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Abstract

We describe a methodology for developing high performance programs running on clusters of SMP nodes.
Our methodology is based on a small kernel (SIMPLE ) of collective communication primitives that make
efficient use of the hybrid shared and message passing environment. We illustrate the power of our methodology
by presenting experimental results for sorting integers, two-dimensional fast Fourier transforms (FFT), and
constraint-satisfied searching. Our testbed is a cluster of DEC AlphaServer 2100 4/275 nodes interconnected
by an ATM switch.
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1 Problem Overview

With the cost of commercial off-the-shelf (COTS) high performance interconnects falling and the re-
spective performance of microprocessors increasing, workstation clusters have become an attractive
computing platform offering potentially a superior cost effective performance [23]. Indeed, this trend
highly leverages both workstation-focused technologies including systems software and networking in-
frastructure, for example, COTS networks (e.g. Ethernet, Myrinet, FDDI, or ATM). In recent years,

we have seen the maturing of Symmetric Multiprocessors (SMPs) technology (for example, hardware
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support for hierarchical memory management, multithreaded operating system kernels, and optimizing
compilers), and the heavy reliance upon SMPs as the work-intensive servers for client/server applica-
tions. It can be argued that 1) many future workstations will be SMPs with more than one processor,
and 2) SMP nodes will be the basis of workstation clusters. There are already several examples of
clusters of SMPs, such as clusters of DEC AlphaServer [14], SGI Challenge/PowerChallenge [11], or
Sun Ultra HPC machines, and the IBM SP system with SMP “High” nodes [16, 13]. With the accep-
tance of message passing standards such as MPI [19], it has become easier to design portable parallel
algorithms making use of these primitives. However, the focus of MPI is a standard for communicating
between shared-nothing processors, and although MPI programs run on clusters of SMPs, this is not

necessarily the optimal methodology for these platforms.
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Figure 1: The SIMPLE methodology efficiently combines shared memory programming on a node with
message passing between nodes.

This paper describes a methodology for programming clusters of SMP nodes (herein referred to
as COSMOS ') which aids in the design and implementation of efficient high performance parallel
algorithms. We call this model SIMPLE | referring to the joining of the SMP and MPI-like message
passing paradigms and the simple programming approach (see Figures 1 and 2).

Programming methodologies for COSMOS fall into two categories. The first, distributed shared
memory (DSM) systems (for example, TreadMarks [2] from Rice University, Multigrain Shared Mem-
ory (MGS) [30] from MIT and Coherent Virtual Machine (CVM) [17] from University of Maryland),
provides a software layer which simulates coherent shared memory between nodes by internally using
messaging to move around specific data or referenced memory pages. The second, based on message
passing primitives (for example, MPI [19]), enforces a shared-nothing paradigm between tasks, and
all communication and coordination between tasks are performed through the exchange of explicit
messages, even between tasks on a node with physically shared memory. For example, the model

assumed in [26] is that each processor in the cluster will be assigned a message passing (MPI-level)

Lcosmos (’kiaz-mos) noun Greek kosmos c. 1650

1: an orderly harmonious systematic universe
2: a complex orderly self-inclusive system
3: Cluster Of Shared Memory Nodes
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Figure 2: On the left, we show a message passing algorithm where each task uses sequential code during
computation phases. On the right, the SIMPLE approach replaces each computation step with an optimal
SMP algorithm.

process, with lower latency communication between processes on the same SMP node than with in-
ternode messages. However, our work differs from both of these approaches, in that we advocate a
hybrid methodology which maps directly to underlying architectural aspects. As such, we combine
shared memory programming on shared memory nodes with message passing communication between
these nodes.

The main results of this paper are

1. A programming methodology for COSMOS which is both efficient and portable. This method-

ology provides a path for optimizing message passing algorithms to clusters of SMPs.

2. A small message passing kernel for clusters connected by ATM switches which is superior in

performance when compared with the known MPI implementations.

3. High performance algorithms based on our methodology for sorting integers, constraint-satisfied

searching, and computing the two-dimensional FFT.

The organization of this paper is as follows. Section 2 addresses our computation methodology and

target parallel machine architectures. The design of algorithms for COSMOS is described in Section 3.



Our SIMPLE communication primitives are described in Sections 2.1 and 2.2, which include collective
communication and computation operations as well as functions for spreading work among processors
on a node, or across an entire cluster of machines. We present several examples of efficient algorithms
using the SIMPLE model for design, analysis, and empirical testing. The first algorithm, given in
Section 5, sorts integers using a radix-based approach. The performance of this algorithm is compared
with that of an efficient MPI radix sort, highlighting the significant improvement introduced by our
methodology. Section 6 presents the second algorithm, two-dimensional FFT, which is the cornerstone
computation in many applications. The third algorithm, an example of constraint-satisfied searching,
finds all solutions to the n-queens problem and can be found in Section 7. Experimental results are
provided from implementations on a cluster of DEC AlphaServer 2100 4/275 nodes each with a DEC
(0OC-3¢) 155.52 Mbps PCI card connected to a DEC Gigaswitch/ATM switch, and using the MPI
(e.g., LAM 6.1 [22], MPICH 1.0.13 [12], or CHIMP 2.1.1¢ [1]) and POSIX threads (DECthreads [9] or
freely available pthreads implementations [25, 20]) packages. Finally, Section 9 presents a direction

for future work.

2 The SIMPLE Parallel Computation Methodology

We use a simple paradigm for designing efficient and portable parallel algorithms. First we will
describe characteristics of our target parallel machine architecture, followed in the next section by a
set of SIMPLE communication and computation primitives which are implemented efficiently and

are intended as user level directives.

I nterconnection Network

Figure 3: Cluster of processing elements

Our architecture consists of a collection of SMP nodes interconnected by a communication network
(as shown in Figure 3) that can be modeled as a complete graph on which communication is subject to
the restrictions imposed by the latency and the bandwidth properties of the network. Each SMP node

contains several identical processors, each typically with its own on-chip cache and a larger off-chip



cache, which have uniform access to a shared memory and other resources such as the network interface.

We view a parallel algorithm as a sequence of local computation interleaved with communication steps.
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Figure 4: A typical symmetric multiprocessing (SMP) node used in a cluster. L1 is on-chip level-one cache,
and L2 is off-chip level-two cache.

We use the parameter r to represent the number symmetric processors per node (see Figure 4 for a
diagram of a typical node). Notice that each CPU typically has its own on-chip cache (L1) and a larger
off-chip level two cache (L.2), which can be tightly integrated into the memory system to provide fast
memory accesses and cache coherence. In practice, SMP configurations range between 2 and 36 CPU
modules attached to a shared bus and main memory. The shared memory programming of each SMP
node is based on threads which communicate via coordinated accesses to shared memory. Several
primitives will be discussed in the following section which, for example, synchronize the threads at
a barrier, enable one thread to broadcast data to the other threads, or calculate reductions across
the threads. In our methodology, only the CPUs from a certain node have access to that node’s
configuration. In this manner, there is no restriction that all nodes must be identical, and certainly
COSMOS can be constructed from SMP nodes of different sizes. Thus, the number of threads on a
specific remote node is not globally available. Because of this, our methodology supports only node-
oriented communication, meaning we restrict communication such that, given any source node s and
destination node d, with s # d, only one thread on node s can send (receive) a message to (from) node
d at any given time. We will show later that no performance loss will be incurred by this restriction.

Next we describe the SIMPLE primitives which aid in the design of efficient and portable parallel
algorithms. For ease of discussion, we separate the primitives into two categories, communication (in

Section 2.1) and computation (in Section 2.2), where communication directs the flow of information



between threads and computation refers to the control mechanisms among threads.

2.1 Communication Primitives

SIMPLE Communication Library

Barrier, Reduce, Broadcast, Allreduce,
Alltoall, Alltoallv, Gather, Scatter

Internode Communication Library SMP Node Library

Reduce, Broadcast, Allreduce,
Alltoal, Alltoallv, Gather, Scatter

Barrier
Barrier Broadcast
Send Recv SendRecv Reduce

Figure 5: Hierarchy of SMP, message passing, and SIMPLE communication libraries

The communication primitives are grouped into three modules: Internode Communication Library
(ICL ), SMP Node, and SIMPLE . The ICL communication library provides a small kernel for
internode communication, similar to MPI, but with less overhead than several of the freely available
implementations of MPI (for example, MPICH, LAM, or CHIMP), and is based upon a reliable,
application-layer send and receive primitive, as well as a send-and-receive primitive which handles
the exchanging of messages between sets of nodes where each participating node is the source and
destination of one message. The library also provides a barrier operation based upon the send and
receive which halts the execution at each node until all nodes check into the barrier, at which time,
the nodes may continue execution. In addition, ICL includes collective communication primitives, for
example, reduce, broadcast, allreduce, alltoall, alltoallv, gather, and scatter. The SMP Node
Library contains three important primitives for an SMP node: barrier, broadcast, and reduce,
whereby on a single node, barrier synchronizes the threads, broadcast ensures that each thread has
the most recent copy of a shared memory location, and reduce performs a reduction operation with a
binary associative operator (for example, addition, multiplication, maximum, minimum, bitwise-AND,
and bitwise-OR) with one datum per thread. Finally, the SIMPLE communication library, built on
top of ICLL and SMP Node, includes the primitives for the SIMPLE model: barrier, reduce,
broadcast, allreduce, alltoall, alltoallv, gather, and scatter. These hierarchical layers of our
communication libraries are pictured in Figure 5.

The SMP Node, ICL, and SIMPLE libraries are implemented at a high-level, completely in user
space (see Iigure 6). Because no kernel modification is required, these libraries easily port to new

platforms.
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Figure 6: User code can access SIMPLE |, SMP, message passing, and standard user libraries. Note that
SIMPLE operates completely in user space.

Parameter Description
NODES =p Total number of nodes in the cluster.
MYNODE My node rank, from 0 to NODES — 1.

THREADS = r | Total number of threads on my node.

MYTHREAD The rank of my thread on this node, from 0 to THREADS — 1.
TID Total number of threads in the cluster.

ID My thread rank, with respect to the cluster, from 0 to TID — 1.

Table I: The local context parameters available to each SIMPLE thread.

As mentioned previously, the number of threads per node can vary, along with machine size.
Thus, each thread has a small set of context information which holds such parameters as the number
of threads on the given node, the number of nodes in the machine, the rank of that node in the
machine, and the rank of the thread both 1) on the node and 2) across the machine. Table I describes
these parameters in detail.

Because the design of the communication libraries is modular, it is easy to experiment with different
implementations. For example, the MPI libraries offer a more robust communication suite than our
ICL Library, at a significant cost. However, the lower-level ICL. and SMP Node primitives can
be replaced by vendor-supplied MPI and SMP primitives. We ran a simple experiment whereby a
message is sent between two nodes and plotted the results. Figure 7 shows the communication time
and respective bandwidth for sending a message between two DEC AlphaServer 2100 nodes, using the
Digital Gigaswitch/ATM and OC-3c adapter cards, which have a peak bandwidth rating of 155.52
Mbps.

The results, summarized in Table II, reflect the latency and bandwidth characteristics of point-to-
point messages between a pair of DEC AlphaServer 2100 nodes, using the Internode Communication

Library (ICL ) and the best MPI implementation (MPICH). The theoretical raw peak bandwidth is
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Communication Library | Latency | Bandwidth ‘
ICL 170us 132 Mbps
MPI (MPICH) 4004 75 Mbps

Table II: The latency and bandwidth characteristics of point-to-point messages between a pair of DEC
AlphaServer 2100 nodes, with ATM OC-3c adapters, using both the Internode Communication Library
(ICL ) and MPI (MPICH).

155.52 Mbps, and our application level measurement finds the ICL library achieving 132 Mbps, while
MPI/MPICH only reaches about half of that. In addition, our latency measurements are less than
half of that incurred using MPI/MPICH. The SIMPLE library can use either MPI or ICL for passing
messages between the nodes, taking into account the following two important considerations. First,
ICL is not a replacement for MPI. The ICL library offers only a small subset of the functionality
available in MPI, for example, [CL uses only a single communication group, specializes the implemen-
tation for an ATM network instead of implementing communication on an abstract channel device,
restricts the number of outstanding communication events, and provides less status information and
no additional debugging hooks. Second, ICL provides both weak support for multithreading where
the user is responsible for maintaining mutually exclusive use of communication channels via implicit
algorithmic design or explicit locks, and strong support where internal locking mechanisms automat-
ically protect the user from corrupting the communication layer. However, the MPI implementation
must be thread-safe. Thus, the ICL communication library achieves the higher performance for two
main reasons, first latency is reduced because, by purpose, ICL is not as generalized as MPI, and

second, bandwidth is increased in ICL by optimizing the network parameters for an ATM switch.

2.1.1 Implementation of the SMP Node Library

As Figure 6 shows, the SMP Node library can be implemented on top of a portable threads layer,
such as POSIX threads (pthreads), or if available, via possibly faster native primitives. Our SMP
Node library is based upon pthreads, and thus, is portable to POSIX standard platforms. The three
SMP Node primitives which we require for SIMPLE are reduce, barrier, and broadcast. For
example, if the number of threads is small, each thread entering a reduce primitive first acquires a
lock, stores the reduction of its element with the shared element, and increases the counter of waiting
threads. If it is not the last to enter, the thread releases the lock and blocks waiting for a condition.
If in fact the thread is the last to enter, it resets the operation and uses a condition broadcast to
wake up the other threads. Finally, all threads return the result. For a larger number of threads, the
reduce primitive can be implemented with an efficient parallel k-ary tree for a suitable value of k.
The pthreads standard requires primitives for synchronization with condition variables and mutual

exclusion locks, but does not include a primitive for barrier synchronization. The barrier primitive



can be implemented similarly to reduce, since all threads must enter before each thread can continue.
Since a side effect of the pthreads locking mechanism is an SMP memory coherence barrier, the thread
with data to broadcast writes this information in a shared memory location, and then all threads
enter a barrier. Afterwards, each thread reads this shared memory location which is guaranteed to
be consistent.

Now that the basics of the communication system and node library have been presented, we are

ready to describe some of the SIMPLE communication primitives.

2.1.2 The Alltoall primitive

One of the most important collective communication events is the Alltoall (or transpose) primitive
which transmits regular sized blocks of data between each pair of nodes. More formally, given a
collection of p nodes each with an n element sending buffer, where p divides n, the Alltoall operation
consists of each node ¢ sending its jth block of % data elements to node j, where node j stores the
data from i in the i block of its receiving buffer, for all (0 < 4,5 < p—1). An efficient message
passing implementation of Alltoall would be as follows. The notation “var,” refers to memory location

“var+ (% 1)”, and src and dst point to the source and destination arrays, respectively.

n
p

e Step (2): For i = 1 to NODES — 1 do

e Step (1): Copy the appropriate 2 elements from sreyywops t0 dstyynope -

— A) Set k= MYNODE & ¢;
— B) Send

% elements from sreg to node £, and
Receive % elements from node & to dst.

To implement this algorithm, we use multiple threads per node. The local memory copy in Step
(1) trivially can be performed concurrently by one thread while the remaining threads handle the
internode communication as follows. The p — 1 iterations of the loop in Step (2) are partitioned in
a straightforward manner to the remaining threads. Fach thread has the information necessary to
calculate its subset of loop indices, and thus, this loop partitioning step requires no synchronization
overheads.

In Figure 8, we compare the performance of three Alltoall primitives, using the MPI, ICL .
and SIMPLE communication libraries on four and eight DEC AlphaServer 2100 4/275 nodes. In all
cases, the SIMPLE primitive is the fastest, typically by a factor or two or three over MPI. Now,
with only a single network interface per node, why would one expect a performance improvement by
using multiple threads? Our algorithm exploits two main sources of parallelism. The first is task level
concurrently exhibited by one thread performing the local memory copy while other threads utilizing

the network. The second form of parallelism is less obvious, but nonetheless an important observation.

10
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Unlike clusters of workstations where each network interface is closed coupled to a single processor’s
communication stream, on an SMP node, the operating system is itself capable of internal parallelism
(via multi-threaded kernel routines) and can more efficiently pipeline requests between the processors

and the network interface.

2.2 Computation Primitives

In the previous section, we provided an overview of our communication library. Next we will explore
the set of user level directives, called SIMPLE computation primitives, which do not communicate
data but affect a thread’s execution through 1) loop parallelization, 2) restriction, or 3) shared memory
management. Basic support for data parallelism, that is, “parallel do” concurrent execution of loops
across processors on one or more nodes, is discussed first. Next we describe the control primitives
which restrict (or contextualize) thread execution, for example, to some subset of threads or nodes.
Lastly, we cover a few shared memory management directives which make it easier for the user to
develop portable shared memory code by standardizing the interface for allocating and deallocating

shared memory locations.

2.2.1 Data Parallel

The SIMPLE methodology contains several basic “pardo” directives for executing loops concurrently
on one or more SMP nodes, provided that no dependencies exist in the loop. Typically, this is useful
when an independent operation is to be applied to every location in an array, for example, in the
element-wise addition of two arrays. Pardo implicitly partitions the loop to the threads without the
need for coordinating overheads such as synchronization or communication between processors. By
default, pardo uses block partitioning of the loop assignment values to the threads, which typically
results in better cache utilization due to the array locations on left-hand side of the assignment being
owned by local caches more often than not. However, SIMPLE explicitly provides both block and
cyclic partitioning interfaces for the pardo directive.

Similar mechanisms exist for parallelizing loops across a COSMOS . The all_pardo_cyclic (i, a, b)
directive will cyclically assign each iteration of the loop across the entire collection of processors. For
example, 1+ = a will be executed on the first processor of the first node, i+ = @ + 1 on the second
processor of the first node, and so on, with ¢+ = @ + r — 1 on the last processor of the first node. The
iteration with ¢« = @ + r is executed by the first processor on the second node. After r - p iterations
are assigned, the next index will again be assigned to the first processor on the first node. A similar
directive called all_pardo_block, which accepts the same arguments, assigns the iterations in a block
fashion to the processors, thus, the first b;—; iterations are assigned to the first processor, the next

block of iterations are assigned to the second processor, and so forth. With either of these SIMPLE

12



n

pr iterations for a loop of size n.

directives, each processor will execute at most [

2.2.2 Control

The second category of SIMPLE computation primitives control which threads can participate in the

context by using restrictions.

Control Primitives
max number of | MYNODE | MYTHREAD
Primitive Definition participating restriction restriction
threads

on_one_thread | only one thread per node p 0
on_one_node all threads on a single node T 0

on_one only one thread on a single node 1 0 0
on_thread(i) | one thread (i) per node P

on_node(j) all threads on node j T j

Table I11: Subset of SIMPLE Control Primitives.

Table IIT defines each control primitive and gives the largest number of threads able to execute the
portion of the algorithm restricted by this statement. For example, if only one thread per node needs
to execute a command, it can be preceded with the on_one_thread directive. Suppose data has been
gathered to a single node. Work on this data can be accomplished on that node by preceding the
statement with on_one_node. The combination of these two primitives restricts execution to exactly

one thread, and can be shortcut with the on_one directive.

2.2.3 Memory Management

Finally, shared memory allocations are the third category of SIMPLE computation primitives. Two

directives are used:
1. node_malloc for dynamically allocating a shared structure, and
2. node_free for releasing this memory back to the heap.

The node_malloc primitive is called by all threads on a given node, and takes as a parameter the
number of bytes to be allocated dynamically from the heap. The primitive returns to each thread a
valid pointer to the shared memory location. In addition, a thread may allow others to access local
data by broadcasting the corresponding memory address. When this shared memory is no longer
required, the node_free primitive releases it back to the heap.

Thus, we have described the fundamental elements of the SIMPLE methodology and can now
present a high-level approach for designing algorithms on COSMOS .

13



3 SIMPLE Algorithmic Design

In this section we describe the SIMPLIE programming model as seen by the user and the runtime

support for executing SIMPLE code.

3.1 Programming Model

The user writes an algorithm for an arbitrary cluster size p and SMP size r (where each node can
assign possibly different values to r at runtime), using the parameters from Table I. SIMPLE expects
a standard main function (called SIMPLE_main() ) that, to the user’s view, is immediately up and
running on each thread in the COSMOS . Thus, the user does not need to make any special calls to
initialize the libraries or communication channels. SIMPLE makes available the rank of each thread
on its node or across the cluster, and algorithms can use these ranks in a straightforward fashion to
break symmetries and partition work. The only argument of SIMPLE _main() is “THREADED),”
a macro pointing to a private data structure which holds local thread information. If the user’s
main function needs to call subroutines which make use of the SIMPLE library, this information is
easily passed via another macro “TH” in the calling arguments. After all threads exit from the main

function, the SIMPLE code performs a shut down process.

3.2 Runtime Support

When a SIMPLE algorithm first begins its execution on a COSMOS , the SIMPLE runtime support
has already initialized parallel mechanisms such as barriers and established the network-based intern-
ode communication channels which remain open for the life of the program. The various libraries
described in Section 2 have runtime initializations which take place as follows.

The runtime startup routines for a SIMPLE algorithm are performed in two steps. First, the [CL
initialization expands computation across the nodes in a cluster by launching a master thread on each of
the p nodes and establishing communication channels between each pair of nodes. Second, each master
thread launches r user threads, where each node is at least an 7-way SMP2. It is assumed that the r
CPUs concurrently execute the r threads. The thread flow of an example SIMPLE algorithm is shown
in Figure 9. As mentioned previously, our methodology supports only node-oriented communication,
that is, given any source node s and destination node d, with s # d, only one thread on node s can
send (receive) a message to (from) node d during a communication step. Also note that the master
thread does not participate in any computation, but sits idle until the completion of the user code, at

which time it coordinates the joining of threads and exiting of processes.

ZA rule of thumb in practice is to use r threads on an r 4+ 1-way SMP node, which allows operating system tasks to fully
utilize at least one CPU

14
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Figure 9: Example of a SIMPLE algorithm flow of master and compute-based user threads. Note that
the only responsibility of each master thread is only to launch and later join user threads, but never to
participate in computation or communication.

Our model is simply implemented using a portable thread package called POSIX threads (pthreads),
which is a standard (IEEE Std. 1003.1c), supplied with POSIX 1.c ([24, 27]). Note that pthreads
are also available in the “standard” Distributed Computing Environment (DCE) used in operating

systems such as OSF [10] and AIX [15].

A Possible Approach

The latency for message passing is an order of magnitude higher than accessing local memory.
Thus, the most costly operation in a SIMPLE algorithm is internode communication, and algorithmic
design must attempt to minimize the communication costs between the nodes. Since this is a similar
optimization criterion used when designing efficient message passing algorithms [3], it is beneficial to
first design an efficient message passing algorithm on a COSMOS , and then adapt the algorithm for
the SIMPLE paradigm.

Given an efficient message passing algorithm, an incremental process can be used to design an
efficient SIMPLE algorithm. The computational work assigned to each node is mapped into an

efficient SMP algorithm. For example, independent operations such as those arising in functional

15



parallelism (for example, independent 1/O and computational tasks, or the local memory copy in the
SIMPLE Alltoall primitive presented in the previous section) or loop parallelism typically can be
threaded. For functional parallelism, this means that each thread acts as a functional process for that
task, and for loop parallelism, each thread computes its portion of the computation concurrently. Note
that we may need to apply loop transformations to reduce data dependencies between the threads.
Thread synchronization is a costly operation when implemented in software and, when possible, should

be avoided.

4 Example: SIMPLE Permutation

As mentioned briefly in the previous section, more complex communication algorithms can be devel-
oped from the primitives described in Section 2. For example, the SIMPLE Alltoallv communication
primitive handles the case where the messages for each destination are already collected into a con-
tiguous block of an array holding all of the messages, and the messages to be received from the other
nodes likewise will appear in contiguous blocks in another array. Suppose instead that each node
contains a set of messages, each message holding a destination tag, such that no node sends or re-
ceives more than h messages [28]. The resulting h-relation personalized communication [5] is a useful
communication routine used in a variety of parallel algorithms. Fach node determines the number of
its keys to be sent to every other node, announces these counts to the destination nodes, rearranges
the input elements into a single send buffer such that all keys for the destination node j are in con-
tiguous memory and appear before the keys for node j 4 1, routes the all-to-all communication event,
and finally, unpacks each received element into the correct destination position. A description of the

algorithm is as follows.

e Step (1): For each node i, count the number of keys labeled with destination node j, for
(0 <7 <p-=1). On each node, each of r threads
— A) histograms % of the input concurrently, and
— B) merges these r histograms into a single array (sendCount) for the node.
e Step (2): Using sendCount and the arrays generated in Step (1A), rearrange the input
elements into a single send buffer such that all keys with destination node j are in contiguous

memory and appear before keys with destination 5 + 1. On each node, each of r threads place

% of the elements concurrently.

e Step (3): Apply the SIMPLE Alltoall primitive to the sendCount array using the block size
1. Hence, at the end of this step, each node will know the number of keys it will receive from

every other node (recvCount).

16



e Step (4): Route the all-to-all communication event (with the SIMPLE Alltoallv communica-

tion primitive) using the send, sendCount, and recvCount arrays.

e Step (5): Each node unpacks its received elements and places each in the correct array position.
Since this is a permutation routing, no collisions will occur in the final array, and r threads can

each unpack % of the array concurrently into shared memory.

This algorithm relies on efficient implementations of the Alltoall and Alltoallv primitives and
assumes that the number of messages exchanged between each pair of nodes is fairly balanced. How-
ever, if significant imbalance exists, an alternative algorithm might replace the one-phase data routing
in Step (4) with a two-phase routing approach using balanced Alltoall primitives in each phase
(see [5]). Similarly, other complex communication algorithms can be developed using the SIMPLE
methodology. The above permutation algorithm minimizes the number of communication steps, which
is optimal on our COSMOS testbed where communication is expensive compared with local compu-
tation. Next, we show an example of an algorithm for sorting which makes use of a special case of the
h-relation personalized communication, where the number of messages to be sent and received are the

salne.

5 Radixsort

Consider the problem of sorting n integers spread evenly across a cluster of p shared-memory r-way
SMP nodes, where n > p?. Fast integer sorting is crucial for solving problems in many domains, and as
such, is used as a kernel in several parallel benchmarks such as NAS? [6] and SPLASH [29]. We present
an efficient sorting algorithm based on our SIMPLE methodology. We chose the technique of radix
sort since it is well known for sequential programming, but efficient methods for solving this problem
on clusters of SMPs are not. The SIMPLE approach for radix sort is similar to our efficient message
passing algorithm [5], except when applicable, shared memory computation replaces sequential node
work, and communication uses the improved SIMPLE communication library.

Consider the problem of sorting n integer keys in the range [0, M — 1] that are distributed equally
in the shared memories of a p-node cluster of r-way SMPs. Radix sort decomposes each key into
groups of p-bit digits, for a suitably chosen p, and sorts the keys by applying a counting sort routine
on each of the p-bit digits beginning with the digit containing the least significant bit positions [18].
Let R =27 > p. Assume (w.l.o.g.) that the number of nodes is a power of two, say p = 2% and hence

% is an integer = 2°7F > 1,

3Note that the NAS IS benchmark requires that the integers be ranked and not necessarily placed in sorted order.
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5.1 SIMPLE Counting Sort Algorithm

Counting Sort algorithm sorts n integers in the range [0, R — 1] by using R counters to accumulate
the number of keys equal to the value ¢ in bucket B;, for 0 <1 < R — 1, followed by determining the
rank of each key. Once the rank of each key is known, we can move each key into its correct position
using a permutation (%—relation) routing [4, 5], whereby no node is the source or destination of more
than % keys. Counting Sort is a stable sorting routine, that is, if two keys are identical, their relative
order in the final sort remains the same as their initial order.

We present an overview of the original message passing Counting Sort algorithm and follow this
with the adaptations to the algorithm using our SIMPLIE methodology. In a practical integer sorting

n

problem, we expect R =~ - The pseudocode for our Counting Sort algorithm uses six major steps

and can be described as follows.
e Step (1): For each node ¢, (0 <7 < p—1), count the frequency of its m keys; that is, compute
H;[k], the number of keys equal to k, for (0 <k < R —1).

e Step (2): Apply the Alltoall primitive to the H arrays using the block size %. Hence, at the

end of this step, each node will hold % consecutive rows of H.
e Step (3): Each node locally computes the prefix-sums of its rows of the array H.

e Step (4): Apply the (inverse) Alltoall primitive to the R corresponding prefix-sums aug-
mented by the total count for each bin. The block size of the Alltoall primitive is 2%.

e Step (5): On each node, compute the ranks of the % local elements using the arrays generated
in Steps (1) and (4).

e Step (6): Perform a personalized communication of keys to rank location using an %—relation

algorithm.

We can adapt this message passing algorithm to our SIMPLE methodology with the following
changes. In Step (1), the computation can be divided evenly among the threads. Thus, on each node,
each of r threads A) histograms % of the input concurrently, and B) merges these r histograms into
a single array for node i. For the prefix-sum calculations on each node in Step (3), since the rows
are independent, each of r threads can compute the prefix-sum calculations for % rows concurrently.
Also, the computation of ranks on each node in Step (5) can be handled by r threads, where each
thread calculates % ranks of the node’s local elements. Communication can also be improved by
replacing the message passing Alltoall primitive used in Steps (2) and (4) with the appropriate
SIMPLE primitive.

n

The h-relation used in the final step of Counting Sort is a permutation routing since h = o and

was given in the previous section.
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5.2 SIMPLE Radix Sort Algorithm

The message passing Radix Sort algorithm makes several passes of the previous message passing
Counting Sort in order to completely sort integer keys. Counting Sort can be used as the intermediate
sorting routine because it provides a stable sort. Let the n integer keys fall in the range [0, M — 1],
and M = 2°. Then we need % passes of Counting Sort; each pass works on p-bit digits of the input
keys, starting from the least significant digit of p bits to the most significant digit. Radix Sort easily
can be adapted for clusters of SMPs by using the SIMPLIE Counting Sort routine.

5.3 Performance

We now provide empirical performance results for the Radix Sort algorithm on various platforms. We
first graph the performance of the SIMPLE Radix Sort on a cluster of SMPs and show that indeed,
our implementation is efficient. Next, we show results of a good MPI Radix Sort on an IBM SP-2,

and compare this code with that of a shared memory sort on a single SMP node. Finally, we compare

the SIMPLE Radix Sort with that of DSM and MPI Radix Sorts on a cluster of SMPs.
Execution Time of Radix Sort

on a cluster of (p) DEC AlphaServer 2100 4/275 nodes
(each node is a 4-way SMP)

100
e —
N p=2
—o— p=4
T p=8
10 o =
. o
ok
G A
= o A
1 /E‘////D//./
ke
pvy
s P -
-//
1 . . . . . .
17 18 19 20 21 22 23 24

log( N Integers )

Figure 10: Execution Time of SIMPLE Radix Sort with r =4 and p = 1,2,4, and 8 nodes.

The performance of the SIMPLE Radix Sort algorithm on a COSMOS of DEC AlphaServer
nodes is given in Figure 10. In this experiment, we use four user threads per node, and vary both the
problem size and the number of nodes used. Here, the SIMPLE code shows linear speedups when

using multiple nodes of a COSMOS platform.
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Percentage of the Execution Time for Radix Sort Percentage of the Execution Time for Radix Sort
Communicating Data in Step (4) of the Permutation Routing Communicating Data in Step (4) of the Permutation Routing

on the DEC Cluster on the IBM SP-2-TN
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Figure 11: Percentage of execution time of radix sort spent in the Alltoallv communication primitive used
in Step (4) of the permutation routing on clusters of DEC and IBM nodes.

In Figure 11 we have plotted the percentage of the running time of radix sort spent performing the
Alltoallv communication primitive used in Step (4) of the permutation algorithm for various IBM
and DEC cluster sizes. After each key is ranked during the Counting Sort, this step sends each key
to its destination. For moderately sized inputs on the DEC cluster, roughly a third of the execution
time is spent in this communication step, and for larger problems, more than half the time is spent
in this step. In comparison, for most inputs, the IBM SP-2-TN spends less than 30 percent of its
execution time for in the corresponding step. These performance graphs indicate that radix sort is
largely communication bound on the DEC Cluster, while computation bound on the IBM SP-2-TN.
These results are expected, as the IBM SP-2 has a faster network but less processing power on each
node than the DEC cluster.

As we claim in the introduction, software distributed shared memory and message passing algo-
rithms are not optimal for COSMOS platforms. For instance, we ported an efficient SMP radix
sort code into a software distributed shared memory package called Coherent Virtual Machine (CVM,
version 0.1) [17] which is an extension of the commercial TreadMarks [2] DSM implementation. The
performance of this DSM radix sort is given in Figure 14. In addition, we took an efficient message
passing code for radix sort (the reader is referred to [5] for a complete analysis of the algorithm and
its performance) whose performance on an IBM SP-2 is shown in Figure 12. The IBM SP-2 contains

uniprocessor nodes interconnected by a fast switch. On this platform, the message passing algorithm
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Execution Time of MPI Radix Sort

on p thin nodes of an IBM SP-2
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Figure 12: Performance of MPI Radix Sort on an IBM SP-2-TN with p = 1,2,4.8, and 16 thin nodes.

performs very well. That is, for a fixed machine size, when the problem size is halved, the performance
roughly is cut in half as well. In addition, for a fixed problem size, when twice as many processors are
used to solve a given sorting problem, as expected the time is again halved.

An analysis of the difference in raw performance between the IBM SP-2 and the DEC cluster shows
the following. When computation dominates, the DEC platform is faster in raw execution time,
however, as communication increases, the imbalance of communication bandwidth to computation
speed on the DEC cluster becomes more pronounced, and the IBM SP-2 is the faster platform. For
example, consider the problem of sorting one million keys. A single node of the DEC AlphaServer
cluster sorts these keys in approximately 2.3 seconds, whereas one node of an IBM SP-2-TN requires
more than four seconds. However, when p = 8 nodes, both the DEC cluster and the SP-2 require
roughly a half a second, even though the DEC cluster is using four times as many processors.

In Figure 13 we plot the execution of the MPI radix sort code on a single DEC AlphaServer 2100
4/275 (4-way SMP) node using one, two, and four threads of execution. For large inputs, notice that
the performance improves slightly when more threads are used, but still there is no great difference
when using multiple threads on a single node. In this same figure, following the SIMPLIE methodology,
we plot the performance of a shared memory radix sort of the same input on this 4-way SMP node. In
addition to being almost an order of magnitude faster, unlike the message passing code, the SIMPLE

algorithm shows significant speedups when using multiple threads.
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Comparison of MPI (mpich) and SMP Radix Sort Execution Time
on r CPUs of a single DEC AlphaServer 2100 4/275 node

(each node is a 4-way SMP)
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Figure 13: Comparison of MPI (MPICH) and SIMPLE Radix Sort with r = 1,2, and 4 with p = 1 node.

Execution Time of Radix Sort Execution Time of Radix Sort
on four (4) DEC AlphaServer 2100 4/275 nodes on eight (8) DEC AlphaServer 2100 4/275 nodes
(each node is a 4-way SMP) (each node is a 4-way SMP)
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Figure 14: Comparison of DSM, MPI, and SIMPLE Radix Sort on a cluster of DEC AlphaServer 2100
4/275 nodes. Note that we tested the DSM/CVM radix sort implementation using one to four processes per
node, and the MPI/MPICH implementation using both one and four MPI tasks per node. The SIMPLE
implementation uses r = 4 threads per node, and p = 4 and p = 8 nodes on the left and right, respectively.
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Figure 14 provides a summary of the performance of the SIMPLE methodology with DSM/CVM
or MPI/MPICH on our testbed. In this experiment, we compare the performance of a SIMPLE radix
sort code using both four and eight 4-way SMP nodes with that of both DSM/CVM and MPI/MPICH
code for various cases, such as using one or multiple threads of execution per node. In all situations
on the cluster of SMPs testbed, the SIMPLE algorithm substantially outperforms that of both the

distributed shared memory and the message passing implementations.

6 Two-Dimensional Fast Fourier Transform

Fourier transforms are at the heart of many computations in medical image analysis, computational
fluid dynamics, speech recognition, seismic analysis, image and signal processing, and detecting surface
defects in manufacturing. The straightforward and well-known FFT takes a one-dimensional signal
and transforms it into a one-dimensional vector of frequency components. However, when the input
is a two-dimensional digital image, a corresponding two-dimensional FFT (2D-FFT) can be used
similarly to transform the image into its two-dimensional frequency image. A 2D-FFT computation
can be reduced to 1D-FFT’s by first performing 1D-FFT’s across the rows, followed by 1D-FFT’s
down the columns, similar to the FFT algorithms in [7, 8] which performs an all-to-all transpose of
the data between two phases of local computation. In fact, a k-dimensional transform can be formed
by performing k (k — 1)-dimensional FFTs along each axis.

In Figure 15, we illustrate the major steps of the two-dimensional FFT algorithm. Assume that
an n X n image is originally partitioned in strips among the p nodes such that each node originally

holds % rows of the image.

i

e Step (1): Fach node performs " n-point 1-D FFTs across the rows of its local image strip.

e Step (2): Locally rearrange the image such that each % X % block of the image is transposed.
Thus, for each block, each column of data is gathered into contiguous memory in preparation

for the following step.

e Step (3): Apply the Alltoall primitive to transpose the blocks.

e Step (4): Locally rearrange the data such that each node holds % columns of the image in

contiguous memory.

i

e Step (5): Each node performs m n-point 1-D FFTs down the columns? of its local image strip.

Note that the 2-D FFT algorithm above is valid for both the message passing and SIMPLE

"
tively, to each thread, and substitutes the SIMPLE Alltoall primitive in Step (3). (Note that the

paradigms. The SIMPLE optimization assigns = rows and columns in Steps (1) and (5), respec-

*In fact, the image strip is transposed, so the 1-D FFTs are performed physically across rows of memory.
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local rearrangements in Steps (2) and (4) similarly can be optimized for shared memory threads on

each node.)

= i

Figure 15: The Two-dimensional FFT Algorithm with blocks of rows initially distributed across the nodes:
(top left) performs local one-dimensional FFTs across the rows, (top right) locally rearranges data, (bottom
left) transposes the image such that each node holds a block of columns, and (bottom right) performs local
one-dimensional FFTs across the columns.

We begin with an efficient message passing algorithm for the FFT. The one-dimensional FFT
used in the first and last steps is a benchmark kernel from netlib [21]. As shown in Figure 16, the
message passing implementation performs very well on the IBM SP-2. When we fix a problem size
and double the number of processors, the execution time scales appropriately. Also, when the image
size is increased four-fold (say, from 512 x 512 to 1024 x 1024 pixels), on a given number of processors,

again as expected, the execution time follows the predicted complexity of the FF'T algorithm.
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Execution Time of Two-Dimensiconal FFT on an IBM SP-2-TN

foran n x n image

(Using MP1)
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Figure 16: MPI Code for Two-dimensional FFT on an IBM SP-2-TN

Without any modifications, we ran the message passing code on both a cluster of DEC AlphaServer
2100 4/275 nodes (with only one task per node) and using message passing solely on a single node (see
the left and right plates of Figure 17, respectively). For a fixed image size, the performance does not
scale well with four more more nodes. In addition, the code running on one, two, and four, processors
of a single node shows very little gain by using more than a single CPU per node. Compare these
results with the SIMPLE execution times presented in Figure 18 for a variety of configurations (from
one to eight nodes and from one to four CPUs per node) and image sizes (128 x 128 to 1024 x 1024
pixels). For instance, on a 1024 x 1024 pixel image, using just a single node and four tasks, the
message passing implementation takes approximately 3.3 seconds, while the SIMPLE approach is
about a second faster, or equivalently, two-thirds the execution time. We see an improvement for

using multiple CPUs on a node, even at our largest available machine configuration of eight nodes.
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Execution Time of Two-Dimensional FFT on a cluster of (p) DEC Alpha$erver 2100 4/275 nodes

foran nxn image

(Using MPI)
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Execution Time of Two-Dimensional FFT on one DEC AlphaServer 2100 4/275 node

foran nxn image
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Figure 17: MPI Code for Two-Dimensional FFT. On the left, we show the performance
DEC AlphaServer nodes. On the right, multiple processors on a single DEC AlphaServer

used.
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Figure 18: Two-dimensional FF'T on a cluster of DEC AlphaServer 2100 nodes using the SIMPLE method-

ology
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7 Constrained Search Algorithm: The n-Queens Prob-
lem

A classic puzzle used in benchmarking and performance analysis is the n-queens problem. Here,
the objective is to place » queens on an n X n chessboard such that none of the queens can attack
each other. For those readers unfamiliar with the game of chess, this restricts the placement of the
queens such that no two queens share the same rank (or row), column, or diagonal. Since there are
20, = 71,(:272:71), ways to place » queens on an n X n board, a brute force algorithm which checks each
of these candidate solutions is infeasible. If we limit the search space to include just those candidates
which have exactly one queen per rank, then we reduce the search space to n” possible candidates,
which is still too large. Therefore, the most desirable search method aggressively eliminates sets of
candidate solutions which do not satisfy the constraints.

Our algorithm uses a tree-based backtracking approach where queens are placed one by one on
each rank until all n queens are placed. If a constraint is not met, or a solution is found, the last
queen placed on the board is removed and re-placed in the next column position. This is equivalent
to a depth-first search with pruning of branches where the constraints are not met. Note that we are
not taking into consideration the special topological properties and symmetries of the chessboard, for

example, rotating known solutions by 90°, 180°, and 270°, to discover similar solutions, or reflecting

solutions about the horizontal, vertical, or diagonal axes.

0 1 2 . oo n-1 rank O
0 n 2n o oo (n-L)n rank 1
0 n2 2n2 e o (n-l)n2 rank 2
0 n™ | opmt .o e-on™  rank n-1
EE £
> > > >
@] v © ?}

Figure 19: Encoding of the chessboard

A parallel n-queens constraint-satisfaction search algorithm with p processors uses distributed

search tree approach as follows. First, the algorithm enumerates a set of independent search-tree seed
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Search Space

k=n

Figure 20: Search Tree for a constrained search, e.g. the nqueens problem.

nodes and partitions these to the processors. Suppose we generate all possible queen placements on
the first k& ranks of an n X n chessboard. There will be n* of these placements, uniquely encoded into
the integers from 0 to n* — 1 by summing a term from each queen placed on rank 7, (0 < i< k),
and column j, (0 < j < n), equal to jn'. For clarity, Figure 19 shows the value of each position
on the chessboard. Note that this is equivalent to converting to decimal a base n number with digit
i, (0 < i < k), representing the column position of queen i. These n* partial placements can then
be partitioned evenly among the processors and 1) checked for validity, and 2) used as a root node
for a sequential depth-first search of the remaining n — k& queen positions from that starting point.
Figure 20 contains an example of this search tree for £ = 2. The algorithm which decodes the array

of k column positions from a partial solution o, with (0 < o < n¥), is as follows.

e Fori=0tok—1do

omodn't! J .
)

column; = { p

We have looked at three approaches, and in each, running time is directly proportional to the
maximum of the number of solutions found on each of the threads. The first uses a block partitioning of
the n* search nodes to the p processors (using the all_pardo_block() SIMPLE computation primitive),

k
n

such that processor ¢ searches nodes 72' through %k(z +1)—1, inclusive. The second approach cyclicly

assigns the n” integers to p processors (using the all_pardo_cyclic() SIMPLE computation primitive).
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Thread Block Partitioning Cyclic Partitioning Random Partitioning
k=1 k=2 k=3 k=14 k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=14
0 69516 98156 118964 149691 69516 0 178944 191446 69516 106100 140601 135096
1 98156 114216 135201 144279 98156 0 156055 161157 98156 114545 137452 139266
2 122763 145221 136293 143107 122763 183946 135110 149503 206294 126311 143181 143473
3 157034 156914 143439 137485 157034 186905 132685 126341 98156 214920 144096 141031
4 175296 173634 146298 140338 175296 174349 120073 145543 218738 164550 136209 143113
5 201164 173914 148253 138769 201164 180358 130586 118268 69516 149524 136999 139012
6 206294 185820 143268 133407 206294 161023 123294 142711 157034 194000 162541 145240
7 218738 183434 167876 152516 218738 171347 130816 127433 175296 156660 147198 154468
8 206294 185820 167876 152516 206294 163328 123294 145826 206294 136476 140263 144914
9 201164 173914 143268 133407 201164 171347 130586 127433 175296 159105 146169 139555
10 175296 173634 148253 138769 175296 161023 120073 142711 201164 131564 147724 150637
11 157034 156914 146298 140338 157034 180358 132685 118268 122763 107366 147410 135424
12 122763 145221 143439 137485 122763 174349 135110 145543 157034 138129 136104 138323
13 98156 114216 136293 143107 98156 186905 156055 126341 201164 113832 142321 139530
14 69516 98156 135201 144279 69516 183946 178944 149503 122763 133500 143905 143784
15 0 0 118964 149691 0 0 194874 161157 0 132602 127011 146318
Time 16.9 15.5 16.1 17.4 16.9 18.6 17.2 19.5 17.1 18.2 15.5 15.5
Minimum 0 0 118964 133407 0 0 120073 118268 0 106100 127011 135096
Maximum 218738 185820 167876 152516 218738 186905 194874 191446 218738 214920 162541 154468
Mean 142449 142449 142449 142449 142449 142449 142449 142449 142449 142449 142449 142449
s.d. 60766 47177 129365 5937 60766 68910 22684 18320 60766 29248 7409 5030

Table IV: Number of solutions found by each thread (p = 4, r = 4) with n = 15. The total number of
solutions is 2,279, 184. FExecution time is directly proportional to the maximum of the number of solutions
found on each of the threads.

Thread Block Partitioning Cyclic Partitioning Random Partitioning
k= k=2 k=3 k=14 k= k=2 k=3 k= k= k=2 k=3 k=14
0 69516 48064 48367 64565 69516 0 86650 92328 69516 30660 60804 63533
1 98156 50092 70668 85126 98156 0 82838 83235 98156 75440 78318 71563
2 122763 65617 42749 51616 122763 92491 61969 78043 0 54679 72288 71952
3 157034 51709 92705 92663 157034 96691 69895 65095 0 59866 66643 67537
4 175296 94422 34981 45751 175296 87165 59263 87157 206294 55658 86526 72918
5 201164 57701 104058 97394 201164 92174 64779 59152 98156 92309 56655 70332
6 206294 108539 43044 59387 206294 80770 64782 86489 0 99647 69981 71445
7 218738 62155 104974 78264 218738 86558 62832 64557 0 93617 74115 69586
8 206294 121031 68014 80932 206294 81664 64782 72913 218738 71139 66679 68520
9 201164 70033 78725 59660 201164 84789 64779 62876 69516 93411 68194 74593
10 175296 115750 76729 77287 175296 80253 59263 56222 0 76422 66288 67051
11 157034 84305 67782 61761 157034 88184 69895 59116 0 73102 72047 71961
12 122763 110912 82248 75105 122763 87184 61969 58386 157034 97628 86697 76463
13 98156 99262 64747 57565 98156 90214 82838 61246 175296 96372 75844 68777
14 69516 91717 87375 84361 69516 91455 86650 71460 0 60505 71980 80473
15 0 118457 72426 68155 0 0 97437 77922 0 96155 75218 73995
16 0 74368 81102 69324 0 0 92294 99118 206294 87107 66234 73484
17 0 125687 96401 84266 0 0 73217 77922 175296 49369 74029 71430
18 0 57608 58643 58214 0 91455 73141 71460 0 94060 67937 73491
19 0 133456 90875 75735 0 90214 62790 61246 0 65045 78232 66064
20 0 48125 63805 60803 0 87184 60810 58386 201164 53108 69590 74624
21 0 122569 77657 77572 0 88184 65807 59116 122763 78456 78134 76013
22 0 43567 72994 57980 0 80253 58512 56222 0 63597 74931 69079
23 0 108556 77330 82511 0 84789 67984 62876 0 43769 72479 66345
24 0 38927 84213 76685 0 81664 58512 72913 157034 48804 76942 75764
25 0 78399 57598 60312 0 86558 65807 64557 201164 89325 59162 62559
26 0 39281 104906 97457 0 80770 60810 86489 0 70117 64149 69380
27 0 58875 31883 45055 0 92174 62790 59152 0 43715 79542 70150
28 0 0 94351 93558 0 87165 73141 87157 122763 50358 76532 73331
29 0 0 34744 50429 0 96691 73217 65095 0 83142 67298 70453
30 0 0 76056 86123 0 92491 92294 78043 0 57216 68441 72910
31 0 0 37034 63568 0 0 97437 83235 0 75386 57275 73408
Time 16.9 10.0 9.49 9.63 16.9 9.32 8.64 10.7 17.1 9.39 8.59 8.05
Minimum 0 0 31883 45055 0 0 58512 56222 0 30660 56655 62559
Maximum 218738 133456 104974 97457 218738 96691 97437 99118 218738 99647 86697 80473
Mean 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5 71224.5
s.d. 83182 38795 21037 14675 83182 34483 11822 11913 83182 18967 7227 3774

Table V: Number of solutions found by each thread (p = 8, r = 4) with n = 15. The total number of
solutions is 2,279, 184. FExecution time is directly proportional to the maximum of the number of solutions
found on each of the threads.
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Thread Block Partitioning Cyclic Partitioning Random Partitioning
k=1 k=2 k=3 k=14 k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=14
0 1005759 569531 736363 892999 436228 436228 436228 436228 436228 593592 757035 859987
1 1629362 705788 840988 936350 569531 569531 569531 569531 436228 826866 806923 890821
2 2211042 876866 904770 947433 736363 736363 736363 736363 569531 728812 915866 898635
3 2540093 1006695 948304 906130 892999 892999 892999 892999 569531 850266 922600 922046
4 2540093 1124437 977349 925816 1050762 1050762 1050762 1050762 736363 885655 969374 886783
5 2211042 1201779 986811 935033 1160280 1160280 1160280 1160280 736363 894789 903152 904786
6 1629362 1263315 1002574 919284 1249262 1249262 1249262 1249262 892999 972658 908905 906218
7 1005759 1275690 1010651 923211 1290831 1290831 1290831 1290831 892999 861916 933833 930362
8 0 1263315 1010843 923211 1290831 1290831 1290831 1290831 1050762 787536 976046 949414
9 0 1201779 1003088 919284 1249262 1249262 1249262 1249262 1050762 833993 957054 928577
10 0 1124437 986725 935033 1160280 1160280 1160280 1160280 1160280 963988 943920 898572
11 0 1006695 975143 925816 1050762 1050762 1050762 1050762 1160280 1011439 957437 946126
12 0 876866 946296 906130 892999 892999 892999 892999 1249262 1063841 967246 933564
13 0 705788 895153 947433 736363 736363 736363 736363 1249262 1133237 929616 967328
14 0 569531 836553 936350 569531 569531 569531 569531 1290831 1177960 927971 981314
15 0 0 710901 892999 436228 436228 436228 436228 1290831 1185964 995534 967979
Time 224 111 108 122 112 112 112 112 114 118 107 107
Minimum 0 0 710901 892999 436228 436228 436228 436228 436228 593592 757035 859987
Maximum 2540093 1275690 1010843 947433 1290831 1290831 1290831 1290831 1290831 1185964 995534 981314
Mean 923282 923282 923282 923282 923282 923282 923282 923282 923282 923282 923282 923282
s.d. 1011654 336066 92958 16301 298327 298327 298327 298327 298327 158726 59589 32538

Table VI: Number of solutions found by each thread (p = 4, r = 4) with n = 16. The total number of
solutions is 14, 772,512. Execution time is directly proportional to the maximum of the number of solutions
found on each of the threads.

Thread Block Partitioning Cyclic Partitioning Random Partitioning
k= k=2 k=3 k= k= k=2 k=3 k=14 k=1 k=2 k=3 k=

0 436228 303358 323941 402890 436228 217768 217768 217768 436228 552009 500912 419489
1 569531 266173 412422 490109 569531 277797 277797 277797 736363 581228 494622 440498
2 736363 496440 349598 389175 736363 376922 376922 376922 0 676677 480094 443452
3 892999 209348 491891 547175 892999 419521 419521 419521 0 509287 435772 478594
4 1050762 713628 370444 383931 1050762 557733 557733 557733 1290831 272181 445361 475642
5 1160280 247671 535567 563502 1160280 531864 531864 531864 569531 613474 498559 411141
6 1249262 768939 394648 363676 1249262 678243 678243 678243 0 434395 429612 492134
7 1290831 381293 561055 542454 1290831 584709 584709 584709 0 529593 500004 475845
8 1290831 708831 392371 379652 1290831 706122 706122 706122 569531 412643 426575 477536
9 1249262 563088 595454 546164 1249262 571019 571019 571019 436228 414223 496025 468590
10 1160280 633290 398378 375148 1160280 628416 628416 628416 0 267860 441639 456077
11 1050762 694077 594582 559885 1050762 493029 493029 493029 0 325732 534407 434744
12 892999 640607 408346 360188 892999 473478 473478 473478 892999 295767 463286 441837
13 736363 657162 596332 559096 736363 359441 359441 359441 1290831 491769 494151 462949
14 569531 740196 412638 426046 569531 291734 291734 291734 0 532633 455468 462773
15 436228 495278 595000 497165 436228 218460 218460 218460 0 478806 453437 467589
16 0 768037 502178 497165 0 218460 218460 218460 1249262 506323 454545 463827
17 0 450243 501376 426046 0 291734 291734 291734 1160280 466335 352378 464750
18 0 751536 590947 562698 0 359441 359441 359441 0 427939 464503 491112
19 0 455587 409638 356586 0 473478 473478 473478 0 300873 502743 458302
20 0 668850 672143 568540 0 493029 493029 493029 1160280 388994 427591 501676
21 0 508096 321274 366493 0 628416 628416 628416 1050762 461272 541783 465652
22 0 529472 718747 554693 0 571019 571019 571019 0 436813 476970 490010
23 0 531973 267438 371123 0 706122 706122 706122 0 457976 480084 443554
24 0 348402 685339 551356 0 584709 584709 584709 736363 437003 365216 457218
25 0 531095 268064 354774 0 678243 678243 678243 1249262 424913 391819 441354
26 0 202094 623428 572286 0 531864 531864 531864 0 541040 476390 478188
27 0 465160 275840 375147 0 557733 557733 557733 0 522801 451581 428030
28 0 42588 566593 554186 0 419521 419521 419521 892999 753166 527933 488249
29 0 0 256061 382164 0 376922 376922 376922 1050762 424794 375219 493065
30 0 0 485257 496786 0 277797 277797 277797 0 349677 448865 440311
31 0 0 195522 396213 0 217768 217768 217768 0 484316 484968 458324
Time 112 76.4 65.6 68.5 112 59.5 59.5 59.5 114 65.0 55.5 54.2
Minimum 0 0 195522 354774 0 217768 217768 217768 0 267860 352378 411141
Maximum 1290831 768939 718747 572286 1290831 706122 706122 706122 1290831 753166 541783 501676
Mean 461641 461641 461641 461641 461641 461641 461641 461641 461641 461641 461641 461641
s.d. 507555 235508 138282 83552 507555 153618 153618 153618 507555 108400 45395 22253

Table VII: Number of solutions found by each thread (p = 8, r = 4) with n = 16. The total number
of solutions is 14,772,512, Execution time is directly proportional to the maximum of the number of
solutions found on each of the threads.
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Both the block and cyclic partitioning schemes can be performed implicitly without the need for any
explicit inter-processor communication. The third method, however, will require communication, but
because it more evenly distributes the computational load (see the standard deviation of the number
of solutions found by each thread in Tables IV-VII), we find that it is superior in performance to the

first two methods.

Algorithm | n | CPUs | Time (s)
plr
Netlib 14 1 ] 36.336
SIMPLE |14 | 1| 1 | 38.8
SIMPLE | 14 | 1| 4 | 10.0
SIMPLE | 14 | 4| 4 | 2.73
SIMPLE | 14 | 8 | 4 | 1.32
Netlib 15 1 ] 237.080
SIMPLE | 15| 1] 1 | 255.
SIMPLE | 15| 1| 4 | 66.4
SIMPLE |15 |4 | 4 | 15.5
SIMPLE | 15| 8| 4 | 8.05
Netlib 16 1 ] 1646.131
SIMPLE |16 | 1| 1 | 1785.
SIMPLE | 16 | 1| 4 | 455.
SIMPLE |16 | 4| 4 | 107
SIMPLE |16 | 8 | 4 | h4.2

Table VIII: n-Queens Performance Summary.

The third approach randomizes the integers from 0 to n* — 1, and assigns Zl—jth of these to each
processor. The overhead for randomization and communication is minimal compared with the faster
completion time due to improved load balance. See Tables IV and V for a comparison of these three
algorithms when » = 15, on p = 4 and p = 8 nodes, each an r = 4-way SMP, varying k from 1
to 4. Similar results for n = 16 are given in Tables VI and VII. Because of the special topology
inherent in this search problem, the block and cyclic partitioning schemes are inferior to a randomized
approach. Table VIII gives the performance of our SIMPLE algorithm compared to the standard
netlib “queens” benchmark results for n = 14,15, and 16. Because our algorithm is generalized for
COSMOS , it takes slightly longer to compute on a single processor, but scales linearly with the total

number of processor used.

8 Experimental Platform

Our experimental platform consists of a cluster of DEC AlphaServer 2100 4/275 nodes each with a
DEC (OC-3c) 155.52 Mbps PCI card connected to a DEC Gigaswitch/ATM switch, and using the
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MPI (e.g., LAM 6.1, MPICH 1.0.13, or CHIMP 2.1.1c) and pthreads (DECthreads) packages. Fach
DEC AlphaServer 2100 4/275 node is a symmetric multiprocessor with four 64-bit, dual-issue, DEC
21064A (EV4) Alpha RISC processors clocked at 275 MHz. Each Alpha chip has two separate data
and instruction on-chip caches. Both on-chip caches are 16 KB, but the instruction cache is direct
mapped, while the data cache is two-way set-associative. In addition, each CPU has a 4 MB backup
(L2) cache. [14] All CPUs communicate via a 128-bit system bus which connects the four CPU

modules to a shared memory up to 2 GB in size.

9 Future Work

The future research directions of the SIMPLE project can be categorized into two areas: methodology
and algorithmics. In methodology, we plan an extension of the SIMPLE kernel to handle more
communication events. Also, in a cluster of SMPs, it is not always the case that nodes are homogeneous
in size, memory, speed, load, or even architecture. We are currently researching load sharing inside
SIMPLE algorithms such that a problem initially is distributed across the cluster such that each
node no longer has Zl—jth of the input but a portion of the input directly proportional to each node’s
current ability to solve the task. In addition, tasks may migrate across nodes during runtime to reflect
changing conditions in the cluster, or to redistribute work when the current pool of nodes shrinks
or grows. For the second area, algorithmics, we are examining various experimental data sets for
benchmarking algorithms on clusters of SMPs, and are implementing high performance application

codes using the SIMPLE methodology.

10 Release Notes

Please see http://www.umiacs.umd.edu/research/EXPAR for additional performance information. In
addition, all the code used in this paper is freely available for interested parties from our anonymous

ftp site, ftp://ftp.umiacs.umd.edu/pub/EXPAR.
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