
The Institute for Systems Research

ISR develops, applies and teaches advanced methodologies of design and 
analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
lems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the  
A. James Clark School of Engineering. It is a graduated National Science 

Foundation Engineering Research Center.

www.isr.umd.edu

A


R


ISR Technical Report 2008-29



 1

Constructing Perfect Aggregations to Eliminate Response Time Variability 
in Cyclic Fair Sequences  

 
Jeffrey W. Herrmann  

Department of Mechanical Engineering 
2181 Martin Hall 

University of Maryland 
College Park, MD 20742 

301-405-5433 
jwh2@umd.edu 

Abstract 

Fair sequences are useful in a variety of manufacturing and computer systems.  This 

paper considers the generation of cyclic fair sequences for a given set of products, each of which 

must be produced multiple times in each cycle.  The objective is to create a sequence so that, for 

each product, the variability of the time between consecutive completions is minimized.  

Previous work introduced an aggregation approach that can reduce response time variability 

(RTV) dramatically.  However, in some cases, aggregating more carefully can generate 

sequences with zero RTV.  We call this a “perfect aggregation.”  This paper discusses properties 

of instances that have perfect aggregations.  Moreover, we present techniques that can find a 

perfect aggregation if one exists. 

Introduction 

When a resource must serve many demands simultaneously, it is important to schedule 

the resource’s activities in some fair manner, so that each demand receives a share of the 

resource that is proportional to its demand relative to the competing demands.  A mixed-model 

assembly line, to mention one standard example, should produce different products at rates that 

are close to the given demand for each product.  Similarly, computer systems must service 

requests that have different priorities.   
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Both applications demonstrate the need for a fair sequence.  Kubiak (2004) provides a 

good overview of fair sequences and the product rate variation problem and reviews important 

results.  Miltenburg (1989) and Inman and Bulfin (1991) were some of the first to discuss the 

problem of mixed-model assembly lines.  Waldspurger and Weihl (1995) discuss the problem in 

computer system applications and provide an important stride scheduling heuristic.  Kubiak 

(2004) presents a parameterized stride scheduling heuristic.   

In the cyclic situation, an important objective is to minimize the variability in the time 

between consecutive completions of the same task.  Thus, we will use the response time 

variability (RTV) metric, which was presented and analyzed by Corominas et al. (2007).  

Herrmann (2007) independently studied this measure as well, and Garcia et al. (2006) presented 

metaheuristic procedures for the problem.   

Corominas et al. (2007) showed that the RTV problem is NP-hard and presented a 

dynamic program and a mathematical program for finding optimal solutions.  Because those 

approaches required excessive computational effort, they conducted experiments to evaluate the 

performance of various heuristics.  However, the heuristics performed poorly for some classes of 

problem instances.  Independently, Herrmann (2007) presented a heuristic that combined 

aggregation and parameterized stride scheduling.  This aggregation approach (which we will call 

“natural aggregation”) combines products with the same demand into groups, creates a sequence 

for those groups, and then disaggregates the sequence into a sequence for each product.   

Herrmann (2008) extended these last two works by precisely defining the natural 

aggregation approach and describing the results of extensive computational experiments using it 

in combination with the heuristics presented by Corominas et al. (2007).  The results of these 
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experiments show that the solutions generated using the natural aggregation approach have lower 

RTV than solutions generated without it.  

Waldspurger and Weihl (1995) presented a hierarchical stride scheduling algorithm that 

combines products into groups.  They suggested the use of a binary tree to minimize the 

maximum absolute deviation.  The key distinction between their hierarchical stride scheduling 

algorithm and the natural aggregation approach is that their algorithm requires using the stride 

scheduling algorithm to disaggregate each group, since the products in a group may have 

unequal demands.  Also, the placement of products in the tree not specified.  Because the natural 

aggregation approach groups products with equal demand, the disaggregation is much simpler.  

The limitation, however, is that the problem must have some equal demand products. 

In their discussion of the periodic maintenance scheduling problem, a related problem, 

Wei and Liu (1983) suggested that machines with the same maintenance interval could be 

replaced by a substitute machine with a smaller maintenance interval and that this replacement 

would facilitate finding a feasible solution.  This concept was not developed into a solution 

algorithm but is similar to the natural aggregation approach. 

The natural aggregation procedure described in Herrmann (2008) is simple and effective.  

However, in some cases, more sophisticated aggregations can combine all of the products into 

one group.  If there is only one group, the disaggregation leads directly to a sequence with zero 

RTV.  This paper explores this idea in depth. 

Problem Formulation 

Given a single server that must produce n products, each with a demand id  that is a 

positive integer, let 1 nD d d= + +" .  A feasible sequence has length D, and each product i 

occurs exactly id  times in the sequence.  We assume that each product requires the same amount 
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of time, so we can ignore time and consider only the positions in the sequence.  Moreover, this 

sequence will be repeated, and we will call each occurrence a cycle.  The response time 

variability (RTV) of a feasible sequence equals the sum of the response time variability for each 

product.  If product i occurs at positions { }1, ,
ii idp p… , the response time variability is a function 

of the intervals between each position, which are { }1, ,
ii idΔ Δ… , where the intervals are measured 

as follows (with 0 ii idp p D= − ): 

 , 1ik ik i kp p −Δ = −  

The average interval for product i is / iD d , so we calculate RTV as follows: 
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Minimizing RTV is NP-hard (Corominas et al., 2007).  Note that changes to the absolute 

positions do not change the variability.  The objective function value is invariant under any 

translations or reflection. 

Zero RTV Sequences 

In this paper we are concerned with the problem of finding zero RTV sequences.  As 

discussed later, a necessary condition for a zero RTV sequence is that all id  divide D.  Although 

the general RTV problem is NP-hard, the proof by Corominas et al. (2007) does not consider 

instances in which all id  divide D.   

Under this condition, it is clear that the problem of finding a zero RTV sequence is 

closely related to the periodic maintenance scheduling problem (Wei and Liu, 1983).  Bar-Noy et 

al. (2002) showed that the periodic maintenance scheduling problem (PMSP) is NP-hard.  An 
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instance of the PMSP specifies, for each of m machines, a scheduling interval il  such that 

1

1 1
ml l+ +"  < 1.  Let L be the least common multiple of the scheduling intervals.  The problem is 

to determine whether there exists a sequence of length L in which machine i is assigned to L/ il  

positions, the positions assigned to machine i are all exactly il  time slots apart (including the 

distance between the last and first positions in the cycle), and no more than one machine is 

assigned to each position. 

It is easy to transform an instance of PMSP into an instance of the RTV problem.  Given 

an instance 1l , …, ml  of the PMSP, construct an instance of the RTV problem as follows.  For i = 

1, …, m, set id  = L/ il .  Let P = 1 md d+ +" .  Note that P < L.  Let n = m + L – P, and add n - m 

new products to the instance.  For i = m + 1, …, n, set id  = 1.  Thus, 1 nD d d= + +"  = L, and all 

id  divide D.  It is clear that PMSP has a solution if and only if there is a zero RTV sequence for 

this instance. 

The problem with this transformation is that the number of new products that must be 

added depends upon L, which could be as large as 1l …
ml .  Thus, the computational complexity 

of the problem of finding a zero RTV sequence remains open (Kubiak, 2004).  

We also note that the problem of finding a zero RTV sequence is the constant gap 

problem and is equivalent to the problem of finding n positive integers 1f , …, nf  such that 

{( 1 1f − , 
1

D
d ), …, ( 1nf − , 

n

D
d )} is an exact covering sequence (Kubiak, 2004).  The complexity of 

this problem remains open. 
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Aggregation 

A problem instance can be transformed into an equivalent instance with the same total 

demand D but fewer products by combining two or more products that have the same demand.  

We call this transformation aggregation.  A sequence for the new instance can be changed into a 

sequence for the original sequence by reassigning the positions that were assigned to the 

aggregated product, as discussed below.   

Following Herrmann (2008), we describes the natural aggregation approach that 

iteratively transforms the original instance into one with fewer products.  This was first 

introduced in Herrmann (2007) and is similar to the substitution concept discussed by Wei and 

Liu (1983). 

Let an instance kI  be a set of products kjP  for 1, , kj n= … .  It will be convenient to 

represent a product as a set.  Each product kjP  has demand kjd .  We assume that the products are 

sorted so that 1 2 kk k knd d d≤ ≤ ≤" .  Let 0I  be the original instance, and each { }0 jP j= . 

Given an instance kI , the aggregation procedure transforms kI  into a new problem 

instance 1kI +  as follows.  First, find the smallest i such that ki n<  and , 1ki k id d += .  If there exists 

no such i, return with 1k kI I+ =  because no further aggregation is possible. 

If 
kkn kid d= , let km n i= − .  Else, find m such that ,ki k i md d +=  and , 1 ,k i m k i md d+ + +> . 

Create the new instance 1kI +  as follows:  Assign 1k kn n m+ = − .  Then, { }1,k jP j+ =  and 

1,k j kjd d+ =  for 1, , 1j i= −… .  Then,  { }1, , ,k iP i i m+ = +…  and ( )1, 1k i kid m d+ = + .  Finally, 

{ }1,k jP j m+ = +  and 1, ,k j k j md d+ +=  for 11, , kj i n += + … .  Renumber as needed so that the products 

in 1kI +  are sorted by demand and return 1kI + .   
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The total demand in the new instance will equal the total demand of the original instance 

because the demand of the new product (which we call a “group”) equals the total demand of the 

products that were removed.   

We run the aggregation procedure until no further aggregation is possible to generate a 

sequence of instances 0I , …, HI .  (H is the index of the last aggregation created.)  The 

aggregation can be done at most 1n −  times because the number of products decreases by at least 

one each time the aggregation procedure is called (unless no aggregation occurs).  Thus 

1H n≤ − . 

We can then apply a sequence generation algorithm to the most aggregated instance HI  

to generate a sequence HS .  We disaggregate HS  to generate 1HS −  and then continue to 

disaggregate each sequence in turn to generate 2HS − , …, 0S .  0S  is a feasible sequence for 0I , 

the original instance.   

The disaggregation of sequence kS  is performed as follows:  Let kF  be the set of 

products j in kI  such that 1kjP = .  kF  will include 1kn −  products.  Let g be the remaining 

product and let { }, ,kgP i i m= +… .  To create sequence 1kS −  for instance 1kI − , first let c = 0.  

Then, loop over 1, ,a D= … .  Let ( )kj S a= .  If kj F∈ , then let q be the element of kjP .  (There 

is exactly one.)  Assign ( )1kS a q− = .  If j is not in kF , then j g= , the group that needs to be 

disaggregated.  Assign ( )1kS a i c− = +  and update ( )1 mod 1c c m= + + . 

Consider the group g, which is formed from 1m +  products.  It has been assigned kgd  

positions in the sequence.  According to the aggregation scheme, ( ) 1,1kg k id m d −= + .  When 

creating 1kS − , the first position assigned to g in kS  goes to i (the first product in the group), the 
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second position assigned to g goes to product 1i + , and so forth.  This continues until all kgd  

positions have been assigned.  Each product in the group gets 1,k id −  positions.   

Aggregation runs in O( 2n ) time because each aggregation requires O( n ) time and there 

are at most 1n −  aggregations.  Likewise, because each sequence disaggregation requires O(D) 

effort, disaggregation runs in O( nD ) time in total. 

Tables 1 and 2 present an 8-product example that is aggregated three times.  2S  is a 

feasible sequence for 2I .  Note that, at each step of disaggregating the sequence, copies of 

product j are replaced by the product(s) in kjP .  Also, note that, in the completely disaggregated 

sequence, the RTV of product 8 does not equal zero. 

Table 1. An 8-product instance and the aggregate instances formed from it.  
(The aggregation combines the double underlined products at each step.) 

d_{kj}, j =
k n_k 1 2 3 4 5 6 7 8
0 8 1 1 1 1 1 2 2 3
1 4 2 2 3 5
2 3 3 4 5  

 

Table 2. The disaggregation of sequence 2S  for instance 2I . 
S_2 3 2 1 3 2 1 3 2 1 3 2 3
S_1 4 1 3 4 2 3 4 1 3 4 2 4
S_0 1 6 8 2 7 8 3 6 8 4 7 5  

Perfect Aggregation 

Aggregation simplifies sequencing.  Ideally, if only one product remains in the final 

instance, then it gets all of the positions in the sequence, and one can immediately proceed to 

disaggregation, which creates a sequence with zero RTV.  We call this a perfect aggregation. 

Hereafter, we will assume that the greatest common divisor g of all of the demands is 1.  

If g > 1, then we can divide all of the demands by g, find a sequence for the reduced instance, 
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and then concatenate g copies of this sequence to form a solution to the original instance.  If the 

solution to the reduced instance has zero RTV, the solution to the original instance also has zero 

RTV. 

In some cases, the natural aggregation approach will yield a perfect aggregation.  For 

instance, if there are m products that have demand a, n-m products with demand b, and ma = (n-

m)b, then the first aggregation combines the first m products into one with a demand of ma, the 

second aggregation combines the other n-m products into one with a demand of (n-m)b = ma, 

and the third aggregation combines the two remaining products into one product with a demand 

of 2ma.   

In some cases, no perfect aggregation is possible.  Consider an instance with demands of 

1, 1, 4, and 6.  Because aggregation can combine products only when their demand is equal, the 

only possible aggregation leads to an instance with demands of 2, 4, and 6.  This cannot be 

aggregated further. 

In other cases, a perfect aggregation is possible even if the natural aggregation is not 

perfect.  Consider again the 8-product example from the previous section.  Table 3 shows a 

perfect aggregation that first combines products 1 and 2 to create a product with demand of 2.  

After that, the aggregation proceeds as in the natural aggregation approach.  Table 4 shows the 

resulting sequences.  The RTV of the last sequence equals zero. 

Table 3. A perfect aggregation of the 8-product instance. 
d_{kj}, j =

k n_k 1 2 3 4 5 6 7 8
0 8 1 1 1 1 1 2 2 3
1 7 1 1 1 2 2 2 3
2 5 2 2 2 3 3
3 3 3 3 6
4 2 6 6
5 1 12  
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Table 4. The disaggregation of the sequences corresponding to the perfect aggregation. 
S_5 1 1 1 1 1 1 1 1 1 1 1 1
S_4 1 2 1 2 1 2 1 2 1 2 1 2
S_3 1 3 2 3 1 3 2 3 1 3 2 3
S_2 4 1 5 2 4 3 5 1 4 2 5 3
S_1 1 4 7 5 2 6 7 4 3 5 7 6
S_0 3 1 8 6 4 7 8 2 5 6 8 7  

Necessary Conditions  

Given an instance of the RTV problem, it is useful to know whether a perfect aggregation 

is possible. 

The first condition is necessary for a zero RTV sequence.  If an instance does not meet 

this condition, there can be no zero RTV sequence and thus there can be no perfect aggregation.   

(1) All id D .   

Next we will consider conditions that are necessary to form a perfect aggregation.  Note: 

( ),i jlcm d d  is the least common multiple of id  and jd .  N(a) is the number of products that have 

demand a.   

(2) Let a be the smallest demand and let b be the smallest demand greater than a.  

( ) /N a b a≥ . 

(3) There exists e < D such that all id e  and e D .  In other words, ( )1, , nlcm d d D<… . 

If condition (2) is not satisfied, then there is no way to aggregate the products with the 

minimum demand into a group that can then be combined with any other products.  We note that 

condition (2) is similar to the condition that 1 2d d= , which is necessary for a zero RTV sequence 

(cf. Lemma 19.4, Kubiak, 2004). 

Condition (3) is needed because, in a perfect aggregation, there is, at the end, an 

aggregation of products (some might be groups, but all have the same demand) into one product 

with demand of D.  The demand of these products, which we denote as e, must be less than D 



 11

and must divide D.  Every product in the original instance either has been aggregated into one of 

these products or is one of these products.  Therefore, each product’s demand must divide e.  The 

smallest such e is the least common multiple of the demands.   

Sufficient Conditions  

The following special cases yield a perfect aggregation immediately. 

(1) All /id D n= .   

(2) The n products include m products that have demand id a= , n-m products with 

demand id b= , and both a D  and b D . 

(3) There exists e < D such that all id e , e D , and ( )i ie d N d . 

The proof that condition (1) yields a perfect aggregation is trivial: just aggregate the n 

products immediately.  If condition (2) holds, without loss of generality assume a < b.  Note that 

( )ma n m b D+ − = , so b ma .  Let e be the least common multiple of a and b.  Because b ma , 

e ma , and e < D.  Let r = e/a.  We can combine the m products with demand of a into m/r 

products with demand of e.  Likewise, ( )e n m b− .  Let s = e/b.  We can combine the n – m 

products with demand of b into (n – m)/s products with demand of e.  The resulting instance has 

( )/ /m r n m s+ −  products with demand of e.   

If condition (3) holds, let /i ir e d= .  Because ( )i ie d N d , ( )ir N d .  We can combine the 

( )iN d  products with demand id  into ( ) /i iN d r  products with demand of e.  After doing this for 

all of the different demands, the resulting instance has ( ) ( )/ / /i i i iN d r d N d e D e= =∑ ∑  

products with demand of e.  (The summations are over the distinct values of demand.)  
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Zero RTV and Perfect Aggregation 

It is clear that finding a perfect aggregation is sufficient to construct a zero RTV 

sequence.  However, a perfect aggregation is not necessary to generate a zero RTV sequence, as 

we can see in the following example. 

Consider a 48-product instance in which 45 products have a demand of 1, 46 4d = , 

47 5d = , and 48 6d = .  Note that D = 60.  Construct a sequence S as follows: product 46 is in 

positions 2, 17, 32, and 47; product 47 is in positions 1, 13, 25, 37, and 49; and product 48 is in 

positions 10, 20, 30, 40, 50, and 60.  The remaining 45 positions are assigned to products 1 to 45 

in any way.  The RTV of S equals zero.  However, there is no perfect aggregation because the 

least common multiple of 1, 4, 5, and 6 equals 60.  Thus, the instance does not satisfy a 

necessary condition for perfect aggregation. 

Also, we note that an instance may have more than one perfect aggregation.  Consider a 

13-product instance in which nine products ( 1d  to 9d ) have a demand of 1, three products ( 10d  

to 12d ) have a demand of 3, and 13 6d = .  D = 24.  One perfect aggregation proceeds by 

combining 1d  through 6d , and then 10d  and 11d  (this creates two new products with demand of 

6).  Then, combine 7d , 8d , and 9d  to form a new product with demand of 3.  Combine this new 

product with 12d  to get a fourth product with demand of 6.   

A second perfect aggregation proceeds by combining 1d  through 3d , 4d  through 6d , and 

7d  through 9d  to create three new products with demand of 3.  Then, combine two of the 

products with demand of 3 to create a new product with demand of 6.  Repeat this last step twice 

to yield an instance with four products with demand of 6. 



 13

Finding a Perfect Aggregation 

For instances that satisfy all the necessary conditions but do not satisfy any of the 

sufficient conditions, we must search for a perfect aggregation in order to determine if one exists.  

This section presents an enumerative technique that tries to match products to factors of D, 

which we will call “openings.”  

To be sure that we exhaustively search all possibilities, we will maintain a sequence of 

openings and always operate on the first one.  There are two key operations.  The first operation 

matches the first opening to a product whose demand equals the size of the opening.  The second 

operation replaces the first opening by a number of equally-sized openings whose combined size 

equals the size of the opening being replaced. 

For instance, consider an instance with three products with demand of 1 and a fourth 

product with demand of 3.  In this case, D = 6.  Then, we can divide D into two openings of 3.  

Then we match the first of those openings to the fourth product, because the demand of the 

fourth product equals the size of the opening.  This leaves three unmatched products.  The 

remaining opening is 3, and we can divide that opening into three openings of 1.  These can be 

matched to the three products with demand of 1. 

Let O be a sequence of p openings with sizes 1, , ps s… .  Let U be a set of m unmatched 

products with demands 1, , md d… . 

The procedure match(O, U) finds a product k in U such that 1kd s= , removes product k 

from U, and removes the first opening from O.  For example, if O = (3, 3) and U = {1, 1, 1, 3}, 

as in the example above, match(O, U) returns O = (3) and U = {1, 1, 1}. 
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The procedure split(O, r) replaces the first opening with r openings of size 1 /s r .  (This 

assumes that r is a factor of 1s .)  For example, if O = (3), as in the example above, split(O, 3) 

returns the openings (1, 1, 1). 

The procedure solve(O, U) returns “true” if all of the products in U can be matched to the 

openings in O, possibly after splitting them, and “false” otherwise.  For example, if O = (3, 3) 

and U = {1, 1, 1, 3}, solve(O, U) returns “true.”  However, if U = {2, 2, 2}, solve(O, U) returns 

“false.”  Procedure solve uses some rules to check necessary and sufficient conditions for 

openings and works as follows. 

1. Check the necessary conditions for openings.  If any are violated, return “false.” 

2. Check the sufficient condition for openings.  If it is true, return “true.” 

3. If there exists no product k in U such that 1kd s= , go to step 4.  Otherwise, match(O, 

U).  If there are no more products in U, then return “true”; otherwise repeat step 3. 

4. If any products were removed from U by step 3, check the necessary conditions for 

openings again.  If any are violated, return “false.” 

5. If any products were removed from U by step 3, check the sufficient condition for 

openings again.  If it is true, return “true.” 

6. Let { }1, , qa a…  be the set of prime factors of 1s .  Let j = 1. 

7. Let jO  = split(O, ja ) and then perform solve( jO , U).  If this is “true,” then return 

“true.” 

8. If j < q, then increase j by 1 and return to step 7. 

9. Return “false.” 
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There are three necessary conditions for openings: (a) { } { }1 1min , , min , ,p ms s d d≥… … .  

If this is not true, then there is no demand small enough to go into the smallest opening. 

(b) { } { }1 1max , , max , ,p ms s d d≥… … .  If this is not true, then there is no opening large enough 

for the largest demand.  (c) For each k = 1, …, m, there exists j such that k jd s .  Otherwise, there 

is at least one product that cannot be aggregated into these openings.   

To illustrate the third necessary condition for openings, suppose O = (3, 3) and U = {2, 2, 

2}.  The products cannot be aggregated because an opening of size 3 cannot be split into 

openings of size 2. 

The only sufficient condition checked in the solve procedure is the condition that all of 

the demands in U are equal and their sum equals the size of the first opening.  For example, this 

condition is true if O = (3) and U = {1, 1, 1}. 

To use this procedure on an instance, we set U = { 1, , md d… }, let e be the least common 

multiple of 1, , md d… , and set O = (e, …, e).  That is, there are D/e openings of size e. 

For example, consider the 8-product instance described earlier.  U = {1, 1, 1, 1, 1, 2, 2, 

3}, and O = (6, 6).  The indentation of the paragraphs refers to nested calls of the procedure 

solve. 

Calling solve(O, U) first checks the necessary conditions (which are satisfied) and the 

sufficient condition (which is not).  No products have demand equal to 6.  The prime 

factors of 6 are 2 and 3.  The procedure splits the first opening to make 1O  = (3, 3, 6) and 

calls solve( 1O , U). 

This procedure first checks the necessary conditions (which are satisfied) and the 

sufficient condition (which is not).  One product has demand of 3, so 1O  is reduced to 
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(3, 6) and U is reduced to {1, 1, 1, 1, 1, 2, 2}.  The necessary conditions are still 

satisfied and the sufficient condition is not.  The only prime factor of 3 is 3, so the 

procedure splits the first opening and calls solve((1,1,1,6), {1, 1, 1, 1, 1, 2, 2}). 

This procedure first checks the necessary conditions (which are satisfied) and the 

sufficient condition (which is not).  The first three openings can be matched to 

products, which leaves one opening of 6 and the demands {1, 1, 2, 2}.  The 

necessary conditions are still satisfied and the sufficient condition is not.  The 

prime factors of 6 are 2 and 3.  The procedure first calls split((6), 2) to get the 

openings (3, 3) and then calls solve((3, 3), {1, 1, 2, 2}). 

This procedure returns a “false” because the third necessary condition is not 

true.   

Then the procedure calls split((6), 3) to get the openings (2, 2, 2) and then calls 

solve((2, 2, 2), {1, 1, 2, 2}). 

This procedure first checks the necessary conditions (which are satisfied) and 

the sufficient condition (which is not).  The first two openings can be matched 

to products, which leaves one opening of 2 and the demands {1, 1}.  The 

necessary conditions are still satisfied.  Moreover, the sufficient condition is 

satisfied, so the procedure returns “true.” 

The procedure solve((1,1,1,6), {1, 1, 1, 1, 1, 2, 2}) returns “true.” 

The procedure solve( 1O , U) returns “true.” 

The procedure solve(O, U) returns “true.” 
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While not discussed here, by keeping track of which procedure calls return a “true,” the 

procedure can be implemented to return the information needed to construct the perfect 

aggregation. 

Other Techniques 

Experimentation with the enumerative procedure above showed that it used excessive 

computational effort for some instances with a large number of products (as discussed below).  

These instances have some products with demand greater than 1 but also many products with 

demand of 1.  To find perfect aggregations more quickly, we developed two preprocessing 

procedures.  Both aggregate products into groups with a combined demand of e, where e is the 

least common multiple of all the demands, divides D, and is less than D.   

The procedure P1 aggregates products with the same demand into groups with demand of 

e.  That is, if ( ) /i iN d e d≥  and id  > 1, then / ie d  products can be aggregated into a group with 

demand of e; therefore remove them from the instance.  This is repeated until no more groups 

can be formed this way.   

The procedure P2 uses products with demand of 1 to form groups with products with 

larger demand.  Consider some demand id  > 1 and let im  = N( id ).  (We assume that /i im e d< ; 

otherwise, some could have been removed with P1.)  If ( )1 i iN e d m≥ − , then we can form 

/ i ie d m−  new groups with demand of id  by repeatedly aggregating id  products with demand of 

1, and then we can combine these new products with the im  products with demand equal to id  to 

form a new product with demand of e.  Thus, remove from the instance the im  products with 

demand equal to id  and the i ie d m−  products with demand of 1.  Repeat this with all demands 

that are greater than 1. 
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Running procedures P1 and P2 on an instance creates a reduced instance.  If the reduced 

instance has no products at all, the procedures show that there is a perfect aggregation.  If we can 

aggregate the reduced instance into products with demand of e, then we have a perfect 

aggregation for the original instance.  However, either procedure may reduce an instance with a 

perfect aggregation into an instance without one, as we can see in the two following examples.  

Thus, both procedures must be considered as heuristics. 

First, consider an instance with the following demands: (2, 2, 2, 2, 2, 2, 2, 3, 3, 4).  In this 

case, e = 12, and there is a perfect aggregation.  Combine products 1 and 2 and then combine 

products 3 and 4 to form two new products with demand of 4.  Combine products 5, 6, and 7 into 

a new product with demand of 6.  This yields an instance with demands of (3, 3, 4, 4, 4, 6), for 

which the perfect aggregation is clear.  However, running P1 reduces the original instance into 

(2, 3, 3, 4), which cannot be aggregated into a group with demand of 12.   

Second, consider an instance with the following demands: (1, 1, 1, 1, 1, 2, 3, 4, 4, 6).  In 

this case, e = 12, and there is a perfect aggregation.  Combine products 1 and 2 into a product 

with demand of 2, and combine products 3, 4, and 5 into a product with demand of 3.  This 

yields an instance with demands of (2, 2, 3, 3, 4, 4, 6), for which the perfect aggregation is clear.  

However, running P2 reduces the original instance into (1, 2, 3, 6), which cannot be aggregated 

at all. 

Computational Experiments 

In order to determine when perfect aggregations may occur, we considered 4700 

instances of the RTV problem.  These are the same instances considered in Herrmann (2008). 

In these instances, necessary condition 2 was satisfied most often (in 3765 instances).  

Only 796 instances satisfied both necessary conditions 1 and 3.  In general, for a given D, as n 
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increases, the number of instances (in a set of 100) that satisfied the necessary conditions and 

sufficient conditions increases.  This occurs primarily because the product demands become very 

small (near 1) as n increases.  For D = 1500 and n = 1000, 1200, 1300, or 1400, all of the 

instances satisfied all three necessary conditions. 

Many sets had no instances that satisfied any sufficient conditions.  However, with D = 

100 and n = 90, 57 out of the 100 instances satisfied sufficient conditions 2 and 3, the most of 

any set of these instances.  Table 5 shows the problem sets with instances that did satisfy at least 

one sufficient condition.   

Table 5. Problem sets with instances that satisfied sufficient conditions. 
  Sufficient Conditions 

D n 1 2 3 
100 70 0 0 1 

 80 0 10 10 
  90 0 57 57 

500 450 0 8 8 
1000 900 0 1 1 
1500 1100 0 0 1 

 1300 0 0 9 
  1400 0 4 17 

 

For D = 100, 500, and 1000, those instances that satisfied all three necessary conditions 

also satisfied at least one sufficient condition.  Only for D = 1500 were there instances that 

satisfied all three necessary conditions but none of the sufficient conditions.   

The techniques for finding perfect aggregations were tested on the 100 instances with D = 

1500 and n = 1000 (all of these satisfied all three necessary conditions).  For 68 of these 

instances, procedure solve was able to find a perfect aggregation in less than 0.5 seconds.  For 19 

of these instances, procedure solve reached the maximum recursion limit of 500.  The other 13 

required excessive computation time. 
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However, using procedures P1 and P2 on these 100 instances was more successful.  The 

remaining instance was always a set of products with demand equal to 1, for which constructing 

a perfect aggregation into groups of the appropriate size is trivial.  Therefore, there is a perfect 

aggregation and a zero RTV sequence for all 100 of these instances.  In Herrmann (2008), the 

best combination of the natural aggregation approach and heuristic yielded sequences with an 

average RTV of 64.8 for these instances. 

Summary and Conclusions 

This paper discussed the properties of perfect aggregations that can be used to construct 

zero RTV sequences.  A perfect aggregation is a series of aggregations that transforms an 

instance with multiple products into an instance with only one product.  Each aggregation 

replaces a set of products with a new product whose demand equals the total demand of the 

products in that set.  Unlike the natural aggregation approach of Herrmann (2008), each 

aggregation may combine only some of the products that have the same demand. 

Given an instance of the RTV problem, constructing a perfect aggregation for that 

instance leads immediately to a zero RTV sequence.  However, there exist instances that have 

zero RTV solutions but do not have a perfect aggregation.  Thus, a perfect aggregation is 

sufficient but not necessary for having a zero RTV sequence. 

The paper presented necessary conditions and sufficient conditions for a perfect 

aggregation.  The paper also presented an enumerative technique that searches for a perfect 

aggregation and heuristic procedures that can be used to simplify an instance before beginning 

the search.  Computational experiments show that these techniques can find perfect aggregations 

for instances that satisfy the necessary conditions but not the sufficient conditions. 
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In the future, it will be useful to identify more necessary and sufficient conditions for 

perfect aggregations and to study further the complexity of finding a zero RTV sequence.  It will 

also be interesting to apply these ideas to other problems of creating fair sequences. 
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