the approach for these problems.  

1.2 RESEARCH THRUSTS 

To achieve the overall objective, we pursued four research thrusts for the research in 

this dissertation described as follows: (1) Multi-Objective and Feasibility Robust 

Optimization in Single-disciplinary Design Optimization (Chapter 3); (2) Performance 
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and Collaborative Robust in Multi-disciplinary Design Optimization (Chapter 4); (3) 

Interval Uncertainty Reduction and Multi-Objective Sensitivity Analysis in Single-

disciplinary Design Optimization (Chapter 5); and (4) Metamodel Assisted Multi-

Objective Genetic Algorithm (Chapter 6).  The detailed motivation and objective of each 

research thrust are described in the following subsections. 

1.2.1 Research Thrust 1: Multi-Objective and Feasibility Robust Optimization in 

Single-disciplinary Design Optimization 

The first research thrust is concerned with variations in the objective and/or constraint 

functions of an optimal design due to uncertainty in the design variables or input 

parameters in a single-disciplinary design optimization, or called “all-at-once” 

formulation of MDO. A design is called “multi-objectively robust” if its variation in 

objective functions still remains within an acceptable range when parameters vary. A 

design is called “feasibly robust” if it is always feasible even if there are parameter 

variations. We extend the approach to “performance robust optimization,” invoking 

objective and feasibility robustness together. This so-called “performance robustness” of 

an optimal design is especially important because its objective functions can degrade 

significantly or its feasibility can change (the feasible design may no longer be feasible) 

due to the variations in parameters.  

The objective of Research Thrust 1 is to develop a method to obtain robust solutions 

which are as best as possible, in a multi-objective sense, and at the same time their 

variation in objective and/or constraint functions, due to uncontrollable parameter 

uncertainty is within an acceptable range.   

A portion of this research thrust was presented in Li et al., [2006]. 
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1.2.2 Research Thrust 2: Performance and Collaborative Robustness in Multi-

disciplinary Design Optimization 

The second research thrust extends the performance robustness for the MDO 

problems. MDO is concerned with methods for optimizing design of a system governed 

by multiple coupled disciplines. The existing robust optimization methods for this type of 

problems generally focus on continuous variations (i.e., continuous distributions) where 

distributions are presumed generally for single-objective optimization problems in each 

subsystem. Although the approaches proposed previously, i.e., [McAllister and Simpson, 

2003] and [Kalsi et al., 2001], can handle robust design problems with multiple objective 

functions, they can only apply to robust MDO problems with no coupling or one-way 

coupling MDO problems (e.g., only upstream coupling parameters, from the follower to 

leader discipline, had uncontrollable variations). The literature is particularly limited in 

handling uncertainty for fully coupled multiobjective multilevel MDO problems with 

interdisciplinary uncertainty propagation.  

The objective of Research Thrust 2 is to develop an approach that can find robust 

solutions for multi-objective MDO problems in which mixed continuous-discrete 

variation happens not only for parameters within disciplines but also across disciplines. 

A portion of this research thrust was presented in Li and Azarm [2007]. 

1.2.3 Research Thrust 3: Interval Uncertainty Reduction and Multi-Objective 

Sensitivity Analysis in Single-disciplinary Design Optimization 

The third research thrust is concerned with the determination of the effect of input 

uncertainty on the overall system’s multiple responses using a GSA method. GSA 

methods can be classified as sampling based (Monte Carlo), analytical, or as interval 
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analysis. Sampling methods are the most prolific with variance being the principle 

measure of uncertainty. The greatest drawbacks of these methods are computational cost, 

the availability of probability distributions and treatment of tail probabilities. Moreover, 

iteratively “leave-one-out” strategy (fix one parameter at its mean value per time) used in 

analytical methods may not reflect a real situation in engineering design optimization in 

which some types of uncertainty cannot be eliminated entirely, such as manufacturing 

tolerance. Some degree or “grayscale” uncertainty reduction for one uncertainty or a 

combination of several uncertainties should become more attractive for improving the 

sensitivity of designs.    

The objective of Research Thrust 3 is to develop a novel Multi-objective Sensitivity 

Analysis for multi-output (multi-objective) problems and provide designers and program 

managers in multi-disciplinary design an environment that allocates investments for 

parameters whose uncertainty is reducible and should be reduced to achieve the 

acceptable variations in the model outputs. 

A portion of this research thrust was presented in Li et al., [2007c]. 

1.2.4 Research Thrust 4: Metamodel Assisted Multi-Objective Genetic Algorithm  

Although GAs and MOGAs have been widely used in engineering design 

optimization, the important challenge still faced by researchers in using these methods is 

their high computational cost due to the population-based nature of these methods. In 

particular, a number of techniques incorporating metamodeling with GA based methods 

have been reported in the literature [Jin, 2005]. A metamodel means a simplified 

approximation of the original simulation model. Some of these methods use 

metamodeling in the GA’s fitness estimation [Jin, 2005]. Others incorporate 
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metamodeling in the GA reproduction schemes to guide the search in the design space 

[Shan and Wang, 2005]. While the fitness estimation methods have been reported to 

reduce the computational cost significantly [Jin, 2005], these methods have the risk of 

generating false optimal solutions because of uncertainty (error) in the predicted 

objective and constraint value from the metamodels.  

The objective of Research Thrust 4 is to develop an objective criterion to measure the 

uncertainty in the prediction of responses from the metamodels so that the risk of 

generating false optima can be reduced. The goal is to develop a MOGA that can 

converge to the Pareto front using significantly fewer number of simulation calls 

compared to a conventional MOGA. 

A portion of this research thrust was presented in Li et al., [2007b]. 

1.3 ASSUMPTIONS 

In developing our robust optimization and sensitivity analysis methods, we make the 

following assumptions: 

• We assume that there exists a trade-off between objective functions of a design in 

the system or each subsystem. If such a trade-off does not exist, then it is not 

necessary to conduct multi-objective optimization. 

• We assume that the range of parameter uncertainty is known as an interval (or 

several discrete intervals) a priori. Interval uncertainty is not required to be 

continuous.  

• We presume an acceptable variation range for each objective function in the 

robust optimization. 
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• We assume, without considering uncertainty, the calculation of objective and 

constraint functions for a design is deterministic. That is, the same designs always 

have the identical outputs from the simulation model in the deterministic case.   

• We assume that the parameter uncertainty considered in Chapter 5 is reducible. 

There are also several properties about the simulation and optimization problems that 

should be noted in this dissertation, including: 

• Simulations used in optimization problems are considered as “black boxes” that 

will provide the identical responses (outputs) when the same inputs are supplied.  

• Design variables and/or parameters in optimization problems can be mixed 

continuous-discrete.  

1.4 ORGANIZATION OF DISSERTATION 

The rest of the dissertation is organized as follows. Chapter 2 gives the definitions of 

concepts and terminologies used throughout the dissertation. The proposed multi-

objective and feasibility robust optimization approach for single-disciplinary design 

optimization is described in Chapter 3 (Research Thrust 1), and we extend it to multi-

objective robust MDO problems in Chapter 4 (Research Thrust 2). In Chapter 5, we 

develop a new method for multi-objective sensitivity analysis and uncertainty reduction 

for single-disciplinary design optimization (Research Thrust 3). Chapter 6 presents an 

online metamodel assisted MOGA approach based on an objective criterion for the 

uncertainty in the predicted responses from metamodels. To demonstrate the applications 

of our methods, numerous numerical and engineering examples are given in Chapters 3 

through 6. Chapter 7 concludes the dissertation with some remarks as well as a discussion 

on the contributions of the dissertation and potential future research directions.  
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Figure 1.1 shows the organization and flow of information in this dissertation.  

CHAPTER 1

Motivation and Objectives;
Research Thrusts; Assumptions

CHAPTER 2

Definitions and Terminology

CHAPTER 3

Multi-Objective and
Feasibility Robustness in

Single-disciplinary Design Optimization

CHAPTER 4

Performance and
Collaborative Robustness in

Multi-disciplinary Design Optimization 

CHAPTER 6

Uncertainty in Response Prediction 
for  Metamodel Assisted MOGA

CHAPTER 5

Interval Uncertainty Reduction and
Multi-Objective Sensitivity Analysis in
Single-disciplinary Design Optimization

CHAPTER 7

Conclusions;
Main Contributions;

Future Research Directions  

Figure 1.1 Organization of dissertation 
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CHAPTER 2: DEFINITIONS AND TERMINOLOGY 

2.1 INTRODUCTION 

In this chapter, we provide several definitions and terminologies that will be used in 

the dissertation. First in Section 2.2, we describe a typical formulation of multi-objective 

optimization problems with interval uncertainty. After that, an MDO formulation is 

introduced in Section 2.3. We briefly discuss several definitions used in the sensitivity 

analysis in Section 2.4. Following in Section 2.5 is a brief description of Multi-Objective 

Genetic Algorithm (MOGA) that is used as an optimizer in this dissertation. Finally in 

Section 2.6, we briefly discuss a typical metamodeling approach, called kriging, which is 

used in the metamodel assisted MOGA approach described in Chapter 6.  

2.2 MULTI-OBJECTIVE OPTIMIZAITON WITH UNCERTAINTY 

 In this section, we set the basic optimization problem and explain several definitions 

and terminologies used in this dissertation. A general formulation of multi-objective 

optimization problems with uncertain parameters is given in Eq. (2.1).  
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where x = (x1,…,xN) is the N-element design variable vector; xlower and xupper are the lower 

and upper bounds of x, respectively. The optimization is performed by changing the x 

components. p = (p1,…,pK) is the vector of parameters, fixed for a particular optimization 

run but can have uncertainty. In this dissertation, uncertainty in p is represented by 

known intervals. The vector x or p or both might have continuous and discrete 

components. These sets may be binary restrictions, integer constraints, or just 
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specifications that indicate only a discrete set of choices available. Note that any design 

variable that has uncontrollable variation is included in both x and p. As an example, a 

continuous noisy range for the design variables x may refer to an “implementation noise”, 

relating to the inability of a manufacturer to achieve exact levels of design variables due 

to errors in a manufacturing setting. A discrete range for the parameters p refers, for 

example, to different applications or use scenarios. For instance, a consumer durable 

product like a grinder power tool could be used in different applications such as concrete 

or wood or metal and such applications or use conditions can vary and are not under the 

control of a product designer. {f1,…,fM} are the objective functions and are commonly 

represented as a vector f = (f1,…, fM). The functions g1,…,gL are the constraints; a design 

that does not violate any of the constraints is called “feasible.” Since the convexity of a 

feasible region is not assumed in this dissertation, an equality constraint can be 

transformed to two corresponding inequality constraints. Thus we presume that all the 

constraints can be represented as inequality functions.  

Parameter space (p-space): A K-dimensional space in which the coordinate axes are the 

parameter values. 

Objective space (f-space): An M-dimensional space in which the coordinate axes are the 

objective values. 

Feasibility space (g-space): An L-dimensional space in which the coordinate axes are the 

constraint values. 
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Figure 2.1 Tolerance region for design x0 in parameter space 

Tolerance Region: We consider problems where the uncertain parameters have a nominal 

(or most likely) value p0 = (p0,1,…,p0,K) and a known interval (or range). We describe the 

objective variation in terms of the parameter variations. The tolerance region is defined as 

a hyper-rectangle in p-space, formed by p~ , all possible parameter values (positive and 

negative directions of the nominal value). The parameters’ tolerance region is defined 

as{ }+∆+≤≤∆− ppppp|p -
00

~~ , in which -p∆ and +∆p  are the lower and upper bounds of 

the known parameter variation range, respectively. Note that this region need not be 

symmetric about the origin, and it is not necessary to be constant for all designs. 

However, for simplicity, in this dissertation this region is considered symmetric about the 

nominal value, but not necessarily constant for all designs. Given the symmetry of the 

tolerance region, ppp- ∆=∆=∆ +  is used to define the tolerance region as shown in 

Figure 2.1. However, the tolerance region is not necessarily continuous. In that case, a 

discrete set of available choices of p~ should be indicated.  

Pareto set and Pareto frontier: Since there are trade-offs among the M objective 

functions, the optimization problem Eq. (2.1) generally has more than one optimal 

solution. Those solutions are optimal in the Pareto sense, and the set of them is called the 

Pareto set: no design in the set is better, in all objectives, than any other design in the set. 
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The Pareto solutions lie on a boundary in objective function space, called the Pareto 

frontier. For further definitions and reviews of multi-objective optimization concepts and 

methods, see [Miettinen, 1999] and [Deb, 2001]. 

Dominance status: In the context of multi-objective optimization, a feasible design point 

is said to be “non-dominated” if no other feasible point under consideration (e.g., points 

in one generation in MOGA) is better than that point with respect to all objectives. The 

set of all non-dominated points under consideration forms a non-dominated set. The 

remaining points under consideration form a “dominated” set. The “dominance status” of 

a point determines whether a point is dominated or non-dominated. A two-objective 

example of the dominance status is shown in Figure 2.2. 

feasible 
domain

Designs under 
consideration

Pareto
optima

f1

f2

dominated
non-dominated

Pareto optima

 

Figure 2.2 Dominance status in a two-objective case 

At the convergence of an optimization procedure (such as MOGA), the set of non-

dominated points eventually evolves to form the Pareto set (or an estimate of it).  

Nominal Pareto set: This refers to the Pareto set of a multi-objective optimization 

problem with nominal parameters. That is, nominal Pareto solutions are the solutions of 

the optimization problem in Eq. (2.1) when p = p0. 

Robust Pareto set: This is a set whose elements are both robust and Pareto optimal. This 

set refers to a set of designs that is Pareto optimal, with the additional properties that, 
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with p varying over a tolerance region, the values of the objective functions for each 

design remain within an acceptable range, and the designs remain feasible. 

For a particular design x0 = (x0,1,…,x0,N) the nominal values of the objective functions 

are f(x0, p0) = (f1(x0, p0),…,fM(x0, p0)), and the nominal values of the constraint functions 

are g(x0, p0) = (g1(x0, p0),…, gL(x0, p0)). We will speak of objective function variations 

and constraint function variations of x0 caused by parameter variations p~ : 

�f(x0, p~ ) = f(x0, p~ ) - f(x0, p0) and �g(x0, p~ ) = g(x0, p~ ) - g(x0, p0).  

We can also define three variation spaces. �p-space is the K-dimensional parameter 

variation space, whose axes are parallel to the axes of p-space and whose origin is at p0 in 

p-space. Similarly, we define �f-space, the M-dimensional objective variation space 

whose origin in f-space is at f(x0, p0); and �g-space, the L-dimensional feasibility 

variation space whose origin is at g(x0, p0) in g-space. 

f1

f2

Nominal 
value f(x0,p0)

f-space

AOVR of x0

1,0f∆

2,0f∆

     

∆g2 : acceptable 
range of g2

∆g1 : acceptable 
range of g1

g2

g1

Nominal 
value g(x0,p0)

g-space  

(a) (b) 

Figure 2.3 (a) An AOVR in f-space and (b) an ACVR in g-space for design x0 

Acceptable Objective Variation Region: The Decision Maker (DM) specifies the 

maximum acceptable objective variation �f0 = (�f0,1,…, �f0,M), which determines the 

Acceptable Objective Variation Region (AOVR) in �f-space: the hyper-rectangle 

centered at the origin, with dimensions ±�f0,m, m = 1,…,M, as shown in Figure 2.3(a). 
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Here we use the subscript “0” to represent the acceptable �f range, different from the 

variation �f(x0, p~ ). For simplicity, in the dissertation we assume that AOVR is a 

connected symmetric hyper-rectangle.  

Acceptable Constraint Variation Region: If design x0 is feasible for the nominal 

parameter values, it will remain feasible with parameter variation p~ as long as the 

constraint function g(x0, p~ ) � 0. (Any design that is infeasible even for the nominal 

values of p0 cannot be robust, and is not considered.) Hence, each nominally feasible 

design automatically gives an Acceptable Constraint Variation Region (ACVR): the 

hyper-rectangle in �g-space for which 0 � �g0,l � ),( 00 pxlg , l=1,…,L, based on the 

design x0 and nominal value of parameters p0, as shown in Figure 2.3(b). In other words, 

ACVR is determined by the values of the design’s constraint functions, gl(x0, p0), l=1,…, 

L; different nominally feasible designs have different ACVRs.  

Distance metrics: For any two points x and y in N-dimensional space (N � 2), the distance 

between x and y can be defined in three commonly used distance metrics, ||�||q, q =1, 2, or 

�, as shown in Eq. (2.2):  
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The illustration of three distance metrics is shown in Figure 2.4, as in a two-dimensional 

case.  
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Figure 2.4 Distance metrics in a two-dimensional case 

2.3 MULTI-OBJECTIVE MDO 

MDO refers to a class of optimization methods that are used to solve a system 

optimization problem that consists of multiple coupled subsystems. For simplicity and 

without loss of generality, we consider a fully coupled two-subsystem optimization 

problem representing two coupled disciplines i, i=1, 2, as shown in Figure 2.5. The 

optimization formulation for the two disciplines, as shown in Eq. (2.3), includes a vector 

of interdisciplinary coupling variables y, while the shared variables and shared uncertain 

parameters are xsh and psh, respectively: 
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The vector yij, called coupling variables, represents a coupled variable vector: Outputs 

from discipline i and inputs to discipline j. For instance, consider the two-discipline 

example shown in Figure 2.5, y12 represents the outputs from discipline 1 and the inputs 

to disciplines 2 while y21 represents the outputs from disciplines 2 and the inputs to 
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discipline 1. Shared variables refer to those variables that will be used in more than one 

discipline. Please see Section 3.6.5 and Section 4.3.3 for a detailed example of MDO.  

xsh,psh 

Discipline 
1 

Discipline 
2 

 

x1 
p1 

f1, g1 

x2 
p2 

y12 y21 

f2, g2 

f0, g0 
 

 

 

Figure 2.5 A fully coupled two-discipline system  

The vectors xi, fi and gi are the vectors of “local” (discipline’s) design variables, 

objective and constraint functions, respectively. Here local means within one discipline, 

without sharing with other disciplines. The vector Yi in Eq. (2.3) represents the functions 

that are used to calculate the coupling variables yij. Parameters pi represent the local 

parameters that have interval uncertainty. The entire system objective and constraint 

functions, represented by vectors f0 and g0, can be assumed as functions of local objective 

and/or constraint functions, as shown in Figure 2.5.  

2.4 SENSITIVITY ANALYSIS 

In this section, we discuss several definitions used in Chapter 5 for Multi-Objective 

Sensitivity Analysis. 

Inner product: We define an inner (or array) product operation for two vectors α α α α and ββββ, 

with the same number of elements, as:  αααα�ββββ = (α1β1, α2β2,…,αKβK).  This inner 

multiplication results in a new vector that has the same number of elements as αααα and ββββ, 

and whose k-th element is the product of the k-th element of  α α α α and the k-th element of β β β β.        
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Grayscale: Similar to the membership function in fuzzy logic [Zadeh, 1965], the original 

meaning of grayscale in image processing is the different shades of gray in an image 

[Vincent, 1993], not just black-and-white. In this dissertation, the grayscale of a value β 

is defined as a continuous varied level of β, from zero to itself. In other words, given a 

scalar α between 0 and 1, the grayscale of any value β is defined as the product of α and 

β, as αβ.      

Parameter Uncertainty Retention Index (PURI): In this dissertation, the vector αααα 

= (α1,…,αK) is called the Parameter Uncertainty Reduction Index (PURI), with 0 � αk � 1, 

for k = 1,…, K, corresponding to each parameter. That is, each element of αααα��p,  ,  ,  ,  αk�pk, 

is a grayscale of a parameter variation �pk, for k = 1,…, K. 

Retained Tolerance Region (RTR): RTR is a retained tolerance region in p-space defined 

as a grayscale of the original tolerance region �p, represented by the inner product of the 

PURI and the original tolerance region: αααα��p = (α1�p1, α2�p2,…, αK�pK). Essentially, 

RTR can represent any symmetric hyper-rectangle within the original tolerance region. 

When αααα    = 1, RTR is the original tolerance region; and when αααα    = 0, RTR is reduced to the 

nominal point of parameter, p0. For instance, in a two-dimensional case shown in Figure 

2.6, αααα��p can represent any rectangle within the original tolerance region.             

 

p1

p2

RTR with α = 1α = 1α = 1α = 1

RTR with α = 0α = 0α = 0α = 0

RTR with arbitrary αααα

 
Figure 2.6 Retained tolerance regions  
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2.5 MULTI-OBJECTIVE GENETIC ALGORITHMS (MOGA) 

The conventional MOGA used in this dissertation is based on NSGA [Deb, 2001] 

combined with an elitism strategy. Elitism strategies refer to the technologies used in the 

evolutionary algorithms that can keep all or part of the non-dominated individuals in the 

population as long as these elite individuals are not dominated by others. As shown in 

Figure 2.7, the conventional MOGA begins with coding all design variables (continuous 

or discrete) into binary chromosomes. It randomly (or based on some sampling strategies) 

generates an initial population (i.e., a family of starting points) of individuals (or design 

points) whose objective/constraint function values are calculated by simulations. Based 

on a fitness evaluation, the current population is divided into two sets: non-dominated 

and dominated. The next population is composed of two parts (see the “Next population” 

in Figure 2.7): elite and offspring points. The elite points are non-dominated points that 

are directly inherited from the previous generation. Offspring points are generated by GA 

operations, such as crossover and mutation. Then the algorithm evolves to the next 

generation (i.e., the algorithm goes into the next iteration) until the MOGA stops when all 

stopping criteria are satisfied. Then all non-dominated points in the last generation are 

considered as optimal Pareto solutions or good estimate of them. The stopping criteria 

and quality measures used in the dissertation are described in detail in Section 6.2.4. By 

comparing Pareto solutions obtained from MOGAs to the known Pareto frontiers for test 

examples, the convergence and diversity of obtained Pareto frontiers has been verified in 

Section 6.3 for the test problems.   

In this dissertation, a strategy similar to NSGA-II [Deb, 2001] has been used to 

ensure that the number of non-dominated points is not more than a pre-specified 
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percentage (e.g., 60%) of the population. The remaining points are offspring design 

points that are produced by GA operations. Such a strategy ensures that a pre-specified 

percentage (e.g., 40%) of individuals in the population is generated by genetic operations 

so that the algorithm can keep searching for new optima. For offspring design points, we 

use a probability of 0.95 for crossover and a probability of 0.05 for mutation. The choice 

of these percentage and probability values is suggested by Deb [2001] or by MATLAB 

GADS User’s Manual. For constraints, a previously reported constraint handling 

approach [Narayanan and Azarm, 1999], [Kurapati et al., 2002] has been used. 

Essentially, the constraint handling method is based on a penalty function which takes 

into account both the amount and the number of violated constraints. Moreover, using 

this method, the feasible solutions always have better fitness value than infeasible ones.  

Simulation

Current population of designs

Elite designs Offspring
Next population of designs

Fitness evaluation

Code designs

Dominated
designs

Non-dominated
designs

 

Figure 2.7 Flowchart of a conventional MOGA in one generation  

In this dissertation, we define and use the following terms. 

genc: The generation counter, which is an integer from 1 to the MaxNumGeneration.  

MaxNumGeneration: The maximum number of the generations in the MOGA. In general, 

MaxNumGeneration is not larger than 100.  
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NumGeneration: The number of generations used in the MOGA when stop criteria are 

satisfied. The NumGeneration is less than the MaxNumGeneration. Typically for the 

examples used in the dissertation, The NumGeneration is about 30~50.  

NumSimCall: The total number of simulation calls used in the MOGA. Based on our 

setting, the NumSimCall  is calculated as: 

.%40

and  ,
1

rationMaxNumGenepopsizeNumSimCallionNumGeneratpopsize

repNumSimCall
ionNumGenerat

genc
genc

×≤≤×

= �
=   

Typically in this dissertation, the total NumSimCall is less than 2500 in one run of 

MOGA.  

popsize: The population size in the MOGA. It is generally dependent on the number of 

design variables. For the examples used in this dissertation, the popsize is no more than 

100.  

repgenc: The number of new offspring individuals in the genc-th generation. According to 

our elitism strategy, repgenc is at least 40% of the popsize. Basically, repgenc represents the 

maximum number of simulation calls used in the genc-th generation to evaluate the 

individuals without metamodels.  

In this dissertation, an individual in the MOGA represents a design or a design point 

in the design optimization problems. Hereafter, an individual or a point always refers to a 

design.   

In the conventional MOGA, the response (i.e., objective and constraint functions) 

values of points in the initial population are calculated by a simulation model. Our 

conventional MOGA is different from NSGA-II [Deb, 2001] with respect to the elitism 

strategy. NSGA-II requires more computational effort since it combines the offspring 
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population with the parent population and then non-dominated sorting is used to classify 

the entire population. In the MOGA used here, only non-dominated points (or part of 

them) are migrated to the next generation.  

 

2.6 KRIGING METAMODELING 

For completeness, a brief description of the kriging metamodeling which is used in 

Chapter 6 is given in this section [Simpson et al., 2001], [Simpson et al., 2004]. As 

mentioned before, a design point is usually evaluated by a simulation, which is referred to 

as “observed by simulation.” However, due to the intensive computational cost of the 

simulation, a reduced form model is usually used as a replacement of the simulation to 

predict or estimate the response values of the design in less time. As a popular 

metamodeling approach, kriging [Simpson et al., 2001], [Sacks et al., 1989] has been 

widely used in recent years for metamodeling of computationally expensive deterministic 

simulations [Koch et al., 2002], [Martin and Simpson, 2006], [Sasena et al., 2005]. 

Belonging to the family of ordinary linear least squares estimation algorithms,  

kriging predicts the response of unobserved points (i.e., those whose response has not 

been obtained by the simulation) based on all of the observed points (i.e., those whose 

response has already been obtained), as shown in Figure 2.8. The kriging method used in 

this dissertation is also called ordinary kriging in the literature [Simpson et al., 2001], 

[Sacks et al., 1989] and it is often used for predicting a simulation’s response values at 

discrete input locations (or design points) which is the situation for the proposed 

approach. In addition to the property that kriging computes the best linear unbiased 

estimate of the response, the reason we have used the kriging approach is that the 
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uncertainty (i.e., error) in an estimated response can be easily obtained as a byproduct 

with the kriging metamodel. However, the kriging metamodeling needs to perform matrix 

inversions for predicting the response, which can increase the computational time when 

the dimension of the problem is high [Jin, 2005].  

f

2s(x) (s: standard deviation)

x

Kriging metamodel
predicted performance 

Observed designs

Unobserved designs

 

Figure 2.8 Kriging metamodeling for response prediction 

In kriging, a one-dimensional response value from a simulation is globally estimated 

by a known polynomial and a random departure from the polynomial:  

)()()( xxx Zvu +=                     (2.4) 

where u(x) is the unknown response of interest, v(x) is a known polynomial, and Z(x) is 

assumed as a realization of a Gaussian random process with a mean of zero, variance of 

σ 
2, and a non-zero covariance between any two distinct observed points [Simpson et al., 

2001], [Sacks et al., 1989]. The v(x) term provides a “global” approximation of the 

design space; the Z(x) term creates a “localized” deviation so that the kriging metamodel 

interpolates with respect to no observed points. The covariance matrix of Z(x) is given by  

)],(R[   ;)](),(cov[ 2 jiji ZZ xxxx == RRσ               (2.5) 

where R is a no×no symmetric correlation matrix with ones along diagonal, and R(xi, xj), 

which is the correlation function between any two observed points xi and xj for off-

diagonal elements. The correlation function R(xi, xj) used in this dissertation is  
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where θn is an unknown correlation parameter. The quantities xn
i and xn

j
 are the n-th 

components of the observed points xi and xj, respectively. The estimate, )(ˆ 0xu , of the 

response u(x0) at an unobserved point x0 is given by 

)ˆ()(ˆˆ 1
0 ββ vux −+= −Rr Tu                    (2.7) 

where u is a column vector of length no which contains the values of the response at each 

observed point, and v is a column vector with no components which is filled with ones 

when v(x) is constant. In Eq. (2.7),  
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The estimate of the variance 2σ̂  for Eq. (2.5) is given by 

o
T n/)ˆ()ˆ(ˆ 12 ββσ vuvu −−= −R                              (2.9) 

The Mean Squared Error (MSE) s2 for an unobserved point x0 using this kriging 

metamodel predictor is given by 
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Statistically, the Root Mean Squared Error (RMSE) or the standard deviation s(x0) 

represents the predicted deviation of the kriging metamodel from the actual response as 

shown in Figure 2.8. In this dissertation, it is assumed that the predicted deviation from 

the kriging metamodel has a conditional normal distribution with a mean that is equal to 

the prediction and variance equal to the kriging variance. This normally distributed 

standard deviation s will be used in the dissertation to decide a prediction interval. 
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However, even if this normal distribution assumption does not hold, it is possible to find 

a transformation that makes the random process approximately normal [Albada and 

Robinson, 2007].  

The maximum likelihood estimate of nθ  in Eq. (2.6) can be obtained by maximizing 

the following expression: 
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�

n
    (2.11) 

Some new schemes used to update kriging metamodel parameters nθ have been 

reported in the literature, e.g., [Gano et al., 2006], [Martin, 2007].  

The next chapter will present a new method for single-disciplinary robust 

optimization.  
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CHAPTER 3: MULTI-OBJECTIVE AND FEASIBILITY 

ROBUSTNESS IN SINGLE-DISCIPLINARY DESIGN 

OPTIMIZATION 

3.1 INTRODUCTION 

Engineering design optimization problems can have parameters with interval 

uncertainty. Such an uncertainty can degrade the performance of optimized objective 

functions and/or change the feasibility of the optimal solutions significantly. A robust 

optimal design is a feasible design alternative that is optimal according to its objectives 

and whose variation in its objective or feasibility (or both) is still within the acceptable 

range when parameters vary.  

The goal of optimization under uncertainty is to obtain a solution with an optimal 

expected value of the objective function under some chance constraints, such as the two-

stage model and recourse methods in stochastic programming [Birge and Louveaux, 

1997], [Ruszczynski and Shapiro, 2003]. However, in engineering design, with the 

introduction of the robust approach by Taguchi [Taguchi, 1978], there was a paradigm 

shift in design optimization under uncertainty. Instead of optimizing the expected value, 

Taguchi argued that the goal should also include minimizing the sensitivity of the 

solution with respect to variations, i.e., to obtain a robust optimal solution. Later 

researchers developed numerous stochastic and deterministic approaches for robust 

optimization. The stochastic approaches use probability information of the variable 

parameters, usually mean and variance, to optimize the expected value and minimize the 

sensitivity of the solutions (see, e.g., [Parkinson et al., 1993], [Yu and Ishii, 1998] and 

[Jung and Lee, 2002] for objective robust optimization; see [Chen et al., 1999], [Tu et al., 
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1999], [Du and Chen, 2000(b)], [Choi et al., 2001], [Youn et al., 2003], [Ray, 2002] and 

[Gunawan and Papalambros, 2007] for feasibility robust optimization). Currently, robust 

optimization methods based on possibility theory [Mourelatos and Zhou, 2006] or using 

“imprecise probabilities” [Aughenbaugh and Paredis, 2006] have also been addressed in 

the literature. The main shortcoming of stochastic approaches is that probability 

distributions must be known or presumed (the difficulty on discontinuous distributions 

can be overcome by using scenario trees [Birge and Louveaux, 1997]). However, this 

requirement cannot be satisfied during the early stage of design due to insufficient 

samplings for calculating the probability distribution or inadequate information about the 

problem itself.  

Many of the deterministic approaches obtain robust optimal design solutions using 

gradient information of parameters (see, e.g., [Balling et al., 1986], [Sundaresan et al., 

1992], [Zhu and Ting, 2001], [Lee and Park, 2001], [Su and Renaud, 1997], [Messac and 

Yahaya, 2002]). “Deterministic” here implies that no stochastic information (i.e., 

probability distribution) for uncontrollable parameter variations is presumed. The main 

shortcoming of deterministic methods is that their objective or constraint functions must 

be differentiable with respect to the variables with uncontrollable variations. Some of the 

methods also assume that the objective or constraint functions can be treated as linear 

with respect to the parameter variations, which might not hold for large variations. Others 

use a “minimax regret criterion” over discrete scenarios [Kouvelis and Yu, 1997], 

[Kasperskia and Zieli´nskib, 2006], which could result in an overly conservative solution. 

There has been an attempt to extend deterministic methods to optimization problems with 

multiple objectives and with variations beyond a linear range [Gunawan and Azarm, 
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2004, 2005(a), 2005(b)], [Li et al., 2005]. However, Gunawan’s method, where the 

backward mapping from objectives to parameters was established, is only applicable 

when the multiple objectives/constraints are continuous with respect to uncertain 

parameters. The detail comparison with Gunawan’s method is described in Appendix and 

in Li et al., [2006]. Hence effective optimization methods that can handle mixed 

continuous-discrete design variables/parameters in robust optimization problems, where 

the simulation is a “black box,” are of great interest. For such black box simulations, the 

Karush-Kuhn-Tucker (KKT) conditions or convexity assumptions can not be established 

[Floudas, 1995]. In summary, the study of deterministic robust formulations that are 

applicable to multi-objective optimization problems that have mixed continuous-discrete 

parameters with variability beyond a linear range, as will be proposed in this research 

thrust, is still an active research topic.  

In this section, we present a new deterministic, non-gradient based approach for 

objective robust and feasibility robust optimization in multi-objective design problems 

with interval uncertainty in parameters. We extend the approach to “performance robust 

optimization,” requiring objective and feasibility robustness together. “Deterministic” 

here implies that no stochastic information (i.e., probability distribution) for 

uncontrollable parameter variations is presumed. That is, we assume that we know a 

range of variation for parameters.  

In order to assess the robustness of design alternatives, the problem considered in our 

robust optimization approach consists of a bi-level optimization, a special case of a 

Mathematical Program with Equilibrium Constraints (MPEC) [Luo et al., 1996]. These 

bi-level problems are notoriously hard to solve in that they are nonconvex and the entire 
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feasible region may not even be known in closed form. However, unlike MPECs 

discussed in Luo et al., [1996] and for which most studies have concentrated on, the 

robust optimization approach under consideration allows for mixtures of both continuous 

and discrete design variables. Thus, the problems we consider are of the hardest type due 

to non-convexities from the discrete nature, the black box functions that are potentially 

present, as well as the two levels that need to be considered. MOGA or GA has been used 

to overcome the difficulties.   

The organization of the rest of this chapter is as follows. First we present a new 

objective robustness measure in Section 3.2. Section 3.3 presents a new deterministic 

Multi-Objective Robust Optimization (MORO) approach using the new measure. After 

that we develop a constraint robustness measure, similar to the objective robustness 

measure, and use it for Feasibility Robust Optimization in Section 3.4. In Section 3.5 we 

develop “performance robust optimization,” invoking objective robustness and feasibility 

robustness together. Five numerical and engineering examples and the corresponding 

results are given in Section 3.6. Finally, in Section 3.7 the main observations for the 

proposed performance robust optimization approach are summarized. 

The basic idea in the robust optimization approach described in this chapter was also 

presented in Li et al., [2006]. However, a new distance measure for robustness indices 

and five new numerical and engineering test examples are added in this chapter.  

3.2 OBJECTIVE ROBUSTNESS MEASURE 

In this section, we present a new objective robustness measure based on the mapping 

of the �p-space tolerance region into an objective sensitivity region in �f-space. 



 33 

3.2.1 Objective Sensitivity Region 

The effect of parameter variations on the objective values of a design x0 can be 

represented by a mapping from x0’s tolerance region in p-space, i.e., 

{ }ppppp|p ∆+≤≤∆− 00
~~ , to a corresponding region in �f-space. The latter region is 

called the Objective Sensitivity Region (OSR). The function in Eq. (3.1) defines this 

mapping from p-space to f-space. 

ppppppxpx ∆+≤≤∆−=−=∆ 00000
~;,,1  );,()~,( Mmfff mmm �     (3.1) 
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(a)               (b) 

Figure 3.1 Forward mapping from (a) tolerance region in p-space to (b) the 

corresponding OSR in f-space for design x0 

Figure 3.1 illustrates the mapping for a case with two parameters and two objective 

functions. Figure 3.1(a) shows the tolerance region (shaded rectangle) for a design 

alternative. Figure 3.1(b) shows the corresponding OSR (shaded area), which is obtained 

by the mapping of all the possible points p~  in the tolerance region to the f-space. The 

mapping might be a “Many-to-One” mapping, with more than one point in p-space 

mapping to one point in the OSR or might be a non-linear mapping. As shown in Figure 

3.1, the point pA is on the boundary of the tolerance region; however, after the mapping, 



 34 

the corresponding point fA in f-space may not be on the boundary of the OSR. Further, 

the OSR might be disconnected or have holes as shown in Figure 3.1(b). Note that since 

the OSR is not necessarily symmetric (in fact we do not know the exact shape of the OSR 

upfront) and it is obtained as a result of a mapping from the tolerance region, the 

tolerance region also can be asymmetric or discontinuous.  

The design x0 is objectively robust if its AOVR encloses its corresponding OSR, as 

illustrated in Figure 3.1. That is, no p~  in x0’s tolerance region will cause objective value 

to be outside the DM’s acceptable region. If the AOVR does not enclose the OSR, then x0 

is not an objectively robust design; that is, some value(s) of p~  in the tolerance region 

will cause at least one of x0’s objectives to be outside the DM’s acceptable region. 

However, to allow the DM to trade robustness for optimality, we seek a quantitative 

measure of robustness rather than a binary indicator. 

3.2.2 Objective Robustness Index 

As mentioned before, the enclosure of the OSR in the AOVR is the criterion for 

objective robustness. However, determining the enclosure and calculating the quantitative 

measure of robustness can be intractable. To overcome this, we use the ratio of a worst 

case estimate of the “size” of design alternative x0’s OSR to the size of x0’s AOVR as a 

measure of x0’s robustness, i.e., the objective robustness index.  

To calculate the objective robustness index, we need to obtain (i) an estimate of the 

size of the OSR, and (ii) a “direction” along the OSR which the combined objective 

functions are most sensitive (i.e., a point on the boundary of OSR which is furthest from 

the origin) as a result of variation in parameters. We wish to use the vector distance from 

the origin in the �f-space to the point with the maximum distance metric in the OSR as a 
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measure of the size and direction of OSR. However, obtaining this “vector distance” in 

the �f-space can be problematic because the objective values may have incommensurable 

units and scales (e.g., tens of dollars for one objective, thousands of millimeters for 

another). We therefore normalize each axis in the �f-space by the DM’s acceptable 

variation on that axis, using Eq. (3.2).  
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For simplicity, our notation in the remainder of this dissertation does not include the bar 

over �f; the normalization is understood. 

In the normalized �f-space the AOVR becomes a hyper-cube. We define RI as the 

radius of AOVR in ||.||�. Since the AOVR is a hyper-cube, according to Eq. (2.2), RI = 1 

as shown in Figure 3.2. RI is used as the measure of the size of the AOVR.  

Our worst-case estimate of the OSR in the normalized �f-space is Rf, which is 

defined as the ||.||� distance from the origin in �f-space to the point with the maximum 

||.||� in the OSR, as shown in Figure 3.2. The hyper-cube with radius Rf is called the 

Worst Case Objective Sensitivity Region, WCOSR. This WCOSR is a hyper-cube in the 

normalized space so that its radius Rf determines its size.  
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Figure 3.2 Worst-case estimate of the OSR in normalized f-space 

The normalized AOVR encloses the WCOSR if Rf does not exceed RI, as illustrated 

in Figure 3.2. Next, we define an objective robustness index: 
I

f
f R

R
=η . Because RI =1, 

this becomes ηf = Rf. A design is totally objectively robust if: ηf � 1. Notice here we use 

the ||.||� distance instead of the ||.||2 distance metric as in [Li et al., 2006], so that failure 

shown in Figure 3.3 can be avoided. In Figure 3.3, the trial point x0 is robust but the 

robustness index mistakenly identifies it non-robust; because using the ||.||2 metric, Rf is 

larger than RI (in ||.||2 distance, RI is still one).  
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WCOSR of x0
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AOVR of x0

f1
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Figure 3.3 An example where ||.||2 metric fails for the objective robustness index 
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3.2.3 Calculating the Objective Robustness Index 

Directly calculating the entire OSR for every design alternative considered when 

solving an optimization problem will generally be burdensome because the tolerance 

region must be covered finely enough to account for any possible non-convexity or 

discontinuity in f(x, p) (in an even worse case, f(x, p) may be a black box). Fortunately, 

Rf can be calculated using an optimization method, as shown in Eq. (3.3), where we have 

included the normalization. 
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In this optimization problem, the variables are the K elements of the parameter 

variation vector p~ . The quantity �fm is the m-th objective function variation due to p~ . In 

the normalized �f-space, this optimization problem finds the maximum ||.||� distance 

from the origin to the furthest point on the OSR, thus the radius of the WCOSR. A robust 

design will not be considered as a non-robust design by using the ||.||� distance metric in 

Eq. (3.3). Suppose a design, x0, is actually robust but considered as a non-robust one as 

obtained by Eq. (3.3). This means that the Rf value for x0 must be larger than 1 by the ||.||� 

metric (see Figure 3.2). Then there must be at least one p~  point in the tolerance region 

that leads to at least one �fm to be larger than �f0,m, according to our robust criterion in Eq. 

(3.3). By the definition of objective robustness in this approach, design x0 is not robust, 

which is a contradiction to the initial assumption (i.e., design x0 is robust).  

In the next section we show how we use ηf (that is, Rf from Eq. (3.3)) in the 

optimization problem Eq. (2.1) to obtain the robust alternatives.   
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3.3 MULTI-OBJECTIVE ROBUST OPTIMIZATION USING ROBUSTNESS 

INDEX 

In this section, we present our new approach for robust Multi-Objective Robust 

Optimization (MORO) problems using ηf, the objective robustness index introduced in 

the previous section.  

3.3.1 MORO Problem 

The goal of the MORO problem is to identify design alternatives that simultaneously 

have optimal objective values and satisfy the objective robustness requirement: variations 

in the parameters will not cause the objective values to vary beyond the AOVR. Our 

approach for achieving robust solutions is to constrain the designs’ objective robustness 

index to be at most a threshold value η0,f that is selected by the DM. This formulation of 

the MORO problem is shown in Eq. (3.4).  
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Here, ηf is calculated from Eq. (3.3), where it is called Rf. Setting η0,f = 1 will ensure that 

the designs are robust. The DM may choose η0,f > 1 to gain in the designs’ nominal 

objective values, risking that some instances of the designs might have objective values 

outside the acceptable region. (The DM might choose η0,f <1 to get designs that are more 

than fully robust, perhaps reflecting some uncertainty in the accuracy of the tolerance 

region or in the calculation of objective functions. However, the “extra” robustness would, 

in general, degrade the nominal optimal objective function values.)  
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We assume here that robust solutions exist with a presumed AOVR. If they do not 

and if it is permissible, the AVOR is iteratively enlarged until such solutions do exist. 

Note that knowing upfront whether robust solutions exist for a presumed AOVR is 

difficult, if not impossible. This is because we have not assumed any mathematical form 

for the objective functions (e.g., they can be discontinuous with respect to uncontrollable 

parameters). A possible approach to knowing existence of a solution a-priori is for the 

DM to start with applying the sensitivity analysis approach that will be presented in 

Chapter 5 of this dissertation and determine an initial AOVR based on the results for the 

sensitivity analysis. If robust solutions can not be obtained, then the DM can enlarge the 

AOVR. This enlargement of the AVOR should be continued iteratively until robust 

solutions can be obtained. Note that here the AOVR is assumed to be continuous and 

symmetric with respect to nominal objective values for each objective function. 

However, our approach can be easily extended to an asymmetric, discontinuous AOVR 

or even to a non-constant AVOR for different designs, depending upon the nominal 

objective values. 

3.3.2 Outer-Inner Optimization Structure 

Similar to, but more difficult than MPECs [Luo et al., 1996] (due to non-convexities 

and black box functions), the formulation in Eq. (3.4) has two optimization problems: an 

outer problem to minimize the M objective functions fm with respect to variables x, 

subject to the L constraints gl and the robustness constraint; and an inner problem to find 

ηf, for each design in the optimization process, by maximizing the radius Rf with respect 

to parameters p~ over the tolerance region. 
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Figure 3.4 shows this outer-inner structure; the outer problem is the upper problem in 

the figure, and the inner problem is the lower problem. The outer problem generates a 

candidate design alternative x0, which is feasible for all constraints other than objective 

robustness. The design variable values of x0 are sent to the inner problem, where the 

value of ηf (that is, Rf) is calculated for x0. The value of ηf is sent back to the outer 

problem, where it is used to evaluate the robustness constraint function, and to determine 

if x0 is feasible.  

ppppp           

pxpxp

pfx
p

∆+≤≤∆−

=
∆

−=∆

∆=
∞

00

,0

000

~0

~

,,1;
),()~,(

)~(

])~([max)(

Mm
f

ff
f

R

m

mm
m

f

�

upperlower

ff

l

m

Llg

Mmf

xxx

px

px
x

≤≤

≤−
=≤

=

        

0        

,,10),(    s.t.

,,1),(  min

,0

0

0

ηη
�

�

x0
Rf (x0)

 

Figure 3.4 The outer-inner structure of MORO problems 

Since the objective functions in the outer and inner problems might be black box 

functions with respect to x and p~ , respectively, and because the OSR might be 

disconnected, we use a Genetic Algorithm (GA) to get a global optimal solution for the 

inner problem Eq. (3.3), and a MOGA (see Section 2.5) to get a Pareto optimal set for the 

outer problem Eq. (3.4). Note that the purpose of our outer-inner optimization is not to 

obtain the global optimal for (design alternative) x and (design 

parameter) p~ simultaneously. Rather, the purpose is to obtain, for a given design 
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alternative under consideration in the outer problem, the global optimal for robustness 

index (with respect to parameter p~) in the inner problem. 

Concerning the computational cost of the approach, if Nsc is the number of 

simulation calls for the solutions of the outer problem and Msc is the number of 

simulation calls for the solution of the inner problem then the total number of simulation 

calls for our robust optimization approach will be in the order of Nsc×Msc.  

3.4 FEASIBILITY ROBUST OPTIMIZATION USING CONSTRAINT 

ROBUSTNESS INDEX 

Our approach, above, for objective robust optimization presumes that the parameter 

variations do not affect the designs’ feasibility. However, this might not hold in general; 

the parameter variation might cause violation of some constraints. In this section we 

present a new deterministic method for Feasibility Robust Optimization (FRO). The goal 

of FRO is to minimize the objective function f with respect to x, and simultaneously to 

ensure that the constraints gl � 0, l=1,…,L, hold when the parameters vary. (Note that in 

FRO we are not concerned with variability of the objective function.) The approach is 

similar to our approach for MORO (Sections 3.2 and 3.3), employing a feasibility 

robustness index based on a sensitivity region. 

3.4.1 Constraint Sensitivity Measure 

For each feasible design alternative x0 ( Llgl ,...,1,0),( 00 =≤px ), the tolerance region in 

�p-space maps into a sensitivity region in �g-space. We call this region in �g-space, the 

original constraint sensitivity region of x0, Figure 3.5 shows a two-constraint case. For 

this region, it is important to determine when gl(x0, p~) � gl(x0, p0) which corresponds to 
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x0 potentially becoming infeasible when p~  changes. (When gl(x0, p~) � gl(x0, p0) � 0 the 

variation p~  will not change the feasibility of x0.)  

Figure 3.5 shows the Constraint Sensitivity Region (CSR), which is essentially an 

estimate of the original constraint sensitivity region of x0. As with the OSR, we normalize 

the CSR using x0’s ACVR (see Section 2.2). The function in Eq. (3.5) defines the CSR.  
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Note that the formulation in Eq. (3.5) causes the CSR to lie entirely in the first hyper-

quadrant of the �g-space (i.e., the region for which �gl  � 0, l=1,…,L). In normalized �g-

space the ACVR is a hyper-cube in the first hyper-quadrant, with its lower vertex at 

nominal point g(x0,p0). Figure 3.5 also illustrates the CSR and ACVR in a normalized g-

space.  
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range of g1
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Rg
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Figure 3.5 ACVR, CSR, and WCCSR in normalized g-space for design x0 

The criterion for feasibility robustness is to determine whether the ACVR of design 

x0 encloses the CSR. Applying the same rationale as we used for creating the WCOSR, 
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we use a worst-case estimate of the CSR, which is called Worst-Case Constraint 

Sensitivity Region (WCCSR). As illustrated in Figure 3.5, the WCCSR is the part of a 

hyper-cube in the first hyper-quadrant of the �g-space. The hyper-cube’s radius, called 

Rg, is the ||.||� distance from the origin to the furthest point of the CSR; this radius 

determines the size of the WCCSR. For the size of the ACVR we take the radius, RC in 

Figure 3.5, of the ACVR from the origin to the ACVR boundary. We define the 

feasibility robustness index 
C

g
g R

R
=η  to correspond to our definition of objective 

robustness index (Section 3.2). A design is fully feasibility robust if its ηg �1. Since RC = 

1 in ||.||� distance, normalized in �g-space, we have ηg = Rg. 

3.4.2 Formulation of Feasibility Robust Optimization  

The optimization problem for calculating the Rg for design x0 is shown in Eq. (3.6). 
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Similar to our MORO approach, we constrain the designs’ feasibility robustness index to 

be at least a threshold value η0,g selected by the DM. 

Eq. (3.7) presents the feasibility robust optimization problem: 
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As with our approach for MORO (recall Section 3.3 and Figure 3.4), we form an outer-

inner optimization structure to solve the problem. The outer problem Eq. (3.7) here 

corresponds to the outer problem Eq. (3.4). The inner problem Eq. (3.6) here calculates 

ηg (that is, Rg), corresponding to calculation of ηf in Eq. (3.3). Since the feasibility robust 

optimization problem, too, may have non-differentiable or discontinuous functions or a 

disconnected CSR, we again use a MOGA for the outer problem and a GA for the inner 

problem. 

Note that the computation algorithm for Eq. (3.6) must address the divide-by-zero 

that could occur if gl(x0,p0) = 0. Our technique is to set �gj to a value much larger than 1 

if gl(x0,p0) = 0 and gl(x0, p~) > 0, which makes ηg much larger than 1, artificially forcing 

design x0 to violate the feasibility robustness constraint in Eq. (3.7).   

3.5 PERFORMANCE ROBUST OPTIMIZATION 

Following the separate discussions of objective robust optimization in Section 3.3 and 

of feasibility robust optimization in Section 3.4, an immediate development is to combine 

them for what we term “performance robust optimization”. The goal for performance 

robust optimization is to obtain design alternatives meeting three criteria: they have 

Pareto minimized objective values; their objective values are within the prescribed 

bounds as the parameters vary over the tolerance region; and they remain feasible as the 

parameters vary over the tolerance region. In this section we present a method for 

performance robust optimization. 

A direct approach for performance robust optimization is to add both the objective 

robust constraint and the feasibility robust constraint to the original problem Eq. (2.1) to 

form Eq. (3.8).  
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In this problem, ηf is calculated from Eq. (3.3) and ηg is calculated from Eq. (3.6). With 

this formulation, for every design alternative x0 there are two inner optimization 

problems as shown in Figure 3.6. The DM can specify the thresholds for objective 

robustness index ηf and for feasibility robustness index ηg independently. 
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Figure 3.6 Performance robust optimization  

In order to save the computational cost for two inner problems, we can combine the 

objective robustness index and feasibility robustness index in a single performance 

robustness index ηperf = max (ηf, ηg), requiring that neither exceed the threshold value.  

Accordingly, we need only one common threshold value η0 for the performance 

robustness index. Thus we obtain the modified formulation in Eq. (3.9).  
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We calculate ηperf using one single-objective optimization problem as shown in Eq. 

(3.10). 
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It should be noted that the above mentioned formulation, for both multi-objective 

robust and feasibility robust optimization, is deterministic. It does not require any 

information about probability distributions of the parameter variations. Also, it does not 

assume linearity or continuity of the objective/constraint functions; hence, it is applicable 

even when the variations of parameters are large.  

The proposed multi-objectively robust and feasibly robust formulations are 

conservative because directly calculating the sensitivity region is intractable in general.  

However, in the case when the mapping is linear and the original domain is polyhedral, it 

is well known that the sensitivity region will also be polyhedral. Both formulations 

estimate the sensitivity region by a worst case method, instead of calculating it directly. 

The benefit of the worst case method is that the robustness of obtained solutions is 

guaranteed and computational cost could be reduced compared with checking the 
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robustness along each dimension of the objective/constraint space. In this Eq. (3.10), the 

lower level problem is required to be solved globally which further exacerbates the 

computational cost.  

In the next section, we use several numerical and engineering examples to 

demonstrate the applicability of this performance robust optimization approach. For 

simplicity, hereafter, we mean both multi-objective and feasibility robustness by 

robustness. 

3.6 EXAMPLES AND RESULTS 

In this section, we use five examples to demonstrate our method.  The first one is a 

numerical and others are all taken from engineering applications, including the design of 

a vibrating platform, an angle grinder, a speed reducer, and a case study for a UUV-

Payload. Several of these engineering examples are also used in later chapters and we 

have added parameters with interval uncertainty to form robust optimization problems. 

We also have discrete variables or parameters in these examples, to demonstrate the 

general applicability of the proposed approach. To save space, we only present the 

verification results for the first three examples.  

3.6.1 Numerical Example 

This bi-objective numerical example is developed as an extension from a single-

objective MDO problem with two coupled disciplines [Gu and Renaud, 2002]. Here we 

use it as a single-disciplinary (or so-called “all-at-once” format) two-objective 

optimization problem given in Eq. (3.11). There are three design variables: x = [x1, x2, 

x3], two objective functions: f = [f1, f2], and two constraint functions: g = [g1, g2].  
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The two inner variables y1 and y2 given in this example are:  
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For robust design optimization, we introduce an uncontrollable variation in design 

variable x.  The variations in �x2 and �x3 are known to be continuous and within 6% 

from the nominal value. Moreover, in this example, we assume that there are 

uncontrollable discrete variations for one of the variables. That is, �x1 is discretized to 12 

possible values, ±1%, ±2%, ±3%, ±4%, ±5%, or ±6% from the nominal. The AOVR for 

each of bi-objective functions f1 and f2 is both ±10 units from their nominal. The 

threshold robustness index η0 is set to be 1.  
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Figure 3.7 Nominal and robust Pareto solutions 
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We obtained the nominal Pareto solutions of Eq. (3.11) and the robust solutions for 

the above mentioned settings. Both of them are shown in Figure 3.7. As expected, robust 

Pareto solutions are slightly dominated by the nominal Pareto solutions. And in this 

problem, as shown in Figure 3.7, all robust solutions are clustered on the north-west side 

close to the nominal solutions. To verify the robustness of the robust designs obtained, a 

Monte-Carlo (MC) simulation (using uniform distributions) perturbing the variation over 

the tolerance region is applied. Two robust optimal designs R1 and R2, shown in Figure 

3.7, are selected here to demonstrate the verification for the performance robustness. For 

both of these two points, we used 10,000 sample points for the tolerance region and 

verified that the objective and constraint functions remained within their acceptable range 

for these two robust designs, as shown in Figure 3.8 (a) and (b) (for visualization, only a 

subset of the MC points are shown), respectively. In this figure, small crosses represent 

the �f and �g values for each robust design. This verification indicates that obtained 

robust designs are both multi-objectively robust and feasibly robust. For these two robust 

designs, especially for design R2, although their �f values are much smaller than the 

acceptable range, their g values are close to the axes of the g-space. This means that the 

variation in constraint values affects the performance robustness more significantly than 

the variation in objectives.  

In addition, a typical nominal design N1 obtained from the nominal Pareto set is 

verified as non-robust, because the variation in its objectives (about ±50 units in f1 and 

±20 units in f2) are much larger than the acceptable range(±10 units for both f1 and f2), as 

shown in Figure 3.9.  
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Figure 3.8 Verification of performance robustness for design (a) R1 and (b) R2 as 

shown in Figure 3.7 
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Figure 3.9 Verification of performance robustness for nominal design N1 as shown 

in Figure 3.7  
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3.6.2 Vibrating Platform Design 

The second example is to design a vibrating platform, which is modeled as a pinned-

pinned sandwich beam with a vibrating motor on top [Narayanan and Azarm 1999], as 

shown in Figure 3.10. We formed a two-objective constrained optimization problem and 

use MOGA to obtain the nominal optimal solutions in the deterministic case.   

 t1  t2  t3 L 

   w 

Vibrating 
    Motor 

 

Figure 3.10 A pinned-pinned vibrating platform 

The three layers of this platform (the inner layer, two middle layers sandwiching the 

inner layer, and two outer layers sandwiching the inner and middle layers) are made out 

of three different materials: type A, B, and C. The choice of materials for the layers must 

be mutually exclusive, i.e., no two layers can use the same material. The properties of 

each of the materials are shown in Table 3.1: ρ  is the mass density, E is the modulus of 

elasticity, and c is the cost of the material per volume.  

Table 3.1 Material properties 

 A B C 
ρ (kg/m3) 100 2770 7780 

E (GPa) 1.6 70 200 
c ($/m3) 500 1500 800 

 

Two objective functions of this optimization design are to maximize the natural 

frequency of a platform and to minimize its total material cost by controlling five sizing 

variables (continuous) and one combinatorial variable (discrete). The design variables are 
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the width of the platform (w), the length of the beam (L), and the thicknesses of the three 

layers (t1, t2, and t3). The thicknesses of the middle and outer layers are represented as a 

difference between two sizing variables (e.g., thickness of the middle layer is equal to (t2-

t1)).  The combinatorial variable is the choice of materials for the layers (M). Since there 

are three possible material types, there are six possibilities for M (starting from the inner 

layer outward): {A,B,C}, {A,C,B}, {B,A,C}, {B,C,A}, {C,A,B}, and {C,B,A}. The 

platform design is subjected to five constraints: the maximum weight of the platform and 

the lower and upper limits on the thickness of the middle and outer layers.  

The optimization formulation for this example is shown in Eq. (3.13).  
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In Eq. (3.13), the notations (ρ1, ρ2, ρ3), (E1, E2, E3), and (c1, c2, c3) refer to the density, 

modulus of elasticity, and material cost for the inner, middle, and outer layer of the 

platform, respectively. The lower and upper bounds for the design variables are: 

0.05 ≤ t1 ≤ 0.5, 0.2 ≤ t2 ≤ 0.5, 0.2 ≤ t3 ≤ 0.6, 0.35 ≤ w ≤ 0.5, and 3 ≤ L ≤ 6. 

There are variations in the density and cost of “Material A” (ρA and cA). For the 

sensitivity requirements, the parameter variations are known to be [�ρA, �cA] = [10 
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kg/m3, 25 $/m3]. The AOVR for the two objective functions f1 and f2 is defined by [�f0,1, 

�f0,2] = [$5, 5Hz], presumed by the DM. Figure 3.11 shows the obtained robust Pareto 

solutions, compared to the nominal Pareto designs (shown as a min-min plot by taking 

the negative of the frequency). In this example, the objective values for nominal Pareto 

solutions are much better than those for robust Pareto solutions.  
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Figure 3.11 Nominal and robust Pareto solutions for vibrating platform design 

To verify the robustness of the robust design obtained, the same Monte-Carlo 

simulation used in Section 3.6.1 is applied to two robust optimal designs R1 and R2, 

shown in Figure 3.11. For both of these two robust designs, their objective variations 

remained within their acceptable range [�f0,1, �f0,2] = [$5, 5Hz], as shown in Figure 

3.12(a) and (b), respectively. Notice in this figure we only show the verification for �f 

values because the parameter variations [�ρA, �cA] do not affect the constraint functions 

from g2 to g5 and g1 is an inactive constraint (for all robust designs, the g1 values are less 

than -300, which is far away from zero in g-space). That is, the objective robustness 
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makes the main contribution for the performance robustness for this problem. This 

verification indicates that obtained robust designs are multi-objectively robust.  
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Figure 3.12 Verification of objective robustness for design (a) R1 and (b) R2 as 

shown in Figure 3.11 

In addition, a typical nominal design N1 obtained from the nominal Pareto set is also 

verified as non-robust because the variation in its f2 (about ±12Hz) is much larger than 

the acceptable range (±5Hz), as shown in Figure 3.13.  
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Figure 3.13 Verification of objective robustness for design N1 as shown in Figure 

3.11 
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3.6.3 Speed Reducer Design 

The second engineering example is a well-known problem of designing a speed 

reducer [Kurapati et al., 2002]. Here, we modified the formulation to a two-objective 

optimization problem, as shown in Eq. (3.14).  

x7 x5

x6

x4

bearings 1

shaft 1
shaft 2

bearings 2

 

Figure 3.14 Design of a speed reducer 

Figure 3.14 shows the configuration of the speed reducer. The objectives of the 

optimization problem are to minimize the total volume of the speed reducer as well as the 

stress in the first gear shaft. The problem has seven design variables: the gear face width 

(x1), the teeth module (x2), the number of teeth pinion (x3), the distance between bearings 

on the first shaft (x4) and on the second shaft (x5), and the diameter of the first shaft (x6) 

and second shaft (x7). All design variables are continuous except for x3 (the number of 

teeth), which must be an integer.  

A lower and upper bound are imposed on each of the design variables. In addition, 

the design is subject to 11 inequality constraints. The constraints are: upper bound on the 

bending stress of the gear tooth (g1), upper bound on the contact stress of the gear tooth 

(g2), upper bound on the transverse deflection of the first shaft (g3) and the second shaft 

(g4), dimensional restrictions based on space and/or experience (g5, g6, and g7), design 

requirements on the shaft based on experience (g8 and g9), and upper bound on the 

normal stress on the first shaft (g10) and on the second shaft (g11). The mathematical 
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formulation of the problem is given next. The units for all the variables are cm (except 

for x3 – the integer variable). The unit for the first objective is cm3 and for the second and 

the third objective is kPa. 
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Two design variables, the teeth module (x2) and the first shaft diameter (x6) have 

variation as [∆x2, ∆x6] = [0.01, 0.1]. The acceptable f variation is given as 

[∆f0,1, ∆f0,2) = [100, 75]. The obtained robust Pareto solutions, compared to the nominal 

Pareto solutions, are shown in Figure 3.15. We see in this figure that the robust Pareto set 

is a subset of the nominal Pareto set.  



 57 

600

800

1000

1200

1400

1600

1800

2000 2500 3000 3500 4000 4500 5000 5500 6000
volume

st
re

ss

Nominal
Robust

R1

R2

N1

 

Figure 3.15 Nominal and robust Pareto solutions for speed reducer design 

To verify the robustness of the designs obtained, a similar Monte-Carlo simulation is 

used to vary over the tolerance region [∆x2, ∆x6]. Two robust optimal designs R1 and R2 

have been verified as objectively robust, compared with the verification of a typical 

nominal optimal design N1, as shown in Figure 3.16 and Figure 3.17, respectively. The 

feasibility robustness of robust Pareto solutions has also been verified.  
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Figure 3.16 Verification of robustness for robust designs (a) R1 and (b) R2 as shown 

in Figure 3.15 
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Figure 3.17 Verification of robustness for a nominal design N1 as shown in Figure 

3.15 

3.6.4 Angle Grinder Design 

This engineering example was also selected from the literature and is to optimize the 

design of an angle grinder tool [Williams et al., 2006]. Several existing and validated 

models exist for the major components of the angle grinder, such as the universal motor 

[Simpson, 1998] and the American Gear Manufacturers Association standard for bevel 

gears [Hurricks, 1994].  The two components of greatest interest (motor and bevel gear) 

of the grinder are shown in Figure 3.18. In this example we have nine design variables, 

two objective functions and thirteen constraint functions as described in Tables 3.2 - 3.6. 

 

Figure 3.18 Engineering components for an angle grinder 



 59 

 

Table 3.2 Grinder design variables 

Pinion pitch diameter Dp (m) 03.009. ≤≤ pD  
Current I (amps) 126 ≤≤ I  
Gap thickness lgap (m) 07.00005. ≤≤ gapl  
Stack length L (m) 2.01. ≤≤ L  
Armature turns Nc (# of turns) 30020 ≤≤ cN , 
Stator turns Ns  (# of turns) 20010 ≤≤ sN , 
Gear ratio r 42. ≤≤ r  
Stator outer radius Ro (m) 1.01. ≤≤ OR  
Stator thickness t (m) 1.0001. ≤≤ t  

 

The nine design variables x with their lower and upper bounds make up the physical 

characteristics of the motor and bevel gear assembly (in Table 3.2). Two objective 

functions, the total mass of the grinder and its cost (Table 3.6) are calculated through a 

series of engineering computations in Table 3.3 and Table 3.4. The cost function is a 

presumed regression of two important attributes of the grinder. Table 3.3 and Table 3.4 

develop in a sequential fashion to facilitate the readers understanding of computation 

dependencies. The physical constraints of this problem are shown in Table 3.5.  
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Table 3.3 Universal motor design computations 

Armature diameter lr (m) lr =2(Ro-t-lgap) 
Armature section Ar (m

2) 4/)(A 2
r rl⋅= π  

Wrap length lrw (m) Llr 22A r +=  
 � (ohm-m) 20 awg 0.036 ohms-m 
Wire area Aw (m

2) 20 awg 0.000504 m2 
Arm. resistance Ra (ohms) wrwca AlNR /)(ρ=  

Stator resistance Rs (ohms) wrwsa AlNR /)(2 ρ=  

Resistance losses Pcopper  (W) )(2
ascopper RRIP +=  

Brush coefficient � (volts) � =2  
Brush losses Pbrush  (W) IPbrush ⋅= α  

Voltage V (volts) V=120 v 
Power in  Pin (W) VIPin ⋅=  

Motor output Pout (W) copperbrushinout PPPP −−=  

Density  Steel � s (kg/ m3) � s = 8000(kg/ m3) 
 � copper (kg/ m3) � copper = 8900 (kg/ m3) 
Stator mass M s  (kg) 

soos LtRRM ρππ ⋅⋅−−= ))()(( 22  
Armature mass M a  (kg) sra LAM ρ⋅⋅=  

Windings mass Mw  (kg) copperwscrww ANNlM ρ⋅+= )2(  

Motor mass Mm  (kg) wasm MMMM ++=  

Motor constant K  π/cNK =  

Magnetomotive force ℑ  IN s=ℑ  

Mean stator path  l c  (m) 2/)2( tRl oc += π  

Stator cross section As (m
2) tLAs ⋅=  

Armature section Aa (m
2) ra lLA ⋅=  

Gap cross section Ag (m
2) rg lLA ⋅=  

Permeability of steel 
steelµ  

steelµ =1000 
Permeability, free space 

oµ  7104 −⋅= πµo
 

Stator reluctance sℜ  )(2/ sosteelcs Al ⋅⋅=ℜ µµ  

Armature reluctance 
rℜ  )/( aosteelrr Al ⋅⋅=ℜ µµ  

Air gap reluctance gℜ  )/( gogapg Al ⋅=ℜ µ  

Total reluctance totℜ  gastot ℜ+ℜ+ℜ=ℜ 2  

Flux φ  totℜℑ= /φ  

Torque T (N-m) IKT /φ⋅=  

Revolutions per minute N )(/)(549.9 mNTkwPN out −⋅=  
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Table 3.4 Bevel gear design computations 

Pinion torque (load RPM)  Tp (N-m) rpmPT outp 6500/459.9 ⋅=  Gear torque (load RPM)  Tg (N-m) rTT pg ⋅=  
Pressure angle �p °= 20pφ  
Cone distance C (m) ))(2/( pp SINDC φ⋅=  
Face width b (m) b=.008 m 
Gear pitch diameter Dg (m) rDD pg ⋅=  
Tooth loading intensity Fi (N) ))(/(2 bCbDCTF ppi −⋅⋅⋅=  
Elasticity factor (Carbon steel) Ze  189=eZ  
Zone factor ZH 2)2(/(4 pH SINZ φ⋅=  
Pinion pitch angle 	g )/( CDASIN pp =θ  
Shaft angle � °= 90γ  
Gear pitch angle �g pg θγθ −=  
Pinion cone depth dv (m) )( ppv SECDd θ⋅=  
Gear cone depth Dv (m) )( gpv SECDD θ⋅=  
Amplification (light/medium shock) 35.1=aK  
Load distribution (precision gears) 2.1=mK  
Geometry factor J J=.25 
Number of pinion teeth N t N t =11 
Module (pinion) m m=D p / N t 
Pinion mass Mp (kg) 4/)( 2

steelpp bDM ρπ ⋅⋅⋅=  
Gear mass Mg (kg) 4/)( 2

steelgg bDM ρπ ⋅⋅⋅=  
Bevel gears mass Mbg (kg) gpbg MMM +=  

 

Table 3.5 Grinder constraints g(x) 

Flux density armature Br (T) TAB ar 5.1/ ≤= φ  
Flux density stator Bs (T) TAB ss 5.1)2/( ≤⋅= φ  
Flux density air gap Bg (T) TAB gg 5.1/ ≤= φ  

Armature heat flux Ks (A/m) 10000≤
⋅
⋅=

r

c
s l

IN
K

π
 

Stator heat flux Ks (A/m) 10000
)(

≤
+
⋅=

tl
IN

K
r

s
s π

 

Length to diameter ratio 5/ ≤GL  
Integer turns int, =sc NN  
Grinding wheel RPM Nout 10000/ ≤= rNNout

 

Bending stress �b (Pa) MPaJmFKK imab 145)/()( ≤⋅=σ  
Contact stress �f (Pa) MPa

Dd
DdFKK

ZZ
vv

vvima
eHf 720

)(
)( ≤+=σ  

Armature tip velocity va  )/(3658 smlNv ra ≤⋅⋅= π  

   

Table 3.6 Product attributes 

Girth G (m) G=2(Ro+.004(m)) 
Fixed mass Mf (kg) kgMMM commutarcordf 58.1...... =++=  

Total mass Mt (kg) Mt=Mbg+Mm+M f 
Total Cost ($) Cost = 3.61I+22.38pI/Mt-19.29, nominal p = 1 
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In this example, four design variables and parameters have uncontrollable 

uncertainty, represented by intervals. The standard alternating current voltage V (Table 

3.3), stator outer radius Ro, stack length L, and the coefficient in the cost function p, 

[�V, �Ro, �L, �p] = [5v, 3%Ro, 3%L, 0.02]; 3%Ro and 3%L mean 3% of the nominal Ro 

and L values, respectively. The AOVR in this problem is: [�Cost, �Mass] = [4unit, 2kg]. 

The obtained nominal and robust Pareto designs are shown in Figure 3.19. For this 

example, it is clearly observed and as expected the robust Pareto solutions are dominated 

by the nominal solutions. 
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Figure 3.19 Nominal and robust Pareto solutions for grinder design 

3.6.5 Unmanned Undersea Vehicle (UUV) with a Payload Design 

As the final engineering example, we apply our performance robust optimization to 

the design of a UUV with payload. The original model for this example was developed 

previously in [Frits, 2004], [Burdic, 2003]. This design optimization consists of two 

interconnected disciplines: Payload and UUV. UUV discipline mainly includes the 
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design of a Propulsion part plus the guide and control component. Payload discipline 

focuses on the design of the payload itself.  

Typically, the payload of a UUV must be effective in several different uses, called 

“scenarios.” In this case study, we have two different scenarios: “Medium” and “Large”. 

Effectiveness of the payload design in a scenario is measured by the probability of 

success of the payload delivery, PS|UUV, in that scenario, given the probability of success 

of UUV, PUUV. The design goal of the entire system is to simultaneously maximize the 

individual PS’s (the probability of success of the entire UUV) for two scenarios and 

minimize the total UUV weight (including Payload weight). 

Two design variables, the Payload Length (PL), the Vehicle Diameter (VD) are used 

in both Payload and UUV disciplines. We call them shared design variables. These two 

variables are continuous and they are bounded by: 6.0 ≤ VD ≤ 12.75 and 

1.0(VD) ≤ PL ≤ 5.0(VD) (1~5 times of VD), respectively. There are four Payload design 

variables for Payload discipline itself: the Material of the Hull (HM), the Payload Type 

(PT), the first Inner material type (I1), and the second Inner material type (I2). All of the 

Payload variables are discrete: HM, PT, I1, and I2. The choices for HM, PT and I1 are 

[6061AL, 7075AL], [BULK, MULTI_MISS], and [I1_A, I1_B], respectively. For 

discrete variable I2, the options available are [I2_A, I2_B, I1_B], but I2 can be I1_B only 

if the variable I1 is I1_B also. In addition to the six design variables, there is a fixed 

continuous parameter, the ambient noise level (= 44 dB), on which the payload operates. 

However, unlike our other engineering examples, there is no closed-form formulation to 

map the design variables to the PS|UUV’s. Rather, we are provided with a design analyzer, 

called Payload Sizing Model (a computer program) that maps the Payload design 
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variables to the payload size, weight and other intermediate attributes, based on which the 

PS|UUV’s are calculated by a payload performance evaluator (called Payload Evaluator), as 

shown in Figure 3.20. The payload design is constrained by upper limits on the weight of 

the payload. 

In addition to two shared design variables, we have four UUV design variables in 

UUV discipline: the Engine Type (ET) used in UUV, the HorsePower (HP) of the engine, 

the Run Distance (RD) of the UUV, and the Damper Thickness (DT) of the vehicle. The 

Engine Type (ET) is a discrete variable with two choices [OpenCyc, SCEPS]. Other three 

UUV variables are continuous and they are bounded by: 0.2 ≤ DT ≤ 2.0, 

10.0(VD) ≤ HP ≤ 20.0(VD) (10~20 time of VD value, but its unit is horse power), and 

0.4(VD) ≤ RD ≤ 50.0(VD) (RD’s unit is nautical mile). Similar to the Payload discipline, 

we are provided with a computer program (called UUV Sizing Model in Figure 3.20) to 

calculate the UUV’s size, weight and other intermediate attributes and then these 

attributes are used to evaluate the probability of success for the UUV design, PUUV. There 

exist couplings between two sizing models in this problem. For instance, the payload 

weight generated in Payload discipline is used in the UUV discipline as a variable; and 

G&C length, a variable generated in UUV discipline, is also used in Payload discipline. 

Chapter 4 will focus on how to handle the uncertainty propagated across disciplines 

through coupling variables. In this chapter, since we use all four computer programs all-

at-once in only one performance analyzer, uncertainty across disciplines is masked within 

the performance analyzer as in a “black box.”  
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Figure 3.20 Performance analyzer for UUV-Payload design 

In this example, we address a three-objective UUV-Payload design optimization. 

The two objectives are to maximize PSM and PSL for two different scenarios and to 

minimize the total UUV weight. The design variables are shown in Figure 3.20. In this 

example, three design variables that have uncontrollable uncertainty represented by 

intervals are [�RD, �PL, �VD] = [1 nm, 0.05 inch, 0.05 inch]. The AOVR in this 

problem is: [�PSM, �PSL, �UUVWeight] = [0.1, 0.1, 40lb]. The obtained, nominal and 

robust, Pareto designs are shown in Figure 3.21. A typical nominal design and a robust 

design that have the similar PS’s are also shown in Figure 3.21. In order to account for the 

robustness, the robust design requires more RD, which makes it larger and heavier (so 

that there is more energy in the propulsion part of the UUV) than the nominal counterpart. 

In this case, both of them have the similar payloads. The robustness of the robust Pareto 

designs is also verified by the Monte-Carlo simulations.  
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Figure 3.21 Nominal and robust Pareto UUV-Payload designs 

3.7 SUMMARY 

We have presented a new approach using robustness indices in robust design 

optimization for multi-objective problems in which uncontrollable variability in 

parameters causes variation in the objective functions and/or the constraint functions. The 

Decision Maker specifies the acceptable variation of the objective values. We presume 

that the range of the uncertain parameters is known. The approach can be used for 

objective robust optimization, for feasibility robust optimization, or for “performance 

robust optimization” (i.e., invoking both objective and feasibility robustness). The 

approach is deterministic, and so does not require probability distributions for the 

uncertain parameters. The approach is not gradient based, and so is applicable for cases 

with objective functions and constraint functions that are discontinuous (or merely non-

differentiable) with respect to the parameter variations, and for cases where the variations 

are large, beyond the functions’ linear range. 
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Our robustness measures, for objectives or for constraints, are based on mapping the 

parameter tolerance region into sensitivity regions in the objective space or the constraint 

space, respectively. For objectives or for constraints, we define a robustness index that is 

the ratio of the size of the corresponding sensitivity region to the size of the acceptable 

region of objective variation or constraint variation, respectively.  

In the proposed approach, the sensitivity regions can be oddly shaped, or be 

disconnected or contain holes, so determining their “size” and most sensitive “direction” 

can be problematic. Accordingly, we define a worst-case estimate. Rather than 

calculating the sensitivity regions directly, we use an optimizer to solve for these worst-

case estimates of the OSR and the CSR. The overall robust optimization problem thus 

becomes an outer-inner optimization problem. We use MOGA for the outer multi-

objective optimization problem and GA for the two inner single-objective problems, one 

for objective robustness and the other for feasibility robustness. These two single-

objective problem can also be combined into one problem to save the computational 

effort. The outer-inner structure can make this approach computation intensive. Further 

research to reduce the computational cost will be conducted as part of our future work, as 

discussed in Chapter 7. 

We used five numerical and engineering examples to demonstrate the applicability of 

the proposed approach. For most of these examples, robust Pareto designs are dominated 

by (or are interior to) the nominal Pareto designs, as expected. Monte-Carlo simulations 

have been used to verify the robust Pareto designs. The variations of objective and 

constraint functions for those robust designs are still within the acceptable ranges.   
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The computer platform used in this dissertation is a Dell Optiplex GX620 (3.4GHz 

Pentium4 CPU with 2GB of RAM). For most of test examples in this section, the 

computation time for a nominal optimization using MOGA is usually about 10 minutes. 

For UUV-Payload example, it takes about 20 minutes to finish one nominal run. It 

usually takes less than 20 hours for each of the other test examples and no more than 36 

hours for UUV-Payload to complete a single run of the robust optimization method. Note 

that the computational time for robust optimization is significantly longer than nominal 

optimization because of numerous evaluations in the inner problem.   

In the next chapter, we will extend the robust optimization approach described in this 

chapter to a robust method for MDO problems. 
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CHAPTER 4: PERFORMANCE AND COLLABORATIVE 

ROBUSTNESS IN MULTI-DISCIPLINARY DESIGN 

OPTIMIZATION  

4.1 INTRODUCTION 

Engineering design optimization methods involving “complex” systems often fall 

under MDO [Sobieszczanski-Sobieski and Balling, 1996], [Sobieszczanski-Sobieski and 

Haftka, 1997]. The word complex refers to a system whose analysis involves multiple 

interacting subsystems or disciplines. 

Typical MDO approaches can be classified into two categories: All-at-once and 

multilevel approaches, e.g., [Sobieszczanski-Sobieski and Balling, 1996]. In an all-at-

once approach, every discipline works as an analyzer while all analyzers work together to 

compute objective and constraint function values for a centralized optimization problem 

(See Section 2.2). In contrast, in a multilevel approach, the overall analysis and 

optimization problem is decentralized into multiple interacting and disciplinary 

subproblems and the optimization is performed in each subproblem while they all work 

together in concert to obtain the solution to the MDO problem. The multilevel (or 

decentralized) MDO approaches are abundant and have been applied to examples in air- 

and space-crafts, automobiles, and other engineering design problems, e.g., [Sobieski-

Sobieszczanksi, 1988], [Renaud and Gabriele, 1993], [Braun, 1996], [Seller et al., 1996], 

[Sobieszczanski-Sobieski et al., 1998], [Sobieski and Kroo 2000], [Kodiyalam and 

Sobieszczanski-Sobieski, 2000 and 2001], and [Kim, 2001], among others. Also, large-

scale stochastic optimization problems can be decomposed by using Dantzig-Wolfe 
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method [Dantzig and Wolfe, 1961], Benders decomposition [Benders, 1962], or 

Lagrangian decomposition [Conejo et al., 2006] when the functions in each optimization 

subproblem are explicit in linear, nonlinear or mixed-integer forms.    

In contrast to single-objective optimization, very few papers are reported in 

multiobjective MDO and they usually are based on the weighted sum or compromised 

DSP approaches, e.g., [Tapetta and Renaud, 1997], [Kalsi et al., 2001], and [McAllister et 

al., 2000]. More importantly, there often exist uncontrollable variations or uncertainties 

in parameters of an MDO problem. These uncertainties may exist not only in each 

discipline but also propagate across disciplines due to couplings and hence methods for 

handling uncertainty within and across disciplines have become quite important [Du and 

Chen, 2000(a) and 2002], [Gu et al., 2000], [Gu and Renaud, 2002], [Gu et al., 2006]. 

However, even though there are many reported applications for robust MDO approaches, 

those MDO methods are essentially developed for single-objective robust optimization 

problems that have continuous objective/constraint functions, e.g., [Koch et al., 1999], 

[Gu et al., 2000], [Gu and Renaud, 2002], [Gu et al., 2006] or when input probability 

distributions are known, e.g., [Mavris et al., 1999], [Chen and Lewis, 1999], [Sues et al., 

2001], [McAllister and Simpson, 2003], [Du and Chen, 2002, 2004, and 2005], and [Liu 

et al., 2006]. Although the approaches proposed, i.e., [McAllister and Simpson, 2003] 

and [Kalsi et al., 2001], can handle robust design problems with multiple objective 

functions, they can only apply to robust MDO problems with no coupling or one-way 

coupling (e.g., only upstream linking parameters, from the follower to leader discipline, 

have uncontrollable variations). The literature is particularly short in handling uncertainty 

for fully coupled multiobjective multilevel MDO problems with interdisciplinary 
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uncertainty propagation or when simulations in each discipline are considered as a black 

box; that is where this approach is making its contributions. In this regard, we present an 

approach called Multiobjective Collaborative Robust Optimization (McRO) that can find 

robust solutions for multiobjective multilevel MDO problems in which uncontrollable 

variability happens not only in the parameters within disciplines but also in couplings 

across disciplines. The forward mapping and thus the robustness index in the all-at-once 

format developed in Chapter 3 for performance robust optimization will be extended and 

used to measure an additional collaborative robustness to address the uncertainty 

propagated across disciplines in this chapter.   

Section 4.2 describes the details of the McRO approach. Three examples, the 

numerical example, Speed Reducer design and UUV-Payload design, are used to 

demonstrate the applicability of the proposed approach in Section 4.3. Concluding 

remarks are given in Section 4.4. Definitions and terminologies used in this section are 

given in Chapter 2.  

The significant portion of this chapter, other than the UUV-Payload design example, 

was also presented in Li and Azarm, [2007]. 

4.2 MULTIOBJECTIVE COLLABORATIVE ROBUST OPTIMIZATION 

(McRO) 

We present here a Multiobjective collaborative Robust Optimization (McRO) 

approach that can be used for the solution of multiobjective multilevel MDO problems 

that have mixed continuous-discrete parameters which have interval uncertainty, 

extended from the forward mapping and the robustness index developed in Chapter 3. For 

these MDO problems, since there are full couplings across different disciplines, the 
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variation in one discipline might affect the performance of other disciplines. By full 

couplings, we mean there is a two-way connection between any two disciplines. In this 

regard, not only do we account for variations in each discipline but also have to handle 

propagation of uncertainty across different disciplines.  

In this section, we first present the formulation of McRO. After that, we describe the 

technique used for handling the propagation of uncertainty, based on the robustness 

index. Then we present the McRO approach and implementation. 

4.2.1 McRO Formulation 

Recall Figure 2.5 whereby the formulation of a coupled multiobjective MDO problem 

with two disciplines is given. This formulation can be converted for the case of two 

disciplines (or subsystems) to a bi-level Collaborative Optimization (CO) model [Braun, 

1996] as shown in Figure 4.1. Essentially, the coupling variables y are decoupled and 

replaced by adding corresponding target variables t and an additional constraint in each 

subsystem optimization problem. This additional constraint ensures that the value of all 

coupling variables is matched to their corresponding target variables in all subsystems, 

also called “Interdisciplinary Consistency Constraint” (ICC). ICC requires that essentially 

each subsystem should eventually have the same value for coupling variables. As an 

example, one of the coupling variables in the UUV-Payload design example (recall 

Section 3.6.5) is the payload weight. This coupling variable is calculated as an output by 

the Payload discipline and used by the UUV discipline as an input. Thus when the multi-

disciplinary analysis is decomposed, we need to generate a target variable for this 

payload weight, as proposed in the literature by the CO approach [Braun, 1996].   



 73 

As shown in Figure 4.1, the subsystem optimization problem in the top is for “System 

0” and the subsystem optimization problems in the lower level are for subsystem i or SSi, 

i =1, 2. (As mentioned for simplicity and without loss of generality, we consider a fully 

coupled two-subsystem optimization problem representing two coupled disciplines. This 

approach can be easily extended to design problems with more than two disciplines.) 

Each subsystem optimization problem in the lower level represents a discipline and has 

its own set of design variables, parameters, and corresponding objective and constraint 

functions, represented by xi, pi, fi, gi, i=1, 2, respectively. System 0 has its own shared 

design variables and shared parameters as well as the objectives and constraints.   

From this point on, by using the term “System” we mean the upper level block in 

Figure 4.1 and by “subsystem” we mean the lower level blocks in Figure 4.1. For System 

0 the optimization problem in Eq. (4.1) is formulated with xsh and psh as the shared design 

variables and shared uncertain parameters, respectively. Also, the target variables t = [t12, 

t21] are for the system targets and correspond to the interdisciplinary coupling variables: 

y= [y12, y21]. For System 0, we have the optimization problem as shown in Eq. (4.1). 

xsh 
psh 

System  
0 

SS1 SS2 
 

t 

p1 

xsh , t xsh , t 

f0, g0 

p2 

x2 

f2, g2 f1, g1 

x1 

 

Figure 4.1 Collaborative optimization 
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s.t.

),(  min 00 0
shpXf

X       (4.1a) 

0),( 00 ≤shpXg                 (4.1b) 

     [ ]txX ,0 sh≡                       (4.1c) 

The objective functions in System 0 (Eq. (4.1a)) are minimized with respect to X0, which 

includes both the shared design variable xsh and target variables t. This formulation also 

considers the variability or interval uncertainty in psh.  

Several previous formulations handle coupling variables in the CO models [Braun, 

1996], [Alexandrov and Lewis, 2002], and [Aute and Azarm, 2006]. We present here two 

alternative formulations: formulation-1 and formulation-2. For both formulations, there is 

a target vector tij, corresponding to the vector yij, generated in System 0 and passed to 

SSi, i=1,2. Therefore, yij, the output variables from SSi to SSj, is a function of xsh, xi, pi 

and tji. That is, the target value tji, instead of the coupling variables yji, is used for all the 

calculations in SSi as long as the value of all coupling variables are matched to their 

corresponding target values. The system design variables xsh and target variables t are 

considered as fixed parameters in SSi.  

In formulation-1, e.g., [Alexandrov and Lewis, 2002], [Sobieski and Kroo, 2000], 

[Aute and Azarm, 2006], the combined design variable vector in SSi, Xi in Eq. (4.2e), 

includes local design variables xi and local target variables tji
i. The objectives in SSi are 

to minimize fi, Eq. (4.2a), subject to local constraints gi, Eq. (4.2b), and an additional 

Interdisciplinary Consistency Constraint (ICC), as in Eq. (4.2c). For instance in SS1, the 

ICC constraints are imposed by “||.||2=0” type constraints to minimize the difference 

between y12 (output from SS1) and t12, and also to minimize the difference between the 
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local variable t21
1

 and the target t21, while there are variations in pi. In practice, the ||.||2 

type constraints (Eq. (4.2c)) are satisfied within a small acceptable tolerance. 

  s.t.

 ),,(  min
  

i
jiiishi

i

tp,Xxf
X       (4.2a)                               

0),,( ≤i
jiiishi tp,Xxg      (4.2b) 

0

0
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2

=−

=−

ji
i

ji

ijij

tt

ty
       (4.2c) 

),,( i
jiiishiij tp,XxYy =      (4.2d) 

2,1    ],,[ =≡ ii
jiii txX      (4.2e) 

Using a more simplified alternative, formulation-2 [Haimes et al., 1990], it is not 

necessary to have a local target variables tji
i in SSi; i.e., the system target variable tji will 

be used directly in SSi to calculate the coupling variables yij and local objective/constraint 

functions, as shown in Eq. (4.3):      

  s.t.

),,(  min
  jiiishi

i

tp,xxf
x      (4.3a) 

                               0),,( ≤jiiishi tp,xxg                (4.3b) 

0
2

=− ijij ty           (4.3c) 

1,2  ),,,( == ijiiishiij tp,xxYy         (4.3d) 

In formulation-2, xi is the only vector of local design variables. ICC in Eq. (4.3c) 

forces the interdisciplinary coupling variables yij to match their corresponding system 

target values tij. In this way, the interdisciplinary consistency is met by a simpler 

formulation.  
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4.2.2 Interdisciplinary Propagation of Uncertainty 

As shown in Figure 2.5, the propagation of uncertainty implies that outputs from one 

discipline are not only affected by the uncertainty from that discipline’s parameters but 

also by the uncertainty from interdisciplinary coupling variables. In this section, we 

mainly focus on an approach that accounts for interdisciplinary propagation of 

uncertainty that is produced as a result of interdisciplinary coupling variables. The 

uncertainty that exists within the discipline can be handled by the performance robust 

optimization approach discussed in Chapter 3. 

To handle the interdisciplinary propagation of uncertainty, two issues will have to be 

addressed. First, we need to decide how the uncertainty in each discipline should be 

represented. Second, we need to quantify this uncertainty. These two issues are discussed 

in the next two paragraphs. 

In a CO framework, the coupling among the disciplines and satisfaction of the ICC 

are handled by matching the interdisciplinary coupling variables y to the corresponding 

target variables t. As shown in Eqs. (4.2) and (4.3), when there is no uncertainty ICC 

forces all interdisciplinary y components to converge to a single value of their 

corresponding system target t. However, with the uncertainty introduced in coupling 

variables due to uncontrollable parameters (coupling variables are another type of outputs 

of the subsystem’s analyzer, in addition to the local objectives/constraints), ICC can not 

be satisfied. The variation in the interdisciplinary coupling variables yij leads to a range 

and not just a single value. Moreover, this variation in yij is propagated to subsystem SSj 

and may exacerbate the variation in yji. Since in a CO framework the coupling variables y 

are decoupled and replaced by the target variables t (see Eqs. (4.2d) or (4.3d)), in the 
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same manner the variation from the coupling variables y should also be decoupled and 

represented by a variation in the target variables t. In other words, to replace the variation 

in the coupling variables y, a presumed variation range in the target variables t should be 

achieved. In both formulation-1, Eq. (4.2), and formulation-2, Eq. (4.3), the variation in 

the uncontrollable local parameters pi leads to the variation in yij (see Eqs. (4.2d) or 

(4.3d)) even if we consider tji to be deterministic for the time being. Therefore, with the 

variation in pi, yij cannot match a single value of tij and moreover the variation in yij will 

propagate from SSi to SSj (see Figure 2.5). Similarly, the variation in yji will also 

propagate back to SSi and may aggravate the variation of yij. Since tji is the system target 

of interdisciplinary variable yji, it has to reflect the variation in yji. That is, tji can not be a 

single deterministic value either: It should have a variation range. Therefore, the variation 

in both pi and tji leads to the variation in yij. For instance, in SS1, y12 = Y1(xsh, x1, p1, t21). 

Similarly, in SS2, y21 = Y2(xsh, x2, p2, t12). Suppose now that p1 and p2 have variations. As 

a result, both y12 and y21 will have variations due to variations in p1 and p2, respectively. 

Moreover, t21 should also have variations due to y21, otherwise it cannot work as a 

replacement of y21 (see Eqs. (4.2c) and (4.3c)). Thus, the variations from both p1 and t21 

lead to the variations in y12. In this way, the variations in the interdisciplinary coupling 

variables y can be represented by and transferred to the variations in the target variables t.  

The next issue to be addressed is how to quantify the variations in target variables t. 

A presumed tolerance region is used to quantify the interval uncertainty in t. Each 

component in the vector of target variables t is assumed to have a nominal value and a 

tolerance range around the nominal. The interdisciplinary coupling variables yij is 

considered as part of the output vector from SSi, together with fi and gi. Therefore, with 
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the presence of uncertainty in inputs to SSi (e.g., tji and pi), all the outputs from SSi: yij, fi 

and gi have variations. However, as long as the value of yij stays within tolerance region 

of tij, it is acceptable for SSj to use tij as a vector of input parameters. That is, the 

tolerance region of target variables tij is not only an input variation range to SSj, but is 

also an acceptable variation range for coupling variables yij in SSi. The same applies to 

SSj: As long as the variation in yji stays within the tolerance region of tji, SSi can use the 

target vector tji in Eqs. (4.2) or (4.3). The target variable t (with the corresponding 

nominal value and tolerance region) provides a cushion to absorb the variation in y. In 

this way, the propagation of uncertainty in the coupling variables is replaced by target 

variables with a tolerance region. A design in McRO approach is defined by shared and 

design variables, uncertain parameters and target variables, and outputs from each 

subsystem. In this regard, a design is: 1) performance-wise robust if the variation in 

objective functions of a feasible design is within an acceptable range and this feasible 

design remains feasible when parameters and targets vary, and 2) collaboratively robust 

if the variation in coupling variables stays within an tolerance region of targets when 

parameters and targets vary.  

4.2.3 McRO Approach 

The all-at-once performance robust optimization formulation described in Chapter 3 

is extended here to solve the McRO formulation in Eqs. (4.2) or (4.3). Here we assume 

that: i) the range of uncontrollable parameters psh and pi are known; ii) the AOVR for 

each objective function in System 0 and all SSi are given; and iii) the tolerance region for 

target variables t is known for all subsystem disciplines. Based on these assumptions, a 

design is considered to be robustly optimal if it satisfies the following two conditions: 
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1) In each subsystem optimization problem SSi, the subsystem objective values fi are 

optimized with their variation being within their AOVR and the subsystem constraint 

values gi remain within their ACVRs. Additionally, the variation of the subsystem 

interdisciplinary outputs yij is within the tolerance region of the target variables tij.  

2) In System 0, the objective values are optimized with their variations being within the 

system AOVR. The system constraints also remain feasible, i.e., within their ACVR. 

However, as done in this dissertation, if we assume that the objective functions in 

System 0 are dependent on the objective values fi, i =1, 2, of subsystems; then the 

AOVR in System 0 is also dependent on and can be calculated from AOVRs of the 

subsystems. However, in general, for the proposed McRO approach this last 

requirement is not necessary to be imposed.  

In the proposed formulations, the nominal values of system parameters psh and 

subsystem parameters pi are psh,0, and pi,0, respectively. t0 represents the nominal value of 

interdisciplinary target variables t. In System 0, as given in Eq. (4.4a), the system 

objective functions are minimized with respect to shared design variables xsh and the 

nominal value of interdisciplinary target variables t0, with all parameters p = [psh, p1, p2] 

and the interdisciplinary target variable t = [t12, t21] fixed at their nominal values p0 and t0, 

respectively. The system constraints are given in Eq. (4.4b). The system robustness 

constraint, Eq. (4.4c) (recall Eq. (3.9) in Section 3.5), implies that the combined 

performance and collaborative robustness index: cperf ,η , to be less than or equal to 1 for a 

robust design.   
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s.t.
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In this formulation, cperf ,η  is the maximum value between the performance 

robustness index perfη and the collaborative robustness index cη , which are calculated by 

Eq. (4.5) and Eq. (4.6) respectively, as follows:  
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p~ and t~ present the possible parameter and target variations over their tolerance 

regions, respectively. The variation of the each component in the objective and constraint 

vector in System 0 and SSi are defined by:  

  
),,()~,~,(

,0,0

00,,0,0
,0

m

shshmshshm
m f

ff
f

∆
−

=∆
tpxtpx

    (4.5b) 

�
�

�

�
�

�

�

≥

−

=∆

otherwise0
),,()~,~,(if

),,(

),,()~,~,(

00,,0,0

00,,0

00,,0,0

,0
tpxtpx

tpx
tpxtpx

shshlshshl

shshl

shshlshshl

l
gg

g

gg

g    (4.5c) 

 2 ,1 ,  
),,()~,~,(

,0,

0,0,,
, =

∆
−

=∆ i
f

ff
f

mi

jiimijiimi
mi

tpxtpx
        (4.5d) 



 81 

2 ,1    

otherwise0
),,()~,~,(if                                              

),,(

),,()~,~,(

0,0,,

0,0,

0,0,,

, =

�
�

�

�
�

�

�

≥

−

=∆ i
gg

g

gg

g
jiiliili

jiili

jiiliili

li

tpxtpx

tpx

tpxtpx

ji

ji

     (4.5e) 

f0,m and fi,m are the m-th objective function in System 0 and SSi, respectively. �f0,m and 

�fi,m are normalized with respect to �f0,0,m and �fi,0,m, the AOVR for the m-th objective 

function in System 0 and SSi, respectively. The constraints g0,l and gi,l are the l-th 

constraint function in System 0 and SSi, respectively. Notice that in Eq. (4.5), the target 

variables tji are passed to SSi as uncontrollable parameters to calculate yij, fi and gi. 

Therefore the variation in SSi comes from two sources: p~ and ijt~ .  

The collaborative robustness index cη is defined as the maximum ||.||� distance from 

the coupling variable yij to the nominal target variable value tij,0, as shown in Eq. (4.6). As 

long as this distance is within the tolerance region �tij,0, the variation within the coupling 

variables is acceptable. 

  2 1, ,max
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where Ci is the difference between yij and the nominal value of target tij and normalized 

by �tij,0, as defined in (4.6b): 
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By adding a robust constraint, 01, ≤−cperfη , (Eq. (4.4c)), into the System 0, the largest 

deviation from y to the nominal value of t should not exceed the tolerance region of target 

value t and the largest deviation from nominal of objective and constraints stays within an 

acceptable range. The design that satisfies this constraint is both performance and 

collaboratively robust. In this way, the uncertainty in the coupling variables y is 
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represented and quantified. This robust constraint is verified for any feasible system 

design xsh together with its corresponding subsystem designs after obtaining all optimal 

subsystem designs. (The approach for calculating the robust constraint is discussed in the 

next section.) In this way, the two conditions mentioned at the beginning of this section 

are satisfied and the subsystem’s solutions are guaranteed to be multiobjectively and 

feasibly robust.  

In the subsystem level SSi, Eq. (4.7) is used to find the optimal solutions of the 

subsystem optimization problem in Eq. (4.3). (The same approach can be applied to Eq. 

(4.2) too.) The subsystem objective functions are minimized with respect to subsystem 

design variables xi. The shared design variables xsh and the nominal value of 

interdisciplinary target variables t0 are fixed in Eq. (4.7). yij,0, tij,0 and tji,0 are the nominal 

value for coupling and target variable yij, tij and tji, respectively.  

  s.t.

),,(  min 0,0,  jiiishi
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0),,( 0,0, ≤jiiishi tp,xxg     (4.7b) 

0
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1,2),,( 0,0,0, == ijiiishiij tp,xxYy   (4.7d) 

An implementation of the McRO approach is discussed in the next section.   

4.2.4 McRO Implementation  

We use MOGA as the optimizer for system and subsystem subproblems and GA as 

the optimizer to calculate the robustness index as in Chapter 3. MOGA and GA are used 

because there might exist mixed continuous-discrete design variables and parameters in 
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these subproblems and we would like to find the global optimal solutions for the 

robustness index. 

The steps in the implementation of the McRO approach are as follows: 

1. At System 0, MOGA generates a set of design alternatives including a set of xsh and t0 

(nominal value of t) values for individual designs in the initial generation.  

2. For each individual in System 0, the values of xsh and t0 are passed to each SSi as 

fixed parameters. 

3. MOGA solves the SSi optimization problem, Eq. (4.7) with uncontrollable 

parameters psh and pi fixed to their nominal value.  

4. The objective functions fi and constraint functions gi and their corresponding local 

design variables xi values are passed from SSi back to the System 0. At this point, 

since MOGA is a population-based approach, each SSi has a Pareto solution set 

corresponding to each xsh and t0. As a result it is necessary to map multiple Pareto 

points from each SSi to an individual point at the system level. Here, we have 

adopted a simple strategy for selecting a solution from each subsystem Pareto set 

[Aute and Azarm, 2006]. In this strategy, the solution that has the best objective 

function value f1 in each subsystem is chosen and its value is passed to the system 

level. However, other strategies could also be used. 

5. MOGA solves System 0’s optimization problem, Eq. (4.4), calculating the objective 

and constraint values. For each design xsh, the robustness index at the system level is 

calculated using a GA. The system level objective and constraint values are used to 

assign a fitness value to the population at the system level.  
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6. A new population of xsh and t0 is generated based on the genetic operators of selection, 

crossover and mutation.  

Steps 2 to 6 are repeated and the procedure stops when a pre-specified maximum 

number iterations is achieved or other stopping criteria are satisfied. The GA parameters 

used in the MOGA and GA are shown in Table 4.1.  

Table 4.1 GA parameters used in McRO 

GA Parameters Values 
popsize – system level 100 
popsize – subsystem level 80 
Crossover probability 0.9 
Mutation probability 0.1 
Elite number 40% of pop. size 
Max. # of generations – system level 100 
Max. # of generations – subsystem level 80 
Number of bits (for each continuous design variable)  16 
Number of bits (for integer design variable) 4 

 

Next we demonstrate the applicability of the proposed approach using a numerical 

and two engineering examples. 

4.3 EXAMPLES AND RESULTS 

In this section, a numerical example and two engineering examples, described in 

Chapter 3, are used to demonstrate the applicability of the McRO approach. In this 

chapter, each of these three examples has two objective functions in each subsystem and 

has mixed continuous-discrete design variables and/or parameter variations. Moreover, 

two subproblems in each example are fully coupled, which are used to demonstrate the 

applicability of the proposed McRO in solving the uncertainty propagation.   
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4.3.1 Numerical Example 

The bi-objective numerical example shown in Section 3.6.1 is developed here as a bi-

level two-objective MDO problem with two fully coupled disciplines. The all-at-once 

formulation in Eq. (3.11) and Eq. (3.12) is converted into a system-level subproblem with 

two subsystem-level coupled subproblems. Between these two subsystems SSi, i=1 and 

2, there are the two coupling variables y = [y1, y2]. In each subproblem, there are two 

objective functions and one constraint. The collaborative optimization formulation for 

this problem is as follows. 

In System 0, xsh includes only one design variable, x1; and the vector of target 

variables t includes two target variables t1 and t2, corresponding to the two coupling 

variable y1 and y2. Thus xsh = [x1], t12 = [t1] and t21 = [t2]. The bi-objective optimization 

problem in System 0 is given in Eq. (4.8): 
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SS1 has the local design variable: x1 = [x2], and the local copy of the target variable 

for t2, i.e., 1
2t . The formulation of the bi-objective optimization problem for SS1 is given 

in Eq. (4.9): 



 86 

2,1 ,10        

1110        

100        

],[        

2.0        

 where

        

        

08   s.t.

15010  min

  min

3

1
2

2

1
221

1
22

2
11

22
1
2

111

11,1

43
122,1 

1
2

21,1 

1

1

==

≤≤−

≤≤
≡

−+=

≤−

≤−

≤−=

+−=

+=

− it

t

x

tx

txxy

tt

ty

yg

yxf

yxf

iiε

ε

ε

X

X

X

    (4.9) 

SS2 has the local design variable x2 = [x3] and the local copy of the target variable for 

t1, i.e., 2
1t . The formulation of the bi-objective optimization problem for SS2 is defined in 

Eq. (4.10): 
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The coupling variable y1 and y2 are defined in Eq. (4.11):  
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For this example, we used the formulation-1, as in Eq. (4.2). For the nominal case 

(without uncertainty), the obtained Pareto solutions from the Multiobjective 
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Collaborative Optimization (MCO) approach are shown in Figure 4.2 (“Nominal: 

MCO”). To verify the Pareto optimal results obtained from the collaborative 

formulations, Eqs. (4.9) and (4.10), the optimal Pareto solutions for the original all-at-

once problem, Eq. (3.11) in Chapter 3, are also shown in Figure 4.2. 

Again, the variations in �x2 and �x3 are assumed to be within ±6% from nominal and 

�x1 is discretized to 12 possible values, ±1%, ±2%, ±3%, ±4%, ±5%, or ±6% from the 

nominal. The AOVR for each of the two components in the vector of bi-objective 

functions f1 and f2 in SS1 and SS2 are both ±5 units from their nominal. The tolerance 

region for the target variables �t1 and �t2 are also ±2 units from their nominal. Since the 

objective values in System 0 are only dependent on the local objectives from SS1 and 

SS2, the AOVR in System 0 is also only dependent on and, for this example, is the sum 

of AOVRs of subsystems. Note that there is no constraint in System 0, Eq. (4.8). As a 

result, for any design x1, if a corresponding local design: x2 and x3, is robust, then x1 is 

robust. 
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Figure 4.2 Obtained nominal and robust optimal solutions from McRO  
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The robust solutions for the above mentioned settings are shown in Figure 4.2. The 

robust solutions as in the all-at-once format in Chapter 3, with the same tolerance region 

and with each of �f0,1 and �f0,2 being 10 units from its nominal, have also been shown 

here. As shown, the nominal Pareto solutions from the MCO approach overlap with the 

nominal solutions from the all-at-once performance robust optimization approach. 

Moreover, while we need to also set an acceptable range for the coupling variables, the 

robust Pareto solutions from the McRO approach are comparable, though a little different 

from those obtained from the all-at-once approach. As a demonstration, the robustness of 

one of the robust optimal solutions shown in Figure 4.2, R, is verified by the Monte-Carlo 

simulation with 10,000 sample points (only a subset of them are shown in Figure 4.3 for 

visualization). The variation in objective functions in both SS1 and SS2 are shown in 

Figure 4.3. 
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Figure 4.3 Verification of objective robustness for design R of Figure 4.2 in (a) SS1 

and in (b) SS2 
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4.3.2 Speed Reducer Design 

The second example is the design of a speed reducer described before in Section 

3.6.3. Here, we modified the formulation to a two-objective optimization problem as 

shown in Eq. (4.12).  
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To decompose the problem, we use the formulation in Eq. (4.1) and Eq. (4.3). The 

entire system is decomposed into one system level subproblem: System 0, with two 

subsystem level subproblems: SS1 and SS2. These two subsystems are fully coupled by 

two coupling variables y = [y1, y2], defined as in Eq. (4.13): 
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In each discipline, there are two objective functions and several constraints. In System 0, 

xsh includes three design variables xsh = [x1, x2, x3].  The vector of target variables t 

includes two target variables t1 and t2, corresponding to two coupling variables y1 and y2, 

as shown in Eq. (4.14): 
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The subsystem SS1 has the local design variable x1 = [x4, x6]. In this example, we do 

not have any local copy of the target variable for t2. We used the formulation-2, as in Eq. 

(4.3): The target value t2 is used directly in the SS1. The formulation of the bi-objective 

optimization problem for SS1 is defined in Eq. (4.15). 
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The subsystem SS2 has the local design variable x2 = [x5, x7]. The formulation of the 

bi-objective optimization problem for SS2 is defined in Eq. (4.16): 
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For the nominal case (i.e., without uncertainty), the obtained Pareto solutions are 

shown in Figure 4.4 by squares, shown as “Nominal: MCO”.  
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Figure 4.4 Nominal and robust designs using MCO and McRO, respectively  

In robust optimization, the variation [�x6, �x7] in the design variables [x6, x7] is 

assumed to be between ±0.1. The AOVR for [f1 f2] in both SS1 and SS2 are: [�fi,0,1, 

�fi,0,2]=[60, 75]. The tolerance regions �t1 and �t2 of targets, are continuous and within 

±5 and ±7 from nominal, respectively. The AOVR in f0,1 of System 0 is the sum of local 

AOVRs from SSi, i=1, 2. The robustness index constraint as shown in Eq. (4.4c) is 

calculated by a GA. The obtained robust solutions are shown in Figure 4.4 by circles. All 

robust designs are interior to the nominal designs obtained from MCO. The total volume 

and maximum stress of robust designs are larger than the corresponding values of 

nominal designs, respectively. 

4.3.3 UUV-Payload Design 

This example is the same as the UUV-Payload example given in Section 3.6.5. Using 

the decentralized UUV-Payload performance analyzers shown in Figure 4.5, we 

developed the MDO framework for UUV-Payload design as shown in Figure 4.6.  
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Figure 4.5 Decentralized UUV-Payload performance analyzers 
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Figure 4.6 MDO framework in deterministic UUV-Payload design 

As mentioned previously the framework uses a decentralized formulation: one 

MOGA controls the design variables in the UUV (without payload) discipline and 

another MOGA controls the Payload discipline to collaboratively develop UUV-Payload 

system design. Compared to the formulation in Section 3.6.5, we decentralize that all-at-

once model into a two-level hierarchical model. In the decomposed model, we have a 



 94 

system level subproblem and two fully coupled subsystem level subproblems. Each 

subproblem has its own associated inputs: local design variable, parameters and 

disciplinary outputs such as objectives and constraints. Note that in system 0, in addition 

to shared variables VD and PL, there are two target variables, each for one corresponding 

coupled variable. The target of the payload weight is called t_payloadweight as well as 

the target of the GnC length, t_GnClength. In order to maintain the consistency for all 

subsystems when the multidisciplinary analysis is decomposed, each subsystem should 

eventually have the same value of coupling variables by using the Interdisciplinary 

Consistency Constraints (ICC), as shown in Figure 4.6, with one for each coupled 

variable. The design variables, the optimization problem in each subsystem as well as in 

system subproblem of this example are also shown in Figure 4.6.  

For UUV-Payload system design in this section, we try to maximize PS in the 

“Medium” scenario and minimize total UUV weight, as a typical two-objective 

optimization problem at the system level, with PS and total UUV weight having trade-offs. 

In order to achieve higher PS, we generally need a heavier UUV with the payload.  
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Figure 4.7 UUV-Payload nominal optimal designs in deterministic case  
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Two typical nominal UUV-Payload designs from the optima frontier, with their 

system level objective values are given in the Figure 4.7. Shown in the figure are also 

their subsystem objective function values in the Payload discipline and UUV discipline. 

For the Payload subsystem, we have five PS|UUV values for each scenario. We pick the 

maximum one from each five (one for medium scenario and one for large scenario) as the 

two objective function values in the Payload discipline. In this case, the PSLarge can not be 

better unless one sacrifices PSMedium since it is a Pareto solution in Payload subsystem. 

Autonomy of this subsystem is preserved. For UUV discipline, the two objectives are 

maximizing PUUV and minimizing UUV weight.  

Figure 4.8 shows the McRO model for UUV-Payload design. In addition to the steps 

in the deterministic model, we have an additional constraint in System 0 to determine the 

robustness, including both performance and collaborative robustness. In both 

deterministic and robust models, the ICC must be satisfied for all optimal designs. For the 

robust optimization in this example, we assume that two design variables have 

uncontrollable uncertainty represented by intervals, [�RD, �VD] = [1 nm, 0.05 inch]. 

The tolerance regions for the target variables, [�t_payloadweigth, �t_GnClength] are 

continuous within 20lb and 0.5 inch from nominal. The AOVR in SS1 is: [�PUUV, 

�UUVWeight] = [0.1, 40lb] and the AOVR in SS2 is: [�PSMedium, �PSLarge] = [0.1, 0.1].   

In addition to the deterministic designs, we show the optimal robust designs using 

McRO approach in Figure 4.9. Robustness here implies that both performance and 

collaborative robustness are met. As expected and observed in the results, in order to 

account for the uncertainty from the inputs and across the disciplines, UUV weight (tons 

of lbs) must be enlarged to achieve a similar PS. For each pair of nominal and robust 
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designs, robust ones have longer propulsion parts. That is, longer UUV bodies with 

heavier payloads are used in the robust case. 
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Figure 4.8 McRO approach for UUV-Payload design  
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Figure 4.9 UUV-Payload optimal designs in nominal and robust case 

4.4 SUMMARY 

Based on the concepts of the forward mapping and the robustness index discussed in 

Chapter 3, we extend the performance robust optimization to handle collaborative 

robustness for MDO problems. Compared to the previous work, the McRO approach of 
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this chapter has several characteristics. First, McRO can find robust solutions for 

multiobjective multilevel coupled MDO problems in which uncontrollable variations 

exist not only in parameters within each subsystem but also across subsystems. Second, 

McRO can handle MCO problems that have multiple physical objectives in each of the 

subproblems. An important advantage of McRO is that it does not require presumed 

distributions for representing variations in uncontrollable parameters. Also, parameters 

and design variables can be of a mixed continuous-discrete type. However, McRO 

requires a tolerance region for target variables. It also requires an acceptable variation 

range for objective functions as in Chapter 3. This tolerance region of targets provides a 

cushion to absorb the variations in coupling variables.  

McRO has been demonstrated with a numerical and two engineering examples, all of 

which have fully coupled subproblems. All of the examples have two objective functions 

in each subsystem and have mixed continuous-discrete design variables and parameter 

variations. From the results obtained, in the numerical example it was observed that the 

nominal solutions for the all-at-once and MCO methods are comparable. However, the 

robust solutions for the all-at-once and McRO methods appear to cover different portions 

of the robust Pareto frontier. The reason behind this is the setting for the acceptable 

region of coupling variables. In the speed reducer example, it was observed that both the 

McRO solutions and MCO solutions covered comparable solution space. However, in all 

examples, it was observed that: i) robust solutions are interior to or more conservative 

than the nominal ones, and ii) the number of robust solutions is fewer than the nominal 

ones. In UUV-Payload design example, to account for the uncertainty, all robust designs 

are interior to the nominal designs, with significant increased UUV weight.   
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Finally, McRO can be computationally expensive. We used the same computer 

platform (see Section 3.7) to test the McRO approach. It usually takes about 2 hours for 

the numerical and speed reducer example, and 3 hours for the UUV-Payload example to 

complete a nominal run since MOGA is used in each subsystem. However, it also takes 

about 100 hours for the UUV-Payload design and 36 hours for other examples to finish 

one run of robust optimization. Approximation methods can be used to address this 

aspect which will be considered as part of our future research directions as discussed in 

Chapter 7.  

Next chapter will present a new sensitivity analysis approach for single-disciplinary 

optimization problems that have parameters with reducible interval uncertainty.  
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CHAPTER 5: INTERVAL UNCERTAINTY REDUCTION AND 

MULTI-OBJECTIVE SENSITIVITY ANALYSIS IN SINGLE-

DISCIPLINARY DESIGN OPTIMIZATION 

5.1 INTRODUCTION  

In the broadest sense there are two motivations for taking into account uncertainty in 

engineering design. Uncertainty analysis approaches are developed to find the range and 

frequency of possible design or model outputs as a result of uncertainty in parameters or 

model inputs. In contrast, Sensitivity Analysis (SA) [Iman and Helton, 1988] seeks to 

connect the uncertainty in model inputs to model outputs.  Sensitivity analysis can further 

be classified as either local or global in nature. Local sensitivity analysis methods such as 

Differential Analysis (DA) [Hamby, 1994], Most Probable Point (MPP) [Kern et al., 

2003] and Response Surface Modeling (RSM) examine the uncertainty in model outputs 

with respect to small variations in model inputs [Frey and Patil, 2002]. These local SA 

methods have the limitation of being valid only for small regions of uncertainty. Global 

Sensitivity Analysis (GSA) takes into account the entire range of model inputs to 

determine the affect on overall model outputs. The methods proposed in this chapter fall 

into this global domain and thus will occupy the majority of our attention. In GSA, the 

portion of model output uncertainty attributed to a subset of uncertain input parameters is 

generally compared to the overall model output uncertainty considering all input 

parameters in order to quantify the parameter subset’s importance or sensitivity.  

Alternatively, SA methods can be classified as sampling based (Monte Carlo), 

analytical, or as interval analysis. Sampling methods are the most prolific with variance 

being the principle measure of uncertainty. They typically calculate total model output 
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uncertainty as a measure of comparison and then iteratively drop a parameter or “leave-

one-out” (fixed at the mean) from the comparison uncertainty calculation [Liu et al., 

2006]. Those parameters (when fixed) that create the greatest decrease in output 

uncertainty are considered the most important. Sampling methods with variance as a 

measure of uncertainty include (amongst others): pure Monte Carlo analysis [Helton, 

1993], [Helton and Davis, 2003], Fourier Amplitude Sensitivity Test (FAST) [Saltelli et 

al., 1999a], Analyis of Variance (ANOVA) [Chen et al., 2005] and Sobol’s Variance 

Decomposition or Index [Sobol 1993 and 2001], [Homma and Saltelli, 1996]. Less 

commonly, the relative entropy (difference between two probability distributions) has 

been considered as a measure of global uncertainty and implemented as a sampling 

technique though [Liu et al., 2006].  Although Bayesian based approaches have also been 

used in probabilistic sensitivity analysis approaches [Oakley and O'Hagan, 2004], the 

greatest drawbacks of these methods are computational cost, the availability of 

probability distributions and treatment of tail probabilities while the Monte Carlo based 

analyses are not always valid for SA approaches if prior distributions are not credible 

[Greenland, 2001]. As a major drawback of sampling methods, computational cost can be 

mitigated to some degree through the use of efficient sampling techniques such as Latin 

Hypercube Sampling [Helton and Davis, 2003]. The leave-one-out comparison 

implemented in these methods, however, may not reflect the real situation in engineering 

design or other domains where some types of uncertainty cannot be eliminated entirely, 

such as manufacturing tolerances or environmental conditions (e.g., temperature or 

alternating current voltage input). Rather some degree or “grayscale” version of the 

original uncertainty is considered to be a more appropriate characterization of uncertain 
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parameter importance. The reduction of uncertainty (assuming reducible) or a 

combination of several parameter uncertainties should become more attractive as a 

measure for improving the sensitivity of designed products than simply eliminating 

uncertainty.  

Analytical methods such as differential analysis and Fast Probability Integration (FPI) 

[Wu, 1987] are less prolific than the sampling based methods. When these methods are 

grouped with the post-optimality information from the ubiquitous Simplex Method 

[Saltelli et al., 1999b] and the less common duality approach for nonlinear problems 

[Balbas et al., 1999] a sizable fraction of SA methods emerge. These methods suffer from 

the fact that they are primarily local in nature (e.g., DA, simplex, and duality) and partial 

derivatives can be difficult to compute (e.g., FPI, DA, Duality). It should be noted that 

the Simplex approach is not strictly local as it gives a range over which the optimal 

solution is still valid or can be easily predicted from current solution but does not provide 

sensitivity beyond that range as a new optimization solution is necessary once the 

slackness has been exceeded.  

Difficulty in obtaining probability distributions for sparse data makes interval 

analysis attractive and applicable in early stages in engineering design for systems [Wu 

and Rao 2007], which assumes that a range (or interval) of uncertainty exists rather than a 

probability distribution for input parameters. Additionally, some feel that interval 

uncertainty better approximates uncertainty due to ignorance [Ferson and Ginzburg, 

1996], [Ferson, et al., 2004] as very little is assumed about the uncertain parameter. A 

comprehensive review of typical SA methods mentioned previously can be found in 

[Saltelli et al., 2000], [Helton and Davis, 2003].  
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It is the author’s belief that nearly all sensitivity analysis techniques can be extended 

to multiple outputs or objectives though it is far less common in the literature than single 

output [Barron and Schmidt, 1988]. Current multi-output design methods are generally 

local in nature. RSM-coefficients [Frey and Patil, 2002] and DA, for example, convert 

the multi-output problem to a single output problem. Avila et al., [2006] employ a local 

sensitivity method and examine dominated designs generated by a Multi-Objective 

Genetic Algorithm (MOGA) within an uncertain interval in design space. As an 

extension of differential analysis the Karush-Kuhn-Tucker’s optimality conditions have 

also been evaluated as sensitivity measures for a Pareto set of solutions [Balbas et al., 

2005], [Zhang, 2003]. These methods are limited by the fact the functions must be 

smooth, continuous in parameter variations and only applicable for small ranges of 

uncertainty. As a typical post optimality sensitivity analysis approach, it is more common 

to convert the multi-objective (or multi-output) problem to a single weighted output 

problem and then perform sensitivity analysis for a single solution point or design 

[Fiacco, 1983], [Barron and Schmidt, 1988]. FAST and the Sobol’s Index have been used 

to evaluate the weighting scheme used to generate the single output solution [Saltelli et 

al., 1999b]. Additionally, a response surface model in conjunction with sampling has 

been employed to evaluate sensitivity for multi-attribute decision problem converted to a 

single objective problem [Bauer et al., 1999]. As a whole the approaches to multi-output 

problems have focused on sensitivity for a single solution on a weighted objective or 

have been local in nature.   

There is impetus to conduct multi-objective GSA under the consideration of both a 

single design and multiple designs (i.e., a set of designs of interest which may or may not 
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be optimal). For instance, valuating all product designs (or a line of product designs) at 

once within the firm is a holistic approach and should produce fewer misaligned 

decisions. 

In this chapter, we present a global sensitivity analysis approach for multi-output 

(multi-objective or -attribute) problems. The radius of the Worst-Case Objective 

Sensitivity Region (WCOSR) discussed in Chapter 3 has been proposed here to measure 

the variation on the multi-objectives for a single or a set of designs (i.e., designs from a 

Pareto frontier of a multi-objective design optimization problem) when input parameters 

have different level interval uncertainties. A similar metric, Shannon entropy [Cover and 

Thomas, 1991] has been used to verify the WCOSR metric. As well, a reducible 

tolerance region (i.e., adjustable uncertainty range) is presented and used to measure the 

variable ranges of uncertainty in input parameters. A two-objective optimization problem 

is formed to demonstrate the trade-off between reducing variation in the multiple outputs 

and the extra effort or investment used in reducing uncertainty in input parameters. The 

results of this two-objective optimization problem can provide the Decision Maker 

multiple choices for which uncertainties and whose uncertainty ranges to investigate or 

evaluate for investment.  That is, it can be determined as to which sources of uncertainty 

should be eliminated or reduced from the model inputs in order to achieve the acceptable 

variations in the model outputs. Compared to typical SA methods, all obtained choices 

and the identification of importance can be used with respect to a family of designs under 

evaluation in the early design stages of a product cycle. Two engineering design 

examples with interval uncertainties are used to demonstrate the applicability of the 

proposed approach.  
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Details of the proposed SA approach with two metrics are presented in Section 5.2. 

Two engineering design problems and corresponding results are given in Section 5.3 to 

illustrate the applicability of the proposed approach. Concluding remarks are presented in 

Section 5.4. 

This chapter was also presented in Li et al., [2007c]. 

5.2 UNCERTAINTY REDUCTION 

After the set of (usually the Pareto set of) designs are known, we wish to minimize 

output uncertainty as a result of parameter variations due to uncertainty, as well as the 

investment in uncertainty reduction (assuming it is reducible). We first describe the 

measure for uncertainty reduction for the input parameters. Then, we describe the 

proposed SA approach starting with the first metric on the model outputs: the radius of 

the Objective Sensitivity Region (OSR), followed by another: Shannon entropy [Shannon, 

1948], [Cover and Thomas, 1991]. We calculate these two metrics by varying uncertain 

parameters rather than by optimizing design variables. A two-objective optimization 

problem is formulated for the proposed SA approach.  

5.2.1 Uncertainty Reduction in the Parameter Space 

One of the reasons that SA is gaining interest is that designers and managers typically 

wish to know which uncertain parameter(s) should have their uncertainty reduced or 

totally eliminated to bring about significant variation reduction in model outputs. Extra 

but limited “investment” or “resource” (i.e., cost of new materials, conducting surveys, 

new methods, new manufacturing machines, etc.) must be allocated wisely and used 

efficiently to reduce the uncertainty in the most critical parameters so that the substantial 
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variation reduction in the multiple model outputs can be achieved. SA should provide this 

type of information to DMs. 

Recall (in Section 2.4) that the Retained Tolerance Region (RTR) in p-space is the 

grayscale of an original tolerance region �p, defined as the inner product of the PURI and 

the original tolerance region: αααα��p = (α1�p1, α2�p2,…, αK�pK). Essentially, RTR can 

represent any symmetric hyper-rectangle inside the original tolerance region, as shown in 

Figure 2.6. 

For a particular design x0 = (x0,1,…,x0,N) the nominal values of the objective 

functions are f(x0, p0) = (f1(x0, p0),…,fM(x0, p0)), and the nominal values of the constraint 

functions are g(x0, p0) = (g1(x0, p0),…, gL(x0, p0)). We consider here objective function 

variations and constraint function variations of x0 caused by parameter variations αααα��p 

within the RTR, as in Eq. (5.1): 
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Regardless of which type of uncertainty is under investigation we can map instances of 

parameter variations for the entire Pareto (or a set of) designs and consider the effect on 

all designs in a multi-objective sense. Figure 5.1 is an example of this mapping for a two-

parameter two-objective function problem.   
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Figure 5.1 Variation in objective space due to uncertainty in parameters 

Notice that in Figure 5.1 the parameter range on the left can map differently to each 

of the designs represented in objective space on the right. That is, the uncertainty can 

affect each design differently. 

As mentioned in Section 2.4, the PURI vector α α α α is used to define RTR in the 

parameter space, thus it defines the retained amount of uncertainty in the input 

parameters. Accordingly, the quantities �
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represent unit-less uncertainty and could be used as a metric of the amount of uncertainty. 

However, in this dissertation, we would like to provide a metric to measure the 

investment put into reducing the uncertainty. That is, the DM wants to put as little 

resource as possible for a given RTR. So, after normalization the following two metrics 

Perimeter Reduction Metric (PRM) and Volume Reduction Metric (VRM) together are 

used as a relative measure of the investment as shown in Eq. (5.2):  
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If αk = 1 for k = 1,…,K, PRM and VRM go to zero, which means no extra resource 

needed to reduce the input uncertainty. On the contrary, if αk = 0 for k = 1,…,K, then 

both PRM and VRM are equal to 1, meaning the maximum possible effort needed to 

eliminate all uncertainty in parameters. We define the weighted sum of these two metrics 

as the Investment, which correlates positively with the amount of investment or resource 

used for reducing uncertainty, as shown in Eq. (5.3): 

MRVPRMInvestment 21 θθ +=      (5.3) 

The � value can be selected and aligned according to the DM’s preferences. In this 

dissertation, we use �1 = �2 = 0.5 which means that both the volume and perimeter metrics 

have equal weights according to the DM’s preferences.  

In the engineering design, the DM would like to use as little resource as possible to 

reduce the uncertainty in the input parameters, but also to reduce the variation in the 

objectives as much as possible.  So next we will provide two metrics in objective function 

space (or multi-output space) to measure the variation in objectives for a multitude of 

candidate designs under investigation early in the product design stage.  

5.2.2 Objective Sensitivity Region in the Objective Space  

In this section, we will develop an uncertainty metric based on the concept of the 

OSR developed in Chapter 3 and describe this metric in terms of variation in the 

objective space. For simplicity, we consider the output space as the same as the multi-

objective space of the optimization problem in Eq. (2.1).  
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The previous proposed formulation in Chapter 3, termed as a performance robust 

optimization approach, is based on the concept that the known tolerance region of 

parameters with uncertainty can be mapped to f-space to form an Objective Sensitivity 

Region (OSR), as shown in Figure 5.2. In this dissertation, for any RTR, αααα��p, we could 

map it into the objective space to obtain the corresponding Reduced-OSR, ROSR. Based 

on that, Rf, considered as a radius of the ROSR (vector in Figure 5.2) for design xn, is the 

possible largest deviation of the objective values from the nominal. Basically, Rf (αααα) 

represents how far the deviation of multiple objectives can be from xn nominal in the 

objective space due to a corresponding αααα��p. Given Nnp nominal Pareto designs xn, 

n=1,…, Nnp, the average Rf of the family of Pareto solutions for any α α α α can be calculated 

by an optimization problem as shown in Eq. (5.4); (Nnp is the number of designs under 

consideration). In Eq. (5.4), for each design xn, its objective variation is normalized by its 

own nominal objective values. The obtained Rf for any α α α α is thus represented as a 

percentage of Pareto solutions’ nominal objective values. Notice in this chapter we use 

||�||2 distance metric instead of using ||�||� because there is no requirement to compare the 

WCOSR (hyper-sphere in this chapter) with the normalized AOVR (a hyper-cube) as in 

Chapter 3.      
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Figure 5.2 Mapping from a RTR to ROSRs with Rf 

Figure 5.2 is an example of how parameter uncertainty is mapped to the ROSRs in the 

objective space. The effect of varying αααα and therefore the RTR to reduce the Rf and the 

ROSR is shown in Figure 5.3. It is also demonstrated in Figure 5.3 how two relatively 

similar volume sized RTRs can have very different Rf given that one parameter may be 

more important than the other. Clearly, given equal investment for combination A and B 

(Figure 5.3) the DM would prefer to invest in combination A as the Rf for the ROSR in A 

is smaller. This is the basis of comparison for candidate investment levels. 
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Figure 5.3 Varying parameter combinations 
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5.2.3 Shannon Entropy in the Objective Space  

Claude Shannon [Shannon, 1948] established entropy as a measure of uncertainty 

associated with a random number or equivalently information content in a piece of data 

communicated across a transmission medium. Numerous applications and extensions 

have been developed for Shannon entropy in a variety of fields but entropy has rarely 

been applied as a sensitivity measure for system design [Liu et al., 2006]. In multi-

objective design, entropy has been used to guide optimization [Gunawan et al., 2004], to 

assess the quality of Pareto solutions [Farhang-Mehr and Azarm, 2003] and to obtain the 

optimal weight coefficients in the weighted sum method [Barron and Schmidt, 1988]. In 

this section we extend the approach to measuring quality of a set of Pareto designs from 

Farhang-Mehr and Azarm [2003], to address parameter sensitivity for multiple objectives. 

Next we first define Shannon entropy and then show how this measure can be extended 

and used in a multi-objective space to quantify the level of uncertainty for Pareto designs. 

Entropy in the objective space 

For a discrete distribution of i=1,…, E possible events, the Shannon entropy measure 

H is defined in terms of the probability of the i-th event Pi, as shown in Eq. (5.5): 

[ ] 0,1,,...,..., and )(log
1

12
1

≥==−= ��
==

i

E

i
iEii

E

i
i PPPPP	PPH   (5.5) 

Events that we know will happen with complete certainty result in Shannon entropy of 

zero. The measure increases as the number of possible events becomes greater. Less 

obviously the measure is maximized for n possible events when the probability of each 

event Pi is equal to 1/E. 

We translate this notion of uncertainty based on events and event probabilities to 

varying design performance (objective space) realizations in the calculation of 
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uncertainty. That is when instances of parameters cause a design’s performance to vary 

significantly, additional performance instances or events are generated which contribute 

to increased entropy. To find the entropy of a design(s) under uncertainty in a multi-

objective space we must first define how great the objective function difference must be 

to be considered a change in performance. This has been called an indifference band or 

indifference region [Farhang-Mehr and Azarm, 2003]. Essentially, we define an 

indifference tolerance region in terms of the DM’s indifference between objective 

realizations. The indifference band width I = (I1,…,IM) for objective functions 

f = (f1,…,fM) defines a hyper-cube,  D=(D1,…,DM), D∈���� .  The upper limit 

Du=( uD1 ,…, u
MD ), Du ∈����  and lower limit Dl=( lD1 ,…, l

MD ), Dl ∈����  of the hyper-cube 

are defined through an entry-wise or via the inner product as shown in Eq. (5.6): �
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It is also useful to define the largest number of hyper-cubes that will be considered along 

each dimension.  Let f max
 be the largest value of the objective region and   f min

 be the 

minimum value.  The total number of grids G along each dimension is shown in Eq. (5.7):  
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As an example, consider a two objective problem of f1 and f2 with indifference bands 

I1 and I2, respectively. The indifference hyper-cube Da,b : a=1,2,…,G1, b=1,2,…,G2 with 

upper and lower limits uD ba ,
, lD ba ,  are shown in Figure 5.4.    
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Figure 5.4 Indifference hyper-cube  

The meaning of this indifference hyper-cube D is that any objective space realization 

that falls within this hyper-cube is essentially indistinguishable for the DM. As an 

example, consider a precision tuned stock race car that has a nominal peak horsepower of 

550 bhp where race results can be affected by a small dip in horsepower (3 bhp 

indifference band) below the design level. If uncertainty in valve timing produces 

horsepower results ranging from 549.9 to 550.1 bhp it is unlikely that the DM will 

register significant concern but rather would be indifferent to the uncertainty surrounding 

the valve timing.  A greater change in horsepower from the nominal (say as little as 5 bhp) 

may be enough of a difference to cause concern for the DM to investigate the uncertain 

parameter.  

In terms of entropy, when an objective space realization (e.g., 544 bhp in the example) 

falls outside of the indifference band around the nominal objective realization, a new 

“event” or objective space realization i is possible in Eq. (5.5). Much like Rf, we calculate 

entropy in the objective space for the entire Pareto set of designs. Here we are concerned 

with what happens after the set of (usually the Pareto set) designs are known and wish to 

minimize entropy as a result of parameter variation which we call Multi-objective 

Entropy Performance (MEP).    
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In the calculation of MEP for the Pareto set of designs, first a retained tolerance 

region is dictated in parameter space by αααα��p and realizations are sampled (see the next 

subsection) and mapped to objective function space as in Figure 5.1. Unlike the Rf 

approach presented previously we must sample throughout the tolerance region for MEP 

and consider realizations in objective space as they can contribute to entropy. MEP is 

found numerically by counting the number of sampled objective space realizations within 

any indifference hyper-cube D. Consider two Pareto design points with tolerance region 

and parameter naïve sampling approach shown in Figure 5.5: 

f1

f2

f1

f2

p1

p2

f1

f2

Design 1

Design 2

Design 1 and 2

Nominal 
Parameter Level

Parameter Samples Design 1 objective 
realizations

Design 2 objective 
realizations  

Figure 5.5 Parameter realizations in objective space for multiple designs 

To calculate the entropy for these designs under the assumed level of uncertainty we 

overlay the indifference grid D in objective space and calculate the Shannon entropy by 

summing the number of design realizations )~(
~ p,xff n=  in each grid D, where xn 

indicates any (Pareto optimal) design and p~ indicates a parameter sample.  This can be 

described algorithmically in the following way: 

(1) For any D count the number of f~  where ul DfD ≤≤ ~ for all dimensions, M. This 

establishes the vector C which corresponds to each grid D. ( )DfC in
~

count=  
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(2) Calculate the probability of event or realization D where Ns is the number of samples 

for each xn of Nnp Pareto design(s):
NsN

P
np ⋅

= CD)( .  The probability of a grid D 

realization is then the number of f~  that falls within the grid (i.e., C) divided by the 

total number of sampled points: NsN np ⋅ .  If there is only one design is of interest, 

Nnp=1. 

(3) The Shannon entropy for all of the objective space realizations f~  is fairly simple to 

calculate once P is known. The entropy is calculated, as shown in Eq. (5.8), summed 

for each grid up to G and results in MEP as we are considering multiple objectives 

and design(s):  

( ) ( )( )� ��−=
1 2

1 1
2

1

log...
G GG M

PPMEP DD     (5.8) 

The unit of MEP is the unit of Shannon entropy, the bit. By virtue of the fact that two 

or more f~  occupy any D the uncertainty is reduced as this provides greater information 

about possible design realizations.   

Sampling in MEP 

As mentioned previously, to compute MEP we must sample in the parameter space 

and map these samples to the objective space. An appropriate approach should capture 

the maximum amount of uncertainty possible in parameter space and require no more 

samples than necessary to estimate this maximum. Since no knowledge of objective 

response is assumed we chose an approach that maximizes the entropy in the input 

parameters and is augmentable so that samples can be added one by one until a maximum 

entropy is reached in the parameter space [Shewry and Wynn, 1987]. The approach 
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selected is Maximum Entropy Design and has been used to develop adaptive metamodels 

for computationally expensive simulations [Shewry and Wynn, 1987]. 

5.2.4 Uncertainty Reduction Optimization 

Based on the two metrics in the objective space, Rf and MEP, and the Investment 

metric in parameter space for uncertainty, we form our sensitivity analysis approach as a 

two-objective optimization problem. Clearly one objective is to minimize Investment in 

Eq. (5.3), which represents the inverse of uncertainty in the parameter space (recall 

Section 3.1); another one is to minimize either the Rf in Eq. (5.4) (recall Section 5.2.2) or 

the MEP in Eq. (5.8) (recall Section 5.2.3), meaning to minimize the uncertainty in the 

objective space. The conflict between these two objectives reflects the situation that the 

DM always would like to save investment on uncertainty reduction but simultaneously 

reduce as much variation as possible in objective realizations. The variables of this 

optimization problem are the PURI vector αααα.   

Given nominal (Pareto) designs of any design problem and the original tolerance 

region, we find the optimal PURI vector αααα values that can minimize Investment and 

simultaneously minimize Rf or MEP, as shown in Eq. (5.9). Since there are trade-offs 

between these two objectives, it is expected that we will obtain a set of αααα solutions in a 

Pareto sense. DM can then choose one of them according to his/her preferences. This 

problem is formulated as in Eq. (5.9): 
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                  hypercube ceIndifferen =D  

 In Eq. (5.9), the Rf value has been normalized by nominal objective values of optimal 

designs. The calculation of Rf only depends on the optimizer used to find its global 

maximum value, while the value of MEP depends on the sampling in the parameter space 

as well as the indifference hyper-cube used in the objective space. One should notice that 

according to their definitions, Rf and MEP focus on the different perspectives of the 

objective variation f~ . Rf defines the distance from the nominal to the farthest f~ in the 

worst case scenario. It captures the worst-case distance. Meanwhile, MEP focuses on the 

diversity of the objective variation. If f~  has been realized evenly and diverse in the 

objective space, MEP will increase by its definition. That is MEP depends on the 

samplings of f~  realizations while Rf does not. For instance, two αααα solutions are shown in 

Figure 5.6. Obviously in this case, Rf (ααααΙ) < Rf (ααααΙΙ); MEP (ααααΙ) > MEP (ααααΙΙ), though, given 
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the current f~  realizations. The DM may choose the Rf metric if the worst-case scenario 

of the objective variation is of interest. On the contrary, one may consider the MEP an 

appropriate choice if the indifference hyper-cubes selected are credible and the diversity 

of the variation in objective functions is more important to the DM.  

 

f2 ααααI

f1

f2 ααααII

f1  

Figure 5.6 Preference for two αααα solutions ααααΙΙΙΙ    and ααααΙΙΙΙΙΙΙΙ 

Figure 5.7 is an example of the trade-off between investment and uncertainty 

reduction. If unlimited resources and uncertainty reduction potential is high (i.e., all 

uncertainty is reducible) the DM might set all αk, k = 1,…,K, to zero as shown. In this 

case the solution to the original problem is essentially deterministic. At the other extreme, 

all αk, k = 1,…,K, are set to one by the DM when uncertainty is irreducible due to 

investment restrictions or irreducible by virtue of the nature of the uncertain parameter.  

In reality, it is likely that some investment capability exists through additional 

investigations or effort and that not all uncertainty is reducible which yields any one of 

the RTRs (which fall inside the original tolerance region) shown in Figure 5.7 depending 

on the DM’s preference.  
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Figure 5.7 Investment vs. uncertainty metric 

In the next section, we will use two engineering design examples to demonstrate the 

applicability of this sensitivity analysis and the meaning of obtained solutions.  

5.3 EXAMPLES AND RESULTS 

In this section, two engineering examples described in Chapter 3 are used to 

demonstrate the applicability of the proposed SA and uncertainty reduction approach. 

Two proposed uncertainty metrics in the objective space, Rf and MEP, are applied with 

the Investment metric of uncertainty in the parameter space.  

5.3.1 Design of a Vibrating Platform 

The first example is to design a vibrating platform [Narayanan and Azarm 1999], 

described in Section 3.6.2 and shown in Figure 3.10. The two-objective constrained 

optimization problem shown in Eq. (3.13) is shown here again as in Eq. (5.10) and the 

MOGA is used to obtain the nominal optimal solutions in the deterministic case.   
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The parameter variations are known to be (�ρA,0, �cA,0) = (10 kg/m3, 50 $/m3); 10% 

of the nominal ρA and cA values. First, we obtain the nominal Pareto solutions of Eq. 

(5.10), as shown in Figure 5.8 (shown as a min-min plot by taking the negative of the 

frequency). 
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Figure 5.8 Nominal Pareto solutions of vibrating platforms for Eq. (5.10) 

Then we use a MOGA to obtain the Pareto αααα solutions of Eq. (5.9) using Investment 

vs. Rf as two objective functions, as shown in Figure 5.9(a) and (b). In Figure 5.9(a), the 

α α α α solutions of Eq. (5.9) using Investment vs. Rf, with respect to a single design are shown, 

i.e., [t1, t2, t3, w, L] = [0.20, 0.22, 0.22, 0.35, 3.02] with material types: {A, C, B}, starting 
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from the inner layer outward. With four typical αααα solutions shown in Figure 5.9(b), we 

minimize Investment and Rf simultaneously with respect to Nnp =35 Pareto vibrating 

platform designs as shown in Figure 5.8. Since the solutions in Figure 5.9(a) and (b) are 

similar, we will focus on the solutions for the set of designs (e.g., solutions in Figure 

5.9(b)) in the following discussion.  

With increasing Investment (i.e. decreasing of the RTR), Rf value (i.e. the variation in 

objective values) becomes smaller. For instance, Rf value for ααααI is near to the zero which 

means the problem is converging to a deterministic case and the investigations eliminate 

a significant amount of uncertainty in parameters at significant cost. On the contrary, 

uncertainty for the extreme case, ααααIV, remains irreducible due to limited investment. 

Between the extreme points, ααααII and ααααIII provide grayscale solutions for additional 

investment, depending on the DM’s preference. With the combination of the reduction in 

both parameter ρA (82.7% of original retained) and cA (33.2% of original retained), the 

variation in objective functions for ααααII is reduced to approximate 3% of the nominal 

objective values of the Pareto set of designs, compare to variation for 9% of the objective 

values for almost full uncertainty case ααααIV.  
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(a) For a single Pareto design 
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(b) For 35 Pareto designs 

Figure 5.9 Obtained solutions for Investment vs. Rf with respect to (a) a single Pareto 

design and (b) 35 Pareto designs 

It also can be noticed from these four typical αααα    solutions that more uncertainty 

reduction is possible through parameter cA than ρA. This indicates that cA is the more 

important parameter but a more in depth analysis is warranted. In order to answer the 

classical SA question, identifying the relative importance of uncertainty parameters, we 
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use the correlation plot figures of α1, α2, Investment and Rf for all Pareto αααα solutions in 

Figure 5.9(b), as shown in Figure 5.10. Figure 5.10(f) also corresponds to the Pareto of Rf 

and Investment levels shown in Figure 5.9(b). The near-to-linear shape indicates that 

increasing Investment in parameters space can linearly reduce the uncertainty in the 

objective values (measured by Rf). Figure 5.10(a) shows the relation between α1 and α2 

which correspond to parameters ρA and cA respectively. The figure includes all values of 

the Pareto αααα solutions. While α1 values are clustered into two sections [0.25, 0.4] and 

[0.8, 1], α2 values scatter on the entire range from 0 to 1. In this regard, at least some 

ranges of α1 did not make a contribution to the uncertainty reduction in objective values. 

On the contrary, all different levels of α2 values made the contribution in the optimal αααα 

solutions. This conclusion is strengthened by the fact that there is not a clear correlation 

relation between α1 and Rf or between α1 and Investment, as shown in Figure 5.10(b) or 

Figure 5.10(d). Figure 5.10(c) shows the strong correlation (near to linear) between α2 

and Rf which indicates that α2 is relatively more important than α1 with respect to the 

effect on the uncertainty reduction in Rf. That is, the reduction in uncertainty for the 

second parameter, in this example, cA could bring more benefit in the variation reduction 

in the objective space for all optimal vibrating platform designs to the DM. Figure 5.10(e) 

confirmed the major contribution of α2 in the uncertainty reduction in this example. 
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Figure 5.10 Plots of correlations among αααα, Rf and Investment 

To verify the observation of the uncertainty reduction approach using the metric Rf, 

we use the same MOGA (all the settings of the optimizer are the same) to obtain the 

optimal αααα    solutions of Eq. (5.9) using Investment vs. MEP, as shown in Figure 5.11(a), 

for the same single design and Figure 5.11(b) for the same 35 vibrating platform designs. 

The size of the indifference hyper-cube (in this two-dimensional example, indifference 

rectangle) is 10Hz for frequency and $5 for the cost. We use the sampling method 

discussed in Section 5.2.3 for MED. The solutions shown in Figure 5.11(a) and (b) are 

more different than those of using Investment and Rf. The possible reason behind might 

be more Pareto designs can provide more information in the objective function space, 

which helps determine the entropy more accurately.  
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(a) For a single Pareto design 
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(b) For 35 Pareto designs  

Figure 5.11 Obtained solutions for Investment vs. MEP with respect to (a) a single 

Pareto design and (b) 35 Pareto designs 

Again, four typical αααα    solutions are selected in Figure 5.11(b). From ααααΙ    to ααααΙV, with 

more increasing in retained cA, the MEP value is going up, which confirms the 

conclusion that reducing cA will bring the largest gain in the uncertainty reduction in the 

objective functions. It can be observed that the Pareto frontier shape in Figure 5.11, 

Investment vs. MEP, is different with its counterpart in Figure 5.9, which demonstrates 
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the different properties of the two metrics, Rf and MEP in the objective space. That is, 

while MEP focuses on the diversity of the objective value variation, Rf is capturing the 

worst-case scenario in the variation of the objective value. This observation for two 

metrics in the objective space mutually verifies the applicability of the proposed SA 

approach.  

As mentioned in the previous section, the value of MEP depends on the indifference 

hyper-cube determined according to the preference of the DM. Different indifference 

hyper-cubes can generate different results in MEP. To demonstrate this effect, the size of 

the indifference hyper-cube is changed to 10Hz for frequency and $10 for the cost. The 

same Nnp = 35 optimal vibrating platform designs in Figure 5.8 are used again. The 

obtained optimal αααα    solutions for this setting are shown in Figure 5.12.  
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Figure 5.12 Solutions for different indifference hyper-cube, Investment vs. MEP  

In Figure 5.12, the MEP values for indifferent $10 are smaller than the results for 

indifferent $5. This is because when indifferent cost is changed from $5 to $10, the 

indifference hyper-cube in the objective space becomes larger. Then for the same 

)~(
~ p,xff n= realizations for Pareto designs, the number of different events is reduced. 
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Thus, when the number of indifference hyper-cubes is reduced, the value of MEP 

becomes smaller.  

To verify the correlation among all αααα solutions with Investment and MEP, we plot the 

correlation plot figures of α1, α2, Investment and MEP for all optimal αααα solutions, as 

shown in Figure 5.13. The same observation as from Figure 5.10 is concluded namely 

that α2 is relatively more important than α1 with respect to the effect on the uncertainty 

reduction in MEP (Figure 5.13(a), (c) and (e)).  While α2 values scatter on the entire 

range from 0 to 1, most α1 values are clustered in [0.8, 1] (Figure 5.13(b)).  Figure 5.13(c) 

shows the positive correlation between α2 and MEP. It has been observed that the relative 

importance of αααα remain the same as the indifference cost values are changed.  
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(a)

(b) (c)

(d) (e) (f)  

Figure 5.13 Plots of correlations among αααα, MEP and Investment 

5.3.2 Design of a Grinder 

The second example is the design problem of an angle grinder [Williams et al., 2006] 

described in Section 3.6.4. The design variable, objective and constraint functions are 

defined from Table 3.2 to Table 3.6. 
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As a demonstration of this case study, four design variables or parameters have 

uncontrollable uncertainty, represented by intervals. The standard alternating current 

voltage V , stator outer radius Ro, stack length L, and the coefficient in the cost function 

β2, (�V, �Ro, �L, �p) = (5v, 3%Ro, 3%L, 0.02); 3%Ro and 3%L mean 3% of the nominal 

Ro and L values.  
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Figure 5.14 Nominal Pareto grinder designs, Nnp= 40 

First we obtain the nominal optimal grinder designs as shown in Figure 5.14, with 

Nnp= 40. Then we obtain the optimal αααα solutions of Eq. (5.9) for Investment vs. Rf first, as 

shown in Figure 5.15 with three typical αααα solutions.   
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Figure 5.15 Obtained optimal α α α α solutions, Investment vs. Rf  
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Similar to the vibrating platform design example, the Rf (i.e., the variation in the 

objective values) is decreasing with the increasing of Investment.  As shown in Table 5.1, 

ααααIII = [0.986 0.943 0.997 0.982] gives almost (98.6% of �V, 94.3% of �Ro, 99.7% of �L, 

and 98.2% of �p) the original tolerance region, which represents the possible maximum 

uncertainty in the input parameters. Rf (ααααIII) is approximate 10% of the nominal objective 

values, which is almost the biggest variation in the objective space. When the original 

tolerance region is reduced to ααααII = [0.971 0.379 0.882 0.498] (which represents 97.1% of 

�V, 37.9% of �Ro, 88.2% of �L, and 49.8% of �p), Rf (ααααII) is reduced to 5.1% of the 

nominal objective values. If the RTR is further reduced to the point ααααI (= [0.750 0.009 

0.171 0.051]), Rf (ααααI) is only about 0.5% of the nominal objective values, which is near to 

the deterministic case. Clearly, as Investment values are increasing in this procedure, we 

eliminate the amount of uncertainty in input parameters and objectives, as shown in 

Figure 5.15.  

Table 5.1 Typical α α α α solutions, Investment vs. Rf  

 �V �Ro �L �p Rf (% of nominal ) Investment 
αI 75.0% 0.9% 17.1% 5.1% 0.5% 87.7% 
αII 97.1% 37.9% 88.2% 49.8% 5.1% 57.8% 
αIII 98.6% 94.3% 99.7% 98.2% 9.9%   5.6% 

Different combinations of α α α α values in Figure 5.15 provide grayscale solutions for 

additional investment, depending on the DM’s preference. Similar conclusions can be 

made according to the metric Investment vs. MEP, as the Pareto shown in Figure 5.16. 

Three typical α α α α values are shown in the Table 5.2. 
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Figure 5.16 Obtained optimal α α α α solutions, Investment vs. MEP             

Table 5.2 Typical α α α α solutions, Investment vs. MEP  

 �V �Ro �L �p MEP (bits) Investment 
ααααI 99.0% 1.3% 14.4% 1.5% 4.2 85.5% 
ααααII 99.4% 31.5% 90.9% 47.0% 5.0 59.7% 
ααααIII 99.7% 99.2% 97.1% 97.2% 5.4   4.2% 

Again, to determine the relative importance of these four input parameters, we plot 

the correlation figure of αααα, Rf, and Investment, in Figure 5.17and αααα, MEP, and Investment 

in Figure 5.18. α1, α2, α3, and α4 are the elements of the PURI factor corresponding to 

�V, �Ro, �L, and �p, respectively.  

As shown in Figure 5.17, it is not necessary to reduce α1        values (investment in �V) as 

most correlation values are clustered in [0.9, 1]. That is reducing �V will not benefit the 

variation reduction in the objective values. α1 is not important in uncertainty reduction. 

α2 has a relative strong correlation to Rf and Investment, which is the most important one 

for uncertainty reduction in this example, compared to α3 and α4. α3 and α4 also show 

similar correlations to the Rf and Investment, but not as strong as that of α2.  
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Figure 5.17 Plots of correlations among αααα, Rf, and Investment 
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Figure 5.18 Plots of correlations among αααα, MEP and Investment 

A similar observation can also be found in Figure 5.18. Similar to the Rf metric, α1 is 

still the least important one in uncertainty reduction, all of which are in [0.87, 1]. 

However, α2 and α4 now have the comparable correlations to the MEP and Investment. 
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Both of them are comparably important in the uncertainty reduction. α3 is in the middle 

rank as the importance order, similar to the Rf metric. This observation confirmed that 

both Rf and MEP are similar and can be used to measure the uncertainty in the objective 

space; though they focus on the different perspectives in the objective uncertainty and 

may generated similar but different results.   

5.4 SUMMARY 

A new global SA and uncertainty reduction method is proposed for the design 

problems with multiple objectives and intervals of uncertainty in this chapter. The 

proposed method in this chapter quantifies uncertainty as it affects the decision space in 

the earliest stages of decision making (e.g., for a set of Pareto designs under 

consideration for future development) but is equally amenable to the more typical 

analysis of one candidate design. A two objective optimization is formed to find the 

Pareto solutions that can provide the answer to the question: Which combination of input 

parameters should be selected for uncertainty reduction to gain the largest improvement 

in performance. As expected, different grayscales of the retained tolerance regions, 

instead of leave-one-out, can be selected according to the DM’s preference to satisfy the 

desired variation reduction in the objective values.  

The proposed method identifies the uncertainty parameters whose reduction or 

elimination will produce the largest payoffs in uncertainty reduction for any given 

investment. The method demonstrates correlations between the metric for retained 

uncertainty in input parameters and the metrics for the uncertainty in objective values. 

Investment, proposed as a metric for the uncertainty in input parameters, determines the 

retained tolerance regions of parameter by quantifying the grayscale factor PURI  α α α α and 



 132 

appears to provide significant additional information about uncertainties relative to the 

traditional leave-on-out methods.  Two metrics of uncertainty in objective values, Rf and 

MEP, developed from the robustness index from robust optimization approach and 

Shannon entropy respectively, are proposed and compared in this chapter and provide 

similar results with slightly difference emphasis. While they both measure uncertainty in 

objective values, by definition, Rf defines the worst-case deviation of the objective 

variation from the nominal and MEP more focuses on the diversity of possible resulting 

design performance. The conflict between the Investment and Rf or MEP reflects the 

situation that DM would likely face which is to use as little investment as possible or 

conduct as few investigations as possible to achieve maximum affect in uncertainty 

reduction of objectives. 

In Rf, no probability distribution functions of input parameters are necessary and no 

sampling strategies are used. An inner optimization problem is used to find Rf. For MEP 

an appropriate sampling method that can capture the maximum amount of uncertainty 

possible in parameter space and require no more samples than necessary to estimate the 

maximum Entropy is applied. Additionally, for MEP a DM needs to specify the 

indifferent value for objective (or attribute) values, which affect the obtained optimal 

MEP values.  

Two engineering examples of different difficulty have been applied to demonstrate 

the applicability of the proposed method. Similar uncertainty reduction results are 

observed. The most critical uncertainty resources are identified and relative importance of 

input parameters is concluded from the correlations among the PURI factors and metrics 
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in parameter/objective space. Different combinations of PURI factors are selected to meet 

the requirement on the objective variations.   

In this chapter, the computational time used for the examples is similar to, but less 

than the computation time for robust optimization in Chapter 3, using the same computer 

platform discussed in Section 3.7. It usually takes about 1~2 or 10~15 hours for SA 

performed with respect to one design or multiple designs, respectively, for both Rf and 

MEP measures.   

Next chapter will present a metamodel assisted MOGA approach. 



 134 

CHAPTER 6: METAMODEL ASSISTED MULTI-OBJECTIVE 

GENETIC ALGORITHM 

6.1 INTRODUCTION 

High computational cost of population-based optimization approaches, such as Multi-

Objective Genetic Algorithms (MOGAs) [Deb, 2001] or GAs, significantly limits 

applicability of these approaches for the solution of real-world engineering optimization 

problems. Researchers have been developing models and methods that improve the 

efficiency of GAs in terms of the number of simulation (or function) calls. A common 

strategy to reduce the computational effort of GAs and other optimization methods when 

integrated with a computationally intensive simulation is to use metamodeling. For such a 

strategy, there are several types of approaches. The first type is based on fitness 

approximations in which a metamodel can be constructed based on neural network 

[Farina, 2001 and 2002], response surface [Lian and Liou, 2004], kriging [Chung and 

Alonso, 2004], [Li et al., 2007b], or radial basis function [Fang et al., 2004] methods. A 

comprehensive review of fitness approximation can be found in [Jin, 2005]. The second 

type of approaches is fitness inheritance models [Chen et al., 2002], [Smith et al., 1995], 

in which the fitness of an offspring is inherited from its parents. The last type of 

approaches is based on using metamodeling to guide the search in the design space 

[Rasheed et al., 2005], [Shan and Wang, 2005], i.e., reproduction of individuals using 

metamodeling in addition to conventional GA operations. More detailed review of 

metamodeling approaches can be found in the literature [Simpson et al., 2001], [Simpson 

et al., 2004] and [Wang and Shan, 2007]. Unfortunately, all of the aforementioned 

methods heavily depend upon the accuracy of the metamodel used over the entire design 
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space or some specific neighborhood. Among the above mentioned approaches, the 

fitness approximation approach is reported to be among the most efficient [Jin, 2005].  

The fitness approximation methods are of two types: off-line (non-adaptive) and on-

line (adaptive). In off-line approaches, metamodels are developed separately and prior to 

the start of an optimization algorithm [Papadrakakis et al., 2001], [Wilson et al, 2001], 

[Koch et al., 2002], [Lian and Liou, 2004], [Chung and Alonso, 2004] and [Fang et al., 

2004]. The shortcomings of the off-line methods is that they are difficult to obtain both a 

good fidelity metamodel over the entire design space and at the same time maintain a low 

number of simulation calls [Simpson et al., 2001], [Wilson et al, 2001]. The on-line 

approaches use a combination of metamodels with the simulation model during the 

optimization procedure while adaptively improving the metamodel [Nair and Keane, 

1998], [Farina, 2001 and 2002], [Jin et al., 2001 and 2002], [Nain and Deb, 2003], [Li et 

al., 2007b]. Most of the on-line methods developed so far are focused on single-objective 

optimization. The research on how to embed metamodels within MOGAs remains on 

studied [Farina, 2001 and 2002], [Nain and Deb, 2003], [Li et al., 2007b].  

In on-line approaches [Farina, 2001 and 2002], [Jin et al., 2001 and 2002], [Nain and 

Deb, 2003], rough metamodels are constructed in the initial stages of the GA. These 

metamodels are then gradually improved as more simulation data become available. Most 

of this type of approaches utilize neural network, which is known to require a large 

number of simulation calls [Simpson et al., 2001]. Another unresolved issue in the 

current adaptive methods is how to objectively decide when to switch to the metamodel 

instead of using the simulation during the optimization [Jin et al., 2001 and 2002], [Jin, 

2005]. Usually the switching between the actual simulation model and the corresponding 
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metamodel is subjectively decided [Nain and Deb, 2003]. Moreover, the fidelity of the 

metamodel may vary significantly during the optimization process and this can cause 

oscillation [Jin, 2005]. Li et al., [2007b], developed a Kriging assisted MOGA (K-

MOGA) approach in which adaptive metamodels are embedded within the genetic 

algorithm for fitness estimation and an objective criterion was used to determine whether 

the metamodel can be accepted as a substitute to a simulation model. However, the 

criterion used in [Li et al., 2007b] was devised for a worst case scenario as the distance 

between two sets, which still can be improved to increase the efficiency of the algorithm.   

In this chapter a new and more effective criterion is used for deciding whether the 

simulation or its metamodel substitute should be used. This objective criterion is 

developed based on a measure of uncertainty in the prediction from the metamodels, 

which follows the idea of the worst-case estimation of the objective sensitivity region and 

the robustness index described in Chapter 3. The criterion can also be adopted to handle 

the constraint functions. The proposed approach provides further improvement on the 

saving of simulation calls. It is shown that the new approach, called Circled Kriging 

MOGA (CK-MOGA), reduces more simulation calls compared to a conventional MOGA 

or our previously developed K-MOGA [Li et al., 2007b].   

The balance of this chapter is organized as follows. Review of K-MOGA and details 

of the CK-MOGA with the new criterion are presented in Section 6.2. Three examples 

are given in Section 6.3 to illustrate the applicability of these approaches. Concluding 

remarks are presented in Section 6.4. 

The uncertainty prediction for constraint functions described in this chapter was also 

presented in Li et al., [2007b].  
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6.2 CIRCLED KRIGING MOGA (CK-MOGA) 

As mentioned in Chapter 2, the response value from the kriging metamodel has 

uncertainties. With this uncertainty in prediction of simulation response (e.g., objective 

functions), however, as long as it is determined that the dominance status (recall Section 

2.2) of design points in the current generation is not changed because of using the kriging 

metamodel, it is acceptable to use the kriging metamodel instead of the simulation. If the 

dominance status is changed, then the design points that are predicted to contribute to this 

change are observed (i.e., their objective function values are computed using the 

simulation); otherwise, the metamodel is used to obtain the response values.  

Thus, the basic idea behind the kriging assisted MOGAs is to try to ensure that, in 

each generation, the dominance status does not change because of using the kriging 

metamodel. In this section, we first focus on a criterion used for objective functions. A 

similar criterion is developed for constraints as well at the end of this section. In this 

regard, the uncertainty in prediction represented by predicted RMSE, a byproduct of the 

kriging metamodel (recall Eq. (2.10)), is used as a main component in the criterion that 

determines whether the dominance status is changed. This criterion is used to decide 

when the predicted value from the kriging metamodel can be accepted as a substitute to 

that from a simulation model for an individual. We will first review the previously 

proposed criterion in K-MOGA. Then we develop a new criterion based on the idea of 

the worst-case sensitivity region which will provide a measure of uncertainty in the 

predicted responses from the kriging metamodel.  
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6.2.1 Review of the Criterion in K-MOGA 

In the K-MOGA approach [Li et al., 2007b], we use a quantitative measure of 

domination as part of the criterion to determine whether the predicted value from the 

kriging metamodel should be accepted. This measure is called: Minimum of Minimum 

Distance (MMD). In any generation of GA, except the initial population where all 

individuals are observed, the kriging metamodel can be used to obtain the predicted 

objectives of individuals. Based on these predicted response values, the domination status 

of individuals can be determined. To do this, the current population is partitioned into 

two sets: dominated and non-dominated sets. Note that this partitioning is based on the 

kriging metamodel values, that is, no simulation calls are used at this stage.  

MMD is defined, in the objective space, as the minimum distance between all pairs of 

non-dominated xnd and dominated xd points and calculated as follows. First, divide 

individuals in the current population into two sets: non-dominated and dominated. Then, 

compute MMD by Eq. (6.1) 

{ }
{ }setdominated              
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                       (6.1) 

where the norm is defined in the f-space. MMD is then projected along each objective 

function axis to obtain MMDfm, m = 1,..., M, as shown in Figure 6.1. 
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Figure 6.1 MMD in K-MOGA 

Recall Eq. (2.10) in that the RMSE of an unobserved point x0 for the objective 

function fm is sm(x0). For objective functions, the criterion for the K-MOGA is devised 

based on the worst-case scenario such that if sm(x) � MMDfm is true for all m = 1,..., M 

and for design point x, then the domination status of point x should not change in the 

current population.   

In short, if for any design point x the following holds  

sm(x) � MMDfm                                                                                      (6.2) 

for all m = 1,..., M, then the predicted response values (as obtained by kriging 

metamodels) for x will be considered as “good” values. For those points for which the 

threshold imposed by Eq. (6.2) does not hold, the simulation will be used to calculate the 

actual responses. In this regard, the simulation values will help to improve the fidelity of 

the subsequent kriging metamodels.  

Note that there are two main reasons why a point with “large uncertainty” must be 

observed. First, if the uncertainty in prediction is too large for a design point, then that 

point should be evaluated by the simulation so that its domination status would not 

change. Secondly, a point with large uncertainty in prediction implies that the kriging 

metamodel does not have enough sample points in its vicinity [Sacks et al., 1989]. In 
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other words, evaluating the point by the simulation and thus using it as a new sample 

point would improve the accuracy of the kriging metamodel. As a byproduct of our 

approach, the criterion provides the kriging metamodel with a self-improving mechanism. 

This is based on the fact that a point with large uncertainty is a potentially good choice 

for sampling.  
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Figure 6.2 Conventional MOGA (left) with CK-MOGA addition (right) 

In the conventional MOGA (Figure 6.2 left), the algorithm uses simulation to 

evaluate all points in the population. In K-MOGA, with a presumed confidence level, if 

the metamodel’s uncertainty in the prediction is acceptable, then instead of the 

simulation, its metamodel (addition in Figure 6.2 right) is used for fitness evaluation; 

otherwise, and the simulation is used.  

Note that MMD is defined based on the distance of two sets: dominated and non-

dominated. It is possible that either of xnd or xd has already been evaluated by the 

simulation in a previous generation, or the distance between dominated set and non-

dominated set is too large to show the pair-wise comparison in fitness evaluation, 

compared to the uncertainty in the prediction. In these cases, Eq. (6.2) is based on a 

worst-case scenario which did not reflect the non-dominated sorting situation in MOGAs. 
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Essentially, in fitness evaluation of MOGAs, non-dominated sorting is a pair-wise 

comparison method to determine the dominance status of each point in the current 

population or points under consideration. In this regard, it is possible to improve the 

criterion in MOGA so that the pair-wise comparison can be captured and the worst-case 

scenario can be avoided.  

6.2.2 New criterion in CK-MOGA  

In this section, we propose an improved criterion that helps with the decision as to 

when the switching between the simulation model and kriging metamodel should occur. 

In this new criterion, the distances of every pair of two points in the current generation 

are compared to a measure of the uncertainty in predictions from the kriging metamodels. 

The radius of the uncertainty, similar to the robustness index of uncertainty in the 

objective values, is used as the measure of uncertainty in this new criterion.  

Radius of Uncertainty  

Because the objective functions may have incommensurable units and scales, we 

normalize each objective in the objective space defined as the f-space, as described 

before in Chapter 3. With a presumed confidential level (i.e., two standard deviations), 

the Uncertainty in Prediction (UP) is defined as in Eq. (6.3): 

UPm(x) = 2×sm(x), m=1,..., M      (6.3) 

The radius of uncertainty Ru, similar to the radius of the objective sensitivity region in 

Chapter 5, for each individual x is defined as the distance metric ||.||2 of UP, shown in Eq. 

(6.4): 

2
)()( xx UPRu =      (6.4) 
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Essentially, Ru(x) is the radius of a hyper-sphere centered at the predicted objective 

values of x, determining the possible uncertainty in the predicted objective values of x. 

With the presumed confidential level, the true objective values of x should be within this 

hyper-sphere, as shown in Figure 6.3. (Note that small hollow rectangles/squares shown 

in Figure 6.3 represent points obtained by the metamodel. Solid rectangles/squares are for 

points that are observed.) As mentioned in Section 2.6, the quantity UPm(x) is a 

byproduct of the kriging metamodel. 

Given this absolute measure of the uncertainty in the prediction, we still require a 

quantitative measure of domination to determine whether or not the uncertainty in the 

prediction is large enough to change the dominance status. To do so, we introduce 

another measure, called Minimum Distance (MD), as described next. 

Minimum Distance 

MD is defined, in the objective space, as the minimum ||.||2 distance between any pair 

of individuals (e.g., designs) in the current generation.  

The criterion for the kriging metamodel assisted approach is obtained as follows: 

1) Ru(x) estimates the maximum possible deviation (with the presumed confidence 

level) from the true value of objective functions. If the sum of Ru(xi) and Ru(xj) is 

less than the distance between points xi and xj, then the true value of objective 

functions for points xi and xj should not change the dominance status as shown in 

Figure 6.3.  

2) MD is the minimum distance between any pair of points in the current generation. 

So if Ru(xi) + Ru(xj) � MD, then points xi and xj should not change the dominance 

status.  
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3) Mathematically, Ru(xi) + Ru(xj) � MD implies that: max(Ru(xi), Ru(xj)) � MD/2.  

4) If 2× Ru(x) � MD is true for any point x, then the uncertainty in the prediction of x 

should not change the dominance status of x in the current population.  
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Figure 6.3 MD criterion for accepting the predicted value 

In short, if for any design x  

2×Ru(x) � MD         (6.5) 

 then the predicted values of x will be considered as “good” values (i.e., it will not change 

the dominance status). For those points for which Eq. (6.5) do not hold, simulation will 

be used to calculate the true value of objective functions. Moreover, as more points are 

observed the simulation (or actual) values of objective functions will help to improve the 

fidelity of subsequent kriging metamodels.  

Figure 6.2 shows the proposed CK-MOGA procedure in one generation. In the CK-

MOGA approach, all points in the initial population are observed (i.e., their responses (or 

objective function values) are obtained by the simulation) to build the initial kriging 

metamodels. Since the initial points may be far away from the Pareto frontier or do not 

entirely fill the design space, the initial kriging metamodels may not be sufficiently 

accurate. However, these metamodels are adaptively improved as the algorithm evolves, 

generation by generation. During the early generations of the CK-MOGA, the percentage 
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of points for which predicted values from kriging metamodels are acceptable is small. 

However, as more observed points are added to the kriging metamodel the uncertainty in 

the kriging prediction for unobserved points is gradually reduced, and the percentage of 

the points for which the kriging metamodel is used increases as more generations are 

evolved. Note that, according to the criterion in Eq. (6.5), points with a large uncertainty 

are required to be observed. Thus the general concern in using a kriging metamodel that it 

should have a reasonable fidelity during the entire optimization algorithm and 

particularly during the initial stages can be avoided to some extend. Based on our 

observations, in the CK-MOGA, eventually the kriging metamodels can achieve high 

fidelity.  

It should be noticed that there can be a situation in which the criterion used in this 

chapter (Eq. (6.5)) can still fail, i.e., a dominated point can be mistakenly considered as a 

non-dominated point. Suppose Ru(xi) and Ru(xj) have no overlap. If both of these points 

are non-dominated, as shown in Figure 6.4, then the dominance status of point xj can be 

changed because of using the kriging metamodels.  
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Figure 6.4 Failure of the criterion in Eq. (6.5) 

However, the situation described in Figure 6.4 rarely happens, based on our test 

results, in the early and converging stages of CK-MOGA. In the early stages, it is 
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unlikely to happen since most of the points are observed. On the other hand, it is possible 

that in the middle stages of CK-MOGA, the situation in Figure 6.4 may occur and thus 

decrease the efficiency of the CK-MOGA approach. However, as CK-MOGA converges, 

more points are observed and the kriging metamodels’ error becomes smaller and thus 

the likelihood of the situation described in Figure 6.4 decreases. 

6.2.3 Uncertainty in Prediction for Constraint Functions  

Each constraint function can be estimated by a kriging metamodel as well. Here, the 

criterion that is used as to whether the kriging metamodel or simulation should be used is 

even more critical than that for the objective functions. That is, the kriging metamodel 

can be used to determine whether or not a design point is feasible. More precisely, if by 

using the kriging metamodel it is determined that the design point is infeasible, and then 

the point is observed. On the other hand, if the point is determined to be feasible by the 

kriging metamodel, then the criterion in Eq. (6.6) has to be verified, as discussed in the 

next paragraph.  

Similarly as in the objective function case, the RMSE of an unobserved point x0 for 

the constraint function gl is sl(x0), whereby sl(x0) estimates the deviation of the 

constraint’s value from a mean for a presumed normal distribution (recall Section 2.6). 

That is, with a presumed confidential level (i.e., two standard deviations), the distance 

from the true constraint value gl(x0) to the predicted constraint value from the kriging 

metamodel  )(ˆ 0xlg is less than 2×sl(x0). On the other hand, the absolute value of 

 )(ˆ xlg provides a cushion to absorb the uncertainty in the prediction along gl dimension, 

as shown in Figure 6.5. If  )(ˆ 0xlg plus 2×sl(x0) is still less than zero, then the predicted 
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constraint value has a very little chance (i.e., less than 3%) to change feasibility of the 

design x0. Thus, if for any design point x the following criterion holds 

0)(ˆ)(2 ≤+× xx ll gs                             (6.6) 

for all l = 1,..., L, then the predicted constraint value Llg l ,...,1  )(ˆ =x of that design x will 

be considered to be acceptable. We only check Eq. (6.6) for the predicted feasible designs 

(i.e., with 0)(ˆ ≤xlg l = 1,..., L). If a design point is predicted to be infeasible, it is 

observed by the simulation.  
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Figure 6.5 Criterion for constraint functions 

6.2.4 Stopping Criteria  

Since a comparison of the performance of the conventional MOGA and CK-MOGA 

is important, appropriate and consistent stopping criteria for the MOGA and CK-MOGA 

should be determined. The following two stopping criteria are used and both have to be 

satisfied.  

1) When the number of non-dominated points is more than some pre-specified 

percentage of the population size (e.g., 80% for the examples in this chapter) and 

when it becomes steady (e.g., the number of non-dominated points is more than 
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“0.8×population size” for five generations for the examples in this chapter), it is 

concluded that the algorithm has converged to the Pareto frontier. 

2) When the iteration history, i.e., the curve representing the number of simulation 

calls versus the number of generations becomes flat, it can be concluded that the 

algorithm has been converged since non-dominated points have been a major part 

in the population.  

One may also employ other criteria or metrics for quality assessment of the Pareto 

frontier [Wu and Azarm, 2001] as additional stopping criteria. We applied two quality 

metrics proposed previously in the literature [Wu and Azarm, 2001] to compare the 

performance of the conventional MOGA, K-MOGA and CK-MOGA in terms of 

convergence and diversity of solutions, as discussed in Section 6.3.3.   

6.2.5 CK-MOGA Steps 

The steps for the CK-MOGA are as follows: 

Step 1: Initialize. Start with generating an initial population. Simulation models are called 

to calculate the responses (i.e., objective/constraint functions) for individuals in the initial 

population and these are added to a sample set to build the initial kriging metamodels, 

one for each objective/constraint function. The non-dominated (or elite) points in the 

initial population are identified and migrated into the next generation. The remaining (or 

dominated) points for the next generation are generated by the GA operations. The same 

initial population is used for all 30 runs of each test example and the designs in the initial 

population are selected by a maximum entropy design (see, e.g., [Shewry and Wynn, 

1987]) to fill out the entire design space.  

Step 2: The algorithm evolves into the next generation [Deb, 2001].  
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Step 3: Apply the current kriging metamodels to predict response values for the current 

population. By the way of Eqs. (6.5) and (6.6), the individuals in the current generation 

are partitioned into two parts as follows: (i) Calculate the response values (from 

objective/constraint functions) and RMSE (recall Eq. (2.10)) for each design point in the 

current generation using the kriging metamodels. (ii) Calculate MD. (iii) Apply Eqs. (6.5) 

and (6.6) to each point. Individuals whose predicted response values satisfy Eqs. (6.5) 

and (6.6) will be considered as good: The simulation model for these points is not used 

but rather their metamodel is used. For the points that do not satisfy Eqs. (6.5) and (6.6), 

the simulation model is used to calculate their responses. 

Step 4: Calculate the fitness value of each point. Non-dominated sorting algorithm [Deb, 

2001] is used to calculate the fitness of each point.  

Step 5: Identify non-dominated points and update the kriging metamodels. Non-

dominated points in the current population are identified. Points (dominated or non-

dominated) whose response values are calculated by the simulation are added to the 

sample set to update the kriging metamodels.  

Step 6: Check the stopping criteria. Check the stopping criteria described in Section 6.2.4. 

If both stopping criteria are satisfied, stop the algorithm; otherwise, continue. 

Step 7: Form the next population. The next population includes two parts: elite and 

offspring points. Go to Step 2. 

6.3 EXAMPLES AND DISCUSSION 

In this section, we use two numerical and one engineering examples with different 

degrees of difficulty to illustrate the applicability of the proposed CK-MOGA, compared 

to the MOGA and K-MOGA. All of these three examples are optimizations with 
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constraint functions. As a typical example of our results, we use the first example, OSY 

[Deb, 2001], to present a detailed comparison of the MOGA, K-MOGA and CK-MOGA 

including the verification via: (i) quality metrics, (ii) MD, and (iii) the uncertainty in 

prediction. We also present the results for the numerical example used in Section 3.6.1. 

Finally, an engineering example is presented. In order to compare the conventional 

MOGA, K-MOGA and our proposed CK-MOGA, the same initial population of design 

points is used for all experiments for each example. Also the MOGA, K-MOGA and CK-

MOGA were run for 30 times each to account for randomness in these methods. The 

values of other genetic parameters are selected according to the description in Section 2.5. 

The same settings are used for all examples. For simplicity, the conventional MOGA is 

referred as “MOGA” hereafter.    

6.3.1 OSY Example 

We applied the MOGA which was described in Section 2.5 and K-MOGA [Li et al., 

2007b] and CK-MOGA to this example that has two objective functions, six constraints, 

and four variables as shown in Eq. (6.7): 
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      (6.7) 

The Pareto frontiers from the MOGA, K-MOGA and CK-MOGA, respectively, are 

non-convex as shown in Figure 6.6. For this example, two separate kriging metamodels 



 150 

for the two objectives and six separate kriging metamodels for the six constraints are built 

in the K-MOGA and CK-MOGA; and all of them are adaptively improved to predict the 

response for the objective and constraint functions.  
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Figure 6.6 Pareto solutions for OSY 

Figure 6.6 shows a typical set of Pareto optimal solutions as obtained from one of the 

30 runs of the MOGA, K-MOGA and CK-MOGA. The results from CK-MOGA are in 

good agreement with the MOGA and K-MOGA. Figure 6.7 shows the NumSimCall 

(number of simulation calls) for 30 different runs. As shown in Figure 6.7, a MOGA run 

with the least number of simulation calls (i.e., 1455 in run 18) requires more simulation 

calls than a CK-MOGA run with the maximum number of simulation calls (i.e., 799). 

Compared to the NumSimCall for the K-MOGA (the mean value is 901 and the standard 

deviation (STD) is 126.1), the CK-MOGA’s performance is better as the mean value is 

decreased to 673 and the STD is 83.2. The mean values and STDs for all 30 runs for the 

MOGA, K-MOGA and CK-MOGA are also shown in Table 6.2. The results show that 

for OSY example, the NumSimCall has been reduced by more than 60% using the 
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proposed CK-MOGA compared to the MOGA, and by 25% using the CK-MGOA 

compared to the K-MOGA.  
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Figure 6.7 # of simulation calls (NumSimCall) vs. run number for OSY 

6.3.2 Verification by Quality Metrics 

In order to evaluate the quality of convergence and diversity of solutions for the 

proposed CK-MOGA and compare the results with the MOGA, two quality metrics 

proposed in the literature [Wu and Azarm, 2001], i.e., the Hyperarea Difference (HD) and 

Overall Spread (OS) metrics, are calculated for the OSY example.  

Figure 6.8 shows the geometrical interpretation of these two metrics in a two-

objective space. Let us assume P = {a, b, c, d} be the current non-dominated set in the 

objective space and pbad and pgood are the extreme “good” and “bad” points, respectively. 

The quantity HD, shown as the shaded area in Figure 6.8(a), is defined as the difference 

between the area (hyperarea (HA) or volume if there are three or more objectives) 

bounded by pbad and pgood and the area bounded by pbad and the set P: 
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     HD(P) = HA(pbad, pgood) – HA(pbad, a, b, c, d)   (6.8) 

The quantity OS, shown in Figure 6.8(b), is defined as the ratio between the area bounded 

by the two extreme points in P and the area bounded by pbad and pgood:  

),(
)]([

goodbad ppHA
PextremesHA

OS = .     (6.9) 

The quantities HD and OS serve as the quality metrics of convergence and diversity, 

respectively, for the obtained Pareto frontier.   
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Figure 6.8 Quality metrics (a) HD and (b) OS 

In the OSY example, we set pbad = [0, 150] and pgood = [-300, 0] as their objective 

function values. We calculate the HD and OS values for the MOGA and CK-MOGA 

from the 30 runs as shown in Table 6.1. From Table 6.1 it can be seen that the 

convergence and diversity of the obtained Pareto frontiers from the MOGA and CK-

MOGA are comparable. The convergence and diversity of the obtained Pareto solutions 

for the K-MGOA are also compared to the MOGA, as discussed in [Li et al., 2007b]. 
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Table 6.1 Quality metrics for MOGA and CK-MOGA for OSY example 

MOGA CK-MOGA  
30 runs Mean STD 30 runs  Mean STD 

HD [0.08-0.26] 0.148 0.048 [0.07-0.18] 0.128 0.023 
OS [0.11-0.52] 0.243 0.120 [0.09-0.41] 0.217 0.082 

 

6.3.3 Verification by MD 

As a further verification of the proposed approach, in Figure 6.9, we compare MD 

value calculated from simulation only with calculated from the kriging metamodels for 

the OSY example. Note that in our CK-MOGA approach, MD is calculated from the 

kriging metamodels, indicated as “kriging” in Figure 6.9. According to our experiments, 

the estimated MD as obtained in our approach is less than or equal to MD from the 

simulation for most generations (except in 37th generation). From these results we can 

conclude that MD from kriging provides a good estimate of the actual MD. The same 

results were observed for other examples. 
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Figure 6.9 MD based on simulation and kriging metamodel 

6.3.4 Verification by Uncertainty in Response Prediction 

For verification as to whether the uncertainty in response prediction sm(x) is a valid 
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estimation of deviation in Eq. (6.3), we have obtained the uncertainty which is the 

absolute value of the difference between the actual and predicted values of f (for both f1 

and f2 in this case) for each design point in a typical generation (e.g., the 10th generation 

in Figure 6.10 for the OSY problem). The term “Uncertainty Real”, as shown in Figure 

6.10, is for the deviation from the predicted value (from kriging metamodel) to the actual 

value (from simulation). The “Uncertainty Prediction” term is the UPm(x) (which is equal 

to 2×sm(x)) and calculated from the kriging metamodel as in Eq. (6.3). As shown in 

Figure 6.10, for most design points (except the 9th point) in the 10th generation, the 

Uncertainty Real is less than the UPm, which means that UPm(x) is a valid estimation of 

the standard deviation. Similar results were observed for the uncertainty in the constraint 

estimation, and for other generations and test problems.  
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Figure 6.10 Real and predicted uncertainty for (a) f1, and (b) f2 for OSY in the 10th 

generation 

6.3.5 Additional Examples 

In this section, two additional examples: the numerical example in Section 3.6.1 and a 

new cabinet design example are presented to demonstrate further applicability of the CK-

MOGA. The comparison results of the number of simulation calls (NumSimCall) with 

STDs as obtained from the MOGA, K-MOGA, and CK-MOGA are shown in this section 

in Table 6.2. 

Numerical Example 

Here we show the formulation of the numerical example again. This is a bi-objective 

optimization problem with three design variables and two constraint functions, as shown 

in Eq. (6.10). The obtained Pareto solutions using the MOGA, K-MOGA and CK-MOGA 

are shown in Figure 6.11.   
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Figure 6.11 Obtained Pareto solutions using MOGA, K-MOGA and CK-MOGA for 

the numerical example 

Cabinet Design  

We apply the MOGA, K-MOGA and CK-MOGA to a more complex cabinet model 

application in a thermal cooling design for a PCM cabinet. The thermal analysis model 

(as shown in Figure 6.12) for this example was developed and updated by researchers at 

Georgia Tech (Dr. Yogendra Joshi) [Li et al., 2007a]. The optimization model is 

described in Figure 6.12. There are two design objectives for this problem. The first 

objective is to minimize air “inlet temperature” from the upper bay of the cabinet to the 

lower bay’s cooling system (heat exchanger or HX). Another objective is to minimize the 

total power, including fan and water pumping power. The constraints are an upper bound 

on the air inlet temperature and lower and upper bounds on the three design variables: 
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“Air flow rate”, “Water flow rate”, and “number of HX units”.  Typical Pareto frontiers 

obtained from MOGA, K-MOGA and CK-MOGA, respectively, for this example are 

shown in Figure 6.13.  
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Figure 6.12 Cabinet design formulation 
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Figure 6.13 Obtained Pareto solutions using MOGA, K-MOGA and CK-MOGA for 

cabinet design 

6.3.6 Comparison of MOGA, K-MOGA and CK-MOGA 

The obtained results for these three examples show that the number of simulation 

calls (NumSimCall) used in the CK-MOGA is significantly fewer than the MOGA, and 

also fewer than the K-MOGA, while the obtained Pareto solutions from these three 
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methods are comparable. Furthermore, as shown in Table 6.2, the CK-MOGA has 

smaller STD of the NumSimCall (based on 30 runs) than the MOGA and K-MOGA, 

which indicates that compared to the MOGA and K-MGOA, the CK-MOGA has a more 

stable performance on the reduction of the NumSimCall. 

Table 6.2 Statistics for the NumSimCall 

NumSimCall 
MOGA K-MOGA CK-MOGA Example  

(popsize) 30 runs Mean STD 30 runs Mean STD 30 runs Mean STD 
OSY (50) [1455-2288] 1819 210 [701-1210] 901 126 [480-799] 673 83 

Numerical (40) [269-578] 425 83 [169-399] 290 76 [198-327] 278 26 
Cabinet (40) [392-581] 472 39 [167-258] 210 18 [133-194] 159 14 

Based on the data in Table 6.2, the reduction of the NumSimCall for each example is 

calculated based on the mean and STD value. If we assume the NumSimCall follows the 

normal distribution, the statistics results of three test examples are shown in Figure 6.14. 
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 Figure 6.14 Statistic results (or probability density functions) for (a) OSY (b) 

Numerical and (c) Cabinet 

This calculation performing for the K-MOGA over the MOGA, the CK-MOGA over 

the MOGA, and the CK-MOGA over the K-MOGA, separately, is also shown in Table 

6.3.  
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Table 6.3 Reduction in the NumSimCall 

Reduction in the NumSimCall 
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Example 
(popsize) 

Mean STD Mean STD Mean STD 
OSY (50) 50% 40% 63% 60% 25% 34% 

Numerical (40) 32% 8% 35% 69% 4% 66% 
Cabinet (40) 44% 54% 66% 64% 24% 22% 

on the average 42% 34% 55% 64% 18% 41% 

As shown in Figure 6.14 and Table 6.3, on the average, the proposed CK-MOGA can 

save about 55% in the NumSimCall over the MOGA, while the K-MOGA can save about 

42% over the MOGA. In other words, the CK-MOGA uses about 18% fewer simulation 

calls over the K-MOGA. The STD in the CK-MOGA is also reduced 64% when 

compared to MOGA, and 41% compared to K-MOGA. It is observed that the CK-

MOGA outperforms both the MOGA and the K-MOGA and are more stable than the 

MOGA and the K-MOGA, in terms of the number of simulation calls, for these three 

examples.  

Since in the MOGA, K-MOGA and CK-MOGA, we used the same popsize and the 

MaxNumGeneration (the NumGeneration in these MOGAs is determined by the stop 

criteria and less than the MaxNumGeneration), the upper bound of the NumSimCall in the 

CK-MOGA will not be larger than popsize × MaxNumGeneration. In the CK-MOGA, 

repgenc (the number of new offspring in genc-th generation) is not changed as the 

dominance status of individuals is not changed. Also, it is observed that the 

NumGeneration’s are comparable for the MOGA, K-MOGA and CK-MOGA when 

stopping criteria are satisfied. Since some individuals in the genc-th generation are 

evaluated by kriging metamodels, thus the NumSimCall in the CK-MOGA is 

approximately equal to �
=

×
ionNumGenerat

genc
gencgenc repMF

1

)( , in which MFgenc is the fraction of 
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unobserved individuals to the number of new offspring. According to our results, MFgenc 

in the CK-MOGA is approximately 0.55, on average, for these three examples.   

6.4 SUMMARY 

An improved multi-objective design optimization approach called CK-MOGA is 

presented in this chapter. In the proposed approach, the kriging metamodel is embedded 

within a conventional MOGA, similar to the previously proposed K-MOGA. However, 

compared to the MOGA and K-MOGA, CK-MOGA reduces the number of simulation 

calls by applying a new objective criterion based on the radius of uncertainty in the 

response prediction from the kriging metamodel and evaluating some individuals in the 

population by the kriging metamodel instead of the simulation. And the performance of 

the CK-MOGA in the reduction of simulation calls is more stable than K-MOGA. A new 

concept of the minimum distances (MD) and its relation with the uncertainty in the 

prediction that is easily obtained from kriging are derived. This criterion is developed 

based on the radius (or robustness index) of the OSR developed in Chapter 3, and then 

used to identify those individuals in the population that can be evaluated using kriging 

metamodels. The identified individuals are those that do not change the estimated 

dominance status in the objective space and do not change the estimated feasibility for 

the current generation. For other individuals in the generation, the responses are obtained 

from the simulation and used to adaptively update the next generation kriging 

metamodels so that more individuals can be evaluated by the updated kriging metamodels 

and thus an additional number of simulation calls can be saved in subsequent generations.  

In the CK-MOGA, the general concern that the metamodel may be of low fidelity and 

that it may even produce false optima can be avoided to some extend. The proposed 
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criterion is objective rather than subjective and can be applied to other population-based 

optimization methods. The main advantage of using on-line kriging is that the uncertainty 

in the prediction of the response can be obtained without much extra computational effort 

in kriging. One of the advantages of adaptive approaches is that those points migrated 

from previous generations with incorrectly estimated kriging variance are most likely to 

be removed from the population by a more accurate kriging metamodel. Therefore, the 

side effect of such migrated points can be reduced when the kriging metamodels are 

updated adaptively in consecutive generations. In essence, the proposed CK-MOGA has 

a self-correcting mechanism in terms of identifying “good” points for kriging 

metamodeling.  

Three examples of both numerical and engineering types are used to demonstrate the 

applicability of the proposed CK-MOGA. The results show that the CK-MOGA is able to 

achieve comparable convergence and diversity of the Pareto frontier as to that obtained 

from the MOGA and K-MOGA, while at the same time significantly reducing the 

number of simulation calls.  

Next chapter will present the conclusions, main contributions and future research 

directions of this research work. 
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CHAPTER 7: CONCLUSIONS 

In this dissertation, we presented the development of novel optimization methods for 

robust optimization and sensitivity analysis for multi-objective single- and multi-

disciplinary design problems. After presenting our research motivation, objectives and 

terminologies in Chapters 1 and 2, we discussed the results from four research thrusts: 1) 

A new approach for all-at-once multi-objective and feasibility robust optimization 

(Chapter 3); 2) McRO approach for performance and collaborative robust optimization 

(Chapter 4); 3) Interval uncertainty reduction and sensitivity analysis approach for all-at-

once multi-objective design problems (Chapter 5); 4) CK-MOGA approach as an 

efficient multi-objective optimization algorithm (Chapter 6).  

This chapter is organized as follows. First in Section 7.1, the concluding remarks for 

the four research thrusts are summarized. The main contributions of this dissertation are 

discussed in Section 7.2. Finally, some future research directions are outlined in Section 

7.3. 

7.1 CONCLUDING REMARKS 

In this section, we present the concluding marks for each research thrust separately.  

7.1.1 Performance Robust Optimization in Single-Disciplinary Optimization 

In Chapter 3, we presented a deterministic non-gradient based approach that uses 

robustness indices in robust multi-objective single-disciplinary (all-at-once) optimization 

problems where parameter uncertainty causes variation in the objective and constraint 

values. This so called Performance Robust Optimization approach is applicable for 

optimization problems that have discontinuous objective and constraint functions with 
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respect to uncontrollable parameters. This approach can be used for objective or 

feasibility robust optimization, or both together.  

In our approach, the known parameter tolerance region maps forward into the 

sensitivity regions in the objective and constraint spaces. The sensitivity regions can be 

oddly shaped, or be disconnected. In this regard, we define a worst-case estimate, the 

radius of the worst-case sensitivity regions. Rather than calculating the sensitivity regions 

directly, we use an optimizer to solve for these worst-case estimates for the OSR and the 

CSR. The overall robust optimization problem thus becomes an outer-inner optimization 

problem. We use a MOGA for the outer multi-objective optimization problem and a GA 

for the inner single-objective problems. The robustness measures are indices calculated 

from the sizes of the acceptable objective and constraint variation regions and from 

worst-case estimates of the sensitivity regions. Five numerical and engineering examples 

are used to demonstrate the applicability of the proposed approach.  

The main shortcoming of this approach is the computational efficiency. The outer-

inner structure can make this approach computationally intensive. Approximation 

methods should be used to alleviate the difficulty in the future. 

Another concern is how to decide the appropriate acceptable objective variation range. 

Note that knowing upfront whether robust solutions exist for a presumed AOVR is 

difficult, if not impossible. This is because we have not assumed any mathematical form 

for the objective functions (e.g., they can be discontinuous with respect to uncertain 

parameters). In Chapter 3 we assume that robust solutions exist with a presumed AOVR. 

If they do not and if it is permissible, the AVOR is iteratively enlarged until such 

solutions do exist. A possible approach to tackle this problem is for the DM to start with 
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an initial sensitivity analysis study as proposed in Chapter 5, which can help provide a 

reasonable estimate of the sizes of OSRs.  

7.1.2 Performance and Collaborative Robust Optimization in Decentralized MDO 

As presented in Chapter 4, we proposed a new robust optimization approach to handle 

the decentralized MDO problems with uncertainty, which is called Multi-objective 

collaborative Robust Optimization (McRO). Other than the all-at-once optimization 

approach in Chapter 3, real-world engineering design optimization problems often 

involve systems that have coupled subsystems or disciplines with uncontrollable 

variations in their parameters at system and subsystem levels. No approach has yet been 

reported in the engineering design for the solution of these design optimization problems 

when there are multiple objectives in each discipline, mixed continuous-discrete variables, 

and when there is a need to account for uncertainty and also uncertainty propagation 

across disciplines. We present the McRO approach for this class of problems that have 

interval uncertainty in their parameters. McRO obtains decentralized Multi-disciplinary 

Design Optimization (MDO) solutions which are as best as possible in a multiobjective 

and multidisciplinary sense.  

For McRO solutions, the sensitivity of objective and/or constraint functions is kept 

within an acceptable range. McRO involves a technique for the interdisciplinary 

uncertainty propagation, which is called Collaborative Robustness. To satisfy this 

Collaborative Robustness, the variation of couplings must be enclosed within the 

acceptable variation ranges of targets, which provide the cushion to absorb the 

uncertainty propagated across disciplines. The approach can be used for robust 

optimization of MDO problems with multiple objectives, or constraints, or both together 
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at system and subsystem levels. Results from an application of the approach to a 

numerical and two engineering examples are presented. It is observed that the McRO 

approach solved fully coupled MDO test problems with interval uncertainty and can 

obtain solutions that are comparable to an all-at-once robust optimization approach. 

Since McRO is developed based on the Performance Robust Optimization in Chapter 

3, the main shortcomings of McRO are still the computational efficiency and the 

determination of existence of robust solutions as discussed in the Section 7.1.1.  

7.1.3 Interval Uncertainty Reduction and Sensitivity Analysis in Single-

Disciplinary Optimization 

As presented in Chapter 5, we presented an uncertainty reduction and sensitivity 

analysis approach for multi-objective problems with interval uncertainty in an all-at-once 

format.  

Uncertainty analysis and sensitivity analysis has received significant attention in 

engineering design. While sensitivity analysis methods can be global, taking into account 

all variations, or local, taking into account small variations, they generally identify which 

uncertain parameters are most important and to what extent their effect might be. The 

extant methods do not, in general, tackle the question of which ranges of parameter 

uncertainty are most important or how to best allocate investments to partial uncertainty 

reduction in parameters under a limited budget. The methods that can address these 

questions with multiple objectives still remain sparse.  

The proposed method in this dissertation is not only applicable to the sensitivity 

analysis of a single design with interval uncertainty, but also can quantify uncertainty as 

it affects a set of designs. Two new global uncertainty metrics, radius of objective 
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sensitivity region and multi-objective entropy performance, are presented. With these 

metrics a new optimization method is developed that finds investments and fractional 

levels of parameter uncertainty reduction that provide the greatest payoff for system 

performance. Two case studies of varying difficulty are presented to demonstrate the 

metrics and resulting investment information gleaned from the proposed approach. 

7.1.4 Metamodel Assisted MOGA 

As presented in Chapter 6, we discussed an improved metamodel assisted MOGA 

approach to improve the computational efficiency of a population-based multi-objective 

optimization approach. We present an improved MOGA, called Circled Kriging MOGA 

(CK-MOGA) in which the kriging-based metamodel is embedded within a MOGA.  

In the CK-MOGA, some of the design points are evaluated on-line using kriging 

metamodels instead of the actual simulation model. The decision as to whether the 

simulation or its kriging metamodel should be used for evaluating a design point is based 

on objective criterion which is developed from a worst-case distance measure of 

uncertainty from the predicted responses. The criterion is applied for the objective and 

constraint functions. It is determined whether by using the objective/constraint functions’ 

kriging metamodels for a design point, its dominance status in the current generation can 

be changed. The results show that, on the average, CK-MOGA outperforms both a 

conventional MOGA and our recently developed Kriging MOGA and has higher stability 

in terms of the number of simulation calls used in the optimization.  

The main shortcoming of this CK-MOGA is the number of simulation calls used in 

the approach cannot be determined a priori. That is, in the CK-MOGA, the positions of 

new offspring are controlled by GA operations and whether an offspring should be 
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observed or not is controlled by the proposed objective criterion. Thus, since the kriging 

metamodel depends on the shape of the actual response from the simulation and on the 

observation of points used to build up and update the kriging metamodels, estimating a 

lower bound of on the number of simulation calls prior to the start of the algorithm is 

very problematic, if not impossible.  

7.2 MAIN CONTRIBUTIONS 

In this dissertation, we have introduced and discussed several new approaches for 

robust optimization and sensitivity analysis for multi-objective multi-disciplinary design 

optimization problems with efficient optimization methods. 

The proposed Performance Robust Optimization approach is a new deterministic 

non-gradient based robust optimization approach that uses robustness measures in multi-

objective optimization problems where uncontrollable parameters variations cause 

variation in the objective and constraint values.  

• The approach is applicable for cases that have discontinuous objective and 

constraint functions with respect to uncontrollable parameters 

• Only intervals, instead of probability distributions, are necessary for the 

problem 

• Variations in the objectives and constraints are quantified by a single measure 

The proposed McRO approach is a new non-gradient based robust optimization 

approach that can solve the decentralized MDO problems where there are multiple 

objectives in each discipline, mixed continuous-discrete variables, and when there is a 

need to account for uncertainty and also uncertainty propagation across disciplines. 
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• McRO preserves disciplinary autonomy in MDO problems with multiple 

disciplines that are fully coupled 

• McRO solves MDO problems with multiple objectives/constraints in each 

discipline 

• McRO handles uncertainty within and across disciplines by extending 

enclosure criterion  

The proposed Sensitivity Analysis approach is the first approach applicable for 

the problem with multiple objective (or multiple outputs) with respect to a family of 

designs. This approach identifys the most important ranges of uncertainty in all 

parameters, and more importantly provides the decision maker with multiple optimal 

solutions for investing in uncertainty reduction as measured by performance variation. 

The approach is also capable for suggesting uncertainty reduction investments with 

respect to a family of designs which are typically under consideration by the DM in the 

early stages of system development.  

• The proposed SA approach solves the problem with multiple objectives, with 

respect to multiple optimal designs  

• Compared to currently reported SA methods, the optimal solutions from the 

SA method can provide the DM multiple choices on diffferent levels of 

investments in order to achieve acceptable (or desired) variations on the 

output side 

• As a result of the proposed approach, the relative importance of input 

parameters can be identified 
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The proposed CK-MOGA approach is a new approach applicable for the 

problems with multiple objectives in which an objective criterion is developed and used 

to determine whether the simulation model or the metamodel should be used to obtain the 

response values. The approach is shown to be applicable to both the objective and 

constraint space. 

• The CK-MOGA has an objective criterion to use simulation models or 

metamodels for both objective and constraint functions 

• Uncertainty in the predicted response from the CK-MOGA is quantified by a 

single distance measure 

• The CK-MOGA can significantly reduce the number of simulation calls 

compared to a conventional MOGA and the previously proposed K-MOGA 

• The CK-MOGA provides more stable performance on the reduction of the 

number of simulation calls, compared to the K-MOGA 

7.3 FUTURE RESEARCH DIRECTIONS 

In this section, several possible directions for the future research are discussed. Based 

on the approaches described in the previous chapters, these directions can be applied to 

overcome the shortcomings of proposed approaches or extend the applicability of these 

approaches.  

7.3.1 Representing Uncertainty with Additional Statistical Information 

In this dissertation, only interval uncertainty has been considered. The interval 

uncertainty considered assumes that a range (or interval) of uncertainty exists rather than 

a probability distribution.  Frequently, probability distributions are difficult to obtain for 

sparse data making these approaches applicable in early design stages. It is common for 
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different uncertainty factors to be considered from quite different sources and, on that 

basis, to take very different forms. Some of the types of uncertainty sources that occur in 

modeling and simulation of physical systems include: 

• Strong statistical information: Sometimes, large quantities of experimental data 

are available, sufficient to use a particular statistical model. 

• Sparse statistical information: More commonly, only a limited amount of 

experimental data is available and collection of further data might be very 

expensive or impossible. Further, the available experimental data may provide 

only indirect or inferential information on the parameters actually used in a 

particular analysis. In these cases, attempts to fit particular statistical models will 

leave a substantial residue of epistemic uncertainty. A significant research gap 

here exists that needs to be investigated. 

• Intervals: Upper and lower bounds or levels of belief on parametric values can be 

provided, typically from expert opinion.  

Real-world problems typically present a mixture of the above mentioned uncertainty 

sources. Fully using all of the available data sets, in addition to the intervals, should be 

useful in design under uncertainty. Accordingly, integrating probabilistic and Bayesian 

theory, in addition to the interval analysis, is also of interest to improve and combine 

different types of information. However, how to efficiently combine different 

representations for different types of uncertainties and utilize them during the robust 

design optimization problems remains to be studied. Some initial insights and study along 

this thread have been reported in the literature [Gunawan and Papalambros, 2006], [Du et 

al., 2007].   
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It should be noted, however, that even when the probability distribution functions 

might be available for some uncertain parameters, typical stochastic robust optimization 

approaches may not be applicable for the situation considered in this dissertation. This is 

because there are mixed continuous-discrete variables in the optimization and the 

simulation under consideration is a black box, which is a more general situation in 

engineering design. The application of mixed integer linear or nonlinear programming 

methods, such as branch-and-bound type methods [Floudas, 1995] might be of interest if 

the explicit formulation of objective and constraint functions is available. However, in 

these cases when convexity assumptions are relaxed, typical linear or nonlinear 

programming methods for robust optimization might fail because of the limitation of 

these methods for obtaining global solutions. For the future search, it will be of great 

interest to compare the robust optimization approach proposed in this dissertation to other 

stochastic approaches, in terms of computational performance and capability of 

convergence, given the probability distribution functions of uncertain parameters and the 

assumptions for objective/constraint functions (e.g., convexity, continuity, linearity). 

7.3.2 Uncertainty Reduction and Sensitivity Analysis for Decentralized MDO 

Problems with Multiple Objectives 

As discussed in Chapter 4, uncertainty propagation in MDO problems implies that the 

outputs (or performance) from one discipline will be affected not only by the uncertainty 

from that discipline’s inputs but also by the uncertainty from other disciplines due to 

interdisciplinary couplings. This issue of uncertainty propagation is important to any 

design with multiple subsystems.   
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In Chapter 5, we developed a Sensitivity Analysis (SA) approach to determine the 

importance of uncertainties by performing sensitivity analysis of the performance of all 

disciplines in a centralized all-at-once formulation. That SA method identifies the input 

component(s) whose input uncertainty reduction will produce the largest payoffs in the 

overall system performance.       

However, the proposed all-at-once SA formulation had two main disadvantages. First, 

that formulation was developed to encompass the entire system and, as a result, did not 

have the subsystem autonomy that is necessary to maintain in the development of most 

complex systems. Moreover, for such a formulation, the effect of uncertainty propagated 

from one subsystem over the other’s performance could not be determined.  In short, only 

system-level information was available and used in the all-at-once SA formulation.  

A deeper analysis of the effects of subsystem’s parameters is warranted to determine 

if any opportunities exist for further reduction in uncertainty given a variety of possible 

investment levels in the overall system or subsystem uncertainties. The all-at-once SA 

approach for multi-output  problems can be extended to provide designers and program 

managers in multi-disciplinary design an environment that allocates investments in 

uncertainty reductions of subsystem(s) that provide the greatest impact for future weapon 

development decisions.  

With the extended SA for decentralized MDO, we will be able to first find in each 

subsystem: which uncertain parameter(s), if its uncertainty interval is reduced through 

appropriate design changes, will produce maximum reduction in the subsystem’s 

objective variation and system’s objective variation. Grouping uncontrolled (or uncertain) 

parameters by subsystem and treating them as candidates for possible improvement is 
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clearly reasonable given that different disciplines are controlled by different design 

groups.  Obviously, input parameters from one subsystem also can affect the performance 

of other subsystems, which is the meaning of uncertainty propagation.  In this regard, SA 

must be performed across disciplines. That is, the SA approach can be applied to each 

connected subsystem to determine the extent of uncertainty propogation to each. This can 

even include the system level problem which in effect identifies the relative importance 

of each subsystem to the system’s performance.  

7.3.3 Improved Approximation Approach 

As mentioned in Chapter 6, a common strategy to reduce the computational effort of 

optimization methods such as MOGAs when integrated with expensive simulation 

models is to use metamodeling. In Chapter 6, we developed and implemented a CK-

MOGA approach, which used adaptive (online) metamodels in the genetic algorithm’s 

fitness estimation. However, not all information from the response side was been used in 

CK-MOGA to improve the accuracy of the metamodels.  

For future work, we anticipate that the simulation of some subsystems will be very 

expensive (it takes several hours or even days for one simulation run) or the entire system 

can be very complex, and may have numerous subsystems. As a result, only a very 

limited number of simulations may be available. The Design of Experiments (DOE) and 

metamodeling methods could be suitable for the decomposed (or decentralized) multi-

disciplinary design environment. Thus an efficient decomposition based approximation 

approach with a decomposed formulation becomes critical.  

One possible approach is to first devise an off-line metamodeling method with 

efficient DOE methods such as Latin Hype-cube [Helton and Davis, 2003] or Maximum 
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Entropy Design [Shewry and Wynn, 1987]. However, since each subsystem can have 

multiple responses (objectives and/or constraints), treating each of these responses as a 

separate “model” and separately constructing one metamodel for each response is 

inefficient. This so called “independent metamodeling” approach does not exploit 

information such as correlations among responses. The research here should focus on a 

decomposed approximation approach, including DOE and metamodeling, and should 

account for efficient couplings among subsystems’ approximations. Based on these off-

line metamodels, an adaptive method could be devised to improve the accuracy of 

metamodels when necessary. Finally, a coordinated approach for integrating the 

approximations from all subsystems in a decentralized formulation needs to be addressed. 

Based on these investigations, it can be expected that using the proposed metamodel 

assisted MOGA as the optimizer with improved objective criteria can improve the 

efficiency of robust optimization and MDO problems where the accuracy of involved 

metamodels becomes more important. 
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APPENDIX: FORWARD MAPPING VS. BACKWARD MAPPING  

In this section, we compare our approach (forward mapping) with Gunawan and 

Azarm’s approach (backward mapping) [Gunawan and Azarm, 2004, 2005(a), 2005(b)]. 

We examine only objective robust optimization; the comparisons for feasibility 

optimization and for performance optimization are similar. 

We first describe Gunawan and Azarm’s approach. We then explain why their 

approach is not applicable in general with discontinuous functions (i.e., discontinuity 

with respect to uncertain parameters), and why the proposed approach in this dissertation 

does not have this limitation. Note that because both methods are deterministic, neither 

method requires any information about probability distributions of the parameter 

variations. Also, neither method assumes linearity of the objective or constraint functions, 

and, hence, both are applicable even when the variations of parameter are large. However, 

since both methods use a similar outer-inner structure, the computational cost (i.e., 

number of simulation calls) is comparable.   

A. 1 DESCRIPTION OF GUNAWAN’S APPROACH  

Gunawan’s approach is based on the concept that design x0’s AOVR in �f-space 

maps backward into a Parameter Sensitivity Region (PSR) in normalized �p-space; see 

Figure A.1. This PSR represents the amount of parameter variation that x0 can absorb 

without x0’s objective function values being outside the AOVR. Design x0 is robust if its 

PSR totally contains x0’s tolerance region. 
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Figure A.1 (a) AOVR, and (b) corresponding PSR in Gunawan’s approach 

Gunawan’s approach uses a Worst-Case Parameter Sensitivity Region (WCPSR) 

estimate of x0’s PSR. Graphically, the WCPSR is the hyper-sphere inside the PSR that 

touches the PSR’s boundary at the closest point to the origin, as shown in Figure A.1 for 

a two-parameter case. Rf is the radius of the WCPSR, and RE is the radius of the exterior 

hyper-sphere of the normalized tolerance region. This method defines the objective 

robustness index 
E

f
f R

R
=η . Design x0 is robust if ηf �1 (i.e., Rf �RE; tolerance region 

contained in WCPSR). They use formulations Eqs. (A.1) and (A.2) to obtain the robust 

alternatives. Rf in Eq. (A.1) is calculated by Eq. (A.2).  
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A. 2 CONSEQUENCES OF WORST-CASE ESTIMATES 

It should be noted that our approach and Gunawan’s approach are conservative 

because directly calculating the sensitivity region is intractable. Both approaches estimate 

the sensitivity region by a worst case method, instead of calculating it directly. The 

benefit of the worst case method is that the robustness of obtained designs is guaranteed. 

However, Gunawan’s approaches may reject as non-robust some designs that are, in 

fact, robust. Figure A.2 illustrates the condition in Gunawan’s method that leads to 

rejection of robust designs. The tolerance region is contained in the actual PSR, but is not 

contained in the WCPSR. 
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Figure A.2 Condition causing rejection of robust designs in Gunawan’s approach 
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A. 3 APPLICABILITY OF THE TWO APPROACHES 

For two reasons, Gunawan’s approach is not applicable in general when the objective 

functions fm are not continuous with respect to the parameter variations. First, his 

robustness criterion, the tolerance region contained within the PSR, depends on the 

requirement that the points on the boundary of the AOVR mapping to points on the 

boundary of the PSR. (Refer to [Gunawan and Azarm, 2004] for a detailed proof showing 

that the continuity assumption is required for Eq. (A.1) and Eq. (A.2) to give the correct 

WCPSR.) For instance, an AOVR boundary point could map to an interior point of the 

PSR. Figure A.1 illustrates the case of concern: point B could map to point B1 and to 

point B2. In such a case the correct radius of the WCPSR is from the origin to B1, but the 

optimization solution in Eq. (A.2) will give the distance to B2. Thus, the WCPSR will be 

erroneously small, with an effect that can be understood two ways: solutions that are, in 

fact, robust within the worst-case limit will be rejected; the robustness threshold is 

erroneously over-stringent. The result would be the solutions’ objective values being 

worse than should have been obtained.  

Second, if the functions are not continuous, then the PSR might be disconnected or 

have holes, as shown in Figure A.3. If the origin of �p-space is at O1 in Figure A.3, then 

Eq. (A.2) will give the distance from O1 to point A for the radius of the WCPSR, 

indicating that design x0 is robust (tolerance region contained within WCPSR). If the 

origin is at O2, Eq. (A.2) will give the distance from O2 to point B as the radius of the 

WCPSR, again indicating that x0 is robust. However, in both cases x0 is, in fact, not 

robust: the PSR lies entirely outside the tolerance region. 
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Figure A.3 Cases where Gunawan’s method fails 

Thus, Gunawan’s approach has two shortcomings if used with discontinuous 

functions. Either the robust solutions will have degraded objective values, or the solutions 

might, in fact, not be robust. Non-robustness of a solution could be discovered by 

simulating instances of the design. Degradation of objective values is intractable. 

In contrast, our approach does not require that the objective functions be continuous.  

Referring to Figure 3.1, tolerance region points, whether on the boundary or interior, can 

map to the boundary or the interior of the OSR, and can even be isolated points. However, 

for the WCOSR we find the largest ||·||� distance norm from the origin to the point of the 

OSR. Thus, the calculated WCOSR always includes all points of the OSR. If a design’s 

WCOSR is contained within the AOVR, then its actual OSR will be contained in the 

AOVR. The solutions will not incorrectly include non-robust designs, and the solutions 

will always have the best possible objective values obtainable designs within the worst-

case limit. 

 


